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ABSTRACT 

In the last 15 years, the increased use of high throughput biology techniques such as 

genome-wide gene expression profiling, fitness profiling and protein interactomics has led 

to the generation of an extraordinary amount of data. The abundance of such diverse data 

has proven to be an essential foundation for understanding the complexities of molecular 

mechanisms and underlying pathways within a biological system. One approach of 

extrapolating biological information from this wealth of data has been through the use of 

reverse engineering methods to infer biological networks. 

This thesis demonstrates the capabilities and applications of such methodologies in 

identifying functionally enriched network modules in the yeast species Saccharomyces 

cerevisiae and Schizosaccharomyces pombe. This study marks the first time a mutual 

information based network inference approach has been applied to a set of specific 

genome-wide expression and fitness compendia, as well as the integration of these multi-

level compendia. This work highlights how network inference can infer potentially novel 

biological relationships by identifying gene modules that exhibit similar response across 

samples. This information can then be used to identify strong candidate interactions which 

can be tested experimentally. 

In particular, this work has generated hypotheses in S. pombe that have led to a deeper 

understanding of the relationship between ribosomal proteins and energy metabolism, a 

recently discovered pathway termed riboneogenesis. To date, this link has only been 

reported in S. cerevisiae. Experimental validation of this hypothesis using ChIP-chip data 

has led to new theories on the role of energy metabolism enzymes in controlling ribosome 
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biogenesis in S. pombe, including the novel finding that fructose-1, 6-bisphosphatase 

(FBP1) may have roles in both gluconeogenesis and riboneogenesis.  

This thesis also demonstrates how the use of multi-level data allows for comprehensive 

insight into nuclear functions of the S. pombe nonsense-mediated mRNA decay protein, 

UPF1. This study provides a substantial amount of evidence demonstrating the role of 

UPF1 in DNA replication. The applicability of fitness data in identifying targets of metal 

and metalloid toxicity in S. cerevisiae has also been investigated. 

Ultimately, this thesis reports the effectiveness of using a systems biology and network 

inference approach to identify, elucidate and understand complex biological pathways in S. 

cerevisiae and S. pombe. 

 

  



IV 

 

ACKNOWLEDGEMENTS 

First and foremost I want to dedicate my thesis to my parents, Reshad and Seeyreen Varsally. 

Without their unconditional love, support and sacrifice, I would not be where I am today. Their 

encouragement and motivation throughout the years, especially during the tougher times gave me 

the strength to continue pushing forward. I would also like to thank my brother Nadiim Varsally, 

who has always met me with a smile, no matter the situation. 

Professionally, I would like to thank my supervisors Dr. Francesco Falciani and Dr. Saverio 

Brogna for their guidance and support throughout both my undergraduate and PhD study. Their 

expertise and insight in their respective fields have been invaluable in helping me progress as a 

scientist. 

I would like to thank all my colleagues. Philipp Antczak, for his vast scientific insight, no matter 

what problem I had, he always had a solution. To Nil Turan-Jurdzinski for her listening skills and 

company, especially when the office was quiet. Anna Stincone for teaching me some Italian in our 

often very entertaining conversations. Jaanika Kronberg for her amazing cake baking skills, they 

always made my day brighter. Thanks to Harriet Davies whose energy and enthusiasm never failed 

to make me smile. To Sandip De for his exceptional experimental work in S. pombe which helped 

validate my results and I would also like to thank the rest of the group, Kim Clarke, Rita Gupta, 

Helani Munasinghe and Peter Davidsen. 

I wish to thank all my friends who have been there for me over the years. Special thanks to Anisah 

for her often humorous but trustworthy advice. To Vanica and Chahat for all the good times we’ve 

shared and to Yash, for our incredibly long conversations about life.    



V 

 

LIST OF PUBLICATIONS 

[1] Varsally, Wazeer and Saverio Brogna. UPF1 involvement in nuclear functions. 

Biochemical Society Transactions 40.4 (2012): 778. 

[2] De, Sandip and Varsally, Wazeer and Falciani, Francesco and Brogna, Saverio. 

Ribosomal proteins' association with transcription sites peaks at tRNA genes in 

Schizosaccharomyces pombe. RNA 17.9 (2011): 1713-1726. 

 

  



VI 

 

CONTENTS 

 
CHAPTER 1: INTRODUCTION AND BACKGROUND ................................................................ 1 

1.1 Introduction to systems biology approaches for omics data analysis ................................. 1 

1.1.1 The analysis of genome-wide omics datasets ............................................................. 1 

1.1.2 Microarray data processing and normalisation........................................................... 2 

1.1.3 Data exploration ......................................................................................................... 3 

1.1.4 Identification of differentially expressed genes ......................................................... 4 

1.1.5 Functional analysis ..................................................................................................... 5 

1.1.6 The current state of network inference ....................................................................... 6 

1.1.7 Modularisation approaches......................................................................................... 9 

1.2 Other types of genome-wide data used in this study .......................................................... 9 

1.2.1 The power of fitness data ........................................................................................... 9 

1.2.2 An introduction to ChIP-chip analysis ..................................................................... 11 

1.3 The biological systems of relevance ................................................................................ 13 

1.3.1 Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe 

(fission yeast) ........................................................................................................................... 13 

1.3.2 Differences and similarities between S. cerevisiae and S. pombe ............................ 14 

1.3.3 A review of system biology studies in yeast ............................................................ 15 

1.4 Why focus on the relationship between ribosome biogenesis and energy metabolism? .. 20 

1.5 Yeast ribosome biogenesis and energy metabolism ......................................................... 22 

1.5.1 Yeast ribosomal proteins .......................................................................................... 22 

1.5.2 The link between ribosome biogenesis and energy metabolism pathways .............. 23 

1.6 Aims and outline of this thesis ......................................................................................... 31 

CHAPTER 2: INFERENCE AND ANALYSIS OF A Saccharomyces cerevisiae GENE FITNESS 

NETWORK ...................................................................................................................................... 33 

2.1 Introduction ...................................................................................................................... 33 

2.2 Methods ............................................................................................................................ 35 

2.2.1 The Biological System ............................................................................................. 35 

2.2.2 Analysis Strategy ...................................................................................................... 37 

2.2.3 Data processing ........................................................................................................ 39 

2.2.4 Network Inference .................................................................................................... 41 

2.2.5 Network analysis: Topology .................................................................................... 43 

2.2.6 Network Analysis: Modularisation .......................................................................... 43 



VII 

 

2.2.7 Ribosomal proteins first neighbour analysis ............................................................ 44 

2.3 Results .............................................................................................................................. 45 

2.3.1 A network biology approach identifies clusters of yeast mutant strains with similar 

phenotypic profiles ................................................................................................................... 45 

2.3.2 Community analysis of the fitness network identifies highly interconnected modules 

  .................................................................................................................................. 49 

2.3.3 The modular structure of the fitness network reflects functional 

compartmentalisation. .............................................................................................................. 50 

2.3.4 An independent fitness analysis confirms the functional compartmentalisation of the 

Hillenmeyer fitness network .................................................................................................... 62 

2.3.5 The construction of RP first neighbour networks..................................................... 73 

2.4 Discussion ........................................................................................................................ 90 

2.4.1 Ribosomal proteins are required for proper chromosome segregation and cell cycle 

progression ............................................................................................................................... 91 

2.4.2 Genes involved in glycolysis may regulate the rate of ribosome biogenesis ........... 93 

2.4.3 Limitations of fitness data ........................................................................................ 95 

2.5 Concluding remarks ......................................................................................................... 96 

CHAPTER 3: INFERENCE AND ANALYSIS OF A Saccharomyces cerevisiae GENE 

EXPRESSION NETWORK ............................................................................................................. 98 

3.1 Introduction ...................................................................................................................... 98 

3.2 Methods ............................................................................................................................ 99 

3.2.1 The biological system ............................................................................................... 99 

3.2.2 Network inference .................................................................................................. 100 

3.2.3 Network Analysis: Visualisation and modularisation ............................................ 100 

3.2.4 Identification of ribosomal proteins’ first neighbours ............................................ 101 

3.3 Results ............................................................................................................................ 102 

3.3.1 The modular structure of the expression network reflects functional 

compartmentalisation ............................................................................................................. 102 

3.3.2 The link between cytosolic RPs, cell cycle and energy metabolism pathways is 

conserved at the gene expression level................................................................................... 112 

3.3.3 Mitochondrial RPs are transcriptionally coupled to genes encoding cytosolic RPs, 

respiratory chain and ubiquitin complexes. ............................................................................ 116 

3.4 Discussion ...................................................................................................................... 119 

3.4.1 The highly coordinated expression of genes encoding ribosome factors, glycolysis, 

and cell cycle .......................................................................................................................... 119 

3.4.2 The linkage of mitochondrial RPs to cytosolic RPs and ubiquination machinery is 

conserved at the expression and phenotypic level .................................................................. 122 

3.4.3 Future work ............................................................................................................ 123 



VIII 

 

3.5 Concluding remarks ....................................................................................................... 124 

CHAPTER 4: NETWORK INFERENCE AND ANALYSIS USING AN INTEGRATED 

FITNESS AND EXPRESSION DATASET .................................................................................. 125 

4.1 Introduction .................................................................................................................... 125 

4.2 Methods .......................................................................................................................... 127 

4.2.1 The datasets ............................................................................................................ 127 

4.2.2 Analysis strategy .................................................................................................... 128 

4.2.3 HOPACH clustering of integrated data .................................................................. 130 

4.2.4 Functional analysis of each HOPACH cluster ....................................................... 134 

4.2.5 Network Inference and modularisation procedure ................................................. 135 

4.3 Results ............................................................................................................................ 136 

4.3.1 Cellular functions exhibit similar behaviour across diverse datasets ..................... 136 

4.3.2 Community analysis of the integrated network identifies highly interconnected 

modules  ................................................................................................................................ 139 

4.3.3 The modular structure of the integrated network reflects functional 

compartmentalisation ............................................................................................................. 140 

4.3.4 The strongest edges between nodes are representative of the metacycle ............... 148 

4.4 Discussion ...................................................................................................................... 152 

4.4.1 The power of applying reverse engineering methods to integrated datasets .......... 152 

4.4.2 Using integrated networks to characterise unknown genes .................................... 154 

4.5 Concluding remarks ....................................................................................................... 156 

CHAPTER 5: INFERENCE AND ANALYSIS OF A Schizosaccharomyces pombe GENE 

EXPRESSION NETWORK ........................................................................................................... 157 

5.1 Introduction .................................................................................................................... 157 

5.2 Methods .......................................................................................................................... 159 

5.2.1 The dataset.............................................................................................................. 159 

5.2.2 Network inference .................................................................................................. 159 

5.2.3 Network visualisation and modularisation ............................................................. 160 

5.2.4 Identification of ribosomal protein first neighbours ............................................... 160 

5.3 Results ............................................................................................................................ 162 

5.3.1 The modular structure of the S. pombe expression network .................................. 162 

5.3.2 Investigating the link between RPs and energy metabolism using a network based 

approach  ................................................................................................................................ 173 

5.4 Discussion ...................................................................................................................... 182 

5.4.1 Does FBP1 in S. pombe take on the role of SHB17 from S. cerevisiae as the key 

enzyme responsible for regulating riboneogenesis? ............................................................... 182 



IX 

 

5.4.2 Is the dual role of FBP1 in gluconeogenesis and riboneogenesis dependent on the 

structure of its active site? ...................................................................................................... 183 

5.4.3 Identifying candidates for experimental validation ................................................ 189 

5.4.4 There is evidence of riboneogenesis conservation across yeast species ................ 190 

5.5 Concluding remarks ....................................................................................................... 191 

CHAPTER 6: THE GENOME-WIDE ASSOCIATION OF RIBOSOMAL PROTEINS IN 

Schizosaccharomyces pombe ......................................................................................................... 193 

6.1 Abstract .......................................................................................................................... 193 

6.2 Introduction .................................................................................................................... 194 

6.3 Methods .......................................................................................................................... 196 

6.3.1 Experimental analysis ............................................................................................ 196 

6.3.2 Processing and visualisation of ChIP-chip data ..................................................... 196 

6.3.3 Identification of enriched regions and calculation of enrichment scores ............... 196 

6.4 Results ............................................................................................................................ 198 

6.4.1 RPs associate both with coding and non coding genes .......................................... 198 

6.4.2 RPs show significant association to specific regions of the centromere ................ 203 

6.4.3 Functional analysis of RP binding profiles reveals links with tRNAs, energy 

metabolism pathways and membrane related genes ............................................................... 205 

6.4.4 RPs associate to genomic loci encoding proteins involved in the glycolysis and 

gluconeogenesis pathways ..................................................................................................... 210 

6.5 Discussion ...................................................................................................................... 215 

6.5.1 RPs are present at many genomic loci .................................................................... 215 

6.5.2 RPs and their association to the centromere and tRNAs ........................................ 215 

6.5.3 RPs and their association to energy metabolism genes .......................................... 216 

6.5.4 Do ribosomal proteins control their own expression by binding to FBP1 mRNA? ..... 

  ................................................................................................................................ 218 

6.6 Concluding remarks ....................................................................................................... 222 

CHAPTER 7: AN INVESTIGATION INTO THE NON – CANONICAL NUCLEAR 

FUNCTIONS OF NMD PROTEIN UPF1 IN Schizosaccharomyces pombe ................................ 223 

7.1 Abstract .......................................................................................................................... 223 

7.2 Introduction .................................................................................................................... 224 

7.3 Methods .......................................................................................................................... 226 

7.3.1 Experimental analysis ............................................................................................ 226 

7.3.2 Processing and visualisation of ChIP-chip data ..................................................... 226 

7.3.3 Identification of enriched regions and calculation of enrichment scores ............... 227 

7.3.4 Identifying differentially expressed genes in a UPF1 knockout ............................ 227 

7.3.5 Integration of γH2A ChIP-chip analysis ................................................................ 227 



X 

 

7.4 Results ............................................................................................................................ 229 

7.4.1 Outline of Genome-wide association of UPF1 with transcribed regions ............... 229 

7.4.2 The binding profile of UPF1 is cell cycle dependent ............................................. 234 

7.4.3 Cell-cycle-dependent association of UPF1 with the centromere............................ 236 

7.4.4 UPF1 binds tRNA genes in both S-phase and G2-phase ....................................... 236 

7.4.5 UPF1 association with telomeres ........................................................................... 238 

7.4.6 UPF1 and its strong association to heterochromatic regions .................................. 239 

7.4.7 UPF1 binds at poorly replicated chromosomal regions during S-phase ................ 239 

7.4.8 UPF1 during the S-phase binds to and possibly regulates TEs .............................. 243 

7.4.9 UPF1 may bind to and regulate a specific subset of genes during S-phase ........... 245 

7.5 Discussion ...................................................................................................................... 248 

7.5.1 UPF1 and its’ role in DNA replication ................................................................... 248 

7.5.2 A newly constructed S. pombe expression network provides further evidence of 

UPF nuclear functions ............................................................................................................ 249 

7.6 Concluding remarks ....................................................................................................... 253 

CHAPTER 8: A NETWORK BIOLOGY APPROACH TO IDENTIFYING ADVERSE 

OUTCOME PATHWAYS IN METAL AND METALLOID TOXICITY ................................... 255 

8.1 Introduction .................................................................................................................... 255 

8.1.1 Metals and metalloids are toxic .............................................................................. 255 

8.2 Methods .......................................................................................................................... 257 

8.2.1 Identification of fitness modules linked to metal and metalloid exposure ............. 257 

8.3 Results ............................................................................................................................ 258 

8.3.1 Yeast strains mutated in ribosomal proteins and ribosomal biogenesis genes are 

resistant to aresenite exposure ................................................................................................ 258 

8.3.2 Fitness modules linked to zinc exposure ................................................................ 260 

8.3.3 Yeast strains mutated in ribosome and chaperone genes exhibit tolerance to high 

concentrations of cadmium .................................................................................................... 263 

8.3.4 Yeast strains mutated in ribosomal proteins and protein transport genes exhibit 

tolerance to high concentrations of MMA
III

 ........................................................................... 265 

8.3.5 Exposure to lead does not cause differential fitness in any yeast mutants ............. 267 

8.4 Discussion ...................................................................................................................... 268 

8.4.1 Potential targets of metals and metalloids reveal the mechanisms of toxicity ....... 268 

8.4.2 Shortcomings and further work .............................................................................. 271 

8.5 Concluding remarks ....................................................................................................... 272 

CHAPTER 9: GENERAL DISCUSSION ..................................................................................... 273 

9.1 Exploring the global and local organisation of the yeast system ................................... 273 

9.2 Understanding cell cycle progression in yeast ............................................................... 274 



XI 

 

9.3 A new perspective in understanding the intricacies of ribosome biogenesis in S. pombe ... 

  ........................................................................................................................................ 275 

9.3.1 Similarities between S. pombe FBP1 and S. cerevisiae SHB17 ............................. 276 

9.3.2 FBP1 switches enzymatic activity depending on cellular demands for ribose-5-

phosphate ................................................................................................................................ 277 

9.3.3 Can RPs regulate their own synthesis by effecting the expression of FBP1 and 

glycolysis genes? .................................................................................................................... 281 

9.3.4 Understanding ribosome biogenesis: Expanding the scope to higher eukaryotes .. 285 

9.4 Limitations and Future work .......................................................................................... 286 

9.4.1 The lack of fitness data in S .pombe ....................................................................... 286 

9.4.2 The need for experimental validation ..................................................................... 287 

APPENDIX .................................................................................................................................... 289 

LIST OF REFERENCES ............................................................................................................... 302 

 

 

 

  



XII 

 

LIST OF FIGURES 
Figure 1. 1 Summary of the metacycle............................................................................................. 26 

Figure 1. 2 The key steps and enzymes involved in riboneogenesis. ............................................... 28 

 

Figure 2. 1 Workflow for reverse engineering and analysing S. cerevisiae fitness networks. ......... 38 

Figure 2. 2 PCA of Vulpe Labs processed fitness data. ................................................................... 41 

Figure 2. 3 Visualisation of the results of NetworkAnalyzer on the Hillenmeyer network. ............ 46 

Figure 2. 4 Modules localise within distinct areas of the Hillenmeyer parent network. .................. 52 

Figure 2. 5 Sub-modular structure of module 1, with accompanying functional analysis. .............. 54 

Figure 2. 6 Sub-modular structure of module 2, with accompanying functional analysis. .............. 56 

Figure 2. 7 Sub-modular structure of module 3, with accompanying functional analysis. .............. 59 

Figure 2. 8 Sub-modular structure of module 4, with accompanying functional analysis. .............. 60 

Figure 2. 9 Structure of module 5, with accompanying functional analysis. ................................... 60 

Figure 2. 10 Structure of module 6, with accompanying functional analysis. ................................. 61 

Figure 2. 11 Structure of module 7, with accompanying functional analysis. ................................. 61 

Figure 2. 12 Structure of module 8, with accompanying functional analysis. ................................. 61 

Figure 2. 13 Modules localise within distinct areas of the Vulpe parent network. .......................... 64 

Figure 2. 14 Sub-modular structure of Vulpe module 1 with functional analysis. .......................... 66 

Figure 2. 15 Sub-modular structure of Vulpe module 2 with  functional analysis. ......................... 67 

Figure 2. 16 Sub-modular structure of Vulpe module 3 with functional analysis ........................... 68 

Figure 2. 17 Sub-modular structure of Vulpe module 4 with functional analysis. .......................... 69 

Figure 2. 18 Structure of Vulpe module 5 with accompanying functional analysis. ....................... 69 

Figure 2. 19 Structure of Vulpe module 6 with accompanying functional analysis. ....................... 70 

Figure 2. 20 Structure of Vulpe module 7 with accompanying functional analysis. ....................... 70 

Figure 2. 21 Structure of Vulpe sub-network 8 with accompanying functional analysis. ............... 70 

Figure 2. 22 An undirected network showing cytosolic ribosomes first neighbours in Hillenmeyer’s 

network. ............................................................................................................................................ 76 

Figure 2. 23 An undirected network showing cytosolic ribosomes first neighbours in Vulpe’s 

network ............................................................................................................................................. 81 

Figure 2. 24 An undirected network showing the first neighbours of mitochondrial ribosomes from 

the Hillenmeyer dataset .................................................................................................................... 84 

Figure 2. 25 An undirected network showing the first neighbours of mitochondrial ribosomes from 

the Vulpe dataset .............................................................................................................................. 85 

Figure 2. 26 The phenotypic linkage of BUB1 to cytosolic RPs. ..................................................... 88 

 

Figure 3. 1 Modules localise within distinct areas of the S. cerevisiae expression parent network.

 ........................................................................................................................................................ 103 

Figure 3. 2 Sub-modular structure of module 1, with accompanying functional analysis ............. 105 

Figure 3. 3 Sub-modular structure of module 2, with accompanying functional analysis. ............ 107 

Figure 3. 4 Sub-modular structure of module 3, with accompanying functional analysis. ............ 108 

Figure 3. 5 Sub-modular structure of module 4, with accompanying functional analysis. ............ 109 

Figure 3. 6 The overrepresentation of GAG and Gag-POL type transposons in modules 4.1 and 4.2.

 ........................................................................................................................................................ 110 

Figure 3. 7 Structure of module 5, with accompanying functional analysis. ................................. 111 

Figure 3. 8 Figure 3.8 Structure of module 6, with accompanying functional analysis. ................ 111 



XIII 

 

Figure 3. 9 Structure of module 7, with accompanying functional analysis. ................................. 111 

Figure 3. 10 Structure of module 8, with accompanying functional analysis. ............................... 112 

Figure 3. 11 An undirected network showing the first neighbours of cytosolic RPs. .................... 115 

Figure 3. 12 An undirected network showing the first neighbours of mitochondrial RPs. ............ 118 

Figure 3. 13 The oscillation of functional groups in the yeast metacycle. ..................................... 120 

 

Figure 4. 1 Integration of fitness and expression network data workflow. .................................... 130 

Figure 4. 2 Heatmaps of expression clusters identified by HOPACH from fitness module 1. ...... 132 

Figure 4. 3 Heatmaps of expression clusters identified by HOPACH from fitness module 2. ...... 133 

Figure 4. 4 Heatmaps of expression clusters identified by HOPACH from fitness module 3. ...... 133 

Figure 4. 5 Heatmaps of expression clusters identified by HOPACH from fitness modules 4, 5, 6, 7 

and 8 respectively ........................................................................................................................... 134 

Figure 4. 6 Modules localise within distinct areas of the force directed integrated parent network.

 ........................................................................................................................................................ 141 

Figure 4. 7 Module 1 visualisation and HCL analysis on the nodes located in module 1.............. 143 

Figure 4. 8 Module 2 visualisation and HCL analysis on the nodes located in module 2.............. 144 

Figure 4. 9 Module 3 visualisation and HCL analysis on the nodes located in module 3.............. 145 

Figure 4. 10 Module 4 visualisation and HCL analysis on the nodes located in module 4. ........... 146 

Figure 4. 11 Module 5 visualisation and HCL analysis on the nodes located in module 5. ........... 147 

Figure 4. 12 Module 6 visualisation and HCL analysis on the nodes located in module 6. ........... 148 

Figure 4. 13 Visualisation of the most significant integrated network edges (MI > 0.6) ............... 151 

Figure 4. 14 A subset of the integrated network, showing nodes that bridge act as a bridge to 

module 1. ........................................................................................................................................ 155 

 

Figure 5. 1 S. pombe expression network showing modules mapped onto the parent network at 

0.25MI threshold (p: 10
-78

) ............................................................................................................. 164 

Figure 5. 2 Sub-modular structure of module 1, with accompanying functional analysis. ............ 166 

Figure 5. 3 Sub-modular structure of module 2, with accompanying functional analysis. ............ 167 

Figure 5. 4 Sub-modular structure of module 3, with accompanying functional analysis ............. 169 

Figure 5. 5 Sub-modular structure of module 4, with accompanying functional analysis ............. 170 

Figure 5. 6 Sub-modular structure of module 5, with accompanying functional analysis. ............ 171 

Figure 5. 7 Structure of module 6, with accompanying functional analysis. ................................. 172 

Figure 5. 8 Structure of module 7, with accompanying functional analysis. ................................. 172 

Figure 5. 9 Structure of module 8, with accompanying functional analysis. ................................. 172 

Figure 5. 10 Structure of module 9, with accompanying functional analysis. ............................... 173 

Figure 5. 11 A force directed layout of the first neighbours of S. pombe cytosolic RPs with GLay 

clusters mapped on. ........................................................................................................................ 176 

Figure 5. 12 A force directed layout of the first neighbours of S. pombe mitochondrial RPs, with 

the Glay defined modules mapped on. ........................................................................................... 178 

Figure 5. 13 A force directed layout of the first neighbours of S. pombe ribosome biogenesis genes, 

with the GLay clusters mapped on. ................................................................................................ 181 

Figure 5.14 Flow chart showing the proposed dual role of fructose-1, 6-bisphosphatase (FBP1) in 

catalysing key reactions in riboneogenesis and gluconeogenesis in S. pombe when ribose-5-

phosphate demand is high...............................................................................................................186 



XIV 

 

Figure 5.15 Flow chart showing the proposed role of fructose-1, 6-bisphosphatase in catalysing key 

reactions in riboneogenesis and gluconeogenesis in S. pombe when ribose-5-phosphate demand is 

low...................................................................................................................................................187 

 

Figure 6. 1 The genome-wide association of the RPs to the S. pombe genome. ............................ 200 

Figure 6. 2 Pie-charts showing the proportions of bound genomic regions. .................................. 201 

Figure 6. 3 The association of RPL7 RPL11 and RPL25 to origins of replication. ....................... 202 

Figure 6. 4 ChIP-chip binding profile of each protein to the three S. pombe centromeres as 

visualised in IGB. ........................................................................................................................... 204 

Figure 6. 5 The overlap between RPL7, RPL11 and RPL25 ......................................................... 208 

Figure 6. 6  Example of RPs association at noncentromeric tRNA genes from chromosomes  II and 

III. ................................................................................................................................................... 209 

Figure 6. 7 Stacked bar charts representing the association of the RPs with all known 171 tRNA 

genes. .............................................................................................................................................. 210 

Figure 6. 8 Binding profiles for the seven glycolysis genes and gluconeogenesis gene FBP1 bound 

by RPs. ........................................................................................................................................... 212 

 

Figure 7. 1 Binding profiles of UPF1 and UPF2 ............................................................................ 231 

Figure 7. 2 Pie Charts showing the genomic regions associated to UPF1. .................................... 232 

Figure 7. 3 Pie Charts showing the ‘unknown’ regions associated to UPF1. ................................ 232 

Figure 7. 4 Overlap of significantly associated genomic regions for UPF1 ChIP-chip samples. .. 235 

Figure 7. 5 UPF1 association to the centromere is cell cycle dependent. ...................................... 237 

Figure 7. 6 The binding of UPF1 S-phase and G2-phase to tRNAs at the genome-wide level and 

centromere level. ............................................................................................................................ 238 

Figure 7. 7 The overlap of genomic features that were significantly enriched by UPF1 S-phase and 

γH2A S-phase. ................................................................................................................................ 241 

Figure 7. 8 The binding information of γH2A ............................................................................... 242 

Figure 7. 9 UPF1 S-phase binding to transposable elements is highly specific ............................. 244 

Figure 7. 10 Overlap of differentially expressed genes in UPF mutant and regions bound by UPF

 ........................................................................................................................................................ 247 

Figure 7. 11 The first neighbour network of UPF1 using a 0.2MI threshold ................................. 252 

 

Figure 8. 1 Arsenite exposure significantly hits two fitness sub-modules. .................................... 259 

Figure 8. 2 Zinc exposure significantly hits five fitness sub-modules. .......................................... 262 

Figure 8. 3 Cadmium exposure significantly hits three sub-modules. ........................................... 264 

Figure 8. 4 MMA
III

 exposure significantly hits three sub-modules. .............................................. 266 

 

Figure 9. 1 A flow chart representing the hypothesised dual functionality of FBP1 in S. pombe 

based on results obtained throughout this study and evidence from existing literature. ................ 280 

Figure 9. 2 Possible mechanisms of action in which RPs inhibit FBP1 and glycolysis gene 

expression when demand for ribose-5-phosphate is low. ............................................................... 284 

 

Figure A2. 1 HOPACH on Hillenmeyer Module 1 ........................................................................ 293 

Figure A2. 2 HOPACH on Hillenmeyer Module 2 ........................................................................ 294 

Figure A2. 3 HOPACH on Hillenmeyer Module 3 ........................................................................ 295 



XV 

 

Figure A2. 4 HOPACH on Hillenmeyer Module 4 ........................................................................ 296 

Figure A2. 5 HOPACH on Hillenmeyer Module 5 ........................................................................ 297 

Figure A2. 6 HOPACH on Hillenmeyer Module 6 ........................................................................ 297 

Figure A2. 7 HOPACH on Hillenmeyer Module 7 ........................................................................ 298 

Figure A2. 8 HOPACH on Hillenmeyer Module 8 ........................................................................ 298 

Figure A7. 1 The overlap of statistically significant genomic regions bound between UPF1 S-

phase, UPF1 G2-phase, UPF1-Async and UPF2-Async. ............................................................... 300 

 

  



XVI 

 

LIST OF TABLES 
Table 1. 1 Summary of most popular statistical tests ......................................................................... 4 

Table 1. 2 The six steps of riboneogenesis. ...................................................................................... 29 

 

Table 2. 1 Summary of datasets used in the fitness analysis. ........................................................... 36 

Table 2. 2 ARACNE p-values and associated MI values for Hillenmeyer’s fitness dataset. ........... 42 

Table 2. 3 ARACNE p-values and associated MI values for Vulpe’s fitness dataset. ..................... 42 

Table 2. 4  The top five negative hits for node degree from GSEApreranked ordered by FDR ...... 47 

Table 2. 5 Results of GSEApreranked on radiality. ......................................................................... 48 

Table 2. 6 Breakdown of modules identified by GLay clustering in Hillenmeyer’s fitness data..... 49 

Table 2. 7 Breakdown of modules identified by GLay clustering in Vulpe’s fitness data ............... 63 

Table 2. 8 The degree of overlap between modules from Hillenmeyer’s network (green) and 

Vulpe’s network (red). ..................................................................................................................... 72 

Table 2. 9 Breakdown of cytosolic ribosomes first neighbours modules for Hillenmeyer’s network.

 .......................................................................................................................................................... 75 

Table 2. 10 All the edges between cytosolic ribosomal factors and energy metabolism genes ....... 78 

Table 2. 11 Breakdown of cytosolic ribosomes first neighbours modules from Vulpe’s network .. 80 

Table 2. 12 Breakdown of mitochondrial ribosomes first neighbours modules for Hillenmeyer’s 

network. ............................................................................................................................................ 83 

Table 2. 13 Breakdown of mitochondrial ribosomes first neighbours modules for Vulpe’s network.

 .......................................................................................................................................................... 83 

Table 2. 14 All interactions between BUB1 and cytosolic RPs. ...................................................... 89 

 

Table 3. 1 ARACNE p-values and corresponding MIs for the S. cerevisiae expression dataset ... 101 

Table 3. 2 The breakdown of S. cerevisiae expression modules defined by GLay. ....................... 104 

Table 3. 3 Breakdown of cytosolic RP first neighbour modules identified by GLay. ................... 113 

Table 3. 4 Breakdown of mitochondrial RP first neighbour sub-modules identified by GLay. .... 117 

 

Table 4. 1 Summary of the HOPACH clusters identified from the fitness sub-modules. .............. 131 

Table 4. 2 ARACNE P-values and corresponding MIs for expression & fitness integrated network

 ........................................................................................................................................................ 135 

Table 4. 3 The most enriched functions within each HOPACH cluster. ........................................ 139 

Table 4. 4 Nodes contained within each module of the 0.3 MI integrated network....................... 140 

Table 4. 5 The modules with the strongest interactions correspond to phases of the metacycle ... 150 

 

Table 5. 1 ARACNE p-values and associated MIs for Bähler’s data compendium. ...................... 161 

Table 5. 2 Breakdown of modules identified by GLay for the S. pombe expression network ....... 163 

Table 5. 3 Breakdown of nodes and edges within each sub-module from the cytosolic RP first 

neighbour network ......................................................................................................................... 175 

Table 5. 4 The connectivity of the six module 1 glycolysis genes to cytosolic RPs ...................... 175 

Table 5. 5 Breakdown of nodes and edges within each module from the mitochondrial RP first 

neighbour network ......................................................................................................................... 178 

Table 5. 6 Breakdown of nodes and edges within each module from the ribosome biogenesis first 

neighbour network ......................................................................................................................... 179 



XVII 

 

 

Table 6. 1 Total genomic features (annotated and unknown) bound by RPL7, RPL11 and RPL25 

using a MAT p-value of 10
-4

 .......................................................................................................... 199 

Table 6. 2 The Pearson correlation between the RP ChIP-chip binding profiles across the three S. 

pombe chromosomes ...................................................................................................................... 199 

Table 6. 3 Functional analysis of genes associated to RPL7, RPL11 and RPL25 ......................... 206 

Table 6. 4 Functional analysis of RP overlap of annotated genes. ................................................. 207 

Table 6. 5 Information on the cytoplasmic energy metabolism genes bound by RPs, with their 

corresponding enrichment scores ................................................................................................... 211 

Table 6. 6 Identification of genes involved in glycolysis, PPP and riboneogenesis, and whether 

they bound by 60S ribosomes and / or are first neighbours in our S. pombe ribosome expression 

networks ......................................................................................................................................... 221 

 

Table 7. 1 Breakdown of genomic features bound by UPFs .......................................................... 229 

Table 7. 2 Functional analysis of the genomic regions bound by UPF1 at different cell cycle stages 

and by UPF2 asynchronous culture ................................................................................................ 233 

Table 7. 3 Functional analysis of overlap between UPF1 samples. ............................................... 235 

Table 7. 4 Functional annotation of γH2A binding ........................................................................ 241 

Table 7. 5 UPF1 enrichment of TEs, in order of fold enrichment.................................................. 244 

Table 7. 6 Functional analysis of UPF1 first neighbours. .............................................................. 253 

 

Table 8. 1 Significant fitness sub-modules associated to arsenite exposure .................................. 258 

Table 8. 2 Significant fitness sub-modules associated to zinc exposure ........................................ 260 

Table 8. 3 Significant fitness sub-modules associated to cadmium exposure ................................ 263 

Table 8. 4 Significant fitness sub-modules associated to MMA
III 

exposure .................................. 265 

 

Table A2. 1 Top 50 most connected nodes (hubs) within Hillenmeyer’s fitness network ............. 290 

Table A2. 2 GSEAPreranked -the top 50 GO terms with negative significant enrichment using 

node radality ................................................................................................................................... 292 

Table A5. 1 The results of BLASTP: S. cerevisiae SHB17 against the S. pombe genome ............ 299 

Table A5. 2 The results of BLASTP: S. pombe FBP1 against the S. cerevisiae genome .............. 299 

Table A7. 1 Details of the 22 gene overlap between the UPF1 ChIP-chip and UPF2 ................... 301 

 

 

 

 



 

1 
 

CHAPTER 1: INTRODUCTION AND 

BACKGROUND 
 

1.1 Introduction to systems biology approaches for omics data analysis 

Systems biology has taken its place as a mainstream approach to research since the late 90s 

[1]. The overall aim of systems biology is to obtain a quantitative understanding of 

biological systems by analysing the relationships among their components, including 

information from and between genes, mRNA, proteins and metabolites [2]. Mathematical 

models can also be used to describe how each component interacts with each other and to 

predict their behaviour [3]. Its rise in popularity is due to biologists examining entire 

biological systems rather than focussing on individual mechanisms. A biological system 

may be defined as a set of relationships amongst genes, proteins and macromolecules that 

result in the life and viability of the system [4]. Thereby a system can be defined as a 

pathway, mechanism, single cell, tissue, organ or an entire complex organism [1]. A 

systems biology approach requires obtaining information on the various components 

mentioned above, in accordance with the principle that genes are not the sole keepers of 

information. 

 

1.1.1 The analysis of genome-wide omics datasets 

Systems biology does not only focus on the single ‘omics’ resources available but allows 

for the inclusion of multiple data sources in an integrative manner. The integration of 

multiple datasets can reveal cellular mechanisms that would have otherwise remained 

undetected if only a single omic data source was used. Acquiring such data requires high 
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throughput experiments and therefore, powerful statistical computational analyses are 

needed [2].  

In the next section, I provide an overview of the stages of a typical analytical pipeline and 

the current bioinformatics tools available for system biology approaches. In this case I 

focus on microarray technology but the methods and principles can be applied to all other 

omics technologies. 

 

1.1.2 Microarray data processing and normalisation 

To separate the true biological variation from the technical variation due to the laboratory 

equipment and human error, normalization procedures are necessary. Noisy data can be 

caused by laboratory instruments, and variation in experimental procedure such as 

labelling, scanning and image analysis procedures between labs. Several normalisation 

methods exist to correct for technical differences [5]. Application of normalisation 

techniques is dependent on the array type (single or two channel arrays, manufacture type).  

Two channel arrays require different normalisation techniques compared to single channel 

arrays. Variables such as dye bias can influence signal intensity as microarray designs 

vary, with some containing more than one feature for a given target. In these cases, 

specific normalisation techniques need to be applied. Typically, a log2 transformation is 

applied to the data to remove low signal bias and reduce variation among measures with 

high magnitude. Robust Multi-array Analysis (RMA) [6], GeneChip RMA (GCRMA) [7, 

8], and Microarray Suite (MAS5) [9] are the most commonly used normalisation methods 

for single channel arrays produced by Affymetrix.  RMA normalisation provides 

background correction for each probe, quantile normalisation and summarisation into 
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expression measurements, with quantile normalisation assuming that gene abundances are 

distributed similarly across all samples.  

GCRMA is an improved version of RMA which incorporates sequence specific probe 

affinities into the methodology. MAS5 builds regression models for subsets of the entire 

dataset, and then transforms each probe accordingly. This thesis utilises microarray data 

from Affymetrix arrays. The methods described can be implemented using the ‘affy’ [10] 

package in R [11].  The normalised data can be interrogated using a series of statistical 

methodologies, which are described below. The acquisition and analysis of fitness data and 

ChIP-chip data are reported in sections 1.2.1 and 1.2.2 respectively. 

 

1.1.3 Data exploration 

Exploratory analysis of the data is an important step in outlier detection and general 

understanding of the experimental setup. There are a number of techniques which can 

perform such analysis. Principal component analysis (PCA) [12] and independent 

component analysis (ICA) [13] for example, belong to a group of dimensional reduction 

techniques that can be used to summarise the variance across samples into principal 

components, thereby reducing the dimensionality of the data. The first component would 

contain the most amount of variance, with the variance decreasing as the number of 

components increase. The principal components, typically the first two, can be visualised 

on a 2D (or 3D) plot which represents the differences in samples. Other tools used for 

exploring large scale datasets include clustering and tree based algorithms that provide a 

visual representation of the data. Using such methods can reveal the similarity between 

genes or samples and output results in a visual form. Tools include the self organising tree 

algorithm (SOTA) [14] and hierarchical ordered partitioning and collapsing hybrid 
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(HOPACH) [15].  These particular methods output results as a gradient heatmap which 

represents signal intensity across samples and genes and are useful in visualisation of the 

correlation structures in the data. 

 

1.1.4 Identification of differentially expressed genes 

One of the key questions in analysing biological data, is the whether a set of features are 

differentially expressed between samples. Numerous statistical approaches have been 

developed and implemented to answer this question (Table 1.1). 

Statistical Test Applicability 

t-test Compares averages of classes (max 2) and produces a p-value for each 

gene. Can be one class and two class (paired and unpaired) 

ANOVA Extension of t-test. Compares means across all sample groups. 

Eliminates the need to perform multiple class comparisons for each pair 

of classes. Tests include one-way ANOVA and two-way ANOVA 

n-way ANOVA Analysis of multiple factors with the same classification groups. 

SAM Modification of the t-test that removes the stability problem. Can be 

used for comparing one class, two class (paired and unpaired), 

multiclass, time course and quantitative data (providing there is a 

continuous response variable) 

Table 1. 1 Summary of most popular statistical tests 

 

Deciding the statistical method to use is dependent on the experimental design. The 

traditional t-test (or the non parametric version; Wilcox-test) compares the averages of a 

maximum of two classes, and specifies a p-value for each gene. The p-value is the 

probability of a significant difference in gene expression between two experimental 

conditions being due to random chance, a statistically significant low p-value (typically < 

0.05) indicates strong evidence again this null hypothesis.  A statistical threshold is chosen 

by the user to define genes that are significantly differentially expressed, therefore 

rejecting the null hypothesis. A drawback to using a t-test is the ‘stability problem’ in 

which genes with low variance can be statistically significant despite having a very low 
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fold change, creating a bias towards highly reproducible genes. Analysis of variance 

(ANOVA) is a generalised extension of the t-test, and is not limited to only two classes. 

This technique compares the means for all sample groups, reducing the requirement for 

performing two class comparisons between each class pair permutation. The analysis of 

multiple factors is known as n-way ANOVA. Significance analysis of microarrays (SAM) 

[16] is a modification of the t-test which removes the stability problem, and can be applied 

to one class, two class (paired and unpaired), multiclass, quantitative and time course data. 

The t-test and ANOVA return p-values for each gene.  

Due to the often massive size of microarray datasets, p-values require correction for 

multiple testing. Several correction methods have been developed [17] [18] [19], however 

the most widely used correction method is known as False Discovery Rate (FDR), 

published by Benjamini and Hochberg [20]. This method aims to capture the highest 

number of true positives whilst controlling the number of false positives. Correction for 

multiplicity testing is essential. With statistical tests, the user typically picks a cut-off 

threshold representing the probability of identifying false positives; however, this is only 

valid when a single hypothesis is being tested. Therefore, to correct for the problem of 

multiple comparisons, an FDR correction must be applied. Studies of multiple FDR 

thresholds are required to optimise sample separation and functional annotation whilst 

maintaining a reasonable number of genes, before finally settling on an FDR threshold.  

 

1.1.5 Functional analysis 

Despite microarray technologies having the ability to measure gene expression at the 

genome-wide level, interpreting results of such a large number of genes can prove 

challenging. Differential expression or clustering analysis alone does not provide a full 
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picture of the molecular changes occurring across experimental conditions. Functional 

annotation tools test whether, in a given list of genes, genes belonging to a specific 

functional process are present at a higher frequency than by random chance. One of the 

most popular and well known databases is The Database for Annotation, Visualisation and 

Integrated Discovery (DAVID) [21] [22]. DAVID is a web based service that integrates 

multiple functional annotation databases, including gene ontology (GO) [23] and Kyoto 

Encyclopedia of Genes and Genome (KEGG) [24]. Therefore, DAVID provides a well 

validated functional clustering service, which identifies statistically significant enrichment 

utilising multiple databases and curated pathways [21] [22], and returns corrected FDR 

scores for any functional enrichment identified. 

 

1.1.6 The current state of network inference 

Network inference aims to use the vast amount of data generated by high-throughput 

technologies and identify interactions between entities such as genes, proteins and 

experimental perturbations. Network inference approaches provide a means to identify and 

visualise dependencies between these entities. Constructing networks aid in the 

understanding of cellular mechanisms, such as predicting regulatory pathways through the 

identification of network modules. A module is defined as a group of entities that are co-

regulated, functionally similar or regulated by a common factor [25].  

This type of hypothesis driven research has led to the development and implementation of 

several reverse engineering methodologies [26], however the choice of which method to 

apply is dependent on the type of data (steady state or time course measurements) and the 

number of genes and samples to be analysed. Network inference methodologies can be 
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grouped into gene pairwise association (such as correlation or mutual information), 

probabilistic methods (such as Bayesian networks) and differential equations. 

Probabilistic methods such as Bayesian networks require a large amount of data as the 

algorithm is based on the estimation of a probability density distribution. Advantages of 

using Bayesian networks are the ability to infer connection directionality and analyse time 

course data [27], an advantage not shared with pairwise scoring methodologies. However 

the dependency on published data makes Bayesian networks mainly suitable for model 

systems. The Bayesian networks methodology can only be applied to a limited number of 

genes [27] as the entire network needs to be rescored after each edge manipulation, this 

limitation is also shared by differential equations [28]. Therefore, Bayesian networks and 

differential equations are best applied when the focus is on a specific biological question 

or pathway, which involves the analysis of a limited number of genes. Several 

methodologies have been developed with the primary focus of inferring networks using a 

Bayesian approach [27] and differential equations [29].  

A key advantage of using pairwise scoring methods over probabilistic methods and 

differential equations is the ability to use an entire dataset as input, which can contain 

hundreds or even thousands of genes and samples. Metrics such as correlation and mutual 

information (MI) can be computed between all gene pairs within the dataset. Correlation 

algorithms such as Spearman and Pearson are typically suited to datasets that have a 

smaller number of samples. MI based methods can capture positive, negative, linear and 

non-linear dependencies; however a large number of samples (> 50) is required. It should 

be noted that MI based pairwise methods are limited by their inability to infer edge 

directionality. Therefore, when dealing with static data, containing thousands of genes and 

samples, pairwise association based methods are the most suitable. Many algorithms have 

been developed including the MI based methods Algorithm for the Reconstruction of 
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Accurate Cellular Networks (ARACNE) [30] and Context of Likelihood of Relatedness 

(CLR) [31]. 

 

1.1.6.1 Reverse engineering approaches: ARACNE 

In this study, the well validated reverse engineering method ARACNE was used to infer 

gene networks from large datasets. ARACNE defines an edge as a statistical dependency 

between gene expression profiles [30]. Potentially indirect connections can be eliminated 

using the Data Processing Inequality (DPI) principle [30]. This principle involves 

removing the edge with the smallest information from a triplet of gene connections. One of 

the biggest advantages of using ARACNE over other means of correlation is that it is able 

to identify non-linear correlations as well as positive and negative relationships, making it 

very effective in identifying connections which are biologically relevant [30, 32]. MI is 

scored between 0 and 1, and similarly to linear correlation methods, the higher the value, 

the greater the MI that is shared between two genes. However, it is important to note that 

relationships between genes are statistical dependencies; therefore causality cannot be 

directly inferred without further experimental validation. 

As MI is always non-negative, genes that are in fact mutually independent with no 

underlying biological connection will also have a positive (albeit low) value. Therefore, 

when thresholding a network, it is imperative to select an MI value that represents a 

statistically significant p-value in order to eliminate false positive connections. ARACNE 

assigns p-values to MI thresholds using a Monte Carlo simulation using different sample 

sizes and 10
5
 gene pairs [30]. This ensures that for each MI threshold, a reliable estimation 

of the corresponding p-value has been calculated [30]. For this reason, it is essential to test 
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multiple MI thresholds and check their corresponding p-values, as well as the number of 

nodes and edges retained in the network before deciding on which threshold to use. 

 

1.1.7 Modularisation approaches 

An important step in deciphering and reducing the complexity of an inferred network is 

through the identification of functional modules. A functional module can be defined as a 

set of genes that exhibit similar expression, are regulated by a common factor, have 

functional similarities, or are a combination of them all [25]. There exist numerous 

modularisation approaches with the aim of tackling this challenge. These include 

identification of modules based on network topology which consist of identifying highly 

interconnected sub-networks within the larger networks, such as GLay [33]. For a review 

of network topology based methods of modularisation, please see Li et al [34]. Edge 

weight scoring methods, which involve identifying modules that are highly co-regulated 

using correlation and MI have also been developed [35].  

 

1.2 Other types of genome-wide data used in this study 

In addition to gene expression data, a significant section of this thesis is dedicated to the 

analysis of fitness data and ChIP-chip data. 

1.2.1 The power of fitness data 

The use of fitness data is known to be a powerful way of inferring gene function. This 

involves phenotypic analysis of mutants missing a particular gene; the inference of gene 

function is then based on the phenotype exhibited by the mutant [36]. This approach 

allows the essentiality of a gene to be evaluated. Comparative studies using identical 
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conditions between both fitness and expression experiments have shown that gene 

essentiality is not necessarily linked to differential expression [37]. Four comparative 

studies performed by Giaever et al revealed less than 7% of genes that exhibited 

differential expression, also exhibited a statistically significant decrease in fitness [37]. 

This revealed that a statistically significant increase in gene expression is not necessarily 

linked to optimal growth under stress conditions, and that the post-transcriptional 

modification and translation regulation of genes also have a key role in determining cell 

survivability. This discovery also revealed that genes that show no change in expression 

may still be essential for cell viability. This is a feature that fitness experiments can 

capture unlike experiments that measure gene expression.  

There are numerous genome-wide approaches that can be applied for characterising gene 

function using phenotypic analysis of mutant strains, including genetic footprinting [38], 

random mutagenesis [39] and a ‘molecular barcode’ approach [36] [37] [40]. Genetic 

footprinting and random mutagenesis are both relatively rapid, however disadvantages 

include being unable to recover the mutant strains (genetic footprinting approach) and the 

time-consuming pairing between the mutated gene and the corresponding phenotype 

(random mutagenesis approach) [37]. Both these random approaches also suffer from the 

certainty that some genes will elude detection during the screening process. [36] [37]. To 

overcome these limitations, a ‘molecular barcode’ approach was developed, which 

involved systematically deleting each gene from start to stop codon and replacing it with a 

KanMX gene flanked by two distinct nucleotide sequences which can act as a unique 

identifier for each deletion mutant [36] [37]. The KanMX gene has been shown to not 

affect the fitness of deletion strains [41]. This approach meant that the phenotype exhibited 

by the deletion strain could be directly associated to the gene deletion. This method of 

analysis has proven to be effective in yeast, as strains containing each deletion can be 
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analysed in parallel. A culture containing every deletion mutant can be grown, with 

samples collected at regular intervals. The essentiality of each gene for cell viability can be 

determined by quantifying the abundance of the unique molecular barcodes using an 

Affymetrix Tag3 array containing the respective complementary sequences [37]. Yeast 

strains containing mutants of genes that are essential for cell viability, will rapidly 

diminish, as would the molecular barcode associated to that gene, whilst mutations in 

genes that are non-essential will not affect cellular growth. Therefore, each gene can be 

ranked by their contribution to fitness. This approach can be applied to yeast strains grown 

under particular stresses such as limited media or toxic metal exposure. Genes essential for 

growth under different environmental conditions can be quantified, and can provide 

information on what genes are needed for metal tolerance, growth in glucose limited media 

or potentially any type of stress. Using the molecular barcode approach in growth fitness 

analysis is fundamental in understanding gene function in yeast [42] [43] [40]. 

Bioinformatic methodologies developed to analyse, normalise and assign fitness scores 

from raw .CEL data have been developed by one of the pioneers of fitness data, 

Hillenmeyer et al [40]. After extracting fitness scores, sections 1.1.3 – 1.1.7 can be applied 

to fitness data. 

 

1.2.2 An introduction to ChIP-chip analysis 

DNA – protein interactions are characteristic of essential cellular processes including DNA 

replication, transcription and DNA repair [44].  Chromatin immunoprecipitation (ChIP) is 

an experimental procedure used to investigate the interactions between protein and DNA, 

specifically a protein is selectively immunoprecipitated from chromatin and the DNA 

sequences associated to that protein are determined [45].  ChIP-chip is the combination of 

ChIP with whole-genome DNA microarrays. ChIP-chip approaches are able to map the 
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genome-wide binding profiles between the protein in question and DNA, examples in the 

literature include the genome-wide mapping of histone proteins [46], cell cycle 

transcription factors [47] and broader scope analysis that do not focus on specific proteins 

but instead proteins that generally show DNA binding association [48]. ChIP-chip 

protocols within yeast and mammalian cells are relatively standard with very little 

variation [44].  The first step involves cross-linking the protein of interest with the DNA 

using formaldehyde fixation. After cross-linking the extract is sonicated to shear DNA 

fragments to a size typically 1 kilobase (kb) or less [49]. DNA protein complexes are 

identified from the remaining pool of DNA fragments by using either immunoprecipitation 

(with a protein specific antibody, or an antibody specific to a tagged protein) or affinity 

purification using a tag that does not require antibodies [44]. The cross-links between the 

protein of interest and DNA are reversed by heating and the DNA is purified, amplified 

and labelled with a fluorescent molecule such as Cy5 [44]. In two-colour arrays, the input 

DNA before ChIP is used as a reference [50], amplified and labelled using a different 

fluorescent molecule such as Cy3 [44]. The two probes are combined and hybridised to a 

DNA tiling array. A genome-wide binding profile representing the in vivo binding can then 

be constructed. Regions of the genome bound by proteins can be detected using 

computational methods. Currently, the number of methods available that can detect protein 

binding regions are numerous and diverse. Methods include TileMap [51], TiMAT 

(http://bdtnp.lbl.gov/TiMAT) and MAT (Model-based analysis of Tiling Arrays) [52] and 

Hidden Markov Model (HMM) based approaches [53]. Comparative studies between the 

computational ChIP-chip analysis methods revealed MAT outperformed all existing 

computational ChIP-chip methodologies [52]. MATs ability to take user defined p-values 

and to analyse experiments with unequal number of control and test samples has made it a 

leading computational methodology in the analysis of Affymetrix Tiling Arrays [52]. 
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1.3 The biological systems of relevance 

1.3.1 Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe 

(fission yeast)  

The completion of the S. cerevisiae genome sequence was reported in 1997 [54] [55]. The 

genome is ~12.1 megabases (Mb) and to date contains 6607 open reading frames (ORFs), 

of which 5060 are verified [56]. S. cerevisiae can be genetically manipulated with ease, 

and is one of the best studied model organisms across such fields as cell biology, systems 

biology, molecular biology and biochemistry [56]. S. cerevisiae has its own dedicated 

online data repository called the Saccharomyces Genome Database (SGD) which is 

consulted over 45,000 times a week [56]. SGD contains basic information such as DNA 

sequence, RNA, encoded proteins and protein structure in addition to a wealth of tools that 

can be used to query the vast amount of data available, including sequence similarity 

searches.  

Similarly, S. pombe is a major organism for the study of eukaryotic cellular processes and 

a model for human disease [57] [58]. S. pombe was the sixth eukaryotic genome to be fully 

sequenced and annotated [57]. The genome is 13.8 Mb and contains 4824 protein coding 

genes, 43% of which contain introns. Furthermore, a total of 172 S. pombe proteins, are 

known to have similarity to proteins associated to human diseases [57]. Currently, the 

number of publications related to S. pombe exceeds 10,000, with hundreds more being 

published every year [58]. In order to cope with the astronomical amount of information 

available, Pombase was established [58]. Pombase is an online curated database that aims 

to provide access to the wealth of available S. pombe genome information curated data 

from literature, genomic sequence, high throughput studies and additional fungal genomes 

[58]. 
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S. cerevisiae and S. pombe have been model organisms that have driven scientific research 

for decades [59] [60] [61]. The contribution of S. cerevisiae to the scientific community is 

not only restricted to cell biology and biochemistry, but also economically in terms of food 

and beverage industries [59]. Furthermore, yeast has a short life cycle with cells doubling 

approximately every 100 minutes. Together with the relatively simple conditions required 

for growth [62], it makes yeast an ideal organism for the generation of omic type datasets. 

Due to these reasons, yeast is often chosen to be the organism of choice for many omics 

studies. The focus on yeast is apparent when examining the vast number omics datasets in 

the public domain. The results presented in this thesis focus on S. cerevisiae and S. pombe.  

 

1.3.2 Differences and similarities between S. cerevisiae and S. pombe 

The most apparent difference is the way in which the yeast cells divide. As its name 

suggests, S. pombe divides by medial fission [63]. S. cerevisiae, instead, divides by 

budding. Despite the difference in cell division, both yeast species have been model 

species for studying the eukaryotic cell cycle studies since as far back as the 1980s [60]. It 

has been estimated that S. pombe diverged from S. cerevisiae around 330 – 420 million 

years ago [64], as a result the two yeast species exhibit numerous differences at the 

molecular level. At 4824, the number of genes in S. pombe is substantially less than that of 

S. cerevisiae. Studies have reported that for S. pombe, the gene density over the complete 

genome is one gene every 2528 bp, compared to one gene every 2088 bp for S. cerevisiae 

[57]. The total protein coding sequence that resides within the genome differs at 60.2% 

and 70.5% for S. pombe and S. cerevisiae respectively [57]. Another difference is in the 

number of introns, S. pombe contains 4730 [57] whilst S. cerevisiae only has 282 introns 

[65]. Carbon utilisation and energy metabolism is another key difference between the two 

species [66]. S. pombe lacks numerous genes encoding enzymes involved in energy 
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metabolism and production; as a result, entire cycles and pathways that are present in S. 

cerevisiae are absent in S. pombe. These include the complete lack of the glyoxylate cycle; 

the lack of glycolytic paralogues, alcohol dehydrogenases, genes regulating glucose 

repression and the inability to synthesise glycogen and utilise ethanol as a carbon source 

[66]. Even though there are numerous differences between the two species, S. pombe still 

has 3281 proteins that are homologous in S. cereviase [57].  

 

1.3.3 A review of system biology studies in yeast 

1.3.3.1 Existing system biology studies utilising gene expression data 

In 2000, a pioneering study by Hughes et al [67] constructed and characterised a 

compendium of expression profiles of 300 mutations and chemical treatments in S. 

cerevisiae. They used a hierarchical clustering approach to reveal that mutants induce 

expected groups of genes, and that the co-regulation of these genes corresponds to a 

particular phenotype. They then proved that expression profiles could serve as a means for 

identifying gene functions, by knocking out genes classified as uncharacterised ORFs, and 

then comparing the expression profile for the deletion mutant against other mutants within 

the compendium. By using this approach they were able to identify functions for eight 

uncharacterised ORFs [67]. This study laid the foundation for functional discovery using 

gene expression compendiums. Other expression compendiums such as those constructed 

by Hu et al, containing 263 transcription factor (TF) knockouts [68] were used to construct 

a transcriptional regulatory network. They also used gene ontology annotations to 

understand the biological functions of TFs in S. cerevisiae. However, despite being a 

comprehensive study, the processing and normalisation of their data did not include 

background and tip correction [69], nor were p-values corrected for multiple testing [70], 

which may have restricted the amount of useful information that could have been gained 
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from such a study. As a result, Reimand et al reprocessed and reanalysed the data, which 

was found to outperform the original in every way [71], however this study lacked any 

kind of network analysis, instead opting to identify differentially expressed genes and 

determining TF binding sites. Gene expression and network inference studies have also 

been used to reveal the conservation of genetic modules between human, worm, flies and 

yeast. One particular network based study, published by Stuart et al, predicted that 

additional genes may be involved in essential biological processes, these candidate genes 

were then experimentally validated [25].  

Up to this point the focus has been on gene expression networks in S. cerevisiae. However, 

S. pombe also has a huge wealth of gene expression information, none more so than  the 

gene expression study carried out by the Bähler Lab over the last ten years, which to date 

contains expression data for over 900 samples including gene knockouts, metal exposure 

and various stress conditions [72]. They used two clustering methods to identify 

biologically relevant modules characteristic of gene regulation, these were hierarchical 

clustering across samples and clustering of a gene correlation matrix. The authors aimed to 

rank genes based on their variability in gene expression across all available samples, and 

they identified that the most variable genes encoded protein transport, stress response and 

carbohydrate breakdown [72]. Similarly to the study performed by Reimand et al in S. 

cerevisiae, the methodology employed within the Bähler Lab study did not make use of 

any network inference techniques. Given the size, comprehensiveness and broad sample 

range of their expression compendium, it makes it a prime candidate for use in network 

inference studies. 

 



 

17 
 

1.3.3.2 Existing system biology studies utilising fitness data 

As S. cerevisiae was sequenced five years prior to S. pombe, the amount of data available 

and comprehensiveness of the genomic annotation far surpasses that of S. pombe. 

Consequentially there exist more fitness data within the public domain for S. cerevisiae, 

such as the studies performed by Winzeler et al [36] and Hillenmeyer et al [40]. The 

fitness study performed by Winzeler et al in 1999 though relatively small, analysing only a 

third of the genome (~2000 ORF deletions) under two conditions (rich media and minimal 

media) was a landmark paper as it substantiated fitness data as a valid and informative 

means of elucidating functional classes of essential and non-essential genes [36]. Soon 

after the paper was published, the importance of fitness data was recognised and the 

construction of all tagged deletions for S. cerevisiae was completed through the 

collaborative effort between European and North American labs [36]. As mentioned in 

section 1.2.1, an important discovery was that a statistically significant increase in gene 

expression is not always indicative of gene essentiality [37]. The study performed by 

Winzeler et al showed that fitness data was able to take into account the post-

transcriptional and translational regulation of genes. Since then, the analysis of genome-

wide deletion strains in S. cerevisiae has steadily become a forerunner in understanding the 

yeast system, however, the volume of fitness data pertaining to S. pombe is currently very 

limited [73] [74]. 

Another noteworthy fitness study was that done by Hillenmeyer et al [40]. The authors 

tested ~6000 heterozygous gene deletion strains and ~5000 homozygous gene deletion 

strains (~1000 genes are known to be essential, therefore they were excluded from the 

homozygous analysis.). This fitness study was the largest and most comprehensive 

analysis done in S. cerevisiae. Results indicated that 97% of genes in S. cerevisiae are 

actually essential for growth in one of the 1000+ chemical genomic assays they tested. 
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This suggested that under normal growth conditions some genes may be non-essential for 

yeast growth, however when exposed to chemical or environmental stress they contribute 

to a measureable change in yeast fitness. Using a hierarchical clustering approach, genes 

exhibiting similar co-fitness profiles (two genes exhibiting similar phenotypic behaviour 

across all samples) were found to be biologically related [40]. This paper served as a 

means of validating and introducing the scientific community to the potential applications 

of the fitness compendium they had constructed. The overall result of their paper contained 

a general overview of their fitness data compendium and validation using three examples 

of how co-fitness profiles could be used to functionally classify genes.  

A limitation with current network studies based on fitness data is that they are limited in 

terms of scope, often disregarding large amounts of the dataset to focus only on a specific 

set of genes. These types of studies include understanding specific pathways such as 

mapping galactose utilisation in S. cerevisiae using a state-space model based 

methodology [75] or assembling the S. cerevisiae ubiquitination system using a point-wise 

MI network [76]. Though these studies focus on specific pathways, they do further validate 

how fitness data can be used to gain additional insight into already well understood 

cellular processes. They however, suffer from a limited scope, considering only a subset of 

the data thereby only encapsulating the organisation of a select group of genes rather than 

the global organisation of the yeast system. 

 

1.3.3.3 Existing system biology studies utilising proteomic and metabolomic data 

The aim of proteomics is to identify and quantify protein abundance and post-translational 

modification in cells using high-throughput experiments, which involve the simultaneous 

measurement of all proteins expressed in cells. High-throughput experimental 
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methodologies used to separate and visualise proteins are based on 2D-PAGE, mass 

spectrometry and multidimensional separations using micro-capillary liquid 

chromatography [2]. Several studies in yeast utilising these approaches have been used to 

understand the functional organisation of the yeast proteome [77] [78] [79]. Metabolomics 

aim to characterise the dynamic response of low molecular weight metabolites such as 

lipids amino acids and sugars [80] in response to environmental stress or genetic 

perturbation [81]. As the metabolome represents the cellular integration of structural 

components such as the transcriptome and proteome, it therefore provides a functional 

readout of the cellular state [82], this can be especially useful when testing cellular 

response to a environmental stress, as the metabolome responds earlier than the 

transcriptome and proteome [83] [84]. In yeast, metabolomics studies have been performed 

using electrospray mass spectrometry [85], NMR spectroscopy [81] and gas 

chromatography / time-of-flight mass spectrometry [86]. Several technologies can be 

combined in order to achieve a more comprehensive study [87]. 

 

1.3.3.4 The current state of network inference in S. cerevisiae using integrated 

datasets 

The use of single level datasets is useful in inferring the relationship between different 

entities, and hence aids in the identification of important biological functions. However, an 

integrative approach in which multi-level data is integrated into a single network can 

reveal in further detail cellular processes and mechanisms that could otherwise not be 

deduced using single level data. The identification of network modules representing a 

common behaviour over diverse datasets using integrative approach has been previously 

explored by several groups. These include the integration of genomic and proteomic data 

[88], transcription regulation and protein-protein interaction data [89], gene expression, 
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protein-protein and protein-metabolite interaction data [90], transcription factor binding, 

gene expression, protein interactions and phenotypic sensitivity [91]. Though the overall 

aim of each study varied, the main take home message was that integrating data from 

several diverse sources provides complementary information which can be used to build 

more detailed and comprehensive networks representative of yeast. Key biological 

interactions and relationships can then be hypothesised based on analysis of the network, 

and then experimentally validated. These studies are all limited due to the lack of 

comprehensive fitness data included within their network construction. Though Tanay et al 

did include some fitness data, only 30 samples were considered [91], this low number of 

samples is expected as their study was published in 2003, when fitness analysis was in its 

early stages. Now that a comprehensive S. cerevisiae fitness compendium is available [40], 

it provides a perfect source for constructing the first fitness based global S. cerevisiae 

regulatory network using an MI based method, as well as the means to construct integrated 

networks using robust and comprehensive fitness data. 

 

1.4 Why focus on the relationship between ribosome biogenesis and energy 

metabolism? 

In 2011, Clasquin et al reported, in a pioneering study, that ribosome biogenesis and 

energy metabolism were in fact directly correlated in S. cerevisiae [92]. This discovery 

was revealed by applying a metabolomic screening process on genes of unknown function. 

Candidate genes for the screening were determined by comparative sequence analysis, 

with the aim of identifying uncharacterised genes which contained domains similar to 

already known enzymes. The deletion of one particular gene, which they named SHB17 

(previously known as YKR043c and reported to potentially catalyse fructose-1, 6-

phosphate [93]) lead to the accumulation of seven- and eight-carbon mono- and 
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bisphosphorylated metabolites, particularly those involved in the non-oxidative arm of the 

pentose phosphate pathway (PPP). Further experiments revealed that SHB17 was an 

essential sedoheptulose bisphosphatase; its main role was to link glycolysis and the non-

oxidative arm of the PPP in one of a series of six key reactions. This newly discovered 

pathway was named ‘riboneogenesis’, and consisted of thermodynamically driven pathway 

that converts glycolytic intermediates into ribose-5-phosphate, independently of NADPH 

production (see section 1.5.2.2) [92]. This discovery revealed that the process of ribosome 

biogenesis was in fact dependent on the glycolysis pathway. Further analysis suggested 

that key enzymes involved in riboneogenesis are in fact correlated to the yeast metabolic 

cycle, a cycle  in which yeast cultures that are nutrient starved synchronise metabolism and 

cell cycle processes so that the culture cycles between respiration and fermentation (see 

section 1.5.2.1) [94]. These results demonstrated that the decision to undergo ribosome 

biogenesis was in fact dependent on many cellular processes, one of the significant of 

which was glycolysis. This recent discovery means that no comprehensive network based 

studies have been undertaken with the aim of investigating riboneogenesis in S. cerevisiae 

or S. pombe. In addition to revealing the global organisation of both yeast systems, a 

network approach may identify additional genes with potential roles in riboneogenesis. To 

date, the conservation of riboneogenesis in S. pombe has only been hinted at, with a result 

that doubly labelled seven-carbon monophosphorylated metabolites are observed in S. 

pombe cells given [6-
13

C1]-glucose [92]. Given the metabolic differences between S. 

pombe and S. cerevisiae (described in section 1.3.2), applying diverse datasets such as 

fitness and gene expression data with a reverse engineering approach may lead to a further 

understanding of riboneogenesis in both yeast species, an investigation which to date, has 

not been tackled. 
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1.5 Yeast ribosome biogenesis and energy metabolism 

1.5.1 Yeast ribosomal proteins 

Ribosomes are complex macromolecular machines that are responsible for the production 

of proteins in every living cell. They are composed of both RNA and protein, to form a 

large multifunctional complex.  Structurally, ribosomes differ between prokaryotes and 

eukaryotes. In eukaryotes, ribosomes are 80S, each consisting of a small (40S) and large 

(60S) subunit. The large subunit is composed of 5S, 28S and 5.8S ribosomal RNAs 

(rRNAs) [95] and the smaller subunit is composed of an 18S rRNA typically between 

1800 - 1900 nucleotides in length [96]. There are just under 80 ribosomal proteins (RPs) 

conserved across eukaryotes [97]. RPs have remained highly conserved during evolution 

most likely due to their often critical functions in their biogenesis, function and structural 

integrity of ribosomes [98] [99]. Specifically, RPs assist in shaping the rRNA into the 

correct tertiary structure and maintaining an optimum configuration [100] as well as rRNA 

maturation, nuclear export and ribosomal subunit biogenesis. As stated above, RPs are 

some of the most abundant proteins in both eukaryotic and prokaryotic cells. Typically 

most RPs are very basic with a pI of >10. Few exceptions include the acidic 

phosphoproteins P0 – P3 in eukaryotes [101]. 

Within S. cerevisiae and S. pombe, most RP genes are duplicated with the protein 

paralogues being either identical or very similar.  However knockout mutations on the two 

paralogues lead to different phenotypes within S. cerevisiae [102].  For example the 

deletion of RPL12a lead to the up-regulation of genes involved in amino acid metabolism, 

while a deletion of RPL12b up-regulated genes which encoded products that localise to the 

nucleus and repressed genes involved in cell wall synthesis. Komili et al suggested that 

there are different ribosome subtypes in the cell which are distinguishable by the RP 

paralogues they carry [102]. The results suggested that RPs may be implicated or have 
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regulatory roles in cellular functions not directly related to the ribosome structure. RPs are 

ubiquitous, abundant and RNA-binding, making them prime candidates for recruitment for 

functions outside of ribosomal biogenesis and translation. Though they are involved in 

balancing RNA synthesis and protein components of ribosomes, numerous papers have 

reported extra ribosomal functions of ribosomal proteins. Numerous ribosomal proteins 

have been extensively studied including L7, RACK1, L13a and S3 in S. cerevisiae and 

Drosophila [101]. A paper published in 1996 detailed more than 30 extra-ribosomal 

functions of RPs within E. coli, D. melanogaster, H. sapiens, S. cerevisiae, R. rattus and 

M. musculus [100]. The significance of this review showed a culmination of data 

identifying that extra-ribosomal functions are conserved amongst eukaryotic organisms 

and prokaryotic organisms alike. Since then, there have been numerous linking RPs to 

non-ribosomal functions [98]. 

 

1.5.2 The link between ribosome biogenesis and energy metabolism pathways 

In yeast, ribosome biogenesis is a complex and resource expensive process requiring the 

coordinated regulation of three RNA polymerases [103], transcribing ~150 rRNA genes 

and ~137 RP genes [97]. Furthermore, up to 60% of cellular transcription is dedicated to 

rRNA transcription and 90% of mRNA splicing is dedicated to RPs during rapid cell 

growth [97]. The rate of ribosome biogenesis depends on the physiological demands of the 

cell, such as cell growth and viability. Notably, studies in S. cerevisiae within the last few 

years have reported that linkage between cell growth, cell function, cell viability and 

ribosome biogenesis are all in fact linked. Examples of these studies include the yeast 

metabolic cycle [104] and the discovery of riboneogenesis [92].  
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1.5.2.1 The metabolic cycle – The global co-ordination of cellular processes by 

mRNA oscillations 

Metabolic cycles were observed in S. cerevisiae cultures growing in continuous conditions 

over 30 years ago [105], however not till recently has the underlying regulatory 

mechanisms been investigated [94] [104]. The yeast metabolic cycle (metacycle) can be 

described as the genome-wide co-regulation of genes which synchronise diverse cellular 

processes with cell division and metabolism [106], essentially allowing yeast cells to 

switch between respiration and fermentation states in a synchronised manner when grown 

in nutrient limited culture. Synchronised cells were found to oscillate gene expression 

based on progression through the metacycle [104].  The metacycle contains three key 

phases, the oxidative phase, and the reductive phase, split into building and charging 

phases (Figure 1.1).  

The oxidative phase is characterised by the massive up-regulation of genes involved in 

ribosome biogenesis, ribosomal proteins, translation initiation and amino acid synthesis in 

preparation of protein synthesis [106] [94] (Figure 1.1). The concentration of NADPH and 

acetyl coenzyme A (acetyl-coA) are at their highest, providing the oxidisable metabolites 

needed for rapid cellular respiration. An up-regulation of ribosome biogenesis and protein 

synthesis genes has also been observed in S. pombe however, unlike S. cerevisiae, the peak 

occurs within the G2 phase not G1 phase [107].  

The lack of oxygen and low NADPH concentrations marks the entry into the reductive 

phase and the beginning of DNA replication. This phase is characterised by the up-

regulation of genes involved in mitochondrial building and DNA replication machinery 

(Figure 1.1). The reductive-charging phase follows. The concentration of oxidisable 

metabolites (predominantly NADPH and acetyl-coA) [106] [94] increases through the up-

regulation of genes involved in carbohydrate breakdown (Figure 1.1). At the onset of the 
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oxidative phase, oxygen levels are high and the concentrations of oxidisable metabolites 

are at their peak, preparing the cells for protein synthesis. 

Each phase is defined by the up-regulation of a specific group of cellular processes [94].  

The duration of each phase is almost identical [104] [94], however length of a single 

metabolic cycle remains controversial and has been reported as ~40 minutes [104] and 

~300 minutes [94].  



 

 

2
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Figure 1. 1 Summary of the metacycle. 

A cartoon summarising the culmulative results reported by Tu et al [94], Futcher [108] and Reinke et al [106]. The metacycle consists of three key phases, 

the oxidative phase which marks the up-regulation of ribosome and RNA related genes, and utilises stored oxisable metabolites for use during protein 

synthesis. The reductive phase in general is host to DNA replication and cell division. The reductive-building phase is characterised by the up-regulation of 

mitochondrial related genes and the formation of spindle poles, as well as the onset of DNA replication. The reductive-charging phase consists of the 

generation of oxidative metabolites with the up-regulation of glycolysis and fatty acid oxidation. Vacuolar and ubiquitination genes are also up-regulated. 

Cell division ends before the start of the oxidative phase. The red gradient represents oxygen consumption, and the blue arrow gradient represents 

concentrations of oxidisable metabolites. 
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1.5.2.2 Riboneogenesis – Connecting glycolysis and pentose phosophate pathway to 

ribosome biogenesis 

Typically glucose is consumed through two major routes, glycolysis and the pentose 

phosphate pathway (PPP). Glycolysis is split into two phases, the preparatory phase 

(where ATP is consumed) and the payoff phase (where ATP is produced). The rate of 

glycolysis is regulated by numerous enzymes including phosphofructokinase, fructose 

bisphosphatase and pyruvate kinase which all catalyse thermodynamically favoured 

reactions. The PPP consists of the oxidative phase and the non-oxidative phase; glucose 

enters the former through glucose-6-phosphate dehydrogenase and the latter via glycolytic 

intermediates generating ATP, NADPH and ribose for DNA and RNA synthesis [92].   

First reported in 2011 in S. cerevisiae, riboneogenesis is a thermodynamically driven 

pathway which converts glycolytic intermediates into ribose-5-phosphate (R5P) by linking 

the PPP to the preparatory phase of glycolysis in a series of six thermodynamically driven 

reactions (Figure 1.2, Table 1.2) [92]. Sedoheptulose-1, 7-bisphophatase (SHB17) is an 

essential enzyme reported to catalyse the first committed step into riboneogenesis. The 

production of R5P via riboneogenesis occurs independently of NADPH production, 

suggesting that riboneogenesis flux is favourable when the cellular demand for R5P 

exceeds the demand for NADPH or when the oxidative PPP cannot meet the demand for 

R5P [92]. 
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Figure 1. 2 The key steps and enzymes involved in riboneogenesis. 

This flow chart has been constructed based on the information presented by Clasquin et al [92]. It 

shows the six enzymatic steps involved in riboneogenesis. Glycolytic intermediates can enter 

riboneogenesis at three stages (represented in yellow). Enzymes which catalyse each step are 

represented by the dark blue text; the number in brackets is in reference to the reactions shown in 

Table 1.2. Of key importance is reaction 3, catalysed by sedoheptulose bisphosphatase (SHB17), 

this step in riboneogenesis is the thermodynamically driven reaction that commits cells into the 

riboneogenesis pathway. 

 

Figure 1.2 shows the key reactions in riboneogenesis where the numbers in brackets 

represent the reactions as detailed in a table 1.2.  Glycolytic intermediates in the form of 

fructose-6-phosphate and glyceraldehyde-3-phosphate enter the riboneogenesis pathway 
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and are catalysed by transketolase TKL1 producing erythrose-4-phosphate (E4P) (Table 

1.2, reaction 1). E4P and the glycolytic intermediate dihydroxyacetone-phosphate are 

catalysed by fructose bisphosphate aldolase (FBA1) to produce sedoheptulose-1, 7-

bisphosphate (SBP) (Table 1.2, reaction 2). SHB17 hydrolyses SBP to sedoheptulose-7-

phosphate (Table 1.2, reaction 3). Transketolases, TKL1 and TKL2 then convert 

sedoheptulose-7-phosphate (S7P) to R5P and xylulose-5P (X5P) (Table 1.2, reaction 4). 

The catalysis of X5P to R5P occurs in two steps. Firstly X5P is converted to ribulose-5-

phosphate (Ru5P) by ribulose-5-phosphate epimerase (RPE1) (Table 1.2, reaction 5). 

Finally, Ru5P is converted to R5P by ribose-5-phosphate ketol-isomerase (RKI1) (Table 

1.1, reaction 6). The overall pathway leads to the production of three R5P units [92].  

 

Reaction  Substrate   Product  Enzyme class  

1  fructose-6-phosphate 

+ glyceraldehyde-3-

phosphate  

↔   erythrose-4-phosphate 

+ xylulose-5-

phosphate  

transketolase  

2  erythrose-4-phosphate 

+ dihydroxyacetone 

phosphate   

↔   sedoheptulose-1, 7-

bisphosphate  

aldolase  

3  sedoheptulose-1, 7-

bisphosphate  
→   sedoheptulose-7-

phosphate + Pi  

sedoheptulose-1, 

7-bisphosphatase  

4  sedoheptulose-7-phosphate 

+ glyceraldehyde-3-

phosphate  

↔   xylulose-5-phosphate 

+ ribose-5-phosphate  

transketolase  

5  xylulose-5-phosphate  ↔   ribulose-5- phosphate  epimerase  

6  ribulose-5- phosphate ↔   ribose-5-phosphate  isomerase  

Table 1. 2 The six steps of riboneogenesis. 

Column 1 represents each step in riboneogenesis as numbered in Figure 1.2. Column 2 shows the 

substrate(s), column 3 indicates whether the reaction is reversible, column 4 shows the product(s) 

and column 5 shows the enzyme class responsible for the reaction. Reaction 3, catalysed by 

SHB17 is the key reaction that commits cells to the riboneogenesis pathway  
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1.5.2.3 The intricate relationship between the metacycle and riboneogenesis 

SHB17 expression is reported to oscillate in tandem with the metacycle [92], with SHB17 

expression peaking together with ribosomal proteins during the oxidative phase.  Other key 

enzymes involved in riboneogenesis have been shown to peak during ribosome biogenesis, 

including TKL1 and RKI1 [92]. This suggests that the up-regulation of SHB17 and other 

riboneogenesis genes coincides with the peak demand for ribose phosphate, a signature of 

ribosome biogenesis.  

Riboneogenesis flux is dependent on glycolytic intermediates; therefore, the rate of 

glycolysis dictates the rate of riboneogenesis. In the metacycle, the up-regulation of 

glycolysis genes occurs during the reductive-charging phase, which may increase the 

concentration of glycolytic intermediates leading to rapid flux through the riboneogenesis 

pathway upon the onset of the oxidative phase, which in turn leads to the up-regulation of 

ribosome related genes. The discovery of riboneogenesis two years ago, helped explain the 

oscillating gene expression during the metacycle, and determined that glycolysis has a 

potentially essential role in ribosome biogenesis. 
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1.6 Aims and outline of this thesis 

This thesis reports a systems biology approach to study two yeast species, S. cerevisiae 

and S. pombe. The main goal of this thesis is to construct and interrogate networks derived 

from large comprehensive multi-level yeast compendia, including fitness and expression 

data, in both an individual and integrated manner. To accomplish this task, I used an MI 

based reverse engineering approach. As such, this study marks the first time that 

Hillenmeyer’s fitness compendium [40] has been used to construct a network that 

encapsulates both the global and local organisation of the yeast system. This approach 

ensures that the scope of the study remains broad and genome-wide, rather than limiting it 

to a specific pathway as reported in existing literature. This same analytical pipeline has 

also been applied to a comprehensive TF knockout gene expression dataset in S. cerevisae 

published by Reimend et al [71] and an extensive S. pombe expression compendium 

produced by Bähler lab [72]. By utilising available compendia in this way, I have 

developed several interesting hypotheses between genes that modularise together and in 

doing so identified candidate genes which could be used for experimental validation of 

these hypotheses. 

The process of riboneogenesis is particularly focused on within the network based 

chapters, with the aim demonstrating how network analysis can aid in further 

understanding this novel pathway in S. cerevisiae and determining the degree of 

conservation of riboneogensis in S. pombe. The work presented in this thesis is the first 

time a reverse engineering network based approach has been used to investigate 

riboneogenesis in both S. cerevisiae and S. pombe. Network analysis in S. pombe revealed 

a degree of conservation of the riboneogenesis pathway, and more importantly, the novel 

results suggested that the gluconeogenesis enzyme FBP1 may substitute for SHB17 as the 

key enzyme that controls riboneogenesis flux.  
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In addition, I report several other potentially interesting relationships based on the network 

analyses which may warrant further investigation in the future. Furthermore, I demonstrate 

the diverse applications of fitness data and network biology in identifying adverse outcome 

pathways for metal and metalloid toxicity in S. cerevisiae. 

I have also investigated the interaction of RPs with chromatin using genome-wide ChIP-

chip data in S. pombe. This data, provided by a collaborator, was also used in conjunction 

my constructed S. pombe network, with the aim of elucidating the underlying biological 

organisation of the yeast system and to further aid in understanding riboneogenesis in S. 

pombe.  

Finally, I investigated the cytoplasmic nonsense-mediated mRNA decay (NMD) protein, 

UPF1 in S. pombe. This study involved pooling multiple data types with the aim of 

identifying potential nuclear roles of UPF1 that are unrelated to NMD. This included the 

analysis of genome-wide ChIP-chip data and expression data from multiple sources, in 

addition to my own constructed S. pombe expression network. Together, they provided 

compelling evidence that UPF1 is involved in DNA replication. 
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CHAPTER 2: INFERENCE AND ANALYSIS 

OF A Saccharomyces cerevisiae GENE 

FITNESS NETWORK 
 

2.1 Introduction 

Reverse engineering methods provide means of inferring a network without prior 

knowledge. The advantage of using a reverse engineering approach is that they can be used 

on any omic technology. Given the wealth of omic data that has become available over the 

last decade or so, a reverse engineering approach combined with visualisation or clustering 

algorithms provide an ideal means of exploring the data. Prior to 2008 the concept of 

reverse engineering biological pathways from observational data had been focussed on 

gene expression data and elucidating the transcriptional regulatory network of S. cerevisiae 

[71] [68] [109]. However, recently it has been possible to generate genome-wide libraries 

of mutant organisms where mutations are marked by a sequence tag then inserted into the 

genome. Such libraries can be used to test the effect of stress such as chemical exposure on 

each individual mutant strains in single experiments. The use of fitness data is a powerful 

way of determining gene function, as mutant yeast strains can be grown, each containing a 

knocked out or mutated gene and the resulting phenotype can be used to determine gene 

function. Yeast fitness data has already been validated as a means of gaining additional 

biological insight into cellular processes, such as targets for chemotherapeutic drugs [43] 

and temperature response [42]. 

The aim of the work described in this chapter is to reverse engineer networks representing 

the relationship between fitness profiles of the different mutant strains using these data. 

The advantage of using fitness data over expression profiling is that I can directly infer 
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networks based on gene functional association rather than on similarity of transcription. I 

use the network inference technique ARACNE, its ability to identify non-linear 

correlations makes it an effective tool in identification of biologically relevant connections 

[32]. 

The datasets used in this analysis are two of the largest fitness data compendiums available 

for S. cerevisiae. The first is a publicly available dataset (Hillenmeyer’s dataset) that 

contains fitness data representing exposure to 309 unique chemicals [40]. The second 

dataset is a still unpublished study developed by Prof. Chris Vulpe (Berkeley University, 

USA). It represents a smaller set of chemical exposures (11 unique conditions). As both 

these datasets represent fitness data in S. cerevisiae, they should be able to provide 

complementary information on the activity of different chemical subsets, and would 

therefore allow the identification of genes that are strongly correlated to each other at the 

phenotypic level.  

This approach demonstrates the usefulness of network inference to understanding cell 

physiology from genome-wide fitness data, with a particular focus on investigating the 

links between ribosomal proteins (RPs) and energy metabolism pathways. The data 

demonstrates the phenotypic link between RPs and energy metabolism pathways is 

conserved in both S. cerevisiae fitness datasets, consistent with current publications on 

riboneogenesis. 
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2.2 Methods 

2.2.1 The Biological System 

The overall aim of this study is to reverse engineer and analyse the structure of biological 

networks representing phenotypically linked genes. Such links are defined as a correlation 

between the relative fitness of two yeast strains mutated in two given genes across a range 

of experimental conditions. In order to achieve this, I used the two previously 

aforementioned fitness datasets (see Table 2.1 for details). 

For Hillenmeyer’s fitness compendium, I focused on a subset of the data representing the 

growth fitness of a population of heterozygous mutant yeast strains at 20 generations, 

(95% of samples in the whole dataset) grown in the presence of environmental and 

chemical stressors. For clarity, the experimental procedure for the construction and use of 

the S. cerevisae strains library are reported briefly below. 

Gene disruption was achieved by deleting each gene from the start to stop codon and 

replacing it with the KanMX deletion cassette via mitotic recombination [37]. The distinct 

20-nucleotide sequences flanking the KanMX gene act as a unique identifier for each 

deletion mutant. Such an approach is advantageous over random mutagenesis as the 

mutant phenotypic reflects the complete loss of the gene. In addition, genes will not elude 

detection even when a large number of genes are screened [37]. Gene deletions were 

verified by several polymerase chain reactions (PCRs). Whole genome parallel analysis of 

S. cerevisiae could be achieved due to the unique ‘barcode like’ flanking sequence linked 

to each gene deletion. For each experiment (rich medium, altered environmental conditions 

etc) a culture containing every deletion mutant is grown. Samples are collected at various 

time points during growth. Quantification of each deletion strain is achieved by 

hybridising the unique flanking identifier sequences to an Affymetrix Tag3 array 

containing the respective complementary sequences [110]. The essentiality of a gene is 
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relative to how rapidly the corresponding deletion strain diminishes in the culture, 

therefore each genes contribution to yeast fitness can be analysed in a single experiment 

[37].  

Hillenmeyer’s compendium [40] contains a total of 726 samples with 309 unique 

experimental conditions analysed using a single experimental replicate design. In order to 

validate findings with this large dataset and to further investigate metal toxicity (Chapter 

8) an independent dataset (provided by Vulpe Lab of Berkeley, California) representing 11 

unique conditions across 99 samples was used. Tables containing chemicals used in 

Hillenmeyer’s and Vulpe’s study have been constructed and are included on the 

supplementary CD, in folder ‘Chapter 2’. 

 

Dataset  No.  of 

Deletions  

Gen  Samples  Unique 

Conditions  

Genome 

covered  

Condition 

summary  

Replicates  Ref  

Hillenmeyer 

Heterozygous 

data  

~6000  20  726  309  ~97% Chemical and 

environmental 

stress 

conditions 

1 [40] 

Vulpe 

Heterozygous 

data  

~4500  15  99  11  ~65% Metals, 

arsenicals  

3-12 NA 

Table 2. 1 Summary of datasets used in the fitness analysis.     
Detailing the number of deletions, the generation that the readings were obtained, number of 

samples, and the number of unique conditions. 
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2.2.2 Analysis Strategy 

Figure 2.1 describes in a schematic format the analysis strategy used to reverse engineer 

and analyse the yeast fitness networks. Initially the dataset is normalised and sample 

outliers are detected by visual inspection of a PCA plot (Figure 2.1A).  The resulting 

dataset was then used as an input of the well-validated reverse engineering method, 

ARACNE [30] to infer the structure of the underlying fitness network. No edges have been 

eliminated using data processes inequality (DPI). Non-statistically significant mutant to 

mutant connections were eliminated using a threshold of p<10
-35

 (corresponding to an MI 

> 0.15) for the network generated from Hillenmeyer’s dataset and p<10
-17

 (corresponding 

to an MI > 0.35) for the network generated from Vulpe’s dataset. Different MI thresholds 

for each dataset were required in order to retain a similar number of edges within each 

network to allow for comparison and validation analysis.  

The network was visualised in Cytoscape using a force driven layout (Figure 2.1B). Force 

driven layout uses a mechanical model of a network where the edges are represented by 

forces attracting the nodes with intensity proportional to the MI between each gene pair 

[111]. The result is that nodes connected by edges with a high MI are located closer 

together than those with low MI. Groups of nodes connected by multiple edges with lower 

MI values will also be represented close together in the network [111]. Due to the large 

network size, I use GLay clustering, a method of modularisation which identifies modules 

on the basis of connectivity [33]. These GLay identified modules are then mapped onto the 

parent network (Figure 2.1C). Typically modules of 300 nodes or greater required a further 

level of GLay clustering in order to comprehensively analyse and annotate. (Figure 2.1D). 

The functional annotation web-based tool DAVID [21, 22] was used to test whether there 

is any functional enrichment within each sub-module (Figure 2.1E).  
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Figure 2. 1 Workflow for reverse engineering and analysing S. cerevisiae fitness networks.  
A sample flow diagram representing the analytical pipeline for this analysis. The initial step 

involves processing the fitness data. Once the data has been normalised and fitness values 

calculated, bad samples have to be removed (Panel A). The network is inferred using ARACNE, 

the results are thresholded and the network visualised in Cytoscape using a force directed layout 

(Panel B). Modules are identified using GLay and mapped onto the parent network (Panel C). If 

the modules are too large, a further level of GLay clustering is done to identify sub-modules (Panel 

D). Functional enrichment is determined used DAVID (Panel E).   
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2.2.3 Data processing 

2.2.3.1 Public Domain dataset (Hillenmeyer et al) 

The compendium contains an extraordinary amount of genome-wide fitness data for S. 

cerevisiae encapsulating a diverse set of treatments including drugs approved by the World 

Health Organization, environmental stresses including depletion of amino acids and 

vitamins in addition to testing growth responses of cells after exposure to over 300 small 

molecules [40]. Before any network inference can occur, the dataset must first be 

processed (Figure 2.1A). The dataset developed by Hillenmeyer et al was already available 

in a processed and normalised format with problematic samples removed, within the 

supplementary material [40]. The authors used the processing pipeline described below: 

1. The raw intensity for each input CEL file is mapped to their associated strain-

tags 

2. The data is normalised so that each experiment has a mean intensity of 1500 

3. Both fitness log ratios and significance values (1 or 0) are calculated for a given 

set of control and treatment experiments using the normalized data. 

 

The log ratios were calculated using the formula below. 

 

     (
      

      
) 

 

Where avg(c) is the average normalized intensity of the tag across the control data and 

avg(t) is the average normalized intensity of the tag across the treatment data. Therefore 

heterozygous deletion strains that showed increased resistance would have a negative log 

score, and mutations that conferred sensitivity to yeast would have a positive log score. 
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The final dataset contained the log ratios representative of fitness, for each gene deletion 

strain across all 726 chemical conditions. 

 

2.2.3.2 The Chris Vulpe dataset 

Similarly to Hillenmeyer’s fitness data, high-density Affymetrix Tag3 arrays were used in 

Vulpe’s analysis. This dataset was processed using the pipeline developed by Hillenmeyer 

et al. For consistency, I used the original Perl code developed by the authors, which is 

available on their supplementary website. In order to make direct comparisons to 

Hillenmeyer et al’s dataset, I used only the 15G samples from the Vulpe dataset. 

Principal component analysis (PCA) was performed on the processed data to identify any 

potential outliers (Figure 2.2).  PCA identified nine outliers, right of which were the 

samples for the chemical S-(1,2-dichlorovinyl)-L-cysteine (DCVC),  which were done by 

the same researcher, suggesting a potential bias. The remaining outlier was for a single 

sample of trichloroethanol (TCEtOH), as highlighted in Figure 2.2. Together, the outliers 

made up 11% (9/99) of the 15G samples, and were removed, leaving 90 samples. 
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Figure 2. 2 PCA of Vulpe Labs processed fitness data. 
Samples are coloured by scientist as shown in the legend. Outlying DCVC and TCEtOH samples 

which were excluded from the analysis are highlighted with the red dashed circles 

 

2.2.4 Network Inference 

The primary aim of this study is to identify gene-to-gene relationships from the fitness data 

described above. This was achieved using ARACNE [30, 32]. ARACNE infers the 

interaction between pairs of variables using an information theoretical approach based on 

mutual information (MI) (Figure 2.1B). 

For the Hillenmeyer dataset, statistically significant edges were selected using an MI 

threshold > 0.15 (p<10
-35

) (Table 2.2). This value was chosen arbitrarily; however, it 

represents a high stringency cut off and retains approximately half the total number of 

genes. No edges have been eliminated using the data processing inequality (DPI). 

PCA By User

DCVC

TCEtOH
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For the Vulpe dataset, statistically significant edges were selected using an MI threshold of 

MI > 0.35 (p<10
-17

) (Table 2.3). No edges have been eliminated using the DPI. Again, this 

threshold was chosen arbitrarily, however it was highly significant and retained 

approximately the same number of genes allowing comparisons to be made to 

Hillenmeyer’s dataset. 

Using said MI thresholds, I retained 2654 nodes (and 55675 edges) within Hillenmeyer’s 

network and 2604 nodes (and 33593 edges) within Vulpe’s network.  

 

p-value  Corresponding 

MI  

0.05  0.007972  

0.01  0.011134  

0.001  0.015658  

1.00E-09  0.042802  

1.00E-19  0.092564  

1.00E-29  0.137803  

1.00E-39  0.183042  

1.00E-49  0.228281  

Table 2. 2 ARACNE p-values and associated MI values for Hillenmeyer’s fitness dataset. 

 

P-value  Corresponding 

MI  

0.05  0.0383674  

0.01  0.0535852  

0.001  0.075357  

1.00E-05  0.118901  

1.00E-10  0.22776  

1.00E-15  0.336619  

1.00E-20  0.445478  

1.00E-25  0.554336  

1.00E-30  0.663195  

Table 2. 3 ARACNE p-values and associated MI values for Vulpe’s fitness dataset.  
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2.2.5 Network analysis: Topology 

To analyse network topology the Cytoscape plugin NetworkAnalyzer was used [112]. 

NetworkAnalyzer is a popular tool for network topology analysis and is able to compute 

the degree, radiality, clustering coefficient, and a variety of other parameters for each node 

within a network. It also computes edge parameters such as edge betweenness [112].  

To determine if the top node hubs identified by NetworkAnalyzer were functionally 

enriched, I used GSEAPreranked. GSEAPreranked requires two files, a ranked list file and 

a gene matrix file. The ranked list consisted of genes ordered by their node connectivity as 

calculated by NetworkAnalyzer. The gene matrix file consisted of a curated list of all the 

gene ontology (GO) terms within S. cerevisiae together with the genes represented by each 

GO term. By using GSEApreranked it is possible to identify if specific cellular processes 

are signatures of highly connected nodes. GO terms containing over 800 genes and fewer 

than 10 genes were excluded from the analysis. GO terms with extraordinarily high 

number of genes are often very broad terms such as ‘membrane’ or ‘cell surface’, genes 

included within these terms are present within smaller more specific GO terms, therefore 

excluding GO terms with over 800 genes is not detrimental to the analysis. Results were 

collected after 1000 permutations. An FDR value of 10% was used to identify the most 

significant GO enriched in the ranked list. The threshold was chosen on the basis that it is 

the most likely to generate hypotheses and identify new directions of research [113]. 

 

2.2.6 Network Analysis: Modularisation 

Networks were modularised using community cluster GLay [33] (Figure 2.1C) to identify 

modules. The GLay plug-in for Cytoscape allows clustering on the basis of solely 

connectivity allowing for the decomposition, display and exploration of large networks 

such as those used in this analysis [33]. GLay defined modules were then mapped onto the 
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force directed layout parent network. Modules larger than 300 nodes underwent a further 

level of GLay clustering, termed sub-modules (Figure 2.1D). HOPACH was performed on 

each sub-module to determine if the fitness profile for nodes within, were all positively or 

negatively correlated across samples. 

 

2.2.7 Ribosomal proteins first neighbour analysis 

A list of all known RPs was obtained from the Saccharomyces Genome Database (SGD) 

[56]. RPs were classified into two groups based on their localisation within the cell. 245 

were identified as cytosolic and 78 were identified as mitochondrial. Separation of 

ribosomal factors based on cellular compartmentalisation was required to prevent masking 

of significant correlations that may be dependent on cellular location  

Each group was mapped onto the Hillenmeyer parent network. A first neighbour network 

was constructed by selecting all the first neighbours of the ribosomal factor group. 

Network modularisation was done using GLay [33], consistent with the modularisation 

methodology used on the parent network. Once again modules containing more than 300 

nodes underwent a further level of GLay clustering. The Vulpe dataset was used for 

independent verification. 
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2.3 Results 

 

2.3.1 A network biology approach identifies clusters of yeast mutant strains with 

similar phenotypic profiles 

The application of the network inference technique ARACNE to the Hillenmeyer’s 

dataset, inferred a network containing 2654 nodes and 55675 edges. In order understand 

the general properties of the network; I performed an analysis of the network topology 

using the Cytoscape plugin, NetworkAnalyzer [112]. To analyse the network topology, I 

constructed two networks based on node degree (Figure 2.3A) and radiality (Figure 2.3B). 

Networks were visualised using a force directed layout based on edge betweenness and 

node size was representative of node connectivity. Edge betweenness reflects the control 

that each node exerts over other nodes in the network. Hence, densely packed clusters of 

nodes are representative of a high level of regulation.  Using a force directed layout led to 

the separation of nodes into three dense communities (Figure 2.3), suggesting that nodes 

within each community exert a high degree of control upon each other. Node degree is 

defined as the number connections to that node, ranging from 1 – 343 (Figure 2.3A). In a 

biological context the larger the node, the more likely it is to be a gene hub. Radiality is a 

node centrality index, a high radiality indicates that the node is closer to other nodes 

(Figure 2.3B); likewise a low radiality means the node is likely to be isolated. In a 

biological context, radiality can be used to infer the probability that a gene is functionally 

relevant to other genes, i.e. a gene with high radiality will exhibit regulation over other 

genes.  

The top 50 most connected nodes were identified (see appendix Table A2.1). The full list 

of node connectivity can be found on the supplementary CD, in folder ‘Chapter 2’). 



 

 

4
6 

 

 

 
 

Figure 2. 3 Visualisation of the results of NetworkAnalyzer on the Hillenmeyer network. 
Panel A. Node size and node colour is based on node connectivity. Those nodes with higher connectivity are likely to indicate gene hubs. Panel B. Node size 

is based on node connectivity, node colour is based on radiality of a node. Node radiality is the probability that a gene exhibits regulation over another gene.  

0.4 1
Radiality

1 343
Node Degree

A B
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To determine if the most connected hubs were functionally enriched, I used 

GSEAPreranked. Results showed there were no GO terms with a significant positive 

enrichment score (GO terms that show enrichment at the top of the ranked list). 

Interestingly, five GO terms were significantly enriched (FDR < 0.2) towards the middle / 

bottom of the ranked list (Table 2.4). GO terms with statistically significant negative 

enrichment (representing nodes with connecting edges) were mainly proteasome based, 

suggesting that poorly connected nodes would be enriched in DNA translocase and 

proteasome functions (Table 2.4). The results did however suggest that functional 

enrichment may be found using a node parameter based on the betweenness centrality; 

therefore the GSEAPreranked analysis was repeated using the node parameter, radiality. 

Once again, GSEAPreranked did not identify any GO terms with a significant positive 

enrichment score, however 50 GO terms were identified as being significantly negatively 

enriched (FDR < 0.1), the top 20 are shown in Table 2.5 (for the top 50, see appendix, 

Table A2.2). The results suggested that nodes ranked between positions 500 – 900 by their 

radiality score (middle of the ranked list), likely encoded ribosome related processes such 

as translation, transcription from RNA polymerase III (RNAPIII) promoters, proteasome 

components and ribosome subunits. This suggests that nodes represented as yellow in 

Figure 2.3B were likely to be involved in the cellular processes shown in Table 2.5. 

NAME  DESCRIPTION  CNT  NES  FDR  

q-val  

RANK  

GO:0004298 threonine-type endopeptidase 

activity  

11 -1.40  0.065  1281 

GO:0015616 DNA translocase activity  10 -1.40  0.084  1165 

GO:0010499 proteasomal ubiquitin-

independent catabolic process  

11 -1.35  0.092  1281 

GO:0004175 endopeptidase activity  11 -1.42  0.108  1281 

GO:0005839 proteasome core complex  12 -1.44  0.191  1281 

Table 2. 4  The top five negative hits for node degree from GSEApreranked ordered by FDR 

CNT represents for the number of genes, NES stands for normalised enrichment score, FDR q-val 

is the estimated probability of a false positive and RANK is the location with ranked list.  
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NAME  Description CNT NES FDR q-

val 

RANK  

GO:0002181 cytoplasmic translation 92 -4.0 0.000 786 

GO:0005839 proteasome core complex 12 -3.5 0.000 512 

GO:0003735 structural constituent of 

ribosome 

114 -3.5 0.000 846 

GO:0030529 ribonucleoprotein complex 163 -3.5 0.000 846 

GO:0004175 endopeptidase activity 11 -3.4 0.000 512 

GO:0010499  proteasomal ubiquitin-

independent protein 

catabolic ... 

11 -3.4 0.000 512 

GO:0004298 threonine-type endopeptidase 

activity 

11 -3.4 0.000 512 

GO:0000502 proteasome complex  31 -3.3 0.000 551 

GO:0022627 cytosolic small ribosomal 

subunit 

41 -3.2 0.000 812 

GO:0001056 RNA polymerase III activity 14 -3.2 0.000 661 

GO:0034515 proteasome storage granule 20 -3.2 0.000 551 

GO:0042797 tRNA transcription from 

RNA polymerase III promoter 

15 -3.2 0.000 869 

GO:0022625 cytosolic large ribosomal 

subunit 

50 -3.1 0.000 882 

GO:0003899 DNA-directed RNA 

polymerase activity 

23 -3.1 0.000 869 

GO:0005666 DNA-directed RNA 

polymerase III complex 

14 -3.1 0.000 661 

GO:0000467 rRNA processing 11 -3.1 0.000 672 

GO:0005622 intracellular 158 -3.0 0.000 892 

GO:0006412 translation 152 -3.0 0.000 989 

GO:0006364 rRNA processing  109 -2.9 0.000 855 

GO:0005840 ribosome  151 -2.9 0.000 826 

Table 2. 5 Results of GSEApreranked on radiality.  

The significant negatively correlated GO terms are ordered by FDR value. Results show that 

yellow nodes in figure 2.3B represents genes that encode primarily proteasome, rRNA processing, 

translation and ribosome related functions. CNT represents for the number of genes contained with 

the GO term. NES stands for normalised enrichment score, and is a statistic used for examining 

gene enrichment results. FDR q-val is the estimated probability of a false positive and RANK is 

the location with ranked list.  
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2.3.2 Community analysis of the fitness network identifies highly interconnected 

modules 

In order to assess the biological significance of the inferred networks, I first asked whether 

it was possible to subset the whole network into a number of distinct network modules. I 

addressed this question by applying a connectivity based community detection algorithm, 

GLay [33]. This procedure identified eight distinct modules (Table 2.6) with a very broad 

size range (11-1590). These localized in distinct areas of the force driven layout 

visualisation of the parent network (Figure 2.4). Table 2.6 shows the details of each GLay 

defined module. 

 

Module Colour  No. of 

nodes  

No. of 

Edges  

No. of 

modules 

Visualised in 

All   2654   55675  8 Fig. 2.4 

1  Red 1590  19735  5 Fig. 2.5 

2  Blue 541  31908  2 Fig. 2.6 

3  Yellow 249  2504  5 Fig. 2.7 

4  Purple 53  114 5 Fig. 2.8 

5  Light Blue 28  41 1 Fig. 2.9 

6  Orange 25  124 1 Fig. 2.10 

7  Dark Green 11  11 1 Fig. 2.11 

8  Light Green 11  10 1 Fig. 2.12 

Table 2. 6 Breakdown of modules identified by GLay clustering in Hillenmeyer’s fitness data. 
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2.3.3 The modular structure of the fitness network reflects functional 

compartmentalisation. 

Having shown that the fitness network inferred by the ARACNE procedure possessed a 

modular structure, I set to assess whether this also reflects functional organization. This 

question was addressed by testing each module for functional enrichment (Figures 2.5 -

2.12), using the web based functional analysis tool DAVID [21]. Functional annotations 

were organised into three groups in order to classify the significance of gene enrichment. 

Those with a corrected FDR < 0.05 are represented in red text, those with a corrected FDR 

< 0.1 are represented in green text, and black text represents no significant enrichment 

(FDR > 0.1). This nomenclature is maintained throughout the thesis. A corrected FDR of < 

0.05 indicates that the probability of obtaining a false positive is less than or equal to 5%, 

which is a respectable threshold used in most scientific studies. In this case, however, it is 

important to note that even though a group of genes may be classified with an FDR of < 

0.05, many of these functional annotations in fact have FDR scores far less than 10
-5

, 

corresponding to a significance level (the probability of a false positive) far below 5%. The 

raw DAVID files for each module, including the correct FDR scores can be viewed on the 

supplementary CD, folder ‘Chapter 2’.  

In addition, though some modules contain no significant functional enrichment, inference 

of phenotypic links remain valid as only significant edges have been retained within the 

networks (as detailed in the methodology). 31% of sub-modules could be characterised by 

a specific functional profile, defined by a statistically significant (FDR < 0.1). The 

HOPACH heatmaps for each sub-module (see appendix A2.1 – A2.8). 

Module 1 (Figure 2.4, red nodes) was the largest, containing 1590 nodes and 19735 edges. 

Among the most enriched functions were transport, mitochondrial envelope, ribosome 

biogenesis and energy metabolism pathways (Figure 2.5). Module 2 (Figure 2.4, blue 
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nodes) has a central position when mapped onto the parent network (Figure 2.4) and is 

enriched in important biological processes such as DNA replication and energy production 

(Figure 2.6). Module 2 co-localises with an area of the network that NetworkAnalzyer has 

identified as having the largest density of hubs (Figure 2.3A). Module 2 also contains a 

significant number of gene hubs (results of NetworkAnalyzer showed that 97 / 100 most 

connected nodes belong to module 2). Module 3 (Figure 2.6, yellow nodes), is 

significantly enriched in ribosomal proteins, ribosome biogenesis and proteasome genes 

(Figure 2.7). Module 4 (Figure 2.6, purple nodes) is enriched in cell cycle, carbohydrate 

regulation and ribosome biogenesis (Figure 2.8). Smaller modules, in particular modules 5 

– 8 could not be subset with a further level of modularisation, they were however enriched 

in specific functions such as transcription factors (module 5, Figure 2.9), chromatin and 

chromosomal functions (module 6, Figure 2.10), nucleotide binding (module 7, Figure 

2.11) and zinc binding (module 8, Figure 2.12). What follows is a detailed analysis of the 

functions that are represented in the three largest modules. 
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Figure 2. 4 Modules localise within distinct areas of the Hillenmeyer parent network. 

An undirected network showing the interactions between genes from the Hillenmeyer’s S. 

cerevisiae fitness data at a 0.15MI threshold. The network is visualised using a force directed 

layout, modules defined by are GLay mapped onto the parent network.  Node colour represents 

module (see legend). Edge length is representative of MI value. The accompanying table (Table 

2.6) shows the breakdown of each GLay module including the colour, number of nodes, and 

number of edges within each module.  

GLay Module 2

GLay Module 1

GLay Module 3

GLay Module 4

GLay Module 5

GLay Module 6

GLay Module 7

GLay Module 8
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2.3.3.1 Hillenmeyer module 1: Mutations in ribosomal proteins and energy 

metabolism pathways produce highly correlated fitness profiles 

Module 1 is the largest module identified by first level modularisation (1590 nodes and 

19735 edges). A second level of modularisation identified five sub-modules (Figure 2.5). 

Sub-modules 1.1 and 1.2 underwent a third level of modularisation as they contained more 

than 300 nodes. Functional analysis of each sub-module revealed association between 

transport and mitochondrial envelope (sub-module 1.1), transport, cell cycle and ribosome 

biogenesis (sub-module 1.2), vitamin metabolism, hexose metabolism and ribosome 

biogenesis (sub-module 1.3), endoplasmic reticulum, golgi membrane (sub-module 1.4), 

and phosphate metabolic process and endoplasmic reticulum (sub-module 1.5). 

Noteworthy is sub-module 1.1 which shows a significant enrichment (FDR <0.05) in 

mitochondrion envelope and transport related functions (Figure 2.5), indicative of 

mitochondrial import. Less significant enrichment includes six hexose metabolism genes 

and twenty ribosome related genes also located within sub-module 1.1. Inspection of the 

hexose metabolism proteins identified that they were all localised to cytoplasmic energy 

metabolism pathways and that a subset were directly correlated to RPs. Notably 

glyceraldehyde-3-phosphate dehydrogenase (TDH1), involved in glycolysis and 

gluconeogenesis, is directly connected to the 60S RP genes, RPL17B, RPL43B and 

ribosome biogenesis gene TMA22, consistent with the linkage between energy metabolism 

pathways and ribosomal proteins [92]. 

Sub-module 1.2 contains ten genes involved in cellular respiration including the succinate 

dehydrogenases SDH1, SDH3, SDH4. These genes are first neighbours of ribosome 

biogenesis genes indicating a strong correlation between energy production and ribosome 

synthesis, consistent with the reductive-charging and oxidative phase of the S. cerevisiae 

metacycle [94] [106]. Notably ribose-5-phosphate ketol-isomerase (RKI1), the enzyme 
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responsible for catalysing the final step in riboneogenesis [92] is located within sub-

module 1.3, together with genes involved in hexose metabolism and ribosome biogenesis. 

Sub-modules 1.4 and 1.5 are both enriched in endoplasmic reticulum (ER) and membrane 

functions. Unlike other sub-modules, sub-module 1.4 exhibits an anti-correlated 

relationship between its nodes (Figure A2.1). Interestingly this anti-correlation is between 

endoplasmic reticulum / protein localisation and membrane proteins, suggesting that 

despite being located within the same sub-module; when exposed to the same stress, 

strains containing gene deletions encoding endoplasmic reticulum confer fitness and 

strains containing deletions in membrane proteins confer sensitivity and vice versa. 

 

Module  Nodes Edges Functional analysis 
1.1  684 7400 Transport (104), mitochondrial envelope (54), hexose 

metabolism (6), ribosome (20), mitosis (10), transcription 

regulation (20) 

1.2  481 7434 Transport (31), cell cycle (31), cellular respiration (10), 

ribosome biogenesis (24), zinc finger, transcription (10) 

1.3  199 988 Vitamin metabolism (7), hexose metabolism (5), ribosome 

biogenesis (12) 

1.4  192 745 ER (23), membrane (58), golgi membrane (5) helicase (6), 

translation initiation (5), mannosyltransferase (6) 

1.5  16 19 Phosphate metabolic process (3), ER (3), membrane (6) 

Figure 2. 5 Sub-modular structure of module 1, with accompanying functional analysis. 
Red text represents an FDR < 0.05, green text represents an FDR < 0.1, and black text represents 

non-significant enrichment. 

  

1.1 1.2 1.3 1.4

1.5
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2.3.3.2 Hillenmeyer module 2: Phenotypic linkage of mutant strains representing 

mitochondrial factors and energy metabolism.  

Module 2 maps in the centre of the parent network, suggesting it is highly connected to all 

other modules. This hypothesis is supported by the fact that 97 / 100 most connected nodes 

are located within sub-network 2. A second level of modularisation identified two highly 

interconnected sub-modules (Figure 2.6). Functional analysis of each sub-module revealed 

association between cell cycle, DNA replication and energy metabolism processes (sub-

module 2.1) and ribosome biogenesis and energy metabolism pathways (sub-module2.2). 

The grouping of cell cycle processes and DNA replication together is expected as DNA 

replication is co-ordinated by cell cycle stage [114].  

Energy metabolism processes localised within the mitochondria are also enriched within 

sub-module 2.1 (electron transport, oxidation reduction, TCA cycle). First neighbour 

analysis of these genes showed that they were directly connected to nine mitochondrial and 

cytosolic RPs. The production of acetyl-coenzyme A and NADPH occurs during the 

reductive-charging phase of the metacycle and is required for ribosome biogenesis during 

the oxidative phase. [94] [106]. Consistent with this result is the enrichment of 21 cell 

division genes, cell division is reported to occur during the reductive-charging phase [94] 

[106]. The correlation between mitochondrional ribosomal factors and cytosolic ribosomal 

proteins is likely because mitochondrial proteins are synthesised as precursor proteins on 

cytosplasmic ribosomes before being imported into the intermembrane space [115]. In 

support of this, I also identified 21 genes functionally annotated as ‘protein transport’, 

including Translocase of the Inner Membrane 54 (TIM54), an essential component of the 

TIM22 complex which mediates the import of precursor proteins into the mitochondrial 

inner membrane. TIM proteins contain a highly conserved zinc finger motif [116] (ten are 

found within module 2.1). Furthermore the enrichment of four ubiquitin machinery genes 
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within the same module as protein transport genes is consistent with reports that 

ubiquitination machinery acts a negative regulator in the synthesis and transport of 

proteins that localise within the mitochondrial inter membrane space [117].  

Sub-module 2.2 is enriched in ribosome biogenesis and energy metabolism pathways that 

are localised within the cytoplasm (Figure 2.6). Seven genes are enriched as ‘alcohol 

metabolism’, which include predominantly glycolysis genes such as phosphofructokinase 

(PFK1), pyruvate kinase (PYK2), pyruvate decarboxylase (PDC2), alcohol dehydrogenase 

(ADH1) and the transaldolase NQM1. Of particular significance is NQM1, as it catalyses a 

portion of the non oxidative pentose phosphate pathway (PPP). Deletion of NQM1 has 

been reported to quadruple the concentration of sedoheptulose 7-phosphate (S7P), a 

metabolite that is essential for riboneogenesis [92]. The enrichment of 17 ribosomal 

protein / ribosome biogenesis genes is consistent with reports that flux through glycolysis 

is essential for providing intermediates for riboneogenesis pathway [92]. Six of the seven 

alcohol catabolism genes are directly connected to 14 ribosome related genes, suggesting a 

strong correlation between glycolysis and ribosome biogenesis.  

 

Module  Nodes Edges Functional analysis 
2.1  300 14404 Cell wall (20), DNA replication (14), cell cycle (42), ubiquitin 

ligase (5) , electron transport (5), ribosome (12), protein transport 

(19), oxidation reduction (17), TCA cycle (4) 

 2.2  241 17504 Alcohol metabolism / dehydrogenase (7), -ve regulation of 

gluconeogenesis (3), ribosome biogenesis (17), DNA metabolism 

(6),  oxidative phosphorylation (4), zinc binding (17) 

Figure 2. 6 Sub-modular structure of module 2, with accompanying functional analysis.  

Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1.  

2.1 2.2
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2.3.3.3 Hillenmeyer module 3 – Phenotypic linkage of mutant strains representing 

RPs and ribosome biogenesis 

Module 3 formed five smaller interconnected sub-modules after a second level of 

modularisation (Figure 2.7). Functional analysis revealed strong phenotypic correlations 

between yeast strains mutated in ribosome biogenesis and small ribosomal subunit genes 

(sub-module 3.1), large ribosomal subunit and RNA polymerase III (RNAPIII) (sub-

module 3.2), RNAPII and chaperones (sub-module 3.3), proteasome and sexual 

sporulation (sub-module 3.4) and protein transport and ATP binding (sub-module 3.5). 

The significant enrichment of ribosomal related functions across all modules is expected, 

as ribosome biogenesis is a highly coordinated process [97].  

Sub-module 3.1 captures the process of ribosomal biogenesis and small subunit synthesis. 

Ribosome biogenesis is a multistep process, beginning with the transcription of two RNA 

polymerases, RNAPI and RNAPIII. RNAPI synthesises the 35S-rRNA primary transcript 

and RNAPIII synthesises the pre-5S rRNA transcript [118], genes encoding both RNAPs 

were found in module 3.1. The precursor 35S rRNA is then processed to yield mature 25S, 

18S and 5.8S rRNAs [118], consistent with the16 genes involved in the maturation of 5.8S 

rRNA (FDR: 8x10
-14

). 

The most significant enrichment in sub-module 3.2 was cytosolic large ribosomal subunit, 

translation regulation and ribosome export. The significant enrichment of seven genes 

functionally annotated as RNAPIII complex (FDR: 3.84x10
-7

) and 11 genes annotated as 

‘preribosome, large subunit precursor (FDR: 6.14x10
-14

)’, including RPL5, suggested that 

sub-module 3.2 represents the synthesis of the large ribosomal subunit. Sub-module 3.1 is 

enriched in only small RP genes; sub-module 3.2 is enriched in only large RP genes, 

suggesting that although the process of ribosome biogenesis is highly coordinated, small 

and large RPs achieve a further level of coordination between themselves.  
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There were only two highly significant functional groups within module 3.3. The first was 

12 genes related to transcription from an RNAPII promoter and six genes belonging to 

chaperonin t-complex polypeptide 1 (TCP-1 / CCT) consistent with results from 

Hillenmeyer et al [40]. The six genes in the chaperonin group were all subunits of TCP-1, 

which assists in the folding of a distinct subset of cellular proteins in vivo [119], 

specifically actin and tubulin [119] and newly translated myosin II heavy chains. [120]. 

These results suggested that module 3.3 captured the association of TCP-1 to the ribosome 

and its role in folding of cytoskeleton and chromatin remodelling associated genes, 

possibly in preparation for the onset of M phase. 

Though module 3.4 contains only 28 nodes; 22 of them are functional annotated as 

proteasome, consistent with analysis previously done on the same dataset [40]. The yeast 

proteasome is required for the turnover of proteins and the removal of misfolded proteins. 

The proteasome is composed of numerous subunits including PRE and PUP components 

[121], as well as RPN regulatory components, consistent with these reports are the 

localisation of PRE2. PRE3, PRE4, PRE5, PRE6, PUP1, PUP2, PUP3 and as well the 

regulatory components RPN3, RPN6, RPN8, RPN9 and RPN12 within sub-module 3.4. 

The presence of this sub-module together with those involved in ribosome biogenesis (sub-

modules 3.1 – 3.2) suggested a highly correlated and tightly coupled process in which 

synthesised malformed proteins translated on the ribosome are rapidly destroyed by the 

proteasome machinery. 

A subset of genes encoding RPs overlap spatially with module 5 in the parent network 

(Figure 2.4). Interestingly sub-network 5 is significantly enriched in transcription factor 

TFIID complex (Figure 2.7). TFIID is also known as the TATA binding protein (TBP) 

[122] and is a transacting factor required by RNAPI, II and III. Reports have shown that 

RNAPI, II and III require TBP in order recognise specific promoters [123] [124] [125].  
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Module  Nodes Edges Functional analysis 
3.1  78 977 rRNA processing / Ribosome biogenesis (44), small ribosome 

subunit (26), rRNA related processes (24), translation regulation 

(11), ribonucleoprotein complex assembly (5), RNA polymerase I 

(3), RNA polymerase III (3) 

3.2  68 630 Cytosolic large ribosomal subunit (26), translation regulation 

(13), RNA polymerase III (7), ribosome export (6) 

3.3  49 124 RNA polymerase II (12), chaperonin /  TCP-1 (6) 

3.4  28 86 Proteosome (22), threonine protease (11) sexual sporulation (8),  

3.5  15 39 Protein / nucleocytoplasmic transport (4), protein complex (3) 

Figure 2. 7 Sub-modular structure of module 3, with accompanying functional analysis. 
Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

 

 

 

 

  

3.1 3.2 3.3

3.4 3.5



 

60 
 

 

Module  Nodes Edges Functional analysis 
4.1  18 40 regulation of carbohydrate (3), ER (3) 

4.2  8 27 Kinetochore (2) 

4.3  8 21 cell cycle phase (4) 

4.4  6 5 Organelle lumen (3) 

4.5  4 3 Anion transport (1), coenzyme biosynthesis (1), ubiquitin (1) 

Figure 2. 8 Sub-modular structure of module 4, with accompanying functional analysis. 

Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

 

 

 

Module  Nodes Edges Functional analysis 
5.1  26 41 transcription factor TFIID complex (4), glycoprotein (4) 

Figure 2. 9 Structure of module 5, with accompanying functional analysis. 

Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

  

4.1 4.2 4.3

4.4 4.5

5.1
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Module  Nodes Edges Functional analysis 
6.1  25 124 chromatin assembly (3), membrane (7), chromosomal (3)  

Figure 2. 10 Structure of module 6, with accompanying functional analysis. 

Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

 

 

Module  Nodes Edges Functional analysis 
7.1  11 11 ATPase activity-coupled (5), organelle lumen (4),   

Figure 2. 11 Structure of module 7, with accompanying functional analysis. 
Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

 

Module  Nodes Edges Functional analysis 
8.1  11 10 Zinc (3), ATP binding (3) 

Figure 2. 12 Structure of module 8, with accompanying functional analysis. 

Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

  

6.1

8.1
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2.3.4 An independent fitness analysis confirms the functional compartmentalisation 

of the Hillenmeyer fitness network 

The results gathered in this analysis identified that genes can be compartmentalised based 

on their fitness contribution to cell viability. Interestingly, the modules identified within 

this study contain genes from multiple biological functions suggesting a strong correlation 

between different biological pathways such as hexose metabolism and ribosome 

biogenesis identified in sub-module 1.3 (Figure 2.5).  A key question however, is whether 

within each module, there is a true underlying biological connection between genes from 

different biological processes or whether the connection is simply a consequence of 

contributing a similar fitness to S. cerevisiae cells.  

Therefore, in order to garner further evidence to validate these findings I applied the same 

analysis pipeline (Figure 2.1) to a fitness dataset developed by a collaborator, Prof. Chris 

Vulpe (Berkeley University, USA). This procedure identified eight modules, and like the 

Hillenmeyer network, the sizes of these modules varied greatly (Table 2.7). These 

localised to distinct areas of parent network (Figure 2.13). Modules underwent a second 

level of modularisation; each sub-module was annotated using DAVID. For Vulpe’s 

network, I could prove that 36% of sub-modules were characterised by a statistically 

significant (FDR<10%).  

Once again module 1 (Figure 2.13, red nodes) was the largest, containing 912 nodes and 

6892 edges. Among the most enriched functions were peroxisome and protein-tyrosine 

phosphatase (Figure 2.14). Module 2 (Figure 2.13, yellow nodes) was enriched in 

mitochondrial and cytosolic RPs (Figure 2.15). Module 3 maps to the centre of the parent 

network and contains a diverse set of functions including endocytosis and energy 

metabolism processes (Figure 2.16). Module 4 (Figure 2.13, purple nodes) was enriched in 

cell division, organelle membrane and stress response (Figure 2.17). The enrichment of 
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cell division and organelles suggests a functional overlap with Hillenmeyer module 4. 

Module 5 (Figure 2.13, light blue nodes) was enriched in amino acid biosynthesis and 

mitochondrial membrane (Figure 2.18). Module 6 is enriched in transcription regulation 

and chromosome organisation (Figure 2.19). Modules 7 and 8 were enriched in genes 

encoding membrane related proteins (Figures 2.20 and 2.21 respectively). The degree of 

overlap between Hillenmeyer and Vulpe sub-networks is shown in table 2.8 (the raw 

DAVID files for each overlap can be found on the supplementary CD – Chapter 2). What 

follows is a detailed analysis of the functions that are represented in the three largest sub-

networks. The overlap between modules between the modules within Hillenmeyer’s fitness 

network and Vulpe’s fitness network, including the number of genes that overlap and 

functional enrichment of these overlapping genes are shown in Table 2.8. 

 

Module Colour Number of 

nodes 

Number of 

Edges 

Number of 

modules 

Visualised in  

All  2604 33593 8 Fig. 2.13 

1 Red 912 6892 4 Fig. 2.14 

2 Yellow 660 3879 6 Fig. 2.15 

3 Blue 653 17938 3 Fig. 2.16 

4 Purple 117 179 8 Fig. 2.17 

5 Light Blue 37 41 1 Fig. 2.18 

6 Orange 20 20 1 Fig. 2.19 

7 Dark Green 15 16 1 Fig. 2.20 

8 Light Green 13 16 1 Fig. 2.21 

Table 2. 7 Breakdown of modules identified by GLay clustering in Vulpe’s fitness data 
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Figure 2. 13 Modules localise within distinct areas of the Vulpe parent network. 
An undirected network showing the interactions between genes from the S. cerevisiae Vulpe 

fitness data at a 0.35MI threshold. Force directed layout, with GLay defined modules mapped onto 

the parent network. Node colour represents module (see legend). Edge length represents MI value. 

Table 2.7 shows the breakdown of each GLay module including the colour, number of nodes, and 

number of edges. 

 

 

 

 

2.3.4.1 Vulpe module 1: The phenotypic linkage between ribosomal biogenesis 

and cytoplasmic energy metabolism pathways is conserved in an 

independent dataset 

Module 1 formed four interconnected sub-modules after a second round of modularisation 

(Figure 2.14). The functional analysis of these sub-modules revealed association between 

peroxisome, cell cycle and ribosome biogenesis (sub-module 1.1). The similar fitness 

profile of genes involved in peroxisome is expected, as strains within this module would 

be unable to metabolise hydrogen peroxide, leading to cell death [40]. Sub-module 1.2 

revealed functional association between RPs and cytoplasmic energy metabolism 

GLay Module 1

GLay Module 2

GLay Module 3

GLay Module 4

GLay Module 5

GLay Module 6

GLay Module 7

GLay Module 8
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pathways. Closer inspection of the six glucose metabolism genes showed that 

dehydrogenase (MDH1) and transaldolase TAL1 both had direct connections to multiple 

ribosomal proteins (specifically RPL27A, RPL33B, MRPL39 and YMR114C). TAL1 was 

particularly significant due to its role in the non oxidative arm of the PPP. TAL1 is 

involved in the catalysis of the substrate sedoheptulose-7-phosphate [126]. As described 

previously, sedoheptulose-7-phosphate is a key metabolite required for riboneogenesis 

[92]. In Hillenmeyer’s module 1, I identified that the transaldolase NQM1 had direct 

connections to numerous RPs. Like NQM1, deletion of TAL1 has been reported to 

quadruple the concentration of sedoheptulose-7-phosphate [92].  

Notably, sub-module 1.4 was significantly enriched in protein tyrosine phosphatase 

SIW14-like. The four genes were oxidant-induced cell cycle arrest (OCA), OCA1, OCA4, 

OCA6 and SIW14. SIW14 involved in protein metabolism and post-translational 

modification [127]. Both SIW14 and the OCA proteins are required for cell viability upon 

exposure to redox stresses. Grouping of these genes together was unsurprising, as strains 

deficient in these genes would be unable to survive in response to redox stress, hence their 

similar fitness profiles. 
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Module Nodes Edges DAVID 
1.1 392 2355 Peroxisome (7), cell polarity (7), cyclin (3), oxidoreductase (14), 

ion transport (8), heat response (17), kinase (15), sporulation (10), 

cell cycle (22), ribosome / ribosome biogenesis (17), 

mitochondrion (41), hexose metabolism (8), translation (16) 

1.2 204 3014 Antiporter activity (5), membrane (56), glucose metabolism (5), 

electron carrier activity (5), ribosome (9) DNA repair (6), telomere 

(3), cytokinesis (4) 

1.3 162 780 Kinase (9), NAD biosynthesis (3), protein transport (12), 

generation of energy (7), cell cycle (7), ATPase (5), temperature 

response (10) 

1.4 139 304 Protein-tyrosine phosphatase SIW14-like (4), membrane (18), zinc 

finger (10), electron transport (6), ER (10), cell homeostasis (6), 

ribosome (8) 

Figure 2. 14 Sub-modular structure of Vulpe module 1 with functional analysis. 
Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

2.3.4.2 Vulpe module 2: Cytosolic and mitochondrial ribosomal proteins 

Module 2 forms six modules upon a further level of modularisation. (Figure 2.15), and 

showed a significant overlap with modules 1 and 3 of Hillenmeyer’s data (Table 2.8). Sub-

module 2.1 was enriched in genes encoding cell cycle checkpoint, sulphur biogenesis, 

ribosome and aerobic respiration. Further investigation into the six hexose metabolism 

genes identified TKL1 and RPE1, key enzymes required in riboneogenesis and REG1, 

another hexose metabolism gene is involved in controlling glucose repression [128]. 

1.1 1.2 1.3

1.4
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Interestingly, much like module 3 in Hillenmeyer’s network, small and large ribosomal 

proteins were enriched within their own sub-modules (2.2 and 2.6 respectively), hence the 

highly significant overlap of 25 genes related to ribosomal functions between Hillenmeyer 

module 3 and module 2 (Table 2.8) (FDR 4.75x10
-28

) . Sub-module 2.3 is significantly 

enriched in mitochondrial ribosome and mitochondrial translation, a feature captured by 

module 1 in Hillenmeyers data (Table 2.8).  

 

Module  Nodes Edges DAVID  
2.1  256 1711 Sulfur biosynthesis (10), checkpoint (5), aldehyde dehydrogenase (3), 

mitochondrial carrier / membrane (4/11), electron transport 4), 

cytosolic ribosome (11), hexose metabolism (6), RNAPII promoter 

(5), generation of precursor metabolites and energy (11), aerobic 

respiration (3) 

2.2  148 391 Small ribosome subunit (17) , translation (19), rRNA processes (12), 

elongator holoenzyme (3), regulation of transcription for RNAPII 

promoter (3) 

2.3  94 1011 Mitochondrial (65), mitochondrion translation / ribosome (33 / 26), 

AA activation (9), rRNA binding (4), AP-3 adapter (3) 

2.4  72 123 RNA polymerase I (3), cell redox homeostatis (3), cell growth (4) 

energy generation (5), protein transport (4), oxidation reduction (7) 

2.5 42 69 Membrane (14), ABC transporter (3), cell cycle (5), response to heat 

(3), macromolecule synthesis (4), RNAPII (3) 

2.6 29 44 Large ribosome subunit (6), ion transport (3), histone modification 

(3), peroxisome (3), -ve regulation of nucleotide metabolism (3) 

Figure 2. 15 Sub-modular structure of Vulpe module 2 with  functional analysis. 
Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

  

2.1 2.2 2.3

2.4 2.5 2.6
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2.3.4.3 Vulpe module 3: The phenotypic linkage of mutant strains representing 

energy metabolism and cell cycle 

Module 3 is defined by three smaller interconnected sub-modules (Figure 2.16). 

Endocytosis is the only significantly enriched function (FDR: 8.35x10
-05

), located within 

sub-module 3.1, which also showed functional association to TCA cycle and 

mitochondrion. Sub-module 3.2 demonstrated a strong phenotypic link between cell cycle, 

transport and energy metabolism. This shows remarkable similarity with module 2 from 

Hillenmeyer’s fitness network in both functional enrichment and localisation within the 

parent network. Both modules are located within the centre of their respective parent 

networks and both are enriched in a broad range of energy metabolism processes and cell 

cycle functions. 

 

 

Module  Nodes Edges DAVID  
3.1  329 5751 Endocytosis (7), TCA cycle (3), tRNA processing (3), cell cycle (23), 

vacuole (9), vesicle (8), mitochondrion (31), cell wall (10), DNA 

repair (11), pentose phosphate pathway (3), chromatin organisation 

(12) 

3.2  279 6279 Membrane (74), oxidoreduction (23), Ehrlich pathway (4),  starch / 

glucose metabolism (4), aerobic respiration (5) 

3.3 40 142 Transcription regulation (4) ,cell wall (3), macromolecular catabolism 

(4) 

Figure 2. 16 Sub-modular structure of Vulpe module 3 with functional analysis 
Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

  

3.1 3.2 3.3
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Module  Nodes Edges DAVID  
4.1  22 31 Cell growth, macromolecular complex organisation (6), cell 

growth (3), DNA metabolism (4),  cell cycle (5), ATP binding (4), 

membrane (5) 

4.2  21 25 endoplasmic reticulum (5), glycoprotein (5), non-membrane-

bounded organelle (4) 

4.3  15 17 Organelle envelope (5) 

4.4  13 15 Ribosome biogenesis (4), organelle membrane (4), mitochondrion 

(3) 

4.5 13 30 Golgi transport complex (4), response to starvation (3), 

intracellular protein transport (3) 

4.6 11 13 Mitochondrion (4) 

4.7 10 15 Cell wall biosynthesis (4), sexual reproduction (4) 

4.8 8 7 Integral to membrane (3) 

Figure 2. 17 Sub-modular structure of Vulpe module 4 with functional analysis. 
Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

 

Module  Nodes Edges DAVID  
5.1  37 41 cellular amino acid biosynthetic process (3), Vacuole (3), membrane 

organization (4), mitochondrial membrane (4) 

Figure 2. 18 Structure of Vulpe module 5 with accompanying functional analysis. 

Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1.  

4.1 4.2 4.3 4.4

4.5 4.6 4.7 4.8

5.1
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Module  Nodes Edges DAVID  
6.1  20 20 transcription regulator  (6), chromosome  (3), zinc ion binding (3) 

Figure 2. 19 Structure of Vulpe module 6 with accompanying functional analysis. 
Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

 

 

Module  Nodes Edges DAVID  
7.1  15 16 Membrane (7) 

Figure 2. 20 Structure of Vulpe module 7 with accompanying functional analysis. 

Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 

 

 

 

Module  Nodes Edges DAVID  
8.1  13 16 membrane (7), metal ion binding (3)  

Figure 2. 21 Structure of Vulpe sub-network 8 with accompanying functional analysis. 

Text colour is representative of significance, red: FDR < 0.05; green: FDR < 0.1; black: FDR > 0.1. 
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H_M1  H_M2  H_M3  H_M4  H_M5  H_M6  H_M7  H_M8  

V_M1  

279  

membrane (80) 

cofactor transporter 

activity (5) 

82  

Endoplasmic 

Reticulum (3) 

Ubiquitin (4) 

8  

Cytosolic 

ribosome (6) 

5  

Transmembrane 

(4) 

4  

Drug response 

(2) 

4  

Uncharacterised 

membrane (4) 

3  

Nucleus (3) 

1 

Response to 

temperature (1)  

17.6%  30.6%  15.2%  9%  3.2%  0.9%  9.4%  0.5%  15.3%  0.4%  16%  0.4%  27.2%  0.3%  9.1%  0.1%  

V_M2  

153  

Mitochondrion (39) 

Mitochondrion 

envelope (16) 

68  

Nuclear 

chromosome (7) 

Lipid Synthesis (3) 

25  

Cytosolic 

ribosome (23) 

Regulation of 

translation (10) 

7  

Transmembrane 

(3) 

2  

Golgi (1) 

Uncharacterised 

(1) 

2  

Uncharacterised 

membrane (2) 

2  

Mitochondrion 

(2) 

0  

9.6%  23.2%  12.4%  10.2%  14.1%  5.3%  13.2%  1.1%  7.7%  0.3%  8%  0.3%  18.2%  0.3%  0%  0%  

V_M3  

204  

Rhodenase (5) 

Histone binding (3) 

56  

Lipoprotein (4) 

Cell wall (4) 

10  

ATP binding(4) 

5  

Protein transport 

(2) Aerobic 

respiration (1) 

2  

Protein folding 

(1) 

5  

Uncharacterised 

(3) 

1  

Chromatin 

organisation (1) 

1  

Recombinational 

repair 

12.8%  31.2%  10.4%  8.6%  4%  1.6%  9.4%  0.8%  7.7%  0.3%  20%  0.8%  9.1%  0.6%  9.1%  0.15%  

V_M4  

29  

Cell wall (5) 

Sexual 

reproduction(4) 

12  

Protein transport 

(3) 

Endoplasmic 

reticulum (3) 

1  

Mitochondrion 

(1) 

1  

M-phase (1) 

1  0  0  0  

1.8%  24.8%  2.2%  10.3%  0.4%  0.9%  1.9%  0.9%  3.9%  0.9%  0%  0%  0%  0%  0%  0%  

V_M5  

9  

Membrane fusion (6) 

 

3  

Nucleotide 

metabolism (1) 

1  

Oxidative 

phosphorylation 

(1) 

0  0  0  0  0  
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Table 2. 8 The degree of overlap between modules from Hillenmeyer’s network (green) and Vulpe’s network (red). 

Columns represent each of the eight network modules identified in Hillenmeyer’s fitness network (green). Rows represent the eight network modules 

identified in Vulpe’s independent dataset (red). Each large cell is split into 3 sections, light blue, green and red. The first section (in light blue) shows the 

total number of genes which overlap between the two modules, the two most statistically significant functional enrichment from DAVID and the number 

of genes in each functional category. Text colour represents the corrected FDR, with red < 0.05, green < 0.1, and black representing no significant 

enrichment. The % shown in green and red sections beneath each blue section represents the % which the overlap occupies for Hillenmeyer’s module 

(green) and Vulpe’s module (red). For example, investigation into the overlap between Hillenmeyer module 3 (column 3) and Vulpe module 2 (column 2) 

shows that 25 genes overlap, of which 23 are significantly enriched (FDR < 0.05) in cytosolic ribosome and translation regulation. The 25 gene overlap 

occupied a total of 14.1% of Hillenmeyer’s module 3 and 5.3% of Vulpe’s module 2. 

  

Proteolysis (1) 

0.6%  24.3%  0.6%  8.1%  0.4%  2.7%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  

V_M6  

4  

Transcription (3) 

 

1  

Uncharacterised (1) 

0  0  0  0  0  0  

0.3%  20%  0.2%  5%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  

V_M7  

7  

Proteome (2) 

 

0  0  0  0  0  0  0  

0.4%  46.7%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  

V_M8  

5  

Translation (2) 

Amino acid 

metabolism (2) 

0  0  0  0  0  0  0  

0.3%  38.5%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  0%  
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2.3.5 The construction of RP first neighbour networks 

The analysis on S. cerevisiae fitness data suggested a strong phenotypic linkage between 

RPs and a diverse array of cellular functions including cell cycle and energy metabolism. 

This section of results focuses on the first neighbours of ribosomal factors. Ribosomal 

factors were separated based on their localisation within the cell, either cytosolic or 

mitochondrial. That data demonstrated that key genes encoding enzymes involved in 

glycolysis and riboneogenesis are predominantly linked cytosolic RPs. The data also 

demonstrated that mitochondrial RPs are phenotypically linked to cytosolic RPs despite 

being compartmentally separated. Finally, I report that cell cycle checkpoint protein BUB1 

exhibits a significant co-fitness profile to over 45 cytosolic RPs, and that the correlation is 

strongest with small RPs only. 

 

2.3.5.1 Mutations in genes encoding cytosolic RPs and energy metabolism 

enzymes result in highly correlated fitness profiles 

Module 1 (Figure 2.22, red nodes) forms three interconnected sub-modules (Figure 2.22). 

Functional analysis revealed association between homeostatis, transport, and numerous 

metabolic processes (sub-module 1.1), protein transport, mitochondrial electron transport 

and hexose metabolism (sub-module 1.2), reproductive process and mitochondrial inner 

membrane (sub-module 1.3). Module 2 (represented in blue) formed three sub-modules, 

functional analysis revealed an association between ribosome biogenesis, rRNA 

maturation and processosome (sub-module 2.1) and cytosolic large subunit and ribosome 

biogenesis (sub-module 2.2). Module 2 also contained the most edges of any other 

modules within this network (Table 2.9), representative of the highly co-ordinated process 

of ribosome synthesis. Module 3 splits into two interconnected sub-modules, functional 

analysis revealed association between chromatid segregation, spindle pole duplication and 
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DNA replication (sub-module 3.1), characteristic of the reductive-building phase of the 

yeast metacycle [94]. Sub-module 3.2 is enriched in metabolic and catabolic processes, as 

well as ribosomal biogenesis. 

Sub-module 1.1 (Figure 2.22) was enriched in five hexose metabolism genes, including 

transketolase (TKL1), glyceraldehyde-3-phosphate dehydrogenase (TDH1), triose 

phosphate isomerase (TPI1), THI3, involved in thiamine metabolism and LAT1, the E2 

component of pyruvate dehydrogenase.  THI3 is phenotypically correlated to 41 genes, 

only two are RPs, (RPL17B and RPL43B), it is also correlated to mitochondrial RP, 

MRPL13.  TKL1 is phenotypically correlated to a total of 54 genes, of which three are 

involved in ribosome biogenesis (LEA1, HSH155, YBL028C) and a single gene encoding a 

cytosolic RP (RPS9A). TKL1 is reported to be the primary source of transketolase activity 

in S. cerevisiae, and is co-expressed with sedoheptulose-1, 7-bisphosphatase (SHB17) [92]. 

TKL1 catalyses the entry of glycolytic intermediates fructose-6-phosphate & 

glyceraldehyde-3-phosphate into the riboneogenesis pathway. Double mutants of both 

transketolases (TKL1, TKL2) in S. cerevisiae leads to zero flux of metabolites through 

SHB17, essentially rendering riboneogenesis obsolete [92]. Finally TPI catalyses the 

conversion dihydroxyacetone-phosphate to glyceraldehyde-3-phosphate, a glycolytic 

intermediate utilised within riboneogenesis [92]. 

Sub-module 3.2 (Figure 2.22) is enriched in metabolic and catabolic processes, as well as 

ribosome biogenesis. Noteworthy was that of the six genes involved in glucose catabolism, 

five were specific to the glycolytic pathway (PDC2, PFK1, ADH1, PYK2, and the 

hexokinase YLR446W). These five genes had 290 first neighbours within module 3 

Functional analysis showed that of the 290 genes, 20 were annotated as ribosome 

biogenesis, and four as RPs (2 cytosolic RPs, 2 mitochondrial RPs).  
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Module Nodes  Edges  

1.1  222 3644 

1.2  178 4059 

1.3  35 281 

2.1 211 12765 

2.2 178 8595 

3.1 72 941 

3.2 72 733 

Table 2. 9 Breakdown of cytosolic ribosomes first neighbours modules for Hillenmeyer’s 

network. 

 

To further investigate the link between RPs and energy metabolism pathways, I identified 

all the edges between RPs and energy metabolism processes and ordered them by MI 

(Table 2.10). For each pair of genes a Pearson correlation coefficient was calculated, 

correlation plots were constructed across all experimental samples from Hillenmeyer’s 

dataset (see supplementary CD, folder ‘Chapter 2’). I identified that the highest scoring RP 

- energy metabolism pairs are often contain the same ribosomal factor, such as ribosomal 

biogenesis gene BMS1, and RPs RPL22B and RPL31B. 
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Figure 2. 22 An undirected network showing cytosolic ribosomes first neighbours in Hillenmeyer’s network. 
The network has been visualised using a force directed layout, and modules identified by GLay are mapped on the network. Node colour is representative 

of GLay module (see legend), edge length represents MI score. Accompanying annotation indicates functional enrichment defined by DAVID. Red text 

indicates an FDR of < 0.05, and green indicates an FDR of <0.1, black represents non significant enrichment. 

1.1) cellular ion homeostasis (9), carboxylic acid transport  

(7), vitamin metabolism (6), metal ion binding (36),  cellular 

amide metabolism (7), alcohol biosynthetic process (5), 

protein complex assembly (9), mRNA metabolism (11), 

intrinsic to membrane (56), mitochondrial envelope (17),  

Glycolysis / Gluconeogenesis (4), hexose metabolism (5), cell 

cycle (10)

1.2) calcium ion binding (5), biopolymer glycosylation (5),  

endoplasmic reticulum (11), protein complex assembly (13),  

exocytosis (5), electron transport  / succinate dehydrogenase

(3), mitochondrion inner membrane (11),,  rRNAprocessing 

(10), hexose metabolism (3)

1.3) reproductive proces (5), mitochondrial inner membrane 

(5),  vacuolar transport (4),  ribosomal subunit (4),  Golgi 

apparatus (4), transmembrane protein (12), ncRNAprocessing 

(3), metal ion binding (5)

2.1) ribosome biogenesis (43), ribonucleoprotein / small RP subunit (44), small subunit 

processesome (21), maturation of 5.8s rRNA(15), rRNAexport (7), regulation of 

translation (10),  box C/D snoRNP complex (3),  ncRNA3'-end processing,  t-UTP 

complex (5),  ribosomal small subunit assembly (4), RNAPI complex (3)

2.2) cytosolic large ribosomal subunit (28),  regulation of translation (14), ribosomal 

large subunit biogenesis (11),  ribosome biogenesis (19),  multi-eIF complex (4),  

RNAPIII complex (3), ribosome export (5), chaperone (3)

3.1) mitotic sister chromatid segregation (7), 

Golgi vesicle transport,(7) ,cellular protein 

complex disassembly (5)  spindle pole body 

duplication (3),   methyltransferase, (5)  DNA 

replication (9),  organelle lumen (38)  amino-

acid biosynthesis,(7), ribosome biogenesis 

(13), cell cycle

3.2) Sphingolipid metabolism, (3) , lipid 

catabolism  (4),  alcohol / glucose catabolic 

process (6),  cell ageing (5) , GTPase activity 

(5),  aromatic compound biosynthetsis,(4) , 

RNA modification (4),  Amino acid transport 

(3 ), ribosome biogenesis (15)

Cytosolic RP GLay Module 2

Cytosolic RP GLay Module 1

Cytosolic RP GLay Module 3

Cytosolic Ribosomal Protein
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Ribosomal 

Gene 

Energy 

Metabolism 

Gene 

MI Pearson 

correlation 

coefficient 

GSP2  IDH2  0.451 0.744 

BMS1  PYK2  0.415 0.759 

BMS1  ADH1  0.367 0.639 

BMS1  FUM1  0.365 0.716 

GSP2  WCR6  0.339 0.624 

POP7  ADH1  0.327 0.444 

BMS1  VMA6  0.324 0.643 

POP7  VMA6  0.317 0.588 

RNT1  PYK2  0.307 0.668 

NOB1  FUM1  0.286 0.602 

RCL1  FUM1  0.285 0.641 

RNT1  ADH1  0.281 0.532 

BMS1  COX12  0.276 0.546 

RNT1  VMA6  0.273 0.602 

NOB1  IDH2  0.267 0.531 

GSP2  FUM1  0.266 0.486 

BMS1  QCR6  0.264 0.630 

RPS27A  ADH7  0.262 0.583 

RPL22B  YOR283W  0.249 0.579 

RPL22B  ADH7  0.248 0.669 

RPS9A  SDH1  0.247 0.339 

POP7  PYK2  0.244 0.489 

RPS6B  IDH2  0.241 0.569 

RPS9A  ADH7  0.241 0.568 

POP7  COX12  0.237 0.479 

POP7  FUM1  0.236 0.517 

RPL22B  SDH4  0.235 0.578 

BMS1  IDH2  0.227 0.512 

RNT1  QCR6  0.225 0.511 

RPS9A  LAT1  0.223 0.387 

RPL22B  COX8  0.219 0.578 

RPS14B  ATP18  0.218 0.772 

RPL10  ADH1  0.218 0.509 

GSP2  KGD2  0.215 0.607 

RCL1  QCR6  0.213 0.540 

HRR25  FUM1  0.210 0.484 

RCL1  ADH1  0.208 0.465 

RNT1  VMA2  0.208 0.480 

RPS17B  SOL4  0.207 0.696 

RNT1  FUM1  0.205 0.498 

RCL1  IDH2  0.196 0.481 

RCL1  PYK2  0.194 0.553 

RPS27A  YOR283W  0.194 0.501 

FCF1  PYK2  0.192 0.528 

NOB1  QCR6  0.191 0.444 

POP6  SDH4  0.190 0.550 

HRR25  IDH2  0.188 0.433 

RPS27A  COX8  0.188 0.514 

RPL31B  FUM1  0.188 0.520 
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RPL43B  LAT1  0.187 0.544 

HRR25  PDC1  0.181 0.480 

POP5  TPI1  0.180 0.489 

RPS14B  THI3  0.178 0.672 

CKA1  FUM1  0.178 0.468 

POP7  QCR6  0.178 0.460 

RPS6B  FUM1  0.177 0.474 

RNT1  COX12  0.176 0.439 

BMS1  PDC1  0.176 0.486 

FCF1  FUM1  0.176 0.514 

RPS9A  TKL1  0.175 0.393 

RPL31B  VMA6  0.175 0.433 

RPS27A  LAT1  0.174 0.584 

RPL7B  LAT1  0.171 0.355 

RPL31B  ADH1  0.170 0.414 

RPS25A  PMA1  0.170 0.546 

RPL15A  IDH2  0.170 -0.454 

RPS14B  LAT1  0.169 0.357 

GSP2  ADH1  0.169 0.305 

RPL38  SDH3  0.169 0.585 

POP7  IDH2  0.168 0.353 

RPL43B  TDH1  0.168 0.504 

POP6  YOR283W  0.166 0.500 

EMG1  LAT1  0.165 0.508 

RPL15A  QCR6  0.164 -0.469 

RCL1  PDC1  0.163 0.474 

RPL38  COX8  0.160 0.483 

RPL38  ADH7  0.160 0.443 

RPL10  FUM1  0.160 0.385 

RPS27A  SDH3  0.158 0.483 

RPS9A  SDH3  0.156 0.413 

RNT1  RPE1  0.156 0.376 

RPS6B  QCR6  0.155 0.422 

RPS17B  KGD2  0.154 0.553 

GSP2  PDC1  0.154 0.294 

RPL31B  COX12  0.154 0.389 

RPL17B  TDH1  0.153 0.450 

RCL1  VMA6  0.153 0.389 

BMS1  PFK1  0.151 0.447 

CKA1  PDC1  0.150 0.422 

Table 2. 10 All the edges between cytosolic ribosomal factors and energy metabolism genes 

Table is ordered by MI value, with accompanying Pearson correlation coefficient. MI scores and 

Pearson correlation coefficients are shown to three decimal places 
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2.3.5.2 Verification of cytosolic ribosomal proteins link to energy metabolism  

In order to verify the linkage between cytosolic RPs and energy metabolism pathways the 

analysis was repeated for Vulpe’s network (Figure 2.23). The initial level of 

modularisation identified eight modules as opposed to the three in Hillenmeyer’s network, 

a breakdown of each module is shown in Table 2.11. The results once again suggested that 

there is a link between cytosolic RPs and cytoplasmic energy metabolism pathways. 

Functional analysis on each module identified associations between cytosolic ribosomes 

and rRNA transport (module 1), electron transport chain and large ribosomal subunit 

(module 2), ubiquitin dependent protein catabolism and translation (module 3), 

mitochondrial translation and cellular respiration (module 4),  cytosolic ribosome and 

translation regulation (module 5), cytosolic large ribosomal subunit and protein transport 

(module 6), cytoplasm (module 7),  cytosolic ribosome (modules 8 and 9). 

The most interesting results were within sub-module 1.2. Sub-module 1.2 contained four 

genes annotated as glucose catabolic process, these were EMI2, TDH3, RPE1 and TKL1. 

In Hillenmeyer’s fitness network, I reported that TKL1 was phenotypically linked to 

ribosome biogenesis genes, here TKL1 had 49 first neighbours, three of which were 

ribosome biogenesis proteins, one was RPS23. Sub-module 1.2 also contained 

glyceraldehyde-3-phosphate dehydrogenase (TDH3), the same class of enzyme shown to 

be first neighbours with genes encoding RPs in Hillenmeyer’s network (Figure 2.23). 

Finally, RPE1 which encodes ribulose 5-phosphate epimerase. RPE1 catalyses the 

penultimate reaction in riboneogenesis, specifically the conversion xylulose-5-phosphate 

to ribulose-5-phosphate [92]. Within sub-module 1.1 there was enrichment five hexose 

metabolism genes, GLG1, PGM3, MDH2, PYK2 and the phosphoglycerate mutase 

YOR283W. PGM3 is a phosphoribomutase which catalyses with inter-conversion of 
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ribose-1-phosphate and ribose-5-phosphate in the PPP and is an alternative route for ribose 

production rather than riboneogenesis [92]. 

Surprisingly there is a single cytosolic RP in sub-module 2.1, identified as RPL2B. RPL2B 

is first neighbours with every gene within sub-module 2.1, but is not connected to any 

proteins located in other modules. This suggests that the RPL2B, a protein classified as 

localised to the cytoplasm, shows a similar fitness profile upon deletion to only 

mitochondrial RPs and mitochondrial proteins in general.  This feature is not conserved 

within Hillenmeyer’s network.  

 

Module Colour Nodes Edges 

1.1 Red 132 4041 

1.2 Red 132 1233 

2 Blue 96 1994 

3.1 Green 62 397 

3.2 Green 62 357 

3.3 Green 29 100 

4 Pink 50 575 

5 Light Blue 21 31 

6 Orange 16 28 

7 Dark Green 13 19 

8 Purple 12 11 

9 Black 8 11 

Table 2. 11 Breakdown of cytosolic ribosomes first neighbours modules from Vulpe’s 

network 
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Figure 2. 23 An undirected network showing cytosolic ribosomes first neighbours in Vulpe’s network 

The network has been visualised using a force directed layout, edge length represents MI score. Modulesdefined by GLay are mapped on the parent 

network. Node colour represents sub-network (see legend). Functional annotation by DAVID for each sub-network is shown in the corresponding coloured 

box. 

1.1) decarboxylase (3), glucan biosynthesis (3), coenzyme metabolic

process (6), oxidation reduction (9), glucose metabolic process (5),

endocytosis, (5) mitochondrion (9), spore wall biogenesis (3), stress

resposne (10), dephosphorylation (3), hexose metabolism (5)

1.2) cytosolic ribosome (23), regulation of translation (13), cytosolic

small ribosomal subunit (14), rRNA transport (7), cytosolic large

ribosomal subunit (8), nucleolus, ribosome small subunit assembly,

rRNA-binding (3), glucose catabolic process (4), amino acid

phosphorylation, (8) replication fork protection complex (3), sexual

reproduction (8), chromosome (10)

3.1) translational termination (4), atp-binding (15), cell wall

(5), actin cytoskeleton (4), P-loop (5), vacuolar membrane (3),

reproductive cellular process (4), mitochondrial (8), protein

localization (4)

3.2) regulation of translation (6), stress response (6), Ribosome

(4), macromolecule biosynthesis (4), cytoskeleton organization

(3), cell fraction (5), integral to organelle membrane (17),

mitochondrial envelope (4), ribosome biogenesis (3)

3.3) ubiquitin-dependent protein catabolic process via the

multivesicular body sorting pathway (5), cytosolic ribosome

(4), mitochondrion (3), zinc-finger (3)

4) Mitochondrion (37), mitochondrial translation (20), ribosome

(6) cellular respiration (5), amino acid activation, (5) GTPase

activity (3), mitochondrial inner membrane (7), sporulation (3),

regulation of translation (3)

2) electron transport chain, (5) secondary metabolic process (4), iron ion

binding (6), large ribosome subunit (6), integral to mitochondrial

membrane (25)

5) cytosolic ribosome (10), regulation of translation (6), ribosome

biogenesis (7), cell division (3), nucleus (7)

6) cytosolic large ribosomal subunit (3), protein transport (3)

9) cytosolic large Ribosome subunit  (3)

7) cytoplasm (7) cytosolic large ribosomal subunit (2)
8)  cytosolic ribosome (3)

Cytosolic RP GLay Module 1

Cytosolic RP GLay Module 2

Cytosolic RP GLay Module 3

Cytosolic RP GLay Module 4

Cytosolic RP GLay Module 5

Cytosolic RP GLay Module 6

Cytosolic RP GLay Module 7

Cytosolic RP GLay Module 8

Cytosolic RP GLay Module 9

Cytosolic Ribosomal Protein
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2.3.5.3 Mitochondrial RPs are phenotypically correlated to ribosome biogenesis 

despite being compartmentally separated. 

Using the same analysis pipeline as the cytosolic RP first neighbour analysis, 

mitochondrial RPs were mapped onto both Hillenmeyer’s and Vulpe’s fitness networks 

and the first neighbours identified. The first neighbour mitochondrial RP networks for 

Hillenmeyer’s and Vulpe’s datasets are shown in Figures 2.24 and 2.25 respectively. 

Details of the number of nodes and edges are given in Tables 2.12 and 2.13 respectively. 

Module 1 of Hillenmeyer’s mitochondrial network formed three sub-modules (Figure 

2.24). All of which, were significantly enriched in mitochondrial RPs and other proteins 

localised within the mitochondria. This observation was also conserved in module 1 in 

Vulpe’s mitochondrial network (Figure 2.25). Both modules also contain energy 

metabolism pathways localised within the mitochondria, such as TCA cycle, and electron 

transport chain. However in sub-module 1.1 of Hillenmeyer’s data, there was enrichment 

of seven hexose metabolism genes, PSK1, CDC19, PMI40, PFK27, TDH1, RPE1 and 

TKL1. First neighbour analysis showed that these hexose metabolism genes had 139 first 

neighbours within the mitochondrial network. DAVID identified 34 genes encoding 

mitochondrial proteins as the top hit. TKL1, RPE1 and TDH1 are key enzymes in 

glycolysis and riboneogenesis. TDH1 is involved in glycolysis, suggesting that knocking 

out glycolysis leads to the same phenotype as knocking out an RP.  

Within sub-module 3.1 of Hillenmeyer’s network there was enrichment of ‘negative 

regulation of glycolysis’. Module 3.1 was also enriched glycolysis related genes PFK1 and 

PYK2, both of which are tightly regulated enzymes that catalyse thermodynamically 

favoured reactions [92]. In sub-module 3.1 of Vulpe’s network (Figure 2.25) there is 

enrichment of the electron transport chain and oxidation reduction proteins.  
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Module  Nodes  Edges  

1.1  199 2451 

1.2  167 2902 

1.3 31 153 

2.1 120 4244 

2.2 85 2719 

2.3 5 9 

3  11  8  

Table 2. 12 Breakdown of mitochondrial ribosomes first neighbours modules for 

Hillenmeyer’s network. 

 

 

Module Colour Nodes Edges 
1 Red 98 1051 

2 Green 90 1944 

3 Blue 23 115 

4 Pink 16 54 

5 Light Blue 14 38 

6 Orange 3 3 

Table 2. 13 Breakdown of mitochondrial ribosomes first neighbours modules for Vulpe’s 

network. 
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Figure 2. 24 An undirected network showing the first neighbours of mitochondrial ribosomes from the Hillenmeyer dataset 
The network has been visualised using a force directed layout, edge length represents MI score. Modules defined by GLay were been mapped onto the 

parent network. Node colour represents the module (see legend) with yellow nodes representing mitochondrial RPs. Accompanying annotation indicates 

functional enrichment defined by DAVID. Red text represents an FDR < 0.05, and green text represents an FDR < 0.1.  

3.1) sphingolipid metabolism (3), mRNA

metabolism (11), ncRNA metabolism (14),

negative regulation of gluconeogenesis (5),

alcohol catabolic process (5), thiamin

biosynthesis (3), ribonucleoprotein complex

(3), ribosome biogenesis (13)

3.2) organelle lumen (19), mRNA

polyadenylation (3), chromatid segregation

(5), DNA replication, (6), electron carrier

activity (4), TCAcycle (3),

2) Mitochondrial translation optimization 

(1), targetting protein (1), 

phosphodiesterase (1)

1.1) mitochondrial ribosome (13), vitamin metabolism (8),

er-GOLGI transport (5), negative regulation of organelle

organisation (7), HEAT (3), DNA duplex unwinding (4),

hexose metabolism (7), cell cycle (9), establishing protein

localisation (20)

1.2) mitochondrial ribosome (26), mitochondrial matrix (12),

endocytosis (7), oxidoreductase (11), TCA cycle (4),

preribosome – large subunit precursor (4)

1.3) mitochondrial ribosome (4), integral to membrane (8),

nucleotide binding (4)

Mitochondrial RP GLay Module 1

Mitochondrial RP GLay Module 3

Mitochondrial Ribosomal Protein

Mitochondrial RP GLay Module 2
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Figure 2. 25 An undirected network showing the first neighbours of mitochondrial ribosomes from the Vulpe dataset 
The network has been visualised using a force directed layout, edge length represents MI score. Modules defined by GLay have been mapped onto the 

parent network. Node colour represents module (see legend) with yellow nodes representing mitochondrial RPs. Accompanying annotation indicates 

functional enrichment defined by DAVID. Red text represents an FDR < 0.05, and green text represents an FDR < 0.1.  

1) Mitochondrion (68), mitochondrial

translation (33), organellar small ribosomal

subunit (10), tRNA aminoacylation (9), rrna-

binding (4), cellular respiration (7), nucleotide

binding (7), mitochondrial inner membrane

(12), protein import into mitochondrial

intermembrane space (3), mitochondrial

genome maintenance (5), Oxidative

phosphorylation (3), unfolded protein binding

(4), cellular ion homeostasis (4), sporulation

(3), protein complex assembly (5), RNA

modification (3), cytosol (4), ER (3),

Transcription (6), metal-binding (6)

3) oxidation reduction / electron

transport chain (11), integral to

membrane (24), glycosylation (3),

cellular response to heat (5),

vacuole (5), iron ion binding (5),

homeostatic process (6), regulation

of cell cycle (5), ribosome (6),

interphase of mitotic cell cycle (3),

mitochondrial outer membrane (3),

coenzyme binding (3),

mitochondrion (16), meiosis (3)

4) phosphate metabolic process

(4), mitochondria (4)

2) mitochondrion (8), Golgi

vesicle transport (3), zinc, (4)

intracellular protein transport,

(3) DNA binding (3),

membrane (5)

5) response to abiotic

stimulus (4), integral to

membrane (4), ribosome

(6), transition metal ion

binding (3)

6) mitochondrial large ribosomal

subunit (2)

Mitochondrial RP GLay Module 1

Mitochondrial RP GLay Module 2

Mitochondrial RP GLay Module 3

Mitochondrial RP GLay Module 4

Mitochondrial RP GLay Module 5

Mitochondrial RP GLay Module 6

Mitochondrial Ribosomal Protein
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2.3.5.4 Cell cycle gene BUB1 shows significant phenotypic correlation to over 45 

genes encoding RPs 

The results of the fitness network suggested that cytosolic RPs have similar fitness 

profiles to genes involved in cell cycle and correct chromosome segregation. This 

observation is most apparent in the cytosolic RP first neighbour analysis (Hillenmeyer 

Figure 2.22 sub-module 3.1 and Vulpe Figure 2.23 sub-modules 1.2, 3.1, 4.1 and 5.1). To 

investigate further, I used the Hillenmeyer network and identified the how many cell 

cycle genes were first neighbours of cytosolic RPs. Cell cycle genes were split into 

meiosis (Figure 2.26A) and mitosis (Figure 2.26B). RPs are represented in green and cell 

cycle represented in red. The analysis found that only a single cell cycle gene, BUB1, 

localised within a module of cytosolic RPs (enclosed within the black box of figures 

2.26A and 2.26B). BUB1 encodes a serine / threonine protein kinase which has an 

essential role in spindle assembly checkpoint and prevents cell cycle progression in the 

presence of spindle damage [129].  

The mitosis and meiosis networks were combined (Figure 2.26C). 49 of the 66 first 

neighbours of BUB1 were RPs (represented as green nodes), with the remaining 17 being 

involved in translation initiation and cell cycle processes (represented as grey nodes). 

Isolating solely BUB1 and analysing the MI score between BUB1 and its adjacent edges, 

identified two clear peaks indicating that edges could be classified into two distinct 

groups (figure 2.26D). The genes which were present within the high (0.35MI, p-value: 

10
-77

) and lower, yet still highly statistically significant (0.2MI, p-value: 10
-45

) peaks 

were identified. Figure 2.26E shows the breakdown of BUB1 linkage to genes encoding 

RPs, edge width represents MI score, and the RP genes have been grouped based on their 

size (small / large) and function. The results suggest that BUB1 is more phenotypically 

correlated to genes encoding small 40S RPs and least phenotypically correlated to large 
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RPs, representing the first and second peaks in the MI density plot (Figure 2.26D). 

Finally I calculated the Pearson correlation coefficient between BUB1 and each of its 

first neighbours across all samples. Mutual information scores and Pearson correlation 

coefficients between BUB1 and its first neighbours were calculated to three decimal 

places (Table 2.14). The association of BUB1 with RPs is unexpected, however the 

results show yeast strains with a BUB1 mutant, have the same fitness as yeast strains 

containing a RP mutant, and that the phenotypic correlation is dependent on the size of 

the RP also.  
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Figure 2. 26 The phenotypic linkage of BUB1 to cytosolic RPs. 
Panel A. The edges between cytosolic RPs (green nodes) and mitosis (red nodes). Network has 

been visualised using a force directed layout. Panel B. The interactions between cytosolic RPs 

(green nodes) and meiosis (red nodes). Network has been visualised using a force directed layout. 

Panel C. BUB1 is highly correlated to cytosolic RPs in both mitosis and meiosis. Grey nodes are 

non RP. Panel D. A density plot representing the MI score of all adjacent edges to cell cycle 

protein BUB1 shows 2 specific peaks (highlighted by dashed red circles) , Panel E A network 

representing BUB1 RP neighbours, edge width represents MI score. Interestingly, the strongest 

linkage is between BUB1 and small cytosolic RPs (right most box). The weakest interactions 

(though still highly significant) are predominantly with large cytosoplasmic RPs (left most box). 

Processosome components contain a mixture of both high and low correlated genes.  

Component of the SSU
processome

meiosismitosis

Small ribosomal subunit

UTP protein group

A B

C

D

E

Large ribosomal subunit

Small subunit 

processome
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Gene 1 Gene 2 MI r2_pearson 

BUB1 RPS20 0.391 0.744 
BUB1 RPS27B 0.378 0.747 
BUB1 RPS24A 0.364 0.711 
BUB1 RPS23B 0.340 0.679 
BUB1 RPS29B 0.337 0.666 
BUB1 RPS13 0.332 0.691 
BUB1 RPS21B 0.330 0.615 
BUB1 UTP4 0.327 0.679 
BUB1 UTP18 0.323 0.652 
BUB1 RPS6A 0.322 0.651 
BUB1 RPS3 0.317 0.701 
BUB1 RPS16B 0.309 0.705 
BUB1 RPS11A 0.279 0.650 
BUB1 RPS8A 0.278 0.599 
BUB1 RPS4A 0.267 0.626 
BUB1 RPS18A 0.250 0.566 
BUB1 RPS29A 0.244 0.597 
BUB1 RPS11B 0.238 0.517 
BUB1 RPS23A 0.238 0.613 
BUB1 RPS15 0.237 0.593 
BUB1 RPS2 0.237 0.611 
BUB1 RPS19A 0.232 0.579 
BUB1 RPL35A 0.229 0.502 
BUB1 RPS9B 0.212 0.691 
BUB1 RPL19B 0.210 0.465 
BUB1 IMP3 0.209 0.589 
BUB1 RPS1A 0.207 0.560 
BUB1 RPS7B 0.206 0.572 
BUB1 RPS0B 0.203 0.562 
BUB1 RPL16B 0.202 0.503 
BUB1 RPL34B 0.202 0.520 
BUB1 RPL14A 0.202 0.501 
BUB1 RPL2B 0.200 0.466 
BUB1 RPL24A 0.194 0.435 
BUB1 RPS19B 0.193 0.494 
BUB1 RPL20B 0.191 0.470 
BUB1 IMP4 0.185 0.508 
BUB1 UTP6 0.184 0.577 
BUB1 RPP1A 0.181 0.463 
BUB1 RPL21A 0.176 0.415 
BUB1 UTP15 0.175 0.500 
BUB1 RPL30 0.171 0.467 
BUB1 RPS24B 0.170 0.483 
BUB1 RPL34A 0.170 0.413 
BUB1 RPS12 0.169 0.523 
BUB1 UTP13 0.161 0.526 
BUB1 RPL5 0.160 0.437 
BUB1 NOP1 0.151 0.410 
BUB1 RPL43A 0.150 0.467 

Table 2. 14 All interactions between BUB1 and cytosolic RPs. 

Table is ordered by MI value, with accompanying Pearson correlation coefficient. MI scores and 

Pearson correlation coefficients are shown to three decimal places  
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2.4 Discussion 

The network construction and analysis reported in this chapter is the first time an MI 

based reverse engineering approach has been applied to Hillenmeyer’s genome-wide 

fitness data. In 2008, the analysis of S. cerevisiae fitness data proved that genes 

previously thought non-essential actually had an essential role in providing tolerance to 

different stresses [40]. Almost all genes within the S. cerevisiae genome (97%) are 

required for growth after exposure of a specific chemical or stress [40]. The paper proved 

that using fitness data can potentially bridge the gap in understanding the relationships 

between genotype and phenotype.  

Two important concepts were revealed as a result of this study. The first is that genes 

which share a common function, form highly interconnected modules, consistent with 

mutual contribution to cell fitness. For example, mutating an RP would lead to the same 

phenotype as mutating another RP, as the cells ability to produce a functional ribosome 

has been affected. The identification of modules enriched in similar cellular functions is 

consistent with the preliminary hierarchical clustering validation studies done by 

Hillenmeyer et al on the same dataset in which they showed three clusters each enriched 

with genes encoding functionally similar proteins (proteasome core complex, 

peroxisome, and chaperonin containing T-complex) [40]. Furthermore, the independent 

fitness data provided by Vulpe Labs also revealed similar results. These results validate 

the use of genome-wide fitness data as an informative source of providing biological 

insight when applied to network inference methodologies. 

Secondly, exploration of the fitness networks revealed potentially interesting phenotypic 

linkages between select groups of genes. For example, the results suggested that RPs are 

phenotypically correlated to a diverse set of cellular functions, including cell cycle, 
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glycolysis and chromatid segregation. Not only that, but the analytical approach used 

allows for the identification of which genes specifically from each functional group 

exhibit the most strongly correlated co-fitness profiles. Surprisingly, the network analysis 

identified a novel discovery, a strong correlation between the non-essential gene BUB1 

and genes encoding RPs, specifically RPs that constitutes the small ribosomal subunit. 

This genome-wide network analysis on Hillenmeyer’s fitness data can provide a platform 

on which to generate hypotheses on a broader scale. In combination with network 

interrogation techniques and current congruent literature, it is possible to identify 

potential candidate genes that can be used to experimentally validate hypotheses 

generated from this network analysis. Below I discuss the most interesting and 

statistically significant phenotypic correlations suggested by this fitness network 

analysis. 

 

2.4.1 Ribosomal proteins are required for proper chromosome segregation and 

cell cycle progression 

So far, the results suggest that there is a potential phenotypic link between RPs and cell 

cycle processes. Indeed, this may be explained by the fact that as cells differentiate, they 

require an up-regulation in the genes encoding for RPs.  However, of all genes involved 

in cell cycle processes, only BUB1 appears to be significantly correlated to over 45 RPs. 

BUB1 is a non-essential protein kinase which controls the checkpoint into anaphase 

[130]. This spindle checkpoint delays the onset of anaphase in cells which have 

developed defects in mitotic spindle assembly or if there are adverse attachments of the 

spindle microtubules to chromosomes [131, 132]. The role of BUB1 in anaphase 

checkpoint control is conserved across eukaryotes [133] [134]. Knocking out BUB1 
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alters chromosome segregation [134]. In S. pombe deletion of BUB1 causes 

chromosomes to arrest on the spindle during anaphase, leading to chromosome loss 

[129].  BUB1 requires other spindle checkpoint components into order to fulfil its 

function, including the MAD protein family and additional BUB proteins [135]. 

Therefore, it is extraordinary as to why only the non-essential gene BUB1, shows such a 

strong phenotypic correlation to RPs, with almost 75% of its first neighbours being RPs. 

In 2004, a study in S. cerevisiae revealed the first link between ribosome biogenesis and 

chromosome segregation [136]. Expression of the ribosome biogenesis gene RRB1 is 

induced when the spindle checkpoint is activated however inactivation of RRB1 leads to 

abnormal chromosome segregation blocking mitosis at the checkpoint into anaphase 

[136]. The role RRB1 in controlling the assembly of ribosomal subunits [137] and the 

transcription of RPs [136] is key to cell cycle progression. The work in this chapter also 

suggests that there is a close link between ribosome biogenesis and cell cycle 

progression. Though the exact relationship between these two biological processes isn’t 

clear, one possible hypothesis is that the lack of a functional ribosome or a delay in 

ribosome assembly halts cell cycle prior to chromosome segregation. The results from 

this study demonstrate the phenotypic linkage between BUB1 and genes encoding RPs. A 

mutation in either leads to a highly similar phenotype. This raises the possibility that 

adverse proteins involved in RP synthesis may be a potential mechanism for identifying 

chromosomal instability [136]. Noteworthy, is that these results demonstrate the novel 

observation that BUB1 has a stronger phenotypic correlation to small RP genes, than to 

large RP genes. A possible counter hypothesis is that yeast strains containing deleted 

genes encoding small RPs have a different phenotype to those strains containing 

deletions of large RPs (as suggested by separation of small and large RPs in sub-modules 

3.1. and 3.2 in Figure 2.7). As such, it is possible that BUB1 happens to be more closely 
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correlated to small RPs simply because they have the same fitness contribution when 

deleted. Many RPs have paralogues, therefore, it is possible that deleting some small RPs 

isn’t fatal to the cell [102], and as BUB1 is non-essential, they both may have a similar 

phenotype when deleted. If true, this could mean that the correlation between BUB1 and 

genes encoding small RPs is not biologically relevant. However, Table 2.14 lists the RPs 

that are correlated to BUB1 and it shows that even RPs that do not have paralogues (such 

as RPS20, RPS13 and RPS3) are strongly correlated to BUB1, and that when deleted they 

are fatal to the cell (as reported on SGD). In light of this, the correlation between BUB1 

and RPs, especially small RPs may in fact be biologically significant. What is undeniable 

however, is the fact that only BUB1 is strongly correlated to RPs in general, no other 

checkpoint proteins are significantly correlated. The importance of why BUB1 

specifically is correlated to RPs that do not have paralogues as well as those that do, can 

only be validated through experimental techniques. This analysis has identified potential 

candidate genes in which to test this hypothesis experimentally. 

 

2.4.2 Genes involved in glycolysis may regulate the rate of ribosome biogenesis 

The network analyses on the two independent fitness datasets suggested that RPs may be 

phenotypically linked to genes involved in energy metabolism pathways, in particular 

glycolysis. For example, in sub-module 1.1 of Hillenmeyer’s network I showed that the 

gene TDH1, responsible for catalysing the sixth step in glycolysis, is directly connected 

to RPs and ribosome biogenesis genes (Figure 2.5). Sub-module 2.2 of Hillenmeyer’s 

network showed enrichment of glycolysis genes and ribosome biogenesis genes (Figure 

2.6). The significance of this result is that once again, a subset of RPs localise within 

modules containing energy metabolism genes instead of with the majority of other RPs.  
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Keeping in mind the rate of riboneogenesis is dependent on glycolysis intermediates [92], 

mutating a gene encoding a glycolytic enzyme would affect flux through glycolysis, 

resulting in a lower concentration of glycolytic intermediates that can be shunted through 

the riboneogenesis pathway thus causing a decrease in ribosome biogenesis. The results 

suggest that support this theory, as a mutation in the TDH1 gene produced a fitness 

profile that is highly correlated to the large RP genes, RPL17B, L43B and biogenesis 

gene TMA22.  

The translaldolases NQM1 (Hillenmeyer sub-module 2.1) and TAL1 (Vulpe module sub-

1.2) have a strong phenotypic correlation to RPs either directly in the case of TAL1 or 

indirectly for NQM1. The results show that although NQM1 does have any direct 

connects to RPs, it connects indirectly through the uncharacterised gene known as 

YGL242C. The function of this gene is not known, however these results suggest that it 

may be involved regulating RPs. Reports by Clasquin et al have shown that deletion of 

aldolase genes, TAL1 and its paralogue NQM1, inhibits the non-oxidative PPP, thereby 

increasing the concentration of metabolites available for riboneogenesis, as such, the flux 

through SHB17 is quadrupled [92]. 

Note worthy is that the energy pathways in Hillenmeyer module 2 (Figure 2.6) are split 

into two distinct modules, the first contains energy pathways predominantly localised in 

the cytoplasm (sub-module 2.2) and energy metabolism pathways localised to the 

mitochondria (sub-module 2.1), however it is only module 2.2 that shows association to 

ribosome biogenesis genes. Of course, it is expected that ribosomal genes be strongly 

correlated to energy metabolism pathways, given that eukaryotic ribosome biogenesis 

and translation is an costly energetic process (requiring ~45% of ATP supplies in mouse 

[138]), the question is why do RPs have a strong phenotypic linkage to only genes 

involved in glycolysis or the pentose phosphate pathway. The results are consistent with 
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those presented by Clasquin et al,  in which they reported that the rate of ribosome 

biogenesis is dependent on the rate at which glycolytic intermediates are produced 

[92].These observations were also supported by network analysis done on Vulpe’s fitness 

data. 

 

2.4.3 Limitations of fitness data 

The network analysis reported in this chapter has produced numerous results and 

hypotheses. However, it is important to note that as an MI based method has been used to 

construct these networks; they do not reveal the relationship between cause and effect 

between two genes that share co-fitness. It is plausible that two completely unrelated 

genes may be strongly correlated because they both contribute the same degree of fitness 

to the cell. For example, an edge may be inferred between two essential genes, simply 

because they both would cause cell death when deleted. In other words, deletion of both 

genes leads to the same phenotypic outcome, yet there is no underlying biological 

connection between them. Conversely, the linkage between the two genes may represent 

a true underlying biological connection which has yet to be discovered. The only way to 

reveal the true underlying connection is through experimental validation and this is one 

of the limitations of MI based networks. Experimental validation is always required in 

order to strengthen or disprove any hypotheses garnered from MI based networks. 

Similarly to expression data, consideration can be given to temporal aspects, for example 

fitness data can be used to measure the essentiality of a gene within a given time 

duration, with measurements taken at several times during growth [37]. Though, for the 

purposes of constructing these fitness networks, experiments in which drug dose or 

exposure time was varied were treated as independent experiments which were 
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normalised against their respective controls. This pre-processing and normalisation 

strategy was also used in Hilllenmeyer et al’s study [40], and the same data was used for 

this study. In order to study the degree to which specific genes contribute to the 

survivability of a yeast strain across time, a different analytical approach would be 

required, such as a multi-class significance analysis of microarrays (SAM), with each 

class being a reading taken at specific intervals after exposure to a specific stress. Such 

an approach would identify genes which significantly change their contribution to cell 

fitness across time. This type of approach is currently limited as the amount of time-

course fitness data that focuses on stress response in S. cerevisiae is limited [40]. 

 

2.5 Concluding remarks 

Reported in this chapter is the first time Hillenmeyer et al’s compendium has been used 

to reverse engineer a global fitness MI network. Prior to this analysis, network based 

approaches using fitness data had been restricted in terms of scope and question to 

elucidating or mapping specific pathways. Though studies of this type are useful for 

understanding biological pathways, it does involve excluding a large proportion of the 

data, thereby excluding potentially valuable information. The work presented in this 

chapter however, utilises a genome-wide approach. The analytical pipeline used in this 

chapter allowed the Hillenmeyer compendium and Vulpe dataset to be considered as a 

whole, rather than focusing on a subset of genes. As a result, I was able to construct 

fitness networks and identify potentially interesting relationships between different 

cellular functions at the global level. This work also marks the first time a network based 

approach has been used to investigate riboneogenesis and the links between ribosome 

biogenesis and energy metabolism. This work identified several statistically significant 
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correlations between genes, which were previously reported by wet lab experiments 

performed by Clasquin et al during their riboneogenesis studies [92].  In addition, this 

work highlights how applying a MI based reverse engineering approach can identify 

potential further future areas of research, one example highlighted in this chapter was the 

novel linkage between the non-essential BUB1 gene and both essential and non-essential 

small RP genes. The fitness network constructed in this chapter can be applied to any 

biological question and can be used to determine gene dependencies prior to wet lab 

experiments. However, studies using fitness data are limited as S. cerevisiae is the only 

eukaryotic organism in which there is a large volume of fitness data available. Only in 

recent years has S. pombe fitness deletion library been verified [74], therefore S. pombe 

fitness data is not readily available as S. cerevisiae fitness data. Though, due to the 

homology of S. cerevisiae with mammals and S. pombe [57], these fitness networks may 

have an important role in identifying potentially interesting interactions in higher 

eukaryotes. 

The next step is to determine if genome-wide transcriptional data can also be grouped 

into functional modules and whether the linkages observed in the phenotypic data are 

conserved at the transcriptional level. In the next chapter I report the inference and 

analysis of a S. cerevisiae expression network.  
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CHAPTER 3: INFERENCE AND ANALYSIS 

OF A Saccharomyces cerevisiae GENE 

EXPRESSION NETWORK 
 

3.1 Introduction 

In chapter 2, I showed how the application of a reverse engineering approach to a 

genome-wide fitness dataset could be used to discover the existence of functional 

modules representing highly correlated fitness profiles. 

The analysis of these modules identified a number of phenotypically coupled functional 

processes. In some cases this has yielded interesting hypothesis regarding ribosomal 

proteins (RPs). Perhaps the most interesting result was the correlation between the 

phenotypic profiles of strains mutated in cytosolic RPs and strains mutated in energy 

metabolism enzymes (e.g. glycolysis). In fact, the fitness networks revealed several direct 

connections between glycolytic enzymes, cytosolic RPs and ribosomal biogenesis genes. 

In this chapter, I describe the application of the same network inference approach utilised 

in Chapter 2, to a compendium of 269 S. cerevisiae transcription factor (TF) knockouts, 

analysed using an Affymetrix expression profiling approach [68]. The overarching aim of 

this analysis is to test whether I could identify functional modules from a genome-wide 

transcriptional network and more specifically if any of the modules provide further 

evidence of the functional associations discovered in Chapter 2. 

Indeed, I was able to identify similar functional modules and validate some of the 

original hypothesis, including the strong association between RPs with energy 

metabolism. The network analysis also revealed a strong correlation between the 

expression of retrotransposons and RPs.   
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3.2 Methods 

3.2.1 The biological system 

The availability of vast volumes of high throughput microarray data has made inferring 

and understanding S. cerevisiae transcriptional networks a prime focus. The overall aim 

of this study is to identify and characterise the structure of an underlying regulatory 

network representing transcriptionally linked genes in S. cerevisiae. The expectation is 

that development of this network may allow for the identification of overlaps between 

transcriptional and phenotypic coupling (Chapter 2). To accomplish this I selected the 

one of the most extensive transcription factor (TF) perturbation datasets available for S. 

cerevisiae [68][71]. Using such a comprehensive TF knockout dataset makes it a prime 

candidate for reverse engineering a genome wide expression network.  

The original expression dataset was published by Hu et al in 2007 [68] however it was 

reprocessed and reanalysed in 2010 by Reimand et al due to the lack of background 

correction and print tip correction during normalisation [71]. The reprocessed data was 

reported to outperform the original in every respect leading to the identification of almost 

ten times more differentially expressed genes previously reported by Hu et al [71].  For 

this reason, the reprocessed data was used in this study. The dataset was downloaded 

from ArrayExpress (accession: E-MTAB-109) and it contained 269 TF knockout mutant 

strains and 6253 genes. The details of the experimental protocol can be viewed in the 

original Hu et al publication [68]. The methodology used to improve the compendium is 

reported in Reimand et al’s publication (Methods: ‘Microarray data pre-processing and 

analysis’) [71]. The analysis strategy utilised in this study is very similar to the analysis 

pipeline required for the construction and analysis of S. cerevisiae fitness network 

reported in Chapter 2. Details are given below. 
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3.2.2 Network inference 

The expression data had been normalised used the VSN package [139], normalisation 

included background and print-tip correction [71], therefore the data only required 

formatting for ARACNE. As with the phenotypic analysis, the first stage in extracting 

useful data from the network was first to choose a suitable threshold. Statistically 

significant edges were selected using a p-value threshold of 10
-23 

corresponding to an MI 

> 0.25 (Table 3.1). This value was chosen arbitrarily, however it does represent an 

extremely high stringency cut-off and retained approximately half of the total number of 

genes, consistent with the prior phenotypic analysis. No edges were eliminated using the 

data processing inequality (DPI). Using the above MI threshold, 3312 nodes and 127528 

edges were retained within the network. The network was visualised using a force 

directed layout. 

 

3.2.3 Network Analysis: Visualisation and modularisation 

The network was visualised in Cytoscape [140] using a force directed layout. Network 

modularisation was done on the basis of connectivity using the GLay community 

clustering method [33]. Further levels of modularisation were done if the sub-networks 

were deemed to contain too many nodes (typically >300) or could possibly yield 

additional information. Functional analysis of each cluster was done using DAVID [21] 

[22]. Similarly to Chapter 2, functional annotations were colour coded depending on their 

corrected FDR (as detailed in section 2.3.3). 
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3.2.4 Identification of ribosomal proteins’ first neighbours 

RPs were classified by their localisation within the cell. The list of ribosomal factors for 

each group was the same as those used in Chapter 2. The analysis pipeline utilised for the 

mapping and identification of first neighbours for ribosomal proteins is also identical to 

that detailed in Chapter 2. Briefly summarised, first neighbours for each ribosomal group 

were identified, visualisation and modularisation was done as described in section 3.2.3 

to ensure consistency. 

 

 

P-value  Corresponding MI  

0.05  0.0185077  

0.01  0.0258485  

0.001  0.0363507  

1.00E-05  0.0573553  

1.00E-10  0.109867  

1.00E-15  0.162378  

1.00E-20  0.21489  

1.00E-25  0.267401  

1.00E-30  0.319913  

1.00E-40  0.424935  

1.00E-50  0.529958  

Table 3. 1 ARACNE p-values and corresponding MIs for the S. cerevisiae expression 

dataset 
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3.3 Results 

3.3.1 The modular structure of the expression network reflects functional 

compartmentalisation 

The underlying hypothesis was that the modular structure of an S cerevisae 

transcriptional network might, at least in part, resemble the functional modules identified 

within the fitness network (Chapter 2). I therefore applied the same network analysis 

pipeline to the gene expression dataset. In this analysis, I performed two levels of 

modularisation using the community detection algorithm GLay. This allowed the 

structure of each module to be analysed at a more refined level. 

A single level of modularisation identified eight network modules (Table 3.2). Module 1, 

(Figure 3.1, red nodes) was the largest, containing 1608 nodes and 33336 edges. Among 

the most enriched functions there are glycolysis and ribosomal biogenesis genes (Figure 

3.2). Module 2 (Figure 3.1, yellow nodes) maps in the centre of the parent network and is 

tightly linked to module 1. Functional analysis shows the significant enrichment of 

cytosolic and mitochondrial ribosomal proteins (Figure 3.3). Module 3 (Figure 3.1, blue 

nodes) is significantly enriched in stress response genes (Figure 3.4). Module 4 (Figure 

3.1, purple nodes) is significantly enriched in transposable elements (Figure 3.5). Module 

5 (Figure 3.1, light blue nodes) is significantly enriched in mating pheromone activity 

(Figure 3.7). Smaller modules 6, 7 and 8 could not be modularised with a further level of 

GLay clustering, they did however reveal association between transcription and cell 

cycle (module 6, Figure 3.8), the co-ordination of a small group of transmembrane 

proteins (module 7, Figure 3.9) and metal ion binding and the endomembrane system 

(module 8, figure 3.10).  

Interestingly, most modules (71%) could be significantly characterised by a specific 

functional profile (FDR < 0.1%). The raw output of the module by module functional 
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enrichment analysis performed with DAVID is available in folder ‘Chapter 2’ of the 

supplementary CD.   

 

 

Figure 3. 1 Modules localise within distinct areas of the S. cerevisiae expression parent 

network.  
An undirected network showing the interactions between genes from the S. cerevisiae 

transcription factor knockout data at 0.25MI (p-value: 10
-23

) threshold. Force directed layout, 

with GLay modules mapped onto the parent network. Node colour represents GLay module. 

Edge length is representative of MI value. The accompanying table (Table 3.2) shows the 

breakdown of each module including the colour, number of nodes, and number of edges. 

  

GLay Module 2

GLay Module 1

GLay Module 3

GLay Module 4

GLay Module 5

GLay Module 6

GLay Module 7

GLay Module 8
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Module Colour  Number 

of nodes  

Number 

of Edges  

No. of 

modules 

Visualised 

in 

All   3312  127528  8 Figure 3.1 

1  Red 1608 33336 5 Figure 3.2 

2  Yellow 728 70036 3 Figure 3.3 

3  Blue 208  2539 4 Figure 3.4 

4  Purple 176  4083 5 Figure 3.5 

5  Light Blue 31  31 1 Figure 3.7 

6  Orange 20  23 1 Figure 3.8 

7  Dark Green 14  43 1 Figure 3.9 

8  Light Green 13  12 1 Figure 3.10 

Table 3. 2 The breakdown of S. cerevisiae expression modules defined by GLay. 

 

 

3.3.1.1 Module 1:  The transcriptional coupling of ribosome biogenesis, glycolysis 

and cell cycle processes 

Module 1 is the largest of detected modules, and contains 1608 nodes and 33336 edges 

(Table 3.2). Five smaller interconnected sub-modules, identified after an additional round 

of modularisation, represented the fine structure of this module (Figure 3.2). The 

functional analysis of the components of this module revealed the association between 

the expression of ribosomal biogenesis genes, DNA damage and chromatin remodelling 

(sub-module 1.1), translational regulation and energy metabolism (sub-module 1.2), 

ribosome biogenesis (including eIF complex) and nuclear export (sub-module 1.3), 

helicase activity and telomere maintenance (sub-module 1.4) and mitochondrial nucleoid 

(sub-module 1.5).   

Noteworthy is sub-module 1.2 which indicates that 19 glycolysis related genes are 

significantly correlated to translation regulation and the ribosomal genes from sub-

module 1.1, these include enolase enzymes (ENO1, ENO2, ERR1, ERR2, ERR3), FBA1, 

PGK1 and triose phosphate dehydrogenase enzymes (TDH1, TDH2, TDH3).  

Furthermore TDH1 was identified as significantly correlated to RPs in the S. cerevisiae 
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fitness analysis. These results are consistent with reports that riboneogenesis is heavily 

dependent on glycolysis flux [12]. The grouping of ribosome biogenesis genes within 

module 1 is consistent with reports that ribosome synthesis is highly co-ordinated and 

tightly regulated [97] [141]. 

 

 

 

Module  Nodes Edges Functional analysis 
1.1  754 13863 ribosome biogenesis (102), rRNA maturation (39), helicase (16), 

ribosome export (15), response to DNA damage (37), chromatin  

remodelling (27), cytoskeleton (43), telomere silencing (15),   

aldehyde dehydrogenase (5), hexose metabolism (9) 

1.2  658 15836 Translation regulation (72), glycolysis (19), lipid synthesis (48), 

hydrolase (19), oxidative phosphorylation (12), aa biosynthesis 

(19), mitochondrion membrane (32), endoplasmic reticulum 

(114), cell wall biogenesis (29), membrane (301) 

1.3  84 232 Ribosome biogenesis (21), multi eIF complex (3), nuclear export 

(8) 

1.4  38 278 helicase activity (16), telomere maintenance via recombination 

(5)  

1.5  16 19 mitochondrial nucleoid (3) 

Figure 3. 2 Sub-modular structure of module 1, with accompanying functional analysis 
Text colour represents significance of the functional enrichment (red: FDR < 0.05; green: FDR < 

0.1; black: FDR >0.1). 

  

1.1 1.2 1.3 1.4

1.5
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3.3.1.2 Module 2:  The transcriptional coupling of mitochondrial and cytosolic RPs 

protein transport and oxidative phosphorylation  

Module 2 (Figure 3.3) maps directly into the centre of the parent network (Figure 3.1) 

and is strongly linked to module 1. Three smaller interconnected sub-modules were 

identified within this module (Figure 3.3). Similarly to module 1, functional analysis of 

each sub-module revealed interesting associations between the expression of RPs, and 

energy metabolism genes.  

Mitochondrial RPs are associated to respiratory chain complex IV assembly, an important 

component of the oxidative phosphorylation pathway [142], golgi vescicle formation, a 

fundamental pathway involved in protein synthesis and post-translational processing 

[143] and ubiquitination, known to regulate the import of precursor proteins into the 

mitochondria [115] [144] (sub-module 2.1). An additional eleven genes representing 

other components of the oxidative phosphorylation pathway (cytochrome c oxidase and 

reductase subunits) are linked with cytosolic ribosomal proteins and sugar catabolism 

(sub-module 2.2). The smallest of the sub-modules (sub-module 2.3) is enriched of 

protein biosynthesis and transport. Alternative methods for the global analysis of 

expression data in S. cerevisiae also revealed a separation of cytosolic RPs and 

mitochondrial RPs, suggesting RPs are co-expressed based on cellular location as well as 

functionality [109]. 

Noteworthy is the separation of ribosomal biogenesis genes and RP genes (figure 3.2 and 

3.3 respectively), representing two different modules of oxidative energy metabolism. 

Module 1 represents RPs linked to glycolysis, whilst module 2 represents RPs linked to 

oxidative phosphorylation. The switch between glycolytic and oxidative metabolism is 

essential for cell differentiation [94]. 
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Module  Nodes Edges Functional analysis 
2.1  352 21877 mitochondrial ribosome (29), respiratory chain complex IV 

assembly (9), iron transport (13), Proteasome (14), copper,  ER 

(7), golgi vesicle transport (19), ubiquitination (14), lipoprotein, 

ribonucleoprotein core (7), mitochondrial intermembrane (9),  

2.2  349 20300 cytosolic ribosome (100), translation regulation (36), rRNA 

binding (20), mitochondrial membrane (28), Ribosomal protein 

L7Ae/ L30e (6), respiratory chain (11),  ribosome assembly (18), 

hexose catabolism (3) 

2.3 22 81 protein biosynthesis (6), mitochondrion (3), transport (5) 

Figure 3. 3 Sub-modular structure of module 2, with accompanying functional analysis. 

Text colour represents significance of the functional enrichment (red: FDR < 0.05; green: FDR < 

0.1; black: FDR >0.1). 

 

 

3.3.1.3 Module 3:  Stress responses are transcriptional coupled to protein 

catabolism 

Module 3 (Figure 3.4) is defined by four smaller interconnected sub-modules. Functional 

analysis of the sub-modules identified stress response genes (Figure 3.4). The association 

between temperature response and vacuolar protein catabolism demonstrated by sub-

modules 3.1 and 3.3, temperature response and ubiquitin processing, (sub-module 3.2) 

and finally endocytosis and vesicle transport (sub-module 3.4). Noteworthy is the 

significant enrichment of DUP proteins, uncharacterised integral membrane proteins that 

contain internal duplication due to duplicated genes [145]. The function of these proteins 

are currently unknown, however my results suggest that they may have a role in heat 

2.1 2.2 2.3
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shock response. The co-regulation of stress response genes was not observed to the same 

extent in my fitness analysis. 

 

 

Module  Nodes Edges Functional analysis 
3.1  78 744 response to temperature (13), vacuolar protein catabolism (11), 

ion channel activity (3); antiport (3), carbohydrate metabolism 

(3), cell membrane (9), protein kinase (7), polyamine transport (3) 

3.2  70 604 ubl conjugation (11), response to temperature (16),  membrane 

DUP (5), vacuolar protein catabolism (7), heat shock (3), 

ribosome (6) 

3.3  43 130 response to temperature (14), vacuolar protein catabolism (8), 

membrane DUP (5), glycerol metabolic process (3), 

oxidoreductase (6) 

3.4  12 12 Endocytosis (2), vesicle transport (4) 

Figure 3. 4 Sub-modular structure of module 3, with accompanying functional analysis. 
Text colour represents significance of the functional enrichment (red: FDR < 0.05; green: FDR < 

0.1; black: FDR >0.1). 

 

 

3.3.1.4 Module 4:  Transposable elements and translation are transcriptionally co-

regulated  

Module 4 contains 176 nodes and 4083 edges (Table 3.2). Five smaller interconnected 

sub-modules represented the finer structure of this module (Figure 3.5). Functional 

3.1

3.3 3.4

3.2
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analysis of these sub-modules revealed the association between the expression of 

transposable elements (TEs) and ribosome frameshifting (sub-module 4.1), RNA 

mediated transposition and transmembrane (sub-module 4.2), transcription and cell cycle 

(sub-module 4.3), transcription (sub-module 4.4) and flocculation proteins (sub-module 

4.5). 

 

 

Module Nodes Edges Functional analysis 
4.1  86 1488 transposable element  / ribosomal frameshifting (28) , oxidoreductase 

(4), RNAPII (5), mRNA metabolic process, cell cycle (7), translation (3) 

4.2  49 873 Transposition - RNA-mediated (19), transmembrane (12) 

4.3  22 84 DNA binding (4), cell cycle (4), mitochondrion (3), transcription (4). 

4.4  7 8 regulation of transcription - DNA-dependent (4) 

4.5  5 4 Flocculation protein (2) 

Figure 3. 5 Sub-modular structure of module 4, with accompanying functional analysis. 

Text colour represents significance of the functional enrichment (red: FDR < 0.05; green: FDR < 

0.1; black: FDR >0.1). 

 

Notably, sub-modules 4.1 and 4.2 are connected by over 1600 edges (Figure 3.5), 

suggesting that despite being functionally similar, the separation of the transposable 

elements into two separate modules may mean different classes or mechanisms of 

transposition. TEs are known to influence gene expression at the transcriptional level 

4.1 4.2 4.3

4.4 4.5
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[146] [147], however the significant enrichment of ‘ribosomal frameshifting’ suggests 

that these genes shift the frame during translation, leading to the synthesis of a new 

protein product which may contain multiple open reading frames [148]. Further 

investigation determined that each module is enriched in different type of TE (Figure 

3.6). Module 4.1 contains predominantly GAG type Tes, with of 19 / 28 being belonging 

to the Ty1 family, and the remaining 10 belonging to Ty2. Module 4.2 is enriched in 

GAG-POL type Tes from different families (Ty1: 17 / 19, Ty2: 1 / 19, Ty4: 1/19). Ty1 

and Ty2 Tes are closely related [149] explaining why they are the most enriched TE type 

in the modules. Interestingly there is only one Ty3, and no Ty4 or Ty5 Tes, possibly 

reflecting the abundance of Ty1 and Ty2 within the S. cerevisiae genome [149]. GAG 

genes have a 7-bp frameshift signal located in close proximity to their stop codon, 

therefore upon translation, a frameshift occurs resulting in the synthesis of a GAG-POL 

fusion protein [150], hence why GAG genes are associated to ribosomal frameshifting 

(Figure 3.5). 

 

 
Figure 3. 6 The overrepresentation of GAG and Gag-POL type transposons in modules 4.1 

and 4.2. 
Nodes are coloured as shown in the figure legend. Module 4.1 has an overrepresentation of GAG 

type TEs, whilst module 4.2 has an overrepresentation of GAG-POL type TEs. This suggests that 

TE type can be distinguished by their expression  

4.1 4.2

Gag type TEs

Nodes belonging to sub-network 4

Gag-Pol type TEs



 

111 
 

 

Module  Nodes Edges Functional analysis 
5.1  31 31 mating pheromone activity (3),  transcription regulation (6) 

Figure 3. 7 Structure of module 5, with accompanying functional analysis. 

Text colour represents significance (red: FDR < 0.05; green: FDR <0.1; black: FDR >0.1) 

 

 

Module  Nodes Edges Functional analysis 
6.1  20 23 Transcription (5), cell cycle (4), mitochondrion (3), membrane (3) 

Figure 3. 8 Figure 3.8 Structure of module 6, with accompanying functional analysis. 

Text colour represents significance (red: FDR < 0.05; green: FDR <0.1; black: FDR >0.1) 

 

 

Module  Nodes Edges Functional analysis 
7.1  14 43 Transmembrane  (7) 

Figure 3. 9 Structure of module 7, with accompanying functional analysis. 
Text colour represents significance (red: FDR < 0.05; green: FDR <0.1; black: FDR >0.1)  

5.1

6.1

7.1
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Module  Nodes Edges Functional analysis 
8.1  13 12 Metal ion binding (4), endomembrane system (4), non-membrane-

bounded organelle (3) 

Figure 3. 10 Structure of module 8, with accompanying functional analysis. 
Text colour represents significance (red: FDR < 0.05; green: FDR <0.1; black: FDR >0.1) 

 

 

 

 

3.3.2 The link between cytosolic RPs, cell cycle and energy metabolism pathways 

is conserved at the gene expression level 

Having demonstrated that cytosolic RPs  are correlated to energy metabolism pathways 

at the phenotypic level, I applied the same analysis to the S. cerevisiae transcriptional 

network to determine if there was semblance to the functional modules identified within 

the fitness network (Chapter 2). The results suggest there is a degree of similarity 

between the S. cerevisiae fitness and expression networks. Once again, to aid in 

analysing the structure of each module, two levels of modularisation were performed.  

The first neighbour network of cytosolic RPs contained 1621 nodes and 112308 edges 

(Table 3.3). The first level of modularisation revealed three network modules (Figure 

3.11).  

 

 

 



 

113 
 

Module  Nodes  Edges  

Overall 1621 112308 

1.1  411 8848 

1.2  290 13356 

1.3  8 17 

1.4  7 9 

2.1  272 13531 

2.2  227 15292 

2.3  28 187 

3.1  165 3786 

3.2  141 2176 

3.3  58 1427 

Table 3. 3 Breakdown of cytosolic RP first neighbour modules identified by GLay. 

 

Module 1 (represented in red) forms four smaller interconnected sub-modules. The 

functional analysis revealed association between the expression of ribosomal biogenesis, 

translation regulation and energy metabolism pathways (sub-module 1.1), ribosome 

biogenesis, tRNA processing and DNA repair (sub-module 1.2), nucleoplasm (sub-

module 1.3) and rRNA process and metal ion binding (sub-module 1.4). Module 2 

(represented in blue) forms three smaller interconnected sub-modules. Functional 

analysis revealed association between cytosolic ribosome, small ribosomal subunit and 

translation regulation (sub-module 2.1), mitochondrial ribosome, mitochondrial energy 

production and ubiquitin conjugation (sub-module 2.2), and cytosolic ribosome and 

response to pheromone (sub-module 2.3).  Finally, module 3 (represented in green) 

consists of three smaller sub-modules. Functional analysis revealed association between 

the expression of translation regulation, membrane and glucose metabolism genes (sub-

module 3.1), endoplasmic reticulum and glycolysis / gluconeogenesis (sub-module 3.2) 

and transposable elements and rRNA processing (sub-module 3.3). 
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Noteworthy, are the direct interactions between ribosomal proteins and cytoplasmic 

energy metabolism pathways, including riboneogenesis gene, ribulose-5-phosphate 

isomerase (RKI1) which is directly connected to 54 nodes within sub-module 1.1, 25 of 

which are related to ribosome biogenesis (FDR 9.8x10
-23

).  Enolase enzymes (ERR1, 

ERR2) and pyruvate kinase (PYK1) located in sub-module 1.2 all have direct interactions 

with cytosolic RPs. Interestingly GPM1 and TPI1 located in sub-module 2.1 and 

involved in glycolysis have direct connections to only large ribosomal proteins.  TKL1 

and TAL1, located in module 3.1 and 3.2 respectively are enzymes essential for 

riboneogenesis. TKL1 especially, as it is the primary source of transketolase activity in S. 

cerevisiae [92]. Deletion of TAL1 has been reported to affect flux through SHB17 [92]. 

TAL1 expression is anticorrelated with TKL1 expression throughout the yeast metacycle 

[92], their localisation within separate modules may represent their anticorrelation. A 

subset of TEs are direct neighbours of cytosolic RPs (sub-module 3.3), consistent with 

the role of GAG genes causing ribosome frameshifts [150]. Smith et al reported that 

transcriptional silencing in S. cerevisiae ribosomal DNA (rDNA) can be caused by Ty1 

retrotransposons integrating into rDNA, targeting upstream of the RNAPIII transcribed 

5s-rRNA genes [151].  

Finally, cytosolic RPs and mitochondrial RPs are located within the same module, 

however, are separated into different sub-modules (2.1 and 2.2 respectively). 

Mitochondrial RPs, though functionally similar to cytosolic RPs have different features 

and primary structures. The assembly of functionally active mitochondrial ribosomes 

depends on the co-expression of both mitochondrially localised and nuclear localised 

genes [152], thus explaining the linkage between cytosolic and mitochondrial RPs. 

 



 

 

1
1

5 

 

 

Figure 3. 11 An undirected network showing the first neighbours of cytosolic RPs. 
The network has been visualised using a force directed layout, with modules identified by GLay mapped onto the parent network (see legend). Edge lenth 

represents MI score. Yellow nodes represent cytosolic RPs. Accompanying annotation indicates functional enrichment defined by DAVID. Red text 

indicates an adjusted FDR of < 0.05, and green indicates a FDR of <0.1. Black represents non-significant enrichment. 

3.1) translation regulation (28), transmembrane protein (60), atp-binding (37), glucose metabolism (9), lipid

synthesis (8), glycoprotein (30), molecular chaperone, cell wall (10), cation transport (13), amino-acid

transport, (5) endomembrane system (21),

3.2) endoplasmic reticulum (34), cell wall (19), Glycolysis / Gluconeogenesis (12), golgi apparatus (14), lipid

biosynthetic process (14), cell cycle (10)

3.3) transposable element (33), DNA integration (11), rRNA processing (3)

1.1) ribosome biogenesis (118), ribosomal large

subunit biogenesis (31), preribosome (58),

ribosome localization (18), RNA helicase activity

(18), RNA modification (41), wd repeat (22),

nucleotide-binding (85), Aminoacyl-tRNA

biosynthesis (12), translation regulation (31),

snoRNA 3'-end processing (11), biopolymer

methylation (14), transcription (56), nuclear export

(3), Tetratricopeptide region (8), mRNA processing

(21), transcription from RNAPI promoter (8), RNA

polyadenylation (7), chaperone (5), respiratory

chain complex II (3), glucose metabolism (3)

1.2) intracellular organelle lumen (76), ribosome

biogenesis (41), ESCRT III complex (4), tRNA

processing (11), Small GTP-binding protein (11),

Nucleotide excision repair (7), ARF/SAR

superfamily (4), RNA degradation (10), Glycolysis

(3), hexose metabolism (3)

1.3) nucleoplasm part (4)

1.4) rRNA processing (5), metal ion processing (3)

2.1) cytosolic ribosome (109), regulation of

translation (43), cytosolic small ribosomal

subunit (6) (45), rRNA binding (15),

ribosome assembly (20), Ribosomal protein

L7A, rRNA export (14), preribosome (20),

zinc (8), glucose metabolism (3)

2.2) mitochondrial (55), mitochondrial

ribosome (16), mitochondrial respiratory

chain complex assembly (7), cellular protein

complex assembly (16), proteosome

complex (8), er-golgi transport,

metallochaperone activity (4), Ubiquitin

conjugation (11)

2.3) cytosolic ribosome (5), response to

pheromone (3), metal-binding (3), transport

(7)

Cytosolic RP Module 2

Cytosolic RP Module 1

Cytosolic RP Module 3

Cytosolic Ribosomal Protein
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3.3.3 Mitochondrial RPs are transcriptionally coupled to genes encoding cytosolic 

RPs, respiratory chain and ubiquitin complexes. 

The mitochondrial RP first neighbour network contains 846 nodes and 83958 edges 

(Table 3.4). The first level of modularisation revealed three network modules (Figure 

3.12). 

Module 1 (represented in red) forms three sub-modules, functional analysis identified an 

association between mitochondrial ribosome, ubiquitin and endocytosis (sub-module 

1.1), nuclear lumen and preribosome (sub-module 1.2) and ubiquitin machinery, 

transmembrane, translation regulation and glucose catabolism (sub-module 1.3). Module 

2 (represented in blue) forms three smaller interconnected sub-modules. Functional 

analysis revealed association between the expression of cytosolic ribosomes, translation 

regulation and ribosomal assembly (sub-module 2.1), mitochondrial ribosomal proteins, 

protein transport and electron transport chain (sub-module 2.2), and mitochondrial 

ribosome and mitochondrial inner membrane (sub-module 2.3). Module 3 could not 

undergo a further level of modularisation, functional analysis identified association 

between membrane, transition metal ion binding and mitochondrion.  

Noteworthy are sub-modules 2.1 and 2.2 which demonstrate the co-expression of 

mitochondrial RPs and genes involved in the electron transport chain. Passage through 

the electron transport chain provides the energy for both cytosolic and mitochondrial 

translation. Furthermore most mitochondrial translation products form part of the 

membrane embedded centres present within the respiratory chain complexes [153]. 
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Module  Nodes  Edges  

Overall 846 83958 

1.1  230 10899 

1.2  135 3031 

1.3  74 1199 

2.1  195 14371 

2.2  164 5847 

2.3  16 77 

3.1  7 6 

Table 3. 4 Breakdown of mitochondrial RP first neighbour sub-modules identified by 

GLay. 
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Figure 3. 12 An undirected network showing the first neighbours of mitochondrial RPs. 

The network has been visualised using a force directed layout, with modules identified by GLay mapped onto the parent network (see legend). Yellow 

nodes represent mitochondrial RPs. Edge length represents MI score. Accompanying annotation indicates functional enrichment defined by DAVID. Red 

text indicates an adjusted FDR of < 0.05, and green indicates an FDR of < 0.1. Black represents non-significant enrichment 

1.1) mitochondrial ribosome (23), vesicle

organization / endocytosis (12), ubiquitin (20),

Proteasome (7), small nucleolar

ribonucleoprotein complex (8), trna processing

(9), transcription from RNAPII promoter (15)

1.2) nuclear lumen (34), preribosome (13),

ribonucleoprotein (13), endosome (8),

RNApolymerase (4), transcription, (14)

cellular response to heat (8), mitochondrion

(22), zinc (9), ribosome assembly (4)

1.3) ubl conjugation (9), regulation of

translation, transmembrane (12), atp-binding

(18), compositionally biased region:Poly-Ala

(6), ATP, endoplasmic reticulum, (7) glucose

catabolic process / allosteric enzyme (3),

cytosolic ribosome (4)

2.1) cytosolic ribosome (67), cytosolic small

ribosomal subunit (29), regulation of translation

(21), ribosome assembly (12), rrna-binding (6),

Ubiquitin (4), rRNA transport (8), ribosomal

subunit assembly (8), nucleosome core (5), zinc-

finger (8), mitochondrial respiratory chain

complex assembly (4)

2.2) ribosomal protein (36), mitochondrion (48),

Ribosomal protein 60S (4), oxidative

phosphorylation (11), intracellular transport (34),

protein targeting to mitochondrion (8), disulfide

bond (8), cytosolic small ribosomal subunit

(10), electron transport chain (9), ER (22) , Golgi

vesicle-mediated transport (9), mitochondrial

intermembrane space (7)

2.3) mitochondrial ribosome (8), mitochondrion

inner membrane (3)

3.1) membrane (5),   transition metal ion 

binding (3),   mitochondrion (3)

Mitochondrial RP GLay Sub-network 2

Mitochondrial RP GLay Sub-network 1

Mitochondrial RP GLay Sub-network 3

Mitochondrial Ribosomal Protein



 

119 
 

3.4 Discussion 

In this chapter, an MI based reverse engineering method has been applied to a 

comprehensive genome-wide S. cerevisiae TF knockout dataset. Similarly to Chapter 2, 

the analytical pipeline used in this study allowed for the utilisation and mapping of the 

entire dataset rather than a specific subset of genes. The aim was to create a network which 

encapsulated the response of all the genes within the dataset. This type of network 

inference approach has not previously been attempted on this dataset. Using network 

modularisation algorithms it was possible to identify genes that had similar responses 

across all TF knockouts. Below, I discuss how these network interrogation methodologies 

were able to identify and elucidate some of the more interesting and statistically significant 

correlations between groups of genes. I discuss particularly the linkage between RPs and 

energy metabolism genes and how these results obtained by bioinformatical methods 

correlate strongly to those reported by Clasquin et al, whose results are based on wet lab 

experiments only [92]. 

 

3.4.1 The highly coordinated expression of genes encoding ribosome factors, 

glycolysis, and cell cycle 

The linkage between RPs, glycolysis and cell cycle was also observed in the S. cerevisiae 

fitness networks (Chapter 2). The metacycle has been reported to link these cellular 

processes together in space and time, where essential cellular processes and metabolic 

events occur in synchrony [94]. Figure 3.13 represents a modified schematic of the 

oscillating nature of genes involved in the metacycle as reported by Tu et al [94]. Each 

cycle contains a reductive non-respiratory phase, split into building (Figure 3.13, green) 

and charging (Figure 3.13, blue), and an oxidative respiratory phase (Figure 3.13, red). 

Studies in S. cerevisiae identified that cytoplasmic RPs and genes involved in translation 
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have a very similar expression pattern across each metacycle phase, as does 73 / 74 

mitochondrial RPs and mitochondrial related genes [94].  Tu et al reported that during the 

metacycle, the expression of energy metabolism genes was at its peak when expression of 

cytosolic RPs, ribosome biogenesis, translation initiation, and amino acid biosynthesis 

were at their lowest (Figure 3.13) [94], in agreement with the dynamics of riboneogenesis 

[92]. Translation is one of the most energy costly processes [154]; therefore the translation 

machinery would be assembled when there are excess amounts of ATP available. Hence 

why there is a transient peak in RP expression shortly after (within hours) of the peak of 

energy metabolism expression which quickly dissipates before the onset of the non-

respiratory phase, presumably due to the lack of oxidisable metabolites [94] and glycolytic 

intermediates [92], This suggests flux through the riboneogenesis pathway immediately 

dissipates upon the depletion of the previously stored glycolytic intermediates. Genes 

involved in glycolysis and other carbohydrate metabolism genes peak during the charging 

phase increasing the concentration of acetyl-CoA and the glycolytic intermediates 

fructose-6-phosphate, glyceraldehydes-3-phosphate and dihydroxyacetone-phosphate. 

 

Figure 3. 13 The oscillation of functional groups in the yeast metacycle. 
A cartoon based on the data presented in Tu et al [94]. Coloured lines represent stages of the 

metacycle, dashed vertical lines represent a complete cycle. Each phase has a distinct stage within 

the metacycle which is characterised by the up-regulation of a specific group of genes, represented 

by the legend to the right of the figure. 

  

Oxidative: Cytosolic RPs, RNA 

processing, ribosome biogenesis, 

translation initiation, amino acid 

synthesis, sulphur uptake

R-Building: Mitochondrial RPs, 

mitochondrial import DNA 

replication,  onset of cell division

R-Charging: Heatshock, 

glycolysis,  TCA cycle and other 

genes involved in the breakdown 

of carbohydrates, ubiquitin
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DNA replication and cell division genes are up-regulated in the reduction building phase 

together with mitochondrial RPs. The expression of cell cycle and DNA replication genes 

during the reductive non respiratory phase of the metacycle may allow cells to negate 

oxidative damage to the DNA which would occur during the oxidative phase, a feature 

observed in other species [104]. Many essential cellular functions including respiration, 

ribosome biogenesis, DNA replication, cell division and glycolysis are all 

compartmentalised in accordance to the metacycle. This type of cellular organisation 

would minimise wasted reactions and make efficient use of available metabolites, 

especially as ribosome biogenesis uses a lot of energy.  

The network analysis also highlights a close correlation between cytosolic RPs and 

mitochondrial RPs. In figure 3.13 the expression mitochondrial RPs and mitochondrial 

biogenesis peaks shortly after the peak in cytosolic RP expression. This observation may 

be explained as many mitochondrial precursor proteins are synthesised by cytosolic 

ribosomes prior to being imported into the mitochondria via specialised translocation 

machinery. Once imported they are utilised in various critical mitochondrial functions such 

as mitochondrial biogenesis and energy production [117]. Therefore, if there is a peak in 

expression of cytosolic RPs prior to mitochondrial RPs, it suggests the precursor proteins 

targeted for the mitochondria have reached their destination and are now driving 

mitochondrial processes, including translation localised to the mitochondria.  

Though the metacycle was reported decades ago [105], the regulatory mechanisms which 

control each stage are still being investigated. What is clear is that the duration of each 

metabolic phase is almost identical [104] [94]. However, currently, the duration of a single 

metabolic cycle remains controversial, with reports stating a single cycle is ~40 mins [104] 

or ~300 minutes [94]. So although the results in both the fitness (Chapter 2) and 

expression data support the reported complementary nature of riboneogenesis and 



 

122 
 

metacycle [92], this study is remains limited in two ways. Firstly, the fact that current  

literature has yet to establish the finer details and complexities of the metacycle means that 

interpreting network interactions regarding the metacycle may not be completely 

trustworthy. Secondly, the lack of experimental work to strengthen the results presented in 

this chapter. Reverse engineering and network inference methods are advantageous as they 

provide a means of mapping a biological system without prior knowledge. Numerous 

bioinformatic tools exist to help simplify, understand and interrogate networks in order to 

identify and generate hypotheses. Although it is possible to draw support from literature 

and existing studies to strengthen these hypotheses, the fact remains that causality and 

whether gene correlations are representative of true biological relationships, can only be 

obtained by directly testing the hypothesis in question via experimental validation. 

 

3.4.2 The linkage of mitochondrial RPs to cytosolic RPs and ubiquination 

machinery is conserved at the expression and phenotypic level 

The mitochondrial RP first neighbour network shows a close correlation to cytosolic RPs. 

This is likely because the majority of mitochondrial proteins are synthesised on cytosolic 

ribosomes before being imported into the mitochondrial intermembrane space [117], hence 

their localisation within the same sub-network. This is consistent with the significant 

enrichment of ‘intracellular transport / protein targeting to the mitochondrion’ and other 

transit peptide functions within the same module as cytosolic RPs (Figure 3.12, module 2).  

The co-expression between mitochondrial RPs and ubiquitin-dependent protein catabolic 

processes, ubl conjugation, proteosome functions within modules 1.1 and 1.3 (Figure 3.12) 

is a feature shared with the S. cerevisiae fitness data (module 3.3, Figure 2.23). Ubiquitin 

modification is required during the import of mitochondrial precursor proteins from the 

cytosol to their final destination within the mitochondria (mitochondrial matrix, 
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intermembrane space, inner mitochondrial membrane etc) [115] [144]. A study published 

in March 2013 investigated the cytosolic biogenesis of proteins whose final location was 

the intermembrane space of mitochondria. The study identified that ubiquitin-proteasome 

machinery is responsible for the removal of mis-localised intermembrane space proteins 

[117]. The proteins that reside within the intermembrane space are critical for metabolic 

functions, regulatory processes (including mitochondrial transport) and mitochondrial 

biogenesis [155] [156]. Furthermore the ubiquitin proteasome machinery is utilised in the 

cytosol also, by acting as a negative regulator in the biogenesis of proteins that localise to 

the intermembrane space, therefore maintaining protein homeostasis in circumstances in 

which mitochondria may lose their integrity [117]. These results may aid in understanding 

the co-expression and co-fitness between ubiquitination and mitochondria related genes. 

 

3.4.3 Future work 

Prior to this analysis, the most popular expression dataset used in gene expression network 

construction for S. cerevisiae was the dataset published by Hughes et al [67] which has 

been cited almost 2400 times since being published in 2000. This work used a different, 

yet still comprehensive TF knockout gene expression dataset that has not been utilised in 

MI based network analysis. Genome-wide networks of this nature are robust and can be 

utilised in a number of diverse ways. This chapter primarily focused on the linkage 

between ribosome biogenesis and energy metabolism. The network interrogation 

techniques applied in this chapter could easily be shifted to another biological process or 

pathway of interest. Furthermore, the network constructed in this chapter may act as a 

foundation for mapping the impact of specific TF knockouts on genome expression. One 

possible approach would be to construct networks using only TF knockouts of interest, 
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with the networks representing the underlying biological relationships of genes in response 

to specific TF knockouts. 

 

3.5 Concluding remarks 

The work presented in this chapter reported an MI based network constructed solely on TF 

knockout data from S. cerevisiae. One of the key aims of this chapter was to identify and 

characterise functional modules using this TF knockout dataset. The modules identified in 

this network are consistent with current biological knowledge and the organisation of the 

yeast system, such as the modularisation of ribosomal genes due to their highly regulated 

nature. Interpreting whether the network accurately represents biological processes of 

higher complexity such as the metacycle is harder to evaluate due to lack of experimental 

evidence and supporting literature. 

This chapter also highlights how considering the entire dataset for network inference can 

be used to identify potentially new interesting areas of research, one such example, was the 

ability to distinguish between GAG and GAG-POL TEs based on their localisation within 

the gene expression network. Furthermore, the characterisation of functional modules in 

this gene expression network provided a foundation for analysing the dependencies 

between genes involved in riboneogenesis. Similarly to the fitness network reported in 

Chapter 2, this chapter marks the first contribution of using a gene expression network to 

aid in understanding the relationships between genes involved in ribosome biogenesis and 

energy metabolism.   
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CHAPTER 4: NETWORK INFERENCE 

AND ANALYSIS USING AN INTEGRATED 

FITNESS AND EXPRESSION DATASET 
 

4.1 Introduction 

I have shown that reverse engineering biological networks from expression profiling or 

fitness data can provide insights into important biological processes. Utilising a single type 

of dataset, may, however limit the robustness of the analysis. In order to further understand 

a biological system, the integration of multiple types of data is needed, each of which can 

provide additional information thereby increasing the comprehensiveness and sensitivity of 

the network [88] [89] [90] [91]. 

In this chapter, I report the integration of fitness and expression datasets previously 

analysed in Chapters 2 and 3. The overarching aim is to develop a high level network 

representing the correlation between gene expression profiles within the modular structure 

defined within the fitness network developed in Chapter 2. 

One of the outcomes of this chapter was the discovery that biological functions represented 

as modules within the fitness network are also transcriptionally coupled. This suggested 

that the common behaviour of genes shared across the fitness and expression datasets 

reflected a specific function shared by the proteins that encode these genes. Several 

interesting hypothesis were identified during this analysis including, the anti-correlated 

transcription profiles between genes encoding ribosome biogenesis / cell cycle proteins 

and stress response, suggesting that ribosome biogenesis and cell cycle processes are 

repressed during stress response. I also identified that genes encoding ribosomal proteins 

(RPs) and chromosome segregation modularise together, suggesting that they exhibit co-
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fitness and co-expression. Finally, I show that applying an extremely high threshold to the 

integrated network, identifies modules representing the co-expression of genes within 

specific phases of the metacycle, and I demonstrate that genes encoding glycolytic 

enzymes are strongly correlated at the phenotypic and transcriptional level to genes 

involved in rRNA processing and the onset of ribosome biogenesis. 
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4.2 Methods 

Technology development in the last decade has enabled most laboratories to acquire 

genome-wide functional genomics datasets. Consequentially, amount of publically 

available genome-wide expression data has increased exponentially. The numbers of 

growth fitness and proteomic datasets have also increased, although not to the same extent 

as gene expression datasets [157] [158] [48] [159]. The aim is to integrate expression and 

fitness  data into a single dataset, and then reverse engineer a network representative of the 

correlation between gene expression profiles, within the modular structure defined by the 

previous fitness network analysis, 

 

4.2.1 The datasets  

In order to construct an integrated network, I used the Hillenmeyer sub-module 

information identified from my S. cerevisiae fitness analysis (Chapter 2, sections 2.3.3.1 – 

2.3.3.8). A total of 21 sub-modules were identified within the Hillenmeyer fitness network 

(Chapter 2, table 2.6). However due to the incredibly small size of the sub-modules 

identified in module 4 (Chapter 2, table 2.8), it was therefore classified as a single large 

sub-module. Therefore the modular structure of 17 sub-modules was used in this analysis, 

which still represented all the sub-modules identified within the fitness data. 

The gene expression data used for this study was the pre-processed and normalised TF 

knockout data published by Reimand et al [71] which was used to construct the S. 

cerevisiae expression network. Details of the expression dataset are given in Chapter 3, 

section 3.2.1. 
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4.2.2 Analysis strategy 

The pipeline required to integrate the fitness and expression datasets, and analyse the 

network is shown below. 

1. For each fitness sub-module, the gene IDs were identified (Figure 4.1A), and used to 

extract the corresponding gene expression measurements from the TF knockout 

dataset (Figure 4.1B)  

2. The clustering tool HOPACH [15] was used to group expression data across all 269 

TF knockout samples (Figure 4.1C). This was done in order to identify groups of 

genes within each sub-module that exhibited transcriptionally coupled behaviour. 

Each HOPACH cluster represented a phenotypic outcome based on the genes 

expressed within it. A total of 90 HOPACH clusters were identified within the 17 

fitness sub-modules. 

3. Each of the 90 HOPACH clusters were functionally annotated using DAVID [21] to 

identify if phenotypically and transcriptionally linked genes were representative of 

cellular processes. 

4. The average profile of each HOPACH cluster was calculated. Therefore, each cluster 

was represented as in a single vector of gene expression measurements.  

5. The averages of each HOPACH cluster were merged to create an integrated dataset 

containing 90 rows (representing each HOPACH cluster) and 269 columns 

(representing each TF knockout from the expression data) 

6. The reverse engineering method ARACNE [30] was used to calculate the mutual 

information between every HOPACH cluster. 

7. The network was thresholded and visualised within Cytoscape [140] using a force 

directed layout (Figure 4.1D). 

8. The network was modularised using GLay [33] 



 

129 
 

9. Hierarchical clustering (HCL) was performed on each module, to determine if nodes 

within that module exhibited transcriptional coupling. 

The interaction between fitness sub-modules and co-transcription is based on visual 

analysis. Each node within the network represents a group of genes which exhibit similar 

growth fitness when mutated, and which are also transcriptionally correlated. A group of 

nodes within a module represents cellular functions that are transcriptionally co-regulated 

upon transcription factor knockout, and that when mutated, exhibit the similar phenotype 

(Figure 4.1F). Applying HCL to each module shows visually the transcriptional coupling 

of the processes within that module, i.e. if they are correlated or anticorrelated, and 

provides the foundation for building hypotheses. 
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Figure 4. 1 Integration of fitness and expression network data workflow. 
A sample workflow detailing how a fitness module would be integrated with the TF expression 

data. Panel A. Gene IDs within each sub-module of the fitness data are identified. Panel B. Gene 

IDs are used to extract the corresponding gene expression values from the TF knockout dataset. 

Panel C. HOPACH is used to identify genes with similar expression across all samples. Each 

HOPACH cluster is represented by the average expression profile. Therefore each HOPACH 

cluster represents a group of genes that exhibit a similar phenotype when mutated, and which are 

also co-regulated. Panel D.The averages of each HOPACH were merged into a single dataset and 

used in ARACNE. Panel E. The network is thresholded, visualised and interrogated to identify 

modules. Each node represents a HOPACH cluster, which is the integration of structure properties 

of the fitness network and the expression measurements of the expression dataset. Panel F. Genes 

that are correlated at both the phenotypic and transcriptional level are identified. 

 

 

4.2.3 HOPACH clustering of integrated data 

Gene IDs from each of the 17 Hillenemeyer fitness sub-modules were used to extract the 

corresponding expression values from the TF knockout expression dataset, this strategy 

therefore integrated the modular structure of the fitness network with the expression 

measurements of the transcription dataset. HOPACH was used to group the expression 
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measurements of each fitness sub-module to identify genes within similar expression 

profiles. A total of 90 HOPACH clusters were identified from the 17 fitness sub-modules 

(Table 4.1). HOPACH was performed in the statistical programming language R [11]. 

Visualisation of the HOPACH clusters demonstrates that genes with a similar phenotype 

can be grouped by co-expression, and that several clusters of co-expressed genes are 

identified from a single fitness sub-module (Figures 4.2 – 4.5). 

 

Fitness 

module  
Gene Count  Found in TF KO 

dataset  
HOPACH  

clusters  
Genes per HOPACH Cluster  

1.1  684  678  9  68 / 79 / 84 / 62 / 95 / 62 / 96 / 69 / 63  

1.2  481  481  8  109 / 31 / 108 / 73 / 64 / 41 / 21 / 34  

1.3  199  198  4  45 / 42 / 31 / 80  

1.4  192  191  3  59 / 71 / 61  

1.5  16  16  2  4 / 12  

1.6  7  7  4  2 / 1 / 1 / 3  

2.1  300  298  8  42 / 28 / 54 / 25 / 53 / 21 / 26 / 49  

2.2  241  240  3  77 / 68 / 95  

3.1  78  77  4  51 / 18 / 3 / 5  

3.2  68  67  2  19 / 48  

3.3  49  49  5  18 / 12 / 5 / 6 / 8  

3.4  28  28  5  4 / 3 / 18 / 2 / 1  

3.5  15  15  9  1 / 4 / 1 /2 / 1 / 2 / 1 / 1 / 2  

4.1  53  53  5  10 / 12 / 12 / 12 / 7  

5.1  28  26  7  8 / 4 / 3 / 2 / 4 / 4 / 1  

6.1  25  25  2  18 / 7  

7.1  11  11  5  3 / 3 / 2 / 1 / 2  

8.1  11  11  5  3 / 2 / 1 / 2 / 3  

Table 4. 1 Summary of the HOPACH clusters identified from the fitness sub-modules. 

Column 1 represents the fitness sub-module from the Hillenmeyer network. Column 2 shows the 

number of genes within that fitness sub-module. Column 3 shows the number of genes from the 

fitness sub-module that were identified within the TF knockout expression dataset. Column 4 

represents the number of clusters HOPACH identified when it clustered the integrated data. 

Column 5 details how many genes were identified in each of the HOPACH clusters. Cell colour is 

a visual aid to identify fitness sub-modules. 
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Figure 4. 2 Heatmaps of expression clusters identified by HOPACH from fitness module 1. 
The HOPACH clusters identified within each fitness sub-module represent a group of genes which 

exhibit similar growth fitness when mutated, and which are also transcriptionally correlated. The x-

axis represents the 269 TF knockouts from the expression dataset. The y-axis represents the genes 

within that cluster, derived from the original fitness sub-module. Red represents increased gene 

expression, green represents decreased gene expression. Each HOPACH cluster is annotated in 

respect to the fitness sub-module it was derived from, and the number of HOPACH clusters within 

that sub-module. For example, HOPACH cluster 1.1.5, represents fitness sub-module 1.1, 

HOPACH cluster 5.  
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Figure 4. 3 Heatmaps of expression clusters identified by HOPACH from fitness module 2. 

Each HOPACH cluster is annotated in respect to the fitness sub-module it was derived from, and 

the number of clusters within that network. The HOPACH clusters identified within each fitness 

sub-module represents a group of genes which exhibit similar growth fitness when mutated, and 

which are also transcriptionally correlated. The x-axis represents the 269 TF knockouts from the 

expression dataset. The y-axis represents the genes within that cluster, derived from the original 

fitness sub-module. Red represents increased gene expression, green represents decreased gene 

expression. Each HOPACH cluster is annotated in respect to the fitness sub-module it was derived 

from, and the number of HOPACH clusters within that sub-module.  

 

 
Figure 4. 4 Heatmaps of expression clusters identified by HOPACH from fitness module 3. 

Each HOPACH cluster is annotated in respect to the fitness sub-module it was derived from, and 

the number of clusters within that network. The HOPACH clusters identified within each fitness 

sub-module represents a group of genes which exhibit similar growth fitness when mutated, and 

which are also transcriptionally correlated. The x-axis represents the 269 TF knockouts from the 

expression dataset. The y-axis represents the genes within that cluster, derived from the original 

fitness sub-module. Red represents increased gene expression, green represents decreased gene 

expression. Each HOPACH cluster is annotated in respect to the fitness sub-module it was derived 

from, and the number of HOPACH clusters within that sub-module.   
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Figure 4. 5 Heatmaps of expression clusters identified by HOPACH from fitness modules 4, 

5, 6, 7 and 8 respectively 
Each HOPACH cluster is annotated in respect to the fitness sub-module it was derived from, and 

the number of clusters within that network. The HOPACH clusters identified within each fitness 

sub-module represents a group of genes which exhibit similar growth fitness when mutated, and 

which are also transcriptionally correlated. The x-axis represents the 269 TF knockouts from the 

expression dataset. The y-axis represents the genes within that cluster, derived from the original 

fitness sub-module. Red represents increased gene expression, green represents decreased gene 

expression. Each HOPACH cluster is annotated in respect to the fitness sub-module it was derived 

from, and the number of HOPACH clusters within that sub-module.  

 

 

4.2.4 Functional analysis of each HOPACH cluster 

The web based tool DAVID [21, 22] was used to test whether there is any functional 

enrichment within each of the 90 HOPACH clusters. Functional annotations were colour 

coded by their corrected FDR score, as detailed in section 2.3.3. To summarise, functional 

annotations with a corrected FDR < 0.05 are represented in red text, those with a corrected 

FDR < 0.1 are represented in green text, and black text represents no significant 

enrichment (FDR > 0.1). 
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4.2.5 Network Inference and modularisation procedure 

The average profile of each HOPACH cluster was calculated as a means of representing 

each HOPACH cluster. The average profiles were merged to create a single dataset 

containing 90 rows (for each HOPACH cluster) and 269 columns (for each TF knockout 

within the expression data). The integrated dataset was then used in ARACNE [30, 32] to 

reverse engineer a network based on the structural properties of the fitness network and the 

gene expression measurements. Statistically significant edges were selected using a highly 

significant threshold of 10
-28

 corresponding to an MI > 0.3 (Table 4.2). No edges were 

eliminated using the data processing inequality (DPI). The thresholded network contained 

57 nodes and 185 edges. The network was visualised in Cytoscape [140], using a force 

directed layout. Consistent with prior analysis, the network was modularised using GLay 

[33]. Due to the low number of nodes, only a single level of modularisation was used. For 

each module, hierarchical clustering (HCL) using Euclidian distance and the average 

linking method, was performed in MultiExperiment Viewer (MeV) [160], with the aim of 

identifying if nodes within each module shared similar co-expression profiles. 

The final network represents the correlation between expression profiles, within the 

confines of the modular structure defined by the fitness network. Each node is 

representative of a group of genes that share similar growth fitness when mutated, which 

are also co-regulated. Edges between nodes suggest co-fitness and co-expression. 

p-value  MI  

0.05  0.018508  

0.01  0.025849  

1.00E-09  0.099365  

1.00E-19  0.204387  

1.00E-29  0.30941  

1.00E-39  0.414433  

1.00E-49  0.519456  

Table 4. 2 ARACNE P-values and corresponding MIs for expression & fitness integrated 

network  



 

136 
 

4.3 Results 

4.3.1 Cellular functions exhibit similar behaviour across diverse datasets 

Functional analysis of each HOPACH cluster identified cellular functions that are 

significantly correlated across the fitness and expression datasets. The most enriched 

functions for each cluster are shown in Table 4.3. Red text indicates an FDR < 0.05, green 

text indicates an FDR <0.1 and black text represents non-significant enrichment. The full 

raw DAVID files are available on the supplementary CD, in the ‘Chapter 4’ folder. 

HOPACH clusters marked with an asterisk in Table 4.3, were eliminated during the 

network thresholding procedure. I could prove that 20% of clusters exhibited significant 

enrichment (FDR < 0.1). Noteworthy are the statistically significant associations between 

genes encoding oxidation reduction and membrane (HOPACH cluster 1.1.4); protein 

transport, membrane and ribosome (HOPACH cluster 1.1.6), cytoplasmic ribosome and 

ribonucleoprotein (HOPACH cluster 1.2.1), mitochondrial ribosome and aerobic 

respiration (HOPACH cluster 1.4.3), RNA modification and nucleolus (HOPACH cluster 

2.1.6), and transmembrane, cell wall and glycoproteins (HOPACH cluster 2.1.8). Also the 

separation of small ribosomal proteins and small ribosomal protein biogenesis (HOPACH 

clusters 3.1.1 and 3.1.2) from large ribosomal protein and large ribosomal protein 

biogenesis (HOPACH clusters 3.2.1 and 3.2.2). Finally RNAPII core promoter activity and 

chromatin disassembly (HOPACH cluster 3.3.1), proteasome genes (HOPACH cluster 

3.4.3) and chromatin assembly and membrane gene (HOPACH cluster 6.1.1). Interestingly 

HOPACH cluster 3.3.2 is statistically enriched in chaperone genes, but is excluded when 

the network is thresholded, suggesting that the six genes within this cluster are share no 

co-expression and co-fitness with any other cellular processes. 

  



 

137 
 

HOPACH 

Cluster  
Gene

Count  
Functional enrichment 

1.1.1  68  intrinsic to membrane (26), cation transport (5), monosaccharide biosynthetic 

process (3), Zinc finger, C2H2-like (4), endoplasmic reticulum (4) 

1.1.2  79  invasive growth in response to glucose limitation (5), cell wall biogenesis (6), 

manganese binding (4), sporulation, (7) cellular polysaccharide metabolism (4) 

1.1.3  84  Zinc ion binding (9), transcription regulator activity (8), anatomical structure 

homeostasis (3), reproductive developmental process (5), chromosomal part (7) 

1.1.4  62  Membrane (28), mitochondrial envelope (10), oxidation reduction (13), response 

to temperature stimulus (7), vacuole (6), manganese ion binding (3), WD40 (3) 

1.1.5  95  glycoprotein biosynthetic process (8), glycoprotein (12), Permease for 

cytosine/purines (3), regulation of cellular protein metabolic process (9) 

1.1.6  62  protein transport (13), intrinsic to organelle membrane (8), structural constituent of 

ribosome (9), intracellular protein transport (10), vesicle-mediated transport(9) 

1.1.7  96  protein transport (21), Chaperone (6), nucleoside-triphosphatase regulator activity 

(6), ncRNA processing (10), RNA processing (14), 

1.1.8  69  cell cycle (17), chromosome (6), centromeric region (6) M phase (9), incipient 

cellular bud site (3), protein import mitochondrial matrix (9), Spliceosome (3) 

1.1.9  63  cellular protein complex assembly (5), Zinc finger (3), cation transport (4), ubl 

conjugation (3), sexual reproduction (5) 

1.2.1  109  protein complex biogenesis (12), iron-sulfur (4), ribonucleoprotein,(14), 

sulfurtransferase activity (3), cytosolic ribosome (10), ribosomal protein (10) 

1.2.2  31  response to temperature stimulus (9), TCA cycle / mitochondrial membrane (5) 

1.2.3  108  regulation of translation (10), biopolymer glycosylation (5), biogenic amine 

biosynthetic process (3), ribosome biogenesis (8), cell wall biogenesis (5) 

1.2.4  73  extracellular region, (5) NAD(P)-binding domain (4), exocytosis (3), chromosome 

organization (8), sporulation (6), chromosome organization (8),  

1.2.5  64  cell cycle (16), sporulation (6), nuclear division (5), reproduction of a single-celled 

organism (5), Meiosis (3), membrane (17), homeostatic process (4) 

1.2.6  41  mrna processing (4), nucleoplasm part (5), DNA replication (5), amino-acid 

biosynthesis (3), mitochondrion (6), metal ion binding (5) 

1.2.7  21  organelle membrane (6), regulation of RNA metabolic process (5), zinc (3), 

membrane (7) 

1.2.8  34  nucleotide-binding (12), maintenance of protein location in cell(3), G1 phase of 

mitosis (3), cell cycle phase (9), GTPase (3), vesicle-mediated transport (7)  

1.3.1  45  Transmembrane (11), regulation of cell cycle (4), nuclear chromosome (5), cellular 

macromolecule catabolic process (6), chromosome segregation (4) 

1.3.2  42  asexual reproduction (4), cell wall organization (6), endoplasmic reticulum (8), 

cell division (6), nuclear envelope (4), golgi membrane (3), cell morphogenesis (4) 

1.3.3  31  regulation of phosphorylation (3), energy derivation by oxidation of organic 

compounds / mitochondrion (7), microtubule organizing (3), membrane (12)  

1.3.4  80  Kinase (8), Redox-active center (3), iron-sulfur cluster assembly (3), RNA 

processing (13), protein ubiquitination (5), mitochondrial matrix (6) 

1.4.1  59  Glycosylation (5), endoplasmic reticulum (9), Golgi membrane (7), vacuole (5), 

glucose metabolic process (3), endomembrane system (8) 

1.4.2  71  Helicase, superfamily 1 and 2 ATP-binding (5), intrinsic to membrane (22), 

cellular response to stress (10), ATPase activity (7), cell division (7) 

1.4.3  61  organellar ribosome / mitochondrial ribosome (6), endoplasmic reticulum (11), 

aerobic respiration (4), generation of precursor metabolites and energy (6) 

1.5.1* 4  HMX1, SLM3, CRR1, YDL027C, (transmembrane protein / sporulation) (4) 

1.5.2  12  phosphate metabolic process (3), membrane (4) 

1.6.1*  2  TAH18, ADE17  

1.6.2* 1  OCA4 

1.6.3* 1  YML090W  

1.6.4* 3  SMK1, YGL217C, YPR077C 

2.1.1  42  stress response (4), cofactor binding (5), glycoprotein (6), response to abiotic 

stimulus (6), sporulation (4), vacuole (4), integral to membrane (13) 
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2.1.2  28  coiled coil / cytoskeleton (4), transcription from RNA polymerase II promoter (3), 

cellular protein catabolic process (3), protein transport, membrane (9) 

2.1.3  54  chromosome segregation (8), intracellular non-membrane organelle (19), cyto-

skeleton (5), mitosis (7), nuclear lumen (10), transcription, DNA-dependent (5) 

2.1.4  25  Golgi vesicle transport (5), plasma membrane (6), membrane-enclosed lumen (6), 

metal ion binding (4), mitochondrion (4), cell cycle (7) 

2.1.5  53  M phase of meiotic cell cycle (6), chromosome (8), regulation of transcription 

(11), chromosome (8), conjugation with cellular fusion (3) 

2.1.6  21  nuclear lumen (8), RNA modification (6), ribosome biogenesis (6), nucleolus (6), 

cell cycle (7), intracellular transport (6), cellular macromolecular complex (3) 

2.1.7  26  nucleoside metabolic process (3), protein transport (3), membrane-enclosed lumen 

(4), organelle membrane (4), cytoplasm (6) 

2.1.8  49  Transmembrane (17), cell wall biogenesis/degradation (5), glycoprotein (10), 

endoplasmic reticulum membrane (6), phospholipid metabolic process (7), vacuole 

(6), Golgi apparatus part (4), regulation of cellular protein metabolic process (4) 

2.2.1  77  nuclear lumen (16), macromolecular complex subunit organization (12), rRNA 5'-

end processing (6), respiratory chain (3), ribonucleoprotein complex (14) 

2.2.2  68  regulation of protein metabolism (9), wd repeat (5), nuclear export / import (8), 

tRNA aminoacylation for translation (4), one-carbon metabolic process (4) 

2.2.3  95  protein catabolic process(13), response to temperature stimulus (8) 

3.1.1  51  cytosolic small ribosomal subunit (26), ribosome biogenesis (30), cleavages during 

rRNA processing, preribosome (9), rRNA binding (5), regulation of translation 

(10), rRNA transport (7), ncRNA 3'-end processing (6), ribosomal small subunit 

biogenesis (10), isopeptide bond (4), zinc (6), transmembrane (4) 

3.1.2  18  small-subunit processome (11), maturation of SSU-rRNA (11), t-UTP complex / 

rDNA heterochromatin  (5),  

3.1.3* 3  RPS23B, RPC19, YOR146W 

3.1.4* 5  NDC1, YOL019W, DEF1, YDL034W, SPT6, (compositionally biased region:Gln-

rich) 

3.2.1  19  Preribosome  large subunit precursor (7), ribosome export from nucleus (5), 

maturation of LSU-rRNA (3), Initiation factor (4), gtp-binding (3) 

3.2.2  48  cytosolic large ribosomal subunit (25), regulation of translation (10), ribosomal 

large subunit biogenesis (8), rRNA binding (5), DNA-directed RNA polymerase 

III complex (6), Ribosomal protein 60S, ribosomal large subunit biogenesis (3), 

zinc finger (3),  

3.3.1  18  transcription from RNA polymerase II promoter / chromatin disassembly (8), 

DNA-directed RNA polymerase II, core complex (3), intracellular transport (4) 

3.3.2* 12  Chaperonin TCP-1, conserved site (6),  

3.3.3* 5  RPB7, RAD51, RPO26, YNL179C, YPL251W, (DNA-directed RNA polymerase 

II, core complex) 

3.3.4* 6  ALG12, RSC9, COQ6, IDH1, FIT3, FUN12 

3.3.5* 8  regulation of transcription (4) 

3.4.1  4  NDC1, YOL019W, DEF1, YDL034W, SPT6 

3.4.2* 3  PUP1, RPT5, IML2 (proteasome) 

3.4.3  18  Proteasome (17), cytosolic proteasome complex (13), endopeptidase activity (14), 

threonine protease (8), proteasome regulatory particle , lid subcomplex, 26S 

proteasome subunit P45 (9), sporulation (6) 

3.4.4* 2  PRE4, IRC7 

3.4.5* 1  PRE2  

3.5.1* 1  MAP2 

3.5.2* 4  NUP60, SAM4, COG3, KIN3 

3.5.3* 1  SSA1 

3.5.4* 2  PSD1, MCM2 

3.5.5* 1  AAD14 

3.5.6  2  AFT2, HRB1  

3.5.7* 1  YIL014C-A 

3.5.8* 1  YKR078W 

3.5.9 2  OPY1, QCR8 
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4.1.1  10  sporulation resulting in formation of a cellular spore (3), vacuolar protein catabolic 

process (3), transmembrane protein (5) 

4.1.2  12  M phase (3) 

4.1.3  12  Glycoprotein (5), chaperone binding, signal (5) 

4.1.4  12  organelle lumen (4), mitochondrion organization (3) 

4.1.5* 7  cytoskeleton organization (3) 

5.1.1* 8  transcription from RNA polymerase II promoter (3), transcription (4) 

5.1.2  4  SDO1, TVP18, TAF14, PDR16 

5.1.3* 3  YPR089W, PDR5, YPR089W  

5.1.4* 2  NAM8, SET6 

5.1.5* 4  YBL065W, CDC20 , TAF5, YDR467C (wd repeat) 

5.1.6* 4  MAL11, HXT11, YBL044W, MED6 

5.1.7* 1  SUR1 

6.1.1  18  chromatin assembly (3), integral to membrane (4) 

6.1.2  7  transmembrane protein (4) 

7.1.1  3  mutagenesis site (3) 

7.1.2* 3  RTF1, MTO1, NIF3 

7.1.3  2  SIP2, KIP3  

7.1.4* 1  MRS1 

7.1.5  2  AVT7, TIF1 

8.1.1* 3  GLO4, SHU1, YOR052C (cellular response to stress) 

8.1.2* 2  PAU13, YOR050C  

8.1.3* 1  SPT10 

8.1.4  2  HOM3, YHR020W (atp-binding) 

8.1.5  3  RNA1, YMR290W-A, BUD16 

Table 4. 3 The most enriched functions within each HOPACH cluster. 

Red text represents an FDR < 0.05, green text FDR < 0.1and black text represents non-significant 

enrichment HOPACH clusters marked with an asterisk (*) were eliminated during network 

thresholding. The functional annotations within each HOPACH cluster represents a group of genes 

which share the same function, exhibit similar growth fitness when mutated and which are also 

transcriptionally correlated. 

 

4.3.2 Community analysis of the integrated network identifies highly interconnected 

modules 

Functional analysis on all 90 HOPACH clusters identified that 20% could be significantly 

associated (FDR < 0.1) to biological functions. The thresholded network contained 57 

nodes (HOPACH clusters) and 185 edges, of which 30% (17 / 57) showed significant 

functional organisation. A single level of modularisation was applied to the network. Six 

modules were identified; details are shown in Table 4.4. Module size ranged from three 

nodes to 18 nodes. These modules localised to distinct areas of the force driven layout 

parent network (Figure 4.6). HCL was performed on each module to determine the 

transcriptional correlation of nodes within the module. 
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Module Nodes Edges HOPACH clusters within each module 

1 18  95  1.1.7; 1.1.8; 1.2.1; 1.3.4; 1.4.3; 1.5.2; 2.1.3; 2.2.1; 3.1.1; 

3.2.2; 3.3.1; 3.4.3; 3.5.9; 4.1.4; 5.1.2; 6.1.2; 7.1.1  

2 12  24  1.1.1; 1.1.2; 1.1.3; 1.2.4; 1.2.5; 1.3.1; 1.4.2; 2.1.5; 2.2.3; 

4.1.1; 4.1.2; 7.1.3  

3 10  30  1.1.5; 1.2.3; 1.3.2; 1.4.1; 2.1.8; 2.2.2; 4.1.3; 6.1.1; 7.1.5; 

8.1.4  

4 7  10  1.1.4; 1.2.2; 2.1.1; 2.1.6; 3.1.2; 3.2.1; 8.1.5  

5 7  6  1.1.6; 1.1.9; 1.2.7; 1.2.8; 2.1.4; 2.1.7; 3.4.1  

6 3  3  1.2.6; 1.3.3; 2.1.2  

Table 4. 4 Nodes contained within each module of the 0.3 MI integrated network 
The number of nodes, edges and HOPACH clusters contained within each module are shown in 

columns 2, 3 and 4 respectively. The functional annotations for each HOPACH cluster shown in 

column 4 can be viewed in Table 4.3. 

 

4.3.3 The modular structure of the integrated network reflects functional 

compartmentalisation 

Having shown that genes could be clustered by their behaviour across datasets, I next set 

out to analyse the interactions between the nodes within each module and whether they 

were representative of the organisational behaviour of the yeast system. Below is a 

systematic analysis of the six identified modules. 
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Figure 4. 6 Modules localise within distinct areas of the force directed integrated parent 

network. 
An undirected network showing the interactions between HOPACH clusters. Nodes are labelled to 

represent their Hillenmeyer fitness module and expression HOPACH cluster. For example, 

HOPACH cluster 1.1.4, represents fitness sub-module 1.1, HOPACH cluster 4. Each node 

represents a HOPACH cluster representative of functions which exhibit co-expression and co-

fitness (Table 4.3).  Table 4.4 shows the HOPACH clusters located within each module.   

GLay Module 2

GLay Module 1

GLay Module 3

GLay Module 4
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4.3.3.1 Module 1: Genes encoding ribosomal proteins and post translational protein 

modification are correlated across datasets 

Module 1 contains 18 nodes; suggesting that the functions represented by each node are 

correlated to each other, both phenotypically and transcriptionally (Figure 4.7). 

Investigation into the functions represented by these nodes (Table 4.3) identified that 

nodes significantly enriched in protein transport (node 1.1.7), small cytoplasmic RPs and 

small RP biogenesis (node 3.1.1), large cytoplasmic RPs and large cytoplasmic RP 

biogenesis (node 3.2.2), RNAPII transcription (node 3.3.1) and proteasome genes (node 

3.4.3). These results are consistent with reports that the coordinate regulation of 150 rRNA 

genes, 137 RPs, together with RNAPII transcription is required to form a functional 

ribosome [97]. The significant enrichment of proteasome genes (node 3.4.3) within this 

module highlights the defence mechanisms against truncated proteins, which aid in the 

folding of newly synthesised polypeptides and malformed proteins during stress response. 

Node 1.4.3 is significantly enriched in genes encoding mitochondrial ribosome. There are 

also multiple nodes representative of cell cycle (1.1.8, 1.3.4, 2.1.3). These results suggest a 

strong correlation between cell cycle progression / chromosome segregation and ribosome 

biogenesis. In Chapter 2, I reported that yeast strains containing a mutation in cell cycle 

checkpoint gene BUB1 were phenotypically correlated to yeast strains containing mutated 

RP genes, especially stains containing small 40S RPs mutants. This is reflected in the 

integrated network, node 2.1.3 is enriched in chromosome segregation, and is directly 

connected to node 3.1.1, enriched in small RPs. 
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Figure 4. 7 Module 1 visualisation and HCL analysis on the nodes located in module 1. 
Panel A The structure of module 1, edge length and width represents MI score. Nodes are labelled 

by HOPACH cluster. Panel B The result of HCL shows that all nodes are transcriptionally 

correlated. Red indicates an increase in expression, green indicates a decrease in expression.  

 

 

4.3.3.2 Module 2:  Cell cycle, stress response and energy production.  

All 12 nodes within this module have a similar expression profile (Figure 4.8), 

interestingly of the 12 nodes within this module; seven are derived from fitness module 1, 

the largest module containing a broad scope of cellular processes (Chapter 2). Integrating 

fitness and transcription data reveals that genes within fitness module 1 are involved in 

stress response (nodes 1.1.2, 1.4.2, 2.2.3 and 7.1.3) and growth regulation / cell cycle 

(nodes 1.1.2, 1.1.3, 1.2.4, 1.2.5, 1.3.1, 2.1.5, 4.1.1 and 4.1.2) (Table 4.3) are all co-

expressed. This suggests that under stress conditions (particularly glucose starvation), the 

rate of cell growth is controlled. Consistent with observations that yeast cells starved of 

nutrients do not continue proliferating, but enter a regulated growth state until nutrients 

become available [161] [162]. 
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Figure 4. 8 Module 2 visualisation and HCL analysis on the nodes located in module 2 
Panel A The structure of module 2, edge length and width represents MI score. Nodes are labelled 

by HOPACH cluster. Panel B The result of HCL shows that all nodes are transcriptionally 

correlated. Red indicates an increase in expression, green indicates a decrease in expression.  

 

 

4.3.3.3 Module 3: Glycosylation behaviour is conserved across transcription and 

fitness data 

Module 3 contains ten nodes (Figure 4.9), six of which are enriched in glycosylation / 

glycoprotein genes (1.1.5, 1.2.3 1.4.1, 2.1.8, 2.2.2, 4.1.3) (Table 4.3 & raw DAVID tables 

on supplementary CD). Glycosylation is a co- and post- translational form of modification; 

and serves in numerous cellular functions including stabilising proteins and roles in cell – 

cell adhesion [163]. Cell adhesion is essential in regulating cell growth and cell cycle [164] 

[165] which is consistent with the enrichment of cell cycle processes such as cell wall 

biogenesis (nodes 1.2.3 and 2.1.8), cell division (1.3.2) and chromatin assembly (6.1.1). 

Glycosylation can be N-linked and O-linked [166] and is dependent on the relatively small 

hexosamine biosynthetic pathway [166] [167]. The hexosamine pathway diverges from 

glycolysis at fructose-6-phosphate, consistent with glycosylation functions grouped with 

glycolysis and glucose metabolism genes (nodes 1.2.3, 1.4.1).  N-linked glycosylation of 

proteins occurs co-translationally in the ER, and further remodelling of N-glycans takes 
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place in the golgi apparatus [166], represented by nodes 2.1.8, 1.3.2, 1.4.1.  The observed 

linkage between glycosylation and energy metabolism pathways is consistent with reports 

that N and O-linked glycosylation may have roles in responding to cellular nutrient 

availability and in metabolic diseases [166].  

 

 

Figure 4. 9 Module 3 visualisation and HCL analysis on the nodes located in module 3 
Panel A The structure of module 3, edge length and width represents MI score. Nodes are labelled 

by HOPACH cluster. Panel B The result of HCL shows that all nodes are transcriptionally 

correlated. Red indicates an increase in expression, green indicates a decrease in expression.  

 

 

4.3.3.4 Module 4: The anti-correlation between stress response genes and ribosome 

biogenesis.  

Module 4 contains seven nodes (Figure 4.10A). Figure 4.10B shows a clear transcriptional 

anti-correlation between stress response genes (nodes 1.1.4, 1.2.2, 2.1.1) and RNA 

processing / ribosome biogenesis genes (nodes 2.1.6, 3.1.2, 3.2.1). These results are 

consistent with reports that repression of ribosomal biogenesis and RNA metabolism genes 

are a feature of stress response [161]. Gasch et al reported that a number of diverse cellular 

processes are induced in response to environmental stress, including carbohydrate 

metabolism (nodes 1.2.2), cell wall modification, vacuolar and mitochondrial functions 

(nodes 1.1.4, 2.1.1), cellular redox (nodes 1.1.4, 2.1.1), protein folding, and cell wall 

reactions [161]. Many of the genes induced during a stress response have been shown to 
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protect the cell [162]. The integration of fitness and transcriptional data demonstrates and 

further substantiates the anti-correlated expression profile between genes encoding 

ribosome related functions and stress responses.  

 

 

 

Figure 4. 10 Module 4 visualisation and HCL analysis on the nodes located in module 4. 
Panel A The structure of module 4, edge length and width represents MI score. Nodes are labelled 

by HOPACH cluster. Panel B The result of HCL shows that all nodes are anti-correlated 

transcriptionally. Red indicates an increase in expression, green indicates a decrease in expression.  

 

 

4.3.3.5 Module 5: The inverse transcriptional relationship between mitochondrial 

precursor protein transport and zinc ion binding 

Module 5 contains seven nodes (Figure 4.11). There is an anti-correlated transcriptional 

relationship between two groups of nodes (Figure 4.11B). The first group are enriched in 

protein transport, ribosomal constituents and protein targeting to mitochondria (nodes1.1.6, 

2.1.7) (Table 4.3, raw DAVID files on supplementary CD) suggesting these nodes encode 

genes required for import of precursor proteins into mitochondria and mitochondrial 

ribosome assembly [115]. The second group consists of genes encoding protein complex 

assembly, ubiquitin conjugation and sexual reproduction (node 1.1.9), zinc and RNA 

metabolism (node 1.2.7), cell cycle and nucleotide binding (node 1.2.8), vesicle transport 

and mitochondrion (node 2.1.4) and chromosome segregation (node 3.4.1). The results 
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suggest that genes in the second group are expressed when genes in the first group are 

repressed and vice versa. In support of this, ubiquitin proteins have been reported to 

negatively regulate the synthesis of proteins that localise to the mitochondrial inner 

membrane [117] and mitochondrial import is known to be cell cycle dependent and is 

restricted to the reductive-building phase of the cell cycle [94]. 

 

 

Figure 4. 11 Module 5 visualisation and HCL analysis on the nodes located in module 5. 
Panel A The structure of module 5, edge length and width represents MI score. Nodes are labelled 

by HOPACH cluster. Panel B The result of HCL shows that two groups of nodes are anti-

correlated. Red indicates an increase in expression, green indicates a decrease in expression.  

 

4.3.3.6 Module 6: The co-expression and co-fitness of cytoskeleton, mitochondria and 

DNA replication genes. 

Module 6 contains three nodes, 1.2.6, 1.3.3 and 2.1.2 (Figure 4.12). Nodes 1.3.3 and 2.1.2 

are enriched in microtubule and cytoskeleton function, node 1.2.6 is enriched in mRNA 

processing, DNA replication and mitochondrion genes. The cytoskeleton plays an 

important role in the transport of vesicles and organelles, as well as cell division. The co-

expression between cytoskeleton components and mitochondria energy generation (node 

1.3.3), is likely because cytoskeleton motor proteins require the hydrolysis of ATP to 

convert chemical energy into mechanical movement, in order to move cell organelles [168] 

and proteins [169]. Alternatively the correlation between DNA replication, mitochondria, 
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microtubules and cytoskeleton may be explained by cell cycle linked motility in which 

during the S-phase, mitochondria undergo linear movement from mother cells to daughter 

cells via actin cables [170] [171] . 

 

 

Figure 4. 12 Module 6 visualisation and HCL analysis on the nodes located in module 6. 
Panel A The structure of module 6, edge length and width represents MI score. Nodes are labelled 

by HOPACH cluster. Panel B The result of HCL shows that all nodes are transcriptionally 

correlated. Red indicates an increase in expression, green indicates a decrease in expression.  

 

4.3.4 The strongest edges between nodes are representative of the metacycle 

To study what the strongest interactions between cellular processes were, I thresholded the 

network using an extremely high p-value (10
-57

), this retained edges with an MI > 0.6 

(Table 4.2). The aim was to identify network modules that represented the most significant 

functions correlated across both expression and fitness data. The resulting network 

contained 15 nodes and 15 edges. Modularisation was not required, as the network formed 

five unconnected modules (Figure 4.13A). Each module contained between two and five 

nodes. By using the functional analysis data obtained previously (Table 4.3) I was able to 

functionally classify each module (Table 4.5). Interestingly, modules showed remarkable 

similarity to phases within the metacycle. The metacycle is an example of how the 

regulation of groups of genes linked in space and time leads to physiological changes in 

yeast.  The oxidative phase is characterised by the co-ordinate up-regulation of rRNA 

processing, translation machinery, RPs, ribosome biogenesis, and sulphur uptake (modules 
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3 and 5) [106] [94]. The reductive-building phase is characterised by the up-regulation of 

mitochondrial proteins, DNA replication, spindle pole components and histones (module 

2) [106] [94], finally the reductive-charging phase is characterised by the co-ordinate up-

regulation of glycolysis, ubiquitination machinery vacuolar and proteasomal transcripts, 

carbohydrate breakdown and cell division (modules 1 and 4) [106] [94]. HCL using the 

Euclidian distance metric and average linkage identified that each module exhibited the 

same expression profile (Figure 4.13B), further substantiating that genes involved in each 

metacycle phase are co-ordinately regulated together. Modules 1 and 3, representing the 

reductive-charging phase and the onset of the oxidative phase respectively exhibited 

similar expression profiles, suggesting that genes involved in the early stages of ribosome 

biogenesis such as rRNA maturation and processome assembly are closely co-regulated 

with genes involved in glycolysis and NADP production. Module 5, which represents 

genes involved in translation initiation and ribosome biogenesis, represents the latter part 

of the oxidative phase, and therefore not correlated to Module 1. This is consistent with 

reports that ribose-5-phosphate production via riboneogenesis is dependent on glycolytic 

intermediates [92], the production of ribose-5-phosphate is essential in synthesising rRNA 

required for ribosome assembly. These features were also identified in my analysis on the 

fitness and expression networks (Chapters 2 and 3).  
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Module No. of 

Nodes  
Most common functions  Phase of  

metacycle  

1  5  glucose metabolic processes (glycolysis / 

gluconeogenesis), cell wall biogenesis, NADP 

production, cell cycle phase, alcohol catabolic 

process and cytokinesis  

Reductive - 

charging  

2  4  organellar ribosome / mitochondrial ribosome, 

respiration, protein transport, chromatin remodelling  
Reductive 

building  

3  2  RNA modification, ribosome biogenesis, nucleolus, 

small-subunit processome, maturation of SSU-

rRNA, t-UTP complex / rDNA heterochromatin,  

Onset of 

oxidative phase  

4  2  sister chromatid segregation, DNA metabolism,  

ubquitination, ATP, Redox-active center, cytokinesis  
Reductive – 

building / 

charging  

5  2   ribosome biogenesis, regulation of translation, RNA 

transport, rRNA processing, preribosome,  
Oxidative  

Table 4. 5 The modules with the strongest interactions correspond to phases of the metacycle 
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Figure 4. 13 Visualisation of the most significant integrated network edges (MI > 0.6) 

Panel A Five modules were identified using a threshold of an MI threshold of 0.6, each 

characteristic of a stage within the metacycle. Panel B. A heatmap representing the clustering 

(using Euclidean distance metric and average linkage clustering), of the expression measurements 

within each module. Red indicates an increase in expression, green indicates a decrease in 

expression. The legend is shown on the right; each colour represents module number as shown in 

Figure 4.13A. Nodes within each module all exhibit the same co-ordinated expression in response 

to TF KO knockouts, and are clustered separately from each other.  
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4.4 Discussion 

The most important aspect of research presented in this chapter is the integration of a 

fitness compendium and a TF knockout expression dataset. By integrating these two types 

of data, the aim was to overcome the shortcomings presented by using each dataset 

individually and create a comprehensive network representing the global and local 

organisation of the yeast system. As proven by Giaever et al, expression data alone is 

unable to take post-transcriptional modification and translational regulation into 

consideration which means genes that show little to no change in expression may in fact be 

essential for cell viability [37]. Conversely, genes that show a statistically significant up-

regulation in gene expression aren’t necessarily essential for cell viability [37]. Fitness 

data on the other hand is limited by the possibility of inferring false positive edges between 

genes that have similar fitness profiles, but have no underlying biological link (as 

discussed in section 2.4.3).  Therefore, by integrating a comprehensive fitness 

compendium with a gene expression dataset, it was possible to minimise the weaknesses 

posed by using each dataset individually. 

 

4.4.1 The power of applying reverse engineering methods to integrated datasets 

The aim of this study was to identify and functionally annotate representative clusters of 

genes that exhibit correlated behaviour across fitness and expression datasets. HOPACH 

clustering and subsequent functional analysis demonstrated that merged fitness and 

expression data could be functionally categorised. Comparing the functional modules 

identified in this analysis with those identified in existing integrative network studies such 

as Tanay et al [91] and Ideker et al [88], shows an overlap of functional modules between 

the studies, including protein transport (node 1.1.6), stress response (node 1.2.2), 

mitochondrial ribosome (node 1.4.3), ribosome biogenesis (node 3.1.1), ribosomal proteins 
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(node 3.2.2) and proteasome (node 3.4.3). Though the datasets and methodologies vary 

between studies, it does however demonstrate the power of using integrated datasets for 

network inference. Single level datasets, such as gene expression, protein binding or 

fitness data, when used in combination, provide complementary information, which 

increases the broadness and comprehensiveness of the network. 

The integrated network identified nodes (HOPACH clusters representing groups of genes) 

that exhibited similar behaviour across the fitness and expression datasets. Modularisation 

and visualisation of the network identified six modules, which when investigated, 

suggested linkage between genes involved in several biological processes. For example, in 

the S. cerevisiae expression network (Chapter 3), I identified a module that was dedicated 

to stress response. The results from that analysis suggested that in response to heat shock, 

there is a co-regulation of ubiquitination machinery and vacuolar catabolism genes 

(Chapter 3, section 3.3.1.3). In the S. cerevisiae fitness analysis I identified that 

proteasome genes modularised together with ribosomal proteins (Chapter 2, section 

2.3.3.3). This integrated analysis revealed that stress response genes are inversely 

transcriptionally correlated to ribosome biogenesis genes (module 4, Figure 4.10) which 

suggest potential a cellular mechanism involved in adapting to stress response. The down 

regulation of genes encoding ribosome biogenesis proteins in response to the up regulation 

of genes involved in stress response has already been reported [161], however this serves 

as an example as to how combining datasets can increase the scope and sensitivity of 

biological networks. In Chapter 2, I discussed that yeast strains mutated in the cell cycle 

checkpoint gene BUB1 showed similar fitness to strains mutated in RPs, the correlation in 

fitness was demonstrated to be higher with small 40S RPs especially. The analysis of this 

integrated network provided additional evidence between the linkage of chromosome 

segregation and RPs, as the node representing chromatid segregation was directly 
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connected to the node representing small RPs, however there was no edge identified 

connecting chromatid segregation to large RPs. Integrative approaches using diverse 

datasets not only have the potential to determine groups of genes that exhibit significantly 

correlated behaviour across data sources, but also to characterise genes of unknown 

function [91].   

 

4.4.2 Using integrated networks to characterise unknown genes 

As of July 2013, the S. cerevisiae genome contains 761 uncharacterised ORFs, defined as 

ORFs that are likely but not confirmed to encode a protein [172]. Therefore integrated 

networks hold great significance as they have the ability to predict the function of 

uncharacterised ORFs and suggest potentially new directions for experimental research 

[91]. One way of inferring functions to uncharacterised genes is by analysing the topology 

of an integrated network. Specifically, analysing nodes that connect larger modules 

together may infer possible functions. In a biological context, it would highlight potential 

genes that link cellular processes to each other [91]. This concept is demonstrated with 

module 1 (Figure 4.14). Nodes that bridge module 1 (represented in red) to other modules 

include nodes 1.1.6, 2.1.7, 2.1.8, 1.1.1 and 2.1.6, and are highlighted by green dashed 

circles. Functional analysis of these nodes (Table 4.3) reveals that genes encoding protein 

transport proteins, or organelles involved in protein transport (endoplasmic reticulum and 

golgi body) link larger modules together. This is consistent with existing integrative 

studies, which report signalling and transport genes form bridges between modules [91]. 

Therefore, if uncharacterised genes are found to localise between larger modules, it may 

suggest it is involved in protein transport or signalling.  
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The main take home message is that merging diverse datasets into a single dataset can 

provide complementary information, resulting in a more detailed and comprehensive high 

level network, which can provide a great deal of insight into complex biological processes 

and the nature in which they are controlled. 

 

 

Figure 4. 14 A subset of the integrated network, showing nodes that bridge act as a bridge to 

module 1. 
Module1 is represented in red, the nodes that act as a bridge as highlighted by green circles. 

Identifying nodes that form bridges between sub-modules can be used to infer genes which link 

biological processes together, functional analysis of these nodes show a common enrichment in 

protein transport related functions. 
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4.5 Concluding remarks 

The integration of different types of experimental data has the potential to detect modules 

and relationships that would not otherwise have been possible using a single level data. 

Integrating fitness and expression data together is advantageous as they complement each 

other and overcome the shortcomings of using them individually. The construction of an 

MI based network using Hillenmeyer’s fitness compendium and Reimand’s gene 

expression data in an integrated manner had not previously been attempted, nor had any 

integrative study using the entirety of Hillenmeyer’s fitness compendium.  The modules 

identified in this analysis represent essential cellular processes including cell cycle, stress 

response, ribosome biogenesis, energy production and post translational modification. 

These processes cover the biological changes that would be required to adapt to cellular 

stress, as expected given Hillenmeyer’s fitness data is based on cell exposure to 300+ 

stresses. Furthermore, the integration of TF KO data establishes which TFs are required for 

controlling the regulation of the genes present within each module, which has the potential 

to be developed further in future studies. This study also demonstrated that the integration 

of multiple datasets increases the statistical sensitivity of the network and allows for 

module detection at finer detail. It is this increase in sensitivity that makes it possible to 

infer functionality to uncharacterised genes within S. cerevisiae genome. 

 

 

 

  



 

157 
 

CHAPTER 5: INFERENCE AND ANALYSIS OF 

A Schizosaccharomyces pombe GENE 

EXPRESSION NETWORK 
 

 

5.1 Introduction 

The analysis so far has focused on S. cerevisiae fitness and expression data. Results have 

shown that networks are representative of functional compartmentalisation and that links 

between genes encoding energy metabolism and RPs are conserved across fitness and 

expression data. Studies up to this point had been restricted to S. cerevisiae, therefore I 

decided to expand the analysis to another yeast species, Schizosaccharomyces pombe. S. 

cerevisiae and S. pombe are believed to have diverged over 300 million years ago and 

exhibit numerous differences at the molecular level [57] and especially in regards to 

energy metabolism (as discussed in section 1.3.2). Like S. cerevisiae, S. pombe is a model 

species and has been well annotated since being fully sequenced in 2002 [57], making it an 

ideal species for comparison studies against S. cerevisiae. 

In this chapter, I report the network inference of an S. pombe expression network using the 

same approach utilised in Chapters 2 and 3. The compendium used in this analysis was 

constructed by Bähler Lab and is publically available on their website. The compendium 

contains expression data for hundreds of environmental and genetic perturbations [72]. 

The first aim of this chapter is to infer the expression network for S. pombe and identify 

functional modules. The second aim is to determine if functional modules are shared 

between S. pombe and S. cerevisiae. The final aim is to identify if any modules provide 

evidence of functional associations between ribosomal proteins (RPs) and energy 

metabolism, and whether these functional associations are the same as those observed in S. 



 

158 
 

cerevisiae. Although the conservation of riboneogenesis in S. pombe has been suggested 

[92], to date, there has not been a comprehensive study analysing riboneogenesis in S. 

pombe. 

In this chapter, I report, that indeed functional modules can be derived from the S. pombe 

genome-wide expression network, and that the modules identified share a functional 

overlap to those found in S. cerevisiae. The most interesting result was the data suggested 

that the riboneogenesis pathway is conserved within S. pombe, but that the pathway may 

differ by a single enzyme. The data suggests that in S. pombe, the gluconeogenesis protein 

FBP1, may replace SHB17 as the enzyme responsible for thermodynamically driving 

riboneogenesis. 
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5.2 Methods 

5.2.1 The dataset 

The overall aim of this study is to identify and characterise the underlying regulatory 

network representing transcriptionally linked genes in S. pombe. To accomplish this task I 

used a publicly available S. pombe expression compendium containing over 1162 samples 

across 344 unique experimental conditions. [72]. Conditions included starvation, drug 

treatments and stress response [72]. A total of 5250 open reading frames were analysed in 

this study, however the dataset was thresholded to remove genes with 80% or more 

missing values across the samples bringing the total number of genes to 4254 (~88% of 

total genome). Though raw ratio signals were reported to be normalised to wildtype [72], 

visualisation of the data through box plots identified a handful problematic samples. A 

total of 119 samples were removed, therefore the final dataset contained 4524 genes and 

1043 samples. 

 

5.2.2 Network inference 

The analysis pipeline used in this study is very similar to Chapters 2 and 3. Networks were 

inferred using the reverse engineering method ARACNE [30] [32]. No edges were 

eliminated using the data processes inequality (DPI). Statistically significant edges were 

selected using a p-value threshold of 10
-78

, corresponding to a 0.25 MI value or greater 

(Table 5.1). Though the cut-off was chosen arbitrarily, it represented an extremely high 

threshold and approximately half the total number of genes were retained, consistent with 

the thresholds chosen for the S. cerevisiae expression analysis. Using the above threshold, 

a total of 2289 nodes and 135581 edges were retained within the network. 
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5.2.3 Network visualisation and modularisation 

The network was visualised in Cytoscape [140] using a force directed layout. Consistent 

with prior network analysis, the GLay community clustering method [33] was used to 

identify highly connected modules. A second level of modularisation was used if a module 

was deemed too large (typically > 300 nodes) or if modules were likely to reveal 

additional functional associations. Functional enrichment of each module was done using 

DAVID [21, 22]. Consistent with prior chapters, functional annotations were colour coded 

by their corrected FDR score, as detailed in section 2.3.3. 

 

5.2.4 Identification of ribosomal protein first neighbours 

Genes encoding RPs were classified into three groups based on their cellular location and 

annotations from the curated S. pombe database, Pombase [58]. The three groups were 

cytosolic RPs, mitochondrial RPs and ribosome biogenesis. The reason why cytosolic 

ribosomal factors were split into cytosolic RPs and ribosome biogenesis as opposed to just 

the two groups used in the S. cerevisiae analysis, was to thoroughly investigate which 

genes correlated with each ribosomal group. As prior to this study, there had not been a 

network based analysis focussing on the linkage between RPs and energy metabolism 

genes. I identified 139 genes that encoded cytosolic RPs, 70 that encoded mitochondrial 

RPs and 36 genes that encoded ribosome biogenesis genes. First neighbour networks for 

each ribosomal group were constructed. Visualisation and modularisation was done as 

described in section 5.2.3 to ensure consistency. 
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P-value  Associated MI  

0.05  0.005715 
0.01  0.007982 
0.001  0.011226 

1.00E-09  0.030685 
1.00E-19  0.063118 
1.00E-29  0.09555 
1.00E-39  0.127983 
1.00E-49  0.160415 
1.00E-59  0.192848 
1.00E-69  0.22528 
1.00E-79  0.257713 

Table 5. 1 ARACNE p-values and associated MIs for Bähler’s data compendium. 
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5.3 Results 

5.3.1 The modular structure of the S. pombe expression network 

The hypothesis was that the modular structure of the S. pombe expression network should 

to some degree resemble the functional modules identified in the S. cerevisiae expression 

network. Here, I investigated the S. pombe expression network, identifying modules of 

highly interconnected nodes characteristic of transcriptional correlation, applying the same 

analysis strategy used in Chapter 3. Functional analysis using DAVID revealed that the 

modular structure of the S. pombe expression network reflects functional 

compartmentalisation, and that there is some overlap with the S. cerevisiae expression 

network (Chapter 3). 83% of sub-modules could be significantly functionally characterised 

by a specific functional profile (FDR < 0.1).   

The first level of modularisation identified nine network modules (Table 5.2). Module 1 

(Figure 5.1, red nodes) is the largest, containing 1041 nodes and 63723 edges. The most 

enriched functions include genes encoding ubiquitination machinery, ribosome biogenesis 

and RNA processing (Figure 5.2). Module 2 (Figure 5.1, yellow nodes) shows significant 

enrichment in protein biosynthesis, nitrogen biosynthesis and cytosolic ribosome (Figure 

5.3). Module 3 (Figure 5.1, blue nodes) is significantly enriched in protein folding, 

proteasome and transposable elements (Figure 5.4). Module 4 (Figure 5.1, purple nodes) is 

significantly enriched in cytokinesis and mitotic cell cycle (Figure 5.5). Module 5 (Figure 

5.1, light blue nodes) is significantly enriched in mitochondrial energy production (Figure 

5.6). Modules 6 through 9 were too small to undergo a further level of modularisation, 

they were however enriched in WTF proteins (a family of proteins with unknown function, 

often encoded at the end of long terminal repeats within the genome) and WD repeat 

proteins (module 6, Figure 5.7), endoplasmic reticulum and metal ion binding (module 7, 
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Figure 5.8), thiamine biosynthesis (module 8, Figure 5.9) and finally cell surface and 

transmembrane proteins (module 9, Figure 5.10). 

 

Module Colour  Number of 

nodes  
Number of 

Edges  
No. of sub-

modules 

Visualised in 

All   2289  135581  9 Figure 5.1 

1  Red 1041  63723  4 Figure 5.2 

2  Yellow 696  45181  3 Figure 5.3 

3  Blue 153  756  5 Figure 5.4 

4  Purple 108  680  5 Figure 5.5 

5  Light Blue 43  171  3 Figure 5.6 

6  Orange 35  74  1 Figure 5.7 

7  Dark Green 9  13  1 Figure 5.8 

8  Light Green 8  10  1 Figure 5.9 

9  Black  8  14  1 Figure 5.10 

Table 5. 2 Breakdown of modules identified by GLay for the S. pombe expression network 
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Figure 5. 1 S. pombe expression network showing modules mapped onto the parent network 

at 0.25MI threshold (p: 10
-78

) 

The network has been visualised using a force directed layout. Node colour represents GLay 

module. Edge length is representative of MI value. The accompanying table (Table 5.2) shows the 

breakdown of each GLay cluster including the colour, number of nodes, and number of edges 

within each cluster. 

 

 

5.3.1.1 Module 1: Cytoplasmic energy metabolism pathways and ribosome 

biogenesis 

Module 1 was the largest module detected, and contained 1041 nodes and 63723 edges 

(Table 5.2). Four interconnected sub-modules were identified after a second round of 

modularisation (Figure 5.2). A summary of the most significantly enriched functions for 

each sub-module is shown in Figure 5.2 (Red text represents an FDR <0.05, green text 

represents an FDR< 0.1, and black text represents non-significant but enriched functions 

within the each sub-module). The raw DAVID files for each sub-module are available on 

GLay Module 1

GLay Module 2

GLay Module 3

GLay Module 4

GLay Module 5

GLay Module 6

GLay Module 7

GLay Module 8

GLay Module 9
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the supplementary CD, in folder ‘Chapter 5’. The functional analysis of each sub-module 

revealed associations between genes encoding membrane, stress response and 

ubiquitination machinery (sub-module 1.1), ribosome biogenesis and RNA processing 

(sub-module 1.2), golgi apparatus and RNA splicing (sub-module 1.3) and nucleotide and 

zinc ion binding (sub-module 1.4). 

The most striking observation is that module 1 was significantly enriched in glycolysis, 

pentose phosphate pathway (PPP) (sub-module 1.1) as well as ribosome biogenesis (sub-

module 1.2). Specifically, sub-module 1.1 is significantly enriched of 11 aldo / keto 

reductase genes, a family of enzymes containing monomeric NADPH-dependent 

oxidoreductases involved in glycolysis and PPP [173]. The first neighbours of the 11 aldo / 

keto reductase genes, revealed a network containing 410 nodes, of which 62 were enriched 

in ribosome biogenesis functions (FDR 3.1x10
-17

, enrichment score 9.26).  In sub-module 

1.1 there was enrichment of six ribitol dehydrogenase enzymes, these enzymes are 

involved in the PPP. First neighbour analysis identified that of these six ribitol 

dehydrogenase genes, SPCC736.13 and SPAC521.03 (short chain dehydrogenases) have 

significant correlations with ribosomal biogenesis genes. Together SPCC736.13 and 

SPAC521.03 have over 364 first neighbours, of which 71 are ribosome biogenesis (FDR 

2.7x10
-27

, enrichment score 15.17).  The localisation of ribosome biogenesis genes to a 

single module is expected as ribosome biogenesis is a highly coordinated process [174].   

Noteworthy is the enrichment of stress response genes in sub-module 1.1 and ribosome 

biogenesis genes in sub-module 1.2. The transcriptional coupling between these two 

processes is likely to be anti-correlated as suggested by my integrated analysis in S. 

cerevisiae and existing literature [161]. . 
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Module Nodes Edges Functional Enrichment  

1.1 636 26018 integral to membrane (79), ubiquitin-dependent protein 

catabolic process (22), gluconeogenesis (5), vacuolar transport 

(18), SNAP receptor activity (6),  NAD(P)-binding domain 

(20), cellular response to heat (8), protein catabolic 

process(25), alcohol / Glucose/ribitol dehydrogenase(6), 

Aldo/keto reductase (11), Major facilitator superfamily MFS-1 

(3) 

1.2 344 19142 ribosome biogenesis (130), tRNA methylation (5),  RNA 

polymerase complex (8),  RNA degradation (6), snoRNA 

binding (17), RNA modification (14),  Helicase-associated 

region (4), nuclear export (10),  pyrimidine metabolism (6), 

Armadillo-like helical (7), aldolase / oxidoreductase (3), 

ncRNA processing (9), rrna processing, (5) 

1.3 31 41 golgi apparatus (6), RNA splicing (3), hydrolase (6), DNA 

binding (4) 

1.4 26 36 nucleotide binding (7), zinc ion binding (3), membrane (6) 

Figure 5. 2 Sub-modular structure of module 1, with accompanying functional analysis. 

Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment. 

 

 

 

5.3.1.2 Module 2 – Protein biosynthesis and energy production pathways 

Module 2 forms three sub-modules after a second round of modularisation (Figure 5.3). 

Sub-module 2.1 is significantly enriched in genes encoding protein biosynthesis, nitrogen 

binding, nitrogen compound biosynthesis, and energy metabolism processes suggesting a 

strong link between energy production and protein synthesis, as expected [138]. Sub-

module 2.2 contains cytosolic RP biosynthesis, protein targeting and ribonucleoprotein 

complex. Located within this module are also four glycolysis genes GPM1, FBA1, HXK2 

and GPD3, of which FBA1 and GPM1 were identified as first neighbours of cytosolic RPs. 

1.1 1.2 1.3 1.4
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Sub-module 2.3 is  significantly enriched only in translation initiation activity (FDR 

3.37x10
-4

).  

 

 

 

Module Nodes Edges Functional Enrichment  

2.1  359 8976 protein biosynthesis (26),  nucleotide-binding (49), nitrogen 

biosynthesis (82), IMP metabolic process (6), chaperonin-

containing T-complex (4), NADP / electron carrier activity (8), 

ribosome biogenesis (8), oxidoreductase (28), amino acid 

biosynthesis (30),  mitochondrion (44), pyruvate dehydrogenase 

complex (5), , NAD or NADH binding (8) , sulfur metabolic 

process (7), Flavoprotein (6), ligase (14), sulfur cluster binding (3),  

2.2 300 18697 ribonucleoprotein complex / cytosolic ribosome (59), protein 

biosynthesis (17), protein targeting to membrane (8), nucleolus 

(26), Ribosomal protein L7A/RS6 family (3), Chaperonin 

Cpn60/TCP-1 (5), ribosome biogenesis (19), glycolysis (4), 

RNAPII (6) 

2.3 37 188 translation initiation factor activity (6), ncRNA metabolism (4) r 

Figure 5. 3 Sub-modular structure of module 2, with accompanying functional analysis. 

Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment. 

 

 

 

5.3.1.3 Module 3 – The S. pombe stress response 

Module 3 is significantly smaller than previous modules, containing only 153 nodes and 

756 edges (Table 5.2). A second level of modularisation identified five interconnected sub-

modules (Figure 5.4). Functional analysis of each sub-module revealed the association 

between stress response, protein folding and heat shock protein 70 (HSP70) (sub-module 

2.1 2.2 2.3
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3.1), proteasome components (sub-module 3.2), organic acid transport (sub-module 3.3) 

endoplasmic reticulum and zinc (sub-module 3.5) and finally transposable elements (sub-

module 3.5). 

A noteworthy observation is that sub-modules 3.1, 3.2 and 3.5 are significantly enriched in 

stress response (a feature also found in my S. cerevisiae expression network). In response 

to cellular stress misfolded proteins are targeted for degradation via the proteasomal 

degradation pathways [175] (sub-module 3.2). Heat shock proteins (HSP) such as HSP27 

HSP70 and HSP90 identify misfolded proteins and through various mechanisms target 

them for proteasomal degradation [175] [176].  For example, HSP70, found in sub-module 

3.1, binds hydrophobic patches which have been exposed due to protein misfolding and 

recruits CHIP (carboxyl terminus of HSP70-interacting protein), a co-chaperone / ubiquitin 

ligase to tag the protein for proteasomal degradation [175]. HSP27 and HSP90 utilise non-

direct mechanism by which they act as chaperones and increase the activity of ubiquitin-

proteasome degradation [176]. Transposition (sub-module 3.5) is closely correlated to heat 

shock response, a feature that has been reported in Drosophila, in which transposable 

elements target heat-shock promoters [177]. There are a total of 13 transposable elements 

(TEs) within the S. pombe genome, all of which are classified as Tf2 type [178]. The data 

suggests that module 3 has captured the general stress response in S. pombe. In S. 

cerevisiae, I showed that TEs are functionally represented in their own module, in S. 

pombe TEs group are located in a single sub-module with the stress response module. A 

key difference between S. pombe and S. cerevisiae, is that in S. cerevisiae there are 90 

genes encoding transposable elements [58], this difference in the number of TEs may 

explain the lack of a TE dedicated network in S. pombe. 
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Module Nodes Edges Functional Enrichment  

3.1  59 355 protein folding (10),  HSP 70(3), oxidation reduction (8), , unfolded 

protein binding / stress response (6), hexose catabolic process (3),  

3.2  35 229 Proteasome (15), endopeptidase activity (13), proteasome beta-

subunit complex (3), proteasome regulatory particle (7) 

3.3.  13 15 organic acid transport (5), mitochondrial (3) 

3.4  11 11 Zinc (3), endoplasmic reticulum (3) 

3.5  10 37 transposable element (6) 

Figure 5. 4 Sub-modular structure of module 3, with accompanying functional analysis 

Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment. 

 

 

5.3.1.4 Module 4: The transcriptional coupling of cell cycle and cytokinesis genes. 

Module 4 maps onto a distinct area of the parent network primarily isolated from other 

modules (Figure 5.1). Five smaller interconnected sub-modules, identified after an 

additional round of modularisation, represented the fine structure of this module (Figure 

5.5). Functional analysis of the components within this module revealed a common 

functional association across all sub-modules. Sub-modules were either enriched in 

cytokinesis (sub-modules 4.1 and 4.4) or cell cycle / chromatin remodelling (sub-modules 

4.2, 4.3, and 4.5). Genes encoding mitotic regulators, contractile ring cytokinesis proteins, 

mitotic spindle, DNA metabolism proteins and transcriptional regulators are all known 

3.1 3.2

3.3 3.4 3.5

3.6 3.7 3.8
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periodically peak together during mitosis [179], consistent with the functional enrichment 

in module 4.  

 

 

Module Nodes Edges Functional Enrichment  

4.1  32 227 cytokinetic process / cell division (11), cell surface (8), golgi 

apparatus (3) 

4.2  20 72 mitotic cell cycle (10), mitotic cohesin complex (3), DNA 

metabolic process (6), protein-DNA complex assembly (3) 

4.3  16 17 cell cycle, gpi-anchor biosynthesis (3), microtubule (3) 

4.4  16 51 Cytokinesis (11), plasma membrane (6) 

4.5  12 45 nucleosome core / Histone core (4) 

Figure 5. 5 Sub-modular structure of module 4, with accompanying functional analysis 

Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment. 

 

 

5.3.1.5 Module 5: Transcriptional coupling of mitochondrial energy production 

A second level of modularisation identified three interconnected sub-modules (Figure 5.6). 

Functional analysis of these sub-modules revealed significant association between the 

expression of mitochondrial inner membrane and mitochondrial ATP synthesis (sub-

4.1 4.2 4.3

4.4 4.5 4.6
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module 5.1), mitochondrial membrane and mitochondrial respiratory chain (sub-module 

5.2) and TCA cycle and electron carrier activity (sub-module 5.3). Every function 

identified within the sub-modules is significantly enriched, suggesting, with high 

confidence, that module 5 encapsulates energy production processes within the 

mitochondria. The localisation of mitochondrial energy generation to its own module was 

not found in the S. cerevisiae fitness and expression networks. 

 

 

 

Module Nodes Edges Functional Enrichment 

5.1 18 53 mitochondrial inner membrane (15), oxidative phosphorylation 

(11), mitochondrial ATP synthesis coupled proton transport (5) 

5.2 15 56 

 

hydrogen ion transmembrane transporter / mitochondrial 

membrane (12), mitochondrial respiratory chain (8), oxidative 

phosphorylation (8),  respiratory electron transport chain (5), 

mitochondrial proton-transporting ATP synthase complex 

coupling factor F(o) (4), transmembrane transport (6) 

5.3 10 18 cofactor metabolic process (8), tricarboxylic acid cycle (6), 

electron carrier activity (4), mitochondrial lumen (3) 

Figure 5. 6 Sub-modular structure of module 5, with accompanying functional analysis. 
Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment. 

 

 

  

5.1 5.2 5.3
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Module  Nodes Edges Functional Enrichment  
6.1  35  61 WTF protein (5), wd repeat (3), metal ion binding (6) 

Figure 5. 7 Structure of module 6, with accompanying functional analysis. 
Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment. 

 

 

 

Module Nodes Edges Functional Enrichment  
7.1  9  13 endoplasmic reticulum (6), metal ion binding (3) 

Figure 5. 8 Structure of module 7, with accompanying functional analysis. 
Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment. 

 

 

Module Nodes Edges Functional Enrichment  
8.1  8  10 thiamin biosynthetic process (3) 

Figure 5. 9 Structure of module 8, with accompanying functional analysis. 

Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment.  

6.1

7.1

8.1
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Module Nodes Edges Functional Enrichment  

9.1  8  14 cell surface (7), transmsmbrane protein (4) Schizosaccharomyces 

pombe  

Figure 5. 10 Structure of module 9, with accompanying functional analysis. 
Red text represents an FDR < 0.05, green text represents FDR < 0.1, and black text represents non 

significant enrichment. 

 

 

 

5.3.2 Investigating the link between RPs and energy metabolism using a network 

based approach 

Having demonstrated that cytosolic ribosomal factors were correlated to energy 

metabolism pathways in S. cerevisiae, I applied the same analysis to S. pombe. The aim 

was to identify if key genes known to be involved in glycolysis and riboneogenesis were 

correlated to ribosomal proteins in S. pombe, the results suggest that this is true. The 

analysis was conducted in three stages, identifying the first neighbours of cytosolic RPs 

(Figure 5.11), identifying the first neighbours of ribosome biogenesis genes (Figure 5.12) 

and finally identifying the first neighbours of mitochondrial RPs (Figure 5.13). A key 

difference between this ribosomal protein analysis in this study, and those reported in 

Chapters 2, 3 and 4 is that we constructed a separate network for just cytosolic ribosome 

biogenesis genes, instead of grouping them together with cytosolic RPs.  

 

9.1
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5.3.2.1 The first neighbours of cytosolic RPs 

Of the 139 cytosolic RP genes within the S. pombe genome, 132 mapped into the parent 

network. The first neighbour network of cytosolic RPs contained 800 nodes and 89995 

edges (Table 5.3). The first level of modularisation revealed three network modules 

(Figure 5.11).  

Module 1 (Figure 5.11, red nodes) contains 418 nodes, however only 275 could be 

detected in DAVID (Table 5.3). As the S. pombe database in DAVID is not as extensive as 

the S. cerevisiae database, some genes are not detected due to the fact that the gene itself is 

not yet present within the database or because DAVID was unable to convert the gene ID 

to an alternative (detectable) format. Functional analysis of module 1 revealed associations 

between protein biosynthesis, amino acid biosynthesis, tRNA synthetases class II, 

ribosome subunits and oxidoreductase processes localised to the mitochondria (TCA cycle 

and electron transport activity).  The finer structure of Module 2 was defined by two 

smaller sub-modules (Figure 5.11, blue nodes). Functional analysis revealed association 

between energy metabolism pathways, ubiquitination and proteolysis (sub-module 2.1) and 

ribosome biogenesis, ribosome export from nucleus and rRNA maturation (sub-module 

2.2). The final sub-module contained only a ubiquitin ligase and an adenylate cyclise 

(module 3). 

Module 1 represents the transcriptional coupling of high energy compound production and 

protein synthesis [180]. Notably, module 1 contains six glycolysis / alcohol catabolism 

genes; fructose-bisphosphate aldolase (FBA1), glycerol-3-phosphate dehydrogenase 

(GPD2), phosphoglycerate kinase (GPM1), pyruvate dehydrogenase (PDB1), 

phosphoglycerate kinase (PGK1) and ribose-5-phosphate isomerase (SPAC144.12). 

Though not classified as significantly enriched, these glycolysis related genes have a total 

of 145 direct edges to cytosolic RPs within module 1, with an average MI of 0.272 (Table 
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5.4) corresponding to a p-value of 10
-84 

(Table 5.2). SPAC144.12 is connected to the most 

cytosolic RPs (75), consistent with reports that ribose-5-phosphate isomerase activity is 

required in the PPP and latter steps of riboneogenesis [92].  The association of ribose-5-

phosphate isomerase to ribosomal proteins was also observed in my S. cerevisiae 

expression network (Chapter 3). FBA1 is directly connected 31 cytosolic RPs. FBA1 is 

essential for ribose-5-phosphate production, decreased aldolase activity has been reported 

to influence the production of sedoheptulose-1, 7-bisphosphate (SBP) and octulose-1-

bisphosphate (OBP) [92]. These substrates are essential for the first committed step of 

riboneogenesis. The most significant edge between these glycolysis genes and cytosolic 

RPs is between GPM1 and RPL14 (MI score of 0.391). This was significantly higher than 

the average MI for GPM1 (0.263, Table 5.4). The reason why GPM1 is highly correlated 

to RPL14 is currently unknown. 

Module Nodes  Edges  Found in DAVID  

Overall 800 89995  

1  418  37067  275  

2.1  192  9738  167  

2.2  187  12129  170  

3  3  3  2  

Table 5. 3 Breakdown of nodes and edges within each sub-module from the cytosolic RP first 

neighbour network 

 

Gene Number of cytosolic RP 

first neighbours 

Average MI 

SPAC144.12 75 0.277 

FBA1 31 0.273 

GPM1 21 0.263 

PDB1 16 0.259 

PGK1 1 0.252 

GDP2 1 0.292 

Table 5. 4 The connectivity of the six module 1 glycolysis genes to cytosolic RPs 



 

 

1
7

6 

 

 

 

Figure 5. 11 A force directed layout of the first neighbours of S. pombe cytosolic RPs with GLay clusters mapped on. 

Modules identified by GLay have been mapped onto the parent network. Edge length represents MI score. Cytosolic RPs are represented in yellow. 

Cytosolic RPs are most enriched in sub-network 1. Module 2 forms two; sub-modules. 2.1 is enriched glucose metabolic processes, protein modification 

and response to stresss. Sub-module 2.2 is enriched in ribosome biogenesis, nucleolus and ribosome export. Red text represents an FDR < 0.05; green text 

FDR < 0.1, black text represents non significant functional enrichment. 

1) protein biosynthesis (46), nitrogen compound biosynthesis (51), tRNAaminoacylation (18), 

translation (76), nucleotide-binding (67), aspartate family amino acid biosynthesis (13), Aminoacyl-

tRNAsynthetase, class II (9), carbon-oxygen lyase (7), ribosomal subunit (29), chaperonin-

containing T-complex (8), intracellular protein transmembrane transport (10), magnesium ion (19), 

Glycine, serine and threonine metabolism (9), nucleotide biosynthesis (15),  Ribosomal protein 

L7A/RS6 family (3), translational elongation (4), NAD (10), oxidoreductase (17), Ubiquitin (3), 

glycolysis / alcohol catabolism (6), acetyl-CoAbiosynthesis (3), electron carrier activity (7), 

helicase (4), cell cycle / sexual reproduction (10)

2.1) regulation of gluconeogenesis / glucose metabolic process (4), autophagy (5), proteolysis (20), 

vacuole (13), phosphoinositide binding (6), phosphoric monoester hydrolase (6), asparaginase

activity (3), external encapsulating structure(6), protein ubiquitination (10), ascospore formation (7), 

response to osmotic stress (5), cell wall (6), vacuolar transport (9), exopeptidase activity, tRNA

methylation (3), protein kinase activity (8), alcohol catabolic process (3), oxidoreductase (8), 

ribosome biogenesis (3), mitochondrion (13), DNA repair (4)

2.2) ribosome biogenesis (107), maturation of SSU-rRNA(19), ribosome export from nucleus (11), 

WD40 repeat (11), tRNAmetabolic process (16), ribosomal large subunit biogenesis (11), RNA-

dependent ATPase activity (11), RNA modification (12), tRNAprocessing (8), transcription from 

RNAPI promoter (7), ncRNA 3'-end processing (5), RNA degradation (6), RNA recognition motif, 

RNP-1 (9),  macromolecular complex assembly / disassembly (3), spindle (8), zinc-finger (9), 

mRNA metabolic process (7), integral to membrane (6), nuclear envelope (6)
3) ubiquitin protein ligase 

(1), Adenylate cyclase (1) 

Cytosolic RP GLay Module 1

Cytosolic RP GLay Module 2

Cytosolic RP GLay Module 3

Cytosolic ribosomal proteins
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Interestingly, the most enriched functional annotation within sub-module 2.1 was four 

genes involved in regulation of gluconeogenesis / glycolysis (enrichment score 1.93,  FDR 

> 0.1). Though these genes are not significantly enriched within DAVID, the edges to and 

from these genes are highly significant due to the stringent threshold used to construct the 

network (p-value: 10
-78

).The four genes contained within this annotation cluster were 

identified as three ubiquitin ligases (SPAC12B10.13, SPBC29A3.03C, SPBC106.13) and 

transcription factor RST2. Sub-module 2.2 was significantly enriched entirely in ribosome 

biogenesis and RNA modification functions. 

 

5.3.2.2 The first neighbours of mitochondrial RPs 

Of the 70 genes encoding mitochondrial RPs in the S. pombe genome, only 12 could be 

mapped into the parent network, the loss of 58 is likely due to the high statistical threshold 

used to construct the network. The first neighbour network contained 88 nodes and 1373 

edges (Table 5.5). The first level of modularisation revealed three interconnected modules 

(Figure 5.12). Due to the size of the modules, only a single level of modularisation was 

required. 

Module 1 (Figure 5.12, red nodes) reveals a functional association between ribosome 

biogenesis genes and mitochondrial organisation genes. Module 2 (Figure 5.12, blue 

nodes) reveals association between genes encoding translation protein biosynthesis and 

mitochondrial organisation. Module 3 (Figure 5.12, green nodes) is enriched in two 

mitochondrial genes (ATP7, MRPL15). The localisation of mitochondrial RPs and 

ribosome biogenesis genes within module 1 is consistent with reports that mitochondrial 

RPs and RNA polymerase (mRNAP) are encoded by nuclear genes, and are synthesised on 

cytosolic ribosomes as precursors proteins before being imported into the mitochondria 
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[181]. RNA processing reactions within the mitochondria are also catalysed by enzymes 

localised within the cytoplasm that are imported into the mitochondria when required 

[181] [152]. 

 

Module  Nodes  Edges  Found in DAVID  

Overall 88 1373  

1.1  44  466  29  

2.1  42  549  20  

3.1  2  2  2  

Table 5. 5 Breakdown of nodes and edges within each module from the mitochondrial RP 

first neighbour network 

 

 

 

Figure 5. 12 A force directed layout of the first neighbours of S. pombe mitochondrial RPs, 

with the Glay defined modules mapped on. 
GLay modularisation identifies three modules. Edge length represents MI score. Mitochondtial 

RPs are represented in yellow. Red text represents an FDR < 0.05; green text FDR < 0.1, black text 

represents non significant functional enrichment.  

1) ribosome biogenesis (7), 

mitochondrion organization (4), ATP 

binding (4), transmembrane (7), 

transition metal ion binding (3)

2) translation (12), protein biosynthesis 

(6), mitochondrion organization (4), 

membrane-enclosed lumen (4)

3) mitochondrion (2)
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5.3.2.3 The first neighbours of ribosome biogenesis proteins 

Of the 36 genes annotated as ribosome biogenesis, 32 map onto the network. Identification 

of the first neighbours created a network containing 902 nodes and 107202 edges (Table 

5.6). The first level of modularisation identified three modules; modules 2 and 3 did not 

undergo a further level of modularisation due to their size (Figure 5.13). 

 

Module  Nodes  Edges  Found in DAVID  

All 902 107202  

1.1  286  18730  255  

1.2  273  16328  249  

1.3  6  6  2  

2 327  33052  200  

3  10  14  7  

Table 5. 6 Breakdown of nodes and edges within each module from the ribosome biogenesis 

first neighbour network 

 

Module 1 (Figure 5.13, red nodes), formed three sub-modules, functional analysis 

identified significant associations between genes encoding ubiquitin-dependent protein 

catabolism and heat response (module 1.1), ribosome biogenesis, rRNA maturation and 

ribosome export from the nucleus (module 1.2), and a probable cyclase like protein and an 

uncharacterised beta synthesis protein (module 1.3). Module 2 (Figure 5.13, blue nodes), 

revealed associations between protein biosynthesis, amino acid biosynthesis and other 

processes involved in translation progression. Module 3 (Figure 5.13, green nodes), was 

the smallest of all modules, containing only four nodes involved in tRNA, autophagy and 

DNA replication. 
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Noteworthy, is the enrichment of ubiquitin-dependent protein catabolism and ribosome 

biogenesis genes in module 1. This functional association was also observed in my S. 

cerevisiae integrated network, suggesting that in response to the up-regulation of heat 

shock response genes, the expression of ribosome biogenesis genes are repressed [161]. 

Interestingly, there is enrichment of aldolase-type TIM barrel in module 1.2, which are 

typically found in class I aldolases, class I DAHP syntheases and class II fructose-

bisphosphate aldolases [182] [183] [184]. Fructose bisphosphate aldolase (FBA1) is 

involved in riboneogenesis, suggesting that there is a link between ribosome biogenesis 

and energy metabolism pathways, a relationship link further fortified by the fact the 

studies in S. cerevisiae. 

Module 2 is significantly enriched in protein synthesis / amino acid biosynthesis genes in 

addition to electron carrier and acetyl Co-A catabolic processes (pathways specific to 

mitochondria) indicative of the supply and demand of energy compounds required for 

protein synthesis.   
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Figure 5. 13 A force directed layout of the first neighbours of S. pombe ribosome biogenesis genes, with the GLay clusters mapped on. 

GLay modularisation identifies three modules. Ribosome biogenesis genes are represented in yellow. Edge length represents MI score. Module 1 

underwent a further level of modularisation. Functional annotation for each module is shown in the coloured boxes. Red text represents an FDR < 0.05; 

green text FDR < 0.1, black text represents non significant functional enrichment. 

1.1) ubiquitin-dependent protein catabolism (29), cellular response to heat (19), vacuole (19), 

protein ligase activity (14), lipid binding (9), peptidase activity (14), phosphoric monoester 

hydrolase (7), Glycosyl transferase (3), negative regulation of gluconeogenesis (3), ER-

associated protein catabolism, pentose metabolic process (4), Glucose/ribitol dehydrogenase

(3), regulation of phosphorylation (3), helicase activity (5), regulation of transcription from 

RNAPII promoter (4), cytoskeleton (5), mitochondrial outer membrane (3), kinase (9), 

transcription initiation (3), tRNA processing, mitochondrion (29), DNA replication (3), DNA 

repair (5), chromatin remodelling (4)

1.2) ribosome biogenesis (130), maturation of SSU-rRNA (23), RNA modification (21), 

WD40 repeat (20), RNA helicase activity (16),  RNAP complex (12),  ribosomal large 

subunit biogenesis (12), ribosome export from nucleus (11), RNA degradation (9), ncRNA 3'-

end processing (4), RNP-1 (9), Pumilio RNA-binding region (3), regulation of 

phosphorylation (3),  zinc finger (14), Aldolase-type TIM barrel (3), spindle (9), sister 

chromatid segregation (3), histone modification (3), mitochondrion (3), integral to membrane 

(16)

1.3) Probable RNA 3'-terminal phosphate cyclase-like protein (1), Uncharacterized beta-

glucan synthesis-associated protein (1)

2) protein biosynthesis (37), cellular amino acid biosynthetsis (22), translation (64), tRNA

aminoacylation (13), serine family metabolism (10), nucleotide-binding (47), eukaryotic 43S 

preinitiation complex (8), IMP metabolic process (6), chaperonin-containing T-complex (6), 

glutamine family metabolism (10), Ribosomal protein L7A/RS6 family (3), carbon-oxygen lyase

(5), ribosome biogenesis (19), nadp (9), transferase activity -transferring pentosyl groups (4), 

electron carrier activity (6), Ubiquitin (3), acetyl-CoAcatabolism (3), intracellular transport (19), 

mitochondrion (6)

3) tRNA (2), autophagy

(1), DNA replication (1)

Ribosome biogenesis GLay Module 1

Ribosome biogenesis GLay Module 2

Ribosome biogenesis GLay Module 3

Ribosome biogenesis genes
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5.4 Discussion 

5.4.1 Does FBP1 in S. pombe take on the role of SHB17 from S. cerevisiae as the key 

enzyme responsible for regulating riboneogenesis? 

To postulate that the riboneogenesis pathway may differ between S. pombe and S. 

cerevisiae comes from reports of key metabolism differences between the two species 

[66]. These include S. cerevisiae being able to utilise ethanol as a carbon source, whilst S. 

pombe cannot, instead ethanol is a waste product which may provide an advantage due to 

its toxicity against competing micro-organisms [66]. Also, the lack of key metabolic genes 

means that S. pombe does not have a glyoxylate cycle and glycogen biosynthesis pathway. 

Furthermore S. pombe has a lack of glycolytic paralogues, alcohol dehydrogenases, genes 

regulating transcriptional regulators of glucose repression and is completely missing the 

gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK1) [66]. These reports 

highlight the degree of divergence in regards to carbon metabolism and energy production 

between S. pombe and S. cerevisiae. As there is a close relationship between glucose 

utilisation and riboneogenesis, the proposed hypothesis that FBP1 may substitute for 

SHB17 in S. pombe is not farfetched. This is further supported by the fact that S. 

japonicus, a yeast species within the same genus of S. pombe completely lacks the FBP1 

gene (Supplementary material [66]). This shows that even species within the same genus 

have major differences in how they utilise and metabolise carbon sources. The results 

presented in this chapter, together with existing knowledge of riboneogenesis and the 

structure of FBP1, suggests that FBP1 may have dual functionality within S. pombe. This 

is supported by other existing studies on FBP1 in yeast [58], photosynthetic bacteria and 

plants [185], which report that FBP1 has the potential to accept SBP as a substrate. Below 

I discuss the how FBP1 may act as the key riboneogenesis regulator in S. pombe.  
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5.4.2 Is the dual role of FBP1 in gluconeogenesis and riboneogenesis dependent on 

the structure of its active site? 

Eukaryotic gluconeogenesis protein FBP1 is reported to have two binding sites; an active 

site located at the carboxyl terminal (C-terminal) and an allosteric binding site located at 

the amino terminal (N-terminal). The allosteric is typically bound by adenosine 

monophosphate (AMP) [186] [187], and in mammalian cells, the allosteric site has a 

conserved lysine located around residue 140 [188]. AMP binds the allosteric site and acts a 

modulator of FBP1 activity. In the cytosolic RP first neighbour network, I identified three 

ubiquitin ligases (SPAC12B10.13, SPBC29A3.03C, SPBC106.13) and transcription factor 

RST2 as negative regulators of gluconeogenesis (Figure 5.11, module 2.1). This is 

significant, as repressing gluconeogenesis maintains flow through glycolysis which allows 

the glycolytic intermediates to be incorporated into the riboneogenesis pathway. The 

ubiquitin ligase SPBC106.13 is predicted to inactivate fructose bisphosphatase 1 (FBP1) 

[189].  

Ubiquitination is a form of post-translational modification and is an essential mechanism 

for cellular control [190]. It is the process by which ubiquitin, a small 76 amino acid, 8.5 

kDa protein [191] attaches to the target protein. Ubiquitin binds the target protein by either 

associating with the lysine residues on the protein substrate via an isopeptide bond, or 

alternatively it forms a peptide bond between the N-terminal of the substrate protein and 

the glycine 76 residue of the ubiquitin molecule [192] [190]. This is particularly important 

as the allosteric site of FBP1 is also located at the N-terminal and it is known to contain a 

conserved lysine residue [186] [187] [188]. In light of this evidence, it is possible that 

ubiquitin may act as an allosteric regulator, controlling the activity of FBP1 by affecting 

the hypervariable loop regions that are found at the N-terminal of eukaryotic FBP1 [187]. 

The association of ubiquitin to the allosteric site may cause a conformational change in the 
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active site. One consequence of ubiquitin modification is that it can directly impact the 

conformation and activity of a target protein [191]. This subtle change in the structure of 

the active site may be the event which determines whether FBP1 has a higher affinity for 

FBP or SBP, and therefore determines whether cells enter riboneogenesis or 

gluconeogenesis.  

Studies in S. cerevisiae have shown that FBP binds to the active site of FBP1 in a 

thermodynamically favoured cyclic β-furanose form [193]; SBP has also been reported to 

bind SHB17 in a higher similar manner, adopting a cyclic furanose form [92]. FBP has 

been reported to bind SHB17 in an extended linear form, just as SBP has been shown to 

bind FBP1 in an extended linear form, this highlights that both FBP1 and SHB17 have the 

potential to accept each other’s substrates. However it is the extended linear form of the 

substrate that decreases the affinity of binding, hence why FBP1 preferentially binds FBP, 

and SHB17 preferentially binds SBP1 [92]. Therefore in S. pombe, I hypothesise that the 

ability of FBP1 to accept FBP or SBP in its cyclic form is the key determinant to whether 

FBP1 has a role in gluconeogenesis or riboneogenesis (Figures 5.14 and 5.15). 

The addition of a ubiquitin molecule to the allosteric site of FBP1 may alter the structure 

of the active site, decreasing the Michaelis constant (Km) and increasing Vmax for SBP. 

Therefore the ability of FBP or SBP to bind in their cyclic form is dependent on the 

presence of an allosteric modulator binding to FBP1. The conformation of the sugar 

molecule (SBP or FBP) may account for the increased affinity with FBP1 due to additional 

hydrogen bonds being made between the sugar and active site of FBP1 

Therefore under conditions when ribose demand is high, ubiquitin may bind the allosteric 

site of FBP1 with the aid of ubiquitin ligases, causing a conformational change in the 

active site. As a result of the conformational change, FBP1 may gain a higher affinity for 
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SBP, the key substrate required to drive riboneogenesis, and by doing so, effectively shuts 

down gluconeogensis. The flux through riboneogenesis is maintained and cells are able to 

meet the demand for ribose-5-phosphate, and growth continues with no limitations (Figure 

5.14). During stress response such as glucose starvation, when the demand for glucose 

outweighs the demand for ribose-5-phosphate and cell growth, FBP1 keeps its canonical 

activity, catalysing FBP within the gluconeogenesis pathway. This maintains flux through 

the gluconeogenesis pathway and shuts down the riboneogenesis pathway (Figure 5.15).  

Ubiquitination is a diverse cellular process, more importantly, it is also reversible [194] 

[191]. Deubiquitination may mean that when ribose demand decreases, ubiquitin 

disassociates from FBP1, returning FBP1 back to its original gluconeogenic function. By 

doing so, this creates an elaborate mechanism which that carefully regulates the rate of 

ribose-5-phosphate production whilst maintaining the pool of ubiquitin for use in other 

essential cellular functions. However, as previously stated, causality cannot be established 

due to the nature of the network inference method used, and this is a limitation of the 

study. Therefore experimental validation of this hypothesis is required (see section 5.4.3 

for potential future experiments). A counter hypothesis could be that the correlation 

between FBP1 and ubiquitin ligases is a result of FBP1 becoming deformed as a 

consequence of stress exposure during the studies by Bähler’s Lab. It could be that the 

ubiquitination machinery is correlated to the expression of FBP1 in order to target it for 

accelerated degradation [195]. However, as ubiquitination involves a cascade of reactions 

including activation, conjugation and ligation [190] it is uncertain as to why only ubiquitin 

ligases are correlated to FBP1 and not other components of the ubiquitin dependent 

proteasome. The network analysis has provided evidence that there is a significant link 

between these FBP1 and ubiquitin ligases, however the only way to verify the true 
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biological relationship between FBP1 and ubiquitin ligases would be through wet lab 

experiments. 

 

 

Figure 5.14 Flow chart showing the proposed dual role of fructose-1, 6-bisphosphatase 

(FBP1) in catalysing key reactions in riboneogenesis and gluconeogenesis in S. pombe when 

ribose-5-phosphate demand is high 

Panel A. When ribose-5-phosphate demand is high, such as during rapid cell growth, FBP1 

exhibits sedoheptulose-1, 7-bisphosphatase activity, thereby committing cells to riboneogenesis. 

The change in enzymatic activity may be due to ubiquitin binding to the allosteric site of FBP1 and 

altering the active site, allowing SBP to bind in its preferred cyclic conformation. The reaction 

catalysed by FBP1 is labelled (3) in association to the 3
rd

 reaction catalysed by SHB17 in S. 

cerevisiae during riboneogenesis (Figure 1.2 in Chapter 1). Panel B. When ribose demand is high, 

FBP1 is unable to catalyse the rate limiting step in gluconeogenesis. The canonical enzymatic 

activity of FBP1 is restricted due to a change in the structure of the active site, due to ubiquitin 

binding to the allosteric site. FBP is unable to bind in its cyclic form, ultimately shutting off the 

gluconeogenesis pathway. Ultimately, FBP1 catalyses the thermodynamically driven step in 

riboneogenesis when ribose-5-phosphate demand is high. 
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Figure 5.15 Flow chart showing the proposed role of fructose-1, 6-bisphosphate in catalysing 

key reactions in riboneogenesis and gluconeogenesis in S. pombe when ribose-5-phosphate 

demand is low 

Panel A. When ribose-5-phosphate demand is low, such as during times of glucose starvation, 

FBP1 exhibits its canonical fructose-1, 6-bisphosphatase activity. SBP is unable to bind to the 

active site in its cyclic form, instead only being able to bind in a linear extended form, as such the 

affinity for FBP is higher than that for SBP. The lack of sedoheptulose-1, 7-bisphosphatase activity 

stops cells from committing to riboneogenesis, thereby shutting down the riboneogenesis pathway. 

Panel B. When ribose-5-phosphate demand is low, FBP1 catalyses the rate limiting step in 

gluconeogenesis as it can accept FBP1 in its cyclic form, increasing flux through gluconeogenesis 

and increasing the rate of glucose formation. Ultimately, FBP1 catalyses the rate limiting step in 

gluconeogenesis when ribose-5-phosphate demand is low. 

 

In addition, there were several connections between RST2, a zinc finger protein, reported 

to regulate the expression of FBP1 [196] and genes encoding RPs. I investigated if there 

was transcriptional correlation between RST2 and FBP1 by identifying the first neighbours 

of RST2 within the parent network. No direct connections between RST2 and FBP1 

existed. Noteworthy however is that RST2 was significantly correlated to protein kinase 1 

(PKA1), which is known to negatively regulate both sexual development and 
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gluconeogenesis by suppressing transcription of FBP1 [196]. During glucose starvation, 

FBP1 expression increases via the reduction of PKA1 activity, leading to the production of 

glucose via gluconeogenesis [196].  

A bioinformatic means of supporting S. pombe FBP1 as an orthologue of S. cerevisiae 

SHB17 could be garnered using reciprocal BLAST searches. However, multiple reciprocal 

BLAST searches using both the protein (and nucleotide) sequence of S. pombe FBP1 

against the S. cerevisiae genome (and vice versa) did not yield any evidence that S. pombe 

FBP1 may be an orthologue of S. cerevisiae SHB17. The results of BLASTP are shown in 

the appendix (Table A5.1 and Table A5.2). Furthermore, no evidence of FBP1 being an 

orthologue of SHB17 was obtained when using web-based reciprocal BLAST algorithms 

HomoloGene [197] and Inparanoid [198] (data not shown). A possible explanation for this 

result is that several classes of genes evolve more rapidly within fission yeasts than 

budding yeasts; these include genes involved in glycolysis and respiration. Conversely, 

genes involved in ribosome assembly have been reported to evolve slower in fission yeast 

than in budding yeast (Supplementary Material of [66]). Reciprocal BLAST does not 

entirely take into account the history where gene duplication has occurred. This is 

noteworthy as the evolution of S. cerevisiae to utilise ethanol as a carbon source occurred 

after a whole-genome duplication event [66]. Furthermore, the highly divergent nature of 

genes involved in carbon metabolism within the Schizosaccharomyces species itself (such 

as the lack of FBP1 in S. japonicus) may explain why S. pombe FBP1 was not identified as 

an orthologue of SHB17. The most appropriate way to prove or disprove the hypotheses 

derived within this chapter would be through experimental validation.  
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5.4.3 Identifying candidates for experimental validation 

The work in this chapter has cumulated in a hypothesis that FBP1 has a dual role in S. 

pombe. This hypothesis is built upon the bioinformatic methods and congruent literature, 

what it lacks is experimental validation. It has however, identified candidate genes which 

could be used to test and validate the findings reported in this study. 

Potential future experiments include deleting FBP1, then increasing / decreasing ribose-5-

phosphate demand and measuring the accumulation of metabolites by using a labelled 

carbon source. If FBP1 does have dual functionality then it would be expected that when 

ribose-5-phosphate demand is high, there would be an accumulation of labelled SBP (as 

the deletion of FBP1 would mean SBP would not be catalysed), conversely when ribose-5-

phosphate is low, then there would be an accumulation of labelled FBP (as the deletion of 

FBP1 would mean FBP would not be catalysed). Another experiment could involve 

deleting TAL1 and NQM1, two transaldolase genes that are involved in catalysing reactions 

in the non-oxidative arm of the PPP. By inhibiting the non-oxidative PPP, the cell 

effectively loses one of its means of producing ribose-5-phosphate, therefore flux through 

riboneogenesis should increase in order to fulfil the demand of ribose-5-phosphate. This 

means that FBP1 would be catalysing the thermodynamically driven reaction within 

riboneogenesis at a higher rate than usual during times of high ribose demand. The flux 

through FBP1 could be quantified by using labelled glucose and measuring the 

accumulation of sedoheptulose-7-phosphate (the product of FBP1 catalysing SBP). 

Finally, I hypothesised that ubiquitin may act as an allosteric regulator of FBP1 by binding 

to its allosteric site. In order to test this, yeast strains containing a knockout of the the 

ubiquitin ligase SPBC106.13 could be grown under conditions when ribose-5-phosphate 

demand was high (the demand could be increased by depleting the ribonucleotide pool) 

and then measuring metabolite flux through FBP1. If the binding of ubiquitin to FBP1 is 
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truly the event which changes the affinity of FBP1 for SBP, then there would be an 

accumulation of FBP and a depletion of SBP. 

 

5.4.4 There is evidence of riboneogenesis conservation across yeast species 

To date, there have been no in-depth investigations into riboneogenesis in S. pombe. Given 

that there exist many key differences in carbon metabolism between S. cerevisiae and S. 

pombe, the results so far suggest that riboneogenesis is conserved within S. pombe, 

however the key difference appears to be the enzyme that thermodynamically drives 

riboneogenesis 

The analysis of the S. pombe expression network ascertained the degree of overlap with the 

S. cerevisiae expression network. These included the separation of ribosome biogenesis 

and ribosomal proteins to separate modules (S. pombe: Figures 5.2 and 5.3 respectively, S. 

cerevisiae: Figures 3.2 and 3.3 respectively), the over representation of a module enriched 

in stress response genes (S. pombe: Figure 5.4, S. cerevisiae: Figure 3.4) and the co-

expression of RPs, cell cycle and cytosolic energy metabolism genes (S. pombe:Figure 5.3, 

S. cerevisiae: Figure 3.2). The most significant result was the apparent transcriptional 

coupling of genes involved in riboneogenesis to ribosomal proteins. I identified that many 

genes involved in glycolysis and PPP were significantly coupled with ribosomal proteins, 

including FBA1, GPM1, PGK1, TPI1, ENO101 and SPAC144.12 (ribulose-5-phosphate 

isomerase) were all first neighbours of cytosolic ribosomal proteins. This is particularly 

important as the same (or homologous) genes were also identified as first neighbours of 

cytosolic RPs in my S. cerevisiae expression network analysis, including FBA1, PGK1, 

enolase enzymes (ENO1, ENO2), triose phosphate dehydrogenase enzymes (TDH1), and 

PDB1. These results are consistent with reports that riboneogenesis is heavily dependent 
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on glycolytic intermediates [92]. Furthermore, my network analysis in S. pombe suggests 

that FBP1 substitutes for SHB17 in providing the sedoheptulose-1, 7-bisphosphatase 

required for riboneogenesis and that the mechanism involved in switching FBP1 activity is 

dependent on the cellular demands of the cell. 

 

5.5 Concluding remarks 

This chapter reported the construction and interrogation of a S. pombe gene expression 

network, using one of the largest and most comprehensive expression compendiums 

available. This chapter focused on characterising an S. pombe gene expression network 

and elucidating the degree of conservation of riboneogenesis in S. pombe. The constructed 

network identified multiple connections between genes encoding ribosomal proteins and 

energy metabolism enzymes, consistent with current literature [92]. The work reported in 

this chapter is the first time a global gene expression network in S. pombe has been 

constructed with the purpose of tackling the degree of conservation of riboneogenesis in S. 

pombe. Furthermore, the network analysis suggested FBP1 may substitute for SHB17 in S. 

pombe having functions in both gluconeogenesis and riboneogenesis. Though FBP1 did 

not appear as an orthologue to SHB17 during reciprocal BLAST searches, there is however 

multiple sources of evidence from both this study and existing literature that FBP1 has the 

potential to accept both SBP and FBP as substrates. Research into the 

Schizosaccharomyces genus showed how carbon utilisation and energy production differs 

compared to the Saccharomyces genus suggesting that the potential dual nature role of 

FBP1 may be possible. These results however are limited by the lack of experimental 

evidence demonstrating the role of FBP1 in riboneogenesis. Experimental work focused on 

elucidating the dual role of FBP1 is essential in order to validate the hypotheses developed 

in this chapter.  
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Similarly to the networks constructed in prior chapters, a genome-wide network inference 

approach was used. This means that although the focus was on understanding 

riboneogenesis in S. pombe, the network can in fact be interrogated and queried in regards 

to any other biological process. This is particularly important, as comprehensive 

compendia such those used in this study are lacking in S. pombe, therefore this network 

provides a foundation upon which to build hypotheses and aid in the identification of 

potentially novel gene relationships. 

The next chapter reports the genome wide binding of a group of representative 60S 

cytosolic RPs in S. pombe. The aim is to identify the genome-wide binding pattern of these 

RPs, and possibly elucidate the mechanisms by which FBP1 expression is regulated in 

response to cellular demand. 

 

  



 

193 
 

CHAPTER 6: THE GENOME-WIDE ASSOCIATION 

OF RIBOSOMAL PROTEINS IN Schizosaccharomyces 

pombe 

 

6.1 Abstract 

In Chapter 2, I reported that a network inference approach analysing fitness data identifies 

highly connected modules that are representative of key cellular functions. An outcome of 

this analysis was the phenotypic linkage between ribosomal factors and cytoplasmic 

energy metabolism processes. The expression network analysis described in Chapter 3 

showed that one of the most conserved relationships is that between glycolysis and 

ribosome biogenesis in S. cerevisiae. Co-fitness and co-expression between these genes 

were also found in the integrated network (Chapter 4). In Chapter 5, I performed a similar 

network analysis in S. pombe. The results indicated that fructose-1, 6-bisphosphatase 

(FBP1) may be required for riboneogenesis in S. pombe. This chapter reports the RNA-

dependent interactions between RPs and many transcription sites which suggest that RPs 

bind as components of a preassembled multi-protein complex. It also reports that RPs 

associate with a wide assortment of genomic loci, notably heterochromatin, tRNAs and 

genes encoding proteins involved in glycolysis and riboneogenesis including FBP1 as 

suggested by my S. pombe network analysis (Chapter 5). This chapter concludes by 

hypothesising a possible mechanism in which ribosomal proteins regulate target genes by 

affecting transcription and translation. 
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6.2 Introduction 

Ribosomal proteins (RPs) are a main component of ribosomes [199] [200], RPs are thus 

believed to be only present in the cytoplasm of eukaryotes. However, the unexpected 

finding that at least 20 RPs and tRNAs are present at transcription sites in Drosophila, 

suggested that ribosomal subunits may actually associate to nascent mRNAs [201]. 

Previous studies have reported that RPs bind to non-coding RNA genes in S. cerevisiae, 

suggesting that RPs association to nascent mRNAs may involve free RPs that are not part 

of the ribosome, indicating that association is independent of gene translation [202]. The 

possibility that RPs have extra ribosomal functions is not novel, several RPs have been 

reported to have extra ribosomal functions. Some RPs are able to regulate their own 

expression by binding their own mRNA or promoters and affecting transcription splicing 

or translation [100] [98] [101] [99]. RPs have also been reported to bind transcription 

factors at the promoters of other genes. Examples include ribosomal protein S3 (RPS3) in 

human, which regulates a subunit of the NF-κB DNA-binding complex involved in 

chromatin binding and transcription regulation [203]. Ribosomal protein L22 (RPL22) and 

other RPs, bind histone protein H1 and suppress transcription in Drosophila [204]. 

Although consensus is that RPs have specific functions at specific genes, it is unclear why 

multiple RPs are found together at the same transcription sites of unrelated genes. If 

binding of each RP occurs individually, then association to genomic loci would be 

dependent on its RNA binding or protein binding affinity, and if this is truly the case then 

it wouldn’t explain why several RPs are found together at the same sites. However if we 

assume that the RPs associated to chromatin as part of a non-functional silent complex,  

then the observation that RPs are often associated to the same genomic loci would then 

make sense. Conversely the presence of RPs at transcription sites may not be functionally 

significant, the association to chromatin may be due to excess RPs that are not 
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incorporated into ribosomes simply interacting non-specifically with nucleic acids [205]. 

RPs are basic (pl > 10) [50] so at higher concentrations it is possible that they may 

associate to chromatin, however studies have shown that mechanisms exist that degrade 

excess RPs in order to maintain low cellular concentrations of RPs [200] [199] [205]. 

Here, we investigate the genome-wide association of three representative 60S RPs in S. 

pombe. ChIP assays, ChIP-chip and subsequent wet lab experiments were performed by 

Sandip De, a collaborator and PhD student at The University of Birmingham. Here we 

report a bioinformatic analysis of the genome wide association of RPL7, RPL11 and 

RPL25. Notably, we identified that these RPs have a common set of at least 178 

transcriptional loci including 74 protein coding, 36 non-coding and 64 coding tRNAs. We 

also demonstrate RPs bind the centromeric regions of all three S. pombe chromosomes. 

The similar binding profiles of the three RPs suggest that they are bound as components of 

complexes consisting of multiple proteins. Further analysis revealed that seven glycolysis 

genes and gluconeogenesis gene FBP1 are significantly (p-value: 10
-4

) associated to all 

three RPs, furthermore a subset of these genes were identified as first neighbours of 

ribosomal factors in the S. pombe expression network (Chapter 5). The direct binding of 

RPs to glycolysis genes suggests a regulatory mechanism in which RPs control their own 

synthesis by limiting the availability of glycolytic intermediates. 

This analysis was conducted in collaboration with Sandip De, who performed all lab 

experiments, whilst I performed all bioinformatic analysis. The genome-wide association 

of RPs to S. pombe chromosomes is published in De et al. 2011 [50]. In this chapter, I 

report on the bioinformatic analysis of the ChIP-chip data required for the paper, before 

focussing on the verification of the linkage RPs to energy metabolism genes.  
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6.3 Methods 

6.3.1 Experimental analysis 

S. pombe transformation, imaging, RNA analysis, synchronisation of fission yeast cells, 

ChIP and ChIP-on-chip experiments were performed by Sandip De. Experimental details 

can be found in our paper [50]. 

 

6.3.2 Processing and visualisation of ChIP-chip data 

We used the Model-based Analysis of Tiling Arrays (MAT) software for analysis of the 

Affymetrix hybridization data [52] together with a custom made 2011 BPMAP file.  MAT 

software is specifically developed for the analysis of ChIP-chip data produced using tiling 

arrays [52].  MAT identifies genomic regions significantly bound by proteins on 

Affymetrix Tiling Arrays. ChIP input DNA was used as the control for the analysis and 

was compared against the RP data. A p-value of 10
-4

 was used; remaining MAT 

parameters remained as default. Results of MAT were visualised in Affymetrix’s 

Integrated Genome Browser (IGB) [206]. 

 

6.3.3 Identification of enriched regions and calculation of enrichment scores 

MAT only detects regions of the genome that are significantly enriched, therefore 

identification of genomic features such as coding regions, introns and repeat regions had to 

be detected using bioinformatic methods. Genomic features were considered significantly 

enriched if 50% or more of the feature was bound by the RP protein in question. To 

calculate the average enrichment score per feature, the probe by probe enrichment scores 

calculated by MAT were cross-referenced with genomic feature positions using an up to 

date S. pombe genome coordinates file and an average enrichment score was calculated 
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between the start and end coordinates of each enriched genomic feature. Thereby giving 

each enriched genomic feature a score based on fold enrichment.  Identification of 

significantly bound genomic features and enrichment score calculation was done using the 

statistical computing language R [11]. Functional annotation of the enriched features was 

done using the Database for Annotation, Visualization and Integrated Discovery (DAVID) 

[21]. Consistent with previous chapters, functional annotations provided by DAVID were 

classified into three groups, those with an FDR < 0.05, those with an FDR < 0.1 and those 

with no statistically significant functional enrichment. 
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6.4 Results 

6.4.1 RPs associate both with coding and non coding genes 

Chromatin-immunoprecipitated DNA was hybridised to S. pombe genomic tiling arrays 

(see Materials and Methods and De et al. 2011 [50]). We analysed three yeast strains 

expression, HA-tagged RPL7, RPL11 and RPL25, with two independent biological 

replicas of each using chromatin samples prepared at independent times from independent 

cultures. Significant binding sites for each RP were identified using MAT software [52]. 

Using Pearson correlation we identified a high probe-by-probe signal correlation between 

RPs and their corresponding replicas (> 0.76), demonstrating highly similar binding 

between replicas [50]. The analysis revealed that the three RPs associated to many loci 

throughout the three chromosomes (Figure 6.1).  

There are limitations to the S. pombe genome feature file (gff) used to identify the 

significantly associated genomic features. Not all features are well annotated and are 

therefore designated as being ‘unknown’. Unknown regions are regions which are 

uncharacterised and do not have a gene name associated to them. For this reason the 

analysis was split to identify annotated and unknown regions respectively (Table 6.1). The 

number of loci bound by RPs differs slightly between what is reported in this chapter and 

what we reported in 2011 [50]. This is because in the latter analysis a new up-to-date 

binary probe map (BPMAP) was used. The BPMAP file contains genomic probe position 

information for Affymetrix Tiling Arrays, including the mapping of X/Y coordinates of 

each probe. Probes within BPMAP files are also classified as perfect match or mismatch. 

An updated BPMAP was required as mapping between probe and genomic positions 

change slightly as the genome becomes increasingly annotated.  Previously we used an 

older BPMAP as it was the most recent BPMAP available at the time. The construction 

and inclusion of an up-to-date BPMAP in this bioinformatic ChIP-chip analysis therefore 
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led to more accurate and reliable results. Annotations of significantly associated known 

and unknown genomic features are shown in figure 6.2. 

 

Yeast 

culture  
Statistically significant 

genomic features bound  
Annotated within gff 

file  
Classified as 

‘unknown’  

RPL7  355  251   104  

RPL11  381  319  62  

RPL25  547  458  89  

Table 6. 1 Total genomic features (annotated and unknown) bound by RPL7, RPL11 and 

RPL25 using a MAT p-value of 10
-4

 

 

Analysis showed that RPL25 binds additional loci compared to RPL7 and RPL11 (Table 

6.1), however visual inspection of the data suggests that the binding profile for the RPs 

across the chromosomes are very similar (Figure 6.1). This observation was supported by 

statistical validation, by calculating the Pearson correlation between the binding profiles of 

each RP (Table 6.2). This suggests that the reason why RPL25 associate to more genomic 

features is because it binds the same loci as RPL7 and RPL11, but with a higher affinity, 

consequentially MAT identifies more regions significantly enriched by RPL25.  

Pearson correlation between 

ribosomal proteins 
Chr I  Chr II  Chr III  

RPL7  RPL11  0.84  0.89  0.87  

RPl11  RPL25  0.89  0.93  0.93  

RPL7  RPL25  0.85  0.86  0.87  

Table 6. 2 The Pearson correlation between the RP ChIP-chip binding profiles across the 

three S. pombe chromosomes 

The similar binding profile of RPL7, RPL11 and RPL25 is verified using Pearson correlation. The 

table shows that the correlation coefficients lie between 0.84 and 0.93 signifying a highly similar 

binding pattern for RPL7, RPL11 and RPL25 across all three S. pombe chromosomes.  
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Figure 6. 1 The genome-wide association of the RPs to the S. pombe genome. 
Chromosomal binding profiles of the RPs across the three chromosomes visualised using IGB. 

Each RP is represented in a different colour, RPL7 (green), RPL11 (blue), RPL25 (orange). X-axis 

shows the distance from the left chromosome end in megabases (Mb). Chromosomes are separated 

as described at the top of the figure. Y-axis indicates the log2 MAT enrichment score. Regions 

identified as significantly bound by the RP is shown in the red boxes above each binding profile. 

The plot is based on two ChIP-chip biological replicas and two control arrays hybridised with input 

DNA, used as a standard across all yeast strains. Position of centromeres and telomeres are 

highlighted with the vertical boxes. 
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Figure 6. 2 Pie-charts showing the proportions of bound genomic regions. 
Panel A. Significantly bound genomic features. Panel B significantly bound unannotated features 

for RPL7, RPL11, and RPL25   
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Results show that RPs are most associated to protein coding genes, ncRNAs and tRNAs 

(Figure 6.2A). A small proportion of hits corresponds to pseudogenes and other non-

protein encoding RNAs (snoRNA, snRNA and rRNA) (Figure 6.2A). Analysis of enriched 

unannotated regions shows enrichment of specific gene features such as repeat regions, 

long terminal repeats (LTRs) and introns (Figure 6.2B). The data shows that RPs tend to 

associate to repeat regions (Figure 6.2B). Finally, RPL11 and RPL25 are clearly found at 

origins of replication (the association with RPL7 is visibly apparent but below significance 

threshold level we have used). Interestingly, all significantly bound origins of replication 

are located within a single dense cluster (Figure 6.3). Although a total of 401 strong DNA 

replication sites have been reported in S. pombe [207], there are a total of 16 confirmed 

genomic features annotated as ‘origins of replication’ in the 2011 S. pombe genome, of 

which ten are significantly bound by RPL11 and RPL25. 

 

 

Figure 6. 3 The association of RPL7 RPL11 and RPL25 to origins of replication. 
RPL7, RPL11 and RPL25 association are represented as green, blue and orange respectively. Red 

blocks represent significant binding as determined by MAT software using a p-value of 10
-4

. The 

black blocks at the bottom of the figure represent the dense cluster of replication origins. The 

figure shows that only RPL11 and RPL25 have significant association to these regions, associating 

with all 10 replication origins within the tightly packed cluster.  
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6.4.2 RPs show significant association to specific regions of the centromere 

RPs associate to centromeric regions (highlighted by the black boxes in Figure 6.1). We 

also find that enrichment is highest at tRNA genes found in dense clusters within the 

centromere (Figure 6.4). Fission yeast centromeres contain a central core of non-repetitive 

DNA (cnt), flanking the cnt region are two repeat regions termed innermost repeats (imr), 

followed by the outer repeats (otr); the outer repeats contain multiple copies of dh and dg 

repeats [208] [209]. The data demonstrates that RPs significantly associate to the 

centromeric regions of all three chromosomes, with association highest at the cnt and imr 

regions (Figure 6.4). Further investigation of this association using sequence specific ChIP 

and real time PCR confirmed the RP association to centromeres and that the association 

was sensitive to RNase treatment (data not shown) [50]. The cnt region was believed to be 

untranscribed [210], however a study in 2011 revealed that the cnt is transcribed but 

mRNAs are rapidly degraded [211], so mRNAs fail to accumulate to a measureable extent. 

  



 

204 
 

 
Figure 6. 4 ChIP-chip binding profile of each protein to the three S. pombe centromeres as 

visualised in IGB. 

An up-to-date reanalysed version of the figure presented in De et al [50] The map below each 

panel shows a schematic of fission yeast centromeres, with the three major domains labelled otr, 

imr and cnt. Centromeric tRNA gene loci are indicated by black lines at the bottom of each panel. 

Clusters of tRNA genes can be seen flanking the otr regions. Regions identified by MAT as 

significantly bound are shown in red above the corresponding RP.  
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6.4.3 Functional analysis of RP binding profiles reveals links with tRNAs, energy 

metabolism pathways and membrane related genes  

Using the annotated genes bound by the RPs (therefore excluding the regions classified as 

unknown), we used DAVID to determine the functional enrichment for each RP. The most 

significant functions and a selection of potentially interesting yet non-significant functions 

are shown in Table 6.2. (The raw DAVID files for the genes bound by each RP are 

available on the supplementary CD, in folder ‘Chapter 6’). Functions with an FDR <0.05 

are highlighted in red, functions with a FDR <0.1 are highlighted in green. Interestingly 

we identified three highly significant functional annotations that are common all three RPs. 

The first is triplet codon amino acid adaptor activity (average FDR: 5.82x10
-58

) consistent 

with a significant association to tRNA genes (Figure 6.2A). Second, we find multiple 

genes encoding membrane related proteins (transmembrane, intrinsic to membrane, and 

cell surface) (average: FDR 10
-4

). Finally, our data suggests that RPs bind genes involved 

in glycolysis (average FDR: 2.18x10
-2

). The association of RPs to glucose metabolic 

processes supported the linkage with energy metabolism observed in Chapters 2, 3, 4 and 

5.  We also identify numerous less significant functions which RPs associate to 

(represented in black). Overlap analysis between the genes bound by the three RPs, to 

determine if all RPs significantly bind a common selection of genes. (Figure 6.5, Table 

6.3). The results are reported in the next few sections 
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Protein  Features  Known / 

unknown  
Detected in 

DAVID  
Functional annotation  

RPL7  355  251 / 104  168  triplet codon-amino acid adaptor activity (70), 5 transmembrane protein  Schizosaccharomyces 

pombe (7), cell surface (12), intrinsic to membrane (30), Glycolysis / Gluconeogenesis (6), gpi-

anchor (4), oxidoreductase (4), cation homeostasis (3), cytoplasm (24), specific RNAPII 

transcription factor activity (3) 

RPL11  381  319 / 62  230  triplet codon-amino acid adaptor activity (73), cell surface (17), 5 transmembrane protein -

Schizosaccharomyces pombe (6), Glycolysis / Gluconeogenesis (6), intrinsic to membrane (38), 

external side of plasma membrane (7),  hexose metabolic process (7), oxidoreductase / NAD (11), 

gpi-anchor (3), cell tip (10), Zinc finger- C2H2-like (6), metal-binding (20), Transcription RNAPIII 

promoter (3), rrna processing (3), ubl conjugation pathway (3), regulation of mitotic cell cycle (4) 

RPL25  547  458 / 89  314  triplet codon-amino acid adaptor activity (86), signal (31), intrinsic to membrane (66), anchored to 

membrane (8), fungal-type cell wall (9), integral to plasma membrane (8), Glycolysis / 

Gluconeogenesis (7), phosphate transmembrane transporter (3), regulation of glucan biosynthesis 

(3), Thioredoxin-like (3), magnesium (7), hexose metabolism (7,fatty acid biosynthesis (5), cell tip 

(13), RNA recognition motif - RNP-1 (6), Glycoside hydrolase catalytic core (3), Transcription 

RNAPII promoter (3), amino acid glycosylation (3), metal-binding (24), cytosolic ribosome (8), 

heterocycle biosynthesis (3), Protease (4), Ubiquitin mediated proteolysis (3), purine nucleotide 

biosynthesis (3), regulation of cell cycle (10), kinase (8), protein amino acid phosphorylation (5), 

meiosis (10), dna repair (4), nucleosome organization (3), mitochondrial envelope (5),  

Table 6. 3 Functional analysis of genes associated to RPL7, RPL11 and RPL25 

Red text indicates an FDR of < 0.05, green text indicates an FDR of < 0.1, and black text represents non-significant enrichment.  
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Overlap  Features  DAVID  Functional annotation  

RPL7, RPL11, 

RPL25 
178  134 translational elongation (65), signal (11), cell surface (10), Glycolysis / Gluconeogenesis (6), intrinsic to 

membrane (21), fungal-type cell wall (3), plasma membrane (3), magnesium (5), oxidation reduction (3), 

cation homeostasis (3),  RNAPII transcription factor activity (3), cytoplasm (19) 
RPL7, RPL25  34  17 intrinsic to membrane(8), base pairing with mRNA  (3) 
RPL11, RPL25  89  59 plasma membrane (13), , site of polarized growth (6), cell wall (5), oxidation reduction /FAD (3), triplet 

codon molecular adaptor activity (5), endoplasmic reticulum (10), regulation of mitotic cell cycle / cell 

division (4), carboxylic acid biosynthetic process (4), proteolysis / ubl conjugation pathway (3), iron ion 

binding (3), purine nucleotide binding (8), organelle lumen (3) 
RPL7, RPL11  2  2 Isomerase (2) 
RPL7 specific  37  15 Methyltransferase type 12 (3) 
RPL11 specific  50  35 base pairing with mRNA (3), nucleolus (4), endoplasmic reticulum (5), metal-binding (3) 

RPL25 specific  157  104 molecular adaptor activity (13), oxidoreductase (10), intrinsic to membrane (25), RNA recognition motif- 

RNP-1 (4), vitamin biosynthetic process (3), anchored to membrane (3), establishment or maintenance of 

actin cytoskeleton polarity (3), fatty acid biosynthetic process (3), anion transport (3), cytosolic ribosome (7), 

positive regulation of transcription from RNAPII promoter (3), cytoplasmic vesicle (3), gtp-binding (3), 

meiosis (7), iron (7), endoplasmic reticulum (11), cytoskeleton organization (6), kinase / phosphorylation (5),  

negative regulation of nitrogen compound metabolic process (3), macromolecular complex assembly (4), 

metal-binding (7), proteolysis (4), mitochondrial envelope (3), cellular protein localization (5), nucleolus (3) 

Table 6. 4 Functional analysis of RP overlap of annotated genes. 

Red text indicates a FDR of < 0.05, green text indicates an FDR < 0.1, and black text represents non-significant enrichment. 
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Figure 6. 5 The overlap between RPL7, RPL11 and RPL25 
Panel A. Overlap of genes bound by RPs. Panel B. Piechart of the 178 overlapping genes 

 

 

 

6.4.3.1 RPs are associated to tRNA genes 

We determined that RPs associated to tRNAs, this is particularly apparent at the dense tRNA 

clusters within the centromeres (Figure 6.4). Clusters of tRNA genes are known to be present in S. 

pombe centromeres [57]. This is clearly apparent within chromosome II, where there are two clear 

peaks indicating increased enrichment with a cluster of tRNA genes (Figure 6.4 centromere II).  

Bioinformatic analysis revealed a total of 27 tRNAs genes located within the centromeric regions 

of S. pombe, our overlap analysis identified that all 27 centromeric tRNAs are bound by the three 

RPs. In fact, of the 178 overlapping genomic features, 65 are tRNAs (Table 6.3) indicating that 

RPs have a stronger association to genes encoding tRNAs (Figure 6.5B). The 65 shared tRNA 

genes had an average fold enrichment of 9.74 with all three RPs. The remaining 38 enriched 

tRNAs, were dispersed in different chromosomal regions and exhibit highly specific enrichment, in 

which RP binding encapsulates the entire tRNA gene only, without spreading into neighbouring 

genomic regions (Figure 6.6). There are a total of 171 annotated tRNA genes in the tiling array, we 

classified them all regardless of whether they were significantly enriched or not (Figure 6.7 shows 

a newer and more accurate revision of the figure published in De et al. 2011 [50]). The association 
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between RPs and tRNA genes were verified by Sandip De. Data not shown, but please refer to De 

et al. 2011 [50].  

 

 

 
Figure 6. 6  Example of RPs association at noncentromeric tRNA genes from chromosomes  

II and III. 
A more up-to-date and revised figure of what was reported in De et al 2011 [50]. tRNA genes are 

represented as the black vertical lines at the bottom of each plot. The upper and lower set of tRNA 

genes indicate the upper and lower DNA strands respectively. We show that RP association to 

tRNA genes are highly specific, with peaks localised only to regions where tRNA genes are 

located. 
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Figure 6. 7 Stacked bar charts representing the association of the RPs with all known 171 

tRNA genes. 
tRNA genes were classified into six classes based on their enrichment score (see colour legend). 

The heights of the cars represent the total percentages of the tRNAs encoded by each chromosome 

 

 

 

6.4.4 RPs associate to genomic loci encoding proteins involved in the glycolysis and 

gluconeogenesis pathways 

Studies in previous chapters revealed a strong linkage between genes encoding RPs and 

energy metabolism enzymes.  This section addresses the issue of whether RPs significantly 

associate with glycolysis genes. To do this, every cytoplasmic energy metabolism gene 

that was significantly bound by RPL7, RPL11 and RPL25 were identified. A total of eight 

genes were met the criteria (Table 6.4) Visualisation of these genes in IGB revealed that 

RP binding covered the entirety of the gene (Figure 6.8), and in all cases, RPL25 had the 

most coverage and highest enrichment scores (Table 6.4).  
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Gene  Systematic name  Chr  Product  RPL7 RPL11 RPL25 

FBA1  SPBC19C2.07  II   fructose-bisphosphate  

 aldolase Fba1 
6.98 7.93 9.70 

GPD3  SPBC354.12  II  Glyceraldehydes-3-phosphate 

dehydrogenase 
8.04 8.44 9.82 

GPM1 SPAC26F1.06  I  glycerate phosphomutase  7.22 7.27 7.30 

PGK1 SPBC14F5.04c  II  phosphoglycerate kinase 

Pgk1  (predicted)  
5.83 6.34 8.53 

SPAC1

F8.07c 

SPAC1F8.07c I  pyruvate decarboxylase 

(predicted)  
6.45 5.95 7.94 

PYK1 SPAC4H3.10c  I   pyruvate kinase (predicted) 5.97 6.47 8.20 

TDH1 / 

GPD1 

SPBC32F12.11 III glyceraldehyde-3-phosphate 

dehydrogenase 
8.11 7.97 9.54 

FBP1 SPBC1198.14c II fructose-1,6-bisphosphatase / 

sedoheptulose-1, 7-

bisphosphatase 

7.53 5.99 6.18 

Table 6. 5 Information on the cytoplasmic energy metabolism genes bound by RPs, with their 

corresponding enrichment scores 
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Figure 6. 8 Binding profiles for the seven glycolysis genes and gluconeogenesis gene FBP1 

bound by RPs. 
Green represents RPL7, blue represents RPL11, orange represents RPL25. Red boxes above the 

binding profile represent the region identified to be significantly bound by the RP using MAT 

software. The black boxes at the bottom of each panel indicate genes as annotated in the current 

genome file for IGB. Genes encapsulated in the red box highlight the gene in question. The results 

show that in some cases, RP binding is highly specific, binding only to the gene, such as FBP1, 

GPM1, TDH1 & PYK1. In other cases, RP binding is quite widespread, encapsulating numerous 

genes, including glycolysis genes (SPAC1F8.07c)   
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As described in the introduction chapter, riboneogenesis is a metabolic pathway that joins 

glycolysis to the non-oxidative branch of the PPP leading ultimately to the production of 

ribose-5-phosphate. Ribose-5-phosphate is an essential precursor of nucleotides, and is 

therefore essential for rRNA transcription. rRNA molecules are essential for ribosome 

biogenesis as they make up the core of the ribosome [212].  

The discovery of riboneogenesis proved that there was a close relationship between flux 

through the glycolytic pathway and the rate of ribosome biogenesis [92]. The results of RP 

ChIP-chip binding suggested that RPs may have a role in regulating the expression of 

glycolysis genes. The ChIP-chip data shows that the FBP1 gene is bound by the three RPs 

(Figure 6.8). This association is significant as FBP1 in S. pombe has sedoheptulose-1, 7-

bisphosphatase activity [58] and this enzymatic activity is reported to be essential in 

driving riboneogenesis in S. cerevisiae [92]. Furthermore the glycolytic intermediates 

required for riboneogenesis are fructose-6-phosphate, dihydroxyacetone-phosphate and 

glyceraldehyde-3-phosphate (Chapter 1, Figure 1.2).  

The ChIP-chip analysis identifies that both FBA1 and TPI1 associate with RPs, both 

enzymes are responsible for the entry of glycolytic intermediates the into riboneogenesis 

pathway [92]. Additionally, RPL25 significantly binds two aldo-keto reductases; 

SPAC750.01 and SPAC977.14c, a class of enzyme involved in glucose metabolism [173]. 

The ChIP-chip results provided supporting evidence that riboneogenesis is conserved in S. 

pombe and validates our results from Chapter 5. The direct binding of RPs to genes 

encoding glycolytic enzymes suggests that RPs may regulate the expression of these 

enzymes and thus riboneogenesis. Currently known mechanisms of RP gene regulation 

include RPs acting as inhibitors by binding the promoter regions, coding regions and 

intron exon junctions and affecting the recruitment of transcription and translation 

machinery [100]. Inhibition of the glycolytic pathway would be expected when ribose-5-
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phosphate demand is low. The excess RPs may bind glycolytic genes as a partially 

assembled but functionally silent complex, effectively repressing glycolysis. However, 

when ribose demand is high, such as during rapid cell growth, the bound RPs may 

dissociate from the glycolytic genes. Genes encoding glycolytic enzymes can then be 

expressed, thereby increasing the availability of glycolytic intermediates and thus 

increasing flux through the riboneogenesis pathway.  

This interpretation of the results is supported by the phases in the metacycle. During the 

reductive - charging phase there is a massive up-regulation in glycolysis and genes 

involved in carbohydrate breakdown [106] [94]. Other than to increase the concentration 

of NADPH and acetyl-CoA, the reductive charging phase may also increase the 

concentration of glycolytic intermediates. This means that upon entry to the oxidative 

phase, flux through riboneogenesis would be rapid. These ChIP-chip binding data verify 

the links between energy metabolism and ribosome biogenesis that were discovered in my 

S. pombe expression analysis. 
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6.5 Discussion 

6.5.1 RPs are present at many genomic loci 

The results presented in this chapter suggest that RPL7, RPL11 and RPL25 associated to 

both coding and non-coding loci, consistent with reports in S. cerevisiae [202]. The 

association of RPs to chromosomes has also been observed in Drosophila [201] [213], this 

suggests that binding of RPs to gene loci is generally conserved in eukaryotes. Treatment 

with RNase eliminated or significantly decreased ChIP signal for the three RPs, 

confirming that association is to genomic loci is RNA dependent [50]. Suggesting that RPs 

associated with RNAs at protein coding and RNA coding loci [50].  The observation that 

the three RPs have a similar global binding pattern and have a high level of overlap 

between significantly bound regions indicates that the RPs may be recruited together as 

part of a preassembled ribosomal subunit, with a role in nuclear translation. However, 

further lab studies did not find convincing evidence of translation at these sites (data not 

shown); therefore the issue of whether translation can occur in the nucleus at the sites 

identified in this analysis is an area for further research. Currently, it is understood that at 

any given time there are a pool of free RPs that are not assembled into ribosomal subunits 

and that these non-assembled RPs are free to perform additional functions within the 

nucleus [98], therefore a possible hypothesis as to why RPs associate with chromatin may 

be due to a non-ribosomal function such as regulating specific groups genes, a hypothesis 

that has been reported in numerous eukaryotic organisms. This may account for why they 

associate to the same genomic loci in our ChIP-chip experiments. 

 

6.5.2 RPs and their association to the centromere and tRNAs   

RPs show a remarkably strong association to centromeres, with association being more 

apparent at the clusters of tRNA genes interspersed throughout the centromeric region. 
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tRNA association isn’t isolated solely to centromeric regions though, tRNA genes located 

throughout the chromosomes also associate with RPs. tRNA genes make up ~ 0.1% of the 

S. pombe genome, yet represent > 36% of the binding sites shared by all the RPs [50]. . 

Visual inspection and identification of the enrichment profiles strongly indicate that the 

three RPs associate with the same centromeric loci and tRNA genes, with only RPL25 

binding additional tRNA genes. This supports the view that RPs are recruited to chromatin 

together as part of a preassembled but possibly silent complex.  

The data suggests that the association of RP complexes to centromeres may be required in 

order to fulfil a particular function, possibly the transcriptional regulation of tRNA 

biogenesis, which has already been proven in S. cerevisiae [214].  The role of RPs in 

transcription regulation is not limited to yeast, in mammalian cells, RPL11 has been 

reported to repress RNAPIII transcription [215]. Our S. cerevisiae fitness network also 

hinted at a similar interaction, as genes enriched as TFIID were found to overlap spatially 

with RPs when using a force directed layout (Chapter 2). 

 

6.5.3 RPs and their association to energy metabolism genes 

A key result of the ChIP-chip experiments described in this chapter was that RPs appears 

to directly associate to a subset of genes involved in glycolysis, PPP and riboneogenesis. 

Here I combine the results obtained from my S. pombe expression network (Chapter 5) to 

further evaluate the functional significance of these interactions. I assessed whether genes 

directly bound by RPs are significantly correlated to the cytosolic RPs, mitochondrial RPs 

and ribosome biogenesis genes identified in Chapter 5 (Table 6.5). 

I identify two main groups. The first group is classified by genes bound in the ChIP-chip 

data and are first neighbours in my S. pombe first neighbour ribosomal networks. The 
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second group is classified by genes that are bound by RPs, but are not first neighbours in 

our ribosome networks. The first group includes five energy metabolism genes which are 

bound by RPL7, RPL11 and RPL25, and also first neighbours to cytosolic RPs in the S. 

pombe expression network. These are FBA1, TPI1, PGK1, GPM1 and ENO101 (Table 

6.5). The hypothesis is that the expression of these genes is co-regulated by their direct 

physical interaction with RPs.  The glycolytic intermediate glyceraldehyde-3-phosphate 

(GAP) [92] is a product of the reactions catalysed by both FBA1 and TPI1, the data 

demonstrate these genes are bound by and transcriptionally correlated to the expression of 

cytosolic RPs (Table 6.5). The flux through riboneogenesis is dependent on numerous 

factors including cell cycle stage, growth rate, redox stress and nutrient availability [92]. If 

cells are undergoing rapid growth, the demand for ribose is high; therefore the production 

of glycolytic intermediates such as fructose-1, 6-phosphate (F6P) and GAP would also 

have to increase to maintain flux through riboneogenesis. Furthermore FBA1 and enolase 

enzymes were found to be first neighbours of ribosomal proteins within our S. cerevisiae 

expression network, suggesting that the enzymatic roles of key genes in riboneogenesis 

remain conserved across species. 

The second group include FBP1, GPD3, PYK1 and TDH1. These genes are bound by RPs 

yet do not appear as first neighbours in the S. pombe ribosomal networks. This observation 

suggests that despite having a direct physical interaction with RPs, they do not show any 

significant correlation to cytosolic RPs at the transcriptional level. The reason why we do 

not observe direct edges between PYK1, GPD3 and TDH1 may be due to the highly 

stringent threshold used to construct network. 

These results are consistent with the three reported routes of ribose production utilising 

glucose [92]. The first is through the oxidative PPP, in which we identify the glucose 6-

phosphate dehydrogenase enzyme, SPAC3C7.13c, as transcriptionally correlated to 
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cytosolic RPs and ribosome biogenesis genes. The second is via the non-oxidative PPP (in 

reverse) utilising aldolase enzymes, which we identify as being significantly correlated to 

cytosolic RPs and ribosome biogenesis genes (SPAC24H6.10c and SPAP8A3.07c) or via 

riboneogenesis (FBP1) which is bound by RPL7, RPL11 and RPL25. Ribose production 

through the non-oxidative PPP and riboneogenesis requires transketolase enzymes to 

convert the glycolytic intermediates F6P and GAP to xylulose-5-phosphate and erythrose-

4-phosphate, which are then converted to ribose-5-phosphate. Enzymes which catalyse 

these reactions are all identified as either being bound by RPs or are co-expressed with 

cytosolic RPs and / or ribosome biogenesis genes. 

 

6.5.4 Do ribosomal proteins control their own expression by binding to FBP1 

mRNA? 

The ChIP-chip data shows that FBP1 is bound by RPL7, RPL11 and RPL25. RPs are 

known to regulate gene expression through a variety of means, including inhibiting 

splicing by binding the intron – exon junctions of premRNA [100] and inhibiting 

translation by binding the 5’UTR of mature mRNAs [98]. Therefore, the association of 

RPs to specific genomic loci may suggest that they have a role in regulating those genes. 

Based on this evidence, one hypothesis is that RPs regulate their own synthesis by binding 

to the mRNAs of genes involved in glycolysis and riboneogenesis. For example, when the 

demand for ribose is high, the pool of free ribosomes is low. Therefore FBP1 and the 

seven glycolysis genes are expressed, providing the glycolytic intermediates for 

riboneogenesis. Conversely, when ribose demand is slow, the pool of free RPs is high 

therefore they associate to the mRNA of genes involved in riboneogenesis as part of a 

preassembled silent complex, effectively shutting down the riboneogenesis pathway.  
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In S. cerevisiae, SHB17 activity was shown to increase during times when ribose demand 

was high [92], therefore, when ribose demand is low, the cell needs a way of maintaining 

homeostasis and returning the concentrations of sedoheptulose bisphosphatase to normal, 

and this may be done by excess RPs binding SHB17 (in S. cerevisiae) or FBP1 (in S. 

pombe) directly and inhibiting expression. It is important to keep in mind however that 

many of the genes that RPs associate to, including tRNA and glycolysis genes, are also 

highly transcribed. Highly transcribed genes have more RNA polymerase II (RNAPII) 

molecules located at the transcription site [210], and therefore the DNA at these sites 

would be more accessible with plenty of nascent RNA being synthesised [216] [217]. 

Therefore the challenge is to determine if RP association to chromatin is a consequence of 

non-specific interactions between RPs and nucleic acids, or whether RP association serves 

a specific purpose, i.e. whether they act as a feedback mechanism to control the expression 

of FBP1 and glycolysis genes. In order to validate this hypothesis, further investigation is 

required. 
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Systematic name Official name Pathway Product Network first 

neighbours 

ChIP-chip  

        cyto mito bio rpl7 rpl11 rpl25 overlap 

SPAC24H6.04 HXK1 Glycolysis Hexokinase N N N N N N N 

SPAC4F8.07c HXK2 Glycolysis Hexokinase N N N N N Y N 

SPBC1604.05 PGI1 Glycolysis Phosphoglucose isomerase N N N N N N N 

SPBC16H5.02 PFK1 Glycolysis phosphofructokinase N N N N N N N 

SPBC19C2.07 FBA1 Glycolysis fructose-bisphosphate aldolase Y N N Y Y Y Y 

SPCC24B10.21 TPI1 Glycolysis triosephosphate isomerase Y N N N Y Y N 

SPBC32F12.11 TDH1 Glycolysis glyceraldehyde phosphate 

dehydrogenase 

N N N Y Y Y Y 

SPBC354.12 GPD3 Glycolysis glyceraldehyde phosphate 

dehydrogenase 

N N N Y Y Y Y 

SPBC14F5.04c PGK1 Glycolysis phosphoglycerate kinase (transferase) Y N N Y Y Y Y 

SPAC26F1.06 GPM1 Glycolysis phosphoglycerate mutase (mutase) Y N N Y Y Y Y 

SPCC1620.13 SPCC1620.13 Glycolysis phosphoglycerate mutase (mutase) N N N N N N N 

SPAC1687.21 SPAC1687.21 Glycolysis phosphoglycerate mutase (mutase) N N N N N N N 

SPAC222.01 SPAC222.01 Glycolysis phosphoglycerate mutase (mutase) N N N N N N N 

SPBC1815.01 ENO101 Glycolysis enolase Y N N Y Y Y Y 

SPBPB21E7.01c ENO102 Glycolysis enolase N N N N N N N 

SPAC4H3.10c PYK1 Glycolysis pyruvate kinase (transferase) N N N Y Y Y Y 

SPAC144.12 SPAC144.12 Non oxidative PPP Ribulose 5-Phosphate Isomerase Y N Y N N N N 

SPAC31G5.05c SPAC31G5.05c Non oxidative PPP Ribulose 5-Phosphate 3-Epimerase N N N N N N N 

SPAC750.01 SPAC750.01 Non oxidative PPP aldo / keto reductase N N N N N Y N 

SPBC2G5.05 SPBC2G5.05 Non oxidative PPP transketolase N N N N N N N 

SPBC1709.07 ERG27 Non oxidative PPP transketolase N N N N N N N 

SPAC977.14c SPAC977.14c Non oxidative PPP aldo / keto reductase N N N N N Y N 

SPBC215.11c SPBC215.11c Non oxidative PPP aldo / keto reductase N N N N N N N 
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SPBC8E4.04 SPBC8E4.04 Non oxidative PPP transketolase N N N N N N N 

SPCC1020.06c TAL1 Non oxidative PPP transaldolase N N N N N N N 

SPBC1198.14c FBP1 Gluconeogenesis / 

Riboneogenesis  

Closely related to SHB17 from Calvin 

cycle 

N N N Y Y Y Y 

SPAC732.02c SPAC732.02c Essential 

Riboneogenesis 

Closely related to SHB17 from Calvin 

cycle 

N N N N N N N 

SPAC186.08c SPAC186.08c other outcomes for 

pyrvate 

Lactate dehydrogenase N N N N N N N 

SPBC30D10.13c PDB1 other outcomes for 

pyrvate 

Pyruvate dehydrogenase beta Y N N N N N N 

SPAC26F1.03 PDA1 otherl outcomes for 

pyrvate 

Pyruvate dehydrogenase alpha N N N N N N N 

SPAC3A12.18 ZWF1 Oxidative PPP glucose 6-phosphate dehydrogenase N N N N N N N 

SPAC9.01 SPAC9.01 Oxidative PPP glucose 6-phosphate dehydrogenase N N N N N N N 

SPAC3C7.13c SPAC3C7.13c Oxidative PPP glucose 6-phosphate dehydrogenase Y N Y N N N N 

SPCC794.01c SPCC794.01c Oxidative PPP glucose 6-phosphate dehydrogenase N N N N N N N 

SPCC16C4.10 SPCC16C4.10 Oxidative PPP 6-phosphogluconolactonase N N N N N N N 

SPBC660.16 SPBC660.16 Oxidative PPP 6-phosphogluconate dehydrogenase N N N N Y N N 

SPAP32A8.02 SPAP32A8.02       xylose and arabinose reductase N N N N N N N 

SPAC2F3.05c SPAC2F3.05c xylose and arabinose reductase N N Y N N N N 

SPBC28F2.05c SPBC28F2.05c xylose and arabinose reductase N N N N N N N 

SPAC24H6.10c SPAC24H6.10c phospho-2-dehydro-3-deoxyheptonate 

aldolase 

Y N Y N N N N 

SPAP8A3.07c SPAP8A3.07c phospho-2-dehydro-3-deoxyheptonate 

aldolase 

Y N Y N N N N 

Table 6. 6 Identification of genes involved in glycolysis, PPP and riboneogenesis, and whether they bound by 60S ribosomes and / or are first 

neighbours in our S. pombe ribosome expression networks 

Columns 1 and 2 show the systematic and official gene name (if available), columns 3 and 4 represent the biological pathway associated to each gene and the 

product synthesised respectively. Column 5 indicates whether the genes were first neighbours of cytoplasmic RPs (cyto), mitochondrial RPs (mito) or 

ribosome biogenesis genes (bio) from the network studies conducted in Chapter 5. (Table legend continued on next page)  
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(Table legend continued) Column 6 indicates whether the ChIP-chip studies using RPL7, RPL11, 

RPL25 or all three (overlap) bound these genes. The analysis shows that FBA1, TPI1, PGK1, 

GPM1 and ENO101 associated to RPL7, RPL11 and RPL25, as well as first neighbours to RPs. 

TDH1, GPD3, PYK1 and FBP1 are bound by RPL7, RPL11 and RPL25 but not first neighbours of 

RPs in the S. pombe expression network. 

 

6.6 Concluding remarks 

This work reported the genome-wide binding of a representative group of 60S RPs, and in 

particular two key findings; the first is that that RPs associate to specific genomic loci, 

including to centromeres, and genes encoding tRNAs. The second is that RPs associate to 

genes involved in energy metabolism. The reason why RPs associate to genes involved in 

energy metabolism is not clear however it may be a form of autoregulation in which they 

bind and block the expression of genes involved in ribose-5-phosphate production when 

ribose demand is low. If true, the mechanism by which they do so, whether it is inhibiting 

transcription, blocking splicing or inhibiting translation is a question that needs to be 

answered in future experimental work. The role of RPs in their own autoregulation, and 

the regulation of genes involved in ribosome biogenesis have been reported several times, 

and is a conserved across eukaryotes and prokaryotes alike. However, given how recently 

riboneogenesis was discovered, the genome-wide RP ChIP-chip data provided a means of 

determining whether RPs associate to the same genes reported to be involved in 

riboneogenesis. This novel result is supported by evidence previously obtained in Chapter 

5, as well as reported by Clasquin et al [92] who briefly stated that in S. pombe labelled 

glucose appeared in the form of SBP, all of which suggest riboneogenesis is conserved in 

S. pombe. The work done in Chapter 5 and complemented in this chapter suggests that 

FBP1 may replace SHB17 as the key regulator of riboneogenesis. 
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CHAPTER 7: AN INVESTIGATION INTO THE 

NON – CANONICAL NUCLEAR FUNCTIONS 

OF NMD PROTEIN UPF1 IN 

Schizosaccharomyces pombe 
 

 

7.1 Abstract 

Nonsense-mediated mRNA decay (NMD) is a mechanism that stimulates destruction of 

mRNAs containing a premature termination codon (PTC). Up-frameshift 1 (UPF1) has a 

fundamental role in NMD, and is conserved in all eukaryotes. UPF1 is known to localise 

to the cytoplasm, but there is evidence that it can accumulate in the nucleus upon the 

blockage of protein nuclear export. Though the canonical function of UPF1 is associated to 

NMD, studies in human cells have suggested that UPF1 has additional nuclear roles such 

as involvement in telomere maintenance, cell cycle progression and DNA replication. In 

this chapter, we analyse the genome-wide association of UPF1, and in conjunction with the 

bioinformatic analysis on various multi-level datasets, we elucidate the possible nuclear 

roles of UPF1. This study presents evidence in support of UPF1 nuclear functions, 

demonstrating that UPF1 may facilitate replication fork progression through natural 

replication barriers, including repetitive sequence and tRNA genes. Finally, using the 

developed S. pombe expression network (Chapter 5), I identify that UPF1 is co-expressed 

with genes encoding DNA polymerase, substantiating reports that UPF1 is likely to have a 

role in DNA replication.  

My published review on currently known UPF1 nuclear functions, on which my 

introduction below is based upon, is bound to the end the thesis (with permission from 

Biochemical Society Transactions, Ref: PPL-EX-2014-00035).  
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7.2 Introduction 

UPF1 is a DNA / RNA helicase [218], with an essential role in NMD [219]. mRNAs 

containing a PTC can potentially express toxic truncated proteins. To prevent this, NMD 

surveys and rapidly destroys any PTC containing mRNAs [220] [221]. In yeast, the 

association between UPF1, UPF2 and UPF3 make up the core machinery required for 

NMD [222]. These three UPF proteins are also conserved across all eukaryotes [223], 

however in higher organisms such as C. elegans, humans and D. melanogaster, additional 

proteins are required for efficient NMD to occur. These include suppressor with 

morphogenetic effect on genitalia (SMG) proteins [221]. In humans, failure to detect and 

degrade mRNAs containing a PTC has been linked to recessively inherited diseases [224].  

NMD in yeast occurs during translation, therefore many studies have reported that UPF1 

localisation is predominantly cytoplasmic [225] [226] [227] [228]. Despite the claims that 

UPF1 is strictly involved in NMD, in recent years there have been a rise in publications 

suggesting that UPF1 may have nuclear functions. These include DNA replication, cell 

cycle [229] [230], telomere maintenance [231] and the potential to associate with other 

nuclear proteins [222].   

This chapter demonstrates that UPF1 directly binds the chromosomal loci of a variety of 

nuclear genes, centromeric regions and highly transcribed genomic loci such as tRNA 

genes. This work establishes that association to the chromatin is cell cycle specific, and 

that UPF2 shows very limited chromatin binding. I show that UPF1 associates to all 13 

transposable elements (TEs) in the S. pombe genome, and knockout of UPF1 leads to a 

differential upregulation of eight TEs, suggesting UPF1 may act as a regulator of these 

elements. In further support of UPF1s involvement in DNA replication, we demonstrate 

that UPF1 may act as a marker for replication fork stress due to its high degree of overlap 
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to phosphorylated histone H2A (γH2A),  another protein known to bind regions prone to 

DNA replication stress [232]. Finally using the S. pombe expression network developed in 

Chapter 5, I demonstrate that UPF1 is co-expressed with genes encoding DNA replication 

machinery, including DNA polymerase δ (delta) and DNA polymerase ε (epsilon). 
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7.3 Methods 

7.3.1 Experimental analysis 

Fission yeast transformation, imaging, RNA analysis, synchronisation of fission yeast 

cells, ChIP and ChIP-chip experiments were performed by Sandip De, a research student 

in Saverio Brogna’s lab. Fission yeast transformation was done using the same 

methodology stated in Chapter 6 (section 6.3.1, also refer to [50]), imaging was performed 

using the Eclipse Ti Nikon Microscope, RNA was extracted using the hot phenol method 

[233], ChIP was performed according to Abruzzi et al [234]. Normalisation and 

calculation of ChIP enriched regions was done as detailed by De et al [50]. Probe 

labelling, hybridization and scanning of the S. pombe Tiling 1.0FR Affymetrix Arrays 

were performed by Dr. John Arrand at the Affymetrix facility in the School of Cancer 

Sciences, University of Birmingham. ChIP-chip samples included UPF1 association to 

chromatin in S-phase synchronized culture, G2-phase synchronized culture, and 

asynchronous culture, using a two replicate design. UPF2 association to chromatin was 

done using an asynchronous culture, using a single replicate design.  

 

7.3.2 Processing and visualisation of ChIP-chip data 

We used the Model-based Analysis of Tiling Arrays (MAT) software to analyse the 

Affymetrix hybridization data [52]. ChIP input DNA was used as control and was 

compared against the UPF1 and UPF2 samples. A p-value of 10
-4

 was used; remaining 

MAT parameters remained as default. Results of MAT were visualised in Affymetrix’s 

Integrated Genome Browser (IGB) [206]. 
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7.3.3 Identification of enriched regions and calculation of enrichment scores 

Identifying genomic regions significantly bound by UPF1 or UPF2 was done using the 

same pipeline as detailed in Chapter 6 (section 6.3.3). Briefly, genomic regions were 

defined as enriched if 50% or more of the region was significantly bound by the UPF 

protein in question. Enrichment scores were assigned to genomic features using the S. 

pombe genome coordinates and calculating an average enrichment between the start and 

end coordinates of enriched genomic regions. Thereby giving each enriched region a score 

based on fold enrichment. Identification of significantly bound genomic features and 

enrichment score calculation was done using the statistical computing language R [11] 

using the same scripts developed in Chapter 6. Functional annotation of the enriched 

regions was done using DAVID [21]. 

 

7.3.4 Identifying differentially expressed genes in a UPF1 knockout 

UPF1 mutant data was obtained from the study conducted by Rodríguez-Gabriel et al 

[235], in which they disrupted UPF1 expression by substituting the ORF with the kanMX6 

cassette as detailed in Steever et al [236]. Identification of differentially expressed genes 

was done using significance analysis of microarrays (SAM) at time point 0 between 

wildtype (WT) and UPF1 mutant using a 1% FDR.  

 

7.3.5 Integration of γH2A ChIP-chip analysis 

To further investigate the role of UPF1 in DNA replication we used a study published by 

Rozenzhak et al published in 2010 [232] in which they reported the genome-wide ChIP-

chip binding of phophorylated histone protein γH2A. γH2A is sensitive method for 

identifying regions of DNA replication stress, due to its role in stabilizing stalled 
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replication forks [232]. The γH2A MAT files were obtained by emailing the corresponding 

author of the paper [232]. Their MAT analysis was done using a p-value of 10
-5

; therefore 

their analysis was slightly more stringent than ours. To ensure consistency, identification 

of significantly enriched genomic features was identified using the pipeline and R scripts 

reported in section 7.3.3. The γH2A ChIP-chip analysis was conducted during S-phase, 

which meant a direct comparison could be made against our UPF1 S-phase ChIP-chip 

data. 
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7.4 Results 

7.4.1 Outline of Genome-wide association of UPF1 with transcribed regions 

Our ChIP-chip binding data indicates that association of UPF1 to the chromatin is cell 

cycle specific (Table 7.1). UPF1 associated with chromosomal loci throughout the three S. 

pombe chromosomes, regardless of cell cycle stage; however association was higher 

during the S-phase than G2-phase (Figure 7.1). Over 350 additional genomic features were 

bound by UPF1 during the S-phase compared to G2-phase (Table 7.1). Despite having a 

similar binding profile, asynchronous UPF1 associated to ~100 genomic features fewer 

than UPF1 S-phase (Table 7.1).  

The genome-wide binding of UPF1 encompassed a diverse array of genomic features, 

including the mating-type (MT) locus, rDNA loci, tRNA loci, and all other 

heterochromatin regions, including the centromeres and telomeres (Figure 7.1). UPF1 

association was also observed at mobile genetic elements (Tf2-type retrotransposons and 

wtf elements). The highest level of UPF1 enrichment was detected in the centromeres of S. 

pombe chromosomes. Conversely, UPF2 showed a much lower association to chromatin 

(Table 7.1), particularly at protein-coding genes (Figure 7.2D). Overlap analysis between 

the UPF1 samples and UPF2 identified only 22 genomic features in common (Figure 

S7.1), of which 15 were tRNAs, three were ncRNAs and three were coding (Table S7.1).  

 

Yeast culture  Number of statistically 

validated  genomic features 
Of which classified as 

‘unknown’  

UPF1 S-phase  520   100  

UPF1 G2-phase  161  54 

UPF1 Asynchronous  416  71  

UPF2 Asynchronous  90 34  

Table 7. 1 Breakdown of genomic features bound by UPFs  
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Genomic features were classified into two groups, based on their annotations. Those that 

were annotated were called ‘known’ genomic features. Genomic features that were 

unannotated and had no gene name were called “unknown” genomic regions. These 

unknown regions are typically small (<50bp) noncoding regions that are not yet well 

characterised. Typically they encompass long terminal repeats (LTRs), promoter regions 

and other repeat regions. The classification of known genomic features bound by the UPF1 

and UPF2 are shown in Figure 7.2. Functional analysis on the known genomic features 

from each ChIP-chip experiment are shown in Table 7.2. The unknown genomic features 

for each ChIP-chip experiment were also classified (Figure 7.3), however, due to their lack 

of a gene name, they could not be used for functional analysis. 

The data showed that almost 50% of the unknown regions bound by UPF1 during the S-

phase (7.3A) and in asynchronous culture (7.3C) were repeat regions, also a substantial 

number were classified as LTRs suggesting that UPF1 is required at repeat sequences, a 

feature of UPF1 that has been reported in numerous publications [222] [230] [237] [238]. 

Unlike in asynchronous and in S-phase cultures, UPF1 showed no preferential binding to 

repeat regions or any other class of unknown regions (Figure 7.3B).  

Surprisingly, UPF1 association in asynchronous culture bound 416 genomic features, an 

unexpectedly high number. The G2-phase is the longest of all cell cycle phases (~90 

minutes) in S. pombe [239], therefore it’s expected that the majority of cells would be in 

the G2-phase, consequently the number of significantly bound genomic regions would be 

expected to be lower. 

 



 

 

2
3

1 

 

 

Figure 7. 1 Binding profiles of UPF1 and UPF2 

In S-phase cells, (green), G2 (blue), asynchronous cells (orange) and UPF2 (yellow, asynchronous) across all three S. pombe chromosomes. Red bars 

indicate regions of the genome identified as being significantly bound using MAT. Chromosomes I – III are labelled at the top of the Figure 7.1. Vertical 

boxes highlight the telomeres and centromeres within each chromosome 

Chromosome I Chromosome II Chromosome III

UPF1 - Async

UPF1 - G2

UPF1 - S

UPF2 - Async

upf1_S_bar (-7.371, 11.947)upf1_S_bar (-7.371, 11.947)upf1_S_bar (-7.371, 11.947)

upf1_g2_bar (-10.525, 12.151)upf1_g2_bar (-10.525, 12.151)upf1_g2_bar (-10.525, 12.151)

upf1_async_bed (-4.868, 10.117)upf1_async_bed (-4.868, 10.117)upf1_async_bed (-4.868, 10.117)

upf2_upf_bar (-9.068, 10.516)upf2_upf_bar (-9.068, 10.516)upf2_upf_bar (-9.068, 10.516)

1 2 3 13,831,017

upf1_S_bed (+)

upf1_S_bar

upf1_g2_bed (+)

upf1_g2_bar

upf1_async_bar (+)

upf1_async_bed

upf2_async_bed (+)

upf2_upf_bar

Coordinates

0 Mb 5.6 Mb 0 Mb 4.6 Mb 0 Mb 3.5 Mb
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Figure 7. 2 Pie Charts showing the genomic regions associated to UPF1. 

UPF1-S phase (A), UPF1-G2 phase (B), UPF1-Asynchronous culture (C) and UPF2-Asynchronous 

culture (D) 

 

 

Figure 7. 3 Pie Charts showing the ‘unknown’ regions associated to UPF1. 

UPF-S phase (A), UPF1-G2 phase (B), UPF1-Asynchronous culture (C) and UPF2-Asynchronous 

culture (D) 
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Table 7. 2 Functional analysis of the genomic regions bound by UPF1 at different cell cycle stages and by UPF2 asynchronous culture 

Text colour represents adjusted FDR as reported by DAVID. Red text represents an FDR < 0.05;  green text represents an FDR < 0.1, black text represents 

FDR > 0.1.. 

Protein  Features  Known / 

unknown  
Detected in 

DAVID  
Functional annotation  

Upf1 S  520   420/ 100  295  triplet codon-amino acid adaptor activity (65), cell surface (28), transposable element (11), external 

encapsulating structure (12), 5 transmembrane protein Schizosaccharomyces pombe (7), plasma 

membrane (36), C4-dicarboxylate transporter/malic acid transport protein (4), cell wall, integral to 

plasma membrane (10), Glycolysis / Gluconeogenesis (7), NAD / oxidoreductase (16), Phosphate 

permease (3), Nitrogen metabolism (4), iron (9), potassium (3), polyamine transport (3),  external 

side of cell wall (3), Glycoside hydrolase, subgroup catalytic core (4), heme (3), Cysteine and 

methionine metabolism (5) ,elongation factor (3),  Fatty acid biosynthesis (3), lytic vacuole (7), 

cellular response to nutrient (3), nucleosome core (3), cytosolic ribosome (12), fungal-type cell wall 

biogenesis (4), ion transport (6), ATP (3), rRNA processing (5), nucleolus(14),  ligase (7), GTPase 

activity (3), transcription (3), ligase activity (7), nucleotide biosynthetic process (3), mRNA 

catabolic process (3), dna repair (4), cytokinesis (4), mitochondrial matrix (4),  

Upf1 G2  161  107/ 54  76  triplet codon-amino acid adaptor activity (31), Integrase - catalytic core / DNA integration (11), cell 

surface (13), external side of plasma membrane (5), signal (5), protein modification by small 

protein conjugation  (3) 

Upf1 

Async  
416  345 / 71  239  base pairing with mRNA (65), cell surface (15), gpi-anchor (5), Glycolysis / Gluconeogenesis (6), 

external side of plasma membrane (6), RNA recognition motif, RNP-1 (5), magnesium (5), 

Thioredoxin fold (3), plasma membrane (5), cell cortex part (9), Zinc finger C2H2-like (5), fatty 

acid biosynthesis(4), Alanine, aspartate and glutamate metabolism (3), cytosolic ribosome (10), 

metal-binding (25), cellular homeostasis (7), intrinsic to membrane (34), cellular response to 

nutrient (3), Zinc finger RING-type (3), gtp-binding (3), fungal-type vacuole (3), regulation of 

mitotic cell cycle (6), nucleotide biosynthetic process (3), protein modification by small protein 

conjugation (5), mRNA catabolic process (3), cation transport (3), macromolecular complex subunit 

organization (7), kinase (5), cell division (6), ribosome biogenesis (5),  nucleolus (7), nuclear lumen 

(11),  transit peptide mitochondrion (3), DNA repair (3), vesicle-mediated transport (4) 

Upf2 - 

Async  
90  56 / 34  33  translational elongation (20), endoplasmic reticulum (4) 
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7.4.2 The binding profile of UPF1 is cell cycle dependent 

Overlap analysis demonstrated that 46 genomic regions (excluding unknowns) were shared 

amongst the UPF1 samples (Figure 7.4). Functional analysis of the overlap identified 

significant enrichment (FDR <0.1) of tRNAs and cell surface protein genes (Table 7.3). 

195 features are bound only by UPF1 in S-phase synchronised cultures. Functional 

analysis identified genes encoding signal proteins, plasma membrane, malic acid 

transporters, and major facilitator superfamily MFS-1 (Table 7.3). The MFS protein 

superfamily is one of the two largest families of membrane transporters known, with 

functions encapsulating solute uniport, solute / cation symport / antiport and solute / solute 

antiport [240]. The 50 feature overlap between S-phase and G2-phase is significantly 

enriched in transposable elements (TEs) (Table 7.3) suggesting that association of UPF1 to 

TEs only occurs within the S and G2 phases. Only nine of the 107 features bound by UPF1 

are G2-phase specific. Noteworthy are two genomic genes that are enriched in both G2 and 

asynchronous cells, both encode lysine tRNA. S-phase and asynchronous cultures share 

129 regions that are significantly enriched in tRNAs and glycolysis genes (Table 7.3). Of 

the 168 regions that are specific to asynchronous cells there is no significant enrichment of 

specific functional groups, however there is also a minor overrepresentation of cell 

division, cellular homeostatis and transcription regulation genes.  

The take home message is that there is a common functional overlap between genomic 

regions that UPF1 associates to, regardless of cell cycle stage. Notably, association of 

UPF1 to genes encoding TEs is a feature of only S-phase and G2 phase cultures. 
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Figure 7. 4 Overlap of significantly associated genomic regions for UPF1 ChIP-chip samples.  

 

Yeast 

UPF1 

strain  

Detected 

in 

DAVID  

Functional Annotation  

S-G2-Async  46 base pairing with mRNA (28), cell surface (4), protein modification by small 

protein conjugation (3) 

S-Async  129  base pairing with mRNA (25), Glycolysis / Gluconeogenesis (6), plasma 

membrane (12), RNA recognition motif RNP-1 (3), magnesium (3), cellular 

response to oxidative stress (3), cytosolic ribosome (5), cell cortex (3),  

metal-binding (9), atp-binding (7), RNA polymerase II transcription factor 

activity (3), chromatin (3), transcription from RNAPII promoter (3) 

Async-G2  2  tRNA lysine binding (2) 

S-G2  50  DNA integration / Transposable element (11), cell surface (9)  

S only  195  Signal (17), C4-dicarboxylate transporter/malic acid transport protein (4), 

translational elongation (13), iron (8), major facilitator superfamily MFS-1 

(8), organic acid biosynthetic process (11), plasma membrane (17), Secreted 

(7), glutamine metabolic process (3), oxidoreductase (10), metal-binding 

(19), cellular polysaccharide metabolic process (4), NAD / NADH binding 

(8), response to nutrient (3), regulation of conjugation (4), cytosolic 

ribosome (7), ribosome biogenesis (7), ligase (5), dna-binding (5), 

generation of precursor metabolites and energy (4), macromolecular 

complex assembly (4), nuclear envelope (3), regulation of transcription from 

RNA polymerase II promoter (3),  meiosis (5), chromatin (4) 

G2 only  9  non-coding RNAs (2), carboxylases(1), lactate dehydrogenase (1), wtf 

protein (1),  transporter chaperone (1),  ankyrin repeat protein (1) 

Async only  168  base pairing with mRNA (10), oxidation reduction (11), Zinc finger (3), 

signal (9), cellular response to nutrient (3), cell cortex (6), cell division site 

(6), fatty acid biosynthetic process (3),m RNA metabolic process (6), 

cytosolic ribosome (5), RNA polymerase II transcription factor  (3), 

cytoskeleton organization (6), cell cycle process (11),  

Table 7. 3 Functional analysis of overlap between UPF1 samples. 

Red text represents FDR < 0.05, green text represents FDR < 0.1, black text representes FDR > 0.1  

168

195

46

2129

50 9

UPF1-S UPF1-G2

UPF1-Async
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7.4.3 Cell-cycle-dependent association of UPF1 with the centromere 

The genome-wide binding profile of UPF1, suggested strong association to centromeres 

and telomeres. Fission yeast centromeres consist of a unique central core (cen), flanked by 

inner (imr) and outer (otr) repeat regions [241]. The analysis of the ChIP-chip data 

revealed that UPF1 associated with the cen, imr and otr domains in S-phase (Figure 7.5) 

with highest enrichment at the cen and imr domains. During G2-phase, UPF1 association 

with the otr domains was reduced. 

 

7.4.4 UPF1 binds tRNA genes in both S-phase and G2-phase 

We observed UPF1 association to tRNA genes. UPF1 binds at 66 tRNA genes in S-phase, 

and 33 in G2-phase, of which 30 are shared between the two cell cycle stages (Figure 

7.6A). Many tRNA genes are located in the centromeric regions in S. pombe and form 

clusters that are roughly localised at the borders between heterochromatin domains 

(indicated by the vertical black lines in Figure 7.5), which are thought to prevent 

heterochromatin spreading [242] [243]. There are a total of 27 tRNA genes located within 

centromeric regions, of these, 26 associate with UPF1 in S-phase, 18 in G2-phase and 17 

are shared (Figure 7.6B). Ultimately, UPF1 binds all 27 tRNA genes located within the 

centromeric regions during S and G2-phases of the cell cycle, however when considering 

G2-phase alone or S-phase alone UPF1 does not associate to all 27, but rather a subset. 

When considering S-phase alone however, UPF1 does bind 26 of the 27 centromeric 

tRNAs (Figure 7.6B) therefore it is possible that UPF1 associates with the 27
th

 tRNA, 

albeit at a level below the significance threshold (p-value 10
-4

) used for this study. What is 

clear from this study is that UPF1 has a high affinity for genes that encode tRNAs.  
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Figure 7. 5 UPF1 association to the centromere is cell cycle dependent. 

tRNA genes are  significantly bound by UPF1 regardless of cell cycle stage. Regions identified as 

significantly bound by UPF1 are shown in red tRNA gene loci are indicated by vertical black lines. 

During S-phase UPF1 associates to the entire centromere, however during G2 phase, UPF1 only 

associates to tRNA gene loci. 
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UPF1 - S

Centromere I

otr imr cnt imr otr

UPF1 - G2

UPF1 - S

Centromere II
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Figure 7. 6 The binding of UPF1 S-phase and G2-phase to tRNAs at the genome-wide level 

and centromere level. 

Panel A. UPF1 binding to tRNA loci genome wide. We show that UPF1 S-phase associates to 66 

tRNA genes, and UPF G2-phase associates 33 tRNA genes. 30 tRNA genes are bound during both 

stages of the cell cycle. Panel B. UPF1 binding to the 27 tRNA loci to centromeric regions only. 

We identify that UPF1 S-phase binds 26, and UPF G-phase binds 18, of which 17 are shared. 

 

 

7.4.5 UPF1 association with telomeres 

UPF1 binds at the telomeres (Figure 7.1). The ChIP-chip data showed a substantial 

enrichment of these regions in UPF1 S-phase and to a lower extent in asynchronous cell 

cultures (Figure 7.1). The sub-telomeric regions of chromosome III are also highly 

enriched; these sub-telomeric regions contain tandem arrays of rDNAs that are subject to 

heterochromatic silencing [244]. Telomeric regions are also bound by UPF2 (Figure 7.1). 
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UPF1 S-phase tRNAs
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17 19
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27 centromeric tRNAs
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7.4.6 UPF1 and its strong association to heterochromatic regions 

It is clear that UPF1 S-phase has a strong association to heterochromatin and repeat 

regions of the chromosome. We observed that UPF1 S-phase significantly bound the 

entirety of the centromere (Figure 7.5) and the telomeres (Figure 7.1). We also determined 

that over 50% of unknown regions bound by UPF1 S-phase are either repeat regions or 

LTRs (Figure 7.3). Evidence so far suggests that UPF1 association to repetitive regions of 

the chromosome is not simply random, and in fact may serve an integral purpose. 

 

7.4.7 UPF1 binds at poorly replicated chromosomal regions during S-phase 

Current experimental evidence indicates that γH2A preferentially binds natural replication 

fork barriers, retrotransposons, heterochromatin (in both centromeres and telomeres) and 

rRNA repeats [232]. Therefore, to determine if UPF1 had a role in DNA replication, we 

did a comparative study between the genome-wide binding of UPF1 and γH2A. The γH2A 

ChIP-chip data was recorded during the S-phase, allowing us to make direct comparisons 

to our UPF1 S-phase ChIP-chip data. The γH2A data was obtained by email from the 

corresponding author of Rozenzhak et al’s publication [232]. In order to maintain 

consistency we applied the same methodology for identifying enriched regions that we had 

done with the UPF1 ChIP-chip samples. 

We identified 447 genomic regions significantly bound by γH2A, 309 were known 

genomic features and 138 were classified as unknown. A breakdown of the genomic 

features bound by γH2A is shown in Figure 7.8B, with functional analysis of the known 

regions shown in Table 7.4. γH2A binds cell surface, plasma membrane, transport and TEs 

with an FDR  <0.05. A notable finding of this analysis is that like UPF1 S-phase, γH2A 

also binds TEs (Table 7.4).  Less significant enrichment includes cell cycle processes such 

as cell division, cytoskeleton, and M-phase of cell cycle. These functionally overlap with 
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the genomic regions bound by UPF1 S-phase (Figure 7.7). γH2A binds a significantly 

lower proportion of tRNAs during S-phase compared to UPF1 S-phase. However the 

remaining proportions for genomic features remain similar (Figure 7.8B). Analysis of the 

unknown regions bound by γH2A, shows that both UPF1 and γH2A bind similar 

proportions of repeat regions.  γH2A binds far more LTR regions, and a very small number 

of introns (44 to 4 respectively). We also observe that γH2A does not bind the imr and cnt 

regions of the centromere, with enrichment only occurring within the otr regions (Figure 

7.8C).  

A comparative study between the genome-wide binding of UPF1 with γH2A, revealed a 

97 region overlap (Figure 7.7). Using a random sampling method, repeated 1000 times, we 

calculated that the p-value corresponding to a 97 gene overlap is below 2.2
-16 (this is the 

smallest integer that can be displayed in R). Functional analysis on the overlap identified 

tRNA binding, TEs and plasma membrane as the most significant hits (FDR < 0.05). There 

were eight transposable elements, out of the genome total 13 which overlapped between 

UPF1 S-phase and γH2A. γH2A is reported to stabilise stalled replication forks in regions 

of the genome that are tough to replicate [232]. UPF1 and γH2A share similar overall 

binding profiles with the highest enrichment at the telomeres and centromeres (excluding 

the cen and imr regions for γH2A, Figures 7.8A and 7.8C), and there is a high degree of 

overlap between UPF1 and γH2A. Implying that UPF1 binding during S-phase may have a 

role in alleviating DNA replication barriers.  Studies have shown that in human UPF1 

depleted cells, replication fork progression and termination are affected [230]. The 

prominent enrichment of γH2A and UPF1 at heterochomatic and transposon loci suggests 

that there may be a relationship between these proteins and DNA replication, a hypothesis 

further supported by the fact that both ChIP-chip datasets were measured during the S-

phase. Like γH2A, UPF1 may work through the natural replication barriers caused by 
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repetitive sequence and highly transcribed genes such as tRNAs and therefore may help in 

the maintenance, stability, and repair of replication forks. 

Features  Known / 

unknown  
Detected 

in DAVID  
Functional annotation  

447  309 / 138  213  cell surface (36), transposable element (11), plasma 

membrane (32), intrinsic to membrane (60), cell wall (15), 

base pairing with mRNA (15), fungal-type vacuole (13), 

amide transporter activity (3), gpi-anchor (6), 

monosaccharide transport (4), cofactor binding (13), 

Secreted (8), serine-type peptidase activity (3), lipid 

binding (4), Velum formation protein (3), specific RNA 

polymerase II transcription factor activity (4), M phase of 

meiotic cell cycle (8), mitosis (3), phosphorylation (3), 

transit peptide (4), protein transport (4), cell division (4), 

kinase (3),  cytoskeletal (3) 

Table 7. 4 Functional annotation of γH2A binding 

Text colour is representative of significance (red: FDR < 0.05; green: FDR < 0.1; black: FDR > 

0.1) . 

 

 

Figure 7. 7 The overlap of genomic features that were significantly enriched by UPF1 S-

phase and γH2A S-phase.  
Functional analysis on the overlap shows that tRNA, cell membrane and transposable elements are 

the most significant enriched functions shared between the two proteins. Text is displayed as red if 

the adjusted FDR < 0.05. The 97 gene overlap was calculated as having a p-value of less than 2.2
-16

 

indicating that the expectation of getting the overlap by random chance is miniscule.  

Functional annotation Count Adjusted FDR

RNA binding / tRNA

binding

23 4.50E-11

DNA integration / DNA 

replication / DNA 

polymerase activity

8 1.40E-11

cell surface 15 2.40E-14

5 transmembrane protein, 

Schizosaccharomyces

pombe

7 8.10E-11

signal 10 5.50E-04

plasma membrane part 5 7.60E-06

integral to plasma 

membrane

3 1.30E-01

cytoplasm 11 1.00E+00

97

306

212

Genomic features bound by γH2A  S-phase

Genomic features bound by UPF1 S-phase
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Figure 7. 8 The binding information of γH2A 

Panel A Significantly high enrichment at the telomeres and centromeric regions of each chromosome. PanelB The breakdown of known and unknown 

genomic features bound by γH2A. Panel C γH2A does not bind the imr and cnt regions of the centromere, with enrichment only occurring within the otr 

regions  



 

243 
 

7.4.8 UPF1 during the S-phase binds to and possibly regulates TEs 

The results have suggested that UPF1 S-phase binds highly repetitive sequence; this was 

substantiated during our comparison analysis with γH2A.We decided to further investigate 

this phenomenon. There are a total of 13 TEs within the S. pombe genome [178], of which 

UPF1 associates to all 13. Furthermore, the enrichment of the 13 TEs lay within the top 

25% of all regions significantly bound by UPF1 S-phase, with an average score of 7.4 

(Table 7.5), indicating a seven fold increase in enrichment in comparison to the control 

samples (ChIP input DNA was used as a control). Association of UPF1 S-phase to TEs are 

highly specific with binding strictly encapsulating the entirety of the transposon gene only 

(Figure 7.9). We also observed that the majority of TEs had a ‘three peaks’ binding 

pattern, in which regions of the transposon gene, specifically the terminal ends and the 

centre had higher enrichment than the rest of the gene (Figure 7.9). The significance of the 

‘three peaks’ binding pattern is currently unknown. It is well known that TEs contain 

several tandem and triplicate nucleotide repeats which may lead to replicative slippage, 

making them tough to replicate accurately [245]. Therefore a possible hypothesis as to 

why we observed UPF1 binding to TEs is that UPF1 may be required to overcome the 

natural DNA replication fork barriers presented by repetitive DNA. 
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TE  Chromosome  Enrichment Score  

Tf-12  chromosome3  7.919464  

Tf-9  chromosome2  7.671477  

Tf-6  chromosome1  7.613859  

Tf-4  chromosome1  7.604309  

Tf-10  chromosome2  7.571048  

Tf-13  chromosome3  7.558111  

Tf-1  chromosome1  7.55539  

Tf-5  chromosome1  7.549103  

Tf-3  chromosome1  7.473116  

Tf-2  chromosome1  7.35929  

Tf-11  chromosome2  6.983825  

Tf-8  chromosome1  6.957233  

Tf-7  chromosome1  6.46788  

Table 7. 5 UPF1 enrichment of TEs, in order of fold enrichment 

 

 

 

Figure 7. 9 UPF1 S-phase binding to transposable elements is highly specific 
Two examples are shown, Tf2-1, and Tf2-4. This figure demonstrates the highly specific nature of 

UPF1 binding and the ‘three peaks’ binding pattern we observe across the TE gene. 
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7.4.9 UPF1 may bind to and regulate a specific subset of genes during S-phase 

This analysis has highlighted that UPF1 binds to a diverse set of genomic features. The 

next step of investigation was to identify if the genes bound by UPF1 are also regulated by 

UPF1. In order to discern this, we used a UPF1 mutant dataset published by Rodriguez – 

Gabriel et al which measured gene expression in S. pombe UPF mutant strains upon 

exposure to oxidative stress [235]. Significance analysis of microarrays (SAM) with a 1% 

FDR was used to identify differentially expressed genes at timepoint 0 (prior to oxidative 

stress) between the wildtype (WT) and UPF1 mutant. A total of 547 genes differentially 

expressed genes were identified, of these, 161 were down regulated, however interestingly, 

more than double (386 genes) were up-regulated in response to the UPF1 knock-out. 

Functional analysis on the down regulated genes showed enrichment, though not 

significant, in cell surface, cell cycle and various lipid biosynthetic processes (Figure 

7.10). Functional enrichment on the up-regulated genes however identified TEs as the 

most significant hit. Other significant enrichment included pyridoxal phosphate, 

decarboxylation, plasma membrane, and deamination reactions of amino acids [246]. Less 

significant hits included telomere maintenance, kinetochore, DNA damage and tRNA 

modification (Figure 7.10). These suggested that there was a functional overlap between 

genes bound by UPF1 S-phase and genes differentially expressed in response to a UPF1 

mutant. This result implied that when UPF1 is knocked out, the expression of TEs is 

unregulated, leading to uncontrolled expression. This was investigated further by 

identifying the overlap between differentially expressed genes from the UPF1 mutant with 

the regions significantly bound by UPF1 S-phase. We identified 47 regions that overlapped 

between the two lists (Figure 7.10). The p-value for this overlap was calculated to be 0.001 

using a random sampling method looped 1000 times. This p-value indicated that the 

overlap was highly significant. Functional analysis of these genes showed that TEs, 
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reverse transcriptase and cell surface / plasma membrane were the most significant hits. 

Interestingly, TEs, DNA replication and cell surface / plasma membrane functions are all 

genes which are up-regulated in response to the UPF1 mutant. Furthermore, there is a 

functional overlap with genes bound by UPF1 S-phase in our ChIP-chip data. An 

unexpected result was that of the 13 TEs bound by UPF1, six of them are differentially up-

regulated in the mutant UPF1 yeast strain suggesting a novel idea that UPF1 influences TE 

expression. 
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Figure 7. 10 Overlap of differentially expressed genes in UPF mutant and regions bound by UPF 
Left - Functional analysis of differentially expressed genes in the UPF1 mutant using SAM with a 1% FDR. Middle – Venn diagram identifying the 

overlap between differentially expression genes in the UPF1 mutant and genomic regions bound by UPF1. Right- Functional analysis on the 47 gene 

overlap.  Text colour is representative of significance (red: FDR < 0.05; green: FDR < 0.1 ; black: FDR > 0.1). The 47 gene overlap has a p-value of 0.001. 
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7.5 Discussion 

7.5.1 UPF1 and its’ role in DNA replication 

In yeast, UPF1, UPF2 and UPF3 are not essential for the viability [247], however UPF1 

and UPF2 are essential in Drosophila, zebrafish and human [222]. The important issue is 

whether the essential requirement for UPF1 is due to these proteins having essential 

secondary functions unrelated to NMD or that the loss of UPF1 leads to cell mortality 

due to DNA damage as a consequence of lack of NMD. The analysis described in this 

chapter has provided evidence that UPF1 is also present at the chromosomes and 

suggests that that this protein has additional functions unrelated to NMD.  

The finding that UPF1 is directly associated to replicating DNA in S. pombe, supports the 

hypothesis that UPF1 is directly involved in DNA replication, as previously reported in 

mammalian cells [230]. In recent years there has been an overwhelming amount of 

evidence linking UPF1 and UPF2 to DNA replication and cell cycle progression 

functions. Studies in Drosophila D2 cells revealed that depletion of UPF1 and UPF2 

causes cell cycle arrest and the differential expression of 15 mRNA involved in cell cycle 

and DNA repair [229]. Azzalin et al have reported that UPF1 has a direct role in DNA 

replication in human cells, upon depletion of UPF1, cells arrested in early S-phase [230]. 

Cells were able to initiate DNA replication, however the lack of  UPF1 lead to an arrest 

in replication due to the replication fork being unable to progress across the DNA [230]. 

The association of anti proliferating cell nuclear antigen with replication forks upon 

UPF1 depletion is consistent with problems with DNA replication machinery [230]. 

Carastro et al reported that UPF1 co-immunoprecipitates with the catalytic subunit of 

DNA polymerase δ in bovine thymus tissue [248]. The work conducted in this chapter 

supports existing literature. Firstly we identify that UPF1 S-phase binds heterochromatic 

regions of the centromere and telomere, as well as all 13 TEs which are known to contain 



 

249 
 

repetitive sequence. Secondly, using available UPF1 mutant expression data we 

identified that the significantly differentially expressed genes include TEs, DNA 

elongation / replication and telomere maintenance. Furthermore overlap analysis with the 

genomic regions bound by UPF1 S-phase, revealed a significant overlap with significant 

enrichment in TEs. Thirdly, analysis of the gene overlap with γH2A, identified hard to 

replicate regions such as TEs and tRNA genes as the most significantly enriched. 

However, how replication fork progression is co-ordinated and maintained when 

replicating heterochromatin regions still remains poorly understood. The helicase activity 

of UPF1 could have a major role in replicating centromeric DNA during the S-phase, 

alternatively UPF1 could function as part of a chromatin remodelling complex. Another 

hypothesis may be that the enrichment of UPF1 to cen and imr domains of the 

centromere may indicate a role of UPF1 in kinetochore formation during mitosis [249]. 

In order to further understand the global association of UPF1 to chromatin, additional 

ChIP-chip experiments will be required which take into account specific stages of the cell 

cycle. By doing so, the global distribution of UPF1 can be determined, which may yield 

further information regarding UPF1 and its involvement in DNA replication. 

 

7.5.2 A newly constructed S. pombe expression network provides further evidence 

of UPF nuclear functions 

Analysis of UPF knockout expression data identified that TEs, DNA replication and cell 

surface genes are differentially expressed in response to a UPF1 mutant. These same 

functional groups and presumably same genes overlap with the genomic loci bound by 

UPF1 in the ChIP-chip analysis. To garner further support of UPF1 in DNA replication, 

the expression network developed in Chapter 5 was integrated into the analysis. For this 

study a slightly lower threshold of 0.2MI was used, this new MI threshold was equivalent 
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to a p-value of 1x10
-61

. UPF1 was mapped onto the network and the first neighbours 

identified. The resulting network contained 337 nodes and 38225 edges and was 

visualised using a force directed layout (Figure 7.11A, Table 7.6). A single level of 

modularisation using GLay [33] identified three modules (Figure 7.11B). Functional 

analysis of each module identified the genes UPF1 is transcriptionally coupled to. 

Module 1 is significantly enriched in genes related to ribosome biogenesis and rRNA 

processing. It is important to note that functional enrichment, even though not 

statistically significant, still represent statistically significant correlations between genes. 

This is because the network was thresholded to leave genes which have the strongest 

correlations. In light of this, we observe a small number DNA replication within module 

1 (Table 7.6). Specifically, these genes are DNA polymerase delta (δ) catalytic subunit, 

DNA polymerase epsilon (ε) subunit B and DNA replication licensing factor MCM4. 

UPF1s co-expression to DNA replication machinery is further substantiated in module2 

in which I identify enrichment of DNA metabolic processes, which contain the genes 

DNA replication licensing factors MCM3 and MCM7. The results suggest that UPF1 has 

strong transcriptional linkage to genes encoding mini-chromosome maintenance proteins 

(MCM). The MCM family of proteins are reported to be essential replication initiation 

factors, containing six structurally related proteins, MCM2 – 7 [250], we identify that 

UPF1 is transcriptionally correlated to three of these. These observations support results 

by Azzalin et al which stated that UPF1 has a direct role in DNA replication in human 

cells by physically interacting with the catalytic subunit of polymerase δ and facilitating 

fork progression [230], and results by Carastro et al which stated that UPF1 co-

immunoprecipitates with the catalytic subunit of DNA polymerase δ [248]. My 

expression network, served as supporting evidence showing that UPF1 has a strong 

transcriptional correlation to subunits of DNA polymerase at the transcriptional level. 



 

251 
 

Together with the previous results, they suggest that the UPF1 protein physically 

associates to genomic loci that are tough to replicate, and aid in replication fork 

progression by interacting with DNA polymerase subunits and overcoming natural 

replication barriers caused by tRNA clusters and repetitive sequence. The results also 

suggest that UPF1 is co-expressed with TEs and DNA polymerase subunits δ and ε. 

Overall it shows that there is both a physical and transcriptional linkage between UPF1 

and DNA replication machinery and tough to replication regions. 

The ChIP-chip experiments clearly showed that UPF1 association to the chromatin was 

cell cycle dependent with low association being observed during G2 phase, and highest 

during the S-phase, consistent with the involvement of UPF1 in DNA replication. These 

results are supported by reports that in humans, UPF1 association to chromatin is low 

during mitosis and early G1, increasing mid G1, before reaching highest enrichment in S-

phase, before diminishing on the completion of S-phase [230]. What is interesting is that 

UPF1 is known interact with UPF2; however human cells depleted in UPF2 progress 

normally through the cell cycle even though NMD is inhibited by UPF1 depletion. 

Perhaps, UPF1 assembles into two specific complexes. In the first UPF1 physically 

interacts with UPF2 to perform NMD functions during a DNA damage response. The 

second involves UPF1 physically interacting with DNA polymerase to perform DNA 

synthesis by facilitating fork progression. Further microarray experiments with total 

RNA collected from cells in the presence and absence of UPF1 might provide more 

detailed information on the function of UPF1 protein in transcription regulation in S. 

pombe cells. 
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Figure 7. 11 The first neighbour network of UPF1 using a 0.2MI threshold 
Panel A Force directed layout of UPF1 first neighbours. . GLay identified 4 subnetworks, 1, 2 & 

3 represented as red, blue and green respectively. The yellow node represents UPF1. 

 

  

A

B
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Module Nodes  Edges  Functional Enrichment  

1  177 12249 ncRNA processing / ribosome biogenesis (26), RNA-

dependent ATPase activity /rrna processing (15), stress 

response (6), RNA modification (8), snoRNA binding (7), 

peptidase activity (9), NAD(P)-binding domain (6), 

manganese ion binding (5), ubiquitin-dependent protein 

catabolic process (9), vacuole (8), transition metal ion binding 

(21), RNA recognition motif RNP-1 (4), monosaccharide 

catabolic process (3), Pyrimidine metabolism (3), coated 

vesicle (3), late endosome to vacuole transport (3), protein 

modification by small protein conjugation (6), glycoprotein 

(8), ascospore formation (4), DNA replication (3), response to 

DNA damage stimulus (8) 

2  157 8863 protein biosynthesis (16), atp binding (27), eukaryotic 43S 

preinitiation complex (4), ncRNA metabolic process / 

ribosome biogenesis (26), ribonucleoside monophosphate 

metabolic process (5), ribosomal large subunit assembly (3), 

snoRNA binding (4), HEAT (6), 1,3-beta-glucan biosynthetic 

process (3), oxidoreductase / fmn (8), manganese (3), RNA-

dependent ATPase activity (5), endoplasmic reticulum (27), 

cellular macromolecular complex disassembly (3), cell 

membrane (5), lipid biosynthetic process (7), RNA recognition 

motif RNP-1 (4), mitochondrion (16), cell membrane (5), 

RNA modification ((5), metal-binding (16), mRNA splicing 

(4), homeostasis (5), metabolic process (6), ubiquitin-

dependent protein catabolic process (3), DNA metabolic 

process (6) 

3  3 2 tRNA processing (2) 

Table 7. 6 Functional analysis of UPF1 first neighbours. 
Text colour is representative of significance (red: FDR < 0.05; green: FDR <0.1 ; black: FDR > 

0.1) . 

 

 

 

 

7.6 Concluding remarks 

The work in this chapter combines data from multiple sources to thoroughly investigate 

the nuclear roles of UPF1 in S. pombe. The incorporation of UPF1 KO expression data, 

γH2A ChIP-chip data, and UPF1 expression network data, together with UPF1 ChIP-

chip data provided a wealth of information supporting a role of UPF1 in DNA 

replication, a result congruent with studies in mammals, specifically bovine [248] and 

human [230]. The discovery that UPF1 may have a role in TE regulation was novel, with 
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the results suggesting that upon UPF1 knockout, TEs are uncontrollably expressed. The 

data suggested that UPF1 may silence transposons through DNA-protein interactions, 

consistent with mechanisms of transposon silencing specific to S. pombe [66]. Cross 

referencing UPF1 ChIP-chip binding results with γH2A binding suggested that UPF1 

may bind regions where DNA replication may be hindered, particularly at repetitive 

sequence (transposons, centromeres, telomeres) as well as highly transcribed regions 

(tRNAs). The role of UPF1 in DNA replication was further supported using the S. pombe 

expression network constructed in Chapter 5, in which direct edges between UPF1 and 

subunits of the DNA polymerase protein, including subunit δ were identified, congruent 

with existing literature.  In summary, this chapter provided a comprehensive study into 

the potential nuclear roles of UPF1 and reported evidence implicating the UPF1 protein 

in DNA replication in S. pombe. 
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CHAPTER 8: A NETWORK BIOLOGY 

APPROACH TO IDENTIFYING ADVERSE 

OUTCOME PATHWAYS IN METAL AND 

METALLOID TOXICITY 
 

 

8.1 Introduction 

8.1.1 Metals and metalloids are toxic 

An adverse outcome pathway (AOP) can best be described as a series of events across 

multiple levels of biological organisation, ranging from exposure, the early molecular 

initiating events to the final adverse phenotypic effect [251] [252]. The advent of 

functional genomics technologies, particularly expression profiling in combination with 

advanced computational methods that allow the reconstruction of biological pathways 

from observational data (reverse engineering) has contributed enormously to the 

development of an unbiased approach to AOP inference [253].  

In Chapter 2, I demonstrated the application of network inference techniques to genome-

wide fitness data and shown the potential of this technique in identifying phenotypic 

associations, which are informative of underlying regulatory circuits. Here I utilise both 

the Hillenmeyer and Vulpe fitness datasets used in Chapter 2 to study mechanisms of 

toxicity underlying metal (zinc, cadmium and lead) and metalloid (arsenite and 

monomethyarsonous acid -MMA
III

) exposure. 

Arsenic is toxic to cells and is a known human carcinogen, exposure to this metalloid 

occurs primarily through contaminated drinking water [254]. Inorganic arsenic is known 

as arsenite. Humans and mammals are able to methylate arsenite to form MMA
III

, a 

metabolite known to be more toxic that arsenite [254]. Arsenic proposed mechanisms 
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include spindle disruption, formation of reactive oxygen species (ROS) and inhibition of 

DNA repair [254]. Cadmium is a heavy metal, due to its use within industry it is known 

to effect human health. Like arsenic, it has been classified as a human carcinogen [255] 

and is also reported to induce neurodegenerative diseases [256]. Exposure to cadmium is 

believed to effect cell differentiation and apoptosis [255]. Zinc ions are essential for the 

viability of most organisms and are known to have numerous important roles, including 

gene stability and expression, and in the protection of DNA [257]. High concentrations of 

metal ions however can lead to cell toxicity and the up-regulation of defence mechanisms 

including detoxification [257], ubiquitination and chaperone proteins [258]. Lead is a 

heavy metal ion, known to induce neurotoxicity and lead to adverse cognitive function 

[259].   

I have shown that yeast cultures containing genes mutated in ribosome biogenesis and 

translation factors have increased resistance to arsenite, zinc, cadmium and lead. 

Interestingly, I also identified that yeast strains containing mutated mitochondrial and 

cytoplasmic energy metabolism genes also had increased resistance when exposed to 

zinc. 
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8.2 Methods 

8.2.1 Identification of fitness modules linked to metal and metalloid exposure 

The aim was to identify mutations that affect fitness in specific environmental conditions. 

To accomplish this task I first identified genes representing mutant strains with 

differential fitness between the highest and lowest dosages (cellular IC20 concentration vs 

cellular IC10 and IC5 concentrations) in the zinc, lead, cadmium, arsenite and MMA
III

 

exposures from Vulpe’s fitness dataset (supplementary CD, folder ‘chapter 8’). This was 

achieved by using the SAM methodology at an FDR< 5%. Then I asked the question 

whether any of the sub-modules generated from the Hillenmeyer fitness network 

described in Chapter 2 was enriched in any of the statistically significant genes identified 

by SAM analysis. This was done using gene set enrichment analysis preranked 

(GSEAPreanked) [113]. Briefly, genes were ranked by their differential fitness as 

identified by the SAM analysis and the 17 network sub-modules were used as gene sets. 

The GSEA procedure is then used with these inputs to test whether the genes represented 

in each network module (gene set) were enriched at either end of the ranked list. The 

location of where the genes within the module map on the ranked gene list would provide 

information on whether when mutated, they confer resistance (increased fitness) or 

sensitivity (decreased fitness) when exposed to the chosen toxicant. An FDR < 0.1 was 

used to identify significant hits as using a more stringent FDR cut-off may lead to 

overlooking potentially significant results. Due to the way the fitness score was 

calculated (Chapter 2), deletion strains that infer resistance have a negative score, 

deletion strains that infer sensitivity have a positive score. 
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8.3 Results 

8.3.1 Yeast strains mutated in ribosomal proteins and ribosomal biogenesis genes 

are resistant to aresenite exposure 

GSEA analysis revealed that genes exhibiting differential fitness in response to arsenite 

exposure significantly hit two sub-modules (Table 8.1). Sub-modules 3.1 and 3.2 were 

both significantly negatively correlated (FDR < 0.1), suggesting yeast strains containing 

this mutation have increased tolerance to arsenite. Studies have shown that arsenite 

interferes with protein folding which triggers the formation of toxic protein aggregates by 

associating the molecular chaperones [260]. A decrease in translation activity has also 

been reported to protect against arsenite toxicity [260], therefore the negative correlation 

of ribosomal biogenesis and ribosomal protein genes in response to arsenite exposure 

may be a defence mechanism. This is consistent with reports that mutations in ribosome 

biogenesis and RPs leads to increased arsenite tolerance [261] [262]. Overall yeast strains 

mutated in ribosomal proteins have a higher relative fitness in a high dosage metal 

exposure experiment than in a low dosage culture suggesting that these mutations make a 

yeast cell able to adapt to high concentrations of arsenite. Surprisingly there was no 

positive enrichment (decreased fitness) of yeast strains containing ubiquitin-proteasome 

pathway mutants. The ubiquitin-proteosome pathway which acts as to ease protein 

disaggregation and reactivate or eliminate aggregated proteins has been reported in 

response to arsenite exposure [263] [260], however is not observed in this data.   

NAME  SIZE  NES  FDR q-

val  

RANK   Resistant 

or sensitive 

HET_GLAY_3.1  30 -3.24 0 375 RES 

HET_GLAY_3.2  32 -2.51 0 444 RES  

Table 8. 1 Significant fitness sub-modules associated to arsenite exposure 

Two sub-modules were identified as having a statistically significant negative enrichment (FDR 

q-val < 0.1) to arsenite exposure. This suggests that strains containing mutations within these 

sub-modules confer increased fitness (resistance) when exposed to arsenite. The genes within 

these sub-modules are shown in Figure 8.1.   
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Figure 8. 1 Arsenite exposure significantly hits two fitness sub-modules. 

Panels A and B represent the enrichment plots for sub-modules 3.1 and 3.2 respectively. The 

functional annotation adjacent to each enrichment plot represents the functional enrichment of the 

sub-module. Red text represents a corrected FDR < 0.05, green text represents a corrected FDR < 

0.1 and black test represents no statistically significant enrichment. Enrichment plots are 

separated into three key portions. The top portion with the green line represents the enrichment 

score for the genes within the sub-module when mapped across the ranked list of genes from the 

entire genome (ranked by fitness). The distinct (statistically significant) drop in enrichment score 

at the end (far right) of the ranked list shows that mutations in genes within the sub-module 

confer arsenite resistence in S. cerevisiae. If a statistically significant peak were present at the 

beginning (far left) then it would indicate that genes within the sub-module confer arsenite 

sensitivity to S. cerevisiae when mutated, however this is not the case her. The middle portion, 

with the vertical black lines indicates where the genes within the sub-module are located within 

the ranked gene list. As genes are ranked in order of fitness, the increased frequency of hits 

towards the end of the ranked list indicates that genes within the module predominantly confer 

resistence to arsenite toxicity when mutated. The bottom portion of the plot is a ranking metric 

indicating a gene’s correlation with the phenotype (positive representing S. cerevisiae growth 

sensitivity upon arsenite exposure and negative representing S. cerevisiae growth resistence upon 

arsenite exposure). Both sub-modules have a significant negative correlation to arsenite exposure, 

suggesting that yeast strains containing ribosomal protein mutants increase tolerance to arsenite 

exposure.   

Hillenmeyer GLay sub-module 3.2 is enriched in

Cytosolic large ribosomal subunit (26), translation regulation

(13), RNA polymerase III (7), ribosome export (6)

Hillenmeyer GLay sub-module 3.1 is enriched in

• rRNA processing / Ribosome biogenesis (44), small

ribosome subunit (26), rRNA related processes (24),

translation regulation (11), ribonucleoprotein complex

assembly (5), RNA polymerase I (3), RNA polymerase III

(3)

A

B
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8.3.2 Fitness modules linked to zinc exposure 

GSEA analysis revealed that genes exhibiting significant differential fitness (FDR < 0.1) 

in response to zinc exposure significantly hit five sub-modules (table 8.2). Sub-module 

2.1 is enriched in cell cycle and DNA replication genes (Figure 8.2A), sub-module 2.2 is 

enriched in ribosome biogenesis and energy metabolism pathways (Figure 8.2B). Zinc 

has a mechanistic role in the genetic stability and  gene expression of chromatin 

structure, DNA replication, transcription, DNA repair and apoptosis genes [257] [264]. 

These results suggest that mutating genes that associate with zinc, leads to a higher 

tolerance when exposed to toxic levels of zinc. Similarly to arsenic, yeast strains 

containing ribosomal biogenesis mutants (sub-modules 3.1 and 3.2) have a higher fitness 

when exposed to zinc (Figure 8.2C, Figure 8.2E). The inability to form functional 

ribosomes inhibits translation which prevents the build up of protein aggregates. 

Mutating genes encoding alcohol dehydrogenase, and other metabolic enzymes (sub-

modules 2.1 and 2.2) may increase resistance to zinc exposure by minimising the 

oxidative stress effects and production of reactive oxygen species (ROS) by decreasing 

activity through respiratory chains [265]. Sub-module 1.4 is enriched primarily in protein 

transport functions such as endoplasmic reticulum and golgi body (Figure 8.2D). Yeast 

strains that contain mutations in these functions may increase tolerance to zinc by 

minimising transport of malformed proteins caused as result of zinc exposure. 

NAME  SIZE  NES  FDR q-

val  

RANK  Resistant or 

Sensitive 

HET_GLAY_2.1  193  -2.04 0.003 1419  RES 

HET_GLAY_2.2  30  -1.76 0.038 1031  RES 

HET_GLAY_3.1  223  -1.73 0.032 1382  RES  

HET_GLAY_1.4  143  -1.6 0.045 1350  RES 

HET_GLAY_3.2  9  -1.55 0.078 896  RES  

Table 8. 2 Significant fitness sub-modules associated to zinc exposure 

(Table description continued on next page)  
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(Table legend continued) Five sub-modules were identified as having a statistically significant 

negative enrichment (FDR q-val < 0.1) to zinc exposure. This suggests that strains containing 

mutations within these sub-modules confer increased fitness (resistance) when exposed to zinc. 

The genes within these sub-modules are shown in Figure 8.2.  

 

 

 

Figure 8.2 (Figure continued on next page) 

  

Hillenmeyer GLay module 2.2 is enriched in

Alcohol metabolism / dehydrogenase (7), -ve regulation of

gluconeogenesis (3), ribosome biogenesis (17), DNA

metabolism (6), sphingolipid metabolism (3), oxidative

phosphorylation (4), zinc binding (17)

Hillenmeyer GLay cluster 2.1 is enriched in

Cell wall (20), DNA replication (14), cell cycle (42),

ubiquitin ligase (5) , electron transport (5), ribosome (12),

protein transport (19), oxidation reduction (17), TCA cycle

(4)

Hillenmeyer GLay sub-module 3.1 is enriched in

• rRNA processing / Ribosome biogenesis (44), small

ribosome subunit (26), rRNA related processes (24),

translation regulation (11), ribonucleoprotein complex

assembly (5), RNA polymerase I (3), RNA polymerase III

(3)

A

B

C
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Figure 8. 2 Zinc exposure significantly hits five fitness sub-modules. 
Panels A - E represent the enrichment plots for the sub-modules that are statistically significant 

targets of zinc exposure in S. cerevisiae. Panel A. S. cerevisiae strains containing cell wall, DNA 

replication and energy metabolism gene mutants are more resistant (have increased fitness) when 

exposed to zinc. Panel B Mutated genes involved in alcohol dehydrogenase, ribosome biogenesis 

and zinc binding increase resistance to zinc exposure. Panels C and E are enriched in ribosome 

biogenesis and ribosome proteins, suggesting lack of translation increases fitness. Panel D, 

mutations in protein transport and translation initiation causes increased tolerance to zinc. The 

functional annotation adjacent to each enrichment plot represents the functional enrichment of the 

sub-module. Red text represents a corrected FDR < 0.05, green text represents a corrected FDR 

<0.1 and black test represents no statistically significant enrichment. All enrichment plots show 

the same trend. The top portion with the green line represents the enrichment score for the genes 

within the sub-module when mapped across the ranked list of genes from the entire genome 

(ranked by fitness). A distinct (statistically significant) drop in enrichment score at the end (far 

right) of the ranked list shows that mutations in genes within the sub-module confer zinc 

resistence in S. cerevisiae.  The middle portion, with the vertical black lines indicates where the 

genes within the sub-module are located within the ranked gene list. As genes are ranked in order 

of fitness, the increased frequency of hits towards the end of the ranked list indicates that genes 

within the module predominantly confer resistence to zinc toxicity when mutated. The bottom 

portion of the plot is a ranking metric indicating a gene’s correlation with the phenotype (positive 

representing S. cerevisiae growth sensitivity upon zinc exposure and negative representing S. 

cerevisiae growth resistence upon zinc exposure).  

 

Hillenmeyer GLay sub-module 3.2 is enriched in

Cytosolic large ribosomal subunit (26), translation regulation

(13), RNA polymerase III (7), ribosome export (6)

Hillenmeyer GLay sub-module 1.4 is enriched in

ER (23), membrane (58), golgi membrane (5) helicase (6), 

translation initiation (5), mannosyltransferase (6)

D

E
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8.3.3 Yeast strains mutated in ribosome and chaperone genes exhibit tolerance to 

high concentrations of cadmium 

Once again, there were no positively correlated sub-modules; however there were three 

sub-modules which represent mutant strains with increased fitness after cadmium 

exposure (Table 8.3). Yeast strains containing ribosomal protein and translation initiation 

mutants (Figure 8.3A) once again inferred tolerance against toxic metal exposure, 

consistent with reports that lack of translation decreases cellular toxicity by limiting the 

concentration of proteins that can undergo a conformational change. Surprisingly, yeast 

strains containing chaperone mutants, specifically the TCP-1 family have increased 

tolerance to cadmium exposure (Figure 8.3B). Typically, chaperones are induced upon 

cellular toxicity and have a key role in adapting cellular response and ensuring cell 

viability [266]. Sub-units of TCP -1 assist in the folding of specifically actin and tubulin 

proteins in vivo [267]. The eukaryotic cytoskeleton contains three kinds of filaments, 

actin filaments, intermediate filaments and microtubules and one of its functions is the 

intracellular transport, of vesicles and organelles [268]. Therefore, having mutations in 

RP and TCP-1 genes effectively shuts down protein synthesis and transport, which 

minimises the available protein molecules that can undergo a conformation change and 

form toxic aggregates. This theory can also be applied to sub-module 3, which is also 

enriched in protein transport and protein complexes (Figure 8.3C). 

NAME  SIZE  NES  FDR q-

val  

RANK  Resistant or 

Sensitive 

HET_GLAY_3.2 32 -3.18 0 628 RES 

HET_GLAY_3.3 22 -1.75 0.028 150 RES 

HET_GLAY_3.5 11 -1.71 0.024 798 RES 

Table 8. 3 Significant fitness sub-modules associated to cadmium exposure 

Three sub-modules were identified as having a statistically significant negative enrichment (FDR 

q-val < 0.1) to cadmium exposure. This suggests that strains containing mutations within these 

modules confer increased fitness (resistance) when exposed to cadmium. The genes within these 

sub-modules are shown in Figure 8.3.  
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Figure 8. 3 Cadmium exposure significantly hits three sub-modules. 

Panels A – C represent the enrichment plots that are statistically significant targets of cadmium 

exposure in S. cerevisiae. Panel A. Yeast strains containing ribosomal protein and translation 

initiation mutations had a higher tolerance to cadmium exposure. Panels B and C. Yeast strains 

containing mutated genes encoding protein transport or actin / microtubule chaperones also 

confer increased tolerance. The functional annotation adjacent to each enrichment plot represents 

the functional enrichment of the sub-module. Red text represents a corrected FDR < 0.05, green 

text represents a corrected FDR <0.1 and black test represents no statistically significant 

enrichment. All enrichment plots show the same trend. The top portion with the green line 

represents the enrichment score for the genes within the sub-module when mapped across the 

ranked list of genes from the entire genome (ranked by fitness). (Figure legend continued on next 

page) 

  

Hillenmeyer GLay sub-module 3.2 is enriched in

Cytosolic large ribosomal subunit (26), translation regulation

(13), RNA polymerase III (7), ribosome export (6)

Hillenmeyer GLay sub-module 3.3 is enriched in

RNA polymerase II (12), chaperonin / TCP-1 (6)

Hillenmeyer GLay sub-module 3.5 is enriched in

Protein / nucleocytoplasmic transport (4), protein complex (3)

A

B

C
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(Figure legend continued) A distinct (statistically significant) drop in enrichment score at the end 

(far right) of the ranked list shows that mutations in genes within the sub-module confer cadmium 

resistence in S. cerevisiae.  The middle portion, with the vertical black lines indicates where the 

genes within the sub-module are located within the ranked gene list. As genes are ranked in order 

of fitness, the increased frequency of hits towards the end of the ranked list indicates that genes 

within the module predominantly confer resistence to cadmium toxicity when mutated. The 

bottom portion of the plot is a ranking metric indicating a gene’s correlation with the phenotype 

(positive representing S. cerevisiae growth sensitivity upon cadmium exposure and negative 

representing S. cerevisiae growth resistence upon cadmium exposure).  

 

 

8.3.4 Yeast strains mutated in ribosomal proteins and protein transport genes 

exhibit tolerance to high concentrations of MMA
III 

 

Humans and mammals are able to methylate arsenite to form MMA
III

, a metabolite 

known to be more toxic that arsenite [254]. GSEA analysis identified three sub-modules, 

all of which inferred resistance onto the yeast strain (Table 8.4). Once again the 

significant negative correlation of sub-modules 3.1 and 3.3 (Figure 8.4A, Figure 8.4B) 

suggests that yeast strains mutated in ribosomal proteins have a higher relative fitness to 

high dosage metal exposure compared to low dosage, as does sub-module 4.1, which is 

enriched in glucose metabolism and endoplasmic reticulum genes. 

 

 

NAME  SIZE  NES  FDR q-

val  

RANK  Resistant 

or Sensitive 

HET_GLAY_3.1 30 -2.42 0 366 RES 

HET_GLAY_3.3 22 -1.68 0.029 630 RES 

HET_GLAY_4.1 40 -1.54 0.081 673 RES 

Table 8. 4 Significant fitness sub-modules associated to MMA
III 

exposure 
Three sub-modules were identified as having a statistically significant negative enrichment (FDR 

q-val < 0.1) to MMA
III

 exposure. This suggests that strains containing mutations within these 

modules confer increased fitness (resistance) when exposed to MMA
III

. The genes within these 

sub-modules are shown in Figure 8.4.  
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Figure 8. 4 MMA
III

 exposure significantly hits three sub-modules. 
Panels A – C represent the enrichment plots that are statistically significant targets of MMA

III 

exposure in S. cerevisiae. Panel A. S. cerevisiae strains containing ribosomal protein and 

translation initiation gene mutations had a higher tolerance when exposed to MMA
III

. Panel B 

Stains lacking genes encoding protein transport or actin / microtubule chaperones also had higher 

tolerance, as do yeast strains containing mutated glucose metabolism and protein transport genes 

(Panel C). The functional annotation adjacent to each enrichment plot represents the functional 

enrichment of the sub-module. Red text represents a corrected FDR < 0.05, green text represents 

a corrected FDR <0.1 and black test represents no statistically significant enrichment. All 

enrichment plots show the same trend. The top portion with the green line represents the 

enrichment score for the genes within the sub-module when mapped across the ranked list of 

genes from the entire genome (ranked by fitness). (Figure legend continued on next page) 

Hillenmeyer GLay sub-module 3.3 is enriched in

RNA polymerase II (12), chaperonin / TCP-1 (6)

Hillenmeyer GLay sub-module 3.1 is enriched in

• rRNA processing / Ribosome biogenesis (44), small

ribosome subunit (26), rRNA related processes (24),

translation regulation (11), ribonucleoprotein complex

assembly (5), RNA polymerase I (3), RNA polymerase III

(3)

Hillenmeyer GLay sub-module 4.1 is enriched in

regulation of glucose metabolism carbohydrate (3), ER (3)

A

B

C
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(Figure legend continued) A distinct (statistically significant) drop in enrichment score at the end 

(far right) of the ranked list shows that mutations in genes within the sub-module confer MMA
III

 

resistence in S. cerevisiae.  The middle portion, with the vertical black lines indicates where the 

genes within the sub-module are located within the ranked gene list. As genes are ranked in order 

of fitness, the increased frequency of hits towards the end of the ranked list indicates that genes 

within the module predominantly confer resistence to MMA
III 

toxicity when mutated. The bottom 

portion of the plot is a ranking metric indicating a gene’s correlation with the phenotype (positive 

representing S. cerevisiae growth sensitivity upon MMA
III

 exposure and negative representing S. 

cerevisiae growth resistence upon MMA
III

 exposure).  

 

 

8.3.5 Exposure to lead does not cause differential fitness in any yeast mutants   

Surprisingly neither SAM nor GSEAPreranked identified any yeast strains with 

differential fitness (Supplementary CD, folder entitled ‘Chapter 8’).    
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8.4 Discussion 

Though this study focussed on only a limited set of metal and metalloid exposures, the 

most important finding in this study was the demonstration that fitness data can be used 

to identify targets of metal and metalloid toxicity. A shared result across toxicant 

exposure was that increased fitness was observed in strains containing mutants involved 

in ribosome formation, translation and protein synthesis, consistent with reports that 

translation repression increases cell survivability [261] [262]. This preliminary study has 

demonstrated how fitness data can be applied to identify adverse outcome pathways in S. 

cerevisiae. 

 

8.4.1 Potential targets of metals and metalloids reveal the mechanisms of toxicity  

Metal ions are essential for cell viability in most organisms. However, a delicate balance 

must be maintained as high concentrations of metal ions are known to cause toxicity in 

both mammals and microorganisms alike [257]. Metal ion exposure holds great 

significance in environmental and occupational studies, as exposure to heavy metals such 

cadmium and lead can lead to prenatal and developmental defects in humans [258]. 

Metal and metalloid toxicity is often caused by imprecise folding of affected proteins, 

causing a build up of abnormal proteins, leading to cell toxicity [260]. Cells with 

diminished translation activity have been shown to protect against arsenite toxicity, 

furthermore mutations in genes encoding RPs and biogenesis factors increase arsenite 

tolerance [261] [262]. Although RPs are essential for cell viability, many are duplicated; 

therefore mutating a single copy is non-lethal. Deletions of duplicated RPs have known 

to delay ribosome assembly and diminish the rate of translation. The metals and 

metalloids tested in this study suggest that toxic effects are minimised upon exposure to 

yeast strains lacking ribosome and translation functionality.  
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Complementary to the results, in normal yeast strains, toxic doses of arsenite and 

cadmium are believed to cause disruption to cellular protein structure [269]. Therefore, to 

protect against toxicity, cells must repress translation. The presence of stress granules 

within the cytosol is linked with stress response, and occurs when translation initiation is 

aborted or when ribosomes stall on mRNA [270]. Formation of stress granules induces 

phosphorylation of eukaryotic initiation factor α (eIF2α). eIF2α is essential for protein 

synthesis, and usually forms a ternary complex with GTP and the initiator tRNA Met-

tRNA, however phosphorylation of eIF2α causes a reduction in the levels of the eIF2α – 

GTP – Met-tRNA ternary complexes, leading to a decrease in translation initiation rates 

[271]. This demonstrates a possible mechanism for translation repression in normal yeast 

strains which is essential for establishing tolerance. Hence, this is why yeast strains 

containing mutant RP and ribosomal biogenesis genes, show increased differential 

fitness, as the rate of translation is also repressed. 

A very interesting observation was that chaperone proteins involved in the post-

translation modification of actin and tubulin proteins may contribute to cadmium and 

MMA
III

 toxicity. We identified that yeast strains containing mutants of the TCP-1 

complex had increased resistance to high concentrations of cadmium and MMA
III

. This 

was a very surprising result, as typically the canonical function of a chaperone is to aid in 

the correct folding of unfolded and misfolded proteins [272]. The TCP-1 ring complex 

(also known as TRiC) is 900 kDa complex containing two hetero-oligometic protein 

rings, each ring is made of up eight homologous sub-units encoded by the essential genes 

CCT1- CCT8 [262]. The TCP-1 complex is required for the correct folding of actin and 

tubulin proteins [262], accumulation of unfolded β-tubulin is known to be toxic [273]. 

Our results show that when exposed to high concentrations of cadmium and MMA
III

, 

yeast strains containing mutations encoding the TCP-1 complex had a higher fitness than 
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when exposed to lower concentrations. This suggests that at high concentrations, 

cadmium and MMA
III

 inhibit TCP-1 function in normal yeast cells, by repressing the 

ability to correctly fold actin and tubulin proteins, leading to cell toxicity. Arsenite has 

also been reported to target the TCP-1 complex [262]. These results fit well with my 

results demonstrating that strains lacking ribosome and translation related genes, have a 

higher fitness. Under normal conditions, cadmium and MMA
III

 may target chaperone 

proteins directly, which means newly synthesised proteins are unable to undergo correct 

folding, leading to a build-up of toxic protein aggregates. By knocking out genes 

encoding the TCP-1 complex, it’s possible that cadmium and MMA
III

 are unable to be as 

effective. Combined with yeast cells natural defence mechanisms used to repress 

translation (as described above), it all could infer an increased fitness for yeast strains 

containing TCP-1 mutants. 

Interestingly, none of the metals tested hit fitness sub-module 3.4 which is significantly 

enriched in proteasome functions (Chapter 2, section 2.3.3.3). A general trend across our 

results was that mutants of RPs and translation related genes are more tolerant of metal 

exposure due to the lack of protein synthesis [260] [261] [262]. However, proteins 

synthesised prior to exposure would still be a target of metals and metalloids. As such, it 

would be expected that yeast proteasome mutants would be hypersensitive to metal and 

metalloid exposure and therefore be characterised by a low fitness after exposure, 

however this was not observed. An explanation for this is that possibly the genes within 

sub-module 3.4 are not induced during a metal or metalloid stress response. 
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8.4.2 Shortcomings and further work  

Upon completing this work, I identified two factors which may have limited this study. 

Firstly, an unexpected result was that no modules were enriched upon lead exposure, 

furthermore lead exposure did not cause differential fitness in yeast strains between the 

lowest and highest dosages (as detected by SAM). This suggests that the cellular 

mechanisms involved in defending against lead exposure do not become more apparent 

as lead concentration increases. This is a consideration that needs to be taken into 

account in future studies, possibly by incorporating a control sample (taken prior to 

exposure). Incorporating a control sample would capture genes that are induced upon 

toxicant exposure, in addition to genes that are induced as toxicant concentration 

increases. The current study compared fitness scores between the lowest toxicant dose 

and the highest toxicant doses, with the aim of identifying genes that are induced / 

repressed as the toxicant concentration increased. Secondly, only five toxicants were 

used in this study. Though the results are consistent with those reported in current 

literature, a greater number of metals and metalloids would be pertinent in validating the 

use of fitness data for adverse outcome pathway studies. This limitation is due to the lack 

of fitness data in S. cerevisiae that focuses on metal exposure response. This study made 

use of two of the largest fitness compendia available for S. cerevisiae, utilising the metal 

exposure fitness data from Vulpe Lab together with the fitness network constructed from 

Hillenmeyer’s compendium. However given the recent surge in popularity of using 

fitness data as a means of analysing biological systems, it is only a matter of time until 

this data becomes available. As this study was only a preliminary look into using fitness 

data to identify adverse outcome pathways for metal and metalloid toxicity, there are 

multiple ways this study could be expanded. One possible direction would be to expand 

the analysis to chemical exposures rather than just metal exposure. This could be done by 
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integrating the Hillenmeyer fitness networks constructed in Chapter 2 with molecular 

descriptors. Molecular descriptors, also termed physico-chemical features (PCFs) 

describe the 2D and 3D topological, electrostatic, geometrical and atomic properties of a 

chemical [274]. Integrating my fitness networks with these descriptors would require the 

use of a genetic algorithm, which in theory would predict PCFs that were signatures of 

the fitness modules identified in Chapter 2. Specifically, it would be possible to identify 

what properties of a chemical are responsible for affecting cell viability. 

 

8.5 Concluding remarks 

Though there were limitations to this study, including a lack of diverse toxicants and the 

lack of a control sample, this chapter demonstrated how fitness data can be used to 

identify of adverse outcome pathways in S. cerevisiae. It marked a novel preliminary 

approach in applying fitness data to identify targets of metal toxicity. The results 

demonstrated that in response to toxic levels of  zinc, arsenic, cadmium and MMA
III

 , S. 

cerevisiae strains lacking the ability to translate proteins all had higher resistance that 

those that did not have the mutation. This is consistent with the down-regulation of 

protein machinery in response to metal toxicity in normal S. cerevisiae strains which 

aims to minimising the concentration of misfolded potentially toxic protein aggregates 

[260] [261] [262]. This study was a preliminary piece of work that highlights the diverse 

applications of fitness data. The next stage in applying fitness data would be to identify 

targets of chemical exposure, rather than limiting the study to only metals and arsenicals. 
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CHAPTER 9: GENERAL DISCUSSION  
 

9.1 Exploring the global and local organisation of the yeast system 

The ability to quantify measurements of multi-level systems such as gene expression, 

phenotypic growth and protein binding has led to the generation of extraordinary amount 

of data. A systems biology approach provides a powerful means to analyse the 

consequences of perturbations on a biological species. The application of reverse 

engineering methods with single level data is useful in inferring underlying regulatory 

networks without prior knowledge, and aids in the inference of novel relationships 

between different entities. Moreover the integration of multi-level datasets using 

computational methodologies has the potential to identify biological models that exhibit 

significantly correlated behaviour across the diverse data, which can then be tested 

experimentally. The aim of this study was to apply a systems biology and network 

inference approach to available yeast fitness and expression datasets. This thesis 

demonstrated how network interrogation techniques such as modularisation and 

functional association can be used to characterise underlying global biological networks 

for S. cerevisiae and S. pombe. The relationships inferred between functional modules 

sharing co-expression, co-fitness or both, allowed for a hypothesis driven analytical 

approach, identifying potentially significant new areas for study. The results provided 

both novel hypotheses as well as additional evidence supporting existing biological 

pathways. This work focused particularly on applying these methods to elucidate the 

relationship between energy metabolism and ribosome biogenesis.  
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9.2 Understanding cell cycle progression in yeast 

Analysis of S. cerevisiae fitness data identified a potential mechanism in the control of 

cell cycle progression involving the non-essential cell cycle checkpoint protein BUB1 

(Chapter 2) and cytosolic RPs. The highly significant co-fitness profiles between S. 

cerevisiae strains containing deletions of BUB1 and genes encoding cytosolic RPs 

suggested that there may be an underlying biological connection between these genes. 

One possible hypothesis was that the lack of a functional ribosome may cause cell cycle 

arrest at the anaphase checkpoint, a response which is also observed when BUB1 is 

knocked out [134].  The involvement of RPs and ribosome biogenesis proteins in 

maintaining cell cycle progression has been reported before. As discussed in Chapter 2, 

inactivation the ribosome biogenesis gene RRB1, is reported to cause abnormal 

chromosome segregation [136]. What is novel however, is that the analysis of fitness data 

conducted in Chapter 2 revealed that BUB1 exhibited statistically significant co-fitness to 

over 45 cytosolic RPs, with the most significant correlation being to genes encoding 

small 40S RPs. In fact, the top 25 most significant edges between RPs and BUB1, 21 

belonged to 40S RPs. The reason as to why BUB1 has higher co-fitness to genes 

encoding 40S RPs is currently unknown, however it was also observed in the fitness and 

expression integrated network (Chapter 4), in which the HOPACH cluster representing 

chromosome segregation was a first neighbour of the HOPACH cluster representing 

small RPs. In addition, no edges were observed between chromosome segregation and 

large RPs. Furthermore, BUB1 requires other spindle checkpoint components into order 

to fulfil its function, including the MAD protein family and additional BUB proteins 

[135]. With this in mind, it is extraordinary as to why only BUB1 shows such a 

significant phenotypic correlation to RPs.  
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It can be argued that the linkage between BUB1 and genes encoding RPs is simply a 

consequence of them both contributing similar fitness to S. cerevisiae cells, and that there 

is no underlying biological relationship between them. BUB1 is a non-essential gene 

which has a paralogue (MAD3) [130], some RPs also have paralogues which arose as a 

result of a whole duplication event. Therefore it could be that BUB1 has a greater 

correlation to small RPs simply because deletion of both genes leaves the cell in a less fit 

yet still viable state.  This explanation is plausible, however it is important to keep in 

mind that some of the small RPs significantly correlated to BUB1 (shown in Table 2.14) 

do not have a paralogue and are fatal when deleted (such RPS20, RPS13, RPS3, RPS15, 

RPS2). The question then, is why does BUB1 have such a strong correlation to genes 

encoding RPs, why is this correlation stronger with genes that encode 40S RPs rather 

than those that encode 60S RPs and why is non-essential BUB1 strongly correlated to 

genes that encode essential RPs? This is an area of research which requires further 

investigation in order to identify the true underlying cause including validation using wet 

lab experiments. A shortcoming of this analysis is that the linkage between BUB1 and 

RPs was only observed in the Hillenmeyer fitness network, this feature was not observed 

in the Vulpe fitness network (Chapter 2). This may be due to the limited size of the 

Vulpe fitness dataset compared to the extensive Hillenmeyer fitness compendium.   

 

9.3 A new perspective in understanding the intricacies of ribosome biogenesis in 

S. pombe 

The fitness networks reported in Chapter 2 took into consideration entire fitness datasets 

and encapsulated the global as well as local organisation of the S. cerevisiae system. The 

analytical pipeline used in this study was a novel way of applying fitness data. This is 

also true for the approach used to analyse the comprehensive TF knockout data for the S. 
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cerevisiae expression network as well as the Bähler compendium used to construct the S. 

pombe expression network. The methodogies applied in this thesis allowed for the 

genome-wide analysis of yeast fitness and expression data, as well as the integration and 

analysis of genome-wide multi-level data. This resulted in the identification of several 

potentially interesting hypotheses. The investigation into the linkage between RPs and 

energy metabolism genes is just a single example of how network based hypothesis 

driven research can reveal additional potentially interesting functional interactions. 

Furthermore, prior to this study, there had not been a comprehensive investigation into 

riboneogenesis in S. pombe.  Below I discuss the contribution each study within this 

thesis made to understanding and elucidating riboneogenesis in yeast. 

 

9.3.1 Similarities between S. pombe FBP1 and S. cerevisiae SHB17 

Sedoheptulose-1, 7-bisphosphatase (SHB17) is the enzyme responsible for catalysing the 

committed step of riboneogenesis in S. cerevisiae [92], however the network analysis 

conducted in S. pombe suggested that FBP1 may instead catalyse the committed step in 

riboneogenesis. As discussed in Chapter 5 (section 5.4.1), S. pombe does not have a 

dedicated sedoheptulose-1, 7-bisphosphatase, rather, FBP1 has the potential to act as 

both a sedoheptulose-1, 7-bisphosphatase (accepting SBP as the substrate) [58] or a 

canonical fructose-1, 6-bisphosphatase (accepting FBP as the substrate). Unlike S. 

pombe, S. cerevisiae has its own fructose 1, 6-bisphosphatase and sedoheptulose-1, 7-

bisphosphatase (SHB17). FBP1 in S. cerevisiae does not have sedoheptulose-1, 7-

bisphosphatase activity suggesting that in S. cerevisiae, SHB17 is the enzyme dedicated 

to catalysing the committed step in riboneogenesis whilst FBP1 catalyses the rate 

limiting step in gluconeogenesis.  
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In S. pombe however, FBP1 may fulfil the role of SHB17 in addition to its canonical FBP 

role. Therefore, its role in gluconeogenesis and riboneogenesis regulation may be 

dependent on cellular demands. The dual function of FBP1 in S. pombe is supported by 

the structural similarities between FBP and SBP and studies in other organisms 

(discussed in section 5.4.1), suggesting that both substrates have the potential to bind 

FBP1. The mechanisms that dictate which substrate binds FBP1 and when, is not fully 

understood, but I hypothesised that the conformation of FBP and SBP (whether they bind 

in cyclic or extended form) is the key factor which determines the role that FBP1 has in 

the cell (discussed in section 5.4.2). Below I provide a possible mechanistic model based 

on results obtained during this project and reported in existing literature. 

 

9.3.2 FBP1 switches enzymatic activity depending on cellular demands for ribose-

5-phosphate 

Due to the lack of a dedicated sedoheptulose 1, 7-bisphosphatase in S. pombe, I 

hypothesise that FBP1 in fact has a dual role, switching between acting as a fructose 1, 6-

bisphosphatase or sedoheptulose 1, 7-bisphosphatase depending on cellular demands. 

During times of rapid growth when increased protein translation is required, glycolysis 

flux increases, raising the concentrations of glycolytic intermediates that can be used for 

riboneogenesis. During such states FBP1 acts as a sedoheptulose-1, 7-bisphosphatase, 

catalysing the first committed step of riboneogenesis, therefore fulfilling the cellular 

demands for ribose-5-phosphate. The mechanism by which FBP1 may switch enzymatic 

activity is not known, however one hypothesis supported by the network analysis done in 

Chapter 5 suggests that the binding of ubiquitin to the allosteric binding site of FBP1 

may cause a conformation change to the active site which allows SBP to bind in its cyclic 

form (Figure 9.1). This hypothesis is supported by the fact that the allosteric binding site 
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of FBP1 is located at the N-terminus [186] and that mammalian FBP1 contains a 

conserved lysine residue within the allosteric site [188]. There have been reports that the 

N-terminus of the target protein has been used for ubiquitination [275] [276], as well as 

the canonical lysine residue [191], therefore it is plausible that ubiquitin may associate to 

the allosteric site of FBP1. Upon binding, a conformation change in the active site of 

FBP1 may occur, allowing SBP to bind in its preferred cyclic form, thereby increasing 

the affinity of FBP1 for SBP, rather than for FBP (Figure 9.1C). Studies in pig kidney 

have reported that specific regions of FBP1 have a higher level of disorder, making them 

susceptible to multiple conformations [186], this may impact the structure of the active 

site. 

Conversely, when growth on a non-fermentable carbon source is required, such as during 

glucose starvation, there is an up-regulation of genes encoding proteins involved in 

gluconeogenesis [277], and a co-ordinated down regulation of genes involved in 

translation elongation and initiation [278]. The lack of glucose also leads to the 

repression of glycolysis and increased degradation of glycolytic enzymes [278]. The anti-

correlated expression between gluconeogenesis and RPs may be due to the demand for 

glucose being higher than that of ribose-5-phosphate, and as a result FBP1 exhibits its 

canonical fructose-1, 6-bisphosphatase activity to increase flux through gluconeogenesis. 

The lack of sedoheptulose 1, 7-bisphosphatase activity exhibited by FBP1 subsequently 

leads to the repression of riboneogenesis (Figure 9.1 B).  

This hypothesis assumes that riboneogenesis in S. pombe can only occur during times 

when glucose is readily available, consistent with reports in S. cerevisiae [92]. The data 

suggests that FBP1 is a strong candidate for the role as the key enzyme in determining 

whether the S. pombe cells proceeds through gluconeogenesis or riboneogenesis. 
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However, this hypothesis is limited in two ways. The first, there is currently no 

experimental evidence or comprehensive studies that have investigated whether FBP1 in 

S. pombe changes its role when bound by ubiquitin and secondly as discussed in section 

5.4.1, reciprocal BLAST searches did not identify S. pombe FBP1 as a potential 

orthologue for S. cerevisiae SHB17.  This study, has however, identified potentially key 

differences in riboneogenesis between S. pombe and S.cerevisiae. Given the divergence 

in carbon metabolism between these two species [66], it is plausible that S. pombe does 

in fact regulate riboneogenesis differently to S. cerevisiae. This study has identified 

several candidate genes and proteins which can serve as a means of experimentally 

testing this hypothesis (section 5.4.3) .  
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Figure 9. 1 A flow chart representing the hypothesised dual functionality of FBP1 in S. 

pombe based on results obtained throughout this study and evidence from existing 

literature. 

Panel A. A cartoon showing the structure of FBP1 (represented in blue) with its allosteric and 

active site. (Figure legend continued on next page)  
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(Figure legend continued) Coloured shapes represent the FBP, SBP and ubiquitin as shown in the 

figure legend. FBP1 can either have a role in gluconeogenesis (Panel B) or riboneogenesis (Panel 

C), depending on the demand for ribose-5-phosphate.  Panel B. During periods when ribose-5-

phosphate demand is in low demand and the demand for glucose is high (such as glucose 

starvation) FBP1 acts as a fructose-1, 6-bisphosphatase and catalyses the key rate limiting step in 

gluconeogenesis. The shape of the active site, allows FBP to bind in its cyclic form, therefore the 

affinity of FBP1 for FBP is higher than that of SBP. In some circumstances finite regulation of 

FBP1 is also dictated by the binding of AMP to the allosteric site (not shown in figure). FBP is 

then catalysed to fructose 6-phosphate, an intermediate product of gluconeogenesis. Panel C. 

During periods when ribose-5-phosphate demand is high, such as during rapid cell growth, FBP1 

exhibits sedoheptulose-1,7-bisphosphatase activity. Ubiquitin binds to the allosteric site of FBP1 

with the aid of a ubiquitin ligase. The binding of ubiquitin causes a change in the active site of 

FBP1, allowing SBP to bind the active site in its cyclic form rather than its extended linear form, 

thereby increasing FBP1 affinity for SBP rather than FBP. In a thermodynamically driven 

reaction, FBP1 catalyses SBP to sedoheptulose-1, 7-phosophate, which is a key intermediate in 

riboneogenesis. When ribose-5-phosphate demand decreases, the ubiquitin molecule may 

disassociate from FBP1 through the aid of a deubiquitinase (not shown in figure), returning FBP1 

to its canonical function in gluconeogenesis. 

 

9.3.3 Can RPs regulate their own synthesis by effecting the expression of FBP1 

and glycolysis genes? 

Eukaryotic cells produce and import RPs into the nucleus; the majority are incorporated 

into ribosomal subunits, which are subsequently exported back into the cytoplasm to be 

assembled into a mature ribosome [98]. However, RPs are imported into the nucleus in 

excess of demand, which means that at any given time there are a pool of unassociated 

RPs in both the nucleus and cytoplasm which are free to perform other functions aside 

from their canonical role in ribosome formation [98]. Unassociated RPs have been 

reported to have many additional functions such as stabilising and protecting proteins via 

protein – protein interactions [279], as well as roles in mRNA processing, transcription, 

translation, DNA repair and apoptosis [100].  The role of  RPs in mRNA processing is 

particularly interesting as in both eukaryotes and prokaryotes, RPs have been reported to 

regulate their own gene expression as well as the expression of other genes by DNA and 

RNA interactions to create structures capable of affecting gene expression. The ChIP-
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chip data presented in Chapter 6 showed that RPs bind to many of the same genomic loci, 

suggesting that they may bind as a silent incomplete protein complex. Their presence at 

specific genomic loci suggests that they may have a role in regulating gene expression. 

The mechanisms by which RPs regulate expression of genes are numerous and varied 

(Figure 9.2). RPs are able to bind their own premRNA and inhibit expression (Figure 

9.2A). In eukaryotes for example, RPS14 binds to its own pre-mRNA and inhibits 

transcription [280]. RPs can also affect splicing, such as S. cerevisiae RPL30, which 

inhibits splicing by binding to the intron exon junctions (Figure 9.2B) within its own 

transcript, it can also bind other mature mRNAs and inhibit translation [97] (Figure 9.2C) 

Ultimately, many RPs have the potential to regulate their own expression and the 

expression of other genes. 

In accordance with induction of riboneogenesis being heavily dependent on cellular 

conditions and demands, it could be that RPs themselves repress their own synthesis by 

binding to gluconeogenesis gene FBP1 and glycolysis genes involved in riboneogenesis. 

In Chapter 6, I reported that FBP1 is bound by RPL7, RPL11 and RPL25. The 

conclusion was that the similarity in binding patterns between the three RPs was likely 

due to excess RPs that were not incorporated into ribosome subunits, binding to genes as 

part of a non-functional ribosomal complex [50]. This suggests that when there are 

excess RPs (therefore a low demand for ribose); they associate to many genomic loci, 

including FBP1 and glycolysis genes. By associating to these genes, they reduce the 

expression of fructose-1, 6-bisphosphatase and glycolytic proteins respectively, 

effectively inhibiting the riboneogenesis pathway.  

The ChIP-chip analysis revealed that the following energy metabolism genes were bound 

by RPs; FBA1, PGK1, PYK1, TDH1 and FBP1. Therefore it could mean that when ribose 
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demand is low, the excess RPs bind glycolysis genes and FBP1 directly as part of a 

feedback loop using one of the mechanisms shown in Figure 9.2, shutting down 

glycolysis and inhibiting expression of FBP1. When ribose demand is high, the 

preassembled silent ribosomal complexes may disassociate from the glycolysis genes 

(possibly to form functional ribosomes). As a result, the genes encoding key enzymes in 

the glycolytic pathway are expressed, thereby increasing flux through glycolysis (Figure 

9.1B). The glycolytic intermediates can then be shunted into the non-oxidative arm of the 

PPP where FBP1 catalyses the first committed step in riboneogenesis. Thus explaining 

why mutations in RPs leads to a phenotypic effect that is not typically associated to RP 

function. Such as those reported in Chapter 2 in which strains containing deleted RP 

genes were shown to have a statistically significant correlation to strains containing 

deleted glycolysis and hexose metabolism genes, indicating both strains had a highly 

similar phenotype . To test whether the association of RPs to these genes is truly because 

of an underlying regulatory mechanism is an area of the study which requires exploration 

and experimental validation.  
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Figure 9. 2 Possible mechanisms of action in which RPs inhibit FBP1 and glycolysis gene 

expression when demand for ribose-5-phosphate is low. 

The figure represents three mechanisms reported in literature by which RPs may regulate the 

expression of genes involved riboneogenesis. The pink bars represent codons, blue bars represent 

introns, the yellow oval represents a RP complex. Panel A. RPs bind the promoter region of 

FBP1 preventing the recruitment of transcription machinery. Panel B. RPs bind the intro exon 

junctions of pre-mRNA inhibiting splicing from occurring, thereby preventing the manufacture of 

mature mRNA. Panel C. RPs bind the promoter region of the mature mRNA, inhibiting the 

recruitment of components required for translation, thereby inhibiting translation of the gene. 
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9.3.4 Understanding ribosome biogenesis: Expanding the scope to higher 

eukaryotes 

Since their sequencing, both S. cerevisiae and S. pombe have been used as a model for 

analysing human disease. Of the 4824 proteins in the S. pombe genome, 172 are related 

to human disease proteins, of which 50 have statistically significantly similarity (as 

calculated using BLASTP) [57].  Half of these significant genes are cancer related [57]. 

A similar number of genes in S. cerevisiae (182) are identified as having similarities with 

human disease proteins.  

Many tumour cells show up-regulation of the non-oxidative arm of the pentose phosphate 

pathway [281]. Numerous studies have reported and confirmed the link between tumour 

cell growth and ribose-5-phosphate production [282, 283]. Therefore studying the 

process by which glycolytic intermediates are converted to ribose-5-phosphate in yeast, 

may yield new directions for human cancer research.  In addition to cancers, human 

diseases such as Wernicke–Korsakoff syndrome [284] and maturity-onset diabetes of the 

young (MODY) [285] are caused by dysfunctional transketolase and hexokinase 

enzymes respectively. These classes of proteins are involved in regulating glycolysis and 

riboneogenesis, and were identified as first neighbours to RPs in my analysis. By 

elucidating the roles of rate limiting enzymes in energy metabolism pathways, it is 

possible to identify drug targets [93].  Experimental work may shed some light on the 

possible mechanisms of diseases that are caused by defects in energy metabolism 

pathways. In S. pombe, the hypothesised dual role of FBP1 may aid in understanding 

how to control the rate of gluconeogenesis and tackle type 2 diabetes [286]. Type 2 

diabetes is caused by the excessive glucose production via gluconeogenesis [286]. 

Fructose bisphosphatases catalyse a rate limiting reaction in gluconeogenesis and 

therefore have the potential to control the rate of glucose production; because of this they 
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are attractive targets for the development of drugs aimed to tackle type 2 diabetes [287]. 

Verifying whether FBP1 does indeed accept both FBP and SBP as substrates depending 

on the structure of its active site may open new possibilities on how to control flux 

through gluconeogenesis. 

 

9.4 Limitations and Future work 

9.4.1 The lack of fitness data in S .pombe 

In order to achieve a more comprehensive understanding of the S. pombe system, ideally 

fitness data should have also been used. However, currently there is a severe lack in S. 

pombe fitness data. One study, published in March 2010 by Kim et al, constructed the 

first deletion library for S. pombe and mutated 98.4% of the fission yeast genome [73] 

using the KanMX deletion cassette, the same methodology used in existing S. cerevisiae 

fitness studies [36] [37] [41]. The experiment was limited as it only used one condition, 

exposure to rich media. The study used a six replicate design and this lack of samples 

meant that the analytical pipeline used in Chapters 2 – 5 could not be applied; as MI 

based reverse engineering methods require more than 50 samples to be effective. 

Furthermore, in December 2010, the S. pombe deletion library previously constructed by 

Kim et al, was reported to be imprecise, as up to 30% of the DNA barcodes, which are 

vital for determining the fitness contribution of each gene, may have deviated from their 

original design. This meant the entire deletion library for S. pombe had to be verified 

using deep sequencing [74]. As a result, a comprehensive deletion library for S. pombe 

fitness experiments has only been available from 2011 onwards, and therefore the 

volume of fitness data for S. pombe is lacking compared to S. cerevisiae. There does exist 

a preliminary study published by Han et al which used with the newly validated S. pombe 

deletion library [74], however it only contained four conditions, including exposure to 
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three types of genotoxin and anti-microtubule compound thiabendazole (TBZ). Again, 

the lack of samples means that this dataset cannot be used for network inference in this 

study. In the future, when fitness data for S. pombe is more readily available, it would be 

of scientific interest to apply the network inference methodology and analytical workflow 

used in this thesis to S. pombe fitness data. Doing so would allow parallels and 

comparisons against the S. cerevisiae fitness networks constructed in Chapter 2, as well 

as determine if the modules identified in the S. pombe expression network (Chapter 5) are 

conserved at the phenotypic level. This approach may also shed further light on the 

linkage between FBP1 and riboneogenesis. Additionally, it would be possible to do an 

integrated analysis such as that described in Chapter 4. S. pombe still contains many 

uncharacterised genes, and an integrated network may aid in predicting gene function (as 

discussed is section 4.4.2). 

 

9.4.2 The need for experimental validation 

The analysis in this thesis focused on bioinformatics, and with the exceptions of the RPL 

ChIP-chip and UPF1 ChIP-chip data, there has been minimal experimental validation to 

confirm the hypotheses presented in this thesis. MI based networks are broad and robust, 

allowing the organisation of a biological system to be visualised, mapped and 

interrogated. MI based network inference methods can reveal correlations and 

dependencies between genes, however it cannot determine edge directionality or 

causality. Due to this limitation, it is essential that any hypotheses developed from MI 

based networks are validated experimentally. Though this is a substantial limitation to 

using MI based networks, one key advantage is that they have the ability to identify 

candidate genes for experimental validation. For example this thesis reported the novel 

finding that FBP1 in S. pombe may be the rate limiting enzyme in riboneogenesis and 
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based on network interactions, several possible experiments were described which could 

be used to test the hypothesis (Chapter 5, section 5.4.3). In order to increase the 

robustness of the results presented in this thesis, experimental validation is required, 

however this thesis has demonstrated how hypothesis driven analysis using reverse 

engineering methods can identify novel interactions for future research. It also 

demonstrated that these approaches can provide supporting evidence and additional links 

between cellular pathways already known to exist.  

 

 

  



 

289 
 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

290 
 

Rank  Ensembl ID  Gene name  Degree  Node description  
1  YOR292C  YOR292C  342  Vacuolar membrane protein YOR292C  

2  YPL223C  GRE1  341  Protein GRE1  

3  YDR508C  GNP1  335  High-affinity glutamine permease  

4  YMR098C  ATP25  332  Uncharacterized protein YMR098C  

5  YOR219C  ste13  326  Dipeptidyl aminopeptidase A  

6  YKR034W  DAL80  325  Nitrogen regulatory protein DAL80  

7  YDR217C  Rad9  322  DNA repair protein RAD9  

8  YPL262W  FUM1  321  Fumarate hydratase, mitochondrial  

9  YOR152C  YOR152C  317  Uncharacterized membrane protein YOR152C  

10  YNL187W  SWT21  312  Uncharacterized protein YNL187W  

11  YGR070W  Rom1  310  RHO1 GDP-GTP exchange protein 1  

12  YDR157W  YDR157W  309  Dubious open reading frame  

13  YDR191W  HST4  307  NAD-dependent histone deacetylase HST4  

14  YPR116W  RRG8  304  Uncharacterized protein YPR116W, mitochondrial  

15  YOR159C  sme1  302  Small nuclear ribonucleoprotein E  

16  YMR101C  SRT1  301  Putative dehydrodolichyl diphosphate synthetase  

17  YKL096W-A  CWP2  295  Cell wall protein CWP2  

18  YBL083C  YBL083C  294  Dubious open reading frame overlaps with ALG3  

19  YJR107W  YJR107W  293  Putative lipase YJR107W  

20  YPR139C  VPS66  292  Vacuolar protein sorting-associated protein 66  

21  YGL226C-A  OST5  292  Dolichyl-diphosphooligosaccharide--protein  

22  YOR175C  ALE1  290  Lysophospholipid acyltransferase  

23  YOR049C  RSB1  290  Sphingoid long-chain base transporter RSB1  

24  YDR283C  gcn2  288  Serine/threonine-protein kinase GCN2  

25  YOR378W  YOR378W  287  Drug resistance protein YOR378W  

26  YHR106W  TRR2  286  Thioredoxin reductase 2, mitochondrial  

27  YPL197C  YPL197C  283  Dubious open reading frame, overlaps with RPB7B   

28  YLR088W  GAA1  283  GPI transamidase component GAA1  

29  YDR255C  RMD5  281  Sporulation protein RMD5  

30  YOR136W  IDH2  281  Isocitrate dehydrogenase [NAD] subunit 2, mitochondrial  

31  YOL083W  YOL083W  281  Uncharacterized protein YOL083W  

32  YMR119W  ASI1  280  Protein ASI1  

33  YGL098W  Use1  279  Protein transport protein USE1  

34  YLL007C  YLL007C  279  Uncharacterized protein YLL007C  

35  YPL217C  bms1  278  Ribosome biogenesis protein BMS1  

36  YDL094C  YDL094C  276  Dubious open reading frame, overlaps with  PMT5  

37  YAL035C-A  YAL035C-A  276  Dubious open reading frame  

38  YDR472W  trs31  276  Transport protein particle 31 kDa subunit  

39  YNL100W  AIM37  275  Uncharacterized protein YNL100W  

40  YGL073W  hsf1  269  Heat shock factor protein  

41  YKL139W  CTK1  269  CTD kinase subunit alpha  

42  YPL157W  tgs1  267  Trimethylguanosine synthase  

43  YLR124W  YLR124W  266  Dubious open reading frame  

44  YOR133W  EFT1  265  Elongation factor 2  

45  YFR033C  QCR6  265  Cytochrome b-c1 complex subunit 6  

46  YPL073C  YPL073C  265  Dubious open reading frame overlaps with UBP16  

47  YPL035C  YPL035C  263  Dubious open reading frame overlaps with YPL034W  

48  YNL071W  LAT1  263  Dihydrolipoyllysine-residue acetyltransferase 

49  YOL013W-A  YOL013W-A  262  Uncharacterized protein YOL013W-A  

50  YGR257C  Mtm1  262  Mitochondrial carrier protein MTM1  

Table A2. 1 Top 50 most connected nodes (hubs) within Hillenmeyer’s fitness network  
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NAME Description CNT NES FDR q-

val 

RANK AT 

MAX 

GO:0002181 cytoplasmic translation 92 -4.0 0.000 786 

GO:0005839 proteasome core complex 12 -3.5 0.000 512 

GO:0003735 structural constituent of 

ribosome 

114 -3.5 0.000 846 

GO:0030529 ribonucleoprotein complex 163 -3.5 0.000 846 

GO:0004175 endopeptidase activity 11 -3.4 0.000 512 

GO:0010499  proteasomal ubiquitin-

independent protein 

catabolic ... 

11 -3.4 0.000 512 

GO:0004298 threonine-type endopeptidase 

activity 

11 -3.4 0.000 512 

GO:0000502 proteasome complex  31 -3.3 0.000 551 

GO:0022627 cytosolic small ribosomal 

subunit 

41 -3.2 0.000 812 

GO:0001056 RNA polymerase III activity 14 -3.2 0.000 661 

GO:0034515 proteasome storage granule 20 -3.2 0.000 551 

GO:0042797 tRNA transcription from 

RNA polymerase III 

promoter 

15 -3.2 0.000 869 

GO:0022625 cytosolic large ribosomal 

subunit 

50 -3.1 0.000 882 

GO:0003899 DNA-directed RNA 

polymerase activity 

23 -3.1 0.000 869 

GO:0005666 DNA-directed RNA 

polymerase III complex 

14 -3.1 0.000 661 

GO:0000467 rRNA processing 11 -3.1 0.000 672 

GO:0005622 intracellular 158 -3.0 0.000 892 

GO:0006412 translation 152 -3.0 0.000 989 

GO:0006364 rRNA processing  109 -2.9 0.000 855 

GO:0005840 ribosome  151 -2.9 0.000 826 

GO:0030686 90S preribosome 46 -2.9 0.000 855 

GO:0051603 proteolysis involved in 

cellular protein catabolic 

process 

13 -2.8 0.000 512 

GO:0071051 polyadenylation-dependent 

snoRNA 3'-end processing 

11 -2.7 0.000 883 

GO:0003968 RNA-directed RNA 

polymerase activity 

10 -2.6 0.000 868 

GO:0071035 nuclear polyadenylation-

dependent rRNA ... 

10 -2.6 0.000 883 

GO:0071042 nuclear polyadenylation-

dependent mRNA ... 

10 -2.6 0.000 883 

GO:0005665 DNA-directed RNA 

polymerase II, core complex 

10 -2.6 0.000 868 

GO:0030515 snoRNA binding 12 -2.6 0.000 1006 

GO:0043161 proteasomal ubiquitin- 22 -2.6 0.000 524 
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dependent protein ... 

GO:0071038 nuclear polyadenylation-

dependent tRNA ... 

10 -2.5 0.001 883 

GO:0000463 maturation of LSU-rRNA 

from ... 

14 -2.4 0.002 1016 

GO:0006407 rRNA export from nucleus 10 -2.3 0.004 797 

GO:0000176 nuclear exosome (RNase 

complex) 

11 -2.2 0.005 672 

GO:0070478 nuclear-transcribed mRNA 

catabolic process, 3'-5 ... 

13 -2.2 0.008 902 

GO:0005730 nucleolus  133 -2.1 0.009 490 

GO:0016586 RSC complex  12 -2.1 0.009 836 

GO:0000462 maturation of SSU-rRNA 

from tricistronic ... 

40 -2.1 0.009 1066 

GO:0034427 nuclear-transcribed mRNA 

catabolic process ... 

10 -2.1 0.009 902 

GO:0006337 nucleosome disassembly 12 -2.1 0.011 836 

GO:0042254 ribosome biogenesis 106 -2.1 0.011 855 

GO:0043044 ATP-dependent chromatin 

remodeling 

11 -2.0 0.018 836 

GO:0035091 phosphatidylinositol binding 14 -2.0 0.021 1311 

GO:0070651 nonfunctional rRNA decay 11 -1.9 0.026 849 

GO:0032040 small-subunit processome 35 -1.8 0.046 833 

GO:0030687 preribosome, large subunit 

precursor 

31 -1.8 0.053 379 

GO:0019843  rRNA binding 21 -1.8 0.054 807 

GO:0015616 DNA translocase activity 10 -1.8 0.065 836 

GO:0006457 protein folding 43 -1.7 0.073 213 

GO:0006368 transcription elongation from 

RNA ... 

26 -1.7 0.095 1049 

Table A2. 2 GSEAPreranked -the top 50 GO terms with negative significant enrichment 

using node radality 
FDR q-values are coloured by significance. Red < 0.05, green < 0.1.CNT represents for the number 

of genes contained with the GO term. NES stands for normalised enrichment score, and is a 

statistic used for examining gene enrichment results. FDR q-val is the estimated probability of a 

false positive and RANK is the location with ranked list 
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Figure A2. 1 HOPACH on Hillenmeyer Module 1 
Panel A A force directed layout of the parent network with the GLay modules mapped on. Module 

1 is highlighted in red, with the black box encapsulating it. Panel B A further level off 

modularisation, identifying five sub-modules. Panel C HOPACH clustering identifying the fitness 

profiles present within each Glay sub-module. White line breaks indicate HOPACH cluster.  
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Figure A2. 2 HOPACH on Hillenmeyer Module 2 
Panel A A force directed layout of the parent network with the GLay modules mapped on. Module 

2 is highlighted in blue, with the black box encapsulating it. Panel B A further level off 

modularisation, identifying two sub-modules. Panel C HOPACH clustering identifying the fitness 

profiles present within each Glay sub-module. White line breaks indicate HOPACH cluster.  

 

  

2.1 2.2

A

B

C

2.1

2.2



 

295 
 

 

Figure A2. 3 HOPACH on Hillenmeyer Module 3 
Panel A A force directed layout of the parent network with the GLay modules mapped on. Module 

3 is highlighted in yellow, with the black box encapsulating it. Panel B A further level off 

modularisation, identifying five sub-modules. Panel C HOPACH clustering identifying the fitness 

profiles present within each Glay sub-module. White line breaks indicate HOPACH cluster.  

  

3.1 3.2 3.3

3.4 3..5

A

B

C

3.1 3.2

3.3 3.4

3.5



 

296 
 

 

Figure A2. 4 HOPACH on Hillenmeyer Module 4 
Panel A A force directed layout of the parent network with the GLay modules mapped on. Module 

4 is highlighted in purple, with the black box encapsulating it. Panel B A further level off 

modularisation, identifying five sub-modules. Panel C HOPACH clustering identifying the fitness 

profiles present within each Glay sub-module. White line breaks indicate HOPACH cluster.  
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Figure A2. 5 HOPACH on Hillenmeyer Module 5 
Panel A A force directed layout of the parent network with the GLay modules mapped on. Module 

1 is highlighted in red, with the black box encapsulating it. Panel B The structure of module 5 

Panel C HOPACH clustering identifying the fitness profiles present within the module. White line 

breaks indicate HOPACH cluster.  

 

 

Figure A2. 6 HOPACH on Hillenmeyer Module 6 
Panel A A force directed layout of the parent network with the GLay modules mapped on. 

Module61 is highlighted in orange, with the black box encapsulating it. Panel B The structure of 

module 5 Panel C HOPACH clustering identifying the fitness profiles present within the module. 

White line breaks indicate HOPACH cluster.   
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Figure A2. 7 HOPACH on Hillenmeyer Module 7 
Panel A A force directed layout of the parent network with the GLay modules mapped on. Module 

7 is highlighted in dark green, with the black box encapsulating it. Panel B The structure of module 

5 Panel C HOPACH clustering identifying the fitness profiles present within the module. White 

line breaks indicate HOPACH cluster.  

 

 

Figure A2. 8 HOPACH on Hillenmeyer Module 8 
Panel A A force directed layout of the parent network with the GLay modules mapped on. Module 

8 is highlighted in light, with the black box encapsulating it. Panel B The structure of module 5 

Panel C HOPACH clustering identifying the fitness profiles present within the module. White line 

breaks indicate HOPACH cluster.   
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Sequences producing significant alignment  Bits score E score  

ref|NP_593140.1|  phosphoglycerate mutase family (predicted)  46.6  8e-07  

ref|NP_594889.1|  monomeric 2,3-bisphosphoglycerate (BPG) 

- dependent  
46.2  1e-06  

ref|NP_588471.1|  phosphoglycerate mutase family (predicted)  37.7  0.001  

sp|P41389.2|MCM5_SCHPO  RecName: Full=DNA 

replication  
28.1  1.5  

ref|XP_001713071.1|  MCM complex subunit Mcm5  28.1  1.5  

gb|AAC60568.1|  budding yeast CDC46 homolog  28.1  1.6  

ref|NP_595279.1|  coatomer alpha subunit (predicted)  26.6  4.6  

ref|NP_593750.1|  central kinetochore associated family 

protein  
25.8  7.1  

ref|NP_588313.2|  ER protein folding oxidoreductin Ero1b  25.8  7.6  

ref|NP_594941.1|  2 OG-Fe(II) oxygenase superfamily protein  25.4  8.8  

Table A5. 1 The results of BLASTP: S. cerevisiae SHB17 against the S. pombe genome 
Column 1 shows the most significant sequences, column 2 shows the bit score, and column 3 

shows the E score. The E score is a significance statistic, the closer to zero, the more significant the 

result. The results show that S. pombe FBP1 is not identified as a significant hit to S. cerevisiae 

SHB17. 

 

Sequences producing significant alignment   Bits score  E score  

dbj|GAA25236.1|  K7_Fbp1p [Saccharomyces cerevisiae]  428  9e-149  

dbj|GAA25236.1|  K7_Fbp1p [Saccharomyces cerevisiae]  426  1e-148  

dbj|GAA25236.1|  K7_Fbp1p [Saccharomyces cerevisiae]  427  2e-148  

gb|EIW07468.1|  She4p [Saccharomyces cerevisiae]  217  3e-68  

pdb|3OPB|A  Chain A, Crystal Structure Of She4p  30.4  3.3  

gb|AAC60568.1|  budding yeast CDC46 homolog  30.4  3.6  

ref|NP_595279.1|  coatomer alpha subunit (predicted)  28.9  9.6  

Table A5. 2 The results of BLASTP: S. pombe FBP1 against the S. cerevisiae genome 
Column 1 shows the most significant sequences, column 2 shows the bit score, and column 3 

shows the E score. The E score is a significance statistic, the closer to zero, the more significant the 

result. The results show that S. pombe FBP1 is significantly similar to S. cerevisiae FBP1, but not 

SHB17. 

  



 

300 
 

  

Figure A7. 1 The overlap of statistically significant genomic regions bound between UPF1 S-

phase, UPF1 G2-phase, UPF1-Async and UPF2-Async. 
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Systematic 

Name  

Description  Feature  

SPCC1223.01  ubiquitin-protein ligase E3 

(predicted)  

protein_coding  

SPCC1223.02  no message in thiamine Nmt1  protein_coding  

SPBCPT2R1.08c  RecQ type DNA helicase Tlh1  protein_coding  

SPAC30D11.13  SUMO conjugating enzyme Hus5  protein_coding  

SPATRNAALA.04  tRNA Alanine  tRNA  

SPATRNAALA.05  tRNA Alanine  tRNA  

SPCTRNAARG.12  tRNA Arginine  tRNA  

SPCTRNAASP.06  tRNA Asparagine  tRNA  

SPCTRNAASP.07  tRNA Asparagine  tRNA  

SPCTRNAARG.13  tRNA Arginine  tRNA  

SPATRNAGLU.03  tRNA Glutamic acid  tRNA  

SPATRNAGLU.04  tRNA Glutamic acid  tRNA  

SPCTRNATHR.08  tRNA Threonine  tRNA  

SPCTRNATHR.09  tRNA Threonine  tRNA  

SPBTRNAVAL.05  tRNA Valine  tRNA  

SPBTRNAVAL.06  tRNA Valine  tRNA  

SPBTRNAVAL.07  tRNA Valine  tRNA  

SPCTRNAVAL.09  tRNA Valine  tRNA  

SPCTRNAVAL.10  tRNA Valine  tRNA  

SPNCRNA.10  antisense RNA (predicted)  ncRNA  

SPNCRNA.484  non-coding RNA, centromeric 

(predicted)  

ncRNA  

SPNCRNA.483  non-coding RNA, centromeric 

(predicted)  

ncRNA  

Table A7. 1 Details of the 22 gene overlap between the UPF1 ChIP-chip and UPF2 (shown in 

Figure A7.1) 
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