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Abstract 

Calcium (Ca
2+

) signalling is implicated in the regulation of numerous sperm processes 

elemental for fertilisation including the acrosome reaction, hyperactivated motility (HA) and 

capacitation. A number of studies have identified components of Ca
2+ 

storage organelles in 

human sperm, including inositol-1,4,5-triphosphate receptors IP3Rs,  secretory pathway 

calcium ATPases (SPCA), ryanodine receptors (RyR) and the store operated calcium entry 

(SOCE) channels STIM and Orai, all of which are associated with the acrosome and posterior 

head/neck region of the sperm (PHN). In 2005, Herrick et al., characterised the Ca
2+

 storage 

capacity of mammalian acrosomes; however the identity of the PHN Ca
2+

 store is less clear. 

The aim of this study was to characterise the PHN Ca
2+

 store to determine the relationship 

between store mobilisation and HA in human sperm. We observed localisation of high [Ca
2+

] 

at the PHN and midpiece of human sperm. Treatment with mitochondrial uncouplers CCCP 

and DNP elevated [Ca
2+

]i and depolarised the mitochondrial membrane potential (MMP) 

consistent with mobilisation of mitochondrial Ca
2+

 stores. However pre-treatment with 

mitochondrial uncouplers had no significant effect on the characteristic biphasic [Ca
2+

]i 

increase associated with progesterone. Conversely prior mobilisation of stored Ca
2+

 with 

thimerosal (IP3R activator) or pre-treatment with SKF-96365 (SOCE inhibitor) significantly 

reduced the sustained component of the biphasic [Ca
2+

]i response, whilst treatment with 2-

APB or SKF (SOCE modulators) enhanced the progesterone induced [Ca
2+

]i transient. In 

addition treatment with novel Orai targeted bioportides results in a significant prolongation of 

the progesterone-induced [Ca
2+

]i , apparently due to non-reversible SOCE activation, initiated 

during the transient. These results indicate the presence of at least two discrete Ca
2+ 

stores at 

the PHN which contribute separately to the biphasic progesterone [Ca
2+

]i increase and a role 

for STIM/Orai mediated SOCE in both transient and sustained components of the 

progesterone-induced [Ca
2+

]i signal in human sperm. 
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CHAPTER ONE: INTRODUCTION 

1.1 Fertilization – overcoming the odds! 

Human procreation like in all mammalian species is the product of sexual reproduction 

ultimately requiring the fusion of two complementary haploid gametes to produce a 

competent diploid zygote (Sutovsky & Manandhar, 2006). The intricate differentiation of 

spermatogonal stem cells into highly specialised mature sperm requires strict geographical 

organisation, tight hormonal regulation and the sophisticated processes of spermatogenesis, 

spermiogenesis and epididymal maturation. Subsequently cells undergo hyperactivation and 

capacitation; a transformation only achieved by entering the female tract (Gadella & 

Visconti, 2006).  

 

1.2 Sperm morphology 

Mammalian sperm are organised into two distinct regions; the head and flagellum, which are 

encompassed by an external plasma membrane (Figure 1.1; Bellve & O’Brien, 1983). The 

compartmentalised anatomy of sperm is an important contributing factor in the specialised 

cytology of the cell. Unlike the oocyte, which stockpiles proteins, molecules and organelles 

to sustain the fertilised zygote, sperm forfeit all superfluous contents reducing cell size to 

facilitate survival outside the male reproductive tract.  This compact, elongated structure has 

favourable hydrodynamics for both motility and oocyte penetration ensuring structural 

conservation across species. However considerable size variation is observed from the 356µm 

sperm of the Australian honey possum to the archetypal human spermatozoon ~55µm in 

length (Cummins & Woodall, 1985).
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Head Mid Piece Principal Piece End Piece 

Connecting Piece Acrosome 

Nucleus 

Cytoplasmic droplet 

Centriole 

Mitochondria Terminal disk 

PM 

Axoneme 

Figure 1.1 Overview of mammalian sperm structure. The mature spermatozoon has a highly compartmentalised structure and can be 

divided into several discrete regions: the head, connecting piece, mid piece, principal piece and end piece. Each region has distinct 

characteristics and roles in sperm function. The entire cell is encompassed by a plasma membrane (PM) whose composition changes 

during capacitation. 
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1.2.1 The Head 

In all mammalian species the sperm head consists of a highly condensed haploid nucleus, a 

small amount of cytosol and the overlying acrosome. There is also clear species variation, the 

rodent sperm head is falciform or hook shaped, whilst the head of ungulate, carnivore and 

primate sperm are spatulate or spatula shaped (Sutovsky & Manandhar, 2006).  

 

1.2.1.1 The Nucleus 

The sperm nucleus is hyper-condensed; histones have been partially replaced by positively 

charged protamines to reduce volume. The nuclei of both human and mouse sperm contain 

two arginine rich protamines; a typical type-I protamine present in all mammalian species 

and the predominant unique type-II protamine with a high histidine content (Bellve & 

O’Brien, 1983). The nucleus is surrounded by a reduced nuclear envelope which is 

apparently devoid of nuclear pore complexes (NPCs). Studies by Ho & Suarez (2003) 

detected NCPs in an area of excess membrane termed the redundant nuclear envelope (RNE), 

which accumulates at the base of the nucleus. This structure is surrounded by the peri-nuclear 

theca; a rigid matrix of disulphide bond stabilized structural proteins associated with proteins 

imperative in intracellular signalling and acrosomal anchoring (Sedo et al., 2009). The 

acrosome forms a cap over the peri-nuclear theca, encasing the anterior pole of the nucleus 

(Sutovsky & Manandhar, 2006). 
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1.2.1.2 The Acrosome 

The acrosome subdivides the sperm head into two distinct segments; the acrosomal and post-

acrosomal regions. The acrosome is a Golgi-derived vesicle-like organelle which covers 

approximately two thirds of the sperm head. This vesicle contains proteolytic enzymes such 

as acrosin, proteases, esterases, peptidases and phospholipases enclosed by inner and outer 

membranes anchoring the acrosome to the nucleus (Herrick et al., 2005). Prior to fertilization 

the outer acrosomal membrane fuses with the overlying plasma membrane in an exocytotic 

process called the ‘acrosome reaction’ (AR; section 1.8). Subsequently cell fusion can occur 

between the sperm equatorial segment; an area rich in oocyte fusion receptors fertilin-β and 

cyritistin, and the oocyte oolemma (Evans, 2002; Kaji & Kudo, 2004; Toshimori et al., 1992; 

Toshimori & Ito, 2003). 

 

1.2.2 The Flagellum 

Adjoined to the sperm head is a single flagellum which provides the motile force that allows 

the cell to traverse the female tract and ultimately reach the oocyte. The flagellum contains a 

core axoneme and prominent accessory structures (Hamilton & Waites, 1990). In humans the 

flagellum is approximately 50µm long, 0.5µm in diameter and can be topologically 

subdivided into four major segments based on external substructure: the connecting piece; 

midpiece; principal piece and end piece each sharing a common innermost axonemal 

structure (Cummins & Woodall, 1985; Ford, 2006). 

 

1.2.2.1 The Axoneme 

Like cilia and flagella of all species the sperm axoneme has a distinctive 9+2 radial symmetry 

arrangement of microtubule doublets, surrounded by unique sperm-specific accessory
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structures (Fawcett & Porter, 1954). The 9+2 arrangement consists of nine symmetrical 

peripherally arranged microtubule doublets connected via dynein arms and two central 

microtubules. The central microtubules are sounded by a helical sheath and connected to the 

peripheral doublets by radial spokes. Each peripheral doublet comprises of a circular A-

tubule attached to a larger C-shaped B-tubule through two arm projections, nexin bridges and 

radial links (Bellve & O’Brien, 1983). The outer doublets are paralleled by nine outer dense 

fibres and it is these and not the central pair that provide flexible support during flagellar 

movement.  

 

 

1.2.2.2 The Connecting Piece 

The connecting piece is ~0.5µm in length and the most proximal of the flagellar regions. In 

most mammals except rodents the connecting piece contains the proximal centriole an 

essential male contribution to the zygote. Located in the dense mass of capitculum caged by 

nine striated or segmented columns the proximal centriole is a continuation of the outer dense 

fibres (Johnson & Everitt, 2000). 

 

 

1.2.2.3 The Midpiece 

The midpiece, 3.5µm long in human sperm links the connecting piece to the principal piece. 

Covered by a sheath of 75-100 helically arranged mitochondria the midpiece contains the 

apparatus essential for ATP production to drive motility (Suarez, 2008). Diffusion of 

mitochondrial ATP production has questionable ability to deliver ATP to the distal end of the 

flagellum rapidly enough to support active sliding of dynein molecules. However sperm-
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specific glycolytic isoenzymes have been identified throughout the flagellum indicating a 

crucial role for glycolysis in the regulation of motility (Piomboni et al., 2012).  

 

1.2.2.4 The Principal Piece 

The principal piece is separated from the midpiece by the annulus or Jensen’s ring (Barratt et 

al., 2009). At 55µm long, the principal piece constitutes the majority of the sperm flagellum 

and is characterized by a scaffold of protective fibrous sheath parallel to the outer dense 

fibres and connected by a series of cross linked disulphide bonds (Eddy et al., 2003; Turner, 

2003). In addition to mechanical support the fibrous sheath has been found to provide the 

scaffolding essential for a number of protein kinases required for capacitated and 

hyperactivated motility, including A-kinase anchor proteins (Carrera et al., 1994), 

phosphodiesterases, Protein Kinase G (PKG; Moss & Gerton, 2001; Storey & Kayne, 1975; 

Travis et al., 1998). The principal piece also plays an import role in glycolysis with many 

glycolytic enzymes important in sperm ATP production localized to this region. 

 

1.4.2.5 The End Piece 

Unlike the rest of the flagellum the end piece is not surrounded by outer dense fibres. Instead 

the axonemal doublets which comprise the core flagellum slowly begin to regress resulting in 

tapering of the inner microtubules (Ford, 2006).
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1.3 Anatomy of the testis 

Testicular organization is crucial in the highly regulated process of sperm production. Post-

pubertal testis has two main functions: (1) the creation of mature sperm which transmit 

genetic information to the zygote, and (2) the synthesis of hormones essential in maintaining 

reproductive function (Johnson, 2013). The testis has a complex compartmentalised structure 

consisting of two discrete regions; numerous seminiferous tubules or intratubular 

compartments and the surrounding interstitial space or extratubular compartment (Figure 

1.2). Both compartments are structurally distinct; the Sertoli cells (SC) of the tubules are 

closely associated with the development of sperm while the Leydig cells (LC) synthesise 

hormones (mainly androgens) in the interstitial space containing the blood vessels, nerves, 

white blood cells and lymph vessels associated with all tissues (Franca et al., 1998).  

 

Antigens present on the sperm surface are not tolerated by the body’s immune system; 

presence of sperm in either the systemic or lymphatic circulation can lead to an autoimmune 

response and subfertility (Johnson, 2013). Consequently during the peri-pubertal period, 

before the onset of spermatogenesis a cellular barrier develops physiologically separating the 

intratubular and extratubular compartments. This barrier known as the blood-testis barrier 

(BTB) consists of multiple layers of adherens, gap and tight junctions firmly adhering each 

SC to its’ adjacent neighbours (Sutovsky & Manandhar, 2006). The BTB is a selective, semi-

permeable barrier that prevents immune system infiltration, sperm leakage and limits the 

exchange of water soluble materials between the basal and adluminal compartments of the 

seminiferous epithelium (Cheng & Mruk, 2010). As a result, the architecture and 

environment of the seminiferous tubules is fundamental in sperm development. 
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Figure 1.2 Mammalian testis composition. A cross section of the mammalian testis 

displaying, the seminiferous tubules (ST), Sertoli cells (SC), Leydig cells (LC), 

basement membrane, (BM), interstitial space (IS) and seminiferous tubal lumen (L) 

(adapted from Kang et al., 2002).  
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1.3.1 Seminiferous tubule organisation 

Configuration of the testicular seminiferous tubules is vital for continuous germ cell 

development, permitting selective uptake of paracrine factors and preventing immune cell 

infiltration. Composed predominantly of SCs which extend from the tubule periphery to the 

lumen, the seminiferous tubules are separated into basal and adluminal compartments by the 

BTB; vital for preventing an autoimmune response to sperm antigens produced long after 

self-tolerance is established (Kopera et al., 2010). The basal compartment constitutes the 

outermost layer of the seminiferous tubule, enveloped by the basement membrane where 

type-A spermatogonia (sperm progenitors) reside. The basement membrane itself is closely 

associated with the circulatory system enabling the uptake of nutrients vital for gamete 

production (Shalet, 2009). Beyond the BTB, in the adluminal compartment, are the SCs 

which act as “nurse cells” to synthesize and secrete proteins, cytokines, steroids, tubular 

fluids and growth factors essential for germ cell development (Alves et al., 2013). 

 

Spermatogenesis the process of sperm differentiation consists of three distinct stages: mitotic 

proliferation, meiotic division and cytodifferentiation (Johnson, 2013). As spermatogonia 

begin to proliferate they migrate from the basal compartment across the BTB into the 

adluminal compartment of the seminiferous tubules. Sperm progenitors are able to cross the 

BTB by temporarily disrupting the dynamic SC-SC interactions and passing between the cells 

to the adluminal surface. It is here where terminally differentiated sperm are first embedded 

in the luminal surface of the SC before being released into the seminiferous tubule lumen in a 

process known as spermiation (Kopera et al., 2010). 

 

To maintain sperm production throughout the reproductive lifespan of eutherian mammals, 

spermatogenesis must provide a continuous supply of mature sperm. Due to the time 
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constraints of the differentiation process (sixty-four days in human) this would be impossible 

without the cyclical arrangement of the seminiferous epithelium which enables the 

synchronous development of each stage of spermatogenesis, occurring in discrete segments 

of the seminiferous epithelium over time (Russell et al., 1990). This continuous cycle of 

sperm production maintains a constant output of ~1000cells per heartbeat during the 

reproductive lifespan of an individual (Griswold & Oatley, 2013). 

 

 

1.3.2 Hormonal regulation of sperm cell differentiation 

In humans, endocrine control of spermatogenesis begins in utero with the differentiation of 

mesenchymal stem cells into foetal LCs. At this point in development the endocrine 

regulatory hypothalamus-pituitary-testicular axis is established (Figure 1.3). The initial LCs 

secrete androgens required for development of male genitalia, disappearing 3-6 months after 

birth, accompanied by a drop in testosterone levels (Shalet, 2009). At puberty, pulses of 

gonadotrophin-releasing hormone (GnRH) are secreted by the hypothalamus triggering the 

pituitary to produce luteinising hormone (LH) and follicle stimulating hormone (FSH; 

McLachlan, 2000; Alves et al., 2013). LH is primarily responsible for stimulating the 

synthesis of testosterone from lactate and cholesterol in the smooth endoplasmic reticulum of 

LCs, secreting approximately 4-10mg per day in humans (Johnson, 2013). Testosterone 

contributes to the development of secondary sexual characteristics whilst its metabolites such 

as 5α-hydrotestosterone (DHT) can bind the SC androgen receptors on the cell surface 

initiating entry into meiosis, spermatogenesis and BTB maintenance (Alves et al., 2013). 

Concurrently FSH accelerates SC proliferation in spermatogenesis and the production of 

intracellular androgen receptors thus increasing responsiveness to testosterone (Shalet, 2009).  

This synergistic relationship between LH and FSH is reinforced by negative feedback effects  
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Figure 1.3 Hormonal regulation of spermatogenesis. The hypothalamus produces 

Gonadotrophin Releasing Hormone (GnRH) which stimulates the anterior 

pituitary to produce follicle stimulating hormone (FSH) and luteinising hormone 

(LH). LH in turn stimulates the Leydig cells of the testis to produce testosterone 

involved in spermatogenesis. FSH induces Sertoli cells to undergo 

spermatogenesis whilst simultaneously producing inhibin. High levels of both 

Inhibin and testosterone form negative feedback loops with the pituitary and 

hypothalamus to maintain homeostasis. 

Negative Feedback 
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on the secretion of GnRH by the hypothalamus preventing downstream effects and 

maintaining continuous spermatogenesis (Figure 1.3). 

 

1.4 Sperm cell differentiation 

Male gametogenesis begins during the fourth week of gestation; primordial germ cells 

migrate from the yolk sac to the genital ridge in the undifferentiated gonad (Shalet, 2009). 

Murine germ cells proliferate during migration and for a few days after colonizing the gonad 

differentiating into quiescent non-proliferative type-A pro-spermatogonia. Approximately 

one week after birth the first wave of male germ cells will initiate spermatogenesis a process 

essential later in life to maintain the daily output of fully differentiated sperm (McLaren et 

al., 1984; McLaren, 2003). 

 

1.4.1 Spermatogenesis 

Spermatogenesis, the production of mature haploid sperm from primordial germ cells, can be 

subdivided into three distinct stages; an initial mitotic proliferation producing cell quantity; a 

second meiotic division that generates diversity; and spermiogenesis the process of 

cytoplasmic differentiation (Johnson & Everitt, 2000; Chocu et al., 2012). Duration of 

spermatogenesis is crucial; each stage has precise and regular timings to ensure periodic 

renewal of both the stem cell pool and sperm output (Johnson, 2013). 

 

In humans primordial germ cells differentiate into type-A spermatogonia at birth, 

spermatogenesis is then arrested until the peri-pubertal period (Sutovsky & Manandhar, 

2006). An increase in both testosterone and GnRH production during the onset of puberty 

induces spermatogenesis to resume in the seminiferous tubules of the testis (section 1.3.2). 

Here the highly compartmentalised structure of the seminiferous tubule epithelium create a 
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favourably organised environment for germ cell development, permitting staggered 

production of fully mature sperm according to the cycle of the seminiferous epithelium. In 

short different regions of the seminiferous tubule are able to enter spermatogenesis 

independently. 

 

In humans a new wave of type-A spermatogonium enter the spermatogenic cycle every 

sixteen days, these cells stagger their pattern of development to ensure maintenance of 

reproductive potential (Griswold & Oatley, 2013). Increased testosterone and GnRH levels 

induce the initial mitotic proliferation cascade of type-A spermatogonia into either additional 

type-A spermatogonia to maintain the reproductive lifespan or differentiate into type-B 

spermatogonia competent to enter meiosis (Figure 1.4). These mitotic events occur at 

approximately forty-two hour intervals, with the number of mitotic divisions before meiosis 

characteristic of the species (Johnson & Everitt, 2000). All subsequent mitotic divisions of 

type-B spermatogonia from a single type-A spermatogonium produce diploid primary 

spermatocytes joined by thin cytoplasmic bridges. These cytoplasmic connection forms a 

‘syncytium’ allowing synchronous development of all daughter cells, sharing of mRNA and 

proteins throughout spermatogenesis (Johnson & Everitt, 2000). 

 

In preparation for meiosis primary spermatocytes undergo chromosome duplication. At this 

time random separation of homologous chromosomes and chromosome crossover (chiasma) 

ensures that each spermatocyte is genetically discrete (Shaman & Ward, 2006). During the 

two meiotic divisions the spermatids move from the basal intratubular compartment of the 

testis to the adluminal intratubular compartment by transiently disrupting the BTB. Upon 

completion of the second meiotic division each diploid spermatid spermatids must   
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Figure 1.4 Geographical overview of spermatogenesis. Spermatogensis begins with the 

differentiation of type A diploid (2n) spermatogonium into type B spermatogonium (2n) at 

the junction of the adluminal compartment and basement membrane in the epididymal 

tubule. Type B spermatogonia undergo a species specific number of mitotic proliferations 

before finially differentiating into diploid secondary spermatocytes between the gap 

junctions of neighbouring sertoli cells. The first meiotic division of secondary 

spermatocytes produces haploid spermatids joined via thin cytoplasmic bridges which 

remain through meiosis II. Haploid sperm cells undergo spermiogenesis before separating 

into individual mature sperm, that are released into the lumen of the epididymal tubules. 
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subsequently undergo drastic structural remodelling during spermiogenesis to produce mature 

sperm (Kopera et al., 2010).  

 

1.4.2 Spermiogenesis 

At cessation of meiosis II round haploid spermatids undergo spermiogenesis, a series of 

morphological and functional changes required to produce polarised sperm with fertilizing 

potential. In humans the process takes twenty-two days, however further maturation in the 

male tract is required to make the cells competent (section 1.5; Sutovsky & Manandhar, 

2006). Spermiogenesis can be separated into four distinct stages, elongation, acrosomal cap 

formation, flagellum and centriole formation and spermiation, the process of cytoplasmic 

rejection and cell release (Johnson & Everrit, 2000).  

 

Haploid round spermatids entering spermiogenesis are similar in structure to somatic cells. 

The first characteristic changes of elongation involve repackaging of nuclear DNA. In 

somatic cells nuclear DNA is associated with histones, however these are replaced by smaller 

protamines in sperm. Basic charged proteins, protamines allow hypercondensation of the 

haploid chromatin by coiling 50-kb segments of DNA into 60nm toroidal subunits, thus 

forming the hydrodynamic shape essential for motility; simultaneously causing the 

termination of transcription and translation processes (Brewer et al., 2003). Subsequently the 

spermatid Golgi apparatus fuses to form a single acrosomal vesicle in humans important in 

the process of fertilization, which then migrates to the proximal hemisphere of the sperm 

head where it forms a cap (Johnson, 2013). The final structure vital for sperm cell function is 

the flagellum, a complex structure composed of many individual components the central 

axoneme forms from the cells’ centrioles. The centrioles migrate to opposite poles of the cell; 

one takes a radial position forming the axoneme, while the second lies perpendicular to form 
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the connecting piece (Sutovsky & Manandhar, 2006). Approximately one half of the 

mitochondria present in the immature spermatid acquires a reinforced mitochondrial capsule 

(Cataldo et al., 1996) and organise helically around the axoneme to form the mitochondrial 

sheath of the midpiece. The remaining mitochondria are ejected with the superfluous 

cytoplasm (~70%) and surplus organelles via the residual body, which is phagocytosed by the 

SCs leaving only a small cytoplasmic droplet adjacent to the connecting piece. The resulting 

terminally differentiated cells are then released into the lumen of the seminiferous tubule for 

further maturation in the male tract. 

 

1.5 Sperm maturation in the male tract  

Sperm released into the lumen of the seminiferous tubule are fully differentiated but they are 

in a state of quiescence. For successful fertilization these sperm must undergo a series of 

post-gonadal modifications in the epididymis, followed by capacitation in the female tract 

(Tulsiani & Abou-Haila, 2011).  

 

1.5.1 Epididymal Maturation 

After being released into the lumen of the seminiferous tubules sperm are transported through 

the rete testis and efferent ducts into the epididymis (Cornwall, 2009). Migration from the 

tubules to the rete testis is due to peripheral myoid cell contraction in the tubules and 

testicular capsule, along with an increase in testicular pressure from subsequent sperm 

production.  In addition both SCs and the rete testis epithelium actively secrete fluid to 

encourage flow (Ilio & Hess, 1994). At the vasa efferentia ciliated epithelial cells prevent 

cellular aggregation and facilitate passage of sperm from the rete testis into the proximal 

epididymis. Here absorptive cells with long microvilli reabsorb testicular fluid through 
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sodium and chloride ionic exchange resulting in an increase in sperm concentration (Johnson 

& Everritt, 2000).  

 

Differentiated sperm are for the most part synthetically inactive; as a result epididymal 

maturation requires interaction of sperm with epididymal proteins and secretions (Cornwall, 

2009). In humans the epididymis is grossly divided into three regions: caput (the most 

proximal), corpus (central) and cauda (the most distal). Passage through all three regions of 

the epididymal duct takes approximately one-two weeks in most species (Cooper, 2011), in 

humans this averages eleven days (Cooper & Yeung, 2006). The majority of sperm 

maturation events occur in the caput and corpus regions with the cauda region primarily 

acting as a temporary storage site for mature sperm until transfer to the vas deferens and 

ejaculation (Cornwall, 2009; Cooper, 2011). However, the storage capacity of the human 

epididymis is relatively small, after approximately two weeks abstinence sperm will start to 

appear in the urine (Barratt & Cooke, 1988).  

 

The epithelium of each region possesses distinctive gene expression profiles that result in 

segment specific protein secretion into the luminal fluid, creating maturation 

microenvironments. These changes in luminal fluid content include the addition of L-

carnitine, taurine, myo-inositol, glycerophophorylcholine, lactate, fructose, glycoproteins, 

dihydrotestosterone, chloride, cholesterol (Saez et al., 2011) and HCO3
-
 (Johnson & Everitt, 

2000). Exposure to these molecules cause the stepwise biochemical changes in sperm that 

influence the acquisition of motility potential, transforming cell movement form juvenile to 

mature form (Cornwall, 2009). Samples taken from the cauda epididymis display an 

observably greater percentage of motile cells compared to the caput (Cooper, 2011). 

Increased velocity, forward progression and straightness of swimming path are all properties 
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of normal swimming behaviour acquired in the epididymis, which will change again upon 

hyperactivation (Smith et al., 2008).  

 

1.5.2 Ejaculation   

Ejaculation is the final stage of sperm processing in the male tract and can be separated into 

two distinct phases; emission, where sperm are exposed to accessory gland secretions and 

ejected into the posterior urethra; and expulsion, the ejection of sperm from the urethra at the 

glans meatus into the female tract (Giuliano & Clement, 2005). Both stages are tightly 

controlled by the sympathetic, parasympathetic and somatic divisions of the nervous system 

(Peeters & Giuliano, 2008). However it is during emission that the final stages of sperm 

maturation occur. 

 

Accumulation of sperm in the cauda epididymis initiates progression of the cells into the vas 

deferens. A storage reservoir, cells entering the vas deferens are densely packed, a build up 

here can result in the passage of sperm into the urine. It should be noted that in vitro sperm 

taken from the vas deferens are fully capable of oocyte fertilization (Silber, 1997). In vivo 

sperm must first be suspended in seminal plasma to facilitate transport to the female tract. 

Seminal plasma is a product of the accessory sex glands; seminal vesicles, prostate, 

Bulbourethral and Littre glands all contribute (Bronson, 2011). The seminal vesicles provide 

the majority of ejaculate volume (~3ml per ejaculate in humans). These sac-like glands 

produce plasma rich in bicarbonate prostaglandins, antioxidants, fructose, semenogelin and 

ascorbic acid. The ejaculate provides nutritional factors, pH buffering capacity, reducing 

agents to give the best chance of survival upon entering the female tract (Juyena & Stelletta, 

2012). Antioxidants, such as superoxide dismutase, glutathione, catalase and vitamins C and 

E are thought to protect sperm from oxidative stress following exposure to atmospheric 
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oxygen and subsequent loss of motility (Johnson, 2013). In addition seminal plasma can 

contain large numbers of leucocytes and is the vehicle for a number of infectious agents. 

 

The Bulbourethral and Littre glands contribute approximately 5% of the total ejaculate 

volume. The prostate provides zinc, choline, citric acid, prostasomes and prostate specific 

antigen (PSA) responsible for liquefaction of the seminal plasma semenogelin proteins 

(Burden et al., 2006). Prostasomes were first discovered in 1978 by Ronquist et al.,; 

membranous micro-vesicles, they are secreted by the prostate gland acinar epithelium 

(Ronquist, 2012) and  considered to be a contributing factor in the maturation of sperm due to 

their ability to fuse to the cell membrane (Burden et al., 2006). Prostasomes vary greatly in 

size from 40-500nm and can be separated into two distinct groups, larger electron light and 

smaller more dense vesicles. In 2003 proteomic analysis of prostasomes revealed 139 

proteins (Utleg et al., 2003), numerous small molecules and several ions including Ca
2+

, 

Zn
2+

, GDP, ADP and ATP were also present in these vesicles (Arienti et al., 1997). Unlike 

other vesicles the lipoprotein membranes of prostasomes are composed of an unusually high 

proportion of cholesterol (~45%), resulting in their unique ability to fuse with other cells 

(Burden et al., 2006). Cholesterol composition is particularly important as it believed to 

contribute significantly to stabilisation of the acrosomal cap preventing premature acrosome 

reaction (AR; Saez et al., 2011). Further studies have identified pH sensitivity of the 

sperm/prostasome fusion process with acidic pH similar to the vaginal environment optimal. 

At pH 5.0 fusion events occurred in the neck/midpiece region of the sperm, which would be 

beneficial for triggering changes in motility associated with capacitation (Arienti et al., 1997; 

2004).  Subsequent studies identified an increase in percentage motility in swim up 

preparations performed in the presence of prostasomes (Arienti et al., 1999). 
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1.6 Sperm navigation in the female tract 

In humans and other internal fertilizers, sperm are deposited in the female genital tract at 

coition. Sperm must then traverse the female tract overcoming a series of obstacles in order to 

penetrate the oocyte (Harper & Publicover, 2005). As a result only a small proportion of the 

ejaculate successfully navigates to the fertilization site. Some species variation exists at point 

of entry. The pig, dog, horse, mouse and rat ejaculate sperm directly into the cervix and/or 

uterus (Rath et al., 2008) whereas human, sheep and cow ejaculates are deposited in the 

vagina and onto the cervical os. In most species the semen coagulates forming a plug which 

may be temporary or permanent depending on the species. Human semen coagulation begins 

when semenogelins are introduced to the seminal plasma by the seminal vesicles and lasts for 

approximately 1hr (Suarez & Pacey, 2006). Thought to maximise sperm transmission, the 

coagulate provides protection from the harsh vaginal environment. 

 

In humans the first vital stage for sperm survival is quick progression through the cervix to 

avoid attack by the female immune system and damage due to vaginal acidity (pH5.7). 

Sobrero and MacLeod (1962) observed that human sperm leave the seminal pool and begin to 

enter the cervix within minutes of deposition. The cervix presents its own challenges to the 

sperm, as the epithelium of the cervical canal produces highly hydrated mucus. Entry to the 

uterus is dependent solely on ability to penetrate and survive the mucus. Only when 

progesterone is absent does the cervix produce mucus with a favourable consistency for 

morphologically normal sperm penetration (Suarez & Pacey, 2006; Johnson, 2013). The 

mucus also contains leukocytes and neutrophils with the capability of engulfing sperm cells. 

It has been demonstrated that both serological-complement and complement-fixing anti-

sperm antibodies must be present for neutrophils to engulf sperm (D’Cruz et al., 1992). 

 

http://humupd.oxfordjournals.org/content/12/1/23.long#ref-43
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Sperm successful in reaching the uterus must then travel the relatively short distance through 

the uterine cavity to the uterotubal junction. In humans, this is only a couple of centimetres in 

length and can be easily accomplished in 10-20min with a swimming speed of approximately 

5mm/min. Studies on sperm transport through the uterus are difficult to conduct and 

contractions of the uterine myometrium would aid the rapid progression through the uterus 

and away from leukocyte attack (Suarez & Pacey, 2006). Nevertheless it appears that sperm 

are likely to enter the uterotubal junction by their own propulsion. Upon passage of the 

narrow uterotubal junction sperm enter the Fallopian tube isthmus, which in humans may act 

as a temporary sperm reservoir until ovulation. Human sperm have been shown to transiently 

interact with the endometrium of the Fallopian tube that would affect the sperm progress 

towards in the ampulla (Pacey et al., 1995). Increased complexity of the mucosal folds of the 

tube lining reduces the risk of polyspermy and ensures the advancement of only the most ‘fit’ 

sperm to the oocyte (Holt & Fazeli, 2010). To successfully transmit through the female 

reproductive tract and fertilize the oocyte all sperm must also undergo a series of alterations 

in synchrony with the environmental changes they encounter, termed Capacitation (Austin, 

1952). Moreover sperm must make the transition from forward progressive motility acquired 

in the male tract to hyperactivated motility capable of penetrating the outer oocyte 

vestements. 

 

1.6.1 Capacitation 

Despite a period of maturation in the epididymis mammalian sperm are unable to fertilize 

oocytes immediately after ejaculation. Instead a period of time is required in the female tract, 

during which a series of biochemical changes activate the fertilization potential of sperm 

(Gadella & Visconti, 2006).  This phenomenon was discovered independently by Austin and 

Chang in 1951 (Gadella & Visconti, 2006; Shivaji et al., 2007). Termed capacitation, it was 



22 
 

defined as the minimum period of female tract interaction required for sperm to gain 

fertilizing capability and is only considered complete by the ability to AR in response to the 

ZP (Shivaji et al., 2007). These initial observations spawned many subsequent lines of 

enquiry into the precise nature of the biochemical processes occurring in the female tract. It is 

now known that capacitation induces a number of physiological changes in sperm including 

an increase in plasma membrane fluidity (Wolf et al., 1986; Benoff et al., 1993), 

reorganisation of sperm surface molecules, [Ca
2+

]i increase (Singh et al., 1978; Gonzalez-

Martinez et al., 2002;  Xie et al., 2006), membrane hyperpolarization (Zeng et al., 1995), 

intracellular pH increase (pHi; Babcock & Pfieffer, 1987) and increased phosphorylation, 

particularly on tyrosine residues (Moseley et al., 2005;Visconti, 2009). The molecular basis 

for these changes has identified the involvement of a number of regulatory second 

messengers; but a unified model for all capacitative changes is still in its infancy (Gadella & 

Visconti, 2006).  

 

It should be noted that unlike other processes governing sperm maturation and development, 

capacitation is not a step-wise process. Instead it appears to be the product of a matrix of 

sequential and parallel processes, each requiring different conditions for completion 

(Visconti, 2009). Some changes instigated at deposition in the female tract may be 

instantaneous (fast events) while others require oviduct entrance to terminate (slow events) 

(Figure1.5). Many of the studies on capacitation have been conducted in vitro due to ethical 

constraints; as a result there may be some disparity with in vivo events (De Jonge, 2005). 

 

1.6.1.1 Fast events of capacitation 

Sperm of the cauda epididymis are predominately immotile, requiring high levels of HCO3
- 

and Ca
2+ 

present in the seminal plasma for motility activation. In vitro studies have shown 
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contact with an isotonic solution containing HCO3
- 
and Ca

2+
 is sufficient to induce vigorous 

flagellar movement necessary for progressive forward motility (Tajima et al., 1987). There 

are several candidates for HCO3
-
 transport across the plasma membrane. Recent studies 

suggest contribution from Cl
-
/ HCO3

-
 exchangers (Chen et al., 2009) and CatSper channels in 

the flagellum (Carlson et al., 2003). The most well documented theory is PM Na
+
/ HCO3

-
 co-

transporters (NBC). These channels would explain the electrogenic, Na
+
 dependent nature of 

the response to HCO3
-
 consistent with an increase in pHi. In addition treatment with DIDS 

(4,4-diisothiocyanostilbene-2,2-disulphonic acid) a known inhibitor of  NCB prevents the 

aforementioned effects (Demarco et al., 2003). Upon entering the cell the increased [HCO3
-
] 

simultaneously increases pHi and stimulates the production of cAMP (~60secs; Harrison & 

Miller, 2000; Visconti, 2009) by an atypical soluble adenylyl cyclase (SACY) that is thought 

to orchestrate capacitation (Carlson et al., 2007). cAMP in turn activates PKA which 

phosphorylates serine/threonine residues on target proteins in the flagellum (~90sec from 

HCO3
- 
activation) leading to an increase in beat frequency and motility activation, as well as 

contributing to numerous other signalling processes (Xie et al., 2006; Visconti, 2009).  

 

1.6.1.1 Slow events of capacitation 

Although both fast and slow events of capacitation are mediated by a 

HCO3
−
/SACY/cAMP/PKA pathway, slow events require additional cholesterol efflux and 

tyrosine phosphorylation for completion. Initiation of slow capacitation events commences 

with cholesterol efflux from the PM. In vitro this is achieved through the addition of bovine 

serum albumin (BSA) or as β-cyclodextrins to the capacitation media (Visconti et al., 1999). 

Both molecules are believed to function as a cholesterol sink, removing cholesterol from the 

PM. However as in the early events of capacitation, HCO3
- 

and Ca
2+

 are both essential 

contributors to the intracellular signalling cascade underlying phospholipid membrane 
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reorganisation (Bailey, 2010). In mouse K
+
 influx, Na

+
 and Cl

-
 permeability are believed to 

contribute to PM hyperpolarisation increasing cholesterol efflux and membrane fluidity for 

lipid raft reassembly (Xin et al., 2006; Cross, 2004). It is uncertain how much 

hyperpolarisation occurs in human cells. PM cholesterol removal stimulates PKA 

phosphorylation of serine/threonine residues initiating a much larger signalling cascade. 

Though a mechanism remains to be elucidated, upon cholesterol efflux PKA causes an 

increase in protein tyrosine phosphorylation, which is maintained in the presence of BSA, 

HCO3
−
 or Ca

2+
 (Visconti, 2009).  Recent studies suggest a serine kinase (cSrc) may be 

responsible for the phosphorylation of tyrosine observed at capacitation in mice (Visconti et 

al., 2011) as cSrc inhibitors block capacitation and significantly reduce sperm motility 

parameters (Baker et al., 2006; Lawson et al., 2008; Mitchell et al., 2008). Conversely 

studies on cSrc-null mice demonstrated no significant effect on tyrosine phosphorylation 

suggesting there is an additional kinase present capable of maintaining function (Krapf et al., 

2010). Despite the absence of a clearly defined mechanism of action it should be noted that 

the contribution of tyrosine phosphorylation to capacitation is essential, particularly in the 

final events before oocyte fusion and the switch to hyperactivated motility. 
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Figure 1.5 The biochemical pathways governing fast and slow capacitation events. (A) Fast events of capacitation. Sodium/bicarbonate 

cotransporters (NBC) in the plasma membrane (PM) transport sodium and bicarbonate ions into the cell causing an increase in 

intracellular pH (pHi) and soluble adenylate cyclase Y (SACY) activation. In addition CatSper channels allow an increase in [Ca
2+

]i  

further activating SACY, which produces cAMP a known activator of protein kinase A (PKA), an enzyme responsible for the 

phosphorylation of serine and threonine residues on target proteins. Furthermore excessive levels of calcium activate PDE which 

hydrolyses cytoplasmic cAMP.  (B) Slow events of capacitation. Cholesterol efflux from the plasma membrane by serum albumin 

(BSA) induces reorganisation of the plasma membrane which alters the outcome of bicarbonate and calcium ion influx associated with 

slow capacitation events. 
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1.6.2 Hyperactivation 

At ejaculation sperm activate progressive forward motility where beat frequency is high but 

the angle of flagellar bending is low (Suarez, 2008). However this pattern of motility alone is 

insufficient to enable navigation of the female tract and penetration of the oocyte vestements. 

In 1970, Yanagimachi first reported a visible change in the swimming behaviour of hamster 

sperm before and after capacitation. Experiments involving exposure of sperm to the 

oviductal fluid of the oestrous female showed cells develop a distinctive ‘activated’ 

swimming pattern not observed at ejaculation. Subsequent studies of several mammalian 

species have revealed similar capacitation induced motility changes, which despite subtle 

species variation all show common elements (Gadella & Visconti, 2006).  

 

This hyperactivated motility is characterised by vigorous, asymmetrical flagellar bending at 

the mid-piece causing high amplitude lateral head displacement but non-progressive 

movement (Gagnon & de Lamirande, 2006; Ohmuro & Ishijima, 2006; Figure 1.6). 

Hyperactivated motility has been observed at both the site and time of fertilization in 

mammals (Ho & Suarez 2003) and aids in cumulus dispersal thus allowing the sperm to reach 

the oocyte and undergo the acrosome reaction (Kaji & Kudo, 2004). Experiments co-

culturing sperm and Fallopian tube epithelium reveal hyperactivation enables sperm to detach 

from the ‘sticky’ walls of the oviduct and progress towards the oocyte (Pacey et al., 1995).  

 

[Ca
2+

]i has the most significant contribution to the regulation of hyperactivation. The primary 

secondary messenger associated with flagellar asymmetry, Ca
2+

 plays a pivotal role in many 

sperm processes (Ho & Suarez, 2001). Studies conducted on immobile demembranated 

sperm, show restoration of normal motility in medium containing ∼50nM of Ca
2+

 with some 

cells hyperactivating at ∼100nM, while the majority will hyperactivate when Ca
2+

 reaches 
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∼400nM (Ho et al., 2002). Removal of calmodulin (CaM) from demembranated bovine cells 

eradicated the ability to hyperactivate; reintroduction of CaM into the medium restored this. 

In humans CaM kinase inhibitors reduced motility over time, thought to correlate with 

reduced ATP production (Suarez, 2008). Harper et al., 2004 demonstrated a direct correlation 

between cyclical Ca
2+

 oscillations in the posterior head/neck (PHN) region and flagellar beat 

pattern. 

 

Several other avenues of evidence to support the existence of a Ca
2+

 store in the PHN. 

Inositol 1,4,5 receptors (IP3R) have been localised to the region and could facilitate a 

mechanism for cyclical store emptying and refilling (section 1.10.3.1). Studies using 4-

aminopyridine and thapsigargin, (known to deplete Ca
2+

 stores) show that both can induce 

hyperactivated motility resulting from Ca
2+

 store depletion in bovine, murine and human 

sperm (Suarez, 2003). Ryanodine (section 1.10.3.2) and CatSper (section1.10.1.4) receptors 

have also been identified in close proximity to the PHN, which would enable rapid response 

to the external environment. The presence of a Ca
2+

 store in the base of the flagellum could 

facilitate Ca
2+

 interaction with the axoneme and initiation of hyperactivated motility. 

 

  

http://humupd.oxfordjournals.org/content/14/6/647.long#ref-39
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Figure 1.6 Comparison of normal and hyperactivated modes of sperm motility. 

Sperm position at 2 time points imposed on top of each other to reveal 

characteristics of (A) normal forward progressive motility of uncapacitated 

sperm and (B) hyperactivated asymmetrical motility, with distinctive large 

amplitude of lateral head displacement.  
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1.7 The Oocyte 

It is traditionally accepted that females are born with a finite reserve of primary oocytes 

arrested at the first meiotic prophase. Several recent studies have claimed to identify 

functional oogonial stem cells in post pubertal females of several species including humans 

(Stoop et al., 2005; Oatley & Hunt, 2012). However the methodologies and reproducibility 

are questioned by the scientific community resulting in little impact on the conventional 

model of oocyte production (Ghazal, 2013).  

 

Oocyte maturation in females occurs on a monthly cycle (~28 days), hormonally controlled 

by levels of oestrogen, progesterone, GnRH, LH and FSH. Each cycle several primary 

oocytes resume oogenesis in the primordial follicle, resulting in the extrusion of a mature 

oocyte from the ovary at ovulation (Sanchez & Smitz, 2012). The ovulated oocyte is 

considerably larger than sperm, contributing cytoplasm, mitochondria, organelles, essential 

genetic material and additional external membrane structures involved in both the 

fertilization process and blockage of polyspermy (Figure 1.7). The PM (oolemma) of all 

mammalian species is surrounded by the Zona Pellucida (ZP). A glycoprotein matrix, human 

ZP is composed of four proteins (Lefievre et al., 2004), while murine oocytes possess only 

three (Greve & Wassarman, 1985). The ZP is accredited with a number of crucial roles in 

fertilisation including oocyte protection, species-specific sperm binding and blockage of 

polyspermy (Conner et al., 2005). On the outermost layer the oocyte is surrounded by the 

cumulus oophorus, a hyaluranon-rich matrix consisting of granulosa derived cumulus cells 

separated into an inner cell mass (corona radiata) and outer cell mass (cumulus). Cells of the 

corona radiata contain numerous gap junctions to permit the transport of essential growth 

factors to the oocyte (Rienzi et al., 2012), while the outer cumulus forms a physical barrier to 

abnormal sperm.  

http://humrep.oxfordjournals.org/content/19/7/1580.long#ref-14
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Figure 1.7 Organisation of the mammalian cumulus- oocyte complex. At the centre 

the oocyte contains a haploid nucleus, surrounded by a large amount of cytoplasm to 

support initial stages of cell division. The specialised plasma membrane (oolemma) is 

surrounded by the zona pellucida (ZP) a glycoprotein matrix, which provides initial 

contact from sperm-oocyte binding. The outermost layer of the complex is the 

cumulus, a hyaluranon rich cell layer that secretes progesterone necessary for 

chemotaxis. 
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1.7.1 The chemotactic role of the cumulus 

Chemotactic guidance of sperm along the Fallopian tube towards the ampulla and oocyte has 

long been disputed (Yoshida & Yoshida, 2011). However in 2008 Oren-Benaroya et al., 

established cumulus secreted progesterone (~1-10µM) as the chemoattractant in humans. 

Progesterone is a renowned regulator of mammalian sperm function and effective indicator of 

fertilizing ability; being shown to affect motility (Hyne et al., 1978; Calogero et al., 2000; 

Munire et al., 2004), AR (Meizel & Turner 1991; Parinaud et al., 1992) and [Ca
2+

]i (Kirkman 

Brown et al., 2003; Harper et al., 2004). Therefore, it was a logical assumption that sperm 

cells would possess a progesterone specific receptor. Unlike somatic cells the 

transcriptionally and translationally inactive sperm would be unable to mediate stereotypical 

steroid signalling. Instead progesterone would need to regulate sperm function non-

genomically through the use of intracellular second messengers (Blackmore, 1993). Recently 

a candidate was discovered and a mechanism of action elucidated (section 1.10.1.4; Arnoult 

et al., 2011).   

 

1.8 Acrosome Reaction 

Capacitated sperm have the potential to undergo the AR, an exocytotic event that modifies 

the outer acrosomal membrane resulting in proteolytic enzyme release from the acrosomal 

vesicle (Figure 1.8; DasGupta et al., 1994).  AR is an irreversible Ca
2+

-dependent process 

providing two key functions: penetration of the ZP, through the release of hyaluronidase and 

acrosin; and oocyte binding, through the exposure of the IAM (Harper et al., 2008). In vitro 

AR has been induced by exposure to progesterone (Turner et al., 1994; DasGupta et al., 

1994) and ZP (Bailey & Storey 1994; Shirakawa & Miyazaki, 1999). Consequently in vivo it 

is believed that progesterone produced by the female tract primes the sperm for AR 

permitting oocyte fusion. 
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Figure 1.8 Dynamic resolution of acrosomal exocytosis involved in the acrosome reaction 

(AR). Under normal conditions the outer acrosomal membrane (OAM) is intact forming a cap 

over the anterior pole of the sperm head (1). Exposure of the cells to an AR inducing stimulus 

causes initial OAM permeation (2), closely followed by the breakdown of the OAM (3). Loss 

of the OAM results in the release of acrosomal content (hyaluronidase, acrosin and Ca
2+

) into 

the immediate vicinity resulting in an acrosome reacted cell (5) with the capabililty to bind 

the ZP (based on a figure from Harper et al., 2008). 
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1.8.1 Zona pellucida structure and the AR 

The zona pellucida (ZP) surrounds all mammalian oocytes, an extracellular glycoprotein coat 

it is essential in oogenesis, fertilization and preimplantation development (Wasserman et al., 

2004; Wasserman & Litscher, 2013). Initial studies conducted on murine oocytes identified 

three distinct proteins in the ZP matrix, ZP1-3 (Bleil & Wasserman, 1980). Structural 

analysis revealed an interconnected matrix of all three proteins, with ZP2 and ZP3 forming 

“beads on a string” like filaments joined in a three dimensional assembly by ZP1 (Greve & 

Wasserman, 1985). A series of fertilization experiments on ZP-null mice revealed an 

essential role for ZP3 and ZP2 in sperm binding.  Loss of ZP3 leads to ZP malformation and 

female factor infertility (Wasserman & Litscher, 2008). The carboxyl-terminus of ZP3 was 

shown to perform as a primary sperm receptor and inducer of AR, while ZP2 functions as a 

secondary sperm receptor in sperm-oocyte fusion (Rankin et al., 1996; 1998; Rankin & Dean, 

1996).  

 

Initial characterisation of the human ZP identified three ZP protein homologues of murine 

ZP1-3 (Shabanowitz & O'Rand, 1988; Chamberlin & Dean, 1990). Subsequent studies of 

other mammalian systems revealed species specific disparities in ZP structure. An SDS-

PAGE study of human ZP composition initially identified four ZP protein populations, ZP1, 

ZP2 and two ZP3 subpopulations ZP3H (high Mr) and ZP3L (low Mr; Bercegeay et al., 

1995). Lefievre et al., 2004 was the first to use a proteomic based approach to definitively 

identify the presence of four distinct ZP glycoproteins in the human. Christened ZP1, ZP2, 

ZP3 and ZPB (now ZP4, this discovery called for a change in the nomenclature of ZP 

glycoproteins) human ZP1 (low abundance) and ZP4 show 47% sequence similarity (Gupta 

et al., 2012). 
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In mouse and human models ZP proteins induce AR and the associated biphasic calcium 

influx, best characterised in the mouse (Bailey & Storey 1994; Shirakawa & Miyazaki, 1999; 

Cross et al., 1988; Patrat et al., 2000). In acrosome intact sperm of the mouse, ZP3 receptors 

on the OAM bind oocyte ZP3, inducing the opening of T-type VOCCs and a transient influx 

of calcium. During this initial phase [Ca
2+

]i rises rapidly (50sec) from nanomolar to 

micromolar levels (Arnoult et al., 1996; O’Toole et al., 2000). Subsequently the transient 

phase recedes followed by a slower and sustained [Ca
2+

]i elevation maintained by continued 

ZP3 contact. Sperm interaction with ZP3 activates a PLC signalling cascade generating IP3, 

which in turn mobilises Ca
2+

 from the acrosome (Roldan & Shi, 2007; Walensky & Snyder, 

1995). Sperm-ZP3 binding causes an intracellular pH elevation mediated via a G-protein 

dependent pathway that when inhibited can prevent fertilization (Rockwell & Storey, 2000; 

Arnoult et al., 1996).  

 

In experiments conducted using both affinity purified native or recombinant human ZP 

proteins, ZP1, ZP3 and ZP4 have all bound capacitated sperm independently inducing AR in 

a manner analogous to that described above (Cross et al., 1988; Fraken et al., 2000; 

Chakravarty et al., 2005; 2008). However multiple possible sperm-ZP binding sites in the 

human suggest a more complex ZP structure (Gupta & Bhandari, 2011). Both mouse and 

human ZP2 only bind the IAM of acrosome reacted sperm, supporting a role for ZP2 in 

sperm-oocyte fusion, (Kerr et al., 2002; Gupta et al., 2012). Recent studies by Avella et al., 

2013 have identified cleavage of ZP2 as a definitive block to polyspermy; however the 

cognate sperm receptor is still unknown.  
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1.8.2 Progesterone induced AR 

The biphasic [Ca
2+

]i response associated with sperm-ZP induced AR is also observed when 

sperm are exposed to progesterone (Blackmore, 1993). A steroid hormone, progesterone is 

produced throughout the female reproductive tract; however it is surrounding the oocyte that 

progesterone concentration peaks (~1-10µM; Benaroya et al., 2008). Ultimately it is the role 

of granulosa cells of the oocyte cumulus to secrete progesterone and maintain a chemotactic 

gradient along the Fallopian tube, providing sperm with a mechanism for navigating the 

female tract (section 1.7.1). 

 

In vitro 3µM progesterone produces a biphasic Ca
2+

 response and induction of AR 

characteristic of ZP3-sperm interaction (Kirkman-Brown et al., 2000). As with ZP induced 

AR there is an initial rapid transient increase in [Ca
2+

]i succeeded by a slower sustained 

response with observable oscillations, maintained by the presence of progesterone in the 

extracellular medium (Meizel & Turner, 1991; Kirkman-Brown et al., 2000).  Application of 

progesterone in this manner is incongruous with models of chemotactic gradient exposure in 

vivo. A more authentic methodology involving the application of progesterone in a 

logarithmic gradient failed to induce the initial Ca
2+

 transient but activated heterogeneous 

oscillatory responses (Harper et al., 2004). These variable Ca
2+

 oscillations observed during 

the sustained phase were present in ~45% of the cell populations and mirror those observed 

by cyclical refilling of somatic cell stores (Harper et al., 2004; Bedu-Addo et al., 2007). 

Overlaying of calcium fluorescence and phase contrast images revealed a correlation between 

the Ca
2+

 spikes and asymmetrical bending of the midpiece, a characteristic of hyperactivated 

motility which would aid penetration of the outer egg vestments (Harper et al., 2004; 2005). 

Dynamic resolution of the AR induced by A23187 revealed that cells which undergo the AR 

prematurely loose their capacity for functional motility (Harper et al., 2008). These 
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observations emphasize the importance of Ca
2+

 stores in sperm. Oscillations observed by 

Harper et al., 2004 originated at the PHN not the acrosome (a known Ca
2+

 store). They are 

believed to be the result of a second Ca
2+ 

store predominantly involved in the regulation of 

motility having particular consequence during hyperactivation (Costello et al., 2009). Unlike 

ZP induced AR the intracellular mechanism responsible for the Ca
2+ 

response is acutely 

debated. Recent advances have isolated a PM progesterone receptor CatSper, however how 

this functions in conjunction with intracellular Ca
2+ 

stores remains to be elucidated (Strunker 

et al., 2011; Brenker et al., 2012). 

 

 

1.9 Key stages of Fertilization 

The ultimate goal of each sperm is oocyte fusion. Only a single spermatozoon from the 

millions present in an ejaculate can achieve this objective. Navigation of the female tract 

removes the least worthy competitors from the race; typically morphologically abnormal 

these cells are phagocytosed by leukocytes. Those cells with capacitation potential traverse 

the maze-like crevices of the oviduct to locate the oocyte (Holt & Fazeli, 2010).  

 

Once at the oocyte sperm still have five more obstacles to overcome before successful 

fertilization (Figure 1.9); (1) dispersal of the cumulus oophorus, where hyperactivated 

activity enables passage, (2) The acrosome reaction, exposing the inner acrosomal membrane 

(Jagannathan et al., 2002). (3) Penetration of the ZP aided by hyaluronidase and acrosin 

released from the acrosome where (4) the successful sperm will bind to the oolemma and (5) 

fuse with the membrane depositing its nuclear material into the oocyte. It has been noted that 

the oocyte has regions rich in microvilli where fusion almost always occurs (Evans, 2002). 

The detailed molecular mechanism is still yet to be elucidated but a number of molecules 
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have been identified in binding and fusion processes. On oocytes CD9, GPI-anchored 

proteins and integrins have all been investigated as possible fusion molecules with sperm 

fertilin-  and cyritestin acting as points of attachment (Evans, 2002; Kaji & Kudo, 2004). It is 

likely that fusion occurs simultaneously at multiple points; but further research is needed to 

determine the exact nature of the attachment and fusion process (Zhao et al., 2008). 

 

 

 

 

 

 

 



38 
 

 

 

 

 

 

 

 

 

  

 

Figure 1.9 The five stages of fertilization. For successful fertilization sperm must first 

navigate the cumulus complex (1) then undergo the acrosome reaction (AR) (2). This 

in turn aid penetration of the zona pellucida (ZP) (3) binding of the oolemma (4) and 

finally fusion of the two gametes (5). (PS) Perivitelline space. 
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1.10 The Essential role of Ca
2+

 

[Ca
2+

]i is an essential modulator of cell function and as a result, stringent regulation of [Ca
2+

]i 

is imperative. Intracellular Ca
2+

 stores are integral in the management of cytoplasmic [Ca
2+

] 

and contribute significantly to the generation of complex [Ca
2+

] signals such as oscillations 

and waves in somatic cells (Costello et al., 2009). 

 

 

A highly specialised ‘minimalist’ cell, the mature spermatozoon has removed all superfluous 

cytoplasm and intracellular organelles including ER during spermatogenesis discussed 

previously (Lefievre et al., 2007). Although some evidence of mRNA presence has been 

reported in the mature sperm cell it is generally accepted that nuclear DNA translation or 

transcription does not take place due to its highly condensed nature rendering it inactive. 

Therefore sperm are dependent on manipulation of second messenger concentrations for the 

management of intracellular inherited proteins (Jimenez-Gonzalez et al., 2006). Ca
2+ 

is a 

second messenger found abundantly in sperm and Ca
2+

 signalling regulation is crucial in 

fundamental sperm behaviours including hyperactivation, chemotaxis, AR and various 

capacitation events (Kirkman-Brown et al., 2003; Publicover et al., 2007). With 

responsibility for a vast range of cellular processes in sperm it is essential that Ca
2+

 signalling 

be tightly controlled. Several studies have identified Ca
2+

 signalling impairment in sperm as 

the source of male sub-fertility (Hildebrand et al., 2012; Nomikos et al., 2011; Khattri et al., 

2012). Here I shall discuss intracellular and PM Ca
2+

 channels and evidence for their 

presence in human sperm and Figure 1.10 is included as a system overview. 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R74
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Figure 1.10 Diagrammatic comparison of Ca
2+

 channels present in  

(A) somatic cells and (B) human sperm.   
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1.10.1 Calcium channels located at the plasma membrane  

At present four calcium channel candidates responsible for PM Ca
2+

 influx have been 

detected in human sperm. Storage operated Ca
2+

 channels (SOCs), including STIM, Orai and 

TRPC, voltage operated Ca
2+

 channels (VOCCs), cyclic nucleotide gated channels (CNG) 

and the sperm specific CatSper channel have all been identified in mature sperm. All have the 

potential to induce an increase in cytoplasmic [Ca
2+

]i upon activation, the result of 

extracellular Ca
2+ 

influx. 

 

 

1.10.1.1 Storage Operated Ca
2+

 Channels (SOCs)  

 
Cytosolic [Ca

2+
]i elevation is the result of PM Ca

2+
 influx or Ca

2+
 release from intracellular 

stores. Typically both mechanisms are required to facilitate cyclical Ca
2+

 store mobilisation 

and sustained Ca
2+

 signalling (Putney, 2011). In order to achieve this cells require Ca
2+

 

channels responsible for intracellular Ca
2+ 

store mobilisation and activation of external Ca
2+

 

influx otherwise known as store operated Ca
2+

 entry (SOCE) or capacitative Ca
2+

 entry 

(CCE). SOCs are Ca
2+

 permeable channels localised to the PM of human sperm (Costello et 

al., 2009). Recent studies in somatic cells have also suggested a role for SOCs in the 

initiation of downstream signalling cascades in spatially restricted areas close to Ca
2+

 entry 

points (Putney, 2011).  

 

SOC activation is caused by depletion of an intracellular Ca
2+

 store, typically the ER 

(Berridge et al., 2000). In somatic cells SOCE can be induced through the application of 

agonists that initiate intracellular Ca
2+

 store depletion including Thapsigargin, IP3 and 

incubation in Ca
2+

 free media (Putney, 2011). The SOCE associated transport of Ca
2+

 across 

the plasma membrane and direct deposition into the cytoplasm causes a small electrical 

current. Identified in 1992 by Hoth and Penner, ICRAC or Ca
2+

 release activated Ca
2+

 current is 
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the best characterised SOC current. The CRAC channel is distinguishable as a non-voltage 

gated, highly Ca
2+

 selective SOC with both low conductance and low permeability to large 

ions. CRAC channels have been identified in T-cells, mast cells and haematopoietic cells 

(Lewis, 2011; McNally & Prakriya, 2012; Smyth et al., 2006). 

 

An integral component in the SOC activation pathway is communication between 

intracellular Ca
2+

 stores and PM CRAC channels. Initial findings suggested transient receptor 

potential channels (TRP) were the membrane channel responsible for ICRAC (Liu et al., 2000; 

Rosado & Sage, 2000; Parekh & Putney 2005). Initial hypotheses for CRAC channel 

activation relied on the production of an essential diffusible second messenger. Termed CIF 

(Ca
2+

 influx factor) this second messenger was produced by the Ca
2+

 store in response to 

decreased [Ca
2+

]i , instigating both iPLA2β and liposolid production, to induce CRAC 

activation (Cahalan et al., 2009). Although iPLA2β and liposolids have both been identified 

their presence was proven redundant by these recent results. However with the identification 

of two interactive transmembrane protein groups consecutively in 2005 and 2006 a new 

model has developed. Stromal interaction molecules (STIM) and Orai are located in the ER 

membrane and plasma membrane respectively (Liou et al., 2005; Feske et al., 2006) together 

they form a conformational coupling mechanism enabling successful SOCE. 

 

1.10.1.1.2 Stromal Interaction Molecule (STIM) 

STIM is a type-I transmembrane protein localised to the ER of resting somatic cells. In 

humans two homologues STIM1 and STIM2 were identified in a HeLa cell screen (Liou et 

al., 2005), demonstrating 61% sequence similarity between each other and 60% sequence 

similarity with Drosophila Stim proteins (Cahalan, 2009). At present STIM homologues have 

been identified in most species, however an increase in number of homologues present in 
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vertebrates has led to the assumption that the Stim gene duplicated about 500 million years 

ago during the invertebrate-vertebrate transition (Cahalan, 2009).  

 

STIM1 was originally characterized in somatic cells as a glycosylated phosphoprotein 

constituting ~25% of the PM. The primary polypeptide sequence of STIM proteins reveals a 

modular structure consisting of two protein-protein interaction domains. Further structural 

analysis revealed the STIM1 N-terminus resides in the ER lumen, encompassing a single EF-

hand Ca
2+

 binding motif that acts as a luminal Ca
2+

 sensor (Zhang, 2005; reviewed by 

Frischauf 2008). A sterile alpha motif (SAM) containing two N-linked glycosylation sites 

link the N-terminus and EF-hand to the transmembrane region. A single pass transmembrane 

protein the STIM1 polypeptide emerges on the cytoplasmic face. Here the C-terminus 

extends into the cytoplasm with three coiled-coil domains (CC1, CC2 and CC3) overlapping 

an erzin-radixin-moesin (ERM)-like domain terminating with glutamate, serine/proline, 

serine/threonine and lysine-rich regions (Kim & Muallem, 2011; Frischauf, 2008).  

 

Identified concurrently by two independent groups, STIM was the result of siRNA screens 

aiming to identify SOCE proteins. The Drosophila S2 cells used in one study possessed 

CRAC channels similar to those observed in human T lymphocytes (Roos et al., 2005), while 

the second study identified the human isoforms STIM1 and STIM2 from HeLa cells (Liou et 

al., 2005). In both studies the SERCA (sarcoplasmic-endoplasmic reticulum Ca
2+

-ATPase) 

inhibitor Thapsigargin was administered in order to deplete the intracellular Ca
2+

 stores 

(Zhang et al., 2005; Cahalan, 2009). Furthermore Liou et al., 2005 created STIM1 and 

STIM2 knockout mice to observe the effect on SOCE, in both instances decreased SOCE was 

observed implicating STIM in CCE regulation. 
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Current CRAC channel activation models propose that in the basal state when ER Ca
2+

 

store is filled Ca
2+

 is bound to the low affinity EF-hand and STIM exists as a dimer stabilised 

by C-terminal coiled-coil domains (Baba et al., 2006; Stathopulos et al., 2006; Williams et 

al., 2001). When the ER Ca
2+

 store is depleted, Ca
2+

 disassociates from the EF-hand initiating 

unfolding of the SAM domain and STIM oligomerization. Both natural and chemically 

induced oligomerization triggered redistribution close to the plasma membrane and CRAC 

channel activation, without any obvious changes to ER structure expected by a marked 

redistribution of STIM (Cahalan et al., 2009; Stathopulos et al., 2006). FRET (Forster 

Resonance Energy Transfer) imaging has identified predetermined foci for STIM 

translocation, these region are located in the ER periphery where close contact with the 

plasma membrane can be formed (Muik et al., 2008). Upon contact with the PM STIM 

triggers SOCE but does not contribute to the CRAC channel itself, instead STIM relocates 

rapidly following signal termination believed to be the consequence of a negative feedback 

loop (Liou et al., 2007; Cahalan et al., 2009). 

 

1.10.1.1.3 Orai 
 

The PM component of SOCE, Orai was initially identified by three groups in 2006 (Feske et 

al., 2006; Vig et al., 2006; Zhang et al., 2006). The product of RNAi Drosophila S2 screens, 

Orai1 was categorised as a critical component in store SOC entry downstream of STIM 

proteins (Prakriya et al., 2006). TRPC channels have also been shown to interact with STIM 

proteins, but do not show CRAC channel characteristics. Identification of Orai as the pore-

forming subunit of CRAC channels came after a series of mutation studies on essential Orai 

structural residues, with one group identifying a role for Orai in severe combined immune 

deficiency (SCID; Feske et al., 2006; Prakriya et al., 2006; Yeromin et al., 2006). To date 

three Orai isoforms have been classified in mammalian systems (Orai 1-3). Believed to reside 
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solely in the PM Orai isoforms consist of four hydrophobic transmembrane spanning domains 

with both the N and C termini situated in the cytoplasm (Feske et al., 2006; Muik et al., 2012; 

Soboloff et al., 2012). There is a proline/arginine-rich region at the N-terminus and an N-

glycosylation site within the extracellular loop between transmembrane segments 3 and 4 

(Frischauf, 2008). In addition four glutamic residues are highly conserved between species 

and are fundamental in the formation of effective PM Ca
2+

 channels (Prakriya et al., 2006).  

  

Current evidence establishes a relationship between STIM and Orai1 proteins in CRAC 

channel formation. In mammalian systems STIM1, unlike STIM2 has been shown to strongly 

activate all three Orai homologues producing Icrac currents in patch-clamp studies (Mercer et 

al., 2006; Feske et al., 2006; Muik et al., 2012; Soboloff et al., 2012). In addition Orai point 

mutations (Prakriya et al., 2006; Vig et al., 2006) and photo-bleaching GFP (green 

fluorescent protein tagged)-tagged Orai subunits revealed an Orai tetramer is the predominant 

activated CRAC channel (Ji et al., 2008; Penna et al., 2008, Maruyama et al., 2009; Roberts-

Thomson et al., 2010). 

 

STIM1 oligomerization is triggered through EF-hand-SAM domain interactions and 

stabilised by coiled-coil interactions at the C-terminus upon intracellular Ca
2+

 store depletion. 

Multimerisation of stable STIM1 oligomers is sufficient to induce translocation adjacent to 

the plasma membrane and organise neighbouring Orai subunits into plasma membrane 

clusters, where CRAC channel Ca
2+

 influx occurs (Luik et al., 2008; Soboloff et al., 2012). 

Preliminary STIM and Orai co-immunoprecipitation studies coupled with FRET and electron 

microscopy measurements demonstrated increased interaction strength after Ca
2+

 store 

depletion over a 10-25nm ER-PM gap providing evidence for direct physical interaction 

between the proteins (Yeromin et al., 2006; Muik et al., 2008; 2012; Calloway et al., 2009). 
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The CRAC activation domain (CAD) or STIM1 Orai activating region (SOAR) of the STIM1 

C-terminus is responsible for the recruitment and activation of Orai (Park et al., 2009; Yuan 

et al., 2009; Huang et al., 2006). Composed of 98 amino acids CAD/SOAR contains the 

conserved STIM1 amino acid fragment 344-442 encompassing CC2 and CC3; thus SOAR 

has dual roles in STIM1 oligomerization and as the minimal sequence required to fully 

activate all Orai channels through binding to both the N- and C-termini (Soboloff et al., 2012; 

Yuan et al., 2009). In addition combination of SOAR with STIM1 amino acid region 450-485 

permits regulation of the interaction strength (Yuan et al., 2009).  

 

The biphasic [Ca
2+

]i response of human sperm to progesterone is well characterised 

(Kirkman-Brown et al., 2000; Harper et al., 2004) but the mechanism of action is little 

understood. Recent detection of the presence of STIM and Orai analogues in human sperm 

acrosome and PHN/midpiece region has identified a role for SOCE in extending the transient 

[Ca
2+

]i caused by agonist induced store mobilisation, such as those observed with 

progesterone (Lefievre et al., 2012). Studies using somatic cells have localised STIM proteins 

to the membrane of intracellular Ca
2+

 stores (Liou et al., 2005; Roos et al., 2005). In human 

sperm the acrosome acts as an ER-like Ca
2+

 store and shows a strong association with IP3R 

(Herrick et al., 2005). In addition localisation of IP3R to the PHN region provides evidence 

for a second Ca
2+

 store possibly associated with motility; however this second store has yet to 

be characterised in depth (Naaby-Hansen et al., 2001; 2010). 
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1.10.1.1.3 Canonical transient receptor potential channels (TRPC) 

 
Transient receptor potential canonical channels are six pass transmembrane cation channels. 

Initially identified in Drosophila photoreceptors, TRP have been reported to act as molecular 

sensors of environment, which is an essential initiator of CCE (Kumar & Shoeb, 2011). 

Mammalian homologues of TRP include TRPC, TRPV and TRPM. TRPC has been found in 

a wide range of mammalian tissues including the human testis and mature sperm cells 

(Trevino et al., 2004; Castellano et al., 2003). Castellano et al., 2003 identified RNA 

messengers for TRPC1, 3, 6 and 7 in human spermatogenic cells by reverse transcription 

polymerase chain reaction (RT-PCR). Confocal immunofluorescence localised TRPC1, 3, 4, 

and 6 to the cell surface of the sperm head and all TRPCs to the flagellum suggesting a 

contributing role in motility which looked promising. When STIM proteins were discovered 

in 2005 TRPCs were initially considered to be the plasma membrane CRAC channel 

component. Like Orai TRPCs form multimeric complexes which allow cation entry in 

response to depleted calcium or agonist stimulation and have been shown to interact with 

STIM (Liao et al., 2008; Salido et al., 2011). However the discovery of Orai as the CRAC 

channel in 2006 placed less significance on TRPC contribution to SOCE. 

. 
 

1.10.1.2 Voltage Operated Ca
2+

 Channels (VOCCs) 

 
VOCCs are the most well defined Ca

2+
 channel family characterised by their ability to induce 

increases in [Ca
2+

]i in response to membrane depolarization (Catterall, 2000; Darszon et al., 

2011). Also known as CaV channels, VOCCs are categorised as either high voltage activated 

(HVA) or low voltage activated (LVA). HVA channels are distinguished by the requirement 

for strong depolarisations to stimulate followed by a slow inactivation; initially subdivided 

into L, N, P/Q, and R types dependent on electrophysiological properties current 

nomenclature gives two subfamilies CaV1(L) and CaV2(N, P/Q & R; Catterall, 2000; 
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Jimenez-Gonzalez et al., 2006). Unlike HVA, LVA channels require small membrane 

depolarisations to activate and inactivate quickly; termed T type VOCCs due to their transient 

nature they now form the CaV3 family (Darszon et al., 2011). 

 

All VOCCs are transmembrane proteins which exhibit strong structural similarity and result 

from a complex of proteins. At the VOCC centre is the pore-forming α1 subunit ~190-

250kDa comprised of four homologous domains (I-IV) joined by cytoplasmic linker regions. 

Each α1 domain contains six transmembrane helices (S1-S6) with a non-helical P-loop 

between S5-S6, which determines ion conductance and selectivity in the channel pore 

(Jimenez-Gonzalez et al., 2006). In addition the α1 subunit is surrounded by a 

transmembrane, disulphide linked complex of α2 and δ subunits and an intracellular β 

subunit, in some family members a transmembrane γ subunit is also associated (Catterall, 

2000). 

 

Multiple studies provide evidence for VOCC expression in mammalian mature and immature 

sperm cells (Arnoult et al., 1996; Lievano et al., 1996). Although patch-clamping only 

identified LVA currents in human sperm (Jagannathan et al., 2002), antibody 

immunostaining techniques have identified the presence and localisation of T, L (Goodwin et 

al., 2000), R, P/Q (Trevino et al., 2004) and N type (Wennemuth et al., 2000) channels. In 

human sperm VOCCs occupy distinct regions for example T-type channel CaV3.3 is localised 

at the midpiece and CaV3.2 in the principal piece and posterior sperm head (Serrano et al., 

1999). VOCCs are believed to participate in mediation of bicarbonate-cAMP signal in a 

process regulated by PKA and CaM causing Ca
2+

 influx and hyperactivation, however their 

role has been overshadowed by the discovery of CatSper (Darszon et al., 2011).  
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1.10.1.3 Cyclic Nucleotide Gated Channels (CNG) 

 
CNG channels are PM non-selective cation channels activated by the binding of cyclic 

nucleotides cGMP or cAMP (Biel & Mikelakis, 2007; 2009). Originally identified in 

vertebrate photoreceptor cells the channels are important cellular switches that trigger cation 

influx in response to increases in cGMP or cAMP concentration (Wang et al., 2007). As a 

result CNG channels can contribute to increased levels of intracellular [Ca
2+

] and have been 

identified in numerous mammalian cell types; most notably in sensory neurons involved in 

vision and olfaction where they are the terminus of photon absorption and odorant binding 

signal transduction (Biel & Mikelakis, 2009). CNG channels consist of a complex 

heteromeric structure; the core contains six α-helical segments (S1–S6) with an ion-

conducting pore loop between S5 and S6. Segment 4 carries an overall positive charge with 

regularly spaced arginine and lysine residues, both termini are located on the cytoplasmic 

face with the cyclic nucleotides binding the C- terminus at a CNBD domain (Biel, 2009). 

CNG have been identified in mammalian sperm (Cisneros-Mejorado & Sánchez, 2011; 

Weyand et al., 2004) along with cAMP, conversely cGMP and its associated pathway 

components (PDE and PKG) are low or absent (Lefievre et al., 2000). The cAMP/ sAC/ PKA 

pathway has proved essential in sperm function and is implicated in capacitation processes, 

however Brenker et al., 2012 identified GPCR’s and cAMP were unnecessary for odorant 

induced Ca
2+

 signalling through CatSper channels, see below. 

 

 
1.10.1.4 CatSper Channels 

Sperm-associated cation channels, CatSper are a pH sensitive family of proteins expressed 

exclusively in the principal piece PM of sperm (Ren et al., 2001; Shukla et al., 2012). Their 

ideal position proposes CatSper participation in motility regulation; moreover disruption of 
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CATSPER1 induced sperm motility defects resulting in male infertility (Ren et al., 2001). 

Four highly homologous six transmembrane spanning CatSper proteins have been identified 

CatSper1 (Ren et al., 2001), CatSper2 (Quill et al., 2001), Catsper3 and Catsper4 (Lobley et 

al., 2003), all are believed to participate equally in ion channel formation (Shukla et al., 

2012). Current models suggest the functioning ion channel is a multiple protein complex 

containing tetramer pore forming subunit composed of CatSper (1-4), associated with a  2-

TM CatSperB (also known as CatSperβ; Li et al., 2007), the single-TM CatSperγ and 

CatSperδ (Qi et al., 2007; Wang et al., 2009; Chung et al., 2011) isolated via protein 

purification. It is suggested that more auxiliary proteins may have a weak association with the 

channel but were unable to withstand the abrasive detergents used in the purification process. 

 

In human studies CatSper (1-4) mRNA has been localised exclusively to testicular tissues 

(Jin et al., 2005; Qi et al., 2007; Quill et al., 2001; Ren et al., 2001).  In mouse CatSper2 

transcription in pachytene spermatocytes precedes CatSper1, 3 and 4 transcription in 

spermatids (Ren et al., 2001; Jin et al., 2005; Qi et al., 2007). Li et al., 2007 showed a 

correlation between frequency of CatSper transcripts in human semen samples and sample 

motility. Initial studies conducted in CatSper null mice identified loss of a single CatSper 

subunit did not inhibit motility; however transition to hyperactivation was prevented 

rendering the mice infertile (Ren et al., 2001; Quill et al., 2003; Jin et al., 2007; Qi et al., 

2007); reinforced by a clinical case of hereditary infertility caused by CatSper2 deletion 

(Avidan et al., 2003). 

 

Recent results from two studies have identified a role for CatSper as the elusive non-genomic 

progesterone receptor in human sperm (Lishko et al., 2011; Strunker et al., 2011). To date 

http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF40
http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF79
http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF35
http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF54
http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF55
http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF59
http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF59
http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF35
http://www.andrologyjournal.org/cgi/content/full/33/5/777#REF54
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CatSper is the sole Ca
2+

 permeable channel detected by patch clamp studies of mature sperm 

(Kirichok & Lishko, 2011). Both groups utilised patch clamping to demonstrate nanomolar 

progesterone concentrations and alkaline pH activate a rapid Ca
2+

 influx through CatSper 

channels (Lishko et al., 2011; Strunker et al., 2011). NNC-55–0396 (2μm) and mibefradil 

(30μm & 40µm) abolished CatSper currents but although they significantly inhibited the 

progesterone-induced Ca
2+

 response they did not eliminate the response entirely (Jensen & 

Publicover, 2012; Strunker et al., 2011; Sagare-Patil et al. 2012). These results suggest that 

although CatSper undoubtedly contributes to the Ca
2+ 

influx associated with progesterone a 

further source of Ca
2+

 must also be responsible. A further study has reported CatSper 

activation as a result of several small organic molecules including bourgeonal (a chemotactic 

agent) suggesting a promiscuous receptor that may function as a polymodal, chemosensory 

Ca
2+

 channel via a mechanism that does not involve metabotrophic receptors, cAMP or it’s 

analogues (Brenker et al., 2012). 

 

1.10.2 Calcium clearance mechanisms 
 

The process of maintaining [Ca
2+

]i and returning[Ca
2+

]i to basal levels post-stimulation is 

important in all eukaryotic cells. This stringent control of [Ca
2+

]i is achieved through the 

process of calcium clearance either into intracellular Ca
2+

 stores or the extracellular 

environment. In somatic cells the ER has been clearly identified as the Ca
2+

 store but since 

the ER is notably absent from human sperm the acrosome (Herrick et al., 2005), 

mitochondrion and remnants of the nuclear envelope (RNE; Ho & Suarez, 2003) are believed 

to fulfil this role. Presently three mechanisms for calcium clearance have been identified in 

human sperm and are discussed below. 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2605.2012.01294.x/full#b7
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2605.2012.01294.x/full#b13
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1.10.2.1 Calcium ATPases (Ca
2+

 ATPases) 

 

Ca
2+

 ATPases belong to the P-type family of ATPases, which utilize ATP to transport Ca
2+

 

across membranes. During this process the ATPases are transiently phosphorylated causing a 

conformational change from low affinity E1 structure to a high affinity E2 structure proposed 

by de-Meis and Vianna (1979). Currently three classes of Ca
2+

 ATPases have been identified 

in somatic cells; the plasma membrane Ca
2+

 ATPase (PMCA), the sarcoplasmic-endoplasmic 

reticulum Ca
2+

 ATPase (SERCA) and the secretory pathway Ca
2+

 ATPase (SPCA; 

Michelangeli et al., 2005). Structurally PMCA, SERCA and SPCA are analogous with 

approximately 30% sequence similarity (Gunteski-Hamblin et al., 1992). The elucidation of 

SERCA1A crystal structure in 2004 and subsequently SERCA2 and 3 gave a basis for Ca
2+

 

ATPase structure and function of the P-type family. SERCA1A was shown to comprise of 10 

TM domains (also known as the M domain) and three cytoplasmic domains A, N and P 

responsible for ATP binding; phosphorylation and an actuator domain which contributes to 

transmembrane helices re-arrangement, allowing the Ca
2+

 translocation (Brini & Carafoli, 

2011; Toyoshima, 2009). 

 

Schatzmann (1966) initially identified PMCA in erythrocytes, since then PMCA have been 

characterised in numerous cell types including mammalian sperm. PMCA are the largest Ca
2+

 

ATPase subgroup due to an additional auto-inhibitory calmodulin binding site at the C-

terminus (Brini & Carafoli, 2009; 2011); when bound calmodulin decreases the Ca
2+ 

affinity 

of the pump whilst acidic phospholipids have the opposite effect (Brini & Carafoli, 2009). 

Several studies employing western blotting and immuno-localisation techniques have 

identified PMCA4 as the main isoform present in both testis and sperm, identifying the 

principal piece as its primary location (Wennemuth et al., 2003; Okunade et al., 2004; Schuh 

et al., 2004). PMCA4 knockout mice exhibited normal ejaculates which failed to respond to 

http://humupd.oxfordjournals.org/content/12/3/253.long#ref-33
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-87
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-58
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-119
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-119
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capacitative conditions and induce hyperactivated motility resulting in male infertility 

(Okunade et al., 2004). Detection of [Ca
2+

]i showed elevated [Ca
2+

]i levels in PMCA4 null 

mice (370nM) compared the WT (157nM) after an hours incubation in capacitation medium, 

effects mirrored by the application of PMCA inhibitor 5-(and-6)-carboxyeosin diacetate 

succinimidyl ester (Schuh et al., 2004). These observed effects imply a role for PMCA’s in 

capacitation. 

 

Conflicting evidence for the presence of SERCA in sperm has made their impact on calcium 

clearance controversial. Rossato et al., 2001 revealed application of 10-100nM thapsigargin 

(a potent SERCA-specific inhibitor) induced both Ca
2+

 mobilisation and AR in sperm. In 

addition SERCA were localised to the acrosome and mid-piece of sperm using a fluorescent 

thapsigargin analogue (BODIPY-FL-thapsigargin). More recent studies using SERCA 

specific antibodies have failed to detect the presence of SERCA1 in human sperm (Harper et 

al., 2005). However SERCA2 has been identified in the acrosome and midpiece of human 

sperm (Lawson et al., 2007) and SERCA3 mRNA has been identified in mature sperm cells 

(Hughes et al., 2000) in addition to a thapsigargin response similar to that observed by 

Rossato et al., 2001 in round rat spermatids. Together these findings implicate a role for 

SERCA in [Ca
2+

]i control.  

 

SPCA1 and 2 are mammalian homologues of Pmr1 initially identified in S. cerevisiae 

(Gunteski-Hamblin et al., 1992). In somatic cells SPCA are associated with membrane bound 

organelles predominantly the Golgi apparatus (Wuytack et al., 2002; Vandecaetsbeek et al., 

2012). Thought to participate in both Ca
2+

 and Mn
2+

 regulation within the Golgi network, the 

use of microscopy was unable to distinguish an association with the cis or trans network 

exclusively (Michelangeli et al., 2005; Wuytack et al., 2002). Unlike SERCA and PMCA 

http://humupd.oxfordjournals.org/content/12/3/253.long#ref-96
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-119
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-62
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-62
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-58
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-87
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there is no known SPCA1 specific inhibitor. However bisphenol has been shown to be 

equally potent at inhibiting both SPCA1 and SERCA (Harper et al., 2005). SPCA1 has been 

identified and localised to the anterior midpiece analogous with the PHN region in human 

sperm (Harper et al., 2005; Ho & Suarez, 2003). Here, Harper and Collegues demonstrated 

that bisphenol treatment mobilises Ca
2+ 

stored at the PHN of human sperm. In addition 

bisphenol treatment inhibits the Ca
2+

 oscillations induced by 3µM progesterone application 

and characterised by Harper and collegues in 2004 (Harper et al., 2005). 

 

1.10.2.2 Na
+
-Ca

2+
 Exchanger (NCX) 

 

In somatic cells NCX has been associated with mediating cytoplasmic [Ca
2+

]i decrease 

through both mitochondrial uptake (Palty et al., 2012) and external extrusion across the PM 

(Berridge et al., 2003). NCX are bidirectional dependent on the electrochemical gradients of 

both Ca
2+ 

and Na
+
; in forward mode the NCX typically exports one Ca

2+
 ion for the uptake of 

three Na
+
 ions, in reverse the opposite occurs facilitating Ca

2+
 influx (Jimenez-Gonzalez et 

al., 2006). NCX belongs to the cation-Ca
2+

 exchanger superfamily due to the presence of two 

highly conserved α repeats in the TM domain. NCX is composed of a single α-helical TM 

spanning region with a long cytosolic loop containing a high affinity Ca
2+

 binding domain 

(residues 371-509; Hildge, 2012). Two NCX sub-families exist NCX and NCXK (K
+
-

dependent NCX), NCX has three known isoforms NCX(1-3) and multiple splice variants 

(Hildge, 2012; Jimenez-Gonzalez et al., 2006).  

 

The presence of NCX in mammalian sperm was first identified in the rat by Bradley and 

Forrester 1980, who reported inhibition of plasma membrane vesicle NCX by verapamil, 

(Jimenez-Gonzalez et al., 2006). Since then RT-PCR studies have confirmed the presence of 

NCX1 splice variants in rat testis (NCX1.3 and NCX1.7) and NCKX3 in mouse testis 

http://humupd.oxfordjournals.org/content/12/3/253.long#ref-62
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-62
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-67
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(Quednau et al., 1997; Kraev et al., 2001). NCX was first identified in human sperm in 1987 

by Babcock and Pfeifer. Application of novel NCX inhibitors bepridil, DCB (3,4-

dichlorobenzamil hydrochloride) and KB-R7943 on human sperm resulted in both [Ca
2+

]i 

elevation and [Na
+
]i reduction that coincided with loss of motility (Krasznai et al., 2006). 

Evidence from Su and Vacquier, 2002 supports a crucial role for NCX in [Ca
2+

]i homeostasis 

maintenance in sea urchin sperm. 

 

1.10.2.3 Mitochondrial Uniporter (MCU) 

Mitochondrial contribution to Ca
2+ 

homeostasis is well established, with mitochondria now 

recognised as one of the main intracellular Ca
2+

 storage organelles under normal 

physiological conditions. Undeniably mitochondria efficiently adapt oxidative 

phosphorylation to nutrient availability, ATP requirement and in response to extracellular 

microclimate fluctuations (Scorziello et al., 2013). It is not an anomaly then to acknowledge 

the impact of Ca
2+

 uptake on mitochondrial function, in addition to mitochondrial 

involvement in Ca
2+

 signal generation (Jimenez-Gonzalez et al., 2006). Mitochondria consist 

of an intracellular matrix, an inner and outer membrane. The outer membrane is permeable to 

ions and small molecules; however Ca
2+

 transport across the inner membrane where it is 

sequestered in the matrix requires a specific transporter (MCU; Patron et al., 2013). MCU 

contains two TM helices joined by a linker containing highly conserved acidic residues 

essential for function and two EF-hand domains (in the mitochondrial inter-membrane space). 

A functioning uniporter is the result of oligomerisation of MCU in the inner mitochondrial 

membrane and regulated by MICU1 an associated protein under basal conditions (Figure 

1.14; Baughman et al., 2011; Mallilankaraman et al., 2011). Ca
2+

 uptake through MCU is an 

electrogenic process mediated by changes in membrane potential (Ψm), MICU1 establishes a 

threshold for Ca
2+

 uptake by binding to the EF-hands of MCU, thus preventing uptake when 

http://humupd.oxfordjournals.org/content/12/3/253.long#ref-107
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-77
http://link.springer.com/search?facet-author=%22Antonella+Scorziello%22
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[Ca
2+

]cyt is low. Mutations resulting in loss of MICU1 leads to constitutive activation of MCU 

in somatic cells and mitochondrial Ca
2+

 uptake inducing cell death, (Mallilankaraman et al., 

2011; Raffaello et al., 2012). 

 

Mitochondria in human sperm are spatially restricted to the midpiece and believed to form a 

helical arrangement around a central axon as discussed previously. Isolation of mitochondria 

at the anterior of the flagellum potentially forms an important calcium source. Multiple 

studies have identified accumulation of Ca
2+

 in sperm mitochondria in situ, although more 

recent studies on intact mammalian sperm at a plethora of developmental stages suggest a 

variation in mitochondrial Ca
2+

 accumulation and regulation, notably bovine (Schoff, 1995; 

Vijayaraghavan & Hoskins, 1990) and murine where mitochondrial contribution to Ca
2+

 

clearance increased when other mechanisms of uptake were inhibited (Wennemuth et al., 

2003). A Recent study in Sea Urchin sperm reported that application of several mitochondrial 

inhibitory agents including CCCP (a proton gradient uncoupler) increase [Ca
2+

]i with at least 

two different profiles dependent on extracellular Ca
2+

 (Darzon et al., 2011). Furthermore 

SOCC blockers (including SKF96365) and Ca
2+

ATPase inhibitors (thapsigargin and 

bisphenol) antagonise Ca
2+

 influx induced by mitochondrial inhibitors, indicating  an 

essential role for mitochondria in Ca
2+

 entry regulation through SOC’s at the PM (Ardon et 

al., 2009). Nevertheless Ca
2+

 imaging of human sperm demonstrates application of 

mitochondrial uncoupler DNP (2,4-dinitrophenol) does not affect the mobilisation of 

intracellular stores responsible for progesterone induced Ca
2+

 oscillations (Harper et al., 

2004). Consequently mitochondrial contributions to agonist induced Ca
2+

 responses in human 

sperm is limited but they play a role in maintaining resting [Ca
2+

]i homeostasis (Jimenez-

Gonzalez et al., 2006). 

http://humupd.oxfordjournals.org/content/12/3/253.long#ref-118
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-140


 
 

57 
 

 

1.10.3 Ca
2+ 

mobilisation from intracellular stores 

Intracellular Ca
2+

 storage organelles are ubiquitous across eukaryotic cells with the most 

prevalent the best characterised. The ER, SR, mitochondria and nuclear envelope have all 

been identified as calcium stores in somatic cells. Their responsibility; to sequester 

superfluous Ca
2+

 and maintain basal [Ca
2+

]i under physiological conditions and amplification 

of Ca
2+

 signals through the  release stored Ca
2+

 upon stimulation. At present two somatic cell 

channels capable of mobilising stored Ca
2+

 have been identified in human sperm, the inositol 

1,4,5-trisphosphate receptor (IP3R) and the ryanodine receptor (RyR) both demonstrate 

localised distribution at the PHN of human sperm. 

 

Conversely mature human sperm contain none of the intracellular organelles associated with 

the majority of somatic cell Ca
2+

 storage (Harper et al., 2004). However there is evidence for 

the existence of at least two unique Ca
2+

 stores. The acrosome has been shown to store Ca
2+

 

proven elemental in exocytosis and ZP binding; exhibiting localised IP3R expression on the 

outer surface (Herrick et al., 2005). The identity of the second Ca
2+

 remains controversial, 

localised to the PHN region and mitochondria has been implicated (Wennemuth et al., 2003). 

However it is the RNE and/or the cytoplasmic droplet situated around the sperm neck that 

seems a more likely candidate (Naaby Hansen et al., 2001; Harper et al., 2004; 2005).  

 

 

1.10.3.1 Inositol 1,4,5-trisphosphate receptors (IP3Rs) 

Inositol 1,4,5-trisphosphate (IP3) is a global second messenger produced in most cell systems. 

A small water-soluble molecule, IP3 diffuses easily into the cytosol allowing communication 

of extracellular signals at the PM to intracellular organelles (Berridge, 2003; Michelangeli et 
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al., 1995; Parys & De Smedt, 2012). It’s receptor IP3R is an intracellular Ca
2+ 

channel with 

the ability to release Ca
2+

 from intracellular stores (typically the ER) in response to IP3 

binding (Lencesova & Krizanova, 2012). IP3R’s affinity for IP3 is modulated by [Ca
2+

]cyt, in 

isolated systems IP3 affinity lies in the nanomolar range, however Ca
2+

 is a co-agonist of 

IP3R, when [Ca
2+

]cyt is low ~300nM IP3R activity is increased (Parys & De Smedt, 2012). In 

mammalian systems there are three IP3R isoforms (IP3R 1-3), all possess a similar structure 

and function with ~74% sequence similarity but orchestrate the formation of different Ca
2+

 

signals due to variability in associated protein interactions, organelle localisation, agonist and 

co-agonist affinity (Parys & De-Smedt, 2012; Taylor et al., 1999).  

 

Each IP3R gene encodes a single polypeptide composed of approximately 3000 residues, 

containing four major domains. The N-terminal suppressor domain (SD) encompasses the 

223 amino acids at the amino terminal and is thought to contribute to the conformational 

change induced by IP3 binding to the IBC domain (IP3 binding core). The IBC itself amino 

acids 224-604 consists of an α and β subunit connected to SD by two flexible linkers L1 and 

L2 with both subdomains contributing to IP3 binding. At the carboxy-terminus the six-time 

spanning transmembrane domain (TMD) makes up the Ca
2+

 channel pore (Darszon et al., 

2011). In between IBC and TMD is the modulatory domain. It is here that the recently 

identified IRBIT (Bultynck et al., 2003; Rossi et al., 2012) protein binds, interestingly it does 

not activate IP3Rs but but dissociates the receptor when IP3 binds, thus regulating Ca
2+

 

signalling (Darszon et al., 2011). In addition the modulatory domain also contains numerous 

phosphorylation and ATP binding sites are integral in regulation of protein function (Bosanac 

et al., 2002; da-Fonseca et al., 2003). 

 

http://humupd.oxfordjournals.org/content/12/3/253.long#ref-132
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-25


 
 

59 
 

mRNA for all three IP3R isoforms have been detected in mammalian sperm throughout 

differentiation and maturation and the evidence reviewed in Jimenez-Gonzalez et al., 2006. 

In addition proteins essential for agonist induced IP3 production the G-protein (Gq) and 

phospholipase-α (PLCα) have both been detected in mammalian sperm, (Walensky & 

Snyder, 1995; Kuroda et al., 1999). Localisation studies have identified IP3R1 in the 

acrosomal region and IP3R3 in the RNE/PHN and midpiece region of human sperm 

(Walensky & Snyder, 1995; Kuroda et al., 1999; Naaby-Hansen et al., 2001). These studies 

also identify the presence of two separate IP3 binding profiles consistent with variations in 

IP3R isoform IP3 affinity (Wojcikiewicz & Luo, 1998; Dyer & Michelangeli, 2001). In 2005, 

Herrick et al., used thimerosal (a known IP3R activator) to illustrate a role for IP3R in the 

acrosome reaction, demonstrating an important physiological role for IP3R. Calreticulin (a 

low affinity, high capacity Ca
2+

-buffering protein) associated with somatic cell IP3R 

associated stores has also been localised to Ca
2+ 

storage regions in the human spermatozoon 

(Naaby-Hansen et al., 2001; Ho & Suarez, 2003). Furthermore Ca
2+

 stored in the PHN region 

of human sperm is apparently mobilised by both progesterone stimulation (Harper et al., 

2004) and 5µM thimerosal treatment which induces sustained  [Ca
2+

]i elevation and  

hyperactivation  insensitive to NNC-55-0396 (CatSper inhibitor; Alasmari et al., 2013). 

Recent findings propose a model where CatSper and 2-APB sensitive intracellular Ca
2+ 

stores 

contribute to the biphasic progesterone response (Lefievre et al., 2012). 

 

1.10.3.2 Ryanodine Receptors (RyR) 

 

Ryanodine is a plant alkaloid isolated from Ryania speciosa. Originally identified for its 

insecticidal properties ryanodine was found to associate with a eukaryotic membrane protein 

termed the ryanodine receptor (RyR; Van-Petegem, 2012). RyRs have since been identified 

http://humupd.oxfordjournals.org/content/12/3/253.long#ref-141
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-141
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-78
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-141
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-78
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-92
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-151
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-37
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-92
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as an intracellular Ca
2+

 induced Ca
2+

 release channel located in the ER/SR membrane 

(Lanner, 2012). There are three RyR isoforms in mammalian systems sharing ~70% sequence 

homology (Brini, 2004), RyR1 identified in skeletal muscle, RyR2 established in cardiac 

muscle and RyR3  discovered in brain but since found to have the widest tissue distribution 

(Jimenez-Gonzalez et al., 2006). All isoforms form homotetrameric assemblies making them 

the largest characterised ion channels (Kimlicka & Van-Petegem, 2011; Van-Petegem, 2012). 

Each RyR monomer contains approximately 5000 amino acid residues split into two major 

domains; the cap or cytoplasmic N-terminus accounts for ~80% of the protein, while the 

remaining 20% form the stalk traversing the membrane constituting the channel pore and 

projecting into the Ca
2+

 store lumen (Darszon et al., 2011). Currently only ~11% of RyR 

structure has been analysed in detail using cryo-electron microscopy but the receptor is 

thought to contain 6-8 transmembrane helices (Van-Petegem, 2012). What is known is that 

the cytoplasmic region contains multiple binding sites for small molecules and protein 

binding partners including Ca
2+

, Calmodulin and calsequestrin (Kimlicka & Van-Petegem, 

2011). In somatic cells RyR on intracellular Ca
2+

 stores are believed to be activated by 

changes in [Ca
2+

]i, although the degree of response is dependent on the RyR isoform, 

accessory proteins and secondary messenger (cADPR) binding. For example at high [Ca
2+

]i 

CaM inhibits RyR1 and RyR2 however at low [Ca
2+

]i it activates RyR1 but inhibits RyR2 

(Ikemoto et al., 1995). 

 

Evidence for RyR in mammalian sperm has shown that both RyR1 and RyR2 are present in 

spermatocytes and spermatids of rat (Giannini et al., 1995) mouse (Trevino et al.,1998) and 

cow (Minelli et al. 2000); however only RyR3 could be detected in the acrosomal region of 

mature sperm using RT-PCR and isoform specific RyR antibodies (Trevino et al., 1998). 

Harper et al., 2004 was the first to identify RyR in the PHN region of human sperm, using a 

http://link.springer.com/search?facet-author=%22Lynn+Kimlicka%22
http://link.springer.com/search?facet-author=%22Filip+Van+Petegem%22
http://link.springer.com/search?facet-author=%22Lynn+Kimlicka%22
http://link.springer.com/search?facet-author=%22Filip+Van+Petegem%22
http://humupd.oxfordjournals.org/content/12/3/253.long#ref-88
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fluorescent ryanodine analogue (BODIPY-FL-X-ryanodine) RyRs were shown to co-localize 

with SPCA1 predominantly in PHN with a proportion in the acrosome. In addition RyR 

locality corresponds with progesterone induced [Ca
2+

]i oscillations which were abolished 

upon tetracaine application (RyR inhibitor) (Harper et al., 2004). Chiarella et al., 2004 

indicated a role for RyR in sperm development, high doses of ryanodine were shown to 

decrease spermatogonial proliferation and increase cell meiosis emphasising the importance 

of their physiological role. Most recently Park et al., 2011 conducted a series of prostasome 

fusion experiments, in which RyR2 depleted sperm had both reduced sperm motility and low 

fertilization success. These findings demonstrate an essential role for RyR in cADPR-

mediated Ca
2+

 mobilization at the PHN with particular significance when exposed to 

progesterone. 
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1.11 Research aims 

 
The core objective of this research thesis was to characterise mobilisation of stored Ca

2+
 at 

the PHN of human sperm, to determine the presence, identity and regulation of intracellular 

Ca
2+ 

store/s in the region. This was tackled by the following research aims: 

 Confirmation of the presence and localisation of areas of high [Ca
2+

]i in humans 

sperm. 

 Investigate Ca
2+

 storage capability of sperm mitochondria, the potential contribution 

of this Ca
2+

 store to shaping the biphasic progesterone [Ca
2+

]i response and 

hyperactivation. 

 Characterise the effect of IP3R stimulation with thimerosal on [Ca
2+

]i at the PHN.  

 Analyse the effects of SOCE modulators 2APB and SKF on PHN [Ca
2+

]i and the 

characteristic biphasic progesterone response. 

 Investigate the effect of novel KIKKK containing STIM1 bioportides on [Ca
2+

]i at the 

PHN and SOCE associated with formation of the [Ca
2+

]i progesterone transient. 

 Study the effects of inducers of hyperactivated motility and [Ca
2+

]i elevation on 

mitochondrial membrane potential in human sperm. 
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2.0 Foreword 

This chapter describes the general methods used and will be referred to throughout the 

following results chapters. Examples are included for clarification purposes. 
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2.1 Materials 

2.1.1 Chemicals 

All chemicals were cell culture tested grade where available (for suppliers see Appendix I). 

Mag-Fluo-4AM and Oregon-Green-BAPTA-1AM were supplied by Molecular Probes 

(distributed by Invitrogen Life Technologies Ltd. Paisley). JC-1 mitochondrial dye was 

purchased from Enzo Life Sciences (Exeter). DMSO-Pluronic F-127 and Poly-D-Lysine were 

procured from Invitrogen Life Technologies Ltd. SKF-96365 Hydrochloride was acquired 

from Merck Millipore (Watford). 2-aminoethoxydiphenyl borate (2-APB) was obtained from 

Calbiochem (distributed by Merck Biosciences, Beeston, Nottingham, UK) and Bis(2-

hydroxy-3-tert-butyl-5-methyl-phenyl) methane (bisphenol) was generously donated by Dr 

Michelangeli (University of Birmingham, UK). 

 

STIM peptides KIKKK(STIM
371-392

), a scrambled control and KIKKK(STIM
371-392

) analogue 

(alanine at position 10 substituted with α-aminoisobutyric acid) were developed by 

Pantechnia, University of Wolverhampton.  

 

All media including sucrose buffered saline, Earle’s balanced salt solution (EBSS) and Ca
2+

 

free EGTA-buffered EBSS (~3x10
-7

M Ca
2+

) were prepared in the laboratory using chemicals 

obtained from Sigma-Aldrich Ltd. (Appendix II) and were supplemented immediately prior 

to use with 0.3% (w/v) fatty acid free bovine serum albumin (BSA) acquired from United 

States Biological distributed by SAFC Biosciences Inc. (Andover, Hampshire), unless 

otherwise stated. Streptolysin-O toxin (SLO) was purchased from Professor Bhakdi at the 

Institute of Microbiology and Hygiene (Guttenberg Universitat Mainz). SLO was dissolved 

as a concentrated stock solution in DTT and diluted in PBS before activation.  
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All other chemicals including carbonyl-cyanide-4-(trifluoromethoxy)-phenyl-hydrazine 

(CCCP), NNC-55-0396 hydrate (NNC), Progesterone, 2,4-Dinitrophenol (DNP), Dimethyl 

sulfoxide (DMSO), Dithiothreitol (DTT), 4-Aminopyridine (4AP), Thimerosal, EGTA, 

HEPES and PBS were acquired from Sigma Aldrich Company Ltd. (Dorset). Agonists were 

dissolved as a concentrated stock solution in DMSO where necessary and diluted in 

supplemented Earle’s balanced salt solution (sEBSS, 0.3% (w/v) BSA, HEPEs, pH 7.3-7.35, 

osmolarity 285mOsm) before application.  

 

2.1.2 Apparatus and consumables 

Samples were collected in 100ml specimen pots from Alpha Laboratories (Hampshire) and 

transferred to 5ml round bottom, 15ml and 50ml polystyrene Falcon tubes supplied by 

Starlabs UK Ltd (Milton Keynes, UK). Cells were imaged using a perfusion chamber seated 

in a platform produced by the Biosciences Workshop (University of Birmingham, UK) based 

on Warner Instruments RC-20 chamber and P-5 platform (Figure 2.1). Each chamber was 

fitted with a 12mm round coverslip from Warner Instruments (distributed by Harvard 

Apparatus). All imaging experiments were performed on a Nikon TE300 inverted 

fluorescence microscope, fitted with a Cairn Opto LED light source using either a Rolera-XR 

cooled CCD camera or an Andor Ixon 897 EMCCD camera controlled by a PC running iQ 

software (Andor Technology, Belfast, UK; Figure 2.2). CASA was performed using a 

Hamilton Thorne CASA system running IVOS v.10 (Massachusetts, USA). 
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Figure 2.1 The imaging perfusion chamber based on Warner Instrument RC-20 chamber 

seated in a Warner Instruments P-5 platform. (a) Perfusion chamber inlet, (b) cells adhered to 

poly-D-lysine coverslip, covered with a 12mm round coverslip and secured with cap, (c) 

perfusion chamber outlet. 

  

a b 

c 
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Figure 2.2 Photograph of  imaging and perfusion system set up, both systems feature a Nikon 

TE300 inverted fluorescence microscope (a), fitted with a Cairn Opto LED light source (b), 

perfusion header (c), peristaltic pump (d) and waste disposal suction (e), (A) uses a Rolera-

XR cooled CCD camera (f), (B) uses an Andor Ixon 897 EMCCD camera (g) and Optosplit 

by Cairn Research (h) all controlled by separate PC’s running iQ software. 
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2.2 Donor recruitment 

Human research sample donors were recruited at Birmingham Women’s Hospital, 

Birmingham, U.K. (Human Fertilization and Embryology Authority (HFEA) Centre number 

0119) or the Department of Biosciences at the University of Birmingham, Birmingham, U.K., 

in accordance with the HFEA Code of Practice (Version 7). Ethical approval was obtained 

from both the Life and Health Sciences Ethical Review Committee ERN_ 12-0570 and the 

Central Office for Research Ethics Committees (COREC): all donors gave informed written 

consent to the research.  

 

2.3 Preparation of sperm  

Human semen was collected from healthy donors by masturbation after 2-3 days of sexual 

abstinence and allowed to liquefy for 30 minutes at 37
o
C (95:5 air/CO2). Highly motile sperm 

were harvested using a direct swim up procedure as described previously by (Harper et al., 

2003, Nash et al., 2010). Polystyrene round-bottomed Falcon tubes (2045) containing 1ml of 

sEBSS medium (with 0.3% BSA and 15mM HEPES unless otherwise stated) were 

underlayed with 0.2ml of liquefied semen, (Figure 2.3). Tubes were then incubated at a 45
o
 

angle for 1hr at 37
o
C and 5% CO2. The top 750µl was then removed from each tube, pooled 

together and concentration calculated using an improved Neubauer haemocytometer in 

accordance with the WHO methods 1999 (Figure 2.4). After counting, cells were adjusted to 

6 x10
6 

cells/ml and left to capacitate at 37
o
C in 5% CO2. For single cell imaging and CASA 

cells were adjusted to 3x10
6
cells/ml after capacitation prior to experimentation. 
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Figure 2.3 Separation of sperm cells from semen using direct swim-up procedure, (A) 

liquefied semen is deposited at the bottom of the falcon tube under sEBSS, (B) Highly motile 

sperm are removed from the top portion of the resulting column.  
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Figure 2.4 Haemocytometer cell counting method. The haemocytometer used was 0.1mm 

deep and the 25 large squares represent an area of 1 square mm. Each of the 25 large squares 

is broken down into 16 smaller squares; the red sperm were not counted because these sperm 

were more than halfway outside the counting area. Green cells were counted as more than 

50% of the entire cell was present in the large square. 
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2.4 Sperm incubation and capacitation 

Sperm harvested by swim up procedure were suspended in sEBSS prepared in the laboratory 

(Appendix II). The osmolarity and pH of all the laboratory prepared media were checked and 

adjusted to 285 – 295 mOsm/kg (using NaCl and an Advanced Instruments Inc. osmometer) 

and pH 7.3-7.35 (using HCl/NaOH). Media was subsequently filtered, sterilised and 

aliquoted into 100ml sterile containers stored at 4
o
C until use. Capacitating media (sEBSS) 

was incubated at 37
o
C and 5% CO2 in air for at least one hour prior to use to allow 

equilibration. 0.3% BSA was added prior to use and pH confirmed to be 7.3-7.35. After 

adjustment to 6 x10
6
cells/ml cells harvested by swim up were allowed to capacitate in sEBSS 

for a minimum of 6 hours unless otherwise stated, (Kirkman-Brown et al., 2000). 

 

2.5 Computer Assisted Semen Analysis (CASA) 

For CASA studies, capacitated cells at 6 x10
6
cells/ml in sEBSS 0.3% BSA were adjusted to a 

concentration of 3-4x10
6
cells/ml. 100µl aliquots were then treated with or without agonist 

stimulants and 10ul of the resulting sperm suspension was immediately introduced to either 

side of  a pre-warmed 20µm depth 2X-CEL sperm analysis chamber (Hamilton Thorne 

Biosciences). Experiments were performed using a Hamilton Thorne CASA system running 

IVOS v.10 at 37
o
C to assess physiological sperm motility parameters. At least 20 regions 

were selected for analysis of each sample with a minimum of 100 cells observed in total. For 

human sperm analysed at 60Hz using a 20x objective hyperactivated sperm were defined by 

Mortimer et al., (1998) as track velocity (VCL) >150µm/s, linearity (LIN) <50µm/s and 

lateral head amplitude (ALHmax) >7µm/s. 
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2.5.1 Data processing 

Path velocity (VAP), progressive velocity (VSL), track velocity (VCL), lateral head 

amplitude (ALH), beat frequency (BCF), straightness (STR), linearity (LIN), elongation and 

hyperactivation (HA) values were automatically generated and registered by the CASA 

machine while performing the experiments. Treatment influenced changes in motility 

parameters were compared in Microsoft excel using two-tailed students paired t-tests. Treated 

cells were compared with both untreated cells and in some instances progesterone treatment 

where experiments were conducted on the same cell population. Results were believed 

statistically significant if P<0.05. 

 

2.6 Single cell imaging 

In all single cell imaging protocols, unless otherwise stated, cells were incubated for 6 hours 

to allow capacitation at a concentration of 6 x10
6
cells/ml. The preparation was then diluted to 

3x10
6
cells/ml with sEBSS containing 0.3% BSA prior to imaging experiments.  

 

2.6.1 Calcium imaging with Oregon Green BAPTA-1AM 

200µl aquilots of capacitated sperm were loaded with 1.2µl 12µM Oregon Green BAPTA-

1AM (0.6% dimethyl sulfoxide (DMSO) dispersed with 0.12% pluronic F-127) and 

incubated for 30 min at 37
o
C and 5% CO2. Following this incubation the entire aliquot was 

transferred to a continually perfusable imaging chamber, in which the lower surface consisted 

of a 1% poly-D-lysine coated coverslip (Figure 2.5). A further 30 minute incubation of the 

imaging chamber at 37
o
C and 5% CO2 allowed labelled cells to adhere to the coverslip. After 

incubation the chamber was mounted above a 40x air objective on a Nikon TE300 inverted 

fluorescence microscope, fitted with a Cairn Opto LED light source and filters for 
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Figure 2.5 Perfusion chamber preparation. (A) Poly-D-lysine is applied to coverslips in small 

spots, (B) the perfusion chamber is attached to a poly-D-lysine coated coverslip using 

vacuum grease, (C) a 12mm circular coverslip is secured on the anterior surface of the 

chamber with a cap, (D) a complete perfusion chamber. 
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Figure 2.6 Summary of key steps in single cell imaging. (A) Following a 4-6 hour 

capacitation 200µl of cells are incubated with fluorescent dye and (B) transferred to a 

perfusable imaging chamber. (C) The imaging chamber was then inserted above a 40x 

objective and perfused with sEBSS containing various pharmacological agonists. (D) A series 

of time lapse images are acquired, (E) ROI’s were selected and (F) data analysed offline in 

Microsoft Excel. 
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excitation 488nm and emission 540nm (Cairn Research, Kent, UK). The chamber was then 

connected to a perfusion system (Figure 2.2), consisting of a peristaltic pump with perfusion 

rate of approximately 0.4ml/min. Prior to experiment commencement at least 10ml of fresh 

sEBSS medium was washed through the chamber to remove excess dye and unattached cells. 

Following a 3-5min recorded control period sEBSS was removed and pharmalogical agents 

applied directly by addition to the perfusion header (Nash et al., 2010; Figure 2.6). There is 

an approximate 30sec delay of any cellular response recorded due to the travel time through 

the perfusion tube and is taken into account when calculating response times. This was 

determined by observing the travel time of an air bubble introduced into the perfusion tubing 

from the perfusion header to the imaging chamber. All experiments were undertaken at 

25±1
o
C with a continuous flow of medium, unless stated otherwise. Cells were illuminated 

and fluorescence images were taken every 10 seconds using the 40x objective and Q Imaging 

Rolera-XR cooled CCD camera or an Andor Ixon 897 EMCCD camera controlled by a PC 

running iQ software. Data storage and acquisition were controlled by a PC running the iQ 

software. 

 

2.6.1.1 Single cell data processing 

Data were processed offline using the iQ software as previously described by Nash et al., 

(2010). In brief a region of interested (ROI) was drawn around the posterior head/neck region 

(PHN) of each spermatozoon visible in the image field, unless otherwise stated. The image 

series was then replayed numerous times to allow close inspection of individual cells by eye. 

Inspection allowed identification of any cells which drifted out of the ROI or if the 

fluorescence faded to zero within the control period (assumed dye loss due to cell death), 

these cells were removed from analysis. An additional background ROI was also selected to 

enable automatic background subtraction by the iQ software. The raw intensity values 
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generated were imported into Microsoft Excel and normalized to pre-stimulus values using 

the equation: 

 

R = [(F – Frest)/ Frest] x 100 -100 

 

Where R is the normalized fluorescence intensity, F is fluorescence intensity at time t and 

Frest is the mean of at least 20 determinations of F taken during the control period.  

Normalised fluorescence intensity values (R) at each time point were compiled to generate a 

mean value for normalised head fluorescence from all cells in the experiment (Rtot). The 

resulting values were then plotted on a time-fluorescence intensity graph (Figure 2.7). 

 

2.6.1.1.1 Cell population statistics – peak amplitude 

For the following cell population statistics all values were determined using the Rtot trace, an 

average of all the cell responses in a given experiment. The amplitude of [Ca
2+

]i transients 

(ΔFmean), were determined by subtracting the ‘control’ period average from the average of the 

three points spanning the peak of the normalised Rtot trace (typically the highest point and the 

points either side). In biphasic responses such as progesterone the amplitude of the [Ca
2+

]i 

sustained component, ΔFsus, was calculated by averaging three consecutive points three 

minutes after agonist application, unless otherwise stated (Figure 2.8). In experiments where 

a steady rise in [Ca
2+

]i was observed peak amplitude was calculated by averaging the three 

highest consecutive points within four minutes of agonist application. Experiments involving 

an initial exposure of cells to one treatment followed by an additive exposure to a second 

treatment were first processed as described above. The incremental increase in fluorescence 

induced by exposure to a second treatment was calculated by defining a second ‘control’ 
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Figure 2.7 Image demonstrating offline data analysis in Microsoft Excel. The graph shows 

the fluorescence intensity trace against time of a single cell’s response to progesterone, (cell 

3). Numbers in black, (top) are the raw intensity values obtained from Andor IQ software. 

The red numbers (below) are the fluorescence intensity values normalised using the formula 

stated in section 2.6.1.2. In this example progesterone treatment results in the characteristic 

peak followed by a sustained transient. 

  



 
 

79 
 

 

 

 

 

 

Figure 2.8 Illustration of key loci in determining response amplitude for Rtot in single cell 

imaging experiments (A) Cells exposed to a single progesterone treatment, where C is control 

period, P is peak amplitude and S is sustained amplitude response (B) Cells exposed to 

sequential treatments of 3µM SKF and progesterone, where C1 is initial control period, P1 is 

peak amplitude for first treatment, C2 is second ‘control’ period, P2 is peak amplitude for 

second treatment amplitude and S is sustained response for treatment 2. 
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period composed of the four images captured immediately prior to second treatment 

application. The second treatment amplitude was then calculated by subtracting the Rtot 

values during the second control period from those recorded at both peak and sustained 

responses, where necessary. Paired t-tests were performed using Microsoft Excel, statistical 

significance was set at P<0.05. Time to peak was determined as time of peak response to 

stimulus (determined by Rtot) minus control period before treatment application. 

 

2.6.1.1.2 Individual cell response frequency statistics 

Individual cell [Ca
2+

]i responses to treatment were analysed using Microsoft Excel Logic to 

determine the percentage population of cells eliciting the observed response and contributing 

to Rtot. For each cell the amplitude of the [Ca
2+

]i transient or in experiments were a steady rise 

in [Ca
2+

]i was observed, peak amplitude (ΔFmax), was determined by subtracting the ‘control’ 

period average from the average of the highest point within 20 frames of treatment 

application (unless otherwise stated) and the points either side. In addition time to ΔFmax was 

also determined for each individual cell in a manner analogous to that described for Rtot in 

section 2.6.1.1.1. In biphasic responses the amplitude of the [Ca
2+

]i sustained component 

(ΔFsus) was also calculated for each individual cell by averaging three consecutive points 

three minutes after agonist application, unless otherwise stated.  

 

2.6.1.1.2.1 Significance of individual cell responses 

To determine the significance of individual cell [Ca
2+

]i responses to treatment the mean and 

95% confidence interval were calculated for ‘control’, ‘peak’ and ‘sustained’ responses as 

determined by Rtot amplitude calculations (section 2.6.1.1.1) and ‘second control’, ‘peak’ and 
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‘sustained’ where necessary. A response was categorised as a significant increase, a 

significant decrease or no significant response. An increase was deemed significant if it 

satisfied the equation: 

(Tm – Tcon) > (Cm + Ccon) 

Where Tm is the treatment peak mean (frames determined by Rtot), Tcon is the treatment 95% 

confidence interval, Cm is the control mean and Ccon is the control 95% confidence interval. A 

decrease was deemed significant if it satisfied both the following equations: 

(Tm – Tcon) < (Cm + Ccon) & Tm < Cm 

If a response was negative to both these statements then it was categorised as no significant 

response. In experiments when a second treatment was used then the second control period 

was used to compare the fluorescence increment to. 

 

2.6.2 Calcium imaging with Mag-Fluo-4AM 

For Ca
2+

 imaging with a low affinity calcium dye 200µl aquilots of capacitated sperm were 

loaded with 0.6µl Mag-Fluo-4AM (0.6% dimethyl sulfoxide (DMSO) dispersed with 0.12% 

pluronic F-127). Mag-Fluo-4AM loaded cells were incubated, and imaged as Oregon Green 

BAPTA-1AM (section 2.5.1). 

 

2.6.2.1 Single cell data processing 

Mag-Fluo-4AM loaded cells display localised areas of calcium fluorescence, (Figure 2.9B). 

ROI’s on the iQ software enable the production of average fluorescence intensities per pixel 

as opposed to per cell to facilitate analysis of [Ca
2+

]i in discreet areas of the cell. Data was 

processed offline using the iQ software and peak amplitudes determined as with Oregon  
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Figure 2.9 Visualisation of calcium stores with fluorescent dyes (A) Fluorescence observed 

Oregon Green BAPTA 1AM treated cell (B) Fluorescence observed in Mag-fluo-4AM 

treated cell, both stores clearly visible, (C) Identification of three ROI’s in Mag-Fluo-4AM 

data analysis.   
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Green BAPTA-1AM treated cells (section 2.6.1.2.1). However each Mag-Fluo-4AM loaded 

cell had three distinct ROI’s, one encompassing each the acrosome, cytoplasm (posterior 

head region) and PHN of each spermatozoon visible in the image field, (Figure 2.9C). As a 

result Peak amplitudes and decreases were compiled for each ROI separately as in section 

2.6.1.1.1 and 2.6.1.1.2 for population statistics and individual cell statistics respectively. 

 

 

2.7 Mitochondrial imaging with JC-1 

For mitochondrial membrane potential studies 200µl aliquots of capacitated cells at 3x10
6
/ml 

were initially loaded into the continually perfusable imaging chamber (Figure 2.1) as with 

calcium imaging studies. Cells were then allowed to adhere to the poly-D-lysine coverslip on 

the base of the chamber for 30 minutes at 37
o
C and 5% CO2. Once cells had adhered 200µl of 

JC-1 at a concentration of 5µg/ml, (in sEBSS) was washed through the chamber replacing the 

capacitating sEBSS. Cells were then incubated in the chamber for a further 20 minutes at 

37
o
C and 5% CO2 to allow the JC-1 to penetrate the mitochondrial membrane. The chamber 

was then attached to the perfusion system, excess JC-1 dye washed off with sEBSS and a 

control period of minimum 30 frames recorded before exposure to agonists and stimulants as 

with calcium imaging section 2.6.1 (Figure 2.2B). All JC-1 experiments were conducted at 

25±1
o
C with a continuous flow of medium. Images were taken every 10 seconds using a 

Cairn Optosplit containing red and green filters and Andor Ixon 897 EMCCD camera, 40x oil 

objective on a Nikon TE300 inverted fluorescence microscope, fitted with a Cairn LED light 

source controlled by a PC running iQ software (Andor Technology, Belfast, UK). The cells 

were excited using a 470nm LED, red emissions were collected at 590nm and green 

emissions collected at 529nm. 
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2.7.1 Single cell data processing 

JC-1 loaded cells display areas of localised fluorescence dependent on the mitochondrial 

membrane potential (MMP). At depolarised MMP JC-1 exists as a green fluorescent 

monomer readily diffusible in the cytoplasm. Hyperpolarised MMP result in the formation of 

red fluorescent J-aggregates localised to the mitochondria. The emission shift from green to 

red is indicative of mitochondrial hyperpolarisation. A red: green fluorescence intensity ratio 

allows the observation of membrane potential irrespective of mitochondrial size, shape and 

density. Data from JC-1 experiments were processed offline using the iQ software similarly 

to Nash et al., (2010). However first Optosplit red and green fluorescence images were 

merged and aligned to produce a single representation of the experimental cell population, 

(Figure 2.10). A single ROI encompassing the head and midpiece was drawn around each 

individual cell visible in the image field. Due to the physiology of the mature sperm cell it 

was essential that both the head and midpiece be included in the ROI to monitor levels of the 

cytoplasmic green JC-1 monomer. The resulting image series was replayed to remove cells 

where dye loss was evident in the control period, (an indicator of cell death) or had migrated 

out of the ROI. In addition a free background ROI was selected to enable automatic 

background subtraction by the iQ software. The raw intensity values generated were imported 

into Microsoft Excel and a ratio generated using the following formula: 

 

R = FR / FG 

 

Where R is the ratio of fluorescence intensity, FR is the red fluorescence intensity of a single 

cell at time t and FG is the green fluorescence intensity of the same cell at time t. The ratio of 

red: green fluorescence intensities (R) at each time point were compiled generate a mean ratio
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Figure 2.10 Illustration of the data analysis process for cells treatment with JC-1 (A) Separate images obtained for red and green channels, (B) 

red and green images merged together, (C) ROI’s drawn around each cell (red).

A B C 

15µM 
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for red: green fluorescence from all cells in the experiment (Rtot). The resulting values were 

then plotted on a time-fluorescence intensity graph.  

 

2.7.1.1 Mitochondrial membrane potential cell population statistics  

For cell population statistics all values were determined using the fluorescence intensity Rtot 

trace calculated as the average FR/FG ratio response of all cells in a given experiment. Effect  

of treatment on MMP was determined in a manner analogous to effect on [Ca
2+

]i.  Change in 

FR/FG ratio was determined by subtracting the ‘control’ period average from the average of 

the three points spanning the peak increase or decrease of the Rtot trace within 24 frames, 

unless otherwise stated. In experiments were cells were exposed to a second additive 

treatment immediately following the first, the incremental effect on MMP was calculated by 

defining a second ‘control’ period composed of the four images captured immediately prior 

to second treatment application. The effect of the second treatment on MMP was then 

calculated by subtracting the second control period FR/FG ratio from that of the maximum 

observed effect whether this be an increase or decrease in MMP. Time taken to see 

observable changes in MMP were determined as time to maximum response minus the 

control period before treatment application. Paired t-tests were performed using Microsoft 

Excel, statistical significance was set at P<0.05, all values are shown as mean ± S.E.M.  

 

2.7.1.2 Mitochondrial membrane potential individual cell responses 

Analysis of individual cell MMPs were conducted using Microsoft Excel Logic. As a result 

we were able to determine the percentage population of cells eliciting the observed response 

and contributing to Rtot. For each cell the amplitude of change in FR/FG ratio was determined 

by subtracting the ‘control’ period average from the average of the highest/lowest point 
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within 24 frames of treatment application (unless otherwise stated) and the points either side. 

In addition time to maximum FR/FG ratio response was also determined for each individual 

cell as described in section 2.7.1.1.  

 

2.7.1.2.1 Significance of individual cell responses 

The significance of MMP responses was determined using the same formula used for Ca
2+

 

imaging experiments with one alteration. Instead of using Ca
2+

 response values for the 

treatment peak Tm, the maximum change in FR/FG ratio was used instead, see section 

2.6.1.1.2.1. 

 

2.8 Single cell calcium imaging of Streptolysin-O permeabilisation 

Single cell calcium imaging was set up as in chapter 2.6.2. Permeabilization was performed 

using Streptolysin-O from Streptococcus pyrogenes adapted from methods previously 

described (Diaz et al., 1996; Yunes et al., 2000). 200µl aquilots of sperm capacitated for 2-3 

hours were loaded with 0.6µl Mag-Fluo-4AM and incubated for an hour at 37
o
C and 5% 

CO2. Cells were then incubated for 30 minutes in a continuously perfusable imaging chamber 

to allow adherence to the poly-D-lysine on the base of the chamber. After a control period of 

20 frames where cells were washed with sEBSS, SLO was applied in phosphate buffered 

saline, pH 7.4 and filtered to give an end activity of 0.4U/mL after washing through the 

system with a sucrose buffer (containing 20mM HEPES-KOH, 250Mm sucrose, 0.5mM 

EGTA, 2mM DTT, 1.5mM MgCl2 and 50mM KCl). Permeabilisation was determined 

successful visually by the loss of cytoplasmic dye but the retention of dye in both the 

acrosomal and PHN regions. Following successful permeabilisation agonists were applied to 

the cells and the calcium signalling response observed. 
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2.8.1 Streptolysin-O permeabilisation analysis 

Data was processed as per section 2.6.2.1. with one alteration. As treatment was applied to 

cells after initial exposure to the toxin causing a decrease in posterior acrosomal fluorescence, 

the initial control period for these cells was taken as the four images prior to treatment. 

Amplitude for decrease in fluorescence during the permeabilisation process was determined 

by subtracting the average of three consecutive points before agonist application from the 

initial control period. 
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3.1 Abstract 

Human sperm are transcriptionally inactive; therefore cellular processes must be mediated via 

tightly modulated second messenger systems. Regulation of [Ca
2+

]i has been implicated in 

many processes essential for sperm function including AR, hyperactivated motility and 

capacitation (chapter 1). However mature cells do not contain the organelles normally 

associated with somatic cell Ca
2+

 storage. Previous studies have identified the presence of 

Ca
2+

 pumps and channels associated with somatic Ca
2+

 stores (chapter 1.10) and evidence for 

functional Ca
2+

 stores in human sperm (Costello et al., 2009). Current evidence suggests the 

presence of two discrete Ca
2+

 stores in human sperm, one in the acrosomal region (Herrick et 

al., 2005) and at least one at the posterior head/neck region (PHN) (Lefievre et al., 2012), 

each with distinct mechanisms of filling and mobilisation. Preliminary data has identified the 

posterior store as a key regulator of sperm motility and hyperactivation. In mammalian sperm 

mitochondria have been proposed as a Ca
2+

 store, due to their contribution to Ca
2+

 

homeostasis in somatic cells (Storey & Keyhani, 1975; Babcock et al, 1976; Vijayaraghavan 

& Hoskins, 1990). In this chapter we found that application of mitochondrial uncouplers 

(CCCP and DNP) increased [Ca
2+

]i at the PHN, acrosome and mitochondrial regions, with 

some effects on subsequent progesterone response kinetics. These effects were greatly 

reduced in the absence of extracellular Ca
2+

, indicative of both Ca
2+

 uptake and intracellular 

release. Furthermore, pre-treatment with bisphenol (ATPase inhibitor) reduced the increase in 

Ca
2+

 influx associated with CCCP and DNP application. Analysis of mitochondrial 

membrane potential (MMP) confirmed both mitochondrial inhibitors cause depolarisation of 

the MMP. However subsequent application of 3µM progesterone can cause MMP 

hyperpolarisation partially reversing the response observed with application of mitochondrial 

inhibitors. Together this data indicates the existence of at least two discrete calcium storage 

compartments in this already highly specialised cell.   

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R79
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R90
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R90
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3.2 Introduction 

A fundamental component of cell function is the capacity to respond to environmental cues. 

In somatic cells regulation of cellular activity can be controlled via two distinct mechanisms, 

gene expression and post-translational modification. Regulation via gene expression occurs 

over periods of hours requiring changes in either transcription, translation, mRNA transcripts 

or protein turnover. In contrast post-translational modification is a much faster process 

involving subtle changes to proteins already present in the cell; typically via a cascade of 

second messengers. In mature human sperm the machinery involved in DNA transcription 

and protein translation are either absent (ER) or highly condensed (nucleus) and although 

some evidence has been found for mRNA presence (Meikar et al., 2011) it is not considered 

to play an essential role in cellular function. As a result the mechanisms underlying sperm 

specific behaviour must be reliant on post translational modifications by other small cellular 

messengers, which are either endogenous or abundant in the extracellular environment during 

the ejaculation and fertilization process.  

 

Ca
2+

 is believed to be responsible for the regulation of a number of processes elemental for 

sperm function, including hyperactivation, chemotaxis, capacitation and AR (Publicover et 

al., 2007). Indeed, impaired Ca
2+

 signalling has been associated with subfertility in an 

increasing number of studies (Baldi et al, 1999; Espino et al, 2009). A multitude of individual 

signalling cascades are modulated by Ca
2+

 signalling, which requires tight regulation of 

[Ca
2+

]i. Quiescent cells maintain low [Ca
2+

]i, which can change rapidly with the release of 

Ca
2+

 from intracellular stores or influx from the extracellular environment upon agonist 

stimulation. The presence of plasma membrane Ca
2+

 channels on the mature human 

spermatozoon is well established (Publicover et al., 2007).The properties of some channels 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R29
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are well documented in somatic cell physiology (SOC’s, Ca
2+

-ATPases) while others are 

specific to the sperm cell (CatSper; Strunker et al., 2011). Numerous Ca
2+

 channels and 

pumps associated with somatic Ca
2+

 stores have been identified in human sperm, including 

but not limited to SERCA, SPCA and RYR (chapter 1.10). It was the localisation of somatic 

Ca
2+

 storage channels that initially suggested the presence of an anterior Ca
2+

 store in the 

human spermatozoon. In 2005, Herrick et al., characterised the first Ca
2+

 storage organelle in 

human sperm; the acrosome is a membranous vesicle situated on the anterior sperm head and 

essential in AR and other processes fundamental for sperm function. Increasing evidence also 

suggests the presence of a second store in the PHN region of the sperm (Ho & Suarez, 2001; 

2003). Several somatic Ca
2+

 store channels have been localised to the region including STIM 

and Orai isoforms (Lefievre et al., 2012). Evidence suggests that a store in this region could 

contribute to motility regulation of each sperm cell (Marchetti et al., 2002; Gallon et al., 

2006; Sousa et al., 2011). However the identity of the posterior store, its characterisation and 

contribution to important cellular processes remains elusive. Previous studies have identified 

at least two potential candidates for a Ca
2+

 storage organelle in the PHN of mammalian 

sperm; the redundant nuclear envelope and the mitochondria (Costello et al., 2009). Both 

have the potential for Ca
2+

 storage however in this chapter we will be focusing on the 

potential for mitochondrial contribution to intracellular Ca
2+

 responses.  

 

Mitochondria are the ATP producing powerhouses of the cell; they also contribute to reactive 

oxygen species (ROS) production, lipid oxidation and Ca
2+

 homeostasis (Amaral et al., 

2013). In somatic cells mitochondria generate ATP via oxidative phosphorylation; a process 

that involves transportation of reduced electron carriers across the inner mitochondrial 

membrane (IMM) via the electron transport chain (ETC) complexes. This process generates a 



 
 

94 
 

proton gradient across the IMM consisting of a pH component and an electrostatic 

component or mitochondrial membrane potential (MMP; Amaral et al., 2013), which is used 

to drive ATP synthesis. It is this charged nature of the MMP that ultimately enables the 

mitochondria to sequester Ca
2+

 ions through an electrogenic Ca
2+

 uniporter (MCU), thus 

acting as a potential intracellular Ca
2+

 store (Nichol1s & Ferguson, 2002). At present there is 

mounting evidence that agonist stimulation can lead to mitochondrial Ca
2+

 accumulation in a 

number of healthy cell lines (Ardon et al., 2009; Duchen, 1999). The mitochondria of sea 

urchin sperm have been shown to both sequester and release [Ca
2+

]i in response to 

pharmacological manipulation by mitochondrial uncouplers (CCCP). Furthermore Ca
2+

 

ATPase inhibitors (including bisphenol; Ardon et al., 2009) have been shown to antagonise 

mitochondrial inhibitor induced [Ca
2+

]i increases and activate SOCs. These findings support a 

role for stored mitochondrial Ca
2+

 human sperm [Ca
2+

]i homeostasis, however the 

contribution, if any, of mitochondrial Ca
2+

 to the Ca
2+

 responses observed in response to 

agonists and impact on motility parameters is unknown.  
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3.3 Aims 

The aim of this chapter was to determine whether mitochondria act as a Ca
2+

 store and 

contribute to shaping progesterone induced Ca
2+

 signals in human sperm. 
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3.4 Material and Methods 

3.4.1 Materials 

Carbonyl-cyanide-4-(trifluoromethoxy)-phenyl-hydrazine (CCCP), 2,4-Dinitrophenol (DNP), 

and progesterone were all purchased from Sigma Aldrich Company Ltd. (Dorset). Bis(2-

hydroxy-3-tert-butyl-5-methyl-phenyl) methane (bisphenol) was generously donated by Dr 

Michelangeli (University of Birmingham, UK).  For all other materials see chapter 2.1.1.  

 

3.4.2 Methods 

3.4.2.1 Cell preparation 

Human semen was collected and prepared as in chapter 2.3. 

 

3.4.2.2 Cell incubation and capacitation 

Sperm were incubated and capacitated for a minimum of 5 hours as in chapter 2.4. 

 

3.4.2.3 CASA 

Capacitated cells were treated with 10µM DNP, 10µM CCCP or an untreated parallel control 

and their motility parameters were digitally assessed by CASA as described in chapter 2.5.  

 

3.4.2.4 Single cell imaging  

Cells were allowed to capacitate for 5 hours at 6 x10
6
cells/ml in sEBSS before dilution to 

3x10
6
cells/ml prior to treatment with fluorescent dyes for single cell imaging. All imaging 

experiments for this chapter were conducted at 25 ±1
o
C. 
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3.4.2.4.1 Oregon Green BAPTA-1AM (OGB) 

Cells were loaded and imaged as in chapter 2.6.1. After a 20 frame control period cells were 

exposed to either10µM CCCP, 1µM, 5µM, 10µM or 100µM DNP in the presence and 

absence of extracellular Ca
2+

 for a minimum of 30 frames. In addition some cells were pre-

treated with 15µM Bisphenol for 30 frames before exposure to mitochondrial uncouplers and 

their responses compared to untreated controls. 

  

3.4.2.4.2 Mag-Fluo-4AM (MF) 

Cells were loaded and imaged as in chapter 2.6.2. After a 20 frame control period cells were 

exposed to either10µM CCCP, 10µM DNP or 3µM progesterone for 30 frames. Cells 

exposed to 10µM CCCP or 10µM DNP were subsequently additively treated with 3µM 

progesterone and the individual cell responses observed. 

 

3.4.2.4.3 Streptolysin-O permeabilisation 

Cells were loaded and imaged as in chapter 2.8. 

 

3.4.2.5 Mitochondrial imaging with JC-1 

All mitochondrial imaging experiments were conducted following the protocol outlined in 

chapter 2.7. After an initial control period of 30 frames cells were exposed to either 10µM 

CCCP, 10µM DNP, 100µM DNP or 3µM progesterone for 30 frames (5mins). In addition 

cells exposed to 10µM CCCP, 10µM DNP or 100µM DNP were then treated with 3µM 

progesterone (5mins) and the MMP response observed. 
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3.4.3 Analysis 

3.4.3.1 CASA  

Experiments were performed in duplicate on four days. As a result a daily average was 

determined and compared between treated samples and the parallel untreated control using a 

paired t-test. Response was significant if P<0.05. 

 

3.4.3.2 Single cell imaging 

In this chapter response to CCCP, DNP or Bisphenol treatment was determined within 4 

minutes of treatment application (24 frames) for all imaging protocols, (Ca
2+

 and 

mitochondrial membrane potential). Transient progesterone responses were determined 

within 20 frames of application; with the sustained progesterone component occurring 3 

minutes after application (frames 18-20). Results from calcium imaging with Oregon Green 

BAPTA1-AM and Mag-Fluo-4AM results were analysed as in chapter 2.6.1. and chapter 

2.6.2 respectively. Cells permeabilised with Streptolysin-O were analysed as in chapter 2.8.1. 

 

3.4.3.3 Mitochondrial imaging with JC-1 

Effects of agonists on mitochondrial membrane potential were analysed as in chapter 2.7. 
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3.5 Results 

3.5.1 Mitochondrial inhibitors depolarise the mitochondrial membrane 

potential 

Mitochondrial inhibitors CCCP and DNP are uncouplers which affect mitochondrial function 

by disrupting the mitochondrial membrane potential (MMP; ΔΨm). To confirm that 

mitochondrial inhibitors reduce the MMP in human sperm we measured the MMP of resting 

cells and used time lapse fluorescence imaging to observe the effects in real time. Cells were 

loaded with JC-1; a dual emission MMP sensitive dye. At low MMPs the dye exists as a 

green monomer throughout the cytoplasm of sperm cells, high MMPs cause aggregation of 

the monomers into red J-aggregates in the mitochondria itself (chapter 2.7). At rest cells 

typically exhibit high levels of red mitochondrial fluorescence and low levels of green 

cytoplasmic fluorescence resulting in an FR/FG ratio of typically 0.5-1.5 (Figure 3.2A). It 

should be noted that although control FR/FG ratio’s vary amongst experiments MMP did not 

fluctuate significantly during the initial 200s control period. At rest MMP oscillated in >90% 

of the cell population (Figure 3.1A, C, E&G). Oscillations were small, insignificant and 

followed no distinctive pattern in each experimental population, indicating they are individual 

to each cell.  

 

After a control period of 20 frames cells were treated with either 1µM, 10µM, 100µM DNP 

or 10µM CCCP and the response monitored for a further 30 frames (5min). All four 

treatments caused the FR/FG ratio (MMP) to fall between 0.05 and 0.7 in 70-90% of the cell 

population (Figure 3.1). In cells loaded with JC-1, application of mitochondrial inhibitors 

induces a clearly visible increase in cytoplasmic green fluorescence in both 10µM CCCP and 

100µM DNP experiments (Figure 3.1B&H); for examples of mean experimental red and 
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Figure 3.1 Effect of mitochondrial inhibitors on MMP of human sperm. Mitochondrial 

membrane potential can be determined by the ratio of red: green fluorescence (FR/FG) as 

determined by JC-1 dye application. In the following graphs cells were treated with JC-1 and 

monitored in sEBSS for 300s before 10µM CCCP, 1µM, 10µM or 100µM DNP application (red 

arrow). A, C, E & G show individual cell PHN FR/FG responses (greys traces) for 10µM CCCP, 

1µM, 10µM or 100µM DNP treatment respectively. B, D, F & H show representative FR and FG 

traces for a single cell. 
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green fluorescence traces see Figure 3.1B, D, F & H. In cells treated with 1µM or 10µM 

DNP the MMP depolarisation was significantly less than that induced by both 10µM CCCP 

(P=0.0003, P=0.0009 respectively; t-test; n=3, n=15 respectively) or 100µM DNP (P=0.004, 

P=0.009 respectively; t-test; n=3 n=15 respectively; Figure 3.2D) application. These results 

suggest a dose dependent effect of DNP on MMP. Analysis of individual cell responses 

reinforces DNP dose response relationship with an increased proportion of cells exhibiting 

depolarisation with increasing DNP concentration (Figure 3.2E). 10µM CCCP appears to 

have a similar impact on MMP as 100µM DNP exhibiting similar population response 

kinetics (Figure 3.2D&E). In summary both CCCP and DNP induce mitochondrial 

depolarisation, in human sperm cells.  

 

3.5.1.1 Effect of mitochondrial uncouplers on progesterone induced hyperpolarisation of 

the mitochondrial membrane potential  

In human sperm the most well characterised [Ca
2+

]i response is the biphasic signal induced by 

progesterone and this is often used as a positive control in Ca
2+

 imaging experiments. In JC-1 

loaded cells 3µM progesterone induced a sustained FR/FG increase (MMP hyperpolarisation) 

of 0.2 in ~80% of cells (Figure 3.3D). To test the effects of mitochondrial inhibitors CCCP 

and DNP on the progesterone induced MMP hyperpolarisation, experiments were conducted 

in pairs, where cells from the same semen sample were treated with 3µM progesterone with 

and without mitochondrial inhibitor pre-treatment. For pre-treatment cells were exposed to 

10µM DNP, 100µM DNP or 10µM CCCP prior to progesterone application. In all 

experimental pairs those cells pre- treated with mitochondrial inhibitors exhibited the MMP 

depolarisation previously described (section 3.5.1; Figure 3.3 A-C). 

B A 
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Figure 3.2 Mitochondrial inhibitors depolarise the MMP of human sperm. JC-1 loaded 

cells demonstrate red mitochondrial fluorescence (A) and green cytoplasmic 

fluorescence (B). (C) Red/green fluorescence overlay of sperm cells loaded with JC-1. 

(D) Minimum FR/FG ratio responses within 3min of inhibitor application. (E) Proportion 

of cells with an observable decrease in FR/FG. Results are means ± S.E.M. * P<0.05 

compared to1µM DNP, * P<0.05 compared to 10µM DNP,* P<0.05 compared to 

CCCP; paired t-test; n=11, n=5, n=9 & n=8 respectively). 
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Figure 3.3 Effect of mitochondrial inhibitors on progesterone induced MMP 

hyperpolarisation. In the following graphs cells were treated with JC-1 and monitored 

in sEBSS for 300s before 10µM CCCP (A), 10µM (B), 100µM DNP (C) application 

(red arrow) prior to stimulation with 3µM progesterone (D). (A-D) Show individual 

cell PHN FR/FG responses (grey traces). (E) Maximum FR/FG ratio responses within 

3min of inhibitor application. (F) Proportion of cells with an observable increase in 

FR/FG. Results are means ± S.E.M. * P<0.05 compared to progesterone control, * 

P<0.05 compared to CCCP; paired t-test; n=11, n=11, n=9 & n=8 respectively. 
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Subsequent addition of 3µM progesterone to the perfusion media resulted in 

hyperpolarisation of the MMP in a subset of cells (3.3E&F). In 10 out of 11 experimental 

pairs pre-treatment with 10µM CCCP (300s) reduced the level of progesterone induced 

mitochondrial hyperpolarisation by FR/FG 0.15 compared to that seen without pre-treatment 

(n=11; P=0.14; paired t-test; Figure 3.3A&E). Thus reducing the number of significant FR/FG 

responses observed by 25% (Figure 3.3F). DNP pre-treated cells respond similarly with 8 out 

of 9 and 7 out of 8 experimental pairs treated with 10µM DNP and 100µM DNP respectively 

showing a smaller MMP hyperpolarisation compared to progesterone alone (Figure 3.3B&C). 

10µM DNP pre-treatment induced a significant reduction in the percentage of cells that 

showed hyperpolarisation of MMP in response to progesterone application (P=0.02; n=11; 

paired t-test), however this was not observed with other mitochondrial inhibitors.  

 

3.5.2 Mitochondrial inhibitors raise resting [Ca
2+

]i at the PHN 

Initially we examined the effect of mitochondrial inhibitors CCCP and DNP on resting 

[Ca
2+

]i at the PHN of human sperm samples loaded with OGB. Treatment with 10µM, 

100µM DNP or 10µM CCCP increased PHN [Ca
2+

]i (Figure 3.4A-D). Cell populations 

treated with 10µM CCCP or 10µM DNP exhibited similar Ca
2+

 response kinetics, each 

producing a sustained rise then plateau in [Ca
2+

]i of ~8% (Figure 3.4D), in 60-70% of the cell 

population (Figure 3.4F). However cells treated with 100µM DNP produced a transient 

increase [Ca
2+

]i of ~10% (Figure 3.4C&D) which lasted ~1min and remained elevated above 

control levels thereafter. Figures 3.4A-D illustrate individual cell PHN [Ca
2+

]i traces that are 

representative of the population CCCP and DNP responses observed. Individual cell response 

kinetics reveal a bell shaped distribution of peak amplitude response increments for both 

mitochondrial inhibitors with most cells exhibiting a peak of 10-20% (ΔF; Figure 3.4E).
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Figure 3.4 Mitochondrial inhibitors elevate [Ca
2+

]i at the PHN. Graphs A-C show 

representative individual cell responses (grey traces) and a ΔFmean for a single experiment 

(red trace) treated with (A) 10µM CCCP (B) 10µM DNP and (C) 100µM DNP. (D) 

Maximum increase in ΔFmean within 4min of inhibitor application. (E) Frequency 

distribution of ΔFmax amplitude amongst the cell population. (F) Proportion of cells 

displaying significant ΔFmax response amplitude. Results are means ± S.E.M. * P<0.05 

compared to CCCP; paired t-test; n=11, n=9 & n=8 respectively. 
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3.5.2.1 Mitochondrial inhibitors [Ca
2+

]i responses are dependent on external Ca
2+

  

To determine the origin of Ca
2+

 responsible for the increase in [Ca
2+

]i at the PHN induced by 

mitochondrial inhibitors experiments were conducted in Ca
2+

 free sEBSS ([Ca
2+

]~3x10
-7

M). 

Sperm were loaded with OGB in the presence of extracellular Ca
2+

 and monitored for a 

period of at least 20 frames under these conditions. Subsequently the cells were exposed to 

Ca
2+

 free sEBSS ([Ca
2+

]~3x10
-7

M) for 100s before the mitochondrial inhibitors were added 

in the absence of extracellular Ca
2+

. Figure 3.5A-B show several representative [Ca
2+

]i 

responses to mitochondrial inhibitor stimulation in the absence of extracellular Ca
2+

. In these 

experiments it is important to note that some interesting observations get lost in the 

population averages. As Figure 3.5C demonstrates, introduction of EGTA buffered saline 

[Ca
2+

]i decreased  over a period 5-6 minutes. Application of 10µM DNP, 10µM CCCP or 

100µM DNP during this period induced only a small, transient increase in population [Ca
2+

]i. 

As Figures 3.5A-B demonstrates a subset of cells display a small significant transient 

increase or sustained [Ca
2+

]i increase in response to inhibitor application under these 

conditions, consistent with Ca
2+

 release from intracellular stores (Figure 3.5D). It is apparent 

that this release of stored Ca
2+

 does not equal the increase in [Ca
2+

]i observed in the presence 

of extracellular Ca
2+

 suggesting that mitochondrial inhibitor [Ca
2+

]i increases observed in 

Ca
2+

 containing media include a significant component dependent upon influx of  

extracellular Ca
2+

.  
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Figure 3.5 Effect of mitochondrial inhibitors on [Ca
2+

]i at the PHN in the absence of 

extracellular Ca
2+

. Representative individual cell [Ca
2+

]i traces in response to addition of  

CCCP (A, 10µM blue trace), DNP (B, 10µM green trace, 100µM orange trace) with 

ΔFmean expressed as coloured traces. (C) Maximum increase in ΔFmean within four minutes 

of inhibitor application. (D) Proportion of cells displaying significant ΔFmax response 

amplitude. Results are means ± S.E.M. n=6, n=6 & n=6 respectively. 
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Figure 3.6 Bisphenol reduces the mitochondrial inhibitor induced [Ca
2+

]i  increase at the PHN. In 

the following graphs cells were loaded with OGB and monitored in sEBSS for 300s before 

stimulation with 15µM Bisphenol and subsequent treatment with (A)3µM progesterone (B) 

10µM CCCP or (C)10µM DNP (red arrow). A-C show individual cell responses (greys traces) 

and ΔFmean for a single experiment. (D) Maximum ΔFmean responses within 3min of inhibitor 

application. (F) Proportion of cells with a significant increase in ΔFmean. Results are means ± 

S.E.M. * P<0.05 compared to progesterone control, * P<0.05 compared to parallel untreated 

controls; paired t-test; n=7, n=7 & n=8 respectively). 
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3.5.2.2 Bisphenol effect on [Ca
2+

]i  increases induced by mitochondrial inhibitors 

Bisphenol is a specific Ca
2+

-ATPase inhibitor, in sea urchin sperm 15µM bisphenol mobilises 

stored Ca
2+

 leading to activation of SOCs and Ca
2+

 influx (Ardon et al., 2009). In human 

sperm SPCA1 and SERCA Ca
2+

-ATPase pumps have been detected at the PHN/midpiece. 

These pumps are believed to contribute significantly to Ca
2+

 uptake at the PHN Ca
2+

 store, 

possibly even contributing to Ca
2+

 accumulation into the mitochondria. Here we wanted to 

determine whether treating cells with 15µM bisphenol (to prevent store Ca
2+

 uptake) prior to 

mitochondrial inhibitor application affected the increase in [Ca
2+

]i observed at the PHN.  

 

Application of 15µM bisphenol induced a sustained increase of in [Ca
2+

]i of ~30% followed 

by a plateau in ~85% of cells (Figure 3.6A-C). To determine the effect of bisphenol treatment 

on the mitochondrial inhibitor [Ca
2+

]i response all experiments were carried out in pairs. Cells 

from the same semen preparation were exposed to 10µM CCCP, 10µM DNP or 3µM 

progesterone with and without pre-exposure to 15µM bisphenol. Pre-treatment with 

bisphenol decreased the [Ca
2+

]i responses induced by both CCCP and DNP (57% and 51% 

respectively; P=0.15, P=0.26 respectively; paired t-test; n=7, n=5; Figure 3.6D). In contrast 

treatment with 3µM progesterone after bisphenol application caused a significant increase in 

the [Ca
2+

]i response observed (P=0.03; n=7; Figure 3.6D). The proportion of cells producing 

a significant increase in [Ca
2+

]i in response to mitochondrial inhibitors was significantly 

decreased in both CCCP and DNP treated cells pre-exposed to bisphenol (P=0.013 and 

P=0.02 respectively; paired t-test; n=5, n=7; Figure 3.6E). 
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3.5.3 Mitochondrial inhibitors raise resting [Ca
2+

]i at the acrosome, PHN and 

midpiece  

Our initial observations on the effects of mitochondrial inhibitors CCCP and DNP on resting 

[Ca
2+

]i at the PHN utilised the high affinity Ca
2+

 dye OGB, which displayed Ca
2+

 distribution 

throughout the cell (Figure 3.7A). To clearly distinguish areas of high Ca
2+

 concentration we 

over loaded cells with the low affinity Ca
2+

 dye Mag-Fluo-4AM (MF), subsequent 

permeabilisation with Streptolysin-O enabled loss of cytoplasmic Ca
2+

 and visualisation of 

two discrete regions of Ca
2+

 localisation at the acrosome and PHN/midpiece (Figure 3.7C). It 

should be noted that successful Streptolysin-O permeabilisation was inconsistent and in some 

cases contributed to premature AR and loss of Ca
2+

 fluorescence consistent with cell death, 

which prevented observation of subsequent agonist induced [Ca
2+

]i responses. However cells 

loaded with MF for shorter periods enabled clear observation of separate Ca
2+

 stores without 

the need for permeabilisation (Figure 3.7B), which facilitated analysis of [Ca
2+

]i at discrete 

intracellular regions to determine localised agonist effects at the acrosome, PHN and 

midpiece of human sperm (defined in Figure 2.9C). As a result all of the following 

experiments in this section where conducted in intact cells labelled with MF.  

 

3.5.3.0.1 Progesterone induces biphasic [Ca
2+

]i responses at the acrosome, PHN and 

midpiece 

Stimulation with 3µM progesterone induces a characteristic biphasic increase in [Ca
2+

]i at the 

acrosome, PHN and midpiece in intact human sperm, which consists of an initial transient 

followed by a sustained plateau or series of oscillations. Figure 3.8A shows an example of 

representative [Ca
2+

]i traces obtained at the acrosome, PHN and midpiece of a single cell. It 
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Figure 3.7 Visualisation of Ca
2+

 stores in human sperm. Grey scale and pseudo-

colour image of [Ca
2+

]i in cells loaded with Oregon Green BAPTA-2AM(A) or 

Mag-Fluo4-AM (B). (C) Sequential image series of a Mag-Fluo-4AM loaded cell 

permeabilised with SLO to clearly define the Ca
2+

 stores (yellow arrows). SLO is 

added to cells overloaded with MF in frame 4. Yellow corresponds to areas of 

high Ca
2+

 concentration and cold colours areas of low Ca
2+

 concentration. 
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Figure 3.8 Mitochondrial inhibitors elevate resting [Ca
2+

]i at the acrosome, PHN and 

midpiece. The increase in [Ca
2+

]i observed at the acrosome (purple), PHN (orange) and 

midpiece (yellow) in representative cells treated with progesterone (A), CCCP (B) or 

DNP (C). In graphs D-F cells were treated with either 3µM progesterone (red) 10µM 

CCCP (blue) or 10µM DNP (green). (D) Maximum ΔFmean amplitude within 3 min of 

progesterone application. (E) Proportion of cells displaying significant ΔFmean response 

amplitude. (F) Time taken to achieve maximum increase in ΔFmean. *P<0.05 compared to 

progesterone, *P<0.05 compared to DNP, n=16, n=8 & n=13 respectively where n 

equals the number of experimental repeats. 

 

C 



 
 

113 
 

should be noted that the response amplitudes vary amongst the population however the trend 

observed in Figure 3.8A remains the same. The transient [Ca
2+

]i elevation at all three regions 

began almost simultaneously within seconds of progesterone application (data were collected 

at 0.1 Hz and the ability to detect temporal differences was therefore limited) and decreased 

in a similar manner, followed by numerous oscillations. Peak [Ca
2+

]i of 35-40% (Figure 

3.8D) was achieved in >55% of cells (Figure 3.8E) within 75-90sec (Figure 3.8F) at all 

regions and showed no significant difference between regions (P=0.90, P=0.20 & P=0.73 

respectively; ANOVA; n=16). Initial observations showed a greater proportion of cells 

exhibited a significant [Ca
2+

]i response to progesterone at the acrosome, with the lowest 

proportion of significant responses observed in the midpiece (Figure 3.8E). However this was 

insignificant indicating progesterone induces similar [Ca
2+

]i responses throughout human 

sperm. 

 

3.5.3.0.2 CCCP similarly effects [Ca
2+

]i at the acrosome, PHN and midpiece 

In cells labelled with MF addition of 10µM CCCP induced a peak increase of ~25% in [Ca
2+

]i 

at the acrosome, PHN and midpiece (Figure 3.8B&D) consistent with observations from 

OGB experiments (section 3.5.2). Like cells treated with progesterone, CCCP induces 

analogous [Ca
2+

]i responses at the acrosome, PHN and midpiece of human sperm, which 

peaks 2-3min after application (P=0.99; ANOVA; n=8; Figure 3.8D). Furthermore the 

proportion of cells exhibiting a significant CCCP response and time taken to achieve peak 

[Ca
2+

]i responses at the acrosome, PHN and midpiece did not differ significantly  between the 

three regions  (P=0.43 & P=0.85 respectively; ANOVA; n=8; Figure 3.8E&F).  
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3.5.3.0.3 DNP induced [Ca
2+

]i increases measured with Mag-Fluo-4AM exceed those 

observed with progesterone treatment 

10µM DNP increased [Ca
2+

]i at the acrosome, PHN and midpiece of human sperm inducing a 

sustained rise or series of transients at each region (Figure 3.8D). Figure 3.8C shows a single 

cell response to DNP application which is representative of the cell population. Although the 

peak increase in [Ca
2+

]i at the midpiece typically exceeds the increases observed at the 

acrosome and PHN by ~10%, ~30sec quicker (Figure 3.8D&F), there is no significant 

difference in the peak [Ca
2+

]i, proportion of cells exhibiting a significant response or time to 

peak between regions (P=0.84, P=0.52 & P=0.61 respectively; ANOVA; n=13). In MF 

loaded cells the peak [Ca
2+

]i response induced by DNP significantly exceeds that induced by 

progesterone at all regions (P=0.03, P=0.003 & P=0.02 respectively; paired t-test; n=13; 

Figure 3.8D). Furthermore time taken to achieve DNP induced [Ca
2+

]i peak takes ~20sec 

longer at the acrosome and PHN, which is significantly greater than parallel progesterone 

controls (P=0.027 & P=0.024; paired t-test; n= 13; Figure 3.8F). Interestingly analysis of 

individual cell responses reveals a significant decrease in the proportion of cells exhibiting a 

significant [Ca
2+

]i response  to DNP compared to progesterone at all three regions observed 

(acrosome P=0.009, PHN P=0.005 & midpiece P=0.04; paired t-test; n=13). Together these 

results indicate that DNP induced [Ca
2+

]i elevations are not restricted to mitochondrial Ca
2+

 

storage capacity and that they are significantly distinct from progesterone induced [Ca
2+

]i 

changes. 

   

3.5.3.1 Mitochondrial inhibitors differentially effect the biphasic progesterone [Ca
2+

]i 

transient at the acrosome, PHN and midpiece  

The biphasic [Ca
2+

]i response induced by progesterone application is well characterised 

(Kirkman-Brown et al., 2000; Harper et al., 2004) with a distinctive dose effect relationship 
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between progesterone response and ΔFmean amplitude.  Alone the mitochondrial inhibitors 

CCCP and DNP raise [Ca
2+

]i at the acrosome, PHN and midpiece. Here we wanted to 

determine the effects of mitochondrial inhibitors and therefore possible mitochondrial Ca
2+

 

contribution to the biphasic progesterone induced [Ca
2+

]i response at the acrosome, PHN and 

midpiece using the low affinity Ca
2+

 dye MF in intact cells. It should be noted that although 

[Ca
2+

]i elevations observed at each region vary there is no significant difference between the 

acrosome, PHN or midpiece for any of the three treatments observed (P<0.05; ANOVA; 

n=15, 8 & 7 respectively). 

 

 

3.5.3.1.1 Acrosome 

Ca
2+

 mobilisation has been observed at the acrosome in response to a number of agonists but 

principally progesterone (Rodriguez-Peña et al., 2013). 3µM progesterone induces a 

characteristic biphasic [Ca
2+

]i increase in the majority of cells with the transient response 

peaking within 1-2 min (section 3.5.3.0.1; Figure 3.9A). Pre-treatment with 10µM 

mitochondrial uncouplers CCCP or DNP have differential effects on the [Ca
2+

]i transient 

observed (Figure 3.9B&C), but neither significantly affect the amplitude (Figure 3.9D), time 

to peak (Figure 3.9F) or proportion of cells producing a significant progesterone transient 

compared to untreated controls (Figure 3.9E). However CCCP and DNP effects on the 

progesterone induced [Ca
2+

]i transient amplitude (Figure 3.9D), time to peak (Figure 3.9F) 

and proportion of cells producing a significant progesterone transient significantly differ 

(P=0.009, P=0.018 & P=0.030; paired t-test; n=8). 
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Figure 3.9 Effect of mitochondrial inhibitors on the progesterone induced [Ca
2+

]i 

transient at the acrosome, PHN and midpiece. The increase in [Ca
2+

]i observed at the 

acrosome (purple), PHN (orange) and midpiece (yellow) in representative cells treated 

with progesterone (A) after pre-treatment with CCCP (B) or DNP (C). Graphs D-F show 

mean results as percentage responses of the parallel progesterone control, bars represent 

cells pre-treated with 10µM CCCP (blue) and 10µM DNP (green). (D) Maximum ΔFmean 

amplitude within 3 min of progesterone application. (E) Proportion of cells displaying 

significant ΔFmean response amplitude. (F) Time taken to achieve maximum increase in 

ΔFmean. *P<0.05 compared to progesterone, *P<0.05 compared to DNP. Results are 

mean responses for the population tested. n=8 where n equals the number of 

experimental repeats for all experiments. 

B 
E 
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3.5.3.1.2 PHN 

At the PHN, mitochondrial uncouplers induced no significant effect on the transient [Ca
2+

]i 

response induced by progesterone compared to parallel progesterone controls (P>0.05; paired 

t-test; n=8; Figure 3.9A-F). However there was a significant difference between CCCP and 

DNP effects on the progesterone transient amplitude (Figure 3.9D) and time to peak (Figure 

3.9F; P=0.016 & P=0.0013 respectively; paired t-test; n=8). Cumulatively observations at the 

acrosome and PHN indicate that mitochondrial uncouplers have no significant effect on the 

transient [Ca
2+

]i response induced by progesterone at regions where mitochondria are not 

present. This suggests that CCCP and DNP responses observed here are not the results of 

mitochondrial Ca
2+

efflux but of an alternative Ca
2+

 store in the region. 

 

3.5.3.1.3 Midpiece 

Mitochondria of mammalian sperm are localised to the midpiece, as such it is likely that 

effects of mitochondrial inhibitors on [Ca
2+

]i are most prominent here. At the midpiece, both 

10µM CCCP and 10µM DNP induced an increase in the progesterone transient amplitude 

(Figure 3.9D). 10µM CCCP showed greater efficacy elevating the progesterone transient 

amplitude ~200% and time taken to achieve the peak ~50%, whilst the proportion of cells 

inducing a significant response also increased ~20% (Figure 3.9D, E&F; P=0.025 & P=0.02 

respectively; paired t-test; n=8). In contrast the enhancement of the response to progesterone 

caused by pre-treatment with 10µM DNP, although consistent, was insignificant. 

Furthermore the time taken to achieve the peak and proportion of cells producing a 

significant peak was reduced compared to both progesterone controls (Figure 3.9E&F; 

P=0.08 & P=0.60 respectively; paired t-test; n=8) and 10µM CCCP (Figure 3.9E&F; 

P=0.002 & P=0.12 respectively; paired t-test; n=8). Taken together these results indicate that 

CCCP significantly increases the progesterone induced [Ca
2+

]i at the midpiece, (seen mildly 
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at the PHN and acrosome) which implicates Ca
2+

 contribution from the mitochondria or an 

alternative Ca
2+

 store in the region. 

 

 

3.5.4 Hyperactivated motility is not induced by mitochondrial inhibitors  

Data from the literature (Costello et al., 2009) suggests a role for a Ca
2+

 store in the PHN of 

human sperm in controlling motility in particular hyperactivated motility. Specifically we 

wanted to determine whether application of mitochondrial inhibitors CCCP and DNP reduced 

percentage hyperactivation in capacitated cell populations. In Ca
2+

 imaging experiments 

increases in [Ca
2+

]i were observed after 1min application and persisted for at least 5min (as 

long as the inhibitor was still present). In the following experiments cells were exposed to 

either10µM CCCP, 10µM DNP or no treatment (control) in parallel at 37
o
C for 4 minutes and 

then the motility parameters determined by CASA. Analysis revealed no significant 

difference between % hyperactivation observed in untreated controls compared to those 

samples exposed to either CCCP or DNP (Table 3.1). Interestingly DNP showed no 

significant differences in motility parameters compared to the untreated control population. 

However 10µM CCCP treated cells showed an increase in ALH and a significant reduction of 

STR compared to the control untreated cell population, which is indicative of a mild increase 

in hyperactivated motility. Overall this data suggests that mitochondrial inhibitors do not 

significantly affect the Ca
2+

 store that appears to be responsible for regulation of 

hyperactivated motility. This suggests that the mitochondria alone in human sperm is 

insufficient to store the levels of Ca
2+

 required to initiate hyperactivation and that it is likely 

there is a second Ca
2+

 store at the PHN responsible.
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PARAMETER CONTROL S.E.M 10µM DNP S.E.M 10µM CCCP S.E.M UNITS

Hyperactivation 7.13 1.94 6.42 2.36 8.38 2.75 %

Path velocity VAP 69.18 5.03 60.61 7.76 57.6* 5.30 µm/s

Prog. velocity VSL 59.75 5.43 49.68 7.92 43.53* 4.92 µm/s

Track Speed VCL 115.52 6.69 104.17 11.04 106.44*** 7.95 µm/s

Lateral Amplitude ALH 5.25 0.26 5.31 0.24 5.85 0.22 µm

Beat Frequency BCF 23.90 1.40 23.98 0.81 20.19 0.50 Hz

Straightness STR 84.25 2.02 79.67 3.47 73.58** 1.82 %

Linearity LIN 52.33 2.84 47.13 3.22 40.58* 1.72 %

Elongation 66.46 1.09 65.83 1.24 66.25 0.78 %

Table 3.1 Effects of mitochondrial inhibitors on hyperactivated motility parameters as determined by CASA. Experiments were carried 

out in pairs, where cells from the same semen sample were analysed by CASA with and without treatment. Cells without treatment were 

prepared in sEBSS, control no treatment (lilac). Treated cells were exposed to either 10µM DNP (purple), 10µM CCCP (orange). For each 

condition path velocity (VCL), progressive velocity (VSL), track speed (VCL), lateral head amplitude (ALH), beat frequency (BCF), 

straightness (STR), linearity (LIN) and elongation were determined. * P<0.05, **P<0.02, *** P<0.01, **** P<0.005; compared to CNT; 

paired t-test; n=3-7. 
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3.6 Discussion 

Mitochondrial contribution to [Ca
2+

]i homeostasis and signalling cascades is not well 

characterised in mammalian germ cells. In somatic cells the existence of a pathway enabling 

mitochondria to accumulate and store Ca
2+

 was established 40 years ago (Scarpa & Azzone, 

1970; Tjioe et al., 1970). In this model mitochondria facilitate Ca
2+

 uptake via the 

mitochondrial uniporter (MCU; chapter 1.10.2.3), which is dually mediated by the 

electrochemical membrane potential gradient (ΔΨm, MMP) and [Ca
2+

]i (Duchen, 2000). ΔΨm 

is primarily established by electron transport during oxidative phosphorylation. The result is a 

large negative potential gradient between the IMM and the cytosol, which enables 

mitochondrial Ca
2+

 accumulation under normal physiological conditions (Duchen, 2000). 

[Ca
2+

]i also regulates mitochondrial storage capacity, at high [Ca
2+

]i the modulatory protein 

MICU1 dissociates from the EF-hands of MCU enabling Ca
2+

 uptake, which is inhibited at 

low [Ca
2+

]i (Mallilankaraman et al., 2012; Figure 1.19). Mitochondrial Na
+
-Ca

2+
 exchangers 

(NCX) modulate mitochondrial [Ca
2+

]i ensuring that capacity reflects the [Ca
2+

]i 

requirements of the cell (Palty et al., 2012) and were identified in human sperm (Babcock & 

Pfeifer, 1987). In addition as the ATP producing powerhouses of the cell, mitochondria 

couple ATP production with increased Ca
2+

 flux and modulation of [Ca
2+

]i (Rizzuto & 

Pozzan, 2006). This is of particular interest in mammalian sperm where mitochondrial 

inhibition has been shown to prevent hyperactivated motility; however hyperactivation 

potential was restored by the addition of Ca
2+

 (Ho & Suarez, 2003). 

 

In mammalian sperm mitochondria display distinctive characteristics indicative of specialised 

cell requirements which set them apart from somatic cells. The highly polarised and 

compartmentalised structure of mature sperm ensures all superfluous organelles are 

eliminated at spermiogenesis and remaining organelles are localised according to function. 
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Mitochondria of human sperm are localised exclusively to the midpiece (Piomboni et al., 

2012) at the apical flagellum and are implicated in the initiation of flagellar motility. It should 

be noted that although the remaining flagellum (principal piece) is devoid of mitochondria, it 

is enriched in sperm specific glycolytic isoenzymes with the capacity to produce ATP and 

pyruvate required for mitochondrial oxidative phosphorylation that consequently influences 

mitochondrial Ca
2+

 accumulation (Vemuganti et al., 2007). In addition mitochondria are 

tightly associated with both the axoneme and each other. Facilitated by disulphide bridges 

formed by a selenium rich protein, this close association makes mitochondrial isolation and 

extraction extremely difficult. As a result effects of mitochondrial function are historically 

assessed using pharmacological manipulation of known inhibitory compounds such as CCCP 

and DNP (Ho & Suarez et al., 2003; Ardon et al., 2009).  

 

The basic findings presented here attempt to define the Ca
2+

 storage capability of human 

sperm mitochondria and their potential involvement in [Ca
2+

]i increases associated with the 

characteristic progesterone induced Ca
2+

 transient. Since the characterisation of the Ca
2+

 

storage capacity of the acrosome, its importance in AR and oocyte fusion in 2005, (Herrick et 

al.,) numerous studies have provided evidence for the existence of a second Ca
2+

 store at the 

PHN/midpiece region of mammalian sperm (Harper et al., 2004; 2005; Ho & Suarez 2003). 

Due to its localisation, this store could potentially regulate flagella activity and subsequently 

hyperactivated motility; providing a useful target for asthenozoospermic treatments. 

Identification of the sperm specific progesterone receptor CatSper apparently reduced the 

potential importance of a second Ca
2+

 store at the PHN/midpiece. However inability to 

prevent the biphasic Ca
2+

 response at the region during CatSper inhibition with NNC-55-

0396 emphasised the prevalence of a second Ca
2+

 store in mature cells (Strunker et al., 2011). 
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At present evidence suggests that a Ca
2+

 store at the PHN/midpiece is either a remnant of the 

redundant nuclear envelope (RNE; Ho & Suarez 2001; 2003; Naaby-Hansen et al., 2001) 

(whether this is an ER remnant or sperm specific membranous organelle) or the mitochondria 

which are localised to this region (Costello et al., 2009). Here we report that in human sperm 

loaded with the low affinity Ca
2+

 dye Mag-Fluo-4AM and subsequently permeabilised with 

SLO to release cytoplasmic Ca
2+ 

and dye, 
 
two regions of high [Ca

2+
] are clearly identifiable, 

which must be membrane bound Ca
2+

-storing organelles (Figure 3.7B). The first region 

covers the apex of the sperm head and corresponds with the acrosome, a known Ca
2+

 store. 

The second encompasses both the neck and midpiece region, and may indicate multiple Ca
2+ 

stores at close proximity in the region. These images clearly indicate that the mitochondria 

accumulate Ca
2+

 in human sperm; additionally in some images individual mitochondria are 

clearly visible due to their helical arrangement around the axoneme. Sperm mitochondria 

have also been shown to accumulate Ca
2+

 in other mammalian species including rabbit 

(Storey & Keyhani, 1973; 1974), rat (Babcock et al., 1976), bovine (Vijayaraghavan & 

Hoskins, 1990) and murine models (Wennemuth et al., 2003) although the contribution to 

[Ca
2+

]i regulation remains to be elucidated. 

 

We have previously discussed a mechanism for Ca
2+ 

uptake by the mitochondria in somatic 

cells. It should also be noted that contribution of mitochondrial Ca
2+

 to [Ca
2+

]i and signalling 

is dependent on the stress imposed on the system. Under normal physiological conditions 

mitochondrial contribution to Ca
2+

 homeostasis is minimal, when exposed to 

pharmacological agents that induced an increase in [Ca
2+

]i mitochondrial Ca
2+

 contribution 

increased also (Wennemuth et al., 2003; Scorziello et al., 2013). Indeed mitochondrial Ca
2+

 

uptake has been implicated in some forms of apoptosis (Giacomello et al., 2007). Here we 
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utilised the mitochondrial uncouplers CCCP and DNP to explore the consequence of 

preventing mitochondrial Ca
2+

 accumulation on [Ca
2+

]i and ΔΨm. 

 

In sea urchin sperm CCCP and DNP have been shown to induce [Ca
2+

]i increases that are 

dependent on extracellular Ca
2+

 (Ardon et al ., 2009). In this study it is proposed that 

mitochondrial status influences Ca
2+

 entry and homeostasis, which is likely the result of close 

association between the mitochondrion and PM. In our studies reported here we demonstrate 

similar observations, [Ca
2+

]i increases induced by mitochondrial inhibitors display partial 

dependency on external Ca
2+

 (Figure 3.5). Furthermore we show that basal [Ca
2+

]i  increases 

associated with CCCP and DNP stimulation occur at the acrosome, PHN and midpiece 

simultaneously with no significant difference in the ΔFmean observed at each region in un-

permeabilised cells labelled with MF (Figure 3.8). This is consistent with the idea that 

mitochondrial uncoupling induces Ca
2+

 entry into the cytoplasm at sites quite separate from 

the mitochondria, but it must be remembered that the slow image acquisition rate used in 

these experiments (0.1 Hz) may not allow identification of the origin of [Ca
2+

]i signals. It 

should be noted that when applied prior to 3µM progesterone a significant increase in the 

progesterone-induced [Ca
2+

]i signal was observed only at the midpiece. In addition there was 

no effect on [Ca
2+

]i at the PHN indicative of a discrete [Ca
2+

]i control mechanism in the 

region. Interestingly our results suggest that mitochondrial uncoupler induced [Ca
2+

]i 

increases at the PHN are not the product of mitochondrial Ca
2+

 release (as mitochondrial 

[Ca
2+

]i increased indicative of Ca
2+

 uptake) but the result of either PM Ca
2+

 influx or Ca
2+

 

efflux from an alternative Ca
2+ 

store at the region, which is echoed by Ardon and colleagues 

findings (Ardon et al., 2009). Furthermore in cardiac cells Murgia et al., 2009 has observed a 

close association between mitochondria (capable of Ca
2+

 accumulation) and the intracellular 

Ca
2+ 

store the ER. Here they provide evidence for a number of close contacts <80nm between 
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the mitochondria and ER; thus strengthening the hypothesis that mitochondrial Ca
2+

 

accumulation in vivo is dependent on their capacity to sense high [Ca
2+

]i at IP3 gated channels 

of the ER. These findings would support our suggestion of an additional IP3 sensitive Ca
2+

 

store at the PHN in close contact with the mitochondria, which contributes to the biphasic 

[Ca
2+

]i response in human sperm. 

  

Notably we have shown live visualisation of CCCP and DNP ΔΨm depolarisation in human 

sperm. Due to the nature of mitochondrial Ca
2+

 uptake (MCU uniporter) movement is not 

countered by an opposing ion exchange, as such Ca
2+ 

uptake can depolarise the ΔΨm 

maintained by ATP production (Duchen, 2000; Rizzuto & Brini, 2004). In addition 

application of an IP3-sensitive store agonist in astrocytes where [Ca
2+

]i and ΔΨm were 

measured simultaneously clearly demonstrates that ΔΨm depolarisation clearly follows 

mitochondrial [Ca
2+

]i elevation and causes hyperpolarisation when mitochondrial [Ca
2+

]i is 

high (Duchen, 2000; Murgia et al., 2009). Interestingly in cardiomyocytes the mitochondrial 

uncoupler FCCP, was shown to depolarise ΔΨm in a manner similar to our observations, 

which correlated to mitochondrial Ca
2+ 

uptake and subsequently induced mitochondrial Ca
2+

 

release through PTPs (hyperpolarising the ΔΨm). Both these studies demonstrate a strong 

relationship between mitochondrial Ca
2+

 uptake and ΔΨm depolarisation. However Zhao and 

colleagues also found that mitochondrial Ca
2+ 

uptake and ΔΨm depolarisation induced by 

mitochondrial uncouplers initiated spontaneous Ca
2+

 release from another closely associated 

IP3 regulated Ca
2+

 store (Sarcoplasmic reticulum; Zhao et al., 2013). If a similar relationship 

between Ca
2+ 

stores also existed in human sperm this could account for increases in Ca
2+

 

observed with CCCP or DNP application at the PHN and acrosome during ΔΨm 

depolarisation, however further investigation is required. Furthermore progesterone induced 

ΔΨm hyperpolarisation is indicative of  NCX mitochondrial Ca
2+

 release in response to high 
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mitochondrial [Ca
2+

 ]i and Ca
2+

 uptake (Zhao et al., 2013). It has been suggested that the 

increase in mitochondrial [Ca
2+

]i observed upon progesterone stimulation is the result of 

increased respiration and ATP production, which influences MMP and thus induces 

mitochondrial Ca
2+

 accumulation observed in MF labelled cells. However mitochondrial 

uncoupler pre-treatment has no significant effect on the progesterone induced ΔΨm response 

and indicates a complex relationship between MMP, mitochondrial [Ca
2+

]i and Ca
2+

 release 

from other intracellular Ca
2+

 stores exists in human sperm (Ho & Suarez 2003; Zhao et al., 

2013). It should also be noted that SPCA1 (Ca
2+

-ATPase) has been localised to the 

PHN/midpiece of human sperm and could facilitate mitochondrial Ca
2+

 accumulation when 

MCU is inhibited (Harper et al., 2004). 

 

Interestingly ΔΨm has been proposed as an accurate indicator of sperm fertilising potential. A 

number of studies have utilised ΔΨm sensitive dyes such as JC-1 to compare the ejaculates of 

fertile and asthenozoospermic men (Evenson et al., 1982). They have identified that high 

ΔΨm is indicative of both hyperactivated motility and ability to fertilise the oocyte (Marchetti 

et al., 2002; Gallon et al., 2006; Sousa et al., 2011). Indeed our own computer assisted semen 

analysis reveals that ΔΨm depolarising agonists CCCP and DNP decreased the motility 

parameters associated with hyperactivation (Table 3.1). However effects on hyperactivated 

motility as defined by Mortimer et al., 1998 were negligible, which could be the result of 

increased [Ca
2+

]i from an alternative Ca
2+

 storage organelle in the vicinity. As in bovine 

models inhibition of hyperactivated motility by mitochondrial inhibitors was restored by Ca
2+

 

addition without the requirement for ATP (Ho & Suarez 2003). 

 

Our findings suggest that in human sperm mitochondria contribute to Ca
2+ 

storage and 

homeostasis of [Ca
2+

]i. However the mechanisms are complex and dependent on a number of 



 
 

126 
 

factors. Association of ΔΨm and mitochondrial Ca
2+

 accumulation seems apparent and 

suggests that an alternative Ca
2+

 store at the PHN is responsible for discrete [Ca
2+

]i 

fluctuations observed there. Furthermore the increase in [Ca
2+

]i associated with progesterone 

stimulation is complex and likely dependent on a number on [Ca
2+

]i signalling pathways 

some of which are discussed in the following chapters.  
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4.0 Foreword 

Data from this chapter contributed to the publication Alasmari et al., 2013. 
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4.1 Abstract 

Successful fertilisation requires sperm to tightly regulate [Ca
2+

]i enabling hyperactivated 

motility and other essential behaviours. In somatic cells intracellular Ca
2+

 stores (ER) 

regulate [Ca
2+

]i through Ca
2+ 

mobilisation and store replenishment, requiring both PM 

channels and SOCE contribution. In human sperm the presence and identity of intracellular 

Ca
2+

 stores is debated. Herrick et al., 2005 identified the capacity of the acrosome to act as a 

Ca
2+

 store. However, there is also increasing evidence to suggest presence of a Ca
2+ 

store at 

the PHN (Ho & Suarez, 2003; Lefievre et al., 2012). Localisation of a number of Ca
2+

 

channels associated with the Ca
2+

 stores of somatic cells at the PHN including IP3R supports 

this theory (Walensky & Synder, 1995). Identification of the progesterone-sensitive ion 

channel  CatSper in human sperm has led to questioning of the contribution of intracellular 

stored Ca
2+

, but pharmacological blocking of CatSper does not abolish the biphasic [Ca
2+

]i 

increase associated with progesterone suggesting Ca
2+

 contribution from an alternative 

source. We used the IP3R activator thimerosal to determine effects of treatment on [Ca
2+

]i 

increases associated with progesterone. We show that treatment with thimerosal is 

temperature sensitive, with a more consistent [Ca
2+

]i response observed in cells treated at 

30
o
C compared to 25

o
C. Treatment with 5µM thimerosal induces a sustained increase in 

[Ca
2+

]i at the PHN, which is not inhibited by the CatSper blocker NNC-55-0396. However 

initial treatment with 5µM thimerosal is sufficient to significantly occlude the sustained 

intracellular Ca
2+

 response observed upon subsequent stimulation with progesterone. Here we 

propose that IP3R medicated Ca
2+

 flux from intracellular Ca
2+

 stores contribute to the 

sustained component of the progesterone response at the PHN and the regulation of 

hyperactivated motility in human sperm.  
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4.2 Introduction 

The female reproductive tract is a hostile environment for non-self-cells and upon deposition 

in the anterior cervix sperm must overcome a series of obstacles to achieve fertilization 

(chapter 1.6). Unlike the sperm of external fertilisers mammalian sperm must first have the 

ability to enter and progress through the viscous and visco-elastic environments of the cervix 

and uterus to the oviductal tubule (Suarez, 2008). Here sperm must both bind and then 

successfully detach from the oviductal epithelium to achieve full fertilising potential (Pacey 

et al., 1995). Finally the sperm penetrates the outer gelatinous cumulus matrix and the fibrous 

ZP surrounding the oocyte before fusing with the oolemma. In all these circumstances there 

is a requirement for an alteration in flagellar beat which is crucial to successfully traverse the 

female tract. Yanagimachi was the first to identify the ability of sperm to modulate their 

motility through flagellar beat pattern in 1970. His studies identified that capacitation, 

(chapter 1.6.1) was an important regulator of hamster sperm motility, responsible for a switch 

from high frequency, low amplitude, and symmetrical flagellar beat to a more dynamic 

pattern of motility (Yanagimachi, 1970). Characterised by low frequency asymmetrical 

flagellar bends, hyperactivated motility (chapter 1.6.2) has been identified in several species 

(Hamster: Yanagimachi, 1970; Mouse: Cooper & Woolley, 1982; Human: Burkman, 1984) 

each with distinctive characteristics. In human samples these characteristics are essential in 

defining the parameters for CASA analysis of hyperactivated motility. However there is 

heterogeneity in hyperactivated behaviour observed amongst cells from the same population 

suggesting a number of possible distinctive sperm behaviours to increase the chance of 

successful fertilisation (Alasmari et al., 2013). 
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The role of [Ca
2+

]i signalling in the regulation of sperm flagellar beat has long been 

acknowledged (Morisawa, 1994; Publicover et al., 2007) but a definitive mechanism of 

action remains to be elucidated. Identification of sperm specific CatSper Ca
2+

 channels in the 

sperm flagellum membrane in 2001 provided a correlation between flagellum location and 

[Ca
2+

]i signalling (Quill et al., 2003; Ren et al., 2001). In addition, sperm of CatSper-null 

mice failed to undergo hyperactivation resulting in infertility (Ren et al., 2001). CatSper is 

believed to act as a polymodal chemosensor sensitive to progesterone, prostaglandin E, 

neurotransmitters, chemokines and odorants in human sperm (Brenker et al., 2012; Strunker 

et al., 2011). As such CatSper is attributed with the ability to assimilate multiple 

environmental stimuli into regulation of motility.  

 

IP3R, ryanodine receptors (RyR) and Ca
2+

 storage organelles have also been identified in 

mammalian sperm, (Chiarella et al., 2004; Naaby-Hansen et al., 2001; Trevino et al., 1998; 

Herrick et al., 2005). Current evidence suggests the existence of two discrete Ca
2+

 stores in 

the human spermatozoon, the acrosome and a second store at the posterior head/ neck region 

(PHN; Costello et al., 2009). When human sperm are loaded with low affinity Ca
2+ 

dye Mag-

Fluo-4AM and then permeabilised with Streptolysin O to  allow escape of cytoplasmic dye 

both stores are clearly visible (Figure 4.1; Costello et al., 2009). The acrosome was initially 

identified as a Ca
2+

 store due to the high density of IP3R localised to the plasma membrane 

which have also been localised to the PHN (Walensky & Snyder, 1995; Publicover et al., 

2007). Fluorescence microscopy revealed that application of Ca
2+

-ATPase inhibitor (SERCA) 

thapsigargin and IP3R agonist thimerosal induced acrosomal exocytosis in the majority of 

cells (Herrick et al., 2005) suggesting a role for a Ca
2+

-IP3 mobilization pathway in 

acrosomal exocytosis. 
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The identity of the Ca
2+ 

store at the PHN is less well characterised. It has been suggested that 

the PHN store could be remaining endoplasmic reticulum, Golgi or a result of mitochondrial 

Ca
2+

 storage (Costello et al., 2009). Multiple studies on rodent, bull (Ho & Suarez, 2001) and 

human (Bedu-Addo et al., 2007) sperm have shown that Ca
2+

 can be mobilised from a store 

in the sperm neck region stimulating flagellar movement. Indeed CatSper null mice which are 

typically incapable of hyperactivated motility can be induced to undergo hyperactivation by 

the release of Ca
2+

 from intracellular stores (Marquez et al., 2007). The current model 

proposes that CatSper acts as the membrane bound progesterone receptor in the sperm 

flagellum initiating [Ca
2+

]i increase which is amplified and propagated forward by Ca
2+ 

induced Ca
2+

 release at the PHN (Alasmari et al.,2013). A subset of cells generate Ca
2+

 

oscillations by cyclic refilling of the PHN store upon progesterone stimulation, which co-

insides with synchronous sperm neck flexure and flagellar bending (Harper et al., 2004). If 

the aforementioned model is correct then Ca
2+

 signals generated by CatSper and those of Ca
2+

 

stores should be capable of regulating different sperm behaviours in response to a single 

stimulus. 

 

Figure 4.1 Location of Ca
2+

 stores in 

human sperm. Grey scale and pseudo-

colour images (respectively) of a 

single human sperm cell treated with 

Mag-Fluo-4AM. Treatment clearly 

identifies two discrete Ca
2+

 stores 

where areas of white or warm colours 

(respectively) show areas of high Ca
2+

 

concentration.  

5µM 
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The effects of thimerosal on [Ca
2+

]i at the PHN of human sperm has not been well 

characterised. In somatic cells thimerosal was initially identified as having two concentration 

dependent effects on IP3Rs; subsequent analysis has also identified possible interaction with 

RyRs (Sayers et al., 1993; Tanaka et al., 1994). At low micromolar concentrations thimerosal 

sensitizes the IP3 sensitive Ca
2+

 channel, causing the channel to open at lower concentrations 

of IP3. Higher thimerosal concentrations have an inhibitory effect on IP3 induced Ca
2+

 

release. In addition this study also identified that 5mM DTT was sufficient to inhibit 

thimerosal effects on [Ca
2+

]i, thus suggesting that thimerosal acts by modifying the cysteine 

residues present on the IP3R. In external fertilisers incubation of sperm with thimerosal 

evoked sperm motility patterns consistent with hyperactivation which were insensitive to 

both reduced [Ca
2+

]e and Ca
2+

 channel blockers (Butler et al., 1999). Similarly upon 

thimerosal application bull sperm immediately switched from forward progressive to 

hyperactivated motility even in low Ca
2+

 media (Ca
2+

<50nM) (Ho & Suarez, 2001). In 

addition Ho and Suarez (2001) identified that the acrosome reaction was not induced by low 

thimerosal concentrations suggesting a role for an alternative IP3R gated Ca
2+

 store in the 

regulation of motility. Nevertheless further studies on the effects of thimerosal on [Ca
2+

]i at 

the PHN are required to associate [Ca
2+

]i increase at the PHN with hyperactivated motility in 

human sperm.  
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4.3 Aims 

The aims of this chapter were to characterise the effects of thimerosal on basal [Ca
2+

]i at the 

PHN in capacitated sperm. We wanted to determine the effects of IP3R stimulation with 

thimerosal on the biphasic [Ca
2+

]i response induced by progesterone. In addition we wanted 

to see if the CatSper channel blocker NNC-55-0936 influenced the [Ca
2+

]i induced by 

thimerosal at the PHN.  
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4.4 Material and Methods 

4.4.1 Materials 

Thimerosal, 4-Aminopyridine (4AP), Progesterone and NNC-55-0396 hydrate (NNC) were 

all purchased from Sigma Aldrich Company Ltd. (Dorset).  For all other materials see chapter 

2.1.1.  

 

4.4.2 Methods 

4.4.2.1 Cell preparation 

Human semen was collected and prepared as in chapter 2.3.  

 

4.4.2.2 Cell incubation and capacitation 

Sperm harvested by swim up procedure (chapter 2.4.2.1) were incubated and capacitated as in 

chapter 2.4 except for a subset of cells were length of capacitation effects on thimerosal 

[Ca
2+

]i were observed. In these experiments cells were allowed to capacitate in normal 

capacitation media for 1, 4, 7 or 10 hours before imaging. 

 

4.4.2.3 CASA 

All cells were prepared for CASA as in chapter 2.5 and treated with 5µM thimerosal, 3µM 

progesterone, 2mM 4AP or with 5µM thimerosal and 3µM progesterone. 

 

4.4.2.4 Single cell imaging  

Cells were left to capacitate for 6 hours at 6 x10
6
cells/ml in sEBSS, unless participating in the 

capacitation experiments were they were instead left to capacitate for 1, 4, 7 or 10 hours the 

human sperm cell preparation was then diluted to 3x10
6
cells/ml with sEBSS prior to single 

cell imaging. All imaging experiments for this chapter were conducted at 30
o
C (apart from 
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those marked at 25
o
C) and followed the methodology outlined in chapter 2.6.1 Ca

2+
 imaging 

with Oregon Green-BAPTA-1AM. In those experiments undertaken in Ca
2+

 free sEBSS, cells 

were first monitored in sEBSS for a minimum of 20 frames, then perfused with Ca
2+

 free 

sEBSS for 10 frames before agonist application in Ca
2+

 free sEBSS. 

 

4.4.3 Analysis 

CASA experimental data were analysed as in chapter 2.5.2. Ca
2+

 imaging with Oregon 

Green-BAPTA-1AM results were analysed as in chapter 2.6.1. However for those 

experiments undertaken in low Ca
2+

 sEBSS the lowest 3 points in the 30 frames post Ca
2+

 

free sEBSS application were used as a base level to monitor any subsequent increase in Δ 

fluorescence %.  
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4.5 Results 

4.5.1Thimerosal, 4AP and Progesterone increase hyperactivation parameters 

in human sperm 

In the following experiments the hyperactivation of all samples was assessed and determined 

by CASA. Experiments were conducted in pairs; all treated samples were performed with a 

parallel untreated control sample suspended in sEBSS. Treatment with 3µM progesterone had 

little effect on the proportion of cells showing hyperactivated motility. 5µM thimerosal 

caused a more marked increase but this effect was extremely variable and was not statistically 

significant (P=0.94, P=0.07; compared to control; paired t-test; Table 4.1). However 

stimulation with 2mM 4AP or simultaneous treatment with 5µM thimerosal and 3µM 

progesterone both caused a significant increase in the percentage of hyperactivated cells in 

the sample (P=0.007, P=0.03 respectively; n=5; compared to control; paired t-test; Table 

4.1). The effect of 5µM thimerosal and 3µM progesterone combined treatment exceeds the 

additive effects of 5µM thimerosal and 3µM progesterone alone. Furthermore 5µM 

thimerosal, 5µM thimerosal and 3µM progesterone treatments have a significant increase in 

percentage hyperactivation compared to progesterone (P=0.04, P=0.01 respectively; 

compared to progesterone; paired t-test; Table 4.1).  

 

In addition several key kinematic parameters measured by CASA including an increase in 

amplitude of lateral head displacement (ALH)  track speed (VCL) and decreases in beat 

frequency (BCF) and linearity (LIN) show correlations with treatment trends observed by 

percentage hyperactivation (Table 4.1). In particular the effects of thimerosal on ALH were 

far greater than progesterone (P<0.05).
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PARAMETER 

No 
Treatment 

S.E.M 
2mM 
4AP 

S.E.M 
5µM 

Thimerosal 
S.E.M 

5µM Thimerosal & 
3µM Progesterone 

S.E.M 
3µM 

Progesterone S.E.M UNITS 

Hyperactivation 4.6 0.81 26.39 2.85 25.37* 10.34 33.6** 8.68 4.8 2.02 % 

Path velocity VAP 62.21 6.48 80.85 6.54 65.53 6.72 67.66 4.95 55.26* 4.71 µm/s 

Prog. velocity VSL 53.34 7.07 63.07 7.82 44.93 3.68 44.20 3.57 43.19* 4.85 µm/s 

Track Speed VCL 100.75 8.35 147.27 3.61 132.46*b 16.92 141.23** 14.73 96.48* 8.02 µm/s 
Lateral Amplitude 
ALH 4.56 0.30 7.12* 0.43 6.92* * 0.74 7.34** 0.85 5.04 0.24 µm 
Beat Frequency 
BCF 27.33 1.21 23.68 0.83 23.44* 1.48 22.85* 1.25 22.94* 1.67 Hz 

Straightness STR 80.80 3.16 74.06 1.23 70.40 2.89 67.20 3.36 75* 2.53 % 

Linearity LIN 51.50 3.24 41.33 0.88 37.1* *  2.50 33.8** 2.40 44.5* 2.30 % 

Elongation 66.50 0.61 67.56 0.58 66.40 1.09 67.30 0.99 67.83 1.27 % 

Table 4.1 Effects of thimerosal, progesterone and 4AP on motility parameters as determined by CASA. Experiments were carried out in pairs, 

where cells from the same semen sample were analysed by CASA with and without treatment. Cells without treatment were prepared in sEBSS, 

control no treatment (yellow). Treated cells were exposed to either 2mM 4AP (4AP, green), 5µM thimerosal (T, pink), 3µM progesterone (P, red), 

5µM thimerosal & 3µM progesterone (T&P, purple). For each condition path velocity (VCL), progressive velocity (VSL), track speed (VCL), 

lateral head amplitude (ALH), beat frequency (NCF), straightness (STR), linearity (LIN) and elongation were determined. * P<0.05; compared to 

CNT; paired t-test; n=3-7. * P<0.05; compared to Progesterone; paired t-test; n=7, 7, 5, 5 &5 respectively.  
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4.5.2 Thimerosal raises resting [Ca
2+

]i at the PHN in human sperm 

At low micromolar concentrations thimerosal is reported to sensitize intracellular Ca
2+

 

release (Sayers et al., 1993). Herrick et al., 2005 utilised 100µM thimerosal to verify the Ca
2+

 

storage capability of murine acrosomal vesicles. In the following experiments sperm were 

treated with a range of thimerosal concentrations at 25
o
C and 30

o
C, to observe both 

concentration and temperature sensitivity effects.  

 

At 25
o
C thimerosal significantly increased [Ca

2+
]i in ~55-60% of cells at all concentrations, 

inducing a sustained elevation or series of transients within ~150 seconds (dependent on 

concentration; Figures 4.2, 4.3B&C). A concentration dependent increase in ΔFmean is 

observed between 1µM, 5µM and 10µM thimerosal treatments however higher 

concentrations of thimerosal (>50µM) had similar effects or even an inhibitory effect 

compared to 10µM (Figure 4.3A). In addition the proportion of cells with a significant 

thimerosal response (section 2.6.1.2.3) did not vary significantly over the range 1µM to 

50µM thimerosal, suggesting the increase in ΔFmean is the result of dose sensitivity of the 

responsive cells and not recruitment of more cells into the responsive population.  

 

Sperm stimulated with the same seven concentrations of thimerosal at 30
o
C showed similar 

response kinetics to those seen at 25
o
C, [Ca

2+
]i inducing a sustained elevation or series of 

transients within ~150 seconds. The effect of thimerosal on [Ca
2+

]i at 30
o
C was significantly 

greater than at 25
o
C and the proportion of cells producing a significant [Ca

2+
]i response was 

increased by approximately 15% (Figure 4.3A&B)  indicating temperature sensitivity 

consistent with previous observations (Figure 4.3A, B&C; P=0.008, P=0.0007, P=0.03  
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Figure 4.2 Effect of concentration on thimerosal induced increase in [Ca
2+

]i. (A) 

Each line shows ΔFmean from a single experiment stimulated with thimerosal at 

1µM (blue), 5µM (red), 10µM (green), 20µM (purple), 30µM (turquoise), 40µM 

(orange) & 50µM (pale blue).  
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Figure 4.3 Effect of temperature on thimerosal induced increase 

in [Ca
2+

]i. Cells were stimulated with 1µM, 5µM, 10µM, 20µM, 

30µM, 40µM & 50µM thimerosal at 25
o
C (blue) and 30

o
C (red). 

(A) Increase in ΔFmean 3 min after application of thimerosal. 

Results are means ± S.E.M for at least 3 sets of experiments, 

where aliquots of the sample were tested with each of the 7 

concentrations 25
o
C (n=3-6), 30

o
C (n=4-7). (B) Proportion of 

cells exhibiting a significant thimerosal response as determined by 

ΔFmax peak. (C) Time to ΔFmax [Ca
2+

]i. transient, mean time to 

thimerosal induced ΔFmax at each of the 7 concentrations. Each 

bar shows mean ± S.E.M of 3-7 sets of experiments, * P<0.05; 

compared to 25
o
C response; ANOVA; n=3-7.  
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respectively; ANOVA; Tanaka & Tashjian, 1994). As at 25
o
C, at 30

o
C there was a marked 

concentration sensitivity over the range 1-10µM (Figure 4.3A) with negligible effects on 

ΔFmean at concentrations greater than 10µM. At 30
o
C the bimodal effect of thimerosal on 

IP3R was most apparent in the proportion of responsive cells with sensitising effects in the 1-

10µM range and inhibitory effects with thimerosal concentrations >10µM (Figure 4.3B). 

Temperature also has an impact on time taken to achieve ΔFmax (Figure 4.3C). At most 

thimerosal concentrations (except 10µM) responses observed at 30
o
C take significantly 

longer (P=0.03; ANOVA; Figure 4.3C), though this could be due to the increase in the 

amplitude of the [Ca
2+

]i response. These observations identified that at 30
o
C 5µM thimerosal 

potently and consistently induces stimulatory effects on IP3R such that increases in [Ca
2+

]i are 

observed. As a result all subsequent thimerosal experiments were conducted at 30
o
C unless 

otherwise stated. 

 

4.5.2.1 Thimerosal effect on [Ca
2+

]i at the PHN in the absence of extracellular Ca
2+

 

Superfusion of capacitated cells with EGTA-buffered medium (~3x10
-7

M Ca
2+

) caused 

[Ca
2+

]i to fall rapidly (Figure 4.4A). Application of 5µM thimerosal after 2 minutes exposure 

to this saline induced a small transient rise in [Ca
2+

]i  (ΔFmean 5.81±1.08%; n=6) in a subset of 

cells (Figure 4.4). This is consistent with Ca
2+

 release from intracellular Ca
2+

 stores in 

response to thimerosal treatment. It should be noted that in the presence of extracellular Ca
2+

 

thimerosal produced an increase in ΔFmean approximately twice as large in five times as many 

cells (Figure 4.4). In the absence of extracellular Ca
2+ 

it appears that a smaller proportion of 

cells are readily responsive to 5µM thimerosal treatment therefore extracellular Ca
2+ 

contributes significantly to the responses observed in vitro. 
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Figure 4.4 Thimerosal induced [Ca
2+

]i response in the absence of 

extracellular Ca
2+

. Cells were capacitated for 4-6 hours in sEBSS before 

stimulation with 5µM thimerosal in either Ca
2+

 free sEBSS (~3x10
-7

M 

Ca
2+

) (A) or normal sEBSS. (B)Increase in ΔFmean after application of 

5µM thimerosal, (C) proportion of cells exhibiting a significant 

thimerosal response as determined by ΔFmax response, results are means 

± S.E.M. (n=4-6). 

 

A 
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4.5.3 Capacitation time effects amplitude of thimerosal induced [Ca
2+

]i 

response at the PHN 

Capacitation is the sum of numerous intracellular processes that enable the sperm to achieve 

full fertilising potential that in vivo occur in the female reproductive tract (chapter 1.6.1). 

Under laboratory conditions semen samples are prepared and transferred to capacitating 

media in an attempt to induce these intracellular changes. For the following experiments all 

sperm samples were prepared under normal capacitating conditions (BSA and bicarbonate 

containing sEBSS; appendix II), for either 1, 4, 7 or 10 hours and the effect of 5 M 

thimerosal was investigated. Treatment of sperm with 5µM thimerosal increased [Ca
2+

]i in a 

subset of the cell population at all the capacitation periods initiating a sustained elevation or 

oscillating transients. Length of capacitation influenced the increase in [Ca
2+

]i upon 5µM 

thimerosal stimulation and the proportion of cells in which a significant response was 

observed. In cells capacitated for 1, 4 and 7 hours there was an increase in ΔFmean which 

began to decrease after 10 hours capacitation (Figure 4.5A). The increase in ΔFmean observed 

after 7 hours capacitation was both the highest and most statistically significant from that 

observed after 1 hours capacitation (4hr P=0.21, 7hr P=0.035, 10hr P=0.544; paired t-test; 

n=4; Figure 4.5A). For each individual cell ΔFmax was determined during the 3 min interval 

required for most cells to stabilise at an increased level and the frequency distribution plotted 

(Figure 4.5 B&C respectively). Increment of ΔFmax amplitude shows a greater proportion of 

cells capacitated for 1 hour show either a small increase and decrease with a higher 

proportion of cells capacitated at 7 hours (~60%) exceeding 20% fluorescence (Figure 4.5C). 
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Figure 4.5 Capacitation effect on [Ca
2+

]i response induced by 5µM thimerosal. Graphs 

show effects of 1 hour (blue), 4 hour (red), 7 hour (green) and 10 hour (purple) 

capacitation on (A) increase in ΔFmean 3min after application of 5µM thimerosal. (B) 

Proportion of cells displaying significant response increase, (C) frequency distribution of 

ΔFmax amplitude amongst the cell population, (D) time taken to achieve maximum 

increase in ΔFmean. Results are means ± S.E.M where appropriate for sets of four 

experiments in each of which aliquots from the same sample were tested at each of the 

four time points. (* P<0.05; paired t-test; compared to response at 1 hour; n=4).  
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The percentage of cells responding significantly to 5µM thimerosal treatment increases 

dramatically from 1 hour capacitation to 7 hours capacitation, decreasing at 10 hours (4hr 

P=0.21, P=0.10 & P=0.97; compared to 1hr capacitation; paired t-test; n=4; Figure 4.5B). 

Although a similar trend is observed with time to peak with an increase in time to peak 

climaxing at 7 hours capacitation (160s) large S.E.M means low statistical significance (4hr 

P=0.88, 7hr P=0.39 & 10hr P=0.80; compared to 1hr capacitation; paired t-test; n=4; Figure 

4.5D). Overall this data indicates that the [Ca
2+

]i response induced by thimerosal is regulated 

by capacitation; though the mechanism remains to be elucidated. Both insufficient and 

excessive capacitation time have detrimental effects on [Ca
2+

]i response induced by 

thimerosal. As a result the prime time for thimerosal induced increases in [Ca
2+

]i is between 

5-8 hours capacitation.  

 

4.5.4 The effect of thimerosal on the progesterone induced Ca
2+ 

response  

The non-genomic increase of [Ca
2+

]i  associated with progesterone is well characterised in 

human sperm (Kirkman-Brown et al., 2000; 2003; Harper et al., 2004). However a sperm 

specific progesterone receptor has only recently been identified; CatSper is a polymodal 

chemosensor which facilitates progesterone induced [Ca
2+

]i. Identified in 2011, CatSper is the 

only Ca
2+

 permeable channel to be detected by patch clamp studies in mature sperm, but 

inhibition of CatSper with NNC-55-0369 does not eliminate the biphasic response. It is 

therefore possible that the biphasic response is the result of two types of progesterone 

receptors with different binding profiles and intracellular Ca
2+

 responses, potentially 

including the release of stored intracellular Ca
2+

. 
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4.5.4.1 Thimerosal pre-treatment significantly reduced the sustained progesterone induced 

Ca
2+

 response 

At the PHN, application of 3µM progesterone triggers an initial transient increase in [Ca
2+

]i  

(in ~90% cells) followed by a sustained plateau or series of smaller oscillatory transients (in 

~85% cells) which subside when progesterone is removed, (Figure 4.6A). Cells treated with 

5µM thimerosal for 300s had an initial sustained increase in [Ca
2+

]i of ~15%. Subsequent 

application of 3µM progesterone induced a biphasic [Ca
2+

]i increase at the PHN (Figure 

4.6B&C). Similar responses were observed when cells were pre-treated with higher 

concentrations of thimerosal (up to 50µM; data not shown).  

 

In cells pre-treated with thimerosal, the biphasic [Ca
2+

]i response induced by 3µM 

progesterone has a transient amplitude of ~70% and occurred in ~80% of cells. Pre-treatment 

of cells with 5µM thimerosal (300s) had no significant effect on the transient amplitude 

(increase in ΔFmean) or proportion of cells producing a significant [Ca
2+

]i response compared 

to parallel controls (P=0.47& P=0.09 respectively; paired t-test; n=4; Figure 4.6D).  

 

The sustained [Ca
2+

]i  response observed 3 minutes after progesterone application was 

observed in ~40% cells. The amplitude of this response was significantly reduced (>25%) in 

cells pre-treated with thimerosal (P=0.05; paired t-test; n=4; Figure 4.6E). This was clearly 

identifiable by the obvious shift in the distribution of cell response amplitudes to the left by 

10-30% compared to the control population (Figure 4.6F). In addition there was a significant 

decrease in ~45% of the population producing a significant sustained response to 

progesterone (P=0.008; paired t-test; n=4; Figure 4.6G). The sensitivity of the sustained  
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Figure 4.6 Effect of thimerosal pre-treatment on biphasic progesterone [Ca
2+

]i response. All 

graphs display control no pre-treatment (red) and 5µM thimerosal pre-treated (blue). (A)&(B) 

show 6 individual cell PHN [Ca
2+

]i responses (greys traces) and ΔFmean (red trace) to 3µM 

progesterone application (red arrow) with and without 5µM thimerosal pre-treatment 

respectively. (C) Image series showing the increase in [Ca
2+

]i associated with application of 

thimerosal and progesterone. (D) Transient increase in ΔFmean (E) Sustained increase in ΔFmean 

3min post application of 3µM progesterone. (F) Proportion of cells exhibiting a significant 

sustained progesterone response (G) Frequency (%) of amplitude of ΔFsus response amongst cell 

population. Results are means ± S.E.M. (n=4) (* P<0.05, paired t- test). 
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progesterone response to thimerosal highlights the potential contribution of intracellular Ca
2+

 

stores to this part of the biphasic Ca
2+

 response. Previous studies have suggested different 

control mechanisms regulate the two components of the progesterone induced response. Here 

we show that the sustained response is inhibited by pre-treatment with thimerosal, which will 

deplete the intracellular Ca
2+

 store available and activate CCE, reducing the ability of these 

stores to contribute to subsequent progesterone response. 

 

4.5.5 The effect of NNC-55-0396 on the thimerosal generated [Ca
2+

]i increase 

at the PHN 

Developed by Huang et al., in 2004 as a non-hydrolysable, selective blocker of T type Ca
2+ 

channels; NNC-55-0396 (NNC) is the most effective known blocker of CatSper channels; the 

sperm specific polymodal chemosensor and non-genomic progesterone receptor (chapter 

1.10). At low concentrations NNC (<10µM) abolishes CatSper currents in human sperm, this 

reduces but does not eliminate progesterone induced [Ca
2+

]i signal (Strunker et al., 2011). 

Here we wanted to observe whether 10µM NNC significantly reduced the effect of 

thimerosal on [Ca
2+

]i thus implicating CatSper channels in the modulation of the response.  

 

4.5.5.1 Thimerosal induced [Ca
2+

]i  increase at the PHN is insensitive to NNC-55-0396 

At low concentrations (≤ 10µM) thimerosal sensitizes IP3 stimulated Ca
2+

 channels in 

somatic cells. In human sperm, application of 5µM thimerosal induced a ~15% increase in 

[Ca
2+

]i at the PHN in ~65% of cells (Figure 4.7B & C), which is consistent with the release of  
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Figure 4.7 Effect of NNC55-0396 on thimerosal generated [Ca
2+

]i response at the PHN. 

Graphs show 5 individual cell PHN [Ca
2+

]i responses (greys traces) and ΔFmean (red trace) 

to 5µM thimerosal application (red arrow) (A) with and (B) without 10µM NNC pre-

treatment. (C) Increase in ΔFmax. (D) Proportion of cells exhibiting a significant 

thimerosal response as determined by ΔFmax response. (* P<0.05, compared to 

thimerosal, paired t-test, results are means ± S.E.M. n=11). 
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intracellular stored Ca
2+

. When cells were first exposed to 10µM NNC then 5µM thimerosal 

the increase in [Ca
2+

]i associated with thimerosal reduced (~10%) although this effect was 

variable and was not significant  (P=0.107; n=11; paired t-test; Figure 4.8C). However NNC 

treatment alone increased [Ca
2+

]i ~25% which may have affected the IP3 sensitive Ca
2+

 stores 

of CCE channels involved in  the thimerosal response. 

 

Analysis of individual cell [Ca
2+

]i responses showed that pre-treatment with 10µM NNC 

reduced the proportion of cells producing a significant [Ca
2+

]i response to thimerosal only 

slightly, from ~65% without NNC pre-treatment to ~50% in those cells treated with 10µM 

NNC, (P=0.126; n=11; Figure 4.7D). Thus the thimerosal induced [Ca
2+

]i influx includes a 

significant NNC-resistant component. To determine the nature of the relationship between 

NNC and thimerosal induced [Ca
2+

]i responses, we also observed the effects of  5µM 

thimerosal on the effects of 10µM NNC. 

 

4.5.5.2 Thimerosal pre-treatment does not affect the increase in [Ca
2+

]i at the PHN 

associated with NNC 

10µM NNC induced a significant increase of ~25% [Ca
2+

]i at the PHN in >80% of cells, 

which then plateaued at an elevated level and was clearly visible in the ΔFmean (Figure 4.8A). 

To observe any inhibitory effects of thimerosal on NNC induced [Ca
2+

]i increases we pre-

treated cells with 5µM thimerosal before exposure to 10µM NNC (Figure 4.8B). In those 

cells treated with thimerosal the subsequent increase in [Ca
2+

]i associated with NNC 

application exceeded that observed by 10µM NNC (Figure 4.8C) by ~10% in 9 out of 11 

experimental pairs, however this was insignificant (P=0.29; n=11; paired t-test; Figure 4.8D). 
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Analysis of individual cell responses revealed no significant effect on the proportion of cells 

exhibiting a significant [Ca
2+

]i response to 10µM NNC with or without prior thimerosal 

treatment (P=0.77; n=11; paired t-test; Figure 4.8E) and no correlation between [Ca
2+

]i 

responses to 5µM thimerosal and 10µM NNC (Figure 4.8F). Together these results indicate 

NNC does not significantly inhibit the thimerosal induced [Ca
2+

]i response at the PHN 

suggesting that the increase in [Ca
2+

]i observed is the result of Ca
2+

 release from intracellular 

stores not extracellular Ca
2+

 influx through CatSper. 
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Figure 4.8 Effect thimerosal pre-treatment on NNC55-0396 [Ca
2+

]i response at the PHN. Graphs 

show 5 individual cell PHN [Ca
2+

]i responses (greys traces) and ΔFmean (red trace) to 10µM NNC 

application (red arrow) (A) without and (B) with 5µM thimerosal pre-treatment. (C) Increase in 

NNC ΔFmax. (D) Comparison of NNC response treated/pre-treated experimental pairs. (E) 

Proportion of cells exhibiting a significant NNC response as determined by ΔFmax response. (F) 

Amplitude of thimerosal-induced resting [Ca
2+

]i response (thimerosal increment x-axis) is not 

correlated with the amplitude of subsequent NNC-induced [Ca
2+

]i increase (NNC increment y-

axis), (* P<0.05, compared to NNC, paired t-test Results are means ± S.E.M, n=11). 
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4.6 Discussion 

 
[Ca

2+
]i signalling is an integral regulator of sperm function contributing to all physiological 

processes essential for ascension of the female tract and oocyte fertilisation including HA. In 

somatic cells complex Ca
2+

 signals such as oscillations and waves are generated through the 

manipulation of both Ca
2+

 flux across the PM and stored intracellular Ca
2+

. Unlike somatic 

cells mature sperm lack the endoplasmic reticulum and other organelles that function as Ca
2+

 

stores; however they do process Ca
2+ 

channels essential for mobilisation of stored Ca
2+

 

including IP3R. In addition there is evidence for the existence of at least two discrete Ca
2+

 

stores in human sperm; fluorescence imaging using low affinity Ca
2+

 dye Mag-Fluo-4AM 

clearly identifies two regions of Ca
2+

 accumulation one at the anterior acrosome and another 

at the PHN (Figure 4.1; Costello et al., 2009). Interestingly despite some similarities between 

the two potential stores, distribution of the Ca
2+

 signalling receptors differ offering discrete 

mechanisms of store mobilisation and accumulation (Figure 1.16). 

 

IP3R are localised to the membrane of intracellular Ca
2+

 stores of somatic cells, external 

stimuli induce the production IP3, which activates IP3R to release stored Ca
2+

 into the 

cytoplasm thus increasing [Ca
2+

]i (Berridge et al., 2003; Michelangeli et al., 1995). In 

addition the affinity of IP3Rs for IP3 is modulated by [Ca
2+

]cyt; low levels ~300nM IP3R 

demonstrate increased affinity for IP3 enabling tight regulation of [Ca
2+

]cyt (Parys & De 

Smedt, 2012). Three mammalian IP3R isoforms have been identified (1-3) and all have been 

detected in mature mammalian sperm (Jimenez-Gonzalez et al., 2006); as well as both Gq 

and PLCα proteins essential in the IP3 signalling cascade (Walensky & Snyder, 1995; Kuroda 

et al., 1999). Immuno-localisation studies have isolated IP3R1 expression to the acrosomal 

region and IP3R3 to the RNE/PHN and midpiece, indicating the potential for two discrete 
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Ca
2+

 stores with separate regulatory mechanisms (Walensky & Snyder, 1995; Kuroda et al., 

1999; Naaby-Hansen et al., 2001). 

 

In 2005, Herrick et al., identified the Ca
2+

 storage potential of the mammalian acrosome and 

recognised the high abundance of IP3Rs and the associated protein PLC in the region. The 

group subsequently confirmed the presence of high Ca
2+

 levels in the acrosome maintained 

by an acrosomal Ca
2+

-ATPase that was sufficient to induce acrosomal exocytosis. In addition 

the group utilised thimerosal (a known IP3R activator) to illustrate a role for IP3R in the 

mobilisation of stored intracellular Ca
2+

 in this region (Herrick et al., 2005). The identity of a 

second Ca
2+

 store at the RNE/PHN region of mammalian sperm cells is less clear, although a 

store here would be in a prime location to facilitate Ca
2+

 induced modulation of motility. 

Localisation of IP3R’s to the PHN region of mature sperm has been identified in a number of 

mammalian species (Dragileva et al., 1999; Kuroda et al., 1999; Naaby-Hansen et al., 2001) 

including humans. In 2001, Naaby-Hansen et al., reported expression of IP3R in both the 

equatorial segment and membrane bound vesicles in the cytoplasmic droplet of human sperm 

consistent with the findings of Walensky and Snyder in murine models (1995). Additionally 

RyR 1&2, the Ca
2+

-ATPase pump SPCA1 and Ca
2+

 store associated protein calreticulin have 

been detected at the PHN of mature sperm cells using immunofluorescent staining (Lefievre 

et al., 2007; Harper et al., 2004; 2005; Naaby-Hansen et al., 2001). RyR are intracellular Ca
2+

 

induced Ca
2+

 release channels located in the ER of somatic cells and are likely expressed in 

low numbers in human sperm due to low detected conductivity, (Costello et al., 2009; Zalk et 

al., 2007). The Ca
2+

-ATPase pump SPCA1 utilises ATP to facilitate Ca
2+

 transport across 

membranes; localisation in the PHN is therefore beneficial for optimum performance as this 

is adjacent to the mitochondria containing midpiece and has the potential for interaction 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R27
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R66
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(Harper et al., 2005; chapter 1.10.3.1). Indeed, mitochondria are one of the candidates for 

intracellular Ca
2+

 storage at the PHN.  

 

In somatic cells mitochondria are established Ca
2+

 storage organelles that contribute to the 

regulation of Ca
2+ 

homeostasis and respond to elevated [Ca
2+

]i levels by adapting oxidative 

phosphorylation and ATP production to the requirements of the cell (Scorziello et al., 2013). 

Numerous studies have identified the Ca
2+

 uptake ability of mammalian sperm in situ (Storey 

& Keyhani, 1973; 1974; Babcock et al., 1976; Vijayaraghavan & Hoskins, 1990), but the 

contribution of mitochondrial Ca
2+

 buffering on intracellular Ca
2+

 regulation has only been 

touched upon. Wennemuth et al., 2003 were the first to identify the input of mitochondrial 

Ca
2+

 in murine sperm, here they noted that under normal physiological conditions 

mitochondrial Ca
2+

 buffering was small but when the system became stressed (through the 

inhibition of PM Ca
2+

 channels) mitochondrial Ca
2+

 contribution to [Ca
2+

]i increased. In 2008 

we reported that mitochondrial Ca
2+

 release does not contribute to the store operated Ca
2+ 

oscillations induced by progesterone application in human sperm. In chapter 3 we identified 

that uncoupling of mitochondrial respiration with DNP or CCCP does not inhibit the 

progesterone induced Ca
2+

 response consistent with previous findings by Machado-Oliveira 

et al., 2008. In fact DNP and CCCP alone can induce an increase in [Ca
2+

]i at the PHN 

associated with a reduction in the mitochondrial membrane potential (MMP) observed with 

the MMP sensitive dye JC-1 (chapter 3). 

 

An alternative candidate for storage of intracellular Ca
2+

 at the PHN is the RNE or an ER-like 

vesicle at the anterior midpiece. The RNE or excess nuclear membrane that accumulates upon 

nuclear condensation contains nuclear pore complexes (NPC) in addition to IP3R. Suarez et 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R79
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R79
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R80
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R90
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al., 2003 demonstrated localisation of IP3R and calreticulin at the PHN of bovine and hamster 

sperm only partially correlated to NPC distribution suggesting that although the RNE had 

potential for Ca
2+

 storage there was also evidence for another Ca
2+

 storage organelle in the 

region. In addition we recently published evidence for the presence of SOCE components 

STIM and Orai in human sperm. These receptors enable Ca
2+ 

store replenishment in somatic 

cells and are not required for mitochondrial buffering; furthermore in human sperm STIM 

and Orai isoforms show localised distribution at the acrosome and PHN enabling discrete 

modulation of Ca
2+

 store refilling (chapter 1.10.1.3.1). 

 

In this chapter we identified the effects of thimerosal on IP3Rs at the PHN of human sperm; 

low micromolar thimerosal concentrations sensitise IP3Rs facilitating the release of Ca
2+

 from 

intracellular stores in a concentration dependent manner from 1-10µM. Concentrations of 

thimerosal greater than 10µM also induced an increase in [Ca
2+

]i at the PHN although this did 

not exceed that observed at 10µM. At 25
o
C the increases in [Ca

2+
]i associated with thimerosal 

treatment were variable and significantly smaller than at 30
o
C, consistent with the 

temperature sensitivity observed by Tanaka and Tashjian (2004; Figure 4.3) and the effects of 

thimerosal on motility measured at 37
o
C in CASA experiments (Table 4.1). Through 

selective sensitisation of IP3R with thimerosal we demonstrated the effect of stored Ca
2+

 

mobilisation on motility parameters, with thimerosal producing much stronger 

hyperactivation than progesterone, which had relatively little effect on ALH. Furthermore 

dual application of thimerosal and progesterone increased hyperactivation in a manner that 

exceeded the sum of their individual effects. 
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The biphasic [Ca
2+

]i response induced by progesterone at the PHN of human sperm is well 

characterised (Kirkman-Brown et al., 2003; Harper et al., 2004). However the identity of the 

PM progesterone receptor has only recently come to light.  CatSper channels are sperm 

specific Ca
2+

 channels of a promiscuous nature (Strunker et al., 2011; Brenker et al., 2013) 

and absence of the channel results in infertility in murine models (Ren et al., 2001; Quill et 

al., 2003; Jin et al., 2007). At present CatSper channels are the only progesterone sensitive 

Ca
2+

 channels that have been detected by patch clamp studies. Treatment with NNC-55-0396 

completely abolishes this current and its potentiation by progesterone, but does not eliminate 

the increase in [Ca
2+

]i associated with progesterone, although it should be noted that the 

response is reduced (Strunker et al., 2011). This indicates the requirement for a second 

alternative source of Ca
2+

 which contributes to the progesterone induced intracellular Ca
2+

 

response at the PHN, potentially an intracellular Ca
2+

 store in the region.  

 

Initial analysis of the biphasic progesterone induced increase in [Ca
2+

]i in mammalian sperm 

suggested two independent Ca
2+

 signalling pathways were responsible for the initial Ca
2+

 

transient and sustained Ca
2+

 increase. In 2000, O’Toole proposed that the transient increase 

was the result of T-type Ca
2+

 channels, whilst the sustained response was the result of store 

operated Ca
2+

 entry (SOCE). Here we demonstrate that thimerosal reduces the sustained Ca
2+ 

response induced by progesterone at the PHN. The simplest interpretation of this observation 

is that prior activation of SOCs by thimerosal-induced store mobilisation occludes the 

contribution of CCE to the sustained component of the progesterone-activated [Ca
2+

]i signal. 

It must also be noted that NNC-55-0396 inhibition of CatSper channels did reduce the mean 

amplitude of the thimerosal-induced [Ca
2+

]i at the PHN but this effect was  not significant 

and the proportion of responsive cells was not reduced.  Furthermore it is becoming clear that 
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NNC-55-0396, though an effective CatSper blocker, is far from specific. For instance it has 

recently been shown to inhibit sperm K
+
 channels. Thus it appears that thimerosal acts 

primarily through a mechanism not involving CatSper but by mobilisation of stored Ca
2+

. 

 

In summary we report evidence for the presence of a thimerosal sensitive intracellular Ca
2+ 

store at the PHN of human sperm, (distinct from the mitochondria); which contributes to the 

sustained increase in [Ca
2+

]i induced by progesterone and functions independent of CatSper 

PM channels. This supports previous suggestions that the progesterone induced [Ca
2+

]i 

response consists of two separate components regulated in part by separate intracellular 

signalling cascades and the presence of a Ca
2+

 store at the PHN with associated SOCE 

machinery (O’Toole, 2000). 
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5.0 Foreword 

The data in this chapter contributed to the publication; 2-APB potentiated channels amplify 

CatSper-induced Ca
2+ 

signals in human sperm, Lefievre et al., 2012. 
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5.1 Abstract 

In chapter 4, we reported evidence for the existence of a second Ca
2+ 

store at the PHN in 

human sperm. Previous studies conducted by our research group have identified a correlation 

between intracellular Ca
2+

 stores and localisation of the SOCE proteins STIM and Orai, 

(Lefievre et al., 2012). To date 2-aminoethyldiphenyl borate (2-APB) is the most well 

characterised modulator of SOCE, although its effect is rather unspecific. Initially identified 

as an IP3R antagonist 2-APB has since been established as a bimodal modulator of SOCE. At 

high concentrations (>30µM) 2-APB inhibits the CRAC channel current associated with 

SOCE and conversely at low concentrations (<10µM) 2-APB activates SOCE (Goto et al., 

2010; Suzuki et al., 2010; Lefievre et al., 2012). In this chapter we aimed to determine the 

effects of 2-APB on both resting [Ca
2+

]i and the biphasic [Ca
2+

]i response observed upon 

3µM progesterone application in human sperm. At 5µM, 50µM and 100µM 2-APB 

application showed an elevation in resting [Ca
2+

]i in a dose dependent manner. Pre-treatment 

with 5µM 2-APB caused a significant increase in the transient [Ca
2+

]i response induced by 

3µM progesterone. 100µM and 50µM 2-APB also caused an elevation in the progesterone 

induced Ca
2+

 response but neither equalled the [Ca
2+

]i  response observed by 5µM 2-APB 

treatment. In addition cells treated with 50µM or 100µM 2-APB after 3µM progesterone 

showed a consistent decrease in the [Ca
2+

]i response compared to parallel controls. Taken 

together these results suggest the presence of 2-APB sensitive Ca
2+

 channels with the ability 

to potentiate the [Ca
2+

]i progesterone response at the PHN in human sperm. 
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5.2 Introduction 

In the previous chapter we highlighted evidence for the presence of a second Ca
2+

 store in the 

PHN of human sperm. This Ca
2+

 store appears to contribute to the increase in [Ca
2+

]i induced 

by progesterone though PM CatSper channel (Strunker et al., 2011); which results in the 

switch from forward progressive to hyperactivated motility. To date only CatSper Ca
2+

 

channels have been identified as a progesterone receptors in human sperm, although there is 

some debate as to whether CatSper mediated Ca
2+

 entry alone is sufficient to produce the 

characteristic biphasic Ca
2+

 response induced by progesterone (Lefievre et al., 2012; 

Alasmari et al., 2013). 

 

In 1993 Blackmore proposed a role for Capacitative Ca
2+

 entry (CCE) in the increase in 

[Ca
2+

]i associated with progesterone in human sperm. Central to his proposal was the need for 

an intracellular Ca
2+

 store, PM channel and an associated communication mechanism. In 

somatic cells CCE or SOCE is well established; STIM proteins reside in the ER, where they 

monitor the [Ca
2+

]i of the storage organelle. Upon store mobilisation STIM molecules 

oligomerise and redistribute adjacent to the PM where they are visible as punctate structures 

(Cahalan, 2009; Stathopulos et al., 2006). Here STIM proteins activate PM SOCs (including 

Orai and TRPC) to induce influx of extracellular Ca
2+

 into the cell cytoplasm (chapter 1.10.3; 

Yuan et al., 2007; Liao et al., 2009). In mammalian sperm the identity and function of the 

PHN store is hotly debated however it is believed to possess many characteristics of the ER 

including the ability to induce CCE through PM channels. Recent findings by our group 

(Lefievre et al., 2012) show a correlation between the SOCE system proteins STIM and Orai 

and Ca
2+ 

store position. The study used immunofluorescence of SOCE proteins to reveal 

STIM and Orai distribution throughout the sperm cells (Lefievre et al., 2012).  
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2-APB was identified by Maruyama et al., 1997 as a membrane penetrable IP3R inhibitor and 

is now well established as a dual mediator of SOCE channel function. At high concentrations 

2-APB (>50µm) inhibits CCE channel current (ICRAC ), although a number of studies have 

shown that the degree of inhibition is dependent on the Orai isoform present (DeHaven et al., 

2008; Zhang et al., 2008; Lis et al., 2007). Conversely at low concentrations (~5µM) 2-APB 

activates SOCE (Goto et al., 2010; Suzuki et al., 2010; Lefievre et al., 2012). There is also 

evidence for 2-APB activation of PM Ca
2+

 channels independent of intracellular Ca
2+

 store 

mobilisation at low doses (DeHaven et al., 2008; Zhang et al., 2008).  

 

The biphasic [Ca
2+

]i response induced by progesterone application is well characterised 

(Kirkman-Brown et al., 2000; Harper et al., 2004) with a distinctive dose effect relationship 

between progesterone response and amplitude of ΔFmean. Due to the transcriptionally inactive 

nature of the mature spermatozoon progesterone induced [Ca
2+

]i responses must be the result 

of a non-genomic mechanism. To date CatSper channels are the only progesterone receptor to 

be identified in human sperm however the progesterone induced Ca
2+

 response is not 

abolished by CatSper specific blockers. This proposes a model for two types of progesterone 

receptors present in human sperm, one high affinity initiating responses at low concentrations 

and one low affinity eliciting a response at high progesterone concentrations. Subsequently 

we wanted to investigate the stimulatory/inhibitory effects if any of 2-APB on SOCE 

contribution to the progesterone induced Ca
2+

 response in human sperm.  
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5.3 Aims 

The aims of this chapter were to characterise the effects of 2-APB on basal [Ca
2+

]i and the 

progesterone induced biphasic [Ca
2+

]i response at the PHN in capacitated human sperm.  
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5.4 Material and methods 

5.4.1 Materials 

Progesterone and 2-aminothoxydiphenyl borate (2-APB) were purchased from Sigma Aldrich 

Company Ltd. (Dorset) and Calbiochem (distributed by Merck Biosciences, Beeston, 

Nottingham, UK) respectively. For all other materials see chapter 2.1.1.  

 

5.4.2 Methods 

5.4.2.1 Cell preparation 

Human semen was collected and prepared as in chapter 2.3. 

 

5.4.2.2 Cell incubation and capacitation 

Sperm harvested by swim up procedure (chapter 2.4.2.1) were incubated and capacitated as in 

chapter 2.4. 

 

5.4.2.3 Single cell imaging  

Cells were left to capacitate for 6 hours at 6 x10
6
cells/ml in sEBSS, the human sperm cell 

preparation was then diluted to 3x10
6
cells/ml with sEBSS prior to single cell imaging. All 

imaging experiments for this chapter were conducted at 25
o
C with Oregon Green-BAPTA-

1AM and followed the methodology outlined in chapter 2.6.1.  

 

5.4.3 Analysis 

Calcium imaging with Oregon Green BAPTA-1AM results were analysed as in chapter 2.6.1.  
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5.5 Results 

5.5.1 2-APB elevates resting [Ca
2+

]i at the PHN in human sperm 

Application of 5µM, 50µM or 100µM 2-APB upon resting cells in the presence of 

extracellular Ca
2+

 significantly increased [Ca
2+

]i at the PHN in ~ 65% cells, inducing a 

plateau or series of transients (Figure 5.1A). ΔFmean typically showed [Ca
2+

]i response to 2-

APB treatment within 100s, with the response stabilising at an increased [Ca
2+

]i level within 

200s for all concentrations of 2-APB. Individual cell responses show some variation in 

response kinetics (Figure 5.1A) but no significant differences between stimulation with 5µM 

2-APB, 50µM 2-APB and 100µM 2-APB. Indeed mean ΔFmax at the PHN was only slightly 

greater at higher doses of 2-APB (mean ΔFmax: 5µM 14.19±2.68%, 50µM 14.29±5.15%, 

100µM 17.81±7.79%; n=15, n=6 & n=7 respectively; Figure 5.1B). The proportion of 

responsive cells and amplitude distribution of individual cell responses showed no great 

variation between the 2-APB concentrations (Figure 5.1C&D). In addition time taken to 

respond to 2-APB showed no significant dose sensitivity (Figure 5.1E&F). 
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Figure 5.1 2-APB induced elevation of resting [Ca
2+

]i at the PHN. (A) Individual ΔF cell 

responses to 5µM 2-APB (grey traces) and ΔFmean (red trace) for all cells in that experiment, 

(n=88). In the following graphs capacitated cells were monitored for a minimum of 200sec 

before 5µM (blue), 50µM (red) or 100µM (green) 2-APB was applied. (B) Increase in ΔFmean 

within 3min of 2-APB application. (C) Frequency distribution of ΔFmax amongst the cell 

population. (D) Proportion of cells displaying significant ΔFmax responses. (E) Frequency 

distribution of time taken to achieve ΔFmax amongst the cell population. (F) Time taken to 

achieve peak ΔFmean. Results are means ± S.E.M. 5µM, n=15; 50µM, n=6; 100µM, n=7. 

 

E 

D C 

B A 

n=833 
n=464 
n=222 

F 



 
 

169 
 

5.5.2 The progesterone induced [Ca
2+

]i transient is enhanced by 2-APB pre-

treatment  

The archetypal [Ca
2+

]i response to 3µM progesterone stimulation is a transient increase in  

[Ca
2+

]i at the PHN which peaks within ~70s and is followed by a plateau (or a series of 

transients) in ~90% of cells and clearly visible in the ΔFmean trace (Figure 5.2D). To observe 

the effects of 2-APB pre-treatment on progesterone induced [Ca
2+

]i response, experiments 

were conducted in pairs. Aliquots of cells from the same semen sample were stimulated with 

3µM progesterone both with and without pre-treatment with 5µM, 50µM or 100µM 2-APB. 

Pre-treatment with all concentrations of 2-APB caused an initial [Ca
2+

]i increase (as described 

previously). In 6 experiments where cells were pre-treated with 5 µM 2-APB (300s) 

subsequent application of progesterone induced the characteristic biphasic [Ca
2+

]i response 

but the amplitude was significantly enhanced compared to parallel 3µM progesterone control 

experiments (Figure 5.2, 5.3A; P=0.007).  In most experiments pre-treated with 50µM and 

100µM 2-APB responses were also greater than in parallel controls but these effects were 

variable and were not statistically significant  (P=0.188 Figure 5.2, 5.3A). However only 4 

out of 6 experimental pairs pre-treated with 50µM 2-APB showed an increase in ΔFmean 

(P=0.188; paired t-test; Figure 5.3A). 

 

Analysis of individual cell [Ca
2+

]i transients showed that cells pre-treated with 2-APB (at all 

3 concentrations) resulted in a shift of the progesterone response increment frequency 

distribution to the left with a higher proportion of cells displaying responses in the 20-80ΔF% 

range (Figure 5.3B). Interestingly 5µM, 50µM and 100µM 2-APB pre-treated cells all 

displayed bell shaped distribution of progesterone response increments (Figure 5.3B) despite 

only the ΔFmean for 5µM 2-APB pre-treatment significantly differing from the control.  
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Figure 5.2 Effect of 2-APB on the transient progesterone response. Capacitated cells were pre-treated with (A) 5µM (B) 50µM (C) 

100µM 2-APB or (D) no pre-treatment (grey box) for a minimum of 200s before 3µM progesterone stimulation. Each graph shows 

individual ΔF cell responses (grey traces) and ΔFmean (red trace) for all cells in that experiment, (n=88, n=89 & n=39 respectively). 
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Figure 5.3 2-APB pre-treatment amplifies the progesterone induced Ca
2+

 transient at the PHN. In the following graphs cells were pre-treated with 5µM (blue) 

50µM (red) 100µM (green) 2-APB or untreated control (yellow) for a minimum of 200s before 3µM progesterone stimulation. (A) Maximum increase in ΔFmean 

within 3min of progesterone application, (B) frequency distribution of ΔFmax amplitude amongst the cell population, (C) comparison of (A) between treated/ 5µM 

pre-treated experimental pairs, (D) proportion of cells displaying significant ΔFmax response, (E) amplitude of 5µM 2-APB-induced resting [Ca
2+

]i response (2-

APB increment x-axis) is not correlated with the amplitude of subsequent progesterone-induced [Ca
2+

]i increase (progesterone increment y-axis), (F) Mean time 

taken to reach progesterone [Ca
2+

]i increase ΔFmax. All experiments were conducted with parallel untreated progesterone controls. Results are means ± S.E.M. * 

P<0.05; paired t-test; compared to progesterone response; 5µM (n=6) 50µM (n=6) 100µM (n=6). 
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The ΔFmax amplitude of the progesterone-induced [Ca
2+

]i  transient was determined for each 

individual cell response and classified as significant if the based on basal [Ca
2+

]i  levels and 

the 95% confidence interval. Cells pre-treated with 2-APB showed no significant increase in 

the percentage of cells exhibiting a significant response to progesterone application compared 

to the treated control (5µM P=0.40, 50µM P=0.45 & 100µM P=0.72; t-test; compared 

progesterone; Figure 5.3D) but as progesterone treatment alone typically induces a significant 

response in >90% cells the margin for increase is small. Comparison of 5µM 2-APB [Ca
2+

]i  

response increment and subsequent 3µM progesterone induced [Ca
2+

]i transient in pre-treated 

cells shows no correlation between the two elevations (Figure 5.3E) suggesting that 2-APB 

does not act via the mechanism responsible for the progesterone induced [Ca
2+

]i transient. 

Time taken to achieve ΔFmax showed no significant change in 2-APB-pretreated cells at any 

dose (5µM P=0.22, 50µM P=0.84 & 100µM P=0.13; paired t-test; compared progesterone; 

Figure 5.3F). 
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5.5.3 Pre-treatment with 2-APB does not significantly modify the 

progesterone induced sustained [Ca
2+

]i response 

Treatment with 3µM progesterone initially produces a transient increase in [Ca
2+

]i at the PHN 

which is followed by a sustained [Ca
2+

]i plateau above basal levels. To investigate the effect 

of 5µM, 50µM and 100µM 2-APB pre-treatment on the sustained [Ca
2+

]i elevation, the 

average of ΔFmean was taken between 200 and 220 seconds after progesterone application and 

compared to treated cells. In 4 out of 6 experimental pairs pre-treated with 5µM 2APB the 

sustained [Ca
2+

]i elevation at the PHN exceeded that of the progesterone control but this 

effect was highly variable  (Figure 5.2D) and  was not statistically significant (P=0.156; 

paired t-test; Figure 5.3A). Pre-treatment with higher concentrations of 2-APB (50µM and 

100µM) were similarly inconsistent (P=0.470 & P=0.453 respectively; paired t-test; Figure 

5.4A). Analysis of individual cell sustained [Ca
2+

]i response traces shows a bell curve of 

sustained progesterone-induced response increments with and without pre-treatment (Figure 

5.4B) only those cells pre-treated with 5µM 2-APB show a shift to the right indicative of 

elevated ΔFsus. In addition pre-treatment with 5µM 2-APB shows an increase in the 

proportion of cells displaying a significant sustained response to progesterone at 220 seconds 

though this effect was again not significant (P=0.752; paired t-test; Figure 5.4C). 
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Figure 5.4 Effect of 2-APB pre-treatment on the sustained progesterone response at the PHN. In the following graphs cells were pre-treated with 5µM (blue) 50µM 

(red) 100µM (green) 2-APB or untreated control (yellow) for a minimum of 200s before 3µM progesterone stimulation, measurements were taken 3min after 

progesterone treatment. (A) ΔFmean 3min after progesterone application, (B) frequency distribution of ΔFmean amongst the cell population, (C) proportion of cells 

displaying significant sustained ΔFmean responses (D) Comparison of (A) between untreated/pre-treated experimental pairs, (E) Amplitude of 5µM 2-APB-induced 

resting [Ca
2+

]i response (2-APB increment x-axis) is not correlated with the amplitude of subsequent sustained progesterone-induced [Ca
2+

]i increase (progesterone 

increment y-axis). All experiments were conducted with parallel treated progesterone controls for all 2-APB concentrations. Results are means ± S.E.M. 5µM (n=6) 

50µM (n=6) 100µM (n=6). 
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5.5.3.1 Effects of 2-APB application on [Ca
2+

]i after the progesterone induced [Ca
2+

]i 

transient 

To further investigate the effects of high 2-APB concentrations on the progesterone-induced 

sustained [Ca
2+

]i plateau, 50µM and 100µM 2-APB were applied to cells 5-6 min after 

stimulation with 3µM progesterone when the [Ca
2+

]i plateau was established. Upon 2-APB 

treatment  an immediate transient fall in [Ca
2+

]i was observed which then recovered to levels 

exceeding those before 2-APB application (~10% and ~20% increase in ΔFmean in cells 

treated with 50µM and 100µM 2-APB respectively; Figure 5.5). The increase in ΔFmean 

[Ca
2+

]i (200-220s) that occurs when cells were exposed to 2-APB (section 5.5.1) was reduced  

when 2-APB was applied to cells previously stimulated with 3µM progesterone but this 

difference was not significant at either dose (Figure 5.6A). Frequency distribution profiles 

show similar bell shaped patterns of 2-APB response increment with and without initial 

progesterone treatment at both concentrations (Figure 5.6B). The proportion of cells 

displaying a significant response to 2-APB treatment was reduced by progesterone pre-

treatment with both 50µM and 100µM, but again these effects failed to reach statistical 

significance (P=0.059 & P=0.816 respectively; Figure 5.6C).
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Figure 5.5 Effect of progesterone pre-treatment on 2-APB induced Ca
2+

 response at the PHN. Capacitated cells were pre-treated with 3µM 

progesterone for 300s (grey box) before application of (A) 50µM or (B) 100µM 2-APB (red arrow). Each graph shows individual ΔF cell 

responses (grey traces) and ΔFmean (red trace) for all cells in that experiment, (n=39 & n=21 respectively). 
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Figure 5.6 Progesterone pre-treatment does not prevent 2-APB induced Ca
2+

 elevation. Each graph shows the effects of 3µM progesterone pre-treatment on the 

50µM (red) or 100µM (green) 2-APB induced Ca
2+

 response at the PHN compared to parallel samples  exposed to only 50µM (blue) or 100µM (purple) 2-APB. 

(A)Maximum increase in ΔFmean within 3min of 2-APB application, (B) frequency distribution of ΔFmax response amongst the cell population, (C) proportion of cells 

displaying significant ΔFmax response, (D) & (E) Amplitude of 2-APB-induced resting [Ca
2+

]i response 50µM and 100µM respectively (2-APB increment x-axis) 

correlation with the amplitude of subsequent progesterone-induced [Ca
2+

]i increase (progesterone increment y-axis). All experiments were conducted with parallel 2-

APB controls and progesterone pre-treated experiments. Results are means ± S.E.M; 50µM (n=6) 100µM (n=6). 
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5.6 Discussion 

The identification of CatSper channels through patch-clamp studies by Lishko et al., 2011 

and Strunker et al., 2011 suggested a limited role for intracellular Ca
2+

 stores in the 

modulation of [Ca
2+

]i. Localised to the principal piece of the mammalian sperm flagellum, 

CatSper were identified as the primary progesterone receptor, in a prime location for 

modulating hyperactivated motility. However, treatment of cells with 10µM NNC-55-0396 

(NNC) a known blocker of CatSper currents was unable to abolish the progesterone induced 

[Ca
2+

]i response (Strunker et al., 2011). The study by Strunker et al., 2011 shows a 60% 

inhibition of the progesterone induced [Ca
2+

]i response as a direct result of NNC application 

suggesting that the remaining 40% increase in [Ca
2+

]i could result from intracellular Ca
2+

 

store mobilisation.  

 

To support a model for involvement of intracellular Ca
2+

 stores in human sperm [Ca
2+

]i 

regulation a mechanism for replenishing depleted stores must also be present. In 1993 

Blackmore identified the essential components for contribution from intracellular Ca
2+

 stores 

to the progesterone induced [Ca
2+

]i response. In addition to the intracellular Ca
2+ 

store the cell 

would require a plasma membrane Ca
2+

 channel and a mechanism of interaction between the 

two which he termed capacitative Ca
2+

 entry (CCE). Multiple candidates were considered as 

possible contributors to CCE in somatic cells (otherwise known as store-operated Ca
2+

 entry 

(SOCE) including but not limited to TRP channels. However it was the discovery of two 

interactive transmembrane protein groups in 2005 and 2006 respectively that led to the most 

convincing model for SOCE to date. The first potential SOCE component to be identified 

was stromal interaction molecules (STIM); residing in the ER membrane of somatic cells 

these receptors act as a Ca
2+

 sensor inducing a conformational change when ER [Ca
2+

] is low 
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resulting receptor translocation and interaction with a  PM CRAC channel inducing Ca
2+ 

influx (Liou et al., 2005). The following year three groups consecutively identified the pore-

forming CRAC channel component of SOCE as Orai (Feske et al., 2006; Vig et al., 2006; 

Zhang et al., 2006). Subsequent analysis proposes activated CRAC channels are composed of 

Orai tetramers which interact with oligomerised STIM molecules on the ER. Together STIM 

and Orai have been shown to form a conformational coupling mechanism that enables 

successful SOCE in somatic cells (Muik et al., 2012; Soboloff et al., 2012).  

 

To date two STIM (STIM1 and STIM2) and three Orai (1-3) isoforms have been detected in 

human somatic cells (Cahalan, 2009). In addition, using immunofluorescence, we observed 

STIM1, STIM2 and all three Orai (1-3) isoforms in mature human sperm, though Orai 2 

detection was not confirmed by Western blot (Lefievre et al., 2012). We found that all 

mammalian homologues were present in the PHN region of human sperm, with Orai 3 only 

present in the most anterior segment. STIM2, Orai1 and Orai3 were also detected in the 

acrosomal region, whilst STIM2 and Orai3 were expressed along the entire flagellum (Figure 

5.7). Localisation of these facilitators of SOCE predominantly to the PHN suggest a role for 

Ca
2+

 stores at the PHN of human sperm; their contribution to hyperactivated motility is 

unknown however it is likely enhanced by CatSper channels in close proximity in the PM. 

 

The bimodal action of 2-APB on the CCE channel current (ICRAC) is well documented, at high 

concentrations (>50 µm) 2-APB inhibits CCE current (DeHaven et al., 2008; Zhang et al., 
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Figure 5.7 Distribution of STIM & Orai homologues in human sperm, modified from 

Lefievre et al., 2012. Diagrammatic representation of immunofluorescence localisation of 

mammalian SOCE homologues (red), STIM1, STIM2, Orai1-3; all homologues were 

observed to be present in the PHN/midpiece of capacitated human sperm. STIM2, Orai1 & 

Orai2 were discovered in the acrosomal region, with STIM2 and Orai2 also detected in the 

flagellum. 
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2008; Lis et al., 2007) whilst at low concentrations (~5µM) 2-APB activates SOCE (Goto et 

al., 2010; Suzuki et al., 2010; Lefievre et al., 2012). As a result 2-APB has formed the basis 

for the development of a number of new SOCE modulatory compounds (Goto et al., 2010; 

Suzuki et al., 2010); however their potency remains to be tested thoroughly. Current models 

propose that at high concentrations 2-APB molecules bind to Orai subunits simulating STIM 

molecules and subsequently directly inhibit ICRAC (DeHaven et al., 2008; Zhang et al., 2008; 

Lis et al., 2007; Goto et al., 2011). At low concentrations it is believed that 2-APB stimulates 

ICRAC by increasing pore size and promoting the interaction of STIM and Orai proteins 

(Schindl et al., 2008). Here we demonstrate that 2-APB demonstrates a dose dependent 

elevation on [Ca
2+

]i at the PHN of human sperm without mobilising the intracellular Ca
2+

 

store (Figure 5.1A, B&C). An observation that was also documented in Hek cells by Schindl 

et al., 2008. Higher concentrations of 2-APB result in a greater proportion of the cell 

population eliciting a significant Ca
2+

 response (Figure 5.1D); this effect is abolished in 

EGTA buffered saline demonstrating that the 2-APB response is dependent on extracellular 

Ca
2+

 (data not shown; published in Lefievre et al., 2012). This suggests that Orai molecules at 

the PHN participate in the increase in [Ca
2+

]i at the region associated with 5µM 2-APB 

application. 

 

We have identified that 2-APB alone elevates [Ca
2+

]i at the PHN in the presence of 

extracellular Ca
2+

. This effect was abolished and even reversed when [Ca
2+

]i was heavily 

buffered (Lefievre et al., 2012), confirming that 2-APB activates Ca
2+

 permeable channels in 

the plasma membrane of human sperm. Next we wanted to observe the effect of 2-APB 

treatment on the well characterised biphasic progesterone induced Ca
2+

 response. The recent 

identification of CatSper channels as the primary progesterone receptor in mammalian sperm 

has caused some controversy over the involvement of intracellular Ca
2+

 stores in human 
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sperm (Strunker et al., 2011; Brenker et al., 2012). However the inability of the CatSper 

inhibitor NNC to abolish the biphasic progesterone induced Ca
2+ 

response suggests a 

secondary progesterone sensitive mechanism is present. As a dual action SOCE 

inhibitor/activator we compared the effects of a range of 2-APB concentrations on the 

biphasic progesterone induced [Ca
2+

]i. We observed that at stimulatory concentrations (5µM) 

2-APB caused a significant elevation in the progesterone induced Ca
2+

 transient (Figure 

5.3A). In addition higher inhibitory concentrations of 2-APB (50µM and 100µM) also 

enhanced the transient in 4 out of 6 experiments (Figure 5.4C). It should be noted that only 

those samples treated with 5µM 2-APB displayed an increase in the proportion of cells 

eliciting a significant response such that the distribution profile moved noticeably to the right 

Figure 5.3B&D). These results support those obtained in other cell types treated with 

stimulatory 2-APB concentrations suggesting a role for SOCE in the progesterone induced 

Ca
2+

 response (Goto et al., 2010). 

 

To determine the effect of 2-APB pre-treatment on the sustained progesterone response we 

measured the [Ca
2+

]i 4 minutes after 3µM progesterone application. Our results mirrored 

those observed for the progesterone transient (Figure 5.5). Cells pre-treated with 5µM 2-APB 

displayed elevated [Ca
2+

]i compared to parallel controls although these differences were not 

significant. In addition the proportion of cells producing a significant [Ca
2+

]i was greater in 

those samples pre-treated with 5µM 2-APB causing a slight shift to the right in the population 

distribution statistics (Figure 5.4B). In cells treated with higher concentrations of 2-APB 

(50µM and 100µM) greater variability was exhibited amongst the cell population with a high 

proportion of the cells displaying an inhibitory effect on the sustained Ca
2+ 

response (Figure 

5.6). Furthermore cells treated with 50µM or 100µM 2-APB after 3µM progesterone first 

showed a consistent decrease in the [Ca
2+

]i response which was not observed when applied 



 
 

183 
 

before progesterone stimulation (Figure 5.6). Subsequently sustained [Ca
2+

]i levels increased 

marginally above levels observed before 2-APB treatment. These results suggest a model 

whereby 2-APB sensitive channels could contribute to the sustained progesterone induced 

Ca
2+

 influx if 2-APB blocked CatSper channels, as was shown by patch clamp (Lefievre et 

al., 2012). As a consequence 2-APB sensitive channels would be released from inhibitory 

regulation by [Ca
2+

]i thus enabling Ca
2+

 influx and the [Ca
2+

]i  recovery observed in Figure 

5.5.  

 

In summary we have shown that 2-APB elevates [Ca
2+

]i at the PHN in a dose dependent 

manner which is reliant on extracellular Ca
2+

. Exposure of cells to 5µM 2-APB enhances 

both components of the biphasic Ca
2+ 

response induced by 3µM progesterone application.  

However only the increase in [Ca
2+

]i during the transient component of the progesterone 

response is significantly greater than the untreated control . In addition our identification of 

SOCE proteins STIM and Orai are indicative of intracellular Ca
2+

 store presence and 

contribution to spatio-temporal regulation in human sperm (Lefievre et al., 2012). Taken 

together these findings suggest a role for a 2-APB sensitive Ca
2+ 

channel at the PHN which 

enhances the progesterone induced Ca
2+ 

response activated through CatSper.  
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6.1 Abstract 

SKF-96365 (SKF) is a non-specific inhibitor of store-operated Ca
2+

 channels (SOCC). At low 

concentrations (<40µM) SKF prevents receptor activated Ca
2+

 influx at the plasma membrane 

(PM), but at higher concentrations (>40µM) SKF can modulate Ca
2+

 release from 

intracellular storage organelles (Merritt et al., 1990). Previous chapters have highlighted 

evidence for the existence of SOCE in human sperm and their essential role in the 

progesterone induced biphasic [Ca
2+

]i response.  Here we report that  Ca
2+

 fluorescence 

imaging using Oregon Green-BAPTA-1AM shows SKF has complex effects on [Ca
2+

]i in 

human sperm.  3µM & 30µM SKF caused an elevation of resting [Ca
2+

]i but pre-treatment of 

cells with 30µM SKF amplified the [Ca
2+

]i transient induced by 3µM progesterone 

stimulation, whilst significantly reducing the subsequent sustained [Ca
2+

]i elevation. These 

findings support similar observations in other cell types (Merritt et al., 1990) suggesting 

SOCE contribution to the sustained component of the biphasic progesterone [Ca
2+

]i response. 

Furthermore 30µM SKF reduced the proportion of human sperm cells exhibiting 

hyperactivated motility (as determined by CASA) both under control conditions and in the 

presence of 3µM progesterone.    
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6.2 Introduction 

In the preceding chapters we identify a role for SOCE at the PHN in human sperm. 1-(beta-

[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride 

otherwise known as SKF-96365 (SKF) is an inhibitor of store-operated Ca
2+

 channels 

(SOCC). Identified in 1990, SKF is a hydrophobic compound structurally distinct from 

traditional Ca
2+

 antagonists conferring selectivity between PM receptor facilitated Ca
2+

 entry 

(receptor mediated Ca
2+ 

entry; RMCE, which includes capacitive Ca
2+

 entry; CCE) and Ca
2+

 

release from internal stores (Merritt et al., 1990). Initial observations by Merritt and 

colleagues revealed that exposure of human platelets, neutrophils or endothelial cells to 10-

20µM SKF inhibited a stimulus evoked rise in [Ca
2+

]i when the response was dependent on 

extracellular Ca
2+

. Fluorescence studies of quin2-loaded platelets showed that treatment with 

25µM SKF almost completely inhibited 20µM ADP-evoked Ca
2+

 entry via RMCE. In 

addition experiments conducted in the absence of extracellular Ca
2+

 showed little effect of 

SKF treatment on ADP induced internal Ca
2+ 

store release suggesting SKF antagonism is 

selective for PM receptors (Merritt et al., 1990). Furthermore subsequent studies have shown 

that these PM effects are not SOCE specific (Jenner & Sage, 2000; Marumo et al., 2012; 

Blackmore, 1993). At higher concentrations (>40µM) SKF was reported to modulate 

intracellular Ca
2+

 store activity, causing both inhibition and in some cases enhancing release 

of stored Ca
2+

 (Merritt et al., 1990).  

 

In human platelets thapsigargin induces a biphasic [Ca
2+

]i response comprising of an initial 

transient followed by a sustained peak, suggesting at least two separate Ca
2+

 pathways 

contribute to the response. Fluorescence imaging and fluorimetry have been used to 

investigate the effects of tyrosine phosphorylation and SOC inhibitors on the biphasic 



 
 

187 
 

thapsigargin induced [Ca
2+

]i increase (Vostal & Schafer, 1996; Jenner & Sage, 2000). Platelet 

pre-treatment with SKF had no observable effects on the initial transient but the  sustained 

Ca
2+

 rise was inhibited, consistent with an initial release of stored Ca
2+

 followed by activation 

of SOCE (Jenner & Sage, 2000; Marumo et al., 2012). Similarly SKF has been shown to 

inhibit RMCE in both neutrophils (Davies et al., 1992) and endothelial cells (Kruse et al., 

1995). Indeed Davies et al., 1992 confirmed the ability of SKF to disassociate transmembrane 

Ca
2+

 influx from intracellular Ca
2+

 store release in neutrophils through Mn
2+

 quenching. 

Krause et al., 1995 used the same methodology to prove that thrombin receptor-activating 

peptide TRAP14 required external Ca
2+

 influx for [Ca
2+

]i increase and cell sensitisation. In all 

instances SKF has shown non-selective antagonism of PM Ca
2+ 

receptors; however it appears 

to affect multiple RMCE pathways though L and T Type Ca
2+ 

channels (Merritt et al., 1990). 

It is also important to note that SKF appears to have little effect on ATP-gated channels 

(Merritt et al., 1990) unless they function in conjunction with SOCE (Jantaratnotai et al., 

2009). 

 

There are few studies on the effects of SKF on SOCE in human sperm. In 1993 Blackmore 

was the first to suggest that the [Ca
2+

]i increase associated with progesterone metabolite 

stimulation of human platelets could be associated with the progesterone induced [Ca
2+

]i 

response in human sperm through a SOCE mechanism. Here Blackmore (1993) showed 

pregnanolone and pregnanedione promoted a rapid rise in human platelet [Ca
2+

]i and 

aggregation similar to the effects of thrombin, which was inhibited by SKF application. In 

addition it was proposed that progesterone stimulates Ca
2+

 influx through a similar 

mechanism due to the nature of the Ca
2+

 response and the presence of SOC receptors in the 

PM. Subsequent studies on sea urchin sperm show correlations between the biphasic [Ca
2+

]i 
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response produced by fucose sulfate polymer (FSP) of egg jelly in ascidians and the biphasic 

progesterone induced [Ca
2+

]i response in mammals (Hirohashia &Vacquier, 2003). In 

experiments measuring [Ca
2+

]i of sea urchin sperm using Fura-2, treatment with SKF was 

sufficient induce inhibitory effects on the sustained [Ca
2+

]i response consistent with SOCE 

inhibition (Hirohashia & Vacquier, 2003). In addition SKF treatment has been shown to 

antagonise Ca
2+

 influx induced by mitochondrial inhibitors (CCCP) suggesting a role for 

SOCs in ascidian mitochondrial Ca
2+

 regulation (Ardon et al., 2009). Studies on the effects of 

SKF on mammalian sperm are limited; however Trevino et al., 1996 demonstrates that SKF 

inhibits both the increase in [Ca
2+

]i and AR associated with Maitotoxin (a potent cation 

activator) treatment of mammalian spermatogonial cells through SOCs. Furthermore SKF has 

been shown to significantly reduce the motility of human sperm (Krasznai et al., 2006). SKF 

is therefore a useful antagonist to determine the effect of SOCE on progesterone induced 

[Ca
2+

]i increase at the PHN of human sperm. 
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6.3 Aims 

The aim of this chapter was to determine the effect of SKF-96365 treatment on [Ca
2+

]i at the 

PHN of human sperm and subsequent effect on the biphasic [Ca
2+

]i response induced by 

progesterone. In addition we wanted to quantify the effects of SKF-96365 on human sperm 

motility parameters and critically those associated with hyperactivation to correlate changes 

in [Ca
2+

]i with physiological function. 
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6.4 Material and Methods 

6.4.1 Materials 

Progesterone and 1-(beta-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl)-1H-

imidazole hydrochloride (SKF-96365) were purchased from Sigma Aldrich Company Ltd. 

(Dorset) and Merck Millipore (Watford, UK) respectively.  For all other materials see chapter 

2.1.1.  

6.4.2 Methods 

6.4.2.1 Cell preparation 

Human semen was collected and prepared as in chapter 2.3. 

 

6.4.2.2 Cell incubation and capacitation 

Sperm harvested by swim up procedure (chapter 2.4.2.1) were incubated and capacitated as in 

chapter 2.4. 

 

6.4.2.3 CASA 

All CASA experiments for this chapter were conducted as in chapter 2.5. However it should 

be noted that in experiments treated with SKF and Progesterone both doses were 

administered simultaneously. 

 

6.4.2.4 Single cell imaging 

All imaging experiments for this chapter were conducted with Oregon Green-BAPTA-1AM 

and followed the methodology outlined in chapter 2.6.1.  

 

6.4.3 Analysis 

Calcium imaging with Oregon Green-BAPTA-1AM results were analysed as in chapter 2.6.1.   
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6.5 Results 

6.5.1 SKF elevates resting [Ca
2+

]i at the PHN 

Figure 6.1 shows typical fluorescence traces of Oregon Green-BAPTA-1AM loaded human 

sperm cells exposed to SKF at 3µM (A) or 30µM (B) in the presence of extracellular calcium. 

Treatment of sperm with either 3µM or 30µM SKF induced an increase in [Ca
2+

]i in ~70% 

cells within 100s. At both concentrations SKF induces either a plateau or series of Ca
2+

 

transients in subsets of cells stabilizing an increased level within 200s (Figure 6.1). ΔFmean 

was determined as the average of the 3 highest consecutive points within the 200s period of 

SKF application and displayed dose dependency (Figure 6.2A). This increase in resting 

[Ca
2+

]i (ΔFmean) was seen in all experiments at both concentrations (3µM (n=9); 30µM 

(n=13)). However the increase in resting [Ca
2+

]i observed with SKF was significantly less 

than that observed in parallel experiments with 3µM progesterone (3µM SKF P=0.00005, 

30µM SKF P=0.03; paired t-test; n=5, n=8 respectively).  

 

Individual cell Ca
2+

 responses to SKF revealed no significant difference between 

concentrations in the proportion of cells eliciting a significant [Ca
2+

]i increase (3µM SKF 

74.7±6.5%, 30µM SKF 60.3±8.3%; P=0.2; paired t-test; n=5, n=8 respectively; Figure 6.2B). 

When compared to the proportion of cells showing a significant increase in [Ca
2+

]i in parallel 

progesterone experiments (89.5±2.1%) the proportion of cells responding to SKF(both 

concentrations) was significantly lower (P=0.02 & P=0.01 ; paired t-test; n=5, n=8 

respectively; Figure 6.2B). SKF concentration had no effect the amplitude distribution of 

single cell SKF response increments but these differed significantly from the well 

characterised bell shaped distribution of the progesterone induced [Ca
2+

]i response 
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Figure 6.1 SKF elevates resting [Ca
2+

]i. Capacitated cells were 

monitored for a minimum of 200seconds before either (A) 3µM or (B) 

30µM SKF was applied (red arrow). Each graph shows individual cell 

responses (grey traces) and ΔFmean (red trace) for all cells in that 

experiment, (n=134, n=71 respectively). 
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treatment on ΔFmean.  (B) Percentage of cells producing a significant increase in [Ca
2+

]i as a result 

of treatment application mean ± S.E.M. (C) Effect of treatment on amplitude distribution of 

changes in [Ca
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]i (n=number of cells observed)  (D) Time taken to achieve ΔFmean. Each bar 
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 (Figure 6.2C). In contrast, the time to peak response showed significant concentration 

effects; cells treated with 30µM SKF demonstrated significantly shorter response times 

compared to those treated with 3µM SKF (P=0.03; paired t-test; n=5, n=8 respectively Figure 

6.2D). However both concentrations of SKF took longer to achieve ΔFmean when compared to 

progesterone response time (P=0.001 & P=0.06; paired t-test; n=5, n=8 respectively; Figure 

6.2D). Superfusion of capacitated cells with EGTA-buffered medium (~3x10
-7

M Ca
2+

) for 

2min caused an initial decrease in [Ca
2+

]i. Addition of 30µM SKF then caused a small 

increase in [Ca
2+

]i consistent with the release of Ca
2+

 from intracellular stores (Figure 6.2F). 

This effect was observed in ~70% of the population (69.9±11.2%; n=7). In the remaining 

proportion of cells [Ca
2+

]i continued to decrease and a further fall in [Ca
2+

]i also occurred in 

many responsive cells after Ca
2+

 stores have emptied. To further analyse the effect of SKF on 

progesterone induced Ca
2+

 influx cells were pre-treated with SKF before 3µM progesterone 

application and the response observed. 

 

6.5.2 SKF enhances the progesterone induced [Ca
2+

]i transient at the PHN  

The biphasic effect of progesterone on [Ca
2+

]i of  human sperm is well established (Kirkman-

Brown et al., 2000; Harper et al., 2004) and 3µM progesterone is sufficient to induce this 

characteristic response. As SKF is an inhibitor of SOCE it is therefore interesting to see if 

pre-treatment with SKF prior to progesterone application induces any effects on the Ca
2+

 

transient. To identify the effect of SKF on the progesterone induced Ca
2+

 transient 

experiments were conducted in pairs. Cells from the same semen sample were prepared and 

either pre-treated with SKF for 200s or untreated prior to progesterone stimulation. The 

untreated control population showed an initial transient increase in [Ca
2+

]i followed by a 

plateau in ~90% of cells within 70s (data not shown) upon stimulation with 3µM  
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progesterone. Pre-treatment with 3µM SKF or 30µM SKF induced dose dependent [Ca
2+

]i 

responses as described above (Figure 6.3A&B respectively). When progesterone was then 

applied to cells exposed to 3µM SKF the amplitude of the Ca
2+

 transient (increment in 

ΔFmean) was enhanced (control/pre-treated ΔFmean; 108.6±7.4%, 127.6±10.8%) but this effect 

was not statistically significant (P=0.18; paired t-test; n=4; day averages of 8 experiments; 

Figure 6.4A). 30µM SKF pre-treatment acted similarly, but at this concentration the effect 

was more consistent (11 out of 13 experimental pairs) and robust. Indeed the amplitude of the 

progesterone Ca
2+

 transient was significantly increased compared to parallel controls 

(control/pre-treated ΔFmean; 65.9±9.4%, 82.8±6.8%; P=0.01; paired t-test; n=8 (day averages) 

Figure 6.4A&C). In addition 30µM SKF increased the percentage of cells exhibiting a 

significant transient response to progesterone (control/pre-treated; 84.9±2.3%, 95.4±2.6%; 

P=0.02; paired t-test; n=8 (day averages) Figure 6.4D). Analysis of individual cell Ca
2+ 

transient responses revealed no difference in the frequency distribution and time taken to 

achieve ΔFmean amongst the control and pre-treated populations at both SKF concentrations 

(Figure 6.4B); furthermore SKF response amplitude showed no correlation with the 

subsequent progesterone response (Figure 6.4E). 
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Figure 6.3 SKF pre-treatment modifies the progesterone induced [Ca
2+

]i 

response. Cells were monitored for a minimum of 200s before pre-

treatment with either (A) 3µM or (B) 30µM SKF was applied (grey 

box). After a further 300s 3µM progesterone was applied (red arrow). 

Each graph shows individual cell responses (grey traces) and ΔFmean (red 

trace) for all cells in that experiment, (n=134, n=71 respectively). 
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Figure 6.4 Effect of SKF pre-treatment on progesterone induced [Ca
2+

]i 

transient at the PHN. In the following graphs cells were treated 30µM 

SKF (red) or 3µM SKF (blue) for 200s before stimulation with 3µM 

progesterone. Corresponding controls without 30µM SKF treatment are 

shown in (pink). (A) % ΔFmean compared to the parallel progesterone 

controls. (B) Effect of treatment on amplitude distribution of changes in 

[Ca
2+

]i. (C) Summary of results for progesterone treated and  SKF and 

progesterone. Each point represents the ΔFmean for all the cells of a 

single experiment (grey) and the average for all experiments (red). (D) 

Percentage of cells producing a significant increase in [Ca
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]i as a result 

of treatment application mean ± S.E.M. (E) Amplitude of 3µM 

progesterone-induced resting [Ca
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6.5.3 SKF diminishes the sustained [Ca
2+

]i response induced by progesterone 

at the PHN  

It has been suggested that in mammalian sperm cells the sustained component of the biphasic 

[Ca
2+

]i response to progesterone involves SOCE (Harper & Publicover, 2005). As an inhibitor 

of SOCC, SKF should therefore induce a negative effect on the sustained [Ca
2+

]i progesterone 

to implicate SOCE at the PHN. To assess the effect of SKF treatment on the sustained [Ca
2+

]i 

plateau we used the value of ΔFmean recorded 3min after progesterone application (average of 

3 consecutive points) comparing these with parallel progesterone controls. SKF pre-treatment 

reduced the amplitude of the sustained progesterone induced [Ca
2+

]i response in a dose 

dependent manner (Figure 6.5A). 3µM SKF reduced the sustained [Ca
2+

]i response by ~17% 

on average. Pre-treatment with 30µM SKF was more effective, reducing the amplitude of the 

sustained component in 11 out of 12 samples (Figure 6.5B), with a mean reduction of ~40% 

(P=0.19 & P=0.007; paired t-test; n=12 respectively). Frequency distribution of sustained 

[Ca
2+

]i response increments shows a bell shaped curve for both pre-treated and control 

populations, with a shift to the left observed in pre-treated cells (Figure 6.5C).  In addition 

pre-treatment with 30µM SKF induced a significant reduction in the proportion of cells in 

which a sustained [Ca
2+

]i response occured (P=0.011; paired t-test; n=12; Figure 6.5D).  
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Figure 6.5 Effect of SKF pre-treatment on sustained progesterone [Ca
2+

]i response. In the 

following graphs cells were treated 30µM SKF (red) or 3µM SKF (blue) for 200s before 

treatment with 3µM progesterone. (A) % increase in ΔFmean compared to parallel controls 

3 min after progesterone stimulation. (B) Summary of results for 12 pairs of control (left 

hand side) and 30µM SKF pre-treated experiments (right hand side). Each point 

represents the ΔFmean for all the cells of a single experiment. (C) Effect of 30µM SKF 

pre-treatment on amplitude distribution of 3µM progesterone induced sustained increases 

in [Ca
2+

]i (pink bars show control and red bars show the pre-treated cells, n=total number 

of cells analysed). (D) Percentage of cells producing a significant increase in [Ca
2+

]i as a 

result of 3µM progesterone application mean ± S.E.M, * P<0.05 compared to control, 

n=12. 
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6.5.3.1 Progesterone increases the SKF induced [Ca
2+

]i rise at the PHN 

To further determine the effect of SKF on the sustained [Ca
2+

]i response induced by 3µM 

progesterone we administered SKF after progesterone treatment. SKF was applied 4-5 after 

3µM progesterone treatment, upon cessation of the initial [Ca
2+

]i transient. In a manner 

congruous with the previous experiments, progesterone pre-treated samples were coupled 

with untreated controls. In 10 out of 12 experimental pairs, application of 30µM SKF to 

progesterone pre-treated samples induced an increase in ΔFmean at the PHN within 3 min of 

application (Figure 6.6A). Upon SKF stimulation pre-treated samples showed a transient 

increase in [Ca
2+

]i followed by a plateau or series of oscillations in ~85% cells that exceeded 

the Δ fluorescence levels observed before SKF application (Figure 6.6A&B), but this was 

insignificant (52.7±5.4%, 42.6±8.6% respectively; P=0.37; paired t-test; n=12; Figure 6.6C). 

Conversely, progesterone pre-treatment caused a significant increase of 55% in the 

proportion of the cell population generating a significant [Ca
2+

]i response to 30µM SKF 

(P=0.008; paired t-test; n=12; Figure 6.6F&E). Taken together this data indicates that 

progesterone pre-treatment triggers some of the Ca
2+

 response mechanisms essential to 

produce the SKF [Ca
2+

]i response. 
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Figure 6.6 Effect of progesterone pre-treatment on SKF induced [Ca
2+

]i response. Elevation of 

[Ca
2+

]i at the PHN in response to application of 30µM SKF (red arrow) without pre-treatment 

(A) and after 300s exposure to 3µM progesterone (B), individual cell responses (grey traces) 

and average cell response for that experiment (red trace). (C) ΔFmean of the SKF induced 

increase in [Ca
2+

]i . Each bar shows the mean amplitude ± S.E.M. for 12 sets of experiments 

(30-150 cells each). (D) Summary of results for 12 pairs of control (left hand side) and 3µM 

progesterone pre-treated experiments (right hand side). Each point represents the ΔFmean for all 

the cells of a single experiment. (E) Effect of 3µM progesterone pre-treatment on amplitude 

distribution of 30µM induced SKF increases in [Ca
2+

]i.  Pink bars shown control and red bars 

show the pre-treated cells, n= number of cells analysed. (F) Percentage of cells producing a 

significant increase in [Ca
2+

]i as a result of 30µM SKF application mean ± S.E.M, * P<0.05 

compared to control. 
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6.5.4 SKF significantly reduces hyperactivation in human sperm 

Analysis of the motility parameters by CASA shows that 30µM SKF significantly reduces the 

proportion of cells displaying hyperactivated motility compared to the untreated control  

(P=0.03; paired t-test; n=9 (day averages)). In addition the proportion of hyperactivated cells 

was lower in preparations exposed to 3µM progesterone and 30µM SKF (dual) compared to 

progesterone alone (P=0.01; paired t-test; n=9 (day averages)). CASA also determined a 

number of significant decreases in both 30µM treatment and dual treatment parameters 

compared to the untreated control including path velocity, progressive velocity and track 

speed (Table 6.1). It should be noted that both linearity and straightness were significantly 

decreased by SKF treatment and linearity was also reduced in dual treated samples compared 

to progesterone alone.  These changes are normally associated with hyperactivated motility 

and thus suggest SKF increases the complexity of cell paths that are not sufficient to be 

classified as hyperactivated by CASA parameters. These findings are consistent with 

Krasznai et al., 2006 suggesting a role for SKF inhibited SOCC’s in human sperm motility.  
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PARAMETER CONTROL S.E.M 30µM SKF S.E.M Progesterone S.E.M
30µM SKF & 

Progesterone
S.E.M UNITS

Hyperactivation 4.60 0.81 2.7* 2.15 5.90 1.85 3.7* 1.62 %

Path velocity VAP 65.34 3.66 57.22**** 3.15 55.26** 4.71 48.1* 3.13 µm/s

Prog. velocity VSL 56.20 3.94 47.40** 3.43 43.19* 4.85 35.32* 3.25 µm/s

Track Speed VCL 107.21 5.18 99.46*** 5.33 96.48* 8.02 85.62** 5.87 µm/s

Lateral Amplitude ALH 4.98 0.24 5.01 0.20 5.04 0.24 4.73 0.29 µm

Beat Frequency BCF 25.47 1.00 23.20* 0.87 22.94**** 1.67 23.77** 1.63 Hz

Straightness STR 82.55 1.72 77.55** 1.72 75* 2.53 73.70 4.04 %

Linearity LIN 51.72 1.82 46.48**** 1.66 44.5* 2.30 42.5* 2.71 %

Elongation 66.43 0.52 66.72 0.87 67.83 1.27 68.2* 0.70 %

Table 6.1 SKF reduces hyperactivation parameters as determined by CASA. Experiments were carried out in pairs, where cells from the 

same semen sample were analysed by CASA with and without treatment. Cells without treatment were prepared in sEBSS; control no 

treatment (purple). Treated cells were exposed to either30µM SKF (SKF, turquoise), 3µM progesterone (P, red), 30µM SKF & 3µM 

progesterone (SKF&P, pale blue). For each condition hyperactivation, path velocity (VCL), progressive velocity (VSL), track speed (VCL), 

lateral head amplitude (ALH), beat frequency (NCF), straightness (STR), linearity (LIN) and elongation were determined. * P<0.05, ** 

P<0.02, *** P<0.01, ****P<0.001; compared to CNT; paired t-test; n=3-7. * P<0.05; compared to P; paired t-test; n=10-12. 
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6.6 Discussion 

Ca
2+ plays an integral role in the regulation of a variety of physiological processes in a 

plethora of cell types (Berridge, 1997). As a result cells have developed numerous 

mechanisms for regulating intracellular Ca
2+

 signalling and homeostasis. Despite this 

evidence of analogous Ca
2+

 mobilisation pathways exist across all cell types and species 

(Berridge, 2001). Transient increases in cytosolic [Ca
2+

]i are just one essential component of 

intracellular Ca
2+

 regulation. Identified in a diverse range of cell systems, transient rises in 

[Ca
2+

]i result from either Ca
2+

 entry from the extracellular medium and/or Ca
2+

 release from 

intracellular Ca
2+

 stores (specific to cell type; Jan et al., 1999). In somatic cells store-

mediated transient [Ca
2+

]i increases often result from activation of  PLC leading to production 

of IP3 and subsequent activation of intracellular Ca
2+ 

stores resulting in an increase in [Ca
2+

]i 

(Berridge, 1993). This store release is often followed by a secondary Ca
2+

 influx through the 

activation of PM SOCE. This will maintain and elevate [Ca
2+

]i and replenish the intracellular 

Ca
2+

 stores leading to a fall in [Ca
2+

]i when the stimulus is withdrawn. In Chapter 5 we 

demonstrated the potential contribution of SOCE to the biphasic Ca
2+

 response in human 

sperm through treatment with the bimodal SOCE activator 2-APB. In addition we provided 

evidence for the presence of two components of SOCE machinery; Ca
2+

 store receptors STIM 

and PM receptors Orai in human sperm. Here we aimed to investigate the effect of SKF-

96365 on Ca
2+

 signalling in human sperm cells and its effect on the biphasic progesterone 

response, in particular the SOCE contribution to the sustained [Ca
2+

]i component. 

 

Initially identified as a selective blocker of RMCE in non-excitable cells (e.g. platelets, 

neutrophils and Hek cells) SKF-96365 is one of the most widely used inhibitors of CCE 

(SOCE; Merritt et al., 1990; Jan et al., 1999). In addition to effects on SOCE, SKF has also 



 
 

205 
 

been shown to exhibit effects on various other important components or regulators of the 

Ca
2+

-signalling machinery including high voltage activated (HVA) Ca
2+ 

channels (L-type; 

Merritt et al., 1990), K
+
 channels (Liu et al., 2007) and sarcoplasmic reticulum Ca

2+
-ATPase 

(Mason et al., 1993). However it is the transient receptor potential canonical type channels 

(TRPC) that are believed to be the principal target of SKF (Singh et al., 2010; Zhu et al., 

1998). Indeed micromolar concentrations of SKF (2-100µM) have been shown to inhibit 

TRPC facilitated Ca
2+

 influx in a number of biological systems (Zhu et al., 1998). In somatic 

cells TRPC channels have been shown to play a significant role in RMCE, with some 

contribution to SOCE regulation (Moran et al., 2004 demonstrated TRPC contribution to 

SOCE in neuronal cells). Therefore it seemed likely that upon the identification of TRPC 

channels in mature human sperm cells a PM receptor for SOCE had been identified (Trevino 

et al., 2001; Castellano et al., 2003). Indeed localisation of the TRPC receptors to the sperm 

flagellum suggested a convincing hypothesis for SOCE involvement in motility.  

 

The discovery of STIM and Orai molecules in 2005 and 2006 respectively (Liou et al., 2005; 

Feske et al., 2006; Vig et al., 2006; Zhang et al., 2006) as modulators of SOCE, and their 

subsequent identification in human sperm (Lefievre et al., 2012) has placed less significance 

on TRPC channels. However it should be noted that upon Ca
2+

 store depletion or agonist 

stimulation TRPC’s have been shown to interact with STIM receptors on the Ca
2+

 store 

membrane and facilitate SOCE (Liao et al., 2008; Salido et al., 2011). In addition there is 

mounting evidence suggesting a close relationship between TRPC’s and LVA T-type 

channels (Singh et al., 2010), which maybe expressed in sperm (Arnoult et al., 1996; 1998). 

This information coupled with experimental evidence that SKF inhibition of LVA T-type 

channels has a greater potency than that observed with TRPC’s when expressed in 
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heterologous systems, necessitates caution when analysing inhibitory effects of an antagonist 

(Singh et al., 2010). It should be noted that although the inhibitory effects of SKF on SOCC 

are well established and several studies have also identified increases in [Ca
2+

]i as result of 

SKF application a mechanism of action remains to be elucidated (Merritt et al., 1990; Jenner 

& Sage 2000; Jan et al., 1999). 

 

In the present chapter we demonstrate that SKF concentrations 3µM and 30µM both in the 

inhibitory range (2-100µM) induce a transient increase in [Ca
2+

]i at the PHN of human sperm 

with and without extracellular Ca
2+

 (Figure 6.1, 6.2A&G). However the increase in [Ca
2+

]i 

observed is significantly less than that induced by 3µM progesterone. Although the role of 

SKF as a CCE inhibitor is well documented there is also increasing evidence for multiple 

effects on SOCE and on other aspects of Ca
2+

 signalling (see previous). In 1996 Iouzalen et 

al., discovered that SKF inhibited intracellular Ca
2+

 pumps resulting in increased [Ca
2+

]i, 

whilst Thastrup et al., 1990 demonstrated that SKF released Ca
2+

 from thapsigargin sensitive 

intracellular Ca
2+

 stores in thymic lymphocytes. Leung et al., 1996 even observed an SKF 

dependent release of intracellular Ca
2+

 with subsequent SOCE upon addition of Ca
2+

 to the 

extracellular medium in human leukemic cells. Taken together these results are indicative of 

multiple modes of action of SKF-96365, which can include increasing [Ca
2+

]i through 

activation of SOCE. However it should be noted that SKF has also been found to affect 

multiple Ca
2+

 channels in somatic cells. 

 

We also investigated the effect of SKF treatment on the biphasic progesterone induced 

increase in [Ca
2+

]i. We analysed the effect of 3µM and 30µM SKF exposure on both the 

progesterone [Ca
2+

]i transient and sustained responses. It should be noted that at both 
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concentrations SKF exhibited similar responses. However 30µM SKF exhibited more 

potency. When cells were exposed to SKF (30µM) the transient increase in [Ca
2+

]i induced by 

progesterone was enhanced significantly ~25% compared to parallel controls. In contrast 

SKF exposure significantly reduced the sustained [Ca
2+

]i component by ~40%, suggesting 

dual modes of action of SKF on this response. From our observations with 2-APB (chapter 5 

it is likely that the inhibition of the sustained progesterone [Ca
2+

]i is the result of SOCE 

inhibition at the PM; however the transient [Ca
2+

]i elevation is likely due to SKF effects on 

other Ca
2+

 channels. Similar effects have also been observed with SKF pre-treatment in 

neutrophils and endothelium; typically histidine induces a biphasic increase in [Ca
2+

]i similar 

to that observed in sperm by progesterone (Merritt et al., 1999; Jenner & Sage, 2000). Cells 

treated with SKF prior to histidine stimulation had elevated transient phases and reduced 

sustained [Ca
2+

]i responses (Merritt et al., 1999; Jenner & Sage, 2000).  Together these data 

indicate a specific method of action for SKF in agonist induced biphasic [Ca
2+

]i responses, 

which may not be specific to sperm or progesterone. 

 
Collectively we have found that SKF elevates [Ca

2+
]i at the PHN in a dose dependent manner 

which is independent of extracellular Ca
2+

. Pre-treatment of cells with 3µM and 30µM SKF 

enhances the transient Ca
2+

 response induced by 3µM progesterone application whilst the 

sustained response is inhibited.  However only the changes in [Ca
2+

]i induced by 30µM SKF 

significantly differ from the parallel progesterone controls. Taken together these findings 

suggest SKF acts to enhance activity of a Ca
2+

 channel at the PHN and/or release of stored 

Ca
2+

 during the transient component of the progesterone response through an SKF sensitive 

channel, but inhibits the subsequent sustained [Ca
2+

]i increase via inhibition of SOCE. 
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7.1 Abstract 

Store Operated Ca
2+

 Entry (SOCE) facilitates replenishment of intracellular Ca
2+

 stores from 

extracellular Ca
2+

 influx. This process requires communication between Ca
2+

 stores and 

plasma membrane CRAC channels. In somatic cells stromal interaction molecules (STIM) 

have been identified as the Ca
2+

 sensor present in the ER (Liou et al., 2005), which interact 

with the PM CRAC channel Orai (Feske et al., 2006; Vig et al., 2006; Zhang et al., 2006). 

Recently we reported the presence of SOCE receptors STIM and Orai in human sperm 

(Lefievre et al., 2012). Mammalian STIM and Orai isoforms displayed regional localisation 

but all were expressed at the PHN and midpiece of mature sperm; where evidence from 

previous chapters suggests a second Ca
2+

 store is located (Figure 7.2). Due to the absence of 

PM machinery required for endocytotic uptake, to date SOCE manipulation in human sperm 

has been limited to cell permeable biochemical modulators. Recent identification of cell 

penetrating peptides (CPPs) has provided a novel new approach. In bovine sperm these 

peptides have been shown to deliver bioactive agents (bioportides) into intracellular 

compartments through translocation of the cell membrane. Here we report the effects of 

recently developed KIKKK CPPs on basal [Ca
2+

]i and the biphasic progesterone induced 

[Ca
2+

]i. Single cell Ca
2+

 imaging revealed differential effects of CPPs on basal [Ca
2+

]i, 

however KIKKK containing CPPs increased the number of cells in which a monophasic, 

maintained [Ca
2+

]i increase occurred and significantly decreased the number of cells that 

produced a biphasic [Ca
2+

]i profile in response to 3µM progesterone stimulation. Inability of 

a scrambled CPP control to replicate this inhibition indicates the observed response is the 

result of CPP effects on STIM/Orai interaction and not a result of CPP PM translocation, 

implicating SOCE in [Ca
2+

]i elevations associated with progesterone. 
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7.2 Introduction 

Traditionally patch-clamp studies have been used to detect the biophysically specific ICRAC 

current associated with SOCE in somatic cells (chapter 1.6.3; Feske et al., 2006; Prakriya et 

al., 2006; Yeromin et al., 2006). At present this method has detected only a handful of 

channels in human sperm, including a single Ca
2+

 permeable channel, CatSper (Ren et al., 

2001; Strunker et al., 2011). As discussed previously CatSper is a pHi-regulated channel 

expressed solely in the sperm flagellum. Sensitive to pHi, membrane potential and a range of 

small organic molecules, CatSper acts as a polymodal chemosensor (Brenker et al., 2012). 

Recent studies have identified a role for CatSper in the progesterone induced Ca
2+

 response in 

human sperm (Lishko et al., 2011; Strunker et al., 2011). However blockage of CatSper 

mediated Ca
2+

 entry with NNC-55-0396 is insufficient to inhibit all components of 

progesterone induced biphasic Ca
2+

 response, suggesting alternative methods of Ca
2+

 

mobilisation are present in human sperm. 

 

In mammalian systems sperm are deposited in the female tract which they must first navigate 

to locate and fertilise the oocyte. External cues from both the tract and cumulus-oocyte 

complex are essential in regulating a variety of sperm activities in particular hyperactivated 

motility through Ca
2+

 signalling (Publicover et al., 2007). We have recently shown that 

CatSper activation through pHi and  progesterone, which induce sustained elevations in 

[Ca
2+

]i did not induce significant hyperactivation, the asymmetrical flagella beat required for 

both progression down the oviduct and penetration of the ZP (Alasmari et al., 2013). 

Treatment of cells with 5µM thimerosal (a known mobiliser of stored Ca
2+

) induced both 

sustained elevations in [Ca
2+

]i and hyperactivation which was insensitive to treatment with 

CatSper current blocker NNC-55-0336 (Alasmari et al., 2013; chapter 4).  
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Blackmore (1993) originally identified a role for CCE (SOCE) in human sperm, while 

investigating the effects of thapsigargin (SERCA inhibitor) he observed a sustained [Ca
2+

]i 

increase due to Ca
2+

 entry from the extracellular environment; abolished when performed in 

EGTA-buffered media (Blackmore, 1993). Studies by other groups have also identified Ca
2+

 

release from intracellular stores under ‘Ca
2+

-free’ conditions when treated with thapsigargin 

or the SPCA inhibitor bisphenol (Harper et al., 2005; Rossato et al., 2001; Williams & Ford, 

2003). These results corroborate the hypothesis that intracellular Ca
2+

 stores occur in human 

sperm though they are small and apparently depleted in Ca
2+

 buffered media. However this 

Ca
2+

 mobilisation is apparently sufficient to induce SOCE and possibly contribute to the 

action of progesterone. SOCE has currently been detected most notably in mouse (O’Toole et 

al., 2000), sheep (Dragileva et al., 1999), and sea urchin sperm (Gonzalez-Martinez et al., 

2004; Ardón et al., 2009).  

 

SOCE requires both a membrane Ca
2+

 permeable channel and a mechanism to monitor stored 

[Ca
2+

]i. In somatic cells TRPCs were initially thought to facilitate SOCE but identification of 

STIM and Orai in 2005 and 2006 respectively gave a new mechanism of action (Liou et al., 

2005; Feske et al., 2006). STIM proteins act as stored Ca
2+

 sensor on the ER and Orai 

proteins form a Ca
2+

 sensitive CRAC channel in the PM discussed previously (chapter 1.6.3). 

Since discovery there has been rapid progress in mapping domains and functional interaction 

between STIM and Orai. Under basal conditions STIM proteins reside in the ER membrane, 

upon Ca
2+

 store depletion Ca
2+

 molecules dissociate from the EF-hand of STIM1 causing a 

conformational rearrangement in EF-hand-SAM triggering oligomerization (Figure 7.1; Muik 

et al., 2012). The subsequent translocation of STIM1 dimers adjacent to the PM brings them  
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N-Terminus C-Terminus 

Figure 7.1 Diagrammatic representation of STIM1 domains and potential mechanism for SOAR activation of Orai, adapted from Kim & 

Muallem, 2011. STIM molecules are ~685 amino acids in length comprising of; K, lysine-rich domain; S/P, proline and serine rich segment; 

ERM, Ezrin/radixin/moesin; CMD, CRAC modulatory domain; SOAR, STIM1-Orai1 activating region; cc, coiled-coil (1,2&3); CC2, 

contains the conserved polybasic sequence KIKKK; TM, transmembrane portion; SAM, sterile α motif and EF hand involved in Ca
2+

 

binding. 
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into close proximity with Orai tetramers (Penna et al., 2008). There is a continuing debate on 

the resting conformation of Orai, but biochemical analysis show a tetrameric structure in its 

activated state (Ji et al., 2008; Penna et al., 2008). Studies have shown that STIM1 is 

obligatory for Orai function, in particular the SOAR domain (amino acids 344-442) 

encompassing CC2 and CC3 appears to be the minimum sequence required to induce fully 

activated Orai (Yuan et al., 2009). SOAR regions of both STIM1 dimer molecules bind to 

either Orai’s cytoplasmic N or C terminus to induce CRAC channel activation (Figure 7.1). 

Within the SOAR region there is a highly conserved polybasic region (amino acids 382-387; 

KIKKKR) which may electrostatically interact with the amphipathically coiled acidic Orai 

domains (Calloway et al., 2010; Soboloff et al., 2012).  

 

Recently we have detected the SOCE proteins STIM and Orai in human sperm and shown 

variability in isoform distribution at the acrosome, PHN and midpiece (Lefievre et al., 2012). 

Studies of the intracellular Ca
2+

 signalling cascade involved in sperm SOCE have been 

restricted due to the static nature of the membrane. Unlike somatic cells the PM of sperm is 

unable to actively recycle lipids thus endocytosis of modulatory peptides is inhibited (Gadella 

& Evans, 2011). To date studies have been limited to either demembranated models or 

observing the effects of cell permeable biochemical modulators on [Ca
2+

]i. Demembranated 

models facilitate direct accessibility to intracellular targets, removal of the PM by detergents 

such as triton X-100 can be detrimental to protein function (Jones et al., 2013). Our own Ca
2+

 

imaging experiments revealed low doses of 2-APB (<10µM) potentiate CCE through STIM: 

SOC interaction, while simultaneously inhibiting CatSper current (Lefievre et al., 2012). 

Recent development of cell penetrating peptides (CPPs) has provided an alternative 

investigative tool to directly interact with STIM channels themselves.  
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CPPs are small water-soluble peptide sequences typically 30-35 amino acid residues in length 

with the ability to penetrate cells without damaging the PM (Madani et al., 2011). 

Furthermore in somatic cells CPPs enable transport of large protein cargos across the PM as 

non-covalent complexes (Lukanowska et al., 2013). In human sperm chemically 

heterogeneous CPPs have been shown to penetrate the PM and accumulate within distinct 

intracellular compartments without having any detrimental effects on motility (Jones et al., 

2013). However when compared to somatic cells the uptake of protein cargos associated with 

CPPs is less successful in human sperm (Jones et al., 2013), which is likely the result of 

differences in PM composition. Unlike somatic cells the PM of mammalian sperm contains a 

significant concentration of polyunsaturated fatty acids and plasmalogen, which contributes 

to the cells inability to endocytose CPPs (Lenzi et al., 1996). Jones et al., (2013) concluded 

that without clathrin-mediated endocytosis the primary mechanism of CPP uptake across the 

PM in mammalian sperm is direct translocation of cationic CPPs. Translocation is a rapid 

process dependent on the CPP sequence used, with certain sequences targeted towards 

specific intracellular organelles. Here we describe the effects on [Ca
2+

]i and the biphasic 

progesterone response of CPP’s targeted to the Orai binding region of the STIM1 protein in 

human sperm including KQLLVAKEGAEKIKKKRNTLFG, which encompasses the 

polybasic CC2 domain of SOAR (amino acids 370-392). 
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7.3 Chapter aims 

The aims of this chapter were to observe the effects of KIKKK domain containing CPPs on 

basal [Ca
2+

]i in capacitated  human sperm. Following this we wanted to determine if pre-

treatment and continued exposure to KIKKK domain containing CPPs modified the 

characteristic biphasic [Ca
2+

]i progesterone response.   
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7.4 Materials and Methods 

7.4.1 Materials 

The basic STIM peptide KIKKK(STIM1
371-392

), an α-aminoisobutyric acid (Aib) containing 

analogue (DArg, Aib
10

 STIM1
371-392

) and a scrambled control peptide were developed by 

Pantechnia (University of Wolverhampton). The basic KIKKK(STIM1
371-392

) peptide is 

composed of the amino acid sequence KQLLVAKEGAEKIKKKRNTLF but in the 

analogue the alanine at position 10 was substituted with an an α-aminoisobutyric acid (Aib) 

to enhance helicity (D-ArgKQLLVAKEGAibEKIKKKRNTLF). The scrambled control 

peptide contained the amino acids of the original peptide in a scrambled sequence 

LKNKFKGVKLAEIEKQALKGTR. For all other materials see chapter 2.1.  

 

7.4.2 Methods 

7.4.2.1 Cell preparation 

Human semen was collected and prepared as in chapter 2.3, however for this chapter BSA 

was not added to the sEBSS as it was found to inhibit peptide translocation. 

 

7.4.2.2 Cell incubation and capacitation 

Sperm harvested by swim up procedure were incubated and capacitated as in chapter 2.4 in 

the absence of BSA. 

 

7.4.2.3 Single cell Imaging  

Cells were left to capacitate for 6 hours at 6 x10
6
cells/ml in sEBSS containing no BSA, the 

human sperm cell preparation was then diluted to 3x10
6
cells/ml with sEBSS containing no 

BSA prior to single cell imaging. All imaging experiments for this chapter were conducted as 
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per chapter 2.6.1 calcium imaging with Oregon Green-BAPTA-1AM with the single 

exception that no BSA was added to the sEBSS. 

 

7.4.3 Analysis 

All calcium imaging data was initially normalised as in chapter 2.6.1.2.  

 

7.4.3.1 Statistical analysis of agonist response  

Peak amplitude and individual cell response significance were calculated as in chapter 2.6. 

Time to peak amplitude was calculated using the same formula as peak amplitude, time of 

agonist addition was subtracted from time at peak amplitude, where a second treatment was 

applied a second ‘control’ period was identified as the 4 frames prior to second treatment 

addition. All categories were deemed statistically significant if P<0.5 in a paired t-test. 

 

7.4.3.2 Assessment of the CPP effects on the biphasic Ca
2+

 response 

Initial attempts to use excel logical analysis as an objective method to determine the 

percentage of cells that produce a biphasic [Ca
2+

]i response to progesterone application were 

ineffective due to irregularity in the transient size and duration. As a result we characterised 

the cells displaying biphasic [Ca
2+

]i by eye, using the time fluorescence intensity plots. Cell 

responses were grouped into two categories; the well characterised biphasic response (Figure 

7.2A) or a steady increase in [Ca
2+

]i that plateaus at a level above that of the control period 

(monophasic Ca
2+

 response; Figure 7.2B). Only cells where a defined transient element is not 

clearly definable were categorised as sustained elevators. In these cells we calculated the 

peak Ca
2+ 

response as we would the typical Ca
2+

 transient as this was achieved within the 

same time-frame. Sustained response levels were also determined 3min post progesterone 

application as with other experiments. 
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7.2 Characterisation of progesterone induced [Ca
2+

]i responses. 

The [Ca
2+

]i responses of all cells treated with 3µM 

progesterone were characterised as either (A) biphasic or (B) 

sustained elevations. Each grey trace represents the [Ca
2+

]i 

trace for an individual cell.  

 

A 
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7.5 Results 

In mammalian sperm evidence indicates absence of endocytotic machinery and inability to 

form lysosomes to internalise CPPs (Jones et al., 2013; Gadella & Evans, 2011).  To date 

CPP effects and import mechanisms have been reported in bovine sperm; where direct 

membrane translocation facilitates CPP uptake that enables CCP interaction with intracellular 

organelles (Jones et al., 2013). In human sperm STIM 1 and STIM 2 have been localised to 

the acrosomal and anterior midpiece/neck regions (Lefievre et al., 2012). Manipulation of 

SOCE has been limited to cell permeable Ca
2+ 

modulators until the recent development of 

two STIM1 targeting cell penetrating peptides. KIKKK(STIM1
371-392

)  and it’s more stable 

analogue (DArg, Aib
10

 STIM1
371-392

) both contain 20 amino acids of the CC2 region of 

STIM1 implicated in Orai binding and CRAC channel activation. A scrambled control 

peptide contains the same amino acids in a jumbled sequence to observe whether Ca
2+

 effects 

seen are CC2 binding specificity or the result of CPP translocation. 

 

7.5.1 [Ca
2+

]i responses to Cell Penetrating Peptides (CPP)  

Application of 5µM STIM1 CPP KIKKK(STIM
371-392

)  or 5µM of the scrambled control to 

resting sperm populations induced a small decrease in [Ca
2+

]i which appeared to return to 

basal control level within approximately 120 seconds (Figure 7.3A&B; 7.4A). This response 

was visible as a transient decrease in ~ 60% (n=533) and ~70% (n=548) of single cell traces 

of STIM1 peptide KIKKK(STIM
371-392

)  and the scrambled control respectively (Figure 

7.4A&B). In contrast when cells were treated with 5µM of the STIM1 analogue CPP a small 

increase in resting [Ca
2+

]i was observed within ~70 seconds, which remained elevated above 

basal levels (Figure 7.3C). Figure 7.3 shows individual cell response traces which clearly  
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Figure 7.3 [Ca
2+

]i responses of individual cells to CPPs. Each 

graph shows a single experiment Rtot (red trace) and individual 

cell traces (grey traces). Capacitated sperm were first perfused 

with sEBSS, then (A) 5µM KIKKK CPP (STIM1
371-392

) (B) 

5µM scrambled CPP or (C) 5µM KIKKK analogue CPP 

(DArg, Aib
10

 STIM1
371-392

) were added to the perfusion media 

at 220 seconds (grey box). 

A B 
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Figure 7.4 Effects of CPPs on resting [Ca
2+

]i. 

In the following graphs 5µM KIKKK CPP 

(blue), 5µM scrambled CPP (green) & 5µM 

KIKKK analogue CPP (orange) are plotted. 

(A) Maximum CCP ΔFmean response 

increment. (B) Proportion of individual cell 

traces where a decrease below control is 

observed. (C) Frequency of CCP ΔFmean 

response increment, (n= number of cells 

analysed) (D) Time to peak CCP ΔFmean 

response. * P<0.05; paired t-test; compared 

to scrambled CPP control; n=12 experiments. 

 

* 

n=534 

n=552 

n=707 
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identify CPP induced [Ca
2+

]i effects. Average traces are representative of the [Ca
2+

]i response 

of the population.  

 

Despite observable CPP effects on [Ca
2+

]i at the PHN, treatment with either 5µM STIM1 

KIKKK(STIM
371-392

), KIKKK analogue  or the scrambled CPP did not induce a significant 

[Ca
2+

]i response when compared with the control period (Figure 7.4A, P>0.5; paired t-test, 

n=6). The frequency distribution of single cell responses revealed a wider distribution of 5µM 

STIM1 KIKKK analogue CPP responses (Figure 7.4C), with a greater proportion of the cells 

displaying an increase in [Ca
2+

]i in response to the CPP. Cells treated with the scrambled CPP 

display the greatest decreases in [Ca
2+

]i in response to treatment; ~70% of the cells observed 

displayed a clearly discernable decrease, which exceeded cells treated with KIKKK CPP and 

KIKKK analogue CPP (P=0.06 & P=0.004 respectively; paired t-test; unpaired t-test 

respectively; n=12). In addition the mean time from CPP application to peak [Ca
2+

]i response 

differed between treatments (Figure 7.4D). Cells treated with STIM1 KIKKK analogue reach 

ΔFmean the quickest followed by cells exposed to the scrambled CPP and finally KIKKK CPP 

treated populations (Figure 7.4D). This may be due to different membrane translocation times 

amongst the CPPs, however this difference was statistically insignificant (Figure 7.4D; 

P>0.5; paired t-test, n=6).  

 

 

7.5.2 STIM1 targeted CPPs inhibit the biphasic progesterone [Ca
2+

]i response  

The biphasic [Ca
2+

]i response of human sperm to 3µM progesterone is well established. 

Kirkman Brown et al., 2000 reported that >90% of cells in a population generated an initial 

transient peak in [Ca
2+

]i followed by a second smaller sustained [Ca
2+

]i rise. Treatment of 
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cells with 5µM CPP KIKKK(STIM
371-392

) and scrambled control have already shown an initial 

transient decrease in [Ca
2+

]i, whilst conversely treatment with 5µM of the KIKKK analogue 

CPP showed a sustained elevation of [Ca
2+

]i at the PHN of human sperm (chapter 7.5.1). 

When CPP treated cells were then exposed to 3µM progesterone there was a consistent 

reduction in the percentage of cells displaying a biphasic [Ca
2+

]i response (Figure 7.6A&B). 

Application of 5µM KIKKK CPP or 5µM KIKKK analogue CPP prior to stimulation with 

3µM progesterone did not affect the proportion responsive cells; however pre-treatment did 

significantly increase the proportion of cells producing the monophasic [Ca
2+

]i response 

outlined in Figure 7.2B (P=0.05 & P=0.04 respectively; paired t-test; n=12; compared to 

progesterone control; Figure 7.6) by ~10% compared to parallel controls (Figure 7.6C) 

although this was not observable in the average ΔFmean trace (Figure 7.5). Individual cell 

responses were categorised as either biphasic if an initial transient [Ca
2+

]i increase followed 

by a slower sustained elevation was present (Figure 7.2A), or sustained elevators with no 

distinguishable transient and a sustained elevated plateau was observed (Figure 7.2B). In 

these cells [Ca
2+

]i responses were ~20-30 seconds slower (Figure 7.5B&C).  Conversely 

application of the scrambled STIM1 CPP control had no effect on the proportion of cells 

displaying a biphasic [Ca
2+

]i progesterone response (P=0.99; paired t-test; n=12; compared to 

progesterone; Figure 7.6C). This suggests that the differences in progesterone response 

profile are the result of KIKKK containing CPP interactions with STIM1 receptors and not 

the result of CPP translocation and cytoplasmic presence. 
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Figure 7.5 Effects of CPPs on [Ca
2+

]i to Progesterone. Each graph shows a single experiment Rtot (red trace) and individual cell traces (grey traces). 

Capacitated sperm were first perfused with sEBSS (A) then (B) 5µM KIKKK CPP (STIM1
371-392

) (C) 5µM scrambled CPP or (D) 5µM KIKKK 

analogue CPP (DArg, Aib
10

 STIM1
371-392

) were added to the perfusion media at 220 seconds (grey box) before 3µM progesterone is added (red arrow). 
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Figure 7.6 CPP effects on the [Ca2+]i progesterone transient. Summary of results for control % monophasic [Ca2+]i 

responses (left hand side) and CPP induced changes in the proportion of cells producing a monophasic [Ca2+]i response. 

Each point represents the percentage of cells treated with 5µM analogue CPP (A) or 5µM KIKKK CPP (B). The red 

trace is the average of all experiments. For each subsequent graph cells the values for with no pre-treatment (Red), 5µM 

STIM1 KIKKK CPP (Blue), 5µM STIM1 KIKKK analogue CPP & 5µM Scrambled CPP (Green) are plotted. 

(C)Increase in the proportion of cells displaying a sustained [Ca2+]i elevation (with no clear transient) in response to 

progesterone; expressed as a percentage of parallel progesterone control experiments. (D) Rtot traces for all treatments. 

(E) ΔFmean for 3µM progesterone transient amplitude. (F) Frequency of transient progesterone response increment, (n= 

number of cells analysed). * P<0.05; paired t-test; compared to progesterone; * P<0.05; paired t-test; compared to 

scrambled CPP; n=12 experiments. 
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7.5.2.1 CPP effects on the progesterone induced [Ca
2+

]i transient  

A transient [Ca
2+

]i increase of ~65%  is observed in ~95% of cells stimulated with 3µM 

progesterone under control conditions. Pre-treatment of cells with 5µM of any one of the 

three CPPs defined here prior to 3µM progesterone exposure caused a consistent observable 

but non-significant decrease in progesterone transient amplitude compared to parallel controls 

(for representative Rtot’s see Figure 7.6D; KIKKK: P=0.90, Analogue: P=0.27 & scrambled: 

P=0.57 ; paired t-test; compared to progesterone control; n=12). Cells treated with 5µM 

KIKKK analogue CPP display the greatest transient amplitude decrease of ~20% in ~80% of 

cells (n=707) compared to parallel controls, which is significantly less than cells treated with 

the scrambled CPP control (P= 0.044; paired t-test; compared to scrambled control; n=12, 

Figure 7.6E). Progesterone transient amplitude distribution (Figure 7.6F) showed that the 

proportion of progesterone transient amplitudes ≥110% ΔF was lower in cells pre-treated 

with the KIKKK CPP and scrambled CPP treated cells.  

 

 

7.5.2.2 CPP effects on the sustained progesterone induced [Ca
2+

]i response 

In control populations treated with 3µM progesterone typically there is a sustained elevation 

of [Ca
2+

]i above resting levels that succeeds  the initial transient. To assess the effect of pre-

treatment with CPPs on this [Ca
2+

]i plateau we used the value of ΔFmean recorded 4min after 

progesterone application. Pre-treatment with CPPs induced no significant changes in the 

progesterone induced sustained [Ca
2+

]i component at the PHN compared to parallel untreated 

controls (KIKKK P=0.70, analogue P=0.23, scrambled P=0.68; paired t-test; compared to 

progesterone; n=12; Figure 7.7A). However pre-treatment with 5µM KIKKK CPP 

significantly elevated the sustained progesterone [Ca
2+

]i increase ~10% and 15% more than 

scrambled and KIKKK analogue CPPs respectively (P=0.022 & P=0.015; paired t-test; 
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compared to KIKKK; n=12; Figure 7.7A), but this did not correlate with the initial [Ca
2+

]i 

response to CPP alone (P=0.99). This is also observed in the distribution of the sustained 

[Ca
2+

]i responses, where an  increased proportion of smaller sustained amplitudes is evident 

in populations pre-treated with CCP’s (Figure 7.7B). Here we show that there are significant 

differences between the KIKKK, KIKKK analogue and scrambled CPP effects on sustained 

[Ca
2+

]i responses and suggest that these are the result of different interactions with STIM1 at 

the PHN of human sperm. 
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Figure 7.7 The effects of CPPs on the sustained [Ca
2+

]i 

progesterone response. In the following graphs cells were treated 

with either 5µM KIKKK CPP (blue), 5µM scrambled CPP 

(green), 5µM KIKKK analogue CPP (orange) or control no 

treatment (red) for 300s prior to 3µM progesterone treatment. (A) 

ΔFmean 240 seconds after progesterone application. (B) Frequency 

of sustained progesterone response increment, (n= number of cells 

analysed). * P<0.05; paired t-test; compared to KIKKK CPP; 

n=12 experiments. 
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7.6 Discussion 

The plasma membrane (PM) composition of mammalian sperm has historically been a barrier 

to the study of intracellular signalling processes. Highly specialised, the PM of sperm differs 

significantly from the typical passive phospholipid bilayer observed in somatic cells (Lenzi et 

al., 1996). In fact successful fertilisation is dependent on the unique PM structure which is 

integral in capacitation, AR and sperm-oocyte fusion. Capacitation itself is an important 

regulator of PM conformation, as PM lipid maturation is only achieved after epididymal 

passage (Salvolini et al., 2013; Gadella & Evans, 2011). Studies on the lipid composition of 

mammalian sperm have identified an unusually high concentration of polyunsaturated fatty 

acids (PUFA) and a sperm specific phospholipid plasmalogen (Lenzi et al., 1996). In addition 

sperm PM lack the cellular machinery to undergo endocytosis of extracellular molecules 

observed in somatic cells (Jones et al., 2013). Hence it was uncertain whether CPPs, effective 

bioactive delivery agents in somatic cells could penetrate the PM of mammalian sperm.  

 

CPPs have been shown to penetrate the PM of somatic cells in vivo and in vitro at low 

micromolar concentrations without inducing any permanent damage, but mechanisms of PM 

uptake are still unresolved (Madani et al., 2011; Jones et al., 2013). In cells capable of 

endocytosis this is the favoured CPP entry route proposed, conversely in cells incapable of 

endocytosis direct translocation is supported (Duchardt et al., 2007; Johnsson et al., 2011; 

Madani et al., 2011). In studies of CCP uptake in bovine sperm cytochemical investigations 

confirmed absence of lysosomes and endocytotic machinery for both macropinocytosis and 

clathrin-mediated endocytosis; indicating direct translocation as the primary mechanism for 

CPP uptake (Jones et al., 2013). Furthermore PM translocation was rapid, saturable and 

ultimately dependent on the CPP sequence used. Of the six CPPs used by Jones et al., (2013) 
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C105Y was the most efficient delivery vector in bovine sperm; assumed due to a favourable 

incorporation into the specialised lipid membrane (Rhee & Davis, 2006). Jones and 

colleagues’ further studies on the effects of CPPs on human and bovine cell viability and 

motility showed no negative effect of CPP direct translocation on sperm function. Indeed 

penetratin, another protein derived CPP tested, increased cell viability (Madani et al., 2011; 

Derossi et al., 1994). Their observations highlighted sperm as a good model system for 

investigating direct translocation of CPPs due to the absence of an alternative PM entry 

mechanism. 

 

The specialised PM of human sperm provides an effective barrier against the extracellular 

environment (Madani et al., 2011). Absence of endocytic machinery restricts the size of 

molecular compounds able to penetrate the cell under normal physiological conditions. As a 

result the study of intracellular [Ca
2+

]i signalling cascades has until recently been limited to 

available cell permeable modulators of Ca
2+

 function or removal of the cell membrane (Howl 

et al., 2012). CPPs provide an alternative mechanism of vector delivery; in somatic cells they 

facilitate the uptake of large hydrophilic molecules (Linberg et al., 2011; Madani et al., 

2011). In bovine sperm when coupled to large peptides CPP uptake was inhibited, likely the 

result of PM direct translocation limitations (Jones et al., 2013). However CPPs coupled to 

small peptides were not only taken up by bovine sperm but also displayed targeted organelle 

localisation.  

 

Prior to the studies reported here it was uncertain whether CPPs delivering targeted peptide 

sequences (bioportides) would readily translocate the PM of human sperm and influence 

[Ca
2+

]i. Under basal conditions we demonstrated that application of CPPs coupled to targeted 
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peptide sequences (otherwise PM impermeable) had differential effects on [Ca
2+

]i 

(Lukanowska et al., 2013). As the CPP component (penetratin) was the same for all three 

peptides tested, the differences in [Ca
2+

]i responses observed must be the result of the 

different peptide sequences attached. The two peptides which induced a decrease in [Ca
2+

]i 

(KIKKK CPP and scrambled CPP) were both composed of the same amino acids. As the 

decrease in [Ca
2+

]i observed was transient and returned to basal control levels it could be the 

result of cytoplasmic Ca
2+

 loss during peptide translocation across the membrane or a 

temporary effect on pHi. One current model for direct PM translocation implies the formation 

of PM pores (Alves et al., 2011). In contrast the KIKKK analogue CPP induced an increase 

in [Ca
2+

]i which remained elevated above basal levels. Unlike the other two CPPs used the 

KIKKK analogue contained α-aminoisobutyric acid and an extended DArg N-terminal to 

enhance helicity, stability and cellular penetration. There are three potential explanations for 

the increase in [Ca
2+

]i observed; firstly an influx in extracellular Ca
2+

 during the 

translocation, secondly the CPP could induce Ca
2+

 entry through Orai at the PM or finally the 

CPP could activate Ca
2+

 release from intracellular stores. Induced Ca
2+ 

entry through Orai 

activation appears the most likely explanation since the main difference between the other 

two CPPs used in this study is that stabilisation of helical structure in this peptide should 

enhance interaction with the binding domain on Orai. Furthermore, the sustained effect of the 

KIKKK analogue is not consistent with an effect exerted during translocation. At present 

there is insufficient evidence to ultimately determine the mechanism responsible.   

 

The biphasic [Ca
2+

]i increase associated with progesterone stimulation is well characterised 

(Kirkman-Brown et al., 2000; 2003), however the mechanisms underlying the response 

appear complicated and remain to be clarified. Identification of the PM progesterone receptor 

CatSper by Strunker et al., (2011) finally provided a mechanism for external Ca
2+

 influx; 
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however the CatSper current blocker NNC-55-0396 failed to abolish the signal entirely 

(Jensen & Publicover, 2012; Strunker et al., 2011; Sagare-Patil et al. 2012). The inability of 

CatSper channels to account for the biphasic [Ca
2+

]i response suggests participation of other 

components of Ca
2+

 signalling, including release of intracellular stored Ca
2+

 (chapters 3, 

4&5; Lefievre et al., 2012; Alasmari et al., 2013) and a mechanism for Ca
2+

 store 

replenishment. 

 

In previous chapters we provide evidence for the existence of a Ca
2+

 channel at the PHN of 

human sperm that is distinct from the mitochondria of the midpiece. Here we report that 

KIKKK containing CPPs have a significant effect on the distinctive biphasic progesterone 

induced [Ca
2+

]i profile. Application of both KIKKK containing CPPs (KIKKK CPP and 

analogue CPP) caused a significant increase in the proportion of cells in which the response 

to progesterone consisted of a rapid rise followed by a monophasic [Ca
2+

]i plateau (Figure 

7.4B) instead of the well-characterised biphasic response (Figure 7.3A). Thus it appears that 

in a subset of cells, KIKKK analogue CPP can bind and constitutively activate Orai PM 

SOCE influx and both KIKKK containing STIM1 CPPs can maintain SOCE following 

agonist-induced store mobilisation. It should be noted that a similar response is not observed 

in those cells treated with the scrambled CPP which does not contain the intact KIKKK 

sequence, indicating that the response is not the result of the CPP but of the KIKKK 

containing peptides.   

 

In summary our findings demonstrate that KIKKK containing CPPs induce differential 

effects on basal [Ca
2+

]i. It is likely that these effects are the result of CPP direct translocation 

across the PM but further study needs to be undertaken in human sperm. CPP effects on the 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2605.2012.01294.x/full#b13
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biphasic progesterone response indicate a role for SOCE in the formation of the progesterone 

transient, STIM and Orai interaction are fundamental and modulation with engineered 

bioportides can significantly alter [Ca
2+

]i (Lukanowska et al., 2013). Thus bioportides are an 

effective vector for delivery of small otherwise impermeable bioactive peptides, which could 

be utilised for modulation of other intracellular signalling pathways (Howl et al., 2012; 

Costello et al., 2009).  
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8.1 Abstract 

The Ca
2+

 storage potential of mitochondria is well established in somatic cells. At resting 

physiological conditions mitochondrial Ca
2+

 contribution is minimal, but when the system is 

stressed under pathological conditions or due to pharmacological inhibition of Ca
2+

 pumps 

mitochondrial Ca
2+

 uptake increases, leading to shaping of the [Ca
2+

]i signal (Duchen, 2000; 

Scorziello et al., 2013). The contribution of mitochondrial Ca
2+

 to homeostasis in somatic 

cells is acknowledged, but we wanted to identify the potential mitochondrial Ca
2+ 

input to the 

[Ca
2+

]i signals at the PHN induced by these agonists. Mitochondrial membrane potential 

(MMP; ΔΨm) reflects Ca
2+

 accumulation by these organelles, at low MMP the mitochondria 

take up cytoplasmic Ca
2+

 whilst at high MMP mitochondria Ca
2+

 is released (Duchen, 2000). 

Here we utilise the dual emission mitochondrial potential sensitive probe JC-1 to report two 

different effects of Ca
2+

 agonists on MMP. 3µM progesterone and 5µM 2-APB both induce 

MMP hyperpolarisation whilst conversely 5µM thimerosal and 2mM 4AP induce significant 

MMP depolarisation in resting cells. These results suggest that if MMP is indicative of 

mitochondrial Ca
2+

 contribution to [Ca
2+

]i then their input is variable and unable to account 

for all increases in [Ca
2+

]i observed at the PHN.  Therefore it is likely that another Ca
2+

 store 

is present at the PHN which provides a greater Ca
2+

 contribution to the increases in [Ca
2+

]i 

observed with thimerosal and 4AP treatment. 
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8.2 Introduction 

Sperm are minimalist cells, as such they lack organelles required for genomic regulation of 

cellular function. [Ca
2+

]i signalling is therefore integral in regulating all biochemical and 

physiological processes required for successful fertilisation. Numerous Ca
2+

 channels have 

been identified in human sperm, including those associated with intracellular Ca
2+

 stores of 

somatic cells (Costello et al., 2009). IP3Rs, the Ca
2+

-ATPase SPCA1, RyRs and calreticulin 

(a Ca
2+

-buffering protein associated with somatic stores) have all been localised to the 

anterior acrosome and PHN/midpiece regions of mammalian sperm  (Naaby-Hansen et al., 

2001; Harper et al., 2005; 2004). Phospholipase-C (PLC) and G-proteins associated with the 

IP3 signalling cascade have also been detected (Walensky & Snyder, 1995; Kuroda et al., 

1999). In 2005, Herrick and colleagues provided evidence for the Ca
2+

 storage ability of the 

acrosome; however the identity of a Ca
2+

 store at the PHN remains controversial. Potential 

candidates include; RNE, cytoplasmic droplet and mitochondria (Ho & Suarez, 2003). 

 

Mitochondria of mammalian sperm are localised to the midpiece where they are wrapped 

around the axoneme, connected via multiple disulphide bridges. In somatic cells these 

organelles are fundamentally important in the production of ATP required to maintain 

cellular function. Oxidative phosphorylation requires both the respiratory chain and ATP-

synthase enzymes located in the inner mitochondrial membrane to generate ATP from an 

electron donor. Though there is evidence for an important contribution of glycolysis for 

generation of ATP in mammalian sperm (Miki et al., 2004), abnormalities of mitochondrial 

structure or organisation have been shown to be associated with severe asthenozoospermia, 

apparently due to inadequate ATP production and maintenance of the mitochondrial 

membrane potential (MMP/ΔΨm; Piasecka & Kawiak, 2003; Piomboni et al., 2012). A 
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relationship between ΔΨm and sperm motility was first identified by Evenson and colleagues 

in 1982, they demonstrated that MMP of fertile men exceeded those of men with reduced 

sperm motility parameters. Subsequent confirmation of these results by a number of groups 

has also identified that high mitochondrial functionality is indicative of increased fertilisation 

potential (Marchetti et al., 2002; Gallon et al., 2006; Sousa et al., 2011). As a result 

mitochondrial contribution to motility regulation is of particular interest, if found to be 

fundamental in the facilitation of hyperactivated motility then they present a target for 

treatment of asthenozoospermic patients and conversely contraceptive agents. 

 

Mitochondria are also implicated in a number of intracellular homeostatic mechanisms, fatty 

acid β-oxidation, amino acid metabolism and Ca
2+ 

storage have all been reported (Piomboni 

et al., 2012). Significantly, modest Ca
2+

 uptake into the mitochondria stimulates 

dehydrogenases of the TCA cycle, leading to increased mitochondrial respiration, potentially 

providing increased ATP generation during periods of high cellular activity (Duchen, 2000). 

In mammalian sperm mitochondrial uptake of Ca
2+

 has been observed in situ 

(Vijayaraghavan & Hoskins, 1990; Wennemuth et al., 2003); however contribution of 

mitochondrial Ca
2+

 stores was dependent on the physiological stresses on the system. At rest 

mitochondrial Ca
2+

 flux was minimal, but when the cells were exposed to pharmacological 

agents that elicited an increase in [Ca
2+

]i mitochondrial Ca
2+

 uptake increased accordingly 

(Wennemuth et al., 2003; Scorziello et al., 2013). These observations have also been made in 

somatic cells, where increased [Ca
2+

]i activates the mitochondrial Ca
2+ 

uniporter (MCU) to 

drive Ca
2+

 uptake into mitochondria (Murgia et al., 2009), which has been shown to cause 

depolarisation of the MMP (Duchen, 2000). Furthermore MMP (ΔΨ) is associated with ATP 

produced by respiration and oxidative phosphorylation (Rizzuto & Brini, 2004). On this note 
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Ho and colleagues have identified that bull sperm immotility induced by mitochondrial 

disruption can be restored (including hyperactivation potential) by addition of Ca
2+

 and ATP 

(Ho et al., 2002), suggesting an integral role for ATP production in hyperactivated motility. 

However treatment with the Ca
2+

 store mobilising agonist thapsigargin induced 

hyperactivation without associated increases in NADH or ATP (Ho & Suarez, 2003). Taken 

together these results present a complex relationship between storage of intracellular Ca
2+

 and 

ATP production. Current data propose that multiple mechanisms for Ca
2+

 mobilisation and 

ATP production could facilitate hyperactivated motility dependent on the signalling cascade 

induced by the agonist (Piomboni et al., 2012). 

 

In chapter 3 we observed that the mitochondrial uncouplers DNP and CCCP decreased 

motility parameters and elevated [Ca
2+

]i at the PHN in the presence of extracellular Ca
2+

. To 

determine whether these effects were the result of mitochondrial uncoupling and release of 

stored Ca
2+

 from the mitochondria or an alternative Ca
2+

 store in the region we utilised the 

MMP sensitive dye JC-1. JC-1 is a dual emission potential-sensitive probe, at low MMP JC-1 

exists as a fluorescent green monomer (λex520nm) in the cytoplasm of cells. High MMP’s 

cause multimerisation of the monomers into red fluorescent ‘J-aggregates’ that accumulate in 

the mitochondria (λem596nm). A ratio of the red-green fluorescence intensities (FR/FG) gives 

a measurement of MMP which is not affected by mitochondrial size, shape or density 

(chapter 2.7). The subsequent MMP ratio determined offers insight into the Ca
2+

 flux of the 

mitochondria. This observation lead us to question the effect of inducers of [Ca
2+

]i and 

hyperactivated motility on MMP (ΔΨm) in human sperm. Here we report the effects of 5µM 

thimerosal, 3µM progesterone, 5µM 2-APB and 2mM 4AP on MMP and the implications of 

this on the Ca
2+

 storage potential of human sperm mitochondria. 
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8.3 Aims 

The aim of this chapter was to assess the effect of inducers of hyperactivated motility and 

increased [Ca
2+

]i elevation (identified in chapters 4 and 5) on mitochondrial membrane 

potential in human sperm.  
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8.4 Material and Methods 

8.4.1 Materials 

JC-1 mitochondrial dye was purchased from Enzo Life Sciences, (Exeter). For all other 

materials see chapter 2.1.1.  

 

8.4.2 Methods 

8.4.2.1 Cell preparation 

Human semen was collected and prepared as in chapter 2.3. 

 

8.4.2.2 Cell incubation and capacitation 

Sperm were incubated and capacitated for a minimum of 5 hours as in chapter 2.4. 

 

8.4.2.3 Mitochondrial imaging with JC-1 

All mitochondrial imaging experiments were conducted following the protocol outlined in 

chapter 2.7. After an initial control period of 20 frames (200secs) cells were exposed to 3µM 

Progesterone, 5µM Thimerosal, 5µM 2-APB or 2mM 4AP for 30 frames. In addition cells 

exposed to 5µM Thimerosal, 5µM 2-APB or 2mM 4AP were then treated with 3µM 

progesterone for a further 30 frames and MMP response observed. 

 

8.4.3 Analysis 

Effects of agonists on mitochondrial membrane potential were analysed as in chapter 2.7. 
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8.5 Results 

Fluorescence imaging of loosely tethered cells showed that human sperm labelled effectively 

with the dual emission dye JC-1. As anticipated, at rest sperm of fertile donors displayed high 

levels of red fluorescence in the midpiece (corresponding to mitochondrial presence) and low 

levels of green fluorescence throughout the cytoplasm (Figure 8.1B).  

 

8.5.1The mitochondrial membrane potential of resting cells oscillates in 

human sperm. 

At rest MMP (ΔΨm) of the majority of human sperm cells were subject to a number of 

oscillations (Figure 8.1D). Initial observations showed high levels of red fluorescence in the 

midpiece and low levels of green cytoplasmic fluorescence; indicative of healthy cells with 

functional mitochondria (Sousa et al., 2011; Figure 8.1B). ΔΨm was assessed for each frame 

of a given experiment upon completion of the time-lapse protocol by ratioing the red/green 

fluorescence intensities (Figure 8.1C). Upon initiation of fluorescence imaging cells were 

monitored for a minimum of 20 frames (200s) to establish an adequate representation of the 

ΔΨm at rest. During this ‘control period’ we observed numerous small ΔΨm oscillations in 

~90% of the cells observed (Figure 8.1D & 8.2), which due to the variation in frequency and 

amplitude amongst the population was not usually visible in the average ΔΨm trace. To 

establish a baseline on which to determine subsequent agonist induced ΔΨm changes the 

control period was averaged for each individual cell and subtracted from the max agonist 

induced ΔΨm response. 
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Figure 8.1 MMP effects in human sperm. (A) Pseudo colour image of sperm loaded with 

the low affinity Ca
2+

 dye Mag-Fluo-4AM (warm colours indicate areas of high Ca
2+

 

concentration including the Ca
2+

 stores at the acrosome and PHN highlighted by the yellow 

arrows). (B) Image series of 2 sperm cells loaded with the MMP sensitive dye JC-1, green 

fluorescence corresponds to the monomeric dye structure and red fluorescence corresponds 

to the dye tetramers. (C) Individual cell MMP response to 5µM thimerosal stimulation, red 

trace corresponds to mitochondrial JC-1 fluorescence and green trace corresponds to 

cytoplasmic JC-1 fluorescence. (D) Each grey trace represents the MMP response for an 

individual cell during the 20 frame control period, determined by the ratio of red: green 

fluorescence with the mitochondrial potential sensitive dye (JC-1). 
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]i. All cells were treated with JC-1 and their MMP monitored for 

a period of 20 frames (200s) before stimulation with (A) 3µM progesterone, (B) 5µM thimerosal, (C) 2mM 4AP or (D) 5µM 2-APB (red 
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8.5.2 Mitochondrial membrane potential response to Ca
2+

 store agonists. 

In chapters 4 and 5 we reported increases in [Ca
2+

]i at the PHN associated with progesterone, 

thimerosal, 4AP and 2-APB stimulation. Here we have assessed the possible contribution of 

mitochondrial Ca
2+ 

buffering to these [Ca
2+

]i responses by monitoring the MMP.  

 

8.5.2.1 MMP ΔΨm response to progesterone. 

The biphasic [Ca
2+

]i progesterone response at the PHN  is well documented (Kirkman-Brown 

et al., 2000; 2003), but potential mitochondrial Ca
2+ 

contribution  remains to be elucidated. In 

cells stimulated with 3µM progesterone significant hyperpolarisation of the mitochondrial 

membrane potential was observed (Figure 8.2A, 8.3A) in ~ 40% of cells (Figure 8.3C). 

Elevation of ΔΨm began ~1minute after progesterone application and peaked after ~100 

seconds (Figure 8.3D) then plateaued or induced a series of oscillations. This response was 

seen in the majority of cells in all experiments with analysis of individual cell responses 

revealing ~65% of cells induce an increase in the ΔΨm associated with progesterone 

application and potentially mitochondrial Ca
2+

 uptake into the mitochondria. 

 

8.5.2.2 MMP ΔΨm response to known inducers of hyperactivation.  

Thimerosal and 4AP have been shown to induce hyperactivated motility in human sperm 

through increasing [Ca
2+

]i at the PHN (Alasmari et al., 2013; Costello et al., 2009; chapter 4); 

however their impact on ΔΨm has not been recorded. In cells treated with JC-1, stimulation 

with either 2mM 4AP or 5µM thimerosal induced significant ΔΨm depolarisation compared to 

the control period (P=0.04 & P=0.01 respectively; paired t-test, n=8, n=14; Figure 8.2B&C, 

8.3A).
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Figure 8.3 Effect of inducers of [Ca
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]i on mitochondrial membrane potential. (A) Maximum MMP response within 3min of agonist 
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Analysis of peak FR/FG increment distribution shows the highest proportion of thimerosal 

responses to be between 0.1-0.2 FR/FG (Figure 8.3B) with <5% of cells producing a 

significant hyperpolarisation response (Figure 8.3C). In addition ~80% of cells exposed to 

2mM 4AP did not produce a significant increase in ΔΨm.  

 

It is interesting to note that both 4AP and thimerosal responses were lower than those seen 

with progesterone stimulation (P=0.001 & P=0.016 respectively; paired t-test, n=8, n=14; 

Figure 8.3A). As with Ca
2+ 

response observations progesterone mitochondrial 

hyperpolarisation occurs rapidly, in comparison both 4AP and thimerosal responses are 

significantly slower (P=0.04 & P=0.02 respectively; paired t-test, n=8, n=14; Figure 8.3D). 

Clearly the effects of these agents on mitochondrial Ca
2+

 accumulation are not the same.  

 

8.5.2.3 MMP ΔΨm response to SOCE activator 2-APB.  

Upon addition of 5µM 2-APB to the perfusion medium ~40% of sperm showed a significant 

response compared to the parallel control periods (n=11; Figure 8.2D, 8.3B&C). An average 

increase of 0.07 ΔΨm was observed, caused by an increase in mitochondrial red fluorescence 

and a decrease in green cytoplasmic fluorescence however this was statistically insignificant 

(P=0.50, paired t-test, n=11; Figure 8.3A). Elevation of ΔΨm began within 2-3 frames (20-

30seconds) and peaked ~90 seconds after application. Amplitude of the 2-APB induced 

increase in ΔΨm and associated response kinetics has great similarity to that observed with 

application of 3µM progesterone (section 2.5.2.1). Furthermore in chapter 5 we showed that 

5µM 2-APB treatment amplifies the transient increase in [Ca
2+

]i induced by progesterone 

(Lefievre et al., 2012).  
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8.5.3 Effect of Ca
2+

 store agonists on the progesterone induced increase in 

MMP 

To investigate possible effects of 5µM thimerosal, 2mM 4AP or 5µM 2-APB pre-treatment 

on the mitochondrial hyperpolarisation caused by 3µM progesterone, experiments were 

carried out in pairs. Cells from the same semen sample were exposed to 3µM progesterone 

with or without pre-treatment with 5µM thimerosal, 2mM 4AP or 5µM 2-APB (Figure 8.4). 

In 5 out of 7 experimental pairs, pre-treatment with 5µM thimerosal (300s) significantly 

reduced the mitochondrial hyperpolarisation induced by 3µM progesterone compared to the 

non-pre-treated parallel experiment,  inhibiting both ΔΨm and the proportion of cells 

exhibiting a significant response to treatment (P=0.03 & P=0.0005 respectively; paired t-test; 

n=7; Figure 8.5A&C). In contrast there was no significant difference between the 

progesterone induced ΔΨm with or without pre-treatment with 2-APB or 4AP which 

correlated with analysis of individual cell responses (Figure 8.5B&C). Furthermore all pre-

treated cell populations displayed no significant difference in time taken to achieve maximum 

progesterone induced ΔΨm (thimerosal: P=0.11, 4AP: P=0.45, 2-APB P=0.46; paired t-test; 

n=7, n=8 & n=14 respectively; Figure 8.5D). 
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Figure 8.4 Individual cell MMP responses to Ca
2+

 agonist pre-treatment on progesterone induced hyperpolarisation. All cells were treated 

with JC-1 and their MMP monitored for a period of 20 frames (200s) before stimulation with 3µM progesterone without pre-treatment 

(A) or pre-treated with (B) 5µM thimerosal, (C) 2mM 4AP or (D) 5µM 2-APB (red arrow). Each grey trace represents the MMP response 

for an individual cell, determined by the ratio of red: green fluorescence with the mitochondrial potential sensitive dye (JC-1). 
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Figure 8.5 Effect of Ca
2+

 agonists on progesterone induced MMP hyperpolarisation. (A) Maximum MMP response after agonist 

stimulation expressed as a percentage of the parallel progesterone controls. (B)  Frequency distribution of progesterone induced MMP 

response amongst the cell population. n= total number of cells analysed. (C) Proportion of cells displaying significant progesterone 

induced MMP response. (D) Time taken to reach progesterone induced MMP (ΔΨm) peak. Results are mean ± S.E.M. for 7, 9 and 11 

experiments respectively. * P<0.05; paired t-test; compared to progesterone response. 
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8.6 Discussion 

To date two candidates have been acknowledged as potential Ca
2+

 stores at the 

PHN/midpiece of human sperm. The RNE was proposed by Suarez and colleagues in 2003. 

Nevertheless mitochondria are established Ca
2+

 storage organelles in somatic cells and have 

been shown to accumulate Ca
2+

 in mammalian sperm of rabbit (Storey & Keyhani, 1973; 

1974), rat (Babcock et al., 1976), bovine (Vijayaraghavan & Hoskins, 1990) and murine 

(Wennemuth et al., 2003) models in situ.    

 

Mitochondria are the “powerhouses” of the cell, responsible for the oxidative 

phosphorylation of glycolytic products to produce the ATP required for numerous 

intracellular processes. In human sperm the contribution of glycolysis (throughout the tail) 

and oxidative phosphorylation (restricted to the mitochondria of the midpiece) to ATP 

production and sperm motility is topical. Miki et al., 2004 observed that Glyceraldehyde-3-

phosphate dehydrogenase-S (GAPDS; a glycolytic enzyme) was essential for fertility in 

murine sperm. Gapds knock-out sperm exhibited reduced ATP production and profound 

motility defects, however mitochondrial oxygen consumption was unaffected. More recently 

several authors have utilised mitochondrial membrane potential sensitive dyes to emphasise 

the importance of oxidative phosphorylation in motility and fertilisation (Evenson et al., 

1982; Gallon et al., 2006; Espinoza et al., 2009; Sousa et al., 2011). Indeed ΔΨm has been 

proposed as an accurate indicator of sperm fertilising potential (Evenson et al., 1982; 

Espinoza et al., 2009; Sousa et al., 2011).  

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R79
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R80
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Evenson et al., first identified a correlation between ΔΨm and sperm motility in 1982, where 

they used the ΔΨm sensitive fluorochrome Rhodamine 123 to compare the ejaculates of fertile 

and asthenozoospermic men. Subsequently several groups have utilised alternative ΔΨm 

sensitive dyes to report that high ΔΨm are indicative of both ability to undergo successful 

hyperactivation and oocyte fusion (Marchetti et al., 2002; Gallon et al., 2006; Sousa et al., 

2011). Our own observations in chapter 3 confirm this, in cells treated with the ΔΨm dye JC-1 

stimulation with either 10µM DNP or 10µM CCCP (mitochondrial uncouplers) significantly 

decreased ΔΨm and the percentage of cells displaying hyperactivated motility as determined 

by CASA. Conversely here we demonstrate that 2mM 4AP and 5µM thimerosal both known 

inducers of hyperactivated motility (chapter 4, Costello et al., 2009; Alasmari et al., 2013), 

significantly depolarise the ΔΨm indicating the complexity of the factors that determine 

occurrence  of hyperactivated motility (Figure 8.3A&C).  

 

In somatic cells regulation of mitochondrial Ca
2+

 accumulation is dependent on an 

electrochemical gradient ΔΨm and [Ca
2+

]i, negative ΔΨm and high [Ca
2+

]i induce 

mitochondrial Ca
2+

 uptake via the mitochondrial uniporter (MCU; Zhao et al., 2013; Murgia 

et al., 2009). In mammalian sperm, mitochondrial MCU facilitated Ca
2+

 uptake has shown 

variability at different developmental stages and is believed to contribute to motility 

regulation due to its association with ATP production (Piomboni et al., 2012). Several studies 

have questioned the importance of oxidative phosphorylation and glycolysis in the production 

of ATP required for motility. Miki et al., 2004 concluded that glycolytic ATP has greater 

significance on murine sperm motility, whilst Ho and Suarez have demonstrated induction of 

hyperactivated motility with thapsigargin treatment without associated increases in NADH or 

ATP in bovine sperm (Ho & Suarez, 2003). The later study emphasises the importance of 
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[Ca
2+

]i regulation and provides evidence for a Ca
2+

 storage organelle in addition to the 

mitochondria at the PHN of mammalian sperm.  

 

In resting (unstimulated) sperm we observed a stable ΔΨm  (FR/FG) upon which many cells 

showed small oscillations, typically with a period of 1-2min, which were enhanced when the 

cells were stimulated (Figure 8.2A&D). This may well reflect cyclic mitochondrial [Ca
2+

]i 

accumulation and release occurring in response agonist-induced [Ca
2+

]i oscillations (Harper 

et al., 2004). 

 

In chapter 4 we demonstrated that 5µM thimerosal was sufficient to induce a consistent 

increase in [Ca
2+

]i at the PHN, which has also been observed in cells treated with 2mM 4AP 

(Alasmari et al., 2013; Costello et al., 2009). Interestingly in cardiomyocytes ΔΨm 

depolarisation, subsequently induced activation of PTPs at high mitochondrial [Ca
2+

]i, 

suggesting activation of mitochondrial Ca
2+

 efflux when the store reaches Ca
2+

 capacity 

(Zhao et al., 2013). An initial ΔΨm depolarisation followed by hyperpolarisation was also 

observed in astrocytes, where depolarisation was linked to mitochondrial Ca
2+ 

accumulation 

(Duchen et al., 2000). Our observation of ΔΨm depolarisation associated with thimerosal and 

4AP stimulation indicates mitochondrial Ca
2+

 accumulation, since ΔΨm is required for Ca
2+

 

uptake. When [Ca
2+

]i is elevated, NCX facilitated Ca
2+

 efflux might contribute to the 

increases in [Ca
2+

]i observed at the PHN. Under non-pathological conditions little Ca
2+

 is 

normally present within the mitochondrial matrix (Duchen, 2000) and thus it is likely that an 

alternative Ca
2+

 store at the PHN is primarily responsible for the thimerosal and 4AP 

associated increases in [Ca
2+

]i that facilitate hyperactivated motility. Nevertheless this 
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additional store could have numerous close contacts <80nm with the mitochondria and be 

influenced by mitochondrial [Ca
2+

]i (Murgia et al., 2009), but further analysis of NCX 

facilitated Ca
2+

 efflux is required in human sperm to understand this process. 

 

In contrast we show that treatment with 3µM progesterone and 5µM 2-APB induce 

hyperpolarisation of the ΔΨm (Figure 8.2A&D; Lefievre et al., 2012) which is consistent with 

secondary release of Ca
2+

 and consequent stimulation of mitochondrial respiration. Previous 

studies by our research group have shown that homeostatic mitochondrial uptake and release 

plays no significant role in the store-mediated oscillations observed at the PHN in cells 

treated with progesterone (Machado-Oliveira et al., 2008). Furthermore in chapter 3 we show 

that neither DNP or CCCP pre-treatment has an inhibitory effect on the biphasic progesterone 

induced [Ca
2+

]i response. Thus though this physiological stimulus apparently leads to Ca
2+

 

release by the mitochondria, this does not significantly contribute to the amplitude or kinetics 

of the [Ca
2+

]i signal at the PHN. 

 

SPCA1, Ca
2+

-ATPases have been localised to both the PHN and anterior midpiece of human 

sperm, they could potentially utilise glycolytically generated ATP to transport Ca
2+

 into the 

inner mitochondrial membrane when MCU is inhibited, thus restoring mitochondrial Ca
2+

 

contribution to [Ca
2+

]i responses (Harper et al., 2004). However evidence suggests that 

mitochondrial contribution to agonist induced Ca
2+

 responses is limited, it is more likely they 

play a key role in maintaining resting [Ca
2+

]i homeostasis and mitochondrial respiration under 

physiological conditions (Jimenez-Gonzalez et al., 2006). 
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In summary these results indicate potential for mitochondrial Ca
2+

 contribution to [Ca
2+

]i, 

buffering in human sperm but the mechanisms are complex and dependent on a number of 

factors. Contradiction between ΔΨm observations and hyperactivated motility parameters in 

cells treated with thimerosal and 4AP suggest an alternative Ca
2+

 store at the PHN is 

responsible for the increase in [Ca
2+

]i and percentage hyperactivation in chapter 4.  

Furthermore the reduction in the ΔΨm associated with 2-APB pre-treatment prior to 

progesterone stimulation does not implicate mitochondrial Ca
2+

 in the increase in the 

progesterone induced [Ca
2+

]i transient observed in chapter 5. It is therefore apparent that 

mitochondrial Ca
2+

 contribution to [Ca
2+

]i appears minimal and complex, but it is likely 

another Ca
2+

 store is also present in the PHN of human sperm that is involved in the 

regulation of hyperactivated motility and is closely associated with the mitochondria. 
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9.1 General discussion 

Ca
2+

 is a versatile ubiquitous second messenger implicated in the regulation of numerous 

intracellular processes in a plethora of cell types. Spatial and temporal Ca
2+

 regulation is 

crucial to facilitate discrete cellular signalling responses over a wide dynamic range 

(Berridge, 2006). Versatility is achieved through sophisticated regulation of stored 

intracellular Ca
2+

 by a diverse Ca
2+

 toolkit (Publicover et al., 2007; chapter 1.10). Indeed, 

alteration in Ca
2+

 regulation components can induce disease aetiology (Berridge et al., 2012).  

 

We have confirmed that human sperm possess two discrete areas of high Ca
2+

 concentration 

indicative of Ca
2+

 store localisation. Cells labelled with the low affinity Ca
2+

 dye Mag-Fluo-

4AM to visualise the Ca
2+

 stores, showed fluorescence was localised to the acrosome and 

PHN/midpiece regions of mature sperm (Figure 9.1; Costello et al., 2009). To date 

mitochondria and the RNE (or an alternative membranous organelle in the vicinity) have 

been proposed Ca
2+

 store candidates at the PHN. The main aim of this study was to 

characterise mobilisation of stored Ca
2+

 at the PHN of human sperm, to identify the Ca
2+

 

storage capability of the two identified candidates (mitochondria and an IP3 sensitive sperm 

specific store, potentially the RNE) to determine the potential contribution of these Ca
2+

 

stores to shaping the biphasic progesterone [Ca
2+

]i response.  

 

We identified that human sperm mitochondria sequester and release Ca
2+

 as is reported in sea 

urchin (Ardon et al., 2009), bovine (Vijayaraghavan & Hoskins, 1990), murine (Wennemuth 

et al., 2003) sperm and a number of somatic cell types (Duchen, 2000). In bovine and murine 

models mitochondrial contribution to cytoplasmic Ca
2+

 clearance increased when other 

mechanisms of uptake were inhibited (Vijayaraghavan & Hoskins, 1990; Wennemuth et al., 
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2003). Treatment with mitochondrial inhibitors disrupts the electrical driving force across the 

inner mitochondrial membrane that facilitates MCU Ca
2+

 uptake and ATP production 

required for motility. Here we report that CCCP and DNP induced an increase in [Ca
2+

]i at 

the PHN in the presence of extracellular Ca
2+

 which indicates store mobilisation and 

replenishment. The increase in [Ca
2+

]i is likely the result of inhibited mitochondrial Ca
2+

 

uptake mechanisms, and spontaneous leakage of mitochondrial Ca
2+

. We show that pre-

treatment with the Ca
2+

-ATPase inhibitor bisphenol (15µM) significantly reduced the 

proportion of cells exhibiting significant [Ca
2+

]i increases associated with both mitochondrial 

uncouplers. Interpretation of this observation is not simple but it seems most likely that 

bisphenol, which will mobilise Ca
2+

 from non-mitochondrial stores, saturates SOCE. Thus 

human sperm mitochondria may play a role similar to that  in sea urchin sperm where 

uncoupling induces  a biphasic [Ca
2+

]i rise due to initial mitochondrial Ca
2+

 mobilisation 

followed by activation of store-operated Ca
2+

 channels (Ardon et al., 2009).  

 

 

 

 

 

 

 

 

Figure 9.1 Location of Ca
2+

 stores in 

human sperm. Grey scale and pseudo-

colour images (respectively) of a 

single human sperm cell treated with 

Mag-Fluo-4AM. Treatment clearly 

identifies two discrete Ca
2+

 stores 

where areas of white or warm colours 

(respectively) show areas of high Ca
2+

 

concentration.  

Acrosome 

PHN 

Midpiece 

5µM 
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[Ca
2+

]i elevation induced by mitochondrial inhibitors CCCP and DNP showed similarities to 

the biphasic [Ca
2+

]i response induced by 3µM progesterone. Despite being intensively studied 

the underlying mechanisms of Ca
2+ 

progesterone-induced mobilisation are still debated. It has 

been suggested that the initial transient increase in [Ca
2+

]i and subsequent sustained increase 

in [Ca
2+

]i are the result of multiple intracellular signalling pathways. The plasma membrane 

progesterone receptor CatSper, located at the principal piece of the flagellum, is believed to 

be the primary mediator of the rapid increase in [Ca
2+

]i associated with the transient phase 

(Strunker et al., 2011).  Nanomolar progesterone concentrations activate CatSper channels 

resulting in a rapid Ca
2+

 influx across the PM. NNC-55-0396 abolished the CatSper current 

and inhibited the biphasic progesterone [Ca
2+

]i response, but the response was not eliminated 

entirely (Jensen & Publicover et al., 2012; Sagare-Patil et al., 2012). It is therefore likely that 

an intracellular Ca
2+

 store is responsible for the additional increase in [Ca
2+

]i observed at the 

PHN.  

 

Investigation of the effect of mitochondrial inhibitor pre-treatment on the biphasic [Ca
2+

]i 

response induced by 3µM progesterone showed no significant modulation of  the [Ca
2+

]i 

response at the PHN and acrosome when compared to parallel controls. CCCP and DNP 

induced clear increases in the progesterone Ca
2+

 transient at the midpiece. Since 

mitochondrial uncoupling will disrupt normal mechanisms of mitochondrial Ca
2+

 uptake, this 

effect could be independent of the MMP and the response observed with JC-1. These results 

confirm a functional significance for mitochondrial Ca
2+

 accumulation in human sperm. 

Contribution to generation of the progesterone-induced [Ca
2+

]i transient at the PHN is 

insignificant, suggesting that a different (additional) Ca
2+

 store at the PHN is involved, 

consistent with other studies (Naaby-Hansen et al, 2001; Ho & Suarez, 2001; 2003). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R66
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R44
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552241/#R45
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IP3R are synonymous with the ER of somatic cells, where they release stored Ca
2+

 in 

response to IP3 mediation (Berridge, 2003; Michelangeli et al., 1995). Mature sperm lack ER 

but a number of studies have localised IP3R to the PHN of mammalian sperm (including 

human; Naaby-Hansen et al., 2001; Bovine: Ho & Suarez, 2002; Murine: Ho & Suarez, 

2003). We have determined using single cell fluorescence imaging and pharmacological 

manipulation of IP3Rs that an IP3 sensitive store (distinct from the mitochondria) at the PHN 

contributes to the sustained component of the progesterone [Ca
2+

]i response observed in the 

region independent of CatSper channels. Thimerosal (at IP3R activating concentrations) 

induces a sustained increase in [Ca
2+

]i at the PHN that is resistant to the CatSper channel 

blocker NNC 55-0396, which confirms thimerosal induced effects are the initiated by stored 

[Ca
2+

]i release and not PM Ca
2+

 influx (Alasmari et al., 2013). The associated decrease in the 

sustained component of the [Ca
2+

]i response induced by progesterone supports a model for at 

least two separate Ca
2+ 

signalling components and presence of a Ca
2+

 store at the PHN 

associated with motility regulation. Indeed Ca
2+

 oscillations during the sustained 

progesterone plateau phase have been associated with flagellar bending and lateral head 

displacement in human sperm (Harper et al., 2004).  Furthermore our analysis of sperm 

motility parameters using CASA indicates a significant contribution of an IP3 sensitive store 

at the PHN of human sperm in the regulation of hyperactivated motility previously reported 

in bovine sperm (Ho & Suarez, 2001).  

 

We have recently published evidence for the presence of store operated Ca
2+

 entry (SOCE) in 

human sperm (Lefievre et al., 2012) which has also been identified in several other species 

(sea urchin: Ardon et al., 2009; Murine: O’Toole et al., 2000). We confirmed that at low 
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doses (5µM) of the bimodal SOCE modulator 2-APB, SOCE was enhanced in human sperm 

as in somatic cells (Goto et al., 2010; DeHaven et al., 2008; Zhang et al., 2008). We observed 

similar effects on SOCE with SKF-96365 (30µM), another bimodal SOCE modulator 

(Merritt et al., 1990). Although SKF treatment induced an increase in [Ca
2+

]i at the PHN like 

2-APB, the incidence of hyperactivated motility was reduced compared to parallel controls as 

determined by CASA. Although this may be due to the kinetics of the response. 3µM 

progesterone treatment does not induce a significant increase in hyperactivation measured by 

CASA but during live cell imaging it is clear that there is a brief (60-90 s) burst of increased 

flagellar activity during the [Ca
2+

]i transient (Harper et al., 2004; Machado-Oliveira et al., 

2008). 

 

Subsequent investigations into the stimulatory effects of these pharmacological SOCE 

modulators (SKF and 2-APB) on the biphasic [Ca
2+

]i progesterone response, demonstrated a 

significant potentiation of the transient [Ca
2+

]i response. We observed that in cells treated 

with 2-APB or SKF SOCE contribution was increased sufficiently as to elevate the transient 

[Ca
2+

]i progesterone response at the PHN greater than that observed in parallel controls. SKF 

may have complex effects, being able both to release Ca
2+

 from intracellular storage 

organelles and inhibit SOCE (chapter 6). Taken together these results are consistent with a 

role for 2-APB sensitive SOC channels at the PHN in the formation and amplification of the 

progesterone [Ca
2+

]i transient initiated by Ca
2+

 influx through PM CatSper channels (Strunker 

et al., 2011). Interestingly, pre-treatment with 2-APB and SKF exhibited opposing effects on 

the sustained component of the progesterone induced [Ca
2+

]i response. In cells treated with 2-

APB we observed an increase in [Ca
2+

]i at the PHN that was inconsistent and insignificant. 2-

APB was shown to enhance that occurrence of a late, secondary Ca
2+

 mobilisation 10-20s 



 
 

261 
 

after the initial transient, which may contribute to hyperactivated motility (Lefievre et al., 

2012; Harper et al., 2004). Conversely in cells treated with SKF a decrease in the sustained 

[Ca
2+

]i progesterone response was observed, consistent with similar responses in other cell 

types (Jenner & Sage, 2000). It should be noted that SKF has also demonstrated effects on 

other Ca
2+

 channels which may be contributing to the response observed here (Merritt et al., 

1990). These results implicate SKF and 2-APB sensitive Ca
2+

 channels in the regulation of 

the progesterone induced [Ca
2+

]i transient with potential contribution of 2-APB sensitive 

stores to the sustained Ca
2+

 response (Figure 9.2). 

 

Identification of the SOCE receptors STIM and Orai in 2005 (Roos et al., 2005; Liou et al., 

2005) and 2006 (Feske et al., 2006; Vig et al., 2006; Zhang et al., 2006) respectively 

provided the first complete mechanism for SOCE in somatic cells. We recently reported 

expression of both STIM (1&2) and Orai (1-3) isoforms in human sperm through a 

combination of protein expression and immunofluorescence (Lefievre et al., 2012). All 

isoforms exhibited specific localised expression throughout the cell; however all were 

detected at the PHN indicative of at least one Ca
2+

 store in the region. SOCE facilitates 

replenishment of intracellular Ca
2+ 

stores, upon Ca
2+

 store depletion STIM molecules on the 

Ca
2+

 store oligomerise and relocate to induce Ca
2+

 influx through PM Orai channels (Feske et 

al., 2009). Recent studies have identified that STIM is essential for Orai function, in 

particular a ~98amino acid SOAR domain containing a conserved polybasic KIKKK 

sequence (Kim & Muallem, 2011). Recent advances in the use of cell penetrating peptides 

(CPPs or bioportides) provided an alternative mechanism for studying SOCE in human sperm 

(Jones et al., 2013). 
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We observed that CPPs developed to include the KIKKK sequence essential to STIM and 

Orai interaction penetrated the human sperm cells in the absence of BSA (Jones et al., 2013). 

In the presence of BSA CPP uptake was reduced which is potentially the result of membrane 

fluidity effects but the mechanism is unknown (data not included). The CPPs themselves 

exhibited inconsistent effects on basal [Ca
2+

]i thought to be the combination of membrane 

translocation effects and SOCE activation, however after 5min the [Ca
2+

]i effect established a 

sustained plateau. It should be noted that the original STIM KIKKK peptide and scrambled 

control peptide exhibited similar [Ca
2+

]i effects however the KIKKK analogue which 

contained a more stabilised structure differed, most likely due to structural differences.  

 

Our investigation of SOCE targeted CPPs on the biphasic [Ca
2+

]i response at the PHN 

induced by 3µM progesterone substantiated our pharmacological modulation studies. In cells 

pre-treated with either of the KIKKK containing CPPs there was a significant increase in the 

proportion of cells that responded to progesterone with a rapid rise in [Ca
2+

]i that was 

maintained for an extended period (monophasic [Ca
2+

]i response; Figure 7.3B). This is likely 

the result of tonic activation of Orai through STIM KIKKK containing CPP interaction. 

Taken together these results indicate a role for SOCE in both potentiation and definition of 

the progesterone [Ca
2+

]i transient at a Ca
2+

 store other than the mitochondria at the PHN. 

 

The observations reported here indicate the existence of at least two discrete Ca
2+

 stores at 

the PHN of human sperm, each with discrete mechanisms of mobilisation and replenishment. 

Mitochondria demonstrate Ca
2+

 uptake and storage ability similar to that observed in somatic 

cells (Scorziello et al., 2013), nevertheless contribution to the biphasic [Ca
2+

]i progesterone 

response at the PHN is unable to fully account for the [Ca
2+

]i response observed during 
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CatSper inhibition. Furthermore Ca
2+ 

channels and proteins associated with intracellular Ca
2+

 

storage organelles of somatic cells (SPCA1, RyR, IP3R, STIM and calreticulin) and localised 

to the PHN do not typically associate with mitochondria (Harper et al., 2004; Lefievre et al., 

2012; Naaby-Hansen et al., 2001). Our investigations indicate the presence of an additional 

sperm specific Ca
2+

 store at the PHN sensitive to IP3, 2-APB and SKF which is modulated by 

STIM and Orai facilitated SOCE. We propose that this store would amplify and propagate the 

progesterone induced [Ca
2+

]i response at  the PHN initiated by CatSper and has a potential 

role in regulation of motility (Figure 9.2). 
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Figure 9.2 Ca
2+

 mechanisms responsible for the increases in [Ca
2+

]i associated with 

progesterone. 3µM progesterone was added at 3 min (black arrow). The blue trace 

represents control cells responses in cells exposed to 3µM progesterone alone. The red 

trace represents cells treated with 5µM 2-APB prior to progesterone stimulation where 

potentiation is observed due to SOCs. The Purple trace represents cells treated with 

30µM SKF. The green trace represents monophasic progesterone [Ca
2+

]i increases 

associated with application of KIKKK containing STIM CPPs prior to progesterone, 

which demonstrates constitutive SOCE activation. 
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9.2 Future Work 

Development of cell penetrating peptides (CPPs) or bioportides present numerous 

opportunities for elucidating intracellular signalling cascades in human sperm. To date the 

study of intracellular signalling cascades in intact human sperm has been hindered by the 

absence of clathrin mediated endocytosis. Manipulation of intracellular Ca
2+

 stores and the 

signalling pathways associated with them has been restricted to the use of cell permeable 

pharmacological modulators or studies of demembranated cells, whose responses may differ 

from those observed under normal physiological conditions. Here we have shown that 

sequence targeted CPPs are able to both penetrate and manipulate [Ca
2+

]i in human sperm. 

Furthermore there is potential to develop new CPPs targeted to other Ca
2+

 channels 

associated with both intracellular Ca
2+

 storage organelles and the mitochondria. Indeed Jones 

et al., 2013 demonstrated the innate predisposition of some CPPs to target intracellular 

organelles such as the mitochondria in bovine sperm. Future studies could utilise CPPs to 

determine the extent of mitochondrial Ca
2+

 accumulation through MCU and Ca
2+

-ATPase 

targeted peptides. In addition CPPs could be developed to target IP3R, to observe the effects 

on motility and the acrosome reaction. In conclusion CPPs provide a new mechanism for the 

study of intracellular Ca
2+

 signalling in sperm with the potential to elucidate a number of 

mechanisms responsible for cellular function. These peptides could potentially be utilised to 

treat sub-fertile individuals where SOCE and Ca
2+ 

signalling pathways are impaired (Baldi et 

al, 1999; Espino et al, 2009). It would be interesting to observe the effects of both 

pharmacological modulators of SOCE 2-APB, SKF in conjunction with SOCE targeted CPPs 

in patients with pathological sub-fertility, to determine potential targets for personalised 

patient treatment.  
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11.1Appendix I - List of Suppliers 

Alpha Laboratories 

40 Parham Drive 

Eastleigh 

Hampshire 

UK 

 

BD Biosciences 

Edmund Halley Road  

Oxford Science Park 

Oxford 

UK 

 

Cairn Research Ltd  

Graveney Road 

Faversham 

Kent 

UK 

 

Calbiochem 

Distributed by Merck Biosciences, 

Beeston,  

Nottingham, 

UK 

 

Corning Inc. 

See Starlabs UK Ltd 

 

Enzo Life Sciences 

Palatine House 

Hatford Court 

Exeter 

UK 

 

Falcon Products 

See Starlabs UK Ltd 

 

Hamilton Thorne, Inc. 

100 Cummings Center 

Beverly 

MA  

USA 

 

 

Institute of Medical Microbiology and 

Hygiene 

Johannes Gutenberg-University 

Hochhaus am Augustusplatz 

55101 Mainz 

Germany 

 

Invitrogen Life Technologies Ltd 

3 Fountain Drive 

Inchinnan Business Park 

Paisley  

UK 

 

Fisher Scientific UK Ltd 

Bishop Meadow Road 

Loughborough 

UK 

 

Merck Millipore 

Building 6 

Croxley Green Business Park 

Watford 

UK 

 

Nikon Instruments UK 

380 Richmond Road 

Kingston Upon Thames 

Surrey 

UK 

 

Patechnia 

University of Wolverhampton 

Wulfruna Street 

Wolverhampton 

UK 

 

SAFC Biosciences Inc 

Smeeton Road 

West Portway 

Anderes 

Hampshire 

UK 
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Sigma- Aldrich Company Ltd 

The Old Brickyard 

New Road 

Gillingham 

Dorset 

UK 

 

Scientific Laboratory Supplies 

Wilford Industrial Estate 

Ruddington Lane 

Wilford 

Nottingham 

UK 

 

Starlabs UK Ltd 

4 Tannors Drive 

Blakelands 

Milton Keynes 

UK 

 

Stratech Scientific Limited 

Oaks Drive 

Newmarket 

Suffolk 

UK 

 

United States Biological 

PO Box 261 

Swampscott 

MA 01907 

USA 

 

Warner Instruments from Harvard 

Apparatus 

Firecroft Way 

Edenbridge 

Kent 

UK



 
 

302 
 

11.2 Appendix II – Media Preparation 

 

Formula for the preparation of experimental media based on supplemented Earle’s Balanced 

Salt Solution 

 

Chemical Formula M.W mM g/l 

Sodium Phosphate 

Monobasic 

NaH2PO4 119.98 1.02 0.122 

Potassium Chloride KCl 74.55 5.4 0.4 

Magnesium 

Sulphate 

Heptahydrate 

MgSO4.7H2O 246.48 0.81 0.2 

Glucose C6H12O6 180.16 5.5 1.0 

Sodium Pyruvate C3H3NaO3 110 2.5 0.3 

Sodium Lactate-LD C3H5NaO3. 112.06 in 60% 

W/W 

19.0 4.68 

Calcium Chloride CaCl2.2H2O 147 1.8 0.265 

Sodium 

Bicarbonate 

 84.01 52.4 2.2 

HEPEs  238.31 15 3.57 

 

 

 

sEBSS pH was adjusted to 7.3-7.35 and then NaCl (MW 58.44) was added to achieve 

osmolarity of 285-295 mOSM, approximately 5g (118.4mM). 

 

Experimental media was sterile filtered into 100ml aliquots before storing at 4
o
C until 

required.  

Media was supplemented with 0.3% (w/v) fatty acid free BSA immediately before use. 
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Formula for the preparation of Calcium (Ca
2+

) free experimental media based on 

supplemented Earle’s Balanced Salt Solution 

 

Chemical Formula M.W mM g/l 

Sodium Phosphate 

Monobasic 

NaH2PO4 119.98 1.02 0.122 

Potassium Chloride KCl 74.55 5.4 0.4 

Magnesium 

Sulphate 

Heptahydrate 

MgSO4.7H2O 246.48 0.81 0.2 

Glucose C6H12O6 180.16 5.5 1.0 

Sodium Pyruvate C3H3NaO3 110 2.5 0.3 

Sodium Lactate-LD C3H5NaO3. 112.06 in 60% 

W/W 

19.0 4.68 

Calcium Chloride CaCl2.2H2O 147 4.966 0.735 
Sodium 

Bicarbonate 

NaHCO3 84.01 26.19 1.1 

Sodium Chloride NaCl 58.44 85 6.92 
HEPEs  238.31 15 3.57 
EGTA   5.994 2.28 

 

 

Ca
2+

 free sEBSS pH was adjusted to 7.3-7.35 and then NaCl (MW 58.44) was added to 

achieve osmolarity of 285-295 mOSM, approximately 5g (118.4mM). 

 

Ca
2+

 free media was sterile filtered into 100ml aliquots before storing at 4
o
C until required.  

All media was supplemented with 0.3% (w/v) fatty acid free BSA immediately before use. 
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Formula for the preparation of sucrose buffer used in the Streptolysin O Permeabilization 

process: 

 

Chemical M.W mM g/l 

Sucrose 342.3 250 85.58 

EGTA 380.35 0.5 0.19 

MgCl2 203.31 1.5 0.30 

KCl 74.55 50 3.72 

HEPES 238.31 20 4.77 

 

 

 

Sucrose buffer pH was adjusted to 7 using 1M KOH 

Sucrose buffer was sterile filtered into 100ml aliquots before storing at 4
o
C until required.  

 

 


