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ABSTRACT 

          A novel methodology for series-parallel systems’ reliability optimisation has been 

proposed developed and tested in this thesis. The approach has been to formulate the reliability 

design problem as a multi-criteria optimisation, to maximise independently but simultaneously 

the subsystem reliabilities while minimising the system cost modelled as a penalty function of 

component reliabilities, with lower bound constraints on the reliability of the subsystems. The 

goal was to find the Pareto optimal component reliability values that yielded or exceeded a 

system reliability target. This problem is common at the system design stage.  The resultant 

continuous optimisation problem was solved using the Weighted Sum method which is efficient 

for it.    

        The methodology was applied to a number of hypothetical problems and to several 

applications derived from previously published work concerned with life support and electricity 

transmission systems’ reliability. It was also tested on a gas transmission system. The results 

were very good and consistent with the theory of reliability and multi-criteria optimisation. For 

instance a comparison of the results with those for a single criterion optimisation model of the 

life support system indicated that higher reliability could be generated for the 

components/system under this new methodology; the relative levels of the component reliability 

values was also found to be consistent with those achieved under the single criterion formulation. 

The level of the reliability value allocated to a component was also consistent with their 

reliability importance. The cost/penalty increased with increase in component reliabilities, 

becoming indeterminate as component reliability approached its maximum value.  
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 BACK GROUND 

     When a tap is turned on the expectation is that water will flow, when a light is switched on 

there will be light etc. Any time one or more of these services or functions are interrupted or 

taken away various levels of disorganisation or disappointment is experienced (Murthy et al, 

2008). This is only one side of the story; in more serious cases such interruptions could even 

endanger lives, as when a car bursts a tyre on a busy road, or a gas leakage occurs in the home 

etc. 

      At the centre of all the instances cited is the word “failure”, which at this stage can be 

described simply as the interruption of an expected function. Even though the factors responsible 

for failures in engineering products or systems are many and varied (Carter, 1997; Modarass et al 

1999; Evans & Evans, 2001) the fact remains that whatever the cause, the consequence is never 

pleasant. Despite this, it is perhaps the most universal characteristic of all products or systems, 

whether man-made or naturally occurring (the focus of course in this case is on engineering 

products or systems). Fortunately, some products or systems (even those of the same kind) are 

less inclined to fail, than others, for reasons that can largely be ascribed to their design (Dhillon, 

2005). In an attempt to distinguish between such products it is  said that one is more reliable than 

the other, indicating that the one is less failure prone than the other. The word “reliability” 

(although vague at this stage) is derived from this perception and thus inextricably linked to the 
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word failure and a watch word for many (if not every body) about the products (or services) they 

buy or use.  

     Indeed of the several characteristics that together describe a product’s quality, such as 

aesthetics, performance, ease of use, reliability etc., reliability is considered by many as very, if 

not the most, important. For instance in their discussion of a survey report by the American 

Society of Quality Control, Murthy et al (2008) recounted that, of  approximately one thousand 

individuals who were asked to assess their relative preference for ten quality characteristics in a 

product that they intended to buy, reliability was ranked the second highest, after performance. 

Even though reliability is important, the study and development of it as a subject and discipline 

goes back only a few decades (Pham, 2003) to world War II  when it became necessary to deal 

with the high frequency of failure of equipment, especially complex electronic ones (Bernstein et 

al, 2006). Around the same time a new branch of optimisation, the  specialty  of which was to 

develop techniques for optimising a set of criteria, instead of just one, as was typical of 

traditional optimisation, was also growing in terms of development of theories as well as 

applications (Figueira et al, 2005). These two, now broadly called respectively Reliability 

Engineering and Multi-criteria Optimisation, have today become major fields of Operational 

Research, Engineering, and Mathematics.  Even though traditional optimisation has been very 

much a part of modern Reliability Engineering, this new branch has not seen as much 

application.  

      Reliability Engineering covers all aspects of a product’s life cycle from conception, to 

design, through manufacture, to use, and finally to death or obsolescence (Relex Software 

Corporation, U.S.A). A schematic diagram showing the phases of a product life cycle is given in 

Figure 1.1.  The Conceptual Design stage is one where an idea for a new product is conceived or   
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 Figure 1.1: Phases of a product/system’s life cycle (Source: Relex Software Corporation U.S.A.)  

 

a request for proposal or bid documents are developed in pursuit of a grant or a contract for a 

product design. The assessment of the reliability metrics and the application of reliability 

prediction and analysis techniques at this stage can prove advantageous not only for the design 

but also for the bidding process. The Preliminary Design Development & Testing stage builds 

upon the former and usually involves the development and testing of a prototype in order to 

predict or evaluate the reliability metrics as well as correct mistakes or improve the design. The 

third stage factors all the insight and information gained from the previous stage into a final and 

detailed design. In the fourth to sixth stages, the final design is translated into a finished product, 

used and maintained (in repairable cases), and phased out.   

       Of the stages at which optimisation may be applied in a product’s life cycle, the conceptual 

or preliminary design one is the most important (Amari, Relex Software Corporation, U.S.A), for 

two major reasons: (i) a product’s reliability is an intrinsic characteristic of its design, thus 

optimising reliability early in the life cycle is a necessary step to ensuring reliability in later life 
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(ii) it is the most economically sound approach, as displayed in Figure 1.2. This is because it is 

easier and less costly to fix reliability problems detected in the early phases including making 

any design modifications, than when the product is in use. It is worthwhile therefore that more 

research attention to enhance reliability is directed to this area.  

                     
         Figure 1.2:  Cost of reliability at each phase of a product’s life cycle  
          (Source: Centre for Systems Reliability, Sandia Laboratories U.S.A.)      

 

1.2 MOTIVATION AND OBJECTIVES 

      The initial interest and incentive to research into the general area of optimal design for 

reliability thus stems from its importance to product reliability and the vibrancy of the area (as 

was determined from the literature) as a research field.  The study of the literature eventually led 

to the following very important observations which provided the focus and direction for this 

work: 

• While the application of traditional single criterion optimisation was very common in 

reliability design, it was not the case with multi-criteria optimisation. The reason for 

this situation could perhaps be because multi-criteria optimisation is a relatively new 

field and may as yet be unknown and unappreciated by many researchers and 

practitioners in the reliability field.  
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• Practical reliability design problems are generally multi-criteria by nature: for instance 

reliability is inextricably linked to cost, thus it is more realistic to optimise both. 

• The enormous benefits that could be derived from multi-criteria optimisation had not 

been fully exploited in reliability design, such as: (i) the opportunity to examine a 

variety of potential designs and thus make  informed decisions, (ii) being able to take 

on board and to optimise all relevant criteria simultaneously, thereby securing 

information on their trade-offs for effective decision-making, (iii) opportunity to factor 

user preferences into the analysis and so obtain acceptable solutions.  

• Application of optimisation in reliability design had been inordinately concerned with 

just one particular type of problem - redundancy allocation at the component level. Its 

use in setting system and component reliability specifications at the design stage had 

received little or no attention. 

• The applications focused mostly on the top level system reliability expression, which in 

the case of complex systems especially, was not easy to find. 

     The research work was therefore centred on the consideration of the problem of design for 

reliability where optimal component reliability values are sought in order to meet at least a 

system reliability target or specification at minimum cost. The main objectives were to: 

• Develop an alternative and new approach to the problem described;  

• Model the reliability optimisation problem as a multi-criteria one; 

• Apply the model specifically to series-parallel and complex systems; 

• Investigate the performance of the model, especially on real data if possible; 

• Compare the results with those achieved using other existing models and draw 

conclusions.  
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1.3 STRUCTURE OF THE THESIS 

    The thesis comprises three main parts. The first provides an overview of the theoretical bases 

of the subjects of multi-criteria optimisation on the one hand, and reliability on the other. These 

are the contents of Chapters Two and Three respectively.  

     The second part, made up of Chapters Four and Five is concerned with the applications of 

optimisation in reliability design. Chapter Four discusses the state of the art in optimal design for 

reliability, the various formulations of the problem and the solution methods used. Perceived 

gaps in the literature are highlighted and the ground work is laid for a new approach to the 

subject. Chapter Five presents the development of a novel approach to system reliability design, 

and formulates it as a multi-criteria optimisation. The model considers the reliability of the 

subsystems of a series-parallel system and an analytical cost function as criteria which are 

maximised and minimised respectively. The methodology is subsequently extended to complex 

systems.   

       Part 3 presents example problems to test the performance of the model and draw 

conclusions. Chapter Six looks at hypothetical cases, while Chapter Seven considers three 

applications derived from previously published work and one case study from industry. Chapter 

Eight concludes the discussions by drawing attention to a number of limitations and drawbacks 

associated with the work carried out, which also formed the basis for a number of 

recommendations for future work.     
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CHAPTER TWO 

 

 MULTI-CRITERIA OPTIMISATION 

 

2.1    INTRODUCTION 

      Decision making is more often than not, characterised by more than one criterion, and a 

number of constraints and decision alternatives.  Consider for instance the following four 

scenarios: (i) a prospective purchaser of a car is considering selecting one from a number of 

different models. The criteria of interest may be price, size, reliability, and style. Which car 

would give the best value for money? (ii) The designer of a heating system wants a product that 

say minimises heating cost and fuel consumption. The variables to consider could be the heat 

pump nominal evaporator pitch, heat pump power, gas turbine pressure ratio, excess air ratio, 

and inlet temperature among others (Li et al 2004). What values of the variables would achieve 

the objectives? (iii)  An oncologist is planning treatment for a malignant tumour, in order to 

maximise tumour dose while minimising exposure to organs at risk (Ehrgott & Burjony, 2001; 

Craft et al 2005). What dose levels and beam intensities would achieve these objectives?  (iv) A 

reliability engineer seeks to design a gearbox system with high reliability, but at minimum cost 

and weight, using components that are available on the market. It is felt that using components in 

parallel will achieve high reliability (Taboada et al, 2007; Zhao et al, 2007). Which components 

and redundancy levels would achieve these objectives? In all the examples given, a decision 

alternative is sought which yields the “best” value of each criterion simultaneously while not 

violating the constraints. Unfortunately, as will be demonstrated later, such problems (known as 

multi-criteria optimisation (MCO) types) usually do not have a unique or global solution 
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(Petrovski & McCall, 2001), i.e., there is no decision alternative that is optimal for all the criteria 

simultaneously. Consequently the concept of optimality, and therefore the notion of a solution, as 

known in single objective optimisation are rendered untenable in this case, necessitating their 

reformulation or modification (Miettinen K., 1998).  This has led to the development of 

analytical techniques and methodologies specifically tailored to the resolution of the technical 

difficulties (in terms of finding solutions) inherent in the problem, so that reasonable, meaningful 

and acceptable outcomes can be achieved. A formal statement of the general MCO problem will 

follow and the basic theoretical concepts and ideas that underline or underpin the subject 

discussed.     

  

2.2 FORMULATION OF THE MCO PROBLEM 

     The decision making tasks described above can be formulated into a vector optimisation 

problem with the Pareto model as its basic structure and an ordered vector space its fundamental 

notion (Nemeth and Nemeth, 2006). 

     Consider a vector-valued criterion function comprising  real-valued 

functions , ( ) defined on the vector of decision alternatives where    

 and .The intention is to find a vector of 

decision alternatives  which optimises (i.e. maximises or minimises) the vector 

 and satisfies a given set of constraints. The term “optimise” signifies the search for a 

solution which contains the values of all the objective functions adjudged to be acceptable to a 

user. This classical mathematical problem provides the context and framework within which to 

define and model a practical MCO problem and to analyse it for solutions. Without loss of 

generality the MCO problem is thus stated formally as follows: 

KN RRSf →⊆: k

RRf N
i →: ki ,..,2,1= Sx∈

T
Nxxxx ],...,[ 2,1= T

kf xxfxfxf )](),...,(),([)( 21=

T
Nxxxx ],...,[ 2,1=

)(xf
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where elements of the vector are functions of k  identifiable criteria (1< ); and 

are respectively and inequality and equality constraints; and 

)(xf +Ζ⊂k )(xgi

)(xh j m p x  is a vector of decision 

alternatives whose elements are called decision variables. The constrained MCO problem 

denoted by (2.1) may be expressed compactly as: 

 

                 

                  To minimise:                                               T
k xfxfxfxf )](),...,(),([)( 21=

                      Subject to:    0)( ≤xgi ,                                 mi ,...,2,1=  
                                          0)( =xhj ,                                pj ,...,2,1=   

(2.1) 

 
                                                               (2.2)  }:)(min{ Sxxf ∈

  [ ]TNxxxx ,...,, 21=                              Find:     

 

  where denotes the set of decision alternatives defined by: S

 

                                 (2.3)  
           

},...,1,0)(;,...,2,1,0)(:{ pjxhmixigxS j ===≤=  

 

2.2.1 Decision and Criterion Set 

     Two fundamental geometrical/analytical notions which arise from the problem in (2.1) and 

the focus of attention in the search for solutions are the decision (or variable) and the criterion 

(or objective) sets.  While the number of decision variables generates the decision sets the 

number of criterion functions generates the objective one. Embedded within each of the two sets 

is a subset respectively referred to as the feasible decision set and feasible criterion set.  For the 

problem in (2.1) the feasible decision set is defined by (2.3) and the feasible criterion set by 

M = ) for some . The points(:{ xfyRy K =∈ }Sx∈ y M∈ are the images of the points x S∈ , 
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however, while each point in maps onto a unique point in S M  the reverse may not be true. Also 

there may not be, in general, an explicit map of  onto S M  (Marler, 2005). Figure 2.1 illustrates 

the decision ( ) and criterion (S M ) sets for a hypothetical bi-criteria problem with a two 

component decision alternative. 

 

 

                                                                                 2x 2f

                                                                                                                        = S )(Sf M   

                                     

                        

 

                                                                                                                                                                                                                                        

                                                            Figure 2.1: Decision and criterion sets              

1x
1f 

 

 2.2.2 Partially Ordered Decision and Criterion Sets  

     As noted earlier an MCO problem, unlike its single criterion optimisation (SCO) counterpart, 

does not in most cases have a single decision alternative that is optimal for all criteria. The 

underlining reason for this phenomenon and a discussion of the mathematical notions employed 

to deal with the situation will be briefly addressed. Figure 2.2 depicts a hypothetical feasible 

criterion set of the functions   and . The figure shows that there cannot be feasible values of 

 and  which are minimum for the two functions at the same time. The point C which 

represents the unique minimum for the two criterion functions is infeasible. The simple reason 

for this absence of a unique minimum (which is characteristic of MCOs in general) is due to the 

1f 2f

1y 2y
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presence of multiple conflicting and incommensurable criteria: what is considered a minimum 

for one criterion fails to be a minimum for another (Petrovski &McCall, 2001; Collette & Siarry, 

2004). Instead there are many or an infinite number of points, the best (in terms of their values) 

of which are intuitively found along the boundary of the feasible criterion set lying between the   

 

                 

                                                                                               Feasible criterion set (2f M )   

                                                                                 

                                                                                                

               

                                                     

                                                         

C B 

    1f 

A 

1y

2y

 

                                        Figure 2.2: Absence of a unique minimum for and                                                                 1f 2f

points A and B (a formal proof is given in appendix A). The criterion set is therefore 

characterised by the presence of vectors which are partially ordered (Jahn, 2004; Ehrgott, 2005). 

Consequently, one needs a basis for the comparison of the vectors, in order to decide on those 

which are candidates for a solution.  

     The subject of partially ordered vectors will not be dealt with in detail in this thesis since it is 

a major subject in its own right; detailed discussions can be found in Jahn (2004) and Ehrgott 

(2005). Suppose there are two vectors and to be compared, 

in order to determine in the context of problem (2.1) which is the better. In order to proceed, a 

working definition of what is meant by “better” is required.  Goldberg (1989) provides this by 

T
Nyyyy ],...,,[ 21= T

Nyyyy ],...,,[ 21 ′′′=′
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stating that a vector  is partially less than a vector y y′ (denoted by ) if and only if 

and there is at least such that < 

py y′

ii yy ′≤ i∀ i iy iy′ , Ni ,...,2,1= .  A corollary to this definition is as 

follows: dominates if and only if is partially less thany y′ y y′ . If does not dominate y y′ and 

vice versa, then they are both non-dominated vectors (Le & Landa-silva, 2007), and according to 

Hawe and Sykulski (2008) both vectors are said to be equivalent.  Using the concept of 

dominance, therefore, the vectors in a partially ordered set may be separated into two main 

categories: dominated and non-dominated. While it is not possible to order the latter in terms of 

which ones are better than the others, it is possible to do so with the former. Dominance, 

therefore, is the fundamental notion used for finding candidate solutions for the problem in (2.1). 

2.2.3 Notions of Optimality 

      Some notions of optimality are: (i) Pareto, (ii) lexicographic (iii) min-max, and (iv) 

lexicographic min-max (Ehrgott, 2005). The most fundamental of these, which is derived from 

the concept of dominance, is, however, Pareto optimality, also called Pareto dominance.  A 

decision alternative  is said to dominate a decision alternative*x x or be Pareto optimal if and 

only if the following conditions are satisfied (Louie & Strunz, 2006):  

     (i) is partially less than , which means that*)(xf )(xf )(*)( xfxf ii ≤  for all ; ki ,...,2,1=

     (ii) At least one of the inequalities is strict for some i },...,2,1{ k∈ . 

Where the inequality in (i) is strict for all ki ,...,2,1=  the result is said to be strongly Pareto 

optimal.  The result is weakly Pareto optimal where the condition in (ii) is not satisfied. The 

notions of strong and weak Pareto optimality are thus special cases of Pareto optimality. If both 

conditions are violated,  cannot be said to dominate*x x . In this case  and *x x  are non-

dominated or Pareto optimal.  Hence a decision alternative is Pareto optimal if it is non-

dominated by any other feasible decision alternative.  Consider for instance that  Txf ]7,2,9[*)( =
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and are the only two points in a feasible criterion set. If it is assumed that 

then clearly condition (i) is not satisfied, neither is it satisfied in the converse 

relation. Thus it must be concluded that  and 

Txf ]5,0,11[)( =

)(*)( xfxf ≤

*x x are both Pareto optimal.  The collection of all 

Pareto optimal solutions is called the Pareto optimal set. The image of a Pareto 

optimal solution is called a Pareto point. The collection of all Pareto optimal points is called the 

Pareto front. Pareto optimal solutions are also referred to as non-inferior or efficient solutions 

(Tan et al, 2002).  

*)(* xfy =

     Other notions of Pareto optimality (see formal definitions in appendix A) are: (i) proper, (ii) 

local, and (iii) global (Augugliaro et al, 2001; Le & Landa-Silva, 2007). The idea of a local 

Pareto optimal set is similar to that of a local optimum in classical SCO. A set in the feasible 

decision space is local Pareto optimal if for all the vectors it contains, there are none in a small 

neighbourhood of the set which dominate all of them. On the other hand such a set is global 

Pareto optimal if no vector exists in the decision space which dominates every vector in the set. 

The idea of local Pareto optimality suggests that the Pareto optimal solutions may not always be 

confined to a distinct set. In other words they can be distributed into a number of distinct or 

disjoint sets within the feasible decision set. 

     Pareto optimality while providing a way forward in the pursuit of solutions to MCOs, also 

presents some practical difficulties. These have to do with how to find them from the large 

number of feasible decision alternatives that may be associated with a problem, and how to 

manage the potentially large number, if they were found, in order to decide on the most 

satisfactory one. The methods and techniques used in this regard are discussed later in the 

chapter.  
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2.2.4 Characterisation of Pareto Optimal Solutions 

      There are three unresolved questions that require addressing before concluding this section. 

These concern the characteristics of Pareto optimal solutions and, therefore, the Pareto front: (i) 

what distinguishes one Pareto optimal solution from the other; (ii) is there a geometrical intuition 

for Pareto optimal solutions; (iii) what are the implications for choosing one Pareto optimal 

solution instead of the others?  

       Recall that the vectors in a Pareto optimal set are non-dominated with respect to each other 

(Taboada et al, 2007) thus one cannot be distinguished from the other on the basis of which is the 

better. The vectors are regarded as incomparable. Their distinguishing characteristic is that an 

attempt to improve upon the value of a criterion associated with a particular solution would 

result in the degrading or deterioration of the value of at least one other criterion (Langer et al, 

2003).  Therefore perhaps the only and most important distinction which may be made between 

any pairs of the vectors is in terms of the tradeoffs information they provide between the criteria. 

The vectors in the Pareto set thus effectively are compromise or acceptable solutions. The 

question of which one offers the best compromise or is most acceptable is incidentally a 

subjective one. Nevertheless there are methods designed to help the decision maker identify a 

best compromise solution (BCS) (see section 2.4).    

      Geometrically speaking, while the vectors of the Pareto optimal set could be anywhere in the 

feasible decision set, the Pareto front is always a subset of the boundary of the feasible criterion 

set. (See Appendix A for a formal statement of this geometrical property together with other 

topological properties of the Pareto front). From Figure 2.2 therefore, the Pareto front lies on the 

boundary between points A and B of the feasible criterion set. Each point between A and B 

provides trade-off information between and .  For instance while the vector corresponding to 1f 2f
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point A yields a better value of  than the point B; the reverse is not the case in respect of . A 

decision maker in this case ought to make valued judgements about which criteria to trade-off 

and by how much.     

1f 2f

  

2.3 CLASSIFICATION OF MCO MODELS 

The two main model classifications in MCO are deterministic and stochastic each of which can 

be categorised further in terms of the type and nature of their admissible solutions. The various 

features of the models which impact their formulation and solution are now discussed.  

2.3.1 Deterministic Models 

     An MCO model is deterministic if its parameters are precisely determined, or can be assumed 

fixed or known as far as the problem or the optimisation is concerned. Practical problems, 

however, are seldom purely of this type.  Variability in parameter values is all too common and 

in such instances they cannot be precisely determined by just a single value, but rather by a set of 

randomly distributed ones. Another source of uncertainty apart from heterogeneous parameter 

values is inadequate or inaccurate data (Ndambuki et al, 2000). In many practical situations a 

deterministic model may still be formulated, notwithstanding the presence of uncertainties, in 

order that computationally reasonable approximate solutions may be found to an otherwise 

intractable stochastic situation (Babayan et al, 2004; Gabriel et al, 2007; Elshafei, 2007). 

Deterministic models may be categorised further as continuous, discrete or mixed, depending on 

the type of solution output. 

     The deterministic continuous type is of the following general form: 

 

                   

   
                                                              (2.4)      }:)(min{ NRSxxf ⊆∈
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 In this case the feasible decision set  which is in an -dimensional Euclidean space is 

composed of decision vectors (decision alternatives) 

S N

x  whose components are continuous or real 

values. The components of the criterion vector are also real-valued functions which may be 

linear or non-linear. In the case of the former (2.4) is described as a constrained linear MCO 

problem, otherwise it is said to be a constrained non-linear one; many practical MCO problems 

conform to the latter. The model type in (2.4) is common in practice; it is also the easiest to 

construct or develop and to solve. This is because the theory of continuous optimisation in 

particular is so well developed.  

)(xf

     The deterministic discrete type on the other hand may take one of the following general 

forms: 

                               

                                                                                     (2.8)    }],1,0[:)(min{ xxxxf ii ∈∀∈     
                                                               (2.7)    },...,2,1,)(:)(min{ kiZxfZSxxf i

N =∈⊆∈

                                                                                                   (2.5)    
                                                    (2.6)    },...,2,1,)(0:)(min{ : kiZxfRSxxf i

N =∈≤⊆∈
}:)(min{ NZSxxf ⊆∈

 

 

 

 In (2.5) the admissible solutions in terms of the decision variables, are required to be integer (or 

discrete) and may, or may not be restricted to a certain set of values, the integer restriction is 

limited to the decision variables only. In (2.6), however, the integer restriction is on the values of 

the components of the criterion vector, which may or may not be limited. In (2.7) the integer 

restriction is on both the decision variables and the criterion functions. In (2.8) the admissible 

decisions are of a binary nature; the components of the criterion vector may however assume 

continuous or discrete values. These types are described as constrained discrete or combinatorial 

MCO problems. Discrete problems are generally considered difficult to solve in view of the 

combinatorial nature of the solution search; in such cases the solution time grows exponentially 
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with the size of the problem, these are called NP hard (Coit & Baheranwala, 2005; Zhao et al, 

2007; Yang, 2008).  

     The mixed-integer types are generally of the forms: 

             

},:),(min{ NN ZYyRSxyxf ⊆∈⊆∈                   (2.9)   
                                (2.10)   },...,2,1{,)(,)0,:)(min{ ( KjZxfRxfRSxxf ji

N ∈∈∈≤⊆∈

     min{                    (2.11) }},...,2,1{,),(0,,:),( kiZyxfZYyRSxyxf i
NN ∈∈≤⊆∈⊆∈

 Y is the feasible set of integer variables. The admissible solutions in this case may be such that 

some specified decision variables take on only integer values while the rest are unrestricted, such 

as in (2.9) where the decision variables in the vector x were real valued and those in were 

integer. There are cases where the integer requirement would be with respect to some identified 

criteria only, as in (2.10). In other cases the output of both some specified decision variables and 

criterion functions may be required to be integer, as in (2.11). Mixed problems like these also 

pose combinatorial problems rendering them NP hard. They are therefore in the class of hard 

MCO problems. 

y

2.3.2   Stochastic Models 

     An MCO model is stochastic (non-deterministic) if uncertainties arising from the variations in 

parameters including criteria and decision variables are explicitly accounted for in its 

formulation. In this case stochastic modelling techniques are employed in order to estimate the 

values of the parameters and to construct criteria and constraints. The use of fuzzy techniques in 

this regard has also become popular (Pohekar & Ramachandran, 2004). Further categorisations 

under this type are again continuous, discrete and mixed models.  

    Stochastic continuous models are similar to their deterministic continuous counterparts, as far 

as the requirements for the admissible values of both decision variables and criteria are 
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concerned. They are different, however, firstly in terms of the characteristics of the parameters 

that are used in the model and secondly in the quality of the solutions. This is on the grounds that 

a stochastic model is more representative of a problem where variations and uncertainties exist, 

and thus are expected to provide better solutions than a deterministic one.  The following general 

forms are presented as illustrations: 

(2.15)  }1),...,2,1,(Pr:)(min{ iii NixxSxobxf α−≥=∈∀∈     

       (2.13)   

                                                (2.14)   

},...,2,1,,:)(min{ NiuxlRSxxf iii
N =≤≤⊆∈

}:)]([)],...,([)],([min{ 21
N

k RSxxfExfExfE ⊆∈−−−

                        (2.12)   }:)](var[)],...,(var[)],([)],...,([min{ 11
N

kk RSxxfxfxfExfE ⊆∈−−

 

All four require continuous values for their decision variables. The formulation in (2.12) 

illustrates the case where variability is associated with one or more criteria. This may be the case 

where the precise forms of the objective functions are unknown or too complicated to compute 

precisely, or, where their outputs are only approximations (Bao et al 2007). Thus their expected 

values  and variances , )]([ xfE i )](var[ xfi ki ,...,2,1=  are respectively maximised and 

minimised. In (2.13) the decision variables are subject to variation with their values expected to 

lie within stochastically determined upper and lower limit  and  respectively.  The expression 

in (2.14) a variant of (2.12) on the other hand seeks to maximise only the expected values of each 

criterion. The expression in (2.15) illustrates the case where some or all of the constraints are 

subject to variation and thus to the chances of constraint violation for some decision variable 

values. This situation is modelled by incorporating stochastic constraints in the formulation, 

where 

iu il

Nii ,...,2,1, =α  represents a parameter of the distribution associated with the chance of 

constraint violation. Various mixes of the above models can also be formulated. This type of 

model, even though continuous, presents both formulation and computational challenges, due to 
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the stochastic situations involved which invariably leads to increased model complexity. 

Stochastic continuous models are less common in applications than deterministic continuous 

ones, perhaps because of these limitations.  

     The discrete models are similar to the continuous ones in terms of their general forms; 

however they differ in the nature of the solutions which are required to have only integer values. 

This type presents even more formidable formulation and computational challenges than the 

stochastic continuous ones.  

     The solution requirements for the mixed-integer models are the same as those for the 

deterministic types. However the level of difficulty in terms of modelling and finding solutions is 

much higher for the same reasons as given for the discrete case. Venkataraman & Hafka (2002) 

have indicated that the level of difficulty, also referred to as complexity (Rubenstein-Montano & 

Malaga, 2002), in modelling and computational terms, for the SCO versions discussed above, 

increases from left to right of the following list: deterministic continuous, deterministic discrete 

(or mixed-integer), stochastic continuous, stochastic discrete (or mixed-integer). The presence of 

multiple criteria further increases the complexity.  

 

2.4 THE MCO METHODOLOGY 

     There are four important issues to address in any application of the MCO methodology. These 

are identified as: (i) knowledge of the characteristics of the problem, (ii) the model formulation, 

(iii) the search for solutions and, (iv) the selection of a compromise solution. 

 

2.4.1 Problem Characteristics   
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     An application requires specification of the various criteria, decision variables, constraints 

(Nocedal & Wright, 1999) and any other parameters which are related to the problem. The 

formulation process is an attempt to put these attributes into context and to specify their levels of 

interaction. Knowledge and specification of these attributes is an essential precedent to any 

model formulation. It is also necessary to have an appreciation of the levels of complexity which 

are influenced by the model size (number of parameters, decision variables, criteria and 

constraints) and have implications for finding solutions (Savic, 2002; Fadel et al 2005). 

2.4.2   Model Formulation and Challenges 

     The formulation activity essentially centres on finding a representative model that captures 

the essence of the problem. It is in effect a simplification of the problem which otherwise would, 

according to Michalewicz &Fogel (2004) be as complex and unwieldy as the natural 

environment itself. Among other things this requires a precise definition of the criteria, decision 

variables and constraints. This crucial step (Nocedal & Wright, 1999; Savic, 2002) sets the 

boundaries as well as provides a structure to the problem and helps the analyst to focus on the 

essentials. 

      The criteria expressed as criterion functions are measures of effectiveness or of performance 

for the problem. The intention is to achieve the best values possible for these measures in the 

optimisation. The constraints specify the limits on the consumption of resources, or 

requirements which must be satisfied for the model to remain valid or feasible. A highly 

constrained problem, however, has the tendency to drastically reduce the feasible criterion and 

decision set thus rendering the problem very difficult to solve or even infeasible. Constraints 

may be imposed on criteria, decision variables or other attributes of the problem. The 

parameters are all the quantities that describe and influence the model behaviour. They generally 
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include both the constant coefficients and the variables of a problem. They provide a means for 

assessing the sensitivities of the model, through the perturbations of their values. They may be 

known, a priori, or may be determined experimentally. In some cases assumptions have to be 

made about them in order to simplify the task of model development. This is the case especially 

where randomness exists in their values but they are assumed fixed or precisely known, in order 

to proceed with a deterministic formulation. There is however, the risk of over-simplification and 

therefore the possible misrepresentation of the essence of the nature of the problem (Igor et al 

2004) which eventually could compromise the quality of the solutions. In recent years a number 

of techniques for dealing with randomness have evolved. These are robust and stochastic 

optimisation techniques which characteristically yield MCO models (Jung & Lee, 2002; Igor et 

al, 2004), and interval and fuzzy sets-based methods (Kuo et al, 2001; Pongthanapanich, 2003; 

Zang et al, 2005). 

      A major challenge in the formulation process is finding metrics which model the dependence 

of criteria or constraints on decision variables and/or parameters. Common practice that helps to 

address this problem has been to use already existing theoretical models (Leyland et al, 2003; 

Yun et al, 2004; Subbu et al, 2005). In the absence of such models, real and computational 

experimental approaches, for instance, have been used (Yun et al, 2004). The experiments are 

intended to manipulate the variables and parameters of the problem, to investigate the 

dependency of the criteria on decision variables and parameters, so as to formulate relations 

between them. Simulation models have been used (Papalambros, 2002) in cases where an 

explicit algebraic expression for the criteria and the constraints is absent, leaving only a formal 

statement of a complex procedure involving computer based calculations. Where qualitative 

criteria, constraints or decision variables are involved heuristic approaches such as neural net 
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approximations and fuzzy modelling techniques have been used (Srdjevic et al, 2004; Fadel et al, 

2005; Mahfouf et al, 2005). Also used are Monte Carlo simulations where stochastic criteria, 

constraints, or parameters are involved. The use of simulation models for both problem 

formulation and solution generation has also become popular (Gupta & Sivarkumar, 2002; 

Duvivier et al, 2003; Persson et al, 2006) especially as they do not require explicit functional 

forms and because powerful computer based tools for evaluating complex problems have 

become available.    

2.4.3   The Search for Solutions and Challenges 

     The search for solutions refers to the steps taken, once a model is formulated, to find the 

entire Pareto optimal set in some cases, or a subset of it; or in other cases just a BCS. This aspect 

is an important part of the MCO methodology and constitutes a major research area by itself. It 

begins with a choice of a suitable algorithm which effectively incorporates the model 

characteristics, thus sufficient knowledge of the connection between the characteristics and a 

solution method or algorithm is necessary if an appropriate method is to be found (Cai & Wang, 

2006).  The methods and techniques used are discussed in section 2.4, while attention here is 

drawn to some consequences of the characteristics on the solution search.   

     The model type and the size of the search space have already been noted as being 

determinants in both model complexity and in finding solutions. The type of model for instance 

should provide an insight into whether or not the search space is going to be continuous, discrete, 

or a mixture of both. Furthermore whether or not the search space would have desirable features 

like convexity, connectedness and compactness may be ascertained thus serving as a guide for 

the selection of an appropriate algorithm. Since the size of a Pareto front is proportional to the 

number of criteria (Coit & Baheranwala, 2005) a large model could have a large search space. 
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This could pose both technical and economic difficulties in terms of finding a suitable algorithm 

and of the cost, especially of Central Processing Unit (CPU) time among other resources. In 

some cases such a model may even be unsolvable. A large search space also means that the 

number of possible solutions is comparable in size (Amponsah, 2003) and this could make the 

search, either for the Pareto front, or a compromise solution a daunting task. This difficulty is 

further exacerbated by a fragmented and or/sparse search space as may occur especially with 

discrete problems, whether deterministic or otherwise. The number of constraints also has an 

impact on the size of the search space. A highly constrained problem could result in a diminished 

search space and render many solutions infeasible or impracticable (Michalewicz & Fogel, 

2004).    

 2.4.4   Compromise solution Selection and Challenges       

Even though it is the climax to any MCO methodology, the selection of a compromise solution is 

not an easy or simple exercise. The reason for this is, firstly, that the Pareto front, if secured for a 

problem, would normally contain a large if not infinite number of possible solutions, where each 

one is equally good, though only one would normally be required. The question then becomes 

which one to select. Alternatively, if instead of the Pareto front a compromise solution is sought 

directly through interactive means, there still remains the need to accurately extract and model 

user preferences for integration into a solution algorithm. This certainly requires a lot of effort on 

the part of both the user and the analyst. The other reason is that since all the solutions are 

equally good the choice is very much a subjective one, which customarily must be exercised by 

the end user (decision maker). The challenge lies in the user being able to make subjective 

judgements about the individual solutions on the basis of the values of the criterion functions and 

to appreciate the trade-offs involved. In the special case of a bi-criteria problem this might be 
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easier to do, since graphical aids could be employed in the process. In higher dimensions, as is 

typical with real problems, this is just not possible. While interactions between the analyst and 

the decision maker are a necessary way forward (Cohon, 1978), this problem remains a great 

challenge in the selection of a BCS.   

     Because of its importance, techniques for the identification of a BCS are an important 

research concern. A number of techniques and tools (including software packages) have been 

developed for this purpose. These generally are called Decision Support Systems (DSS) 

(Weistroffer & Narula, 1997; Ndambuki et al, 2000), Multi-Criteria Decision Making (MCDM) 

(Traintaphlou, 2004; Pohekar &Ramachandran, 2004; Steuer & Na, 2005) or Multi-Criteria 

Decision Analysis (MCDA) (Cheng et al, 2003). Examples are Analytic Hierarchy Process 

(AHP), Multi-attribute Utility Theory (MAUT), Elimination and Choice Translating Reality 

(ELECTRE), Compromise Programming (CP), The Technique for Order Preference by Similar 

to Ideal Solutions (TOPSIS), Goal Programming (GP), Preference Ranking Organisation 

Method for Enrichment Evaluation (PROMETHEE), etc. Some of these techniques, such as the 

AHP and the ELECTRE, are good for analysing only a few discrete solution alternatives. The 

ELECTRE is also able to analyse both quantitative and qualitative criteria. In the next section 

some of the popular solution methods, include CP and GP, are discussed in detail. 

 

2.5   CLASSIFICATION OF SOLUTION METHODS 

The literature reveals a large and diverse collection of methods and techniques for solving MCO 

problems as well as their characteristics. Marler & Arora (2004) present a comprehensive review 

of a number of the methods. In general, they may be classified as either classical (also called 
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traditional or deterministic) methods; or as non-deterministic (also called stochastic or heuristic/ 

meta-heuristic) methods.  

2.5.1   Classical Methods 

     These were the earliest to be developed, and are particularly suited to MCO models with 

continuous search spaces. They use various schemes to transform the vector minimisation 

problem defined in (2.1) into a scalar one (Fonseca & Fleming, 1995), thereby permitting the use 

of scalar optimisation algorithms, the outputs of which are a single solution at each run. They are 

thus aptly called scalar methods (Orths et al, 2001; Schmitt & Verstege, 2001). The unique 

optimum which results as a solution is considered Pareto optimal under certain conditions 

required by the particular method. An important attribute of most of the methods in this class is 

that they may be used interactively by incorporating the decision maker’s preference directly into 

the solution algorithm at specific stages of the search. The expressed preferences may be 

incorporated into the algorithm before, during, or after the solution search (French, 1984; Marler 

&Arora, 2004) in order to find the BCS of the decision maker. The interactive approach, 

therefore, avoids the generation of the entire Pareto optimal set (Cohon, 1978). The benefit can 

be a great saving in time and effort to find the BCS; a drawback however is that since it depends 

on user expressed preferences there is a risk of obtaining a solution that is not Pareto optimal 

(Collette & Siarry, 2004).   

    Notable amongst the methods are the weighted sum, the constraint method, MAUT, GP and 

CP (Coit et al., 2004). These are particularly effective at dealing with deterministic (or 

stochastic) models characterised by continuous search spaces. The weighted sum method 

specifies weights for each criterion and aggregates them into a scalar function where is the 

weight of the   criterion function (

iw

thi' ki ,..,2,1= ) and is given by the following: 
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The values of the weights, which are inputs to the optimisation, are decided beforehand. This 

may be done interactively with the user or a set of weights may be generated independently by 

the analyst. The user expressed weights represent the relative preference for the individual 

criteria where a higher weight represents a higher preference. Where the analyst supplies the 

weights the solution corresponding to each set constitutes a point in the Pareto optimal set 

(Stadler, 1988); thus by varying the weights parametrically the analyst may generate a portion of 

the Pareto optimal set for consideration by the user. The major drawbacks of this method as 

discussed by Das & Dennis (1997) and de Weck & Kim (2004) are: (i) it fails to find Pareto 

optimal solutions at the non-convex areas of the Pareto front. This is because the method is 

implemented as a convex combination of the objectives, with a constant weights’ sum and 

negative weights disallowed. (ii) Even where the Pareto front is convex an even spread of 

weights does not guarantee an even spread of points along the Pareto front. The Adaptive 

Weighted Sum Method by de Weck & Kim (2004) is a recent work aimed at addressing the 

former drawback. A challenge presented by the method is how to determine the appropriate 

weights especially where there is not enough information about the problem. A major advantage 

of the method is its computational efficiency.    

     The constraint method also referred to as the ε-Constraint Method or the Trade-off Method is 

such that a function ,  is selected as the primary criterion for minimisation while 

each of the remaining functions, treated as secondary, is constrained to an upper bound  which 

)(xf i ki ≤≤1

ju
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is a pre-determined value for the  criterion. The method is given by the following general 

form: 

jth

}                            (2.17) kiij ,...,1,1,...2,1 +−=, 
          

{ :)(min xfi ,Sx∈ )(xf j ju≤ ∀ ki ≤≤1   

 

 A positive aspect of this method is that it does not require any convexity assumption (Ehrgott, 

2005) which means that it is better at locating the Pareto front in non- convex search spaces than 

the weighted sum approach. The constraint method systematically modifies the search space by 

altering the values of the upper bounds of the criteria and solving the resultant problems. In this 

way the entire Pareto optimal set may be generated. The user may express relative preference for 

each criterion through the choice of upper bounds. They must however be feasible to ensure that 

the solutions obtained are Pareto optimal. Its simplicity is also one of its advantages. The 

objective functions however can be time consuming to code, where there are too many of them. 

It tends also to find weak Pareto optimal solutions.    

     The utility function approach is premised on utility or value theory, which is based on a set of 

propositions of logical choice behaviour of a decision maker (Cohon, 1978) to the effect that 

faced with a set of decision alternatives a decision maker would make choices consistent with a 

utility function, one that is defined on an interval scale (cardinal function). Thus if  is a value 

function, defined on the criterion space, then the decision maker seeks which 

minimises . Conditions desirable for finding 

v

Sx∈

))(( xfv x are that is non-increasing and the 

feasible criterion set convex.  The utility approach therefore transforms the MCO as given in 

(2.1) into an equivalent problem of the form:  

u
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where   is a scalar-valued function. A well known approach for the 

construction of utility functions is the decomposition method which assumes that the utility of 

the  criterion is mutually independent from the others and therefore the overall utility is 

either additive or multiplicative (Cohon, 1978). Thus the top level utility function may be 

expressed by: 
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where is the utility of the criterion.  While the functions exist in theory, for 

all , they  are in practice not easy to find, due to the following reasons: (i) the functions are 

derived from the decision maker’s expressed preference information which can be time 

consuming to extract, (ii) the decision maker may have difficulty making value judgements about 

the various criteria, (iii) modelling  preferences is a difficult task and may result in making 

assumptions that could over-simplify the problem, and (iv) they ignore the interactions between 

criteria. An advantage, however, is that they allow the decision maker to concentrate on one 

criterion at a time while specifying utilities (Cohon, 1978). On another note, the assumptions of 

logical behaviour on the part of the decision maker have been questioned on the grounds that 

empirical evidence does not always support them (Dyer et al, 1992).  Once the functions 

are specified the resulting scalar-valued problem can be solved by a standard scalar 

optimisation algorithm. The resulting Pareto optimal solution provides the BCS of the decision 

maker. 

)(xfv ii thi' )(xfv ii

i
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      In GP an ideal value or goal  is set by the decision maker, for each criterion  

and deviations from the goals are minimised as follows: 

iG )(xf i
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The absolute value is used since the goals for each criterion may be less or greater than the 

attainable value of the criterion.  An equivalent linear formulation in terms of the positive and 

negative deviations  and  respectively, of the ith  goal from the  criterion is the 

following: 

+
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It is noted that and will not both be nonzero for a given goal. That is when then 

and vice versa. This is because even though many combinations of and would 

satisfy the equality constraint given by , the ones that minimise their sum is 

what is required. Sometimes a decision maker may want to modify the formulation in (2.21) by a 

weighting scheme, to reflect his/her relative preferences for each criterion. The corresponding 

formulation would therefore be:  

+
id −

id 0=+
id

0≠−
id +

id −
id

−+ −=− iiii ddxfG )(

   
         (2.22) },...,2,1,0,,)(,:)(min{

1
kiddddxfGSxdwdw iiiiiiiii

K

i
i =≥−=−∈+ −+−+−+

=

+ −∑ 

 

In (2.22) the weights are assumed non-negative. Special cases are when either of the weights 

takes on a value of zero, or when some weight is assigned a very high value relative to the 
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others. The former results in what is called a one sided goal programming formulation, which 

occurs when a decision maker determines that only positive or negative deviations from the goals 

are of importance. The latter occurs when the relative importance of one goal is rated higher than 

the others (Cohon, 1978). The GP approach suffers from the risk that a set of goals may lead to a 

solution that is not Pareto optimal (Das, 2000). This may occur where the goal is in the feasible 

criterion space but not Pareto optimal. In such a situation the goals may be attained, producing a 

total deviation of zero. In general an ideal solution which results in a Pareto optimal solution is 

one that is in the Pareto optimal set, or close to it (Cohon, 1978). The formulations in (2.21) and 

(2.22) are scalar-valued optimisation problems which yield solutions that represent the BCS of 

the decision maker. 

     Another scalarisation approach, viewed as an extension of both the weighted sum and the 

utility function methods, is the normed method also called compromise programming, global 

criterion, or utopian point methods (Stadler, 1988; Marler &Arora, 2004). This is given by: 
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and is the unique minimum of the ith  criteria. The vector is therefore 

generally infeasible; i.e. 

iU T
KUUUU ],...,,[ 21=

SxSfU ∈∀∉ )( . Therefore U is referred to as a utopian point. Where 

some or all the independent minima of some or all the criteria cannot be determined,U may be 

approximated (Marler & Arora, 2004). The expression in (2.24) which is the Euclidean norm is 
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called a distance function since it measures the distance of a solution fromU . There are 

occasions where a weighting scheme may be introduced to model preferences. In this case the 

method is called weighted norm, given by: 

}{ Sxxwf
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Note that a series of scalar problems results as P is assigned specific values: the higher the value 

of P  the closer the solutions in a feasible criterion set. The most often used values of P are 1, 2 

and ∞. Where ∞ is assigned, the resulting scalar problem is called min-max optimisation as 

defined by Stadler (1988).  A solution to (2.23) or (2.25) for fixed values of P  and > 0 iw i∀  is 

Pareto optimal (Stadler, 1988). Thus by varying either P or or both a set of Pareto optimal 

solutions may be generated (Stadler, 1988; Marler & Arora, 2004).  A benefit of this method is 

its ability to find solutions in non-convex spaces. A major difficulty is that if the objectives 

functions have different units the Euclidean norm fails (mathematically speaking) to be a good 

representation of the distance of the solutions from the utopian point. In such situations it is 

better to transform the objective functions so that they are dimensionless (Marler & Arora, 

2004). Table 1.1 summarises the methods discussed in terms of their major characteristics and 

conditions under which they generate Pareto optimal solutions.  Further examples of the scalar 

methods are discussed by Miettinen (1998) and Ehrgott (2005). An observation that is common 

iw
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to all the methods is that they each have their particular strengths and weaknesses. A summary of 

the generic strengths and weaknesses of the methods are recounted on the next page. 

   
Table 2.1: A summary of the main features of the Scalar methods discussed

Method Characteristics 
Condition for Pareto 

optimal solutions 
Advantages Disadvantages 

Minimises a convex 

combination of weighted 

objective functions,  

Weights are strictly 

positive,   

Fails to find Pareto 

optimal solutions where 

feasible criterion set is 

non-convex 

Weights systematically 

varied 

Computationally efficient 

and easy to apply 

Difficulty in determining 

appropriate weight 

Weighted Sum 

Uses normalised weight 

vectors Convex feasible 

criterion set 
Simplicity   

Could be time 

consuming and difficult 

to code for a large set of 

objective functions 
ε-Constraint 

Sets one criterion as the 

objective function to be 

minimised and constrains 

the others to determined 

limits 

The limits on objective 

functions must be 

feasible 

Can find Pareto optimal 

solutions in non convex 

regions of Pareto front 
Could yield weak Pareto 

optimal solutions 

Utility function non-

increasing 

The utility function may 

be difficult to determine 
Utility Function 

Minimises specified 

utility functions  for all  

the criteria 
Convex feasible 

criterion set 

Allows decision maker to 

focus on one criterion at a 

time 
Fails under non-convex 

conditions 

Goal Programming 

Minimises deviations of 

the objective functions 

from a specified goal 

The goals must be 

close to or in the  

Pareto front 

The decision maker sets 

the goals. Efficient in bi-

criterion cases 

The goals can lead to 

dominated solutions. 

Setting goals for many 

criteria can be difficult 

Compromise 

Programming 

Minimises deviations of 

the objective functions 

from a chosen infeasible 

point 

The weights must be 

strictly positive 

Can find Pareto optimal 

solutions in non convex 

regions of Pareto front 

Requires that the units of 

all criteria are the same 
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     Strengths 

• Generally efficient at finding Pareto optimal solutions where the search space is 

continuous  

• Where user preference is specified or known they can find the preferred solution with 

relatively few computations and thus at minimal cost. 

• They have well established theoretical and mathematical foundations that facilitate 

investigations into the convergence of the methods 

      Weaknesses  

• Generally, they fail to find solutions in non-convex regions of the search space. 

• Where the user is unable to articulate preferences, the generation of the entire Pareto set 

or sections of it may be required. This may constitute a heavy computational burden as 

well as additional cost. 

• Since computational runs are independent there is no opportunity to exploit synergies 

between the solutions (Petrovski & McCall, 2001) 

• Where the solution space is large the search for Pareto-optimal ones can be a daunting 

task with a huge resultant computational burden and cost 

• May not provide an opportunity for post optimality analysis since the entire Pareto front 

may not be found. 

 

None of the methods can thus be said to be good in all cases. Therefore the choice of any for a 

problem should by informed by its characteristics, time and budgetary constraints together with 

its strengths and weaknesses. 
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2.5.2   Stochastic Methods 

     The stochastic methods, also generically referred to as Pareto or vector minimisation 

methods, because of their population-based approach to finding solutions, are relatively new. 

They have been developed only over the last two or three decades and are still evolving; but are 

already proving to be the popular choice for the solution of many practical MCO problems. 

Some of the factors responsible for this development are on the one hand attributable to the 

complexity of practical problems which in many instances are non-linear, non-convex, non-

differentiable, combinatorial or NP-hard (Petrovski & McCall, 2001; Venkataraman & Hafka, 

2002). The classical methods are generally reputed to be deficient in adequately handling such 

situations compared with the stochastic ones (Marler & Arora, 2004; Taboada et al, 2007; Zhao 

et al, 2007; Taboada & Coit, 2007). The stochastic methods have thus been developed mainly in 

response to this need. Their attractiveness is also due to their relative ease of use, even though 

their solution output may be sub-optimal. Popular examples in this category are the class of 

genetic algorithms (GA) specifically devoted to MCO problems. These are generally called 

Multi-objective Genetic Algorithms (MOGA) out of which have evolved the so called Multi-

objective Evolutionary Algorithms (MOEA) ( Salazar et al., 2006). Specific instances of the 

latter, are, Vector Evaluated Genetic Algorithm (VEGA), Niched Parameter Genetic Algorithm 

(NPGA), Strength Pareto Evolutionary Algorithm (SPEA), and Non-dominated Sorting Genetic 

Algorithms 1&2 (NSGA1&2). A detailed discussion of these methods is given by Deb (2001) 

and Marler & Arora (2004). Other heuristic algorithms in current use are Simulated Annealing 

(SA), Tabu Search (TS), Multi-objective Particle Swarm Optimisation (MOPSO), and Ant 

Colony Optimisation (ACO).  
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     A common feature with these is that they are based upon and mimic some natural phenomena 

in their solution process; they also adopt a global search approach to the solution. For instance 

MOGA which is an extension of the single objective GA to multiple objectives through the 

introduction of a Pareto-ranking scheme emulates nature’s evolution based on preferential 

survival. Examples are the reproduction of the fittest members of the population, maintenance of 

a population with diverse members, inheritance of genetic material from parents and occasional 

mutation of genes (Savic, 2002). MOPSO on the other hand, unlike MOGA, simulates the social 

behaviour of flocks and explores the search space by adjusting the trajectories of individual 

vectors called particles; these evaluate their positions in relation to a predetermined goal, during 

iteration. They are drawn stochastically towards the positions of their own previous best 

performance and that of their companions (Mahfouf et al. 2005). The ACO algorithm mimics the 

behaviour of ants in their movement from their nest to their food source and back. Ants are 

known to deposit a substance called pheromone along their paths, so by tracking the 

concentration of this substance they are able to find the shortest route between their nest and a 

food source (Shelokar et al, 2002).  

     The main strengths and weaknesses of these methods are noted as follows: 

     Strengths   

• Easy to apply without modification to the problem (Coit &Baheranwala, 2005) 

• Ability to search through large solution spaces 

• Ability to find solutions in both convex and non-convex  regions in the search space 

• Ability to approximate the Pareto optimal set in a single run 

• Does not require preference information a priori.  

• Permits post optimality analysis and thus facilitate the search for desired solutions. 
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Weaknesses 

• No guarantee that a Pareto-optimal solution is found, though they are reputed to 

consistently find very good solutions (Coit &Baheranwala, 2005; Louie & Strunz, 2006). 

• Being random (stochastic) methods, the solution quality can only be evaluated 

empirically. Thus convergence of solutions cannot be investigated theoretically.  

     While the stochastic methods appear to be more frequently used in applications than the 

classical ones, a recent interesting development in recent times is the incorporation, occasionally, 

of deterministic methods in a heuristic framework in the search for solutions. For instance Celli 

et al (2005) used the ε-constraint method in a GA and Coit & Konak (2006) used the weighted 

sum method in conjunction with a heuristic in the sizing and siting of generated electricity and 

the redundancy allocation problems respectively. Coit & Baheranwala (2005) also used the 

weighted sum method in conjunction with a GA to solve a stochastic system reliability design 

problem. This development (a clear research area) may have good prospects in terms of the 

exploitation of the strengths and compensation for the weaknesses within specific methods, 

through such integrations.  

     In Chapter 3 a review of the foundational concepts in reliability engineering is undertaken to 

provide the platform for the discussion of applications of the MCO methodology in design for 

reliability (the subject of Chapter 4). 

 

2.6    SUMMARY 

     The decision making situations that involve multi-criteria have been posed as a vector 

optimisation problem. Consequently, the theoretical basics of vector optimisation and especially 

the concept of Pareto optimality have been discussed. The fact that there is no unique solution in 
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vector optimisation, but rather a set of equally good solutions has been emphasised. The need 

therefore for a decision maker to exercise subjective judgements about the criteria in order to 

find one that is implementable, together with the difficulties associated with the process, have  

been emphasised.     

     The mathematical models used to describe MCO problems were classified as deterministic 

and stochastic. Within these main models sub-categorisations were made in terms of the solution 

requirements of each model; these were identified as continuous, discrete, or mixed-integer 

versions. The characteristics of the models and their impact on finding solutions have also been 

given some attention. 

     The general methodology of MCO applied in modelling practical problems has been noted to 

involve among others, formulation of a model, selection of a solution algorithm and search for 

solutions, and identification of a user’s compromise solution. Emphasis was given to the intricate 

and elaborate steps and processes that have to be undertaken to secure a working model, together 

with finding realistic solutions. The model characteristics were observed as being an important 

determinant in the choice of a solution algorithm. Computational complexity was especially 

noted as a major challenge in solving real problems.    

      The solution methods for MCOs were grouped under two major classes: classical and 

stochastic. The most popular of the former were discussed in terms of their properties and their 

strengths and weaknesses. Their characteristics included the fact that they allowed the 

incorporation of preferences before, during, or after a solution search, and then resulted in a 

single solution output at each optimisation.  The classical methods were found to be particularly 

useful in the context of continuous or convex situations. They were however not capable of 

dealing with some notable features of MCOs occurring in real life applications; such as those 
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which had discrete, combinatorial, non-differentiable, or non-convex search spaces.  The 

stochastic methods use heuristic algorithms, which are characterised by a population based 

approach and random search techniques to find solutions. The methods were distinguished from 

the classical ones in terms of their ability to better handle the complexity issues and also to 

approximate the Pareto front at a single run of the solution algorithm. They were, however, 

considered to be deficient in terms of a sound mathematical basis upon which to investigate the 

convergence of solutions.        
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CHAPTER THREE 

 

SYSTEM RELIABILITY DESIGN 

 

3.1 INTRODUCTION 

       The concept of reliability as it is known today has evolved from being intuitive and non 

technical (Endrenyi, 1978), through a period of refinement and development during which it was 

considered to be vital especially in the design of  electronic products for military purposes 

(O’Connor, 1995), to a discipline that enjoys well established theoretical and practical 

foundations and is considered a necessary factor for both enhanced product and process quality 

and safety related concerns. The fact that it is now a major engineering subject is indication not 

only of the tremendous growth in terms of its theory and application, but also of its importance 

and indispensability.  

     This chapter will report on the theoretical ideas upon which reliability is founded, as well as 

its role and relevance in the design of systems in general, and to provide a basis for the research 

work undertaken.  The various fundamental concepts and terminologies are firstly defined and 

discussed. A number of models and techniques for evaluating systems’ reliability will follow.     

 

3.2 TERMINOLOGY AND DEFINITIONS 

     Before discussing systems reliability, the focus of this work, it is necessary to define terms 

such as system, subsystem/assembly, component, failure, and reliability.  

• A system may be either a product or a process; in this thesis it will generally refer to a 

product or item which comprises identifiable parts or units/elements called components, 
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subsystems and/or assemblies which are integrated to perform one or more specified 

functions (Kuo & Zuo, 2003). Therefore, while a computer is clearly a system since there 

are distinct parts such as the processor, the memory, the key board, the monitor, the 

mouse etc, all working together for a common purpose, the same cannot be said, for 

instance, of a shop shelf displaying various goods, since in this case there is no 

interaction between the items on the shelf. A system may also be viewed as a set whose 

elements are the components (or subsystems/assemblies) where all the elements must 

work as a unit to achieve the system goals. 

• A subsystem may be one or more distinct components of a system. Technically speaking 

therefore every system is its own subsystem, which also means that a subsystem in some 

situations may be viewed as a system if it discharges its function(s) as an independent 

entity. 

• An assembly is a subsystem. In some systems composed of subsystems, the subsystems 

themselves may also be composed of lower level subsystems which in this case may be 

called assemblies (ReliaSoft Corporation, 1992-2008). An example could be a car which 

has subsystems such as the engine, gear box, suspension etc. The engine itself would 

comprise subsystems such as the ignition, fuel, and cooling systems say.  

• A component is a subsystem which is not decomposed further into lower level 

subsystems or assemblies during a given reliability analysis (Endrenyi, 1978). This 

definition suggests that a component could actually be made up of other components 

which would not be subject directly to reliability analysis. Thus while the configuration 

of a system may be altered the same cannot be done with a component during the analysis 

(Endrenyi, 1978). In order to alter their reliability, components may either be replaced 
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with ones that provide the required level of reliability or be redesigned (Mettas, 2000). 

Components may also be either repairable or non-repairable. Repairable components 

when failed may be returned to their original state after service (or repair) for further use. 

Non-repairable components, however, cannot be repaired and thus cannot be reused when 

failed. In this thesis components are assumed to be non-repairable. 

• Failure is an event the occurrence of which puts a component or system into a state 

whereby it is no longer able to perform its specified function(s) as expected. Thus a bulb 

is considered to have failed when it does not light up when it is switched on, or a car, 

when it does not start when the ignition is fired. The former illustrates the failure of a 

non-repairable component or system, whilst the latter illustrates that of a repairable one. 

In some systems there can only be one of two states: failed or in perfect working 

condition (Dhillon, 1985). Such systems are called binary. In other systems a number of 

states are possible where they could be neither failed nor performing at their expected 

level. Such systems are called multi-state (Pham, 2003; Ramirez-Marquez & Coit, 2004). 

This thesis assumes that a system is always binary. From this definition it may be inferred 

in general that failure is first of all random and secondly time dependent. This 

observation is explored further in the next section.      

• Reliability, according to Kuo & Zuo (2003), is “a measure of how well a system meets 

its design objectives”. According to Billinton & Allan (1992) it is “the probability of a 

device (or product) performing its purpose adequately for the period of time intended 

under the operating conditions encountered”. It may also be said to be the probability of a 

system not failing during a specified period in its operation. From these definitions it is 

clear that reliability is a system performance measure which is expressed as the 
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probability of failure not occurring in a specified time. The relationship between failure 

and reliability is apparent from the definitions and it is stated explicitly later. A product 

which is more prone to failure than another could thus be said to be less reliable than the 

other. It is easy to agree therefore with Hecht (2004), that the primary aim of system 

reliability analysis is the prevention of failure.  

3.2.1 Failure Causes and Characteristics 

      Generally a system fails as a result of one or more of its components failing. It is sufficient 

therefore to discuss only component failures, the causes of which, especially in the case of 

electronic and mechanical ones, can vary. For instance a component may fail (i) when subjected 

to very high temperatures, (ii) when an applied load exceeds its strength, (iii) due to chemical 

changes such as corrosion emanating from the environment in which it is used, or (iv) as a result 

of age. In general failure is characterised by three main factors:  design or manufacturing defects, 

accidents or misuse, or fatigue (Rao, 1992; Wasserman, 2003). Failures which fall into the first 

category occur early in the life of a component and their frequency, called failure rate or hazard 

rate, tends to decrease over time. Those originating from accidents occur during the useful life of 

a component and are characterised by a constant failure rate; and those associated with fatigue 

occur at the tail end of the life of a component and the number of failures increase with time.  

Figures 3.1 (a, b, and c) depict the Bath-Tub Curve (Rao, 1992; O’Connor, 1995) which provides 

a graphical illustration of the failure characteristics of components. The graphs are plots of the 

hazard rates denoted by against time .   )(th t
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                                                 Figure 3.1: The Bath-Tub Curve (Source: O’Connor, 1995) 

 

3.2.2 Failure Prevention Techniques 

     Design and reliability engineers employ a range of techniques to reduce the chance of a 

failure occurring in a component or system and these span across the entire life cycle of the 

product (i.e. from design to death or obsolescence). They encompass: (i) conservative designs, 

(ii) analytical tools and techniques, (iii) testing regimes and (iv) reliability enhancement 
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approaches. The first involves the use of sufficient safety margins and high quality parts and 

materials while considering any environmental restrictions (Hecht, 2004). Techniques such as 

Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), Component Criticality 

Analysis (CCA) (Wang et al, 2004; Espiritu et al, 2007) etc, can be used to investigate the ways 

in which a system may fail and the most critical components as far as failure is concerned, so as 

to take remedial actions. Testing regimes comprise verification of the design margins and 

assessment of the product under extreme environmental conditions to determine its tolerance 

level. The last group involves the use of redundancy, or components with higher reliabilities, or 

maintenance techniques in the case of repairable products.    

 3.2.3 Basic Reliability Metrics      

     It was observed at the beginning of this section that failure is random and time dependent and 

that reliability is closely related to it. The basic time dependent measures used to quantify 

component or system reliability, such as the: (i) failure and reliability functions, (ii) hazard 

function and (iii) mean life function, are discussed in Appendix B.   

3.2.4 Component Failure Time Models    

     Several statistical distributions can be used to model the failure times of both components and 

systems. Notable among them are the Exponential, Normal, Log-normal, Gamma and Weibull 

distributions (O’Connor, 1995).  Of these the latter is the most widely applied, since it fits many 

life distributions (O’Connor, 1995). It actually incorporates some of the other distributions, such 

as the Exponential and Normal as special cases. The Weibull distribution and its properties are 

discussed in Appendix B. 
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  3.3 SYSTEM RELIABILITY MODELS   

       Unfortunately the techniques for modelling and evaluating component reliabilities cannot 

always be readily applied directly to systems because they comprise multiple components in a 

variety of configurations. It is therefore impossible (or cost prohibitive) for designers to test all 

the components. A more cost effective approach is to model a system’s reliability in terms of the 

reliabilities of its components (Reibman &Veeraraghavan, 1991). A basic assumption which is 

implicit in the models is that a given system has a monotonic structure (also referred to as a 

coherent system) (Endrenyi 1978; Soyer et al, 2004) characterised by the following properties:   

• Each component’s state is binary (i.e. either operating or failed) 

• A system’s state is binary 

• A system is operating if all the components are operating 

• A system has failed if all of its components have failed 

• A failed component in a failed system cannot restore the system back to operation; 

neither can the replacement of a failed component in an operating system cause system 

failure. 

3.3.1 Types of System Configuration (Simple Systems)  

      A system’s reliability depends as much on its configuration as on the reliability of its 

components. Classical or basic system configurations (Wang, 2008) also called simple systems 

(or simple networks) (Billinton & Allan, 1992), comprise components in series, parallel, k out of 

n, (i.e. ) and mixed series-parallel (Rao, 1992, Majety et al, 1999), and defined in the 

following way. Suppose a system comprises components ( ), and  denotes that 

the component is operational and 

),( nk

n 2≥n ie

thi' ie′ that it has failed. A similar notation is used to denote the 

status of the system. 
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       The components are said to be in series configuration if the failure of any component 

results in the failure of the system. Such a system is also called a series system, and 

is operational if:  

},...,2,1{ ni∈

                                                                                                                                   (3.1) I
n

i
ies

1=
=

and failed if: 

                                                                                                                                  (3.2) U
n

i
ies

1=
= ′′

The expressions (3.1) and (3.2) respectively use the set theory language of intersection and union 

to characterise a series system’s success and failure conditions. A series system is thus one in 

which operational success depends on the operational success of all its components and whose 

failure depends on the failure of any one of its components. A system whose components are all 

in series configuration is sometimes also referred to as non-redundant (Billinton & Allan, 1992). 

This is the simplest to analyse and the most commonly encountered (Heimann, 1993). 

     The components of a system are said to be in parallel configuration if the system’s failure 

occurs only if all components i , fail, 

n

ni ,...,2,1= .  Such a system is also called a parallel system, 

and is operational if: 

                                                                                                                                   (3.3) U
n

i
ies

1=
=

and failed if:    

                                                                                                                                 (3.4) I
n

i
ies

1=
′=′

A system’s operational success is thus guaranteed if one or more of its components are 

operational. This is characterised by the union of the operational successes of all its components 
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as in (3.3). The system’s failure occurs if all of its components fail. This is characterised by the 

intersection of all the failure events of its components, as in (3.4). Components in this type of 

configuration are also considered to be redundant (Reliability Edge, 2002). A parallel system is 

also referred to as fully redundant (Billinton & Allan, 1992) where all components are in active 

operation; otherwise it is referred to as a standby parallel redundant system. In this case the 

components in parallel are on standby until triggered into operation following the failure of an 

active component (Dhillon & Singh, 1981; Zhao and Liu, 2003). Redundant systems are also 

called fault tolerant (Wattanapongsakorn & Levitan, 2001; Diab & Zomaya, 2005; Mukuda et al, 

2007).   

     The components of a system are said to be in (k, n) parallel configuration when the 

system’s operation is guaranteed  if any  or more components in parallel are operational, and 

failed otherwise, 

n

k

( ).  In set theory terms this is expressed as: nk ≤≤1

                                                                                                                               (3.5)  i
nki

s eU
},..,{∈

=

 and: 

                                                                                                          (3.6)    IUI
},..,{},..,{ nki

i
nki
is ee

∈∉
=′ ′

A system with parallel configuration is also referred to as partially redundant (Billinton & 

Allan, 1992).    

),( nk

     Consider a system that comprises distinct sets of components, ( in mi ,...,2,1= ) and for each 

set there are components, , then these sets are called  subsystems of the system. If 

for each subsystem i the components are in parallel and the i subsystems are in series, then the 

k },...,2,1{ nk ∈

in
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system is said to have a series-parallel configuration. It should be noted that this definition 

assumes that the components of the system are in pair wise mutually exclusive sets. When the 

assumption is not valid the system does not have a series-parallel configuration; however a 

transformation can be obtained using the concept of cut sets (Billinton & Allan, 1992). This will 

be discussed later in this chapter.     

     If for each subsystem the components are in series and the subsystems are in parallel, 

then the system is said to have a parallel-series configuration. This definition also assumes that 

the components of the system are in pair wise mutually exclusive sets; and again if the 

assumption is not valid a transformation can be obtained by means of tie sets (Billinton & Allan, 

1992) which is outside the scope of this thesis.   

i in i

3.3.2 Reliability Evaluation of Simple Systems    

      Some important qualitative and quantitative reliability modelling and evaluation tools are 

logic diagrams, such as Reliability Block Diagrams (RBD), Fault Trees (FT) and Event Trees 

(ET) (Zafiropoulos & Dialynas, 2007). RBDs provide graphical representations of how the 

components of a system are connected logically, or reliability-wise (Reliability Edge, 2002), and 

are used to model how component and subsystem failures combine to cause system failure 

(Distefano & Xing, 2006). They are especially useful for modelling failures of simple systems 

where components are represented as blocks (or nodes) and joined together by a number of paths 

forming a network structure or topology, as can be seen in the following examples.  

      Firstly a typical RBD for a series system of components is shown in Figure 3.2:         n
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                    Figure 3.2: RBD of a series system of n components (Source: Hikita et al, 1992, pp 475) 
 
 
where are the individual components and are their corresponding 

reliabilities.   

nCCC ,...,, 21 nRRR ,...,, 21

Recall that such a system is operational if  . Now if  is the probability that the 

component is operational then the reliability of the system which is the probability of the 

system’s successful operation  is given by: 
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Under the assumption of independence of component failures becomes: sR
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      Hence the reliability of a series system under the independence assumption is the product of 

the reliability of the individual components of the system (Kececioglu, 2002). A consequence of 

this result is that: 

              ,                                                                                                      (3.9)           is RR ≤ ni ,...,2,1=

The equality only holds in the case where the reliability of each component is either zero or one. 

A series system’s reliability is therefore bounded above by the least component reliability. Hence 
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the reliability of a series system is determined by the component reliability and the number of 

components. To improve the reliability therefore one can either increase the reliability of the 

components or decrease the number of components (Heimann, 1993). Both Billinton & Allan 

(1992) and Heimann (1993) demonstrate graphically that the marginal gain in reliability through 

increased component reliability declines with an increase in the number of components.  This is a 

major weakness of the series system configuration. 

     A parallel system on the other hand, has a RBD as shown in Figure 3.3: 
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      Figure 3.3: RBD of a parallel system  

Again using for an operational system of this type the reliability  of this system is: U
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Under the assumption of independence of component failures this can be written as: 
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where is the failure function of the component (also a cumulative distribution function). In 

terms of the component reliabilities, therefore: 

iF thi'
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Hence for a parallel system: 

                  ,                                                                                                (3.13) is RR ≥ ni ,...,2,1=

This shows that the reliability of a system is increased when parallel redundancy is used, and that 

a parallel system’s reliability is bounded below by the highest component reliability. Therefore 

parallel redundancy is commonly used to increase a subsystem’s reliability and ultimately that of 

an entire system (Dhingra, 1992; Prasad & Kuo, 2000; Lee et al, 2003; Zhao & Liu, 2003). 

Nevertheless redundancy, in general, can have adverse effects on a system and this is discussed 

later. 

     The RBD for a (k, n) redundant system configuration is similar to that of the parallel system 

shown in Figure 3.3. In this case, however, the successful operation of any (or more) 

components (assumed identical) ensures the system’s successful operation. There are 

mutually exclusive combinations of components’ success events which would result in the 

system’s successful operation. The probability of this event which is the required reliability is 

given by: 
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In this case R is the reliability of the identical components of the parallel system and: 
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     A standby redundant system RBD is depicted in Figure 3.4: 

 

                                   

                                 

                                                   

 

 

     

          Figure 3.4: RBD of a standby redundant system (Source: Dhillon and Singh, 1981, pp 33)          

 

It represents the situation where one component is operating and the remaining  are on stand 

by until failure has occurred, then operation is switched to the next component, and so on. The 

system falls into either the perfect or imperfect switching type. In the former it is assumed that 

the switch is failure free whilst in the latter this is not the case and the assumption is that the 

failure occurs in a number of different ways, for example failure of the switch itself, or an 

inadvertent sensing of failure (Gordon, 1957; Kapur & Lamberson, 1977). The reliability of the 

system is therefore dependent on which of the categories apply and Kapur & Lamberson (1977) 

have discussed how the reliability expression is determined for both.  
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     The RBD of a series-parallel system is shown in Figure 3.5: 

      

 

 

 

               

 

 

     

         Figure 3.5: RBD of a series-parallel system (Source: Coit and Smith, 1997, pp 272) 

 

The diagram depicts subsystems in series configuration, with each subsystem composed of 

components in parallel. Therefore, if the reliability of a subsystem is , then the 
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reliability of the system is: sR
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The reliability of the system in terms of the component reliabilities is therefore:                                              kiR

               

 

 

 

     The RBD for a system with a parallel-series configuration is shown n Figure 3.6: 
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                                                   Figure 3.6: RBD of a parallel-series system                  

 

In this case there are subsystems in parallel configuration while each subsystem is composed 

of components in series configuration. The reliability of the system (see Appendix B) is: 
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The results in both (3.17) and (3.18) suggest that the reliability of mixed series-parallel systems 

can be obtained using series-parallel reduction techniques (Billinton & Allan, 1992), which 

basically reduce a subsystem of parallel components into a single entity of which the reliability is 

the parallel components’ reliability; and a subsystem of series components into a single entity 

with reliability equal to the series components’ reliability, and so on.  

     As a concluding remark for this section, apart from the series system, all the others have 

incorporated redundant components in one form or another. The benefit of redundancy has been 

noted; however it can impact negatively on a system. On the one hand it could mean increased 

complexity and cost, weight and volume, power consumption (especially for some electronic 

products), and complicated system monitoring and evaluation procedures (Hnatek, 2003). On the 
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other hand it could actually result in a reduction in the reliability of a system (Hnatek, 2003). 

Billinton & Allan (1992, pp 88) have demonstrated, using a graphical illustration, that in general, 

the largest gain in reliability for a single component system is limited to the first redundant 

component; subsequent additions result in diminishing gains which asymptotically tend to zero. 

Zafiropoulos &Dialynas (2007) have noted also that the RBD approach while good at modelling 

independent component failure situations, has limited capabilities for representing operational 

dependencies (characteristic of complex systems),  including investigating “what-if” scenarios 

for fault diagnosis. Under such a circumstance they suggest that the FT logic diagram was a 

better alternative.  

3.3.3 Reliability Evaluation of Complex Systems or Networks                                                          

     A complex system or network is one which cannot be modelled purely as a series, parallel, or 

mixed series-parallel system. A typical example is the bridge network (Mohan &Shanker, 1988; 

Kim &Yum, 1993) the RBD for which is given in Figure 3.7:  

   

                                                                                         

 

 

       

            

 

          

                       Figure 3.7: RBD of a bridge network (Example of a complex system) 

 

Complex systems are common computer, communication, transportation, electrical and 

manufacturing networks (Atiqullah & Rao, 1993; Amari et al, 2005). These tend to be large 
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spatially distributed multi-component systems with complicated configurations that pose 

computational challenges as far as evaluation of their reliability is concerned (Provan 1986; 

Thangamani, 1994; Marseguerra et al 2005).  Complex system configurations are also found in 

manufactured products, such as a life support system in a space capsule (Zhao & Liu, 2003), an 

electricity transmission system (Espiritu et al, 2007) and a gas installation. 

      Various methods that provide exact or approximate solutions have been devised to evaluate 

the reliability of complex systems (Kuo &Zuo, 2003). While both provide analytical expressions 

for the system reliability, the exact methods which include the cut and tie set, conditional 

probability (or pivotal decomposition), and enumeration methods (Rao, 1992) are supposed to 

yield the precise system reliability that corresponds to the input values of the component 

reliabilities and the associated system configuration. (These are useful where the system size is 

small or moderate).  The approximate methods, however only provide an estimate of the system 

reliability for the given input component reliability values. They seek lower or upper bounds for 

the system reliability and most of them involve the use of the cut and tie set methods. Notable 

amongst them are the inclusion-exclusion, sum of disjoint products, Esary-Proschan, and linear-

quadratic approximation methods (Kuo &Zuo, 2003; Jin & Coit, 2003). The approximate 

methods are especially useful for large complex systems where the exact methods fail. Attention 

will be devoted to the cut set method, because, firstly, it is a reliability modelling tool adopted in 

this thesis and has wide applicability due to its relative ease of use; secondly it relates directly to 

the modes of system failure and furnishes the discrete set of events that characterise a failure; it 

is also programmable (Billinton & Allan, 1992). In addition the FT logic diagram is particularly 

useful in systems reliability analysis and evaluation; it provides an indirect way of identifying cut 

sets. A brief overview of the concepts behind it is given in Appendix B.  
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The Cut Set Method         

     The basic principle of the cut set method is the identification of sets of all combinations of 

components’ failure events, the occurrence of which result in system failure. A cut set is thus 

defined as a set of system components which when failed result in the failure of the system. If a 

subset of components exists within a cut set, such that the subset is itself a cut set, and it contains 

no other cut sets, then it is called a minimal cut set. Suppose , iK Ni ,...,2,1=  is a minimal cut set 

for a system of minimal cut sets. In general cut sets are not pair-wise mutually exclusive. This 

means that 

N

φ≠ji KK I  for some },...,2,1{, Nji ∈ , ji ≠  Therefore the probability of failure  

and the corresponding reliability of the system is evaluated exactly from the following 

expression (Singh & Billinton, 1977):  
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Unless only a few minimal cut sets are involved, the expression in (3.19) can be tedious to work 

with. Currently there are software packages such as BlockSim of the ReliaSoft Corporation of 

the USA (Mettas, 2000) and PREVENT developed by ABB Netcom Ltd, Switzerland (Castelli, 

1993), which reduces the effort involved in the evaluation. Even so, for very large complex 

systems or networks, the task of determining all the cut sets, to start with, can itself be enormous 
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(being a combinatorial problem). The number of terms to evaluate also grows exponentially by a 

factor of  with the number of cut sets (Singh &Billinton, 1977), which could, potentially, 

pose memory or storage problems, even with the use of computers. Fortunately a good 

approximation can be obtained for (3.19) where the component reliabilities are high (Singh 

&Billinton, 1977; Billinton &Allan, 1992). It has been demonstrated by Billinton & Allan (1992) 

that in such a case, the resultant value of the terms involving two or more cut set intersections is 

significantly reduced. Therefore a lower bound approximation of (3.19) is: 

1−N2
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     On the other hand an approximation of the system reliability can be obtained from a related 

series-parallel transformation, using the following characteristics of minimal cut sets:  (i) the 

occurrence of the failure event for each minimal cut set  results in system failure; therefore, 

reliability wise, the minimal cut sets are effectively in series configuration; (ii) all components in 

a minimal cut set must fail for the failure event of the cut set to occur; therefore the components 

in a minimal cut set are effectively in redundant parallel configuration. A series-parallel 

transformation of the system thus follows immediately. The bridge network shown in Figure 3.7 

is used to illustrate this point: The minimal cut sets are the 

following: , ,

iK

},{ 311 CCK = },{ 422 CCK = },,{ 4513 CCCK = and },,{ 2534 CCCK = . and are 

each called second order cut sets (i.e. they have two elements) and and are each third order 

cut sets.  The corresponding RBD for the decomposed system is shown in Figure 3.8.  

1K 2K

3K 4K

 

 

58 
 



 

 

 

 

 

 
 
 
 
                
            

1C

3C

2C  

4C  

1C

5C

4C

3C

5C

2C

                       Figure 3.8: A series-parallel transformation of the bridge network        
 
 
The figure is a series-parallel system with four subsystems, two of which comprise two 

components each, and the other two subsystems have three each. Each component is repeated in 

at least one other subsystem. The consequence of this is that the assumption of independence of 

component failures, and therefore of subsystem failures cannot be tenable. Evaluating the 

reliability of such systems is one of the difficult problems in reliability engineering (Coit & 

English, 1999). Proceeding with the independence assumption therefore means that the system 

reliability would be underestimated (Jin & Coit, 2001). In general, an analogous expression to 

(3.17) which provides instead a lower bound approximation of the precise value of the reliability 

of the resultant series-parallel transformation and therefore the original complex system 

reliability is used (Jin & Coit, 2003).  This is given by: 
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In this case, is the component reliability in the subsystem (or cut set), composed of an 

arbitrary number of components. Once again if the component reliabilities are high, (3.21) is 

reputed to yield a good estimate of the required system reliability (Jin & Coit, 2003).   

kR kth thi'

      One advantage of a lower bound approximation of the system reliability as given in (3.20) 

and (3.21) is that it is better for many systems design, particularly for risk-averse ones, where 

operational safety is extremely critical, such as in nuclear reactors. In this case one would expect 

the true system reliability to be higher than the value obtained by the approximations. Therefore 

the better the approximations (at least to a decision maker), the better the true values are 

expected to be. The lower bound estimate may therefore be considered as a sort of worse case 

scenario for a system’s reliability. Another advantage is the simplification of the computational 

work involved.  Some draw backs of the approach, however, are the following: (i) unless the 

component reliabilities are known to be very high the estimate might fall short of expectation; 

(ii) one is also left in the dark as to how far from the exact value the approximation is, especially 

where high component reliabilities are not guaranteed; (iii) the lower bound estimate cannot be 

higher than the cut set with the least reliability, and the more cut sets there are the more the 

estimate could be unsatisfactory ( since the cut sets are in series). 

         Before leaving this discussion, it is noted that while one may, by inspection, determine all 

the minimal cut sets of a complex system, where there are only a few components and cut sets, 

with real complex systems where components are literally in hundreds or more intuition becomes 

useless. Thus one needs to have a formal general procedure for determining the minimal cut sets.  

A discussion of some of the formal techniques, together with other pertinent issues, is presented 

in Appendix B.   

 

60 
 



 3.3.4 Reliability Importance of Components 

      An important aspect of system reliability modelling and analysis is to identify the critical 

components or the weaknesses in a system, reliability-wise, in order to prioritise reliability 

improvements by directing resources and effort to the areas that have the most impact on the 

system’s performance (Wang et al, 2004; Espiritu et al, 2007). In general reliability importance 

metrics are used to quantify the contribution of the individual components or minimum cut sets 

to the overall system performance, such as reliability, availability, risk, and safety (Espiritu et al, 

2007; Chen et al, 2007). It is not the intention to discuss the subject in detail here since it is not a 

major theme in this work. However, it is noted that a variety of metrics have been developed to 

assess components or subsystems of a system for the purpose stated. The papers of Wang et al 

(2004) and Espiritu et al (2007) provide detailed discussions of some of the popular metrics of 

which the one due to Birnbaum is the first ever introduced (in 1969) and the most common. The 

Birnbaum importance metric is appropriate for the purposes of the work reported in this thesis 

and therefore discussed briefly in this section. It is applied in an example problem discussed 

later. 

    The Birnbaum importance metric for the component of a system, denoted by , is 

defined by: 
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loss in system reliability when the component changes from being operational to having 

failed. An advantage of this metric is that it is easy to use, since it is not necessary to compute 

directly the partial derivative of the system reliability with respect to the component 

reliability, something that can be tedious to do, where large complex systems are concerned. A 

weakness of the metric is that it is determined on the basis of only the extreme values of 

the component’s reliability and thus can lead to the same values being obtained for different 

components even when their reliabilities are not the same. 

thi'

thi'

thi'

     

3.4 SUMMARY    

     In this Chapter the pertinent concepts and terminology used in the discussion of reliability in 

design have been defined and discussed. Reliability was described as a measure of the chance of 

success (or failure) of a system for a given period under specified conditions. Time was noted to 

be a random parameter around which a system’s failure or reliability is modelled.  Notable 

amongst the important metrics used to quantify a system’s reliability were the reliability, the 

hazard rate, and the expected life functions.     

          The basic building blocks of systems reliability design, which concerned how components 

interacted or  were configured, along with their schematic representations using reliability block 

diagrams, were noted to be the series, the parallel (and its variants), and the mixed series-parallel 

types. The associated resultant reliability of the systems, expressed as a function of their 

components’ reliabilities, were also presented and discussed. Attention was briefly drawn to the 

characteristic strength and weakness of the series configuration which are respectively that they 

are simple to analyse and that the component with the least reliability had the greatest effect on 

the system’s reliability, which also tended to decrease with increase in the number of 
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components in series. The advantage and the disadvantages of the parallel configuration were 

also highlighted; the main advantage being that it resulted in higher system reliability than that of 

any of its constituent components. The disadvantages were noted to be: increased complexity, 

gain in weight and volume, complicated monitoring and evaluation practices, etc. A class of 

systems, generically called complex or networks, was mentioned with the focus on their 

characteristics and the ways in which their reliability could be evaluated. The computational 

challenges engendered by such systems were highlighted and the techniques that could be used 

for their reliability modelling and evaluation discussed. Particularly noted was the use of the cut 

set method to derive associated reliability expressions for such systems and to obtain a lower 

bound approximation or estimate of their reliabilities. The pros and cons of the approximation 

approaches were briefly discussed. Attention was also drawn briefly to the role of reliability 

importance metrics in reliability design and that of Birnbaum was discussed. 

     In the next Chapter the application of optimisation techniques in reliability design is discussed 

in the context of the current existing approaches, while emphasis is placed on the MCO 

approach. The potential gains to be derived from this are presented.  
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CHAPTER FOUR 

 

OPTIMISATION IN RELIABILITY DESIGN 

 

4.1 INTRODUCTION 

A system’s ability to perform its intended function, without fail, for a specified period, is an 

indicator of its quality, referred to as reliability. This attribute, which has far reaching 

consequences on the durability, availability,  and life cycle cost of the system (Cranwell, 2007) 

and  which is of great importance to the end user or the engineer, is very much a function of the 

design of the system (Ireson et al, 1996).  There is thus a growing concern and interest among 

Reliability Engineers that reliability is built into a system at the earliest stages of the design 

process, i.e. at the conceptual or preliminary stage. The main objective of doing this is 

fundamentally to produce a concept or framework to predict the system’s reliability (James et al, 

2002). The decision process at this stage includes making choices regarding the type of 

components (and their associated reliabilities) to be used and the design configurations. The 

choices are driven by the interaction of reliability objectives with the economic costs associated 

with the design, manufacture and use (Marseguerra & Zio, 2000). Typically high reliability 

targets or specifications are set for the system, and ways to achieve them are then explored, 

taking into account resource constraints (Mettas, 2000). Apart from the limitations of resources, 

the targets set may also be in conflict. For instance a high reliability generally means a high cost, 

and could also mean excessive weight and volume. Also for a given system configuration its 

individual components may have different levels of reliability and associated costs, however the 
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same level of system reliability may be achieved by using different component combinations.  

Therefore a natural optimisation problem arises (Majety et al, 1999).  

     Reliability considerations at the design stage provide certain advantages. For instance: (i) it 

allows a top-down approach (i.e. it looks at the top level design parameters), instead of a bottom-

up one. This eliminates or reduces the need to make costly modifications when the design has 

gone into manufacture or has been commissioned for use, whereas the bottom-up one does not 

(Hassan & Crossley, 2002). (ii) It can also reduce warranty costs resulting from later failures 

during use. (iii) The cost of maintaining the system over its life time is also reduced (Cranwell, 

2007; Lad et al, 2008). This research work, therefore, focuses on the optimal evaluation or 

prediction of a system’s reliability at the design stage. The ideas and methodology resulting from 

the work (which is presented in chapter Five), however, are applicable to existing operational 

systems; Reliability and Design Engineers, in this case, would have to decide how the estimates 

obtained would be achieved for an existing operational system. This could mean substituting 

components with higher reliabilities, using redundant components, or redesigning the appropriate 

components or subsystems (Mettas, 2000).     

     The application of optimisation techniques in reliability design has been well researched and 

extensively reported in the literature (Mohamed et al, 1992; Kuo & Zuo, 2003) with notable 

benefits, such as: (i) the provision of an analytical model to represent a system. This allows 

testing of various scenarios to assess their impact on the system at virtually little or no cost. (ii) 

Estimates of the effects of individual upgrades or modifications are provided; (iii) It improves 

understanding of the system reliability as well as revealing any system reliability problem areas; 

(iv) It helps avoid wasteful resource expenditure by revealing modifications that would have an 

insignificant impact. The general optimal system design for reliability models are characterised 
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by a system’s performance criteria such as reliability, availability or total up-time (for repairable 

systems) which is expressed as an objective function(s) to be maximised, or alternatively by 

overall system profit or cost criteria that must be minimised. The values for the decision 

variables under which the objective functions are evaluated in general include the type of system 

configuration, the type of components, their reliability, the number of repair personnel required, 

preventive maintenance intervals etc. Resource restrictions which are expressed as constraints of 

the optimisation problem include desired reliability, desired availability, and subsystem 

redundancy levels, allowed downtimes, allowed weight and/or volume, and desired cost levels 

(Amari, 2008).  

     In this chapter, however, the focus for discussion is system reliability optimisation models, 

which have reliability as the main performance criterion and which are applicable to non-

repairable systems, in particular. The main techniques used to optimise a system’s reliability are 

discussed, to provide an overview of the field. Attention is also drawn to some perceived gaps in 

the literature which have essentially provided the motivation for this research.    

 

4.2 OPTIMAL RELIABILITY DESIGN STRATEGIES  

     Three prominent strategies for systems reliability optimisation (Kuo & Prasad, 2000; Kuo et 

al, 2001; Zhao et al, 2007), are:  (i) Redundancy Allocation, (ii) Reliability Allocation, and (iii) 

Redundancy-Reliability Allocation. The first, in general, seeks to find the best combination of 

components and levels of redundancy that together meet reliability and cost requirements and 

satisfy the system constraints (Coit & Smith, 1996a; Goel et al, 2003; Liang & Chen, 2007). The 

reliability allocation problem, on the other hand, seeks to find the best allocation of reliability to 

components or subsystems of a system in order to maximise the overall system reliability or 
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minimise the system cost under specified constraints. The redundancy-reliability allocation 

problem combines these two strategies. Before discussing each in the context of the optimisation 

model types and their characteristics, a few points about the strategies should be noted. 

     Firstly, the diversity of system configurations, resource constraints, and options for reliability 

improvement have led to the construction and analysis of a number of optimisation models in 

respect of each of the approaches (Kuo et al, 2001; Yalaoui et al, 2005a). Secondly, the 

optimisation models reported in the literature have largely been single objective. Multiple 

objective formulations have been scarce (Kuo & Prasad, 2000; Coit et al, 2004). Thirdly, the 

literature shows that the use of redundancy allocation for optimal reliability design (under both 

single and multi-criteria situations) is more popular than the other approaches (Prasad & Kuo, 

2000; Gen & Yun, 2006; Pan et al. 2007). Finally, the series-parallel system configuration has 

received the most attention (Coit & Smith, 1996b; Prasad & Kuo, 2000).   

 

4.3 OPTIMISATION UNDER A SINGLE CRITERION 

     A system reliability design optimisation is described as single criterion, if and only if, one 

criterion is specified as the objective function to be optimised. In practice this has traditionally 

been the type used and a number of different formulations are reported in the literature. A 

generalised model representing these under each of the strategies will be discussed. Typical 

examples of applications are cited for illustration purposes. 

4.3.1 Existing Models    

     In general, the single criterion redundancy allocation optimisation problem is of the form: 

                               

                                                   ujl xxx ≤≤ Nj ,...,2,1=
                                     (4.1) mi ,...,2,1=                :     Subject to 0),...,,( 21 ≤Ni xxxg

                            Minimise ),...,,( 21 Nxxxf
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This is a discrete optimisation problem since the elements of the decision vector  

which specifies the redundancy levels for a set of components or subsystems are required to 

be discrete in value. The objective function may be either the system’s reliability expression (i.e. 

- ) or the system cost (i.e. ) which is minimised, subject to constraints on the system 

resources and the redundancy levels given by the functions  which are usually separable   

(Kuo & Prasad, 2000). and are respectively lower and upper limits on the component or 

subsystem redundancy level. The type of parallel redundancy may be total, partial, or standby 

(Prasad & Kuo, 2000). There are cases, albeit rare, where the decision variables concern 

components selection or their assignment in a system, without redundancy (Ashrafi & Berman, 

1992; Atiquallah & Rao, 1993; Altiparmak et al, 1998; Wattanapongsakorn & Levitan, 2001). 

The model in (4.1) assumes that a component or subsystem reliability is known and remains 

constant throughout the optimisation process. The precise form of  depends on the criterion to 

be optimised; however, it is generally a non-linear function irrespective of the chosen 

performance measure. The constraints  are also generally non-linear and could be limits 

imposed on either the reliability of the components, subsystems, or overall system; or on cost, 

weight, volume or other system attributes. The type of system configuration and problem being 

analysed also dictate the form of both  and  .       

T
Nxxx ),...,,( 21

N

f f

ig

lx ux jth

f

ig

f ig

     Among early examples of this type of problem are the cases reported by Bala & Aggarwal 

(1987), Kim & Yum (1993), and Deeter & Smith (1997) which concerned redundancy allocation 

in complex systems or networks for their optimal reliability, and that of Coit & Smith (1997) 

which focused on a series-parallel system reliability optimisation. Prasad & Raghavachari 

(1998), considered the problem of the optimal allocation of interchangeable components, to a 
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series-parallel system in order to maximise its reliability, with only one component allowed for 

each subsystem. Later Prasad & Kuo (2000) discussed the optimal allocation of redundant 

components to both series and complex coherent systems, to maximise their reliability, subject to 

constraints on the subsystems’ reliability and redundancy levels. Munoz & Pierre (2004) 

presented a model that sought to find parallel redundancies both at the component and the system 

levels of a series system that minimised the cost associated with the redundancies, subject to 

lower bound constraints on both the system reliability and the redundancy levels.  You & Chen 

(2005) proposed a model to maximise a series-parallel system reliability, with upper bounds on 

both the system cost and weight for a given redundancy level.  Onishi et al (2007) considered the 

case of the redundancy allocation problem with, and without component mixing. Their model 

sought to maximise the system reliability subject to upper bounds on both the cost and the weight 

of the system. Further examples of the single objective redundancy allocation optimisation 

problem are given in Table 4.1 categorised by the criterion optimised, the constraints of the 

system, the decision variables, the configuration type, the specific area of application, and the 

source. Obviously the most studied type of redundancy allocation problem is the one that seeks 

to maximise systems reliability, those with cost as the objective function are very few.  Another 

feature is the popularity of studying the series-parallel system configuration problems. The 

review by Mohamed et al (1992) and the book by Kuo et al (2001) are further useful sources for 

cases of the redundancy allocation optimisation problem.  

      The general reliability allocation optimisation problem is of the form: 

 

 
                         ),...,,( 21 NRRRfMinimise

                                                     subject to 0),...,,( 21 ≤Ni RRRg           i                       (4.2) m,...,2,1=

                                                          u
jj

l
j RRR ≤≤ Nj ,...,2,1=  

69 
 



 

 

This formulation is generally a continuous non-linear optimisation problem, since and are 

typically nonlinear functions expressed in terms of the reliability of the components of a 

system, and the decision vector is composed of continuous values representing 

the reliability of the components. The component reliability is bounded below and above 

respectively by and . This model assumes that the system configuration  is determined or 

f ig
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                      Table 4.1: Further examples of the single criterion redundancy allocation optimisation problem 

 CRITERION CONSTRAINTS DECISION 
VARIABLES SYSTEM TYPE APPLICATION SOURCE 

Maximise system 
reliability 

Linear & non-linear 
cost constraints, 
redundancy levels 

Number of redundant 
components Series-parallel Unspecified Misra & Sharma 

(1991a) 

Maximise system 
reliability 

Upper limit on cost 
& weight 

Number of redundant 
components Series-parallel Hypothetical 

examples Coit & Smith (1997) 

Maximise system 
reliability 

Limit on number of 
hardware & software 
components, and on 
cost 

Choice of hardware 
& software 
components 

Redundant embedded 
system 

Computer system 
reliability 

Wattanapongsakorn 
(2004) 

Maximise system 
reliability 

Upper limit on cost 
& weight 

Number of redundant 
components for each 
subsystem 

Series-parallel 
system with (k,n) 
subsystems 

Extracted from 
literature Coit & Liu (2000) 

Maximise system 
reliability 

Upper limit on cost 
& weight 

Component Choices 
& redundancy levels 

Series-parallel 
system with (k,n) 
subsystems 

Extracted from 
literature 

Coit & Smith 
(1996a) 

Maximise system 
reliability 

Number of hardware 
& software choices 

Choices of hardware 
& software 
redundant 
components 

Network 
Embedded 
distributed speech 
recognition system 

Wattanapongsakorn 
& Levitan(2001) 

Maximise system 
reliability 

Upper limit on cost 
& weight 

Number of redundant 
components 

Series-parallel 
system with (k,n) 
subsystems 

Extracted from 
literature 

Coit & Smith 
(1996b) 

Maximise system 
reliability 

Upper limit on cost 
& weight, and lower 
& upper limits on 
number of redundant 
components in a 
subsystem 

Number of redundant 
components 

Series-parallel, with 
(k,n) subsystems 

Benchmark problems 
in the literature Liang & Chen (2007) 

Maximise system 
reliability 

Upper limit on cost 
& weight, and lower  
limits on number of 
redundant 
components in a 
subsystem 

Number of redundant 
component for each 
subsystem 

Series-parallel 
system with (k,n) 
subsystems 

Extracted from 
literature 

Kulturel-Konak et al 
(2003) 

known and remains unchanged (i.e. fixed) during the optimisation process. The system 

performance measure that is optimised in this case is  reliability or  cost, with constraints on the 
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reliability of the  components, the subsystems, or the system as well as on other system 

characteristics such as cost, weight, volume etc.                                                                                                        

      One of the earliest examples of this problem type was presented by Mohan & Shanker 

(1988). They discussed the reliability allocation problem in the context of a complex bridge 

network system. They proposed a model to allocate reliabilities to the components of the system 

so as to minimise the cost, subject to minimum and maximum reliability restrictions of zero and 

one respectively on the components.  Mettas (2000) presented a formulation to minimise the cost 

of reliability of both series and complex systems under a lower bound constraint on the reliability 

of each of the systems as well as a lower and upper bound constraints on the reliability of their 

components.  Yalaoui et al (2005a) presented a model which sought to minimise the cost 

associated with the reliability of a parallel-series system under a constraint on the system 

reliability. 

    The general redundancy-reliability allocation optimisation problem is modelled by the 

expression: 

                        

            Minimise ),...,,,,...,,( 2121 NN RRRxxxf

Expression (4.3) combines the formulations given by (4.1) and (4.2) into a single model which is 

a mixed-integer optimisation problem, with the decision variables being the number of redundant 

components and their reliabilities. Neither the system configuration nor the component 

reliabilities are assumed to be known or constant. Indeed they are the decisions that it is hoped 

will be made after the optimisation. The types of criterion to be optimised are similar to those 

discussed in the cases of (4.1) and (4.2) above. 

          Subject to 0),...,,,,...,,( 2121 ≤NNi RRRxxxg                             (4.3)         i m,...,2,1=

                           ,                ujl xxx ≤≤ u
jj

l
j RRR ≤≤ Nj ,...,2,1=  
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     One of the earliest examples of this model type was presented by Hikita et al in (1986). They 

considered the optimal selection of both component types and their reliability in order to 

maximise the reliability of a series parallel system, with constraints on the reliability of the 

components. Other cases of the model are presented by: Chi and Kuo (1990), Xu et al (1990), 

Hikita et al (1992), Majety et al (1999), Elegbede et al (2003), and Yalaoui et al (2005b). Chi & 

Kuo (1990) discussed the maximisation of the reliability of computer software by allocating both 

reliability and redundancy to its components (which were software programmes); the cost of a 

software failure was constrained to an upper limit. Xu et al (1990) discussed the reliability 

optimisation of a parallel-series, a complex, and a series system in which their reliabilities were 

maximised with constraints on cost, weight and redundancy. Hikita et al (1992) extended their 

studies of the series-parallel system as in Hikita et al (1986) to a complex system. Majety et al 

(1999) discussed their optimisation model in the context of a number of system structures, such 

as series, parallel, series-parallel, and, parallel-series. Their models all sought to find the 

allocations of both reliability and redundancy to the components which would minimise system 

cost and satisfy a minimum system reliability requirement. Elegbede et al (2003) after presenting 

theoretical results on the necessary condition for the optimal allocation of reliability to the 

components of a redundant subsystem,  extended their result to series parallel systems and 

applied their ideas to a numerical example to minimise the system cost , subject to a lower bound  

constraint on its reliability.  Yalaoui et al (2005b) presented work similar to that of Elegbede et al 

(2003).  

 

4.3.2 Methods of Solution 
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     A number of classical and stochastic algorithms – also categorised as approximate, exact, or 

heuristic/meta-heuristic, under each of the model types - have been used to find optimal solutions 

to the problems discussed above. Algorithms such as the surrogate worth trade-off, the Lagrange 

multiplier, and geometric programming methods and their variants, which are efficient for the 

exact solution of continuous problems of the type posed by reliability allocation optimisation, 

can only approximate the solution in the case of redundancy or redundancy-reliability allocation 

optimisation (Munoz & Pierre, 2004; You & Chen, 2005). The approximation techniques involve 

the use of trial and error approaches to obtain integer solutions (Xu et al, 1990; You & Chen, 

2005). The approximation techniques were popular when exact solution algorithms were not well 

developed. The advent of the exact algorithms, such as integer programming (IP), branch-and-

bound, and dynamic programming (DP) (Liang & Chen, 2007), have made the approximation 

techniques less popular for solving redundancy allocation problems.  

     The approximation and exact algorithms, though efficient with small to moderate sized 

problems having desirable properties such as convexity or monotonicity, are deficient with 

complex large scale ones, such as occurs with real life network reliability and redundancy 

allocation optimisation problems (Ashrafi & Berman, 1992; Atiqullah & Rao, 1993). Although 

the heuristic/ meta-heuristic approaches (example GA SA and TS) yield solutions which are not 

exact, they do have the ability to efficiently handle complexity (Altiparmak et al, 1998) and have 

thus become increasingly popular in the reliability optimisation field. The redundancy and the 

redundancy-reliability allocation optimisation problems are generally more difficult to solve than 

the reliability allocation ones. This is because the former belongs to the class of NP-hard 

problems (this phenomenon was demonstrated by Chern in 1992 (Coit et al, 2004; Coit & 

Konak, 2006) which involve non-convex and combinatorial search spaces and require a 

73 
 



considerable amount of computational effort to find exact optimal solutions (Kim & Yum, 1993). 

The reliability allocation problems on the other hand involve continuous optimisation with a 

number of classical solution algorithms based on gradient and direct search methods at their 

disposal. They are thus relatively easier to solve. Examples of the solution algorithms which 

were applied in the context of the three optimisation problem types are presented in Table 4.2.  

Of these the heuristic methods were more popular than the exact ones. Only one example using 

the approximate methods was found. 

                              Table 4.2: Summary of the Solution Algorithms used in the cited SCO cases   

MODEL TYPE  SOLUTION TECHNIQUE ALGORITHM 
DESCRIPTION SOURCE 

Approximate Interval Arithmetic 
Optimisation Munoz & Pierre (2004) 

Lagrange Relaxation algorithm 
in conjunction with Dynamic 
programming (DP) 

Ashrafi &Berman (1992) 

Integer Programming (IP) 
Algorithm  Coit & Liu (2000) 

Lexicographic Order (P&K-
Ag) Prasad & Kuo (2000) 

Improved Surrogate Constraint 
(ISC) algorithm Onishi (2007) 

Exact 

IP (due to Misra) Misra & Sharma (1991a) 
Simulated Annealing  (SA) Atiqullah & Rao (1993) 
DETMAX Algorithm Kim &Yum (1993) 
Genetic Algorithm (GA) Deeter & Smith (1997) 
 Heuristic Algorithm Bala & Aggarwal (1987) 
GA Coit & Smith (1997) 

SA Wattanapongsakorn & Levitan 
(2001) 

Heuristic Algorithm You & Chen (2005) 
Approximate Linear 
Programming Heuristic Prasad & Raghavachari (1998) 

Tabu Search (TS) Kulturel-Konak et al (2003) 
Variable Neighborhood Search 
Algorithm Liang &Chen (2007) 

SA Wattanapongsakorn (2004) 
GA Coit & Smith (1996a) 

Redundancy Allocation 

Heuristic/Meta-heuristic  

GA Coit & Smith (1996b) 
Exact Cutting Plane Algorithm  Majety et al (1999) Reliability Allocation Heuristic/Meta-heuristic  Random Search Algorithm Mohan & Shanker (1988) 

Surrogate Dual Problem under 
DP Algorithm Hikita et al (1986) 

Surrogate Constraint Algorithm Hikita et al (1992) 
DP Yaloaui et al (2005b) 

Redundancy-Reliability 
Allocation Exact 

Mixed Integer Programming 
(MIP)Algorithm  Misra & Sharma (1991a) 

 

 

4.3.3 Some Observations and Drawbacks 
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      The similarities of the models formulated under single criterion optimisation (SCO) are very 

striking. They all virtually seek to maximise reliability as the main criterion of interest (a few 

were concerned with minimising cost), under similar sets of constraints.  The models in effect 

overlook the presence of other   criteria that implicitly conflict with reliability (or cost), such as 

weight, volume, etc. Even though such criteria feature as constraints in the models, where it is 

not possible to determine precise limits on the criteria (i.e. resource consumption) in order to set  

 appropriate constraints, the single criterion approach becomes inappropriate (Kuo & Prasad, 

2000). Furthermore, the fact that only a single criterion is optimised, means that decision making 

is limited to the consideration of just a single (unique) design, which denies decision makers the 

freedom of choice. The single criterion approach can thus be said to be simplistic and restrictive 

towards decision making. Sensitivity analysis can reduce the restrictiveness of this type of 

formulation by providing other design alternatives derived from a variation, within narrow 

ranges of selected parameters. This, however, is still limited, in comparison with the scale 

derivable under an MCO framework.      

     In all the cases where reliability was the criterion of interest, the top level (system level) 

expression for it was maximised as the sole objective function. The practice completely 

disregards any distinctive effect or influence (if there was one) that the constituent subsystems 

could have on the overall system reliability. In such cases, directly maximising the reliability of 

the relevant subsystems could be a credible, simpler alternative approach to the problem, which 

is likely to require a departure from a single criterion approach.                   

     The models also virtually disregard the effects of uncertainty in the problem parameters, such 

as occurs with regard to component and system reliability. These parameters are based on 

estimates derived from data (example, failure data) which invariably are uncertain due to 
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variability, are limited, or are in error (Nikalaidis et al, 2004). Therefore, a deterministic model 

runs the risk of providing only a sub-optimum of the actual optimal system reliability. Thus the 

variability in the system parameters could also be factored into the formulation as a constraint or 

a criterion (Allella et al, 2005; Azarm & Mourelatos, 2006). In the case where the variability 

features as criteria, however, a multi-criteria situation (bi-criteria at the least) is the result (Zhao 

& Liu, 2003).  

     The cases of reliability optimisation of other system configurations particularly that of 

complex systems, under the three strategies discussed earlier have been scanty. This situation is 

however not surprising given that complex systems’ reliability expressions tend to be unwieldy, 

especially the large scale ones, and so formulating models and finding optimal solutions become 

intractable. Perhaps part of the difficulty also stems from the approach taken to solve the 

problem, where the top level system reliability expression is either sought as the sole criterion to 

be optimised, or as a constraint. Where it is possible to view such systems in terms of identifiable 

subsystems, with a clear understanding of their inter-connections with one another, it should be 

possible to proceed with simpler subsystem reliability expressions, but under multiple criteria, 

with the subsystems as the criteria (Li & Haimes, 1992). 

 

4.4 OPTIMISATION UNDER MULTIPLE CRITERIA 

     The single criterion optimisation models undoubtedly result in improved system reliability, as 

evidenced from the many reported cases in the literature. The relatively few cases where the 

strategies have been approached from a multi-criteria viewpoint illustrate the additional benefits 

in terms of the variety of solutions that could be derived and the opportunity that is offered to 

decision makers to exercise discretion in the selection of the most appropriate solution. This 
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section will cover this type of model for the three strategies, in addition to outlining their specific 

benefits, and pinpointing some drawbacks and gaps.  

4.4.1 The General Models  

      The redundancy allocation optimisation by multi-criteria is modelled by:  

 

              ,                                                Subject to 0)( ≤xig mi ,...,2,1=           (4.4) 
                               ,      Nj ,...,2,1=     ujl xxx ≤≤ )...,,...,( 21 Nj xxxxx =

                 Minimise )](),...,(),([ 21 xfxfxf k

                              
 

 

The vector of objective functions , ( 2) represents the criteria to be 

optimised, which generally includes the reliability of a system, variance of the reliabilities, 

subsystems’ reliability, system unreliability, cost, weight, volume, risk, etc.  The other 

parameters and the assumptions of this model are the same as (or similar to) their counterparts 

given in equation 4.1. Among the many cases that concern the optimal allocation of redundant 

components, only a few were found that involved the optimal selection or assignment of 

components with or without redundancy, such as the cases by: Yamachi et al (2006), 

Zafirapoulos & Dialynas (2007), and Wattanapongsakorn & Coit (2007).            

k T
k xfxfxf )](),...,(),([ 21 k ≥

    The models presented by Sakawa (1980) and those by Misra & Sharma (1991a, 1991b) were 

among the earliest publications found in this category. Sakawa considered the optimal allocation 

of both the number of standby components and their failure rates in a series-parallel system with 

standby redundancy, which maximised the system reliability while minimising the system cost, 

weight, and volume, subject to various constraints, including upper bounds on the system level 

reliability, cost, weight, volume, and subsystem reliability. Misra & Sharma (1991a) considered 

a multiple component choice redundant series-parallel system in which both the system 

reliability and cost were optimised subject to a set of constraints on both the system reliability 
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and the number of redundant components. This problem was also presented by Misra and 

Sharma in (1991b) as one of two problems, the other being concerned with maximising a series-

parallel system’s reliability and minimising the system cost and weight subject to a set of 

expressions related to the redundancy levels of each subsystem. More recent cases of the model 

have been presented by Coit et al (2004), Coit & Baheranwala (2005), Marseguerra et al (2005) 

and Coit & Konak (2006). Coit et al (2004) presented a bi-criterion formulation in which the 

optimal allocation of redundant components was to be found for a series-parallel system in order 

to maximise its reliability and its associated variance, under system cost and weight constraints.  

Coit & Baheranwala (2005) presented and discussed a model which optimised reliability, cost, 

weight and variance of the reliabilities of a series-parallel system, with lower and upper limits set 

on the redundancy levels. Marseguerra et al (2005) considered a similar model formulation as 

Coit et al (2004) but in the context of network systems. Coit & Konak (2006) presented a model 

which treated each of the subsystems of a series-parallel system as a criterion to be maximised 

simultaneously under system cost and weight constraints. They showed that the problem could 

be reduced to a linear programming one, using the multi-objective weighting method. Further 

examples covering more recent cases are shown in Table 4.3. The table identifies the: criteria, 

constraints, decision variables, type of system, application, and the source. 

     The reliability allocation optimisation by multiple criteria is modelled by: 

               
                   [  Minimise )](),...,(),( 21 RfRfRf k

,...,2,1                to    ,                              iSubject 0)( ≤Rgi m=                     
 (4.5) 

                                     ,                    u
jj

l
j RRR ≤≤ Nj ,...,2,1=  

                                    )..,,...,( .21 Nj RRRRR =
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The set of objective functions of the decision vector k R  whose elements are the component 

reliabilities, include criteria such as the system reliability, cost, weight, volume subsystem 

reliability, risk etc. This type of formulation is incidentally rare in the literature.  

N

      One of the earliest examples is presented by Li & Haimes (1992) who formulated a model 

that decomposed a network system into a set of subsystems comprising components in both 

series and parallel arrangements. The network reliability expressed as a function of the 

subsystem reliabilities was thus maximised by simultaneously maximising the reliability of each 

of the subsystems. The resultant MCO was to find an optimal reliability allocation to the 

components of the network under the following constraints: the network cost, the reliabilities of 

the subsystems, and the reliabilities of the components. Further examples of recent cases are 

presented in Table 4.3.  

     The redundancy-reliability allocation by multiple criteria is modelled by: 

                                                 Subject to 0),( ≤Rxgi mi ,...,2,1=                        (4.6) 

                               ,         ujl xxx ≤≤ u
jj

l
j RRR ≤≤ Nj ,...,2,1=

                       Minimise )],(),...,,(),,([ 21 RxfRxfRxf k

 

The criteria optimised in this case are functions of both the redundancy levels of the 

components or subsystems and their reliabilities. The criteria include a system or subsystem 

reliability, cost, weight, volume, and risk. The constraints, , describe the limits imposed on 

the system attributes and resources, such as cost, weight, and volume, and also on the reliabilities 

k

m ig

of the system, subsystems, and components. One of the earliest examples found in the literature 

of this model type was presented by Sakawa (1978) to maximise and minimise respectively the 

reliability and cost of a series-parallel system with upper limit constraints on the system’s cost, 
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weight, and volume. Misra & Sharma also discussed a similar model in their paper of 1991a. 

Further examples are presented in Table 4.3. 

 

   Table 4.3: Examples of multi-criteria redundancy, reliability & redundancy-reliability allocation optimisation problems 

MODEL 
TYPE CRITERIA CONSTRAINTS DECISION 

VARIABLES 
SYSTEM 
TYPE APPLICATION LITERATURE 

Minimise 
system cost 
and weight 

Upper limits on 
system cost, weight 
and bounds on 
redundancy levels 

Component 
redundancy 
levels 

Series-
parallel 

Gearbox design, 
extract from the 
literature 

Zhao et al (2007) 

Maximise 
System 
reliability, 
minimise 
associated 
variance 

Upper limit on 
system cost, 
specified 
constraints on 
number of 
components 
selected 

Number of 
components 

Fault-
tolerant 
system 

N-Version 
Programming & 
Recovery Block  

Wattanapongsakorn 
& Coit (2007) Redundancy 

Allocation 

Minimise 
system cost 
& weight, 
maximise 
system 
reliability 

Bounds on number 
of components 
selected in each 
subsystem 

Number of 
components 

Series-
parallel 

Hypothetical 
example Taboada et al (2007) 

Maximise 
system 
reliability, 
minimise 
associated  
cost 

Upper limits on 
system cost, & 
specific limits on 
components 
reliability 

Reliability of 
components  

Complex 
system   Shelokar et al (2002) 

Maximise  
reliability of 
subsystems 

Constraint on cost 
of the system 

Reliability of 
components  

Complex 
system 

Hypothetical 
example Li & Haimes (1992) 

Maximise 
system 
reliability & 
cost 

Upper bound on 
system level cost 
and lower bound on 
system reliability 

Reliability of 
component  

Series 
system 

Example from 
literature Kishor et al (2007) 

Reliability 
Allocation 

Maximise 
system 
reliability, 
minimise 
associated  
cost 

Lower& upper 
limits on reliability 
of components  

Reliability of 
components 

Complex 
system 

Life support 
system in a space 
shuttle 

Salazar et al (2006) 

Maximise 
system 
reliability, 
minimise 
system cost 
& weight 

Lower limit on 
system reliability, 
upper limit on 
system volume, 
weight & cost, 
bounds on number 
of components & 
their reliabilities 

Number of 
components & 
their 
reliabilities 

Series-
parallel 

Overspeed 
protection system 
of a gas turbine 

Dhingra (1992) 

Minimise 
economic  
cost, 
maximise 
system 
reliability 

technical 
constraints 

Sizing & 
location of 
feeders & 
substations 

Network 
System 

A power 
distribution 
network 

Ramirez-Rosado & 
Bernal-Agustin 
(2001) 

Redundancy-
Reliability 
Allocation 

Maximise 
system 
reliability 
minimise  
cost   

Upper bounds on 
system weight, 
bounds on system 
volume, number of 
components, and 
their reliability 

Component 
choices & their 
reliability 

Series-
parallel 

Dhingra's 
overspeed 
protection system 

Huang et al (2006) 
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     4.4.2 Methods of Solution 

     The solution methods for the MCO versions of the reliability design problems are generally of 

the classical or the stochastic types, and are implemented under a scalar or a Pareto approach (as 

discussed in Chapter Two). The methods involve a spectrum of algorithms that are approximate, 

exact, or heuristic. Table 4.4 lists the methods that were used in the models for the cases cited. 

The heuristic or meta-heuristic algorithms, based on the Pareto approach, are just as popular in 

the case of MCO in reliability design, whether by redundancy, or reliability allocation, or both, 

as they are in SCO cases. Examples of reliability allocation appear to be just as uncommon under 

MCO as under SCO.  Again the redundancy allocation optimisation problem is still the most 

studied of the three types of strategies under MCO, followed by the redundancy-reliability 

allocation optimisation. The advent of many exact methods and algorithms, including heuristics, 

has resulted in a decline in the use of the approximate solution techniques.  

4.4.3 SCO versus MCO in Reliability Design  

      While the single criterion formulations are the most common in the field there are clear 

advantages to be gained from using a multi-criteria approach. Reliability design is naturally a 

multi-criteria problem (Taboada et al, 2008), since one cannot just be concerned with achieving 

high reliability for products or systems; other factors like budget, raw materials, and technical 

constraints have to be considered. Since higher reliability invariably involves the consumption of 

additional resources in terms of additional man-hours on the job, use of higher quality and 

therefore more expensive materials, use of better or improved technology etc., there is clearly a 

conflict between reliability and these other equally important characteristics. Thus just seeking to 

maximise reliability alone is unrealistic.   

 

81 
 



                            Table 4.4:  Summary of the Solution Algorithms used in the cited MCO cases of reliability design   
 

MODEL TYPE SOLUTION 
TECHNIQUE 

ALGORITHM 
DESCRIPTION 

MCO 
TYPE SOURCE 

Surrogate Worth Trade off 
(SWT)Method under Dual 
Decomposition Algorithm 

Sakawa (1980) 
Approximate 

Direct Search by Min-Max 
Algorithm Misra & Sharma (1991b) 

IP due to Misra Misra & Sharma (1991a) 
The weighting Method in 
conjunction with a heuristic 
& an IP Algorithm 

Coit & Konak (2006) Exact 

Weighting Method under an 
IP software package 

Scalar 

Coit et al (2004) 

GA & Monte Carlo 
simulation Marseguerra et al (2005) 

Multiobjective GA Coit & Baheranwala (2005) 
Elitist Non-dominated 
Sorting GA 2 (NSGA 2) Taboada & Coit (2007) 

GA  Wattanapongsakorn &Coit 
(2007) 

NSGA Taboada et al (2008) 
Multi-objective Ant Colony Zhao et al (2007) 
Simulated Annealing (SA) Zafiropoulos & Dialynas (2007) 

Redundancy 
Allocation 

Heuristic/Meta-Heuristic 

Multio-objective GA 

Pareto 

Yamachi et al (2006) 
Exact Three levels Decomposition 

approach and the Khun 
Tucker multiplier method 

Scalar 
Li & Haimes (1992) 

NSGA 2 Salazar et al (2006) 
NSGA 2 Kishor et al (2007) 

Reliability Allocation 

Heuristic/Meta-heuristic 
Ant Colony (AC) 

Pareto 
Shelokar et al (2002) 

SWT Sakawa (1978) 
Direct Search Technique 
combined with the Min-Max 
method 

Misra & Sharma (1991c) 
Approximate 

Goal Programming (GP) & 
Goal Attainment Methods 
(GAT) 

Scalar 

Dhingra (1992) 

Evolutionary Algorithm 
(EA) 

Ramirez-Rosado & Bernal- 
Agustin (2001) 

Redundancy-
Reliability Allocation 

Heuristic/Meta-Heuristic 
GA 

Pareto 
Huang et al (2006) 

 

     The MCO approach provides a wider range of decision alternatives and so a variety of 

potential designs for reliability.  The opportunity to examine a multiplicity of potential designs at 

the conceptual stage, satisfying all design constraints, is not only desirable (Marseguerra et al. 

2005; Konak et al. 2006; Taboada & Coit, 2007) but also appropriate, as this affords a careful 

screening of the design space for a more informed and rational decision (Limbourg & Kochs, 

2007). It also offers the opportunity for engineers and decision makers to work together to arrive 

at a design that is acceptable and representative of the choices and compromises of all the 

stakeholders.  
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4.4.4 Drawbacks and Gaps  

    While the examples discussed so far point to a dynamic and exciting research field, (whether 

SCO or MCO) they also reveal areas where attention is necessary to advance the growth and 

development of the field. Apart from the distinctive advantages of the MCO approach  which 

undoubtedly are very significant for better decision making in the reliability design environment, 

there seems to be very little else to choose between the two formulations (i.e. SCO and MCO). 

The similarity of the cases presented under each of the optimisation strategies and the relative 

frequencies of the examples under them, together with the solution techniques and algorithms 

used, are again very striking.  The picture painted is one of replication of the SCO formulations 

under the MCO format, with hitherto constraints under SCO becoming criteria under MCO. The 

relative frequencies of the types of systems studied and their characteristics, in terms of the type 

of redundancies considered and the assumptions made especially about the components, have 

remained largely similar. 

      For example under either SCO or MCO, redundancy allocation remains the most studied of 

the three optimisation strategies. The series-parallel system structure is also the more popular. In 

almost all the cases, whether by SCO or MCO, the top level system reliability expression was the 

criterion maximised. The only cases found where the reliability of subsystems were the criteria 

for the optimisation, were those by Li & Haimes (1992), and Coit & Konak (2006). A few cases 

of stochastic formulations occur particularly in the context of MCO (Coit & Barheranwala, 2005; 

Marseguerra et al, 2005; Wattanapongsakorn & Coit, 2007), but the number of cases remains 

small. Other examples are the perennial assumption or consideration of redundancies involving, 

mostly, similar or identical components in a subsystem (i.e. components with similar failure rates 

that perform the same function) and also having exponential failure distributions. Redundancies 
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involving standby components (especially cold standby) have also not received much attention 

(Azarm et al, 2008). These are interesting drawbacks or gaps, on account of the many practical 

situations which depart from such fundamentals.       

      As a result of the above observations, the following six areas are noted as interesting areas 

for further research: (i)  applications of MCO in reliability design; (ii)  formulations focusing on 

the reliability of subsystems as the criteria to be maximised (iii)  examples of cases of reliability 

allocation optimisation; (iv)  formulations which account for randomness in the design 

parameters in respect of all the strategies; (v)  formulations which consider: component mixing 

in subsystems (i.e. redundant components  not necessarily identical) and standby redundancies; 

(vi)  formulations that consider other hazard rates (or failure distributions) of components other 

than the constant failure rate (or exponential distribution).    

     On the basis of the above concerns, Chapter Five presents and discusses the work aimed at 

addressing some of the shortfalls recounted above. Specifically, the work done covers the first 

three areas noted: thus a system reliability design methodology is proposed for allocating 

reliability to the components of a series-parallel system under an MCO format focusing on the 

subsystems as the criteria for the optimisation. The methodology is extendable also to complex 

systems. The method used to obtain Pareto optimal solutions is also discussed.    

 

4.5 SUMMARY 

     The use of optimisation techniques especially at the conceptual or planning stage of a system 

design for the purposes of maximising the system’s reliability and meeting such constraints as 

budgetary and other resource consumption limits, have been described, discussed , criticised and 

attention drawn to areas conceived as  drawbacks and constituting a gap in the literature.  
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Notable among the optimisation strategies used in the pursuit of the purpose stated above are: (i) 

the optimal allocation of redundant components in a system, (ii) optimal allocation of reliability 

to the components of a system, and (iii) a combination of (i) and (ii). Among the three, the first 

strategy is the most common.  

     The most common optimisation model encountered in the reliability design literature is the 

one which specifies a single criterion, which invariably has been either the system reliability or 

its cost. The few cases where more than one criterion is specified are dominated by the bi-

criterion types, which usually specify the system reliability and its cost as the criteria. The 

distinctive advantages of the MCO formulations over the SCO ones are in terms of the options 

they provide for deciding on an optimal design and the room and opportunity given to the 

decision maker to exercise their discretion and preferences. The optimisation models are also 

dominated by the deterministic types; the few stochastic formulations have been of the MCO 

type.          

   The series-parallel system structure is the most frequently studied and the types of parallel 

redundancies encountered are those done at the component level with the active and the partial 

ones occurring more often. Not much attention has been given to the study of standby 

redundancies especially the cold standby cases. 

     Heuristic or meta-heuristic algorithms are very popular solution methods in system reliability 

design optimisation (especially in redundancy allocation) whether by single or multi-criteria. 

Nevertheless the classical methods have not been completely absent and were used in cases 

involving reliability allocation which tend to have the required desirable characteristics.  

      In conclusion therefore, concerns have been raised (by the author), among others, about the 

low incidence of cases involving MCO formulations in reliability design and the inordinate 

85 
 



emphasis of redundancy allocation (understandably an efficient reliability design tool) over 

reliability allocation (for instance), the virtues of which remain at this stage unexplored. As a 

response, therefore, in the next chapter a new methodology for reliability design is proposed and 

developed.   
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CHAPTER FIVE 

 

RELIABILITY OPTIMISATION  

OF 

SERIES-PARALLEL SYSTEMS 

 

5.1 INTRODUCTION 

     It was observed in Chapter four that the most popular decision making scenario researched in 

systems design for reliability concerned the determination of optimal system configuration which 

at least yields a specified system reliability. A less popular (in terms of research), though 

important, decision making scenario which is also encountered in the design of a system (or 

product) for reliability concerns the determination of optimal components’ reliabilities which at 

least satisfy a given system reliability. This problem is often encountered when the reliability 

specification for the system is unachievable under the current component reliability 

specifications (Wasserman, 2003; ReliaSoft Corporation, 1992-2008). The assigned reliability is 

then used as the bench mark reliability specification for the components of the system. 

      In the above scenario it is presupposed that the system configuration is known. Thus for a 

simple system, such as one with two or three components in series configuration one can readily 

investigate the reliability specifications of the components that would achieve an overall system 

reliability target. Real problems are, however, usually more complex, and can involve multiple 

components in complicated system configurations.  One needs also some measure that reflects 

how difficult (or expensive) it is to increase the reliability of each component. While such a 

measure is deemed appropriate given the reliability cost relationship - reliability is inextricably 
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linked with cost in all phases of the design activity -   it constitutes a further complication. It 

stands to reason, therefore, that the most acceptable component reliability assignment schemes 

would be those that meet the system reliability target and provide minimum values of the cost 

measure. 

     This chapter presents a novel approach to the above problem in an MCO framework.  First of 

all, a general formulation of the problem as an MCO is presented where the system’s reliability 

is viewed in terms of its subsystem reliabilities which are taken as the criteria to maximise and 

the system cost as the one to minimise. The approach is subsequently confined to a series-

parallel system based on its popularity (Lobos & Momot, 2002) and its frequent occurrence in 

real systems.  A methodology for the Pareto optimal assignment of component reliabilities in 

series-parallel systems which maximises system’s reliability and minimises system cost is 

discussed. The methodology is also extended to complex systems.  

 

5.2 THE GENERAL MODEL 

       Consider the scenario that the initial reliability of a system under design is to be improved to 

meet or exceed target reliability, through the use of highly reliable components. Suppose that:  

(i)       the system is composed of m  distinct subsystems each of which comprises 

in components, m ; i ,...,2,1=

(ii)       the components may or may not be functionally equivalent i.e. although identical, 

they may not have the same reliability estimates, due to manufacturing practices, 

production costs, quality assurance provisions etc. (Coit et al, 2004);  

(iii)      the components may or may not be replicated in the other subsystems.  
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Whatever the configuration of the system being described, its overall reliability is dependent on 

the reliability levels of the subsystems which are in turn dependent on the reliability levels of 

their constituent components (Endrenyi, 1978). It follows therefore that the higher the reliability 

of a subsystem the higher the system reliability for a given configuration. Where a system 

reliability target is indicated the subsystem reliabilities must generally compete to achieve it. In 

other words the subsystem reliabilities cannot together increase by the same margin, some would 

achieve a higher increase than the others in order to realise the specified system reliability. 

Consequently the subsystem reliabilities may be viewed as constituting distinct and competing 

(or conflicting) system reliability criteria. Each subsystem may also be required to achieve a 

minimum (or maximum) reliability target together with the components.   

     The design goal has cost implications due to one of the following factors: (i) it may require 

use of existing components which are known to have higher reliability and quality, and are 

therefore more expensive to procure and install; (ii) it may require designing (or redesigning) 

components to have the required level of reliability, which requires expenditure in the form of 

better quality materials, retooling costs, etc. (Reliability Hotwire, 2001). In either case there 

could also be administrative, or change in vendors costs (Reliability Hotwire, 2001). If an 

expression can be found to describe the reliability-cost relationship of the components, then the 

cost associated with the entire system’s reliability can be determined. The system reliability can 

then be maximised by maximising the subsystem reliabilities and minimising the cost 

simultaneously, while taking into account all constraints in terms of limits on the reliabilities of 

the subsystems and the components.  

     Let , and denote system, subsystem, and component reliabilities respectively  sR isubR , kiR

89 
 



( ; ). The vector of subsystem reliabilities to be maximised is thus of the 

form: 

mi ,...,2,1= ink ,...,2,1=

                [                                                                                                 (5.1)  ]Tmsubsubsub RRR ,,2,,1, ...,

Let ,  and  denote respectively the cost of improving the reliability of the system, the 

 subsystem, and the  component in the  subsystem. Assuming that: 

syC isubc , kic

'i th 'k th 'i th

                  and                                                                                 (5.2) ∑
=

=
m

i
isubs cC

1
, ∑

=

=
in

k
kiisub cc

1
,

then the cost of system reliability to be minimised is given by: 

                                                                                                                            (5.3)                 ∑∑
= =

=
m

i

in

k
kis

i

cC
1 1

The following constraints are imposed on the design: 

                    ∀                                                                                    (5.4) iisub RR min,, ≥ mi ,...,2,1=

                  max,min, kikiki RRR ≤≤ , ; mi ,...,2,1= ink ,...,2,1=                                                       (5.5)      

 

where is the lower bound of the  subsystem reliability at the specified mission time at 

which the optimisation is to be performed.  is the initial or current reliability of the  

component in the  subsystem and is the upper bound of the  component reliability 

of the  subsystem, which represents the maximum achievable reliability. The resultant 

deterministic MCO model of the reliability design problem becomes: 

iRmin, 'i th

min,kiR 'k th

'i th max,kiR 'k th

'i th
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                 ink ,...,2,1=;                           , max,min, kikiki RRR ≤≤ mi ,...,2,1=
             

     Minimise                                                                                                        
(5.6) 

∑∑
= =

=
m

i

n

k
kis

i

cC
1 1

     Subject to: 
                           ∀  iisub RR min,, ≥ mi ,...,2,1=

     Maximise                      [ ]Tmsubsubsub RRR ,,2,,1, ...,
 

 

 

 

 

The model is general at this point and only useful where the objective functions and input 

parameters are known or can be determined. This requires that the configuration of the system is 

known, which also means that the overall system reliability can be evaluated on the basis of the 

output of the optimisation. The proposed model (expression 5.6) is therefore discussed in the 

context of a series-parallel system configuration extending to complex systems.     

 

5.3 A SERIES-PARALLEL SYSTEM MODEL 

     Given a series-parallel system (see Figure 3.5 of Section 3.3) comprising subsystems with 

 components in each ( and remain finite) enables the terms and inputs to the model given 

by (5.6) to be specifically determined.  

m

in 1≥in

5.3.1 Subsystem Reliability 

The reliability expression for a subsystem in terms of the reliability of its components (discussed 

in Chapter 3) was shown (Rao, 1992; Kuo et al, 2001) to be: 

                   

                                                                       (5.7)   )1(1
1

, ki

n

k
isub RR

i

∏
=

−−=
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Where all the components are identical expression 5.7 reduces to the form: 

 
                                                                                                    (5.8)  in

kiisub RR )1(1, −−=
 

The general system reliability expression was given in (3.17).  Where the components in a 

subsystem are identical and distinct from those in the other subsystems (i.e. no mixing of 

components within subsystems) the result in (3.17) reduces to the form: 

                          

                                                                                          (5.9) [∏
=

−−=
m

i

n
kis

iRR
1

)1(1 ] 

 

The expressions in (5.8) or (5.9) thus define the objective functions to be maximised in the 

series-parallel MCO model. The overall system reliability which is derived from the results of 

either (3.17) or (5.9) follows immediately from the output of the optimisation.          

      5.3.2 Reliability-Cost Function and Model Parameters 

  The component costs and the constraints need to be determined in order to proceed with the 

optimisation.   The reliability-cost function can be derived empirically from actual cost data 

using past experience or that for similar components (Mettas, 2000). For instance it can be 

obtained from a reliability growth programme in which the stage-to-stage cost of improvement 

of the reliability of components or systems are tracked and quantified (Reliability Hotwire, 

2001).  In most cases however the necessary data is not available so a number of analytical 

models have been used as an alternative. Some of the more common models are discussed by 

Aggarwal (1994). The main features of these models are the following: 

kic

• Cost is modelled as a monotonically increasing function of reliability 

• Cost is modelled as a differentiable and convex function of reliability 

• Cost becomes indeterminate as reliability approaches unity 
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• Cost increases sharply with marginal increases in reliability where the original reliability 

was very high. 

The analytical cost function used in this research, which exhibits the above features was 

developed by the ReliaSoft Corporation of the USA (Mettas, 2000). It has been chosen because 

unlike many of the others it incorporates a feature which accounts for and quantifies the practical 

difficulty or otherwise associated with increasing reliability in design, a feature considered 

suitable and necessary for the proposed model and consistent with the objectives of this research. 

The chosen cost function is defined by:  

 

                                                                                     (5.10) ⎟
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where is a constant which measures the difficulty of increasing the reliability of the  

component in the  subsystem relative to the other components in the subsystem. This 

measure, called the feasibility factor is set such that 0 < < 1 (Reliability HotWire, 2001). 

Expression 5.10 quantifies cost as a dimensionless constant whose value is not only dependent 

on a component’s reliability but also on its feasibility factor, which is an input parameter 

together with the initial and maximum achievable reliability values. The notion of cost as used in 

this thesis (unless otherwise stated) therefore refers to this dimensionless penalty function 

calibrated on a scale of one to infinity (one when no improvement in reliability is achieved and 

infinity when reliability approaches the maximum value), and serve as a measure or indicator of 

the level of resource expenditure required in order to achieve the reliability levels specified for 

the optimisations. A major difficulty presented by this notion is how to assess the significance of 

the numbers that are assigned. While a technique for converting these numbers into direct 

kif thk '

thi'

kif
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monetary terms is developed in this Chapter and illustrated in Chapters Six and Seven, it is 

suggested that the difficulty arises especially when the numbers are treated as absolutes. A 

comparative approach is better at putting them into context and facilitates a basis for assessing 

them for a given problem and making the appropriate cost-benefit analysis for decision making. 

The fact that the upper level of the scale is unbounded, however, remains a major weakness.      

        It is clear that the higher the value of the feasibility factor the lower the cost at a given level 

of component reliability and vice versa. Figure 5.1 illustrates this point with an example for 

selected feasibility factor values of 0.1, 0.5, and 0.9. 

                   
 Figure 5.1:  The effect of feasibility factor on component cost (Source: Mettas, 2000)    

Setting appropriate values for for allkif ink ,...,2,1=  is thus necessary, even though it is not 

straightforward. The practice has been to use weighting factors which depend on certain 

influential aspects like complexity of the components, the state of the art, the operational profile, 

the criticality, etc (Mettas, 2000; Reliability Hotwire, 2001). Engineering judgement based on 

past experience, supplier quality, supplier availability, may also be used (Reliability Hotwire, 

2001). There is therefore some level of subjectivity involved in the determination of the 

feasibility factor. 
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      The other input parameters to the cost function model are the initial and maximum 

achievable reliability values, and respectively as well as the subsystem lower bound 

value, , for all i ( ). The initial reliability value, which may be taken as the 

current value of the reliability of a component, can be obtained from the component’s failure 

data and its corresponding statistical distribution. The initial reliability values of other 

functionally similar components may also be used. Where a component has competing failure 

modes the failure data in respect of each of the failure modes would be required in order to 

estimate a generic reliability value for the component. In this case one ought to obtain the 

configuration of the failure modes (ReliaSoft Corporation, 1999-2007). Suppose, for instance, 

that a component has failure modes and the occurrence of any one would result in failure of 

the component. If it can be established that the failures are independent then the failure modes 

have a series configuration. Thus if are respectively the reliability values 

corresponding to the

min,kiR max,kiR

iRmin, mi ,...,2,1=

2≥p

pRRR ,...,, 21

p failure modes, then: 

                 
                                                                                                       (5.11) ∏

=

=
p

j
jRR

1 

 

where R is the generic reliability estimate of the component in question. Similar results may be 

determined for cases where the configuration is parallel, series-parallel, etc (as discussed in 

Chapter 3). The maximum achievable reliability value which is usually dictated by technological 

and financial constraints is a limiting value that may be approached but not necessarily attained; 

it is thus set very high (Reliability Hotwire, 2001). The value which eventually is a subjective 

estimate can be set, however, based on engineering judgement and current state of the art 

(Reliability Hotwire, 2001). Figure 5.2 illustrates the impact of values (i.e. 0.85, 0.9, and 0.99) of 
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the maximum reliability set on a hypothetical cost function. The figure shows that cost rises 

sharply as the component reliability approaches the maximum achievable value (Mettas, 2000). 

A subsystem lower bound which specifies the minimum value that a subsystem can attain in the 

optimisation is similarly determined. 

                  
     Figure 5.2: Impact of maximum reliability values on cost function (Source: Mettas, 2000)  

     Since one would also like to know (especially the decision maker) the direct monetary cost of 

reliability improvement, a methodology that converts the reliability cost/penalty value into a 

monetary cost estimate is discussed. It can be shown (Reliability HotWire, 2001) that by using a 

fault tolerant scheme (i.e. putting components in a parallel arrangement), an array of component 

reliability values and their associated cost units can be evolved and used to develop an analogous 

monetary cost function for a component. A plot of the reliability values against cost (in monetary 

terms) yields a curve (see Figure 5.3) similar to those given in Figure 5.1 and described by an 

exponential relation (Reliability HotWire, 2001).  In Figure 5.3 the cost of a hypothetical 

component (which could well include the cost of design, manufacture, packaging etc.) is 

assumed to be one pound (£1) and the reliability of the component to be 0.3. The plot depicts the 
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cost of a fault tolerant scheme involving from one through to eight identical components in a 

parallel arrangement with the original, and their corresponding reliabilities.    
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                                 Figure 5.3: Plot of component reliability against actual cost, in a fault tolerant scheme 

 

The cost function for the hypothetical component can be expressed by the general form given by 

expression 5.12 (Reliability HotWire, 2001), where c′  is the monetary cost (Pounds in this 

instance) corresponding to a reliability value R ; λ andμ are scalars to be determined. 

                                                                            (5.12)   )exp()( RRc μλ=′                          

 

Note that the values of the scalars are as given in the following expressions: 
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For the purposes of the series-parallel system MCO model under discussion, suppose the 

monetary cost, , of the  component in the  subsystem is given by kic′ thk ' thi'

                    )exp( kikikiki Rc μλ=′                                                                                               (5.15)   

where kiλ and kiμ are the associated scalars determined as given in expressions 5.13 and 5.14 

respectively, for all  ( iink ,...,2,1= m,...,2,1= ). From the graphs of both andkic kic′ one can 

reasonably assume that the two are proportionally related and can thus be approximated by the 

expression: 

                     
                                                                             (5.16) kikiki cc α=′

 

where kiα is a scalar (cost constant) associated with  (kic ink ,...,2,1= ; ). It is 

observed that when , 

mi ,...,2,1=

min,kiki RR = 1)( min, =kiki Rc  and , where  is the original 

unit cost of the component in the subsystem (

o
kikiki cRc =′ )( min,

o
kic

thk ' thi' ink ,...,2,1= ; mi ,...,2,1= ). It follows from 

expression 5.16 that . It is therefore possible to obtain an estimate of the monetary cost 

of reliability for a component given its cost/penalty value. An estimate therefore of the monetary 

cost, , of reliability improvement in a series-parallel system is: 

o
kiki c=α

sC′

 

                                                                                            (5.17)     ki
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Note that although expression 5.10 is dimensionless, this is not so with the cost in expression 

5.17, the dimension of which is determined by the unit of the currency in which the monetary 

cost is measured.  
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 5.4 EXTENSION TO COMPLEX SYSTEMS 

      Reliability optimisation of complex systems or networks provides formidable challenges as 

far as modelling reliability goes. The difficulty ( as discussed in Chapter 3) has resulted in the 

development of techniques for obtaining lower and upper bound reliability estimates for systems 

or networks (Jin & Coit, 2003; Espiritu et al, 2007) involving the use of network reduction 

techniques, such as cut and path sets. The resultant network configuration, (which is series-

parallel in the case of cut sets, and parallel-series in the case of the latter), provides the setting 

and opportunity for applying the current MCO model. Note that each minimum cut set signifies a 

discrete event that describes a failure characteristic (failure mode defined by a specific 

combination of component failures) of an entire system. Together they constitute   therefore 

distinct criteria or subsystems which provide measures of the probability of failure of the system. 

One would thus want to minimise each of the probabilities or maximise their reliabilities (or a 

subset of them).   

      Suppose therefore that a series-parallel transformation using minimum cut sets 

 of any order has been achieved for a complex system. Since the minimum cut sets 

comprise components which reliability-wise are in parallel configuration, and which may be 

replicated in other cut sets, their reliability is modelled by expression 5.18 where is the 

reliability of the component in the minimum cut set consisting of an arbitrary number of 

components.  

m

mKKK ,...,, 21

kR

thk ' thi'

 
                                                                                     (5.18) )1(1, ∏

∈

−−=
iKk

kisub RR

 

     Even though component mixing occurs in this case, the current MCO approach allows that 

and it is appropriate for the following reasons: (i) the subsystems are pair wise mutually distinct, 
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in terms of the combination of component failures that lead to system failure. Maximising each is 

therefore consistent with the MCO approach; (ii) each subsystem’s reliability depends on the 

collective reliability levels of its components, whether or not the components are replicated in 

other subsystems; (iii) even though in general the system level reliability function (i.e. for 

complex systems or networks) does not increase monotonically with respect to the reliability of 

its components (Mohan & Shanker, 1988) it does so with respect to  the reliabilities of its 

subsystems ( Li & Haimes, 1992), thus simultaneous maximisation of their reliabilities means a 

search for the component reliability values which collectively increase the subsystems’ and thus 

the system’s reliability; such values, if found would thus be consistent with the dependent state 

of the subsystems’ reliabilities.                     

      MCO model formulation, similar to the one discussed under the series-parallel case, can 

therefore be derived in the form of the model given by (5.6), where the minimum cut sets are 

the subsystems in which reliabilities are maximised. The cost function to be minimised and the 

input parameters are similarly determined as discussed in Section 5.3 and equation 5.10. The 

compromise solutions derived from the optimisation in this case represent the component 

reliability specifications which would maximise the lower bound estimate of the complex system 

reliability (as given by expression 3.21) at minimum cost, subject to constraints on the minimum 

cut sets and component reliabilities.   

m

 

5.5 CHARACTERISITCS AND ASSUMPTIONS 

      The formulation given in expression 5.6 belongs to the class of constrained non-linear and 

continuously differentiable MCO problems: The objective functions are generally non-linear and 

the decision variables continuous real numbers in the domain which is a convex set. The (0,1)
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cost function (in terms of either expression 5.10 or 5.16) is convex while the subsystem 

reliability functions are concave monotone (See Appendix A for formal discussions of the 

properties).  The feasible criterion space is thus closed (Li & Haimes, 1992) and the Pareto front 

connected (see Appendix A). Therefore the model can be solved by classical methods employing 

exact algorithms. 

     The model does not require the system level reliability expression as input to the optimisation 

(although one may choose to add it as a constraint). This characteristic is considered a 

simplification of the problem of optimising the reliability of complex systems especially in cases 

where the analytical reliability expression is generally difficult to find.  The system reliability for 

the series-parallel case can be obtained from expression 3.17 or 5.9 after the optimisation, or 

from a product of the subsystem reliability values obtained in the case of both series-parallel and 

complex systems. This is a distinguishing feature of the model.   

        Since all the subsystems’ reliabilities are maximised, the least subsystem reliability which is 

crucial to the overall system reliability (see Chapter 3) is also maximised. In the case of a 

complex system, maximising the reliability of the minimum cut sets constitutes maximising the 

lower bound estimate of the system reliability. 

       The model assumes that the input parameters are precisely determined. Thus random 

variations in their values are ignored. The system may be repairable or non-repairable. The 

model is concerned with the time to first failure of the system during its operations. In the case of 

repairable systems the time to failure is assumed to be the time to the next failure after repair.  

The system reliability improvement cost is the aggregate cost of improvement in the reliability of 

all the components. Any other extraneous cost is not taken into account.  
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5.6   DISTINCTIVE FEATURES   

      Notable simplifications among other advantages of the proposed approach are the following: 

• The focus on subsystems decentralises the task of finding the system reliability and 

greatly reduces the complexity of the problem, as far as formulation and computational 

efforts are concerned, which thus facilitates seeking optimal solutions (Li & Haimes, 

1992; Coit & Konak, 2006).   

• The reliability function of a complex system is generally non-separable with respect to its 

major subsystems (the components are replicated within the subsystems in this case). 

The MCO approach acts as a separation strategy which decomposes the problem for 

optimisation (Li & Haimes, 1992). 

• While component mixing within a subsystem of a series-parallel system poses a major 

problem (especially in redundancy allocation), the current formulation allows mixing of 

components (Coit & Konak, 2006). 

• Even though system reliability is not maximised directly, the formulation does yield high 

system reliability (Coit & Konak, 2006). This is on account of the fact that system 

reliability is an increasing function of the subsystems’ reliabilities (Li & Haimes, 1992). 

Maximising the subsystems’ reliabilities, therefore, maximises the system reliability. 

 

5.7 THE SOLUTION METHOD 

      In view of the above characteristics a number of scalar methods may be appropriately 

applicable for generating Pareto optimal solutions (or for obtaining a compromise solution where 

preferences are expressed). These include such methods as Goal Attainment, Goal Programming 

and Weighted Sum Scalarisation (Marler & Arora, 2004). The chosen method of solution in this 
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work was the Weighted Sum, not just because it is simple and easy to implement (Kim & de 

Weck, 2005) but it is also effective and efficient at providing Pareto optimal solutions under the 

characteristics noted. It is also particularly suitable given a characteristic of series-parallel 

systems (see Chapter 3), which makes it necessary to weight each subsystem reliability equally 

in order to avoid a situation where the Pareto optimal solutions result in a mixture of very low 

and very high subsystem reliabilities (Coit & Konak, 2006).  In Chapters 6 and 7, it is used as a 

generating method (Cohon, 1978) to find Pareto optimal solutions. 

       In order to facilitate the application of this method the general MCO model is formatted into 

the following scalar form where is the weight of the criterion, and , are such that 

> for all . It is also assumed that each subsystem’s reliability is of equal 

importance and thus weighted accordingly: 

iw thi' ja jb
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An optimal solution to the scalar problem in expression 5.19 is Pareto optimal for the MCO 

problem posed in expression 5.6 so long as the weights are non-negative (Das & Dennis, 1997; 

Coit et al, 2004). Thus a set of Pareto optimal solutions can be secured by a number of weight 

generations and optimisations.     

                                                   

                

        Code problem 5.19 incorporating one set of weights 

Run the optimisation algorithm in MATLAB for the chosen set of weights 

Has a solution been found? 

     Record solution 

Have all sets of weights been used? 

       Stop 

Check for errors 

Update set of weights 

NO 

YES 

NO 

YES 

 Generate sets of weights according to expression 5.20, using each pair a and b  ∀N j j j

 Nj ,...,2,1=∀  Choose scalars and b such that  > b  ja j ja j

     Start 

Set up problem as given in expression 5.19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             Figure 5.4: A flowchart of the solution process for the weighted sum problem  
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    The MATLAB optimisation toolbox was used to perform the computations. The solution 

process is described by the flowchart in Figure 5.4. The system reliability optimisation 

methodology discussed in this Chapter was tested on hypothetical problems as well as some 

published examples as a means of verifying the model and its methodology. These will be 

discussed in Chapters 6 and 7.    

 

5.8 SUMMARY 

     A new methodology for optimal design for reliability has been presented and described. It 

addresses the problem of assigning optimal reliabilities to the components of a system using a 

multi-criteria model. Unlike many of the methods found in the literature, which approach the 

problem from the system level, the proposed methodology identifies the subsystems as the 

criteria to maximise in order to maximise the system level reliability. The other criteria taken on 

board in the problem formulation is the cost of increasing component reliability, which is 

minimised in the optimisation. 

     A general form of the model was formulated for a system with identifiable and distinct 

subsystems of any configuration, and subsequently discussed in terms of series-parallel systems 

in particular, and also complex systems. The input parameters of the model including the 

expressions for the objective functions were discussed as was the type of cost function used and 

its characteristics. The cost function was noted to be a dimensionless increasing (exponential) 

function of component reliability which measured the degree of difficulty in improving 

reliability in terms of expenditure of resources etc. A technique to convert the value obtained into 

a monetary cost was presented. The mathematical features and inherent assumptions of the 

model, which influenced the chosen method of solution, were also briefly discussed.  
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     The Weighted Sum Scalarisation method was identified as suitable for finding Pareto optimal 

solutions, given the features of the model, and its effectiveness at providing good solutions under 

those features. The process of implementing the optimisation from the initial scalarisation of the 

MCO problem, through to formatting the scalarised problem for the optimisation algorithm was 

depicted in a flowchart.   
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CHAPTER SIX 

 

MODEL TESTING 1 

 

6.1 INTRODUCTION 

     The MCO model proposed in the previous Chapter was firstly tested using seven hypothetical 

series-parallel examples to assess its performance in terms of the quality of its solutions and its 

sensitivity to the model’s parameters. The tests also aimed to demonstrate the use of the model 

for optimal component reliability assignment in order to simultaneously maximise system 

reliability and minimise cost; the term cost being as defined by the expressions 5.10 and 5.3. 

This phase of the testing concerned relatively simple examples of the model (including a bridge 

system), more complicated and larger systems were used and are discussed in Chapter Seven. 

The examples presented in this Chapter comprise series-parallel system configurations ranging 

from two to four subsystems. Each subsystem was made up of two or three components which in 

turn were assumed functionally equivalent, but not necessarily identical in terms of their 

reliability characteristics. 

      The model associated with each specific case was evaluated under the following conditions: 

(i) values of were varied over fixed values of iw kif  and min,iR ; (ii) kif was varied while holding 

andiw min,iR fixed; and (iii) min,iR was varied for fixed values of kif  and . The parameters of each 

of the models were assigned values as follows: 

iw

• Initial reliability of all the components = 0.5 

• Maximum component reliability, for all the components = 0.99 or 0.999 
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• The reliability lower bounds, for all the subsystems ranged from 0.999 to 0.9998 in steps 

of 0.0002. 

• The feasibility factor of all the components was equal in each case, and assigned values 

ranging from 0.3 to 0.9 in steps of 0.2. 

These values were selected purely on the grounds of preference; there were of course 

innumerable choices (within the bounds of realism) that could have been made. The maximum 

component reliability values represent the upper limit reliability specification set for the 

components and the subsystem lower bounds represent the lower limit reliability specifications 

for the subsystems. A system level reliability specification of 0.99 or above was expected for all 

the cases. The low initial components’ reliability value of 0.5 was deliberate and intended not 

only to test the ability of both the model and the optimisation algorithm to yield very high values 

even from initially low ones, but also to indicate a potentially low initial system reliability.  

 

6.2 SCENARIO 1 

     The system configurations in this design scenario involved two subsystems each with Case 1 

having two components in each; Case 2 having three in one and two in the other; and Case 3 

having three in both. 

 Case 1  

     The system reliability block diagram (RBD) for this configuration is shown in Figure 6.1. The 

first subsystem’s components’ reliabilities are 11R and 21R while those of the second are 

12R and 22R . The MCO model corresponding to this system configuration with the parameter 

values as specified earlier was run using the solution algorithm described in Chapter Five. 
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   Figure 6.1: System reliability block diagram for Case 1 of Scenario 1   

Results and Discussion 

     The values of the input parameters and the solution outputs in respect of the specified 

experiments are presented in Tables 6.1 to 6.4. The four were generated using ten different sets 

of weights but fixed feasibility factors of 0.9, 0.7, 0.5, and 0.3 respectively. The first column on 

the extreme left of each table shows the row titles. IT defines the iteration number, FF the 

feasibility factor, W1 and W2 are the weights for the reliabilities of the two subsystems and W3 

that for the cost. R11, R21, R12, and R22 are the component reliabilities (Pareto optimal values) 

after optimisation, RSB1 and RSB2 are the subsystem reliabilities resulting from the component 

reliability values, Rs is the overall system reliability, and Cs is the associated cost/penalty. (The 

tables presented in the subsequent examples and cases are similarly formatted). 

                                         Table 6.1:  Results of Scenario 1 Case 1, with a feasibility factor of 0.9 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
W1 0.45 0.47 0.49 0.492 0.494 0.496 0.498 0.4982 0.4984 0.4986 
W2 0.45 0.47 0.49 0.492 0.494 0.496 0.498 0.4982 0.4984 0.4986 
W3 0.1 0.06 0.02 0.016 0.012 0.008 0.004 0.0036 0.0032 0.0028 
R11 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 
R21 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 
R12 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 
R22 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 

RSB1 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014
RSB2 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014 0.9990014

Rs 0.9980039 0.9980039 0.9980039 0.9980039 0.9980039 0.9980039 0.9980039 0.9980039 0.9980039 0.9980039
Cs 18.485993 18.485993 18.485993 18.485993 18.485993 18.485993 18.485993 18.485993 18.485993 18.485993
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                                             Table 6.2: Results of Scenario 1 Case 1, with a feasibility factor of 0.7 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
W1 0.45 0.47 0.49 0.492 0.494 0.496 0.498 0.4982 0.4984 0.4986 
W2 0.45 0.47 0.49 0.492 0.494 0.496 0.498 0.4982 0.4984 0.4986 
W3 0.1 0.06 0.02 0.016 0.012 0.008 0.004 0.0036 0.0032 0.0028 
R11 0.9684 0.9683 0.9699 0.9684 0.9684 0.966 0.9675 0.9684 0.9684 0.9684 
R21 0.9684 0.9684 0.9669 0.9684 0.9684 0.9787 0.9693 0.9684 0.9684 0.9684 
R12 0.9684 0.9691 0.9772 0.9684 0.9684 0.9688 0.9629 0.9684 0.9684 0.9684 
R22 0.9684 0.9676 0.9719 0.9684 0.9684 0.9679 0.9731 0.9684 0.9684 0.9684 

RSB1 0.999001 0.9989983 0.999004 0.9990014 0.9990014 0.9992758 0.9990023 0.9990014 0.9990014 0.9990014
RSB2 0.999001 0.999 0.999359 0.9990014 0.9990014 0.9995 0.999002 0.9990014 0.9990014 0.9990014

Rs 0.998004 0.9979981 0.998364 0.9980039 0.9980039 0.998275 0.9980053 0.9980039 0.9980039 0.9980039
Cs 394.8284 393.67879 1102.44 394.82839 394.82839 1447.0276 486.9833 394.82839 394.82839 394.82839

          

 

                                        Table 6.3: Results of Scenario 1 Case 1, with a feasibility factor of 0.5 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
W1 0.45 0.47 0.49 0.492 0.494 0.496 0.498 0.4982 0.4984 0.4986 
W2 0.45 0.47 0.49 0.492 0.494 0.496 0.498 0.4982 0.4984 0.4986 
W3 0.1 0.06 0.02 0.016 0.012 0.008 0.004 0.0036 0.0032 0.0028 
R11 0.9818 0.9813 0.9684 0.9758 0.9699 0.9745 0.9802 0.9816 0.9684 0.9684 
R21 0.9793 0.9808 0.9684 0.976 0.9695 0.9715 0.9784 0.9686 0.9684 0.9684 
R12 0.9801 0.9814 0.9759 0.9755 0.9687 0.971 0.9511 0.9687 0.9684 0.9684 
R22 0.9796 0.9668 0.973 0.9783 0.9699 0.9655 0.9795 0.9816 0.9684 0.9684 

RSB1 0.999623 0.999641 0.999001 0.9994192 0.999082 0.9992733 0.9995723 0.9994222 0.9990014 0.9990014
RSB2 0.999594 0.9993825 0.999349 0.9994684 0.9990579 0.999 0.999 0.9994241 0.9990014 0.9990014

Rs 0.999217 0.9990237 0.998351 0.9988879 0.9981407 0.9982735 0.9985703 0.9988467 0.9980039 0.9980039
Cs 1963132 2219392.7 42895.71 188458.2 11561.828 26874.672 681020.75 2052209.6 8432.8421 8432.8421

 

                                            Table 6.4: Results of Scenario 1 Case 1, with a feasibility factor of 0.3 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
W1 0.45 0.47 0.49 0.492 0.494 0.496 0.498 0.4982 0.4984 0.4986 
W2 0.45 0.47 0.49 0.492 0.494 0.496 0.498 0.4982 0.4984 0.4986 
W3 0.1 0.06 0.02 0.016 0.012 0.008 0.004 0.0036 0.0032 0.0028 
R11 0.9754 0.9783 0.9815 0.9777 0.9794 0.9815 0.9702 0.9787 0.98 0.9755 
R21 0.9741 0.9723 0.9693 0.9757 0.9781 0.9599 0.9665 0.9738 0.9804 0.9725 
R12 0.976 0.9769 0.9692 0.9779 0.9791 0.9807 0.9681 0.9785 0.9735 0.9758 
R22 0.9761 0.9781 0.9817 0.969 0.9734 0.9827 0.9692 0.9733 0.9793 0.9735 

RSB1 0.999363 0.9993989 0.999432 0.9994581 0.9995489 0.9992582 0.9990017 0.9994419 0.999608 0.9993263
RSB2 0.999426 0.9994941 0.999436 0.9993149 0.9994441 0.9996661 0.9990175 0.999426 0.9994515 0.9993587

Rs 0.99879 0.9988933 0.998869 0.9987734 0.9989932 0.9989245 0.9980202 0.9988682 0.9990597 0.9986854
Cs 5992753 23451866 5.23E+08 15925721 57541662 1.334E+09 216481.86 28141108 144334254 3838459.1

 

      It is clear that the weighting had no impact on the Pareto optimal component reliability 

values when the FF was set at 0.9 (see Table 6.1); this was not the case at lower FF values (see 

Tables 6.2 to 6.4). The unique reliability value of 0.9684 assigned to all the components, (as in 

Tables 6.1 & 6.2) though conspicuous, is not surprising, given the symmetry in the values of the 
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parameters (i.e. feasibility factors, initial reliabilities, and maximum achievable reliabilities and 

subsystem reliability lower bounds) used with respect to both the components and the 

subsystems. The subsystems were treated as identical in this case. The components’ reliability 

values represent a 46.8% improvement over their initial ones of 0.5.                                     

       The cost/penalty values shown in the tables represent the cost in terms of expenditure of 

resources including time, associated with the improvement in the system’s reliability which is 

measured on a scale ranging from unity to infinity – the two limits signifying respectively 0% 

improvement in reliability, and reliability tending to 100% (see Chapter Five). It is the aggregate 

of the costs/penalty values of all the components. Thus, for instance, in Tables 6.1 & 6.2, whilst 

it costs 18.48 to improve the initial system reliability to the current value of 0.9980039 under a 

FF of 0.9, it costs 394.83 (signifying more than a twenty one fold increase to achieve the same 

level of improvement under a FF of 0.7. Similar observations can be made in respect of the 

results displayed in the other tables. As was shown in Chapter Five, estimates of the direct 

monetary value of the cost/penalty values of the components and the system reliabilities could be 

derived where the unit costs of the components were known. Using the results of the 1st iteration 

in Table 6.1 as an illustration, suppose the unit cost of the components associated with the 

reliabilities R11, R21, R12, and R22 are respectively  £1k, £2k, £3k and £4k. Their cost/penalty 

value as computed from expression 5.10 is 4.62 (to 2 decimal places) giving the aggregate value 

of 18.48. The monetary cost estimates for the component reliabilities are therefore respectively 

£4.62k, £9.24k, £13.86k and £18.48k giving an aggregate cost for the entire system reliability of 

£46.2k. (In Chapter Seven the technique is illustrated further using real data from a practical 

example).      
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      Observe also that the system reliability values achieved after the optimisations, in all cases 

satisfied the stated reliability specification or target of 0.99. Even though weighting resulted in 

various sets of Pareto optimal components reliability values at lower FFs (with repetitions of the 

solutions in several of the iterations) their impact on the system reliability did not generally show 

a wide variation. The cost values however show appreciable levels of variation under the 

iterations; they increase sharply as the FF decreases and in a number of instances become 

practically indeterminate. This is an indication of the fact that at very low FF reliability 

improvement can be cost prohibitive. 

     The impact of the FF values on the reliability of the components and thus that of the system, 

as well as the system cost, is very marked. In many of the iterations the system reliability 

increased (as a result of the increased reliability to some of the components) or remained the 

same as the FF values decreased. The cost however always increased at lower FF values. The 

phenomenon which can be inferred from Figure 6.2 (drawn for the fixed weight vector 

corresponding to the tenth iterations) seems to run counter to expectation - intuitively, one would 

expect that low feasibility should mean low reliability. This phenomenon is attributed to the 

MCO model which requires that reliability is maximised while cost is minimised and weights 

reliability higher above cost. Thus as feasibility decreases and cost increases, preference is given 

to higher subsystem reliabilities resulting in higher component reliabilities. Figure 6.3 provides 

an illustration to aid the intuition, for a three dimensional Pareto surface associated with Scenario 

1. Since cost (Cs) is minimised and subsystems’ reliabilities (RSB1 and RSB2) are concurrently 

maximised, the candidate Pareto points are those closest to the origin of the criterion space. 

These points which are ordered 3-tuples (3 being the number of criteria) would characteristically 

have some of the lowest values (in relative terms) in their cost co- ordinate (for a given 
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feasibility factor value however low) and some of the largest reliability values in their subsystem 

reliability co-ordinates. These inevitably yield higher components’ and system’s reliabilities.                               

                      
18.40 394.83 8.43E+03 3.84E+06        Cost 

     Figure 6.2: System reliability and cost for varied feasibility factor values    
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                       Figure 6.3: Pareto surface: Scenario 1   
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      This observation shows that low feasibility is not necessarily a barrier to achieving higher 

reliability; it is the cost that invariably does this.  

      Tables 6.5 and 6.6 show the results obtained by varying the lower bound (LB) of the 

subsystems reliability iteratively from 0.9992 to 0.9998 in steps of 0.0002 (i.e. four iterations 

each), with the same FF values as before and a fixed weight vector corresponding to the tenth IT 

(in Tables 6.1 to 6.4) given by[  which assigns the highest and lowest 

weights (out of the ten generated) to the subsystems and cost respectively.  They show that 

varying the subsystem LBs results in an improvement in the components, and system 

reliabilities, but there is a very large increase in cost. 

0.4986,0.4986,0.0028]T

 

Table 6.5: Scenario 1Case 1results, varying the subsystem reliability lower bounds 

 with feasibility factors of 0.9 and 0.7 

IT 1 2 3 4 5 6 7 8 
FF 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.7 

R11 0.9717 0.9755 0.98 0.9859 0.9717 0.9755 0.98 0.9859 
R21 0.9717 0.9755 0.98 0.9859 0.9717 0.9755 0.98 0.9859 
R12 0.9717 0.9755 0.98 0.9859 0.9717 0.9755 0.98 0.9859 
R22 0.9717 0.9755 0.98 0.9859 0.9717 0.9755 0.98 0.9859 

RSB1 0.9992 0.9994 0.9996 0.9998 0.9992 0.9994 0.9996 0.9998 
RSB2 0.9992 0.9994 0.9996 0.9998 0.9992 0.9994 0.9996 0.9998 

Rs 0.9984 0.9988 0.9992 0.9996 0.9984 0.9988 0.9992 0.9996 
Cs 18.4958 24.3087 39.14595 124.092 536.531 1299.93 5871.32 204046 

 

              Table 6.6: Scenario 1 Case 1 results, varying the subsystem reliability lower bounds  

with feasibility factors of 0.5 and 0.3 

IT 1 2 3 4 5 6 7 8 
FF 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 

R11 0.9768 0.9762 0.9803 0.986 0.9714 0.9851 0.9834 0.9859
R21 0.9793 0.9808 0.9804 0.986 0.9828 0.985 0.9842 0.986 
R12 0.9719 0.9836 0.9803 0.9661 0.9828 0.9846 0.9792 0.9861
R22 0.9715 0.9782 0.9804 0.9661 0.9716 0.9696 0.9829 0.986 

RSB1 0.99952 0.99954 0.999614 0.9998 0.99951 0.99978 0.99974 0.9998
RSB2 0.9992 0.99964 0.999614 0.999 0.99951 0.99953 0.99964 0.99981 

Rs 0.999 0.99919 0.999228 0.999 0.99902 0.99931 0.99938 0.99961 
Cs 203277 7234928 1189744 1.3E+08 2.3E+09 5.1E+10 1E+10 7.5E+11 
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Case 2 

      In this case the system configuration’s RBD is shown in Figure 6.4 and has three components 

in one subsystem and two in the other. The components’ reliabilities in the first subsystem 

are: 11R , 21R and 31R  while those in the second are 12 22,R R . The MCO model for this system 

configuration is optimised under the four experimental conditions outlined in section 6.1.  

 

                                         
11R  

21R  
12R  

 22R
 31R

 
  

   

 

           

 
 
 
 

     Figure 6.4: System reliability block diagram for Case 2 of Scenario 1  
 

Results and Discussion 

     The results of the optimisations (showing this time only the Pareto optimal component 

reliabilities, the corresponding system reliability and the cost) are presented in Tables 6.7 and 

6.8. The former features the results corresponding to varying the weights (the same values as for 

Case 1) and the feasibility factors from 0.9 to 0.3, and the latter presents those corresponding to 

varying the subsystem reliability LB values as before.  

     A similar results pattern to that of Case 1 emerges. In Table 6.7 the weighting of the criteria 

(especially at the highest FF value of 0.9) produced no change in the component reliabilities over 

the ten iterations. When the FF was changed to 0.7 a slight difference occurred in the component 

reliability values obtained in the second and fourth iterations only. The cost over all the iterations 

increased markedly from those obtained under the FF of 0.9; at the 2nd iteration it increased 
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marginally over the 204.14 recorded for most of the other iterations, to 204.91 and at the 4th 

iteration it increased significantly to 833.37 representing approximately a 0.03% increase over 

those obtained in the other iterations. This indicates that cost even for marginal improvements in 

a system’s reliability, can be very high. Lower FF values resulted in more heterogeneous 

components’ and system reliabilities. They also resulted in higher cost figures in all the ITs as  

             Table 6.7:  Results of Scenario 1 Case 2, varying weights and feasibility factor values 

IT    FF R11 R21 R31 R12 R22 Rs Cs 
1 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
2 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
3 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
4 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
5 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
6 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
7 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
8 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
9 0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
10 

0.9 

0.9 0.9 0.9 0.9684 0.9684 0.998 12.2387 
1 0.9 0.9 0.9 0.9684 0.9684 0.998 204.135 
2 0.9264 0.8155 0.9264 0.9684 0.9684 0.998 204.913 
3 0.9 0.9 0.9 0.9684 0.9684 0.998 204.135 
4 0.9 0.9 0.9 0.977 0.9711 0.99834 833.367 
5 0.9 0.9 0.9 0.9684 0.9684 0.998 204.135 
6 0.9 0.9 0.9 0.9684 0.9684 0.998 204.135 
7 0.9 0.9 0.9 0.9684 0.9684 0.998 204.135 
8 0.9 0.9 0.9 0.9684 0.9684 0.998 204.135 
9 0.9 0.9 0.9 0.9684 0.9684 0.998 204.135 
10 

0.7 

0.9 0.9 0.9 0.9684 0.9684 0.998 204.135 
1 0.9619 0.9183 0.9411 0.9684 0.9684 0.99882 4735.03 
2 0.9319 0.9435 0.8996 0.9601 0.975 0.99862 20297 
3 0.9307 0.849 0.9326 0.685 0.9687 0.99831 4477.4 
4 0.8288 0.918 0.9288 0.9684 0.9684 0.998 4232.25 
5 0.9387 0.9214 0.9339 0.9772 0.9708 0.99902 60940.2 
6 0.9 0.9 0.9 0.9684 0.9684 0.998 4231.5 
7 0.9 0.9

0.5 

0.9 0.9684 0.9684 0.998 4231.5 
8 0.9 0.9 0.9 0.9684 0.9684 0.998 4231.5 
9 0.9606 0.9509 0.916 0.9741 0.9694 0.99905 16918.4 
10 0.8995 0.8986 0.9019 0.9721 0.968 0.99811 8383.45 
1 0.9 0.9 0.9 0.9684 0.9684 0.998 90089.2 
2 0.8519 0.9899 0.9 0.9684 0.9684 0.99885 ∞ 
3 0.9369 0.9355 0.8907 0.966 0.9745 0.99869 792201 
4 0.9659 0.9281 0.9542 0.9739 0.9701 0.99911 656470 
5 0.9403 0.9397 0.9602 0.9718 0.9734 0.99911 606483 
6 0.9795 0.9207 0.845 0.9485 0.9806 0.99875 1.2E+08 
7 0.9 0.9 0.9 0.9684 0.9684 0.998 90089.2 
8 0.9 0.9 0.9 0.9684 0.9684 0.998 90089.2 
9 0.9 0.9 0.9 0.9684 0.9684 0.998 90089.2 
10 

0.3 

0.9 0.9 0.9 0.9684 0.9684 0.998 90089.2 
 

depicted pictorially for the 10th iteration in Figure 6.5 though the system reliability does not 

follow the same trend. In instances where the cost was so high as to be practically indeterminate, 

one can see that at least one component reliability value closely approached the maximum of 

0.99. (This is the case with the 2nd iteration involving the feasibility factor of 0.3 (see Table 6.7)). 
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      Figure 6.5: System reliability and cost for varied feasibility factor   

 

       Varying the subsystem reliability LB values from 0.9992 to 0.9998 (see Table 6.8) had an 

appreciable impact on the components’ and system reliabilities and the cost. Note that in this 

case the system cost and reliability generally varied monotonically with the subsystem reliability. 

It should also be noted that the component reliability values obtained for the subsystem with two 

components were generally higher (in all the ITs) than the one which had three components, and 

therefore yielded higher subsystem reliability values. This is consistent with the theory (Billinton 

and Allan, 1992) and indicates that the higher the number of redundant components there are in a 

subsystem (or system) the lower their reliability levels need to be in order to achieve the 

subsystem reliability target. Even though this  means that one can choose to design a highly 

reliable system using cheap components with relatively low reliabilities in an extensive 

redundant arrangement, the adverse consequence of redundancy (discussed in Chapters Three 

and Four) such as increased volume and weight, could eventually render such a system 

impractical. 
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Table 6.8:  Results of Scenario 1 Case 2, varying subsystem lower bounds 

 
IT FF R11 R21 R31 R12 R22 Rs Cs 
1 0.9072 0.9072 0.9072 0.9717 0.9717 0.9984 14.324 
2 0.9157 0.9157 0.9157 0.9755 0.9755 0.9988 18.297 
3 0.9263 0.9263 0.9263 0.98 0.98 0.9992 28.3504 
4 

0.9 

0.9415 0.9415 0.9415 0.9859 0.9859 0.9996 85.3561 
1 0.9072 0.9072 0.9072 0.9717 0.9717 0.9984 361.906 
2 0.9157 0.9157 0.9157 0.9755 0.9755 0.9988 871.532 
3 0.9263 0.9263 0.9263 0.98 0.98 0.9992 3920.48 
4 

0.7 

0.9415 0.9415 0.9415 0.9859 0.9859 0.9996 136041 
1 0.9072 0.9072 0.9072 0.9717 0.9717 0.9984 11308.2 
2 0.9441 0.899 0.9456 0.9761 0.9769 0.99914 81224.4 
3 0.9263 0.9263 0.9263 0.98 0.98 0.9992 612166 
4 

0.5 

0.9146 0.9797 0.9408 0.9859 0.9859 0.9997 2.3E+08 
1 0.8618 0.9664 0.9676 0.9759 0.9738 0.99922 2374646 
2 0.9715 0.9744 0.9033 0.9754 0.9756 0.99933 3568628 
3 0.9263 0.9263 0.9263 0.98 0.98 0.9992 9.6E+07 
4 

0.3 

0.9448 0.9445 0.9449 0.9859 0.986 0.99963 4.2E+11 

 

 

 

 

 

 

 

 

Case 3 

     The configuration and RBD for Case 3 is shown in Figure 6.6. Each subsystem comprises 

three components, in the first the component reliabilities are 11R , 21R , 31R  and in the second 

12R , 22R , 32R . The subsystems in this case have two redundant components each. 

11R

21R

12R

22R  

 23R
31R

 

Figure 6.6: System reliability block diagram for Case 3 of scenario 1    
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 IT FF R11 R21 R31 R12 R22 R23 Rs Cs 
1 0.9 0.9 0.9 0.9 0.9 0.9 0.998 7.48932 
2 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 7.48932 
3 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 7.48932 
4 0.9 0.9 0.9 0.9 0.9 0.9 0.998 7.48932 
5 0.9 0.9 0.9 0.9 0.9 0.9 0.998 7.48932 
6 0.9 0.9 0.9 0.9 0.9 0.9 0.998 7.48932 
7 0.9 0.9 0.9 0.9 0.9 0.9 0.998 7.48932 
8 0.9 0.9 0.9 0.9 0.9 0.9 0.998 7.48932 
9 0.9 0.9 0.9 0.9 0.9 0.9 0.998 7.48932 
10 

0.9 

0.9 0.9 0.9 0.9 0.9 0.9 0.998002 7.48932 
1 0.9358 0.9454 0.927 0.927 0.9479 0.8856 0.99931 42.5767 
2 0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
3 0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
4 0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
5 0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
6 0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
7 0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
8 0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
9 0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
10 

0.7 

0.9 0.9 0.9 0.9 0.9 0.9 0.998002 16.80303 
1 0.896 0.896 0.9075 0.8781 0.955 0.9545 0.99875 359.576 
2 0.9036 0.9038 0.8922 0.9402 0.9402 0.9606 0.99886 503.4751 
3 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 37.69924 
4 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 37.69924 
5 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 37.69924 
6 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 37.69924 
7 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 37.69924 
8 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 37.69924 
9 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 37.69924 
10 

0.5 

0.9 0.9 0.9 0.9 0.9 0.9 0.998001 37.69924 
1 0.9001 0.9001 0.8998 0.8176 0.7825 0.9899 0.9986 2.3E+16 
2 0.8603 0.8046 0.9899 0.745 0.7031 0.9899 0.99896 2.32E+16 
3 0.9 0.9 0.9 0.9 0.9 0.9 0.998001 84.58194 
4 0.9 0.9 0.9 0.9 0.9 0.9 0.998 84.5819 
5 0.8865 0.9061 0.9061 0.9082 0.8853 0.9413 0.99838 277.783 
6 0.9 0.9 0.9 0.9 0.9 0.9 0.998 84.5819 
7 0.9 0.9 0.9 0.9 0.9 0.9 0.998 84.5819 
8 0.9 0.9 0.9 0.9 0.9 0.9 0.998 84.5819 
9 0.9 0.9 0.9 0.9 0.9 0.9 0.998 84.5819 
10 

0.3 

0.9 0.9 0.9 0.9 0.9 0.9 0.998 84.5819 

 Table 6.9:  Results of Scenario 1 Case 3, varying weights and feasibility factor values 

    

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

Results and Discussion   

      The results of testing the MCO model are provided in Tables 6.9 and 6.10 which are arranged 

in the same format as those for Case 2. The weightings over the ten iterations (for each feasibility 

factor value) had little or no impact on the levels of the Pareto optimal reliability values 

generated for each component, except in the 1st iteration, for a FF of 0.7, the 1st and 2nd 

iterations, for a FF of 0.5, and the 1st, 2nd, and 5th iterations for a FF of 0.3.  Varying the 

feasibility factor values for fixed subsystem reliability lower bounds as shown in Table 6.9 only 

119 
 



marginally affected the system reliability but had a marked effect again on the cost. Varying the 

subsystem reliability lower bound in this instance too had a significant impact across all the 

output parameters as seen in Table 6.10. 

Table 6.10: Results of Scenario 1 Case 3, varying subsystem lower bounds    

IT FF R11 R21 R31 R12 R22 R23 Rs Cs 
1 0.9072 0.9072 0.9072 0.9072 0.9072 0.9072 0.9984 9.34959 
2 0.9157 0.9157 0.9157 0.9157 0.9157 0.9157 0.9988 9.88283 
3 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263 0.9992 10.785 
4 

0.9 

0.9415 0.9415 0.9415 0.9415 0.9415 0.9415 0.9996 12.93 
1 0.9072 0.9072 0.9072 0.9072 0.9072 0.9072 0.9984 22.703 
2 0.9157 0.9157 0.9157 0.9157 0.9157 0.9157 0.9988 26.813 
3 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263 0.9992 34.845 
4 

0.7 

0.9415 0.9415 0.9415 0.9415 0.9415 0.9415 0.9996 60.056 
1 0.9072 0.9072 0.9072 0.9072 0.9072 0.9072 0.9984 47.4478 
2 0.9157 0.9157 0.9157 0.9157 0.9157 0.9157 0.9988 62.1437 
3 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263 0.9992 95.358 
4 

0.5 

0.9415 0.9415 0.9415 0.9415 0.9415 0.9415 0.9996 233.99 
1 0.9072 0.9072 0.9072 0.9072 0.9072 0.9072 0.9984 113.06 
2 0.9157 0.9157 0.9157 0.9157 0.9157 0.9157 0.9988 165.99 
3 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263 0.9992 304.66 
4 

0.3 

0.99 0.84 0.9095 0.958 0.99 0.8808 0.9998 7E+16 
 

6.3 SCENARIO 2 

     The series-parallel system models constructed for this scenario have three subsystems. The 

specific cases considered are as follows: 

• Case 1: Two components in each subsystem 

• Case 2:  Three components in one subsystem and two in the others 

• Case 3: Three components each in two subsystems and two in the other 

The MCO model corresponding to each of the cases was subjected to the same tests as before. 

The generated weights corresponding to each of the ten iterations in each case are shown in 

Table 6.11. W1, W2, and W3, represent the weights for the three subsystems’ reliabilities 

respectively, and W4 that for the cost. 
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      Table 6.11: Weights for the criteria in the Scenario 2 Cases  

                                                          ITERATIONS 
Weight 1 2 3 4 5 6 7 8 8 10 

W1 0.3098 0.3116 0.313 0.314 0.3149 0.316 0.316 0.3167 0.3171 0.3175 
W2 0.3098 0.3116 0.313 0.314 0.3149 0.316 0.316 0.3167 0.3171 0.3175 
W3 0.3098 0.3116 0.313 0.314 0.3149 0.316 0.316 0.3167 0.3171 0.3175 
W4 0.0707 0.0651 0.061 0.058 0.0552 0.053 0.051 0.0499 0.0049 0.0475 

 

Case 1 

Results and Discussions 

     The results of the optimisations for this case are presented in Tables 6.12 and 6.13. The 

former shows the solutions when the weights are varied iteratively for fixed FF levels of 0.9, 0.7, 

0.5, and 0.3 and subsystems’ reliability LBs of 0.999. (The chosen weights in this instance too 

provide the highest and lowest weightings for the subsystems’ reliabilities and the cost 

respectively). The latter presents the results when the subsystem reliability LBs were varied 

iteratively from 0.9992 to 0.9998 in steps of 0.0002, the weights were fixed as 0.3175 for each of 

the subsystem reliabilities and 0.0475 for the cost. The FF values were as before. 

      Similar trends to those for Scenario 1 are evident i.e. the effects of varying the weightings, 

the FF values and subsystem LBs, are similar for the components’ and system reliabilities and 

the cost. In this case, however, the weightings had more impact on the relative levels of the 

reliabilities of the components for a given iteration, than was previously observed, even though 

the size of the improvement across the ITs could still be described as marginal. This is 

particularly so for feasibility factor values of 0.7 and lower.   Its impact on cost was also quite 

marked. The FF and subsystem LB values were the parameters which again showed the greatest 

impact on the solutions.  

      A notable feature of the results in Table 6.12 especially, is the heterogeneous nature of the 

component reliability values obtained within and across all the ITs for the entire set of FF values 

121 
 



except those associated with 0.9. Consequently a variety of reliability and cost values were 

obtained for the system. This trend is partly attributed to the relatively more sophisticated system 

configuration encountered in this case (i.e. increased number of subsystems and components 

resulting in an MCO model of higher dimensionality). Therefore, there is a multiplicity of 

choices for this design than has been seen in earlier cases. Since the basic system reliability 

specifications outlined at the beginning of this Chapter are all met, the results for each of the 

iterations represents a potential (Pareto) optimal design for reliability of the system under 

discussion.   

 

IT FF R11 R21 R12 R22 R13 R23 Rs Cs 
1 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
2 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
3 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
4 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
5 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
6 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
7 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
8 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
9 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
10 

0.9 

0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 27.729 
1 0.9667 0.9699 0.9747 0.9606 0.9661 0.9705 0.997004 8024198 
2 0.9684 0.9683 0.971 0.9722 0.9739 0.9617 0.997195 878.17 
3 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.997007 592.243 
4 0.9684 0.9684 0.9726 0.9731 0.9731 0.9729 0.997537 1121.47 
5 0.9684 0.9685 0.9696 0.9684 0.9682 0.9698 0.997124 660.476 
6 0.9684 0.9706 0.9732 0.9716 0.9663 0.9703 0.997238 840.996 
7 0.9684 0.9684 0.962 0.9737 0.9715 0.9729 0.997229 914.04 
8 0.9684 0.9684 0.9684 0.9683 0.9683 0.9684 0.997 589.122 
9 0.9684 0.9684 0.9645 0.9781 0.9722 0.9641 0.997229 1461.66 
10 

0.7 

0.9684 0.9684 0.968 0.9688 0.9626 0.9732 0.997 685.929 
1 0.9695 0.9735 0.9684 0.9684 0.9713 0.9651 0.997194 23745.1 
2 0.9542 0.9782 0.9773 0.9716 0.9788 0.9713 0.99775 308844 
3 0.9779 0.9732 0.9684 0.9684 0.9785 0.9769 0.997914 262272 
4 0.9726 0.9771 0.9752 0.9784 0.9743 0.969 0.998041 210796 
5 0.9684 0.9684 0.9683 0.9684 0.9684 0.9683 0.997001 12538.8 
6 0.9816 0.9785 0.9595 0.982 0.9822 0.9815 0.998547 5227898 
7 0.9673 0.9694 0.9734 0.9643 0.9684 0.9684 0.997054 19750.4 
8 0.9724 0.9704 0.9717 0.9733 0.9723 0.9639 0.99743 34218.1 
9 0.9757 0.9772 0.9751 0.96 0.9768 0.9759 0.997892 180751 
10 

0.5 

0.9678 0.9689 0.9681 0.9687 0.9735 0.9764 0.99738 57008.1 
1 0.9755 0.9714 0.9792 0.974 0.9786 0.9791 0.998312 5.9E+07 
2 0.9721 0.9751 0.9757 0.971 0.9728 0.9691 0.997762 3.43E+06 
3 0.9781 0.9733 0.9806 0.9675 0.9792 0.9796 0.998361 1.5E+08 
4 0.9672 0.978 0.9789 0.9765 0.9772 0.9755 0.998225 3.5E+07 
5 0.9809 0.9709 0.9805 0.9712 0.963 0.9816 0.998203 4.6E+08 
6 0.9766 0.9723 0.9791 0.9792 0.9739 0.972 0.998192 4.8E+07 
7 0.9716 0.9776 0.9779 0.9723 0.9781 0.967 0.99803 2.3E+07 
8 0.9772 0.9772 0.9645 0.9781 0.9751 0.9787 0.99817 3.4E+07 
9 0.9721 0.9798 0.98 0.9705 0.9797 0.9731 0.998301 1.2E+08 
10 

0.3 

0.9586 0.9809 0.9624 0.9756 0.9721 0.9777 0.99767 1.3E+08 

 Table 6.12: Results of Scenario 2 Case 1, varying weights and feasibility factor values 
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IT FF R11 R21 R12 R22 R13 R23 Rs Cs 
1 0.9717 0.9717 0.9717 0.9717 0.9717 0.9717 0.997599 33.7709 
2 0.9157 0.9157 0.9157 0.9755 0.9755 0.9755 0.9982 45.3842 
3 0.98 0.98 0.98 0.98 0.98 0.98 0.9988 75.0441 
4 

0.9 

0.9859 0.9859 0.9859 0.9859 0.9859 0.9859 0.999361 212.912 
1 0.9683 0.9748 0.9648 0.9782 0.9788 0.9623 0.997636 2774.5 
2 0.976 0.975 0.9676 0.9815 0.9755 0.9755 0.998201 5672.79 
3 0.9806 0.9803 0.9802 0.9804 0.9801 0.9805 0.998842 13656.1 
4 

0.7 

0.9859 0.9859 0.9859 0.9859 0.9859 0.9859 0.9994 408089 
1 0.9717 0.9717 0.9707 0.9727 0.9748 0.9683 0.997608 44252.7 
2 0.9755 0.9755 0.98 0.97 0.9809 0.9789 0.998398 1096113 
3 0.98 0.98 0.98 0.98 0.98 0.98 0.9988 1836438 
4 

0.5 

0.9859 0.986 0.9859 0.9859 0.986 0.9859 0.999407 7.2E+08 
1 0.9714 0.9759 0.9791 0.9723 0.9788 0.9789 0.998285 5.7E+07 
2 0.9542 0.9542 0.9542 0.9542 0.9184 0.99 0.994988 2.3E+16 
3 0.9802 0.9798 0.9786 0.9813 0.9806 0.9815 0.998841 6.2E+08 
4 

0.3 

0.9763 0.9763 0.9763 0.9763 0.99 0.9689 0.99856 2.3E+16 

Table 6.13: Results of Scenario 2 Case 1, varying subsystem lower bounds 

        

Case 2 

Results and Discussion 

     The results for this case are presented in Tables 6.14 and 6.15.  Once again the same general 

patterns are evident. As in Case 1 of this Scenario, the values of the components’ reliabilities 

were generally heterogeneous.  Also, the components of the subsystem with the largest number 

of redundant components had in general the least assigned reliabilities, a trend which has already 

been noted in Scenario 1 as being consistent with the theory. Another aspect worth noting is the 

assignment of the same reliability values to the components of a subsystem, as occurs especially 

where the FF value is 0.9, but is also replicated elsewhere in Table 6.14. This suggests that 

identical components in redundant series subsystems do yield optimal system reliability. Further, 

and more specific, comments on this feature are reserved until Chapter Seven, where more cases 

are tested and further instances of the phenomenon are observed.  

     While there is only a single choice design offered by the results under a FF value of 0.9, the 

others provide a variety. With a value of 0.7, the highest assigned system reliability value of 

0.99766 occurs in the 9th iteration, with a corresponding cost of 2219.55 which is also the highest 
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in this group. The least system reliability value of 0.99701 with corresponding least cost 

occurred in the 1st, 2nd, 5th, 6th, and 8th iterations. Even though this reliability differs only slightly 

from the highest their cost values differ significantly - a further indication of the cost associated 

with even marginal reliability improvements. The lowest system reliability value throughout the 

tests are the same as those obtained under the 0.9 FF value, though the corresponding cost value 

of the  latter was much lower. This further illustrates the observation made under Scenario 1 that 

low feasibility values do not necessarily mean low reliability, but the cost values tend to be very  

  Table 6.14: Results of Scenario 2 Case 2, varying weights and feasibility factor values 

IT FF R11 R21 R31 R12 R22 R13 R23 Rs Cs 
1 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
2 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
3 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
4 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
5 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
6 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
7 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
8 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
9 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
10 

0.9 

0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 22.9796 
1 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 404.91 
2 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 404.91 
3 0.9704 0.6786 0.9215 0.9641 0.9765 0.9681 0.9701 0.99746 999.442 
4 0.9251 0.9336 0.9189 0.9684 0.9684 0.9684 0.9684 0.9976 412.554 
5 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 404.91 
6 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 404.91 
7 0.6391 0.9684 0.9129 0.965 0.9715 0.9764 0.9724 0.99736 1099.63 
8 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 404.91 
9 0.9272 0.9291 0.9108 0.9556 0.9719 0.9627 0.9734 0.99766 2219.55 
10 

0.7 

0.8181 0.9098 0.939 0.9598 0.9751 0.9704 0.9662 0.997 647.463 
1 0.9505 0.8646 0.8507 0.9681 0.9687 0.9568 0.9769 0.99701 53081.8 
2 0.9417 0.9396 0.7991 0.9687 0.97 0.977 0.9737 0.99775 68382.5 
3 0.9339 0.9561 0.7776 0.9684 0.9684 0.9758 0.9729 0.9977 41453.4 
4 0.9 0.9 0.9 0.9684 0.9684 0.9684 0.9684 0.99701 8455.46 
5 0.9137 0.9306 0.9368 0.9713 0.9708 0.9702 0.9725 0.99797 20191 
6 0.9406 0.8242 0.953 0.972 0.9724 0.969 0.9678 0.99774 17904.6 
7 0.8881 0.8224 0.966 0.9678 0.9704 0.9667 0.97 0.99737 11382.7 
8 0.9457 0.9601 0.8397 0.9769 0.9767 0.9772 0.9778 0.99861 227805 
9 0.9533 0.8219 0.9408 0.972 0.9723 0.9684 0.9684 0.99774 17594.7 
10 

0.5 

0.9586 0.8814 0.9374 0.9751 0.9767 0.9582 0.9761 0.99811 97879.9 
1                   
2 0.7155 0.9899 0.9899 0.9899 0.9455 0.9766 0.9899 0.9918 9.30E+16 
3 0.8765 0.9727 0.8591 0.9721 0.9718 0.973 0.9728 0.99801 1340636 
4 0.8162 0.9723 0.8776 0.9733 0.9703 0.9732 0.9726 0.99785 1384681 
5 0.8011 0.9675 0.9469 0.9685 0.9716 0.9663 0.9726 0.99784 548872 
6 0.9541 0.6887 0.9707 0.9699 0.9736 0.9731 0.9736 0.99808 1485534 
7 0.6623 0.9824 0.8842 0.9795 0.974 0.9439 0.9822 0.99778 1.2E+09 
8 0.9667 0.9639 0.883 0.973 0.9704 0.9733 0.974 0.99837 1452057 
9 0.7058 0.9704 0.9178 0.9728 0.9725 0.973 0.9712 0.99776 1151074 
10 

0.3 

0.9538 0.9561 0.9363 0.9539 0.982 0.9812 0.9825 0.99871 1.4E+09 
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high. This fact is further supported at the 0.5 and 0.3 FF levels where some of the highest system 

reliability values and costs were obtained.  Incidentally the first iteration (in Table 6.14) with an 

FF value of 0.3 failed to yield a feasible solution, thus that row is left blank and shaded.   In 

Table 6.15 the effect of varying the subsystem reliability LBs are again evident: system 

reliability and cost increased with an increase in the LBs. 

 

 

IT FF R11 R21 R13 R12 R22 R13 R23 Rs Cs 
1 0.9072 0.9072 0.9072 0.9717 0.9717 0.9717 0.9717 0.9976 27.1392 
2 0.9157 0.9157 0.9157 0.9755 0.9755 0.9755 0.9755 0.9982 35.0722 
3 0.9263 0.9263 0.9263 0.98 0.98 0.98 0.98 0.9988 55.1625 
4 

0.9 

0.9415 0.9415 0.9415 0.9859 0.9859 0.9859 0.9859 0.994 169.15 
1 0.9627 0.8983 0.8437 0.9713 0.9721 0.9717 0.9717 0.99781 721.618 
2 0.94 0.9324 0.9337 0.9755 0.9755 0.9755 0.9755 0.99853 1746.99 
3 0.9388 0.906 0.9421 0.9799 0.9805 0.9799 0.9805 0.99888 8612.33 
4 

0.7 

0.9412 0.9413 0.942 0.9859 0.9859 0.9859 0.9859 0.9994 272081 
1 0.9132 0.9535 0.888 0.974 0.9741 0.9717 0.9717 0.99807 38176.7 
2 0.9626 0.5931 0.9654 0.9823 0.9661 0.9795 0.9707 0.99827 2092391 
3 0.9567 0.919 0.9741 0.9806 0.9794 0.9806 0.9794 0.99911 1362502 
4 

0.5 

0.9464 0.9564 0.9569 0.986 0.9859 0.9862 0.986 0.99951 5.5E+08 
1 0.8283 0.6892 0.9899 0.9899 0.92 0.92 0.9899 0.99785 7E+16 
2 0.8773 0.8773 0.9773 0.9542 0.9542 0.9184 0.9899 0.99674 2.3E+16 
3 0.9722 0.8986 0.978 0.9816 0.9816 0.9819 0.9818 0.99927 1.2E+09 
4 

0.3 

0.9174 0.9175 0.9175 0.969 0.9899 0.9763 0.9763 0.99856 2.3E+16 

Table 6.15: Results of Scenario 2 Case 2, varying subsystem lower bounds 

 

 

 

 

 

 

 

 

Case 3 

Results and Discussion 

       The results presented in Tables 6.16 and 6.17 repeat the general trends already noted in 

earlier Cases; again the reliability assigned to the components of the subsystem with one 

redundant component was generally higher than those with two. Also at lower feasibility factor 

values some of the components reached reliability values closely approaching their maximum 

values (these are recorded in bold) which inevitably resulted in exorbitant cost values.  

    All the iterations in Table 6.16, except those under the FF of 0.9, yielded heterogeneous 

component reliability values, resulting in a variety of system reliabilities and costs. The highest  
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IT FF R11 R21 R31 R12 R22 R32 R13 R23 Rs Cs 
1 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
2 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
3 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
4 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
5 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
6 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 

 

and lowest system reliability values recorded for a FF value of 0.7 were 0.99833 and 0.99696 

respectively with corresponding cost values of 308.03 and 225.04 respectively. These occurred 

in the 1st and 2nd iterations.  Under the FF of 0.5 the highest and lowest system reliability values 

of 0.99884 and 0.99507 respectively were recorded, with resultant associated costs of 18441.61 

and 6788.08 respectively. These occurred in the 9th and 1st iterations. Similar results were 

apparent for the FF value of 0.3.  The highest and lowest system reliabilities show a narrow 

range of values not only from IT to IT for a given FF value, but also across FF values. For 

0.997 18.23018 0.9 

7 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
8 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
9 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
10 0.9 0.9 0.9 0.9 0.9 0.9 0.9684 0.9684 0.997 18.23018 
1 0.5527 0.9527 0.9527 0.8974 0.889 0.9684 0.9684 0.9466 0.99696 255.0453 
2 0.9483 0.9643 0.7958 0.9296 0.9585 0.8995 0.9685 0.9682 0.99833 308.0336 
3 0.8918 0.8726 0.9463 0.9 0.9 0.9 0.9684 0.9684 0.99726 225.5983 
4 0.9407 0.6839 0.9463 0.9153 0.9208 0.9101 0.9683 0.9684 0.99739 232.8357 
5 0.9339 0.861 0.9504 0.9294 0.7677 0.939 0.9682 0.9686 0.99755 240.0174 
6 0.8784 0.9185 0.8991 0.9508 0.8952 0.8855 0.9685 0.9682 0.99741 229.0037 
7 0.9458 0.9057 0.8744 0.9626 0.9456 0.5094 0.977 0.9684 0.99736 770.4695 
8 0.8999 0.9001 0.9 0.8864 0.9058 0.9351 0.9684 0.9684 0.99731 221.6994 
9 0.8834 0.8736 0.9497 0.9364 0.9394 0.7398 0.9761 0.9716 0.99759 725.3357 
10 

0.7 

0.9009 0.9008 0.8983 0.9192 0.9112 0.9281 0.9684 0.9684 0.99749 222.6299 
1 0.9651 0.7688 0.9632 0.9302 0.9706 0.865 0.8714 0.9661 0.99507 6788.085 
2 0.9958 0.8581 0.8903 0.9616 0.9062 0.7221 0.9787 0.9755 0.99796 4.41E+31 
3 0.901 0.8552 0.952 0.8475 0.9582 0.8792 0.9787 0.9755 0.99802 157188.2 
4 0.9531 0.8227 0.9119 0.8864 0.917 0.917 0.9752 0.9753 0.99787 44481.59 
5 0.931 0.918 0.8312 0.926 0.8715 0.9339 0.9685 0.9683 0.99742 4308.758 
6 0.9378 0.9164 0.8738 0.9103 0.9079 0.9493 0.97 0.9726 0.9981 11183.56 
7 0.316 0.9375 0.9506 0.9688 0.9013 0.8876 0.9714 0.9688 0.99665 9966.53 
8 0.8741 0.9184 0.9171 0.8834 0.9241 0.9009 0.9728 0.9721 0.99751 14822.4 
9 0.9628 0.9551 0.7929 0.9649 0.9679 0.9676 0.972 0.9723 0.99884 18441.61 
10 

0.5 

0.9439 0.9569 0.8991 0.9273 0.8861 0.9309 0.9599 0.9751 0.99819 21428.19 
1 0.562 0.9606 0.7712 0.9325 0.8994 0.956 0.9716 0.9688 0.99487 2.29E+05 
2 0.7158 0.9899 0.9899 0.7158 0.9899 0.9899 0.9765 0.9899 0.99971 1.16E+17 
3 0.5 0.9899 0.9899 0.5 0.829 0.8319 0.9 0.9899 0.98458 6.97E+16 
4 0.9735 0.8453 0.9496 0.9534 0.9639 0.5697 0.9713 0.9716 0.99826 773162.1 
5 0.7023 0.9899 0.9899 0.7023 0.9899 0.9899 0.9797 0.9899 0.99973 1.16E+17 
6 0.9899 0.8222 0.8461 0.9645 0.9181 0.9181 0.9699 0.9899 0.99888 4.65E+16 
7 0.8461 0.9899 0.8222 0.9645 0.9181 0.9181 0.9399 0.9899 0.99888 4.65E+16 
8 0.8999 0.6544 0.9899 0.5 0.7602 0.9899 0.9899 0.9899 0.99834 9.3E+16 
9 0.9773 0.689 0.898 0.9777 0.9228 0.9028 0.9712 0.9745 0.99838 12352470 
10 

0.3 

0.6763 0.9899 0.5 0.8997 0.8997 0.8997 0.9 0.9899 0.99635 4.65E+16 

 Table 6.16: Results of Scenario 2 Case 3, varying weights and feasibility factor values 
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instance the differences in the values of the system reliabilities occur only in the third or fourth 

decimal places over all the iterations.  The same cannot be said, however for the costs. These 

observations are replicated in the earlier Cases too.   

     Table 6.17 repeats the trends already noted in relation to varying the subsystem reliability 

LBs. It is also observed that the patterns of component reliability values as occurred in Table 

6.16 are preserved under this experiment. In all the cases the highest system reliability and cost 

were achieved in connection with the highest subsystem reliability LBs - once more indicating 

the sensitivity of the MCO model to the subsystem reliability LBs.     

 

                                                          
IT FF R11 R21 R31 R12 R22 R32 R13 R23 Rs Cs 
1 0.9072 0.9072 0.9072 0.9072 0.9072 0.9072 0.9717 0.9717 0.9976 20.55708 
2 0.9157 0.9157 0.9157 0.9157 0.9157 0.9157 0.9755 0.9755 0.9982 24.88556 
3 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263 0.98 0.98 0.9988 35.54024 
4 

0.9 

0.9415 0.9415 0.9415 0.9415 0.9415 0.9415 0.9859 0.9859 0.9994 93.9764 
1 0.882 0.9481 0.8778 0.8403 0.9517 0.9348 0.9664 0.9762 0.99795 644.4917 
2 0.9157 0.9157 0.9157 0.9157 0.9157 0.9157 0.9755 0.9755 0.9982 889.407 
3 0.9225 0.9566 0.8996 0.9513 0.8435 0.9514 0.9803 0.9801 0.9989 4326.439 
4 

0.7 

0.9199 0.9589 0.9502 0.9201 0.9261 0.9749 0.9859 0.9859 0.9998 136458.1 
1 0.9072 0.9072 0.9072 0.8855 0.9607 0.955 0.9717 0.9717 0.9982 11908.15 
2 0.9648 0.9765 0.808 0.9677 0.9478 0.9776 0.9765 0.9773 0.99927 211143.2 
3 0.9263 0.9263 0.9263 0.9263 0.9263 0.9263 0.98 0.98 0.9988 612241.4 
4 

0.5 

0.9727 0.9113 0.9596 0.9343 0.9508 0.9536 0.9859 0.9859 0.99955 2.27E+08 
1 0.9899 0.8549 0.8649 0.9638 0.9274 0.9274 0.9899 0.9414 0.99902 2.32E+16 
2 0.8773 0.8773 0.8773 0.8773 0.8773 0.8773 0.9899 0.9184 0.99549 2.32E+16 
3 0.9899 0.7987 0.9899 0.5 0.9061 0.9061 0.9899 0.96 0.99517 4.65E+16 
4 

0.3 

0.8816 0.9589 0.9589 0.9589 0.9589 0.9589 0.9899 0.9248 0.99924 2.32E+16 

Table 6.17: Results of Scenario 2 Case 3, varying subsystem lower bounds 

 
 

6.4 SCENARIO 3 

     In this Scenario the MCO model is applied to a relatively simple bridge network- the RBD is 

displayed in Figure 3.11. A series-parallel transformation of the network (Billinton & Allan, 

1992), shown in Figure 6.7 yields four minimum cut sets involving two second and two third 

order ones, from its five components with reliabilities respectively ( ). Thus the 

MCO model for the network has five criteria: the four minimum cut sets and the cost of 

iR 5,..,2,1=i

127 
 



improving the reliability of the components. Note that all the components are repeated in at least 

one subsystem, thus making this series-parallel system different from those considered earlier. 

The reliabilities of the subsystems are in this case dependent on those of the other subsystems 

which have identical components. The MCO model therefore amounts to finding the reliability 

values of the components that would jointly maximise the reliability of the subsystems (i.e. 

minimise the chance of failure due to the minimum cut sets) and minimise the cost. The weights 

for the optimisation are presented in Table 6.18, where W1 to W4 are the respective weights for 

the subsystem reliabilities and W5 that for the cost. 

 

 

             

 

 

 

  

 

 

 

  

 

 

 

 

                                                  ITERATION 

Weight 1 2 3 4 5 6 7 8 9 10 
W1 0.2365 0.2376 0.2384 0.239 0.2395 0.2399 0.2402 0.2405 0.2408 0.241 
W2 0.2365 0.2376 0.2384 0.239 0.2395 0.2399 0.2402 0.2405 0.2408 0.241 
W3 0.2365 0.2376 0.2384 0.239 0.2395 0.2399 0.2402 0.2405 0.2408 0.241 
W4 0.2365 0.2376 0.2384 0.239 0.2395 0.2399 0.2402 0.2405 0.2408 0.241 
W5 0.0539 0.0496 0.0464 0.044 0.042 0.0404 0.039 0.0379 0.0369 0.0361 

             Figure 6.7: Series-parallel transformation of bridge network 

Table 6.18: Weights for the criteria in Scenario 3 
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Results and Discussion 

      The results presented in Tables 6.19  and 6.20 show similar characteristics to those observed 

in the first two Scenarios (as far as varying the weights, FF, and subsystem reliability LBs are 

concerned). The reliabilities generated for the fifth component show little or no variation. This 

may at first appear odd but a reliability importance check (Mettas, 2000) of the components in 

the system (see the details in Appendix B) reveals that the fifth component which is also a 

redundant one (for this network configuration) has the least, also it occurs only in the third order 

minimum cut sets their failure probabilities of which are the lowest. Hence it is expected. The 

high system reliability values that were obtained further endorse the minimal impact of the low 

reliability value for the component. In this case therefore effort to find higher values for the 

system reliability is better focussed on upgrading the reliability of the other components. It is to 

be noted from Table 6.20 that the reliability of the fifth component appreciated slightly at higher 

subsystem reliability LBs, which again indicates the impact of the subsystem reliability LBs on 

the solution output. The relative impact on the overall system reliability was however negligible, 

although the cost increased sharply as a result. 

     In conclusion, the Cases discussed in this Chapter have shown promising results to the effect 

that the MCO model can provide the Pareto optimal levels of reliability improvements in the 

components of series-parallel or complex systems in order to at least achieve a system reliability 

target at minimum cost.  The solutions associated with the individual iterations (for the assumed 

FF values) represent potential reliability designs for the systems discussed. Thus a variety of 

potential designs for reliability could be secured using the MCO model and methodology for 

review and decision making.  
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      Table 6.19: Results of Scenario 3, varying weights and feasibility factor values 

IT FF R1 R2 R3 R4 R5 Rs Cs 
1 0.9684 0.9684 0.9684 0.9684 0.5 0.99701 19.486 
2 0.9684 0.9684 0.9684 0.9684 0.5 0.99701 19.486 
3 0.9684 0.9684 0.9684 0.9684 0.5 0.99701 19.486 
4 0.9684 0.9684 0.9684 0.9684 0.5 0.99701 19.486 
5 0.9684 0.9684 0.9684 0.9684 0.5 0.99701 19.486 
6 0.9684 0.9684 0.9684 0.9684 0.5 0.99701 19.486 
7 0.9684 0.9684 0.9684 0.9684 0.525 0.99706 19.4913 
8 0.9684 0.9684 0.9684 0.9684 0.5 0.99701 19.486 
9 0.9684 0.9684 0.9684 0.9684 0.5749 0.99716 19.5038 
10 

0.9 

0.9684 0.9684 0.9684 0.9684 0.5749 0.99716 19.5038 
1 0.9788 0.9527 0.9766 0.9774 0.5 0.99768 2594.65 
2 0.9743 0.9792 0.979 0.9744 0.5 0.99838 3386.69 
3 0.9813 0.9767 0.9729 0.9789 0.5 0.99848 5601.31 
4 0.9654 0.9754 0.9622 0.9735 0.5 0.99723 791.901 
5 0.9809 0.9475 0.9812 0.9688 0.5 0.99762 6342.76 
6 0.9696 0.9818 0.9691 0.9817 0.5 0.99832 8938.47 
7 0.9744 0.9792 0.9756 0.9739 0.5 0.99824 2482.68 
8 0.9796 0.9509 0.9717 0.9766 0.5 0.99741 2450.87 
9 0.9822 0.9811 0.9804 0.963 0.5 0.99842 11031.6 
10 

0.7 

0.9769 0.9755 0.9784 0.9537 0.5 0.99764 2162.89 
1 0.9395 0.9899 0.9342 0.9899 0.5 0.99809 9.8E+11 
2 0.9032 0.9789 0.894 0.9881 0.5 0.99501 5.3E+09 
3 0.9899 0.9359 0.941 0.9899 0.793 0.99795 9.8E+11 
4 0.9541 0.97 0.9376 0.9899 0.5123 0.99686 4.9E+11 
5 0.9764 0.9899 0.9673 0.9899 0.5 0.99915 9.8E+11 
6 0.9446 0.9899 0.9358 0.9899 0.5 0.99819 9.8E+11 
7 0.9899 0.942 0.9899 0.9509 0.5 0.99838 9.8E+11 
8 0.9899 0.9387 0.9899 0.9475 0.5 0.99828 9.8E+11 
9 0.9452 0.9899 0.9364 0.9899 0.5 0.99821 9.8E+11 
10 

0.5 

0.9899 0.9394 0.9899 0.9483 0.5 0.9983 9.8E+11 
1 0.9364 0.9753 0.9267 0.9899 0.5 0.99647 2.3E+16 
2 0.9899 0.9228 0.9271 0.9899 0.8549 0.99765 4.60E+16 
3 0.9355 0.9762 0.9235 0.9899 0.5 0.99646 2.3E+16 
4 0.9218 0.9899 0.9231 0.9899 0.5 0.99765 4.6E+16 
5 0.9899 0.9228 0.9899 0.9257 0.5 0.99771 4.6E+16 
6 0.9899 0.923 0.9246 0.9899 0.8593 0.99763 4.6E+16 
7 0.9353 0.9764 0.9229 0.9899 0.5 0.99646 2.3E+16 
8 0.9899 0.9229 0.9242 0.9899 0.8603 0.99763 4.6E+16 
9 0.9899 0.9226 0.925 0.9899 0.8594 0.99763 4.6E+16 
10 

0.3 

0.9229 0.9899 0.9354 0.9763 0.5 0.99645 2.3E+16 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ITERAT FFACT R1 R2 R3 R4 R5 Rs Cs 

1 0.9717 0.9717 0.972 0.9717 0.5 0.9976 23.514 
2 0.9755 0.9755 0.976 0.9755 0.5 0.9982 31.256 
3 0.98 0.98 0.98 0.98 0.5 0.9988 51.029 
4 

0.9 

0.9859 0.9859 0.986 0.9859 0.5 0.9994 164.28 
1 0.9788 0.9772 0.965 0.9773 0.5 0.9981 2729.8 
2 0.9758 0.9764 0.976 0.9763 0.5503 0.9983 2053.7 
3 0.9793 0.9807 0.985 0.9743 0.5 0.9988 30512 
4 

0.7 

0.9859 0.986 0.986 0.986 0.5975 0.9995 284559 
1 0.9717 0.9717 0.972 0.9717 0.5 0.9976 22596 
2 0.9755 0.9755 0.976 0.9755 0.5 0.9982 99045 
3 0.98 0.98 0.98 0.98 0.5 0.9988 1E+06 
4 

0.5 

0.9859 0.9859 0.986 0.9859 0.5 0.9994 5E+08 
1 0.9788 0.9772 0.965 0.9773 0.5 0.9981 3E+07 
2 0.9758 0.9764 0.976 0.9763 0.5503 0.9983 9E+06 
3 0.9793 0.9807 0.985 0.9743 0.5 0.9988 2E+10 
4 

0.3 

0.9859 0.986 0.986 0.986 0.5975 0.9995 8E+11 

       Table 6.20: Results of Scenario 3, varying subsystem lower bounds 
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6.5   SUMMARY 

The proposed MCO model was tested using seven hypothetical series-parallel systems one of 

which was derived from a bridge network. The following observations can be drawn:   

• The MCO model and the accompanying methodology yielded very high component and 

therefore system reliabilities at specified minimum costs.  

• The model exhibited very high stability or robustness with respect to the weighting 

system used (i.e. weighting all subsystem reliabilities equally but higher than the cost). 

This means that the selection of the BCS from those generated is relatively easy, since 

only a few reliability design options have to be considered. 

• The parameters to which the model is most sensitive are the subsystem reliability lower 

bounds, followed by the feasibility factors.   

• The system cost and reliability both vary monotonically with the subsystem reliability 

lower bounds.  

• Even though the system cost varies monotonically with the feasibility factor, the system 

reliability does not 

• The increase in the reliability levels of some components was higher at lower values of 

the feasibility factor, indicating that a lower feasibility factor value is not a direct 

limitation to improving reliability. Cost was identified as the limiting factor.    

The experimental results obtained have been consistent with the theories of the subject areas of 

reliability and MCO. To further test the model, four problems from real engineering applications 

are presented and discussed in the next Chapter. 
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CHAPTER SEVEN 

 

PRACTICAL APPLICATIONS 

 

7.1 INTRODUCTION 

     In order to demonstrate the potential of the proposed model it was applied to three cases 

extracted from previously published work and to a practical example. The first was a problem 

taken from Billinton and Allan’s book  (1992, pp 98-99), the second from  an example  discussed 

by both Shelokar et al (2002) and Salazar et al (2006), and the third from a paper by Espiritu et al 

(2007). The practical application was based on a gas supply system.  

     The characteristics that set these problems apart from those discussed in the previous Chapter 

are: (i) the system configurations are more sophisticated; (ii)  they are associated with specific 

real life systems; (iii) the latter two especially involve larger system configurations, and (iv) they 

provide an opportunity to compare the solutions using the model developed in this work 

(especially in the case of the second and third examples) with those obtained using other 

techniques and methodologies.  

 

7.2 THE BILLINTON AND ALLAN PROBLEM   

7.2.1 Introduction 

     This system design problem (Billinton and Allan, 1992, pp 98-99) has the configuration 

shown in Figure 7.1. The system comprises ten components and three major subsystems in 

series-parallel format. The latter are made up of the following: 

(i) The first consists only of component 1  
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(ii) The second incorporates components 2 to 7; of these numbers 3, 4 and 5 are not identical 

but form a subsystem which remains operational when at least one of its components is 

operational.  

(iii) Components 8, 9 and 10 are identical and form the third subsystem which remains 

operational when two out of the three components are operational.  

          

                                          

                                                                                                                                 

 3  

 

 

 

    

 

 

 

If the reliabilities of the ten components are respectively  where 1021 ,..., RRR 1098 RRR == then 

the reliabilities of the subsystems are respectively given by: ,  and 

 (since the components are identical) , where 

1R )1)(1(1 76
*

2 RRRR −−−

3
8

2
8 23 RR − *R is given by 

. As before the objective was to maximise the subsystem reliabilities 

and minimise the associated cost function. The subsystem reliabilities were again weighted 

equally.  The input parameters for the optimisation were taken to be the following: 

)1)(1)(1(1 543 RRR −−−−

• Initial component reliability 8.0min, =kiR  ik ,∀ }6,...,2,1{∈k , 3,2,1=i    

• Maximum component reliability 99.0max, =kiR  ik ,∀ }6,...,2,1{∈k , 3,2,1=i    

1

2

4 8

5

6

9

107

         Figure 7.1: Configuration of the system (Source: Billinton & Allan, 1992) 
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• Subsystem reliability lower bounds 99.0min, =iR or 999.0  3,2,1=∀i  

• Feasibility factor 9.0=kif and 0.7. (Lower values were ignored due to the very high cost 

values associated with them, suggesting that reliability improvements at those levels may 

be practically impossible). 

7.2.2 Results and Discussion 

     Tables 7.1 and 7.2 detail the output for ten iterations involving varying the weight and the 

feasibility factors. The tables (and subsequent ones in the Chapter) are formatted in the same way 

as those presented and discussed in Chapter Six.  

                           Table 7.1 Solution output to Billinton & Allan’s example for a feasibility factor of 0.9 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
W1 0.3277 0.3282 0.3287 0.3292 0.3297 0.3303 0.3308 0.3314 0.332 0.3327 
W2 0.3277 0.3282 0.3287 0.3292 0.3297 0.3303 0.3308 0.3314 0.332 0.3327 
W3 0.3277 0.3282 0.3287 0.3292 0.3297 0.3303 0.3308 0.3314 0.332 0.3327 
W4 0.0168 0.0154 0.0139 0.0124 0.0108 0.0092 0.0075 0.0057 0.0039 0.002 
R1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
R2 0.9813 0.9813 0.9813 0.9813 0.9813 0.9813 0.9813 0.9813 0.9813 0.9813 
R3 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 
R4 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 
R5 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 
R6 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 
R7 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 
R8 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 

RSB1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
RSB2 0.999003 0.999003 0.999003 0.999003 0.999003 0.999003 0.999003 0.999003 0.999003 0.999003 
RSB3 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 

Rs 0.989007 0.989007 0.989007 0.989007 0.989007 0.989007 0.989007 0.989007 0.989007 0.989007 
Cs 312.755 312.755 312.755 312.755 312.755 312.755 312.755 312.755 312.755 312.755 

                                                                   

Table 7.1 shows that varying the weighting produced no changes in the component reliabilities 

across the 10 iterations and hence none also in those of the subsystems and system. The 

components’ reliabilities achieved higher levels than the initial value of 0.8 after optimisation 

with component 1 attaining the maximum value of 0.99 throughout. This is not unexpected since 

this one (also a subsystem in this case) is very crucial to the system reliability; the whole system 

would fail if it fails; this is recognised by the optimisation algorithm and thus it assigns it the 
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highest reliability value.   The process also results in the same reliability value being assigned to 

components 3, 4, and 5 which are in redundant arrangement. This fact (replicated in the results 

for the examples of Chapter Six) supports the notion which is also established rigorously by 

Elegbede et al (2003) that for series-parallel systems a necessary condition for the optimal 

assignment of reliability to redundant components is that they are identical. These three also had 

the least improvement, indicating that the higher the number of redundant components in a 

system (or subsystem) the lower their reliability levels need to be to attain the specified system 

reliability.  The overall system reliability of 0.989007 represents a 49% improvement over the 

initial value of 0.6635 corresponding to component reliability values of 0.8. The corresponding 

cost value for the improvement was 312.76. Similar results were obtained for the FF value of 0.7 

as seen in Table 7.2. The various weightings this time produced some marginal differences in the 

values of the component reliabilities achieved. Component 1 again attained the maximum 

permissible value of 0.99, and the same percentage rise (49%) in system reliability was recorded. 

The cost rose sharply with the drop in the FF value from 0.9 to 0.7, indicating the very strong 

correlation between the two. Component 2 experienced a slight drop in reliability while that of 

the three redundant ones (i.e. 3, 4, and 5) appreciated by a relatively higher margin. The 

improvements in and were negligible. The same was true for the system reliability. 

That the net effect of the modifications achieved in the component reliability values had no 

measurable effect on the system reliability as previously recorded when the FF value was 0.9, 

and yet yielded an extremely high cost in comparison, is indication of the very strong sensitivity 

of the cost function to the FF value in this problem, suggesting that the pursuit of higher 

component reliability values- not to mention at lower FF values - is cost prohibitive.    

76 , RR 8R
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                          Table 7.2: Solution output to Billinton & Allan’s example for a feasibility factor of 0.7 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
W1 0.3277 0.3282 0.3287 0.3292 0.3297 0.3303 0.3308 0.3314 0.332 0.3327 
W2 0.3277 0.3282 0.3287 0.3292 0.3297 0.3303 0.3308 0.3314 0.332 0.3327 
W3 0.3277 0.3282 0.3287 0.3292 0.3297 0.3303 0.3308 0.3314 0.332 0.3327 
W4 0.0168 0.0154 0.0139 0.0124 0.0108 0.0092 0.0075 0.0057 0.0039 0.002 
R1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
R2 0.9796 0.9796 0.9796 0.9796 0.9795 0.9796 0.9796 0.9796 0.9796 0.9796 
R3 0.9208 0.9208 0.9208 0.9215 0.9241 0.9208 0.9208 0.9208 0.9208 0.9208 
R4 0.9208 0.9208 0.9208 0.9215 0.9203 0.9208 0.9208 0.9208 0.9208 0.9208 
R5 0.9208 0.9208 0.9208 0.9198 0.9224 0.9208 0.9208 0.9208 0.9208 0.9208 
R6 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 
R7 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 0.9758 
R8 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 0.9816 

RSB1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
RSB2 0.999001 0.999001 0.999 0.999001 0.998998 0.999001 0.999001 0.999001 0.999001 0.999001 
RSB3 0.999994 0.999994 0.99999 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 

Rs 0.989005 0.989005 0.98901 0.989005 0.989002 0.989005 0.989005 0.989005 0.989005 0.989005 
Cs 12416298 12416298 1.2E+07 12416298 12416234 12416298 12416298 12416298 12416298 12416298 

 

7.3 A LIFE-SUPPORT SYSTEM MODEL 

7.3.1 Introduction 

      This application concerns the reliability design of a life-support system (LSS) in a space 

capsule (Shelokar et al, 2002; Salazar et al, 2006); its configuration is presented in Figure 7.2. 

The system, which requires a single path for its success, has two redundant subsystems each 

comprising components 1 and 4. Each of the redundant subsystems is in series with component 2 

and the resultant pair of series-parallel arrangement forms two equal paths. Component 3 is 

inserted as a third path and backup for the pair. 
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                  Figure 7.2: RBD of a life-support system in a space capsule (Source: Sheloker et al, 2002) 
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       The continuous optimisation models that were originally formulated for the reliability design 

of this system approached the problem in two different ways: Sheloker et al (2002) adopted a 

single criterion methodology in which a cost function of component reliability was minimised, 

subject to constraints on system and components’ reliabilities. On the other hand Salazar et al 

(2006) used a bi-criterion approach using a number of heuristic algorithms such as ACO, TS, and 

NSGA-2. A cost function of component reliability and the top level system reliability were 

respectively minimised and maximised, subject to constraints on the component reliabilities. In 

order to apply the MCO model the LSS configuration had to be transformed into a series-parallel 

format. Results of the application were then compared with those reported by Sheloker et al 

(2002) and Salazar et al (2006).    

 7.3.2 Model Development 

     The cut sets associated with the LSS are determined by inspection (see Appendix B for a 

discussion of techniques for determining cut sets) as follows: {3, k, k}, {2, 3, 2}, {2, 3, k}, {2, 3, 

k}, {2, k, k}, and {2, k, k} where k = {1, 4}. Since each subset {k, k} is itself a cut set the 

minimum cut sets associated with the system are: {1,4,1,4}, {2,3,2}, {2,3,1,4} and {2,3,1,4}. 

The minimum cut sets obtained suggest that the LSS may be extremely reliable, since all but one 

of its minimum cut sets are fourth order and thus could have rare failure events (Espiritu et al 

2007). The results from the optimisations are therefore expected to be consistent with this 

observation. The series-parallel transformation of the system is shown in Figure 7.3. 
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                      Figure 7.3: Series-parallel transformation of the configuration of LSS  

 

      The corresponding reliability expressions for each of the four derived subsystems and the 

associated cost function follow immediately from expressions 5.7, 5.10 and 5.3 respectively.  

The input parameters are the same as those used in the Scenarios of Chapter Six. The initial 

component reliability values of 0.5 are in accordance with those used by Sheloker et al (2002) 

and Salazar et al (2006).   

7.3.3 Results and Discussion   

     The results of the optimisation process over ten iterations are presented in Tables 7.3 to 7.6. 

They include the Pareto optimal component reliability values and the corresponding subsystems 

and system reliabilities, as well as the cost values; the input weights are the same as those used in 

the previous Chapter for testing the MCO model.   

     As can be seen, significant improvements in reliability values were achieved for all the 

components over all the iterations for each of the FF values.  However the values for components 

1 and 4 remained at 0.8222 throughout while those for components 2 and 3 did vary a little. This 
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resulted in a reasonably consistent system reliability value of approximately 0.998. This is a 

further indication of the stability of the MCO model under the weighting scheme adopted. 

Component 2 in almost all cases was assigned the highest reliability value while Component 3 

was assigned the lowest, a situation that could be attributed to the relative importance (reliability 

wise) of the two components: note that the two components of type 2 occur in the third order cut 

set the failure of which is more likely than the others. The fact that both components 1 and 4 

were assigned the same reliability value of 0.8222 is again consistent with the observation made 

by Elegbede et al (2003) on redundant components.  Even though the improvements in the 

component reliability values relative to their initial ones were significant, they were not very 

high in absolute terms (especially those for components 1, 3, and 4). That the resultant system 

reliability was nevertheless high shows that the current configuration of the LSS can guarantee 

very high system reliability even with moderately reliable components. This fact is reflected in 

the cost values which are very low compared to those recorded in the last example, for instance. 

 

                      Table 7.3: Results of the optimisations for the LSS MCO model for a feasibility factor value of 0.9 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
W1 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W2 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W3 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W4 0.0127 0.0116 0.0105 0.0093 0.0081 0.0069 0.0056 0.0043 0.0029 0.0015 
R1 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 
R2 0.9305 0.9305 0.9304 0.9303 0.9302 0.9301 0.9298 0.9294 0.9286 0.9264 
R3 0.7927 0.793 0.7934 0.794 0.7947 0.7956 0.7971 0.9793 0.8038 0.8152 
R4 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 

RSB1 0.999 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 
RSB2 0.999 0.999 0.999 0.999 0.999 0.999001 0.999 0.9999 0.999 0.999 
RSB3 0.99954 0.999545 0.999545 0.999546 0.999547 0.999548 0.99955 0.999954 0.999557 0.99957 
RSB4 0.99954 0.999545 0.999545 0.999546 0.999547 0.999548 0.99955 0.999954 0.999557 0.99957 

Rs 0.99709 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 
Cs 9.70152 9.701922 9.698486 9.695342 9.692357 9.689674 9.680079 19.89911 9.644481 9.585029 
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                    Table 7.4:  Results of the optimisations for the LSS MCO model for a feasibility factor value of 0.7 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
W1 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W2 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W3 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W4 0.0127 0.0116 0.0105 0.0093 0.0081 0.0069 0.0056 0.0043 0.0029 0.0015 
R1 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 
R2 0.9311 0.9311 0.9311 0.931 0.931 0.931 0.9309 0.9309 0.9307 0.9303 
R3 0.7895 0.7896 0.7897 0.7898 0.7899 0.7901 0.7904 0.7908 0.7918 0.7944 
R4 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 

RSB1 0.999 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 
RSB2 0.999 0.999001 0.999002 0.999 0.999 0.999001 0.999 0.999001 0.999 0.999001 
RSB3 0.99954 0.999542 0.999542 0.999541 0.999542 0.999542 0.999542 0.999543 0.999544 0.999547 
RSB4 0.99954 0.999542 0.999542 0.999541 0.999542 0.999542 0.999542 0.999543 0.999544 0.999547 

Rs 0.99709 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 
Cs 21.859 21.85948 21.86 21.81703 21.81755 21.81859 21.77693 21.77902 21.69866 21.54456 

                   

               Table 7.5:  Results of the optimisations for the LSS MCO model for a feasibility factor value of 0.5 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
W1 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W2 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W3 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W4 0.0127 0.0116 0.0105 0.0093 0.0081 0.0069 0.0056 0.0043 0.0029 0.0015 
R1 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 
R2 0.9312 0.9312 0.9312 0.9312 0.9311 0.9311 0.9311 0.9311 0.931 0.9309 
R3 0.7889 0.7889 0.789 0.789 0.789 0.7891 0.7892 0.7894 0.7897 0.77907 
R4 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 

RSB1 0.999 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 
RSB2 0.999 0.999001 0.999001 0.999001 0.999 0.999 0.999 0.999 0.999 0.999 
RSB3 0.99954 0.999541 0.999541 0.999541 0.99954 0.999541 0.999541 0.999541 0.999541 0.999517 
RSB4 0.99954 0.999541 0.999541 0.999541 0.99954 0.999541 0.999541 0.999541 0.999541 0.999517 

Rs 0.99709 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 
Cs 60.0287 60.02868 60.0298 60.0298 59.76987 59.771 59.77213 59.77439 59.52003 59.15255 

                

 

              Table 7.6: Results of the optimisations for the LSS MCO model for a feasibility factor value of 0.3 

IT 1 2 3 4 5 6 7 8 9 10 
FF 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
W1 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W2 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W3 0.2468 0.2471 0.2474 0.2477 0.248 0.2483 0.2486 0.2489 0.2493 0.2496 
W4 0.0127 0.0116 0.0105 0.0093 0.0081 0.0069 0.0056 0.0043 0.0029 0.0015 
R1 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 
R2 0.9312 0.9312 0.9312 0.9312 0.9312 0.9312 0.9312 0.9312 0.9312 0.9311 
R3 0.7887 0.7887 0.7887 0.7887 0.7887 0.7888 0.7888 0.7889 0.789 0.7895 
R4 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 0.8222 

RSB1 0.999 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 0.999001 
RSB2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999001 0.999001 0.999001 
RSB3 0.99954 0.99954 0.99954 0.99954 0.99954 0.999541 0.999541 0.999541 0.999541 0.999542 
RSB4 0.99954 0.99954 0.99954 0.99954 0.99954 0.999541 0.999541 0.999541 0.999541 0.999542 

Rs 0.99708 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 
Cs 188.521 188.5213 188.5213 188.5213 188.5213 188.5234 188.5234 188.5254 188.5275 187.241 
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        In a further attempt to investigate the appropriateness of the MCO model to this application 

it was decided to compare these results with those presented by Sheloker et al (2002) and Salazar 

et al (2006).  While the former discuss the results of their original SCO models the latter 

compare the SCO results of the problem discussed earlier by Ravi et al (1997) and Rocco et al 

(2000) with that of their bi-criterion version which was presented graphically. Consequently a 

quantitative comparison with the bi-criterion version is rendered impossible. The comparison is 

therefore limited to the results of the former and those of Ravi et al (1997) and Rocco et al 

(2000) as presented by the latter. It is also limited to the reliability values of both the components 

and the system. The cost values are excluded because of the different cost function models 

involved, which do not provide a proper basis for cost comparison (the cost functions are in 

Appendix C). The values corresponding to the 10th IT where the highest and lowest weights’ 

assignments occur were selected and the optimisation results are presented in Table 7.7.  

 

        Table 7.7: Reliability values of the MCO model and those from earlier published work obtained for the LSS  

  MCO Model Sheloker et al (2002)  Salazar et al (2006) 
  F = 0.9 FF = 0.7 FF = 0.5  FF = 0.3 Case1 Case 2 Rocco et al Ravi et al  

R1 0.8222 0.8222 0.8222 0.8222 0.500000 0.825895 0.500000009 0.50006 
R2 0.9264 0.9303 0.9309 0.9311 0.83892 0.890089 0.838920148 0.83887 
R3 0.8152 0.7944 0.779 0.7895 0.500000 0.627426 0.500000011 0.50001 
R4 0.8222 0.8222 0.8222 0.8222 0.500000 0.728794 0.500000022 0.50002 

         
Rs 0.998004 0.998004 0.998004 0.998004 0.900000 0.990000 0.900000619 0.90001 

 

 It can be seen that the MCO model yielded the best component reliability values throughout, 

except in case 2 of Sheloker et al where component 1 had the highest value. The corresponding 

system reliability values were the highest throughout. The similarity of the patterns, in all the 

cited cases with the MCO ones, is interesting. For example, in all cases component 2 was 

assigned the highest reliability and component 3 the least, an observation which has already 

drawn comment in this discussion. One cannot fail to notice also the equal (or almost equal) 
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reliability values assigned to components 1 and 4 in all cases except one - a phenomenon which 

has already been noted. These observations are positive indicators of the ability of the MCO 

model to provide very high specifications in reliability design.             

 

 7.4 BREAKER-AND-A-HALF SYSTEM MODEL 

7.4.1 Introduction 

    The Electricity Transmission System is a vital part of the entire network which ensures that 

power is transmitted from the generation sources to consumers in homes and industry. A 

Breaker-And-A-Half (BH) is one of many important components or subsystems of the 

transmission system the reliability of which ensures that there is no interruption in power to 

consumers. The BH which is a redundant and complex system provides an application for the 

MCO model. The example is extracted from a specific one of the BH system discussed by 

Espiritu et al (2007) in the context of component criticality measures. A schematic of the 

functional form of the system is reproduced in Figure 7.4. 
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Figure 7.4: Breaker-and-a-half configuration (Source: Espiritu et al (2007))   
 
 

142 
 



     The components of the BH are the two Buses, the six breakers (BRK 3-8) and the supply and 

load lines L13 and L16, and L14 and L15 respectively. Espiritu et al (2007) have analysed this 

system’s failure characteristics in terms of cut sets, assuming failure at Load 1 as the top event.  

The resultant twenty one minimum cut sets (which excludes component L15 in all the instances, 

since it is assumed that failure occurs only at load 1 (L14)) are listed in Table 7.8. Fourth order 

cut sets and higher were ignored on the grounds that their failure events were rare. The cut sets 

form the basis for the application of the MCO model. 

      Table 7.8: Minimum cut sets for the BH system for failure at Load 1 (Source: Espiritu et al (2007)) 

{L14}         {L13, BRK 4, BRK 5} {L13, BRK 3, BRK 8} 

{BRK 7, BRK 8}         {L13, BRK 4, BUS 2} {{L13, BUS 1, BRK 5} 

{BRK7, BRK 5}         (L13, BRK 4, BRK 8} {L13, BUS 1, BUS 2}  

{BRK 7, BUS 2}         {L13, BRK3, BRK 5} {L13, BUS 1, BRK 8} 

{L13, L16}         {L13, BRK 3, BUS 2} {L13, BRK 5, BRK 6} 

{L16, BRK 6, BRK 7}         {L16, BRK 3, BRK 7} {L13, BUS 2, BRK 6} 

{L16, BUS 1, BRK 7}         {L16, BRK 4, BRK 7} {L13, BRK 8, BRK 6} 
 

7.4.2 Model Development 

    The model thus has twenty two criteria, twenty one of which are subsystem reliabilities to be 

maximised and one of which is the associated cost to be minimised.  

Assumptions 

• The components’ outage rates as given by Espiritu et al (2007) are their failure rates 

• Even though the BH system is repairable, the components are not. Thus a component’s 

time to failure and failure frequency is assumed to be devoid of maintenance times and its 

effects. 

• Component failures are independent   

• Component failures are Exponentially distributed 
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• The initial component reliability is the reliability value obtained from its failure rate 

information  

Parameters  

     The initial reliability of many of the components (see Table 7.9) was high so the maximum 

component reliability was set at an upper bound of 1. Since previous results have consistently 

shown the MCO model to be quite stable with respect to the weighting scheme being used, only 

a single weight vector was used. The subsystem reliabilities were assigned weights of 0.0476 and 

the cost function a weight of 0.0005. This means that a preference oriented approach was 

adopted where the resultant single weight vector characterised the preference. The subsystem 

lower bounds were fixed at 0.99.  Solutions were obtained for the same set of FF values as used 

previously.  

7.4.3 Results and Discussion 

      The results of the optimisations are presented in Table 7.9. In addition to the main 

components of the BH system, their failure (outage) rates, their initial reliability and their 

reliability values achieved under the optimisations for FF values of 0.9, 0.7, 0.5, and 0.3, the 

Table also shows the resultant system level reliabilities and the associated costs.   

 Table 7.9: Results of the optimisations for the BH system

COMPONENT 
TYPE 

OUTAGE 
RATE/YR 

INITIAL 
RELIABILITY 

RELIABILITY 
ACHIEVED 

RELIABILITY 
ACHIEVED 

RELIABILITY 
ACHIEVED 

RELIABILITY 
ACHIEVED 

                 FF = 0.9        FF = 0.7         FF = 0.5          FF = 0.3 
L14 0.86 0.4232 0.99 0.99 0.99 0.99 

BRK 7 0.034 0.9666 0.9855 0.977 0.9722 0.9685 
BRK 8 0.056 0.9455 0.962 0.9477 0.9459 0.9455 
BRK 5 0.023 0.9773 0.9773 0.9773 0.9773 0.9775 
BUS 2 0.18 0.8353 0.8999 0.8875 0.872 0.8661 

L13 0.93 0.3946 0.9194 0.8996 0.9009 0.9065 
L16 0.88 0.4148 0.8895 0.9004 0.8991 0.893 

BRK 6 0.07 0.9324 0.9417 0.9324 0.9324 0.9324 
BUS 1 0.2 0.8187 0.8443 0.8353 0.8312 0.8267 
BRK 4 0.076 0.9268 0.9381 0.9268 0.9268 0.9268 
BRK 3 0.09 0.9139 0.929 0.9139 0.9139 0.9139 

       
SYSTEM RELIABILITY 0.237843 0.947601 0.92706 0.916674 0.909293 
COST OF RELIABILITY   301.2323 1.60E+08 4.70E+13 1.40E+19 
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       As has already been stated, apart from components L14, L13, and L16, which had rather low 

initial reliabilities, all the other components had appreciably high values. The consequence of the 

low initial component reliabilities is reflected in the very low initial system reliability of 

0.237843. The optimisation algorithm therefore assigned very high reliability values to those 

with initially low ones, and only barely increased those with very high ones.  The system 

reliability improved to for instance, 0.947601 (in the case of FF = 0.9) with an associated cost of 

301.23. Similar system reliability results were recorded for the other FF values, however their 

associated cost values were prohibitively high. This is not surprising given the drastic 

improvements in reliability required for components L14, L13 and L16 and also because of the 

characteristic difficulty associated with improving (however marginally) the reliability of 

components with already very high reliability values. Component L14 recorded the highest 

reliability improvement, which is consistent with its first order cut set status (see Table 7.8), 

while no improvement was obtained for BRK 5 in practically all the cases.   

      The results of this application have shown that the reliability of the BH system can be 

appreciably improved by increasing the reliability of components L14 (first and foremost), and 

also those of L13 and L16. Indeed, in Espiritu et al (2007), component L14 received the highest 

ranking in all the five metrics used to evaluate the relative importance, in reliability terms, of the 

components of the BH system. Component L13 had the second highest ranking in two of the 

metrics; component L16 had the third in two of the metrics and the fifth in the others.  These 

observations are consistent with the results obtained in this application and serve as further 

confirmation that the MCO model works and can provide very useful information on the 

reliability levels of the components which would yield a desired system level reliability.  
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7.5 DISTRICT GOVERNOR INSTALLATION MODEL 

7.5.1 Introduction 

      Having tested the MCO model on various sets of hypothetical and published data it was felt 

necessary and worthwhile to apply it to an existing industrial operational system. Consequently 

twenty companies (which were thought to be appropriate for this) were selected and contacted; 

only one indicated an interest. The Company (which is situated in the Midlands) operate a gas 

supply system. 

      At the outset a meeting was arranged between three engineers of the Company in the 

reliability field and the author, at which a formal presentation (in PowerPoint) was made of the 

main features of the model and its capabilities. This was followed by discussions of the specific 

applications available within the Company and the data requirements, etc. Subsequently the 

District Governor Installation (DGI) was selected and the necessary data supplied.  

7.5.2 Brief Background  

       The DGI (shown schematically in Figure 7.5) is a gas carrying system consisting of two 

independent but connected streams, (i.e. the working and the standby) the function of which is to 

reduce the pressure of gas from 7bars at the inlet of the installation to approximately 50mbars at 

the outlet. The standby stream is expected to automatically supply gas upon failure of the 

working one. The components of both working and standby streams are the inlet, outlet and non-

return valves, the relief valves, the filters, slam shuts, and monitor and active regulators. Each of 

the regulators exhibits two failure modes - failing open or closed - with the former being the 

most dangerous, as high pressure gas will pass downstream through low pressure systems, with 

the likelihood of leakage or rupture. On the other hand, where one or both streams fail closed, 
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gas supply downstream is interrupted, resulting in loss of gas supply. The application and 

analysis were centred on this failure mode. 
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                                  Figure 7.5: District Governor Installation (Source: Company drawing) 

 

      The DGI is a redundant system (at the system instead of component level) involving both the 

working and standby streams, nevertheless in reliability terms it is complexly configured (several 

of its components exhibit two failure modes) and not just a simple parallel-series system. 

Consequently the FT modelling approach was used to provide a better and easier way to analyse 

the system for reliability.  

7.5.3 The Data 

       The full set of relevant data for the implementation was secured over approximately a one 

month period, during which several follow-ups were made on the initial data collected and 

missing ones secured.  The data included: the schematic diagram shown in Figure 7.5; a FT 

diagram of the DGI in which the top event was gas supply failure downstream and an analysis of 

it in terms of cut sets (this can be seen in Appendix D); the components’ failure rates and the 

components’ costs in £s. Table 7.10 lists the latter data for each of the components for both the 
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working and standby streams. The components with dual failure modes (i.e. failing open or 

closed) are denoted by letters “o” or “c” respectively in parentheses as part of their code.  Apart 

from the Filters (F1 and F2) all the other components have at least one of the characteristics 

described. While the slam shut valves only fail closed  all the remaining components fail either 

open or closed, with different failure rates (except for the Non-Return Valve in the Standby 

Stream). The data in the cost column gives the unit cost of each component.  

 

 Table 7.10: Part of the data supplied for the DGI 

Stream Component Code Failure rate Cost (£k) 
Working  Filter F1 7.91E-04 2 

 Slam shut Valve S1(c) 1.35E-04 2 
 Active Regulator A1(o) 2.57E-03 
 Active Regulator A1(c) 9.88E-05 

2 
 

 Monitor Regulator M1(o) 2.99E-03 
 Monitor Regulator M1(c) 3.58E-04 

2 
 

 Relief Valve R1(c) 1.66E-03 0.5 
 Non-Return Valve N1(o) 3.95E-04 
 Non-Return Valve N1(c) 9.09E-05 

1 
 

Standby  Filter F2 2.33E-04 2 
 Slam shut Valve S2(c) 6.99E-05 2 
 Active Regulator A2(o) 9.30E-04 
 Active Regulator A2(c) 1.16E-04 

2 
 

 Monitor Regulator M2(o) 1.50E-03 
 Monitor Regulator M2(c) 4.62E-04 

2 
 

 Relief Valve R2(c) 1.94E-03 0.5 
 Non-Return Valve N2(o) 2.07E-04 
 Non-Return Valve N2(c) 2.07E-04 

1 
 

 

 

7.5.4 Model Development 

      Forty minimum cuts sets, resulting from the FT analysis provided by the company are shown 

in Table 7.11.  Twenty five are second order, fourteen are third and one is fourth.   
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                     Table 7.11: Minimum cut sets of the DGI failing closed 

A1(c), A2(c) S1, N2(c) N1(c), S2 F1, F2 M1(c), A2(o), M2(o) 

A1(c),S2 S1, F2 N1(c), M2(c) A1(o), M1(o), A2(c) N1(c), A2(o), M2(o) 

A1(c),M2(c) M1(c), A2(c) N1(c), N2(c) A1(o), M1(o), S2 F1, A2(o), M2(o) 

A1(c), N2(c) M1(c), S2 N1(c), F2 A1(o), M1(o), M2(c) A1(o), M1(o), N2(o) 

A1(c), F2 M1(c), M2(c) F1, A2(c) A1(o), M1(o), N2(c) A1(o), M1(o), R2 

S1, A2(c) M1(c),N2(c) F1, S2 A1(o), M1(o), F2 A2(o), M2(o), N1(o) 

S1, S2 M1(c), F2 F1, M2(c) A1(o), A2(o), M2(o) A2(o), M2(o), R1 

S1, M2(c) N1(c), A2(c) F1, N2(c) S1, A2(o), M2(o) A1(o), M1(o), A2(o), M2(o) 
 

 

The reliability of the DGI can thus be approximated by a series-parallel system whose 

subsystems are derived from these cut sets. The MCO model thus follows immediately, where 

the reliability of each minimum cut set is maximised simultaneously and the corresponding cost 

function minimised. The decision vector in this case comprised eighteen variables (i.e. 

 ) each  (i = 1,2, ..., 18) corresponding respectively to the reliability of the 

components as listed in Table 7.10. It must be noted that the reliabilities of components with dual 

failure modes appear twice in this vector. The purpose of the optimisation at this stage was to 

find the (Pareto) optimal values of the variables which yielded maximum reliability values of the 

cut sets at minimum cost. Subsequently an equivalent reduced form of the decision vector, 

involving twelve variables instead of eighteen, which represents the reliability of each 

component as a single variable, was derived. Components with dual failure modes were thus 

assigned a generic reliability value which facilitated the evaluation of a corresponding generic 

system level reliability estimate.  

TRRR ],...,[ 1821 iR

Parameters 

      Once again given that the MCO model has proven to be stable under the weighting system, a 

single preference weight vector was generated as input to the optimisation. In this vector the 
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minimum cut sets’ reliabilities were each assigned a weight of 0.9674 and the cost function a 

weight of 0.0326. Only a single FF value of 0.9 was considered in this case, since the lower 

levels yielded similar (as far as the system reliability was concerned) or infeasible solutions; this 

was primarily due to the rather high initial reliability of the components obtained from their 

failure rate information, which ultimately imply a severely diminished search space. To ensure 

that solutions were nevertheless obtained in the optimisations, and noting that the MCO model 

was very sensitive to subsystem reliability lower bounds, these were set very high and varied 

between 0.99999 and 0.999999. For the same reason the maximum component reliability was set 

at 1.The unit cost data provided a means for quantifying the actual cost ( £) of improvement in 

reliability using the technique developed in Chapter Five.  

Assumptions   

     The assumptions inherent in the MCO model were applied as follows: 

• The state of the DGI is binary (i.e. it is either failed or operational) 

• The parameters of the model are precisely determined (i.e. parameter variations are 

ignored) 

• The DGI is non-repairable under the current optimisations and for its mission time  

• The components’ failure rates are Exponentially distributed 

7.5.5 Results and Discussion 

     Tables 7.12 to 7.16 show five Pareto optimal solutions (obtained for subsystem reliability LBs 

of 0.99999, 0.999995, 0.999997, 0.999998, and 0.999999 respectively) which were considered 

the most preferable, on the basis of the reliability values assigned to the components of the DGI. 

In each table the first column lists the components of both the working and the standby streams 

in terms of their specific codes. The initial or original reliability of each of the components is 
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given in the second. The third shows their values obtained after optimisation. The fourth and 

fifth columns respectively show the difference between the initial reliability and that after 

optimisation and their percentage improvements 

     Table 7.12 shows that the level of reliability improvement for the components ranged from 

0% to approximately 10%, corresponding to a 3.95% improvement (resulting in 0.99971) in the 

system reliability estimate which initially was 0.99578.  Similar ranges were achieved for the 

component reliabilities after the optimisation in Tables 7.13 to 7.16, resulting in similar 

improvements in the system reliability equivalent to 0.99985, 0.99991, 0.99994, and 0.99997 

respectively.  

 

                                                   
                                Table 7.12: Pareto optimal solution of the DGI model with RSBs of 0.99999 
 

COMPONENT INITIAL 
RELIABILITY 

PARETO 
OPTIMAL 

RELIABILITY 
RELIABILITY 

IMPROVEMENT 
PERCENTAGE 

IMPROVEMENT 

F1 0.96886 0.9962 0.02734 2.822 
S1(C) 0.99461 0.9962 0.00159 0.159 
A1(O) 0.90231 0.9775 0.07519 8.333 
A1(C) 0.99606 0.9962 0.00014 0.014 
M1(O) 0.88728 0.9741 0.08682 9.785 
M1(C) 0.98578 0.9962 0.01042 1.057 
R1(C) 0.93576 0.9731 0.03734 3.990 
N1(O) 0.9843 0.9843 0 0 
N1(C) 0.9964 0.9964 0 0 

F2 0.99072 0.9974 0.00668 0.674 
S2(C) 0.99721 0.9974 0.00019 0.019 
A2(O) 0.96348 0.9847 0.02122 2.202 
A2(C) 0.99537 0.9974 0.00203 0.204 
M2(O) 0.94176 0.9756 0.03384 3.593 
M2(C) 0.98169 0.9974 0.01571 1.600 
R2(C) 0.92533 0.9828 0.05747 6.211 
N2(O) 0.9918 0.9918 0 0 
N2(C) 0.99175 0.9974 0.00565 0.569 
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       Table 7.13:  Pareto optimal solution of the DGI model with RSBs of 0.999995 

 

COMPONENT INITIAL 
RELIABILITY 

PARETO 
OPTIMAL 

RELIABILITY 

RELIABILITY 
IMPROVEMENT 

PERCENTAGE 
IMPROVEMENT 

F1 0.96886 0.9972 0.02834 2.925 
S1(C) 0.99461 0.9972 0.00259 0.260 
A1(O) 0.90231 0.9822 0.07989 8.854 
A1(C) 0.99606 0.9972 0.00114 0.114 
M1(O) 0.88728 0.9794 0.09212 10.382 
M1(C) 0.98578 0.9972 0.01142 1.158 
R1(C) 0.93576 0.9787 0.04294 4.589 
N1(O) 0.9843 0.9843 0 0 
N1(C) 0.99637 0.9972 0.00083 0.083 

F2 0.99072 0.9982 0.00748 0.755 
S2(C) 0.99721 0.9982 0.00099 0.099 
A2(O) 0.96348 0.9879 0.02442 2.535 
A2(C) 0.99537 0.9982 0.00283 0.284 
M2(O) 0.94176 0.9807 0.03894 4.135 
M2(C) 0.98169 0.9982 0.01651 1.682 
R2(C) 0.92533 0.9864 0.06107 6.599 
N2(O) 0.9918 0.9918 0 0 
N2(C) 0.99175 0.9982 0.00645 0.650 

     
   
  
  
 

 

 

 

 

 

 

 

 

 

 

                                                

       Table 7.14: Pareto optimal solution of the DGI model with RSBs of 0.999997 

COMPONENT INITIAL 
RELIABILITY 

PARETO 
OPTIMAL 

RELIABILITY 

RELIABILITY 
IMPROVEMENT 

PERCENTAGE 
IMPROVEMENT 

F1 0.96886 0.9978 0.02894 2.987 
S1(C) 0.99461 0.9978 0.00319 0.321 
A1(O) 0.90231 0.985 0.08269 9.164 
A1(C) 0.99606 0.9978 0.00174 0.175 
M1(O) 0.88728 0.9826 0.09532 10.743 
M1(C) 0.98578 0.9978 0.01202 1.219 
R1(C) 0.93576 0.982 0.04624 4.941 
N1(O) 0.9843 0.9843 0 0 
N1(C) 0.99637 0.9978 0.00143 0.143 

F2 0.99072 0.9986 0.00788 0.796 
S2(C) 0.99721 0.9986 0.00139 0.139 
A2(O) 0.96348 0.9898 0.02632 2.732 
A2(C) 0.99537 0.9986 0.00323 0.325 
M2(O) 0.94176 0.9837 0.04194 4.453 
M2(C) 0.98169 0.9986 0.01691 1.722 
R2(C) 0.92533 0.9885 0.06317 6.827 
N2(O) 0.99175 0.9918 0 0 
N2(C) 0.99175 0.9986 0.00685 0.691 
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COMPONENT INITIAL 
RELIABILITY 

PARETO 
OPTIMAL 

RELIABILITY 

RELIABILITY 
IMPROVEMENT 

PERCENTAGE 
IMPROVEMEN

T 
F1 0.96886 0.9982 0.02934 3.028 

S1(C) 0.99461 0.9982 0.00359 0.361 
A1(O) 0.90231 0.9869 0.08459 9.375 
A1(C) 0.99606 0.9982 0.00214 0.215 
M1(O) 0.88728 0.9848 0.09752 10.991 
M1(C) 0.98578 0.9982 0.01242 1.259 
R1(C) 0.93576 0.9843 0.04854 5.187 
N1(O) 0.9843 0.9843 0 0 
N1(C) 0.99637 0.9982 0.00183 0.184 

F2 0.99072 0.9989 0.00818 0.826 
S2(C) 0.99721 0.9989 0.00169 0.169 
A2(O) 0.96348 0.9911 0.02762 2.867 
A2(C) 0.99537 0.9989 0.00353 0.355 
M2(O) 0.94176 0.9858 0.04404 4.676 
M2(C) 0.98169 0.9989 0.01721 1.753 
R2(C) 0.92533 0.99 0.06467 6.989 
N2(O) 0.9918 0.9918 0 0 
N2(C) 0.99175 0.9989 0.00715 0.721 

                     

    

 

 

 

                        
COMPONENT INITIAL 

RELIABILITY 

PARETO 
OPTIMAL 

RELIABILITY 

RELIABILITY 
IMPROVEMENT 

PERCENTAGE 
IMPROVEMENT 

F1 0.96886 0.9987 0.02984 3.079 
S1(C) 0.99461 0.9987 0.00409 0.411 
A1(O) 0.90231 0.9897 0.08739 9.685 
A1(C) 0.99606 0.9987 0.00264 0.265 
M1(O) 0.88728 0.9881 0.10082 11.362 
M1(C) 0.98578 0.9987 0.01292 1.311 
R1(C) 0.93576 0.9866 0.05084 5.433 
N1(O) 0.98432 0.9866 0.00228 0.232 
N1(C) 0.99637 0.9987 0.00233 0.233 

F2 0.99072 0.9992 0.00848 0.856 
S2(C) 0.99721 0.9992 0.00199 0.199 
A2(O) 0.96348 0.9932 0.02972 3.085 
A2(C) 0.99537 0.9992 0.00383 0.385 
M2(O) 0.94176 0.9891 0.04734 5.027 
M2(C) 0.98169 0.9992 0.01751 1.784 
R2(C) 0.92533 0.9919 0.06657 7.194 
N2(O) 0.99175 0.9919 0.00015 0.015 
N2(C) 0.99175 0.9992 0.00745 0.751 

  Table 7.16: Pareto optimal solution of the DGI model with RSBs of 0.999999 

 Table 7.15: Pareto optimal solution of the DGI model with RSBs of 0.999998 

 

 

 

 

 

 

 

 

153 
 



      Tables 7.17 to 7.21 present the results of the conversion of both the initial and the Pareto 

optimal component reliability values (designated by the columns labelled IR and PR 

respectively) into single reliability measures for those components which exhibit dual failure 

modes (identified as  FO and FC, for those failing open and failing closed respectively) . This 

conversion (the process of which was discussed in Chapter Five) is necessary, especially for 

reliability design purposes where a top level estimate of system reliability is required for 

reliability improvement planning. Columns four and seven in the tables, record the single 

reliability measure for each of the components in terms of the initial and the Pareto optimal 

values respectively. The eighth column (labelled Cs) shows the cost/penalty levels corresponding 

to the Pareto optimal component reliability values. Since the unit costs (UC) for each component 

were available (listed in column 9 in £k) the monetary cost of reliability was evaluated and 

shown in the last column of each table. The costs associated with the system reliability 

improvement are also given in the last rows of the eighth and tenth columns.   

     It is evident from Tables 7.17 to 7.21 that the evaluated generic initial component reliability 

values were also very high. That their corresponding generic Pareto optimal values show only 

slight improvements over the initial, in spite of the 0.9 FF assumption is thus not surprising - 

most of the improvements occurred after the second or third decimal places.  For instance, the 

component coded as N1 experienced no improvement at all (see Table 7.17) when the subsystem 

LBs were 0.99999, consequently its cost/penalty value was unity corresponding to a zero actual 

(monetary) cost. As the subsystem LBs were increased slightly, as occurs in the subsequent 

iterations, they yielded correspondingly slight reliability improvements in the component, 

thereby attracting a nonzero actual cost. This trend is also seen in respect of all the other 

components and a further pointer to the sensitivity of the MCO model to the subsystem 
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reliability LBs. It is observed also that even though the component labelled M1 recorded the 

highest reliability improvement (in relative terms) its corresponding cost/penalty value was less 

than that of the one labelled F1 in all the iterations. A closer scrutiny however shows that that the 

generic initial reliability of M1 was much lower than that of F1 which was very high. 

Consequently it was going to be much more difficult (i.e. expensive) to improve that of the latter 

than that of the former.  The tables show a steady rise of both the cost/penalty and actual 

monetary cost values for the entire set of components as the subsystem reliability LBs are varied 

iteratively, resulting in a corresponding steady rise in those values for the system (see the bottom 

row of the tables). One should also observe that the cost/penalty values were very low (in 

absolute terms) for both the components and the system. This is attributed to the assumption of 

very high feasibility factor (0.9) for the components as well as the maximum reliability of 1 set 

for them. The actual cost of reliability improvement for the system for all the iterations ranged 

from £23217.22 to £50495.63.   

 

        Table 7.17: Results of conversion of Pareto optimal solutions for RSBs of 0.99999        

CODE  IR 
(FO) 

IR  
(FC) IR PR 

(FO) 
PR 

(FC) PR Cs UC 
(£k) 

C’s 
(£k) 

F1     0.96886     0.9962 2.053352 2 4.1067044 
F2     0.99072     0.9974 1.292946 2 2.5858913 
S1   0.99461 0.99461   0.9962 0.9962 1.04273 2 2.0854596 
S2   0.99721 0.99721   0.9974 0.9974 1.007334 2 2.0146689 
A1 0.90231 0.99606 0.8987549 0.9775 0.9962 0.9737855 1.331383 2 2.6627652 
A2 0.96348 0.99537 0.9590191 0.9847 0.9974 0.98213978 1.138206 2 2.2764125 
R1   0.93576 0.93576   0.9731 0.9731 1.148906 0.5 0.5744531 
R2   0.92533 0.92533   0.9828 0.9828 1.396722 0.5 0.6983609 
N1 0.98432 0.99637 0.9807469 0.9843 0.9964 0.98075652 1 1 0 
N2 0.99175 0.99175 0.9835681 0.9918 0.9974 0.98922132 1.053848 1 1.0538483 
M1 0.88728 0.98578 0.8746629 0.9741 0.9962 0.97039842 1.381837 2 2.7636736 
M2 0.94176 0.98169 0.9245164 0.9756 0.9974 0.97306344 1.19749 2 2.3949793 

AGGREGATE 15.04475   23.217217 
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CODE IR 
(FO) 

IR  
(FC) IR PR 

(FO) 
PR 

(FC) PR  Cs UC 
(£k) 

C’s 
(£k) 

F1     0.96886     0.9972 2.75149075 2 5.502981508 
F2     0.99072     0.9982 1.51521229 2 3.030424583 
S1   0.99461 0.99461   0.9972 0.9972 1.09691314 2 2.193826283 
S2   0.99721 0.99721   0.9982 0.9982 1.05654061 2 2.113081229 
A1 0.9023 0.99606 0.8987549 0.9822 0.9972 0.97944984 1.48093413 2 2.961868257 
A2 0.9635 0.99537 0.95901909 0.9879 0.9982 0.98612178 1.21566275 2 2.431325494 
R1   0.93576 0.93576   0.9787 0.9787 1.22335397 0.5 0.611676986 
R2   0.92533 0.92533   0.9864 0.9864 1.56681378 0.5 0.78340689 
N1 0.9843 0.99637 0.98074692 0.9843 0.9972 0.98154396 1.00432793 1 1.004327933 
N2 0.9918 0.99175 0.98356806 0.9918 0.9982 0.99001476 1.066692 1 1.066691998 
M1 0.8873 0.98578 0.87466288 0.9794 0.9972 0.97665768 1.54798222 2 3.09596444 
M2 0.9418 0.98169 0.92451637 0.9807 0.9982 0.97893474 1.29476897 2 2.589537936 

AGGREGATE 16.8206925    27.38511354 

    Table 7.18: Results of conversion of Pareto optimal solutions for RSBs of 0.999995 

 

    Table 7.19: Results of conversion of Pareto optimal solutions for RSBs of 0.999997  

CODE IR 
(FO) 

IR 
(FC) IR PR 

(FO) 
PR 

(FC) PR Cs UC 
(£k) 

C’s 
(£k) 

F1     0.96886     0.9978 3.72644 2 7.45288888 
F2     0.99072     0.9986 1.75568 2 3.51136315 
S1   0.99461 0.99461   0.9978 0.9978 1.15604 2 2.31207914 
S2   0.99721 0.99721   0.9986 0.9986 1.10438 2 2.20876358 
A1 0.90231 0.99606 0.8987549 0.985 0.9978 0.982833 1.63193 2 3.26386808 
A2 0.96348 0.99537 0.95901909 0.9898 0.9986 0.9884143 1.28881 2 2.57761963 
R1   0.93576 0.93576   0.982 0.982 1.2929 0.5 0.64645073 
R2   0.92533 0.92533   0.9885 0.9885 1.73205 0.5 0.86602385 
N1 0.98432 0.99637 0.98074692 0.9843 0.9978 0.9821345 1.0078 1 1.00779731 
N2 0.99175 0.99175 0.98356806 0.9918 0.9986 0.9904115 1.07398 1 1.07397954 
M1 0.88728 0.98578 0.87466288 0.9826 0.9978 0.9804383 1.71725 2 3.43450795 
M2 0.94176 0.98169 0.92451637 0.9837 0.9986 0.9823228 1.38682 2 2.77363539 

AGGREGATE 18.8741    31.1289772 

                  

     Table 7.20: Results of conversion of Pareto optimal solutions for RSBs of 0.999998  

CODE IR 
(FO) 

IR  
(FC) IR PR 

(FO) 
PR 

(FC) PR  Cs UC 
(£k) 

C’s 
(£k) 

F1     0.96886     0.9982 5.10387472 2 10.2077494 
F2     0.99072     0.9989 2.10357097 2 4.20714194 
S1   0.99461 0.99461   0.9982 0.9982 1.22072439 2 2.44144878 
S2   0.99721 0.99721   0.9989 0.9989 1.16606679 2 2.33213357 
A1 0.90231 0.99606 0.8987549 0.9869 0.9982 0.9851236 1.78706457 2 3.57412914 
A2 0.96348 0.99537 0.95901909 0.9911 0.9989 0.9900098 1.36371245 2 2.72742489 
R1   0.93576 0.93576   0.9843 0.9843 1.36229663 0.5 0.68114832 
R2   0.92533 0.92533   0.99 0.99 1.90922996 0.5 0.95461498 
N1 0.98432 0.99637 0.98074692 0.9843 0.9982 0.9825283 1.01024771 1 1.01024771 
N2 0.99175 0.99175 0.98356806 0.9918 0.9989 0.990709 1.07988984 1 1.07988984 
M1 0.88728 0.98578 0.87466288 0.9848 0.9982 0.9830274 1.8935733 2 3.78714661 
M2 0.94176 0.98169 0.92451637 0.9858 0.9989 0.9847156 1.48269477 2 2.96538953 

AGGREGATE 21.4829461    35.9684647 
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             Table 7.21: Results of conversion of Pareto optimal solutions for RSBs of 0.999999 

CODE IR 
(FO) 

IR 
 (FC) IR PR 

(FO) 
PR 

(FC) PR Cs UC 
(£k) 

C’s 
(£k) 

F1     0.96886     0.9987 9.928254 2 19.8565077 
F2     0.99072     0.9992 2.886371 2 5.77274198 
S1   0.99461 0.99461   0.9987 0.9987 1.369732 2 2.73946478 
S2   0.99721 0.99721   0.9992 0.9992 1.282421 2 2.56484278 
A1 0.90231 0.99606 0.8987549 0.9897 0.9987 0.98841339 2.168013 2 4.33602673 
A2 0.96348 0.99537 0.9590191 0.9932 0.9992 0.99240544 1.5521 2 3.10419977 
R1   0.93576 0.93576   0.9866 0.9866 1.461412 0.5 0.73070592 
R2   0.92533 0.92533   0.9919 0.9919 2.274708 0.5 1.13735418 
N1 0.98432 0.99637 0.9807469 0.9866 0.9987 0.98531742 1.031618 1 1.0316183 
N2 0.99175 0.99175 0.9835681 0.9919 0.9992 0.99110648 1.088459 1 1.08845911 
M1 0.88728 0.98578 0.8746629 0.9881 0.9987 0.98681547 2.341139 2 4.68227896 
M2 0.94176 0.98169 0.9245164 0.9891 0.9992 0.98830872 1.725713 2 3.45142631 

AGGREGATE 29.1099   50.495626 
 

                                   

      Table 7.22 provides a summary of the results obtained. It shows the system reliability 

estimates for each of the iterations and the corresponding actual cost measures in thousands of 

pounds. It is apparent from the table that only marginal improvements in the system reliability 

values were attained in the iterations; however these translated into fairly significant increases in 

the cost values.  

                                    Table 7.22: Summary of the results for the DGI 

ITERATION 1 2 3 4 5 

SYSTEM RELIABILITY 0.99971 0.99985 0.99991 0.99994 0.99997 

COST OF SYSTEM RELIABILITY (£k) 23.217 27.385 31.129 35.968 50.496 

 

      In conclusion, the methodology used to obtain the system reliability values provided a lower 

bound estimate of reliability; therefore the system reliability values obtained were only 

approximations; the exact estimates would be expected to be higher. However since the 

reliabilities of the components were initially high, the difference between the exact system 

reliabilities and their corresponding lower estimates would be quite small. Again, given the very 

high initial reliability of the components of the DGI, it was not surprising that the lower 
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feasibility factors yielded infeasible solutions The very high feasibility factor value (0.9) 

required in order to obtain the Pareto optimal solutions suggests that unless the DGI’s 

component’s reliabilities were easy to improve, higher reliabilities than the initial ones would be 

impossible to attain. 

      Another consequence of the very high initial reliability values could mean that reliability 

improvement interventions were not a critical requirement for the DGI. The high levels could be 

sustained through (existing) planned and systematic inspection and maintenance activities.  Even 

so in technical terms the results obtained indicate that there is room for improvement, if it were 

deemed necessary, except that there are on the one hand serious cost implications which have to 

be addressed, and on the other practical difficulties in terms of how the improvements can be 

achieved, considering that the DGI is an already existing operational system. The company 

would have to decide whether to (i) use components with comparable levels of reliability to 

those achieved, or (ii) use redundancy techniques to achieve the desired levels of improvement in 

reliability for the components, or (iii) seek to redesign the appropriate components. 

      The fact that higher reliability values were nevertheless achieved for the components, which 

could further increase the already very high system reliability, is a further demonstration of the 

ability of the MCO model and methodology, developed and implemented in this work, to yield 

very high reliability systems.  
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7.6 SUMMARY 

      In this Chapter, four practical examples were presented and discussed as the concluding part 

of the model testing process. Three which were taken from the literature involved systems with 

much more complicated configurations than those discussed in Chapter Six, and the fourth was 

an industrial application.  

       The examples taken from the literature did not only yield high system reliability as a result 

of the optimisation, they also gave results that were consistent with earlier observations made 

about the model on the basis of the initial testing. The examples demonstrate that the extension 

of the MCO model to complex systems using the series- parallel transformation derived from 

their minimal cut sets can provide better results than an SCO approach where the top level 

system reliability expression is specified as the objective function. This was particularly 

demonstrated by the results obtained for the LSS model. The values assigned to specific 

components under the MCO model were not only higher but also compared favourably with the 

relative levels of those assigned them in their SCO counterparts. The MCO also yielded results 

that were consistent with the reliability importance of the components. This was particularly 

noted in respect of the BH system.  

        The case study results endorsed the methodology as a useful tool in design for reliability. 

The results obtained, in spite of the size (forty one objective functions and eighteen decision 

variables), complexity, and very high initial reliability values all provide confidence in the 

practical usefulness of the MCO model proposed in this work. Another distinctive feature of this 

particular application which gives further confidence in the utility of the model is its applicability 

to situations involving components with multiple failure modes. The technique developed, as 

part of this research, for converting the general cost measure into real cost was also illustrated.   
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CHAPTER EIGHT 
 
 
 

LIMITATIONS AND FUTURE WORK 
 
 

8.1 CONCLUSIONS 

         A new methodology for optimising reliability in a system’s design has been proposed, 

developed and tested in this thesis. It posed the reliability design problem as a multiple criteria 

one and used the path of Pareto optimal assignment of component reliabilities for the dual 

purpose of enhancing overall system reliability while minimising the associated cost.  The 

novelty of the approach is in:  

(i) the multi-criteria optimisation view taken of the problem (which has habitually been 

treated as a single criterion one);  

(ii) the focus on the subsystems’ reliabilities (instead of the system’s) and cost as the criteria 

to be optimised and the fact that the top level system reliability expression was not 

required for the optimisation;  

(iii)the view of the minimum cut sets of a complex system as criteria their reliabilities of 

which are to be maximised. This is a novelty that simplifies the task of maximising a 

complex system’s reliability; 

(iv)  the discussion of the MCO model and methodology in the context  of series-parallel and 

complex systems and successfully applying them to optimise the reliability of the 

LSS, BH, and DGI.  

       The approach is justified particularly for the following reasons: (i) generally, the higher the 

reliability of the subsystems, whether in series-parallel configuration or otherwise, the higher the 

overall system reliability, (ii) since the reliability of a series-parallel system is bounded above by 
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the lowest subsystem reliability, maximising the subsystems’ reliabilities in effect maximises the 

lower bound reliability, which in turn has a positive impact on the system reliability.  

(Maximising subsystem reliability was therefore an indirect attempt at maximising the system 

reliability).  

      The resultant model was a deterministic, continuous, nonlinear multi-criteria optimisation 

problem.  All but one criterion were concave monotone functions (i.e. subsystem reliability 

functions) and the other a convex function (i.e.  Cost function) each defined on a convex set 

(component reliabilities) in the domain (0, 1). Pareto optimal solutions were found using the 

weighted sum scalarisation method the solution algorithm of which was run using the 

optimisation toolbox in MATLAB. Equal weights were assigned to the subsystems to reflect 

their equal importance for the overall system reliability; at the same time the subsystem 

reliabilities were weighted higher than the cost to reflect preference for reliability against cost.      

      The methodology was tested, firstly on hypothetically generated examples, then on data that 

had been published, and finally on an industrial application. The difficulty of securing more 

organisations to collaborate in this research did not permit wider testing on real problems. 

Nevertheless the series of tests performed has provided very good results which have thus 

increased the confidence in both the model and the methodology. The results have led to the 

following conclusions about the model: 

 

• It is very sensitive to perturbations of its primary parameters which are the feasibility 

factors and the subsystem reliability lower bounds, being more so with that of the latter. 

It was much more stable with respect to weighting (the weights being secondary 

parameters, derived from the solution method used). 
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•  The very low sensitivity of the model to the weightings is an indication of its robustness 

under the scheme adopted. In other words the equal weighting of the subsystems along 

with another for the cost, greatly narrowed the spread of points tracked along the Pareto 

front for candidate solutions, hence the minimal variation in the sets of solutions 

achieved. 

• Due to the model stability, weighting may be used as a preference technique, rather than 

as a generating one. In this case a single weight vector representing a decision maker’s 

preference order (as was used in the case of the DGI discussed in Chapter Seven) may be 

specified. The resultant Pareto optimal solution thus becomes a compromise solution. 

Alternatively, only a few weighting vectors representing a narrow set of preferences may 

be considered, to provide a number of compromise solutions from which a final one may 

be chosen for implementation. Since the set of potential solutions in this case would be 

very limited, selecting one as the BCS should be relatively easy.   

• The choice of weights is relatively easy, given that they principally concern the relative 

magnitudes by which all the subsystems on the one hand and the cost on the other are 

weighted; the number of subsystems thus makes very little difference to this task. Of 

course the relative magnitudes of the weights are very subjective, but the principle behind 

them ensures that whatever the choices, the Pareto points do not widely deviate from 

those resulting from any other potential choices.  

• The extension of the methodology especially to complex systems, such as to the LSS, BH 

and DGI systems and the results achieved, have demonstrated that the technique 

introduced in this work not only simplifies an otherwise formidable complex system 

reliability optimisation problem, but it does yield high components’ and system 

162 
 



reliabilities at minimum costs. The concurrence of the results with those  previously 

achieved for the LSS under SCO, in terms of the ordering of the values of the component 

reliabilities and in terms of the reliability importance of some identified components as in 

the BH system example  are reasons for having confidence in the viability of the model 

and the accompanying methodology. That higher component and thus system reliabilities 

were obtained for the DGI in spite of the high initial values suggest that the model can 

yield high reliabilities regardless of the starting values. This however comes at a very 

high cost. 

  

8.2 LIMITATIONS 

     There were two major limitations associated with this work, one practical and one technical. 

In the first instance, ideally, the number of real examples used to test the model should have been 

higher to provide not only breadth for applications, but also further opportunity to test the 

concepts. For example the feasibility factors for the components had to be assumed as also were 

the maximum component reliabilities and the subsystems reliability lower bounds. Thus an 

opportunity to experience the rudiments and practical processes, as well as the pitfalls involved 

in setting the parameters has not been fully exploited. The fact that these parameter values were 

assumed means that the results, while technically acceptable, may not accurately represent the 

true levels of the components’ and system’s reliabilities and associated cost. 

     On the technical level, firstly it is noted that a number of assumptions were made in order to 

simplify the application process of the model, these included (i) the independence of component 

failures, (ii) the system’s time to failure being the time to first failure, (iii) the system being non-

repairable, and (iv) the components’ failure times being modelled by the exponential distribution. 
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In real terms some or all of these assumptions may not be valid and a different approach would 

have to be adopted. This however could only be done in real situations where there is an 

opportunity to work with managers or engineers in charge of the systems in question to address 

all the pertinent issues and resolve any practical difficulties that may be encountered.  Secondly, 

the model’s deterministic formulation means that the aspect of randomness in parameter values 

has not been taken into account. The fact that data, even in practice, may have errors or may be 

inaccurate means that a single point estimate of the values derived from them could well  deviate 

from the actual levels. Thus the failure rates data obtained from the DGI application, for 

instance, has to be seen in this context. The components and system reliability values which are 

also given by single measures are strictly only estimates; since they are also random variables for 

which reason an interval estimate or information on the level of variations from their expected 

values would have made them more precise. 

    Another intrinsic limitation that the model could suffer from is attributed to a weakness in 

series systems, and noted in Chapter Three. Since the reliability of such systems tend to reduce 

with the number of subsystems (or components) in series, the system reliability estimate for a 

large number of subsystems could be greatly compromised, especially if at least one subsystem 

has a relatively low reliability. Thus in some practical problems, where large scale systems are 

more common, the model may experience this phenomenon.    

 

8.3 RECOMMENDATIONS  

     In order to further explore the potentials of the model, possibly refine it, and hopefully plug 

the gaps the following seven areas are recommended for future work: 
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• Further testing especially on real data taken from industry would be a necessary and 

worthwhile follow-up to this work and should help to assess the practical relevance and 

usefulness of the concepts embodied in the model, as well as shed more light on its 

strengths and weaknesses.   

• The cost function model used in this work was analytical in nature. It would be 

interesting to investigate the performance of the model on the basis of an empirical cost 

function derived from real cost data. Furthermore, it would be a beneficial exercise to 

evaluate and estimate values for the parameters of the model, such as the feasibility 

factor and the maximum component reliability, from real data and through consultation 

with design engineers of components and systems for which an application is 

undertaken. The prospects of using other scalar (solution) methods to find Pareto optimal 

solutions could also be investigated. 

• The MCO model was deterministic; however, for the purpose of addressing the short falls 

noted under section 8.2 on this subject, it would be appropriate to investigate a stochastic 

variant of the model. This means introducing parameters to account for the randomness 

in the values of the components’ or system reliabilities. This should provide a way of 

assessing the robustness of the resultant model under random conditions.    

• It is envisaged that the modelling and optimisation concept presented in this thesis can be 

widely applied to many design for reliability situations having the requisite background. 

For example it can be used to analyse and assign in an optimal fashion reliability 

specifications for a system’s design involving subsystems which are made up of 

assemblies and the assemblies in turn made up of components. While traditionally this 

problem is approached from the top down in three major steps: assigning reliabilities 
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first to subsystems, then from subsystems to assemblies, then to the components, the 

MCO modelling approach can provide a one-stop assignment of reliability to the 

components directly, after which the reliability specifications for the assemblies and 

subsystems follow immediately from their configurations.  

• A closely related example to the foregoing where the modelling approach may be useful 

is in designs involving systems with identifiable subsystems the components of which  

made up of others but which are treated as black boxes (i.e. they are not identified or 

directly assigned reliability), but whose reliability levels impact the top level component 

reliability. This may be the case where individual systems are linked up either in series 

parallel or some other configuration, into a huge super system. The reliability assigned to 

the “components” thus becomes the bench mark value for their design. An example for 

instance is the security system linking n airports ( where n is a large positive finite 

integer). The entire system in this case is made up of the security systems of each airport 

which in turn have their own subsystems and components in that order. The MCO 

modelling approach could be used to assign optimal reliability values to the subsystems 

or “components” as the case may be. 

• The model could also be useful for investigating the reliability requirements in designs 

where only minimal levels of redundant components are permitted  in a subsystem 

(recall that this generally results in high component reliability assignment) due to weight 

and volume constraints, such as in gearbox design.  

• The possibility of extending the model into other domains outside reliability design 

(especially in the mathematical sciences) has been envisaged, and requires investigating. 

In other words, suppose there was a phenomenon to be optimised, but for which there 
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was no explicit function describing it in terms of its variables, for which reason SCO 

methods could not be applied. If there were known sub functions which describe aspects 

of the phenomenon, they could be optimised independently but simultaneously using the 

general MCO model proposed, to find Pareto optimal values of the decision variables for 

which an acceptable value of the unknown function could be estimated. This idea is only 

intuitive, but more importantly a stimulus for follow-up and possible development. 
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A. DEFINITIONS AND OVERVIEW OF TERMINOLOGY 

USED IN THE THEORY OF MCO  

 
A1  DEFINITIONS 

 

Open Neighbourhood 

Let ε > 0 be given.   An open neighbourhood of  denoted by  is an - dimensional 

hyper-sphere centred at  given by the set  

NRx ∈0 )( 0xNε N

NRx ∈0 00 :{ xxRx N −∈ < ε , where ε is the radius of the 

hyper-sphere.  An open neighbourhood is also referred to as an Open Ball. 

}

 

Interior Point of a Set 

Let S be a nonempty set. is said to be  an interior point of  if there exist an open ball  of 

radius  ε > 0  such that ..The set of all interior points of constitute the interior of the set 

and is denoted by .  

Sx ∈0 S )( 0xNε

)( 0xNε S⊂ S

)int(S

 

Boundary Point of a Set        

Let S be a nonempty set in RN. A point Sx ∈0  is said to be a boundary point of S  if and only if   

  for some SxN ⊄)( 0ε ε >0. That is the open ball centred at  contains points both in and outside . 

The set of all boundary points of constitute the boundary of  and are denoted by .   

0x S

S S S∂
 

Open Set 

Let be a nonempty set. is said to be open, if and only if = .  An open set is therefore one in 

which members are interior points.  

S S S )int(S

 

Closed Set 

Let S be a nonempty set.  is said to be a closed set if and only if S contains all of its boundary points. S
 

Closure of a Set 

Let be a nonempty set. The closure of  denoted by is the union of and its boundary points; 

i.e.   =  ∂ . 

S S )(Scl S

)(Scl S ∪ S
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Another characterisation of the notion of closure of a set is the following. The closure of an arbitrary 

set is the set of all points for which there exists a sequence of points in  such 

that:        

NRS ⊂ NRx ∈0 }{ kx S

0lim 0 =−
∞→

xxk

k
. Therefore a closed set is equal to its closure; i.e. if is 

closed, or . 

NRS ⊂ )(SclS = S

SSScl ∂∪= )int()(

 

Limit Point of a Set 

Let be a nonempty set inS NR . A point Sx∈  is called a limit point of , if every neighbourhood of S x  

contains a point   such thatSy∈ yx ≠ .  

 

Isolated Point of a Set 

If a point  is such that it is not a limit point, then it is called an isolated point of . Sy∈ S

 

Bounded Set 

A set  is said to be bounded if it is contained in a ball of finite radius, i.e. if there exist 

and a real number δ > 0 such that  ∀ 

NRS ⊂
NRy∈ Sx∈ yx −  < δ.   

 

Compact Set 

 A set that is closed and bounded is said to be compact 

 

Connected Sets 

Let  be a non empty set inS NR .  is said to be a connected set if and only if there does not exist open 

sets M and N such that: 

S

        i)   and  are nonempty disjoint sets, SM ∩ SN ∩

       ii)     )()( SNSMS ∩∪∩=

 If two sets are not connected they are said to be disconnected.            

While disconnected sets are referred to as discrete sets connected one are referred to as continuous sets       

 

   

 

 

 

200 
 



Convex Combination 

 Let . For any points  the line segment given by NRS ⊂ Sxx ∈21, 21 )1( xx λλ −+  such that ]1,0[∈λ  is 

called a convex combination of  and . In general such that  1x 2x i

k

i
i x∑

=1

λ 1
1

=∑
=

k

i
iλ 0≥iλ  is a 

convex combination of .   

ki ,..,2,1=

kxxx ,...,, 21

 
Convex Set 

Let be a set. is said to be convex if S S ∀ Sxx ∈21, and ]1,0[∈λ , Sxx ∈−+ 21 )1( λλ  

The definition can be restated as: A set  is convex if for any two points and  belonging to  there 

are no points on the line between and that are not members of . Put another way, a set is convex 

if there are no points and in such that there is a point on the line between and that does not 

belong to . The restatement includes the empty set within the definition of convexity. It also includes 

singleton sets where and  coincide and thus the line between them reduces to a point. Thus 

S 1x 2x S

1x 2x S S

1x 2x S 1x 2x

S

1x 2x S∈φ  and 

therefore the intersection of any two convex sets is a convex set. Examples of convex sets are the 

Euclidean space NR , ( ), hyper planes, line segments. 1≥N
 

Vector Space 

Let be a set and  any arbitrary elements. is called a vector space if it satisfies the 

following axioms for the scalars 

NRS ⊆ Szyx ∈,, S

R∈μλ, .  

 

             i)      xyyx +=+  

             ii)      )()( zyxzyx ++=++

             iii)    such that  0 + ∃ S∈0 x  = x  + 0 =  x , ∀ x∈   S

                     (0 is called the zero element of ) S

             iv)    ∀ ∃  such that Sx∈ Sy∈ yx+ = 0  (  is called the additive inverse ofy x ), 

             v)     yxyx λλλ +=+ )(  

             vi)    xxx μλμλ +=+ )(    

            vii)    )()( xx μλλμ =  

            viii)   =x1 x  . 
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Any set which satisfy these axioms is said to have a linear structure or constitute a linear space. The 

Euclidean space is a well known example of which the real line is a trivial case. 

 

Cones 

Let  be a real linear space. A nonempty subset is called a cone if S SK ⊂ Kx∈λ for all scalars λ ≥ 0 

and . Kx∈

Pointed Cones: A cone K is called pointed if }0{=−∩ KK . K−  is called the negative cone. 

Reproducing Cones:  A cone K is called reproducing if K SK =− . 

Convex Cones: A cone K in a real linear space is convex if and only if KKK ⊆+  

Ordering Cones: If a set K S⊆ (a linear space) such that for any Syx ∈, the 

relation . Then the relationKxyyx k ∈−⇔≤ k≤ is the order induced by K . K in this case is called the 

ordering cone.  

      The following are typical examples of cones; 

       (a)  The non-negative octant { : }, NRx∈ 0≥x

       (b)  The space NR  

       (c)  The singleton set {0∈ NR }, 

 

Convex Function 

A function is convex on an interval if for any two points and )(xf ],[ ba ],[, 21 baxx ∈ )1,0(∈λ  

)()1()(])1([ 2121 xfxfxxf λλλ −+≤−+   

 

Concave Function 

If is a convex function then is a concave function and vice versa. f f−

Monotone Functions 

Function f defined on a subset of the real numbers with real values is called monotone increasing (also 

monotonically increasing or non-decreasing), if for all x and y such that x ≤ y,  f(x) ≤ f(y), (see Figure A1). 

Likewise, a function is called monotonically decreasing (non-increasing) if, whenever x ≤ y, then f(x) ≥ 

f(y), (see Figure A2). 

If the order ≤ in the definition of monotonicity is replaced by the strict order <, then one obtains a 

stronger requirement. A function with this property is called strictly increasing. Again, by inverting the 

order symbol, one finds a corresponding concept called strictly decreasing. Functions that are strictly 
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increasing or decreasing are one-to-one (because for x not equal to y, either x < y or x > y and so, by 

monotonicity, either f(x) < f(y) or f(x) > f(y), thus f(x) is not equal to f(y)). 

                                       

 
f  f

                                                                                                         

 

                                                                                                                   
   Figure A2: Monotonically decreasing function 

xx  

   Figure A1: Monotonically increasing function 

 

 

A2   CHARACTERISATION OF PARETO POINTS 

 

Definition 

Let the set of Pareto points be denoted by where ),( KME K is the ordering cone induced on M the 

feasible criterion set. Then = {),( KME My ∈0 | My∈∀ 0yy k≤ : 0yy = }. 

 

Theorem 

If a point is in then it is on the boundary of),( KME M . 

 

Proof 

Let . Suppose then there exists an open neighbourhood , ),(0 KMEy ∈ )int(0 My ∈ )( 0yNδ δ > 0 such 

that MyN ⊆δδ )( 0 . Let there be a vector Kv∈ , then Kv −∈− and vv /δ is a vector of length δ such 

that MyNyvvy ⊆∈=− )(/ 00 δδ . It means that 0yy k≤ , 0yy ≠ which means which 

is a contradiction. 

),(0 KMEy ∉

 

Corollary: (Necessary and sufficient condition)   

Let . , if and only if,My∈ ),( KMEy∈ }})0{\(:{),( φ=−∩∈=∈ KyMMyKMEy  }. 
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For each there corresponds ),( KMEy∈ Sx∈ such that )(xfy = . Therefore Pareto optimal solutions 

are tractable.        

            

Theorem 

If the feasible region in the criterion set is closed convex then the set of Pareto points is connected. 

 

Remark   

A connected set has desirable analytical properties and therefore a connected Pareto front provides an 

ideal environment for the pursuit of Pareto optimal solutions. This is guaranteed by a closed convex 

feasible criterion set. 

 

Theorem  

If there exist a point such that My∈ MKy ∩− )( is compact, then φ≠})0{\,( KME . 

 

A corollary to this theorem is the following: 

If M  is compact and K  is a cone (without lines) then φ≠),( KME    

 

Remark  

Another desirable property of the feasible region in objective space is compactness. A compact (i.e. 

closed and bounded) feasible criterion set provides an ideal environment for the tracking of Pareto points 

and therefore Pareto optimal solutions.  

 

A3 NOTIONS OF THE PARETO OPTIMAL SET 

 

Proper Pareto Optimal Solution 

*x  is properly Pareto optimal if there exists a scalar M > 0 for all i and Sx∈ satisfying <  

there exists a 

)(xfi *)(xfi

j such that < such that: *)(xf j )(xf j

          M
xfxf
xfxf

jj

ii ≤
−
−

*)()(
)(*)(
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Local Pareto Optimal Set 

A set is local Pareto optimal, if for every Ss∈ sx∈ there does not exist )(sNx ε∈′ for some ε > 0 

which dominates every element of . s
 

Global Pareto Optimal Set 

A set is global Pareto optimal, if there exists no Ss∈ Sx∈ which dominates every element of . s
 

A4   PROPERTIES OF THE OBJECTIVE FUNCTIONS 

 

Convexity of the Cost Function 

 

It is noted that the cost function is a continuously differentiable function of a single variable )( kiRc

kiR for each and ; where: iink ,..,2,1= si ,..,2,1=

 

         ⎥⎦
⎤

⎢⎣
⎡

−
−

−=
kiki

kiki
kiki

RR
RRfRc

max,

min,)1(exp)(                                                                              (1) 

 

Therefore by the second order derivative test is convex if)( kiRc )( kiRc ′′ 0≥ , ]1,0[∈∀ kiR . Since , 

and are fixed for any value of ,equation 1 is written simply as: 

min,kiR

max,kiR kif kiR

 

         ⎥⎦
⎤

⎢⎣
⎡

−
−

−=
Rk
kRfRc

2

1)1(exp)(                                                                                        (2) 

 

where , and are constants. For the purposes of the differentiation, equation 

2 may be denoted by = (*), where (*) represents the expression in the exponent of equation 2. 

min,1 kiRk = max,2 kiRk = kiff =

)(Rc exp

The first order derivative of equation 2, by the chain and quotient rules, is the following: 

 

         exp(*)
)(

))(1())(1()( 2
2

12

Rk
kRfRkfRc

−
−−+−−

=′    

 

         exp(*)
)(

))(1()( 2
2

12

Rk
kkfRc

−
−−

=′                                                                                   (3)                                                 
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The second order derivative of equation 2 is the following: 

 

         exp(*)
)(

))()(1(2exp(*)
)(

)()1()( 4
2

212

4
2

2
12

2

Rk
Rkkkf

Rk
kkfRc

−
−−−

+
−

−−
=′′  

 

         
[ ]exp(*)

)(
)(2))(1())(1()( 4

2

21212

Rk
RkkkfkkfRc

−
−+−−−−

=′′                                        (4) 

                                                                  

It is clear that , , 0)( 12 ≥− kk 01≥− kR 0)( 2 ≥− Rk and 0)1( ≥− f . Thus the right hand side of 

equation 4 is non-negative. It follows therefore that )( kiRc ′′ 0≥ . 

 

  Monotonicity & Concavity of the Subsystem Reliabilities    

 

The subsystem reliability are monotone increasing and 

concave functions defined on the convex set  where . 

)1(1),...,,(
1

21, ∏
=

−−==
N

j
jNiisub RRRRfR

NRS ⊂ NS ]1,0[=
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B. OVERVIEW OF BASIC RELIABILITY METRICS, 
FTA AND METHODS FOR  
THE DETERMININATION 

 OF CUT SETS 
 
 

B1   BASIC RELIABILITY METRICS      

 These are the failure and reliability functions, failure rate function (also called hazard function), and the 

mean life function.  

The Failure and Reliability Functions 

Failure and therefore reliability are modelled as functions of time. The failure function is defined 

by:  

)(tF

                                                                                                                        (B1.1) ∫=
t

dssftF
0

)()(

where is the time-to-failure or the life time of a component and is the probability distribution or 

density function (i.e. PDF) of t . is also called the cumulative failure function. Under binary 

assumptions the probability that a component is in operation, denoted by , is given as:              

 =                                                                   (B1.2) 

t )(sf

)(tF

)(tR

∫∫ =−=−=
T

t

t

dssfdssftFtR )()(1)(1)(
0

)( tTP ≥

)(tR is called the reliability or the survival function of a component, which is also the probability of the 

successful operation of a component for a mission timeT . It follows from (B1.2) that: 

               )()( tR
dt
dtf −=                                                                                                             (B1.3) 

The Failure Rate Function               

       The failure rate (an important metric) is the frequency with which a component or a system fails over 

time (ReliaSoft Corporation, 1996-2006). It is thus the rate of occurrence of failure which is instantaneous 

at every point in time. The instantaneous failure rate is called the failure rate function or hazard function 
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(Rao, 1992). The failure rate can be regarded as describing the number of components successfully 

performing their required functions at a given time in a population of components when others have failed 

(ReliaSoft Corporation, 1996-2006). The hazard function may therefore be defined in terms of the ratio of 

the components that have failed to those that have survived at a given time which represents a conditional 

probability of failure during a given time, given that there was no failure before the time. The hazard 

function is therefore expressed as: )(th

                    
)(
)()(

tR
tfth =                                                                                                           (B1.4) 

Substituting (B1.3) for  in (B1.4) yields the expression:   )(tf

                   
dt

tdR
tR

th )(
)(

1)( −=
)(
)()(

tR
tdRdtth −=⇔                                                                  (B1.5)                                

Integrating both sides of (B1.5) in the time interval and reliability in the interval and 

substituting the initial conditions yields the following result: 

],0[ t )](,1[ tR

                                                                              (B1.6)   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⇔−= ∫∫

tt

dtthtRdtthtR
00

)(exp)()()(ln

which is a general expression for the reliability of a component in terms of its hazard function. In the case 

where the failure rate is constant equation B1.6 reduces to: 

 

               
( ttR )λ−= exp)(                                                                  (B1.7)  

In this case is a constant denoted by)(th λ .Most mechanical and electronic components are known to 

exhibit constant failure rates (Carter, 1997) (especially during their useful life as depicted in the bath-tub 

curve), thus their reliability may be determined by (B1.7). The lifetime distribution for a component 

that exhibits a constant hazard rate (from (B1.4) and (B1.7)) is given by: 

)(tf

           ( ttf )λλ −= exp)(                                                                                                              (B1.8) 

which is the Exponential distribution.   
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The Mean Life Function 

     This provides a measure of the average time of operation before failure (i.e. expected life) of a non-

repairable component or system.  It is therefore defined as an expected value  of the time )(tE

 to failure and is given by:    

                                                                                                                              (B1.9) ∫
∞

=
0

)(.)( dttfttE

The function is referred to as the Mean-Time-to-Failure (MTTF) (Mettas & Savva, 2001). Substituting 

)(tR
dt
d

−  for  and integrating the resultant expression by parts (while letting as)(tf 0)( →tR ∞→t ) 

yields the mean life function in terms of the component reliability function, i.e. 

                                                                                                                         (B1.10) ∫
∞

=
0

)()( dttRtE

In the special case of constant failure rate the result becomes: 

                
λ
1)( =tE

MTTF
1

=⇒ λ                                                                                            (B1.11)                                   

Other less referred to metrics in the reliability literature are the variance function: which provides a 

measure of the variability in the failure times of components and systems, and the median and modal life 

functions which are also average measures of the component life time distribution function. 

B2   COMPONENT FAILURE TIME MODELS    

     Several statistical distributions can be used to model the failure times of both components and systems. 

Notable among them are the Exponential, Normal, Log-normal, Gamma and Weibull distributions 

(O’Connor, 1995).  Of these the latter is the most widely applied, since it fits many life time distributions 

(O’Connor, 1995). The PDF of the 2-parameter Weibull distribution is: 

      

,                                                                     (B2.1) 0≥t
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

β
β

β ηη
β tttf exp)( 1
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The scalars β andη  are parameters which provide important information about the distribution: β  

measures the variability in the failure times and describe the shape (i.e. skewness) of the distribution; η   

measures its spread or dispersion (O’Connor, 1995). When 1=β , the distribution is Exponential, 

therefore, the hazard rate is constant. β  > 1 indicates increasing hazard; it also indicates wear out 

failures. When β  = 3.44 the distribution approaches Normality.β < 1 implies decreasing hazard which is 

characteristic of the early life failures of components or systems.  The basic reliability metrics for the 

Weibull distribution are: 

 

          
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

β

η
ttR exp)(                                                                                                        (B2.2) 

          1)( −= β
βη
β tth                                                                                                                    (B2.3) 

         ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ=
β

η 11MTTF                                                                                                             (B2.4) 

where is a gamma function ( is a positive integer) defined by: Γ k

                                                                                                               (B2.5)  dxxxk k )exp()(
0

1 −=Γ ∫
∞

−

 

Figures B1 to B4 illustrate graphically the effects of the values of β andη on the Weibull distribution and 

its associated reliability metrics. ( ReliaSoft Corporation, 1996-2006).      
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                                         Figure B1: The effect of values ofβ on the Weibull distribution  

 

 

 

           
                      
                                      Figure B2: The effect of values of β on the reliability function 
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                                                         Figure B3: The effect of values ofβ on failure rate 
 
 
 
 
 
 
  

                      
 
                                                      Figure B4: The effect of η on the Weibull distribution 
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B3   THE RELIABILITY OF A PARALLEL-SERIES SYSTEM 

Refer to Figure 3.6.  The parallel-series system is made up of subsystems in parallel while each 

subsystem is made up of components in series. Let ,  , and be the reliability and failure 

probability of the  subsystem, and the  component in the  subsystem respectively 

, . 

m

n isubR , isubF , kiR

thi' thk ' thi'

mi ,...,2,1= nk ,...,2,1=

Note that:       

            +  = 1                                                                                                           (B3.1)   isubR , isubF ,

 

Since a subsystem is operational only when all of its components are operational it follows that: 

                                                                                                                          (B3.2) ∏
=

=
n

k
kiisub RR

1
,

Since the subsystems are in parallel, the system will fail only when all the subsystems fail. Therefore the 

system’s failure probability is: sF

                                                                                                                          (B3.3) ∏
=

=
m

i
isubs FF

1
,

The system’s reliability therefore is: sR

                                                                                                                       (B3.4) ∏
=

−=
m

i
isubs FR

1
,1

                                          ∏
=

−−=
m

i
isubR

1
, )1(1

                                                                                                                 (B3.5) ∏ ∏
= =

−−=
m

i

n

k
kiR

1 1

)1(1

 

 

B4   FAULT TREE ANALYSIS 

     A Fault Tree (FT) is a tool for both qualitative and quantitative analysis of systems’ risks and failure 

characteristics. It was developed on the basis of deductive logic starting with an event of system failure 

known as a Top Event, and deducing which sequences of component failures could lead to the top event. 

The logical interrelationship between the sequences of component failures is represented through logical 

connections known as logical gates, leading to a tree-like structure with the top event at the top, followed 

by intermediate events, and basic event at the extremes. The basic events are those for which failure rate 
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data or failure probabilities are available and which cannot be further evolved into other branches or 

events. 

     A FT is typically a Boolean logical diagram comprising primarily AND and OR gates. The output 

event of an AND gate occurs only if all of the input events occur simultaneously, and the output event of 

an OR gate occurs if any one of the input events occurs. The symbols commonly used in the construction 

of FT diagrams are those for AND and OR gates, as well as intermediate, basic, and incomplete events. 

These are displayed in Figure B1. 

 

 

 

          

      

 

 

 
Incomplete EventOR gate NOT gate AND gate Intermediate Event   Basic Event 

Figure B1: Common Boolean logical symbols used in FT diagrams  

 

 

     The symbol for the top event is similar to that for the intermediate one. The difference is that the one 

for the top event omits the vertical bar on top of that of the intermediate. An example of a FT diagram is 

shown in Figure B2. The figure denotes the top event as T, the four intermediate events as to , the 

five logical gates four of which are labelled as to , and the basic events as to . 

1I 4I

1G 4G 1E 6E
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4G  

 

 

4E3E   

 

 

 

 

 

 

Quantitative Analysis of FT 

Two basic techniques are used to evaluate the chance of occurrence of the top event in FTs. These are 

using: (i) Boolean algebra and the logical structure of the FT, and (ii) a numerical approach that combines 

the basic event probabilities using the laws of probability and the logical structure of the FT. The minimal 

cut sets may also be deduced from the FT. The first technique is applied to the FT in Figure B2 to express 

the top event T in terms of the basic events. This is achieved by expressing the top event in terms of the 

events immediately succeeding it in the hierarchy and so on until all other events have been replaced 

leaving only the basic events. In Boolean algebra AND and OR denote product and sum respectively.  

5E

6E

1I  

4I

                Figure B2: Example of a FT diagram (Source: Billinton and Allan, 1992) 
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The required results are: 

                      21 IIT +=

                         )()( 4231 IEIE ++=

                             
652431

652431 ))(())((
EEEEEE

EEEEEE
+++=

+++=
 

 

Where the probabilities  are known, )( iEP 6,..,2,1=i then the probability of the top event is 

evaluated by: 

)(TP

)()()()()()()( 652431 EPEPEPEPEPEPTP +++=  
 

The FTA in Five Steps 

• Define the undesired or top event  

• Obtain an understanding of the system under study 

• Develop the fault tree 

• Evaluate the fault tree 

• Control the hazards identified. 

 

B5   METHODS FOR DEDUCING MINIMAL CUT SETS. 

     Where a system is simple the minimal cut set can normally be identified by inspection with little or no 

difficulty. The task becomes more difficult in larger and more complex systems. In such cases a 

systematic approach is needed and there are many such approaches (Billinton and Allan, 1992).  Two of 

the methods which are suitable for network or topological type problems and discussed by Billinton and 

Allan (1992) are presented here. 

 

Method 1 (Steps) 

(i) Deduce all minimal paths ( A minimal path is defined as a path between input and output such 

that no node or intersection between branches is traversed more than once); 

(ii) Construct an incidence matrix that identifies all components in each path; 

(iii) If all elements of any column of the incidence matrix are non-zero, the component associated 

with that column forms a first order cut; 

(iv) Combine two columns of the incidence matrix at a time. If all elements of the combined columns 

are non-zero, the components associated with three columns form a second order cut 

Eliminate any cut containing first order cuts to give the second order minimal cuts; 
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(v) Repeat step (iv) with three columns at a time to give the third order cut sets; 

(vi) Continue until maximum order of cut has been reached 

Method 2 (Steps) 

(i) Deduce all minimal paths 

(ii) Deduce all first order cuts of path 1; these being the components in the path 

(iii) Deduce all first order cuts of path 2 and combine in all possible ways with all cuts from path 1. 

Eliminate duplicated combinations, non-minimal cut sets and cut sets of order greater than 

that required. 

(iv) Take the next path and combine all of its first order cuts with those remaining after step (iii). 

Eliminate cuts as in step (iii). 

(v) Repeat step (iv) until all paths have been considered.  

 

Deducing FT Minimal Cut Sets 

     This method is suitable for deducing the minimal cut sets of fault trees (Billinton and Allan, 1992). It 

starts with the top event and proceeds as follows: 

(i) If the top event gate  is an OR gate, write down the inputs in terms of basic events and input gates 

as separate items in a list; 

(ii) If the top event gate is an AND gate, write down the inputs in terms of basic events and input 

gates as one single item in a list; 

(iii) Consider each gate in the new list and replace it as in (i) if it is an OR gate or as in (ii) if it is an 

AND gate; 

(iv) Repeat (iii) continuously for each new list until all items in the list is in terms of basic events. 

Eliminate any row of this list if  it is not a minimal set, i.e., if another item in the list is 

contained within it; 

(v) The resulting list after completing all the above steps is the list of minimal cut sets. 

 

Applying the above method to the FT in Figure B2 produces the deductions shown below: 
 
                           311 GEG → 43131 EEEGE → 431 EEE
 

                                          2G →2G
⎩
⎨
⎧

4

2

G
E

→4

2

G
E

⎩
⎨
⎧

6

5

2

E
E

E
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The cut sets are:  , , , and . Since occurs also in the first on the list the minimal cut 

sets are: , , and . 

431 EEE 2E 5E 3E 3E

2E 3E 5E

 

B6   RELIABILITY IMPORTANCE OF COMPONENT 5 OF SENARIO 3 PROBLEM  

The system reliability expression for the bridge system (see Figure 3.11) discussed under Scenario 3 of 

Chapter Six is given by Sheloker et al (2002) as follows: 

 

              
5321543143215421543254321

5415324321

2 RRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRs

−−−−−
++++=

                  (B1) 

The (static) Birnbaum component reliability importance metric for component 1 is: 

                                         (B2) 25345342354254324521 2 RRRRRRRRRRRRRRRRRRRI B −−−−++=

 Substituting the reliability value of 0.5 for the components yield the result:   

                  375.01 =BI

The reliability importance of component 2 is: 

                                          (B3) 53143154154354315312 2 RRRRRRRRRRRRRRRRRRRI B −+−−++=

Substituting the component reliability values of 0.5 in B3 yields the same results as those for and :                          

 = =           

BI3
BI4

375.02 =BI BI3
BI4

     = 0.125         231431421432542141325 2 RRRRRRRRRRRRRRRRRRRRI B −−−−++=

The reliability importance of component 5 is therefore the least. 

. 
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C. THE SCO MODELS DISCUSSED BY SHELOKER ET AL 

 AND SALAZAR ET AL 

 
C1   THE SCO MODELS OF SHELOKER ET AL AND SALAZAR ET AL. 

 

     The SCO models presented by Sheloker et al (2002) and those by Ravi et al and Rocco et al discussed 

by Salazar et al (2006) are reproduced here. They seek to assign reliability to the components of the LSS 

at minimum cost.  

     The models involving two different cost function formulations were presented under two cases  

The Cost functions of the system are minimised subject to lower and upper bound constraints on both 

system and component reliabilities. and

sC

iK iα ( 4,3,2,1=i ) are scalars representing the system’s physical 

characteristics. The overall reliability expression for the LSS was given as: 

 
2

4123
2

413 )]}1)(1(1[1){1()]1)(1[(1 RRRRRRRsR −−−−−−−−−=  

 

Case 1 

     Min 4321
44332211 2222 αααα RKRKRKRKsC +++=

 

       : subject to

                           ,      15.0 ≤≤ iR 4,3,2,1=i

                            19.0 ≤≤ sR

                          ,1001 =K ,1002 =K ,1003 =K 1504 =K  

                      6.0=iα ,             4,3,2,1=i

 

Case 2 

       Min
i

i
i

i RKsC
α

π
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= ∑

= 2
tan

4

1

 

        : subject to

                            ,       15.0 ≤≤ iR 4,3,2,1=i
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                             199.0 ≤≤ sR

                                    ,251 =K ,252 =K ,503 =K 5.374 =K ,      0.1=iα   ∀ i  

 

The SCO models discussed by Salazar in respect of Ravi et al and Rocco et al were the same as that 

presented under case 1 above. The difference was in the algorithms employed for their solutions.  

The minimum cost was approximately 641.8 for all the cases. 
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D. FAULT TREE DIAGRAM AND CUT SET 

ANALYSIS OF THE DGI 

 
D1    FAULT TREE DIAGRAM OF THE DGI FAILING CLOSED 
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D2    ANALYSIS OF FT IN TERMS OF CUT SETS 

 

The Boolean Algebra for this system failing closed is as follows:- 

 

 T = G1 + G2   

    =  G3.G4 + (G5 + G6) 

 

  G3 = G7 + A1(c) + S1 + M1(c) + N1(c) + F1 

  G4 = G8 + A2(c) + S2 + M2(c) + N2(c) + F2 

 

substituting for G7; = [(A1(o).M1(o))] 

 

       G3 = A1(o).M1(o)) +A1(c) + S1 + M1(c) + N1(c) + F1  

 

substituting for G8; [+(A2(o).M2(o))] 

 

       G4 = A2(o).M2(o)) + A2(c) + S2 + M2(c) + N2(c) + F2  

 

G1 = G3.G4 = A1(o).M1(o).A2(o).M2(o) + A1(o).M1(o).A2(c)  + A1(o).M1(o). S2  + A1(o).M1(o). 

M2(c) + A1(o).M1(o). N2(c)  + A1(o).M1(o). F2 + A1(c). A2(o).M2(o) + A1(c). A2(c)  + A1(c). S2  + 

A1(c). M2(c) + A1(c). N2(c) + A1(c). F2 + S1. A2(o).M2(o) + S1. A2(c) + S1. S2 +  S1. M2(c) + S1. 

N2(c) + S1. F2 + M1(c). A2(o).M2(o) + M1(c). A2(c) + M1(c). S2 + M1(c). M2(c) + M1(c). N2(c) + 

M1(c).F2 + N1(c). A2(o).M2(o) + N1(c).A2(c) + N1(c). S2 + N1(c). M2(c) + N1(c). N2(c) + N1(c). F2 + 

F1. A2(o).M2(o) + F1. A2(c) + F1. S2 + F1. M2(c) + F1. N2(c) + F1. F2 

 

  G5 = G9.G10 

 G9 =   A1(o).M1(o). 

 G10 = N2(o) + R2 

 

 G5 = A1(o).M1(o).(N2(o) + R2 

       = A1(o).M1(o).N2(o) + A1(o).M1(o). R2  

 

  G6 = G11.G12 

 G11 = A2(o).M2(o) 
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 G12 = N1(o) + R1 

 

 G6 = A2(o).M2(o).(N1(o) + R1) 

        = A2(o).M2(o).N1(o) + A2(o).M2(o).R1 

 

 G2 = G5 + G6 

      = A1(o).M1(o).N2(o) + A1(o).M1(o). R2 + A2(o).M2(o).N1(o) + A2(o).M2(o).R1 

 

 T = G1 + G2 

 

 = A1(o).M1(o).A2(o).M2(o) + A1(o).M1(o).A2(c)  + A1(o).M1(o). S2 +  A1(o).M1(o).M2(c) + 

A1(o).M1(o). N2(c)  + A1(o).M1(o). F2 + A1(c). A2(o).M2(o) + A1(c). A2(c)  + A1(c). S2  + A1(c). 

M2(c) + A1(c). N2(c) + A1(c). F2 + S1. A2(o).M2(o) + S1. A2(c) + S1. S2 +  S1. M2(c) + S1. N2(c) + 

S1. F2 + M1(c). A2(o).M2(o) + M1(c). A2(c) + M1(c). S2 + M1(c). M2(c) + M1(c). N2(c) + M1(c).F2 + 

N1(c). A2(o).M2(o) + N1(c).A2(c) + N1(c). S2 + N1(c). M2(c) + N1(c). N2(c) + N1(c). F2 + F1. 

A2(o).M2(o) + F1. A2(c) + F1. S2 + F1. M2(c) + F1. N2(c) + F1. F2 + A1(o).M1(o).N2(o) + 

A1(o).M1(o). R21 + A2(o).M2(o).N1(o) + A2(o).M2(o).R1 

 

No further reduction is possible giving a very unwieldy expression which contains the following; 

 

   0 - 1st order  cut sets   

   25  - 2nd order cut sets 

   14  - 3rd order  cut sets 

   1    - 4th order  cut set 

 

The most significant result is that there are 25 permutations for any two failures to cause a failure to 

supply. No single failures would result in failure to supply. The 3rd and 4th order cut sets (combinations) 

can effectively be ignored as the probabilities of these occurring are far smaller than the second order cut 

sets. 
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 E. THE MCO MODEL PRESENTED IN POWER POINT  

TO THE GAS SUPPLY COMPANY 
E1 THE SLIDES 
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GROUP
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STEPHEN TWUM

 
 

                                 

OUTLINE

BACK GROUND
THE MODEL
ASSUMPTIONS
APPLICATIONS/EXTENSIONS
BENEFITS
CONCLUSIONS
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WORK CARRIED OUT SO FAR
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THE MODEL

MAXIMISE:       [RSUB1, RSUB2,...,RSUBK]
MININIMISE:    [COST OF INCREASING RELIABILITY]

SUBJECT TO:  MIN CONSTRAINT ON RSUBi, i=1,2,...,K 
MIN & MAX CONSTRAINTS ON   
COMPONENT RELIABILITIES  

CRITERIA:                          SUBSYSTEM RELIABILITY & COST
DECISION VARIABLES:  COMPONENT RELIABILITY 

 
 

                            

ASSUMPTIONS

SERIES-PARALLEL SYSTEM

NETWORKS REDUCIBLE TO SERIES-PARALLEL

COST =  SUM OF COMPONENTS’ COST AT  
GIVEN RELIABILITY

INDEPENDENT COMPONENTS

BINARY SYSTEM

 
 

   

PURPOSE 

RELIABILITY IMPROVEMENT OF EXISTING 
DESIGNS  

OPTIMAL RELIABILITY FOR NEW DESIGNS

COST –BENEFIT OF RELIABILITY ANALYSIS       
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BENEFITS

COMPONENT RELIABILITY NECESSARY TO  
MAX. SYSTEM RELIABILITY AT MIN. COST

VARIETY OF POTENTIAL DESIGNS

TRADE-OFFS BETWEEN COST AND   
RELIABILITY

SENSITIVITY OF THE SYSTEM

 
 

                             

BENEFITS (CONT.)

COMPT CODE OUTAGE 
RATE/YR

INITIAL 
RELIABILITY

ACHIEVED 
RELIABILITY

0014 0.8600 0.42232 0.9900

0007 0.0340 0.9666 0.9855

0008 0.0560 0.9455 0.9620

0005 0.0230 0.9773 0.9773

0002 0.1800 0.8353 0.9999

0013 0.9300 0.3946 0.9194

0016 0.8800 0.4148 0.8895

0006 0.0700 0.9324 0.9417

0001 0.2000 0.8187 0.8443

0004 0.0760 0.9268 0.9381

0003 0.0900 0.9139 0.929

EXAMPLE 1:    BREAKER-AND-HALF SYSTEM    (FF=0.9)

INITIAL SYSTEM RELIABILITY = 0.27843
OPTIMISED SYSTEM RELIABILITY = 0.947601
COST OF OPTIMISED YSTEM RELIABILITY = 301.23

 
 

                             

BENEFITS (CONT.)
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EXAMPLE 2: VARIETY OF SYSTEM DESIGNS

CO
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CONCLUSIONS
MODEL: 

DECISION-MAKING AID/TOOL

RELIABILITY DESIGN OF NEW SYSTEMS

RELIABILITY IMPROVEMENT OF EXISTING SYSTEMS

RELIABILITY DESIGN OF SERIES-PARALLEL SYSTEMS 

 
 

                           

THANK YOU
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