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Abstract

In this thesis a robotics-based model for simulating reaching experiments is presented.
First, I will focus on simulating visual attention in choice-reaching tasks. In such
experiments participants are asked to make rapid reach movements towards a target
that is presented with distractors. Interestingly, these studies found that in a high
number of trials movements were initially directed towards a distractor and only
later were adjusted towards the target (e.g. Song & Nakayama, 2008b). In order
to understand the complex behaviour in such tasks I will follow a robotics based
approach and simulate numerous choice-reaching tasks.
The second part of this thesis will deal with phenomena of goal-directed reaching
such as the speed-accuracy trade-off of Fitts’ law (Fitts, 1954) which states that the
movement time of reaching movements increases with the distance and decreases with
the size of the target object. In the simulations I will demonstrate the human-like
goal-directed reaching behaviour of my model. Moreover, due to its feedback-based
architecture my model offers an alternative explanation to the popular two-component
models of the goal-directed reaching process (e.g. Meyer, Smith, Kornblum, Abrams,
& Wright, 1990).
My model utilises a real-world LEGO robot and required the implementation of
multiple underlying processes and the handling of different sources of noise. To link the
model with the control of the robot I applied the neurological plausible framework of
the dynamic field theory of Erlhagen and Schoener (2002). The successful simulations
demonstrated that my model can give further insight in the nature of goal-directed
reaching and the choice-reaching tasks.
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1. Introduction

1.1. Motivation

Humans possess a highly efficient vision-action system which enables them to interact

with their environment. One important example for such an interaction is reaching.

I will focus on the underlying processes that are involved to successfully plan and

execute reaching movements and on how these processes are encoded in the human

brain.

Even for a seemingly simple task such as reaching for a target on a table with objects

several steps have to be completed to eventually land with the hand on the target.

First, the target needs to be attended and identified whereas nearby distractor objects

have to be ignored. Next, the movement has to be planned by specifying a trajectory

and selecting an appropriate movement speed in order to interact with the selected

object. Finally, potentially occurring changes in the environment like moving objects

have to be detected and after the movement initiation the movement itself has to be

supervised in order to react towards unexpected perturbations and the noise in the

human motor system.

In this PhD a cognitive robotics approach will be taken to understand the mechanisms

behind these processes. Hereby the aim is two fold: First, I develop a model utilising

a robotic arm that mimics human reaching behaviour in choice-reaching tasks. Recent

experimental evidence in cognitive psychology suggests that such tasks can shed new

1



1. Introduction

light on cognitive processes, such as visual attention, memory, or language processing

(see Song & Nakayama, 2009; for a review). In these experiments participants are asked

to make rapid visually-guided reaching movements towards a target. The trajectories

of these movements often reflect important characteristics of the underlying cognitive

processes that are involved in order to determine the target and to coordinate the

reaching process. For instance Song and Nakayama (2008b) found evidence for the

fact that the target selection process operates in parallel with the movement planning

process and can affect an already initiated movement. Experiments applying the

choice-reaching task paradigm can unveil the complex interactions of those cognitive

processes better than traditional reaction time experiments. Examples for such tasks

that I will focus on are the odd-colour task on visual attention of Song and Nakayama

(2008b), tasks regarding the spatial averaging effect by Chapman et al. (2010a) and

the Simon effect (e.g. Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010). The

model that I will develop accounts for their empirical findings focusing on evidence

for visual attention from reach movements in visual search tasks and the influence

of visual attention on the movement execution. Moreover, I aim to simulate these

experiments with human-like behaviour, i.e., with a straight, jerk-free trajectory

and a bell-shaped velocity profile as it typically is observed in human reaches (e.g.

Jeannerod, 1984).

In the second part of this thesis I focus on the question how the brain plans and

executes goal-directed movements. Until recently, there has been consensus that

reaching is controlled by two phases like it is suggested by the two-component model.

The origins of this model go back to Woodworth (1899) (see Elliott, Helsen, & Chua,

2001; for a review). It suggests that the first part of a reaching movement is a

ballistic pre-planned impulse where no feedback is used. In contrast, the second

component consists of an online controlled reaching movement that guides the hand

to the target. However, recently it has become increasingly clear that even the early

2



1. Introduction

phase is influenced by visual information (see Elliott et al., 2010; for a recent review).

Moreover, it is possible to go so far to say that reaching is under continuous control of

visual information as proposed by the model of Hoff and Arbib (1993) (or see Saunders

& Knill, 2005; for a recent instalment). Crucial for their model is the assumption of an

internal model based on the control theory which generates movements by minimising

the jerk of the trajectory. The application of internal models in the reaching process

that are able to deal with the visual processing delay later was established by Miall

and Wolpert (1996). In fact, my model of the choice-reaching tasks implements

online control in a neurologically plausible manner. Crucially, my model assumes that

such an internal model exists and enables a fairly good online control. Hence, the

choice-reaching model seems to be a good base for simulating goal-directed reaching

experiments. However, besides visual feedback (which my model uses) humans have

access to a broader range of sensory feedback (e.g. proprioceptive feedback) and can

even estimate the hand position with forward models. Hence, my model should be

considered as a simplified internal model in order to study the consequences of target

properties and perturbation effects on various measures. The simulations for the

goal-directed reaching will aim to simulate the goal-directed reaching process with

typical effects such as the speed-accuracy trade-off of Fitts’ law (Fitts, 1954) and

perturbations of target and hand (e.g. Heath, Hodges, Chua, & Elliot, 1998; Saunders

& Knill, 2005).

In order to understand the findings of Song and Nakayama (2008b) and other reaching

studies I will apply the framework of cognitive robotics. Due to the complexity

of the experimental results and the underlying cognitive processes of the human

reaching process this modelling approach offers advantages in comparison with the

classical psychology. For both the choice-reaching tasks and the goal-directed reaching

experiments I am presenting a computational model that realizes a control architecture

which suggests a neurologically plausible mechanism. I use a purely closed-loop

3



1. Introduction

approach where sensory information constantly updates the movement parameters

such as speed and direction of a robot arm in a feedback-based manner. In order

to demonstrate that this approach yields a human-like performance I will simulate

numerous experiments and discuss how my model can explain cognitive processes

such as target selection and motor planning/control during the reaching process with

its single-process architecture in respect to existing models or theories.

1.2. Goal-directed reaching

This section aims to lay the foundation for the simulations of the experiments in

the following chapters by presenting the relevant literature regarding goal-directed

reaching. Since the early study of Woodworth (1899) it has been controversial how

reaching movements are planned and controlled. Three general approaches haven

been suggested: the purely feedback-based closed-loop approach (e.g. Hoff & Arbib,

1993), the open-loop approach that solely relies on planning (e.g. Plamondon & Alimi,

1997) or the hybrid two-component models that combine the other two approaches

(e.g. Glover, 2004). Following recent evidence of early online control (Elliott et al.,

2010) my model will be based on the closed-loop approach in order to simulate the

human reaching process. While I will give a detailed review of these approaches and

existing models that apply those in chapter 2.1 here I am going to give a general

overview of the research regarding goal-directed reaching.

Crucially for understanding the goal-directed reaching process have been experiments

regarding the speed-accuracy trade-off like it is observed in Fitts’ law tasks (Fitts,

1954). Fitts’ law states that there is a mathematical relation between the movement

time of a reach and the target object’s size and distance, i.e., larger and nearer

objects can be reached faster (see chapter 5.1 for a more detailed review). In the

last decades many different explanations have been suggested to give a reason for the
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existence of Fitts’ law. For instance the popular stochastic optimized-submovement

model by Meyer, Kornblum, Abrams, and Wright (1988) suggests that it results from

the fact that the body has to strike a balance between force (speed) and precision.

Thus, a high force in the initial movement implies a low endpoint accuracy so that

additional submovements could be required to successfully reach the target. Vice

versa a low force results in a slow movement speed but a higher accuracy. The body

balances those constraints in a way that the total reaching time is minimized which

depends on the target distance and width, hence Fitts’ law can be explained. However,

recent evidence from Elliott et al. (2010) and colleagues found that online control is

used much earlier in the movement than previously thought, even during the initial

movement phase. This questions Meyer et al.’s (1990) model which is a hybrid model

that strictly separates the initial (pre-planned) movement and the online-controlled

submovement phase. Hence, new explanations arose to account for those findings.

The model I present will simulate numerous goal-directed reaching experiments. Its

closed-loop architecture offers an alternative explanation for the long time accepted

view of a strictly separated planning and online-control phase like in Meyer et al.’s

(1988) model. I investigate how Fitts’ law and other typical effects are explained with

the framework of my model.

In chapter 5 I will present the goal-directed reaching model in detail and simulate

typical experiments for goal-directed reaching: Two experiments regarding the speed-

accuracy trade-off (e.g. a Fitts’ law task) and two with a target and hand perturbation

paradigm will be simulated. While the first group of experiments shows the relation

between speed and accuracy of reaching movements and how kinematic markers

change with different target properties the second group gives further support for my

model by dealing with situations in a dynamically changing environment. Combining

the evidence of both kinds of experiments I give an alternative interpretation to

two-component models and the question how humans achieve goal-directed reaching.
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The framework for my model is the dynamic field theory of Erlhagen and Schoener

(2002) which will be introduced in greater detail in chapter 1.5. The dynamic

field theory assumes that movement parameters are topologically represented in the

brain and therefore possesses a neurological plausibility. Moreover it postulates that

the dynamic neural processes of competition are crucial for understanding human

behaviour albeit for the preparation of movements. My model implements the

competition processes within the model’s modules with the mathematical formalism

used in the dynamic field theory.

1.3. Choice-reaching tasks

The choice-reaching tasks will play a major role in this thesis. Here I am going to

introduce empirical findings on evidence for visual attention from reach movements

in several choice-reaching tasks (e.g. Song & Nakayama, 2006, 2008b). Therefore

the relevant literature regarding visual attention in visual search tasks in general and

choice-reaching tasks in particular will be reviewed here. Later in chapter 2 I will

present my model and in the chapters 3 and 4 the simulations of various experiments.

In contrast to the goal-directed reaching tasks in a choice-reaching task several ob-

jects compete for action and attention. A classical assessment of visual attention

is the visual search task (see J. M. Wolfe, 1998; for an introduction). In this task

participants see a number of items on the screen and are asked to indicate whether

a pre-defined target item is present or absent by pressing a designated button on

a keyboard. Typically the speed with which they produce this response (reaction

time) is seen as a signature for the way selective attention is influenced by visual

characteristics of such displays. For instance, a red bar among green bars is faster

detected/attended than a red bar among green and yellow bars (see J. M. Wolfe,

1998; Muller & Krummenacher, 2006; for reviews). In the last decade choice-reaching

6



1. Introduction

tasks have been developed to investigate such effects. In a choice-reaching version of

the visual search task participants are asked to reach for the target object and the

reaching trajectory is recorded. These tasks offer the advantage that the whole time

course of the movement (trajectory) is available to be analysed.

The choice-reaching tasks have been used to analyse a broad range of cognitive abilities

(see Song & Nakayama, 2009; for a review). Here I present several examples. The first

example concerns the representation of numbers (see Feigenson, Dehaene, & Spelke,

2004; for an overview). Pivotal evidence for this representation comes from tasks in

that participants have to decide which of two simultaneously presented numbers is

larger. This decision is faster/more accurate the larger the difference between the

numbers is (“numerical distance effect”). Song and Nakayama (2008a) examined this

effect in a choice-reaching task (see Figure 1.1). They presented three boxes on a

screen with a number in the central box. Participants were asked to reach for the

box on the left if the number is smaller than five and for the box on the right if the

number is greater than five. The results showed that the closer the number is to

five the more the reaching trajectories are shifted towards the centre box. Song and

Nakayama (2008a) interpreted this as direct evidence for a spatial representation of

numbers in the brain as the numerical difference directly influenced the spatial nature

of the reaching trajectory.

The second example concerns language processing. In Spivey, Grosjean, and Knoblich

(2005) participants saw two pictures of objects on the screen and after hearing an

the name of one of the objects they were asked to click with a computer mouse on

the corresponding picture. The results showed that the more phonological similar

the non-target object was the stronger the mouse trajectory deviated towards the

non-target picture. This was seen as direct evidence for a dynamic decision process,

often termed competition process, occurring in the phonological processing of words.

The third example is the odd-colour task of Song and Nakayama (2006, 2008b) which

7



1. Introduction

1 4 5

Figure 1.1.: Evidence for spatial representation of numbers from the choice-reaching
task of Song and Nakayama (2008a). Participants were instructed to reach for the
box on the left if the number is smaller than five and for the box on the right if the
number is greater than five. The value of the number influenced the curvature of
the reaching trajectory which suggests a spatial representation of numbers in the
brain. Figure adapted from Song and Nakayama (2008a).

concerns visual attention and forms the basis for my computational model and the

experiments in this thesis. Song and Nakayama (2006, 2008b) published a series of

experiments in which they investigated the target-selection process. In their choice-

reaching task different objects competed for attention and action and participants were

required to make rapid reach movements toward the search target. The search displays

consisted of a green square among red squares and vice versa and the participants’

task was to reach for the odd-coloured square. Note that the target could be easily

reached with straight trajectories. Despite this, Song and Nakayama found that in a

high number of trials, movements were initially directed toward a distractor and only

later were adjusted toward the target (see Figure 1.2). These “curved” trajectories

occurred particularly frequently when the target in the directly preceding trial had

a different colour and differed significantly from “straight” trajectories in the other

conditions.

Song and Nakayama’s explanation of these findings can be summarized as follows.

They stipulated that the selection process operates in parallel to the execution of the

movement and that the selection process is implemented as a dynamic competition

between search items. Hence, in curved trajectories initially the target colour from

8
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Figure 1.2.: Reaching trajectories of the odd-colour task of Song and Nakayama
(2008b). On the left hand side a straight trajectory of the single-target condition
is displayed. On the right side the search display of the choice-reaching task with
the three objects can be seen. Participants had to reach toward the odd-coloured
object. The reach trajectories were often initiated toward a distractor object and
corrected in flight. Example trajectories are displayed in green, straight baseline
reaches in black and their standard deviation with dashed lines. Figure depicted
from Song and Nakayama (2008b).

the preceding trials preactivates or primes distractor objects directing the compet-

ition toward the distractors. Consequently the reach movement is guided toward a

distractor. Their interpretation was supported further by the fact that the reaction

time (or initial latency, the time between search display presentation and start of

the movement) was shorter in curved trajectories compared to the initial latency in

trials with straight trajectories. Hence because the movements started earlier they

are influenced by the erroneous selection due to the priming effect.

The curved trajectories did not have additional costs in terms of total time com-

pared with straight trajectories. However, they had shorter reaction times but longer

movement durations. Participants traded reaction time for movement time as quicker

target decisions increased the probability of a wrongly selected target which has to

be corrected in-flight. Therefore, the authors suggested, the reaching process can

be divided in a target selection and a movement coordination sub-process. Both

9
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sub-processes operate in parallel, so that a target re-selection can take place during

the movement. The model presented in the the second chapter will follow Song and

Nakayama’s interpretation of their findings. In fact, Song and Nakayama’s view of

the selection process as a dynamic competition process is also held by one of the most

popular theory on visual attention (e.g. Chelazzi, Müller, Duncan, & Desimone, 1993;

Desimone & Duncan, 1995; Duncan, 2006).

Another choice-reaching task example is the experiment of Chapman et al. (2010a,

2010b). There participants had to initiate reaches towards a different number of

potential target objects while the final target object only was revealed after movement

onset. Their main finding was that the reach trajectory initially pointed towards a

location in between the potential targets and later changed the direction towards

the final target object. Moreover, the initial pointing direction was not just directed

arbitrarily in between the potential target objects but an average of those objects

and very sensitive towards changes such as shifted locations of the potential targets

to the sides or different numbers of potential targets. In a second set of experiments

Chapman et al. (2010b) showed that this so-called spatial averaging effect also is

influenced by short-term experience of previous trials. They demonstrated that a series

of repetitions on one target side leads to a biased trajectory towards this side. They

suggested that overlapping hills of neural activity are responsible for the observed

averaging effects. These activations can be weighted depending on the trial history or

number and location of the objects producing the averaging effect.

The last example of the choice-reaching tasks presented here regards the Simon

effect which is an interesting effect for investigating perception, attention, and action

planning. In a classical Simon task participants are required to press a button (on

the left or the right side) whereas the target button is encoded by the colour of a cue

object. A response conflict arises as the cue’s location (which can also be on the left

or the right side) has to be ignored (see Simon, 1990; for a review). There exist a
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few recent experiments applying the choice-reaching paradigm to the Simon effect.

Hereby a setting of the Simon task is combined with a task required visually guided

reach; e.g. a coloured cue object is placed on either the left or the right side, whereas

the cue colour encodes the to-be-reached side.

I will briefly present the choice-reaching task of Scherbaum et al. (2010) in the follow-

ing. They conducted a choice-reaching experiment of the Simon effect where a visual

guided reach was required. In their study they analysed the trajectories of mouse

movements as a whole in order to explore the trial-to-trial influence on the Simon

effect. Scherbaum et al. (2010) were able to separate the influences of location and

congruency of current and previous trials on the trajectory. With this technique they

found an influence of the response in the previous trial early in the trajectory of the

current trial as well as an influence of the congruency of the previous trial on a later

stage of the reaching process. Their choice-reaching task setup and the measured

movement trajectories allowed them to separate those influences which would not

have been possible with a standard button press task.

In this section I presented numerous examples of choice-reaching tasks from the

literature that demonstrated that those tasks are a useful tool to investigate various

cognitive effects. Due to their paradigm and the fact that the whole movement tra-

jectory is recorded otherwise hidden processes can be revealed and give further insight

on how the human brain selects target objects and executes reaching movements.

1.4. Neurobiological evidence

My model will utilize a neurologically plausible framework which will be introduced

in the following section. In order to discuss the predictions of my model in this area

I am going to introduce the recent neurobiological research regarding the reaching

process here. Research of brain imaging studies brought further insight about the

11
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human brain and its encoding and processing of reaching movements. Several brain

areas were found to be important for the reaching process namely the posterior

parietal cortex (PPC), the primary motor cortex (M1, broadmann area 4) and the

premotor cortex (PM, 6) (see Kalaska, Scott, Cisek, & Sergio, 1997; for a review).

These areas receive sensory input from the parietal occipital visual area (PO) and

transform its preprocessed visual information together with further sensory input such

as proprioceptive feedback into a motor signal.

The PPC has been suggested as an area responsible for linking sensation and action

and plays a major role in goal-directed reaching (Buneo & Andersen, 2006). It consists

of many functional subdivisions: amongst others the superior parietal lobule (SPL,

5), the inferior parietal lobule (IPL, 7), intraparietal cortex areas (LIP, MIP, VIP),

the parietal reach region (PRR) and the medial dorsal parietal area (MDP). Target

representations in different coordinate systems (eye-, head-, shoulder- or hand-centred)

were found in many of the sub-areas of the PPC (e.g. SPL, VIP, LIP) (Kalaska et al.,

1997; Desmurget & Grafton, 2000). Moreover, this area appears to be the location

where movements are planned and prepared. However, it still remains unknown in

which coordinate system or space the planning of the movement takes place. Also it

remains unclear if the PPC plays a major role for the online control of movements

or if this takes place at a later stage in the motor and premotor areas (Buneo &

Andersen, 2006).

Areas within the PPC which seem to be important particularly for reaching are

the PRR and the MIP. The PRR is suggested to transform visual information into

movement plans for reaching (e.g. Scherberger & Andersen, 2007). Also it is assumed

that this area represents limb movements in eye-centred coordinates (Andersen &

Buneo, 2002). The MIP also seems to be involved into arm reaching as it represents

targets in a hand-related space by combining hand and target-related information and

is interconnected with the motor areas (Cisek, 2007).

12
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Further areas which are important at later processing stages when a motor signal has

to be generated are M1 and PM, however, there are multiple hypotheses about their

exact functionality. The premotor areas were found to process a wide range of signals

such as proprioceptive, visual and motor command signals. It is assumed that these

areas integrate the information about the position of arm and hand (proprioceptive

and visual). Furthermore visual stimuli were found to influence PM cell activity as

well as motor and attention-orienting instruction. This suggests that the PM areas

are involved in the processing of visual, attentional, and motor signals (see Wise,

Boussaoud, Johnson, & Caminiti, 1997; for a review). Also the PM often encodes

similar potential target related information than the PPC (Cisek, 2007). The motor

cortex M1 shows also similar responses and representations of stimulus and target

locations, but appears to be involved more in generating movement directions and

limb movement signals whereas the PM areas shows more target related responses

(see Wise et al., 1997; for a review). Another brain area that could be involved in

the goal-directed reaching process is the cerebellum. This area is suggested to be the

location of a forward model that can make use of outgoing motor signals and estimate

their consequences, i.e., the expected future position of the limb (see Miall & Wolpert,

1996; Desmurget & Grafton, 2000; for reviews). In chapter 6.4 I will come back to

neurobiological evidence and will discuss above evidence in the context of the control

architecture of my model.

1.5. Neural field theory

The mathematical framework of my model is the dynamic neural field theory (DNFT)

of Erlhagen and Schoener (2002) and Erlhagen and Bicho (2006). The model itself will

be introduced in chapter 2.3, but in order to gain a better understanding of its modules

the qualitative and quantitative assumptions of the DNFT will be presented here.
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Figure 1.3.: Example of a dynamic neural field. The top graph shows the topological
encoding of a movement direction in degrees of heading (0 to 360). The bottom
graph illustrates a possible output activation (see also neuron colours in top graph)
that could be the result of the neural field dynamics. In this particular case the
output activation represents a movement heading of approximately 150◦ as the
neuron corresponding to this direction has the highest output activation.

The DNFT stipulates that the brain topographically represents movement parameters

in a neural layer (or field). In such a representation, similar parameter values are

encoded in a spatial neighbourhood whereas very different values are represented at

locations that are far apart in the neural field. The output activation of the neural

field indicates a probability on how likely it is that a particular parameter value

influences the movement. Figure 1.3 illustrates this for encoding the direction of

movements.

There is biological evidence that parameters are encoded in a similar way in the human

or animal brain. For instance there exist motor cortex cells representing the movement

direction in monkeys (Bastian, Schoener, & Riehle, 2003) or the head-direction cells in

rats (see Taube & Bassett, 2003; for a review). Such cells typically have their preferred

direction meaning they increase their fire rates when for instance the movement is

performed to a certain angle.

Schoener (2008) mathematically described the dynamics of a dynamic neural field

(DNF) in a generic form as:
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Figure 1.4.: The basic principles of dynamic neural fields (DNFs) are local excitation
and global inhibition. While the first process strengthens the input signal (orange)
and supports local peaks, the latter one is able to suppress smaller input values such
as competing peaks or noise. Hence DNFs are able to select and sustain solutions
and filter noise in their field activation (dark red). Figure depicted from Schoener
(2008).

τ u̇(x, t) = −u(x, t) + input + resting level + interaction (1.1)

where τ > 0 defines the time scale, u the internal field activity and (x, t) represents

the positions of neurons in the neural field and time respectively. Without the

interaction term, which defines the interaction between neurons within the field, the

field activation would drift towards its input. However, the interaction can be chosen

in a way that the DNF follows the neurologically plausible principles of local excitation

and a long range (global) inhibition (see Figure 1.4). These principles base on the

fact that cortical cells receive most of their input from cells in their neighbourhood.

Such a recurrent structure is able to filter noise and to increase the strength of the

input signal (Erlhagen & Bicho, 2006). A mathematical model for DNFs was initially

proposed by Amari (1977). While he dealt with a DNF as a continuous field I will

discretise the DNF into separate neurons. An arbitrary number of those neurons

can form a single DNF. In his model it is assumed that the interaction strength

between two points in the field (neurons) only depends on the difference of the values
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of their encoded parameter (e.g. the preferred direction). Amari (1977) defines the

field dynamics with the following equation:

τ u̇(x, t) = −u(x, t) + s(x, t) + h+

∫
w(x− x′)f

(
u(x′, t)

)
dx′ (1.2)

Hereby, f is a sigmoidal output function (originally a step-function in Amari, 1977), s

an external stimulus or input, h < 0 the resting level of the field, and w(x) the field’s

interaction kernel which is defined as follows:

w(x) = wexcite · exp
−(x)2

2σ2
w

− winhibit (1.3)

where wexcite defines the strength of excitatory connections and σw how far they

spread into the neighbourhood of a single neuron within the DNF. winhibit paramet-

rises the strength of the inhibition between neurons. Erlhagen and Schoener (2002)

showed that with DNFs it is possible to model a broad range of empirical findings on

movement initiation, e.g. stimulus uncertainty effect, Simon effect, etc.

For the purpose of my model there are three points to note. First, my model employs

DNFs for several purposes such as motor control and target selection. Second, a

DNF can also encode two-dimensional parameters, e.g. speed in x- and y-direction

in planar space, by using a two-dimensional layer. Such two-dimensional DNFs play

an important role in my model (more technical details on the implementation of the

DNFs can be found in the Appendix). Third, the exact behaviour of the DNF depends

on the parameters of the kernel w(x) (see Amari, 1977; for a mathematical analysis).

For instance, the kernel can be chosen so that with little or no external input, the

DNF drifts towards the resting level h. With a large enough input activation at a

certain location (or neuron), the field can establish a single activation peak at this

location which can be maintained even after the input is removed. Moreover, if there
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are many regions with input activations, a DNF with the appropriate parameter

setting chooses the largest region. Although, with an adequate parameter setting the

field could also activate multiple regions. Finally and most important for my model,

Amari (1977) showed that DNFs can exhibit a “moving blob” behaviour. In this type

of behaviour an already-established activation peak can move around in a layer in a

continuous fashion. The movements of the peak are guided by the gradient of the

input activation. The direction of the peak’s movement at a specific location is given

by the direction of the steepest gradient in the input activation at this location. The

speed of the movement is proportional to the steepness of the gradient. The moving

blob behaviour will be used in the motor control stage of my model to ensure jerk-free

arm movements.

Furthermore it is important to note that the dynamic field theory typically assumes a

linear relationship between the spatial representation of a parameter value and the

value itself. For instance for the difference of a movement direction of 10 degrees

the two corresponding peaks should be 10 neurons apart (in a discretised field, if we

assume a spatial resolution of a neuron per degree) at all locations in the dynamic field.

In the first experiments it will be demonstrated that the arm movements improve

if a non-linear encoding schema for the encoding of the velocity is applied. Such an

encoding also is a more natural implementation as in the human brain non-linearities

are more common (e.g. the cortical magnification factor of the eye, see also chapter

3.1).

1.6. Cognitive robotics in psychology

I aimed to develop a computational model that accounts for the empirical evidence

that has been introduced in the previous sections. The model is connected to a

real-world robot arm in order to simulate the human reaching process. Hence, I
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will follow a cognitive robotics approach in order to deepen the knowledge about

the ongoing cognitive processes during the reaching process. This section gives an

introduction to the methodology of this approach.

The cognitive robotics emerged in the last decades with the developments within the

field of computations. Hereby, mathematical and computational models for simulations

of brain and body parts are developed. With the help of such models experiments

and their outcome can be generated to prove or reject theories.

As D’Mello and Franklin (2011) state the cognitive robotics approach differs from

the classical (experimental) psychology in some important points. In the classic

psychology theories are created or improved with the help of behavioural experiments.

Theories can make predictions about the outcomes of experiments. When experiments

had an unexpected outcome (e.g. the result was not predicted fully by the existing

theory) the existing theory has to be adapted or substituted by a better one. The then

(improved) theory makes new predictions that again can be tested in new experiments

and so on. These theories are often functional models that in the best case can explain

both functionality and psychological processes, however often can not give insight in

the underlying cognitive processes.

In contrast, the cognitive robotics follow a slightly different approach: Here models or

robots need to be fully integrated from the beginning in order to process all required

incoming sensory information and to eventually create an action. Therefore the robot

requires an implementation of all underlying mechanisms that are required to solve

the desired problem. Moreover, the robot’s architecture should be derived from the

cognition of humans or animals in order to theorise about the findings and to increase

our understanding of the brain (D’Mello & Franklin, 2011). In this fashion cognitive

robotics “rebuild” small parts of the brain and with their simulations it is possible to

theorise about the cognitive processes that are required to create a human behaviour.

The area of my research is the human reaching process. Here perception and action
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form a system that produces a complex behaviour as it was demonstrated in chapter

1.3. In order to understand the behavioural evidence of the odd-colour task of Song

and Nakayama (2008b) and the other presented reaching experiments often abstract

theories are developed. However, due to the complexity of the underlying mechanisms

of the reaching process a cognitive robotics approach seems to be appropriate to

extend the knowledge in this area. Moreover, with the framework of the neural field

theory which I am going to utilise I will be able to implement cognitive processes such

as target selection and movement control in a neurological plausible way. Hence, the

cognitive robotics approach offers advantages over abstract or purely mathematical

models.

There already exist plenty of cognitive robotics models to investigate different aspects

of human or animal cognition. Examples for this are Webb (2009) with her cricket

robot and Ziemke (2011). My research follows the animat approach of Webb (2009).

An animat is a simulated animal or animal-like robot whose sensors, actuators and

control architecture are as closely inspired by those of animals as possible. Webb

(2009) distinguishes between simulations of robot and environment and real-world

robots. In a simulation, the environment and the animal are simulated virtually, while

a real-world robot can be used to directly observe its behaviour. However, Webb

(2009) suggested that there is no significant difference between these two approaches,

if the mechanics of the robot do not limit the feasibility (e.g. flying).

As there are no such engineering limitations for the human reaching process, I will

utilise a real world robotic arm. This has several advantages in comparison with a pure

virtual simulation: Experiments can possibly be performed by the robot analogously

to reaching experiments with humans. This will be the case for numerous experiments

in the chapters 3 to 5 where I apply often existing paradigms to simulate experiments

with my model. One more advantage of real world simulations is that they must be

able to cope with with challenges that do not exist in purely computational simulations
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(e.g. handling of different kinds of noise) and therefore reduce the gap between human

and simulated experiment. Furthermore real world robots must implement cognition

itself and are not able to deal with only isolated facets of cognition (Morse, Herrera,

Clowes, Montebelli, & Ziemke, 2011).

Due to above facts cognitive robotics complements the classical psychology as it is

able to “participate or replicate a psychological experiment” (D’Mello & Franklin,

2011). Furthermore, cognitive robotics broadens our knowledge of theories of cognition

as it can show gaps, assumptions of parameter values and improves details of the

theories (see Morse et al., 2011). In the following chapters I will demonstrate how the

different versions of my model can contribute to the existing theories of the human

reaching process. Hence, in my opinion a cognitive robotics approach is a useful tool

to extend the knowledge in the area of the human reaching process.

1.7. Contribution of this thesis

This section is thought to give a summary of the contribution of this thesis to the

existing literature. As mentioned before in the following chapters I am going to

present a model that simulates a complete perception-action cycle for the human

reaching process. My control architecture includes an implementation of all necessary

subprocesses (e.g. image processing, inverse kinematics), however, my model focuses

on how the human brain plans and executes movements. Moreover, with the dynamic

field theory my model possesses a neurological plausible structure and encodes move-

ment parameter which also have been suggested to be encoded in the brain such as

location of arm and target and the hand’s speed.

In order to simulate various experiments of the choice-reaching and goal-directed

reaching tasks I present different versions of my model that account for the task

specific requirements. The simulations of the choice reaching tasks show that my
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model can simulate and explain human behaviour in those tasks. For some of the

simulated experiments to my knowledge my model is the first attempt to simulate

their outcome (e.g. the odd-colour task of Song & Nakayama, 2008b). For some of the

experiments models and simulations exist already (e.g. the Simon effect), however,

the successful simulations of my model demonstrate that the general structure of my

model is able to simulate a broad range of different tasks.

For the simulations I make use of different mechanisms such as priming maps and

thresholds between different neural layers in order to explain various results. Also I

show how the use of non-linear encoding structures (similar to the cortical magnific-

ation factor in the eye) in the velocity map can improve the velocity profile of the

movement substantially. Hence my model helps to understand experimental results

and complicated relationships of various measures.

A novelty within my model is the “moving blob” a permanent activation within

a neural field that is able to move smoothly within the neural layer and encodes

direction and amplitude of the hand’s speed. With this mechanism it is possible

to generate jerk-free movements and it enables the robot’s endeffector to move in a

human-like fashion with a bell-shaped velocity profile. Moreover, the goal-directed

reaching model of chapter 5 extends the functionality of the moving blob. The model

there can be interpreted as a concrete implementation of an internal model that makes

usage of all available information at a point in time to generate a movement under

the constraints of a visual delay (see also Miall & Wolpert, 1996).

Finally, my model utilises a single feedback-based mechanism in order to explain the

human reaching behaviour. Hence with its closed-loop architecture it also offers a

more natural single-process explanation for the long time accepted view of a strictly

separated planning and online-control phase like in Meyer et al.’s (1988) model.

21



1. Introduction

1.8. Organisation of the thesis

In this section I am going to conclude the introduction and give an overview of the

structure of this PhD. Until here I gave a review of the most important relevant

background regarding the human reaching process, the choice-reaching tasks and the

frameworks that I will apply to develop my model. The next chapter will present more

details of the existing knowledge of the human reaching process and the theoretical

assumptions of my computational model to the choice-reaching tasks. Also, there

I will give a detailed explanation of the inner working of my computational model.

Subsequently chapter 3 presents simulations of several choice-reaching tasks with my

model. The model and the simulations of chapter 3 have already been published in

Strauss and Heinke (2012). Chapter 4 presents further choice-reaching experiments

that required modifications of the original model. Here one of the experiments (the

odd-colour irrelevant feature experiment of chapter 4.1) will be published soon in

Strauss, Woodgate, and Heinke (2013) (in preparation). Chapter 5 focuses on goal-

directed reaching and introduces a modified model which differs in some aspects

from the choice-reaching model to prepare it for the simulations of the goal-directed

reaching experiments. The main parts of this chapter also will be published shortly

(Strauss & Heinke, 2013; in preparation). Finally, the results of all experiments will be

summarised and discussed in the final chapter which contains the general discussion.

Detailed descriptions of the mathematical details and the parameters of the model

can be found in the Appendix.
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2. Modeling Choice Reaching Tasks

In this chapter I present the empirical background, theoretical assumptions and the

control architecture of my model for simulating the choice-reaching tasks. The model

was developed to simulate the odd-colour task of Song and Nakayama (2008b) in

a human-like fashion. Hence, the first part of this chapter deals with the existing

models and empirical evidence regarding the human reaching process. Subsequently,

I will summarise this evidence before presenting in detail my hardware setup with

the real world robot arm and the control architecture of my model with its modules.

Note that the model has been published in Strauss and Heinke (2012) where we also

simulated the choice-reaching tasks of chapter 3.

2.1. Human reaching: existing models and evidence

2.1.1. Planning and online-control

In this section I am going to describe the underlying processes of the reaching process.

A reach for an object obviously requires at least two processes: First some sort of

planning has to take place before the execution of the movement can be initiated.

However, it is less clear what exactly the two processes entail. On a high level,

planning can be described as a process where a target object is selected and the

trajectory of the movement is planned. Furthermore, it can involve the selection of an
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appropriate movement plan and the timing of movements as well as the determination

of acceleration and velocity parameters (Glover, 2004) but also the magnitude and

timing of muscular forces on a lower level (Elliott et al., 2010). Such a movement

plan can also be influenced by past experience so that even function or fragility of

the object can play a role (so called non-spatial characteristics; see Glover, 2004).

However, I want to focus on what Glover defined as spatial characteristics such as

location and size.

To our knowledge it is not yet known in what space and on which level of representation

the planning process takes place. Whether planning only involves the hand or

includes the whole limb, whether only future hand positions or also velocity values

are planned and whether this also involves the timing of muscular forces remains

unknown. However, there is evidence that an integration of a broad range of different

information takes place (Glover, 2004; Desmurget, Pelisson, Rossetti, & Prablanc,

1998).

Only when the planning process has terminated the reaching itself can be executed.

The most important process that influences the execution of the movement is online-

control. Online-control assumes that humans make use of a closed-loop of sensory

feedback where incoming information is processed to adapt an ongoing movement.

In order to deal with motor noise or unexpected changes in the environment online-

control can be necessary, thus, it can explain perturbation experiments where hand

or target position changes during the reach. When no visual information is available

during the reaching process, the error rate typically increases while the accuracy

decreases (Elliott et al., 2001; for a review) which suggests that an online-control

component that makes use of visual feedback is important for the reaching process.

An important factor for online-control is the fact that humans have a “visual delay”

to react towards changes in the environment. This delay is caused by the fact that it

takes time to process the incoming visual information by the brain and to generate
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an appropriate response by the muscles. There is experimental evidence that visual

feedback can be used in a time as short as 110-260 ms (see Elliott et al., 2010; for

a review). This time is needed to process the visual information, to update the

movement plan and to change the movement of the arm. For this reason some time is

needed to adapt an ongoing movement after a perturbation occurred. For very fast

movements there even might be insufficient time to react on such a perturbation.

2.1.2. Existing models

As already mentioned in chapter 1.2 there have been three general approaches to

explain goal-directed reaching: closed-loop (e.g. Adams, 1971; Hoff & Arbib, 1993),

open-loop (e.g. Plamondon & Alimi, 1997) and a mixture of the two (e.g. Glover,

2004). In the following I present these approaches in more detail, explain how they

apply the principles of planning and online-control, and discuss their advantages and

disadvantages. An overview of the principles can also be found in Figure 2.1.

Open-loop models

In the open-loop approach the reaching process is planned as a whole before its

execution. Visual feedback is not used, hence, online-control does not play a role in

this approach.

Examples for open-loop models are the minimum commanded torque change model

(Nakano et al., 1999) which follows the minimum-jerk models of trajectory planning

(see Desmurget et al., 1998; for a review). In these models the trajectory is pre-

planned by minimising a movement parameter such as the torque change of the limb

or the angle jerk of the endeffector. These models investigate different strategies on

how reaching trajectories are generated and in which space the movement is planned

rather than simulating behavioural phenomena such as the introduced experiments or
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the goal-directed reaching process with effects such as the speed-accuracy trade-off

observed in Fitts’ law with a real-world robot.

A model that attempts to explain the latter is the delta-lambda model of Plamondon

and Alimi (1997). They developed an physiological plausible open-loop model based

on a kinematic theory with antagonist muscles. Their model simulates very well

velocity profiles and the experimental results of the Fitts’ law task, however lacks

explanations how it deals with motor noise and perturbations.

An open-loop model that uses neural implementations is the vector-integration-to-

endpoint (VITE) model of Bullock and Grossberg (1988). This model plans hand

movements by comparing the positions of hand and target; the movement then

emerges through interactions in the underlying neural network. In its simplest form

the model can be described with two differential equations to control the speed and the

direction of the movement. The VITE model can be interpreted as a dynamical system

with attractor points which has similarities to the dynamic neural field framework

of my model (see also chapter 1.5). It is able to simulate straight reaches towards a

target while generating a bell-shaped velocity profile. Moreover, the VITE model can

explain a wide variety of behavioral and neural data and similar to the delta-lambda

model it is able to explain the movement times in a Fitts’ law task. A more recent

variation of the VITE model by Petreska and Billard (2009) has been utilized to

model three-dimensional curved trajectories.

Generally, models based on the open-loop approach have problems to explain some

characteristics of the reaching process. Due to the lack of a visual feedback loop, reac-

tions towards perturbations are only possible by introducing special mechanisms that

adapt the existing movement plan. Hence the open-loop approach is not parsimonious

in explaining the reaching process. Furthermore this approach cannot explain recent

evidence for early online-control mechanisms by Elliott et al. (2010) which will be

introduced later.
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Hybrid models

Hybrid models apply both principles of goal-directed reaching - open-loop and close-

loop. The most important type within these models are the two-component models.

This type of models goes back more than 100 years to the pioneering work of

Woodworth (1899). In two component models the reaching process is divided into

two distinguished components: The first component is a pre-planned initial impulse

phase in which a ballistic movement is performed in order to transport the limb in

the vicinity of the target. The initial impulse is executed in an open-loop fashion

and therefore requires a planning process before the movement can be initiated. Due

to noise and variations after the initiation of the movement the movement plan of

the first component will most likely not be executed without errors. Thus, a second

component - the control phase - can be necessary to correct the initial movement

with the help of visual feedback. In this phase the hand position is compared with

the target position and the reaching is adapted appropriately in order to eventually

land on the target. The homing of the second phase occurs if time permits and if the

accuracy constraints make it necessary (see Elliott et al., 2001; for a recent review).

Since Woodworth’s (1899) publication, numerous variations and extensions of the

two-component model were suggested to account for the newer empirical evidence of

Fitts and other researchers like the model of Meyer et al. (1988) which was mentioned

earlier in chapter 1.2.

The planning-control model of Glover (2004) is the most recent variation of the

two-component models. Glover reviews evidence from behavioural and brain imaging

studies to develop his model. He investigates the role of planning and control in the

reaching process and postulates that planning and (online-)control are two separate

processes that serve different purposes. Moreover, they are physically separated as

they are located in different brain areas. In fact his model is the first to postulate
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Figure 2.1.: Typical velocity profile of a human reach with common measures:
The Initial Latency or Reaction Time (RT) is the time between trial onset and
movement initiation. The Movement Time (MT) consists of an acceleration phase
and a deceleration phase. The peak velocity is typically reached at around 40%
of the movement. Under the velocity profiles the principles of the main types of
goal-directed reaching models are shown. While all three types require some sort of
planning their interpretation of the reaching movement is very different. For details
see the surrounding text.

separate visual representations for the both processes. According to Glover’s model

planning is a slow and complex process prior to the movement which selects the

initial kinematic parameters of the movement while control is only active during the

movement execution and is a fast and flexible process with the aim to minimise the

spatial error between hand and target. The control process also includes feedback

loops of proprioceptive feedback and the use of efference copies (internal copies of the

movement plan) to increase its efficiency. Furthermore he suggests that planning is

influenced by a large array of available information about the target whereas control

only utilizes spatial characteristics of the target including size, shape and position.

Glover’s model predicts that the speed-accuracy trade-off which can be observed

in a Fitts’ law task results solely from the planning processes that go on before
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the movement. Moreover, the model suggests that perturbations of spatial target

properties such as location or size can be detected quickly with the control process.

Generally, the two-component models include both processes, planning and online-

control, that are involved in the goal-directed reaching process to a significant extend.

The first component involves a planning process similar to the open-loop approach

and causes the initiation of a ballistic movement towards the target object in the

first half of the reach. In contrast, the second component applies the principle of

online-control and guides the hand to the target in the second half of the movement.

Hence, perturbation experiments where target location or size changes can be easily

explained as the online-control component is able to detect changing target properties

quickly.

However, human reaching movements are normally smooth and they are able to switch

seamlessly between different targets. This fact supports the view of a single underlying

mechanism and such a strict separation into two sharply distinguished components

does not seem parsimonious. Furthermore, similar to the open-loop models the

traditional two-component models cannot explain the new evidence that even in early

stages of the movement (which belong to the first phase of the two-component models)

online-control can be observed. Thus, new mechanisms as extensions are necessary to

explain those findings (Elliott et al., 2010).

Closed-loop models

In contrast to the mentioned open-loop and two-component models, the closed-loop

approach mainly applies the principle of online-control to execute the movement.

Typically, an error signal is continuously decreased until the target is reached. In an

early work Adams (1971) developed a motor learning strategy based on this approach.

Hoff and Arbib (1993) presented a control theory based model that works in a feedback-

based manner and generates movements by minimising the jerk of the trajectory.
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Their model yields good results for reach and grasp perturbation experiments but does

not account for different target sizes or the properties of the neural substrate. Another

example is the computational model of Flanagan, Ostry, and Feldman (1993) which

they developed around their physiological plausible equilibrium-point hypothesis. This

hypothesis works well for single joint movements, however, it has been challenged by

newer empirical findings in multi-joint movements (see Desmurget et al., 1998; for a

review).

For my model I will also follow the closed-loop approach. Thus, there is no need

for an extensive pre-planning. The reaching process is executed simply by updating

movement parameters such as movement direction and speed throughout the whole

movement. Although the visual delay is a constraint of this approach, it has been

shown previously that the brain can deal with the delay by using efferent copies and

forward models (e.g. Miall & Wolpert, 1996; Elliott et al., 2010).

My approach to model the reaching process is inspired by Elliott et al. (2010), however

my interpretation of their recent findings differs from their explanations. They found

evidence for a very early utilisation of online-control in experiments with different

kinds of perturbations. For instance Grierson and Elliott (2009) investigated the

effect of a moving background on mouse pointer movements. This perturbation

caused a misperception of the velocity of the cursor and more interestingly also

influenced the very early stages of the movement which are part of the ballistic phase

in the two-component models. It could be shown that at least three distinguished

and independent online-control mechanisms influence the reaching process in very

early stages of the movement (Elliott et al., 2010; for a review). Besides the visual

online-control, where the limb position is compared with the target position like the

second phase of the two-component model, there is evidence for an early efferent

control mechanism where a copy of the current movement plan is compared with

the outflowing signals. The third mechanism is an early afferent control where the
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expected visual and proprioceptive sensory consequences are compared with the actual

feedback. While this mechanism is slower than the mentioned efferent control, both,

efferent and afferent control, are faster than the standard visual delay discussed earlier

which enables corrections in very early stages of the movement. Thus, it is possible to

adapt an ongoing movement with very little delay.

This evidence suggests that the early stage of a movement is more online-controlled

as previously thought. While Elliott and colleagues developed their multiple process

model around the introduced two-component model and extended it by an impulse

control component which is thought to influence the ballistic phase of the two-

component model, I want to simulate the goal-directed reaching with a single online

feedback-constrained process without strictly separated planning and control phase.

The closed-loop approach offers some more advantages: By applying the online-control

principle for the whole trajectory it is not necessary to determine and store extensive

movement plans before the movement is initiated. My model simply makes use of all

available information at one point in time to generate a movement vector. This is done

during the whole reaching process until the target object is reached. Summarising

above facts I postulate that applying the principle of the closed-loop approach by

using visual feedback loops seems to be a natural way to implement a goal-directed

reaching process, to deal with unexpected events and to simulate the choice-reaching

tasks.

2.1.3. Distractor influence on the reaching process

In chapter 1.3 I have reviewed various choice-reaching experiments and their findings

in the area of visual attention. One common feature of those tasks is that whenever

a target object is presented with distractors they interfere in the target selection

process and can alter measures such as the reaction time or the movement trajectory.

31



2. Modeling Choice Reaching Tasks

Start Start

Figure 2.2.: The influence of distractor objects on the reaching path in the exper-
iments of Tipper et al. (1997). In the illustration the green cube is the target
while the blue cube is the distractor (in the experiment the target colour was
chosen randomly). The green line is the mean trajectory of reaching for the green
target cube without the blue distractor cube, while the blue line were the resulting
mean trajectory with a present distractor. According to Tipper et al. (1997) close
distractors have a repulsion and far distractors have an attraction effect.

In this section I am going to present more behavioural evidence for such distractor

interference effects.

Already before the recent choice-reaching experiments (e.g. Song & Nakayama, 2008b)

the influence of distractor objects on visual attention and reaching was thoroughly

investigated. In fact, when placed in a natural environment a target object usually is

surrounded by multiple distractors (non-target) objects. In order to reach successfully,

the target needs to be attended and identified whereas distractors have to be ignored.

Finally, the movement has to be planned to interact with the selected target object.

There is plenty of experimental evidence of visual guided reaching tasks of the last

decades that distractor objects significantly interfere in ongoing movements toward

targets. Depending on the exact experimental conditions the distractors (non-targets)

were found to have a repulsion effect (Howard & Tipper, 1997), an attraction effect

(Welsh, Elliot, & Weeks, 1999) or both (Tipper, Howard, & Houghton, 1998; Tipper
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et al., 1997) on the reaching trajectory. The relevant literature regarding these effects

will be reviewed in a greater detail in the following.

The first evidence I present is the study of Tipper et al. (1997). They found evidence

for distractor influence in a choice-reaching experiment. Participants had to reach

towards arbitrarily coloured wooden cubes under the presence of different coloured

distractor objects (see Figure 2.2). The distractor objects were found to influence the

reaching path, however, the effects strongly depended on the position of target and

distractor. For near targets and far distractors an attraction effect by the distractor

was observed, while for far targets and near distractors the opposite effect (repulsion)

was found.

In another reaching experiment with red coloured LED target lights and yellow

distractor LEDs, Tipper et al. (1998) found that reaches to near objects (in relation

to the hand’s position) were initiated faster than to far objects. The reaching process

was also significantly slower with distractors close to the hand’s position.

To explain the effects, Tipper et al. (1997) suggested the response vector hypothesis.

This hypothesis suggests that the spatial information about the distractor location

is represented in a hand-centred coordinate system and objects close to the hand’s

position cause a greater activation and hence a stronger respond. Moreover both,

target and distractors induce a neural activation. In an early stage of the target

selection these activations are combined which explains attraction effects, while after

some time an inhibition of the distractor is added. This model could sucessfully

explain the experimental outcome e.g. the close distractors of the experiment of

Tipper et al. (1998) have a greater effect of interference on the hand’s movement than

the far distractors which results in slower movement times.

More experimental evidence for the influence of distractors came from Welsh et

al. (1999) and Welsh and Elliot (2004). They performed reaching experiments and

found no distractor influence in the reaction times. In their reaching experiment
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the movement trajectories deviated towards distractors when target and distractors

become visible at the same time. In different conditions the distractor appeared before

the target stimulus was visible (from 250 ms up to 750 ms). Only in the latter case

(750 ms) the effects of the experiment of Tipper et al. (1998) were replicated as here

the target-oriented trajectories deviated away from the distractor.

Welsh and Elliot (2004) explained their results of the 750 ms condition with the

temporal delay of the inhibitory effect of the distractor. The inhibition is already

active by the time the target stimulus appears. For the other conditions where

the trajectory deviated towards the distractors they suggested that a dual-response

activation mechanism is responsible. Thus both stimuli - target and distractor - are

programmed in parallel and for both possible trajectories are prepared, which results

in a combined vector. Later during the movement a rapid online adjustment takes

place and the internal race between the two movement responses for activation is

decided for the target. However, if there is enough time to complete the inhibitory

process for the distractor as in the last experiment the trajectory veers away from it

similar to the response-vector hypothesis of Tipper et al. (1997). Welsh et al. (1999)

suggested that the difference to the results of Tipper et al. (1997) in the conditions

with no or little delay between distractor and the target onset are caused by the design

of the experiment. Tipper et al. (1997) used physical objects as target and distractor

which could have influenced the movement in some way. So the repulsion effect of

close distractors (see Figure 2.2) could be a result of a possible obstacle avoidance

mechanism. Welsh et al. (1999) followed from their results, that distractors always

have an attraction effect, if they are not a potential physical barrier or could cause a

collision with the hand.

Summarised it can be said that distractors influence the target selection process. This

fact also was confirmed by the already introduced choice-reaching tasks of chapter

1.3. Due to their design these tasks can make the target selection process and the
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competition of target and distractor object visible in the movement trajectory. Hence,

I will follow their paradigm to investigate the distractor influence on visual attention

with my model in the experiments.

2.2. Summary of the empirical evidence of the human

reaching process

The purpose of this section is to summarise the empirical evidence of goal-directed

reaching and choice-reaching tasks introduced in the first chapter and in the previous

sections. The model I present in the following section will base on these theoretical

assumptions in order to simulate the human reaching process. The following findings

can be considered as commonly accepted:

• The outcome of the choice-reaching tasks (e.g. Song & Nakayama, 2008b; see

chapter 1.3) suggests that responses to target and distractor are prepared in

parallel and that the final decision of the target location can be made after the

movement initiation. This is a strong evidence that the movement planning

and control operates in parallel to attentional cognitive processes, such as

target selection and distractor inhibition. Visual information can influence both

sub-processes in any time of the movement.

• Distractors influence the reaching path. While trajectories can deviate from

them in some cases, distractors can have an attraction effect when they are

considered as possible targets in particular. Moreover, a spatial averaging effect

can be observed when there is not sufficient time to inhibit distractor objects.

Thus, the movement can be initiated towards a location in between target and

distractor (e.g., Chapman et al., 2010a).
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• Besides the influence on the trajectory competing distractors also can influence

traditional measures such as the reaction time and the movement time (Song &

Nakayama, 2008b) .

For the human reaching process in general the evidence from goal-directed reaching

experiments can be summarised as follows:

• Goal-directed reaching movements of humans are typically straight with a

bell-shaped velocity profile (e.g. Jeannerod, 1984).

• When visual information is provided during the whole reaching movement the

accuracy increases and the movement can be adapted to a changing environment.

However, humans have a visual-delay which is needed to update an ongoing

movement (Elliott et al., 2010; for a review).

• Characteristics of the cognitive processes are reflected in the reach trajectories.

In other words, a dynamic systems approach in which the various processing

stages operate in parallel and interactive with each other seems an appropriate

approach.

2.3. The choice reaching model

This section presents the model that I developed to simulate various choice-reaching

tasks. The model was originally designed to simulate the odd-colour task of Song

and Nakayama (2008b), however, later extended to cover a broader range of choice-

reaching tasks. First, the hardware setup will be introduced. Subsequently, the

control architecture of the model with its modules will be presented. Note that this

section gives little details on the mathematics of the model. Instead we will focus on

a qualitative explanation of the inner working. The mathematical details of the model
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can be found in the Appendix in chapter A.1.

As mentioned before in order to mimic visually guided movements, I embedded my

model in a closed-loop control of a robot arm. Finally to link the selection process with

the control of the robot arm I integrated the dynamic field theory by Erlhagen and

Schoener (2002) into my modelling approach. The dynamic field theory assumes that

movement parameters are topologically represented in the brain and was introduced in

chapter 1.5. In fact, for the sake of simplicity, my model implements the competition

processes in both stages, the attention stage and the motor control stage, with the

mathematical formalism used in the dynamic field theory.

2.3.1. Setup

Figure 2.3 shows the experimental setup. As the main effects of the targeted

experiments occurred in a horizontal plane I used a planar robot arm with two

joints. The robot arm was built with the LEGO Mindstorms NXT kit and the LEGO

Education set. The sensors, motors and the programmable brick of these kits offer a

flexible and inexpensive way to design programmable robots. I tested several robot

designs inspired by Bagnall (2007) and eventually settled for the construction shown

in the photos in Figure 2.3. The configuration is mechanically very stable and the

joints have only a little slack. The total length of the arm is approximately 36 cm

(forearm 19 cm, upper arm 17 cm). I use the Java leJoS API (Bagnall, 2007) to

interface with the programmable brick.

The robot arm and its environment is filmed with the Bumblebee XB3 stereo camera

(using only one camera) from a birds-eye view (see top right corner in Fig. 2.3a). The

distance between camera and table is 90 cm. The photo also shows that we used

a normal desk light (gray object next to the camera) to keep the lighting roughly

constant. For an easier detection of the robot arm blue markers are attached to the
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(a) (b)

Figure 2.3.: (a) Lego Mindstorms NXT robot arm with the environment consisting
of camera (the golden object, top right), lamps (grey object, top left) and the
experimental setup (here the odd-colour task). (b) Details of robot arm with the
motors (orange/white), the attached blue markers, and the programmable brick
(top picture, above the arm).

arm base and to the end effector. For the search items red and green coloured markers

are used (see bottom of the photo in Fig. 2.3a).

2.3.2. The control architecture

Overview

The model is designed to be able to simulate choice-reaching tasks. Therefore, the

correct target object of those tasks must be determined and the robot arm must be

able to perform human-like movements towards those targets.

Figure 2.4 gives an overview of the control architecture. The input to the control

architecture are the images from the Bumblebee camera. The outputs set the speed
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Figure 2.4.: Overview of the control architecture. The light grey box contains the
model. Dark grey boxes are the modules of the model. White boxes symbolize
Dynamic Neural Fields (DNFs) and the arrows show the flow of information. In
the text the blue abbreviations are used for the respective DNFs.

values of the robot arm joints. In the control architecture cartesian speed values are

updated continually based on the input images so that the robot arm is controlled in

a feedback-based closed-loop fashion. Finally the angle speed values are calculated

with a transfer function. The control architecture is made up of five modules. The

module Image Preprocessing detects the blue, red and green markers in the camera

images. The Arm Detection determines the location of the arm’s end effector by using

the blue markers. The Target Selection finds the odd-colour marker. The Movement

Velocity Control combines the location of the end effector with the target location
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and determines the speed and direction of the movement for the arm in cartesian

coordinates. These movement parameters are then converted into the speed of the

robot arm joints in the Inverse Kinematics module.

It is important to note that the modules fall into two categories. The first type of

modules (Image Preprocessing, Arm Detection and Inverse Kinematics) implement

technical solutions which were necessary for successfully controlling the robot’s be-

haviour. However I do not claim that the implementations of these modules model

human behaviour. Moreover, these modules are not crucial for the implementation of

the theory I fleshed out in the previous section nor for modeling the experimental data

of choice-reaching tasks. The second type of modules (Target Selection and Movement

Velocity Control) constitutes “the model” implementing the theoretical assumptions

explained earlier. These assumptions are: The processes in the target selection stage

and the motor control stage use competitive and excitatory interactions between

neurons. These are implemented with Dynamic Neural Fields (DNFs). Both stages,

the motor stage and the selection stage, operate in parallel. In fact, all modules

operate in parallel but this is not of theoretical significance. In the following sections I

explain the functionality of all modules of the control architecture in a greater detail.

Image Preprocessing

The Image Preprocessing detects the three markers, blue, red and green (see Figure

2.3) in the camera images and encodes their location in the respective colour maps:

the blue map, the red map, and the green map. This is achieved by first transforming

the camera image from the RGB colour space to the HSV colour space. In the next

step the Hue (H-dimension) is used to detect the markers’ colour. Note that the

usage of Hue improves the robustness of the control architecture against changing

lighting conditions. The detection is illustrated in Figure 2.5 and is implemented by

testing each pixel if it falls into an interval around a pre-set H value. If this is true,
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(a) (b)

Figure 2.5.: Illustration of the functionality of the Image Preprocessing module. From
the camera image (a) three colour maps are generated to detect the location of the
robot (blue colour, b) and the objects (red and green colour, not shown). Note that
the detection of the arm is facilitated by using two blue markers of different sizes
for base and endpoint.

the colour map is set to one at the corresponding location. The pre-set H value takes

on a different value, a “blue”-, “green”- or “red”-value, for the different colour maps.

But if the pixels have an extreme saturation or brightness the activation is set to zero

in order to avoid the detection of white or black areas. Finally, an erosion filter is

applied to the maps to decrease the likelihood of isolated pixels by removing artefacts

like undesired reflections (Jähne, 2008).

Arm detection

The detection of the robot arm encodes the locations of the arm’s base and the end

effector (hand) in two separate DNFs. It exploits the fact that the marker on the base

is slightly larger than the one on the end effector (see Figure 2.5). So the first DNF

(base map) receives the blue colour map as input and selects the larger marker, as the

DNF’s parameters ensure that an activation peak is only formed at the larger region.

The output of the base map is topologically subtracted from the blue colour map. The

subtraction leaves activation at the location of the end effector but removes activation
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at the arm’s base. Subsequently a second DNF (hand map) detects the location of

the end effector with this combined map as input. The parameters of the end effector

map are set so that the output peak follows the movements of the end effector with

only a slight delay. The delay is caused by the neural field dynamics which need some

time to adapt to a changed input (depending on their time parameter τ). However,

the delay in the hand map was insignificant in relation to the movement time of the

arm.

Note that the arm detection implements a technical solution for the simple fact that

humans need to keep track of the arm position. Hereby the base location is needed to

have a reference point for the hand. Alternatively or in addition we could have used

proprioceptive information (joint angles). However, how humans determine the arm

position is not relevant to the current research question. Therefore I simply used the

camera images as they were necessary for the central research question anyway.

Target selection

This module is designed to detect the target objects of the choice-reaching tasks. For

the tasks simulated in this thesis two characteristics are important to determine the

target: colour and location. Hence, the module consists of two DNFs, encoding target

colour (Tcol map) and target location (T map).

In the following the Target Selection module will be described for the odd-colour task

of Song and Nakayama (2008b) to begin with. In this task the odd-coloured object

must be detected amongst three objects. The Tcol map uses two neurons representing

the two possible object colours, red and green. As input, the Tcol map receives the

total activations (sums) of the red colour map and the green colour map. The DNF

parameters of the Tcol map ensure that the neuron with the higher input is activated

while the other neuron is deactivated. Consequently the Tcol map establishes a high

activation in the neuron representing the more frequent colour which is equivalent
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Figure 2.6.: Illustration of the functionality of the Target Selection module. The
module consists of two DNFs: the target colour map and the target location map.
The added activations of the red and green colour maps are the input for the target
colour map. The colour maps also feed directly into the target location map. The
weights of these inputs are influenced by the activation of the neurons of the target
colour map. In this way it is assured that the odd-coloured object is selected. Note
that priming maps can influence the activations in both DNFs.

with the non-target colour (see also Figure 2.6).

The T map is a two-dimensional DNF representing the target location from a birds-eye

view. The input to the T map is the topologically added activation from the green

and the red colour map. The summation is weighted by the output of the Tcol map

whereby the colours are swapped to implement the odd-one detection. Thus, the

T map eventually will establish an activation at the location of the odd-coloured

object. The Target Selection module will be modified for the simulation of different

choice-reaching tasks in chapter 4. These modifications will be explained in the

appropriate sections there.
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Preactivation

Priming effects play a big role in choice-reaching tasks. Hence, all DNFs in the

Target Selection module can receive a priming activation (see Figure 2.6). When

the simulation requires a colour priming effect, the Tcol map in the Target Selection

module can receive an external input that activates the maps before the robot arm

starts moving. After the movement initiation of the robot arm this external input

is switched off and the map receives the normal colour input as described in the

Target Selection module. Nevertheless, the external input preactivates the Tcol map

thereby influencing the early phase of the reaching process. Hence the preactivation

can potentially decrease the initial latency as found in Song and Nakayama (2008b).

In addition I also implemented preactivation for the T map as there is also evidence

for spatial priming from standard visual search tasks (e.g. Maljkovic & Nakayama,

1996). The priming in the T map works in a similar way.

Movement Velocity Control

The aim of this module is not only to generate arm movements towards the selected

target item, but also to achieve this with in a human-like manner with a straight

path and a bell-shaped velocity profile. These aims are achieved with two DNFs.

The first DNF (D map) represents the target in end-effector-centred (hand-centered)

coordinates. This representation is generated through a spatial correlation between

the birds-eye target information of the T map of the Target Selection module and the

hand map which is the output of the Arm Detection module. The spatial correlation

is performed in a way that the origin of the effector-centred coordinates are in the

centre of the D map. This spatial correlation is implemented in a neurologically

plausible way using sigma-pi units. Sigma-pi units were first proposed by McClelland,

Rumelhart, and Hinton (1986) (see Heinke & Humphreys, 2003; for another example
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of an application). Now with the hand-centred coordinates the D map can encode

how far the arm is from the target and what direction the movement should take.

Therefore the D map could successfully direct the robot arm to the target (with the

Inverse Kinematics module).

However, if the D map was directly used to encode the arm’s velocity the movement

would be jerky, as the selection of the target would result in a sudden encoding of a

high speed (proportional to the distance from the target). Therefore I introduced a

second DNF (V map) that converts the representation of the movement direction in

the D map to an encoding of movement velocity. The D map feeds in a one-to-one

mapping into the V map. This mapping leads to a “proportional” relationship between

encoding of distance from target and arm velocity. Zero distance (endeffector at target)

corresponds to zero velocity whereas large distances relate to a high movement speed

(see also Figure 2.7). However if the parameter set-up of the V map had been allowed

to produce an output activation in a standard way, this dynamic would have led to

an implausibly high acceleration of the robot arm. Instead, in order to achieve more

smooth, human-like movements, without sudden jumps in the velocity the V map

realises a ”moving blob” behaviour in the following way. At the beginning of a reach

movement the V map has a peak at its centre, thereby encoding zero speed (see top

of Figure 2.7). Then the peak moves towards the direction of the target (as encoded

in the D map), ramping up the arm’s speed in the direction of the target. This is the

acceleration phase of the arm and can be seen in the middle of Figure 2.7. While the

arm is getting closer to the target the activation peak in the D map is moving closer

to the centre of the map, eventually aligning its location with the output peak of the

V map and moving in parallel. Once this situation is achieved the V map guides the

arm to the target with closed-loop control (see bottom of Figure 2.7). To be more

specific, the arm moves closer to the target and subsequently the peaks in the D map

and the V map move closer to the centre, thereby lowering the speed of the arm. This

45



2. Modeling Choice Reaching Tasks
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Figure 2.7.: The model is able to move towards target with a bell-shaped velocity
profiles with the “moving blob” in the V map which encodes movement velocity
and direction. The figures show three stages of a simulated movement: After trial
onset (top row) the representations of arm (hand H and shoulder S) and target (T )
location are established in the appropriate DNFs. The D map receives information
from the T and the H map and encodes the position of the target in relation to
the hand which happens to be almost identical to the birds-eye view in the above
example as the robot’s hand is located close to the centre of the environment. The
D map is directly connected to the V map and induces a movement of the broad
activation (the moving blob) which rests in the centre of the V map when there
is no target present. As the moving blob moves away from the centre towards the
target location (blue dotted circle) the arm starts to accelerate and reduces its
distance to the target. When the locations of the activations of D and V map meet
the point of peak velocity is reached (middle row). Now both activations move back
together which induces a deceleration until eventually the target is reached and the
arm stops moving (bottom row). Therefore, during a trial the activation of the D
map starts at the target location and moves toward the centre of the map while the
activation in the V map starts at its resting point in the centre, moves away from
it just to return to its origin at the end of the trial.
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process continues until the arm reaches the target and stops.

To realize this behaviour the gradient in the input activation had to be designed

appropriately as the gradient determines the moving blob behaviour. I created an

input activation that is made up of two parts. One part is the output of the D map

but convolved with a Gaussian function with a large sigma. Note that this convolution

is a biologically plausible operation as it models how spatial activation diverges when

travelling from one neural layer to the next neural layer. The purpose of the large

sigma is explained at the end of this section. The second part is the “zero map” which

constitutes a Gaussian-distributed activation around the centre of the V map where

zero velocity is encoded and is added to this activation. Without a target selection

influence (before the start of the reach movement) the zero map induces a peak at

the centre of the V map which encodes zero speed (see top of Figure 2.7). Once the

target selection begins the first part of the input activation forms a gradient directing

the peak towards the target location. Hence the peak moves and subsequently the

arm smoothly increases its movement velocity towards the target.

A final important point of the moving blob behaviour is that the speed of the peak’s

movement is proportional to the steepness of the gradient, as mentioned in chapter

1.5. Now since the input activation of the V map is based on a Gaussian distribution

with a large sigma, the gradient is steeper when the arm is far away from the target

compared to when the arm is closer to the target. Hence, when the arm is far away

from the target the acceleration of the arm is high while when the arm is getting

closer to the target the acceleration is getting lower in a continuous fashion until the

peak velocity is reached and the deceleration begins. Eventually, the hand slows down

and stops at the target. In general this implements a good control strategy, since

on the one hand it is efficient to move the arm as fast as possible when the hand is

far away so that it reaches the target as fast as possible, while on the other hand if

the target is close the hand should slowly manoeuvre towards the target so that it
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does not overshoot it. Moreover and interestingly this qualitative description is also

reminiscent of the left part of the bell-shaped velocity profile. Hence it is conceivable

that the arm exhibits this bell-shaped velocity profile. However as the Movement

Velocity Control is embedded in a control-loop, ultimately this needs to be tested in

experiments, e.g. is it successful in a noisy environment; what happens when the arm

gets close to the target, will it reach the target, etc. Hence, the first experiment will

simulate reaches to single target objects to test and optimise this setup.

Inverse Kinematics

The output of the V map in the Movement Velocity Control module encodes an

upcoming speed vector of the end-effector in cartesian coordinates. In order to

generate the actual movements of the robot arm, the cartesian speed needs to be

transformed into the speed of the robot arm joints. Here I follow the standard approach

of using an approximation of the inverse of the Jacobian matrix (e.g. Siciliano &

Khatib, 2008; see the Appendix A.1.6 for details). Essentially, the Inverse Kinematics

module consists of a transfer function that generates the motor commands out of the

hand’s speed vector.

2.4. Conclusion

In this chapter I presented the theoretical background, the hardware setup and the

control architecture of my computational model. The model was developed with the

aim to simulate the findings of the odd-colour task of Song and Nakayama (2008b) and

to exhibit reaches in a human-like manner. Hereby, the Target Selection module should

be able to select the odd-colour target object and to apply priming to colours and

locations. The Movement Velocity Control module with its moving blob was designed

to generate bell-shaped velocity profiles when reaching. Moreover, all modules work in
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a parallel fashion as suggested by Song and Nakayama (2008b). The following chapter

will present experiments that will test the performance of my model in appropriate

tasks.
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3. Model Simulations

This chapter presents the experiments performed by my model which was described

in the previous chapter. In the first experiment I demonstrate that the my model

successfully guides the robot arm to a target in a single target setup. This also shows

that the motor control stage produces human-like trajectories, i.e., the trajectories

are straight and have bell-shaped velocity profiles (e.g. Jeannerod, 1984). The second

experiment shows that my model can mimic Song and Nakayama’s (2008b) findings

in a setting similar to their odd-colour task. The third experiment will compare

two possible mechanisms of how distractors influence the reaching movements in the

odd-colour task. After each of the simulations I will discuss the performance of my

model and its theoretical implications to the current research. All experiments of this

chapter also have been published in Strauss and Heinke (2012).

3.1. Single target experiment

The single target experiment aimed to demonstrate that the control architecture

is able to successfully reach for objects in a noisy real world environment. I also

wanted to show that the model generates human-like reach trajectories. As mentioned

before numerous papers show that when reaching for a single object, humans exhibit

a roughly bell-shaped velocity profile with peak velocity roughly at the mid-point

between starting point and target position (see also Figure 2.1 and Jeannerod, 1984;
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Rosenbaum, Cohen, Meulenbroek, & Vaughan, 2006; for reviews). However the profile

often is skewed with faster increase at the beginning of the movement and slower

decrease when approaching the target. Moreover this single target experiment also

provided a baseline for the odd-colour and the remaining experiments. Hereby, only

one target object was presented and the target colour did not play a role, hence the

Tcol map was removed and the input for the T map consisted of the combined red and

green map (see also Figure 2.6).

3.1.1. Methods

The target objects were square coloured markers (red or green) with a size of 3.5 cm

× 3.5 cm. Targets were located on a virtual circle with the radius of 22 cm at 0◦,

45◦, 90◦, 135◦, and 180◦ (from left to right). The center of this circle was the starting

position of the robot arm’s hand (see also Figure 3.1). The starting position was

located 9 cm in front of the arm’s base (shoulder). Before the experiment began the

parameters of the Image Preprocessing were adapted to the current lighting conditions.

After starting a trial the position of the end-effector was recorded until the target was

reached. The arm was considered to have reached the target when it was in a 6 cm ×

6 cm area around the center of the target (see shaded area in Figure 3.1) and when

its speed was less than 0.7 cm/s. Detailed model parameters of the experiment can

be found in the Appendix. For each possible target location five trajectories were

recorded. The location of the endeffector was obtained directly from the hand map.

Since the sampling rate varied during each trial the data points for each trajectory

(50–80 data points) were not recorded at the same points in time. In order to obtain

an averaged trajectory I pre-processed each trajectory with the following steps. A

spline function was fitted to each trajectory, then the resulting function was sampled

with 100 equal time steps. Since the trajectories were fairly noisy, I smoothed the
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Figure 3.1.: Trajectories of the single target experiment (blue lines). Targets of the
reach movements are shown in red. When the arm reached at least the shaded
area around the targets it was deemed to have reached the target. The grey square
illustrates the size of the tip of the end-effector when the movement stopped. The
base of the robot arm (shoulder) was positioned approximately 9 cm under the
starting point of the end-effector. The end-effector itself was located in the origin
of the trajectories (35 cm, 35 cm). The result showed that the robot arm was able
to follow a straight path to the target. All trajectories are mean trajectories of five
trials.

result with a moving average over 10 time steps. Finally, the averaged trajectory was

obtained by averaging across the same time slice.

3.1.2. Results & Discussion

The first experiment with the robot arm showed that, in principle, the arm exhibited

the desired straight trajectories and the bell-shaped velocity profiles. This was

expected from the design of the Movement Velocity Control. However the behaviour

turned out to be fairly unstable and noisy. For instance, even though the arm was

able to move close to the target it had problems fully reaching the target. I therefore

chose to modify the V map. Originally the V map followed the linear encoding

schema commonly used in DNFs. In the new version the neural layer is mapped onto
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Figure 3.2.: Velocity profiles of the simulated movements to the top centre position
of Figure 3.1. The profiles are shown with their standard deviation (light blue area).
The dark blue line represents the moving average of 10 time slices of the movement.
(b) shows the result of the simulation with with a standard topological encoding
in the V map of the Movement Velocity Control module. Due to the relative high
speed at the end of the trajectory the arm tended to overshoot the target here. For
(a) a non-linear encoding was used and this encoding schema led to better reaching
movements. The red line documents the outcome of the VITE-model fitted to the
robot arm behaviour (see main text for a detailed discussion).

the parameter space in a non-linear fashion (exponential function with power 1.5) in

which many neurons map onto low speeds whereas only a few neurons map into high

speeds. I expected that this encoding should lead to a better behaviour of the arm as

it represents a good compromise between two objectives. On the one hand it leads

to more precise movements when the end effector is close to the target, while on the

other hand it allows the arm move more coarsely while it is still far away from the

target. Indeed, this encoding schema led to better behaviour of the arm (see Figure

3.2 for a comparison). Overall, the movement was less noisy and more bell-shaped.

The peak velocity was higher but in the vicinity of the target the velocity was lower

which resulted in a better target reaching behaviour. It is also interesting to note that

the maximum speed was reached later in the movement (at around 40%) which fits
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better to the experimental findings with humans (e.g., Jeannerod, 1984).

Figure 3.1 shows the mean trajectories toward the five target markers. The trajectories

were almost straight with only a little curvature. These results are comparable with

experimental findings on humans. For example Haggard and Richardson (1996) found

that humans reach with similar (almost straight) paths in different regions of the

workspace. Also Desmurget, Prablanc, Jordan, and Jeannerod (1999) support the

model’s approach that compliant movements in the horizontal plane are planned

in the extrinsic space, which results in straight hand trajectories. Taking together

the results of this experiment gave support for the implementation of the Movement

Velocity Control module.

For an additional verification of our model I compared the arm’s behaviour with a

mathematical model for velocity profiles. In fact, as already mentioned in chapter

2.1.2 there are several mathematical models for generating human-like velocity profiles

such as the Minimum Hand Jerk model, the Minimum Commanded Torque Change

model, etc. A recent review by Petreska and Billard (2009) suggested that a modified

vector integration to endpoint (VITE) model (Bullock & Grossberg, 1988) yields the

best fit to human movement trajectories. Here I used the VITE-model as the reference

model for my model. The VITE-model is described with the following equations:

y(t+ ∆t) = α− y(t) + xtarget(t)− x(t) (3.1)

x(t+ ∆t) = βtvy(t) (3.2)

The parameters α, β, and v are real positive constants and control the changing rate

of the acceleration. xtarget and x are the position of the target and the end-effector

respectively. y is a secondary variable and related to the speed of the end effector.
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To compare the VITE-model with the robot arm’s velocity profile I used the average

velocity profile shown in Figure 3.2. For each time step in this profile I determined

whether the VITE-model produced a velocity value that fell within the one standard

deviation interval. Then we calculated that percentage of time steps which fulfilled

this criterion. For the following parameters 98% of time steps fulfilled this criterion:

xtarget = 10, α = 0.058, β = 0.01, and vv = 0.0286 (see Figure 3.2 for the resulting

velocity profile). In other words for these parameters the VITE-model and the robot

arm’s velocity profile were very close in 98% time steps providing further support for

my model.

3.2. Odd-colour experiment

After having shown that the model is able to reproduce human reaching trajectories,

the next aim was to replicate the odd-colour experiment by Song and Nakayama

(2008b) which was introduced in chapter 1.3. Here the aim was two fold: The model

should be able to direct the robot arm to the odd-colour target object and second,

the model should reproduce the effects of colour priming, i.e., the curved trajectories

with longer movement times and the reduction of the initial latency.

As pointed out previously there is also evidence for spatial priming from standard

search tasks (e.g., Maljkovic & Nakayama, 1996). Even though there is no evidence

from choice-reaching tasks it seems plausible to expect spatial priming effects similar

to the colour priming effects. Since the model also allows us to implement spatial

priming I will also present these experiments here and compare them to colour priming.

3.2.1. Methods

The setting of this experiment is similar to the single target experiment except that

I used an odd-colour display like in the experiment of Song and Nakayama (2008b).
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There were three markers placed in the workspace: either two red and one green or two

green and one red marker (see Figure 3.3 for an example). Both colours can be easily

distinguished by the Image Preprocessing. The possible locations for the marker were

at 45◦, 90◦, and 135◦, the three central locations in the single target experiment. All

modules of the model were used including the Target Selection module as described in

chapter 2.3 and the non-linear encoding of the V map developed in the single target

experiment. Moreover, and importantly, the preactivation module should be able to

induce the priming effects in the model.

The data analysis followed the same steps as in the last experiment using spline

function and moving average to obtain smoothed trajectories. In addition the

following durations were extracted from the processed trajectories: the Initial Latency

or Reaction Time (RT) was the time between starting the simulation and movement

onset. The Movement Time (MT) was the time between movement onset and the

end of the movement. Movement onset was determined at the point in time when

the velocity was higher than 0.3 cm/s for the first time. These measures allowed us

to relate our results to Song and Nakayama (2008b) findings. All parameters of the

model can be found in the Appendix.

3.2.2. Results & Discussion

Figure 3.3 shows the trajectories of the robot arm in the odd-colour experiment. To

begin with the results demonstrate that the model is able to detect the odd-coloured

marker and successfully directs the arm to the target marker. Moreover, with the help

of the Preactivation module (priming) we were able to generate the curved trajectories

found by Song and Nakayama (2008b). The results also mimic Song and Nakayama’s

(2008b) finding that the RT was shorter in the priming condition compared to the

baseline and that the MT of the curved trajectory was longer. Interestingly, the size
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Figure 3.3.: Example trajectories with measured time intervals of the simulation of the
odd-colour experiment. In the colour priming condition the red colour was primed
while in the spatial priming condition the left target was primed. The trajectories
are mean trajectories of five trials. The time intervals are also the average times
from five trials in seconds. The figures in brackets indicate the standard deviation.
The abbreviations stand for Reaction Time (RT) and Movement Time (MT). The
results demonstrate that the model can successfully direct to the robot arm to the
odd-coloured target. The “curved” trajectories result from the preactivation of the
spatial map (spatial priming, on the right) and the colour map (colour priming, on
the left). In both conditions, compared to the straight trajectories the RT decreases
and the MT increases matching the experimental data by Song and Nakayama
(2008b). Interestingly the effect on the RT is stronger in spatial priming than in
colour priming. This effect is discussed in the main text.

of the effect depended on the type of priming, either colour priming or spatial priming.

For spatial priming the effect of the RT was larger than for the colour priming. In

contrast, the MT was longer for the colour priming than for the spatial priming.

Taken together the results demonstrate that the model can successfully mimic the

findings by Song and Nakayama (2008b). In particular the preactivation initially

directs the competition in the target selection module toward distractors. In turn,

this guides the moving blob in the V map and the robot arm toward the distractors.

However after some time the preactivation is overwritten and the moving blob and the
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robot arm are directed toward the target. In some way the priming effect in my model

can be conceptualized as the distractors first “pulling” the arm toward their direction.

I will return to this point in the next experiment. However, it is also worth noting

that the response vector hypothesis by Tipper et al. (1997) proposes a similar pulling

effect based on a similar mechanism (see also chapter 2.1.3). Their model suggests

that the directions of movements toward the target and the distractors are encoded

with distributed representations similar to the one postulated in the DNFs. Moreover

the model determines that resulting movement direction by calculating the center

of gravity of the combined representation of target and distractors. Consequently

the resulting movement veers toward the distractors. However, Tipper et al.’s (1998)

model does not include a mechanism of how such distorted movement directions are

translated into actual movements and how humans eventually reach the target.

Furthermore my model predicts that additional experiments with humans should find

a difference between spatial priming and colour priming. Even though the effect found

with the robot arm can be due to different parameter settings, e.g., the preactivation

is higher in spatial priming than in colour priming (however all other parameters

remained unchanged in the different conditions), the difference originates from an

architectural difference of how the two dimensions influence the selection process.

The spatial priming directly influences the selection map whereas the colour priming

affects selection via the weighting of the two colour maps. In addition the difference

between colour priming and spatial priming also plays out differently for the RT

and for the curved trajectory. For the RT, the structural difference is responsible

for the difference. In contrast, for the MT the difference nature of the features is

important. In the colour priming two distractors attract movements whereas for the

spatial priming only one location distorts movements.
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3.3. Odd-colour “continuous” vs. “threshold”

experiment

In the previous experiment I pointed out that the curved trajectories in the model are

the result of the distractors pulling the arm toward their location. In other words, the

activation in the competitive selection does not necessarily need to pass a threshold

for it to affect the reaching process (“continuous” hypothesis). This contrasts with

a suggestion by Song and Nakayama (2008b). They proposed that the competitive

selection first has to reach a threshold before it can direct movements toward an

item, e.g., a distractor (“threshold” hypothesis). In fact, this hypothesis can also

be simulated with my model by adding a threshold at the output of the selection

stage. The current experiment will illustrate the different reaching movements the

two hypotheses would predict.

3.3.1. Methods

The settings of this experiment were similar to the odd-colour experiment of the

previous section. However, the colour priming activation was increased to make the

illustration clearer. To implement the “threshold” hypothesis a threshold between the

T map and the D map was introduced so that only high activations in the T map

can influence the behaviour of the D map.

3.3.2. Results & Discussion

Figure 3.4 depicts the results based on five trials in for each hypothesis and highlights

the differences. As expected, trajectories in the “threshold” setup pointed toward

one of the distractors in an early stage of the movement, while trajectories in the

“continuous” condition fell somewhere between the two distractors. Hence in order to
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Figure 3.4.: Comparison of “continuous” vs. “threshold” hypothesis. (a) shows the
outcome of the threshold hypothesis. Note that in this setting the trajectory veers
towards the middle or the right distractor randomly depending on the noise in the
DNFs. For the above figure only the trajectories towards the middle distractor
were chosen. The trajectory in (b) is the result of the “continuous” hypothesis (see
main text for detail). Each mean trajectory shows the results from five trials. The
broken lines document the standard deviation.

distinguish between the two hypotheses it makes sense to determine the orientation of

the movements at their early phase. Now for these movement orientations it is obvious

that the “threshold” hypothesis predicts a bimodal distribution with the two modes

roughly pointing toward the distractors. In contrast, the “continuous” hypothesis

predicts an unimodal distribution with a peak roughly between the two distractors.

Moreover Figure 3.4 illustrates that the variation of the movement orientation is

smaller for the “threshold” hypothesis than for the “continuous” hypothesis. The large

variation in the “continuous” hypothesis is due to the fact that the two distractors

induce noise onto the movements whereas in the threshold hypothesis only one

distractor influences the movements. Note that the latter point implies that we expect

a variation around each mode in the order of magnitude of the single target displays.
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3.4. Conclusion

Recently Song and Nakayama (2008b) published evidence that the process of atten-

tional selection can influence reach movements towards a target. In this study, the

reaching target was given by an object with the odd colour, e.g. a red square among

green squares. In the previous chapter I presented a robotics-based approach to

modeling the results of this choice-reaching experiment. To take into account that

these experiments use human movements the output of model is a robot arm built

with LEGO Mindstorms NXT. In order to link the output of this stage with the robot

arm we based the motor control stage on the dynamic field theory by Erlhagen and

Schoener (2002). Crucially, the motor control stage uses a “moving blob”-dynamics

in a neural field to ensure jerk-free (human-like) movements. Overall the model is

consistent with Song and Nakayama’s (2009) suggestions that there is a direct link

between target selection and movement planning, that both processes work in parallel

and that the target selection process is implemented in a dynamic competition.

In this chapter three experiments were performed to test the model’s abilities. The

first experiment demonstrated that the model can guide the robot arm to targets

in straight trajectories. Moreover, the trajectories exhibited a bell-shaped velocity

profile often found in experiments with humans. Crucial for producing the bell-shaped

velocity is the moving blob behaviour in the V map of the Movement Velocity Con-

trol module which implements the acceleration and the deceleration of the robots’s

velocity. This behaviour was theoretically examined by Amari (1977). However,

to the best of our knowledge it has never been used to describe human behaviour

in a functional model before. It also remains an open question whether the brain

employs this behaviour. The second interesting outcome of this first experiment is

that I had to introduce an inhomogeneous spatial encoding of the velocity parameter.

The inhomogeneity is such that at small velocities the encoding has a high spatial
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resolution, whereas at high velocities the encoding is coarse. This divergence from the

normal linear encoding schema in DNFs was necessary to achieve a better control of

the arm in terms of robustness and higher peak speed, but also made the speed profile

similar to human velocity profiles. Importantly the encoding schema is reminiscent of

the way the visual cortex represents stimuli, i.e., the “cortical magnifying factor” (e.g.,

Rovamo & Virsu, 1979). In this representation visual stimuli are represented with a

fine grain resolution in the foveal region, while in the parafoveal region stimuli are

represented with a coarse resolution. Hence it is not inconceivable that the brain has

reused this mechanism in the motor cortex as suggested by my model. However, as

with the moving blob behaviour, this prediction remains to be tested in physiological

experiments.

The second experiment demonstrated that the model performs the odd-colour search

task by Song and Nakayama (2008b), i.e., the robot arm successfully reached the

object with the odd-colour. This success also included the reproduction of their finding

of curved trajectories. Moreover, the curved trajectories showed a lower reaction time

while the movement time increased due the longer length of the trajectories, again

mimicking Song and Nakayama’s (2008b) findings. The model also predicts that these

priming effects not only occur for colour but also for space (see Maljkovic & Nakayama,

1996; for spatial priming effects in a standard visual search task). Moreover the model

suggests that the priming effects are stronger for space than for colour. This prediction

is in part due to the different way the two dimensions are processed in the model and

in part due to how the two dimensions are differently reflected in the visual search

display. The latter point refers to the fact that spatial priming may affect a single

distractor whereas colour may affect a group of distractors. This prediction remains

to be tested.

The third experiment illustrated the subtle but important difference in the way Song

and Nakayama (2008b) explain the priming effect and in the way the model realises
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this feature. In both explanations it is assumed that the priming effect is the effect

of residual activation from the target in the preceding trial misdirecting the reach

movement. However, while Song and Nakayama (2008b) suggest that the competitive

selection reaches a threshold in order for it to cause reaching toward a distractor

(“threshold”-hypothesis), my model suggests a different mechanism. It suggests that

the competitive selection does not necessarily need to pass a threshold for it to affect

the reaching process. Instead, items during the competition process pull the reaching

movements toward their position and the strength of the attraction is related to how

much they are selected (“continuous”-hypothesis). The experiment makes predictions

for the directions of “curved” movements at their early stage. The “threshold”-

hypothesis predicts that the distribution of the directions should be bimodal with the

two modes at the directions of the distractors. In contrast the “continuous” hypothesis

suggests a unimodal distribution with a peak roughly falling between two distractors.

Future experiments with humans will have to test these predictions.
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Versions of the Model

The experiments of the previous chapter have shown that the model is able to simulate

single target reaching and the odd-colour choice-reaching tasks of Song and Nakayama

(2008b). In this chapter I present a second set of experiments with further simulations

of the model of a wider variety of choice-reaching tasks. First I aimed to simulate a

variation of the odd-colour task of Song and Nakayama (2008b). There the design

of the experiment was extended by an irrelevant feature. This experiment and its

simulations will be published shortly in Strauss et al. (2013). Afterwards, two further

choice-reaching experiments were simulated that required few modifications to the

Target Selection module. These tasks will be presented here to show that the control

architecture of the model is very flexible and easy to modify to the requirements

of different choice-reaching tasks. The first of these experiments dealt with the

spatial averaging effect while the final experiment aimed to simulate the Simon effect.

Behavioural experiments already were introduced in chapter 1.3, but I will review the

relevant results here in a greater detail. Similar to the previous experiments regarding

the odd-colour task both tasks apply the choice-reaching paradigm to make ongoing

target selection processes in the movement trajectory visible.
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4.1. Odd-colour irrelevant feature experiment

This experiment dealt with a variation of the odd-colour experiment of chapter 3.2.

In the standard odd-colour experiment of Song and Nakayama (2008b) colour is the

relevant feature to distinguish target and distractors so that the objects differ along

the colour dimension, but are identical otherwise. This paradigm has been extended

by Philip Woodgate, a PhD student in my laboratory, who included an irrelevant

feature dimension - the size of the objects. Now all objects could occur in a smaller

size which was the object size in the original odd-colour task (see chapter 3.2) or in a

larger size.

Before I present the empirical results of Philip Woodgate’s experiment (Strauss et al.,

2013; in preparation) I will review the typical effects of irrelevant features that were

reported in the literature. Subsequently, I will discuss the behaviour of my model

in a similar task. It turned out that modifications of the model of chapter 2.3 were

necessary which will be introduced in the following. Finally, the simulation results of

the modified model will be presented and discussed.

4.1.1. Behavioural evidence

Influence of irrelevant features

The influence of irrelevant feature dimensions in visual search tasks has been in-

vestigated in numerous experiments. For instance, Yantis and Egeth (1999) ran a

series of experiments to investigate whether irrelevant object features influence the

target selection process and how this influence is manifested in search performance.

The stimuli of their experiment consisted of bars with different colours and orient-

ation whereas the orientation was the target determining feature and the colour

the irrelevant feature. Their results suggest that the degree to which attention is
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deployed to Irrelevant Features (IFs) depends upon the extent to which they provide

task-relevant information e.g. when the target always has a different colour than

the distractors even though orientation is the relevant target feature. There were,

however, some exceptions, with size and brightness singletons capturing attention

more readily; RTs were significantly faster when the target was also a size or brightness

singleton. Similarly, in an inefficient search task (where performance decreases with

increasing distractor numbers) Proulx and Egeth (2008) and Proulx (2010) observed

expedited RTs when the target was larger/brighter and longer RTs when a distractor

was larger/brighter where a non-predictive relationship occurred between target and

singleton location. In summary, one would expect that the differently sized objects

in the odd-colour task influence the reach trajectories and the reaction times. Also

larger objects should catch attention more easily.

The odd-colour IF experiment

As mentioned before the odd-colour IF experiment was conducted by Philip Woodgate.

Here I am going to summarise his experiment and findings; the details of his statistical

analysis can be found in his thesis. As mentioned earlier he introduced differently

sized objects to the odd-colour task of Song and Nakayama (2008b) so that besides

the smaller sized objects also larger objects occurred in the search display. In total

six conditions could be distinguished depending on the size of the target and the

distractor objects. The conditions were: (1) All small (tdd), (2) Small target, 1 large

distractor, 1 small distractor (tDd), (3) Small target, 2 large distractors (tDD), (4)

Large target, 2 small distractors (Tdd), (5) Large target, 1 small distractor, 1 large

distractor (TdD), and (6) All large (TDD) (see also Figure 4.4). Like in the original

odd-colour experiment the Reaction Time (RT) and the trajectories of the movement

were recorded. As an additional measure also the Maximum Curvature (MC) was

obtained from the trajectory of the reach movement.

66



4. Three Simulations with Modified Versions of the Model

The results are shown in Figure 4.1 and showed a significant main effect of condition

in both measures. The results of the RT are as follows: In the small target conditions

the RT decreased with larger distractors. Hereby the condition tdd took significantly

longer to initiate than reaches to tDD and showed a borderline significance with

tDd. A similar effect but to a less extend was found for large targets. Here TDD

was borderline significantly faster than Tdd. There was no significant overall effect

between small and large target conditions, however, some more borderline significances

could be observed: tdd was slower than TDD and the RT for tDD was lower than in

Tdd and TdD.

For the MC a similar result pattern was observed, however, more significant results

were found: Tdd and TdD showed the largest curvature. These both conditions

were significantly more curved than the conditions with the lowest curvatures (tdd,

tDd, tDD and TDD). tDD showed the least curvature; as well as differing from Tdd

and TdD it was also significantly less curved than tDd, and tdd, with a borderline

difference to TDD (see Figure 4.1). Overall, large targets showed a significant higher

curvature than small target objects.

The results showed significant effects of condition in both recorded measures. The

resulting graphs for RT and MC were fairly similar, however, overall we found more

significant effects between individual conditions in terms of maximum curvature which

suggests that underlying mechanisms affect this measure more strongly.

The similar pattern of the results of latency and curvature is not consistent with

the results of the original odd-colour tasks where a smaller latency induces a higher

curvature and vice versa (see also chapter 1.3 and Song & Nakayama, 2008b). In

contrast both measures were affected quite similar by the different conditions: small

target conditions showed smaller RTs and MCs than large target conditions (however,

not significant in the RTs). Within the conditions of similar target size larger distractor

objects caused smaller values of RTs and MCs. Interestingly, large target objects did
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Figure 4.1.: (a) Reaction time and (b) maximum curvature results of the odd-
colour irrelevant feature experiment by Philip Woodgate (Strauss et al., 2013; in
preparation). Error bars represent ± 1 standard error averaged within-subjects per
condition as in Cousineau (2005).

not facilitate the task in terms of RT costs as normally observed in such tasks (e.g.

Proulx & Egeth, 2008). However, the curvature effects differed slightly from the RTs.

In the conditions with one large and one small distractor the curvature was increased

in comparison with the pattern of the RT. In the following section I will discuss how

my model of section 2.3 simulates the experiment. Subsequently, I will discuss the

results and possible explanations in a greater detail.

4.1.2. Simulating the experiment with the original model

In the first set of experiments in chapter 3 I simulated the odd-colour task of Song

and Nakayama (2008b). The model there was able to simulate the two different types

of trajectories and their latency and movement time properties. It turned out that

the original model is not able to simulate all aspects of the present target-distractor

size experiment. Here I am going to discuss the reasons for that fact. Modifications

that improve the model will be presented in the following section.

The main reason why the original model is not able to simulate the experiments is the

68



4. Three Simulations with Modified Versions of the Model

continuous information flow in the control architecture that was used to simulate the

original odd-colour task in chapter 3.2. There, a low RT caused a high curvature and

vice versa as observed in the experiments of Song and Nakayama (2008b). In contrast,

in the odd-colour IF experiment both measures show a similar behaviour (i.e. RT

and MC are either both high or low). However, with the original model it would be

possible to simulate the effects in either RT or in MC depending on the threshold

parameter between the T and D map. This threshold parameter acts as a switch

so that only activations of objects in the T map above its value are getting passed

onto the movement control stage and thus influence the movement. In this way a

high threshold allows the DNFs to determine a correct target before the movement is

initiated. Thus, no effect in the curvature can be observed. However, the calculation

time of the DNFs creates an effect in the latency as the response conflict in the T map

has to be resolved before the movement is initiated. In contrast a low threshold value

induces a quicker start of the movement and diminishes differences in the latency,

whereas wrongly selected target objects create a large effect on the curvature (and

also in the movement time as observed in chapter 3.2 in the odd-colour experiment as

the curved trajectory requires more time to reach the target object). Hence, it was

not possible to generate results where both measures showed similar effects like it was

found in the odd-colour IF experiment where conditions showed high RTs with high

MCs and vice versa.

4.1.3. Modifications of the original model

The previous sections presented the results of the behavioural experiment and the

reasons why my original model is not able to simulate these findings. In order

to improve the simulation of my model I will introduce modifications to its control

architecture which account for the findings of the experiment. Besides presenting those
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Figure 4.2.: (a) Colour similarity graph for the experimental conditions. The line
shows the difference of the amount of distractor colour and the amount of target
colour for each condition as shown in the table. For example, if the target is small
the amount of colour equals 1. If this small target is presented with two large
distractors the total amount of distractor colour equals 4 (2+2). The results of
the RT are already very similar to this graph (compare Figure 4.1). The results of
the MC differ from the RT, hence we suggest further mechanisms that affect this
measure. The effects of these mechanisms on the colour similarity are displayed in
(b). See the text for a discussion of the effects in more detail.

modifications I am also going to develop a theoretical explanation of the behavioural

findings.

The first finding to note is that in the behavioural experiment the overall pattern of

RT and MC is fairly similar and can be described with the “colour similarity” which

is the difference of the amount of distractor and target colour. The simple colour

similarity graph in Figure 4.2 (left side, black line) already looks very similar to the

RT and MC graphs we see in the results. This suggests that a target selection decision

is made at least partly from the discrepancy of target and distractor features – in this

case colour. More evidence that the colour difference plays a role in such selection

tasks comes from the odd-colour tasks of Song and Nakayama (2006). In their task

participants had to reach for the odd-coloured object among a different number (2,

5, or 11) of distractors. One of the main findings was that with a higher number of

distractors the task became easier which resulted in lower curvatures and smaller RT
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which could also be explained by the colour similarity graph of Figure 4.2. How salient

a stimulus is depends, in part, on how strongly it contrasts with the stimuli that

surround it (J. Wolfe & Horowitz, 2004). Accordingly, as target-distractor similarity

increases the salience of the target decreases and more time is required to select the

target (Nothdurft, 1992). Thus, as the contrast between the target and distractors

increases along the lines of the target-defining feature (i.e. the “amount” of each

colour) target selection is facilitated, and vice-versa.

In my model the functionality of the Tcol map is very similar to the described colour

similarity. Hence, the first modification affects the connection of this map to the

motor stage. This is supposed to resemble the similarity of RT and MC of the

behavioural experiment without diminishing the effect in one of the measures in the

original model as described in the previous section. Essential for the initiation of the

movement is the connection from the D into the V map as it causes the moving blob

to move away from its resting position. Now this connection is directly linked with

the activation level in the Tcol map as colour is the relevant target feature (see Figure

4.3) which results in the following behaviour: only when the activation of a neuron

of the Tcol map exceeds a threshold (which means that the correct target colour has

been detected) the activation from the D map will be passed onto the V map which

eventually causes the moving blob to move away from the centre of the map and

initiate the movement. In this way the Tcol map alone is responsible for generating

the RT and should resemble the colour similarity graph. Only after the Tcol map

has decided the target colour the distractors can be inhibited in the same way as

in the original odd-colour experiment. This allows the T and D map to establish

activations at target and distractor positions before movement onset. Due to the new

threshold distractors will possess larger activations with a longer RT (as the RT solely

depends on the Tcol map). Hence with this modification the model should be able to

reproduce the results of the behavioural experiment where high RTs cause a high MC
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and vice versa and the pattern of Figure 4.2 is the expected result of simulations. This

modification should already give a good approximation of the behavioural results.

The behavioural results for RT and MC show a similar pattern, however, also still

show some differences. A first difference between the measures is the significant

effect of target size in the MC. That is, reaches to small targets show less curvature

than reaches to their large counterparts. The colour similarity graph shows a small

difference in the target object size as well, however, this effect is small and was found

to be not significant for the RTs. One explanation for the significant results in the

MCs could be that a mechanism independent from the RT-generation is responsible.

For instance small targets could be preferred over large targets in the target selection

stage. This is in contrast with the finding that large targets capture attention in

IF experiments (e.g. Proulx & Egeth, 2008). However, we speculate that such an

advantage of small targets may be induced due to the choice-reaching task paradigm.

In Figure 4.2 the influence of this effect is shown with the brown arrows and the

brown dashed line.

In my model the dynamics of the DNFs offer an easy way to simulate a lower curvature

for smaller targets: the parameters of the T map were chosen so that small objects

are creating a larger activation than big objects. This was achieved by applying both

a high inhibition and an even larger local excitation in the T map. More importantly,

the size of the excitation radius was smaller than the (perceived) size of the large items.

Hence, small and large items receive a similar amount of excitation, but large objects

are influenced to a greater extend by the inhibition. This modification will simulate

the small target advantage of the behavioural experiment. Despite the changes the

mechanism of the odd-colour detection of Figure 2.6 remains unchanged.

Besides the above small target advantage another difference between the measures in

the different conditions was observed: for the MC (but not for the RT) the performance

in the conditions TDd and tDd is slightly worse in reality than the prediction of
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the introduced target selection mechanisms that are reflected in the adjusted colour

similarity graph of Figure 4.2 (black and brown dashed line). Thus, there must be

some other factor at play. The likely candidate is the ease with which distractors can

be grouped. As colour is the dominant feature this grouping should occur along the

colour dimension. The increased curvature in the conditions tDd and TDd suggests

that this grouping also occurs along the size dimension, however, this makes grouping

in these conditions more difficult as one distractor is the odd-sized object which

consequently leads to an increase in the curvature (see Figure 4.2; red arrows/line).

This curvature increase was not reflected in the RTs that were primarily influenced by

the colour similarity aspect discussed earlier. Therefore we suggest that this effect

is caused by a mechanism that is independent from the colour difference and affects

only the ongoing movement.

Implementing such a grouping mechanism in my model would require major extensions

and further neural fields. For this reason we found it is sufficient to model this finding

in a more abstract way. The modification here only affects the two conditions with an

odd-sized distractor (tDd and TDd) and decreases the weight on the connection from

the Tcol map to the T map. This mechanism should only influences the trajectory of

the ongoing movement as it takes place after the Tcol map and is independent from

the Tcol-threshold that determines the RT. I will simulate the two relevant conditions

with and without this mechanisms to demonstrate its influence on the trajectory.

In the following I present the results of the simulation of the odd-colour IF experiment

with the modified model and discuss the possible explanations for the experimental

results that it offers.
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Figure 4.3.: Overview of the modified control architecture of my model to simulate
the odd-colour IF experiment. The red line symbolizes the threshold switch of
the Tcol map which has to be surpassed in order to activate the information flow
from the D to the V map. This feature has been added to account for the new
behavioural evidence. See Figure 2.4 for the original control architecture and Figure
2.6 for the Target Selection module and its description.

4.1.4. Methods

The hardware setup was identical to earlier experiments. The target objects were

square coloured markers (red or green) with a size of 3.5 cm × 3.5 cm (small object

size) and 4.38 cm × 4.38 cm (large). Targets were located on a virtual circle with the

radius of 22 cm at 45◦, 90◦, and 135◦ (from left to right). The center of this circle

was the starting position of the robot arm’s hand. The starting position was located

9 cm in front of the arm’s base (shoulder). Like in the behavioural experiment six

different conditions were distinguished with the differently sized target and distractor

objects (see Figure 4.4). For each condition five trajectories were recorded. However,

exceptions were the conditions tDd and TDd where five trajectories for both possible

distractor placements (large distractor on the left side or in the centre) were recorded.
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Before the experiment began the parameters of the image preprocessing were adapted

to the current lighting conditions. After starting a trial the position of the end-effector

was recorded until the target was reached. The arm was considered to have reached

the target when the encoded velocity in the V map fell under a threshold value of

approximately 0.5 cm/sec. The encoded velocity was the distance of the centre of

gravity of the neural activation (the moving blob) to the centre of the V map.

For the purpose of data analysis the raw data of each trajectory was pre-processed

with the following steps. First, a B-Spline (3rd order) of the raw data points was

calculated which reduced noise and normalized the trajectories to 100 data points.

Second, I applied a Butterworth filter (2nd order) with a cut-off frequency of 1
20

of

the sampling rate of the camera in order to reduce the noise even more. Note that

the data analysis procedure was improved in comparison to the last experiments.

This experiment focused on the Reaction Time (RT) and the Maximum Curvature

(MC) of the trajectories, thus these two measures were processed and analysed

accordingly. The MC was calculated by dividing the maximum deviation of the data

points from a straight line by the length of this line. The straight line was determined

by the start and end point of the trajectory. The RT was obtained in a similar way

than in the previous experiments. Finally, in comparison with the original model

further DNF parameters of the Tcol and D map were modified (see the Appendix for

details). The simulations of the conditions tDd and TDd were performed without and

with the abstract distractor grouping mechanism to demonstrate its influence on the

measures.

A one-way ANOVA with the factor Display Type (tdd, tDd, tDD, Tdd, TdD & TDD)

was conducted with RT and MC as dependent variables. Furthermore, the influence of

the target size (small vs large) was investigated in a separate ANOVA. All statistical

tests were run twice: once with and once without the distractor grouping mechanism.

In order to investigate the influence of the distractor grouping mechanism in the
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Figure 4.4.: Object placement of the odd-colour IF experiment. The red target object
was always placed on the right side. Note that in the conditions with one large and
one small distractor the two distractors switched their location in half of the trials.

appropriate conditions (tDd and TdD) the results with and without the mechanism

were compared using paired samples t-tests.

4.1.5. Results & Discussion

The results of the experiment can be found in Figure 4.5. The findings of the measures

are as follows:

Reaction Time (RT): For the results without the distractor grouping mechanism

a significant main effect of Display Type was found (F(5,34)=12.28, p<0.001). A

posthoc Bonferroni pairwise analysis found significant differences (p<0.05) between

the condition tdd compared with tDD and TDD. The condition Tdd was different to

tDd, tDD and TDD. tDD also was different to TDd and TDD to TDd. Also with

included distractor grouping mechanism the main effect of Display Type could be

observed (F(5,34)=10.632, p<0.001). The pairwise analysis led to a similar result,

however, now tDd was also different to tdd and there was no significance between tdd

and TDD anymore.

In the resulting graph it can be seen that the simulation results of the RT resemble
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the results of the behavioural experiment. In the model the RT depends on the colour

difference of target and distractor objects as the amount of colour feeds into the Tcol

map which has to reach a threshold activation before the movement can be initiated.

Thus, the smaller the difference between the combined size of the distractor objects

and the target the higher the initial latency. This implies that smaller target objects

show a shorter RT than larger target objects and for large distractor objects it is

shorter than for small distractor objects. This effect also was found to be significant

(without distractor grouping mechanism: F(1,38)=5.068, p=0.03; with: F(1,38)=4.604,

p=0.038). Both patterns can be found in the resulting RTs which demonstrates that

the Tcol map threshold can explain the behaviour of this measure. Finally, as predicted

the distractor grouping mechanism did not alter the RT significantly in the condition

tDd (t(18)=0.921, p=0.369) and TDd (t(18)=1.1, p=0.286).

Maximum Curvature (MC): Here also a significant main effect of Display Type was

found for the model without the distractor grouping mechanism (F(5,34)=14.073,

p<0.001). Here the pairwise analysis found significant differences of the condition

tDd with Tdd and TDd. Also tDD was different to all conditions with a large

target (Tdd, TDd and TDD). With distractor grouping mechanism there was also a

significant main effect (F(5,34)=12.489, p<0.001). The pairwise results were similar:

tDD was still different to all conditions with a large target. Furthermore, tdd was

different to TDd and the condition tDd was different to tDD and TDd. Reaches

to smaller targets were significantly less curved than reaches to larger targets on

both without (F(1,38)=42.976, p<0.001) and with (F(1,38)=24.985, p<0.001) the

distractor grouping mechanism. The distractor grouping mechanism increased the MC

significantly in both, the condition tDd (t(18)=2.791, p=0.012) and TDd (t(18)=2.788,

p=0.012).

Generally, the MC follows the pattern of the RTs to some extent. The model explains

these results through the T map receiving its input from both target and distractor
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objects and building up activations over time at all these locations after trial onset.

However, the input weightings of the T map are influenced by the Tcol map so that the

distractors are inhibited after the target colour has been chosen. Thus with a small

colour difference the Tcol map needs more time to decide the target colour. This also

means that the T map has more time to build up activation at the distractor locations

and more time until the distractor inhibition can affect the T map. Importantly,

in these maps more than one object can be activated at a time which leads to an

increased MC in these conditions. Hence, the longer the RT the more distractor

activation still exists upon movement onset and is inhibited only after the movement

is initiated which generates the curvature observed in the experiment.

As it was expected the results of the measures followed closely the colour similarity of

the objects (see Figure 4.2). However, the colour difference alone cannot explain all of

the results, particularly where the graph of the MC differs from the colour similarity

graph in the behavioural experiment. The first difference is that conditions with small

target objects show less curvature than conditions with large target objects. This

behaviour was induced by the T map preferring smaller target objects due to its

neural field parameters.

Overall, similar to the behavioural experiment in the conditions with similar target

size the effect of the colour difference can be observed, while smaller target objects

show a much smaller curvature than large target objects. This effect is smaller in the

Tcol map which was demonstrated by the ANOVA results which were less significant

in the RT. This is consistent with the behavioural evidence.

In the behavioural experiment RT and MC also differed in the conditions with an

odd-sized distractor. In order to simulate this aspect I introduced an abstract grouping

mechanism and performed simulations in both affected conditions (tDd and TDd)

with and without this mechanism. The results are shown as red and black data points

in Figure 4.5. The results of the modified model without the mechanism did not
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Figure 4.5.: Results of the odd-colour IF experiment: (a) Mean reaction time and
(b) mean maximum curvature values of the simulations in the different conditions.
Error bars represent the standard error. The black line shows the results for the
simulations of the modified model. The red line shows the influence of the distractor
grouping mechanism that is supposed to resemble the results for the conditions
with an odd-sized distractor (see text for details).

account for this finding. However, with the mechanism the results of the increased

MC in these conditions could be replicated. This was underlined by the significant

difference of the MCs and the not significant difference in the RT.

In the following I am going to discuss possible explanations for the observed results in

the simulations and implications for the interpretation of the results of the behavioural

experiment. The finding that small target objects have an advantage over large target

objects can be explained simply due to the fact that smaller target objects are preferred

in the target selection stage which leads to a smaller curvature in these conditions.

Interestingly, in standard responding tasks larger targets have an advantage over

smaller targets (e.g. Proulx & Egeth, 2008). However, as mentioned before in chapter

4.1.3 we suggest that small targets seem to have an advantage in this task as colour is

the relevant feature.

Another explanation for this finding could be that large target objects induce a shorter

latency. Thus, the smaller latency of large targets induces an increased curvature in
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those conditions. Moreover, this explanation is in line with the findings of Song and

Nakayama (2008b) and the original choice-reaching model where a shorter RT leads

to an increased curvature (see also chapter 3.2). Consequently, also the higher MC

with larger target objects can be explained.

4.1.6. Conclusion

In this experiment I investigated the influence of variations in target and distractor

size on the odd-colour choice-reaching task of Song and Nakayama (2008b). The

behavioural experiment which was conducted by Philip Woodgate showed that the

object size influences the latency and the curvature of reaching movements towards

the target object. I simulated the experiment with the choice-reaching model of

chapter 2.3. In the first experiments of chapter 3, the model had shown its ability to

replicate the basic findings of the standard odd-colour task of Song and Nakayama

(2008b) and was now tested in this more general setting of the odd-colour task with

varying object size. It turned out that the original model required modifications in

its control architecture in order to show effects in both measures. Thus, I introduced

an additional pathway, modified the parameters of the DNFs, and introduced the

abstract distractor grouping mechanism to account for the new findings. The modified

model was able to simulate the results of the reaction time very well. Furthermore

with the abstract distractor grouping mechanisms also the curvature results could

be simulated in detail. Hence, overall the control architecture was able to simulate

this variation of the odd-colour task that showed different behavioural results. This

gives further support for my model as only minor modifications were necessary to

reproduce the behavioural findings.
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4.2. Spatial averaging experiment

This experiment aimed to simulate the spatial averaging effect (see chapter 1.3; for

an introduction) with an modified version of the original model of chapter 2.3. My

experiment consisted of two parts: The first experiment followed closely the rapid

reaching experiments of Chapman et al. (2010a). In the following section I will give

a more detailed review of their findings. The second part of the experiment aimed

to test the model’s ability to simulate priming effects in the spatial averaging effect

to replicate the results of Chapman et al. (2010b) with the priming maps that were

already applied in the experiment of chapter 3.2. Hereby I will show that my modified

model is able to replicate their results and that the control architecture based on the

dynamic neural field theory is consistent with their theoretical explanations of the

effect. Subsequently the results of the model and their implications will be discussed.

4.2.1. Behavioural evidence

As reviewed in chapter 2.1 distractors have shown a clear influence on the reaching

process such as an attraction effect (e.g. Welsh & Elliot, 2004). In some experimental

setups it has been observed that the endpoint of the trajectory lands in between

the target and the distractor objects. This effect has been named “global effect” or

“spatial averaging effect” (see Findlay, 1982; Lee, 1999; for reviews).

Recently, Chapman et al. (2010a) designed and performed various experiments to

investigate the spatial averaging effect in a choice-reaching task. This allowed them to

see how visuomotor decision unfold in real-time similar to the odd-colour task of Song

and Nakayama (2009). In their experimental paradigm reaches had to be initiated

towards multiple potential target objects under strong time constraints so that the

final determination of the target object only took place after movement onset. Hence

participants had to select the final target after the initiation of their reach so that
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the target selection process occurred during the movement and was visible in the

movement trajectory.

Chapman et al. (2010a) found clear indications for a spatial averaging effect in the

movement trajectories when one potential target object was placed on the left side

and another one on the right side. In an early stage of the movement the movement

trajectory pointed towards a location in between the two potential targets. Moreover,

the effect was sensitive towards changes of the potential target locations e.g. when

the left potential target was placed further left then the initial movement direction

accounted for this change. Also different number of potential targets on each side

of the display influenced the trajectory: Hereby, more potential targets on one side

“pulled” the trajectory towards their side.

In a similar setup Chapman et al. (2010b) also found an influence of previous trials

on the spatial averaging effect. There the reach trajectories showed a bias towards the

repeated target side. This effect was stronger with more repetitions. So called trial

history or priming effects have been observed for a wide variety of movement task.

For instance also the introduced odd-colour task of Song and Nakayama (2008b) is

influenced by priming of previous trials.

The results of the experiments were consistent with the suggestion that the visuomotor

system plans multiple motor plans in parallel (Chapman et al., 2010a). The movement

then is an average of those activated motor plans. Evidence for this explanation

comes from Cisek and Kalaska (2005) who found brain cells in the premotor cortex

encoding possible target locations in a reach experiment with monkeys. Chapman et

al. (2010a) suggested that due to their paradigm the visuomotor system was forced to

represent all objects as potential targets during the planning process. Subsequently,

the following execution of the movement is an probabilistic weighted average plan

towards the potential targets. After movement onset, when the target had been

defined, the movement was adapted towards the target object.
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Attraction effects of distractors have been reported before (e.g. Welsh et al., 1999)

and were reviewed in chapter 2.1.3. As explanation for the spatial averaging effect

has been suggested that this effect can be observed due to the fact that the internal

representations of target and distractor objects can overlap especially when they

appear in spacial proximity (Chapman et al., 2010a). Thus, the representations of two

objects or their appropriate motor plans could join when they are close and form a

larger combined activation that results in a movement to the spatial averaged location.

This effect also has been observed for both, arm and eye movements (Georgopoulos,

Schwartz, & Kettner, 1986). In this way target and distractor objects initially are

encoded as potential targets and distractor objects have to be inhibited over the

course of time. However, in a rapid reaching task there might be insufficient time for

those processes to complete and the reach is initiated towards an average location.

I attempted to simulate the experiments of Chapman et al. (2010a, 2010b) regarding

the spatial averaging effect with my model. I will show that the model is able to

replicate above effects with its control architecture based on the dynamic neural field

theory.

4.2.2. Modifications of the model

In order to be able to perform the following experiments the original model (without

the modifications of the previous experiment) had to be modified within the Target

Selection module (see chapter 2.3.2 for the original setup). Unlike the previous

experiments colour did not play a role in this experiment; thus the Tcol map was

deactivated. The colour maps for green and red colour were topologically added and

fed as input into the T map. However, the object colour was used to distinguish

between (green) non-target and (red) target objects after movement onset (see Figure

4.6). Note that this is a technical implementation to determine the final target object
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Figure 4.6.: Overview of the modified Target Selection module for the spatial aver-
aging experiments. The topological sum of the two colour maps is fed into the T
map as input. However, after movement onset the input from the green map is
blocked in order to distinguish between potential target objects and the final target
object. For the second part of the experiment location priming was applied in some
conditions similar to the odd-colour experiment. For a complete overview of the
control architecture I refer to Figure 2.4.

after movement onset. In the experiments of Chapman et al. (2010a) this was realised

with empty circles (for potential target objects) before movement onset and filled

circles (for final target objects) after movement onset. The mathematical details of

the technical implementation can be found in the Appendix in chapter A.1.4.

In first test simulations it turned out that the time the model needs for processing the

changes of the target after movement onset is too short so that the model immediately

moved towards the final target object and no effect in the measures could be observed.

Therefore, the processing time was artificially extended by introducing a dead-time

parameter which simply extended the information processing of the T map and gave

direct control about the processing time. Note that this is similar to the visual delay

of humans which was reviewed in chapter 1.2. The dead-time parameter will also be

applied in the goal-directed reaching model in chapter 5.

In order to apply the priming effect some sort of short time memory module is
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necessary. My model has shown before that the application of priming maps can

lead to a similar effect (see the odd-colour experiment of chapter 3.2). The technical

implementation of the priming effect in this experiment is similar to the odd-colour

experiment. The priming took place in the T map of the model which received a

priming map as an input signal before the actual trial took place (see Figure 4.6).

This priming effect was implemented by adding a Gaussian activation to the location

of the potential target object which had to be primed. With this method the T map

already contained some activation before it received the input from the colour maps.

4.2.3. Methods

The hardware setup of this experiment was similar to the first series of experiments

(see chapter 3). The target objects were square coloured markers (red or green) with

3.5 cm length of the edge and were placed in front of the robot arm depending on the

experimental condition.

The experiment was divided into two parts. First, several conditions were performed

which based on the setting of Chapman et al. (2010a): A single-target baseline

(BL) condition was performed to see the trajectories without influence of distractors

(similiar to the setting of chapter 3.1). Furthermore, the spatial averaging effect

was simulated in different settings with two potential target objects arranged in a

symmetrical fashion (1-1) or shifted to the left (SL) or the right side (SR). Also

conditions with three (2-1, 1-2) potential target objects were performed. Figure 4.7

shows details of the arrangement of the markers in the different conditions.

For the priming conditions in the second part of the experiment only symmetrical

two target displays (similar to condition 1-1) were conducted. Two different levels of

priming (low - P1 and high - P2) were applied towards either on the left or on the

right side. Only trajectories towards the primed target side were recorded so that the
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Figure 4.7.: (a) Object placement in the spatial averaging experiment in the different
conditions. The abbreviations of the conditions mean: two target displays (1-1),
shifted left/right (SL/SR), three target displays with two targets on the left (2-1;
not shown) or right (1-2) side. (b) Resulting trajectories of the single target baseline
(BL) condition (black and green) and of the two target displays (1-1, blue and
red). The trajectories (bold lines) are averaged trajectories of five trials and shown
with their standard deviation (thin lines). The two target displays have a much
higher curvature than the single target displays. Moreover, they initially point to
the midpoint in between the two potential target objects in the early stage of the
movement which is clear indication for the spatial averaging effect.

final target always was on the primed side. These two conditions were compared with

the two target display (1-1) and the single target condition (BL) of the first part of

the experiment.

As mentioned before the determination of the target object occurred after movement

onset which was considered as the point in time when the peak activation in the V

map (the moving blob) reached a distance of a least two neurons away from the centre

of the map. In each condition five trajectories were recorded.

The data processing was similar to the previous experiment: a B-Spline (3rd order)

and a Butterworth filter (2nd order) were applied on the raw data points. As the

experiment focussed on the trajectories and their Maximum Curvatures (MC), these
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Figure 4.8.: Trajectories of the shifted two target displays (red and blue; (a) SL
and (b) SR) of the spatial averaging experiment compared with the symmetric two
target (green; 1-1) and the one target displays (black; BL). In the shifted conditions
the midpoint of the two objects is slightly further away from the target of the not
shifted side which increases the curvature of the trajectory even more in comparison
with the trajectory of the 1-1 condition.

two measures were recorded and obtained from the raw data similar to the previous

experiment. The detailed values of all parameters of the simulation of this experiment

can be found in the Appendix in chapter A.2.7.

4.2.4. Results weighted spatial averaging effect

In this section I am going to present the results of the first part of the experiment.

The results of the different conditions will be presented separately. The detailled

values of the MCs can be found in Table 4.1.

Single target displays (BL): When only one target was presented, the trajectory

was fairly straight and the maximum curvature was very low with values lower than

5% (see Figure 4.7). This was independent of the side where the target appeared.

This result was expected and is consistent with the earlier single-target experiment of

chapter 3.1.

Two target displays (1-1): In the two target displays much higher curvatures were
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observed. A comparison of the trajectories of the single target displays with the two

target displays can be found in Figure 4.7. By exploring the mean trajectories of the

movement it can be seen that this effect can be accounted to a spatial averaging effect:

In the early stage of the movement the hand reaches towards a point in between

the two potential targets. After the final target has been detected the movement

trajectory gradually changes towards it.

This behaviour arises directly from the moving blob in the V map. Due to the broad

overlapping input activation in this DNF the movement initially points toward an

intermediate location of the two potential target objects and is later corrected towards

the final target.

Shifted two target displays (SL, SR): The trajectories of these conditions where either

the left potential target object was shifted to the left side or the right one to the right

side can be found in Figure 4.8. When comparing the trajectories of the not-shifted

side of the SL and SR conditions with the 1-1 condition it can be seen that the

shifted object had a clear influence on the trajectory of the movement. Here also the

observed curvature values of SL and SR were increased more than the curvatures of

the 1-1 condition (see Table 4.1). The reason for this is the shifted midpoint of the

two potential target objects. Hence the moving blob and also the trajectories in an

early stage of the movement now pointed towards the new midpoint. This shows that

the averaging effect is sensitive towards changes in the location of the potential target

objects.

Three target displays (2-1, 1-2): Presenting two potential target objects on one side

and one object on the other side had a similar effect than the shifted target objects

before: The movement direction in an early stage of the movement pointed towards the

side with the two targets (see Figure 4.9). Again the trajectories of the 1-1 condition

were compared with the unaltered side (the side with one potential target). Here the

influence of the opposing two potential targets caused the curvature to increase even
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Figure 4.9.: Trajectories of the three target displays (red and blue; (a) 1-2 and (b) 2-1
condition) of the weighted spatial averaging experiment in comparison with the two
object displays (1-1) on the side with only one potential target object (black). The
two potential targets pull the trajectory towards their side so that the curvature
towards the one-target side is increased.

more, however, the MC was decreased on the other side with two potential targets.

This result is a clear indication that the spatial averaging effect is weighted depending

on the number of potential target objects.

Overall the results are consistent with the findings of Chapman et al. (2010a). First

my model successfully simulated the spatial averaging effect in the two target displays

(1-1) which showed a greatly increased curvature compared with the single target

displays. Moreover, the effect was sensitive towards slightly changed locations of the

potential target objects in the SL and SR condition and a weighted effect in the three

target displays (1-2, 2-1) could be observed. In that way all aspects of the spatial

averaging effect that were found by Chapman et al. (2010a) could be simulated with

the implemented control architecture of my model.

4.2.5. Results primed spatial averaging effect

This section presents the results of the second part of the experiment where the

influence of priming on the spatial averaging effect was investigated. The priming
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condition MC [%]
BL
left 3.9 (0.7)
right 3.6 (0.5)
1-1
left 18.5 (3.3)
right 14.3 (0.7)
SL
left 15.2 (1.5)
right 24.1 (0.7)

condition MC [%]
SR
left 25.1 (0.1)
right 13.3 (0.4)
2-1
left (near) 16.0 (0.4)
right 25.4 (0.3)
1-2
left 28.5 (0.1)
right (near) 10.8 (4.8)

Table 4.1.: Maximum curvature results of the weighted spatial averaging experiment:
Displayed are all conditions with their mean values of the Maximum Curvature
(MC) with standard deviations (in brackets). In the left column the bold text
describes the condition and the normal text specifies the target location. Due to the
spatial averaging effect all experimental conditions have a much higher curvature
than the one object baseline conditions. For the discussion of the conditions see the
text.

20 25 30 35 40 45

10

15

20

25

30

X [cm]

Y
 [c

m
]

Priming vs 1−1/BL (left side)

(a)

1−1 P1 P2 BL
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.220.22

Condition

M
ax

 C
ur

va
tu

re
 [%

]

Maximum Curvatures Left Target

(b)

Figure 4.10.: Trajectories of the primed spatial averaging effect towards the left
target side (a) and their maximum curvatures (b). The priming decreases the
curvature and shifts the trajectory towards the primed object. This effect is even
stronger with a higher priming strength.
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Figure 4.11.: Trajectories of the primed spatial averaging effect towards the right
target side (a) and their maximum curvatures (b). Again the priming shifts the
trajectory and decreases its curvature.

had a strong influence on trajectory and curvature. The trajectories of the priming

conditions P1 and P2 differ clearly from the two target display (1-1) trajectories as

they show a bias towards the primed target side. This bias was stronger with a higher

level of priming (see the left side of the Figures 4.10 and 4.11). However, the biased

trajectories still differ significantly from the single target trajectories.

This effect is also visible in the MCs. The curvatures of the P1 and P2 condition are

in between the high curvature of the two target displays and the low curvature of the

single target displays. Moreover, with a higher level of priming (P2) the curvature

was even more decreased than in the low level priming condition (P1) compared to

the two target display (1-1) (see the right side of the Figures 4.10 and 4.11).

Note that the values of the MCs differed slightly between the left and right target

side. As the standard deviations of trajectory and curvature were fairly low this can

be explained with different kinematic constraints for the arm’s joints when reaching

for the left and the right side.

Also in this part of the experiment the behavioural results could be replicated by my

model. In the following I will summarise and discuss the findings of the two parts of

the experiment.
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4.2.6. Discussion & Conclusion

The main purpose of the spatial averaging experiment was to show that the control

architecture of the odd-colour model with its underlying framework of the dynamic

neural field theory is applicable to a wider range of choice-reaching tasks. In order to

prepare the model for the requirements of these experiments, i.e., no colour feature

and the technical implementation of potential and final targets the original model of

chapter 2.3 had to be modified in the Target Selection stage.

In the first part of the experiment I demonstrated that the modified model is able to

reproduce the spatial averaging effect when two potential target objects are presented

at trial start and the target only is specified after movement onset. The resulting

movement was initiated towards a location in between the two potential target objects

and only after the target was detected the movement was adapted. Moreover the

spatial averaging effect had a similar sensitivity than in the experiments of Chapman

et al. (2010a) which could be seen in the shifted and three object conditions where the

initial direction of the trajectory changed with a different placement of the potential

target objects or by adding a third object to one of the target sides.

Chapman et al. (2010a) suggested that overlapping activations are the reason for the

spatial averaging effect. In my model potential target objects establish separate hills of

activation in the T map after trial onset which mainly reflects the input. Then those

target activations are passed through further into the model as inputs for the D map

and cause the development of activations there. Finally, in the V map the overlapping

of the targets happens: Here broad activations are combined in order to perform the

moving blob behaviour (see also chapter 2.3). Due to the DNF parameters in earlier

processing stages (T , D map) no overlapping occurs unless the spatial difference of

the potential target objects is very small. Later, in the V map those activations are

broadened and therefore influence the moving blob to move towards a location in
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between the targets. The experiment showed that this averaging is sensitive towards

changes in the potential target objects’ location. Thus, the model confirms that it is

applicable to generate the spatial averaging effect in that way.

The second part of the experiment aimed to simulate short-term motor plasticity

of the spatial averaging effect with the help of priming maps. Hereby, the model

was able to replicate the results of the study of Chapman et al. (2010b). When

one target received an initial activation before trial onset from the priming map the

resulting trajectory was biased towards the primed target side. Large differences

between trajectory and maximum curvatures of the priming, two-target and single

target conditions could be found. The primed trajectories differed clearly from the

baselines and the strength of the bias varied with the strength of the priming so that

the trajectories were straighter with a stronger priming. This biased trajectories were

explained by Chapman et al. (2010b) with the “effects of repeated cueing on the

attentional landscape”. In this way the repetition primes the repeated target and

affects the weightings of the motor plans assigned to the potential target objects.

These movement parameters are accumulated from trial to trial so that the effect

becomes stronger with an increased number of repetitions.

My model implements such attentional landscapes in the two-dimensional DNFs. This

is also the location where the observed behaviour is realised. The T map is responsible

for the target selection and receives the priming activation before trial onset. Hence

the primed location will have a stronger activation here. Then the same mechanism

that causes the spatial averaging creates the biased trajectories: While in the Target

Selection module (potential) targets establish separated activations they overlap and

join in the velocity map to create the moving blob behaviour. When one target side

is primed then its belonging activation will be larger thorough all DNFs behind the

T map (D and V map). Hence the movement vector has a bias towards the primed

target side and only slightly shifts the initial movement direction towards the primed
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target which eventually causes the shift in the trajectory.

My model demonstrates that it can be sufficient for a priming method only to affect

the target selection stage in order to generate this behaviour as the movement vector is

continuously generated in a closed-loop fashion. Thus the execution of the movement

only depends on the target weightings and the parameters that direct the moving

blob. In this way the parameters that directly control the movement (the moving

blob parameters) remain unchanged and only the weightings of the potential target

objects are adapted in between trials.

The fact that the modified model was able to simulate both spatial averaging effect

experiments gives further support that the control architecture of my model works in

a similar way like the attentional and movement preparation processes in the human

brain. Note that the model originally was designed to simulate the odd-colour task

(chapter 3). Nevertheless, with only minor modifications to the Target Selection

module the results in the simulation of the spatial averaging effect are similar to

humans. Hence, the model can be seen as an appropriate tool to simulate such

choice-reaching experiments.

4.2.7. Further experiments

Recently various related studies of the simulated experiments of Chapman et al.

(2010a) and Chapman et al. (2010b) were published. While it was not possible to

simulate or discuss all of them more deeply in this thesis I am going to present a short

summary about their results and implications for my model here.

The first study of Chapman and Goodale (2008) dealt with perturbation effects (the

target jumped upon movement onset) and the influence of physical obstacles. The

results showed that physical non-target obstacles can cause an avoidance or repulsion

effect in the trajectory of the movement. They also observed velocity reductions when
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there was a risk of collision. In my model such a behaviour could be realised with an

interplay of negative activations caused by obstacles that push the moving blob away

from the obstacles to avoid collisions and the Onset mechanism of the goal-directed

reaching model (which slows down the hand when the perturbation occurs; see also

chapter 5).

In a different setting Wood et al. (2011) tested if the spatial averaging effect is

influenced by the saliency of the potential target objects. They found that the

movement trajectories were biased to the side of higher salient objects. They suggested

that this was due to a possible influence of saccades as they also found that the

movements veered towards the position where the participants looked. Moreover they

suggested that this effect could be observed due to the fact that a fast direct route

prefers the salient objects. Later those preselected salient objects have to be inhibited

which takes more time. My model is not designed to simulate saccades, however,

more salient objects could receive a larger input activation in the T map leading to a

similar result.

In the last experiment that I present here Gallivan et al. (2011) conducted a rapid-

reaching task similar to the spatial averaging tasks of Chapman et al. (2010a) with a

larger number of objects (up to 16 per side). They found that the spatial averaging

effect occurred only up to a number of four presented potential targets objects per

side and explained these findings with the fact that only a limited number of objects

can compete for attention at a time. Furthermore, they were not able to find a size

effect with potential targets of different sizes. Regarding potential simulations of a

similar experiment in my model it can be said that it does not have a strict upper

limit for target objects which can be encoded. However, due to the mechanism of

local excitation and global inhibition the parameters of the DNFs (T , D map) could

easily be adjusted in a way that only a limited number of potential target objects

can establish activations at a time. For instance a higher inhibition would suppress
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smaller inputs and only fewer (and higher) inputs would establish activations in the

DNF. Moreover, larger groups of potential target objects might be perceived and

encoded with only one activation particularly when the objects are close to each

other like in the setup of Gallivan et al. (2011). Regarding the fact that they could

not find a bias toward larger potential target objects, this could be simulated with

appropriate parameters in the Target Selection module so that the size feature is not

passed through onto the motor stage.

To conclude this section it can be said that it would be possible to simulate the

mentioned experiments with only minor modifications to the control architecture of

my model which gives further support for my approach to explain the choice-reaching

tasks.

4.3. Simon effect experiment

This last choice-reaching experiment aimed to simulate the Simon effect. I already

introduced the Simon effect and the choice-reaching task of Scherbaum et al. (2010)

in chapter 1.3. Here I am going to review more behavioural evidence about the Simon

effect before I present the experiment and the simulations of my model.

4.3.1. Behavioural evidence

In experiments regarding the Simon effect stimuli (cue objects) with multiple (at least

two) dimensions such as colour or location are presented. One dimension (e.g. colour)

determines the to be selected response, while the other stimuli feature (e.g. location)

has to be ignored. From measures such as reaction times or movement trajectories the

effect of the irrelevant information on the processing of the stimuli can be investigated.

In a typical Simon task irrelevant spatial information has to be ignored whereas the

non-spatial information (e.g. sound or colour) of the cue encodes the target (see
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Hommel, 2011; for a review).

Historically the Simon effect was discovered in keypress experiments (see Simon, 1990;

for a review). There, subjects were instructed to perform keypresses to pitched tones

of different frequencies. When perceiving a high tone the subjects had to press the

right key and with a low tone the left key. The surprising discovery of this experiment

was that subjects responded significantly faster when listening to the high-tone with

the ear on the (associated) right side than with the other side. This effect of a non-

relevant dimension (location) in the stimulus was interpreted as a natural tendency to

react toward the source of the stimulation. Consequently, the effect is now commonly

known as the Simon effect and has been replicated in numerous experiments (see

Lu & Proctor, 1995; Simon, 1990; for reviews). A popular setup to show the Simon

effect uses red and green coloured markers as cue objects where each colour encodes a

target side. The cue can appear on either the left or right side therefore the trials can

be divided into congruent (where the cue location matches the target location) and

incongruent (cue on opposite side than the target location) conditions. In congruent

trials the cue matches the encoded target side while in incongruent trials the opposite

target side is encoded. The strength of the effect is measured with the difference of

the reaction times of incongruent and congruent trials (see Figure 4.12).

In the last decades the Simon effect was thoroughly investigated. For instance, it could

be shown that under certain circumstances the Simon effect can be reversed (when

the target sides are logically re-coded, DeJong, Lian, & Lauber, 1994; for a review).

Further it was found that for trials with faster reaction times the effect is stronger

than in slower responses. For this reason often the time course of the Simon effect

is explored. The typical effect that can be found is a decreasing (even disappearing)

Simon effect with increasing Reaction Time (RT). However, the reversed Simon effect

tends to increase in slower RT bins.

Recently, the paradigm of the choice-reaching tasks (see also chapter 1.3) was applied
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Figure 4.12.: Typical observed Reaction Times (RTs) in a Simon task where the
stimulus colour (green/red) encodes the response key location (left/right): In
congruent conditions (stimulus location = encoded key location) RTs are faster, in
incongruent conditions RTs are slower.

for experiments regarding the Simon effect. One of the first experiments is the work

of Rubichi and Pellicano (2004) who investigated the influence of response strategies

on the Simon effect. In their experiments they forced the participants to apply a

particular response strategy (response with one hand where the movement direction

had to be selected versus two hands where the responding hand had to be selected).

The Simon effect occurred during the reaction time when the response-selection can

be terminated before movement onset and in the movement time when the movement

onset occurs before the definite selection of the correct response.

In a similar setup Buetti and Kerzel (2008, 2009) made use of movement parameters

of the trajectory: they measured the Initial Movement Angles (IMA) of the movement

after 20% of the Movement Time (MT). They investigated the size of the Simon effect

in different measures and the influence of different response selection strategies. In

their studies they found a Simon effect in the IMAs which decreased the greater the

RTs were (Buetti & Kerzel, 2008). This was the case for settings for the introduced

visuomotor and cognitive Simon effect what suggests that there is one underlying
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mechanism for both. Buetti and Kerzel (2009) confirmed these results with a wider

range of experiments: Under time pressure the Simon effect almost disappeared in the

RTs but was stronger in the IMAs. In contrast, with advanced movement preparation

(i.e. more time before movement onset) the Simon effect was reduced in the IMAs,

however, increased in the RT. Buetti and Kerzel (2008) suggested that the Simon

effect in RTs is caused by response selection while the effect in the trajectory is caused

by the response programming, however, both effects might have a single underlying

mechanism.

Interpretations and models of the Simon effect

Different explanations and models came up to explain the observed effects of Simon

tasks. It can be considered as accepted that the Simon effect affects the response-

selection stage rather than stimulus encoding stage (Simon, 1990). The most popular

explanation that accounts for this fact is the so-called dual-route model (see Figure

4.13 and Kornblum, Stevens, Whipple, & Requin, 1999; for a review). It presumes

that two routes are responsible for producing the Simon effect: a direct route where

the stimulus location activates the corresponding response code and an indirect route

to determine the correct response with the relevant stimulus dimension. In a con-

gruent trial both stimulus dimensions activate the same response, which facilitates

responding, whereas in incongruent trials different responses are activated causing a

response conflict that has to be resolved.

A similar explanation was made by DeJong et al. (1994). According to their interpret-

ation the stimulus affects two processes: First, after stimulus onset an unconditional

component induces activation at the stimulus location and also primes the motor

response toward this location. This activation vanishes quickly over the time and

leads to a decreasing Simon effect in slower RT bins. This effect was also described by

Hommel (1994) as spontaneous decay of the irrelevant spatial response. Second, the
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Figure 4.13.: Dual-route model to explain the Simon effect. After the onset of the
stimulus its location primes the spatial code on and a motor response towards its
location (blue arrow). It takes some more time to process the stimulus identity
(and to logical recode it if necessary), thus the non-spatial code influences the motor
stage slightly later (red arrow). Congruent trials are faster due to the already
existing priming in the spatial code and the motor response, while incongruent trials
are slower because a recoding in these areas has to take place. Picture depicted
from Metzker and Dreisbach (2009).

conditional component depends on the mapping of the stimuli and does not depend on

the RT. Within this process the identification of the nonspatial stimulus feature takes

place as well as the transformation rule. The conditional component only depends on

the stimulus-response mapping while the unconditional component is able to give an

explanation for the time course of the regular (decreasing in slower RT bins) and the

reversed Simon effect (increasing).

4.3.2. Modifications of the model

My experimental setup was similar to the studies of Scherbaum et al. (2010) and

Buetti and Kerzel (2008). They used paradigms where a cue (an arrow or a coloured

marker) appeared on either the left or the right side. This cue indicated the target

side which had to be reached. In those experiments the Simon effect could be observed

in both the Reaction Time (RT) and the trajectory. However, as mentioned in the
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Figure 4.14.: The Target Selection module of the modified control architecture of the
Simon task model. For the original model and the complete control architecture
see Figure 2.4. The cue colour map works in a similar way than the target colour
map of the original model. However, this map now is connected to non-dynamical
encoded target maps that already contain activations at the locations of the two
possible target regions. In this way the cue colours activate their appropriate target
region. The Simon effect results from the fact that the cue location also directly is
fed into the T map. This information has to be overwritten by the activated cue
colour and its encoded target.

previous section other experimental evidence suggests that with a shorter RT the

trajectory tends to be more curved, however then the Simon effect in the RT is

diminished. Vice versa with longer RTs the trajectories are straight, but the Simon

effect can be observed in the RTs (Rubichi & Pellicano, 2004; Buetti & Kerzel, 2008).

Few modifications were necessary in order to implement the experimental setup

consisting of cue object and its encoded target position. Similar to the previous

experiment these modifications regarded only the Target Selection module and will

be presented in the following. Earlier experiments with my model (e.g. chapter 3.3)

showed that the RT can be controlled in an easy way by changing the value of the

threshold between the T and D map. This threshold parameter thT controls how
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much activation is necessary to initiate the movement, hence two conditions with

different values of thT will be conducted to observe the Simon effect in the RT (high

threshold) and the Maximum Curvature (MC; low threshold).

Instead of using arrows that indicate the target side, I use colours to define the side

of the target that has to be reached. This is a solution that is closer to the odd-colour

experiments and requires less modifications of the model. Note that experimental

designs with coloured cues that indicate the target side have been applied before (e.g.

Rubichi & Pellicano, 2004).

In order to detect the cue colour and the target side that it encodes the Target

Selection module had to be changed. Hence a slightly modified version of the model of

the odd-colour task of section 3.2 was used for this experiment (see Figure 4.14). For

the Simon task model the output of Tcol was not connected to the colour maps, but

to the weights of two predefined target locations maps (left, right) that feed into the

T map. These predefined target maps were non-dynamical maps each containing a

Gaussian activation on either the left of the right target location. In this way, the cue

location will play a role in an early stage of the simulation as the colour maps serve

as a direct input for the T map, however, the predefined target maps will dominate

the input activation in the T map once the cue colour in encoded in the Tcol map as

their weightings are higher. This can be interpreted as the non-spatial route in the

dual-route models so that the target side solely depends on the cue’s colour and not

on its location.

4.3.3. Methods

The hardware setup was similar to the earlier experiments. The target locations were

located 20 cm in front of the robot arm identical to the locations of the 1-1 condition

of the spatial averaging experiment (see Figure 4.7). The cues were red or green
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coloured markers (3.5 cm length of edge) which were placed either at the left or the

right target location.

The experiment had two factors with two conditions each. The first factor was the

congruency of target side and cue. The target side had to be identified by the colour

of the cue object. Hereby green encoded the left target while red encoded the right

target. In the congruent condition (C) the side of the cue also was the encoded target

side while in the incongruent condition (I) the cue appeared on the opposed side.

The second factor was the strength of the threshold, which could a low value (low ;

thT = 0.2) or a high value (high; thT = 0.95) depending on the threshold thT between

the T and the D map.

The trajectory data and the measures (Reaction Time, RT; Maximum Curvature,

MC) were obtained and analysed like in the previous experiment. For each condition

five trajectories were recorded. The model parameters can be found in the Appendix.

4.3.4. Results & Discussion

As it was of no significance for the model whether the cue colour is red or green,

only the results for red coloured cues for the different conditions (C/I, high/low) are

documented here. The results with the green cues were identical, however, mirrored

as green encoded the opposite target colour. The results of the RTs and the MCs of

all conditions are displayed in Figure 4.15, the movement trajectories can be found in

the Figures 4.16 and 4.17.

The effect of the different threshold values were as expected: With a high threshold

straight trajectories in both congruent and incongruent condition could be observed

(see Figure 4.16). In this condition the determination of the target side had sufficient

time to complete before the threshold in the T map was reached and passed along

to the D and V map which caused the initiation of the movement. However, the
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Figure 4.15.: Maximum curvatures (a) and reaction times (b) of the different condi-
tions in the Simon task experiment. In the low threshold conditions (red colour)
the Simon effect occurs after movement initiation during the reaching process as
the maximum curvatures are very different here but the RTs are almost identical.
In contrast, in the high threshold condition (blue colour) the congruency does
not influence the curvature but the RTs of congruent and incongruent trials differ
clearly. Moreover, both RTs in the high threshold are higher than the RTs of the
corresponding low threshold conditions.

congruency strongly affected the RT so that a large Simon effect could be seen in

this measure as the RT of the incongruent condition is much higher than the RT of

the congruent condition. The reason for this is the dynamic in the T map; here the

cue caused a small activation after it appeared. Hence the correct target side can

build up activation much quicker when it got the bonus activation from the cue in the

congruent condition.

In the low threshold condition less activation in the T map was needed influence the

moving blob in the V map. This had a visible effect on the resulting trajectory in the

incongruent condition. Here a significantly higher curvature could be observed. The

reason for this is that the activation in the T map caused by the cue object was high

enough to surpass the threshold and to initiate the movement. Hence the movement

was initiated much quicker and the trajectory pointed initially towards the location of

the cue (see Figure 4.17). In the congruent condition no differences could be observed
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Figure 4.16.: Trajectories of the Simon task experiment in the high threshold con-
dition. The red colour encoded the right square as target object. (a) shows the
congruent and (b) the incongruent condition. The congruency does not influence
the trajectories, both reached the right target object with a straight path.
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Figure 4.17.: Trajectories of the low threshold condition of the Simon task experiment.
The red colour encoded the right square as target object. (a) shows the congruent
and (b) the incongruent condition. Due to the low threshold the movement is
initiated towards the cue location. This results in a highly curved trajectory when
the cue appears on the non-target side as the movement has to be corrected.
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and the trajectory was straight like in the high threshold trials as the cue’s location

was identical with the target location here. However, the RT here was only slightly

faster than in the incongruent condition because the low threshold diminished the

difference in this measure.

The results in the low threshold condition are consistent with the experimental

evidence of Scherbaum et al. (2010) who also found differences in the movement

trajectory depending on the congruency. Moreover, the overall results are consistent

with the findings of Rubichi and Pellicano (2004). They performed an experiment

with lateral movements and found a similar effect of a strong Simon effect in the

trajectory when the RTs are low and no differences in the trajectories but a Simon

effect in the RTs when the RTs were high. Their explanation follows the dual-route

models which see the Simon effect as a response selection phenomenon. According

to this the Simon effect should occur in the RT if the target side is selected before

movement initiation or in the trajectory (or curvature/ movement time) if the target

side is selected after movement initiation. This view was confirmed by Buetti and

Kerzel (2008) in a similar experiment. According to them large trajectory deviations

occur for fast responses as the cue directly activates a motor response. With the

passing of time this automatic activation is inhibited and overwritten by the encoded

target side.

With the architecture in the Target Selection module my modified model follows the

dual-route models of the Simon effect as the location of the cue influences the target

selection map in an early stage (direct spatial route) and the colour in a later stage

(indirect non-spatial route). In my model for the Simon task the direct spatial route

is implemented with the direct connection of the colour maps to the T map while the

indirect route influences the T map only after the colour of the cue has been processed

in the Tcol map and the existing (spatial) information is overwritten.
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4.3.5. Potential extensions of the experiment

The experimental paradigm of my simulations was inspired by the experiments of

Scherbaum et al. (2010), however unlike in their experiment not inter-trial effects but

the occurrence of the Simon effect in RT and trajectory was investigated similar to

the experiments of Buetti and Kerzel (2008) and Rubichi and Pellicano (2004). With

only a few adjustments of the Simon task model it would be possible to simulate all

aspects of the experiment of Scherbaum et al. (2010). In the odd-colour experiment of

chapter 3.2 it was shown that priming maps can be applied to simulate priming effects

of colour or location. The Simon task has a different setup, however, the priming

effects for the target location were simulated in a similar way.

4.3.6. Simon effect models

Before concluding the Simon effect experiment it should be noted that there already

exist numerous models to simulate the Simon effect. I am going to introduce a few

computational models here. The first is the model of Kornblum et al. (1999) that

accounts for stimulus-stimulus and stimulus-response consistency effects. It assumes

that the processing of those effects is divided into the sequential stages of stimulus

processing and response production. Accordingly, the model consists of two layers:

an input and an output layer. Each layer consists of modules of neurons which

represent stimulus dimensions (in the input layer) and response dimensions (output

layer). Another example for a computational model for the Simon effect is the one of

Tagliabue, Zorzi, Umilta, and Bassignani (2000) who investigated the role of long and

short term memory on the Simon effect in a series of experiments and developed a

computational model to explain these findings. Also DeJong et al. (1994) presented a

computational model that deals with the Simon effect and its reversion based on the

dual-process hypothesis.
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All these models are able to simulate the fundamental characteristics of the Simon

effect, including its reversal and its time course. However, these models are all isolated

and theoretical in the sense that they do not account for the processing of the stimulus

information and the execution of the motor response. Colour and location of the

stimulus often are the direct input for these models and those information are available

immediately after stimulus onset. Only in the model of Kornblum et al. (1999) the

processing of the colour can be delayed due to the simulation of the stimulus-stimulus

consistency in Stroop tasks.

Note that even though I applied a modified version of my original model of chapter 2.3,

all above models could easily be included into my control architecture. The models

presented here typically consist of two neurons for encoding colour and location of

the cue to determine the target location. By converting the x-y position of cue and

target into discrete left/right positions the target selection module could be replaced

by one of those models. Those models are able to cover more aspects of the Simon

task (e.g. explaining the reversed Simon effect) than my model. However, in my

thesis it was not the aim of my experiment to simulate all aspects of the Simon effect

rather than to show that the control architecture of my model can be used to simulate

a wide range of choice-reaching tasks utilising a complete perception-action cycle.

Nevertheless with the potential to apply existing models in the target selection stage

my model could be utilised for further Simon effect experiments.

4.3.7. Conclusion

The main purpose of this experiment was to show that the hardware and control

architecture of the model can easily be modified to a wider range of choice-reaching

tasks such as the Simon task and to simulate important findings of those tasks. It

could be shown that my model is able to reproduce typical observed behaviour of
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such tasks. In the different conditions of the experiment I showed that the Simon

effect occurred either before or after movement onset depending solely on the value

of the threshold parameter thT that already played a crucial role in the odd-colour

“continuous” vs. “threshold” experiment (see chapter 3.3). The results demonstrated

that the modified model is able to reproduce the experimental findings of existing

choice-reaching studies regarding the Simon effect. In the model the Simon effect

emerges from the fact that the irrelevant location feature influences the target selection

map directly, later the cue colour as the relevant target feature determines the target

side and overwrites the irrelevant location information which is consistent with current

explanations of the Simon effect. This demonstrates that my model is general enough

to simulate a broad range of choice-reaching tasks. Furthermore, my model possesses

a control architecture that can utilise existing computational models of the Simon

task. Thus, it is possible to use the motor stage of my model together with existing

abstract models to simulate experiments regarding the Simon effect.
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The experiments of the previous chapters demonstrated that my model and its

control architecture is able to perform human-like reaching movements in single-target

experiments as well as the odd-colour task of Song and Nakayama (2008b) and other

choice-reaching tasks. In this chapter I will extend the existing model to simulate

a range of goal-directed reaching tasks. The aim hereby is to show that a human-

like behaviour in those tasks can be achieved with the closed-loop architecture of

my model. This approach differs from the established two-component models and

open-loop models that were introduced in chapter 2.1. Four experiments will be

simulated: the first two deal with speed-accuracy trade-off and the last two with

perturbation effects. Before presenting the experiments I give a detailed overview of

the modifications of the original model in the next section. The extended model and

the speed-accuracy experiments also will be published shortly in Strauss and Heinke

(2013).

5.1. Relevant empirical evidence

Chapter 1.2 and 2.1 already reviewed the current research and models regarding

goal-directed reaching. Here I am going to present a detailed review of the most

relevant empirical evidence of human behaviour in typical goal-directed reaching tasks.

These findings will be compared with the simulations of my model afterwards.
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The probably most important and general finding in the area of goal-directed reaching

is the already in the introduction mentioned Fitts’ law. It goes back to the findings of

Fitts (1954) who was the first to provide a functional relation between the movement

speed of reaching movements and their accuracy (see also Meyer et al., 1990; for

a review). He analysed goal-directed reaching movements towards target objects

of different sizes that were placed in various distances where the participants were

asked to reach the target as quickly as possible. In such so-called time-minimisation

tasks (where participants are asked to minimise their movement time) Fitts found

that larger objects have shorter Movement Times (MTs) than smaller objects, while

objects with a greater distance have longer MTs than nearer objects. Moreover,

he proposed an equation to estimate the “difficulty” (Index of Difficulty, ID) of a

movement depending solely on the distance D and the width W of the target object

which is to be reached:

ID = log2

(2D

W

)
(5.1)

With the ID an estimation of the MT can be calculated using parameters a, b > 0:

MT = a+ b ID (5.2)

Above equations and their linear relation between the difficulty and the movement

times were confirmed in many experiments over the last decades and were found to

be so general that it is now commonly known as Fitts’ law.

Another important fact of the goal-directed reaching process is the already mentioned

and simulated (see chapter 3.1) bell-shaped velocity profile. Typically the peak velocity

is roughly at the mid-point between starting point and target position (see also Figure

5.1 and Rosenbaum et al., 2006; for a review). The profile often is skewed with faster

increase at the beginning of the movement and slower decrease when approaching the
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Figure 5.1.: Typical velocity profile of a human reach (blue line) with common
kinematic markers: The Reaction Time (RT) is the time between trial onset and
movement initiation. The Movement Time (MT) can be divided into an acceleration
phase (Time to Peak Velocity - TPV) and a deceleration phase (Time After Peak
Velocity - TAPV). With a smaller target size (red line) the TAPV phase usually is
extended by a “low-velocity” phase which even could show secondary peaks towards
the end of the movement (red). Also other measures change: the PV is slightly
lower and the MT increased.

target.

More recent experiments brought further insight in the nature of goal-directed reaching

e.g. a relationship between target properties and velocity profile was found. From

the velocity profile further kinematic markers such as the Peak Velocity (PV) can be

obtained. Moreover, the MT can be separated into a Time to Peak Velocity (TPV)

and a Time After Peak Velocity (TAPV) (see Figure 5.1). When size and distance

of the target object are varied, then the influence of this variation is not limited

on the MT only as described by Fitts’ law but can also change the velocity profile

and the kinematic markers of the reaching substantially (MacKenzie, Marteniuk,

Dugas, Liske, & Eickmeier, 1987; Thompson, McConnell, Slocum, & Bohan, 2007; for

experimental evidence and Table 5.1 for an overview). A variation in the target size

was found to have a strong influence on the TAPV so that smaller targets have a much

longer deceleration phase than larger targets what makes their velocity profile highly

asymmetrical. In contrast the TPV mainly is influenced by the target distance and no

significant effect of the target size was found here. The PV typically increases with
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larger objects and larger distances. These results are often explained with different

accuracy requirements of smaller and larger targets. The introduced two-component

models suggest that with higher accuracy constraints the control phase requires more

time to land on the target. Smaller targets have more precision demand than larger

targets which extends the TAPV. Low accuracy requirements due to large objects

or the task itself leads to more symmetrical profiles while a change in the distance

of target objects does not change the shape of the profile but scales up the whole

velocity profile (e.g. MacKenzie et al., 1987; Thompson et al., 2007). This empirical

evidence demonstrates that a Fitts’ law task that takes into account various kinematic

markers besides the movement time can already represent numerous aspects of the

goal-direct reaching process.

More findings about the goal-directed reaching process come from the so-called time-

matching tasks. In such tasks participants have to reach with different velocities in

a similar environment. Hereby Schmidt, Zelaznik, and Frank (1978) found evidence

that the endpoint accuracy increases with higher average movement speeds. This fact

is also predicted by the optimized-submovement model by Meyer et al. (1988) for

the standard deviation of the primary-submovement endpoints. I will investigate the

behaviour of my model in a time-matching task similar to Schmidt et al. (1978).

The second group of experiments will focus on perturbation experiments where the

target or the hand can change their properties upon movement onset. Typically targets

are perturbed in size or location while hand perturbations only affect the location.

In contrast to experiments with a Fitts’ law setting, the perturbation paradigm

focuses on the use of online-control and the processing of visual information during

the reaching process. The changing target/hand has to be detected and the movement

trajectory adjusted in-flight in order to successfully reach the target under the new

circumstances. As the already initiated movement has to be adapted kinematic

markers such as MT, TPV and TAPV then can reveal ongoing competition processes
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measure size effect distance effect
MT - +
PV + +
TPV o +
TAPV - +

Table 5.1.: Influence of target distance and size on the Movement Time (MT) and
other kinematic markers (PV - Peak Velocity; TPV - Time to Peak Velocity; TAPV
- Time After Peak Velocity). A “+” means that with increasing size or distance
also the measure increases (respectively a “-” means decrease and a “o” means no
change). See the text for a detailed explanation.

in the brain between initial and perturbed target to give a better understanding of

the goal-directed reaching process.

In the experiments regarding target perturbations the initial target was found to have

a strong influence in the early trajectory of the reaching process and the perturbed

one only dominated towards the end. Hence kinematic markers such as PV and TPV

should mainly be influenced by the characteristics of the initial target while the TAPV

depends more on the properties of the final target. Experimental evidence showed this

behaviour in various setting (Paulignan, MacKenzie, Marteniuk, & Jeannerod, 1991;

Paulignan, Jeannerod, MacKenzie, & Marteniuk, 1991; Heath et al., 1998). Moreover,

the re-planning and adapting of the trajectory typically leads to strongly increased

MTs, independent of the kind of the perturbation. This effect is even stronger with a

change of the target location in comparison with a change of target size (Heath et al.,

1998).

Experiments perturbing the location of the hand focus more on if and how the

perturbation is compensated and what time it takes to correct the perturbation.

Typically, hand location perturbations are not fully compensated (e.g. Saunders &

Knill, 2005; Sarlegna & Blouin, 2010). Moreover, changes in the movement trajectory

can be detected earlier when the hand is perturbed towards the sides in comparison

with changes in movement direction (Saunders & Knill, 2005).
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To conclude this section I am going to summarise the empirical evidence. The aim

for my model is to simulate appropriate experiments in order to demonstrate the

following findings:

• In time-matching tasks the endpoint accuracy decreases with higher average

velocities (e.g. Schmidt et al., 1978).

• In time-minimisation tasks the movement time logarithmically increases with

distance and decreases with target size (Fitts’ law). Moreover, kinematic markers

are also influenced by those variables and need to be taken into account in order

to generate human-like behaviour.

• In perturbation experiments time is needed to update an ongoing movement

(visual delay). Thus, when the target object changes its properties upon

movement onset the beginning of the movement is influenced by the initial target

properties while the second half is dominated by the final target. Additionally,

the MT is increased when perturbations occur.

• When the location of the hand is perturbed during a movement, humans account

for this change with a delay that depends on the direction of the perturbation.

However, the perturbations are not fully compensated (Saunders & Knill, 2005).

5.2. The goal directed reaching model

The base for the goal-directed reaching model is the original choice-reaching model of

chapter 2.3. The there described functionality (e.g. the closed-loop architecture and

the moving blob principle) also plays an important role in the here presented model.

The changes and adaptations will be described in the following. A complete overview

of the model is displayed in Figure 5.2.
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Figure 5.2.: Overview of the control architecture of the goal-directed reaching model.
The big grey box contains the model, white boxes symbolise DNFs. In the text the
blue abbreviations are used for the respective DNFs or mechanisms. The smaller
grey boxes are modules not belonging to the model and are similar to the choice-
reaching model (see also Figure 2.4). In comparison with the original model new
pathways of the Acc and Onset mechanism were introduced. These mechanisms
influence the reaching movement to account for accuracy and perturbation effects
and are presented in detail in the text.

The aim of the new model in this chapter is to simulate experiments regarding the

speed-accuracy trade-off of Fitts’ law and perturbation experiments where the target

object can change its properties during the reaching process. The choice-reaching

model already was able to simulate reaches in a human-like manner, i.e., with a

bell-shaped velocity profile and a straight trajectory. Moreover, due to the fact that

object sizes carry over from the visual input through the DNFs of the model it will

simulate an effect of object size influencing the kinematic markers. Hence the model

offers a good base for simulating Fitts’ law where the object distance and size influence
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movement time and kinematic parameters. In early test simulations it turned out

that the original model produces fairly good results for the movement time but only a

rough approximation of the kinematic markers in Fitts’ law. In order to achieve a

better fit and to simulate the details of the experimental data the original model was

modified in some modules. In the following I am going to present the adaptations

and new mechanisms of the model.

Accuracy mechanism

Important for the goal-directed reaching model is the moving blob principle which

was explained in detail in chapter 2.3. The first adaptation is the accuracy mechanism

(Acc) and extends the functionality of the moving blob. This mechanism is necessary

to model details of the Fitts’ law as it is supposed to control the reaching accuracy in

the vicinity of the target object and slows down the hand if the accuracy constraints

are high which is the case when reaching for smaller target objects. Hence the Acc

mechanism causes an increase of the zero map in the centre of the V map when

the hand reaches the vicinity of a target. The increase of the zero map is greater

in smaller targets as they have higher accuracy constraints and therefore causes the

velocity to drop slightly faster towards the end of the trajectory for small targets.

This is supposed to resemble the velocity profiles as shown in Figure 5.1. In order

to receive information about the target size the sum of the activation in the T map

is determined. Furthermore, information about the distance from the target comes

from the D map by multiplying the activation of every neuron of this map with a

Gaussian-shaped function which is aligned around the centre of the map. Both parts

(target size and distance) are combined by a multiplication which contributes to the

strength of the zero map in the V map.

Moreover, the non-linear output function of the V map is replaced by a linear function.

The non-linear eccentricity now is located in the D map, in an earlier stage of the
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model. I found that moving the eccentricity function to an earlier processing stage of

the model stabilizes the behaviour of the moving blob. Furthermore it seems to be a

more neurologically plausible way as in humans this non-linearity occurs much earlier

on the sensory stage with the magnification factor of the eye. From this viewpoint the

activation in the D map can be interpreted as the (untransformed) visual information

of the hand in the centre of the visual field, while the T map with its birds-eye

representation is a corrected version that shows the true proportions of the object.

Onset mechanism

The second modification is the Onset mechanism that deals with uncertainty, detects

changes in the environment, and regulates the velocity in case of unexpected per-

turbations. It works like an onset detector and decelerates the hand when changes

in the perceived environment (T map) occur. This is consistent with findings in the

literature where effects have been observed that cause the movement times to go up

in conditions with abrupt object onsets (e.g. Castiello, 2001).

Both mechanisms - Acc and Onset - include new processing pathways in the model

and directly influence the moving blob by controlling the strength of the zero-map

of the V map. Hence they do not contradict the claim of presenting a parsimonious

model towards goal-directed reaching. The Acc mechanism plays a major role in the

Fitts’ law experiment as it controls the TAPV of smaller target objects. The Onset

mechanism will be important for simulating the target perturbation experiments.

Further adaptations

Another aspect of the functionality of the model is that it needs time to process the

visual information in the DNFs and to adapt the movement speed and direction of

the arm accordingly. On the one hand this results from the DNF dynamics but on the

other hand this is an important factor that has to be considered when implementing a
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closed-loop model. As mentioned before in chapter 2.1, also humans show such a delay

in processing information (Elliott et al., 2010). Note that the visual delay plays no such

big role in models that plan the movement in an open-loop fashion. In order to gain

more control of the processing time I decided to introduce a “dead-time” parameter

which reflects a processing time within the T map and which only functionality is to

increase the time the model reacts to perturbations to a human-like amount. The

dead-time does not interfere with the DNF dynamics as it only adds a time delay for

the output information of the T map. Note that the dead-time does not influence the

processing of the position of the robot’s base and hand. As my model solely relies on

visual information I motivate this with the need of a quicker adaptation of the hand’s

position in order to correctly land on the target. Besides visual information humans

possess additional mechanisms to update the internal representation of the hand’s

position such as forward models and proprioceptive feedback (e.g. Miall & Wolpert,

1996).

Outlook goal-directed reaching experiments

In the first two experiments of chapter 5.3 and 5.4 I am going to present the goal-

directed reaching experiments regarding the speed-accuracy trade-off. The first

experiment was the time-matching task which investigates the influence of the moving

blob parameter on the movement. Here it was required to reach for a target object

with different speed values. This speed regulation was introduced in a neurological

plausible way. In the second experiment I aimed to simulate Fitts’ law with my model.

The second group of experiments of chapter 5.5 and 5.6 aimed to simulate perturbation

experiments in order to give further support for my model. Two different kinds of

experiments were simulated: First, I attempted to simulate target perturbation

experiments. Here an aspect of the target (size or location) changed upon movement

onset. Second, I simulated a hand perturbation experiment where the perceived
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location of the hand changes. Note that all parameters of the model and the DNF

were determined before the experiments and remained unchanged in all experimental

conditions in this chapter unless stated in the appropriate methods sections.

5.3. Time-matching movement task

This first experiment aimed to test the influence of the moving blob parameters on

movement characteristics such as speed and accuracy. In empirical studies participants

are usually asked to reach for targets within a specified amount of time (e.g. Schmidt,

Zelaznik, Hawkins, Frank, & Quinn, 1979). Hence, they have to adapt their movement

speed. In my model a different movement speed can be achieved by changing the

weights of the inputs of the moving blob which I am going to explain in more detail

in the following (see also chapter 2.3).

The moving blob in the V map receives its input from two sources: First, a constant

part (zero map) that assures the presence of a permanent activation in the centre

of the map where zero speed is encoded. Second the V map receives an input from

the D map in order to push the moving blob away from the centre to initiate the

movement toward a target object. While in the modified model the strength of the

constant activation also is influenced by the Acc and the Onset mechanism which

were introduced in the previous section, these two mechanisms will not play a role

here as only the constant part will vary. It can be expected that with decreasing

strength of the zero map the moving blob will be pushed further away from the centre

by the input activation from the D map which eventually leads to an increase in

the speed so that peak velocity and the speed in general will be increased. With

increasing movement speed I expect a behaviour of the robot arm which is similar to

the empirical evidence of Schmidt et al. (1978) and the theory of Meyer et al. (1988)
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where besides the higher velocity also increased endpoint errors were observed. My

experiment aimed to reproduce these findings.

5.3.1. Methods

The target objects were square coloured markers (red or green) with 4.38 cm length

of the edge. The size of the target was relatively large so that the influence of the

Acc mechanism was minimised. As described before this mechanism can influence the

constant activation in the V map for smaller target objects. Targets were located in

front of the initial position of the robot arm’s end-effector in a distances of 20 cm.

The starting position of the end-effector was located 9 cm in front of the arm’s base

(shoulder). Before the experiment began the parameters of the image preprocessing

were adapted to the current lighting conditions to ensure a stable detection of arm

and target object. After starting a trial the position of the end effector was recorded

until the target was reached. The arm was considered to have reached the target

when the encoded velocity in the V map fell under a threshold value of approximately

0.5 cm/sec. The encoded velocity was the distance of the centre of gravity of the

neural activation (the moving blob) to the centre of the V map. This is a technical

solution to estimate the end of the movement. Note that the noise in the V map was

fairly low and did not influence this measure.

Three conditions were distinguished depending on the strength of the central activation

in the V map: low, mid, high. In each conditions ten trajectories were recorded

and processed like in the previous experiments of chapter 4. The following measures

were obtained from the raw data: the Movement Time (MT) was the time between

movement onset and the end of the movement and the Peak Velocity (PV) was the

highest speed value measured. Furthermore the average movement velocity (AvgV)

was calculated by dividing the moved distance (endpoint - starting point) by the MT.
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condition MT [sec] PV
[cm/sec]

AvgV
[cm/sec]

EPerr

[cm]
EP x EP y

low 16.3 1.59 1.27 0.57 40.3 14.7
mid 17.3 1.40 1.11 0.43 40.6 16.5
high 17.2 1.32 1.03 0.29 40.1 18.2

Table 5.2.: Results of the different measures in the time-matching task. Displayed
are mean values with their standard deviation in brackets.

Finally, the endpoint error (EPerr) was determined as the standard deviation of the

distance of endpoints to the mean endpoint of the movement trajectories.

5.3.2. Results & Discussion

The results of the experiment can be found in Table 5.2. As expected PV and

AvgV increased with decreasing central activation (from high to low condition).

However, when investigating the distribution of the endpoints I found that the robot

arm also moved a longer distance with decreasing central activation. Hence, in the

conditions with the smallest central activation the target was slightly overshot and in

the conditions mid and high undershot.

Moreover, also the endpoint variation EPerr increased with smaller central activation.

This finding is consistent with the results of (Schmidt et al., 1979) and Meyer et al.

(1988) who also found that the endpoint error increases proportionally with increasing

average velocity.

The results show that the moving blob and its determining parameters can influence

movement parameters significantly. With a smaller central activation the moving blob

is dominated by the target dependent input activation and is pushed out faster and

further away from the centre of the V map. This leads to a significant increase of the

speed of the robot’s hand. Moreover, with the increased speed the noise in the system

(especially the noise originating of camera and motor) has a larger influence on the

movement which tends to increase the endpoint error as demonstrated.
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Figure 5.3.: Results of the time-matching experiment. Displayed is the endpoint
error against the average movement speed of the different conditions (from left to
right: high, mid, and low condition). Error bars represent the standard deviations.
It can be seen that with higher speed values the accuracy decreases.

5.3.3. Conclusion

In this first experiment with the goal-directed reaching model the influence of the

input parameters on the moving blob and on movement properties was examined.

In the different conditions the strength of the constant activation in the V map was

varied. The results showed that with smaller constant activation the peak velocity

and the average movement speed was increased. Moreover, the endpoint error of the

movement was larger and the robot arm tended to overshoot the target object. This

is consistent with empirical evidence of Schmidt et al. (1979) who also found increased

endpoint errors in similar experiments. In my model this behaviour emerges from

the fact that with smaller constant activation in V map the moving blob was more

strongly dominated by the target dependent input activation. Hence the moving blob

moved further away from the centre of the V map which led to higher speed values

and an increased influence of the noise in the system.
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This experiment also demonstrated how the general velocity can be controlled on

a neurological level. However, future experiments have to prove the existence of a

permanent activation that controls movement speed and direction.

5.4. Time-minimisation movement task (Fitts task)

In this experiment I aimed to simulate the speed-accuracy predictions of Fitts’ law.

Typically, in such reaching tasks the object’s size and distance vary in order to show

the linear relation of the Movement Time (MT) and the Index of Difficulty (ID) which

was introduced earlier in chapter 5.1 (e.g. Heath, Weiler, Marriott, Elliott, & Binsted,

2011). Hereby the model should reproduce this relation of MT and ID in order to

simulate the human reaching process. Moreover, the model should be able to generate

bell-shaped velocity profiles as before and to mimic the effect of different target sizes

and distances on the velocity profiles and its kinematic markers which were reviewed

earlier.

5.4.1. Methods

The setup was similar to the time-matching experiment. However, now the target

objects had different sizes of 2.63 cm, 3.50 cm and 4.38 cm length of the edge

depending on the experimental condition. Moreover, the distance of the targets varied.

Targets were located in front of the initial position of the robot arm’s end-effector in

different distances at 15 cm, 17.5 cm, 20 cm, and 22.5 cm.

For each possible combination of target size and distance five trajectories were recorded.

The raw data was processed to determined the following measures: The Movement

Time (MT) was the time from movement onset until the end of the trial. The Time

to Peak Velocity (TPV) was the time from movement onset to the time of the peak

velocity. The Time After Peak Velocity (TAPV) was the time from the time of peak
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velocity until the end of the trial. Finally the Peak Velocity (PV) was the speed value

of the highest velocity during the movement. Movement onset and the end of the

trajectory were determined like in the previous experiments.

Within the same condition (same target size and distance) the means and standard

deviations of the measures were determined. In order to make the effects and trends

of different target size and distance visible, a weighted linear least square fit function

was applied for the same target sizes across different logarithmic distances (distance

effect) and the same target distances across the logarithmic sizes (size effect) by using

the MatLab function “lscov” with a weighting vector that contained the reciprocal

variances of the respective conditions. The weighting was applied to decrease the

influence of noisy data points. In order to measure the validity of the fitted functions

their r2 values were determined. For the graphs the binary logarithm of target size or

distance was calculated to account for the Fitts’ law equation that defines a linear

relation of movement time and those two conditions.

The data processing was similar to the earlier experiments and the model parameters

were identical to the time-matching experiment. The moving blob parameters were

similar to the low condition there.

5.4.2. Results & Discussion

Table 5.3 contains the means and standard deviations of all measures and conditions.

The detailed values of the slopes of the fitted least square functions and their r2-value

can be found in Table 5.4. Furthermore, the results of the measures are displayed in

the Figures 5.4 to 5.8. The results show that the robot arm is able to simulate all

major aspects of Fitts’ law, however, the measures are more or less influenced by the

noise in the system. In the following the effects in the measures will be discussed:

Movement time (MT): The MT shows the characteristic linear increase with larger
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condition MT [sec] PV [cm/sec] TPV [sec] TAPV [sec]
small
15.0 cm 16.2 (1.2) 1.00 (0.08) 7.3 (1.4) 8.9 (2.1)
17.5 cm 17.4 (1.1) 1.05 (0.11) 6.9 (1.9) 10.5 (2.0)
20.0 cm 18.9 (1.2) 1.17 (0.08) 7.7 (1.0) 11.2 (1.7)
22.5 cm 19.2 (1.7) 1.44 (0.13) 8.0 (0.5) 11.3 (1.3)
normal
15.0 cm 14.6 (1.6) 1.18 (0.07) 5.9 (0.5) 8.7 (1.4)
17.5 cm 16.1 (0.9) 1.31 (0.12) 6.8 (0.9) 9.2 (1.7)
20.0 cm 17.0 (1.6) 1.48 (0.24) 7.3 (1.6) 9.7 (1.8)
22.5 cm 17.2 (0.8) 1.72 (0.12) 6.4 (0.4) 10.8 (0.5)
large
15.0 cm 14.3 (1.1) 1.35 (0.15) 6.3 (0.7) 8.0 (1.0)
17.5 cm 14.9 (1.1) 1.52 (0.13) 7.1 (1.7) 7.8 (0.6)
20.0 cm 16.3 (0.9) 1.56 (0.10) 6.7 (0.8) 9.7 (0.7)
22.5 cm 16.9 (0.4) 1.77 (0.04) 6.8 (0.7) 10.1 (1.1)

Table 5.3.: Results of the time-minimisation experiment: All conditions with their
averaged measures and standard deviations (in brackets) of five trials.

effect MT PV TPV TAPV
distance
size:small 0.97 (5.6) 0.81 (0.7) 0.91 (1.4) 0.87 (3.9)
size:mid 0.93 (4.1) 0.98 (0.9) 0.57 (0.8) 0.98 (3.7)
size:large 0.98 (4.7) 0.98 (0.7) 0.24 (0.6) 0.73 (4.5)
size
dis:nearest 0.94 (-2.5) 1.00 (0.5) 0.43 (-1.1) 0.89 (-1.3)
dis:near 1.00 (-3.4) 1.00 (0.6) 0.53 (0.3) 1.00 (-3.7)
dis:mid 0.97 (-3.4) 0.99 (0.5) 0.99 (-1.4) 0.88 (-1.9)
dis:far 0.89 (-2.7) 0.96 (0.4) 0.60 (-1.8) 0.89 (-1.5)

Table 5.4.: r2 values and slopes (in brackets) of the fitted linear trends of the
time-minimisation experiment. See the text for the discussion.
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Figure 5.4.: Movement Times of the time-minimisation experiment against their Index
of Difficulty according to Fitts (1954). The colours refer to the target distances in
the order red, purple, blue and light blue (from nearest to farthest). Each colour
has three data points representing the target sizes (leftmost data point stands for
the largest target). The experimental data of my model shows a linear increase
which is also typical for Fitts’ law. The dotted line is the weighted linear least
square fit function which shows a clear trend of longer MTs with higher ID.

distances and smaller target objects (see Figures 5.4 and 5.5). Due to the noise the

slopes of the least square fit linear functions possess some variety for the size and the

distance effects. They vary with changing distances from 4.1 to 5.6 and with changing

sizes from -2.5 to -3.4, but all conditions show high r2 values of at least 0.89 which is

a common finding in experiments of this kind (e.g. Heath et al., 2011). Note that

contrary to the original Fitts’ law (Fitts, 1954, Fitts & Peterson, 1964) but similar to

the more recent publication of Heath et al. (2011), the slopes for distance and size

differ: Distance has a stronger influence on the MT than size.

Peak velocity (PV): The result for the PV is similar to the MT as it shows very

clear trends with fairly little noise (see Figure 5.6). It increases with object size and

distance. Moreover, the r2 values are all high and again the slopes for distance show a

stronger increase than the ones of the the size effect. The effects of the PV underline
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Figure 5.5.: Movement Times (MTs) of the time-minimisation experiment: (a) The
effect of the logarithmic target size: larger targets have shorter movement times.
The different colours refer to the target distances (in the order red, purple, blue and
light blue from nearest to farthest); all data points are shown with their standard
deviation. The dashed lines refer to the weighted least square fit of the appropriate
distance (colour). (b) Here the same data points were rearranged according to the
logarithmic target distance. The colours blue, purple and red now stand for the
target size from the largest to the smallest. Here it can be seen that objects with a
smaller distance were reached quicker.

the fact that larger target sizes and distances push the moving blob further away from

the centre of the V map.

Time to peak velocity (TPV): The results for the TPV show a more noisy behaviour

with higher standard deviations (see Figure 5.7). Although, the results are consistent

with typical experimental evidence: With larger distance the TPV also increases while

there is no clear trend in the target size (one positive and three negative slopes).

Typically there is no significant size effect in this measure (e.g. Heath et al., 2011,

MacKenzie et al., 1987).

Time after peak velocity (TAPV): In contrast to the TPV the TAPV shows clearer

trends (see Figure 5.8). It decreases strongly in larger objects with high r2 values and

slopes between -1.3 and -3.7. It increases with object distance in a similar pattern with

even bigger slopes between 3.7 and 4.5. Those effects are consistent with experimental

evidence (e.g. MacKenzie et al., 1987).
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Figure 5.6.: Peak Velocities (PVs) of the time-minimisation experiment: (a) With
larger target size the PV increases. (b) Also with greater distance a higher PV can
be observed. The colours and lines have the same meaning as in Figure 5.5.

The results of the measures confirm the theoretical description of the model’s behaviour

earlier: As the MT is the sum of TPV and TAPV its behaviour depends on these two

kinematic markers. The results for TPV and PV emerge entirely from the moving

blob behaviour. For larger targets or greater distances the blob will move further away

from the centre of the V and therefore the PV increases in these conditions. The TPV

increases with greater distances for the same reason, however remains constant for

different target sizes which results from the fact the the blob moves not only further

for larger targets but also quicker what counterbalances the longer travelling distance

of the activation in the V map.

For different target sizes the behaviour of the TAPV mainly can be accounted to the

Acc mechanism which causes the velocity to drop earlier when reaching smaller targets.

Thus, a phase with relatively low velocities towards the end of their trajectories can

be observed (see Figure 5.9). Such a “low velocity phase” also has been reported in

the literature for human reaching movements (e.g. Jeannerod, 1984). Due to this

phase smaller objects tend to have a longer deceleration phase so that these objects

show a higher TAPV. Also for longer distances the TAPV is increasing. Here the
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Figure 5.7.: Time to Peak Velocities (TPVs) of the time-minimisation experiment:
(a) No clear trend of the target size on the TPV could be observed. (b) However,
with greater target distance the TPV increased slightly. The colours and lines have
the same meaning as in Figure 5.5.

travelling distance for the moving blob becomes bigger as the blob is pushed further

out of the centre of its DNF. Since the beginning of the trajectory is not influenced by

the Acc mechanism, it has no effect on the other measures. Moreover, small objects

have a tendency towards an undershooting behaviour than large objects which partly

can be accounted to the new mechanism but also to the moving blob implementation

in the V map. In fact, a similar result was found in the time-matching task only by

varying the moving blob parameters.

It can be seen from the results that the TPV was the measure which was the most

difficult to balance. This is due to the fact that the point in time when the peak

velocity occurs evolves from the dynamic of the moving blob and is not directly

controlled by parameters. Thus, the results for the TPV are the poorest and the most

noisy ones amongst the measures which equates to the inconsistent slopes that were

found.

When looking at the trends of the fitted linear functions it can be said that generally

the simulations are consistent with typical results of Fitts’ law experiments (e.g.

Munro, Plumb, Wilson, Williams, & Mon-Williams, 2007; Thompson et al., 2007;
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Figure 5.8.: Time After Peak Velocities (TAPVs) of the time-minimisation experiment:
(a) Objects with a smaller size had a higher TAPV which is a direct effect of the
accuracy mechanism of the model. (b) A greater target distance increased the
TAPV clearly. The colours and lines have the same meaning as in Figure 5.5.

Heath et al., 2011). Humans often achieve r2 values of the MTs very close to the

theoretical implications of Fitts’ law (see Plamondon & Alimi, 1997; for a review)

- a behaviour that is very well replicated by my model. Moreover, my model can

simulate human-like velocity profiles that are bell-shaped and show the typical

behaviour for target objects with different sizes/distances. Additionally, the model

produced remarkable results for the kinematic markers and could replicate the human

performance very well.

All results were achieved despite the noise in the system which caused some variation

in the measures. While humans have noise in their neuromuscular system they also

have more potential to prevent the effects of it (for instance with a forward model or

proprioceptive feedback; e.g. Miall & Wolpert, 1996) while my model solely relies on

visual information.

131



5. Modeling Goal Directed Reaching

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.81.8

sp
ee

d 
[c

m
/s

ec
]

time [% of movement duration]

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.81.8

sp
ee

d 
[c

m
/s

ec
]

time [% of movement duration]

(b)

Figure 5.9.: Two examples of velocity profiles of the time-minimisation experiment.
(a) Velocity profile of the smallest target size in the longest distance. Towards
the end of the movement the velocity decreased only slowly and remained almost
constant on a low level to account for the small target size due to the Acc mechanism.
(b) The velocity profile of the largest target in the longest distance does not show
this effect as the speed decreases constantly towards the end of the movement.

5.4.3. Conclusion

This experiment demonstrated that my model is able to reproduce a behaviour

that is consistent with Fitts’ law. It was shown that reaches for smaller objects

and longer distances resulted in higher MTs. This behaviour was expected as the

control architecture based on the dynamic neural field theory supports the encoding

of information such as the target size or distance directly in the DNFs in the location

and/or size of the neural activations. In this way the information about the target

is passed through all DNFs until the V map where it influences the moving blob

behaviour.

Moreover, the model mimicked successfully the behaviour of several kinematic markers

e.g. an increased TAPV when reaching for smaller objects. However, especially

for the TPV poorer results were achieved that were more influenced by the noise.

Furthermore, I was able to simulate a “low-velocity” phase towards the end of the

trajectory in the first experiment. Such a phase is also documented in the literature
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and occurs mainly when the accuracy constraints are high as it is the case when

reaching for small targets (e.g. Jeannerod, 1984). This behaviour emerges directly

from the interplay of the Acc mechanism and the moving blob in the V map. The

usage of such mechanisms also shows that the model is easily expandable by further

processing pathways in order to achieve a more human like performance in different

aspects of the movement or the movement itself.

Overall the experiment demonstrated that it is possible to simulate Fitts’ law with

the closed-loop architecture of my model. As reviewed in chapter 2.1 the goal-

directed reaching process traditionally is explained with the two-component models

(e.g. Glover, 2004), however, recent findings question the early ballistic phase of those

models (Elliott et al., 2010). My model demonstrated an elegant way to simulate

Fitts’ law with a human-like behaviour in numerous kinematic markers. I will discuss

the implications of this finding for the existing models detailed in chapter 6.3.

5.5. Target perturbation experiment

In this first experiment regarding the perturbation effects the target object changed its

properties after movement onset. Hereby I focussed on two aspects: the perturbation

of the target’s location and size. I already reviewed the typical experimental outcome

of such perturbation experiments in chapter 5.1. Independent from the kind of the

perturbation I expected some of the measures (TPV and PV) being mainly influenced

by the properties of the initial target whilst the others (TAPV and MT) should be

dominated by the properties of the final target. Especially the introduced Onset

mechanism and the dead-time parameter will play an important role in this experiment.

I will discuss their role and the model’s performance with respect to its functionality

and compare the results with humans in similar experiments from the literature.
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5.5.1. Methods

The experimental setup was similar to the previous experiment, however with the

mentioned perturbation effects included. The experiment consisted of two parts. In

the first part the target could change its position and in the second part the size. The

expected behaviour was that in the first part of the trajectory the kinematic markers

depend on the initial target properties (location or size) while in the second part of

the trajectory the final target influences the kinematic markers. Target objects were

again squared coloured markers.

In the target location conditions the target size was constant with 3.5 cm length of

the edge and had an initial distance from the robot’s hand of 20 cm. Note that this

setting is identical to a condition of the Fitts task experiment (mid sized object in

mid distance). After the perturbation occurred the target could jump to a location

3.5 cm in front of the initial target position (near), behind the initial target position

(far) or to a position 7.0 cm right of the initial target position (side).

In order to make more general conclusions about the perturbations in the second part

the perturbation affected the target size. Here two conditions were conducted: the

target’s size could either increase (grow) or decrease (shrink) after movement onset.

In order to achieve greater effects, the largest and the smallest target size of the Fitts

task were used. The target sizes were 2.63 cm (small) and 4.63 cm (big) length of the

edge respectively. In the grow condition the target size changed from small to big,

while in the shrink condition the target size changed from big to small. Again the

objects were placed 20 cm in front of the robot’s endeffector.

Besides the perturbed conditions single target baseline trials were performed. As

some of the conditions in the Fitts task were identical to the setting here I did not

run simulations with those conditions again but took the results from the previous

experiment. This includes the mid distances trials of all object sizes.
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In order to simulate the perturbation effect the Image Preprocessing module was

extended and two different target colours were used: An initial target colour and a

perturbed target colour. The initial target colour was visible for the model at the

start of a trial until the the perturbation occurred. Then the input of the model

switched to the perturbed target colour which remained active until the end of the

trial. Note that this is just a technical realisation of the perturbation effect and that

the target colour did not play a role in the experiment. In fact, this implementation

is similar to the spatial averaging experiments of chapter 4.2.

The perturbation occurred after movement onset which was considered as the point in

time when the peak activation in the V map reached a distance of a least two neurons

away from the centre. The target reached conditions and measures were similar to

the previous experiment. Moreover, all data processing steps were identical to the

previous experiments.

5.5.2. Results perturbation target location

The perturbation of the target location had a big influence on the trajectory and the

kinematic markers of the movement. Generally the model was able to achieve results

that are consistent with the empirical evidence of humans in similar tasks. The results

can be found in Table 5.5 and in the Figures 5.10 and 5.11. An example trajectory

and velocity profile of the side condition is displayed in Figure 5.12. The effects of the

individual kinematic markers are as follows:

Peak Velocity (PV): The PVs of the perturbed conditions possess some variation,

however, they are approximately on the level of the PV of the initial target. In

contrast, they are not related to the PVs of the baselines of the final targets, which

differ more strongly due to the distance effect that was found in the Fitts task (see

Figure 5.10).
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Figure 5.10.: Results of the target location perturbation experiment. Shown are the
mean values of PV (a) and TPV (b) with their standard deviations of the different
conditions. The perturbed trials are coloured in red and the baselines in white
(initial target location) and black (final target locations). The baseline conditions
were unperturbed reaches toward the different locations. In the perturbed conditions
both measures were independent from the location of the final target object. The
PV values of the perturbed condition were similar to the PV of the initial target
location while the TPV of the perturbed conditions was slightly shorter than TPV
of the initial target.

Time to Peak Velocity (TPV): Like the PVs also the values of the TPV of the

perturbed conditions are roughly similar, however a bit lower than the TPV by the

initial target baseline (see Figure 5.10). Thus, the TPV does not seem to be affected

by the final target. The fact that the values are lower than the TPV of the initial

target can be explained with the decrease of the velocity due to the Onset mechanism.

The detection of the perturbation occurred at the end of the acceleration phase what

caused the velocity to drop. Hence, the PV was slightly lower and the TPV smaller.

Time After Peak Velocity (TAPV): In the perturbed trials the TAPV is strongly

increased in comparison with the baselines of the larger distances (far and right) (see

Figure 5.11). Only the near condition which is the only condition where the distance

to the target is decreased due to the perturbation shows a slightly increased TAPV.

These results are consistent with Heath et al. (1998).

Movement Time (MT): The perturbed trials show a significantly increased MT in
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Figure 5.11.: Results of the target location perturbation experiment. Shown are
the mean values of TAPV (a) and MT (b) with their standard deviations of the
different conditions. The colour code is similar to Figure 5.10. In contrast to the
other measures, the TAPV of the perturbed conditions is greatly extended which
also affects the MT.

comparison with both initial and the final target baseline (see Figure 5.11). As the

MT is the sum of TPV and TAPV the results show that the (increased) TAPV has a

much stronger influence than the (slightly decreased) TPV. This effect is caused by

the Onset mechanism which caused a short but strong decrease of the velocity after

the perturbation had been detected so that the TAPV was greatly extended. This

result is also consistent with the experimental evidence of Heath et al. (1998).

An example trajectory and velocity profile can be seen in Figure 5.12. The velocity

profile shows a characteristic double peak which often can be observed in perturbation

experiments (e.g. Paulignan, MacKenzie, et al., 1991). The trajectory was corrected

in flight towards the final target location.

5.5.3. Results perturbation target size

The overall effects of this second part of the experiment were similar to the target

location perturbation conditions. However, here the perturbation showed no effect

in the trajectory of the movement as the target location remained constant. The
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Figure 5.12.: Results of the perturbed jump side condition: (a) The velocity profile
(dark blue, with standard deviation in light blue) of the movement shows a secondary
peak which often can be observed in perturbation experiments. (b) Here the
trajectory of the movement with its standard deviation can be seen. Initially the
movement is directed towards the unperturbed target (white square) and corrects
later onto the final target object (red square).

results can be found in Table 5.6 and in the Figures 5.13 and 5.14. The results of the

measures are as follows:

Peak velocity : The PV depended mainly on the initial target size. The PV of the

smaller initial target (grow condition) is smaller than the one of the larger initial

target (shrink). The same trend can be found in the baseline conditions, however, the

baseline PVs are slightly higher than the PVs of the perturbed conditions (see Figure

5.13). This effect was also observed in the first part of the experiment.

Time to peak velocity : Also the TPV depended mainly on the initial target size,

however the differences are smaller than in the PVs. The TPV is slightly smaller with

larger initial target (shrink) and larger unperturbed target (see Figure 5.13). The

TPVs of the perturbed conditions are smaller which is consistent with the experiments

of the perturbed target location.

Time after peak velocity : Like in the perturbed target location conditions the TAPV

of the perturbed conditions is significantly higher than in the baselines (see Figure
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condition MT [sec] PV [cm/sec] TPV [sec] TAPV [sec]
far

23.9 (0.8) 1.29 (0.11) 6.2 (0.7) 17.7 (1.4)
near

16.9 (0.9) 1.51 (0.06) 5.9 (0.4) 10.9 (0.8)
side

23.2 (1.9) 1.46 (0.11) 5.5 (0.4) 17.7 (1.5)
BL
near 16.1 (0.9) 1.32 (0.12) 6.8 (0.9) 9.2 (1.7)
initial 17.0 (1.6) 1.48 (0.24) 7.3 (1.6) 9.7 (1.8)
far 17.2 (0.8) 1.72 (0.12) 6.4 (0.4) 10.8 (0.5)
side 18.7 (1.0) 1.41 (0.04) 7.6 (0.4) 11.1 (1.2)

Table 5.5.: Results of the target location perturbation experiment. Displayed are
mean values with their standard deviation in brackets.

5.14). The TAPV of the shrink condition (small final target) is slightly lower than the

one of the grow condition (large), here the opposite effect was expected. This result is

not fully consistent with the empirical evidence. The general increase is caused by the

deceleration of the Onset mechanism.

Movement time: The MT depended on the behaviour of the TPV and the TAPV.

The first was slightly decreased and the latter greatly increased. Hence, the MTs

also show an increase. However, the grow condition is even slower than the shrink

condition which was caused by the behaviour of the TAPV.

5.5.4. Discussion & Conclusion

The target perturbation experiments investigated the model’s ability to deal with

perturbations where the target changed its size or position after movement onset.

Overall the model produced good results for the movement time and the kinematic

markers. The results were mostly consistent with existing behavioural evidence even

though it was difficult to achieve human-like behaviour in all measures. In comparison

with the Fitts’ law experiment where the target object remained constant the setting

here was more complicated as the robot had to react towards a changing environment.
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Figure 5.13.: Results of the target size perturbation experiment. Shown are the mean
values of (a) PV and (b) TPV of the different conditions. The colour code is similar
to Figure 5.10, however, the perturbation conditions are now coloured blue. White
data points show the results for the small and black for the large object baseline
(BL) results. Both measures are influenced by the initial target size as they show
similarities with the appropriate BL conditions: For instance the PV of the grow
condition (small initial target) is smaller than the shrink condition (large initial
target) which is similar to the BL behaviour where a small target shows lower PVs
than a large target.

Humans easily deal with such situations by adapting their behaviour, however, before

a reaction can take place a visual delay time is needed to fully process the sensory

feedback and to adapt the already initiated movement. My model as well has a

visual delay as it needs time to process changing visual information and to adapt the

underlying DNFs. However, the model only relies on visual information while humans

have access to a wider range of feedback and sensory input such as proprioceptive

information and forward models (or efferent copies). This was tried to be simulated

by increasing the delay for the target location map (T map) with the dead-time

parameter, therefore the target information needs more time to be processed and is

updated much slower than the hand position.

The results show that (with few exceptions) some of the measures are dominated

by the properties of the initial target (namely PV and TPV) while other measures

show a clear influence of the perturbation effect and the properties of the final target
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Figure 5.14.: Results of the target size perturbation experiment. Shown are the mean
values of (a) TAPV and (b) MT of of the different conditions. The colour code
is similar to Figure 5.13. The perturbation greatly affected the TAPV which also
influences the MT.

(TAPV and MT). Thus, generally the results are in harmony with the findings of

perturbation studies (e.g. Heath et al., 1998).

Besides the visual delay the second reason for these results is the Onset mechanism

which causes a short but strong deceleration effect once the perturbation has been

processed by the moving blob in the V map. Similar “onset-effects” have been observed

in experiments before (e.g. Castiello, 2001) and a common result of perturbation

experiments of this kind is strongly increased MTs so that this implementation seems

to be a natural way to effect the ongoing movement. This mechanism is responsible

for the higher TAPVs that could be observed in all perturbation conditions. However,

the Onset mechanism only shows human-like results with an appropriately chosen

processing time of the model which can be controlled with the time constants of the

DNFs and the dead-time parameter. When this processing time is too short, then the

model would react quickly toward the perturbations and the measures would mainly

depend on the final target properties. In contrast, a very high processing time would

not allow corrective movements before the initial target had been reached. However,

such behaviours would contradict the behavioural evidence. Hence, both, the Onset
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condition MT [sec] PV [cm/sec] TPV [sec] TAPV [sec]
shrink

18.8 (0.3) 1.34 (0.04) 6.1 (0.4) 12.6 (0.6)
grow

19.8 (1.2) 1.12 (0.05) 6.6 (0.3) 13.2 (1.0)
BL
small 18.9 (1.2) 1.17 (0.08) 7.7 (1.0) 11.1 (1.7)
big 16.3 (0.9) 1.56 (0.10) 6.7 (0.8) 9.7 (0.7)

Table 5.6.: Results of the target size perturbation experiment. Displayed are mean
values with their standard deviation in brackets.

mechanism and the processing time, are responsible for the observed behaviour in my

model.

Another important point is that the effect of the Onset mechanism is stronger when

the target jumps from one location to another than when a stationary target changes

its size. This effect is caused by the underlying DNFs as the observed “difference”

in the T map is larger with a target displacement. The difference feeds into the

control of the strength of the Onset mechanism which influences the moving blob.

This is consistent with the experimental evidence (e.g. Heath et al., 1998; Paulignan,

MacKenzie, et al., 1991; Paulignan, Jeannerod, et al., 1991).

With the visual delay (dead-time) and the Onset mechanism as main influence on

the results it can be said that the results of the target perturbation experiments are

caused by mechanisms that did not play a relevant role in the earlier goal-directed

reaching experiments of chapter 5.3 and 5.4. This suggests that humans also possess

separate mechanisms to account for perturbation effects.

5.6. Hand perturbation experiment

This final goal-directed reaching experiment applied a perturbation paradigm of the

perceived hand location. The setup was inspired by the experiment of Saunders
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and Knill (2005) who performed an experiment where participants were required to

perform straight reaches towards target objects. In their experiment a perturbation

occurred after the hand had moved 25% or 50% of the distance toward the target

and affected only the perceived location of the hand. Hereby the hand’s location was

smoothly shifted a few cm nearer, further away or towards the sides. Saunders and

Knill (2005) found that participants initiated online-controlled correction movements

to account for these perturbations. Their main findings were that the perturbations

were not fully compensated and perturbations that shifted the hand sideways were

corrected with a smaller latency than perturbations along the movement direction.

In my model movement direction and amplitude are not independent as both are

determined by the moving blob in the V map. The moving blob can move freely

within the DNF without distinguishing between movement direction and distance.

Therefore the expected outcome would be that my model shows no difference in the

latency of the corrections of perturbations along the movement direction or sideways.

5.6.1. Methods

The experimental setup was similar to the previous experiments, however with

the mentioned perturbation effects included. Besides a baseline condition without

perturbation effect three conditions were implemented: the perceived hand location

could move to a point closer (near), further away (far) or to the side (side) in relation

to the actual hand location. The perturbation effect occurred six seconds after the

initiation of the movement in the first half of the trajectory similar to the setup of

Saunders and Knill (2005). Movement initiation was determined in a similar way than

in previous experiments.

Target objects were again coloured markers and were placed in a distance of 20 cm in

front of the hand. The perturbation effect changed the perceived location of the hand
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Figure 5.15.: Trajectories of the hand perturbation experiment shown in the dimen-
sion of the perturbation. (a) Perturbation of the perceived hand location in the
near (blue thick line) and far condition (red) in comparison with the baseline (black)
in direction of the perturbation (y-axis). The endpoint location of the baseline and
the amount of the perturbations are shown with the dotted lines. (b) Perturbation
of the perceived hand location in the side condition (green) in comparison with the
baseline (black) in direction of the perturbation (x-axis). Both graphs show that
the perturbations were not fully compensated.

by applying a shift to the output of the H map in the sigma-pi unit. In this way the

perturbation effected the ongoing movement as the hand-centred target location in

the D map moved to account for the shift. The amount of the shift was five neurons

in the H map and was applied immediately.

The trajectories of the movement were recorded and processed like in the previous

experiments. The processed trajectories were used to investigate the effect of the

perturbations. Furthermore, the time needed to effect the ongoing movement was

calculated using the distance of the trajectories of the perturbed conditions to the

baseline trajectory along the dimensions of the perturbation which were along the

movement direction for the near and far condition (y-axis) and orthogonal for the side

condition (x-axis). Moreover, all further model parameters remained unchanged.
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Figure 5.16.: Trajectory differences of the hand perturbation experiment along the
movement duration. The perturbation occurred six seconds after movement onset.
The lines of all conditions (blue - near, red - far and green - side) crossed the
threshold at 1 cm at about the same time.

5.6.2. Results & Discussion

The perturbation had a visible effect on the movement trajectories (see Figure 5.15).

The trajectory difference can be found in Figure 5.16. All perturbations caused the

hand to veer away from the path of the baseline trajectory to compensate the shift

in the perceived hand location. This behaviour was expected due to the closed-loop

architecture of the model. However, the perturbations were not fully compensated

as the differences of the perturbed endpoints and the baseline were smaller than

the applied perturbation. This effect could be found in all conditions, however

perturbations in movement direction were compensated to a slightly greater extend

(86% in the far and 89% in the near condition) than in the side condition (61%). This

result is partly consistent with the findings of Saunders and Knill (2005). They also

found that the perturbations are not fully compensated, however to an equal extend

across the conditions.
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While it was expected by the model not to fully compensate the movements the fact

that there was a difference in the compensation between the conditions is surprising.

The movements of the robot arm are generated by the moving blob in the V map.

This DNF encodes the movement vector for the desired movement. It takes some

time to process the hand perturbation by the underlying DNFs so that the movement

is initiated with the setting of the initial hand location. Therefore both initial and

perturbed hand location play a role in determining the movement which results in

the endpoint located in between initial and unperturbed location. However the V

map does not make a difference in amplitude or direction encoding. Therefore it was

expected that the compensation will be similar in all conditions. The results show

that this is not the case. It seems that the moving blob is more sensitive towards

changes in the movement direction then to perturbations orthogonal to the movement

direction.

The time needed to effect the ongoing movement did not differ between the conditions

(see Figure 5.16). The trajectory was considered to be different from the baseline when

the trajectory difference crossed the threshold of 1 cm which was chosen high enough

to filter the noise but as low as possible to detect an influence of the perturbation

quickly. This happened at similar times in all conditions at 13.8 sec (far), 14.4 sec

(side) and 14.5 sec (near). Thus the expected result of no influence of the direction of

the perturbation was found.

However, even though this result was expected it is not consistent with the findings

of Saunders and Knill (2005) who found that sideways perturbations are detected

earlier. As described earlier the V map handles movements along the two dimensions

in a similar way. In order to fully reproduce the results of Saunders and Knill (2005)

modifications would be necessary. A possible extension could be a more sophisticated

field dynamic that distinguishes between movement direction and side movements.

With such a dynamic the V map could be able to reproduce their findings: if the
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side perturbations could be initiated slightly earlier due to a modified field dynamic

also their degree of compensation would increase. This would make the results of all

measures fully consistent with the findings of Saunders and Knill (2005).

5.6.3. Conclusion

In this last experiment of the goal-directed reaching model I followed the paradigm

of Saunders and Knill (2005) who applied a hand perturbation paradigm. In three

conditions the hand position was perturbed after movement onset when reaching for a

single target. The perceived hand location was shifted towards the target, away from

the target or sideways. The results of my model were not fully consistent with the

findings of Saunders and Knill (2005). Unlike in my experiment they found a similar

effect of not fully compensated movements, however, the degree of compensation did

not differ in their experimental conditions. Furthermore, they found that corrections

toward sideways perturbations are initiated before corrections along the movement

direction.

As my model does not distinguish between movement dimensions (along movement

or sideways) this discrepancy with the behavioural evidence was expected to some

extend. However, in order to achieve a more consistent simulation results my model

would require modifications of the V map and the behaviour of the moving blob. As I

did not have the possibility to implement the changes within this thesis I will only

discuss them theoretically. With such a modification that gives a higher priority to the

movement direction and a lower priority to the movement amplitude the simulation

results would exactly match the behavioural evidence. My simulations are also a

support for the explanation of Saunders and Knill (2005) who suggested that the

brain distinguishes between movement direction and side movements.

Overall my model achieved good simulation results. However, in order to replicate

147



5. Modeling Goal Directed Reaching

the behavioural evidence in detail modifications would be necessary. While there was

no possibility to implement those modifications I was able to outline where and how

they could improve the simulations which is also a demonstration on how my model

can extend the knowledge of the human reaching process.
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The general discussion is divided in several sections. First, I am going to summarise

the findings of the different versions of my model in the simulated experiments.

Afterwards I will review the functionality of the model and compare it with other

theoretical and computational models. Finally, the model is discussed in the context

of the neurobiological research before an outlook to possible future projects is given

and the thesis is concluded.

6.1. Summary of the experimental findings

6.1.1. Summary of the original choice reaching model

In chapter 2.3 I presented a robotics-based approach to modeling the results of the

odd-colour choice-reaching experiment of Song and Nakayama (2008b) and in chapter

3 three experiments were performed with the presented model. The model’s abilities

were tested in a single target setup and the odd-colour task. In order to simulate

real-world reaching movements the output of my model is a robot arm built with

LEGO Mindstorms NXT. The Target Selection module is the first or attentional

stage of the model which implements a competitive selection process of the odd-colour

target. In order to link the output of Target Selection stage with the robot arm I

based the whole model on the dynamic field theory by Erlhagen and Schoener (2002).
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Crucially, the motor control stage applies moving blob-dynamics in a neural field to

ensure jerk-free (human-like) movements. The experiments demonstrated that the

moving blob works as intended and that this principle is able to produce human-like

trajectories with a bell-shaped velocity profile. An interesting point was that after

I introduced a non-linear mapping the velocity profile was enhanced and the robot

arm gained a better control when in vicinity of the target. Humans possess such a

mapping already on the sensor level with the cortical magnification factor in the eye.

The model shows that the motor cortex might apply both corrected (like in the T

map) and non-linear mappings (like in the V map of the choice reaching model) to

plan and generate movements.

Furthermore, the choice-reaching experiments successfully simulated the odd-colour

task. Hereby, the simulations demonstrated that the Target Selection module not

only is able to select the correct target, but also to reproduce the curved trajectories

that were found by Song and Nakayama (2008b). This was achieved by applying

preactivation or priming maps that gave an advantage of one colour or location and

influenced the movement in an early stage. Colour priming effects where also suggested

by Song and Nakayama (2008b) as reason for the curved trajectories. In the model it

is also possible to prime locations; an effect that also has been found in experiments

(e.g. Maljkovic & Nakayama, 1996). Interestingly, my model predicts that the priming

of a location has a stronger influence on the movement and the trajectory than the

colour priming. This prediction needs to be tested in future experiments.

The third experiment investigated how target and distractor objects are selected and

passed onto the motor stage. Song and Nakayama (2008b) suggested that distractors

have to reach a threshold in order to get activated. My model demonstrated that

such a hard threshold is not necessarily required and pointed out the differences in

the to be expected results of behavioural experiments to test this hypothesis. Future

experiments will have to test those predictions.
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Overall the model is consistent with Song and Nakayama’s (2009) suggestions that

there is a direct link between target selection and movement planning, that both

processes work in parallel and that the target selection process is implemented in a

dynamic competition.

6.1.2. Summary of the modified choice reaching models

In chapter 4 I presented and simulated further choice-reaching tasks with my model.

All these simulated experiments required modifications of the control architecture due

to new behavioural results like in the odd-colour Irrelevant Feature (IF) task or due

to a different experimental setup like in the experiments to the spatial averaging and

the Simon effect.

The experiments demonstrated that the original odd-colour model of chapter 2.3 is

easily extendible to account for newer behavioural evidence. Hereby, the introduction

of a new threshold and the adaptation of the DNF parameters enabled the model to

simulate the difficult relationship of the two measures (reaction time and maximum

curvature) which was found in the odd-colour IF experiment. Thresholds also played

an important role in the Simon task. Interestingly, the role of thresholds already was

a topic in the experiments of the previous section. My model demonstrates that such

thresholds can explain multiple findings. I will discuss this feature in a greater detail

in chapter 6.2.2.

The remaining experiments had setups that differed significantly from the odd-colour

task of Song and Nakayama (2008b). However, with only few modifications to the

Target Selection module these different choice-reaching tasks could be simulated. The

results of those tasks resembled the existing behavioural experiments.

Overall it could be demonstrated that the control architecture of my model is general

enough to simulate a wide range of tasks and to mimic human reaching trajectories.
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Contrary, the model is also detailed enough to account for results like the complicated

interplay of measures like the reaction time and the maximum curvature in various

tasks.

6.1.3. Summary of the goal directed reaching model

In chapter 5 I presented the goal-directed reaching model and simulations of various

goal-directed reaching tasks. The model I developed to simulate the goal-directed

reaching process based on the original choice-reaching model of chapter 2.3. With

the LEGO Mindstorms NXT robotic arm, the original hardware set-up and the

new goal-directed reaching model I simulated various experiments. The first two

experiments dealt with the speed-accuracy trade-off and its implications on movement

parameters. The remaining experiments investigated the effects of perturbations on

the movement.

One remarkable finding was that Fitts’ law (which is the mathematical relation

between movement time and size or distance of the target object) could be simulated

with my model which mainly operates with the topological representations of movement

parameters in the underlying neural fields. In this way my model offers an elegant

approach to explain Fitts’ law in a neurological plausible way. Also in the other

experiments human-like behaviour could be simulated.

In order to simulate the experiments the functionality of the moving blob was extended

by additional mechanisms that process further information such as perturbations and

target properties. This information directly influences the moving blob and therefore

the ongoing movement. I will continue to discuss this characteristic in chapter 6.2.4.

Traditionally, goal-directed reaching is explained with the two-component models

that consist of a preplanned ballistic movement and a control phase at the end

of the reach (see also chapter 2.1.2). The successful simulations showed that the
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speed-accuracy trade-off and perturbation effects can also be mimicked applying the

feedback-based closed-loop principle where no preplanning is necessary. Hence my

model can contribute to the discussion about the underlying principle of goal-directed

reaching movements. I will compare my model in detail with the existing models of

goal-directed reaching in chapter 6.3.

6.2. Model characteristics

The different versions of my model have shown their abilities to simulate a wide

range of choice-reaching and goal-directed reaching tasks. Despite the differences

in the experiments all versions of the model share a number of common theoretical

assumptions such as the closed-loop principle, dynamic neural fields (e.g. a target

selection map, a map that converts the target location information into a hand-centred

coordinate system etc.) or mechanisms like the moving blob in the velocity map that

converts the hand-centred target information into specific movement attributes.

These characteristics play an important role for simulating visual attention and motor

control which resulted in the the observed behaviour. Here I will discuss those

characteristics in a greater detail. It is divided in several sections to discuss the

distinct attentional and motor control features.

6.2.1. Visual attention

Visual attention was an essential feature in the choice-reaching tasks and is simulated

in the Target Selection module. In contrast, for the goal-directed reaching experiments

where only one target had to be attended this module did not play an important role

and was simplified. Hence, I will focus on the attentional aspect of the choice-reaching

models. There the Target Selection module consisted of two DNFs that represent

target location (T map) and target colour (Tcol map). In order to reach for the target

153



6. General Discussion

its location is the crucial feature, hence, only the T map passes its activation onto the

motor stage. However, also the colour can influence the motor stage as both DNFs

are interconnected. Moreover, colour was the relevant dimension to identify the target

for the simulated choice-reaching tasks.

Both DNFs receive an input consisting of the colour maps from the image prepro-

cessing. The exact interconnectivity and the role of the target colour map was task

dependent to some extend, however, the model shows some common features: First,

the colour maps are directly fed into the target selection map and create activations

at the objects’ locations. This can be interpreted as a default direct route where only

the appearance of an object attracts attention whereas other object features require

more processing time. The target determining colour information is processed in the

Tcol map which influences the target selection due to its connection to the T map.

However, this pathway takes more time to be processed. Hence the T map already

has established activations from the fast direct route which have to be overwritten in

order to inhibit distractors. There is plenty of evidence of the existence of such a fast

direct route and a slow indirect route from different tasks (e.g. Tipper et al., 1998;

Kornblum et al., 1999).

There is evidence that suggests that more than one target or motor response can

be activated at a time (see chapter 4.2.1 or Tipper et al., 1998; for a review). This

fact is also featured in the T map which can establish several activations within its

topological representation of the environment and passes them along to the motor

stage. Note that this behaviour strongly depends on the parameters of the DNF

which were chosen in a way to support this behaviour. For instance the usage of

thresholds can limit this ability (see also chapter 6.2.2). However, there also is a

maximum number of activations that the DNF can establish at a time depending on

the parameters and its spatial resolution.

My implementation is consistent with behavioural evidence and theories of attention.
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For instance the biased competition theory states that there are only limited resources

in the brain to process visual information (e.g. Duncan, 2006). Hence when a target

is presented with distractors all those objects compete for attention which affects

measures such as the latency or the trajectory. This fact is represented by the neural

field dynamics in the T map in my model which also can only represent a limited

amount of target objects due to the neural field dynamics. There already exist a

number of computational models that implement visual attention in a similar fashion

(e.g. Trappenberg, Dorris, Munoz, & Klein, 2001; Heinke & Humphreys, 2003).

However, in contrast to most other models an important aspect of my model is that

the Target Selection module does not operate isolated and independent from the

other modules. Instead all modules operate in parallel and can influence the ongoing

movement. This is an important aspect which should be considered when developing

models of cognitive processes. In this way the Target Selection module continuously

passes its information onto the Movement Velocity Control stage and can influence the

movement at all times. Changes in the attentional stage affect the motor stage with

only little processing delay. This is consistent with Song and Nakayama (2009) who

found evidence for the parallel operation of movement control and visual attention in

their choice-reaching tasks. My model shows a plausible implementation on how such

a parallel structure could be realised.

6.2.2. Thresholds

In this section I am going to discuss the role of thresholds within the control

architecture of my model. Generally, the information transfer in my model works

in a continuous fashion so that the modules and DNFs receive inputs from earlier

processing stages and pass it onto later stages. Hereby, all modules and DNFs operate

in parallel and the DNFs pass all of their output activation along. However, as
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demonstrated also the use of thresholds in between DNFs is applicable in such an

architecture. Several experiments such as the odd-colour “threshold” experiment

(see chapter 3.3) or the odd-colour irrelevant feature experiment (see chapter 4.1)

investigated the influence of such thresholds on the behaviour of the robot arm.

In those experiments thresholds between target selection and motor stage play an

important role for the simulation results. The relation between these two stages is

not a simple single route from perception to action. This is reflected by the complex

relation of measures such as the curvature and the latency. For instance, a typical

effect in choice-reaching tasks is that with longer Reaction Times (RT) the Maximum

Curvature (MC) decreases (e.g. Song & Nakayama, 2008b). In the simulations

of the Simon task (see chapter 4.3) I demonstrated that a threshold behind the

target location map can cause this effect. Moreover, a threshold at this location can

also influence how many activated targets will be passed onto the motor stage as

demonstrated in the experiment of chapter 3.3. A high threshold allows only fully

activated targets to be passed on. Due to the global inhibition in the DNF dynamics

then only one target can be activated at a time. A similar mechanism has been

suggested by Song and Nakayama (2008b) to explain the curved trajectories. In

contrast a lower threshold allows the target selection stage to pass more than one

activated target onto the motor stage (e.g. chapter 4.2). The different experiments of

my model demonstrated that several findings can be explained with different values of

this threshold.

There are findings that differ from these results such as the outcome of the odd-colour

irrelevant feature task where RT and MC show a similar pattern where conditions with

a high RT also show a high MC and vice versa. There, my model demonstrated that

this can be explained with a threshold at different neural layers between perception

and motor stage like the target colour map threshold in the simulation of this task

(see chapter 4.1). Hereby, the detection of a location independent feature (the colour)
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controlled the movement initiation. My model could help to explain and understand

the complexity of different experimental findings with thresholds between cognitive

sub-processes.

Finally, with thresholds my model can demonstrate how the paradigm of the choice-

reaching tasks works: The findings of those experiments base on the fact that due to

the ongoing movement hidden cognitive processes “leak” into the movement trajectory.

No such effect can be found when participants have sufficient time to terminate

the target selection process (e.g Buetti & Kerzel, 2008; for an example in a Simon

task). My model simulated such effects in several experiments with the application of

threshold parameters (e.g. chapter 3.3 and 4.3). Moreover, my model can visualise

those internal activations and threshold and can demonstrate their influence on

reaction times and movement trajectories.

In a summary, my model shows how and where thresholds can be active to explain

in-depth behavioural evidence of various measures. Then even complex relationships

between different measures such as the latency and the curvature of the movement

trajectory can be described by simple mechanisms. Hence, my model can be used

as a tool to verify or to test theoretical assumptions or experimental evidence of

choice-reaching tasks and therefore can contribute to the research in this area.

6.2.3. Motor control

As I aimed to simulate the human reaching process with a robot arm motor control

is an important aspect in all experiments. The main parts of the motor control

stage of my model are the hand target difference (D) map and the velocity (V )

map. The D map converts birds-eye target information into a hand-related target

position. This is realised using a sigma-pi unit which offers an easy way to combine

two DNFs (McClelland et al., 1986). Note that the activation of the D map also
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could be interpreted from the hand’s point of view. Then the centre of the map would

encode the target position and an activation in the map the current hand position. As

humans tend to saccades towards attended objects (e.g. Abrams, Meyer, & Kornblum,

1990) this might be an alternative interpretation of the encoded information in the

D map. However, the hand-centred target representation is supported by existing

behavioural (e.g. Tipper et al., 1997) and neurobiological evidence (e.g. Buneo &

Andersen, 2006; more details in chapter 6.4).

The V map is the centre piece of the motor control stage. Here the permanent

activation of the moving blob encodes a speed vector of the upcoming movement.

There is evidence that movements are encoded in the brain in cartesian coordinates

as it is the case in the velocity map (e.g. Desmurget et al., 1998; for a review). It also

has been suggested that movement amplitude and direction are not independently

controlled (Sarlegna & Blouin, 2010) as it is the case in my model where the moving

blob moves freely along those two dimensions. The moving blob itself has more

features than simply encoding the speed. Its further functionality will be discussed in

detail in the next section.

Another important point to note for the motor control is the usage of some form of

“cortical magnification factor”. In the original version of the model of chapter 2.3

a non-linear encoding schema was applied to the output of the V map. With this

encoding more neurons in the V map encoded slower speed values and less neurons

higher speed values. Note that for the goal-directed reaching model the non-linear

encoding was moved to the D map. This was justified with better simulation results

(i.e. no overshooting of the target and more natural velocity profile) and due to

the fact that this can be a natural method to achieve a higher accuracy when the

hand is close to the target object. Interestingly, the human body possesses such a

non-linear encoding already at the sensory level in the eye (Rovamo & Virsu, 1979).

Hence, it is possible that the brain utilises corrected linear and unchanged non-linear
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encoded visual information which could still be present in the motor stage. Both

representations contain important and distinct information such as size or distance of

the target that can be useful for planning the movement like it was applied in the

goal-directed reaching model with the Acc mechanism.

Not a direct part of the model but important for executing the movement of the

robot arm is the Inverse Kinematics module. As my model generates the desired

movement vector it is sufficient to apply a simple transfer function to convert the

cartesian movement vector into a joint space vector. This is in contrast with many

models that consider the mechanical and anatomical constraints of the arm. However,

my model shows that the reaching process can be simulated in a human-like fashion

with a simple transfer function.

6.2.4. The moving blob interface

The probably most remarkable feature of the model is the moving blob in the velocity

map. The moving blob is a permanent activation that encodes a speed vector of an

upcoming movement. It is designed in a way that it only slowly moves through the

field to avoid sudden changes and jumps in the velocity. Although it remains open

whether a mechanism like the moving blob really exists. The results of all experiments

show that such an implementation is feasible and can generate straight human-like

movement trajectories with a bell-shaped velocity profile.

However, the moving blob in my model is more than just a method to generate those

trajectories. Moreover, it is an interface between attentional and target relevant

information and the motor stage. In the original choice-reaching model the moving

blob movement is determined by the default activation in the centre of the map and

the (hand-centred) target location activation from the D map. More importantly, not

only the target location but also further target properties and other task dependent
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V map

Target properties

Speed/Accuracy
Motor Command

Obstacles

Perturbations

Figure 6.1.: The moving blob encodes the speed vector of a desired movement. It is
designed in a way that it acts as an interface between the sensory/attentional and
the motor control stage. Target features such as size or distance (encoded in the
activation of the D map) have a direct influence on the behaviour of the moving
blob in the V map. Moreover, multiple targets could be encoded which results in
an averaged movement vector. Its functionality was greatly extended in the goal-
directed reaching model. There also speed-accuracy constraints of the movement
or perturbations can affect the moving blob due the new mechanisms (Acc and
Onset) that connect the T and D with the V map. Future extensions could increase
its functionality further. For instance an obstacle avoidance mechanism could be
included.

constraints can influence the behaviour of the moving blob (see Figure 6.1). In the

different version of the choice-reaching model the moving blob converts the current

state of the encoded target objects into a speed vector to an average location of those

objects. In the goal-directed reaching model where only one object was presented at

a time the moving blob modulates the task requirements of speed and accuracy as

well as considering the target size. Moreover, with the Acc and Onset mechanisms

additional pathways were introduced that influence the movement substantially. Again

these mechanisms work through the moving blob.

The moving blob mechanism is an example on how a single module can integrate

sensor inflow and motor outflow. The existence of such a single feedback module

in the motor control system has been proposed before (e.g. Desmurget & Grafton,

2000; Miall & Wolpert, 1996; Kirsch & Hennighausen, 2011). Also there is increasing

evidence that there is no strict separation of planning and online-control mechanisms.

For instance, a single mechanism that can adapt weightings for different kind of
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feedback in the time course (e.g. proprioceptive feedback plays a big role in the

early movement and visual feedback dominates in the late movement when it is

available) has been suggested (e.g. Guigon, Baraduc, & Desmurget, 2008). Even

though my model is solely based on visual feedback the moving blob mechanisms

demonstrates how such a single mechanism that integrates different kinds of feedback

and information might look like. Finally, to my knowledge there is no computational

model that realises this mechanism and which is able to simulate multiple reaching

experiments.

Summarising it can be said that the way the moving blob works is a neurological

plausible integration mechanism for different kinds of information with the purpose to

effectively plan and control movement parameter. Moreover, as already outlined in

the previous section no extensive planning is necessary to integrate these information

into an ongoing movement. Thus, the moving blob interface offers a parsimonious and

neurological plausible way for generating movement trajectories.

6.2.5. The role of visual feedback and delay

Due to the closed-loop architecture of my model visual feedback is essential at all

times to successfully reach for targets. Moreover, it is the only source of incoming

sensory information as my model lacks of other kinds of sensors (like proprioceptive

feedback).

As mentioned in chapter 2.1.2 the processing of visual feedback causes a delay in

humans. This is also the case in my model where new visual information has to be

processed by the different DNFs to adapt the movement of the hand.

Due to the lack of different kinds of feedback in the model faster feedback had to be

simulated for the hand perturbation experiment. There the goal-directed reaching

model simulates the influence of different kinds of sensory feedback of the arm in the
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following way: The dead-time parameter leads to a delay for the processing of target

information but does not influence the speed of updating the hand position. Hence

changes in the hand position can be updated much quicker than changes in the target

position. The delay in my model can be related to the reaction times which where in

the goal-directed reaching model of chapter 5 between 2-3 seconds (without dead-time;

approximate time for updating hand) to 7-9 seconds (with dead-time; approximate

time for updating target). These values are faster than the movement times of the

Fitts’ law task which were between 13-20 seconds. In this way the presence of a

faster source of feedback (e.g. proprioceptive) can be simulated even though the only

available feedback remains the visual feedback. As mentioned before the visual delay

in humans has been found to be as fast as 110 ms, while faster kinds of feedback were

found in up to 30 ms (Elliott et al., 2001; for a review).

However, above principle of my model and the closed-loop principle in general have

some important constraints. In this way my model crucially depends on the constant

flow of incoming visual feedback as it represents the only source of information. Visual

feedback has shown to offer a greater precision over proprioception (e.g. Guigon et

al., 2008). Results of behavioural experiments show that when the hand and target

position can only be seen before the movement and no visual information is available

during the reaching process, the error rate typically increases while the accuracy

decreases (see Elliott et al., 2001; for a review).

However, generally it is possible for humans to execute reaches without the permanent

vision of hand and/or target. For instance experiments can be found where reaches are

finished before visual information could be available or where reaches are performed

in the absence of visual feedback (Elliott et al., 2001; for a review). Hence I want to

discuss those conditions with respect to my model here.

My model would be able to perform reaches in conditions for very fast movements

or without visual feedback only with an extension that includes non-visual feedback
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to update the hand’s position. Furthermore it would require an adjustment of the

parameters in order to maintain the target activations in the DNFs. However, with

such an extension the uncertainty about target and hand location would be increased

which could possibly result in a “blur-out” effect that leads to broader activations in

the underlying DNFs of hand and target and eventually would lower the accuracy for

the velocity encoding. Hence, the model is not only able to handle those conditions

but could also explain the behavioural evidence of such experiments.

Extensions also would be required for reaches that have to be executed and finished

before the (visual) closed-loop cycle can be closed. This includes experiments where

very fast reaches have to be made. However, following the philosophy of my model

such reaches still had to be simulated following the closed-loop approach but applying

different and faster kinds of feedback. Note that the model would be able to simulate

such reaches with above dead-time mechanism where the faster proprioception feedback

is simulated with non-delayed visual information while the (real) visual information

receives the dead-time parameter and is perceived delayed by the model.

Other aspects of goal-directed reaching that were not the main issue of the simulated

experiments, however, important for the human reaching process are learning and

practice effects. Elliott et al. (2010) reviewed numerous findings of goal-directed

reaching experiments. They found that when humans reach for targets in similar

settings the reaching becomes faster and more accurate over time due to the practice

effect. Also it seems that with more practice participants rely more on visual feedback

than without. In my model this can be explained by an optimisation of the DNF

parameters. In a new or unknown setting the model could fall back on default

parameters which could be encoded in the motor cortex. A training effect is achieved

when reaches in a similar environment are performed which adapts and optimises the

parameter of the DNFs and in particular of the moving blob. In a following trial the

new parameters would lead to a faster and more precisely moving blob. In order to
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achieve this behaviour the exact position of hand and target must be known which

could explain the fact that participants rely stronger on visual feedback.

6.2.6. Processing limitations

This section will give a further insight into the constraints and processing limitations

of my model and humans. While the need of visual feedback was already discussed in

the last section here I will focus here on different aspects.

One important point in my model is the choice of plenty parameters. The selection of

these parameters was done manually. Hence, it is likely that there exist parameter

values that are more optimal than the ones shown (see also chapter A.2). However,

when the chosen values are modified slightly the behaviour of the model should

not change significantly. In comparison with the human motor system it could be

speculated that processes that select those parameter could be part of learning modules

or a planning component for a reach.

Another aspect is the presence and the handling of noise. In my control architecture

noise is mainly generated in the processing of the visual input and in the execution of

the movement (the motors). The DNFs in the model typically require some (artificial)

noise to work properly, however, due to the already present noise it was not necessary

to include much noise there. Humans also possess noise in their perception-action

system, however, the noise present there is not necessarily equivalent to the noise

which is present in the model. For instance, humans possess a very efficient vision

system so that the noise here might be lower than in my model. However, for arm

movements humans have to take care of the handling of forces and the noise resulting

from forces which was not necessary for controlling the robot arm. Summarised it can

be said that my model - like humans - is able to handle a range of noise of different

sources. However, the noise present in the model does not represent the same noise
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that is present in the human perception-action system.

6.3. Comparison of my model with existing models

After having discussed the characteristics of my model I am going to compare those

with existing models. There already exist plenty of models for simulating the human

reaching process as a whole or parts of it such as visual attention, action selection,

and movement control or distinct phenomena such as the Simon effect. Some models

were already reviewed in chapter 2.1. Here two different kinds of models will be

discussed. First, I will focus on goal-directed reaching models. Here I will compare

my closed-loop model with recent versions of the popular two-component models.

Later, in the second part my model will be compared with existing computational

and mathematical models regarding visual attention and action selection. Hereby, I

selected models that have demonstrated their ability to simulate human-like behaviour

in areas that can be compared with my model such as response selection or movement

control.

6.3.1. Goal directed reaching models

In chapter 2.1 I presented the main principles of models regarding the goal-directed

reaching process which were the open-loop, closed-loop and hybrid models that are a

mixture of the two. Amongst those the class of the (hybrid) two-component models

are the most popular explanation and have a the longest tradition in explaining

goal-directed reaching (Woodworth, 1899; see Meyer et al., 1990; for a review). The

fact that I was able to simulate the goal-directed reaching experiments with a purely

closed-loop architecture of my model changes the point of view for two-component

models. As reviewed in chapter 2.1, in these models the first component is a pre-

planned ballistic phase in which the hand moves towards the target. This component
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plans the movement in an open-loop fashion depending on the target’s characteristics,

but also on the environment (e.g. obstacle avoidance). The second component ap-

plies the principle of online-control to successfully land on the target. More recent

explanations distinguish between multiple processes within these two components (e.g.

Elliott et al., 2010).

The simulation results of the goal-directed reaching experiments showed that phe-

nomena such as the kinematic marker behaviour of reaches in a Fitts’ law task

of humans (see chapter 5.4) or perturbation effects can emerge with a continuous

closed-loop model without an implementation of two distinguished and independent

components. The model simply depends on visual information about arm and target

location and permanently generates (cartesian) movement vectors which are processed

into joint speeds by an inverse kinematics transfer function. Note that an observer

without knowledge of my underlying model could interpret its results as well in the

two-component way, however, the impression of an initial off-line phase only arises

due to two characteristics of the model: First, the moving blob moves “like previously

planned” to its peak velocity location (although completely input driven). Secondly,

due to the processing time (or visual delay) of the model it can not react immediately

to a changing environment which could also be seen in the results of the perturbation

experiments where the model required some time to react toward the changing target

properties. This fact could be misinterpreted by the observer who assumes that the

first phase is pre-planned.

Although, my model is consistent with some aspects of the two-components models

in general. I will compare some of its characteristics and explanations for the goal-

directed reaching experiments with the most recent ones: the planning-control model

of Glover (2004) and the multiple process model of Elliott et al. (2010).

As mentioned before in chapter 2.1, Glover’s model (like all two-component models)

distinguishes sharply between the planning and control processes. Glover describes
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planning as a phase which operates prior to a movement where spatial and non-spatial

characteristics of the target influence the selection of a suitable motor program and

its kinematic parameters such as timing and velocity. Also in the multiple process

model of Elliott et al. (2010) planning includes “specification of magnitude & timing

of muscular forces” which is not the case in my model where these factors are purely

driven by the neural field parameters and the target characteristics such as size and

location.

In comparison with these explanations it is apparent that the planning component

in my model turns out to be limited on selecting a target object and specifying

parameters for the movement dynamic. Later the determination of velocity and

direction of the movement takes place at all stages of the movement. This is solely

driven by the activation of the selected target object. Hence, planning on a lower level

is reduced to a minimum and takes place during the whole reaching process which is

more similar to the second component of the two-component models. In this way it is

not necessary to plan the timing of specific muscles, forces, or movement trajectories.

The planning phase that takes place prior to the movement consists only of the target

selection component and ends as soon as the moving blob moves away from its resting

point in the centre. Hence in my model planning is a much smaller component than

suggested by Glover (2004) and the predefined motor plans of the planning-control

model only would encode parameter settings of the DNFs in the model. The Fitts’ law

behaviour then emerges directly from the dynamics of the movement and the encoding

of the speed in the V map and is not pre-planned as suggested by Glover. From this

point of view the moving blob could be interpreted as an interface of the incoming

sensory information and the outgoing speed signals as it is the V map where the

information of all pathways (and mechanisms) is integrated (see also chapter 6.2.4).

Note that contrary to Glover’s model non-spatial parameters such as fragility or func-

tion of the target do not play a role in my model. In fact such target characteristics
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may require a further planning process. However, I think that an extension which

handles these non-spatial parameters would solely influence the DNF parameters.

From that point of view it could be said that the planning process could be reduced to

a process which selects appropriate parameters for the underlying DNFs, the threshold

between the different DNFs (T , D and V map) and particularly the parameters for

the V map that controls the dynamic and the velocity of the movement with its

moving blob. Note that my model is not able to plan or determine the parameters

on its own. However, a “learning module” extension of the model could be able to

optimize the parameters.

As my model is based on a closed-loop approach online-control plays a major role

for guiding the hand to its target. After the initiation of the movement the model

permanently generates movement vectors in a feedback-loop to adapt the ongoing

movement. Hereby visual feedback is important to receive the location of target

and hand. However, target and hand information is not perceived in the same way:

Due to the dead-time parameter in the goal-directed reaching model the target map

needs more time to update information about the target object. In contrast, the

hand location is updated much quicker as the delay time does not apply here. This

difference is supposed to reflect the fact that humans have mechanisms to achieve

a similar functionality which the model lacks: efferent copies, forward models and

proprioceptive feedback.

Glover’s model works in a fairly similar way: the control phase relies fully on feedback

loops that make use of visual information. This phase is responsible to guide the hand

to the target location. Furthermore, Glover includes the usage of efference copies and

proprioceptive feedback into this component. However, the main difference between

his and my model is that in my model the control phase is active thorough the whole

movement and not only towards the end of the trajectory. Elliott et al. (2010)’s

multiple process model differs from above explanations: they include the usage of
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early control mechanisms into the first phase of the two component models. Such a

separation does not seem parsimonious as then the first phase would be ballistic in

principle, however with the mentioned early online-control exceptions.

There already exist computational models that realise a closed-loop feedback based

control of the goal-directed reaching process. For instance the already mentioned

model of Hoff and Arbib (1993) which is based on the control theory and simulated

reaches towards single target objects. My model offers some advantages over their

model as it possesses a neurological plausible control architecture and includes features

such as the target size in an elegant way. Another example is the model of Gawthrop,

Lakie, and Loram (2008) who also followed a control-theory feedback-based approach.

They found evidence that with this approach Fitts’ law only can be modelled with

a forward model and a predictor that estimates future states in order to calculate

the movement. However, my model demonstrates that Fitts’ law can emerge from

a closed-loop approach with only visual feedback available and no included forward

model or predictor which speaks against a purely control-theory based approach for

simulating goal-directed reaching.

Summarised it can be said that my model offers an alternative perspective of the

goal-directed reaching process. In contrast to the most popular approach of the

two-component models my model utilises a single mechanism that continuously up-

dates movement parameter solely driven by visual information about target and hand.

Moreover, in the numerous goal-directed reaching experiments my model demonstrated

that its novel DNF approach has advantages also compared with existing closed-loop

models.
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Figure 6.2.: Principle of the diffusion model (Ratcliff & Rouder, 1998) as an example
of the decision models. Information is accumulated continuously over time until
a response boundary is reached (dashed line). The upper response boundary
represents correct decisions while the lower one represents error decisions. Three
example paths can be seen: The black line leads quickly to a correct response, while
the red one generates an error signal. The blue path evokes a correct response,
however at a higher reaction time.

6.3.2. Mathematical & Computational models

Besides models for goal-directed reaching there exist numerous computational and

mathematical models that simulate parts of the human reaching process. I will present

the most important approaches here and discuss them with respect to my model.

Decision models

In this section I am going to present the diffusion model as an example of a mathem-

atical decision model. Such mathematical models offer a more abstract way to explain

cognitive behaviour. The diffusion model is a prominent example of the sequential

sampling models (e.g. Ratcliff & Rouder, 1998; Smith & Ratcliff, 2004). It was

developed to simulate the internal decision process of two choice decision tasks and is

a useful tool to describe this process and to explain reaction times in such tasks. Its

basic principle is that information for or against a particular response is accumulated

over time. Once a (positive or negative) threshold has been reached an appropriate

positive or negative response is evoked. The detailed functionality is explained in

170



6. General Discussion

Figure 6.2.

The functionality of the Tcol map in my model is somewhat similar to the diffusion

model. This map consists of only two neurons and is the location where the decision

for the correct target colour is determined based on the amount of colour of the target

and distractor objects (in the original odd-colour model of chapter 2.3). Hence, in

theory a diffusion model could be implemented instead of the Tcol map for simulating

the colour selection. Experimental evidence demonstrated that the diffusion model

simulates very well reaction times and their distributions for two choice decisions

(Ratcliff & Rouder, 1998), however it is obvious that it accounts solely for the decision

process. Hence, the underlying processes that first preprocess the necessary sensory

input and on a later stage transform this decision into an action can not be explained

with this kind of model. In contrast, my model implements all necessary steps to

generate a motor command from a camera image. Even though some modules are

implemented using technical solutions such as the Image Preprocessing or the Inverse

Kinematics modules, the core of the model with its underlying dynamic neural fields

implements the decision making process (and more cognitive processes) in a neur-

ological plausible way. More abstract models like the diffusion model only convert

an already preprocessed input into a decision but cannot explain how decisions are

transformed into action. In this way my model offers the advantages of the cognitive

robotics approach as it is a complete model that converts vision into action. Moreover,

my model also could utilise more abstract models like the diffusion model in its control

architecture to improve and extend their behaviour. Note that this was already

discussed for the Simon models in chapter 4.3 as the there introduced models also can

be categorised as decision models.
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Continuous models

In contrast to the diffusion models which only can explain decisions with two pos-

sible outcomes my model encodes target activations and movement parameter in a

continuous fashion. In fact this feature is inherited by the underlying framework of

my model: the dynamic neural field theory by Erlhagen and Schoener (2002). They

have applied the DNFs to a wide range of computational and psychological problems

(see Schoener, 2008; for a review), however, to my knowledge a model to the human

reaching process is a novelty with this framework.

There exists a range of computational models that also make use of a continuous

representation of movement parameters. One that can explain the distractor influence

in a reaching movement is the already mentioned response vector hypothesis of Tipper

et al. (1997) (see also chapter 2.1.3). This model is able to calculate movement

directions by averaging the activations of an underlying cell population. Potential

target objects cause Gaussian-shaped activations in the cells and mechanisms can

inhibit distractor objects. Tipper et al. (1997) were able to explain various behavioural

evidence with this model. Even though the main principle of the response vector

hypothesis is very similar to my model (encoding of movement parameters in a neural

layer) there are big differences between my model and their approach. The most

important one is that similar to the diffusion model the response vector hypothesis

only simulates a part of the reaching process (one neural layer encoding movement

directions) and can not explain how the activations are created from the sensor input

and how the resulting movement direction is put into action.

Another example of a mathematical model that works with continuous activations

is the reaching model of Cisek (2007). Due to the similarities with my model I

am going to discuss it here briefly. His model consists of different neural layers

that represent different brain regions in order to calculate movement directions of
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encoded information model brain area
target (birds-eye) T map PPC (e.g. SPL, PRR)
target (hand-centred) D map PPC (e.g. SPL, PRR, MIP)
movement direction V map M1, PM
movement speed V map areas 2, 5

Table 6.1.: Brain areas with a similar representations of target properties or movement
parameters than in my model. More details and references can be found in the
introduction.

a reaching experiment where a spatial cue together with a colour cue determines a

target object. Cisek’s (2007) model is very similar to my model in some aspects and

is able to simulate a wide range of neurological evidence of the reaching process. E.g.

his model is made up of several neural layers that encode potential target objects

and target properties such as colour or location. However, similar to Tipper et al.’s

(1997) model essential parts are missing to give a complete explanation of the reaching

process. Also Cisek (2007) only simulates one kind of experiments with his model.

In comparison with above models it can be said that my model implements the

reaching process in a more general setting which enabled the simulation of a broad

range of reaching experiments. In this way it works like Tipper’s model with the

distractor influence, however, in the same time the underlying DNFs possess a neuro-

biological plausibility (like in Cisek’s model). Thus my model somewhat combines the

advantages of these two models and offers a broader approach to the human reaching

process.

6.4. The model in the context of neurobiology

In this section I am going discuss the recent neurological research with respect to

my model (see also chapter 1.4; for an introduction). Support for the neurological

plausibility of my model does not only come from the dynamic field theory and its

background but also from recent brain research. For all of the DNFs in my model
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counterparts with similar encoded information can be found in the human brain (see

Table 6.1 and Figure 6.3). As mentioned in the introduction, the brain areas that

are related to the reaching process like the PPC, M1 and PM receive their visual

information from the parietal occipital visual area (PO) where there is evidence that

visual information with and without foveal magnification is represented (Wise et al.,

1997). In fact, I use in the model both, DNFs with (in the goal-directed reaching model

D map with its eccentricity function) and without cortical magnification (T map).

Moreover, my model applies target representations in different coordinate systems

with an encoding in birds-eye view in the T map and in hand-centred coordinates in

the D map. Such encoding schemes have been found in many sub-areas of the PPC

(e.g. in the SPL, VIP, and LIP; Kalaska et al., 1997; Desmurget & Grafton, 2000). In

my model the representations for movement direction and speed are encoded in the

V map. Also in the brain neurons for encoding direction and amplitude were found

in the M1 and PM areas (e.g. Wise et al., 1997; Toxopeus et al., 2011). Moreover,

recent studies with monkeys found neurons that encode velocity (areas 5 and 2 of the

parietal cortex; Averbeck, Chafee, Crowe, & Georgopoulos, 2005).

Moreover, the control architecture of my model sheds new light on the various

interpretations of the functionality and encoded parameters of brain areas as it models

all underlying processes of goal-directed reaching. For instance Buneo and Andersen

(2006) discuss three different schemes for transforming the target position from an

eye-centred to a hand-centred coordinate system. My model shows that there is no

need for a sequential adding up of different positions and vectors such as in their

“sequential” or “combinatorial method” where head, arm, hand vectors are added.

With the sigma-pi unit of the model these information are combined in a direct fashion

which speaks in favour of the “direct method” of Buneo and Andersen (2006).

Furthermore, my model gives an explanation on how the planning of the movement

trajectory could take place. Hereby, the trajectory is planned rather simple as the
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Figure 6.3.: Brain areas involved in the reaching process with the counterparts of
my model (on top of the brain). Visual information originates in the occipital
lobe and is processed into the area PO. This area serves as input for the PPC
where attentional information is processed. The PPC area has connection to the
premotor (PM) and motor (M1) areas from where the motor signal is sent to
the muscles. The feedback loop is closed by the sensory processing of the visual
feedback. Furthermore, the brain makes use of forward models and internal motor
plan copies that can be used to predict the consequences of a planned movement.
See the text for a discussion in a greater detail.

moving blob in the V map encodes only the current direction and speed of the

movement. Evidence for such a “simple dynamic encoding scheme” has been found in

the PPC in a study where monkeys performed a joystick task (Mulliken, Musallam,

& Andersen, 2008). An alternative explanation is that M1 neurons encode more

complex “pathlets” which are encoded on a single-cell level (Hatsopoulos, Xu, & Amit,

2007). Such pathlets then can be combined in order to generate the desired movement.

However, my model demonstrated that it is not necessary to have such preplanned

trajectories in order to mimic human reaching trajectories.

Evidence for sub-mechanisms in the goal-directed reaching model (Acc, Onset) which
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were introduced to shape the velocity profile for smaller targets and in the perturbation

experiments comes from the fact that there exist multiple connections between the

visual area (PO) and the premotor areas (M1, PM). Moreover, the PM area was

found to also process visuomotor information and non-spatial target properties (Wise

et al., 1997) which gives support to the fact that features such as the target size

actively influence the motor planning as it is the case in my model where the Acc

mechanism influences the moving blob with target size and distance information.

There is evidence from a TMS study of Desmurget et al. (1999) that was interpreted

as a proof against a purely closed-loop control of the human reaching process. There,

TMS was applied on an area in the PPC and it was found that participants were

not able to correct their movements toward a jumping target object. Instead the

participants finished their already initiated hand movement towards the initial target

object, however, with reduced accuracy. Desmurget and Grafton (2000) followed that

there must exist some sort of pre-planning so that the initiated movement can be

finished even in the absence of a visual feedback loop. With my model I propose a

different interpretation for their results: The TMS could slow down the target selection

stage which takes place in the T map (which also matches the PPC area). This would

prevent that the perturbed target is perceived and detected in time. Additionally, as

the T map does not receive new input due to the TMS its existing activation might

“blur-out” and therefore reduce the accuracy of the ongoing movement. Note that I

already have discussed a similar effect for a hypothetical non-visual feedback reach

with my model in chapter 6.2.5.

Furthermore, there is neurological evidence of Cisek and Kalaska (2005) for the fact

that potential target objects create activation in the PMd region even before movement

execution. These so-called potential response neurons increased their fire-rate when

a potential target object was close to their preferred direction. Then two targets

created a bimodal distribution within a population of those cells. This gives further
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support for the implementation in the Target Selection module where potential targets

influence the motor output before the final target is selected.

With all the mentioned evidence of this section it can be concluded that my model

demonstrated that its control architecture is neurologically plausible. All parts of

the model can be related to a brain region that showed a similar functionality in

experiments. Moreover, my model can help to answer open questions about how the

brain processes information and how experimental findings can be explained on a

neural level.

6.5. Outlook

This section will give an outlook of possible future extensions of my model and further

experiments that could be simulated. Note that a few possible extensions regarding

particular experiments already have been discussed in the experimental chapters.

6.5.1. Extensions of the model and further simulations

Several extensions for the model would be possible that could improve the hardware

setup with the LEGO robot arm or the control architecture of the model. Regarding

the hardware extensions one could think of a grasping component consisting of two

fingers controlled by an additional motor. This would enable my model to simulate

experiments were hand properties such as the grip aperture play an important role

such as the perturbation experiments of Paulignan, MacKenzie, et al. (1991). The

interplay of the grip aperture with the kinematic markers of the reach could extend

the existing paradigm and give more support to my model in this kind of experiments.

When talking about extensions of the control architecture the most obvious adaptation

would regard the modules that are not yet implemented in a neurological plausible

way utilising dynamical neural fields. This includes especially the Inverse Kinematics
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module which is currently implemented as a simple mathematical function. While this

does not offer new possible experiments it would increase the neurological plausibility

of the model as a whole.

As discussed before, humans have shown to possess mechanisms to account for motor

noise and other perturbation with forward models and proprioceptive feedback. Such

feedback does not play a role in the current model, however, it could be included.

Then the current motor signal and/or the joint positions of the arm could influence

the processing of the future movement vector. Even an integration of this feedback

into the moving blob mechanisms might be possible. Finally, extensions for more

sophisticated movements (e.g. writing) could be included as well.

However, it is not necessary to introduce major extensions to the existing model and

its variations in order to simulate new experiments. There is a range of choice-reaching

tasks that could possibly be simulated with only small changes to the target selection

module. This already has been demonstrated in chapter 4 with the experiments to

the spatial averaging effect and the Simon task. Examples of tasks that were not yet

simulated include reaching experiments with physical objects that could possibly be

treated differently in the DNFs (e.g. Chapman & Goodale, 2008; Tipper et al., 1998).

Other possible experiments could be performed with objects of different saliency (e.g.

Wood et al., 2011).

6.6. Conclusion

The aim of my thesis was to develop a neurologically plausible computational model

to explore the cognitive processes behind the human reaching process. Due to the

cognitive robotics approach which I have taken it was required to implement all

underlying cognitive processes of the reaching process. Moreover, with my model I

investigated the role of visual attention and movement planning during the reaching
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process.

The resulting model in its different variations was able to simulate various choice-

reaching tasks such as the odd-colour task of Song and Nakayama (2008b) (see chapter

3), an extension of this task and experiments showing the spatial averaging effect

of Chapman et al. (2010a) and the Simon effect (see chapter 4). Hereby, the model

explored the interplay of target selection and movement coordination and gave a

possible implementation of the cognitive processes involved in visual attention and

movement planning.

Moreover, in chapter 5 several goal-directed reaching tasks simulating Fitts’ law (Fitts

& Peterson, 1964) and further speed-accuracy and perturbation phenomena (e.g.

Heath et al., 1998; Saunders & Knill, 2005) were performed by a modified version of

my model. The results of the numerous experiments were compared with human data

in similar tasks and demonstrated that my model achieved good results. With its

closed-loop approach my model offers an alternative explanation on how goal-directed

reaching is planned and executed. While traditionally this is explained with two

distinguished components of planning and control (e.g. Glover, 2004) my model

demonstrates that such a separation is not required to achieve human-like behaviour

in perturbation or Fitts’ law tasks. The existence of a single process that integrates

the available information and generates a motor signal was suggested before (e.g.

Miall & Wolpert, 1996). With the moving blob interface my model gives an elegant

explanation of this assumption and also demonstrates how such a process could be

implemented in the human brain on a neural level.

Taking together the evidence of the experiments my model showed a possible imple-

mentation of all underlying cognitive processes of the human reaching process. The

simulations demonstrated human-like behaviour in various reaching tasks and also can

give predictions for future experiments. Additionally, the framework of the dynamic

neural field theory gives my model a neurological plausible base and demonstrates how
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the brain could encode the relevant information of the reaching process. Furthermore,

my hardware setup offers an easy and inexpensive way to investigate aspects of visual

attention and movement planning and control. Finally, due to its modular structure

my model is easy to extend and modify and also can be used as a framework to utilise

existing abstract models like the diffusion model in order to extend their applicability

to choice-reaching experiments and to study their behaviour on reaching movements.
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The Appendix is divided into two sections. First, I present the mathematical details of

my model. Afterwards, the second section lists all model parameters of the simulated

experiments.

A.1. Mathematical details of the model

This first section of the appendix introduces the model’s mathematics and equations

in more detail. The qualitative description of the model’s behaviour for the choice-

reaching model can be found in chapter 2.3 and for the goal-directed reaching model

in chapter 5.2. The first part of this section gives more details of the Image Processing

module of my model. The second part describes the mathematical details of the

dynamic neural fields in general. Subsequently, I will present details of the dynamic

neural fields and their interconnectivity in the different versions of my model of chapter

2, 4, and 5 respectively. Finally, the mathematics of the Inverse Kinematics module

will be presented.

A.1.1. Image processing

The Image Processing module converts the RGB camera image into three colour maps

that directly feed as input into the DNFs of the model. First the 160 × 120 pixel

camera image is downscaled to the size of 80 × 60 pixel. This downscaled image

181



A. Appendix

then is processed with the following steps. First several parameters have to be set

correctly to ensure that the colour detection works properly and the generated colour

maps contain information about the marker without noise. The parameters have

the following functions: The desired hue value (hue) and the hue tolerance (∆hue)

determine the colour that has to be detected. In order to detect a pixel the hue value

of the pixel must be in the range of [hue − ∆hue;hue + ∆hue]. As introduced in

chapter 2.3.2 the image processing takes place in the HSV colour space. Hereby

noise may occur if extreme values for S and V (which represent the colours white

and black) are not filtered out. Therefore both Saturation (S) and Value (V ) have to

be larger than the value of the parameter sv. In the last step the erosion parameter

ero determines the strength of an algorithm that decreases the noise of isolated pixel

by deleting pixels if they have less activated neighbour pixels than the value of the

parameter. Finally, the output of the Image Processing module are the three colour

maps (blue, red, green) with a spatial resolution of 80× 60 with values between 0 (no

colour detected) and 1 (colour detected).

A.1.2. Dynamic neural fields

The model consists of multiple interconnected dynamic neural fields (DNFs) each

serving a distinct purpose. The theory behind the framework was introduced in

chapter 1.5 (see also Erlhagen & Schoener, 2002; for a review). The DNFs are: base

map (B), hand map (H), target colour map (Tcol), target location map (T ), hand-

target difference map (D), and velocity map (V ). The maps without DNF dynamics

are the three colour maps: the blue map (colblue), the green map (colgreen) and the

red map (colred). The colour maps are continuously generated from the camera image

as described above and serve as input for some DNFs. Further maps without DNF

dynamics are preactivation maps which were applied in some of the experiments
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(e.g. in the odd-colour experiment of chapter 3.2). There is a preactivation map

for colour (precol) and location (preloc). All DNFs and the non-dynamical maps are

interconnected and influence each other. A description of their qualitative behaviour

can be found in chapter 2.3.

Before I introduce the details of the interconnectivity of the DNFs in my model I am

going to present the general mathematical details of the DNFs in more detail. The

general equation to determine the neural activation of a DNF after Amari (1977) is as

follows:

τ u̇(x, t) = −u(x, t) + h+ s(x, t) +

∫
w(x− x′)f

(
u(x′, t)

)
dx′ + q(x, t) (A.1)

This equation already has been presented in chapter 1.5, but is listed again to give a

complete overview of the mathematical details here. Hereby, τ is a time parameter

which defines how fast the DNF adapts towards changing inputs, u(x, t) stands for

the field activation at time t and location x, h < 0 is the resting level of the field,

s(x, t) is the external input of the field, w(x) is the activation kernel function and

q(x, t) is normally distributed gaussian noise. Note that x is two-dimensional for the

most DNFs in my model.

In the integral term of the equation there is the kernel function w. Before giving

details of this function in A.7 I want to introduce details of the field output function

f and the field equation that I implemented in my model. The field output function

f is a sigmoidal function with parameters for the steepness of the slope (β) and the

shift (u0):

f(u) =
1

1 + e−β(u−u0)
(A.2)

For the implementation of the model, equation A.1 was adapted: the integral term was

discretised according to the number of neurons and split up into separate excitatory
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and inhibitory components. Furthermore a global inhibitory component was added.

This is a common way to implement DNFs (see also Faubel & Schoener, 2008):

τ u̇(x, t) = −u(x, t)+h+s(x, t)+excloc(x, t)−inhloc(x, t)−inhglob(x, t)+q(x, t) (A.3)

Thus, excloc and inhloc define the local excitation and inhibition with the following

equations:

excloc(x, t) =
∑
x′

wexc(x− x′)f
(
u(x′, t)

)
(A.4)

inhloc(x, t) =
∑
x′

winh(x− x′)f
(
u(x′, t)

)
(A.5)

Next, the global inhibition inhglob depends on the summarised field activation and

the parameter ginh:

inhglob(x, t) = ginh
∑
x′

f
(
u(x′, t)

)
(A.6)

Finally, the kernel wk with its parameters σk (kernel width) and ck (kernel strength)

is defined with the following equation:

wk(x) =
ck

σk
√

2π
exp

(
−|x|

2

2σ2
k

)
(A.7)

Kernel functions define how connections spread out through the DNF and how big

the radius of influence of a neuron in its neighbourhood is. They are applied in all

DNFs in the local excitation, inhibition and the noise term q. Additional kernels are

applied in some DNFs to change input characteristics (e.g. to broaden activations in

the V map).

Above equations are valid for every DNF in the model. However, the parameters

(listed in chapter A.2) and input terms s(x, t) of equation A.1 vary for different DNFs

and for different variations of the model depending on the functionality and the
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purpose of the DNF. The following sections present more details of the DNFs of the

model for the different version of the simulations.

A.1.3. Choice reaching model

The mathematical details of the choice-reaching model as it was introduced in chapter

2.3 are presented here. This section is divided into subsections to point out the

equations for the single DNFs of the model. If it is not stated differently the general

DNF equations of the last section are valid. Generally the characteristics of the model

are the following:

• The Tcol map possesses only 2 neurons (one for each possible target colour)

and is treated as a standard neural field with just one dimension. Also the

corresponding non-dynamical precol map only has 2 neurons. All other DNFs

and maps are two-dimensional with the spatial resolution of 80× 60 neurons.

• The (non-dynamical) preactivation maps (precol, preloc) are manually defined.

As these maps cannot change over time, they do not possess a time dimension.

(Although their connection to the DNFs can be switched on and off in the

model.)

• The input term s(x, t) differs in all DNFs according to the input the fields

receive. The different input terms are described in the following subsections.

Each DNF receives a specific input according to its functionality. There are two states

of inputs of the DNFs: before and during the simulation. Before the GO-signal is

sent to the model which initiates the simulation, the input for all DNFs is by default

a map without activation. However, due to the preactivation feature, some DNFs

receive an input from preactivation maps instead of an empty map. The input maps

of all different DNFs are described as follows.
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Base map input

The base (B) map simply receives the blue colour map as input and selects the (larger)

blue marker which is attached to the base of the robot arm. Its input is defined by

the following equation:

sB(x, t) = colblue(x, t) (A.8)

Hand map input

The endeffector or hand (H) map receives the blue colour map as positive and the

output of the B map as negative input. Thus, after the B map has selected the

arm base the H map selects the (smaller) blue marker which is attached to the arm

endeffector (hand):

sH(x, t) = colblue(x, t)− fB
(
uB(x, t)

)
(A.9)

Target colour map input

The target colour (Tcol) map consists of two neurons, each representing one possible

target colour. It can be influenced by preactivation (colour priming) and therefore

receives the precol map as input before the GO-signal is sent to start the simulation.

After the simulation has been started each neuron receives the added field activation of

the corresponding colour map weighted by a factor to account for the DNF parameters.

Before GO-signal:

sTcol(1, t) = precol(1) for neuron 1 (green) (A.10)

sTcol(2, t) = precol(2) for neuron 2 (red) (A.11)
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After GO-signal (The factor 1
3

is a scaling parameter):

sTcol(1, t) =
1

3

∑
x

colgreen(x, t) for neuron 1 (green) (A.12)

sTcol(2, t) =
1

3

∑
x

colred(x, t) for neuron 2 (red) (A.13)

Target location map input

The target location (T ) map receives a multiplicatively combined input of the Tcol map

and the colour maps (see also Figure 2.6). This way it is assured that the odd colour

always has an advantage over the distractor colour in later stages of the simulation.

The T map also can be influenced by preactivation (spatial priming) and it receives

the preloc map as an input before the GO-signal.

Before GO-signal:

sT (x, t) = preloc(x) (A.14)

After GO-signal:

sT (x, t) = colgreen(x, t)fTcol
(
uTcol(2, t)

)
+ colred(x, t)fTcol

(
uTcol(1, t)

)
(A.15)

Hand-target difference map input

The input for the hand-target difference (D) map is the combined output activation

of the H and the T map. It is realising a sigma-pi unit (McClelland et al., 1986) in a

way that the location of the activation in the D map represents the difference of the

location of the activations in the other two maps. Moreover, the origin in the center

of the D map (xmax

2
) represents the position of the endeffector, while an activation

somewhere in the DNF encodes a target. Therefore, an activation at the centre of the
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D map would represent a target at the hand’s position, while a target that is located

in some distance to the hand would be represented with an activation far away from

the map’s centre.

The calculation is performed by applying the equation of a sigma-pi unit in the

following way:

sD(x, t) =
∑
xT

∑
xH

fT
(
uT (xT , t)

)
fH
(
uH(xH , t)

)
(A.16)

with: x =
xmax

2
+ xT − xH (A.17)

In order to process the sigma-pi unit more efficiently, output activation thresholds

thT and thH were introduced for the T and the H map for above equations. While

the threshold for the H map thH was introduced purely for efficiency reasons, the

threshold thT for the T map was an important parameter in the model. The thresholds

cause that only neurons with activations higher than their value will be considered as

input for the sigma-pi unit of the T and H map. The output value of neurons with

values below the threshold value are set to 0 and will not influence the D map.

Velocity map input

The velocity (V ) map performs the moving blob behaviour described in chapter 2.3.

Hence, it possesses two fairly broad input activations: The first input is a predefined

Gaussian activation in the centre of the map (zero map) which represents the resting

hand (zero velocity) and assures the presence of an activation in the DNF at all times

(see Equation A.19). The second input is a broadened output of the D map. The

broadening is performed by an additional kernel function Vinp (see Equation A.20).

With these two inputs a stable and slowly moving activation (rather than vanishing
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or jumping activations) can be induced as described in chapter 2.3.

sV (x, t) = Vzero(x) +Doutput(x, t) (A.18)

Vzero(x) =
czero

σzero
√

2π
exp

(
− |x|

2

2σ2
zero

)
(A.19)

Doutput(x, t) =
∑
x′

wVinp
(x′)fD

(
uD(x′, t)

)
(A.20)

Movement vector determination

The activation of the V map encodes a velocity vector which is the output of my

model. The vector is determined by finding the maximum of the existing activation

(the moving blob) in the DNF. From the resulting position x in the V map the origin

or centre of the map xmax

2
has to be subtracted to obtain the hand-centred velocity

vector.

v = max
x

uV (x, t)− xmax
2

(A.21)

In the next step the speed encoding of the velocity map is applied. The velocity vector

v is normalized and raised to a higher power defined by the vector encoding power

parameter m. For values m 6= 1 the encoding is non-linear (like in the experiments of

chapter 3 where the encoding power was 1.5).

vscaled = |v|m−1v (A.22)

In order to generate a straight trajectory towards the target a desired future hand

position is determined with the current hand position (obtained from the H map)

and the scaled velocity vector vscaled. A further scaling parameter a of the velocity
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vector is applied in order to ensure that the future point will not be located to far

from the current hand position or behind the actual target, since the vector vscaled

can be extended significantly due to the nonlinear scaling. (If the future point is too

far away from the hand then the arm cannot reach it and no joint angles could be

calculated.)

xcurrent = max
x

uH(x, t) (A.23)

xfuture = xcurrent + avscaled (A.24)

Now the inverse kinematics can be applied for the current position xcurrent and the

future position xfuture. Details of the inverse kinematics and the equations for the

motor speed can be found in chapter A.1.6.

A.1.4. Modifications of the choice reaching model

The model description of the last section gave the details of the model of the odd-colour

experiments of chapter 3. For simulating the single target baseline experiment and

the choice-reaching experiments of chapter 4 parameters and the control architecture

had to be modified slightly. Moreover, for the spatial averaging and Simon tasks the

described interconnectivity had to be modified. The adaptations and differences to

above model will be presented in the next sections.

Single target model

The single target experiment chapter 3.1 was the first experiment that was simulated

with the control architecture. For this experiment the model is only modified in the

Target Selection module to detect any object in the workspace. Hence, here the input

for the T map is the additive combination of the red and the green map. Also the
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Tcol map and all its connections are inactive here. The input equations in the T map

are as follows:

Before GO-signal (no priming was necessary here):

sT (x, t) = 0 (A.25)

After GO-signal:

sT (x, t) = colgreen(x, t) + colred(x, t) (A.26)

Odd-colour IF model

The modifications for the experiments of the odd-colour irrelevant feature experiment

of chapter 4.1 affect only the Target Selection module. The input for the colour map is

slightly changed and the weighting is modified. In the following equations the changes

to the inputs of the old model are underlined.

After GO-signal:

sTcol(1, t) =
1

20
max

(∑
x

colgreen(x, t)−
∑
x

colred(x, t), 0
)

for neuron 1 (green)

(A.27)

sTcol(2, t) =
1

20
max

(∑
x

colred(x, t)−
∑
x

colgreen(x, t), 0
)

for neuron 2 (red) (A.28)

Similar adaptations are applied to the input term of the T map.

After GO-signal:

sT (x, t) = (1− 2.5colred)(x, t)fTcol
(
uTcol(2, t)

)
+ (1− 2.5colgreen)(x, t)fTcol

(
uTcol(1, t)

)
(A.29)
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Note that due to the new threshold of the Tcol map activation can only be passed

from the D to the V map if the activation of the Tcol map surpasses the value of this

threshold.

Spatial averaging model

The adaptations for the experiments of the spatial averaging effect in chapter 4.2

affect only the Target Selection module. Colours do not play a role in this experiment,

but are used for the technical implementation to distinguish between potential and

final target objects. Hereby both colours encode potential target objects but only

the red object is considered as the final target object. The input for the T map is

calculated by adding both colour maps with weights pgreen and pred:

sT (x, t) = pgreencolgreen(x, t) + predcolred(x, t) (A.30)

The weights p account for the experimental setup as mentioned above. Before the

GO-Signal both weights are set to 0, after the GO-signal and before movement onset

the weights are both set to 1. Finally, after movement onset the weight pred remains

at 1 and pgreen is set to 0.

After updating the T map the dead-time is applied. This parameter causes a delay of

the information encoded in the T map for the following DNFs (D and V map). The

deadtime is realised using a “first in, first out” approach by storing current output

activation in an array. Then the oldest stored value is used for further processing

steps (input for D map etc.).

Simon model

In the model for the simulations of the Simon effect in chapter 4.3 the Target Selection

module had to be modified. The outputs of the Tcol map here influence the weights of
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the non-dynamical encoded target maps Targetleft and Targetright which now serves

as input to the T map. Those maps contain a Gaussian-shaped activation at the

required target location on either the left or the right side.

Before GO-signal:

sT (x, t) = preloc(x) (A.31)

After GO-signal:

sT (x, t) = colgreen(x, t)Targetleft + colred(x, t)Targetright (A.32)

A.1.5. Goal directed reaching model

The goal-directed reaching model differs in some aspects from the choice-reaching

model. Besides the DNFs for detecting the robot arm (B and H map) it consists

of only three DNFs - the T , D and V map, however, it possesses some additional

mechanisms.

Generally, before the simulation starts and a GO-signal is sent to the model, the input

for the model DNFs is by default a map without activation:

sT (x, t) = sD(x, t) = 0 (A.33)

Note that this does not apply for the B and H map as they are used for the detection

of the robot. The V map receives its default activation as described before (see

Equation A.18).

Target map input

The T map encodes the birds-eye view location of the target object. In contrast

to the choice-reaching model colour did not play a role in these experiments and
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the two colour maps (red and green) are additively combined. However, for the

target perturbation experiments different colours were used as part of a technical

implementation in order to simulate changing location or size of target objects by

combining or switching the colour input for the T map.

The input for the T map is calculated by adding both colour maps:

sT (x, t) = pgreencolgreen(x, t) + predcolred(x, t) (A.34)

The weights p account for the experimental setup as mentioned before. For the Fitts’

law experiment both weights are fixed at value pgreen = pred = 1, so that the colours

were not distinguishable. However, for the perturbation experiments the values of

the weights change after movement onset and cause the perturbation effect. In the

location perturbation the active colour switches from green to red: pgreen = 1, pred = 0

(before) and pgreen = 0, pred = 1 (after the perturbation).

For the size perturbation condition the colours are combined: pgreen = 1, pred = 1

(big) and pgreen = 0, pred = 1 (small object). Then the target changes from big to

small in the shrink and from small to big in the grow condition.

After updating the T map the dead-time is applied. This causes a delay of the

information encoded in the T map for the following DNFs (D and V map). The

dead-time is realized using a “first in, first out” approach by storing current output

activation in an array in a similar fashion than in the spatial averaging experiment.

Hand-target difference map input

The input equations for the D map remain unchanged and are identical to the choice-

reaching model. However, additionally a non-linear eccentricity function is applied

besides the standard output function of the D map. This function causes a target

close to the hand (and therefore close to the centre of the DNF) to activate more
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neurons than a target object far away from the hand. The transfer function for the

locations x is xnew = x3 + x in respect to the centre of the DNF. The implementation

to convert the non-eccentric neuron positions xD into the eccentric neuron positions

xeccD is as follows:

xeccD =
1

2

(
(
xD
hs
− 1)3 + (

xD
hs
− 1)

)
hs+ hs (A.35)

Hereby hs stands for half the number of neurons of the DNF and is used to determine

the distance toward the centre of the DNF in order to apply the function. Finally

the output activation of the DNF is calculated with the magnified locations xecc:

fD
(
uD(xeccD , t)

)
.

For the hand perturbation experiment the technical implementation of the perturb-

ation affected only the sigma-pi uni (see Equation A.17). There, with the applied

perturbation the coordinates of the input of the H map are shifted towards the desired

direction (near, far and sideways).

Velocity map input

The input equations for the V map of the choice-reaching model are extended to

achieve the desired behaviour of the goal-directed reaching model. The zero map now

consists of three parts to account for the newly introduced pathways in the model:

Vzero(t) = wstZst + waccZacc(t) + wonsetZonset(t) (A.36)

Hereby, Zst is a time independent permanent input to ensure an activation around the

centre when no target is present. This part is identical to the permanent activation

of the choice-reaching model (see also Equation A.19). Zacc(t) is the input of the

accuracy (Acc) mechanism and Zonset(t) of the onset (Onset) mechanism of the model.
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All three terms possess weights w for balancing purposes.

The permanent input Zst is identical to Equation A.19. It is a Gaussian around the

centre of the V map and defined as follows:

Zst =
cst

σst
√

2π
exp

(
−|xcentre|

2

2σ2
st

)
(A.37)

Accuracy mechanism

The input of the Acc mechanism depends on Tsum which is the sum of the activation

in the T map as its strength depended on the target size. With a threshold for the

target sizes Tsum is determined using the following equation:

Tsum(t) =
25−

∑
x fT

(
uT (xT , t)

)
100

(A.38)

The constant parameters (25, 100) account for perceived object sizes in the experi-

mental setting and balance the output. The Acc mechanism also received an input

from the D map. With its eccentricity function the weighted sum of the DNF gives

an estimate on how close the hand is located to the target.

Dsum(t) =
∑
x

wGauss(x)fD
(
ueccD (x, t)

)
(A.39)

The weights wGauss(x) are determined by applying a Gaussian around the centre of

the D map:

wGauss(x) =
cGauss

σGauss
√

2π
exp

(
− |x|2

2σ2
Gauss

)
(A.40)

Then the strength of the Acc mechanism is calculated using the following equation:

Zacc(t) = Tsum(t)Dsum(t) (A.41)
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Finally, Zacc can be used to calculate the input for the V map using Equation A.36.

Onset mechanism

The Onset mechanism can also influence the strength of the zero map in the V map.

This mechanism detects variations in the activation of the T map and becomes active

when an unexpected perturbation occurs. The strength of Onset is determined by:

Zonset(t) = max(∆act(t)− thact, 0) (A.42)

Hereby, thact > 0 is a threshold to filter noise and ∆act is the change rate which is

defined as the difference of the sum of the current activation and the running average

of the activation. The change rate is calculated using following equation:

∆act(t) = |
∑
x

fT
(
uT (xT , t)

)
− act(t)| (A.43)

The running average act is required to calculate above equation. It is updated in

every time step:

act(t) = act(t− 1)(1−∆t) +
∑
x

fT
(
uT (xT , t)

)
∆t (A.44)

The above equations for Acc and Onset mechanism only configure the strength of the

zero map in Equation A.36. In order to cause the blob to move away from the centre

the target-depended input is needed which is determined similar to the choice-reaching

model (see Equation A.20).

Movement vector determination

The determination of the movement vector is identical to the choice-reaching model. In

contrast to the non-linear scaling of the choice-reaching model, here a linear equation

197



A. Appendix

is applied in order to obtain the scaled movement vector. (The non-linear function

here is included in the D map; see also Equation A.35.)

vscaled =
v

4
(A.45)

A.1.6. Inverse kinematics

Generally, the inverse kinematics deal with the problem of determining the angles of

the joints of the robot arm when only the cartesian positions of the arm’s joints are

known. The Inverse Kinematics module is not part of the model and the problem is

solved with a transfer function rather than applying DNFs or neural implementations.

This section shows the mathematics and the implementation behind this transfer

function.

In order to solve the inverse kinematics problem, knowledge about the cartesian

position of the base and the endpoint is crucial. Furthermore, the length of the parts

of the arm or the joint’s coordinates must be known before a solution can be found. A

common problem of the inverse kinematics is that a solution is not unique. Note that

my robot arm only moves in the two-dimensional space and only possesses two joints

which correspond to shoulder and elbow of a human. However, with the mentioned

constraints it is obvious that only two solutions remain for my robot arm: one for a

left and one for a right arm. As I assume the simulation of a right arm so that the

left arm solution can be discarded here.

My model provides a movement vector which is converted with the current hand

position xcurrent into a desired future hand position xfuture. The mathematical details

of this processing were presented for the different versions of my model in the preceding

sections (see Equations A.23 and A.24). The inverse kinematics now convert this

cartesian positions (xcurrent, xfuture) into the joint angles α and β for both current
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and future positions of the robot arm. This is done using the equations A.55 and A.56.

The following section presents the derivation of these equations with the trigonometry

of the robot arm (see also Figure A.1). Subsequently, an angle difference of current

and desired arm position can be determined which can be converted into speed values

of the joint’s motors which is explained in the last part of the section.

Inverse position kinematics with given arm positions and lengths

The problem of the inverse kinematics can be solved in different ways (see Jähne,

2008; for a review). The method that I have applied in my implementation makes use

of the cartesian positions of the robot arm’s shoulder and hand. As mentioned before

the robot arm is a simplified model of a right arm of a human. Therefore restrictions

for the joints apply e.g. the elbow angle β can not exceed 180◦ as it is physically not

possible to bend the arm further than that (see Figure A.1; for the naming of the arm

parts). As mentioned before this restriction of the angles make the inverse position

kinematics problem unique, even when the joint position J is unknown. However,

the length of both segments of the arm (|b| = lengthupperarm and |j| = lengthforearm)

must be known. The following derivation uses mainly trigonometrical relations to

calculate the angles α and β with the vectors b (base to joint), j (joint to end) and r

(reach vector, base to end). Additionally, the reach vector r is decomposed into two

parts rl (base to point H) and ru (H to end). Moreover r separates α in a left and

a right part. With the trigonometry of the triangle EExB the left part of α can be

determined.

αleft =
arcsin ry
|r|

for rx < 0 (A.46)

αleft = π − arcsin ry
|r|

for rx ≥ 0 (A.47)
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Figure A.1.: Vector model of the robot arm (black arrow) with the relevant angles
and points: In order to calculate the kinematics with only the location of endpoint
(or target), base and length of the arm segments some additional helping points are
needed. Also two cases need to be distinguished: endpoint E left (left side) or right
(right side) of the basis location B. See the text for the relevant equations regarding
the inverse kinematics.

With the triangles HBJ and HJE the lengths of the two parts of the reaching vector

r (|rl| and |ru|) can be obtained. Note that the line HJ separates β in a left and a

right part.

|ru| =
|r|2 + |j|2 − |b|2

2 |r|
(A.48)

|rl| = |r| − |ru| =
|r|2 − |j|2 + |b|2

2 |r|
(A.49)

Now the remaining angle parts can be determined with the trigonometry of the

triangles HBJ and HJE.

αright = arccos
|rl|
|b|

= arccos
|rl|

lengthupperarm
(A.50)
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βleft = arcsin
|rl|
|b|

= arcsin
|rl|

lengthupperarm
(A.51)

βright = arcsin
|ru|
|j|

= arcsin
|ru|

lengthforearm
(A.52)

Finally the angle parts can be added up.

α = αleft + αright (A.53)

β = βleft + βright (A.54)

The above equations can be combined to generate a single equation for both of the

angles α and β, which results in the following equations for the inverse kinematics:

α =

 arccos |rl|
lengthupperarm

+ arcsin ry
|r| for rx < 0

arccos |rl|
lengthupperarm

+ π − arcsin ry
|r| for rx ≥ 0

(A.55)

β = arcsin
|rl|

lengthupperarm
+ arcsin

|ru|
lengthforearm

(A.56)

Motor speed calculation

With the given positions xcurrent and xfuture and the equations A.55 and A.56 the

current angles αcurrent, βcurrent and the desired future angles αfuture, βfuture can be

obtained. Finally, the desired angle changes ∆α and ∆β are determined by calculating

the difference of future and current angle and the motor speed commands are obtained

by applying speed scaling parameters to the angle differences:

∆α = αfuture − αcurrent (A.57)
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The motor speed values speedα and speedβ are a result of a multiplication of the

desired angle changes with the speed scaling parameters dgen, dshoulder and dellbow.

speedα = dgendshoulder∆α (A.58)

speedβ = dgendelbow∆β (A.59)

The general speed factor dgen is utilised to correct the speed of the robot arm to an

appropriate level, as the resulting speed values speedα and speedβ that will be sent to

the robot arm have to be within the range of −100 and 100. However, an adaptation

of dellbow and dshoulder can be necessary to correct gear ratios of the particular joints

or slower running worn motors.

A.2. Parameters of the simulations

The model possesses plenty of parameters, some influence the reaching processes in an

obvious way such as the speed scaling parameters that make the arm faster or slower,

but many parameters have a more subtle influence on the movement characteristics

or the model’s behaviour. Their qualitative and quantitative influence have been

discussed already in the chapters 2.3 and A.1. This chapter gives a review on how

the values of the parameters were determined and lists all parameter values of the

different simulations.

Typically two tables of parameters are documented: First the parameters for the

DNFs of the model and second further parameters of the model. Where applicable a

third table with preactivation, priming or conditional parameters will be shown.

Within the simulation software environment most of the parameters can be saved

(and loaded) in a XML-File. The default XML-File always should to be loaded after
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the start-up of the program.

The requirements for the camera parameters were independent from the experiment

type and are listed in section A.2.2. Subsequently, the parameter values for the model

in the different experiments can be found in the appropriate sections.

A.2.1. Choice of parameters

As mentioned above many parameter values had to be chosen appropriately to ensure

the human-like behaviour of the model in the experiments. Especially the dynamic

neural fields possess plenty of parameters to control their excitations, inhibition,

randomness, etc. These parameters directly control the qualitative behaviour of the

dynamic neural fields such as the size and number of allowed activations, the time

it requires to decide for a target colour and many others. Besides the neural field

parameters there is a range of further parameters.

Many parameter values had to be chosen carefully to ensure the desired behaviour

while others allow a greater variance without significantly influencing the robot’s

behaviour. However, smaller changes (less than 5%) of the parameter values will not

alter the behaviour of the robot significantly. Generally, I tried to modify as few

parameter values as possible for the simulation of new experiments. For instance all

three experiments of chapter 3 and all goal-directed reaching experiments of 5 have

similar parameter values. Moreover, no automatised parameter optimisation or fitting

took place. Hence, the parameter values listed in the following sections can be seen as

example values that demonstrated the observed behaviour and are not necessarily the

best or the only set of parameter values for the experiments.
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A.2.2. Image processing

The parameter values for the image processing had to be adjusted before starting

the simulations. This is necessary as different conditions such as the change of lights

during the day, dawn or night require different parameter values. The following table

documents typical values that could vary slightly with different conditions.

Image processing parameters

map hue ∆hue sv ero

colblue 250 50 15 1

colred 5 15 40 1

colgreen 100 50 35 2

A.2.3. Single target experiment

In the first experiment of chapter 3.1 the robot performed movements to single targets

in the workspace. Two different simulations were performed with different encodings

of the velocity vector v (linear and non-linear).

DNF parameters

map τ β h ginh cexc σexc cinh σinh cq σq

B 25 12 -2 0.3 80 3 20 10 0.05 1

H 2 12 -0.5 0.2 20 3 0 1 0.05 1

Tcol 60 12 -0.1 7 10 0.1 10 1 0.05 1

T 30 1.5 -6 0.4 40 4 30 8 0.05 1

D 15 12 -1 1 30 5 20 10 0.05 1

V 20 12 -1 0.2 10 5 0 1 0.05 5
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Further model parameters

parameter description value

tht sigma-pi threshold of T 0.1

thh sigma-pi threshold of H 0.95

czero strength of zero activation in V map 10

σzero width of zero activation in V map 40

cVinp
kernel strength of Vinp 10

σVinp
kernel width of Vinp 40

m magnification factor 1.5

a vector scaling factor 0.1

dgen general speed factor 1.2

dshoulder shoulder speed factor 1

delbow elbow speed factor 1

Parameters of the experimental conditions

parameter description value

linear encoding scheme

m magnification factor 1

dgen general speed factor 5

non-linear encoding scheme

m magnification factor 1.5

dgen general speed factor 1.2

A.2.4. Odd-colour experiment

This experiment from chapter 3.2 aimed for a simulation of the curved trajectories

which were observed by Song and Nakayama (2009). The DNF and model parameter
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values were identical to the single target experiment (with non-linear encoding scheme)

and only the preactivation parameters were changed.

Parameters of the colour priming conditions

map position strength

straight trajectory

precol 1 (green) 10

precol 2 (red) 20

curved trajectory

precol 1 (green) 20

precol 2 (red) 26

The next table contains the parameters for the spatial priming. The first three rows

describe the baseline parameter with no priming, the last rows the parameter for the

curved trajectory condition. Displayed are the midpoints (neuron coordinates) of

gaussian activations with their strength and σ.

Parameters of the spatial priming conditions

map position strength σ

straight trajectory

preloc left (23, 22) 0 2

preloc center (40, 15) 0 2

preloc right (58, 22) 0 2

curved trajectory

preloc left (23, 22) 4 2

preloc center (40, 15) 0 2

preloc right (58, 22) 0 2
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A.2.5. Odd-colour “continuous” vs. “threshold” experiment

In the experiment of chapter 3.3 of the influence of the threshold parameter thT was

explored. The DNF parameter values were identical to the single target experiment

(see chapter A.2.3). In the baseline the parameter remained at the default value of

thT = 0.1, while in the other conditions thT = 0.6 was applied. Additionally, the

following colour priming was applied to generate curved trajectories.

Parameters

map position strength

precol 1 (green) 20

precol 2 (red) 5

A.2.6. Odd-colour IF experiment

DNF parameters

map τ β h ginh cexc σexc cinh σinh cq σq

B 25 12 -2 0.3 80 3 20 10 0.05 1

H 2 12 -0.5 0.2 20 3 0 1 0.05 1

Tcol 225 6 -1 1 10 0.1 4 1 0.05 1

T 33 1.5 -0.1 0.15 160 2 385 4 0.05 1

D 40 12 -1 0.8 120 3 50 6 0.05 1

V 15 2 -1 0.4 20 5 0 1 0.05 5
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Further model parameters

parameter description value

IF size grouping (depended on condition) *

standard experiment 0

with distractor grouping mechanism 4.7

tht sigma-pi threshold of T 0.1

thh sigma-pi threshold of H 0.95

czero strength of zero activation in V map 5

σzero width of zero activation in V map 40

cVinp
kernel strength of Vinp 15

σVinp
kernel width of Vinp 40

m magnification factor 1.5

a vector scaling factor 0.1

dgen general speed factor 3

dshoulder shoulder speed factor 1

delbow elbow speed factor 0.9
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A.2.7. Spatial averaging experiments

DNF parameters

map τ β h ginh cexc σexc cinh σinh cq σq

B 25 12 -2 0.3 80 3 20 10 0.05 1

H 2 12 -0.5 0.2 20 3 0 1 0.05 1

T 120 1.5 -2 0.15 20 4 0 8 0.05 1

D 15 12 -1 0.4 30 3 0 3 0.05 1

V 15 2 -1 0.4 20 5 0 1 0.05 5

Further model parameters

parameter description value

deadtime processing delay of T map 50

tht sigma-pi threshold of T 0.5

thh sigma-pi threshold of H 0.95

czero strength of zero activation in V map 4

σzero width of zero activation in V map 40

cVinp
kernel strength of Vinp 15

σVinp
kernel width of Vinp 20

m magnification factor 1.5

dgen general speed factor 1.2

dshoulder shoulder speed factor 1

delbow elbow speed factor 0.9
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Parameters of the priming conditions

map position strength σ

P1 (left) left (27, 17) 1 4

P2 (left) left (27, 17) 2 4

P1 (right) right (53, 17) 1 4

P2 (right) right (53, 17) 2 4

A.2.8. Simon effect experiment

DNF parameters

map τ β h ginh cexc σexc cinh σinh cq σq

B 25 12 -2 0.3 80 3 20 10 0.05 1

H 2 12 -0.5 0.2 20 3 0 1 0.05 1

T 80 1.5 -3 0.3 15 4 30 8 0.05 1

Tcol 60 12 -0.1 7 10 0.1 10 1 0.05 1

D 15 12 -1 0.4 30 3 0 3 0.05 1

V 24 2 -1 0.4 20 5 0 1 0.05 5
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Further model parameters

parameter description value

thT sigma-pi threshold of T condition low 0.2

thT sigma-pi threshold of T condition high 0.95

thH sigma-pi threshold of H 0.95

czero strength of zero activation in V map 4

σzero width of zero activation in V map 40

cVinp
kernel strength of Vinp 15

σVinp
kernel width of Vinp 20

dgen general speed factor 3

dshoulder shoulder speed factor 1

delbow elbow speed factor 0.75

A.2.9. Goal-directed reaching experiments

DNF parameters

map τ β h ginh cexc σexc cinh σinh cq σq

B 25 12 -2 0.3 80 3 20 10 0.05 1

H 2 12 -0.5 0.2 20 3 0 1 0.05 1

T 30 1.5 -6 0.4 45 4 30 8 0.05 1

D 15 12 -1 0.4 30 3 0 3 0.05 1

V 24 2 -1 0.4 20 5 0 1 0.05 5
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Further model parameters

parameter description value

dead −

time

dead time after T map 150

thT sigma-pi threshold of T 0.5

thH sigma-pi threshold of H 0.95

wst weight of Zst 5

cst strength of zero activation in V map 10

σst width of zero activation in V map 40

wacc weight of Zacc 0.11

cacc strength of zero activation in V map 1

σacc width of zero activation in V map 18

wonset weight of Zonset 1

thact noise filter threshold in Onset 0.5

∆t update speed in Onset 0.2

cVinp
kernel strength of Vinp 20

σVinp
kernel width of Vinp 20

dgen general speed factor 3

dshoulder shoulder speed factor 1

delbow elbow speed factor 0.75

Parameter of the conditions in the time-matching task

condition value

low wst = 5

mid wst = 7

high wst = 10
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