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ABSTRACT 

 

Until recently, CD4+ T Helper (TH) cells were thought to be permanently committed to a 

single lineage (e.g. TH1, TH17, TH2 etc.).  However there is now increasing evidence that TH 

cells are plastic in nature and can gain phenotypic features of other TH subsets.  Within this 

study I have investigated the overlap and plasticity of TH1 cells and their presence in health 

and in the inflammatory setting of multiple sclerosis.  

It has been recently shown that TH17 cells stimulated in an IL-12 rich environment can 

become CCR6+IFNγ+IL-17+ cells1. The expression of the TH1 and TH17 transcription factors, T-

bet and RORC respectively, was initially investigated in different cytokine secreting subsets 

using multicolour flow cytometry. IFNγ+IL-17+ cells expressed both T-bet and RORC at a 

protein level.   

Although CCR6 is considered a TH17 marker there are other TH cell subsets that express 

CCR62.  Using peripheral blood T cells isolated from healthy volunteer donors a novel subset 

of TH1 cells has been identified that express functional CCR6.  Using multicolour flow 

cytometry it was shown that CCR6+TH1 cells did not secrete any other TH17 related cytokines 

(i.e. IL-22, IL-17F and IL-21) but expressed the TH1 associated chemokine receptor CXCR3.  

These cells share phenotypic features of a TH1 cell but transcriptionally express ‘TH17’-

related genes.  Optimisation of a cytokine capture technique allowed the isolation of viable 

CCR6+IFNγ+, CCR6+IL-17+ and CCR6+IFNγ+IL-17+ cells as well as CCR6-IFNγ+ cells.  Comparisons 

were made between the different subsets at a transcriptional level using qRT-PCR.  CCR6+TH1 



 

 

cells expressed ‘TH17’-related genes (e.g. RORC, IL-23R and IL4I1) similar to IL-17A secreting 

cells but also expressed T-bet and IL-12Rβ2 and no IL-1R1, similar to CCR6-TH1 cells.  At a 

protein and transcriptional level CCR6+TH1 cells were distinct from CCR6+IFNγ+IL-17+ cells.  In 

addition, using a microarray screening method, candidate miRNAs that may play a role in 

controlling phenotypic features of these cells have been identified.   

TH17 cells have been implicated in the pathogenesis of multiple sclerosis and enter the 

cerebrospinal fluid through CCR6-dependent migration.  CCR6+IFNγ+ cells were increased 

within the cerebrospinal fluid of patients with multiple sclerosis compared to the peripheral 

blood.  Upon stimulation the CCR6+TH1 and CCR6-TH1 cells were a source of GM-CSF, a 

cytokine know to be important for the pathogenesis of the mouse model of MS, 

experimental autoimmune encephalomyelitis.  Further research is needed to confirm if 

CCR6+TH1 play a role in the pathogenesis of the disease.  
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CHAPTER 1 

INTRODUCTION 

1.1 The Immune System 

There are an extensive variety of pathogens that can infect the body and cause damage.  

They come in all shapes and sizes; tiny viruses (20-200nm), bacteria (~0.2-2µm), fungal 

infections (~100-1000 µm) and helminths such as tapeworms that can grow to a few meters 

in length.  These different pathogens not only vary in size but also how they enter the body 

and their ideal site of infection.  To protect the body from this diverse group of pathogens 

the immune system has evolved in to a complex multidimensional system.    

There is a fine line that the immune system must walk.  Protection against the pathogens to 

prevent infection is vital; however, this must be done without causing significant damage to 

the body.  This is never clearer than in autoimmune diseases.  Self-antigens are not tolerated 

by their own immune system and this can cause irrevocable and long lasting damage to the 

body.  To truly understand why and how autoimmunity occurs we must first understand the 

cellular and molecular foundation of an immune response.  Increasing our understanding of 

the immune system will help lead to effective treatments for not just autoimmunity but also 

other immune related diseases.    
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1.2 The Components of the Immune System 

The human immune system works on three levels.  The initial level is a physical defence 

against invading pathogens.  The skin and mucosal tissue, which is open to the external 

environment, forms a physical barrier to prevent entry of the large majority of pathogens.  

Secondly, if the pathogen gets past the first physical barrier, there is the innate immune 

system.  The first line of defence against infection made up of rapidly reacting cells.  These 

innate cells use the same mechanisms to protect the body irrelevant of the type of infection.  

The complement system makes up the molecular arm to the innate system and also has 

similar feature to the innate cells, in that it is rapid in reacting and is non-specific.  Thirdly, 

there are the adaptive immune systems; made up of specialized cells that react in a more 

directed manner, releasing molecules such as antibodies and cytokines in a more focussed 

way, and retaining memory of infection that can lead the fight against future re-infections.   

All immune cells originate from a common precursor in the bone marrow, the pluripotent 

hematopoietic stem cell.  These cells mature within the bone marrow and differentiate into 

either a common lymphoid progenitor3 or a common myeloid progenitor4.  It is at this stage 

the difference between the innate and adaptive immune cells starts to develop.  Common 

myeloid progenitors will differentiate to become one of several different innate cell types; a 

granulocyte, mast cell, monocyte or dendritic cell4.  Common lymphoid progenitor will 

become adaptive immune cells; T, B or natural killer (NK) cells3.   
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1.2.1 Innate Immunity 

The innate immune system consists of molecular elements, such as the complement system, 

and cellular components, such as macrophages and neutrophils.  As mentioned, innate 

immune cells are the first cells to recognise the infectious agent, they all express pattern-

recognition receptors (PRR).  At least 5 classes of PRRs have been identified including Toll-

like receptors (TLRs), C-type lectin receptors (CLRs) and cytosolic DNA receptors (CDRs).  The 

PRR recognise pathogen associated molecular patterns (PAMP) which are conserved 

molecular structures that are vital for the survival of the infectious agent but are not found 

in mammalian biology.  Examples of PAMP are;  

 lipopolysaccharides (LPS), a major component of Gram-negative bacterial cell wall, 

 lypoteichoic acid, a vital component of Gram-positive bacterial cell wall, 

 mannans, part of the fungal cell wall, 

 DNA motifs, 

  dsRNA, involved in some virus’s transcription.   

PAMP will activate PRR to initiate a cascade of signals within the cell and induce activation.  

There is heterogeneous expression of these receptors on the different innate cell types5. 

The innate granulocytes (neutrophils, eosinophils, basophils) express granules containing 

enzymes and inflammatory proteins.  Neutrophils are present in abundance in the human 

blood and are the first effector cells to appear at the site of an infection.  As well as being  

important antimicrobial effector cells they also secrete cytokines and chemokines to 

orchestrate the immune response6.  As they release lytic granules eosinophils and basophils 
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make up part of the immune response against multi-cellular parasites, although both cell 

types also play a role in allergic responses.  Mast cells are also associated with allergic 

responses, as upon activation these cells release granules containing chemicals such as 

histamine and heparin that effect vascular permeability.  Mast cells can become activated 

via the complement system or through crosslinking of IgE on their cell surface.  Mast cells 

are resident in most tissues surrounding blood vessels and nerves, as well as at mucosal 

surfaces such as the gut and lungs. 

Although NK cells are a type of cytotoxic lymphocytes and differentiate from a common 

lymphoid progenitor they are classically seen as an innate cell as they provide a rapid 

response to infections.  These cells provide surveillance against virally infected cells and 

tumour cells.  Their mechanisms of action are slightly different to other innate cells as 

instead of being activated by PAMP or binding to a major histocompatibility complex 

(MHC)/peptide complex, NK cells recognises ‘stressed’ body cells which have down 

regulated MHC.  NK cells secrete interferon gamma (IFNγ) and release lytic granules to direct 

the killing of ‘stressed’ targeted cells.  Alongside this method of activation NK cells also 

express activator and inhibitory receptors, such as NKG2D (activator) or killer-cell 

immunoglobulin-like receptors (KIRs - inhibitor).  CD161 (cluster of differentiation 161) is an 

inhibitory NK cell receptor (also known as killer cell lectin-like receptor, B1) which when 

activated by its ligand, lectin like transcript 1 (LLT1), inhibits NK cell cytotoxicity and IFNγ 

secretion7.  CD161 can also be expressed on a subset of lymphocytes8.   
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In addition to the release of immune-stimulating molecules, such as cytokines or lytic 

granules, phagocytosis is another important function of innate immune cells.  Phagocytosis 

involves the recognition and internalisation of a recognised pathogen or harmful substance.  

Upon internalisation of the pathogen the vesicle will fuse to a lysosome.  The digestive 

enzymes in the lysosome will break down the pathogen within the vesicle.  The process of 

recognition of pathogens for phagocytosis is aided in part by the complement system and 

antibodies, both of which assist in the process of opsonising the pathogen.  Neutrophils, 

macrophages and dendritic cells (DC) are all phagocytic cells. 

Macrophages and DC use phagocytosis as a way of obtaining peptide sequences from the 

pathogen to present to the adaptive immune system with the aim of activating it.  These 

innate cells are considered antigen presenting cells (APC) and alert adaptive immune cells to 

the presence of an infection.  Once an APC has encountered an invading organism it will 

mature.  A monocyte matures in to either an inflammatory DC9 or a macrophage, and a DC in 

to a mature DC.  DC will migrate through tissues and the blood stream until it encounters an 

antigen10.  Once mature the DC will migrate to draining lymphoid organs to present a 

peptide (antigen) in a MHC on their cell surface to an adaptive immune cell.  Macrophages in 

general will stay within the tissue to present antigens to T cells to re-activate them.  MHC 

molecules are specific to individuals, giving a mechanism that the body can identify non-self-

cells as well as a way to present antigens to the immune system11.  
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1.2.2 Adaptive Immunity 

Adaptive cells produce a specific, directed attack on infectious agents and are able to 

develop memory so that any re-infection will be recognised and dealt with efficiently.  

Although innate cells such as macrophages and neutrophils are efficient at removing 

microorganisms from the body, there are instances in which these cells just cannot provide 

the response needed to remove the infection.  In cases like this the adaptive immune cells 

will become involved and provide additional mechanisms to remove the threat.   

T and B cells make up the adaptive immune cells.  Unlike innate cells, which carrying several 

different receptors to recognise various pathogens, the adaptive cells emerge into the blood 

carrying only one receptor.  The cells express an antigen receptor with a single specificity.  

This receptor was produced through a process of rearrangement of a variety of different 

gene segments that code for different parts of the receptor.  This process has the potential 

to code for millions of different combinations of the same receptor, giving the adaptive cells 

the ability to recognise different pathogens and a large repertoire of antigens.  Only cells 

that meet an antigen that their receptor recognises with sufficient affinity will start to 

proliferate and gain an effector function.   

The B cells carry a similar receptor to T cells but once activated the (B cell receptor) BcR has 

a very different function.  Activation induces proliferation and differentiation of the B cell 

into plasma cells, which produce high quantities of the soluble form of the BcR, known as an 

antibody.  Also, unlike a T cell, a B cell can sample antigens that have not being processed or 

presented by an APC.  The antibodies made by B cells make up an important part of the 
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humoral immune response which will bind the antigen and act as a neutralising agent or will 

opsonise any pathogen in part with the innate complement system.   

There are different subsets of B cells aside from the plasma cell.  Memory B cells are 

activated cells that are long lived, and upon reencounter of the antigen are very quickly 

reactivated, similar to memory T cells.  There are different B cells depending on which part 

of the secondary lymphoid structure the cell resides; differentiated based on surface 

receptor expression.  CD21 and CD1 are used to detect marginal B cells, while 

Immunoglobulin M (IgM), IgD and CD23 denote follicular B cells.  B-1 cells express IgM to a 

greater extent than IgG and are found predominantly in the peritoneal and pleural cavities12.  

There are also B regulatory cells (BREGS) that are involved in immune regulation13 via 

mechanisms such as release of immunosuppressive cytokine like TGF-β and IL-1014.   

Within an immune response T cells have a broader function compared to B cells.  T cells can 

be grouped based on the surface expression of either CD8 or CD4, and in general are defined 

by the cytokines they secrete once they have been activated.  Cytokines are small, soluble, 

signalling molecules that can directly affect the function of the cells in the vicinity.   

  

1.3 T Cells 

1.3.1 Thymic T Cell Production 

T cells develop in the thymus, after migrating from the bone marrow as lymphoid 

progenitors.  Once a T cell has migrated to the thymus it undergoes a process of gene 
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segment rearrangement to produce an antigen specific T cell receptor (TcR).  The TcR 

consists of a linked hetro-dimer of αβ (~95% peripheral T cell) or γδ chains.  The hetro-dimer 

will complex with an invariant CD3 complex (made up of a γ, δ, two ε chains and two ζ 

chains).  The TcR’s specific conformation allows it to recognise a specific peptide sequence.  

Within the thymus the cells will undergo a process that will check the proficiency of the TcR 

construction, evaluating if the TcR will recognise self MHC molecules but not recognise self-

peptides (positive and negative selection respectively).  This process is not as binary as 

suggested and there is more of a sliding scale of affinities of the TcR for MHC molecules.  Any 

cells that do not recognise MHC enough or recognise self-peptide too strongly will be 

removed by apoptosis.  This is a tolerance mechanism which the body uses to protect 

against autoimmune disease15. 

Within the thymus thymocytes will express both CD4 and CD816.  However before leaving 

the thymus a T cell will down-regulate expression of one to become either single CD8+, or 

single CD4+ T cell.  After the T cell has undergone these processes it will exit the thymus a 

naïve T cell and circulate between the blood and the secondary lymphoid organs of the 

body.   

 

1.3.2 T Cell Activation and Memory  

A naïve T cell (CD45RA+CCR7+) circulates through the peripheral lymphoid tissues sampling 

antigens:MHC complexes on dendritic cells at the T cell zone17.  The T cell will continue to do 

this until it encounters an antigen that it recognises.  Dendritic cells are thought to initiate 
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most, if not all, of the T cell activation in vivo18,19.  The mature DC will increase MHC 

expression and display the pathogen derived peptides20 (Signal 1), along with co-stimulatory 

molecules (Signal 2)21–23.  The types of inflammatory cytokines (Signal 3) that are released by 

the mature DC depend on the type of pathogen that the DC has encountered.  It is vital for a 

T cell to receive all three signals to effectively differentiate(reviewed in 24).  There is a further 

signal the cells need to enter the site of infection, sometimes called signal 4.  Chemokine 

receptors can be markers of polarized T cell subsets and flexible programs of chemokine 

receptor gene expression can control tissue-specific migration of effector T cells25. Signal 4 is 

the interaction between the chemokines and their respective chemokine receptors on the 

surface of the T cell. Chemokines are secreted by the stromal cells and inflammatory cells at 

the site of an inflammatory reaction.  

CD3 associates with the TcR and CD4 or CD8 within a lipid raft on the surface of a T cell.  This 

association is important for initiation of the signalling cascade involving molecules such as 

mitogen activation protein kinase (MAPK) and phospholipase Cγ (PLCγ).  The activation of 

these signalling molecules induce intracellular Ca2+ release, activation of the protein kinase C 

(PKC) pathway, activation of transcription factors such as AP-1, NFAT, and NFκB.  The 

downstream effects of all of this is changes in gene expression26.   

For effective activation of the T cells co-stimulatory molecules need to associate with their 

respective receptors on APC.  CD2822, ICOS (Inducible co-stimulator)23, LFA-1 (lymphocyte 

function-associated molecule-1) and VLA-4 (very late antigen-4) are all co-stimulatory 

molecules expressed on T cells.  Respective receptors to these co-stimulatory molecules are 
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unregulated on APC due to signalling from PRR.  This is a mechanism to prevent unnecessary 

activation of T cells where there is no ‘danger’ signals.  If the secondary signals are not 

provided alongside TcR activation the cell either undergoes apoptosis or becomes unable to 

respond to subsequent activating signals (anergic)27.  Upon activation cell surface marker 

such as CD69, CD71 and CD40L are up-regulated on the T cell, which are often used as a 

marker for recently activated cells. 

A CD8+ T cell can identify antigen presented on a MHC class I molecule.   MHC I is expressed 

on all nucleated cells of the body.  If an infection occurs antigens are presented on the 

surface of an APC in a MHC:peptide complex and co-stimulator molecules will be up 

regulated.  CD8+ T cells recognize cytosolic proteins from intracellular infections such as 

viruses or tumour antigens.  Being able to identify infected cell allows the CD8+ T cells to 

effectively kill them though apoptosis, CD4+ T cell are unable to directly kill infected cells. 

CD4+ T cells recognize MHC class II molecules and the antigen presented in them.  The 

expression of MHC II is restricted to APC, such as dendritic cells, macrophages and B cells 

which can present both internally and externally sourced antigen.  CD4+ T cells can respond 

to a wide range of pathogens and secrete cytokine to modulate the immune system to guide 

a more specific immune response.   

Once a T cell has been sufficiently activated it will burst in to action by proliferating and 

acquiring a number of effector functions, such as expression of cytokines or cytotoxic ability.  

The cell will switch expression of the lymphocyte common antigen CD45, from the long 

glycosylated isoform CD45RA to the shorter isoform, CD45RO.  CD45 contains an 
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intracellular protein tyrosine phosphatase domain that under rest conditions 

dephosphorylated P56lck , upon TcR engagement CD45 disassociates with P56lck and this 

means it can be phosphorylated and aids effective TcR signalling28.  The shortening of the 

isoform to CD45RO may allow for easier binding the TcR:MHC complex29. 

The combined intracellular signalling cascades that are induced from the TcR engagement, 

co-stimulatory molecules and cytokines are diverse, but all lead to effects on transcriptional 

regulation.  Signal transducer and activator of transcription (STAT) proteins bridge the gap 

between the cytokine receptors at the cell surface and the nucleus. STAT proteins are 

phosphorylated and activated by stimulated cytokine receptors30 at which point they 

translocate to the nucleus.  Once in the nucleus, STAT proteins alongside other transcription 

factors orchestrate the differentiation of T cells24.  Transcription factors are proteins that 

bind to specific genes and alter DNA transcription.  Through suppression and transcription of 

lineage specific genes a phenotype is carved out for the cell.   

Once activated, as well as shortening CD45, the naïve T cell may lose CCR7 expression.  This 

chemokine receptor allows T cells to enter high endothelial vessels and migrate into 

secondary lymphoid tissue.  Thus the expression of CCR7 on memory T cells can be used to 

further divide the CD45R0+ cells based on their broad function as a memory cell.  Central 

memory T cells (TCM) are CD45RO+ and express CCR7.  TCM cells do not produce much 

effector cytokines, such as IFNγ and Interleukin 4 (IL-4), but produces a lot of IL-2.  Only once 

the TCM cell has experienced antigen again will it start to proliferate and produce effector 

cytokines.  Although TCM cells do not initially produce effector cytokines, they have been 
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shown to be primed to differentiate into specific TH subsets.  CD45RO+CCR7- effector 

Memory (TEM) T cells have the capacity to express large quantities of effector cytokines.  

These two subsets of cells form our antigenic memory and are vital to provide the quick 

response to a second infection31.  CD8+ T cells can further re-express CD45RA to become 

revertant memory T cells (TEMRA) but are still CCR7-.  Under resting conditions CD8 TEMRA 

proliferate at a slow rate in response to γ–chain cytokines (e.g.  IL-2, IL-7, IL-15 etc.) and 

maintains CD8+ T cell memory 32.    

 

1.3.3 T Cell Migration to the Site of Infection 

There are many other chemokine receptors, along with CCR7, expressed on T cells that are 

critical mediators of cell migration in immune surveillance and inflammation.  Chemokines 

are able to bind to several different receptors and as most chemokine receptors are able to 

bind to multiple chemokines.  Chemokine receptor signalling results in cell chemotaxis.  

All chemokine receptors are 7-transmembrane proteins coupled to G-protein signalling 

molecule33,34.  They are classified into 4 groups based on the positioning of highly conserved 

cysteine of the amino acid sequence (CXC, CX3C, CC, and C).   Binding of the chemokine leads 

to activation of a cascade of signalling proteins, including G protein coupled receptor kinases 

(GRKs), phospholipase C-β (PLC-β) and phosphatidylinositol 4,5-bisphosphate (PIP2) leading 

to mobilization of calcium and activation of various protein kinase C (PKC).  These signals will 

ultimately lead to actin polarisation, shape changes, and directed cell movement.  Once the 

chemokine receptor has become appropriately activated it will become partially or totally 

http://en.wikipedia.org/wiki/Transmembrane
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desensitised to repetitive stimulation by chemokines.  In some cases the receptors will 

internalise, a vital mechanism to maintain the ability to detect a chemokine gradient 35. 

Within CD4+ T cells there is differential expression of chemokine receptors on different T 

helper subsets.  For example TH1 cells preferentially express CXCR3 and CCR5, TH2 cells 

express CCR425,36 and TH17 cells express CCR637.  Chemokine receptor expression on T helper 

subsets will be covered in more detail later when each T helper subset is individually 

discussed.   

 

1.4 CD8+ T Cells 

CD8+ T cells have cytotoxic components that allow them to efficiently destroy infected cells.  

Recognition of an antigen presented in the MHC will lead to activation, proliferation and 

differentiation of the CD8+ T cell and the production and release of lytic granules.  These 

granules contain perforin and granzyme38; enzymes that will induce controlled cell death 

(apoptosis) in the infected cell.  Also Fas ligand on the CD8+ T cell binds to Fas on the target 

cell to initiate intra-cellular caspase signalling pathways to kill the cell39.  CD8+ T cells also 

release IFNγ, TNF-α and TGF-β which contribute to the defence in several ways.  IFNγ can 

initiate anti-viral responses in infected cells and activate macrophages.  TNF-α and TGF-β 

also aid in the killing of infected cells via their receptors and in the activation of 

macrophages.    

Interestingly, there is also a small but detectible population of CD8+ T cells that secrete the 

inflammatory protein IL-17 (Tc17).  These cells express, alongside IL-17, fewer lytic granules 



Introduction 

14 

 

than their IFNγ secreting counterparts40.  There are also dual, IL-17/IFNγ secreting CD8+ T 

cells suggesting a level of plasticity comparable to the CD4+ counterparts.  STAT-3 and other 

TH17 polarising cytokines (IL-6, IL-23, IL-1β40) are important to the induction of Tc17 cells41.  

Tc17 cells have been shown in vivo to be important part of the immunity in influenza 

challenged mice42 and are found in the murine model of multiple sclerosis, experimental 

autoimmune encephalomyelitis (EAE)40. 

 

1.5 CD4+ T Helper Cell Subsets 

Once the T cell migrates into the site of infection it will be the APC that re-activates the T 

cell.  The cytokines secreted by the APC will drive any changes in T cell differentiation.   

Innate cells produce cytokine tailored to deal with the different infection.  The initial innate 

response leads to the differentiation of a T helper cell which will complement the innate 

response.  For example, in response to intracellular bacteria, such as mycobacteria, this will 

induce IFNγ expression in NK cells and IL-12 expression in macrophages.  These cytokines 

specifically induce a T Helper 1 Cell (TH1) phenotype in an activated T cell.  The production of 

IFNγ by the TH1 cell will further activate and optimise the response of macrophages to 

destroy the bacterial insult.  More details of the induction, differentiation and maintenance 

of the different T helper subsets are given below (Figure 1.1).    
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1.5.1 T Helper 1 Cell  

It was initially thought that there were two differentiation inflammatory paths a CD4+ T cell 

could take in response to a pathogenic insult.  In 1986 Mossman and Coffman described 

these as TH1 and TH2 CD4+ T cells43.  These cells were identified based on the cytokines they 

produced.  A TH1 cell expresses IFNγ while a TH2 cell secretes IL-4.   

As mentioned above, TH1 cells develop in response to intracellular pathogens such as 

Mycobacterium tuberculosis and Mycobacterium leprae.  In healthy humans when ex-vivo 

PBMC are stimulated with PMA and ionomycin approximately 30% of the memory CD4+ T 

cells secrete IFNγ.  TH1 cells are heavily involved in mounting cellular immunity through the 

release of IFNγ and are crucial for activation of macrophages44 and optimising the CD8+ 

cytotoxic attack.  IFNγ is a type II interferon cytokine originally discovered for its anti-viral 

activities45.  IFNγ exists as a homo-dimer and although is part of a larger family of interferon 

cytokine has little homology with the Type I interferons, IFN-β or the other various IFN-α 

cytokines.  TH1 cells selectively migrate towards the ligands CXCL9, 10 and 11 due to their 

expression of the chemokine receptor CXCR336.   

TH1 cells are induced in an IFNγ and IL-12 rich environment, in both humans46 and mice.  The 

binding of IFNγ to its receptor (IFNγR), along with TcR stimulation, will lead to 

phosphorylation of Jak proteins associated with the IFNGR, resulting in activation of STAT-1.  

STAT-1 in turn will induce the expression of the TH1 lineage defining T-box transcription 

factor, T-bet.  T-bet was discovered by Laurie Glimcher et al.  by using yeast one-hybrid 

screening, a method of assessing protein-DNA interactions in a simplified model47.  STAT-1-/- 
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and T-bet-/- mice cannot respond to IFNγ and die due to excessive mycobacterial and viral 

infections, highlighting the dependency of TH1 cells on T-bet and STAT-1 signalling48–51.  

Interestingly CD8+ T cells do not rely on T-bet for their IFNγ production, though NK cells do52.   

T-bet directly induces Ifng gene expression and IFNγ secretion in CD4+ T cells, which acts as a 

feedback mechanism for the TH1 phenotype and is the main functional cytokine produced by 

TH1 cells.  T-bet can induce H2.0-like homeobox protein, a transcription factor from the Hlx 

gene which will also stabilise the TH1 phenotype53.   

 IL-12 is well documented to enhance TH1 development.  IFNγ activation of T-bet up-

regulates IL-12Rβ2 expression54 which is not expressed on naïve CD4+ T cells55,56.  Binding of 

IL-12 to its receptor activates STAT-4 which reinforces T-bet expression and therefore the 

TH1  phenotype.  

TH1 cells have long been associated with autoimmunity, though the discovery of TH17 cells 

(covered in Section 1.5.3) has led to the idea that they may not be as important as initially 

thought57.   

 

1.5.2 T Helper 2 Cell (TH2)  

TH2 cells provide humoral immunity against protozoa infections such as Leishmania major58 

and intestinal nematodes.  Cytokines released by TH2 cells favour the production and 

activation of mast cells and eosinophils.  The cytokines also stimulate B cell growth, 
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differentiation, and isotype switching to IgE and IgG59.  TH2 cells express CCR3 and CCR4, 

giving them the ability to migrate towards chemokines including RANTES (CCL5) and CCL11. 

GATA-3 is the transcription factor that is necessary for a TH2 phenotype.  Discovered in 1997, 

GATA-3 was shown to be expressed in naïve T cells, with decreased expression in TH1 

committed cells and transgenic expression of GATA-3 induces a TH2 cytokine profile.  Flavell 

et al.  showed that GATA-3 controlled IL-4 expression by using an IL-4 promoter luciferase 

reporter gene60 and later others showed GATA-3 directly activates IL-5 and IL-13 promoter 

regions as well61. 

There are two pathways able to induce a TH2 phenotype.  Firstly IL-4 is a cytokine that can 

activate STAT-6 which leads to GATA-3 activation62.  The second induction pathway for TH2 

lineage commitment is via an IL-4 independent pathway.  This can occur in the absence of 

STAT-6, through the Notch signalling system and can induce GATA-3, although at a reduced 

level63.  IL-2  signalling via STAT-5 is an important factor in TH2 induction by allowing the IL-4 

gene to be more stably expressed64.  Ikaros is another transcription factor which although 

has other roles in lymphocyte development acts to promote TH2 lineage and repress TH1 

factors such as T-bet65.   

Germ line deletion of GATA-3 results in embryonic lethality, demonstrating GATA-3 non-

redundant role in foetal development.  The only viable way to remove GATA-3 transcription 

is to selectively knock-out the gene in the cell of interest.  T cell-specific GATA-3-/- mice, 

produced by inserting a Cre-loxP system between exon 4 and 5 of GATA-3 gene of the mouse 

and crossing it with a Cre-CD4 transgenic mouse, cannot polarise to a TH2 phenotype and 
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even in TH2 polarising conditions produce IFNγ.  IL-5 and IL-13 production is abolished in the 

GATA-3-/-, however IL-4 is not66.  This might suggest that the default phenotype of a CD4+ T 

cells is that of a TH1 cell.   

Upon publishing their discovery Coffman and Mossman expressed the opinion that there 

were probably other phenotypes of a CD4+ T cell that were undiscovered43.  We now know 

that there are several other subsets based on cytokine production and transcription factor 

expression.  The TH17 cell is defined by secreting IL-17A and expressing the transcription 

factor RORC in humans.   Several other lineage such as TH22, T follicular helper cells, TH9 and 

regulatory cells (TREG) also exist and further research is on-going to understanding these 

cells.   

 

1.5.3 T Helper 17 Cell (TH17) 

Since the discovery of TH17 cells there has been a scramble to understand these cells 

because of their presence and potential role in many autoimmune diseases.  TH17 cells were 

discovered, not by looking for IL-17 expressing TH cells, but after researching a murine model 

of the autoimmune disease multiple sclerosis (MS); experimental autoimmune 

encephalomyelitis (EAE). The model was thought to be controlled by an IFNγ dominated TH1 

response, induced by IL-12.  Contrary to this initial hypothesis mice that lacked IFNγ were 

not only still susceptible to EAE, but their morbidity was significantly poorer and more mice 

died67. 
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IL-12 is a heterodimer protein composed of a p35 and a p40 subunit.  IL-12 was found to 

have a common p40 subunit with the cytokine IL-23 (Figure 1.2) 68,69, a cytokine shown to 

play a role in IL-17 production by T cells.  A comparison of EAE induction in mice genetically 

engineered to not express p35 or p40 identified that IL-12 was redundant in the induction of 

EAE as p35-/- mice were still susceptible to EAE70.  Mice with a p40-/- were resistant to the 

induction of EAE  identifying IL-23 as the critical factor 57,71.  After initial experiments it was 

thought IL-23 was an inducer of IL-17 expression, due to the association of IL-23 and TH17 

cells in EAE.  Contrary to this the IL-23R is not expressed on naïve T cells.  This demonstrates 

that although IL-23 plays a role in TH17 cells maintenance it is not involved in the initial 

induction of the TH17 cell phenotype72,73. 

 

1.5.3.1 IL-17 Cytokine 

IL-17 was first cloned in 1993 and it was discovered to have 6 different isoforms (IL-17A-F)74.  

The two isoforms produced by CD4+ T cells are IL-17A and IL-17F as well as a heterodimer of 

the two (IL-17A-IL-17F)75.  TH17 cells always express IL-17A and co-secrete IL-17F in about 

20% of the cells. 
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Figure 1.1: CD4+ T Helper Cell Differentiation and Plasticity. APC present 

antigen and activate naïve CD4+ T cells which leads to their differentiation 

down one of several different TH phenotypes. It is the cytokine within the 

immediate environment that is the driving force behind which phenotype 

the T cell acquires. The TH phenotype is defined by the cytokines expressed 

by the cells (key cytokine highlighted within the cell) and the lineage 

defining transcription factor. Until recently these were thought to be a 

stable phenotype.  However, there has been evidence of TH cells expressing 

two different lineage defining cytokine, and the associated transcription 

factors.  Significant work has been done to understand if these changes in 

phenotype are transient or permanent. IFNγ+TH1 cells have been found to 

express RORC, the TH17 transcription factor.  It is unknown if these cells are 

ex-TH17 cells or TH1 cells gaining TH17 functions. Dotted arrows show the 

direction in which plasticity is through to occur.   
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IL-17A and IL-17F and their heterodimer bind on T cells through a heteromeric receptor 

complex of IL-17RA and IL-17RC.  These trans-membrane protein receptors are expressed by 

a variety of human cells including epithelial cells, fibroblasts.  IL-17RA can be bound by IL-

17A and IL-17F, but with 10-fold more affinity for IL-17A.  Although these two isoforms of IL-

17 bind to the same receptor they have different biological effects76.  Only IL-17A-/- mice are 

susceptible to C.albicans infections even though the mice have normal levels of IL-17F 77.  

Only IL-17A is capable of inducing cytokine production by macrophages while both IL-17A 

and IL-17F can both activate epithelial innate immune responses78.  This suggests that 

although similar, IL-17A has a non-redundant role in immunity that IL-17F cannot replicate.    

IL-17A acts on fibroblasts, endothelial cells, macrophages, epithelial cells and astrocytes.  

This cytokine induces anti-microbial peptides and neutrophil activating peptides79.  IL-17A is 

also produced by a variety of innate cells such as NKT cells, macrophages and lymphoid 

tissue-inducer cell (LTi).   
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Figure 1.2: IL-23R and IL-12R structure and signalling. IL-23 is a 

heterodimer cytokine composed of p40 and p19 subunits. The p40 

subunit is also shared with IL-12 and is paired with p35. The two 

receptors have a common IL-12Rβ1 subunit. The IL-12Rβ1 is paired 

with IL-12Rβ2 to make a functional IL-12R. The activated Jak2 

phosphorylates STAT-4 allowing it to translocate to the nucleus 

where it aids in the transcription of genes associated with TH1 

phenotype. When IL-23 binds to its receptor, the Jak2 phosphorylates 

STAT-3 which translocate to the nucleus where it aids in the 

transcription of genes associated with TH17 phenotype.    
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Although IL-17 has been labelled a ‘pathogenic’ cytokine due to its presence in many 

autoimmune diseases it plays a vital role in protecting the body against fungal and bacterial 

infections.  Its actions are mainly through the recruitment and activation of neutrophils.  The 

production of IL-17 by CD4+ T cells in response to an infectious agent was first discovered in 

response to Borrelia burgdorferi, identifying IL-6 as a possible factor for the induction of this 

effector cytokine80.  The need for IL-17 dependent induction of chemokines in the lung, 

responsible for neutrophil recruitment, was demonstrated using a murine model of 

Klebsiella pneumoniae lung infection.  Human IL-17 also induces the expression of GM-CSF in 

cells such as fibroblasts, which promotes neutrophil maturation from CD34+ hematopoietic 

progenitor in the bone marrow81.  Adequate numbers of neutrophils are required for 

protection against fungal infections82.  This is why TH17 and the cytokine IL-17A play an 

important role , through neutrophil recruitment, in the removal of fungal infections, such as 

Candida albicans, from the body83.   

The lineage defining transcription factor for TH17 cells is the steroid orphan nuclear receptor, 

RAR-related orphan receptor C (RORC)84.  A slice variant of RORC, RORγt, is expressed in 

mice.  RORC has been shown to directly bind to an il17 gene promoter and also control the 

expression of CD161 85, IL-23R and IL-1R, although it is not known if this is through direct 

effects on the genes.  RORα is another variation of the orphan nuclear receptor and has 

been shown to be expressed in TH17 cells.  RORα can enhance IL-17 production but has been 

shown not to be necessary for TH17 induction86.  Aryl hydrocarbon receptor (Ahr) is a 

transcription factor associated with IL-22 production in TH17 cells87.   
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The TH17 transcription factor RORγt is also expressed in immature CD4+/CD8+ T cells in the 

thymus and promotes thymocyte survival88.  Lymphoid tissue inducer (LTi) cells are involved 

in the formation of secondary lymphoid organs and during lymph node and Peyes patch 

development it is vital for LTi cells to express RORγt 89.   

 

1.5.3.2 Induction of TH17 Cell Phenotype 

A substantial amount of work has been done to identify the factors that induce TH17 cells.  

Very early on it was noted that the TH1 programme, and IFNγ, acted as a potent inhibitor of 

the TH17 differentiation programme, instead of it being a shared developmental pathway90.  

At this point it is important to distinguish the difference in mice and human TH17 cells 

differentiation.  Although this study considers human TH17 differentiation, a lot of the work 

done in this area is in murine models of disease and TH differentiation so it is important to 

understand the workings of both systems.   

Murine naïve cells require a combination of inflammatory cytokines to induce a TH17 

phenotype.  Transforming growth factor (TGF)-β is key for the induction of TH17 in mice 

along with IL-691,92.  IL-6 up-regulates IL-23R and IL-21 production.  IL-21 is involved in a 

feedback loop which also itself up-regulates IL-23R93.  This responsiveness is dependent on 

RORγt expression.  The sensitivity of these cells to IL-23 is important for the survival and 

maintenance of a TH17 phenotype73.   IL-1 and TNF-α are also important co-factors for the 

induction of a TH17 phenotype94.   
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In mice it has been suggested that the cytokines required for effective TH17 differentiation is 

dependent on the anatomical location that the T cells are activated in.  IL-1β was shown to 

be vital at all sites of the body, whereas IL-6 was needed for skin and mucosal TH17 priming 

but not needed in the spleen95.  Whether this finding of difference in induction at different 

anatomical locations translates to the human system is unknown. 

TGF-β plays a role not just in the induction of TH17 cells in mice but also TREG.  In the 

presence of pro-inflammatory cytokines, such as IL-6 and IL-21, TGF-β at low concentrations 

induces RORC and TH17 phenotype92.  At high concentrations TGF-β has an antagonistic 

relationship and favours the induction of FoxP3 and a regulatory phenotype96.  TGF-β in mice 

does not directly promote TH17 phenotype or RORγt.  TGF-β in this setting suppresses STAT-

4 and GATA-3, preventing competition from the TH1 and TH2 lineage.  In STAT-6-/-, T-bet-/- 

mice only required IL-6 to differentiate naïve CD4+ T cells to express IL-17 and RORγt97.    

Human TH17 cell differentiation appears to be more elusive, especially when compared to 

the relatively easy differentiation of murine naïve cells to a TH17 phenotype.  IL-6, which 

signals through STAT-3, and IL-1β are strong inducers of IL-17 expression in naive T cells and 

are important for the initial expression of RORC in human T cells98.  TGF-β and IL-21 were 

suggested to convert peripheral naïve cells into TH17 cells.  The effects of TGF-β on naïve T 

cells in culture were hotly debated as conflicting papers were published98,99.  It was decided 

that the effect of TGF-β is a balancing act between the inductions of TREG or TH17 phenotype.  

Low concentrations of TGF-β and other inflammatory cytokines can induce TH17 cells.  

Conversely, high levels of TGF-β will induce FoxP3 and a suppressive phenotype99, similar to 
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mice.  Large doses of IL-2 can suppress the induction of IL-17 in naive T cells98.  IL-23 

maintains the human memory TH17 phenotype, signalling through STAT-3.  Hyper IgE 

syndrome, in which there is a genetic defect in STAT-3, results in the absence of TH17 cells 

and recurrent fungal infections100.  STAT-3 directly binds to the IL-17 promoter and can 

induce IL-23R expression.    

The level of TcR activation by either anti-CD3/anti-CD28 beads or antigen pulsed DC changes 

the number of IL-17 secreting cells in CD4+ T cells.  After culture with TH17 polarising 

cytokines low TcR activation of T cells favoured TH17 cell induction.  High TcR activation led 

to the induction of FoxP3 expression and β–latency-associated peptide (LAP) expression.  

Nuclear translocation of nuclear factor of activated T cells (NFATc1) is induced with both low 

and high TcR activation.  However, it will only bind to the IL-17 promoter with low TcR 

activation101.  Furthermore, in vivo activated monocytes from inflamed joints of RA 

patients102 or TLR activated DC98, but not monocyte derived DC were potent TH17 polarising 

cells.  Naïve cells expressing IL-1R are more susceptible to conversion to TH17 phenotype, 

due to their responsiveness to IL-1103.   

There have been some remarkable papers identifying cells that are more susceptible at 

acquiring a TH17 phenotype.  In umbilical cord blood and in the thymus a small percentage of 

naïve T cells, identified by the surface expression of CD161 (NKR-P1A), can convert to IL-17 

producing cells in response to IL-1β and IL-23.  The CD161+ population in peripheral blood 

was enriched for IL-17A, IL-23R, CCR6 and RORC gene expression compared to the CD161-
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CD4+ population.  Lenti-viral transduction of RORC in CD161-CD4+ cells from UCB induced 

CD161 expression as well as IL-23R, CCR6 and IL-17 expression8.   

Leading on from the idea that there are pre-committed TH17 cells, naturally occurring TH17 

(nTH17) cells have been discovered.  In mice nTH17 cells acquire effector function in the 

thymus before they have encountered peripheral antigen.  Their development is 

independent of STAT3 and IL-6, though still partially dependent on IL-23, and nTH17 still 

expresses the lineage defining transcription factor RORγt.  It is unclear whether these nTH17 

cells are as plastic as inducible TH17 cells and if nTH17 can convert to TREG phenotype like its 

peripheral counterpart.   

 

1.5.3.3 Molecular Signatures of TH17 cells 

In humans by definition an IL-17 secreting cell that expresses the transcription factor RORC is 

a TH17 cell.  However, due to the need to isolate viable cells and the emergence of plasticity 

in TH differentiation the expression of these two molecules may not be enough to identify 

TH17 cells.  A surface marker that can define a discrete population of TH17 cells or cells with 

TH17 phenotypes is necessary, although unfortunately not identified yet.   

As mentioned in the section above, IL-23 plays an important role in the maintenance of TH17 

cells.  RORC can induce the expression of IL-23R in a positive feed-back loop.  IL-23R is 

significantly up-regulated on TH17 cells.  Using an antibody to stain for IL-23R is rarely used in 

the literature and regularly people use an up-regulation of IL-23R at gene expression level as 

a sign of TH17 differentiation.    
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IL4I1 is the gene for a secreted phenylalanine oxidase that is expressed in TH17 cells but 

thought not to be expressed by TH1 cells.  This protein is associated with reduced expression 

of parts of the TcR CD3 chains.  This effectively leads to reduced activation of the IL-2 

promoter and reduced proliferation of TH17 cells compared to other TH subsets104.  IL4I1 

expression is identified through increased relative expression via qRT-PCR in the 

literature105.  This molecule can also be secreted by DC to affect T cells directly106.   

As outlined above there are cells found in the thymus and naïve cord blood that are CD161+ 

and are already RORC positive8.  In humans CD161+ cells are highly enriched with IL-17 

secreting cells, though not all IL-17+ cells express CD161.  Curiously, adding to the argument 

that human TH17 cells are different to murine TH17 cells, murine TH17 cells do not express 

the equivalent receptor (NK1.1) on IL-17 producing cells.  A member of the C-type lectin 

superfamily, whose ligand is LLT-1, CD161 is not exclusively expressed on CD4+ T cells.  NK 

cells express CD161, and binding of LLT-1 to this receptor leads to inhibition of NK cell 

mediated cytotoxicity.  Engagement of CD161 can inhibit TNF-α production by TCR activated 

CD8 T cells.  TC17 are CD8+ T cells that express IL-17 and are contained within the CD161++ 

population107.  CD161 expression on B cells and DC is thought to be involved in NK cell-APC 

interactions108.   The functional consequences of CD161 binding to its ligand in T cells is not 

known8, though CD161 expression might have something to do with migration of these cells 

through the endothelium109, increased IFNγ production and possibly a role in co-stimulation 

of T cells7.   
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The chemokine receptor CCR6 is strongly associated with TH17 cells1,37.  All IL-17 secreting 

cells express CCR6, though not all CCR6 expressing cells make IL-17.  Other chemokine 

receptors are more promiscuous, binding to several different chemokines, whereas CCR6+ 

cells, as far as we know, only migrate towards one chemokine - CCL20 (MIP1α)110.  In 

humans CCR6 has been used to identify cells that have characteristic of TH17 cells in other 

populations.  Within peripheral blood there are CCR6+TREG cells that are RORC+FoxP3+ and 

express IL-17 but have suppressive potential111.  It is not known if these cells express CD161 

as well.  CCR6 is expressed on B cells and is important for B cell differentiation and 

maturation86,89. 

 

1.5.4 T Helper 22 Cell (TH22) 

Initial studies identified IL-22 as a TH17 associated cytokine113.  However, CD4+ T cells have 

now been identified that only secrete IL-22 without it being co-secreted with IL-17A or IFNγ.  

IL-22 had potent effects on keratinocytes, hepatocytes and other mucosal sites but is mainly 

associated with immunity and disease in the skin.  TH22 cells express homing markers such as 

CCR10, CCR6 and CCR4114.  IL-22 in the skin can induce production of antimicrobial peptides, 

and can induce anti-apoptotic and pro-proliferative effects in responding cells115,116.  A 

transcriptome analysis of TH22 compared to TH1 and TH17 cells to determine if they were a 

separate lineage identified several genes that were unique to TH22 cells.  Many of these 

unique genes encoded proteins involved in tissue remodelling, such as FGF’s, and 

chemokines involved in fibrosis and angiogenesis, such as CCL7 and CCL15116 .  
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From naïve T cells TGF-β and IL-6 will drive a TH22 phenotype and the induction of the ligand 

activated transcription factor, Ahr, which drives the expression of IL-22114.  IL-23 seems to be 

responsible for amplification of IL-22 but cannot restore IL-22 induction in Ahr deficient TH17 

cells.  There are subsets of NK cells that express IL-22(Nk-22) and also express Ahr117.   

 

1.5.5 T Follicular Helper cell (TFH) 

Within the lymphoid tissue there is a subset of antigen experienced T cells that play a role in 

aiding B cell activation.  They express CXCR5 and are known as T follicular helper cells 

(TFH)118.  CXCR5 is the chemokine receptor for CXCL13 which is highly expressed in the B cell 

zones of secondary lymphoid structures and attracts B cells as well as TFH cells.  These cells 

aid in the formation and maintenance of germinal centres (regions of secondary lymphoid 

tissue that help B cell immunity).  The expression of IL-21, ICOS and CD40L by TFH is 

important in this process and in aiding isotype switching in B cells.  Bcl6 is a transcriptional 

repressor associated with TFH cells but considered the master regulator of the subset.  It 

represses the lineage defining transcription of other subsets such as T-bet and GATA-3.  An 

interesting aspect of TFH is that these cells can also express characteristic of other TH cells 

types such as signature cytokines of TH1 or TH2 and TH17 cells.   

 

1.5.6 Regulatory T cells (TREG) 

Regulatory T cells are a vital subset of CD4+ T cells that induce both tolerance to self and 

control otherwise pathogenic immunity.  The main function of TREG is to use an arsenal of 
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mechanisms to suppress the immune response.  They make up 5-10% of the CD4+ T cell 

population and can be produced in the thymus (nTREG) or induced in the periphery (iTREG).  

They are primarily characterised by the expression of a gene known as Forkhead Box P3 

(FoxP3)119 and the IL-2 receptor α chain (CD25)120.   Similar to other T cells, they have a TcR 

specific for a cognate antigen; although the antigen is frequently a self-peptide.  The 

importance of the transcription factor FoxP3 within the TREG is demonstrated in the genetic 

disease immunedysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX), in 

which the sufferers lack functional FoxP3121.  The phenotype of this disorder is a severe and 

extensive auto-immune disease.    

TREG cells employ a variety of different mechanisms to suppress T effector cell activation and 

proliferation.  TREG secrete the anti-inflammatory cytokines IL-10, IL-35 and TGF-β.  TREG can 

release protease enzymes such as granzyme and perforin that leads to destruction of 

effector cells.  TREG can also cause metabolic disturbances such as cytokine depletion by the 

high affinity receptor CD25, adenosine generation via CD73 and CD39 receptors and cAMP 

mediated inhibition of proliferation.  Finally, TREG can target dendritic cells function through 

CTLA-4 binding and removal, via trans-endocytosis, of CD80/86122 from the surface of the 

cell.  This affects  maturation of effector cells and reduces their proliferative ability123.   

Naturally occurring regulatory T cells (nTREG) are differentiated within the thymic medullary 

region in a MHC class II dependent process124.  The self-reactive TcR that TREG frequently 

carry is activated and causes expression of FoxP3.  A murine model using a transgenic TcR 

specific for a self-peptide generated large numbers of TREG while mice that did not express 
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the antigen could not produce any.  There are clearly other signals that control TREG 

differentiation as not every cell that expressed the transgenic TcR became a TREG
125.   

iTREG are induced in the periphery, with early evidence of adoptive transfer experiments 

showing conversion of naïve cells to a TREG phenotype.  Naïve CD4+CD25- T cells injected into 

lymphopenic mice increase in number and a small proportion gain TREG cell markers such as 

CD25, CTLA-4 and FoxP3 expression.  iTREG development has been defined as dependent on 

antigen stimulation, IL-2 and TGF-β in vitro126,127.  However the in vivo environment for iTREG 

induction has not been completely defined.  TGF-β relies on SMAD3 and the nuclear factor of 

activated T-cells (NFAT) to induce FoxP3, while the IL-2 lifts the TGF-β anti-proliferative 

effect.  TGF-β has been shown to be less important to nTREG development.  IL-2 in addition 

does not play a vital role in nTREG development and is dispensable, and can be replaced by IL-

15 in IL-2-/- mice.   

Additional suppressive populations are the TR1 and TH3 cells.  TR1 cells express IL-10 and TGF-

β, which they employ as their main mechanism of suppression, although they do not express 

stable FoxP3.  They are induced from naïve T cells in an IL-10 rich environment128.  TH3 

produce TGF-β and play an important role in mucosal immunity and tolerance to antigens 

within the gut.  Although there are no specific markers for TH3 to allow for analysis of these 

cells, it is thought they are induced in a TGF-β rich gut environment129.   

There are many cytokines that can antagonise iTREG induction.  Cytokines from other T helper 

subsets (IFN-γ, IL-4, IL-17 etc.) can all inhibit induction.  However a small subset of CD103+ 
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DC found in the small intestine and mesenteric lymph nodes can overcome this inhibition, 

with the co-production of TGF-β with retinoic acid130,131.   

There are arguments about the functional differences of nTREG and iTREG.  The iTREG seem to 

be able to suppress T effector cells as well as nTREG.  However on re-stimulation in a TGF-β 

depleted environment the iTREG loose FoxP3 expression whereas the nTREG do not.  This 

suggests differences in the epigenetics and stability of iTREG phenotype132,133.  Overall 

however, it is generally accepted that nTREG play a role in general tolerance and protection 

against autoimmune disease, while iTREG are important in mucosal tolerance including the 

gut. 

 

1.6 Maintenance of T Helper Lineages  

There are several levels at which a cell’s phenotype can be controlled.  TH phenotype is 

induced by the cytokines and the type of stimulation that a cell receives upon activation.  

Additionally, there are internal pathways and transcriptional mechanisms in place to either 

maintain or alter the cells effector function once it has differentiated.   

TH1 and TH17 have several feedback mechanisms that allow maintenance of their phenotype.  

TH1 induced by IFNγ and IL-12 produce IFNγ themselves, which acts in a feed forward 

amplification loop with STAT-1 and T-bet.  T-bet up-regulates IL-12Rβ2, making the cells 

more responsive to environmental IL-1254.  TH17 cells are induced through cytokines that 

signal through STAT-3, which induces RORC.  RORC can activate the cell to express IL-23R 

and produce IL-21.  Both IL-21 (autocrine)93 and IL-23 (environmental)72 maintain the TH17 
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phenotype and RORC expression.  IL-2 can actually promote TH1 and TH2 phenotypes and 

suppress TH17, its signalling through STAT-5 leading to alterations in important gene 

expressions such as IL-4 receptor α and IL-12Rβ2 and suppression of IL-6 receptor134. 

To further maintain a phenotype cells also have transcriptional mechanisms to suppress 

other TH phenotypes.  TH1 and TH17 can repress the phenotype of the other TH cell.  IFNγ has 

been shown to suppress a TH17 phenotype while IL-17 and RORC can suppress T-bet and a 

TH1 phenotype90.  Jenner et.  al.  showed that T-bet and GATA-3 can occupy many of the 

same gene targets.  The group identified GATA-3 binding to target genes within TH1 cells.  

For example, in a TH1 cell, T-bet could bind to IFNG and activate the gene while binding to 

the IL4 gene and directly repressing its expression.  GATA-3 could act to oppose that by 

activation of the IL4 gene and repressing IFNG gene135.  GATA-3 has been shown to suppress 

IL-12Rβ2 expression to weaken T-bet expression56.  As well as the lineage defining 

transcription factors (T-bet, GATA-3, RORC etc.) there are other transcription factors and 

mediators that are induced to aid in the suppression of other phenotype.  Runx3 is activated 

by T-bet to suppress the IL4 gene and contribute to the stability of the TH1 lineage136.  Runx1 

is needed for the transactivation of RORγt and if T-bet is present it will bind Runx1 and 

suppress RORγt expression137.   

 

1.7 Plasticity of T Helper Lineage 

Maintenance of an appropriate immune response is vital to ensure that the pathogen is 

effectively removed.  Until recently differentiated TH cells were thought to be permanently 
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committed to a single lineage.  However, there is now increasing evidence that CD4+ TH cells 

can be plastic in nature.  Appropriate stimulation can switch a memory CD4+ T cell’s 

phenotype to a different TH lineage.  There are examples in the literature of different lineage 

defining cytokines being co-expressed in a single cell, both in vitro and in vivo.  Lineage 

defining transcription factors can also be found to be co-expressed in certain situations138 

(Figure 1.1). 

 

1.7.1 Populations of TH Cells that Exhibit Plasticity 

TREG have been shown to be a particularly plastic population as mentioned in Section 1.5.3.2.  

There is a strong link in mice between the induction of TREG and TH17 cells.  TGF-β at high 

concentrations induces FoxP3, yet TGF-β with other inflammatory cytokines such as IL-6 

induces a TH17 phenotype.  This is confirmed by TGF-β-/- mice being unable to develop either 

TREG or TH17.   This suggests a link in the differentiation of these two very different effector 

subsets58,96.   

FoxP3 can inhibit RORγt activity by direct binding.  Despite this there is evidence that cells 

can co-express these lineage defining transcription factors with both having an effect on the 

phenotype of the cell.  Voo et. al identified CCR6+ cells that expressed RORγt and FoxP3.  

They maintained their suppressive ability but upon stimulation produced IL-17111.  Using a 

ROR-GFP knock-in mouse Zhou et al.  showed that a small proportion of cultured cells 

treated with TGF-β could express both transcription factors RORγt and FoxP3.  These co-
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expressing cells are also found in vivo.  A small percentage of cells that expressed FoxP3 had 

differentiated into IL-17 expressing cells, suggesting a lineage change139.   

TREG can express characteristics of other pro-inflammatory subsets.  Koch et al.  proposed 

that CXCR3, a chemokine receptor expressed on TH1 cells, can be a marker in TREG of T-bet 

expression.  FoxP3+CXCR3+ cells were shown, in mice, to play a role in controlling infection in 

a TH1 immune response.  The T-bet+ TREG cells still possess regulatory phenotypic markers 

and suppressive capabilities.  The expression of T-bet appears to improve the homeostatic 

capacity of the TREG in TH1 environmental conditions140.   

Conversely, there appears to be situations where TH1 cells can produce IL-10, a regulatory 

cytokine normally attributed to a TREG cell.  In a murine model of T.gondii infection IL-10 

producing CD4+ T cells could co-produce IFNγ and expressed T-bet.   IL-10+IFNγ+ cells can 

suppress T.  gondii growth with high levels of nitric oxide produced by APC (induced by IFNγ), 

but suppress IL-12 production in APC (through IL-10 suppression).  These cells were FoxP3-

CD25- and could proliferate, suggesting they did not have a TREG/TR1 phenotype or 

background 141. 

TH2/TH17 cells have also been detected at both a very low level in healthy controls, and at 

higher proportion in patients with asthma.  High levels of TH2/TH17 cells in asthma patients 

makes sense as the TH2/TH17 cells have been shown to have a greater ability to induce IgE, 

which is involved in the pathology of this disease.  TH17 clones which were stimulated in a 

TH2 polarising environment were induced to become TH2/TH17 cells.  TH2 cells could not 

become IL-17 producing under TH17 stimulating environment.   
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Unexpectedly, during an infection of the TH1 promoting- lymphocytic choriomeningitis virus 

(LCMV) TH2 cells in mice can be reprogrammed to express both GATA-3 and T-bet along with 

IL-4 and IFNγ.  Without this switch, brought on by IL-12 and interferon’s, the mice 

succumbed to fatal immunopathology142.   

TH17 cells that co-express IFNγ are easily detected in the peripheral blood of healthy 

controls.  Surprisingly both TH17 and TH17/TH1 clones have been shown to express both 

RORC and T-bet at mRNA level.  When TH17 clones were re-stimulated in the presence of IL-

12 it induced IFNγ production.  IL-23, IL-12 or IL-2 could not induce TH1 clones to produce or 

up-regulate IL-17, at mRNA or protein level.  This suggests again more plasticity in the TH17 

lineage than the TH1.  TH17/TH1 cells express the same phenotypic markers as TH17 such as 

CCR6, and IL-23R.  Interestingly, TH17 cells isolated and cultured ex vivo with IL-12 could not 

switch on IFNγ production143.  Only when IL-12R was up-regulated did these cells convert144.  

This suggests that memory cell’s ability to respond to cytokines is a vital factor in their 

phenotype stability.   

From many diseases it has been the suggested that the plasticity of TH17 may play a role in 

the pathogenesis of the disease.  CD161+IFNγ+IL-17+ cells were found in the synovial fluid 

(SF) of juvenile idiopathic arthritis (JIA) patients, and the number of these cells correlated 

with disease activity 145.  These TH1/TH17 cells were also present in the gut of people with 

Crohn’s disease1.    
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Within the literature there is a debate as to whether cells with a dual phenotype have 

transiently been able to acquire the additional features or if they are being directed down a 

permanent path. 

Experiments using reporter mice gives scientist the ability to follow a single cells  through its 

differentiation path146.   An IL-17-YFP reporter mouse was used to determine the fate of 

TH17 cells in two inflammatory situations, a chronic EAE model and an acute cutaneous 

infection of Candida albicans.  In cells that express or have expressed IL-17A, these cells 

would appear YFP+.  Interestingly, there was a switch of some of the TH17 cells (YFP+) in EAE 

to secrete IFNγ, while the resolving Candida infection only resulted in IL-17 for a short time, 

with no IFNγ production from these cells.  The interesting thing about the TH1 cells within 

the spinal cord in the EAE model was that they were almost all YFP+IFNγ+ but were IL-17-.  

This suggests in a highly inflammatory situation TH17 cells can convert to TH1 cells.  They 

suggest that the switch to secreting IFNγ in TH17 cells was down to their responsiveness to 

IL-23146.   

In humans TH1 cells with phenotypic feature of a TH17 cell have been described as 

CD161+IFNγ+ cells.  Francesco Annunziato’s group suggests that the non-classical TH1 cells 

are TH17 derived, as they share expression of RORC, IL-23R, IL4I1 along-side T-bet and IL-

12Rβ2.  These cells however are no longer secreting IL-17.  The non-classical cells were 

found to be present in the SF of JIA patients105.   

Using humans CD4+ T cells Sallusto et. al investigated the type of TH17 response that results 

from exposure to C.albicans and Staphylococcus aureus.  Monocytes were pulsed with either 
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of these pathogens and cultured with naïve CD4+ T cells.  The resulting IL-17 secreting cells 

differed.  In response to C. albicans TH17 cells secreted IFNγ, whereas S. aureus induced a IL-

10 secreting TH17 cell.147 This result suggests that different inflammatory situations will illicit 

different profiles in TH17 cells.  Although this experiment demonstrates the possibility to 

express more than one lineage defining cytokine at once it does not answer whether TH cells 

are plastic or just transiently up regulate other cytokines.    

Within human systems it is always going to be extremely hard to find out the true fate of a 

cell.  The only method of assessing the phenotype is to extract the cell and manipulate them 

ex vivo.  This is not ideal, especially for TH17 cells as we are still unsure as to the true 

differentiation pathway in vivo.  The best approach is to make sure that the population is as 

homogeneous as possible.  Purity of the population has to be assured by vigorous cell sorting 

to avoid potential contaminants147,148. 

All the examples of cells co-secreting two lineage defining cytokines or transcription factors 

goes against the paradigm of repression of the different lineage.  This demonstrates that 

there is a certain level of flexibility in the differentiation process.  Whether this is flexibility in 

the initial differentiation or once the cell has already differentiated is still unknown.  The 

next step is to understand when and where these cells come into play.  Are they in transition 

or are they a stable phenotype? Han et al. recently tested if poly-functional T cells were a 

true reflection of an immune response over time.  They added one cell to a nano-well and 

sampled the supernatant for IFNγ, TNF-α and IL-2 every hour after stimulation.  They showed 

that cells only transiently secreted two cytokines.  This was the intermediate stages between 
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switching off one cytokine and switching on another.  The delayed response of some cells to 

the stimulus meant that the production of cytokine overall was poly-functional but individual 

cells were rarely a true dual secretor149.  However, as the murine fate mapping model146 

showed plasticity of a TH phenotype might be different in a situation of chronic 

inflammation.   

 

1.7.2 Control of Plasticity in CD4+ T Cells 

There is no sufficient evidence to show that the expression of lineage-specific transcription 

factors does not have exclusive expression patterns to the different lineage.  There is a scale 

of transcription factor expression rather than the binary on/off expression that was initially 

proposed.   

It is important to understand what induces the transcription factors and repressors and the 

effects these molecules have on the cells.  Therefore, although we look at transcription 

factor expression it might also be important to look at other factors such as the relative level 

of transcription factor expression, epigenetics such as methylation of genes and post 

transcriptional modifications like miRNAs.  This will help understand to what extent the 

transcription factors are controlling the cell’s phenotype. 

 

  



Introduction 

41 

 

1.7.3 Why it is Important to Understand Plasticity? 

Within many autoimmune diseases, such as arthritis, MS and Graves disease, CD4+ T cells are 

considered key in the pathogenesis of the disease.  Initial understanding which CD4+ T cells 

cause the disease is important.  Understanding the plastic element of these cells will give the 

potential to ‘reset the clock’ on some of the disease causing subsets.  So, for example, if TH17 

cells are vital to the onset of MS then understanding the factors that leads to these cells 

becoming TREG can lead to therapeutic potential150. 

On the flip side there are therapies coming to trial now that use cells from the patient’s own 

blood to treat diseases like cancer.  If we do not understand the factors that will switch 

these cells to other subsets, then the beneficial TREG that could be inserted to treat the 

cancer could differentiate into harmful TH1.  This could cause more damage than the disease 

it is trying to treat.   

Finally, working on T cells offers a great system to model plasticity.  Understanding how 

plasticity occurs within T cells may lead to us to further understand plasticity in other organs 

of the body that are less accessible.  

 

1.8 Autoimmunity 

Multiple sclerosis is an autoimmune disease of the central nervous system.  The disease is 

thought to be caused by auto-reactive adaptive immune cells responding against a neuron 

antigen leading to demyelination of neurons and causing neurological dysfunction.  T cells, 
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specifically TH1 and TH17 cells have been implicated in playing an important role in the 

pathology of MS.   

 

1.8.1 Anatomy of Central Nervous System 

The central nervous system (CNS) is made up of the brain, spinal cord, optic nerve and the 

retina, which are all encapsulated with the bony structures of the skull and spinal cord.  The 

brain parenchyma and spinal cord is encapsulated within the meninges.  This structure is 

made of three membranes; in contact with the brain is the Pia mater, then the Arachnoid 

and finally the Dura mater next to the skull.  Between the Pia mater and the Arachnoid is the 

subarachnoid space; a fluid filled space containing cerebrospinal fluid (CSF).   

CSF is an important fluid for the protection of the brain and spinal cord but also for the 

metabolism and homeostasis of the CNS.  CSF is a fluid generated by a structure within the 

ventricles of the brain called the choroid plexus (Figure 1.3).  The choroid plexus is made up 

of a web of capillaries with special endothelia and surrounded by stroma.  These structures 

are covered by a monolayer of epithelial cells and these cells control the movement of 

solutes and fluid, through diffusion and active transport, from the blood into the arachnoid 

space to make up the CSF.  Interstitial fluid from the brain parenchyma also makes up a small 

portion of the CSF.   
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Figure 1.3: A Cartoon Version of the Central Nervous System. The brain 

parenchyma is surrounded by the fluid filled subarachnoid space. The 

choroid plexus within the cerebral ventricle is contains the ependymal 

cells that secrete the CSF fluid into the subarachnoid space. The T cells 

from the peripheral blood can enter the CNS through the choroid 

plexus, using CCR6 dependent migration. APC within the subarachnoid 

space will not leave the CNS, however soluble antigen from the brain 

parenchyma can be found in peripheral lymph nodes.      

 
Within the brain parenchyma there is the white and grey matter of the brain.  The white 

matter contains the glial cell and mylinated axons while the grey area of the brain consisting 

of neuronal cell bodies, neutrophil, glial cells and capillaries. 
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1.8.2 Immune System Within the CNS 

The CNS has evolved as an immune privilege site, meaning there are mechanisms in place 

that will prevent inflammation to reduce the chance of damage to this vital organ.  Immune 

privilege within the CNS can be verified by placing material such as tumour cells, viruses151 or 

bacteria152 in the brain parenchyma of mice.  If done carefully there will be no cell mediated 

response to the material as antigen-carrying APC from the parenchyma will not reach 

peripheral lymph nodes to prime an immune response.  This effectively means the brain is 

hidden from the peripherally immune system.  However, when the antigen (in this case 

Bacillus Calmette–Guérin (BCG)) was injected peripherally in mice that had been exposed to 

BCG in the brain (with no response), there was a delayed type hypersensitivity response 

within the brain and demyelination of the nerves took place153.  This suggests that it is the 

afferent arm of the immune response, the priming of antigen presenting cells that is 

prevented in the CNS.  The efferent arm, primed antigen specific cells that have migrated 

into the site of infection, functions normally.  It is the blood brain barrier (BBB) that keeps 

the fluid and cells of the brain parenchyma as a separate entity from the peripheral blood.  

The blood brain barrier is made up of special tight junctions in the capillaries in the brain, 

and surrounding these capillaries is a barrier of astrocyte foot processes (known as the glia 

limituns) (Figure 1.4).  Soluble antigens are able to drain from the CNS in to the deep cervical 

lymph nodes 154(Figure 1.3) while APC are not to be able to migrate out of the CNS.   
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Figure 1.4: Components of the Blood Brain Barrier. The peripheral vascular 

system is kept separate from the brain parenchyma by the blood brain barrier 

(BBB). The capillaries in the brain have special tight junctions in there 

endothelium and surrounding these capillaries is a barrier of astrocyte foot 

processes (known as the glia limituns). Pericytes help sustain the blood–brain 

barrier. 

 
Microglial cells, a resident macrophage within the brain, in healthy individuals are in a non-

activated state due to the immunosuppressive environment of the parenchyma155.  Neither 

CSF nor the CNS parenchyma contains naive T cells under physiological circumstances, and 

classical studies suggest that primary immune responses are not primed in the 

parenchyma156.  In a healthy individual the CSF only contains T cells and a few B cells, with 

some monocytes, but no granulocytes.    

 

1.8.3 Migration of T Cells into the CNS 

The microglial cells within the brain parenchyma are a resident cell population which are 

replaced via proliferation of the resident cells.  T cells within the blood however need to 

http://en.wikipedia.org/wiki/Blood%E2%80%93brain_barrier
http://en.wikipedia.org/wiki/Blood%E2%80%93brain_barrier
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somehow migrate into the CNS.  T cells enter from the periphery into the CSF via the choroid 

plexus (Figure 1.3).  This process is controlled through a few selective chemokine and 

migratory receptors.  CCR6 has been shown to be very important for T cell migration, 

especially in the disease setting of EAE157.  TH17 and TREG have been shown to express this 

chemokine receptor, though these are not the only cells to express it.  P-selectin and α4 

integrin is also important both in disease and in health of T cell migration into the 

brain158,159.   

Primed T cells need to be re-activated at the site of inflammation and using a Lewis rat 

model of EAE it was shown that only if APC are present in the subarachnoid space, to prime 

the T cells, can antigen specific T cells enter the brain parenchyma160.  However once the 

BBB has been activated other T cells can migrate into the brain, highlighted by the presence 

of CCR6- cells found after the first initial wave of inflammation in murine EAE157.   

 

1.9 Multiple Sclerosis  

MS is an autoimmune disease of the central nervous system.  The first association of the 

appearance of demyelinated lesions in the brain to neurological dysfunction were in 1868161.   

The majority of patients have an initial clinically isolated syndrome, followed by a period of 

what is known as remission, where their symptoms abate.  If a series of relapses of 

symptoms occur this would be diagnosed as relapsing remitting multiple sclerosis (RRMS).  

Throughout the relapses the sufferer’s disability will return back to baseline level.  However 

within remission the patient will gradually gain further disability.  This is known as Secondary 
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Progressive MS (SPMS).  10-15% of patients will go through primary progressive disease in 

which there will be no remissions or relapses they will just gradual gain disability over time.   

Diagnosis of MS is now undertaken through the visualisation of the lesions within the brain 

using magnetic resonance imaging (MRI).  Samples of CSF can also be taken to look for the 

presence of oligo-clonal bands 162, highlighting the presence of antibodies in the CSF. 

 

1.9.1 Disease Prevalence  

Multiple sclerosis affects around 2.5 million people around the world, with the age of 

diagnosis being 20-40 years.  MS is twice as likely to occur in women as men.  The 

distribution of MS sufferers worldwide is not evenly spread, with more people being 

diagnosed the further from the equator.  This has led to the hypothesis that Vitamin D, 

produced by the skin in response to sunlight and obtained through diet, may have a 

protective role163.  There are certain ethnic groups that have lower incidents of MS, such as 

Inuit, Aborigines and Maoris.  It is more common in Caucasians of northern European 

ancestry164.   

 

1.9.2 Risk Factors 

1.9.2.1 Genetics 

MS is not an inherited disease although there have been suggestions that there may be a 

genetic element.  There is only about a 2% chance of a child developing MS if they have a 

parent with MS. 
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Genome wide association studies (GWAS) have become an important tool in understanding 

MS.  GWAS analyses the whole genome of patients for small nuclear polymorphisms (SNP), 

changes in the nucleotide sequence of genes that are found in the patient cohort to a 

greater extent than in the general public.   

HLADRB1*1501 (encode for a subunit of human leukocyte antigen) has repeatedly appeared 

in GWAS studies for MS.  Other susceptibility loci are in the IL2RA and IL7RA genes165: both 

genes associated with TREG function.  The next step for GWAS studies is to link the SNP to a 

functional consequence for MS.    

 

1.9.2.2 Environment 

As mentioned above Vitamin D is thought to play a part in the prevalence of MS.  A 

prospective study of a large cohort of women indicated that Vitamin D had a protective 

effect against MS163.  The mechanism of action of Vitamin D is thought to be its ability to 

repress TH1 cells and promote TREG
166,167.   

Many people have tried to associate infectious agents with onset of MS.  Several different 

viruses have been suggested, including rabies, herpes simplex virus, measles, corona virus, 

Epstein-Barr virus and others, although none have been confirmed.  To date the most 

promising candidate appears to be the Epstein-Barr virus as there is a greater risk of 

developing MS if the person has had late onset infectious mononucleosis (IM)168.   
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1.9.3 Immunopathology 

Multiple sclerosis is characterised by subcortical or periventricular white matter focal 

inflammatory demyelinating lesions.  Within an active lesion there are CD8+ T cells, with less 

CD4+ T cells, monocytes and B cells although the major inflammatory cell type within a lesion 

are macrophages169.  Once MS has become progressive the lesions gradually expand 

overtime with macrophage only at the periphery of the lesion.    

B cells have been identified as playing an important role in MS with antibodies involved in 

the demyelination process169.  Ectopic lymphoid follicles have been identified within the 

meninges of MS suffers170, suggesting the presence of an antigen to maintain the follicle.  

Currently no antigen has been identified.   

T cells and specifically CD4+ T cells are thought to be the initiators of the inflammation.  T 

cells migrating in to the brain across the BBB will initiate inflammation which is thought to 

affect the BBB effectiveness.  The results in more inflammatory cells entering the 

parenchyma resulting in continued inflammation and demyelination of the nerves of the 

brain and spinal cord.      

Experimental autoimmune encephalomyelitis (EAE) is a murine model of MS.  Demyelination 

of the nerves is induced with an injection of a brain antigen (e.g.  a myelin oligodendrocyte 

glycoprotein (MOG) or myelin basic protein (MBP) etc.) along with complete Freud adjuvant 

(CFA) and pertussis toxin (PT).  The CFA induces an immune response to the antigen and the 

PT will act to break down the blood brain barrier (BBB) to allow immune cells into the CNS.  

Other methods of inducing a MS like responses include using a transgenic TcR model specific 
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for MOG protein and injecting MOG into the mice, or introducing MOG specific T cells into a 

RAG-/- mice.   

The CNS is a site of immune privilege as the BBB tightly controls the entrance of cells in to 

the CNS.  Because of this there has been a focus on understanding the mechanisms by which 

inflammatory cells enter the CNS in EAE and MS.   The removal of CCR6, the TH17 associated 

chemokine receptor, was protective against EAE induction.  The CCR6 ligand CCL20 was 

expressed on the choroid plexus and was important for the first wave of auto-reactive T cells 

to enter the CNS.  During the initial disease CCR6+TH17 and CCR6+TH1 cells were absent from 

the CNS157.  VLA-4 (α4β1) is also involved in T cell migration into the brain parenchyma, and 

this finding in EAE171 lead to the use of natalizumab a  monoclonal antibody against VLA-4 

intergrin172.   

IL-23 has a non-redundant function in EAE initiation57 leading to the interest shifting from 

TH1 cells to TH17 cells.  Stimulating TH17 cells with IL-23 promotes GM-CSF which is also 

necessary for EAE induction173.   GM-CSF acts on dendritic cells (DC) to enhance production 

of IL-23 and other inflammatory cytokines which in turn promotes further activation of TH17 

cells.  Like TH17 cells, TH1 cells are dependent on GM-CSF production for initiating EAE173, 

although the mechanisms that drive GM-CSF under TH1 conditions remain unclear.  Further 

data suggested that TH17 cells cannot induce disease unless they have responded to IL-23, or 

TGF-β3.  These ‘pathogenic’ TH17 cells induced EAE and have a different transcriptional 

profile to ‘conventional’ TH17.  Pathogenic TH17 cells contain both transcription factors 

RORγt and T-bet174.  Removal of TIM-3, a negative regulator of TH1 and TH17 cytokine 
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secretion, leads to exacerbation of EAE.  A defect in TIM-3 has been found in patients with 

MS175,176.   

CD39, an ectonucleotidase which hydrolyses ATP, is expressed by some TREG and these are 

specifically able to suppress TH17 cells.  The mechanism of suppression is thought to be a 

contact dependent one177.  ATP has been shown to increase IL-17 production178 suggesting 

the CD39 mediated break down of ATP may play a role in the reduction of IL-17 production 

by TH17 cell.  Furthermore using a blocking antibody against LAP (Latency Associated 

Peptide), a protein that binds TGF-β and is expressed on CD39+TREG, reduces the suppressive 

effects of CD39+TREG on TH17 cells in culture179. Within RRMS patients these CD39+ TREG have 

been shown to have impaired function and a reduced ability to suppress TH17 cells.  

Furthermore, RRMS patients had a high percentage of IFNγ secreting TREG cells compared to 

controls.  These FoxP3+IFNγ+ cells, induced through culture of  TREG with IL-12, had reduced 

suppressive function180.  This identifies mechanisms in which inflammation in RRMS patients 

can go unchecked by peripheral tolerance.   

 

1.10 MicroRNA 

miRNA are small, endogenous, non-coding RNA molecules.  They play a vital role in post 

transcriptional modification of gene transcription.  miRNA are partially complementary to 

mRNA, and they function by down regulating the expression of the mRNA by either 

translational repression, mRNA degradation or deadenylation181.   To date over 2000 human 

miRNA are known.   
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Large precursor miRNA are transcribed by RNase II  enzyme182.  miRNA start their life as pre-

miRNA, a double stranded hairpin structure of ~70 nucleotide in length.  A complex of 

several molecules process the pre-miRNA, in the nucleus, consisting of the RNase III enzyme 

Drosha183, and the double-stranded-RNA-binding protein Pasha184.  The pre-miRNA is then 

actively transported to the cytoplasm for further processing by the RNAse III enzyme Dicer.   

A double-stranded miRNA of approximately 22 nucleotides in length will be the end product.  

Dicer also initiates the formation of the RNA-induced silencing complex (RISC).  RISC is the 

multicomponent nuclease, which the mRNA are directed to by the miRNA that destroys the 

mRNA181.   

MicroRNA molecules were only recently discovered 185.  However, their importance in the 

negative regulation of genes has become apparent in many different systems.  Using a T cell 

specific Dicer or Dorsha deficient mice demonstrated the role of miRNA in proliferation, 

survival and differentiation in CD4+ T cells186,187.  Knockdowns of Dicer lead to extensive 

autoimmune disease which was shown to be due to the lack of stability of TREG cells.  

Although the TREG in the thymus developed normally they were unable to maintain their 

phenotype in the periphery 188.  The cluster of miRNA, miR-17 – 92, were overexpressed in 

human lymphomas, and shown to have anti-apoptotic effects through T cell proliferation 

and growth189.   

There has been a great interest in the role of miRNA in T helper cell differentiation, 

specifically in TH cells in a disease setting due to their potential as a therapeutic target.  T-

bet, the TH1 lineage defining transcription factor is vital of the stability and maintenance of 
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TH1 phenotype.  In mice miR-29 has been implicated in regulating T-bet and the downstream 

effector cytokine IFNγ.  IFNγ was shown to regulate miR-29 expression in what seems a 

negative feedback loop in TH1 cells, via effects on T-bet and Eomes190, in direct competition 

with IFNγ/STAT-1/T-bet positive feedback loop.  An increase in miR-29 was found in MS 

patients, and removal of miR-29 lead to exaggerated IFNγ production and EAE191.   

Figure 1.5 Processing and action of microRNAs. MicroRNA are 

transcribed as pre-miRNA that are activly spliced, by RNAse III enzyme 

Dicer in to double stranded miRNA.  RNA-induced silencing complex 

(RISC), a nuclease will direct the miRNA to its target mRNA. The 

binding of the miRNA to it’s target mRNA leads to reduced 

transcription, either due to its degredation or effects on the 

transcription of the mRNA. 

 

The miR-29 has also been shown to be up-regulated in other T helper subsets, and is not 

exclusively expressed in TH1 cells.   
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Due to the involvement of TH17 cells in EAE there have been a few miRNA that are not only 

associated with TH17 differentiation but also the pathogenesis of EAE.  miR-155 expression in 

T cells is vital for the full development of EAE due to its involvement in induction of the T 

helper subsets TH17 and TH1192.  Several genes vital for TH17 differentiation were shown to 

be lacking in miR-155-/- mice, such as IL-23R.  This makes TH17 cells hypo-responsive to IL-23, 

which is an important cytokine for maintenance of TH17 phenotype and RORγt maintenance.  

Ets, a negative regulator of the TH17 phenotype, was also shown to be repressed by miR-155.   

miR-155 has been shown to also target IFNγ193.  Ets-1 is also a target for miR-326194. The 

generation of miR-155 has also been shown to play a role in TREG and TH17 induction. This 

miRNA also targets SOCS1. SOCS1 can block IL-6 dependent STAT-3 activation, and complete 

removal of SOCS1 expression in mice resulted in more FoxP3 cells within the thymus of the 

animal.   

In mice where T cells were stimulated with the myelin auto antigen, MOG, there was an up 

regulation of miR-301-a, miR-21 and miR-155.  MicroRNA-301a is involved in the negative 

regulation of a STAT-3 inhibitor PIAS3, which was involved in Th17 cells induction in this EAE 

model195.    
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THESIS AIMS 

CD4+ T helper cells are a vital part of the adaptive immune system. Initially it was thought 

that CD4+ T cells were stable in their phenotype.  However it is now clear that there is an 

element of plasticity in CD4+ T cell differentiation.  At the start of this study there was 

information about the cytokine and transcription factors expressed by individual TH subsets.  

However, very little was known about T cell plasticity and the overlap of different T helper 

subsets. Therefore, the first aim of this study was to:   

1) Phenotype CD4+ T cells that co-expressed two lineage defining cytokine, with a 

particular interest in cells that co-expressed IFNγ and IL-17.   

It has now been shown that TH17 cells can switch on IFNγ production and express T-bet.  It is 

still unknown if IFNγ+IL-17+ cells can develop in to ‘ex-TH17’ cells that only secrete IFNγ. CCR6 

and CD161 are surface markers used to enrich CD4+ T cells for TH17 cells. These markers are 

expressed by a subset of TH1 cells. Therefore, this thesis also aims to:  

2) Identify if CCR6 or CD161 expression on TH1 cells is a marker of a ‘TH17-related’ 

phenotype.  

3) Compare the phenotype and functional feature of CCR6+TH1 cells to CCR6-TH1 and 

TH17 cells.  

4) Identify novel miRNAs that could be involved in controlling T cell plasticity in TH1 

and TH17 cells.  
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Migration of CCR6+TH17 cells across the choroid plexus plays a role in initiating inflammation 

in multiple sclerosis. The fourth aim of this thesis is to: 

5) Identify if CCR6+TH1 cells are present in the blood and CSF of MS patients.  
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 List of Reagents 

2.1.1 Media and Solutions 

RPMI: RPMI (Roswell Park Memorial Institute) 1640 [Sigma-Aldrich Irvine, UK], 1% 

GPS (2mM l-glutamine, 100U/ml penicillin, 100ug/ml streptomycin) 

[HyClone, Northumberland, UK] 1% HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) [Sigma-Aldrich] 

RPMI/10% HIFCS:       RPMI 1640 medium, 10% Heat Inactivated Fetal Calf Serum (HIFCS) 

[Biosera, Ringmer, UK] 

RPMI/1% BSA: RPMI 1640 medium, 1% Bovine serum albumin (BSA) [Sigma-Aldrich] 

X-VIVO: X-Vivo 15 [Lonza], 1% GPS (2mM l-glutamine, 100U/ml penicillin, 100ug/ml 

streptomycin) [HyClone, Northumberland, UK] 

PBS: Phosphate buffered saline contains 8g/l NaCl, 0.26/l KCl, 1.15g/l NA2HPO4, 

0.2g/ml KH2PO4 in distilled H20; prepared as 1 PBS tablet per 100ml H20 

[Oxoid, Basinstoke,UK]  

Macs buffer:           PBS, 2mM ethylenediamine tetra-acetic acid (EDTA) [Sigma-Aldrich], 0.5% 

BSA   
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2.1.2 Antibodies 

Target Conjugate Isotype Clone Company Cat No Dilution  

CD3 APC-eFlour IgG1κ UCHT1 eBioscience 47-0038-42 1/100 

CD4 PE/Cy7 IgG2a,κ OKT4 Biolegend 317414 1/160 

 APC IgG2b,κ OKT4 eBioscience 17-0048-42 1/40 

CD8 Brilliant Violet IgG1κ RPA-T8 Biolegend 301047 1/80 

CD14 APC-eFlour 780 IgG1κ 61D3 eBioscience 47-0149-42 1/20 

CD25 PerCp/Cy5.5 IgG1κ BC96 Biolegend 302626 1/20 

CD45RA PE CF594 IgG2a,κ HI100 BD Horizon 562298 1/40 

CD45RO PE CF594 IgG2a,κ UCHL1 BD Horizon 562299 1/40 

CD69 APC Cy7 IgG1κ FNSO Biolegend 310914 1/80 

CD127 FITC IgG1κ eBioRDR5 eBioscience 11-1278-42 1/40 

CD161 PeCy7 IgG1 HP-3G10 eBioscience 25-1619-42 1/ 

CCR6 PE IgG2b,κ G034E3 Biolegend 353410 1/40 

 AF 648 IgG2b,κ G034E3 Biolegend 353404 1/40 

CCR7 AF 488 IgG2a,κ G043H7 Biolegend 353206 1/40 

CXCR3  AF 647 IgG1κ G025H7 Biolegend 353712 1/80 

       

*Isotypes used at the concentration of the matched antibody 

Table 2.1 Primary antibodies used for flow cytometry-against surface molecules.  

Abbreviations used Alexa Fluor (AF), Allophycocyanin (APC), Cyanine 5.5 (Cy5.5), Cyanine 7 

(Cy7), Fluorescein isothiocyanate (FITC), Phycoerythrin (PE), Phycoerythrin Texas Red (PETR). 

All antibodies raised in mouse.  
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Target Conjugate Species Isotype Clone Company Cat No Dilution 

IFNγ  eFlour 450 Mouse IgG1κ 45.B3 eBioscience 48-7319-42 1/80 

 APC Mouse IgG1κ 45.B3 eBioscience 17-7319-82 1/40 

TNFα PE Mouse IgG1 MAb11 R&D IC210P 1/120 

 PerCP-Cy5.5 Mouse IgG1κ MAb11 eBioscience 45-7349-42 1/80 

IL-5 PE Mouse  IgG2a,κ JES1-39D10 Biolegend 500904 1/20 

IL-10 PE Rat IgG1κ JES3-9D7 eBioscience 12-7108-82 1/20 

IL-17a  Mouse  IgG1κ eBio64DEC17 eBioscience 53-7179-42 1/20 

IL-22 eFlour 660 Mouse IgG1κ 22URT1 eBioscience 50-7229-42 1/20 

 PE Mouse IgG1κ 22URT1 eBioscience 12-7229-42 1/40 

IL-21 PE Mouse  IgG1κ eBio3A3-N2 eBioscience 12-7219-42 1/40 

GM-CSF PE Rat IgG2a BVD2-21C11 BD Pharmingen 554507 1/160 

IL-2 PE Rat IgG2a,κ MQ1-17H12 eBioscience 12-7029-82 1/120 

IL-17f PE Rat IgG1κ SHLR17 eBioscience 12-7169-41 1/20 

        

Table 2.2 Primary antibodies used for flow cytometry against intracellular cytokines.  

Abbreviations used Allophycocyanin (APC), Cyanine 5.5 (Cy5.5), Phycoerythrin (PE). 

Target Conjugate Species Isotype Clone Company Cat No Dilution 

Tbet  AF 647 Mouse IgG1κ 4B10 Biolegend 64480 1/80 

 PE Mouse IgG1κ eBio4B10 eBioscience 12-5825-82 1/80 

GATA-3 AF 488 Mouse IgG1κ L50-823 BD Pharmingen 560163 1/20 

 PE Mouse IgG1κ L50-823 BD Pharmingen 560074 1/40 

FoxP3 PE Rat IgG2a PCH101 eBioscience 12-4776-73 1/20 

RORγt/RORC PE Rat IgG2a AFKJS-9 eBioscience 12-6988-82 1/80 

Table 2.3 Primary antibodies used for flow cytometry against intracellular transcription 

factors.  Abbreviations used Alexa Fluor (AF), Phycoerythrin (PE). 
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2.2 Ethics 

Blood from healthy controls were taken under the ethics, “T cell differentiation and 

function”. Ethical review ERN_10-0728, approved by the Life and Health Sciences Ethical 

Review Committee, UoB. 

Bloods and CSF from multiple sclerosis patients were taken the ethics, “Analysis of 

pathogenic and regulatory T cells in relapsing-remitting multiple sclerosis”.  Ethics reference: 

ERN_10-0762, collected through Human Biomaterials Resource Centre, UoB. 

2.3 Multiple Sclerosis Patient and Control Samples  

CSF/Blood Diagnosis Age 

B RRMS  59 

B SPMS/RRMS  48 

B RRMS  34 

B SPMS (With relapses)  59 

B RRMS  26 

B SPMS  43 

B/CSF Other Neurological Disease 38 

B/CSF MS 56 

B/CSF MS 31 

B/CSF Undiagnosed 52 

B/CSF Undiagnosed 45 

B/CSF Undiagnosed 50 

B SPMS (With relapses)  54 

B RRMS (no relapse 2yrs)  51 

B/CSF Small Vessel Disease Unknown 

B/CSF Inter-cranial Hypertension Unknown 

B/CSF Neuro-inflammation Unknown 

B Undiagnosed Unknown 

B Undiagnosed Unknown 

Table 2.4. Demographics of suspected MS patient. Information about age of patient and 
diagnosis of conditions were obtained after analysis due to lumber puncture being for 
diagnosis purpose.  SPMS-Secondary progressive MS, RRMS – Relapsing remitting MS, CSF-
cerebralspinal fluid, Blood- Peripheral Blood.  
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Blood/CSF Sex Age 

B F 21 

B F 31 

B F 26 

B F 25 

B F 25 

B F 23 

B F 24 

B M 55 

Table 2.5 Healthy control demographics. Age and sex of healthy controls. 

2.4 Purification of Cell Subsets 

In this section, unless otherwise stated, where it is mentioned that the cells are washed it 

was at 300xg, for 8 minutes at 20°C and then the supernatant was removed.  All work in this 

section was undertaken in a category II safety cabinet.  

 

2.4.1 Peripheral Blood Mononuclear Cell (PBMC) Extraction from Whole 

Blood 

Peripheral blood samples were obtained in Heparin Sodium [Wockhardt, Wrexham, UK] 

from healthy donors (recruited from amongst work colleagues).  Informed consent was 

taken in accordance with the Human Tissue Act 2004.  The blood was diluted at a ratio of 1:1 

with RPMI medium.  18mls of the diluted blood was layered on top of 8mls of Ficol-Paque 

Plus [GE Healthcare Bioscience] in a 25ml tube.  The tube was centrifuged at 300xg, 20°C for 

30 minutes without brake.  The mononuclear cell layer containing the PBMC was removed 

and was washed three times in RPMI/10% HIFCS.  The cells were counted using an Improved 

Neubauer haemocytometer [Weber Scientific].   The yield of PBMC was calculated as 



CD4
+ 

T Cell Cytokine and Transcription Factor Expression  

62 

 

described by the manufacturer.  The range of yield was 5 x 105 – 1.5 x 106 per ml of 

peripheral blood. 

 

2.4.2 Positive Selection of CD4+ T cells from PBMC 

PBMC were washed in filter-sterilized cold MACS buffer (2-8°C) and the supernatant was 

removed to leave a dry pellet.  The cell pellet was resuspended in 80μL of MACS buffer/10⁷ 

total cells and 20μL of CD4+ T Cell Microbeads [Miltenyi Biotech]/10⁷ total cells.  The cells 

were mixed well and incubated for 20 minutes in the refrigerator (2−8 °C).   

The cell and bead mixture was washed in cold MACS buffer and resuspended in 500μL of 

MACS buffer.  The cell suspension was added to a pre-rinsed MS column [Miltenyi Biotech] 

on a MiniMACS separator magnet [Miltenyi Biotech].  The unlabelled cell fraction 

(everything but CD4+ cells) in the effluent was collected and the column was washed with 1 

mL of cold MACS buffer.  The unlabelled cells were re-added to the column for a second 

selection process to improve the yield of CD4+ cells.  The column was washed three times 

with 1ml of cold MACS buffer.  Total effluent was collected.  This was the unlabelled pre-

enriched CD4- cell fraction.  The column was then removed from the magnet and the CD4+ 

fraction eluted with 1ml MACS buffer and firm pressure on the column from a plunger.  
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Figure 2.1 Representative purity check of CD4+ T cell isolation from PBMC. Gated on a 

mononuclear cell gate, plots show PBMC before CD4+ isolation and the positive and negative 

fractions after CD4 T cell isolation.  
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The range of yield was 2 x 105 – 5 x 105/106 of PBMC.  These populations were highly 

enriched for CD4+ cells, with a purity of >95 (Figure 2.1).The populations were analysed for 

the percentage of cells expressing CD4. Values shown represent the percentage of CD4+ cells 

within the gate.  

 

2.4.3 Purification of CD4+CD25- cells  

CD4+CD25- T cell were isolated using a two-step separation (CD4+CD25+ Regulatory T Cell 

Isolation Kit, human [Miltenyi Biotech]).  In the first step all cells not expressing CD4+ were 

removed and in the second step the CD25+ cells (TREG enriched) were isolated from the CD4+ 

fraction.    

In the first negative selection step the PBMC cell pellet was re-suspended in 90μL of cold 

MACS buffer/10⁷ total cells and 10μL of CD4+ T Cell Biotin-Antibody Cocktail /10⁷ total cells.  

This cocktail contained biotinylated antibodies against all the other cell types (CD8, CD14, 

CD15, CD16, CD19, CD36, CD56, CD123, TCRγ/δ and CD235a (glycophorin A)) within PBMC.  

The cell suspension was mixed well and incubated for 5 minutes in the refrigerator (2−8 °C).   

20μL of Anti-Biotin MicroBeads per 10⁷ cells was then added, which bound to the 

biotinylated antibodies attached to the cells from the last step.   The cell suspension was 

mixed well and incubated for an additional 10 minutes in the refrigerator (2−8 °C).  The 

volume of liquid was adjusted to a minimum of 500μL of buffer if needed. 

The cell suspension was added to a pre-rinsed LD column [Miltenyi Biotech] placed on a 

QuadroMACS separator magnet [Miltenyi Biotech].  Unlabelled cells were collected in the 
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effluent and the column was washed with 1 mL of MACS buffer.  The unlabelled cells were 

re-added to the column for a second selection process to improve purity.  The column was 

washed three times with 1ml of cold MACS buffer.  Total effluent was collected.  This was 

the unlabelled pre-enriched CD4+ cell fraction.   

The unlabelled CD4+ cells were positively labelled to isolate the CD25+ T cells.  The CD4+ T 

cells were counted, washed and the cell pellet was resuspended in 90μL of buffer/10⁷ total 

cells and 10μL of CD25 MicroBeads /107 cells.  This mixture was incubated for 15 minutes in 

the refrigerator (2−8 °C).  The cells were washed and the supernatant was aspirated off 

completely.  The cell pellet was resuspended up to 10⁸ cells in 500μL of buffer. 

The cell suspension was applied onto the MACS column.  The flow-through containing 

unlabelled cells was collected.  The column was wash three times with 500μL of cold MACS 

buffer.  The magnetically labelled CD25+ cells were flush out by the addition of 1 mL of cold 

MACS buffer added to the column and immediately forced through using the plunger 

provided. 

The yield was 2x105 – 5x105 /106 of PBMC.  These populations were highly enriched for CD4 

with a purity of >95% (Figure 2.2).  The yield of CD25+ cells was between 1x104-5x104 per 106 

PBMC with a purity of between 40-60%., with the CD4+CD25- fraction >90% pure. 
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Figure 2.2 Representative purity check of a CD4+CD25- T cell isolation from PBMC. Gated on 

a mononuclear cell gate, plots show PBMC before CD4+ isolation, the CD4+CD25- fraction and 

the CD4+CD25+ fraction. The populations were analysed for the percentage of cells 

expressing CD4, CD25 and CD127. Values shown represent the percentage of cells within the 

gate. 
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2.4.4 Purification of cytokine secreting cells 

For all the cytokine capture experiments CD4+CD25- T cells were isolated and left overnight 

in the fridge.  On day two once the CD4+CD25- T cells had been washed they were stimulated 

for 3 hours with Phorbol 12-myristate 13-acetate (PMA) [Sigma] and Ionomycin [Sigma] 

(50ng/ml and 500ng/ml respectively).   At this stage if CCR6 cells were being isolated the 

cells were pre-stained for CCR6 as in section 2.4.1.1.  PBMC were used only when 

stimulating with Staphylococcal Enterotoxin B (SEB) and Cytostim and where indicated with 

PMA/ionomycin.  PBMC were stimulated on the day of isolation and not left in the fridge 

overnight. 

Cells were cultured in 6 well plate [Corning] at a density of 5x106 cells/cm2.   The cells were 

stimulated with either Cytostim (20μl/ml) [Miltenyi Biotech] or SEB (500ng/ml) or PMA 

(50μl/ml) with ionomycin (500μl/ml) for 3 hours at 37°C, 5% CO2.  Cytostim is an antibody-

based reagent that acts similarly to a super-antigen but independently of certain Vβ domains 

of the TcR.  Cytostim cross-links the TcR of a T cell to an MHC molecule of an antigen-

presenting cell.  SEB is an enterotoxin produced by the bacterium Staphylococcus aureus.   

The cells were collected from the plate by washing each well with cold MACS buffer (2-4°C) 

apart from if PMA/ionomycin was used in which case the cells were washed three times.  A 

pipette was used to collect as many cells as possible from the bottom of each well of a 6 well 

plate.  The cells were transferred to a 15ml tube and washed with 10ml of cold MACS buffer.  

The supernatant was carefully pipetted off to prevent cells loss.  80μl/107 cells of cold MACS 

buffer along with 20μl/107 of the cytokine catch reagent (Cytokine Secretion Assay-Cell 
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Enrichment and Detection Kit [Miltenyi Biotech, Surrey, UK]) were added to the tube.  This 

combination was mixed well and incubated on ice for 5 minutes.  If the protocol was for a 

double cytokine capture 10μl/107 was used of each capture reagent.  RPMI/10% HIFCS, that 

had been warmed for 10 minutes in a water bath at 35°C, was added to dilute the cells at 

1x105 cells/ml.  These cells were incubated for 45 minutes in the incubator, (37°C, 5% CO2) 

spinning on a MACS Rotator [Miltenyi Biotech]. 

Cells were kept on ice for 10 minutes then washed in cold MACS buffer, centrifuged (300xg, 

10 minutes, 4°C) and re-suspended in cold buffer at a concentration of 80μl/107 cells with 

20μl/107 cells of the cytokine detection antibody.  Again, if it was a double cytokine secretion 

assay 10μl/107 cells of each antibody was used (conjugated to PE, APC or FITC).  This was 

then incubated on ice for 10 minutes and a final wash step of 10mls of cold MACS buffer was 

carried out.   

At this stage the cells could either be further stained for other cell markers (e.g. CCR6, 

CD45RO) and analysed using flow cytometry or the cytokine secreting cells could be isolated.  

The cells were sorted for the cytokine positive cells using either FACS (Fluorescent Activating 

Cell Sorting) or MACS cell sorter columns.   

The stained cells were passed through a damp Pre-Separation Filter (30µm) [Miltenyi 

Biotech] in 1ml of MACS buffer and the filter was then washed with a further 1ml of MACS 

buffer.  The cells were passed through a FACS Mo-Flo Cell sorter [Beckman Coulter].  Single 

colour compensation tubes were required to compensate for fluorescence overlap.  The 

FACS uses a method of isolating individual cell into droplets and administering a charge to 
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the cells of interest depending on their fluorescent profile.  The charged cells can then be 

separated from the rest of the cells. 

 

2.4.5 Markers of Recent Activation 

Total PBMC were stained for CD4, CD45RO and either CD69 or CD71 in sterile PBS/2% BSA. 

After being left for 15 minutes on ice the cells were washed and placed in 1ml of sterile 

PBS/2%BSA.  The different populations of interest were isolated on the MoFlo Cell Sorter. 

Once sorted the cells were stimulated and stained as in Section below (Section 2.4).   

 

2.5 Surface and Intracellular Lymphocyte Staining 

2.5.1 Surface Marker Staining 

0.5x106-1.5x106 cells were re-suspended in 50μl of RPMI/10% HIFCS in a single well of a 96 

well plate.  To stimulate the cells to produce cytokine PMA and Ionomycin were both added 

at a concentration of 50ng/ml and 500ng/ml, respectively.  Only RPMI/10% HIFCS was added 

to any non-stimulated wells.  To prevent cytokine release 2μg/ml of Brefeldin A was added 

to all the wells including the non-stimulated portion.  The wells were made up to 200μl with 

RPMI/10% HIFCS or stimulation solution of PMA and ionomycin and left in the incubator at 

37°C, 5% CO2, for 3 hours.   

The plate was centrifuged for 4 minutes at 4°C and 300xg and the supernatant was flicked 

off.   Antibodies specific for surface molecules were made up to 50μl in PBS/2%BSA and 
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added to the relevant wells.  The plate was left on ice at 0-2°C, in the dark for 15 minutes.  

The wells were washed with 100μl of PBS/2%BSA and centrifuged for 4 minutes at 300xg.  

The cells were then fixed and permeabalised as detailed below (Section 2.4.2).  

Compensation beads [BD Pharmingen] were used for fluorescence compensation purposes. 

 

2.4.1.1 CCR6 Surface Staining 

When cells were stimulated with PMA/ionomycin there was a down regulation of CCR6 

expression on the surface of the cell.  To correct for this surface staining of CCR6 was done 

before and after stimulation.  PBMC were added to a plate and were centrifuge for 4 

minutes at 4°C and 300 x g and the supernatant was flicked off.   CCR6 antibody was made 

up to 50μl in PBS/2%BSA and added to the relevant wells.   The plate was kept at room 

temperature in the dark for 15 minutes.  The wells were washed with 100μl of PBS/2%BSA 

and centrifuged for 4 minutes at 300xg.  The cells were then stimulated with 

PMA/Ionomycin in the presence of Brefeldin A for 3 hours, as described above.  The cells 

were then further stained for extracellular antibodies as described above (Section 2.4.1), 

with the addition of the CCR6 antibody.  The only alteration made to the protocol was that 

the cells were incubated at room temperature, in the dark, instead of on ice.  The protocol 

for fix and permeabilisation of the cells was kept the same. 
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2.5.2 Cell Permeabilisation   

The supernatant was removed by flicking the plate and the cells were re-suspended in 50μl 

of Reaction Buffer A [FIX & PERM®, Invitrogen].  The plate was left at room temperature and 

kept in the dark for 15 minutes.  The wells were washed with 100μl of PBS/2%BSA and 

centrifuged.  The antibodies for intracellular staining were made up to 50μl using Reaction 

Buffer B [FIX & PERM®] and added to the wells.  They were left for 15-20 minutes in the dark 

at room temperature.  The wells were then washed with 100μl of PBS/2%BSA and 

centrifuged.  Once the cells had been re-suspended in 300μl of PBS/2% BSA they were then 

analysed. 

 

2.6 Flow Cytometry Analysis 

Cells were analysed by a nine colour flow cytometry on a Dako-Cyan.  Data analysis was 

carried out using Kaluza® Flow Cytometry Analysis Software from Beckman Coulter.  The 

number of events analysed per sample was between 10,000 and 500,000.  The gating 

strategy for identification of memory CD4+ and CD8+ T cells is shown in Figure 2.3.  For the 

transcription factor staining a matched isotype on the same fluorochrome and from the 

same company was used to set the negative gate. The negative gates for the cytokine 

staining were set as shown in Figure 2.4 using stained unstimulated control cells.  
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Figure 2.3 Gating strategies used to identify CD8+ and CD4+ memory T cells. (A) Live cells 
were gated by FSC vs SSC. (B) Single cells were selected by low pulse width. (C) CD4+CD8- or 
CD4-CD8+ cells were gated for and based on the different populations either (D) 
CD4+CD45RO+ expression or (E) CD8+CD45RO+ cells were analysed.    
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Figure 2.4 Cytokine unstimulated controls. PBMC were left unstimulated for 3 hours in the 

presence of Brefeldin A. All plots are gated on CD4
+
CD45RO

+
 cells. The cells were stained for 

the cytokines shown (A) GM-CSF and IL-2 (B) IL-2 and IL-5. (C) IL-17A and IL-22 (D) IL-10 and 
IFNγ and (E) IFNγ and IL-21. These plots were used to set the gates for the stimulated 
controls. Values represent percentage of cells in the gate.  
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2.7 Image Stream  

PBMC were processed as described above as appropriate, apart from the addition of Po-pro 

1 just before analysis (330nmol/500 µl - left on ice for 10 minutes).  The cells were run on 

Image StreamX [Amnis] with 10,000-100,000 cells analysed.  Data analysis was carried out 

using IDEAS® software from Amnis. 

 

2.8 Cell culture 

2.8.1 Analysis of Proliferation 

To analyse proliferation within a culture cells were pre-stained with Cell Proliferation Dye 

eFluor® 450 [eBioscience].  With every round of proliferation the cells passed on half the 

amount of dye to their daughter cells meaning the cells that have divided can be identified.  

Cells were stained following manufacturer’s instructions.  Briefly, the cells were washed 

three times in PBS to remove any serum to increase the efficiency of staining.  The cells were 

then diluted in PBS (room temperature) at a concentration of 20x106/ml.  A 20µM solution 

of Cell Proliferation Dye eFluor® 450 in PBS was made up and was mixed 1:1 with the cell 

suspension.  The suspension was vortexed and incubated in the dark at 37°C with 2% CO2 for 

10 minutes.  To stop the labelling 20ml of cold RPMI/10% HIFCS was added to the cells and 

left on ice, in the dark, for 5 minutes.  The cells were washed 3 times with RPMI/10% HIFCS 

and then transferred to culture conditions.  The analysis of proliferation was undertaken on 

the Cyan in the V1 channel.   
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2.8.2 TH17 Polarisation 

Isolated cells were washed in X-vivo/1% GPS and placed into a round bottomed 96 well plate 

at a density of 5x104 cells per well, where possible. Anti- CD3, anti-CD28 Dynal Beads 

[Invitrogen] were washed as recommended by the manufacture and placed in to the well at 

1:3 or 1:32 bead to cell ratio.  For neutral culturing conditions IL-2 at 50U/ml was added 

alongside the beads.  For TH17 polarising environment the Table 2.6 shows the cytokines 

added. 

 

 

 

 

 

Table 2.6.  TH17 polarising cytokines and the concentration within  

cultures.  All cytokines [Peprotech] have been reconstituted in PBS 

0.1% BSA.  The concentrations shown are the final concentration 

required in the culture.  

 

Cytokine Concentration 

IL-1β 10 ng/ml 

IL-2 10 ng/ml 

IL-6 20 ng/ml 

IL-23 10 ng/ml 

anti-IFNγ 100 ng/ml 

anti-IL-4 100 ng/ml 
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Cells were cultured for 5 days at 37°C, 5% CO2.  After 5 days the cells were washed, 

stimulated with PMA/Ionomycin and stained using the intracellular staining protocol. All 

TH17 polarising cultures were in x-vivo media with 1% GPS.  

 

2.9 Migration Assay 

CD4+ T cells were positively isolated from PBMC as stated above in section 2.3.2.  The CD4+ T 

cells were counted and then washed by centrifugation at 300xg for 10 minutes.  The cells 

were resuspended in RPMI/2%BSA (with GPS) at 200,000 cells/75μl.  The chemokines, CCL20 

[Peprotech] and CXCL12 [Peprotech], were diluted to the desired concentration with RPMI/ 

2% BSA.   

To set up the plate 150μl of the chemokines were added to the bottom well of the 

MultiScreen Migration Invasion and Chemotaxis Filter Plate (5.0 µm) [Millipore].  To 

equilibrate the plate and the cells they were both placed in an incubator at 37°C, 2% CO2, for 

30 minutes.  75µl of the cell suspension was slowly dribbled down the side of the top well of 

the migration plate to prevent putting force on the cells and pushing them through the top 

well membrane.  The complete plate was then placed back in the incubator at 37°C, 2% CO2, 

for two hours.   

The plate was taken apart and the liquid from the bottom and top compartments were 

carefully collected into separate tubes.  The cells from the top and bottom wells were then 

washed and added to a 96 well plate.  The collected cells were stimulated for 3 hours with 

PMA and Ionomycin in the presence of Brefeldin A, as stated above in Section 2.4.1.  The 
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cells were then stained for intracellular IFNγ and IL-17 expression and analysed using flow 

cytometry.  Counting beads were added to the flow cytometry tube to analyse the actual 

number of cells that had migrated from the top well towards the chemokine in the bottom 

well.   

2.10 Gene Expression Analysis 

2.10.1 RNA Extraction and Reverse Transcription 

RNA isolation and cDNA synthesis were performed using the µMACS One-step cDNA Kit 

[Miltenyi Biotech].  The method was performed as manufacturer’s instructions.  MoFlo 

sorted cells were washed in cold PBS and then pelleted by centrifugation at 300xg for 8 

minutes in a 1.5ml ependorff tube.  1 ml of Lysis/Binding buffer was added to the cells.   To 

reduce viscosity of the lysate, mechanical shearing of DNA was performed by forcing the 

lysate 2-3 times with maximum pressure through a 21G needle attached to a 1-5ml syringe 

so no ‘fuzzy’ material or clumps remain in the lysate.  The foam generated during lysate was 

removed by centrifuging the lysate for 1-3mins (13000xg).  At this stage the lysate was 

pelleted and stored at -70°C until needed.  The mechanical shearing was preformed again 

after the cells had been defrosted to be sure that all the cells had lysed.  The lysate was 

applied to the top of a LysateClear column and centrifuged at 13,000xg for 3 mins.  A µMACS 

column was placed in a magnetic field and rinsed with 100µl of Lysis/Binding buffer.  

Oligo(dT) Microbeads (50µl- pre 1ml lysate) were added to the lysate and mixed by pipetting 

up and down 2-3 times.  These magnetic beads bind to the polyA tail of the mRNA.  The 

lysate was added to the top of the LysateClear column resulting in the magnetically labelled 

mRNA being retained on column.  To clear off any excess DNA or proteins left on the column 
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it was rinsed with 2x200µl Lysis/Binding buffer and then rinsed with 4x 100µl Wash Buffer to 

remove further rRNA and DNA. 

 2x100µl of Equilibration/Wash Buffer was added into the column matrix.  The Lyophilised 

Enzyme Mix was then resuspended in 20µl Re-suspension Buffer (only pipette up and down 

twice) and added to the top of the column.  To avoid evaporation 1µl of the sealing solution 

was added directly on top of the column matrix.  The thermoMACS Separator was set to 

42°C and incubated for 1 hour.  Following from this 2x100µl of Equilibration/Wash buffer 

was added to the column before 20µl of the cDNA Release Solution is added.  This was 

incubated for 10mins at 42°C and then the synthesized cDNA was eluted from the column 

and collected with 50µl cDNA Elution Buffer.  The cDNA was then frozen at -70°C until it was 

used for qRT-PCR.   
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2.10.2 Real Time Quantitative Polymerase Chain Reaction (RT-qPCR) 

 
All Gene Assays were from Applied Bioscience. 

 

Gene Code Fluorochrome 

GAPDH Hs02758991_g1 VIC 

T-bet Hs00203436_m1 FAM 

RORC Hs01076122_m1 FAM 

IFNγ Hs00989291_m1 FAM 

IL-17A Hs00174383_m1 FAM 

IL-23R Hs00332759_m1 FAM 

IL-12Rβ2 Hs01548202_m1 FAM 

IL4I1 Hs00541746_m1 FAM 

IL-1R1 Hs00991002_m1 FAM 

Table 2.7 Human Gene Assays from Applied Bioscience 

 

Reactions were performed in duplex, with both GAPDH and the target gene in one well, in a 

384 well plate FastStart TaqMan® Probe Master (Rox) [Roche], a 2x concentrated master 

mix, in which 2.5μl was used.  0.35μl of the gene assay was added along with the desired 

quantity of cDNA, RNase free water was used to make the reaction volume to 5μl.   All RT-

PCR reactions were performed on the Light Cycler 480 [Roche] and analysed using the Light 

Cycler® 480 SW 1.5 software.   
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Stage/ Cycle Temperature Time Ramp Rate 

Pre-incubation 95°C 10 minute 4.4°C/s 

Amplification 

/50 Cycles 

95°C 15 sec 2.2 °C/s 

 60°C 1 minutes 4.4°C/s 

 72°C 1 sec 4.4°C/s 

Melt Curve 

/ 1 cycle 

40°C 10 sec 2.5°C/s 

 80°C 30 sec 0.6°C/s 

 40°C Hold 2 °C/s 

 40°C 10sec 2 °C/s 

Table 2.8 qRT-PCR programme on the Light Cycler 480 

 

2.10.3 Gene expression analysis 

Relative gene expression (R) was analysed using the equation below.  Ct= Cycle Threshold, 

Sample=Target gene, Control= GAPDH,  

R = 2- [ ΔCt sample – ΔCt control] 
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2.11 QuantiGene Plex 2.0 Assay, Luminex [BioPlex] 

The QuantiGene Plex 2.0 Assay [Affemetrix, Panomics] system was used to directly analyse 

the expression levels of RNA of specific genes from cell lysates.  This system allowed for the 

RNA levels of several genes to be measured in one sample without reverse transcription.  

The genes of interest were, RORC (SA-14729), Tbx21 (SA-98001), IL-17A (SA-12176), IL-17F ( 

SA-23157) , IFNG (SA-10807), RUNX1 (SA-11783), IL-12Rβ2 (SA- 45601) and IL-23R (SA-

50266).  GAPDH (SA-10001) and HPRT1 (hypoxanthine phosporibosyltransferase 1-SA-10030) 

were used as controls.   

The isolated cells were thawed and 400 cells/µl of Lysis Mixture was added directly to the 

cell pellet.  This was mixed 10-15 times and vortexed for 1 minute.  It was incubated at 50-

55°C (water bath) for 30 minutes.  After incubation the lysed cells were vortexed at max 

speed for 1 min and the viscosity was compared to the lysis mixture.  The lysate was stored 

at -80°C for later use.   
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The working bead mixture for the Luminex was made up as stated in the table below.   

Order of 
Addition 

Reagent 1 well (µl) 

1 Nuclease-free H20 5.2 
2 Lysis Mix 6.6 
3 Blocking reagent 2 
4 Proteinase K 0.2 
5 Capture beads (vortex 

before adding- 30sec) 
1 

6 2.0 Probe Set 5 
Total  20 

 

The working bead mixture was made up and vortexed for 10 seconds.  20µl was then 

pipetted into each well of the Hybridization Plate.  80µl lysate was added to each well of the 

Hybridization Plate that contained the working bead mix bringing the total volume of the 

well to 100ul.  To add a negative control to the plate a well containing 80ul of diluent Lysis 

Mixture was added to 3 wells.  The Hybridization plate was sealed using the pressure seal 

and incubated for 22 hours at 54°C at 600rpm.   

Pre-Amplifier Hybridization 

0.6ml of Wash Buffer Component 1 and 10ml of Wash Buffer Component 2 was mixed with 

189ml of nuclease free water.  Using a 15 ml tube, 36ul of 2.0 Pre-Amplifier was added to 

12ml of Amplifier Diluent.  This mixture was inverted several times to mix it, but it was not 

vortexed.   
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Wash Step 

The hybridization plate was removed from incubator and the temperature of the incubator 

was adjusted to 50°C.  The Hybridization Plate was centrifuged at 240xg for 1 minute at 

room temp and the plate seal was removed.  The mixture in each well was disrupted by 

pipetting up and down 5 times and transferred from the Hybridization Plate to a Magnetic 

Separation Plate.  The magnetic separation plate was used to wash the samples by inserting 

the plate into the hand held Magnetic plate washer.  The plate was locked into place and the 

magnetic beads were allowed to settle on the bottom of well for 1 minute.  The solution was 

removed from the wells by quickly inverting it over a sink and gently blotting onto a paper 

towel.  100µl of the 1xWash Buffer was added into each well and after 15 sec removed by 

quickly inverting the plate over the sink. Repeat this wash step twice more. 

Pre Amp Hybridization  

Using a 15 ml tube, 36µl of 2.0 Pre-Amplifier was added to 12mls of Amplifier Diluent to 

make up the 2.0 Pre-Amplifier Working Reagent.  100µl of this solution was added to each 

well of the Magnetic Separation Plate.  The plate was sealed with a foil plate sealer and 

removed from the Hand Held Magnetic Plate Washer.  The plate was vortexed at 800 rpm 

for 1 min at room temp to ensure beads were resuspended.  The plate was incubated for 1 

hour at 50°C with shaking at 600rpm.   

After 1 hour the plate was removed from the incubator, the seal removed and it was 

inserted into the Hand Held Magnetic Plate Washer.  The plate was washed as described 

above 
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Amplifier Hybridization  

To make up the 2.0 Amplifier Working Reagent 36µl of 2.0 Amplifier was added to 12ml 

Amplifier Diluent and mixed several times and 100µl was added to each well.  The plate was 

sealed with a foil plate sealer and removed from the Hand Held Magnetic Plate Washer.  The 

plate was vortexed at 800 rpm for 1 min at room temp to ensure beads were resuspended.  

The plate was incubate for 1 hour at 50°C with shaking at 600rpm.  After 1 hour the plate 

was removed from the incubator and the seal removed and inserted into the Hand Held 

Magnetic Plate Washer.  The plate was washed as described above. 

Hybridize Label Probe 

To make up the Label Probe Working Reagent 36µl of Label Probe was added to 12ml of 

Label Probe Diluent and was mixed several times.  10µl of this mixture was added to each 

well of the Magnetic Separation plate.  The plate was sealed with a foil plate sealer and 

removed from the Hand Held Magnetic Plate Washer.  The plate was vortexed at 800 rpm 

for 1 min at room temperature to ensure the beads were resuspended.  The plate was 

incubated for 1 hour at 50°C with shaking at 600rpm.  The plate was then removed from the 

incubator, the seal removed and it was inserted into the Hand Held Magnetic Plate Washer.  

The plate was washed as described above. 

To make up the SAPE Wash buffer in a 15ml tube 36µl of SAPE was added to 12ml of SAPE 

Diluent.  It was mixed well and protected from the light.  The wash steps from (A-B) were 

repeated but SAPE Wash Buffer was used instead of 1xWash Buffer. 
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Analysis 

130µl of SAPE Wash buffer was added to each well.  The plate was sealed with a foil plate 

sealer and removed from the Hand Held Magnetic Plate Washer.  The plate was vortexed at 

800 rpm for 1 min at room temp to ensure beads were resuspended.  The plate was then 

analysed immediately on Luminex.   

 

2.12 miRNA Screen 

To isolate miRNA from different samples total RNA was initially isolated, including the 

miRNA.  The miRNA was converted to cDNA using specific miRNA reverse transcription 

primers.  Because of the small quantity of sample, the miRNA then had to be amplified to 

have enough sample to run on the Microfluidic cards. 

 

2.12.1 RNA Isolation 

To isolate the RNA the mirVana™ miRNA Isolation Kit [Invitrogen] was used.  The starting 

material was cells isolated on the MoFlo cell sorter and then pelleted and frozen at -70°C.  

The cells were thawed and 500µl of the Lysis/Binding Buffer was added.  A dilution of 10 part 

lysate to 1 part miRNA Homogenate Additive was mixed.  The mixture was left on ice for 10 

minutes and then a volume of Acid-Phenol:Chloroform that was equal to the lysate volume 

before addition of the miRNA Homogenate Additive (500µl) was added.  This mixture was 

vortexed for 60 seconds and then centrifuged for 5 minutes at 10,000xg at room 
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temperature.  The aqueous and organic phases were separated.  The aqueous phase was 

kept while the organic phase was discarded.  To isolate the total RNA 1.25 parts of 100% 

ethanol was added to 1 part aqueous phase.  This mixture was added to a filter cartridge and 

centrifuged for approximately 15 sec at 10,000xg to pass the mixture through the filter.  To 

wash the RNA bound to the filter 700µl of miRNA Wash Solution 1 was added to the Filter 

Cartridge and centrifuged for 5~10 seconds at 10,000xg.  The effluent was discarded.  500µl 

of Wash Solution 2/3 was added to the filter and centrifuged for 15 sec at 10,000xg to pass 

the mixture through the filter.  This was repeated once more and after discarding the flow-

through from last wash the filter cartridge was placed back in the same collection tube and 

spun for 1 min at 10,000xg to remove any residual liquid from the filter.  The filter cartridge 

was transferred into a fresh collection tube and 100µl of pre-heated Elution Solution was 

added to the centre of the filter.  The filter was spun for 30 seconds at max speed to recover 

RNA.   The RNA was store at -20°C. 

To make it possible to use the maximum amount of RNA in the reverse transcription step a 

DNAclear™ Kit was used to reduce the volume the RNA was eluted in.  To equilibrate a Micro 

Filter Cartridge 30μL of cDNA Binding Buffer was added to a Micro Filter.  This was incubated 

for 5 minutes at room temperature.  The sample volume was brought to 100μL with 

Nuclease-free Water.  250μL of cDNA Binding Buffer was added to each sample, and mixed 

thoroughly by gently vortexing.  It was applied to the equilibrated Micro Filter Cartridge.  The 

column was centrifuged for 1 min at 10,000xg after which the flow-through was discarded.  

The Micro Filter Cartridge was washed with 500μL of cDNA Wash Buffer and again 

centrifuged for 1 min at 10,000xg.  The flow-through was discarded and the Micro Filter 
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Cartridge was spun for an additional minute to remove trace amounts of ethanol.  The RNA 

was eluted with 2 aliquots of preheated (55°C) Nuclease-free Water (2 x 8μL) in a total 

volume of 16μL.   The 8μL Nuclease-free Water was added to the filter and left for 2 min at 

room temperature and then centrifuged for 1 min at 10,000 x g.  This was repeated a second 

time and the double-stranded RNA was collected in the Micro Elution Tube. 

 

2.12.2 Reverse Transcription (RT) 

For this reaction 1-350ng of RNA was needed.  As I was unable to measure the RNA 

concentration I had to assume that the RNA isolation was efficient and that at least 1 ng/μL 

of RNA had been eluted.  The RT mix was made up according to the table below in a PCR 

tube. 

RT reaction Mix 
Components 

Volume for One Sample 
(µL) 

Megaplex RT primers (10x) 0.8 

dNTPs with dTTP (100mM) 0.2 

MultiScribe Reverse 
Transcriptase (50U/µl) 

1.5 

10x RT Buffer 0.8 

MgCl2 (25mM) 0.9 

RNase Inhibitor (20U/µl) 0.1 

Nuclease-free water 0.2 

Total 4.5 
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To the RT mixture 3µl of RNA was added bring the total volume for the reaction to 7µl.  The 

mixture was mixed well and spun briefly to collect the mixture at the bottom of the tube.  

The tube was incubated on ice for 5 minutes before being added to the thermo-cycler.  The 

conditions for the thermo-cycler are shown below.  Ramp Rate: 1.5°C/s 

Stage Temp Time 

Cycle 
(40 cycles) 

16°C 2 mins 

42°C 1 min 

50°C 1 sec 

Hold 85°C 5min 

Hold 4°C hold 

  

Once the reaction was finished the samples were then amplified straight away. 

 

2.12.3 Pre-amplification Reaction 

The pre-amplification reaction has a final volume of 25μL and contains 2.5μL RT product and 

22.5μL PreAmp reaction mix. 

PreAmp Reaction Mix 
Components 

Volume for one sample 
(µl) 

TaqMan PreAmp Master 
Mix (x2) 

12.5 

Megaplex PreAmp 
Primers (10x) 

2.5 

Nuclease-free water 7.5 

Total 22.5 
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The reaction mixture was made up in a PCR tube and mixed by inverting six times.  The tube 

was spun briefly and added to the thermo-cycler.  The conditions for the pre-amplification 

reaction were as follows: 

Ramp Rate: 1.5°C/s 
Stage Temp Time 

Hold 95 °C 10 min 

Hold 55 °C 2 min 

Hold 72 °C 2 min 

Cycle 
(12 Cycles) 

95 °C 15 sec 

60 °C 4 min 

Hold (inactivate enzymes) 99.9°C 10 min 

Hold 4°C hold 

 

Once the reaction was finished the tubes were briefly centrifuged and 75µl of 0.1XTE pH 8.0 

was added to each sample.  The Sample was kept at -70°C until the microfluidic cards were 

ready to be run.   

 

2.12.4 TaqMan MicroRNA Microfluidic Cards 

To run the samples on the array the PCR master mix was made up to which the amplified 

miRNA sample was added.  The mixture was made up in a 1.5ml micro centrifuge tube. 
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Component Volume for One Array (µl) 

TaqMan Universal PCR Master Mix No 
AmpErase UNG 2x 

450 

Diluted PreAmp product 9 

Nuclease Free water 441 

Total 900 

 

The tube was inverted six times to mix the reaction and briefly centrifuged.  To each port on 

the TaqMan MicroRNA Array 100µl was added.  The microfluidic card was centrifuged and 

then sealed.   

The TaqMan® Array Human MicroRNA Card v3.0A contained a total of 384 TaqMan® 

MicroRNA Assays.  The cards were run on the Applied Biosystems 7900HT Systems and 

analysed using the SDS software. 
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CHAPTER 3 

EXPRESSION OF LINEAGE DEFINING CYTOKINES AND 

ASSOCIATED TRANSCRIPTION FACTORS IN CD4+ T 

CELLS 

3.1 Introduction 

T helper lineage are often defined by the cytokines they express upon stimulation.  For 

example TH1 cells secrete IFNγ, TH2 cells secrete IL-5, IL-4 and IL-13, and TH17 cells secrete IL-

17A, while TH22 cells express IL-22.  At the start of this study there was emerging data 

demonstrating an element of plasticity in the cytokine a TH lineage could secrete.  CD4+ cells 

in particular, but also CD8+ T cells, have been shown in certain situations to co-express 

cytokines associated with a different lineage.  Within memory T cells there are lineage 

defining transcription factors that control the expression of these cytokines as well as other 

features (e.g.  chemokine receptors) of the different lineage.   

The aims of this chapter are: 

 to investigate the co-expression of effector cytokines within CD4+ and CD8+ T cells. 

 to phenotype the expression of these transcription factors in CD4+ T cells and 

specifically in situations in which two lineage defining effector cytokines are co-

expressed.   
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T cell phenotypes were investigated using intracellular cytokine/transcription factor staining 

and flow cytometry.  These methods allowed the analysis of cytokine(s) expressed, ex vivo, 

in single cells, and gave information about the co-expression of other elements such as 

transcription factors and surface markers.   

Additionally, a method was required to isolate viable cytokine secreting cells to analyse the 

true expression of genes at a transcriptional level.  Within the literature there were many 

who were isolating TH populations based on surface markers, such as chemokine receptors, 

or were using cultured cells, both of which often gave heterogeneous populations86,99,148,196.  

In contrast this work has used cytokine capture, a method in which pure populations of ex 

vivo cytokine secreting cells were isolated.   

 

3.2 Cytokine Production by CD4+ and CD8+ Peripheral Blood T Cells 

T lymphocytes were identified using a FS and SS gate, shown in Figure 2.3.  Single cells were 

identified using a FS and pulse width gate.  To identify the proportion of T lymphocytes that 

had encountered antigen the cells were stained for a differentially spliced isoform of CD45, 

CD45RO.  CD45 is a protein tyrosine phosphatase expressed on the surface of 

lymphocytes197.  Naïve T cells express the isoform CD45RA.  Upon antigen encounter the 

exon coding for the extracellular domain of CD45 is spliced to become the shorter CD45RO 

isoform.  This shortening may allow the TcR to more readily associate with MHC29.  

Peripheral blood mononuclear cells (PBMC) were stimulated with PMA and ionomycin.  

These two reagents activate cells non-specifically and independently of TcR stimulation, 
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ensuring that all T cells are activated.  PMA activates cells by utilising the intracellular 

signalling pathways protein kinase C, while ionomycin raises intracellular calcium (Ca2+) 

levels198.  This activation stimulates cells to produce cytokines as well as inducing 

proliferation.  Brefeldin A is a naturally produced product from fungi that inhibits proteins 

transport from endoplasmic reticulum (ER) to Golgi and induces retrograde protein transport 

from the Golgi apparatus to the endoplasmic reticulum.  Addition of Brefeldin A to the PMA 

and ionomycin treated cells leads to accumulation of cytokines inside the ER, instead of 

them being released, allowing their measurement by flow cytometry. 

Within the stimulated PBMC approximately 50% of total lymphocytes expressed CD45RO, a 

marker of antigen experienced T cells (gated for CD4+ Figure 2.3 and Figure 3.1).  Without 

stimulation CD4+ T cells did not secrete detectable cytokine ex vivo (Figure 3.1 A).  The 

majority of effector cytokines were produced by the CD45RO+ fraction except IL-2 which was 

also secreted by naïve T cells (CD45RO-) (Figure 3.1 C).  IFNγ (median % of CD4+CD45RO+ 

secreting IFNγ =29.32%, range 18.74% - 40.43%), IL-5 (0.79%, 0.14%-1.32%), IL-10 (0.93%, 

0.21%-1.37%) and IL-17A (2.27%, 1.12%-3.5%) are all effector cytokines associated with 

distinct T helper lineages (Figure 3.1 A, B).  The data shows that CD4+ T cells also secreted 

IL2, IL-22, TNF-α, GM-CSF and IL-21 (Figure 3.1 C).   
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Within the CD8+ T cell compartment IFNγ and IL-17A expression (median % of 

CD4+CD45RO+IFNγ+ cells=61.62% Range=57.66%-79.14%, median IL-17+= 0.72%, range= 

0.19%-0.85%) was detected.  IFNγ was the principal cytokine expressed by CD8+ T cells, 

though it was not restricted to CD45RO+ cells, 7.88% of CD45R0- cells expressed IFNγ.  Co-

staining for IFNγ and IL-17A identified an overlap in expression within the CD8+CD45RO+ cells 

(CD4+CD45RO+IFNγ+IL-17+=0.59% Range=0.19%-0.79%, Figure 3.2 B,C). 

 

3.3 Co-staining of Transcription Factor and Cytokine Staining in CD4+ T cells 

The three human lineage defining transcription factors T-bet, GATA-3 and RORC relate to the 

lineage TH1, TH2 and TH17, respectively 47,60,84.  Based on a matched isotype control there was 

a strong association of the TH1 cytokine, IFNγ, and transcription factor T-bet in CD4+ T cells 

(Figure 3.3 A).  Although some cells that were negative for IFNγ expressed T-bet, the highest 

expression of T-bet appeared to be in the cells that also expressed IFNγ (T-bet MFI IFNγ+ 

=6.22, MFI IFNγ-=2.52-Figure 3.3).  Very few cells that expressed IL-5 expressed levels of T-

bet at a detectable level based on the isotype (T-bet MFI IL-5+=2.45, MFI IL-5-= 2.88).  When 

staining for T-bet in the IL-17A+ population the cytokine positive cells appeared to have an 

intermediate level of expression of T-bet (T-bet MFI IL-17+=3.99, IL-17-MFI= 2.93).  

Approximately half of IL-17A+ cells appeared to have levels of T-bet above detection of the 

isotype.  Approximately 2/3 of IL-10 secreting cells expressed T-bet to a detectable degree (T-

bet MFI IL-10+=2.73, IL-10-=2.88 - Figure 3.3 B).   
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GATA-3 had a strong association with IL-5 in CD4+ T cells (Figure 3.3 C).  There were low 

levels of GATA-3 in IFNγ+ cells compared to IL-5+ cells (GATA-3 MFI IL-5+ =1.62, IFNγ+= 1.01).  

(Figure 3.3 D).   

To confirm the T-bet expression within IFNγ secreting cells and that the T-bet staining was 

within the nucleus the Image Stream technology was used to visualise T-bet staining.  

Transcription factors work through interaction with DNA affecting the transcription of genes, 

so the co-staining of these cells with a nuclear stain will give us some confidence in the 

transcription factor antibody specificity.  The Image Stream combines the fluorescence 

sensitivity of single cell analysis of the flow cytometer and the ability to produce images of 

every cell, similar to microscopy.   The processing of the PBMC cells was similar to flow 

cytometry, apart from the addition of a nuclear stain (Po-Pro 1) to allow identification of the 

nucleus on the images.  I gated on the CD4+ population (Figure 3.4 A) and analysed the 

association of IFNγ and the co-localisation of T-bet and the nuclear stain.  Analysis of T-bet 

expression using the Image Stream showed that T-bet associated with nuclear staining and 

with IFNγ (Figure 3.4 B).  In Figure 3.4 C there are representative plots of IFNγ+ cells and their 

T-bet expression.  Within a CD4+ T cell, the nucleus takes up a large percentage of the cell 

and there was only a small amount of visible cytoplasm.  However, when you compare the 

CD4 surface staining to T-bet it was clear that the T-bet staining was not at the surface.  This 

was confirmed in Figure 3.4 E as representative images of T-bet (orange) and the nuclear 

stain (green) were overlapping, indicating nuclear localisation of T-bet (yellow).  In the IFNγ- 

population the T-bet staining appears to be less intense as compared to the IFNγ+ cells, 

which supports the flow cytometry data (Figure 3.4 D).   
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RORC is the transcription factor associated with TH17 cells.  Within the literature there was 

very little flow data on RORC expression, with the preference to analyse RORC expression by 

PCR or immunofluorescence analysis.  In ex vivo PBMC, RORC expression was not detectable 

above the matched isotype control (Figure 3.5 A).  There appeared to be a shift for the IL-17+ 

cells to have higher MFI (MFI isotype IL-17+= 0.81 MFI RORC IL-17+=1.56) than the isotype 

control in the RORC channel.  When IFNγ was co-stained with RORC there also appeared to 

be a shift of the IFNγ population compared to isotype, however this was still not to a level 

that exceeded the isotype control and the cytokine negative population also appeared to 

shift (MFI isotype IFNγ+= 0.60 MFI RORC IFNγ+=0.88).   

Analysis of the co-localisation of RORC with nuclear stain in ex vivo cells using the Image 

Stream highlighted that there were very few cells in which there was a similarity in the 

positioning of the nuclear stain and RORC (Figure 3.6 A).  The localisation of RORC appeared 

to be more cytoplasmic, (Figure 3.6 C) especially when compared to localisation of CD4 

surface staining.  The IL-17 staining was also weak (Figure 3.6 B).  This suggests that the 

RORC antibody staining, at least at this level of expression, was not specific for the nuclear 

transcription factor RORC.   
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To further check if the antibody was specific, cells were cultured in TH17 polarising 

conditions in an effort to up-regulate RORC expression in TH17 cells.  Initially, isolated total 

CD4+ T cells were cultured with anti-CD3 and anti-CD28 stimulating antibodies for 3 days to 

induce proliferation.  The stimulation was removed and the cells were allowed to rest for a 

further 4 days.  The cytokines that induce TH17 differentiation are IL-23, IL-1β and IL-6.  

Various combinations of these cytokines were added to the cell culture for the full 7 days of 

culture.  A control of no cytokines and a TH1 polarising culture (+IL-12) was used to compare 

the induction of IL-17 secreting cells.  Figure 3.7 demonstrates a representative example of a 

7 day culture of CD4+ T cells, after which they were stimulated and stained for IFNγ and IL-17 

expression.  The highest percentage of IL-17+ cells occurred with IL-1β, IL-6 and IL-23 

although it was only marginally higher than the no cytokine control.  Furthermore the 

addition of IL-23 increased the percentage of IFNγ+IL-17+ cells compared to the control 

culture, whereas the addition of IL-1β, IL-6 and IL-23 reduced this percentage.  Interestingly, 

in the cultures with IL-23 or IL-1β and IL-6 there were only approximately 14% IFNγ cells, 

whereas in the IL-1β, IL-6 and IL-23, the no cytokine control and the IL-12 culture there was 

approximately 20-25% IFNγ secreting cells.  The culture of cells with IL-12 resulted in a 

reduction of IL-17 secreting cells compared to the control.   This suggest that IL-23 is an 

inducer of IL-17 expression in total CD4+ T cells, and the addition of IL-1β and IL-6 can 

increase the percentage of IL-17 secreting cells.  IL-23 also affects the stimulation of IFNγ+IL-

17+ cells, though conversely not IFNγ single secretors.  As expected TH1 polarising conditions 

was detrimental to the induction of IL-17.          
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There were variable results within the repeats of the TH17 cultures.  Figure 3.8 A was the 

IFNγ and IL-17 expression of cultured CD4+ T cells with TREG (CD4+CD25+) or with the TREG 

removed (bead isolated).  There was a significant increase in the percentage of IL-17 

secreting cells within this particular culture.  Approximately 9% of cells that expressed IL-17, 

approximately half of them also co-expressed IFNγ.  This is an increase of approximately 7% 

on the previous culture using the same culture conditions, but different donor.  Comparisons 

of the cultures with and without TREG highlighted that more memory T cells expressed IL-17 

when TREG were removed from the culture, although this was not limited to the IL-17 

population as the IFNγ+ and the IFNγ+IL-17+ population had increased in percentage as well 

(Figure 3.8 A).  Again, highlighting the variability obtained by using different donors, the 

cultures in Figure 3.8 B were the same culture conditions as in Figure 3.8 A.  The culture 

without TREG again showed poor IL-17 production, with only 0.81% of cells secreting IL-17.  

When TREG were added to the culture at a ratio of 1:100 (TREG:T effector cells),  this increase 

IL-17 production.  It also gave a slight reduction in the percentage of IFNγ+ cells, although not 

of the percentage of IFNγ+IL-17+ cells.  Following on from this when TREG were added at a 

ratio of 1:10 (TREG:T effector cells) there was again a reduction in the percentage of IFNγ+ 

cells and an increase in the percentage of IL-17+ cells, although this time the percentage of 

IL-17+IFNy+ cells also were reduced.         

After culturing CD4+CD25- cells in TH17 polarising conditions for 7 days (culture from Figure 

3.9 A), RORC expression was analysed.  Over all, compared to the isotype staining, the MFI 

for RORC in IL-17 cells increased (MFI Isotype IL-17+=0.51 MFI RORC IL-17 =5.45) (Figure 3.9 

A).  However, this increase was also seen in the negative population and in the IFNγ+ cells 
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(MFI Isotype IFNγ+=0.50 MFI RORC IFNγ+ =3.95).  (Figure 3.9 A, B).  This suggests that 

although the staining for RORC was increased after culture the staining was no more specific 

after culture than before.   

 

3.4 Optimisation of Cytokine Capture Protocol      

To further analyse the phenotype of CD4+ T helper subsets a method (Miltenyi Biotech) was 

optimised in which a bivalent antibody binds to CD45 on the surface of all lymphocytes.  The 

second binding site of the antibody is for the cytokine of interest.  In these experiments two 

bivalent antibodies were used either specific for IFNγ or IL-17.  Any cytokine that is released 

from the cell will be captured on the cells surface by the antibody.  A second, fluorescently 

labelled, antibody binds to the captured cytokine and identifies a cytokine secreting cell.  

This method is described in more detail in Figure 3.10.   

Initially, to identify the stimulation agent that would provide a balance between the most 

accurate staining of the cytokine produced by each individual cell and providing a high yield 

of cells, three methods of stimulation were tested. These were Cytostim (Miltenyi Biotech), 

Staphylococcal Enterotoxin B and PMA/ionomycin.  Cytostim is a super-antigen, which was 

used at 20µl/ml, the concentration recommended by the supplier.  It stimulates a proportion 

of CD4+ T cells by crosslinking the TcR and MHC molecules independently of certain Vβ 

domains.  Miltenyi Biotech quote that approximately 75% of CD4+ T cells unregulated CD69 

after 3 hours of stimulation with Cytostim, which increases to 90% CD69+ CD4 T cells after 6 

hours.  SEB is also a super-antigen which crosslinks MHC II and TcR. PMA and ionomycin 
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activate cells non-specifically and independently of TcR stimulation, ensuring that all T cells 

are activated.   

The results of these experiments are as follows.  Cytostim gave small percentage of IL-17 and 

IFNγ secreting cells (Figure 3.11 A) in proportion to intracellular staining (Figure 3.14 D), and 

was variable between donors.   Although the staining for IFNγ and IL-17 looked clean for SEB 

and the different populations were easily identifiable, the population of cells that were 

stimulated were small, meaning they did not give enough cells after sorting.  (Figure 3.8 B).  

Using either of these stimulation types would lead to an increased chance of the populations 

not being homogeneous, especially the IL-17+.  If only a small fraction of the IFNγ+ cells are 

labelled there is more of a chance that cells expressing IL-17 and IFNγ will be labelled for 

only IL-17 and contaminate this populations.  Due to the small percentage of IL-17 cells any 

cells contaminating this population will have a greater impact on any analysis than if IL-17 

cells contaminated IFNγ population.  Using a stimulation agent, such as PMA and ionomycin, 

which increases the labelling of IFNγ cells increases the chance of getting a pure IL-17+ 

population.   

PMA and ionomycin stimulation for cytokine capture stimulated all the cells and resulted in a 

detectable percentage of cells secreted IFNγ and IL-17 (Figure 3.8 C).  A time course was 

undertaken to optimise the time for stimulation with PMA and ionomycin.  The longer the 

cells were left to stimulate the higher the percentage of IL-17 secreting cells that were 

positively labelled.  After two hours there was very little increase in the percentage of 

positive cells for IFNγ.  However, the shift of the IFNγ cytokine capture staining towards 
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higher MFI (MFI IFNγ capture 0.5hr=0.2, 1hr=0.4, 2hr=2.25, 3hr=3.98, 4hr=5.54) identifies 

false positive staining.  The shift indicates that all the negative cells not secreting cytokine 

were picking up the excess IFNγ that was being secreted by the true TH1 cells making it hard 

to identify the true TH1 cells (Figure 3.11 D).   

The protocol was optimised to remove the negative cells picking up the IFNγ on their 

surface.  After the surface cytokine staining the cells were left in Brefeldin A for 3 hours to 

prevent release of any excess cytokine. Then the cells could be intracellularly stained in an 

effort to identify true IFNγ positive cells.   

Within the protocol there was a stage during which the cells are cultured in media to allow 

IFNγ to be captured on the cell surface (Figure 3.10 C).  To investigate if it was at this stage 

that excess IFNγ in the system was staining IFNγ- cells, the cells were cultured at different 

cell densities to identify if the false positive would dilute out (Figure 3.12 A-D).  The cells that 

were cultured at different densities did not seem to make that much difference to the 

overall capture staining sensitivity.  Diluting the cells 10 fold only increased the percentage 

of true IFNγ positive cells by 1.66%, and decreased the IFNγ false positive cells by 0.35% 

(Figure 3.12 B, D).   

The surface bivalent antibody was added to the cells in suspension for 10 minutes in a small 

volume (Figure 3.10 B).  To investigate if it was at this stage the cells were picking up excess 

IFNγ the supernatant from the cells was either removed or added to un-stimulated cells to 

identify if the negative cells picked up any IFNγ.  The data showed that adding the 

supernatant to un-stimulated cells did not result in any significant false positive staining 
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(Figure 3.13 C).  Removing the IFNγ capture-antibody supernatant from the cells seemed to 

increase the true positive staining of IFNγ cells compared to the normal capture protocol 

(Figure 3.13 A, B).  There was no non-specific binding of IFNγ (e.g.to IFNγR) to the surface of 

the cells, as there was no staining of stimulated cell without the capture antibody (Figure 

3.13 D).    

PMA and ionomycin is a strong stimulus for CD4+ T cells, one of the reasons why it was so 

useful in cytokine capture.  After stimulation the protocol from the supplier states to only 

wash the cells once before proceeding with the rest of the protocol (Figure 3.10 between 

the stages of A and B).  By washing the cells three times, to try to fully remove any excess 

PMA/ionomycin, the cells no longer produced more IFNγ after this step in the protocol.  This 

was highlighted by the lack of any intracellular staining for IFNγ (Figure 3.14 A, B) but 

appeared to bring the IFNγ background staining back to the base line.   

The final stage of optimisation of cytokine capture was to check whether the washing step 

had any effect on IL-17 staining, and also to test the effects of different fluorescence 

molecules on the intensity of the staining for IFNγ.  Using an FITC conjugated secondary 

antibody led to cleaner staining than using APC as the background was reduced (Figure 3.14 

E,F).  The washing step appeared to make no difference to IL-17 staining as there was still up 

to 1.5% IL-17 secreting cells. 
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3.5 Analysis of Co-expression of Lineage Defining Cytokines    

Multi-colour flow cytometry can stain stimulated PBMC for several different cytokines at 

once to analyse the co-expression of effector cytokines.  Furthermore, the optimisation of 

the IFNγ and IL-17 cytokine capture method allowed me to analyse the gene expression 

within small homogeneous populations of IFNγ and IL-17 secreting cells and equate it with 

the flow cytometry data.   

Using this technique there were several cytokines that were not detectably co-expressed.  

These were IL-10 and IL-17, IL-17 and IL-5 and IL-5 and IL-10 (Figure 3.15).  IFNγ appeared to 

be co-expressed with several different cytokines associated with other lineage, namely IL-5, 

IL-17A or IL-10 (Figure 3.16, 3.17, 3.18).  IFNγ and IL-5 were co-expressed by a small 

percentage of cells (IFNγ+IL-5+ median=0.09% Range= 0.1%-0.24%) (Figure 3.16 B).  The MFI 

of IFNγ was significantly reduced (p=0.006) in a cell that secretes both IFNγ and IL-5 (mean 

IFNγ MFI in IFNγ+IL-5+=66.06) compared to a single IFNγ secreting cell (mean IFNγ MFI 

IFNγ+=128.79- Figure 3.16 C).  This reduction was also found in the IL-5 MFI.  The MFI of IL-5 

was significantly reduced (p=0.015) in cells that co-expressed IFNγ and IL-5 (mean IL-5 MFI 

IL-5+=26.78) compared to cells that just secreted IL-5 (mean IL-5 MFI IL-5+=42.09-Figure 3.16 

B, C).   
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Following on from this, approximately half of the IL-10 secreting cells also co-secreted IFNγ 

(IFNγ+IL-10+ median= 0.11% range=0.01%-0.27% Figure 3.17 A, B).  However in this case the 

co-expression of IFNγ and IL-10 made no significance difference to the MFI of either 

cytokines (p≤0.05) (mean MFI of IFNγ in IFNγ+ =168.83, IFNγ+IL-10+=143.53, mean MFI of IL-

10 in IL-10+ =43.635, IFNγ+IL-10+=51.34-Figure 3.17 C).   

Co-staining for IL-17A and IFNγ gave a small but easily identifiable population of IFNγ+IL-17A+ 

cells (median=0.24% range=0.05%-0.51%, Figure 3.18 A, B).  There was a statistically 

significant decrease for IFNγ when IL-17A was co-expressed compared to single IFNγ+ T cells 

(mean MFI of IFNγ in IFNγ+ =143.72, IFNγ+IL-17+=72.36, mean MFI of IL-17 in IL-17+ =77.68, 

IFNγ+IL-17+=59.23-Figure 3.18 C).  To identify if the reduction in IFNγ was at an mRNA level 

as well as at the protein level, cytokine secreting cells were isolated using the cytokine 

capture method.  Once the cytokine secreting populations were isolated, mRNA was isolated 

from the cells and converted to cDNA.  To analyse the amount of message of each cytokine, 

qRT-PCR was undertaken.  The house keeping gene GAPDH was used to give a relative 

expression of the cytokine mRNA (Figure 3.19 A).  The lower IFNγ protein in the dual IFNγ+IL-

17+ cells was replicated at the mRNA level (Figure 3.19 B).  This showed there was no 

significant difference in the IL-17 MFI in IFNγ+IL-17+ and IL-17+ cells (Figure 3.18 C), which 

was replicated at the mRNA level (Figure 3.19 B).   
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There are 6 isoforms of IL-17, IL-17A-F.  IL-17A was expressed by CD4+ T cells with IL-17F also 

expressed, but only by a small proportion of cells.  The CD4+ T cells were analysed for IFNγ, 

IL-17F and IL-17A to identify if co-expression of IFNγ and IL-17F occurs in a similar manner to 

IFNγ and IL-17A.  Figure 3.20 A shows IL-17F was always co-expressed with IL-17A, although 

IL-17A was expressed alone.  IL-17F and IFNγ was co-expressed in a population of CD4+ T 

cells (Figure 3.20 B).  20% of cells that co-expressed IL-17A and IFNγ also co-expressed IL-17F 

(Figure 3.20 C), which was approximately the same percentage of IL-17A cells expressing IL-

17F. 

IL-21 and IL-22 have previously been described as TH17 associated cytokine before they were 

attributed to a lineage of their own116,199.  To determine how similar or different the IFNγ+IL-

17+ cells were from the IL-17+ cells, IL-21 and IL-22, as well as IL-2 and GM-CSF, were stained 

for (Figure 3.20 D).  More than 30% of both single IL-17+ and IFNγ+ IL-17+ expressed IL-21 and 

IL-22.  There was very little IL-21 or IL-22 expressing in single IFNγ+ T cells.  GM-CSF was more 

highly expressed in IFNγ+IL-17+ cells, while only 30% of IL-17+ cells and 20% of IFNγ+ cells co-

expressed these cytokines.  IL-2 was expressed in all populations, however approximately 

60% of IL-17+ and IFNγ+IL-17+ cells expressed IL-2 compared to the 40% of IFNγ+ single 

secretors (Figure 3.20 D). 

The next step was to investigate if cells that secreted two lineage defining cytokines had 

been recently activated.  This was achieved by staining for the markers CD71, which is a 

transferrin receptor that is up regulated upon activation to transport iron into the cell, and 

CD69 which plays a role in negatively regulating the activation of T cells.  CD4+ T cells 
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expressing CD45RO and CD69 (Figure 3.21 A) or CD71 (Figure 3.21 B) were isolated using the 

MoFlo cell sorter from ex vivo PBMC.  The cells could not be stimulated with PMA and 

ionomycin as this would up-regulate CD69 and CD71 expression on all cells.  The isolated 

populations were then stimulated and their expression of IFNγ and IL-17 was analysed 

(Figure 3.21).  Initially, a ratio of the percentage of IFNγ+, IL-17+ and IFNγ+IL-17+ cells in the 

CD69+ and CD69- was calculated.  The ratio for the IL-17+ and IFNγ+ populations were all 

below 1, showing that these single cytokine secreting populations were not enriched in the 

recently activated populations (Figure 3.22 A, D).  This experiment also showed that there 

was no enrichment of dual IFNγ+IL-17+ cells in the recently activated CD69+ or CD71+ 

population (Figure 3.22 A, D).  This was also the case for cells co-secreting IL-10 and IFNγ 

(Figure 3.22 B, E).  Since all the ratios for these cytokine secreting populations was less than 

1 it suggests that there was a reduction in cytokine secreting populations in CD69+ or CD71+ 

recently activated T cells. When looking at IL-5 and IFNγ expression in recently activated cells 

there appeared to be an enrichment of single IL-5 secreting cells in both the CD69+ and 

CD71+ populations, and the ratio for two out of the three replicates for IFNγ+IL-5+ in the 

CD69+ population were greater than 1 (Figure 3.22 C, F).  This result shows that dual 

cytokine secreting cells do not represent recently activated T cells.   

 

  



CD4
+ 

T Cell Cytokine and Transcription Factor Expression  

127 

 

  



CD4
+ 

T Cell Cytokine and Transcription Factor Expression  

128 

 

  



CD4
+ 

T Cell Cytokine and Transcription Factor Expression  

129 

 

3.6 Analysis of Co-expression of Lineage Defining Transcription Factors    

It is well documented that T-bet controls IFNγ secretion in CD4+ T cells47, as RORC controls IL-

17 expression84.  Flow cytometry and qRT-PCR analysis were undertaken to analyse the 

expression of these two transcription factors within the IFNγ and IL-17 secreting populations 

(Figure 3.23).  T-bet was analysed in ex vivo memory CD4+ T cells.  It showed that there was 

no significant difference in the level of T-bet protein in single IFNγ+ cells (median % T-bet+= 

81.27), compared to IFNy+IL-17+ cells (median % T-bet+=73.92).  There was a trend for a 

decrease in the mRNA levels of T-bet in IFNy+IL-17+ compared to IFNγ+ cells, however this 

was not significant.  There was a significant difference in the protein and mRNA levels of T-

bet between IFNγ+ and IL-17+ T cells (p=0.0156 - Figure 3.23 A, C).   

RORC protein analysis on in vitro cultured CD4+ T cells showed a significant reduction in the 

levels of RORC in IFNγ cells (median % RORC+ = 32.8%) compared to both IFNγ+IL-17+ and IL-

17+ T cells (median % RORC+ = 69.87%, 69.38% respectively).  The levels of RORC, both 

protein and mRNA, between IFNγ+IL-17+ and IL-17+ T cells were not different (Figure 3.23 B, 

D). 

Further protein analysis of T-bet was undertaken in IFNγ cells co-expressing IL-5 or IL-10.  

Figure 3.24 B and C highlights that even when IFNγ was co-expressed with other lineage 

defining cytokines, there was no significant difference in the levels of T-bet expressed.  This 

was also the case for GATA-3 when IL-5 was co-expressed with IL-5.   
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3.7 Discussion 

In this chapter it has been demonstrated that IL-17 can be co-secreted with IFNγ, consistent 

with published data from several groups1,144,145.  A reduction in the amount of IFNγ being 

produced by the IFNγ+IL-17+ cells compared to single IFNγ secreting cells has been identified 

in this work.  The data within this chapter supports the literature 77,116  that these cells co-

express both lineage defining transcription factors, RORC and T-bet, and are a stable 

phenotype.   Dual secreting cells are not recently activated cells, suggesting that the co-

expression of two cytokines such as IFNγ and IL-17 is not a transient phenotype.  IFNγ+IL-17+ 

cells express IL-17A, IL-17F, IL-22 and IL-21 to a similar degree to TH17 cells, but reduced IFNγ 

per cell, suggesting that these cells have a phenotype closer to a TH17 cell than a TH1.  This 

concept is supported in the literature1,144,200.    

 

3.7.1 Similarities between TH17 Cells and IFNγ+IL-17+ Cells 

TH17 cells have been implicated in several autoimmune conditions.  Additionally, JIA145 and 

Crohns disease1 patients have CD4+ T cells that co-express IFNγ and IL-17 at higher 

frequencies within affected tissues, compared to peripheral blood control cells.  Within JIA 

joints the percentage of cells that expressed CD161, IFNγ and IL-17 correlate with 

parameters of disease activity suggesting these cells were involved in the disease process.   

Within an inflammatory environment GM-CSF is thought to be a powerful inflammatory 

mediator released by TH17 cells in both health and disease.  It is thought to play a role in the 

disease pathogenesis in MS173,201,202.  It has been shown in this work that three populations 
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of CD4+ T cells, IFNγ+, IFNγ+IL-17+ and IL-17+, have the ability to secrete GM-CSF.  However, a 

higher percentage of IFNγ+IL-17+ and IL-17+ cells secreted GM-CSF compared to IFNγ+ cells.  

This identifies a similarity in the two populations (IFNγ+IL-17+ and IL-17+).   

CD4+ T cells in mice that co-secrete IFNγ and IL-17 have been shown to develop from TH17 

cells that had become responsive to environmental IL-12 (i.e.  expressed IL-12R)144.   In 

humans CD161+IL-17+IFNγ- cells cultured in synovial fluid (SF) from JIA patients acquired the 

ability to produce IFNγ.  CD161+IL-17+IFNγ- cells cultured with SF from these patients, along 

with an antibody to neutralise IL-12, resulted in reduced expression of IFNγ.  This suggests 

that in this pathogenic environment IL-12 has the ability to switch on IFNγ production in 

TH17 cells, and this plasticity in TH17 cells is a physiological phenomenon 145.  Conversely, TH1 

could not be converted to switch on IL-17 production in TH17 polarising conditions.  This 

information suggests that IFNγ+IL-17+ T cells may be more closely linked to TH17 cells than 

TH1 cells.   

This work shows that IFNγ+IL-17+ cells can co-express other TH17 related cytokines, IL-17F, IL-

22 and IL-21 to a similar degree to IL-17+ cells and to a greater extent than IFNγ+ cells.  

Annunziato et. al 1 also showed other similarities between IFNγ+IL-17+ cells and TH17 cells by 

demonstrating that human clones of IFNγ+IL-17+ cells maintained the ability to proliferate  in 

the presence of TREG suppression.  IFNγ+IL-17+ could also aid B cell class switching and had 

low cytotoxic potential similar to TH17 cells 1.   
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3.7.2 T-bet and RORC Expression in IFNγ+IL-17+ Cells 

The results shown suggest that IFNγ+IL-17+ cells have a reduced ability to secrete IFNγ 

compared to single IFNγ+ cells, whereas they are able to secrete a similar level of IL-17 to 

single IL-17+ cells.  Furthermore, there is a reduction in T-bet levels in IFNγ+IL-17+ cells 

compared to IFNγ+ cells, although this did not reach significance.  There is a strong RORC 

signal within IFNγ+IL-17+ cells.  If these cells had developed from TH17 cells the RORC 

transcriptional profile would be well established. 

Sustained stimulation of cells by IL-12 plays an important role in the development of TH1 

cells203.  As mentioned IL-12 also plays a role in IFNγ induction in TH17 cells, therefore the 

level of IL-12R expression could play a vital role in T-bet and IFNγ induction in these TH17 

cells.  The literature shows that on IFNγ+IL-17+ clones there was a similar IL-12R expression 

to IL-17+ cells1.  However, Lexberg et al 143 have revealed in mice that culturing cells makes 

TH17 cells more likely to switch on IFNγ, so using clones may not give us a clear idea of the 

true expression of IL-12R in vivo on these cells.  In equal measures, IL-23 is important for 

maintenance of a TH17 phenotype so the balance between signals from IL-12 and IL-23 may 

play an important role in the phenotype of IFNγ+IL-17+ cells.   

Transcriptional mechanisms have been identified in which the TH1 phenotype can suppress a 

TH17 profile.  T-bet has been shown to suppress RORC activity by interaction with RUNX1.  

Blocking RUNX1 mediated transactivation of RORC.  When RUNX1 was overexpressed in T-

bet expressing TH17 cells, then IL-17 expression was restored137.  Conversely, there have 

been no mechanisms identified for TH17 cells to suppress T-bet and the TH1 profile.  The 
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emergence of miRNAs offers a potential mechanism.  miR155 has been identified as playing 

a role in TH17 and TH1 induction in mice192, and miR-29ab1 has been shown to be involved in 

a negative feedback loop for T-bet and IFNγ expression191.  These are potential candidates 

that may be controlling IFNγ and T-bet expression in IFNγ+IL-17+ cells. 

 

3.7.3 Are Dual Cytokine Secreting Cells a Transitional Phenotype Induced by 

Recent Activation? 

One hypothesis was that IFNγ+IL-17+ cells acquired the ability to secrete IFNγ after re-

activation, and that the ability to co-express IFNγ was therefore a transient phenotype 

associated with TcR activation.  To test this hypothesis the recent activation status of 

IFNγ+IL-17+ cells was analysed.  The CD4+ T cells that secrete IFNγ and IL-17 were not 

enriched in recently activated populations of CD69+ or CD71+.  Furthermore, it was later 

shown Annunziato et al.  that these cells have a stable phenotype1,  as the cells could be 

cultured and cloned.  The fact that these cells up-regulate T-bet suggests that this phenotype 

is controlled at a transcriptional level.  Identification of epigenetic alterations in TH17 cells 

after IL-12 treatments suggest that IFNγ production by these cells may be a heritable, stable 

phenotype204.   

There did appear to be an enrichment of IL-5 and IFNγ+IL-5+ secreting cells in the CD69+ and 

CD71+CD45RO+ population.  In the individual donors this may be specific activation of TH2 

cells due to a recent allergic response or vaccination.  This finding would need to be 
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investigated further in healthy and atopic subjects, and in a controlled study following 

vaccination and identification of antigen-specific cells.   

When comparing the cytokine production in recently activated and non-activate CD4+ T cells 

the ratios (Figure 3.22) were less than one, with the exception of IL-5.  This result suggests 

there is a reduced cytokine production in the recently activated populations.  This may mean 

that recently activated populations, CD69+ or CD71+, are refractory to PMA/ionomycin 

stimulation that normally induces production of IFNγ, IL-10 and IL-17.  An alternative 

explanation may be that the cells are in a proliferative state and produce less inflammatory 

cytokines and more IL-2.  CD69+ and CD71+ cells may have been proliferating at the time of 

stimulation, though the levels of IL-2 were not measured in this experiment.  

If the cells are refractory to stimulation this may have consequences for the analysis of 

cytokine production using PMA/Ionomycin stimulation.  There may be other T cell 

populations present that, although not still expressing CD69 or CD71, may be refractory to 

producing cytokines following a relatively recent activation.  

A recent paper by Sallusto et al. stimulated antigen specific CD4+ TH17 cell clones with 

antigen and analysed their cytokine production over a number of days.  This highlighted that 

when T cells were specific for an antigen from C. albicans the cells produced both IFNγ and 

IL-17A.   However when the T cells were specific for an antigen from S. aureus  they 

produced IL-17 but around the day 5 mark transiently down regulated expression and up 

regulated IL-10 production147.  The CD69+ or CD71+ cells may be in this transient phase of 

cytokine down-regulation, which brings into question CD4+ T cell plasticity.  It will be 
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important in the future to identify if the dual cytokine production is a transient phenomenon 

or a committed lineage.  It may also be possible that there cells that are committed to a dual 

phenotype (e.g. TH1/TH17) may at some point transiently down regulate one cytokine and 

appear to be a single cytokine secreting cell.    

 

3.7.4 Cells that Secrete Both IFNγ and IL-5  

In mice lymphocytic choriomeningitis virus specific TH2 cells were stable when cultured in 

TH1 polarising conditions, but they could be re-programmed to secrete IFNγ upon re-

activation with LCMV.  This phenotype was maintained over several months in culture.  This 

work shows CD4+ T cells that were IFNγ+IL-5+, and expressed T-bet and GATA-3 protein to a 

similar level as single IFNγ+ and  IL-5+ cells respectively.  Also, the amount of IFNγ and IL-5 in 

cells where they were co-expressed was significantly lower than single secretors.  As I have 

shown that IFNγ+IL-5+ cells co-express T-bet and GATA-3, this might suggest a level of 

competition in the transcriptional profile of these cells.  These two lineage defining cytokines 

have been shown to compete at certain genes, including the IFNG and IL4 gene135.   

 

3.7.5 CD8+ T cell Cytokine Production  

As expected the vast majority of CD8 T cells secreted IFNγ, apart from the small but 

detectable Tc17 cells.  The Tc17, IL-17 secreting cells CD8+ T cells, were within the CD45RO+ 

population, showing Tc17 is not contained within the TEMRA population.  Within mice Tc17 

expressed CCR6, which was needed for the recruitment to the lungs205, as well as CXCR3.  
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The double secreting IFNγ+IL-17+ CD8+ T cells are more similar to Tc17 than conventional 

CD8+ T cells as neither population expressed lytic enzymes.  Again, in mice there are 

similarities in the development of Tc17 and TH17 cells, with STAT-3 activating cytokines being 

important in their induction, and RORγt being up-regulated 40,41. 

 

3.7.6 Cytokines Not Co-expressed in CD4+ T cells 

The co-expression of several cytokines was not detected.  IL-5+IL-10+ cells and IL-10+IL-17+ or 

IL-5+IL-17+ cells could not be detected in this study.  In humans TH2 cells can, under TH17 

polarising conditions, be promoted to secrete IL-17.  The IL-17+TH2 cells in humans were 

isolated based on CRTH2 and CCR6, and expressed RORC.  These cells were at an increased, 

but low, frequency in patients with atopic asthma206.  TH2 cells as well as secreting IL-5 also 

can co-secrete IL-4 and IL-13.  Although the literature identified that the CCR6+CRTH2+ cell 

also can secrete IL-5 (using ELISA), the cells were identified based on the co-secretion using 

flow cytometry of IL-4 and IL-17.  The overlap of IL-4, IL-5 and IL-13 within TH2 cells has been 

shown to not always be homogeneous207.  This suggests that if IL-4 had been stained for in 

this study there might have been some overlap with IL-17. 

In naïve human T cells that have been primed with Staphylococcus aureus pulsed monocytes, 

a reciprocal production of IL-17 and IL-10 is seen.  TH17 cells are induced by the IL-1β, IL-6 

and IL-23 produced by the S.aureus pulsed monocytes, however around 5 days after re-

activation the cells down regulate IL-17 and RORC expression. Instead up-regulate IL-10 

cytokine which is thought to be dependent on IL-2 activation of STAT-5 via CD25147,208.  This 
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suggests that in an infectious environment there may be situations in which TH17 cells can 

transiently co-express low levels of IL-10.  This would support the flow data in Figure 3.15 A 

that shows these cells are not detectable in a healthy individual.    

 

3.7.7 TH17 Cultures 

Within the TH17 polarising cultures that were used there was a significant amount of 

variability in the percentage of IL-17 secretion obtained.  Each experiment used different 

donors and was done on different days, though the culture conditions were kept the same.  

The activation strength via the TcR can make a difference to TH17 induction.  Using a low 

stimulating environment, such as low numbers of CD3/CD28 beads, leads to significantly 

more TH17 induction.  High activation leads to induction of FoxP3, transforming growth 

factor β–latency-associated peptide and inability of NAFTc1 (nuclear factor of activated T 

cells 1) to bind to the IL-17 promoter101.  Within these experiments the amount of 

stimulation occurring via CD3/CD28 antibodies was not investigated.   

Furthermore, by using total CD4+ T cells it was not clear if TH17 cells were being induced or if 

there was an expansion of a pre-existing TH17 population.  If within the cultures a pre-

existing population of TH17 cells was being expanded, and there was a difference in the 

starting population of TH17 cells of each donor, this could account for some of the 

differences in percentage of TH17 cells.  Several groups have used antigen pulsed APC to 

induce TH17 from naïve T cells which also would increase the yield of IL-17 producing cells147. 
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TREG cells have a reduced suppressive effect on TH17 cells 1,209.  Interestingly, within the 

cultures when TREG were titrated in at different ratios with effector cells, there was a 

relationship between IFNγ and TH17 production.  With more TREG added there were less IFNγ 

secreting cells, and more cells secreting IL-17.  Although this was only repeated once this 

supports TREG (CD25+) being unable to suppress TH17 cells.  Additionally, this could be due to 

the suppressive effect of TREG on the TH1 cell proliferation, resulting in less TH1 cells, and less 

IFNγ to suppress TH17 differentiation.   

In mice, due to the high level of TGF-β produced, TREG can induce IL-17 production in CD25- T 

cells in the presence of IL-6210.  Furthermore, the same TREG cultured in IL-6 rich environment 

are induced to secrete IL-17 themselves211.  Within a human system in the presence of IL-2, 

IL-15 and IL-1β TREG cells can start to secrete IL-17 and acquire CCR6 expression212.  The 

cultures shown in Figure 3.8  were not stained for FoxP3 or CCR6 so it cannot be determined 

how much the TREG added to the IL-17+ cells. 

  

3.7.8 Cytokine Capture Purity 

The cytokine capture protocol allows isolation of pure cytokine secreting cells, which have 

been used within the literature by several groups143,213,214.  Using PMA and ionomycin to 

stimulate these cells, I was able to stimulate the whole population.  However, the 

percentage of cells that were captured did not equate to the intracellular stained cells.  This 

means that there are some cells that have either been missed or mis-labelled.  The only 

population that might be contaminated to any degree would be the IL-17 cells.  If IFNγ+IL-17+ 
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cells were only labelled with IL-17, then this will contaminate the IL-17 population to a larger 

degree than if only IFNγ is picked up on the cell.  The data for IFNγ gene expression levels 

gave only a very small signal in the single IL-17 population and the error bars were small.  

This result suggests only a small level of contamination of IFNγ expressing cells in the IL-17 

population.   

Several papers that use cytokine capture to isolate IL-17 secreting cells may suffer from this 

contamination due to inappropriate stimulation.  For example, when using cytokine capture 

Unutmaz et al. stimulated their cells with anti-CD3 and anti-CD28 antibodies to isolate 

CCR6+IL-17+ and CCR6+IL-17- cells, only picking up a small percentage of IL-17 secreting cells.  

It is not possible to completely rule out that there was contamination of the CCR6+IL-17-

populations with TH17 cells.   They go on to conclude that γ-chain cytokines can induce IL-17 

expression in the CCR6+IL-17- population. They may just be expanding an already existing 

population of IL-17 secreting cells that were not detected by the cytokine capture method.  

In summary, the studies in this chapter have documented a stable population of cells that 

co-express IFNγ and IL-17 that retain features more similar to TH17 cells.  These cells have a 

strong RORC expression, and this TH17 profile may be playing a role in maintaining a lower 

IFNγ production within the cell.   
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CHAPTER 4 

PHENOTYPIC AND FUNCTIONAL FEATURES OF 

CCR6+IFNγ+ CELLS 

4.1 Introduction 

A fate-mapping model in mice has shown that cells that initially secreted IL-17 became single 

IFNγ secreting cells.  In humans there is no direct evidence this can happen.  However there 

is a population of CD161+TH1 cells that express RORC.  This information led to the hypothesis 

that these CD161+TH1  cells are differentiated from TH17 cells105,213.   

Both CD161 and CCR6 can be used as a marker for TH17 cells.  CCR6 functions as a 

chemokine receptor, giving the T cell the potential to migrate into tissues expressing CCL20.  

CD161 is expressed on NK cells and the interaction of CD161 and its ligand LLT1 inhibits NK 

cell functions.  The function of CD161 on T cells is less clear though it is thought to play a role 

in their co-stimulation7.  

CCR6 plays an important role in the initial wave of migration of inflammatory T cells into the 

CNS in multiple sclerosis.  This led to the question of whether in multiple sclerosis there is a 

populations of CCR6+TH1 cells and if they also had characteristics of TH17 cells  

The aims of this chapter are: 

 To investigate the relationship between CCR6 and CD161 and IFNγ in healthy 

controls. 
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 To characterise the phenotype of CCR6+TH1 cells in comparison to classical TH1 and 

TH17 cells. 

 To investigate if CCR6+TH1 cells are present in the blood of and CSF of MS patients.    

 

4.2 CCR6 and CD161 Expression in CD4+ Memory T cells 

Flow cytometry was used on ex vivo PBMC to investigate the relationship of the TH17 

associated markers, CCR6 and CD161, and the effector cytokines IFNγ and IL-17.  CCR6, the 

chemokine receptor associated with TH17 cells, is often used in cultures to enrich for TH17 

cells.  CD161 is considered a TH17 marker as all CD4+CD161+ cells from umbilical cord blood 

(UCB) can be converted into IL-17+ cells85.  The CCR6 staining needed to be optimised as 

upon stimulation with PMA and Ionomycin the CCR6 expression was down regulated.  It was 

noted that if the cells were pre-stained for CCR6 antibody both before and after stimulation 

(both at room temperature), the down regulation of CCR6 was not observed (Figure 4.1 A).   

The vast majority of IL-17A secreting memory CD4+ T cells expressed CCR6 (Figure 4.1 B). 

There was a high expression level of CCR6 on these cells (Figure 4.1 C).  Approximately 25% 

of IFNγ secreting memory CD4+ T cells expressed CCR6.  It was noticeable that the IFNγ MFI 

on CCR6+ cells appeared to be reduced (MFI of IFNγ in CCR6-= 3.54 CCR6+= 3.18).  The CCR6 

expression on IFNγ+ cells was reduced compared to the IL-17+ and IFNγ+IL-17+ cells (Median 

CCR6 MFI for: IFNγ+=4.69, IL-17+=14.51, IFNγ+IL-17+=10.95) although this was not a 

significant difference (p>0.05).  Cells that expressed IFNγ and IL-17 together expressed CCR6 

to a similar MFI to single IL-17 expressing cells (Figure 4.1 C). 
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Interestingly, when using this antibody and staining method, not all IL-17+ expressing CD4+ T 

cells expressed CD161.  Approximately 35% (median % CD161-IL-17+=35.44%) of the IL-17+ 

cells did not express CD161.  There was a large percentage of IFNγ+ cells that expressed 

CD161 (median=31.67%, range=7.28%-38.81%).  The CD161+IFNγ+ cells expressed a higher 

amount of IFNγ per-cell (IFNγ MFI= 4.54) than the CD161- cells (MFI=2.90) (Figure 4.1 D). 

To identify the crossover of CCR6 and CD161 in the contribution of IL-17 secreting cells, ex 

vivo PBMC were stained for CCR6 and CD161 as well as CD4 and CD45RO.  For one donor of 

CD4+CD45RO+ cells the four different populations based on CCR6 and CD161 expression were 

isolated using the MoFlo cell sorter.  The isolated cells were stimulated and stained for the 

expression of IFNγ and IL-17 (Figure 4.2).   

The results from this single experiment showed (Figure 4.2 B) that the CCR6+CD161+ and 

CCR6+CD161- populations were enriched for IL-17+ cells with respectively 14.9% and 7.95% of 

each population expressing IL-17.  Interestingly, the CCR6-CD161+ population did not express 

a substantial number of IL-17 secreting cells.  There were no IL-17 cells in the CD161-CCR6- 

population.  There were IFNγ secreting cells in all 4 populations.  The largest enrichment of 

IFNγ cells was in the proportion of CCR6-CD161+ with 64.76% of the cells secreting only IFNγ.  

The IFNγ MFI for the CD161+CCR6- population was a great deal higher than the IFNγ MFI for 

both the CCR6+ populations and the CCR6-CD161- population.  There was an enrichment of 

IFNγ+IL-17+ cells in both the CCR6+CD161- and CCR6+CD161+ populations.   

It has been shown in the literature that CD161+IFNγ+ cells express RORC at the 

transcriptional level105,213.  After identifying that all the IL-17 cells were within the CCR6 
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population and that there was a population of CD161+CCR6- cells that only expressed IFNγ, it 

was decided to reconfirm this finding.  CD161+ cells were isolated based on IFNγ and IL-17 

using cytokine capture. The gene expression of IFNγ, IL-17, T-bet and RORC were analysed in 

each population, relative to GAPDH. (Figure 4.3 A-D).   

The highest expression of the IFNγ gene was in the CD161+IFNγ+ cells, with a reduced but 

substantial expression in the CD161-IFNγ+ cells.  Similar to results in Chapter 1 (Figure 3.19 

B), the dual CD161+IFNγ+IL-17+ cells expressed lower levels of IFNγ and there was no 

detectable level of IFNγ gene expression in the CD161+IL-17+ cells (Figure 4.3 A).  There was 

a detectable level of IL-17A gene expression in the CD161+IL-17+ and CD161+IFNγ+IL-17+ 

populations (Figure 4.3 B).  There was no detectable IL-17A gene expression in the 

CD161+IFNγ+ and CD161-IFNγ+ cells, confirming expression detected at the level of protein.   

The gene expression levels for T-bet were intriguing due to the similarities in the 

CD161+IFNγ+, CD161+IFNγ+IL-17+ and CD161+IL-17+ cells.  CD161-IFNγ+ cells expressed the 

highest levels of T-bet (Figure 4.3 C).  There was considerable RORC expression in the 

CD161+IL-17+ and CD161+IFNγ+IL-17+ cells. There was equally low level of RORC in the 

CD161+IFNγ+ and CD161-IFNγ+ cells (Figure 4.3 D).  These results do not agree with published 

data. 

This data lead to the conclusion that CD161 was not specific enough in these experiments to 

identify IL-17 secreting cells and cells that expressed a ‘TH17’ gene expression profile.   
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4.3 CCR6+TH1 Cells Express the Genes RORC, IL-23R, IL4I1 and IL-12Rβ2 

A similar process of cytokine capture and cell sorting  was undertaken using CCR6 to identify 

if it made any difference which marker was used to identify TH17 cells.  The cells were 

stained for CCR6 and cytokine capture was used to identify the IFNγ and IL-17 secreting cells 

(Figure 4.4 A).  The MoFlo cell sorter was used to isolate the cells which were then analysed 

for the gene expression of IFNγ, IL-17, RORC and T-bet, relative to GAPDH.  There was a 

detectable level of IFNγ in all three IFNγ+ populations, and although not statistically 

significant there was a reduction in the IFNγ gene expression in CCR6+IFNγ+IL-17+, compared 

to CCR6+IFNγ+ and CCR6+IFNγ- cells.  This was comparable to results in the Chapter 1 (Figure 

3.19 B).   

In Chapter 1 no difference was identified in IL-17 mRNA levels between IL-17+ and IFNγ+IL-

17+ cells.  The data in this chapter however identified a reduction in the level of mRNA for IL-

17 in cells that co-expressed CCR6+IFNγ+IL-17+ compared to single CCR6+IL-17+ cells (Figure 

3.19 B).  This reduction was not statistically significant.  There was detectable expression of 

T-bet in all four populations. The T-bet mRNA expression was not significantly different in 

any population, though the highest level was in the CCR6+IFNy+IL-17+ and CCR6+IFNy+ cells, 

and there was a reduced level in CCR6-IFNγ+ cells.    

In Figure 4.4 D there was a slight increase in the expression level of T-bet in CCR6+IFNγ+ 

compared to CCR6-IFNγ+ cells.  From ex vivo PBMC the protein expression of T-bet in CCR6+ 

and CCR6- cells was analysed.  Figure 4.5 demonstrates that there was no significant 

difference in the T-bet expression at the protein level between CCR6+IFNγ+ and CCR6-IFNγ+ . 
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The principal difference when looking at the CCR6+IFNγ+ expression data, compared to the 

CD161+IFNγ+ expression data, was that RORC was detectable in the CCR6+IFNγ+ population. 

The RORC expression level in CCR6+IFNγ+ cells was detectable to a similar level to 

CCR6+IFNγ+IL-17+ and CCR6+IL-17+ cells.  In addition there was a significant difference in 

RORC expression in the CCR6+IFNγ+ cells compared to the CCD6-IFNγ+ cells (p=0.0067).  More 

gene expression was undertaken to identify if the CCR6+IFNγ+ cells expressed any other 

characteristics of TH17 cells.  

When using cytokine capture only a small number of cells can be isolated from large 

volumes of blood.  The use of qRT-PCR would only have allowed investigation of a few TH17 

related genes.  A novel method of Multiplex Gene Expression Assay using Luminex 

technology was tried.  This method measured direct RNA quantity so no reverse 

transcription was required. It also reduced the loss of RNA material through inefficient 

conversion to cDNA.  The process used luminex beads with a specific capture probe for the 

RNA sequence of interest.  Once the RNA was captured the sequence was labelled and there 

was a series of signal amplification steps (using streptavidin phycoerythrin - SAPE) to allow 

detection of the quantity of RNA for the gene expressed.  Each bead has a second distinct 

fluorochrome signature to allow detection of the different genes of interest.  As all the beads 

can be put in one well of an analysis plate less material was needed.  In principle up to eighty 

target genes can measure per well. 

Eight genes of interest were initially chosen to test the luminex technology; RORC, T-bet, IL-

17A, IFNγ, IL-17F, RUNX1, IL-12Rβ2 and IL-23R.  RUNX1 was chosen as it is known to interact 
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with RORC to aid IL-17 expression. T-bet is known to bind RUNX1 to suppress RORC 

activation137.  Finally, as IL-12 and IL-23 responsiveness is important for TH1 and TH17 

induction respectively, IL-12Rβ2 and IL-23R were chosen.  IL-12Rβ2 was chosen as this 

subunit of IL-12R is up regulated by IFNγ, while IL-12R1 is constitutively expressed by T cells.   

Figure 4.6 shows the experimental triplicates of the gene of interest relative to a reference 

gene (delta MFI of the SAPE signal).  Although all the genes gave a signal, there was a large 

variation in the triplicates resulting in large error bars. This was especially noticeable for the 

smaller CCR6+IL-17+ and CCR6+IFNγ+IL-17+ populations.  There were some similar patterns for 

T-bet, RORC, IL-17A and IFNγ compared to previous qRT-PCR data.  IL-17A and IL-17F 

expression was found in both CCR6+IL-17+ and CCR6+IFNγ+IL-17+ populations as expected 

(Figure 4.6 A, B) as was IFNγ (Figure 4.6 C).  RORC was detectable in CCR6+IFNγ+ cells, 

alongside CCR6+IL-17+ and CCR6+IFNγ+IL-17+ populations (Figure 4.6 E).  Using this method 

RUNX1 appeared to be expressed in all subsets (Figure 4.6 F).  The error bars for IL-12Rβ2 

and IL-23R were too large to make any firm conclusions about their expression.  Overall the 

method was not consistent.  Using a different control gene, HPRT, gave very different results 

(not shown).  This suggests a level of inconsistency in the experimental results.  Several 

genes that were probably important for TH17 and TH1 profiling were identified and qRT-PCR 

was used again to identify any difference in the CCR6 expressing populations.   

IL-12Rβ2, IL-23R, IL-1R1 (IL-1 receptor, type 1) and IL4I1 (interleukin 4 induced 1) were 

identified in the literature as differentially expressed in TH1 cells compared to TH17 cells105.  

IL-1R1 has been shown to be related to the ability of a CD4+ T cell to secrete IL-17103.  IL4I1 is 
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a phenylalanine oxidase that is thought to be only expressed on TH17 cells and reduces the 

cells ability to proliferate104.   The expression of these genes in CCR6+ populations was 

investigated using qRT-PCR relative to GAPDH expression.  IL-12Rβ2 was expressed to the 

highest degree in the CCR6+IFNγ+ cells.  There was low expression in the other three subsets, 

with the lowest expression in the CCR6+IFNγ+IL-17+ subset (Figure 4.7 A).  IL-23R expression 

was only detectible in CCR6+IL-17+ cells and a low but detectable expression in CCR6+IFNγ+ 

cells (Figure 4.7 B).  IL-1R1 was expressed in both CCR6+IL-17+ and CCR6+IFNγ+IL-17+ subsets, 

although on the CCR6+IFNγ+IL-17+ cells the expression was lower (Figure 4.7 C).  IL4I1 was 

expressed in all three CCR6+ subsets, although with lower expression within the CCR6+IFNγ+ 

subset (Figure 4.7 D). 

 

4.5 TH17 Related Cytokine Expression in CCR6+TH1 Cells 

IL-17F, IL-22 and IL-21 are all TH17 related cytokines and are expressed at a higher frequency 

in cells that expressed IL-17A.  To identify if any of these cytokines were more highly 

expressed in the CCR6+IFNγ+ populations, PBMC were stimulated and stained for these 

cytokines, as well as IFNγ, IL-17 and CCR6.  Approximately 30% (CCR6+ IFNγ+IL-17+ 

median=28.57%, CCR6+IL-17+ median=33.05) of the CCR6+IL-17+ and CCR6+IFNγ+IL-17+ co-

expressed IL-17F, whereas there was very low expression of IL-17F by CCR6+IFNγ+ and CCR6-

IFNγ+ cells  (Figure 4.8 A).  This was also the case with IL-22 (CCR6+IFNγ+IL-17+ 

median=32.46%, CCR6+IL-17+ median=17.20%) (Figure 4.8 B) and IL-21(CCR6+IFNγ+IL-17+ 

median=30.05%, CCR6+IL-17+=16.92% - Figure 4.8 C).   
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GM-CSF, IL-2, IL-5 and IL-10 expression was also analysed (Figure 4.9) to identify if there 

were any other similarities or differences in the other cytokines these populations secreted. 

GM-CSF was expressed across the board at a similar percentage in three of the populations.  

There was an increase in the percentage to 63.77% (median) in CCR6+IFNγ+IL-17+ cells 

(Figure 4.9 A).  The expression of IL-2 was uniform in all populations (Figure 4.9 B) and there 

was very little detectible expression of IL-10 (Figure 4.9 C) and IL-5 (Figure 4.9 D) in any of 

the populations.   

 

4.6 CCR6+TH1 Cells Express CXCR3 to the Same Level as CCR6-TH1   

CCR6 is a chemokine receptor that gives the cells the potential to migrate towards CCL20 

(also known as Macrophage Inflammatory Protein-3).  As mentioned before CCR6 is 

associated with TH17 cells while CXCR3 is a chemokine receptor associated with TH1 cells.  

Stimulated PBMC were co-stained with CCR6 and CXCR3, alongside IFNγ and IL-17 to identify 

if there was any difference in the expression of CXCR3 in CCR6+IFNγ+ cells compared to CCR6-

IFNγ+ cells.  Figure 4.10 A shows the strong co-association of IFNγ and CXCR3.  There was 

also a small subset of IL-17 secreting cells that had high expressed CXCR3, although the 

majority of cells had low CXCR3 expression.  There was a relatively even split of memory 

CD4+ T cells expressing CCR6 and CXCR3, with approximately 18% of cells co-expressing both 

chemokine receptors (Figure 4.10 B).  Figure 4.10 C shows representative plots gated on the 

CXCR3 and CCR6 expressing populations.  When gating on CCR6+ cells that do not express 

CXCR3, there was very little IFNγ expression.  There was an enrichment of IL-17 secreting 
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cells, although a large proportion of cells do not secrete either cytokine.  When gated on 

CXCR3+CCR6+ cells, there was noticeably more IFNγ secreting cells, cells expressing IL-17 

alone, and IL-17 with IFNγ.  The CXCR3+CCR6- population produced IFNγ or were IFNγ-IL-17-.  

Figure 4.10 D and E highlights that the majority of both CCR6+ and CCR6- IFNγ secreting cells 

expressed CXCR3, and to a similar level per cell.  Approximately 60% of the CCR6+IFNγ+IL-17+ 

cells expressed CXCR3, although at a lower level than single IFNγ secreting cells.   

 

4.7 CCR6+TH1 can Migrate Towards CCL20  

The levels of CCR6 expressed on CCR6+IFNγ+ cells was reduced (Figure 4.1 B) compared to IL-

17 expressing cells.  To investigate if this made a difference to the migration of CCR6 

expressing IFNγ cells, compared to IL-17 cells, a migration assay using a trans-well plate was 

set up.  Initially, to test if CCR6+ cells could be isolated before the migration assay, total CD4+ 

T cells were either stained for CCR6 or left unstained.  These were added to the top well of 

the transwell plate, while CCL20 was added to the bottom well.  A control well in which no 

CCL20 was added to the bottom well was also constructed.  After the cells were collected 

and stimulated for IFNγ and IL-17 expression the percentage migration was calculated for 

the total cells and the individual cytokine secreting populations.  Figure 4.11 A and B 

demonstrates that staining for CCR6 reduces the ability of the cells to migrate towards 

CCL20.  This reduced migration was not specific to one population.  This meant that for the 

migration assay an assumption was made that the amount of CCL20 specific migration was 

considered to be the degree of migration above medium alone. 
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A 10 fold dilution of CCL20 and CXCL12, ranging from 0 – 1000ng was added to the bottom 

wells of a migration assay.  CXCL12, the chemo-attractant for CXCR4 expressing cells, was 

used as a control, as a large percentage of cells can migrate towards CXCL12.  There was a 

background migration of total CD4+ T cells independently of any chemotactic gradient being 

added to the wells.  This was considered non-specific migration and the CCL20/CXCL12 

specific migration was considered to be anything above medium alone, indicated by the line 

across the graphs.  (Figure 4.12).  There was a gradual dose dependent increase in total CD4+ 

T cells that migrated towards CCL20.  15.40% of the CD4+ T cells migrating towards 1000ng 

of CCL20 (above baseline - Figure 4.12 A).  CXCL12 being present resulted in more CD4+ T 

cells migrating in response. Up to 58.94% (above baseline) of the CD4+ T cells migrated 

towards 100ng of CXCL12.  At 1000ng of CXCL12 there was a reduction in the percentage of 

cells that migrate (14.53% above baseline - Figure 4.12 D).  This is a known phenomenon in 

which the chemokine receptor is down regulated at high concentrations of chemokine215.  

When the cells were stimulated and stained for cytokine production there was a great deal 

of IL-17 specific migration in a dose dependent fashion.  The migration of IL-17 cells 

plateaued at 100ng and remained at approximately 48.33% above baseline at 1000ng 

(Figure 4.12 B).  There was an increase in the percentage of IL-17+ cells that migrated up to 

100ng of CXCL12.  At 100ng there were 61.34% of IL-17+ cells migrating (above baseline) 

which reduced to 11.84% at 1000ng of CXCL12 (Figure 4.12 E).  Only 17.59% of IFNγ+ cells 

migrate towards CCL20 at 1000ng (above baseline - Figure 4.12 C).  This was in the region of 

the percentage of IFNγ+ cells that expressed CCR6.  There was a large percentage of IFNγ+ 

cells that migrate towards CXCL12 at 100ng. Again there was a reduction in the percentage 
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of IFNγ cells that migrated to 1000ng (Figure 4.12 F).  Overall, these data suggest that 

CCD6+IFNγ+ cells have a similar ability as CCR6+IL-17+ cells to migrate towards CCL20.   

It has been shown above that there was less CCR6 expression on IFNγ+ cells compared to IL-

17+ T cells.  To investigate if the CCR6 expression on the IFNγ+ cells was stably expressed in 

culture, the CCR6 expression levels of the cells were analysed after 7 days in different culture 

conditions.  CCR6+ and CCR6- cells were isolated from CD4+CD45RO+ cells and cultured with 

IL-2, IL-23 or no cytokines, and with TcR stimulation.  After 7 days the CCR6 expression levels 

for all the CCR6- cells were negative, with the MFI never surpassing 0.39.  Within the CCR6+ 

population the CCR6 MFI was maintained (Figure 4.13 C).  The higher CCR6 expression is 

maintained on IL-17+ cells compared to IFNγ+ cells (Figure 4.13 D). The CCR6 expression is 

also maintained on IFNγ+ cells (Figure 4.13 E). The maintenance of CCR6 does not appear to 

be cytokine dependent.  However this is an experiment that needs repeating as there was an 

increase in CCR6 MFI compared to IL-2 and no cytokine culture in one experiment, but this 

was not seen in the second repeat.         
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4.8 Functional Consequences of IL-23R Expression on CCR6+IFNγ+ Cells 

The IL-23R gene was expressed in CCR6+IFNγ+ cells.  In an effort to confirm this expression ex 

vivo stimulated CD4+ T cells were analysed for IL-23R expression by flow cytometry.  There 

was very little detectable IL-23R expression on the CD4+ T cells.  Analyses of CD45RO 

expression showed an intermediate level of expression on the IL-23R+ cells (Figure 4.14 A).  

All the cells that expressed IL-23R were CCR6+, but these cells did not express either IL-17 or 

IFNγ (Figure 4.14 B). IL-23R expression was increased on the CD45RO+ population after 

culture with IL-1β, IL-6 and IL-23.  Approximately half of the IL-23R expression was on CCR6- 

cells.  There was a small overlap of IL-23R expression on the IL-17 and IFNγ cells (Figure 4.14 

C). 

To identify if there was any effect of IL-23 on the different populations, isolated CCR6+ IFNγ+, 

CCR6+IL-17+ and CCR6-IFNγ+ cells were cultured with IL-23 and compared to a culture with IL-

7 and IL-15.   The CCR6+IFNγ+ cells maintained their IFNγ expression, with a few cells losing 

the ability to produce IFNγ or IL-17 after stimulation.  There was conversion of the CCR6+IL-

17+ cells to secreting IFNγ with IL-17 or just IFNγ alone, but this was not differentially 

affected by IL-7/IL-15 and IL-23.  In both cultures with IL-23 and IL-7/IL-15 there were a small 

percentage of CCR6+IFNγ+ cells that secreted IL-17 (Figure 4.15).   

Data from this study (Figure 4.7 D) have shown that CCR6+IFNγ+ cells expressed IL4I1 to a 

similar level to CCR6+IL-17+ cells.  IL4I1 is a gene for secreted L-phenyl-alanine oxidase, 

associated with the reduced ability of TH17 cells to proliferate in humans104.  Cytokine 

capture could not be used to isolate the cells as they would have to be stimulated with 
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PMA/ionomycin. This stimulation has been shown to remove any effect of IL4I1 on 

proliferation.  Instead, isolated CCR6+ and CCR6- CD4+ T cells were stimulated with anti-

CD3/anti-CD28 antibody, and then cultured with either no-cytokines, IL-2 or IL-23.  

There appeared to be no difference in the proliferation between the CCR6+ and CCR6- 

populations when the cells were treated with different cytokines (Figure 4.16 A-C). There 

was a difference in the percentage of undivided cells, with a higher percentage in the CCR6- 

fraction.  It cannot be ruled out that this was due to higher mortality of the cells in the CCR6+ 

cells rather than more proliferation.   

  

4.9 CCR6 TH1 cells are Found in the CSF of MS Patients  

As previously described in Section 1.8.3, CCR6+TH17 expressing cells play an important role in 

the first wave of migration of T cells into the CNS in EAE, the murine model of autoimmune 

disease MS157.  Some TREG also express CCR6 and it has been suggested that CCR6 is involved 

in the migration of TREG into the CNS to control EAE2.  However to our knowledge there has 

been very little analysis of IFNγ expression in CCR6+ cells in RR-MS patients.  In this study the 

cellular components of the blood of 17 patients with suspected MS, 9 of which had matching 

CSF samples, was analysed. The CSF fluid was taken through a diagnostic lumbar puncture 

which meant that there was very little chance that the patient was in relapse at the time.  

The blood from 8 healthy controls was also analysed, but were not age or sex matched to 

the RR-MS patients.  Table 4.1 gives the diagnosis of the patient, received after analysis.    
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CCR6 expression was analysed alongside the IFNγ and IL-17 secretion in the CD4+ memory 

cells within each sample.   Figure 4.17 shows the CCR6 expression within the bloods of 

(Figure 4.17 B) MS and (Figure 4.17 A) healthy controls, and (Figure 4.17 C) CSF from MS 

patients. Furthermore the IFNγ and IL-17 expression in both CCR6- and CCR6+ populations 

are shown.  

Figure 4.18 A analyses the overall IFNγ and IL-17A secretion within the samples, highlighting 

that the majority of the CD4+ T cells within the CSF are IFNγ secreting.  There are very few IL-

17A secreting cells within the CSF.  There appears to be a reduction in the number of IL-17 

secreting cells in the blood of MS patients compared to controls, although not significantly 

different.  The proportion of IFNγ cells that express CCR6 was analysed.  Within the MS 

blood there was a reduced presence of CCR6+IFNγ+ cells compared to control blood (MS 

Blood, median=13.91% and range=1.47%-22.78%, Control blood, median= 37.22%, range= 

1.08%-46.60%).  Within the CSF there was a large presence of CCR6+IFNγ+ (median=44.5% of 

IFNγ cell expressing CCR6) and CCR6-IFNγ+ cells (Figure 4.17 B and Figure 4.18 B).  There was 

significantly higher percentage of CD4+CD45RO+CCR6+ cells in the CSF compared to both the 

peripheral blood of healthy and MS samples (Figure 4.17 C and Figure 4.18 C).  The MFI of 

CCR6 was similar in all the populations (Figure 4.18 D).  There was a reduction in the 

percentage of CCR6+IFNγ+ cells in the MS blood compared to healthy controls, although this 

was not significant.  However, there was a significant increase in the percentage of IFNγ cells 

expressing CCR6 in the CSF compared to matched peripheral blood of MS patients (Figure 

4.18 E).  Where there were cells that expressed IL-17 within the blood and CSF of MS 

patients, the large majority were CCR6+ (Figure 4.18 F). 
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Correlation analysis of the CCR6+IFNγ+ , CCR6+IL-17+ and CCR6-IFNγ+ populations showed that 

there was only a statistical correlation between CCR6+IFNγ+ and CCR6-IFNγ+ in healthy 

bloods, MS bloods and MS CSF (Figure 4.19 A-C).    

GM-CSF can be produced by TH17 cells and in the context of MS is thought to be one of the 

molecules that cause the pathology within the CNS.  Within TH17 cells the expression of GM-

CSF is induced by IL-23.  To identify if CCR6+IFNγ+ cells could also be a source of GM-CSF 

within the CNS the expression of this cytokine was analysed in MS bloods and CSF fluid. In 

the previous chapter it was shown that both CD4+ CCR6+ and CCR6- TH1 cells can secrete GM-

CSF (Figure 3.20 D). As expected within the blood of MS patients both CCR6+ and CCR6- IFNγ 

cells secreted GM-CSF. Roughly half of the CCR6+IFNγ+ cells secreted GM-CSF. All the IL-17+ 

cells were within the CCR6+ population and roughly half of these cells co-secreted GM-CSF 

(Figure 4.20 A, C). 

The CSF contained very few IL-17 cells, but the few cells that did secrete IL-17 were GM-CSF+.  

Of the CCR6+IFNγ+ cells roughly 60% expressed GM-CSF, while approximately 50% of the 

CCR6-IFNγ+ cells co-expressed GM-CSF (Figure 4.20 B, C).  

This data highlights that the IFNγ secreting cells within the CSF of RR-MS patients can be a 

significant source of GM-CSF, a potentially pathologically active cytokine.  
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4.10 Discussion 

4.10.1 Is CD161 or CCR6 a Better Marker for TH17 cells? 

Within the literature CCR6 and CD161 are quoted as markers for TH17 cells, although neither 

is solely specific to IL-17+ cells.  Within this study CCR6 was used to describe TH1 cells with 

‘TH17’ characteristics. However Annunziato et al. use CD161 as a marker to identify these 

cells TH1 cells.  In CD161+IFNγ+ cells Annunziato demonstrated expression of TH17 related 

genes105. The expression pattern of these genes was very similar to the gene expression data 

presented in this study in CCR6+IFNγ+ cells.  This is to be expected as on T cells there is large 

overlap of expression of CD161 and CCR6.   

From our experiments the vast majority of the CD161+CCR6- population expressed IFNγ but 

no IL-17.  The IFNγ MFI on these cells is greater than the IFNγ MFI on CCR6+ cells.  The 

difference characteristic of CD161+CCR6- cells compared to CCR6+ cells may suggest they are 

separate populations.  This is something that would be worth investigating by isolating 

CD161+CCR6-IFNγ+ and CCR6+CD161-IFNγ+ cells and identifying if there were any differences 

in T-bet or RORC expression.  The CD161+CCR6-IFNγ+ population may have been why there 

was very little RORC expression found in CD161+ cells (Figure 4.3 D).  There are variations in 

the CD161 and CCR6 expression between donors. As the experiment was only done on one 

donor this particular donor might have had a large CD161+CCR6- population.  If this 

hypothesis is right, and CD161+CCR6+ cells do not express RORC, these cells would dilute the 

RORC signal of the CD161+CCR6+ population.  From these data the CCR6 appears to be a 

better marker for TH17 cells and cells with ‘TH17’ gene expressions.            
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4.10.2 Similarities and Differences when Comparing CCR6+IFNγ+ Cells to TH17 

and TH1 Cells  

The literature suggests that TH1 cells that express the marker CD161 are derived from a TH17 

cell and are known as non-classical TH1105,213.  The hypothesis is that non-classical TH1 cells 

have lost the ability to secrete IL-17 and instead secrete IFNγ.  However, because of the 

transcriptional history, they maintain CD161 and RORC expression as well as other features 

of TH17 cells.  Within this chapter the phenotypic and functional characteristics of CCR6-IFNγ+ 

cells and CCR6+IL-17+ cells are compared to CCR6+IFNγ+ cells.  The aim was to identify 

similarities and differences in the different populations to try to better understand the 

CCR6+IFNγ+ cell.    

Wedderburn and Annunziato both showed that CD161+IFNγ+ cells express IL-23R alongside 

RORC105,213.  Annunziato went on to show that they also expressed other TH17 related 

markers (IL4I1, IL-17RE and CCR6) to a greater extent than ‘classical’ TH1 (CD161-IFNγ+)105.  

Their paper did not show the expression of these genes compared to TH17 cells.  Although 

CCR6 was used in this study to identify ‘non-classical’ TH1, the data presented in this chapter 

are very similar to Annunziato’s work.  The CCR6+IFNγ+ cells have a significantly higher 

expression of RORC compared to CCR6-IFNγ+ cells, with a comparable level of expression in 

both IL-17+ populations.  This raises the possibility that RORC, either directly or indirectly, 

may be controlling the CCR6 expression.  In RORγt-/- mice there is still CCR6 expression on 

TH17 cells.  However a RORγt/α-/- mouse does not express CCR6216, suggesting RORα may 

control or be able to replace RORγt in controlling   CCR6 expression.  There is no evidence in 
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these mice of the effects on CCR6 expression in TH1 cells.  It has not been identified if the 

CCR6+IFNγ+ cells express RORα.   

The expression level of CCR6 is lower on TH1 cells compared to TH17 cells.  Nevertheless, the 

receptor is functional on CCR6+IFNγ+ cells.  It was shown (Figure 4.13) that CCR6 expression 

was maintained in culture, though the expression level on TH1 cells after culture was still at a 

lower level compared to TH17 cells.  CCR6 expression could not be induced on CCR6- cells, 

with the culture conditions tried.  A non-coding region of the human CCR6 locus has been 

identified to be fully unmethylated in CCR6+ lymphocytes.  Even when the CCR6 expression 

was down regulated by TcR activation there was no alteration in the methylation status of 

this region, suggesting a level of stability in CCR6 expression.  In cells where CCR6 expression 

had been induced the expression was unstable217 due to the fact that the non-coding region 

was only partly demethylated.  As the expression of CCR6 on the CCR6+IFNγ+ cells was stable, 

this suggests that the methylation status of non-coding region of the CCR6 gene was 

unmethylated. 

At a transcriptional level there was expression of T-bet in all the IL-17+ and IFNγ+ CD4+ T cells 

(Figure 4.4), although notably lower in the IL-17+ cells compared to IFNγ+ cells.  As expected, 

when the protein expression of T-bet was analysed all the IFNγ+ cells had high expression of 

T-bet (Figure 4.5).  In the IFNγ- cells there was a gradual spread of expression of T-bet, not 

two distinct populations of T-bet+ and T-bet- cells.  This protein and PCR data suggests that 

most cells express some level of T-bet.  IL-17 cells that express T-bet are said to be more 

pathogenic in an EAE model218.  This raises the possibility that there is a spectrum of T-bet 
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expression in TH17 cells.  In the EAE model this gives the TH17 cells that ability to induce 

worse EAE, highlighting the expression of T-bet can change the phenotype of these cells.  

It is intriguing that the highest levels of T-bet are within the CCR6+IFNγ+IL-17+ cell and 

CCR6+IFNγ+ cells.  One possibility for this phenomenon may be that high T-bet expression is 

in response to competition with RORC.  The CCR6+IFNγ+IL-17+ cells may need a stronger T-

bet presence to express IFNγ in a dominant TH17 transcriptional phenotype.  In the 

CCR6+IFNγ+ cells higher levels of T-bet may be needed to suppress the RORC transcriptional 

profile to prevent IL-17 expression.  It would be interesting to investigate if a TH17 

phenotype would develop in a CCR6+IFNγ+ cells if T-bet was knocked-down.  

There was also expression of IL-23R, IL4I1, but not IL-1R1 in CCR6+IFNγ+ cells at a 

transcriptional level.  IL-23R expression by protein could not be detected in any IL-17+ or 

IFNγ+ cells ex vivo.  IL-23 is an important cytokine in maintaining the TH17 phenotype73.  In 

CCR6+IFNγ+ cells the binding of IL-23 to IL-23R may be maintaining the RORC expression.  T-

bet has been proposed to directly affect IL-23R expression on TH17 cells219.  T-bet expression 

was found in both populations that expressed IL-23R.  There was no detectable expression of 

IL-23R on CCR6+IFNγ+IL-17+ cells.  Conversely, in the literature IL-23R gene expression has 

been shown in IFNγ+IL-17+ cells1,220, although both of these situations were after culture.   

On naïve T cells the expression of IL-1R1 has been shown to be an important factor in the 

induction of a TH17 phenotype103.  The lack of IL-1R1 expression on the CCR6+IFNγ+ cells may 

be the reason why these cells cannot express IL-17, but due to their IL-23R can express other 



Phenotype and Function of CCR6
+
IFNγ

+
 Cells  

182 

 

TH17 related genes such as RORC.  It is important to determine if both IL-23R and IL-1R are 

functional on these cells.   

A preliminary experiment was done to see if in culture with IL-23 there was any change in 

the cytokines expressed by CCR6+IFNγ+, CCR6-IFNγ+ and CCR6+IL-17+ cells.  However, none of 

the populations were altered in culture with IL-23, compared to a culture with IL-7/IL-15 

present.  The CCR6+IFNγ+ cells, after culture, contained more IL-17 secreting cells compared 

to CCR6-IFNγ+ cells.  Also after culture there were IL-17-IFNγ+ cells in the CCR6+IL-17+ 

population.  It is very difficult, using the cytokine capture method, to be sure that a true 

homogeneous population has been isolated.  This means that in these cultures (Figure 4.15) 

it cannot be rule out that the cells that have changed phenotype were not contaminating the 

original cell population.   

IL-12Rβ2 was highly expressed on the CCR6+IFNγ+ cells.  However the levels of IL-12Rβ2 were 

on the border of detection in the other subsets studied.  This expression data mirrors 

Annunziato’s data, as there was higher expression of IL-12Rβ2 in CD161+IFNγ+ cells 

compared to CD161-IFNγ+ cells105.  The CCR6+IFNγ+ cells may need to be responsive to IL-12 

to maintain the T-bet expression as there could possibly be competition with the RORC 

transcriptional programme.  In comparison the reason there may be very little IL-12Rβ2 

expression in the CCR6-IFNγ+ cell is they express no RORC and so do not require IL-12 

signalling to stabilise T-bet expression.  IFNγ+IL-17+ cells have been shown to be induced 

from TH17 cells by IL-12 1. However, the data presented in Figure 4.7 A suggests at a 
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transcriptional level there is very little IL-12Rβ2 expression on these cells.  It is not known if 

the receptor is down regulated on the dual secreting cells once IFNγ expression is induced. 

The expression of the gene IL4I1, which codes for the secreted protein L-phenyl-alanine 

oxidase, is associated with reduced proliferative ability specifically in TH17 cells104.  The 

expressions of this molecule at a gene level in all the CCR6+ populations led to an 

investigation into whether its expression affected the proliferation of CCR6+IFNγ+ compared 

to CCR6-IFNγ+ cells.  It was not possible to directly isolate CCR6+IFNγ+ cells as cytokine 

capture involves PMA/Ionomycin stimulation, which has been shown to overcome the 

effects of IL4I1 on proliferation.  Instead, CCR6+ and CCR6- cells were isolated. Anti-

CD3/CD28 stimulating antibodies were used and their proliferative ability compared.  

Annunziato et al isolated the CD161+IFNγ-IL-17+ population and showed there was a 

significant reduction in proliferation compared to CD161-IFNγ+IL-17- cells104.  However, in the 

culture conditions used in this study there was very little difference in the proliferative 

ability of CCR6+ and CCR6- populations.  This discrepancy may have been due to the strength 

of the stimulation used.  PMA/ionomycin stimulation is strong enough to overcome the 

effects of IL4I1 which may have occurred with the amount of anti-CD3/28 used in this study.  

The CCR6+IFNγ+ cells do not express other TH17 related cytokines, such as IL-22, IL-21 and IL-

17F, to the same degree as TH17 cells.  This suggest that based on this cytokine co-expression 

data the CCR6+IFNγ+ cells are more like TH1 than TH17 cells.  In contrast, due to the 

expression of RORC, IL-23R and IL4I1, transcriptionally the CCR6+IFNγ+ cells have some 

features of TH17 cells.      
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4.10.3 Are CCR6+TH1 Cells ‘ex-TH17’ or TH1 Cells with TH17 Phenotypic 

Characteristics?  

There is a murine fate mapping model that suggest that the transition of a TH17 to a TH1 cell 

is possible in response to specific inflammatory cues.  IL-17 expressions induced the 

expression of YFP in the T cells.   After the induction of EAE there were cells that were 

negative for IL-17A protein, positive for YFP and secreted IFNγ.  Conversely, these cells were 

not found when the mice were infected with Candida albicans, a resolving model of 

inflammation.  Within the paper the level of IL-17 gene expression that was needed to 

activate the YFP expression was not determined. This means that there is no evidence that 

the YFP+ cells had been truly committed to a TH17 lineage, and not just transiently expressed 

IL-17, before switching on IFNγ expression. 

In humans it is not possible to map the development of TH17 cells.  In vitro there have been 

experiments demonstrating IFNγ expression can be induced in TH17 cells, but IL-17 

expression cannot be induced in TH1 cells221 .  Wedderburn and Annunziato both suggest 

that CD161 in humans is a marker that tracks the passage of TH17 cells to a TH1 phenotype.  

Both these papers identify RORC expression in CD161+TH1 cells105,213.  No significant 

expression of RORC was found in CD161+IFNγ+ cells in this study, although no conclusions 

can be drawn from this as it was from one donor.  As mentioned in Section 4.10.1 there is 

variation in the percentage of cells expressing CD161 and CCR6 between donors.  There 

might have been very few CCR6+ cells within the CD161+ population within this donor, 

resulting in a reduced RORC signal.          
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Wedderburn cultured CD161+TH17 cells with IL-12 and the cells were induced to secrete 

IFNγ, with a small population only secreting IFNγ.  They showed that all these cells still 

expressed CD161.  It is difficult with this type of work to ensure there is no contamination of 

the IFNγ+ cells in the population before culture.  Wedderburn et al analysed the TcR 

sequence of one donor in the different populations.  The data showed shared sequences 

between CD161+IFNγ+ cells and CD161+IL-17+ cells.  Their repertoire overlap was relatively 

low213.  This is something that could be interesting to identify if CCR6+IFNγ+ and CCR6+IL-17+ 

cells had similar TcR sequences, although it is not a conclusive test as there are situations in 

which different subsets can share TcR.  An example of this is when one cell divides and the 

two cells differentiated down different lineages.   

Overall there has not been conclusive evidence in humans that a TH17 cell can convert to 

become a full TH1 cell, that either expresses CD161 or CCR6.  The data reported here cannot 

support or refute the hypothesis that CCR6+IFNγ+ cells are ex-TH17 cells.  To support the idea 

that CCD6+IFNγ+ were related to TH1 cells there is a correlation in the percentage of 

CCR6+IFNγ+ cells and CCR6-IFNγ+ cells in both healthy controls and MS patients.  However the 

data reported here does not prove this.  It would be interesting to further look, at a 

transcriptional level, at the CCR6+IFNγ+ cells.  Methylation of genes can, in some cases, be an 

indicator of the history of the cells.  An example of this is the methylation status of the FoxP3 

gene, which can identify if a cell was a natural TREG of inducible TREG
132,222.  It would be 

interesting to investigate the methylation status of IL-17 within CCR6+IFNγ+ cells compared 

to CCR6+IL-17+ and CCR6-IFNγ+. 
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4.10.4 Multiple Sclerosis  

CCR6 is a vital molecule for the induction of EAE, in that inflammatory T cells use CCL20 to 

migrate across the choroid plexus157. It is unknown if this is also the case in MS. TH17 cells 

switch on IFNγ production in a chronic inflammatory environment145,147.  The link that was 

suggested between non-classical TH1 (CD161+IFNγ+ or CCR6+IFNγ+) and TH17 cells led to the 

hypothesis that CCR6+TH1 cells may be present in MS.   

We have shown there is a significant enrichment of CCR6+ TH1 cell in the CSF of MS patients 

compared to peripheral blood. Furthermore CCR6+IFNγ+ cells were significantly enriched 

within the CSF fluid compared to matched blood.  There could have got there in at least 

three possible ways.  Firstly, CCR6 dependent migration is said to be the first wave of 

migration of inflammatory cells into the CNS. The data presented in Chapter 4 showed that 

at least in healthy blood these cells have the potential to migrate towards CCL20 to a similar 

extent as TH17 cells.  In a CCR6-/- model of EAE there is a reduction in both IL-17 and IFNγ 

production by the cells in the brain, which is only restored with the introduction of wild-type 

CD4+ T cells157. These data suggest that CCR6 dependent migration of IFNγ cells into the CNS 

is possible.  

Secondly, the cells could have differentiated from TH17 cells that were already present in the 

CSF. To determine if this was the case the TcR pattern could be sequenced, to determine the 

overlap of TcR sequences in CCR6+TH1 and CCR6+TH17 cells.  

Thirdly, the cells could have migrated in the secondary wave of cells, independently from 

CCR6.  This would be dependent on CCR6+TH17 cells migrating in to the CNS.  Unfortunately 
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these patients were most likely in the relapsing-remitting stage of MS so there has most 

likely been inflammation in the CNS for a while.  There are CCR6- cells present in all the CSF 

samples suggesting that the BBB is already letting cells into the CNS through other migratory 

pathways.    

It has been published that there is an expansion in the percentage of TH17 cells within the 

CSF in relapse in MS patients, which is not seen in the blood 223. Unfortunately in this study 

due to timing and logistics by the time the lumber puncture samples are taken for analyses 

of the CSF the patients are most likely back in remission.  This could be why there were 

virtually undetectable levels of TH17 cells. It would be intriguing to see if there was an 

expansion in the percentage of CCR6+TH1 in relapse as well as TH17 cells, to suggest a 

common differentiation factor.  

Correlations between the cells within the CSF shown there may be a developmental 

relationship between CCR6+IFNγ+ and CCR6-IFNγ+. There was no correlation between 

CCR6+IFNγ+ and CCR6+IL-17+ cells.  However, because there were so few cells that expressed 

IL-17 in CSF any conclusions drawn from this data may be unreliable. 

The data presented in this chapter highlights that GM-CSF can be produced by the 

CCR6+IFNγ+ and CCR6-IFNγ+ CD4+ cells within the CSF of MS patients.  In CSF2-/- mice, that 

cannot produce GM-CSF, there is a reduced morbidity within an EAE model.  In another 

murine model IL-17-/-IFNγ-/- MOG-specific T cells were introduced into a wild type mice and 

EAE was induced201.  This data suggested that the cells induced disease through their 

production of GM-CSF.  
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 The production of GM-CSF by TH17 cells is part of an amplification loop for inflammation.  T-

bet is proposed to induce IL-23R expression in TH17 cells219.  IL-23 induces GM-CSF 

production in TH17 cells and in turn the GM-CSF induces IL-23 expression in APC.  Microglial 

cell activation has been shown to be GM-CSF dependent which is important for the induction 

of EAE202. It was thought that GM-CSF in TH17 cells was dependent on RORγt201, however 

RORγt-/- mice can secrete GM-CSF. TH17 cells that express T-bet have the potential to secrete 

IFNγ and it has been postulated that these are the pathogenic T cells.  TGF-β3 and IL-6 are 

thought , independently of IFNγ, to be able to induce a ‘pathogenic’ TH17 cell phenotype and 

induce EAE in mice174. IL-1β and IL-6 are said to induce TH1 and TH17 cells to secret GM-

CSF173.  

All of this data on GM-CSF uses an EAE model which is known to be strongly TH17 biased. It is 

important to recognised the there is a possibility of TH1 cells playing a role in the 

pathogenesis of this disease. If this is overlooked therapies to target TH17 cells might fall 

short of expected therapeutic value as it is not also treating TH1 cells based pathologies.  This 

data set needs to be repeated on more donors but clearly shows that TH1 cells, both CCR6- 

and CCR6+, will be a source of GM-CSF within the CNS.  

In summary this study highlights that CCR6 expression on TH1 cells distinguishes a stable 

population of TH1 cells expressing parts of a TH17 transcriptional programme.  There is no 

direct evidence that these CCR6+TH1 cells develop from either a TH1 or TH17 background.  

Further work is needed to determine the heritage of these cells.  Within the CSF of MS 

patients there is a statistical increase in the percentage of CCR6 cells compared to matched 



Phenotype and Function of CCR6
+
IFNγ

+
 Cells  

189 

 

blood.  Furthermore, there are statistically a higher percentage of CCR6+IFNγ+ cells within 

the CSF compared to the peripheral blood of MS patients.  These cells are a source of GM-

CSF within the CNS, which raises the possibility that these cells contribute to the 

pathogenesis of MS.       
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CHAPTER 5 

MICRO-RNA EXPRESSION IN CCR6+TH1 CELLS IN 

COMPARISON TO CCR6-TH1 and CCR6+TH17 CELLS  

 

5.1 Introduction 

MicroRNAs are small, endogenous, non-coding molecules that alter the expression of genes 

post-transcriptionally by targeting mRNA for degradation.  Research into these conserved 

molecules has uncovered several fundamental cellular processes that are controlled by 

microRNAs including cell proliferation, differentiation and death.  As a result, microRNAs 

have been directly implicated in the development and progression of human diseases, 

including cancer and autoimmune diseases.  The critical regulatory role of microRNAs 

suggests they offer an enormous potential for therapeutic targeting.   

MicroRNAs have been shown to play a particularly important role in relation to TH17 cells, 

especially in their differentiation.  The microRNA miR-326 mediates TH17 differentiation 

through inhibiting the expression of a negative regulator of TH17 differentiation (Ets-1)194.  

However, currently there is no known role for microRNAs in CD4+ TH plasticity. 
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Within this chapter the aims are to: 

 identify microRNAs that are differentially expressed in CCR6+IL-17+, CCR6+IFNγ+IL-17+ 

cells compared to CCR6+IFNγ+ and CCR6-IFNγ+ cells and that may play a role in 

controlling the TH17/RORC or TH1/T-bet phenotype.   

 identify microRNAs that are differentially expressed in CCR6+IL-17+, CCR6+IFNγ+IL-17+ 

and CCR6+IFNγ+ cells compared to CCR6-IFNγ+ cells and that may play a role in 

controlling the CCR6 phenotype. 

 identify microRNAs that are differentially expressed in CCR6+IL-17+ compared to 

CCR6+IFNγ+IL-17+, CCR6+IFNγ+ and CCR6-IFNγ+ cells than may play a role in controlling 

the IFNγ expression.   

There were two major challenges to achieving these aims.  Firstly as the cell populations ex 

vivo are relatively rare, only a small quantity of RNA material was available.  Secondly, there 

are now many hundreds of miRNAs that have been identified. This would have limited us to 

only analysing a few miRNAs.   

These challenges were overcome using a method of amplification of material using 

microfluidic cards, which made it possible to screen the expression levels of 384 miRNAs.  

The amplification used miRNA specific primers to amplify up only the required transcripts.  A 

microfluidic card is a 384 well card in which TaqMan miRNA Assays have been dried in the 

array well.  Up to 8 cDNA samples per array can be added to 8 loading ports, allowing 

delivery of a single sample-specific reaction mix to 48 wells. Within this screen one 

microfluidic card was used per sample.  



miRNAs Expressed in CCR6
+
TH1 and TH17 Cells 

192 

 

5.2 Data Analysis 

5.2.1. Normalising the Data  

From total PBMC from 3 different donors the CCR6+IL-17+, CCR6+IL-17+IFNγ+, CCR6+ IFNγ+, 

and CCR6-IFNγ+ populations were isolated using cytokine capture and cell sorting (Figure 4.4 

A).   

For the three different donors Figure 5.1 shows the spread of cycle values (Cp) across each 

subset.  A cycle value limit of 40 was chosen as a cut off for miRNAs that were below the 

detection limit.  The range was similar for most samples suggesting a good spread of 

expression levels in each subset.  The CCR6+IFNγ+IL-17+ population in Donor 3 does appear to 

have a very short range of expression suggesting either that this sample did not amplify well 

or that the quality of amplification was not optimum.  However the two other CCR6+IFNγ+IL-

17+ populations from the other donors have a good spread of Cp values.  The red line in 

Figure 5.1 indicates the average expression of the endogenous control, which in this 

experiment was U6 snRNA.  This is a small non-coding nuclear RNA component of U6 snRNP 

(small nuclear ribonucleoprotein), part of a larger complex involved in splicing pre-mRNA.  

There is a large variability in the expression levels of the endogenous control, suggesting that 

this is possibly not a good control to use.   

To analyse the similarity of the expression levels between the different subsets, correlation 

plots between each subset were produced.  Figure 5.2 is these plots from a representative 

donor. There is a strong positive correlation between the expressions for the miRNAs in each 

subset.  The coefficient of determination (R2) value gives a measure of the relative 
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association between different samples. R2 values of 1 means the samples exactly matched to 

each other.  All the correlations were significant, with R2 values of 0.59 and above.  However 

on some of the correlation graphs there is a shift away from the line for one population (e.g. 

in Figure 5.2 between CCR6-IFNγ+ and CCR6+IL-17+ there is a shift to the right of the line).  

Any spot that is not on the line means that there is a differential expression.  If the samples 

were not normalised, this would mean that all the miRNA would be more highly expressed in 

one sample.  

The average expression of the endogenous control was initially used to normalise the Cp 

values.  This was done to account for variation introduced to the system between samples 

and between runs.  By using this endogenous control there is an assumption that the 

expression of U6 snRNA is in no way different between the different subsets. The box and 

whisker diagrams after normalisation shows that the process has introduced more variation 

in the range of the samples (Figure 5.3).  These box and whisker plots are representative of 

all the samples run.   

Figure 5.4 shows representative correlation plots of the different subsets for Donor 1.  There 

was very little difference in the correlation of the normalised samples compared to the 

unaltered samples.  
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A second way to normalise the samples was tested to identify if this was more appropriate 

than the endogenous control.  The median of all the Cp values for a sample was used to 

normalise the sample.  The box and whisker plots showed that there was more uniformity in 

the range for the samples (Figure 5.5).  The correlations between each samples for each 

donor show a small improvement, shown by the R2 value being closer to 1. Representative 

correlations plots for Donor 1 are shown in Figure 5.6. Because of this reduced variation in 

the range of expression, it was decided use data that was normalised with the median Cp in 

the analysis.  

 

5.2.2 Differential Expression Between Subsets 

To identify the miRNAs of interest that were differentially expressed between the different 

subsets the relative expression (E) was analysed (Appendix).  The difference in normalised 

Cp between each combination of subsets was analysed (ΔCp).  The relative difference for 

each miRNA was calculated (2-ΔCp).  The miRNAs that were differentially expressed more 

than two fold between the subsets were selected (0.5 ≤ E ≤ 2).   The selected miRNAs were 

then manually checked to confirm that there was detectable expression of the miRNA in 

more than two replicates.  This gave a list of 79 miRNA that were differentially expressed 

between the different subsets (Appendix).   
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5.3 MicroRNAs Highlighted as Playing a Role in T Helper Differentiation 

Within the list of 79 miRNAs of interest were several that have previously been associated in 

the literature with TH17 or TH1 cell differentiation.  Three miRNAs, miR-155, miR-150, and 

miR- 146a193, which play a role in lymphocyte activation and differentiation, all came up in 

the screen.  miR-155 has been shown the inhibit IFNγ signalling193 and when knocked out in 

mice with EAE leads to a reduction in the severity of the disease192,224,225. The miR-155 TH17 

cells were shown to be hypo-responsive to IL-23 and had increased expression of the 

transcriptional repressor Ets-1 which reduced their pathogenic potential in EAE224. For 

effective TREG effectively suppression of TH1 cells miR-146a is an important miRNA, possibly 

due to effects on STAT-1226, a direct target.  With STAT-1 being an important factor in TH1 

induction and maintenance this microRNA could be important in TH cell induced 

inflammation.  Within this study there was expression of these three miRNAs within the 

CCR6-IFNγ+, CCR6+IL-17+ and CCR6+IFNγ+ populations.   The highest expression among them 

was within the CCR6-IFNγ+ population.  CCR6+IFNγ+ cells had roughly half the expression, and 

the CCR6+IL-17+ cells had reduced expression again (Figure 5.7 A). CCR6+IFNγ+IL-17+ and 

CCR6+IL-17+ cells had a similar level of expression of miR-150.  There was no detectable 

expression of miR-155 or miR-146a within the CCR6+IFNγ+IL-17+ cells.  

miR-181a was only detectable in CCR6-IFNγ+ cells, though at a very low level (Figure 5.8 C). 

miR-181 has been associated with modulating TcR sensitivity to antigen227. The cluster of 6 

microRNAs (miR-17-92, comprising miR-17, miR-18a, miR-20a, miR-19a, miR-19b-1, and miR-

92a-1) have been associated with the control of proliferation in cells189.  Within this screen 

miR-17, miR-19a, miR19b and miR92a were identified as differentially expressed. The 
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highest expression for all these miRNAs was within the CCR6-IFNγ+ population, with a lower 

but detectable expression within the CCR6+IFNγ+ cells. In most cases there was low but 

detectable expression of the microRNAs within the CCR6+IL-17+ population, and only miR-

19b and miR-92a had detectable expression within the CCR6+IFNγ+IL-17+ population (Figure 

5.7 B).   

Expression of miR-29a, b and c were all found in both TH1 subsets.  It is involved in the 

regulation of T-bet and IFNγ expression191 (Figure 5.7 A).  There are also several microRNAs 

that are associated with TH17 cell phenotype.  miR-21 and miR-301 were both, along with 

miR-155, shown to play a role in TH17 cells differentiation in response to MOG antigen195.  

However, neither of these miRNAs was present in this screen at detectible level the IL-17 

secreting populations.  MicroRNA-21 was detectible in CCR6+IFNγ+ and CCR6+IFNγ+ cells, 

whereas miR-301 was barely detectable in any of the different subsets (Figure 5.8 B). 

In mice overexpression of has-let-7e enhanced TH1 and TH17 cells and aggravated EAE228. 

Within the data set there was only expression of has-let-7e within the CCR6+IFNγ+ and CCR6-

IFNγ+ populations (Figure 5.8 D). 
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5.4 MicroRNAs Expressed in IL-17+ Secreting Cells 

Using information from a literature search, the remaining miRNAs were grouped based on 

their pattern of expression in the different subsets.  There were 4 miRNAs that were highly 

expressed in IL-17 secreting cells compared to the IFNγ secreting populations.  miR-184 

expression was found in both CCR6+IL-17+ and CCR6+IFNγ+IL-17+ cells. There was detectable 

expression in CCR6+IFNγ+ and CCR6-IFNγ+ cells, but it was lower than the IL-17 secreting 

populations (Figure 5.9 A).  Both miR-518 and miR-628 had similar expression patterns to 

miR-184 (Figure 5.9 C, D).  There was very high expression of miR324-3p in all the subsets.  

However, the highest level of expression was in the CCR6+IL-17+ cells (Figure 5.9 B).    

 

5.5 MicroRNAs Expressed in IFNγ+ Secreting Cells 

There were 3 miRNAs that were expressed to a similar level in both IFNγ secreting cell 

populations; miR-125a-5p, miR-195 and miR-598.  There was no detectable expression of 

any of these miRNA within the CCR6+IL-17+ or CCR6+IFNγ+IL-17+ populations (Figure 5.10 A, 

B, C).  miR-106 was expressed in CCR6+IFNγ+, CCR6-IFNγ+, and CCR6-IFNγ+ cells.  The highest 

expression was in the CCR6-IFNγ+ subsets with slightly lower expression in the CCR6+IFNγ+ 

cells.  The lowest expression of miR-106b was in the CCR6+IFNγ+IL-17+ cells.  There was no 

detectable expression within the CCR6+IL-17+ population (Figure 5.10 D).  
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5.6 MicroRNAs Expressed in CCR6- or CCR6+ Cells 

There were many miRNAs within this screen that were just expressed within the CCR6-

population.  The majority of these miRNAs were expressed at a relatively low level.  Further 

investigation will be needed to confirm that these miRNAs are solely expressed within the 

CCR6-IFNγ+ population (Figure 5.11, Figure 5.12 and Appendix).   

Interestingly, there were two miRNAs that were expressed only within the CCR6+IL-17+ and 

CCR6+IFNγ+ populations (Figure 5.13), although the replicates were not all consistent.  The 

expression within the CCR6+IL-17+ and CCR6+IFNγ+ populations of miR-136 and miR-454 were 

similar, with little or no expression in CCR6+IFNγ+IL-17+ or CCR6+IFNγ+ cells.   
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5.7 Other Expression Patterns of MicroRNAs 

There were two other detectible expression patterns that occurred within this screen.   

Firstly there were several miRNAs that were highly expressed within the CCR6-IFNγ+ 

population, with lower expression within the CCR6+IFNγ+ population, and no expression in 

either IL-17 secreting cell populations (Figure 5.14 - Appendix).  

Secondly there was high expression of the miRNAs within the CCR6-IFNγ+ populations. Again, 

there was lower expression within the CCR6+IFNγ+ but also detectable expression within the 

CCR6+IL-17+ population (Figure 5.15).     

This is only an initial screen of the expression of miRNAs within these subsets.  Having only 3 

donor’s means there is a limit to the statistical tests that can be done and the reliability of 

the data. All of the interesting and novel expression of miRNA within these subsets will need 

to be validated. Due do it being a study in humans there is not normally distributed and 

there is high variability between donors. This means that more samples would be needed to 

reach significance and the appropriate controls needed to test the reliability.  
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5.8 Discussion 

5.8.1 Normalisation and Analysis of the Data Set 

In most cases the highest expression of miRNA was in the CCR6-IFNγ+ populations.  It has to 

be noted that the CCR6-IFNγ+ population was always the largest population from the sorts.  

This could skew the data as miRNAs that only have a few copies will be amplified more 

efficiently in samples with more material.  The samples were normalised to the median 

expression to control for differences such as sample size.     

Statistical test were not undertaken on this data set.  The aim of this study was to identify 

interesting and novel miRNA which may be involved in T helper cell plasticity rather than 

finding significant differences in expression of the miRNA between subsets.  Furthermore, 

although triplicates in some setting can be sufficient to extract accurate significant data in 

this setting there were large variations between data sets.  These variations could either be 

the natural variation you get in humans or introduced by the amplification process. As this 

could not be controlled for we could not do reliable statistical test on the data set.  Further 

analysis of miRNA expression in the TH17 and TH1 subsets will be needed to confirm any 

findings from this study. 

 

5.8.2 Regulation of T Helper Cell Differentiation by Known MicroRNAs 

miR-29 plays an important role in TH1 differentiation190,191 as it negatively regulates IFNγ 

production through interactions with Epsom and T-bet.  miR-29a, b and c were expressed 

solely in the CCR6+IFNγ+ and CCR6-IFNγ+ populations.  Most of the literature only gives the 
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data on the expression of miR-23a and miR-29b.  With mice CD4+ T cells, miR-29C is not 

highly expressed190.  miR-29c was highly expressed and miR-29b had the lowest expression 

within the two IFNγ secreting populations (Figure 5.8).  miR-29c was expressed more highly 

in CCR6+IFNγ+ cell compared to CCR6-IFNγ+ cells.  Both miR-29a and miR-29b are more highly 

expressed in CCR6-IFNγ+ than CCR6+IFNγ+ cells.  Within this human system it would be 

interesting to decipher if the different forms of miR-29 had any functional consequences on 

the TH1 phenotype.  Initially the expression levels of each miR-29 form would need to be 

confirmed. Due to its role in controlling T-bet expression it might be intriguing to knock 

down miR-29 in CCR6+IFNγ+ cells to identify if this had any effects on the ‘TH17’ phenotype of 

the cell.  

The miR-17-92 cluster has a host of different effects on the T helper cell, including roles in 

proliferation189, supporting IFN-γ production and suppressing regulatory T-cell 

differentiation in the periphery229.  The miRNAs miR-17 and miR-19b have been associated 

with having a pro-TH1 influence through the antagonism of the PI3K-Akt pathway.  Within 

this screen both miRNAs were detected in the CCR6-IFNγ+ with a lower expression within the 

CCR6+IFNγ+ population. miR-19b also had low but detectible expression within both IL-17 

secreting populations.   

The miR-17-92 cluster also has effects on TFH cell development independent of its effects on 

proliferation.  What is intriguing about this is that removing the expression of miR-17-92 

cluster in TFH cells led to the expression of genes that were normally not associated with a 

TFH phenotype. These genes included TH17 and TH22 associated genes, such as CCR6, IL1R1 



miRNAs Expressed in CCR6
+
TH1 and TH17 Cells 

217 

 

and RORα.  This model showed that RORα was the direct target for miR-17-92230. The 

suppression of RORα by miR17-92 has in part controlled the CCR6 expression.   

Considering the CCR6 populations all the miR-17-92 cluster miRNAs are more highly 

expressed in CCR6- populations.  This might also explain the lower expression of this cluster 

of miRNAs within the CCR6+IFNγ+ population.  It was shown in the last chapter that these 

cells have a reduced level of CCR6 expression (Figure 4.1 C) which may in part be controlled 

by this cluster of miRNAs.  It also highlights that the expression of RORα in the CCR6+IFNγ+ 

subset might be worth investigating, as it may control the CCR6 levels.  hsa-let-7f is involved 

in IL-23R expression231. There was no detectable expression of hsa-let-7f in any of the 

subsets analysed.  

The role of miR-155 within the immune system has been well characterised. It appears to 

have many different methods of action within a range of both innate and adaptive immune 

cells.  Within T cells miR-155 has been shown to be important in the expression of IFNγRβ.  

This  miRNA has been shown to down regulate the expression of the receptor early on in TH1 

cell differentiation.  This suggests a potential role for miR-155 in controlling the pace of 

differentiation of TH1 cells193.     

Within this data set it would appear that the expression of miR-155 is highest in classical TH1 

cells (CCR6-IFNγ+) cells.  When overexpressed in mice miR-155 has been shown to promote a 

TH1 response.  One target for miR-155 is SOCS1.  A high level of SOCS1 is known to suppress 

TH1 response and promote TH2 differentiation, but also suppress TH17 and TREG 

differentiation232.   
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Within TH17 differentiation miR-155 is involved in the regulation of Ets-1, a negative 

regulator of TH17 differentiation.  This miRNA is also shown to correlate with IL-23R 

expression.  There was expression of miR-155 in both the subsets in which IL-23R gene 

expression was found in Chapter 4 (namely CCR6+IL-17+ and CCR6+IFNγ+).  Further work is 

needed to identify the true targets of miR-155 in these different subsets in humans.  

miR-326 also targets the negative regulator of TH17 differentiation, Ets-1194.  In this data set 

there was no detectable expression of miR-326 in any of the subsets analysed.  miR-301a 

also enhances TH17 induction by targeting an inhibitor of STAT-3195.  miRNA was not highly 

expressed in any of the subsets in this screen, although in contrast to the literature194 it was 

detected in the CCR6-IFNγ+ population.    

 

5.8.3 Identification of Novel miRNA in T Helper Cell Subsets 

MicroRNAs are involved in fundamental cellular processes, such as proliferation and death, 

in many different cell types.  As a result, microRNAs have been directly implicated in the 

development of many cancers. The majority of the other differentially expressed miRNAs 

identified in this screen have at some point been implicated in controlling cancer, and a few 

target molecules have been identified which the miRNA bind to.  In relation to the T helper 

subsets in this screen there is limited data.  The next step  in future work would be to 

validate the expression of the miRNAs on samples that have not been amplified using qRT-

PCR.  Using a system to knock-down the miRNA within the T cells could also be used to 

identify if the miRNAs have a significant impact on the cell phenotype. 
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The miRNAs that were highly expressed within IL-17 secreting cells were miR-184, miR-324-

3p, miR-518d and miR-628-5p.  miR-184 was expressed in both IL-17 secreting subsets.  It 

has been suggested in mice that this controls the differentiation and proliferation of adult 

neural stem cells233.  Within the stem cells high levels of miR-184 promote proliferation but 

prevent differentiation233.  miR184 has been identified as targeting the nuclear factor(s) of 

activated T cells-1 (NFAT1) protein through its complementary sequence binding with 

NFATc2 mRNA (without transcriptional degradation).  Expression of miR-184 in CD4+ T cells 

from the UCB has been associated with reduced inflammatory cytokine expression in these 

cells due to lower NFAT-1 expression234.  A further target on miR-184 was found to be the 

microRNA miR-204. Interaction of these two miRNA led to increased SHIP2 expression in 

keratinocytes235 and resulted in increased proliferation.  Although direct targets for miR-324 

and miR-518b have not been identified they are thought to be oncogenes.  When expressed 

they suppress the proliferation of different cells types.  It is known that TH17 cells have 

reduced proliferative ability103 so it may be possible that these miRNA are also involved in 

controlling the proliferation within the T cell subsets.  Finally miR-628-5p has been 

associated with acute myeloid leukaemia and was up-regulated in response to GM-CSF, IL-3 

or G-CSF236.  One of the highly conserved predicted targets of miR-628-5p is Foxo3/Foxo3a. 

Within the miRNAs expressed exclusively in the TH1 cells, both CCR6- and CCR6+, some have a 

role in aiding the immune cells in protecting against infection. miR-125a-5p has been 

identified in the human liver to have an anti-viral role against HBV237.  miR-598 has been 

postulated to be involved in the repair of lymphocytes after ionising radiation238. Aberrant 

expression of miR-195 has been associated with several different types of cancer. miR-106b 
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has an role in targeting Smad7 signalling to activate TGF-β signalling specifically in the setting 

of cancer239.  TGF-β is known to be involved in differentiation of T helper cells, especially TREG 

and TH17 cells, although not specifically TH1 cells.   

There were only two miRNAs that were associated with CCR6+ cells. These were miR-136 and 

miR-454.  miR-136 targets Bcl-2 and AEG-1 within glioma240, which are anti-apoptotic genes. 

miR-454 was a candidate miRNA found to be differentially expressed in the plasma of MS 

patients compared to controls.  miR-454 was also differentially expressed in MS patients at 

different stages of disease suggesting a possible role in the progression of MS241. This would 

be an interesting candidate to take further considering that CCR6 is involved in T cell 

migration into the CNS in MS157.  

In summary, within this chapter miRNAs that are differentially expressed between CCR6+IL-

17+, CCR6+IFNγ+IL-17+, CCR6+IFNγ+, and CCR6-IFNγ+ cells have been identified.  Using 

amplification of material and microfluidic cards has allowed analysis of the expression of 

over 300 miRNA in very small subsets of cells.  Several miRNAs highlighted from this screen 

had previously been associated with TH differentiation such as miR-155 and miR-29.  Other 

miRNA that were expected to be differentially expressed were not, such as miR-326 involved 

in TH17 differentiation194.  Novel miRNAs that have not previously been associated with TH 

differentiation have also been identified.  The next stage for this screen will be to validate 

the expression of the miRNAs of interest using samples that have not been amplified. As the 

validation process has not yet been carried out, it cannot be ruled out that the amplification 

process has affected the expression levels in some samples.  
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CHAPTER 6 

GENERAL DISCUSSION 

6.1 Summary 

The identification of TH1 and TH2 cells by Mosmann and Coffman43 led to the recognition that 

CD4+ T cells could differentiation down separate lineages.  Since this discovery several other 

subsets of TH cells have been identified, in the most part defined by the effector cytokines 

produced and the lineage defining transcription factor expressed (Figure 1.1).  The different 

TH phenotypes all play a part in controlling unwanted infection within the body. An example 

of this is TH1 cells which are vital for immunity against intra-cellular infection.  They produce 

IFNγ that drives the activation of macrophages.  This phenotype is controlled by T-bet, the 

TH1 lineage defining transcription factor47,52.  TH17 cell are important primarily for protection 

against fungal infections but also play a role in protection against some extracellular 

bacterial infections.  They produce IL-17 and control neutrophil activity.  The lineage defining 

transcription factor that is involved in the induction and maintenance of the TH17 phenotype 

is RORC86.   

Although TH1 and TH17 cells are very distinct lineage with discrete properties, it has now 

been demonstrated that there are cells that have features and functions of both 

phenotypes.  At the start of this study there was very little known about TH17 cells and their 

ability to co-express IFNγ.  IFNγ+IL-17+ cells have now been characterised, both within this 

study and in the literature1,145,200,221.  However there are still questions to be answered as to 
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the level of plasticity exhibited by these T cells and in what situations they play an important 

role.  

There are several groups now suggesting that TH17 cells can fully convert to TH1 cells.  CD161 

has been suggested as a marker for TH1 cells that have a TH17 heritage105, though this has 

not been proven directly in humans.  The data presented in this study has identified a novel 

subset of TH1 cells that express functional CCR6 and have other features of a ‘TH17’ 

transcriptional profile, although no IL-17 expression.   

Multiple sclerosis affects 2.5 million people worldwide.  If severely affects patient’s quality of 

life and reduces their life expectancy.  Both TH1 and TH17 cell are important in the initiation 

and maintenance of the disease242,243.  Data from this study has demonstrated that CCR6+TH1 

cells are present in the CSF of MS patients. The literature has shown the presence of TH1 

cells with TH17 phenotypic markers in the joints of arthritis patients213.  It will be important 

to understand if CCR6+TH1 cells play a role in the pathogenesis of MS.    

 

6.2 Strength and Limitations of the Study 

Investigating the biology of TH cells within the human system lends this study both strengths 

and limitations.  These are highlighted when this study is compared to murine studies of TH 

cell plasticity and the murine model EAE.  There are variations between human individuals 

that cannot be controlled for in the same way as in murine experiments.  These variations 

are introduced both by genetic and environmental factors which in mice are tightly 

controlled. In humans it is not possible to control for these variations without using very 
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large cohorts of samples.  This study only uses a small number of patients and controls.  This 

leads to a lack of statistical significance in much of the data, such as in the miRNA study and 

some of the qRT-PCR data.  To confirm the results further work will be needed to consolidate 

the findings.  

In contrast to this however the use of human system means that the data is directly relevant 

and useful, especially in the study of MS.  Murine models, although related to human 

immune system, are not the same, so findings may not translate to human disease.  

Although EAE does have characteristic of MS it is by no means a true representation.  The 

requirement of an adjuvant to initiate EAE is one example that may be skewing the 

inflammatory process in this model.  To initially find an interesting subset of TH cells within 

the human system means it is a realistic therapeutic target to treat MS or other 

inflammatory diseases in humans.  Human samples can be difficult to obtain, as they require 

ethical approval and consenting patients.  The data from this study should be added to the 

pool of already published data on T cell plasticity and information on CSF T cell subsets.   

A further strength of this study is that it uses ex vivo populations of cells.  This highlights how 

the technology in this area is rapidly developing. The ability to isolate very small but pure 

populations of viable cytokine secreting T cells means that more reliable ex vivo analysis of 

the different cells types can be undertaken.   At the start of the study a lot of the information 

in the literature about plasticity in TH1 and TH17 cells was based on in vitro and clone 

systems.  TH17 cells in culture appear to become more plastic with the up regulation of IL-

12R, suggesting cultured cell may have altered biology to ex vivo cells.  Throughout this study 
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all the transcriptional analysis was done on ex vivo populations suggesting this is a true snap 

shot of the genes expressed by these cells in the body.     

Finally the use of PMA and ionomycin to stimulate cells to produce cytokines is a limitation 

of this study.  There can be no certainty that stimulating cells by bypassing the antigen-TcR 

pathway gives a true representation of the cell’s cytokine secreting potential.  This study has 

identified that there was less cytokine produced by recently activated T cells when they 

were stimulated by PMA/ionomycin than cells that had not been recently activated.  It is 

difficult to say if this phenomenon is real or an artefact of PMA/Ionomycin stimulation.  

Using antigen specific stimulation would not be a viable option in this human study as there 

are so few antigen specific cells. Many papers use antigen stimulation by using clones.  It was 

felt in this study that this would lead to undesirable consequences with the gene expression 

within these cells.   

Overall in this study there are some interesting, novel findings about T helper cell plasticity, 

both in health and disease. However further research is needed to confirm the relationship 

in humans between TH17 and TH1 cells, and their potential role in MS.  

 

6.3 Identification of TH17-like TH1 Cells 

 
As mentioned in Section 4.10.1 there is evidence in Chapter 4 that CCR6 may be a better 

marker to identify cells with a ‘TH17’ like phenotype and IL-17 secreting cells compared to 
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CD161.  CD161 has been used by the Annunziato group to identify TH1 cells with ‘TH17’ 

phenotype105,213.  

In this study CD161 appears to be associated with a significant increase of IFNγ in T cells 

(Figure 6.1).  TH1 cells that express CCR6 have a reduced IFNγ MFI in comparison to 

CD4+CD161+CCR6- cells.  On T cells when CD161 is stimulated by its ligand, LLT1, IFNγ 

production is increased244.  As CD161+CCR6+ cells secrete less IFNγ per cell than CD161+CCR6- 

cells there may be an effect of CCR6, or the related transcriptional programme, affecting the 

way CD161 is acting when it binds to its ligand.  LLT1 is known to be expressed by activated 

DC, B cells and T cells7 meaning it is possible that LLT1 was present in the cultures used in 

this study.  Although there is a large overlap in the expression of CCR6 and CD161, this 

suggests that TH1 CD161+CCR6- cells may have a separate phenotype to TH1 cells expressing 

CCR6.  It would be intriguing to identify if CD161+CCR6- cells did in fact have a separate 

transcriptional profile to CD161+CCR6+ cells.  

Throughout the literature PMA/ionomycin is used to establish the cytokines produced by T 

cells.  In the experiments within this thesis PMA/ionomycin has also been used.  By using this 

type of TcR-independent stimulation there is an assumption that it is revealing the true 

phenotype of the T cells.  PMA/ionomycin has been shown to induce IFNγ secretion in 

anergic T cells245 and our data shows that recently activated cells produce less cytokine than 

cell that have not been activated recently. It was not determined if this was a 

PMA/ionomycin specific effect or a true reduction in cytokine production.  Using a system of 
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anti-CD3 anti-CD28 stimulating antibodies or antigen pulsed DC would allow for a more 

physiological TcR –dependent stimulation.   

6.4 Are CCR6+TH1 cells Derived From a TH1 or TH17 Cell? 

The literature has taken plasticity in TH17 cells a step further to infer that TH17 cells can fully 

convert to a TH1 cell, and that expression of CD161 or CCR6 on TH1 cells infers that the cells 

were once TH17 cells105,145.  

Within the literature there are three main data sets that suggest that TH17 cells can convert 

to TH1 cells.  A murine fate mapping model labelled IL-17A expressing cells with YFP146.  

When EAE was induced in the mice there were YFP+ cells that expressed only IFNγ suggesting 

a phenotype switch from TH17 to TH1.  Furthermore, in humans there was work on 

CD161+IFNγ+ cells that suggested RORC expression and other features such as IL-23R and 

IL4I1 expression inferred the cells were ex-TH17 cells.  CD161+IL-17+ cells were isolated and 

cultured, and they showed that CD161+IFNγ+ cells arose in these conditions105. Finally, it is 

argued that TH1 cells have come from a TH17 background as in vitro TH1 cells cannot be 

converted to TH17 phenotype, but TH17 cell can be induced to switch on IFNγ221.   

There is an issue with the fate mapping model in that there is no indication of what level of 

IL-17 expression is needed to induce the expression of YFP, and that therefore YFP 

expression may not indicate a committed TH17 cell146.  A recent paper by Sallusto et al. has 

shown T cells stimulated with different pathogens transiently express certain cytokines 

depending on the pathogen147.  The cells that were IFNγ+YFP+ may have transiently 

expressed IL-17 and never been fully committed to the TH17 lineage.    
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The finding that in vitro TH1 cells cannot be converted to a TH17 phenotype does not prove 

that the conversion is not possible.  These CCR6+IFNγ+ cells have not switched on IL-17 

expression, just expression of what are considered ‘TH17-related’ genes.  It is also possible 

that the conditions needed to switch on ‘TH17’ gene expression in TH1 cells have not yet 

been found.  Several recent publications have demonstrated that a high salt environment 

boosts the induction of TH17 cells246.  Serum/glucocorticoid-regulated kinase 1 (SGK1) was 

up regulated in cells treated to a high NaCl concentration. SGK1 phosphorylates the 

transcription factor forkhead box protein O1 (FOXO1)247.  The phosphorylation of FOXO1 

deactivates its suppressive effect on RORγt.  SGK1 is critical for IL-23R expression. The 

increased salt concentration results in the up-regulation of IL-23R, CCR6, RORα and RORC 

expression.  It would be interesting to investigate the possible effects of salt on TH1 cells 

(Figure 6.1). It is possible that under these conditions RORC, IL-23R and CCR6 are up 

regulated.  RORα is a gene that would be interesting to investigate the in CCR6+IFNγ+ cells, as 

it is also been suggested to control CCR6 expression216.  

In conclusion there is no solid evidence in this study or in the literature that in humans TH17 

cells can switch to become TH1 cells.  Identifying the methylation status of the IL-17A gene in 

the CCR6+IFNγ+ cells might hint at the cells history of IL-17A production.  A gene expressed in 

a cell that was fully de-methylated never becomes fully re-methylated. This was 

demonstrated in experiments investigating the methylation status of the CD8 gene in CD4+ T 

cells that have developed from a CD8+CD4+ precursor in the thymus. Within the CD4+ T cells 

the gene for CD8 was still partially de-methylated16.  Within the CCR6+IFNγ+ populations 
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there would be an expectation that the IL-17A gene will be only partially methylated if the 

cells came from a TH17 background, and mostly methylated if it was from a TH1 background.      

The next step for the study of CCR6+IFNγ+ cells would be to identify if there were any effects 

of knocking down RORC expression (Figure 6.1).  The hypothesis being that the cells would 

lose CCR6 expression, along with the expression of other ‘TH17’related genes, and develop a 

phenotype more closely related to the CCR6-IFNγ+ cells.  Following on from this the 

knockdown of T-bet within the CCR6+IFNγ+ cells might determine if it is possible for RORC to 

become the dominant transcription factor in these cells.  If T-bet is knocked down in 

CCR6+IFNγ+ cells, would they lose the ability to produce IFNγ and gain the ability to produce 

IL-17?   

Within this study there is evidence that the TH1 population is not homogeneous in their gene 

expression.  Based on this information can cytokine and transcription factor expression still 

be used to define TH subsets, and are these cells terminally differentiated?  

John J. O’Shea and William Paul developed the hypothesis that within CD4+ T cells there is a 

dynamic transcription factor expression248. The plasticity is no doubt driven by the lineage 

defining transcription factors but must be tightly controlled by other factors.  The next stage 

is to understand what is controlling the plasticity of different CD4+ T cells.  
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Figure 6.1. Proposed model of TH1 and TH17 cell plasticity. TH17 cells are defined 

by IL-17 secretion and RORC expression, while TH1 cells secrete IFNγ and express 

T-bet. IFNγ+IL-17+ cells have been shown to differentiate from TH17 cells in 

response to IL-12. These cells express RORC and T-bet. Cells expressing CCR6 and 

CD161, TH17 related markers, also express RORC and T-bet but only secret IFNγ. 

It is not known if the CCR6+IFNγ+ cells differentiate from a TH1 or TH17 cell. There 

may be miRNAs that suppress the IL-17 expression in the CCR6+IFNγ+ cells. Salt 

can induce a ‘TH17’ gene expression pattern in naïve T cell. The effect of salt on 

TH1 cells is not known and if it may play a role in the induction of CCR6 and RORC 

in TH1 cells. The effects of RORC/RORα or T-bet knockdown in CCR6+IFNγ+ cells is 

not known but will establish the role the transcription factors play in the 

phenotype of the cell. CD161+CCR6- cells secrete more IFNγ than CCR6 expressing 

TH1 cells. Further work is needed to understand if these cells have the same 

‘TH17 related’ phenotype as CD161+CCR6+ cells.    
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Comparisons between the different CD4+ T cell subsets are a vital tool to further understand 

plasticity in humans.  The difference between the IFNγ+IL-17+ cells and CCR6+TH1+ will lead to 

a better understanding of what is specifically controlling IL-17 expression, for example 

(Figure 6.1).  This was one of the aims of the miRNA study, to identify specific miRNAs that 

may be controlling IL-17 expression.  If there was a miRNA that was differentially expressed 

between CCR6+IFNγ+IL-17+ cells and CCR6+IFNγ+IL-17-cells this could be a candidate for 

controlling IL-17 expression. 

Figure 5.9 and 5.10 shows either miRNAs that were highly expressed in CCR6-IFNγ+ and 

CCR6+IFNγ+ cells compared to CCR6 IFNγ+IL-17+ and CCR6+IL-17+ cells, or vice versa.  

CCR6+IFNγ+IL-17+ and CCR6+IL-17+ cells were associated in this comparison as it has been 

suggested from data presented in this study and in the literature that CCR6+IFNγ+IL-17+ cells 

are more related to TH17 cells1.  These differentially expressed miRNAs may be involved in 

the TH17 and TH1 transcriptional profiles rather than controlling the cytokine expression.  

Conversely miR-324 was highly expressed in CCR6+IL-17+ cells with lower expression in all 

three IFNγ secreting populations. This could be a candidate miRNA to control the expression 

of either IL-17 or IFNγ.  

Many of the miRNAs are only expressed in CCR6-IFNγ+ cells (Figure 5.11 and 5.12).  These 

candidates could be controlling IFNγ/IL-17 expression. Conversely this could be an erroneous 

result introduced by the amplification process.  As the CCR6+IFNγ+ started with more 

material, genes expressed at a low level, they could be amplified more reliably than genes 

expressed at a low level in a population with less material.  A proportion of the miRNAs that 
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were only expressed in the CCR6+IFNγ+ cells have a very low relative expression.  The only 

way to verify if this is the case is to validate the expression of the miRNA by qRT-PCR on 

samples that have not been amplified.  

It may be hypothesised that the CCR6+IFNγ+ cells may up-regulate RORC or possibly RORα as 

a way to gain migratory ability into certain tissues.  There are many autoimmune disease 

such as MS157 and psoriasis249 where CCR6 has been shown to play a role in T cell migration 

in to the effected tissue.  If a miRNA was identified that targeted either the TH17 

transcriptional profile or specifically the CCR6 transcription it could have real therapeutic 

potential for these diseases.  However, as TREG also use CCR6 to migrate into the CNS216, the 

effects of also removing these regulatory cells, as well as inflammatory TH cell,  from the CNS 

must be taken into account. 

 

6.5 The Presence of CCR6+IFNγ Cells in RR-MS 

In MS patients, TH17 cells have been shown to be increased with in the CSF compared to 

peripheral blood223. It has been shown within this thesis that there is also an increase in the 

percentage of CCR6+IFNγ+ cells in the CSF compared to peripheral blood of RR-MS patients.   

In EAE, the murine model of MS, there is an initial wave of TH17 cells using CCR6-dependent 

migration into the CNS via the choroid plexus.  As TH17 cells are considered the pathogenic 

cells in EAE, they attributed the attenuated EAE in CCR6-/- mice to the reduced ability of TH17 

cell to migrate into the CNS157.  However, the presence of CCR6+TH1 cells, which far 

outnumbers the TH17 cells, may also be important in the disease pathogenesis.  In the   
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CCR6-/- mice both the IL-17 and IFNγ secreting cells were reduced in the CNS after EAE 

induction157.   

However, the presence of CCR6+IFNγ+ cells does not prove that their method of entry into 

the CSF was CCR6 dependent.  Firstly almost half of the IFNγ cells did not express CCR6.  It 

has been shown in mice that only the first wave of cells migrating into the CSF are CCR6 

dependent.  As the patients used in this study were either RR-MS or SP-MS, the initial wave 

of cells infiltrating the CNS will have already occurred.  After the initial wave of CCR6 

dependent migration the inflammatory cells cause damage to the BBB allowing a second 

CCR6 independent wave of T cell migration to occur157. This could be the reason why only 

half of the IFNγ+ cells are CCR6+, and so does not give any clues as to how the CCR6+ cells 

entered the CSF.  

IL-17 secreting cells have been heavily implicated in the pathogenesis of MS. In humans the 

percentage of IL-17+ cells in the CSF and blood have been shown to increase in relapse and 

then reduce back to baseline again upon remission223,250.  This reference show there was no 

difference in the percentage of TH1 cells in either relapse or remission in MS patients 223, 

however the percentage of CCR6+IFNγ+ cells was not directly studied.  It would be interesting 

to see if there is any change in the CCR6+IFNγ+ population upon relapse.  Due to the way in 

which the samples were collected for this study all the CSF samples were from patients who 

were likely to be in remission.   

Whether the CCR6+IFNγ+ cells are playing a role in the pathogenesis of MS is difficult to 

determine.  GM-CSF has been implicated as having pathogenic activity in MS173,201,202. TH17 
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cells have been shown to be a source of GM-CSF within the brain parenchyma. Within the 

data presented in this study CCR6+IFNγ+ and CCR6-IFNγ+ cells in the CSF can produce GM-CSF.  

All the samples from this data set are from RR-MS patients in remission, but this shows that 

TH1 cells rather than TH17 cells are probably the major source of GM-CSF.    

Within humans determining if any of the CCR6+IFNγ+ cells reacted against known auto-

antigens involved in MS would be an important step forward.  Using a murine model EAE, a 

conditional knockout of CCR6 in IFNγ secreting T cells, might give an indication if the cells 

were entering the CNS in a CCR6 dependent fashion, and if the cells were playing any sort of 

role in the pathogenesis of EAE.  This experiment has limitations in that the CCR6+IFNγ+IL-17+ 

cells would also lose CCR6 expression.  This would mean that the effects of the knockout 

could not be attributed to just one individual subset of CD4+ T cells.   

Identification of the antigen specificity of the CCR6+IFNγ+ cells within the CSF samples would 

also give an indication as to their role in disease pathogenesis. Identifying CCR6+IFNγ+ cells 

with specificity for antigens such as myelin basic protein (MBP), Myelin oligodendrocyte 

glycoprotein (MOG) and myelin proteolipid protein (PLP) would point towards them playing 

a role in the destruction of myelin251.  

There are several other autoimmune diseases where CCR6+IFNγ+ T cells may also play a role. 

The pathogenesis of psoriasis252, Crohns disease1 and JIA145 has been associated with both 

TH17 and TH1 cells, as well as IFNγ+IL-17+ cells.  It may be interesting to see if there is an 

increased presence in these diseases of CCR6+IFNy+ cells.  The presence of RORC in CCR6+TH1 

cells leads to the conclusion that this is the transcription factor that is controlling the ‘TH17’ 
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like phenotype in the TH1 cells, as it does in TH17 cells99. This suggest that in settings such as 

MS, and the other autoimmune disease, the knockdown of RORC in both TH17 and TH1 cells 

may have an impact on the pathogenesis of the disease,  but still leave a fully functional TH1 

response.  However, there would be consequences for other cell types if RORC was knocked 

down. CCR6 TREG cells also express RORC, and they have a CCR6 dependent migration in EAE. 

The reduction of these cells may cause uninhibited inflammation within the brain. RORC 

antagonists are already being considered as treatments for TH17 related disease253.  

It is important to take into account the stages of the disease when assessing treatments such 

as a CCR6 targeted therapy.  Within MS there is the initial wave of CCR6 dependent 

migration of T cells through the choroid plexus157. If the treatment to target CCR6 was given 

after this initial wave would there be any effect on inflammation within the brain?  However 

it is possible that entry of CCR6 expressing cells is still needed to maintain inflammation. It 

will be important to understand if the expansion of the TH17 cell population in relapse was 

due to more cells migrating into the CSF or if it was due to TH17 cell proliferation within the 

tissue. This would have important implications for future treatments.  Furthermore, it has 

still not been ruled out that TH17 cells within the CSF are converting to CCR6+TH1 cells, or 

vice versa. 

Situations such as this make it clear that understanding T cell biology in health is just as 

important as understanding T cell biology in disease settings.  Understanding the true plastic 

nature of T cells will be vital to producing more target therapies that have a greater chance 

of having long lasting effects.  
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So can cytokine and transcription factors still be used to define lineages? These markers are 

still an important aspect of a T cell’s phenotype. After all it is the cytokine that the cell 

produces that defines its ability to control an immune response.  However, now that it is 

becoming obvious there is overlap in cytokine secretion, it is going to be the level of 

expression and the combinations of transcription factors that are expressed that becomes 

important. Other factors, such as miRNAs, will become important in understanding what 

may be controlling a T cell.  Technology such as mRNA-seq254 (analysis of the transcriptome 

of a single cell), and Chip-Seq255 (analysis of protein and DNA interactions) will move the field 

of T cell plasticity forward.  Rather than trying to define a T cell by how it acts in vitro, it will 

become more important to understand how T cells act in vivo, both in disease and health, to 

truly understand what role T cells have within the immune system.   

 



References  

236 

 

LIST OF REFERENCES 

1. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. 
Med. 204, 1849–61 (2007). 

2. Villares, R. et al. CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-
cell recruitment to target tissues. Eur. J. Immunol. 39, 1671–81 (2009). 

3. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid 
progenitors in mouse bone marrow. Cell 91, 661–72 (1997). 

4. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid 
progenitor that gives rise to all myeloid lineages. Nature 404, 193–7 (2000). 

5. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 
805–20 (2010). 

6. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. 
Immunol. 6, 173–82 (2006). 

7. Germain, C. et al. Induction of lectin-like transcript 1 (LLT1) protein cell surface 
expression by pathogens and interferon-γ contributes to modulate immune 
responses. J. Biol. Chem. 286, 37964–75 (2011). 

8. Cosmi, L. et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T 
cell precursor. J. Exp. Med. 205, 1903–16 (2008). 

9. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. a. 
Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. 
Immunity 11, 753–61 (1999). 

10. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: 
ontogeny and function of dendritic cells and their subsets in the steady state and the 
inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013). 

11. Neefjes, J., Jongsma, M. L. M., Paul, P. & Bakke, O. Towards a systems understanding 
of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–36 
(2011). 

12. Allman, D. & Pillai, S. Peripheral B cell subsets. Curr. Opin. Immunol. 20, 149–157 
(2008). 



References  

237 

 

13. Wolf, S. D., Dittel, B. N., Hardardottir, F. & Janeway, C. a. Experimental autoimmune 
encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 
2271–8 (1996). 

14. Kessel, A. et al. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of 
CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. 
Autoimmun. Rev. 11, 670–7 (2012). 

15. Starr, T. K., Jameson, S. C. & Hogquist, K. a. Positive and negative selection of T cells. 
Annu. Rev. Immunol. 21, 139–76 (2003). 

16. Carbone, A., Marrack, P. & Kappler, J. Demethylated CD8 gene in CD4+ T cells suggests 
that CD4+ cells develop from CD8+ precursors. Science (80-. ). 242, 1174–1176 (1988). 

17. Förster, R., Schubel, A. & Breitfeld, D. CCR7 coordinates the primary immune response 
by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 
23–33 (1999). 

18. Inaba, B. K., Metlay, J. P., Crowley, M. T. & Steinman, R. M. Dendritic Cells Pulsed with 
Protein Antigens In Vitro Can Prime Antigen-specific, MHC-restricted T Cells In Situ. J. 
Exp. Med. 172, 631–640 (1990). 

19. Levin, D., Constant, S., Pasqualini, T., Flavell, R. & Bottomly, K. Role of Dendritic Cells 
in the Priming of of CD4+ T Lymphocytes to Peptide Antigen In vivo. J. Immunol. 151, 
6742–6750 (1993). 

20. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell-dendritic 
cell interactions in lymph nodes. Science (80-. ). 296, 1873–6 (2002). 

21. Tao, X., Constant, S., Jorritsma, P. & Bottomly, K. Strength of TCR Signal Determines 
the Costimulatory Requirements for Thl and Th2 CD4+ T Cell Differentiation. J. 
Immunol. 159, 5956–5963 (1997). 

22. Shahinian, A. et al. Differential T Cell Costimulatory Requirements in CD28-Deficient 
Mice AL-2. 28–31 

23. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and 
function. Nature 409, 97–101 (2001). 

24. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nat. Rev. 
Immunol. 2, 933–44 (2002). 



References  

238 

 

25. Helper, H. P. T., Sallusto, B. F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible 
Programs of Chemokine Receptor Expression on Human Polarized T Helper1 and 2 
Lymphocytes. J. Exp. Med. 187, 875–883 (1998). 

26. Razzaq, T. M. et al. Regulation of T-cell receptor signalling by membrane 
microdomains. Immunology 113, 413–26 (2004). 

27. Schwartz, B. R. H. Models o f T Cell Anergy: Is There A Common Molecular 
Mechanism? J. Exp. Med. 184, 1–8 (1996). 

28. Ostergaard, H. L. et al. Expression of CD45 alters phosphorylation of the lck-encoded 
tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. U. S. A. 
86, 8959–63 (1989). 

29. Shaw, a S. & Dustin, M. L. Making the T cell receptor go the distance: a topological 
view of T cell activation. Immunity 6, 361–9 (1997). 

30. Greenlund, a C. et al. Stat recruitment by tyrosine-phosphorylated cytokine receptors: 
an ordered reversible affinity-driven process. Immunity 2, 677–87 (1995). 

31. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell 
subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–63 
(2004). 

32. Unutmaz, D, Pileri, P and Abrignani, S. Antigen-independent Activation of Naive and 
Memory Resting T Cells by a Cytokine Combination. J. Exp. Med. 180, 1–6 (1994). 

33. Allen, S. J., Crown, S. E. & Handel, T. M. Chemokine: receptor structure, interactions, 
and antagonism. Annu. Rev. Immunol. 25, 787–820 (2007). 

34. Murphy, P. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. 
Immunol. 12, 593–633 (1994). 

35. Premont, R., Inglese, J. & Lefkowitz, R. Protein kinases that phosphorylate activated G 
protein-coupled receptors. FASEB J. 9, 175–182 (1995). 

36. Bonecchi, B. R. et al. Differential Expression of Chemokine Receptors and Chemotactic 
Responsiveness of Type 1 T Helper Cells. J. Exp. Med. 187, 129–134 (1998). 

37. Singh, S. P., Zhang, H. H., Foley, J. F., Hedrick, M. N. & Farber, J. M. Human T cells that 
are able to produce IL-17 express the chemokine receptor CCR6. J. Immunol. 180, 
214–21 (2008). 



References  

239 

 

38. Peters, P. J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing 
both perforin and granzymes. J. Exp. Med. 173, 1099–109 (1991). 

39. Rouvier, E., Luciani, M. F. & Golstein, P. Fas involvement in Ca(2+)-independent T cell-
mediated cytotoxicity. J. Exp. Med. 177, 195–200 (1993). 

40. Huber, M. et al. A Th17-like developmental process leads to CD8(+) Tc17 cells with 
reduced cytotoxic activity. Eur. J. Immunol. 39, 1716–25 (2009). 

41. Yen, H.-R. H. et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J. 
Immunol. 183, 7161–8 (2009). 

42. Hamada, H. et al. Tc17, a unique subset of CD8 T cells that can protect against lethal 
influenza challenge. J. Immunol. 182, 3469–81 (2009). 

43. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. a & Coffman, R. L. Two types 
of murine helper T cell clone. I. Definition according to profiles of lymphokine 
activities and secreted proteins. 1986. J. Immunol. 175, 5–14 (1986). 

44. Nathan, C. & Murray, H. Identification of interferon-gamma as the lymphokine that 
activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. 
Med. 158, 670–689 (1983). 

45. Milstone, L. & Waksman, B. Release of virus inhibitor from tuberculin-sensitized 
peritoneal cells stimulated by antigen. J. Immunol. 2, 1068–1071 (1970). 

46. Ahn, H.-J. et al. A Mechanism Underlying Synergy Between IL-12 and IFN-y-Inducing 
Factor in Enhanced Production of IFN-y. J. Immunol. (1997). 

47. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. 
Cell 100, 655–69 (2000). 

48. Jouanguy, E. et al. Interferon-γ–receptor deficiency in an Infant with Fatal Bacille 
Calmette-Guerin Infection. N. Engl. J. Med. 335, 1956–1961 (1996). 

49. Newport, M. et al. A mutation in the interferon-γ–receptor gene and susceptibility to 
mycobacterial infection. N. Engl. J. Med. 335, 1941–1949 (1996). 

50. Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline 
human STAT1 mutation. Science (80-. ). 293, 300–3 (2001). 

51. Finotto, S. et al. Development of spontaneous airway changes consistent with human 
asthma in mice lacking T-bet. Science (80-. ). 295, 336–8 (2002). 



References  

240 

 

52. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma 
production in CD4 and CD8 T cells. Science (80-. ). 295, 338–42 (2002). 

53. Mullen, A. C. et al. Hlx is induced by and genetically interacts with T-bet to promote 
heritable T(H)1 gene induction. Nat. Immunol. 3, 652–8 (2002). 

54. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naïve 
CD4+ T cells. Nat. Immunol. 3, 549–57 (2002). 

55. Mullen, a C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent 
selection. Science (80-. ). 292, 1907–10 (2001). 

56. Szabo, S. J., Dighe, a S., Gubler, U. & Murphy, K. M. Regulation of the interleukin (IL)-
12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. 
Med. 185, 817–24 (1997). 

57. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for 
autoimmune inflammation of the brain. Nature 421, 744–8 (2003). 

58. Sadick, H., Holaday, B., Coffman, R. & Locksley, R. Reciprocal expression of interferon 
gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. J 
Exp Med 169, 59–72 (1989). 

59. Coffman, R. L. et al. B cell stimulatory factor-1 enhances the IgE response of 
lipopolysaccharide-activated B cells. J. Immunol. 136, 4538–41 (1986). 

60. Zheng, W. & Flavell, R. a. The transcription factor GATA-3 is necessary and sufficient 
for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–96 (1997). 

61. Takemoto, N. et al. Cutting edge: chromatin remodeling at the IL-4/IL-13 intergenic 
regulatory region for Th2-specific cytokine gene cluster. J. Immunol. 165, 6687–91 
(2000). 

62. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W. E. Stat5 activation plays a critical role in Th2 
differentiation. Immunity 19, 739–48 (2003). 

63. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent 
Th2 development and commitment. Immunity 12, 27–37 (2000). 

64. Cote-Sierra, J. et al. Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl. 
Acad. Sci. U. S. A. 101, 3880–5 (2004). 

65. Quirion, M. R., Gregory, G. D., Umetsu, S. E., Winandy, S. & Brown, M. a. Cutting edge: 
Ikaros is a regulator of Th2 cell differentiation. J. Immunol. 182, 741–5 (2009). 



References  

241 

 

66. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 
responses. Nat. Immunol. 5, 1157–65 (2004). 

67. Willenborg, D., Fordham, S., Cowden, W. B. & Ramshawt, I. A. IFN-y Plays a Critical 
Down-Regulatory Role in the Induction and Effector Phase of Myelin Oligodendrocyte 
Glycoprotein-Induced Autoimmune Encephalomyelitis. J. Immunol. 157, 3223–3227 
(1996). 

68. Gran, B. et al. IL-12p35-Deficient Mice Are Susceptible to Central Nervous System 
Autoimmune in the IL-12 System in the Induction of Encephalomyelitis: Evidence for 
Redundancy Experimental Autoimmune Demyelination. J. Immunol. 169, 7104–7110 
(2002). 

69. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces 
autoimmune inflammation. J. Exp. Med. 201, 233–40 (2005). 

70. Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of 
experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004). 

71. Aggarwal, S., Ghilardi, N., Xie, M.-H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 
promotes a distinct CD4 T cell activation state characterized by the production of 
interleukin-17. J. Biol. Chem. 278, 1910–4 (2003). 

72. Zhou, L. et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential 
engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–74 (2007). 

73. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal 
differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. 
Immunol. 10, 314–24 (2009). 

74. Rouvier, E., Luciani, M., Mattei, M., Denizot, F. & Golstein, P. CTLA-8, cloned from an 
activated T cell, bearing AU-rich messenger RNA instability sequences, and 
homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445–5456 (1993). 

75. Chang, S. H. & Dong, C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F 
regulates inflammatory responses. Cell Res. 17, 435–40 (2007). 

76. Moseley, T. a., Haudenschild, D. R., Rose, L. & Reddi, a. H. Interleukin-17 family and IL-
17 receptors. Cytokine Growth Factor Rev. 14, 155–174 (2003). 

77. Kagami, S., Rizzo, H. L., Kurtz, S. E., Miller, L. S. & Blauvelt, A. IL-23 and IL-17A, but not 
IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J. 
Immunol. 185, 5453–62 (2010). 



References  

242 

 

78. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense 
against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–19 
(2009). 

79. Kolls, J. & Lindén, A. Interleukin-17 family members and inflammation. Immunity 21, 
467–476 (2004). 

80. Infante-Duarte, C., Horton, H. F., Byrne, M. C. & Kamradt, T. Microbial Lipopeptides 
Induce the Production of IL-17 in Th Cells. J. Immunol. 165, 6107–6115 (2000). 

81. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory 
and hematopoietic cytokines. J. Exp. Med. 183, 2593–603 (1996). 

82. Chang, H. et al. Causes of Death in Adults With Acute Leukemia. Medicine (Baltimore). 
55, 259–268 (1976). 

83. Huang, W., Na, L., Fidel, P. L. & Schwarzenberger, P. Requirement of interleukin-17A 
for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190, 624–31 
(2004). 

84. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation 
program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–33 (2006). 

85. Maggi, L. et al. CD161 is a marker of all human IL-17-producing T-cell subsets and is 
induced by RORC. Eur. J. Immunol. 40, 2174–81 (2010). 

86. Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear 
receptors ROR alpha and ROR gamma. Immunity 28, 29–39 (2008). 

87. Veldhoen, M., Hirota, K., Christensen, J., O’Garra, A. & Stockinger, B. Natural agonists 
for aryl hydrocarbon receptor in culture medium are essential for optimal 
differentiation of Th17 T cells. J. Exp. Med. 206, 43–9 (2009). 

88. Sun, Z. et al. Requirement for RORgamma in Thymocyte Survival and Lymphoid Organ 
Development. Science (80-. ). 288, 2369–2373 (2000). 

89. Eberl, G. et al. An essential function for the nuclear receptor RORgamma(t) in the 
generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004). 

90. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a 
lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–32 
(2005). 



References  

243 

 

91. Stockinger, B., Veldhoen, M. & Martin, B. Th17 T cells: linking innate and adaptive 
immunity. Semin. Immunol. 19, 353–61 (2007). 

92. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFbeta in 
the context of an inflammatory cytokine milieu supports de novo differentiation of IL-
17-producing T cells. Immunity 24, 179–89 (2006). 

93. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of 
inflammatory T cells. Nature 448, 480–3 (2007). 

94. Sutton, C., Brereton, C., Keogh, B., Mills, K. H. G. & Lavelle, E. C. A crucial role for 
interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune 
encephalomyelitis. J. Exp. Med. 203, 1685–91 (2006). 

95. Hu, W., Troutman, T. D., Edukulla, R. & Pasare, C. Priming microenvironments dictate 
cytokine requirements for T helper 17 cell lineage commitment. Immunity 35, 1010–
22 (2011). 

96. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by 
antagonizing RORgammat function. Nature 453, 236–40 (2008). 

97. Das, J. et al. Transforming growth factor beta is dispensable for the molecular 
orchestration of Th17 cell differentiation. J. Exp. Med. 206, 2407–16 (2009). 

98. Acosta-Rodriguez, E. V, Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 
1beta and 6 but not transforming growth factor-beta are essential for the 
differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 
942–9 (2007). 

99. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human T(H)-17 cells 
requires transforming growth factor-beta and induction of the nuclear receptor 
RORgammat. Nat. Immunol. 9, 641–9 (2008). 

100. Ma, C. S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in 
STAT3. J. Exp. Med. 205, 1551–7 (2008). 

101. Purvis, H. a et al. Low-strength T-cell activation promotes Th17 responses. Blood 116, 
4829–37 (2010). 

102. Evans, H. G. et al. In vivo activated monocytes from the site of inflammation in 
humans specifically promote Th17 responses. Proc. Natl. Acad. Sci. U. S. A. 106, 6232–
7 (2009). 



References  

244 

 

103. Lee, W.-W. et al. Regulating human Th17 cells via differential expression of IL-1 
receptor. Blood 115, 530–40 (2010). 

104. Santarlasci, V. et al. Rarity of Human T Helper 17 Cells Is due to Retinoic Acid Orphan 
Receptor-Dependent Mechanisms that Limit Their Expansion. Immunity 36, 201–214 
(2012). 

105. Maggi, L. et al. Distinctive features of classic and nonclassic (Th17 derived) human Th1 
cells. Eur. J. Immunol. 42, 1–9 (2012). 

106. Boulland, M.-L. et al. Human IL4I1 is a secreted L-phenylalanine oxidase expressed by 
mature dendritic cells that inhibits T-lymphocyte proliferation. Blood 110, 220–7 
(2007). 

107. Billerbeck, E. et al. Analysis of CD161 expression on human CD8+ T cells defines a 
distinct functional subset with tissue-homing properties. Proc. Natl. Acad. Sci. U. S. A. 
107, 3006–11 (2010). 

108. Rosen, D. B. et al. Functional consequences of interactions between human NKR-P1A 
and its ligand LLT1 expressed on activated dendritic cells and B cells. J. Immunol. 180, 
6508–17 (2008). 

109. Poggi, a, Costa, P., Zocchi, M. R. & Moretta, L. Phenotypic and functional analysis of 
CD4+ NKRP1A+ human T lymphocytes. Direct evidence that the NKRP1A molecule is 
involved in transendothelial migration. Eur. J. Immunol. 27, 2345–50 (1997). 

110. Liao, F. et al. CC-chemokine receptor 6 is expressed on diverse memory subsets of T 
cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J. 
Immunol. 162, 186–194 (2013). 

111. Voo, K. S. et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. 
Proc. Natl. Acad. Sci. U. S. A. 106, 4793–8 (2009). 

112. Krzysiek, R. & Lefevre, E. Regulation of CCR6 chemokine receptor expression and 
responsiveness to macrophage inflammatory protein-3α/CCL20 in human B cells. 
Blood 96, 2338–2345 (2000). 

113. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and 
cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–9 
(2006). 

114. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of 
interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T 
cells. Nat. Immunol. 10, 857–63 (2009). 



References  

245 

 

115. Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241–54 
(2004). 

116. Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in 
epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009). 

117. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for 
mucosal immunity. Nature 457, 722–5 (2009). 

118. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize 
to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–52 
(2000). 

119. Fontenot, J. D., Gavin, M. a & Rudensky, A. Y. Foxp3 programs the development and 
function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–6 (2003). 

120. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic Self-
Tolerance Maintained by Activated T Cells Expressing 11-2 Receptor. J. Immunol. 155, 
1151–1164 (1995). 

121. Wildin, R. S. et al. The immune dysregulation , polyendocrinopathy , enteropathy , X-
linked syndrome ( IPEX ) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 
(2001). 

122. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the 
cell-extrinsic function of CTLA-4. Science (80-. ). 332, 600–3 (2011). 

123. Vignali, D. a a, Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. 
Immunol. 8, 523–32 (2008). 

124. Cowan, J. E. et al. The thymic medulla is required for Foxp3+ regulatory but not 
conventional CD4+ thymocyte development. J. Exp. Med. 210, 675–681 (2013). 

125. Lafaille, M. de. CD25− T cells generate CD25+ Foxp3+ regulatory T cells by peripheral 
expansion. J. Immunol. 173, 7259–7268 (2004). 

126. Fantini, M. C. et al. Cutting edge: TGF-beta induces a regulatory phenotype in 
CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J. 
Immunol. 172, 5149–53 (2004). 

127. Furtado, G. C., de Lafaille, M. a. C., Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 
Signaling Is Required for CD4+ Regulatory T Cell Function. J. Exp. Med. 196, 851–857 
(2002). 



References  

246 

 

128. Battaglia, M., Gregori, S., Bacchetta, R. & Roncarolo, M.-G. Tr1 cells: from discovery to 
their clinical application. Semin. Immunol. 18, 120–7 (2006). 

129. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. a & Weiner, H. L. Regulatory T cell clones 
induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 
(80-. ). 265, 1237–40 (1994). 

130. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs 
induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent 
mechanism. J. Exp. Med. 204, 1757–64 (2007). 

131. Sun, C.-M. et al. Small intestine lamina propria dendritic cells promote de novo 
generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–85 (2007). 

132. Lal, G. et al. Epigenetic Regulation of Foxp3 Expression in Regulatory T cells by DNA 
Methylation. J. Immunol. 182, 259–273 (2009). 

133. Janson, P. C. J. et al. FOXP3 promoter demethylation reveals the committed Treg 
population in humans. PLoS One 3, e1612 (2008). 

134. Liao, W., Lin, J.-X., Wang, L., Li, P. & Leonard, W. J. Modulation of cytokine receptors 
by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 
551–9 (2011). 

135. Jenner, R. G. et al. The transcription factors T-bet and GATA-3 control alternative 
pathways of T-cell differentiation through a shared set of target genes. Proc. Natl. 
Acad. Sci. U. S. A. 106, 17876–81 (2009). 

136. Djuretic, I. M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng 
and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–53 (2007). 

137. Lazarevic, V. et al. T-bet represses T(H)17 differentiation by preventing Runx1-
mediated activation of the gene encoding RORγt. Nat. Immunol. 12, 96–104 (2011). 

138. Zhou, L., Chong, M. M. W. & Littman, D. R. Plasticity of CD4+ T cell lineage 
differentiation. Immunity 30, 646–55 (2009). 

139. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory 
T cell programs. Immunity 29, 44–56 (2008). 

140. Koch, M. a et al. The transcription factor T-bet controls regulatory T cell homeostasis 
and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009). 



References  

247 

 

141. Chen, J. & Liu, X. S. Development and function of IL-10 IFN-gamma-secreting CD4(+) T 
cells. J. Leukoc. Biol. 86, 1305–10 (2009). 

142. Hegazy, A. N. et al. Interferons direct Th2 cell reprogramming to generate a stable 
GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity 32, 
116–28 (2010). 

143. Lexberg, M. H. et al. Frontline: Th memory for interleukin-17 expression is stable in 
vivo. Eur. J. Immunol. 38, 2654–2664 (2008). 

144. Lexberg, M. H. et al. IFN-γ and IL-12 synergize to convert in vivo generated Th17 into 
Th1/Th17 cells. Eur. J. Immunol. 40, 3017–27 (2010). 

145. Cosmi, L. et al. Evidence of the transient nature of the Th17 phenotype of 
CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. 
Arthritis Rheum. 63, 2504–15 (2011). 

146. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. 
Nat. Immunol. 12, 255–63 (2011). 

147. Zielinski, C. E. et al. Pathogen-induced human T(H)17 cells produce IFN-γ or IL-10 and 
are regulated by IL-1β. Nature 484, 514–518 (2012). 

148. Cohen, C. J. et al. Human Th1 and Th17 cells exhibit epigenetic stability at signature 
cytokine and transcription factor loci. J. Immunol. 187, 5615–26 (2011). 

149. Han, Q. et al. Polyfunctional responses by human T cells result from sequential release 
of cytokines. PNAS 109, 1–6 (2011). 

150. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to 
control autoimmune inflammation. Nat. Med. 13, 423–31 (2007). 

151. Stevenson, P. G., Hawke, S., Sloan, D. J. & Bangham, C. R. The immunogenicity of 
intracerebral virus infection depends on anatomical site. J. Virol. 71, 145–51 (1997). 

152. Matyszak, M. K. & Perry, V. H. Bacillus Calmette-Guérin sequestered in the brain 
parenchyma escapes immune recognition. J. Neuroimmunol. 82, 73–80 (1998). 

153. Matyszak, M. & Perry, V. Demyelination in the central nervous system following a 
delayed-type hypersensitivity response to bacillus Calmette-Guerin. Neuroscience 64, 
(1995). 



References  

248 

 

154. Yamada, S., DePasquale, M., Patlak, C. & Cserr, H. Albumin outflow into deep cervical 
lymph from different regions of rabbit brain. Am. J. Physiol. - Hear. Circ. Physiol. 261, 
H1197–204 (1991). 

155. Giulian, D., Li, J., Bartel, S. & Broker, J. Cell surface morphology identifies microglia as 
a distinct class of mononuclear phagocyte. J. Neurosci. 15, 7712–7726 (1995). 

156. Mendez-Fernandez, Y., MJ, H., Rodriguez, M. & Pease, L. Anatomical and cellular 
requirements for the activation and migration of virus-specific CD8+ T cells to the 
brain during Theiler’s virus infection. J. Virol. 79, 3063–3070 (2005). 

157. Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS 
through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 
514–23 (2009). 

158. Carrithers, M. D., Visintin, I., Kang, S. J. & Janeway, C. a. Differential adhesion 
molecule requirements for immune surveillance and inflammatory recruitment. Brain 
123 ( Pt 6, 1092–101 (2000). 

159. González-Amaro, R., Mittelbrunn, M. & Sánchez-Madrid, F. Therapeutic anti-integrin 
(alpha4 and alphaL) monoclonal antibodies: two-edged swords? Immunology 116, 
289–96 (2005). 

160. Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular structures 
in nascent autoimmune CNS lesions. Nature 462, 94–8 (2009). 

161. Charcot, J. Histologie de la sclerose en plaque. Gaz. Hop. 41, 554–566 (1868). 

162. Kabat, E., Glusman, M. & Knaub, V. Quantitative estimation of the albumin and 
gamma globulin in normal and pathologic cerebrospinal fluid by immunochemical 
methods. Am. J. Med. 4, 653–662 (1948). 

163. Ebers, G. C., Sadovnick, a D. & Veith, R. Vitamin D intake and incidence of multiple 
sclerosis. Neurology 63, 60–65 (2004). 

164. Marrie, R. A. Reviews Environmental risk factors in multiple sclerosis aetiology. Lancet 
Neurol. 3, 709–718 (2004). 

165. Fingerprinting, G. Risk alleles for multiple sclerosis identified by a genomewide study. 
N Engl J Med (2007). at <http://www.nejm.org/doi/full/10.1056/NEJMoa073493> 

166. Cantorna, M., Yu, S. & Bruce, D. The paradoxical effects of vitamin D on type 1 
mediated immunity. Mol. Aspects Med. 29, 369–375 (2008). 



References  

249 

 

167. Smolders, J. et al. Vitamin D status is positively correlated with regulatory T cell 
function in patients with multiple sclerosis. PLoS One 4, e6635 (2009). 

168. Haahr, S. & Koch-Henriksen, N. Increased risk of multiple sclerosis after late Epstein-
Barr virus infection: a historical prospective study. Mult. Scler. 73–77 (1995). 

169. Prineas, J. & Graham, J. Multiple sclerosis: capping of surface immunoglobulin G on 
macrophages engaged in myelin breakdown. Ann. Neurol. 10, 149–158 (1981). 

170. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-
cell follicles with germinal centers in the meninges of patients with secondary 
progressive multiple sclerosis. Brain Pathol. 14, 164–74 (2004). 

171. Yednock, T., Cannon, C. & Fritz, L. Prevention of experimental autoimmune 
encephalomyelitis by antibodies against α4β1 integrin. Nature 5, 63–66 (1992). 

172. Miller, D. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing 
multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006). 

173. El-Behi, M. et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-
23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–75 (2011). 

174. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. 
Immunol. 13, 991–999 (2012). 

175. Yang, L., Anderson, D. E., Kuchroo, J. & Hafler, D. a. Lack of TIM-3 immunoregulation in 
multiple sclerosis. J. Immunol. 180, 4409–14 (2008). 

176. Koguchi, K. et al. Dysregulated T cell expression of TIM3 in multiple sclerosis. J. Exp. 
Med. 203, 1413–8 (2006). 

177. Fletcher, J. M. et al. CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells 
and are impaired in multiple sclerosis. J. Immunol. 183, 7602–10 (2009). 

178. Atarashi, K. et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 455, 
808–12 (2008). 

179. Ye, Z.-J. et al. CD39+ regulatory T cells suppress generation and differentiation of Th17 
cells in human malignant pleural effusion via a LAP-dependent mechanism. Respir. 
Res. 12, 77 (2011). 

180. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. a. Identification of T helper 
type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 
673–5 (2011). 



References  

250 

 

181. Hammond, S. M. Dicing and slicing: the core machinery of the RNA interference 
pathway. FEBS Lett. 579, 5822–9 (2005). 

182. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 
4051–60 (2004). 

183. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 
415–9 (2003). 

184. Denli, A. M., Tops, B. B. J., Plasterk, R. H. a, Ketting, R. F. & Hannon, G. J. Processing of 
primary microRNAs by the Microprocessor complex. Nature 432, 231–5 (2004). 

185. Filipowicz, W., Jaskiewicz, L., Kolb, F. a & Pillai, R. S. Post-transcriptional gene silencing 
by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15, 331–41 (2005). 

186. Chong, M. M. W., Rasmussen, J. P., Rudensky, A. Y., Rundensky, A. Y. & Littman, D. R. 
The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory 
disease. J. Exp. Med. 205, 2005–17 (2008). 

187. Muljo, S. a et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 
202, 261–9 (2005). 

188. Zhou, X. et al. Selective miRNA disruption in T reg cells leads to uncontrolled 
autoimmunity. J. Exp. Med. 205, 1983–91 (2008). 

189. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased 
miR-17-92 expression in lymphocytes. Nat. Immunol. 9, 405–14 (2008). 

190. Steiner, D., Thomas, M., Hu, J. & Yang, Z. MicroRNA-29 regulates T-box transcription 
factors and interferon-γ production in helper T cells. Immunity 35, 169–181 (2011). 

191. Smith, K. M. et al. miR-29ab1 deficiency identifies a negative feedback loop controlling 
Th1 bias that is dysregulated in multiple sclerosis. J. Immunol. 189, 1567–76 (2012). 

192. O’Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by 
enhancing inflammatory T cell development. Immunity 33, 607–19 (2010). 

193. Banerjee, A., Schambach, F., DeJong, C. S., Hammond, S. M. & Reiner, S. L. Micro-RNA-
155 inhibits IFN-gamma signaling in CD4+ T cells. Eur. J. Immunol. 40, 225–31 (2010). 

194. Du, C. et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with 
the pathogenesis of multiple sclerosis. Nat. Immunol. 10, 1252–9 (2009). 



References  

251 

 

195. Mycko, M. P. et al. MicroRNA-301a regulation of a T-helper 17 immune response 
controls autoimmune demyelination. Proc. Natl. Acad. Sci. U. S. A. 109, E1248–57 
(2012). 

196. Zhao, F. et al. Human CCR4+ CCR6+ Th17 cells suppress autologous CD8+ T cell 
responses. J. Immunol. 188, 6055–62 (2012). 

197. Irie-Sasaki, J. et al. CD45 is a JAK phosphatase and negatively regulates cytokine 
receptor signalling. Nature 409, 349–54 (2001). 

198. Chatila, T., Silverman, L., Miller, R. & Geha, R. Mechanisms of T cell activation by the 
calcium ionophore ionomycin. J. Immunol. 143, 1283–9 (1989). 

199. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, 
reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. 
Immunol. 173, 68–78 (2004). 

200. Boniface, K. et al. Human Th17 cells comprise heterogeneous subsets including IFN-
gamma-producing cells with distinct properties from the Th1 lineage. J. Immunol. 185, 
679–87 (2010). 

201. Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, 
which is essential for the effector phase of autoimmune neuroinflammation. Nat. 
Immunol. 12, 560–7 (2011). 

202. Ponomarev, E. & Shriver, L. GM-CSF production by autoreactive T cells is required for 
the activation of microglial cells and the onset of experimental autoimmune 
encephalomyelitis. J. Immunol. 39–48 (2007). 

203. Athie-Morales, V., Smits, H. H., Cantrell, D. a & Hilkens, C. M. U. Sustained IL-12 
signaling is required for Th1 development. J. Immunol. 172, 61–9 (2004). 

204. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci 
underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–27 (2010). 

205. Nanjappa, S. G., Heninger, E., Wüthrich, M., Gasper, D. J. & Klein, B. S. Tc17 cells 
mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts 
lacking CD4+ T cells. PLoS Pathog. 8, e1002771 (2012). 

206. Wang, Y.-H. et al. A novel subset of CD4(+) T(H)2 memory/effector cells that produce 
inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. 
J. Exp. Med. 207, 2479–91 (2010). 



References  

252 

 

207. Kelly, B. L. & Locksley, R. M. Coordinate regulation of the IL-4, IL-13, and IL-5 cytokine 
cluster in Th2 clones revealed by allelic expression patterns. J. Immunol. 165, 2982–6 
(2000). 

208. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell 
generation. Immunity 26, 371–81 (2007). 

209. Evans, H. G., Suddason, T., Jackson, I., Taams, L. S. & Lord, G. M. Optimal induction of 
T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like 
receptor-activated monocytes. Proc. Natl. Acad. Sci. U. S. A. 104, 17034–9 (2007). 

210. Zheng, S. G., Wang, J. & Horwitz, D. a. Cutting edge: Foxp3+CD4+CD25+ regulatory T 
cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J. 
Immunol. 180, 7112–6 (2008). 

211. Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting edge: regulatory T cells induce CD4+ 
CD25− Foxp3− T cells or are self-induced to become Th17 cells in the absence of 
exogenous TGF-β. J. Immunol. 178, 6725–6729 (2007). 

212. Koenen, H. J. P. M. et al. Human CD25highFoxp3pos regulatory T cells differentiate 
into IL-17-producing cells. Blood 112, 2340–52 (2008). 

213. Nistala, K. et al. Th17 plasticity in human autoimmune arthritis is driven by the 
inflammatory environment. Proc. Natl. Acad. Sci. U. S. A. 107, 14751–6 (2010). 

214. Wan, Q. et al. Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine 
production by CCR6+ human memory T cells. J. Exp. Med. 208, 1875–87 (2011). 

215. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression 
during dendritic cell maturation. Eur. J. Immunol. 28, 2760–9 (1998). 

216. Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T 
cells. J. Immunol. 181, 8391–401 (2008). 

217. Steinfelder, S. et al. Epigenetic modification of the human CCR6 gene is associated 
with stable CCR6 expression in T cells. Blood 117, 2839–46 (2011). 

218. Yang, Y. et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J. 
Exp. Med. 206, 1549–64 (2009). 

219. Gocke, A. R. et al. T-bet regulates the fate of Th1 and Th17 lymphocytes in 
autoimmunity. J. Immunol. 178, 1341–8 (2007). 



References  

253 

 

220. Bending, D. & Newland, S. Epigenetic changes at Il12rb2 and Tbx21 in relation to 
plasticity behavior of Th17 cells. J. Immunol. 186, 3373–3382 (2011). 

221. Shi, G. et al. Phenotype switching by inflammation-inducing polarized Th17 cells, but 
not by Th1 cells. J. Immunol. 181, 7205–13 (2008). 

222. Baron, U. et al. DNA demethylation in the human FOXP3 locus discriminates 
regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37, 
2378–89 (2007). 

223. Brucklacher-Waldert, V., Stuerner, K., Kolster, M., Wolthausen, J. & Tolosa, E. 
Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. 
Brain 132, 3329–41 (2009). 

224. Murugaiyan, G., Beynon, V., Mittal, A., Joller, N. & Weiner, H. L. Silencing microRNA-
155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 187, 
2213–21 (2011). 

225. Hu, R. et al. MicroRNA-155 Confers Encephalogenic Potential to Th17 Cells by 
Promoting Effector Gene Expression. J. Immunol. (2013). 
doi:10.4049/jimmunol.1300351 

226. Lu, L.-F. et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 
responses. Cell 142, 914–29 (2010). 

227. Li, Q.-J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 
129, 147–61 (2007). 

228. Guan, H. et al. MicroRNA let-7e is associated with the pathogenesis of experimental 
autoimmune encephalomyelitis. Eur. J. Immunol. 43, 104–14 (2013). 

229. Jiang, S. et al. Molecular dissection of the miR-17-92 cluster’s critical dual roles in 
promoting Th1 responses and preventing inducible Treg differentiation. Blood 118, 
5487–97 (2011). 

230. Baumjohann, D. et al. The microRNA cluster miR-17∼92 promotes TFH cell 
differentiation and represses subset-inappropriate gene expression. Nat. Immunol. 
14, 840–8 (2013). 

231. Li, Z., Wu, F., Brant, S. R. & Kwon, J. H. IL-23 receptor regulation by Let-7f in human 
CD4+ memory T cells. J. Immunol. 186, 6182–90 (2011). 

232. Yao, R. et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 
cell function by targeting SOCS1. PLoS One 7, e46082 (2012). 



References  

254 

 

233. Liu, C., Teng, Z., Santistevan, N. & Szulwach, K. Epigenetic regulation of miR-184 by 
MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6, 433–
444 (2010). 

234. Weitzel, R. P. et al. microRNA 184 regulates expression of NFAT1 in umbilical cord 
blood CD4+ T cells. Blood 113, 6648–57 (2009). 

235. Yu, J. et al. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in 
epithelia. Proc. Natl. Acad. Sci. U. S. A. 105, 19300–5 (2008). 

236. Favreau, A. J. & Sathyanarayana, P. miR-590-5p, miR-219-5p, miR-15b and miR-628-5p 
are commonly regulated by IL-3, GM-CSF and G-CSF in acute myeloid leukemia. Leuk. 
Res. 36, 334–41 (2012). 

237. Potenza, N. et al. Human microRNA hsa-miR-125a-5p interferes with expression of 
hepatitis B virus surface antigen. Nucleic Acids Res. 39, 5157–63 (2011). 

238. Girardi, C. et al. Analysis of miRNA and mRNA expression profiles highlights alterations 
in ionizing radiation response of human lymphocytes under modeled microgravity. 
PLoS One 7, e31293 (2012). 

239. Smith, a L. et al. The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, 
and induces EMT and tumor initiating cell characteristics downstream of Six1 in 
human breast cancer. Oncogene 31, 5162–71 (2012). 

240. Yang, Y. et al. MiR-136 promotes apoptosis of glioma cells by targeting AEG-1 and Bcl-
2. FEBS Lett. 586, 3608–12 (2012). 

241. Gandhi, R. et al. Circulating MicroRNAs as biomarkers for disease staging in multiple 
sclerosis. Ann. Neurol. 73, 729–40 (2013). 

242. Lovett-Racke, A. E. et al. Silencing T-bet defines a critical role in the differentiation of 
autoreactive T lymphocytes. Immunity 21, 719–31 (2004). 

243. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental 
autoimmune encephalomyelitis. J. Immunol. 177, 566–73 (2006). 

244. Aldemir, H. et al. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 
receptor. J. Immunol. 175, 7791–5 (2005). 

245. Maci n, F., Garc  a-Cózar, F., Im, S. & Horton, H. Transcriptional mechanisms 
underlying lymphocyte tolerance. Cell 109, 719–731 (2002). 



References  

255 

 

246. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction 
of pathogenic TH17 cells. Nature 1–7 (2013). doi:10.1038/nature11868 

247. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. 
Nature (2013). doi:10.1038/nature11984 

248. O’Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity 
of helper CD4+ T cells. Science (80-. ). 327, 1098–102 (2010). 

249. Harper, E. G. et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro 
and in vivo: implications for psoriasis pathogenesis. J. Invest. Dermatol. 129, 2175–83 
(2009). 

250. Durelli, L. et al. T-helper 17 cells expand in multiple sclerosis and are inhibited by 
interferon-beta. Ann. Neurol. 65, 499–509 (2009). 

251. Schmidt, S. Candidate autoantigens in multiple sclerosis. Mult. Scler. 5, 147–160 
(1999). 

252. Kryczek, I. & Bruce, A. Induction of IL-17+ T cell trafficking and development by IFN-γ: 
mechanism and pathological relevance in psoriasis. J. Immunol. 181, 4733–4741 
(2008). 

253. Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by 
antagonizing RORγt activity. Nature 472, 486–90 (2011). 

254. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual 
circulating tumor cells. Nat. Biotechnol. 30, 777–82 (2012). 

255. Lu, K. T. et al. Functional and epigenetic studies reveal multistep differentiation and 
plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 
35, 622–32 (2011).  



Appendix  

256 

 

APPENDIX 

  



Appendix  

257 

 

  



Appendix  

258 

 

  



Appendix  

259 

 

  



Appendix  

260 

 

  



Appendix  

261 

 

  
CCR6+IL-17+  vs. CCR6+IL-17+  vs. CCR6+IL-17+ vs. CCR6-IFNγ+ vs. CCR6-IFNγ+ vs. CCR6+IFNγ+  vs. 

CCR6+IFNγ+ CCR6-IFNγ+  CCR6+IFNγ+IL-17+ CCR6+IFNγ+ CCR6+IFNγ+IL-17+ CCR6+IFNγ+IL-17+ 

hsa-let-7d-002283 0.014638637 27.69942157 160.4566476

hsa-let-7e-002NA6 0.001831413 0.00036343 5.03924407 2751.560656 546.0264711

hsa-let-7g-002282 0.003878387 0.001509688 2.568999602 2807.077312 1092.673315

hsa-miR-101-002253 0.01370484 16.21028194 72.96692495

hsa-miR-106a-002169 0.00284539 0.000556425 5.113695773 11765.14992 2300.713699

hsa-miR-106b-000442 0.029074417 0.011984712 0.030527291 2.425958717 2.547186038

hsa-miR-125a-5p-002198 0.090127534 0.09200976 2.221453289 2.267846204

hsa-miR-126-002228 4.593989666

hsa-miR-136-000592 2.052618442 4.044026015 2.543126934

hsa-miR-142-3p-000464 0.10116721 0.05206174 19.14524654 9.852350821

hsa-miR-142-5p-002248 0.333855579 2.995307139

hsa-miR-146a-000468 0.023993474 0.006351056 0.453185161 3.777871594 71.35587605 18.88785108

hsa-miR-146b-001097 0.020547284 0.009200973 0.257661852 2.2331642 28.00376047 12.53994689

hsa-miR-150-000473 0.091425283 0.027280735 3.351276371 37.90991544 11.31208269

hsa-miR-155-002623 0.031000612 0.011707979 8.844412622 2.647819296 755.4175403 285.2979965

hsa-miR-16-000391 0.069725935 0.023272041 2.996124692 34.41877072 11.48776311

hsa-miR-17-002308 0.000969151 0.000108679 8.917590797 9201.447286 1031.831074

hsa-miR-181a-000480 0.218389246 5.450482483 13.22660369
hsa-miR-184-000485 2.185750406 2.848295181 0.448850529 0.157585679 0.205353058

hsa-miR-186-002285 0.004667959

hsa-miR-191-002299 0.034863733 0.012916433 4.135359651 2.699176528 320.1626665 118.6149417

hsa-miR-192-000491 0.1125949 4.36448614 8.881396927

hsa-miR-194-000493 0.042098979 23.75354518 23.75354518

hsa-miR-195-000494 0.030495392 0.028993589 57.60557802 54.76868278

hsa-miR-19a-000395 0.293585617 0.031942641 9.191025275 166.6525309 18.13209363

hsa-miR-19b-000396 0.042551413 0.010832156 3.928249779 98.76555924 25.14238269

hsa-miR-1NA-3p-002234 0.1965928 0.072844847 2.698788027 12.8949262 4.778043355

hsa-miR-203-000507 0.438065305 0.397523868 0.296210399

hsa-miR-20a-000580 0.015560039 11.46155703 35.8072414 736.6020547 20.57131535

hsa-miR-20b-001014 0.002653456 97.75473037 376.866936

hsa-miR-21-000397 0.049720129 0.012122137 3.65128766 4.101597717 301.2082494 73.43680929

hsa-miR-212-000515 9.03445019

hsa-miR-222-002276 0.14061665 0.03456384 8.308483298 4.068316726 240.3807913 59.08605636

hsa-miR-223-002295 0.451632016 2.654638967 2.569814102

hsa-miR-24-000NA2 0.243807599 0.097330515 2.098144441 2.504945127 21.55690268 8.605738487

hsa-miR-25-000NA3 0.02090121 0.00105011 19.90382775 267.2961556 13.42938449

hsa-miR-26a-000NA5 0.015596067 0.00199442 7.819850357 3233.810483 413.5386657

hsa-miR-26b-000NA7 0.307918617 0.030462606 11.81325915 10.10808507 387.7954173 38.36487473

hsa-miR-27a-000NA8 6.191894136

hsa-miR-28-000411 0.214217641 0.012795908 16.74110447 311.497135 18.60672547

hsa-miR-29a-002112 0.028013101 0.01757267 6.61653613 376.5242423 236.1943446

hsa-miR-29b-000413 0.39299055 0.280408735 21.01982779 14.99818076

hsa-miR-29c-000587 0.000703949 0.000115004 6.121089541 1420.557268

hsa-miR-301-000528 0.144478466 6.921446672 2.411738475

Table 8.1 List of 79 differentially expressed miRNAs in T
H
1 and T

H
17 CD4

+
 T cell 

subsets. Relative expression of miRNAs between each subset (2
-ΔΔCp

), normalised 
 to median Cycle value (Cp). 
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CCR6+IL-17+  vs. CCR6+IL-17+  vs. CCR6+IL-17+ vs. CCR6-IFNγ+ vs. CCR6-IFNγ+ vs. CCR6+IFNγ+  vs. 

CCR6+IFNγ+ CCR6-IFNγ+  CCR6+IFNγ+IL-17+ CCR6+IFNγ+ CCR6+IFNγ+IL-17+ CCR6+IFNγ+IL-17+ 

hsa-miR-302a-000529 0.000284283 138.7228345 30.12956222

hsa-miR-30b-000602 0.028040156 0.008931925 2.600941839 3.139318344 291.196111 92.75775157

hsa-miR-30c-000419 0.220841366 0.060379558 4.424986335 3.657551893 73.28616672 20.03694516

hsa-miR-31-002279 0.026130376 0.002735821 9.551200902 365.5209829 38.26963611

hsa-miR-320-002277 0.026748853 0.009407618 36.01140405 2.843318406 3827.898207 1346.278419

hsa-miR-324-3p-002161 3.136205293 4.508459828 564.3385679 125.1732497 179.9431208

hsa-miR-328-000543 0.033476737 0.004358565 7.680677992 329.9885779 42.96346992

hsa-miR-331-000545 0.00199463 166.8084941 501.3462139

hsa-miR-342-3p-002260 0.031112444 0.011209496 0.457088849 2.775543556 40.77693215 14.69151225

hsa-miR-345-002186 0.290119504 4.969472793 10.67854325

hsa-miR-374-000563 0.021806027 0.006857612 3.179827859 140.9178877 44.31620012

hsa-miR-375-000564 0.027702505 25.10305328 36.09781855

hsa-miR-376a-000565 0.275665736 0.263754911 0.013256054 0.050258985 0.04808742

hsa-miR-454-002323 487.6713716 421.4832453 0.00170825 505.9430317

hsa-miR-484-001821 0.020551451 0.0030024 6.84500692 450.5240393 65.81790852

hsa-miR-494-002365 0.045195086 22.12629942 22.12629942

hsa-miR-517b-001152 0.12535737 0.012211925 10.26516088 257.3281988 25.06811162

hsa-miR-518d-001159 49.27316158 2.433386244 20.24880419 0.247685274 0.012232094
hsa-miR-518f-002388 0.11375512 0.202828467 8.790813092 0.202828467

hsa-miR-523-002386 0.307620749 0.025201817 12.2062923 39.6796781 3.250756013

hsa-miR-532-3p-002355 0.153872187 6.49890028 6.49890028

hsa-miR-545-002267 0.028961592 0.450611132 34.52848855

hsa-miR-548a-001538 17.76421631 3.70480636 4.986364934 4.794910877 0.280697152

hsa-miR-548c-001590 22.18094742 13.07614538 17.41539888

hsa-miR-548c-5p-002429 3.856506684

hsa-miR-574-3p-002349 0.012633389 0.003334466 6.552256367 3.78872913 1965.0091 518.6459713

hsa-miR-590-5p-001984 0.01338881 8.401402224 9.7631404

hsa-miR-597-001551 0.147603571 0.057527644 12.63414508 0.389744256 0.030848487

hsa-miR-598-001988 0.091885311 0.109162208 9.160679475 10.88313236

hsa-miR-618-001593 0.014641389 31.82287507 15.8395006

hsa-miR-628-5p-002433 531.1438412 0.011570566 45904.74323 116.6822639 0.002541835

hsa-miR-636-002088 0.022738166 43.97892022 43.97892022

hsa-miR-708-002341 2.179368684 2.179368684

hsa-miR-92a-000431 0.032175778 0.012299381 2.616048583 113.3129919 43.31455946

hsa-miR-95-000433 0.298075257 8.600764748 8.600764748

hsa-miR-99b-000436 0.207686362 2.788274256 4.814952652

mmu-miR-1NA-001187 0.031512774 31.73316285 31.73316285

mmu-miR-374-5p-001319 0.069524457 0.04819987 20.74694407 14.38342763

mmu-miR-93-001090 0.085227553 11.73329474 11.73329474
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hsa-let-7a-000377 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-let-7c-000379 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-let-7d-002283 0.000 0.000 0.018 0.000 0.000 0.000 0.000 0.000 0.264 0.111 0.159 0.583

hsa-let-7e-002NA6 0.000 0.000 0.000 0.000 0.000 0.000 0.701 0.844 0.686 1.034 9.889 5.081

hsa-let-7f-000382 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-let-7g-002282 0.000 0.000 0.103 0.000 0.000 0.000 1.055 1.926 1.602 1.354 8.459 4.817

hsa-miR-1-002222 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.121 0.000

hsa-miR-9-000583 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-10a-000387 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-10b-002218 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

U6 snRNA-001973 638.914 28.155 151.439 266.838 25.308 154.916 58.274 1386.041 519.962 4131.569 2809.621 1326.055

U6 snRNA-001973 722.808 34.138 178.659 276.018 20.466 60.916 253.606 1214.039 638.852 3415.391 5066.789 1002.528

hsa-miR-15a-000389 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-15b-000390 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.164

hsa-miR-16-000391 1.464 0.000 0.959 0.381 0.096 0.102 2.983 1.272 1.481 3.245 7.309 6.370

hsa-miR-17-002308 0.000 0.000 0.000 0.000 0.000 0.000 0.293 1.955 4.785 6.637 15.312 19.117

hsa-miR-18a-002422 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-18b-002217 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-19a-000395 0.000 0.000 0.205 0.000 0.000 0.000 0.000 0.075 0.147 0.219 0.092 0.571

hsa-miR-19b-000396 3.218 0.000 1.455 2.467 0.000 1.550 2.255 7.622 4.796 11.057 17.777 25.420

hsa-miR-20a-000580 0.000 1.254 10.578 0.000 6.497 0.000 0.000 10.632 7.214 9.572 17.986 27.738

hsa-miR-20b-001014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.078 0.264 0.221 2.290

hsa-miR-21-000397 0.068 0.000 1.000 0.079 0.018 0.000 0.150 2.361 2.112 0.847 10.416 5.833

hsa-miR-22-000398 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-23a-000399 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-23b-000NA0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-24-000NA2 0.811 0.104 2.019 0.193 0.033 2.860 1.629 2.359 3.051 3.746 5.087 9.668

hsa-miR-25-000NA3 0.000 0.000 0.000 0.000 0.000 0.061 0.002 0.685 0.209 0.727 2.073 1.429

hsa-miR-26a-000NA5 0.000 0.000 0.364 0.000 0.000 0.000 0.062 1.822 1.552 2.022 6.367 6.552

hsa-miR-26b-000NA7 0.156 0.000 0.194 0.000 0.014 0.000 0.000 0.603 1.721 0.406 1.036 3.454

CCR6+IFNγ+ CCR6-IFNγ+CCR6+IL-17+ CCR6+IL-17+IFNγ+

Table 8.2 Relative expression (2
-ΔCp

) of 384 miRNAs, normalised to median Cycle value (Cp) 
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hsa-miR-27a-000NA8 0.000 0.000 0.000 0.849 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.322

hsa-miR-27b-000NA9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011

hsa-miR-28-3p-002446 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-28-000411 0.000 0.000 0.086 0.000 0.000 0.000 0.000 0.114 0.104 0.256 0.424 0.694

U6 snRNA-001973 720.530 30.224 205.337 232.757 20.769 97.063 168.076 1491.644 488.805 2891.365 3402.662 1458.761

U6 snRNA-001973 493.375 35.019 168.206 223.158 23.028 317.427 0.000 1095.472 236.895 3297.342 5382.423 641.586

hsa-miR-29a-002112 0.000 0.279 0.580 0.000 0.000 0.411 1.961 2.666 1.906 1.478 6.283 4.348

hsa-miR-29b-000413 0.000 0.000 0.278 0.000 0.000 0.000 0.000 0.034 0.181 0.000 0.097 0.177

hsa-miR-29c-000587 0.000 0.000 0.000 0.000 0.000 0.000 0.000 33.974 155.175 41.107 4.817 8.281

hsa-miR-30b-000602 0.075 0.000 0.316 1.000 0.000 0.000 1.034 1.419 1.000 1.584 5.428 5.281

hsa-miR-30c-000419 0.458 0.136 1.324 1.089 0.022 0.040 1.139 2.658 2.537 3.154 11.378 10.473

hsa-miR-31-002279 0.000 0.000 0.000 0.000 0.000 0.000 0.341 0.302 0.000 0.062 0.893 2.212

hsa-miR-32-002109 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-33b-002085 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-34a-000426 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-34c-000428 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-92a-000431 0.254 0.000 1.264 0.742 0.000 0.160 1.911 4.208 1.625 2.026 9.320 12.394

mmu-miR-93-001090 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.274

hsa-miR-95-000433 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.000 0.056

mmu-miR-96-000186 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-98-000577 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-99a-000435 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-99b-000436 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.013 0.000 0.016

hsa-miR-100-000437 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-101-002253 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.124 0.116 0.061 0.137

hsa-miR-103-000439 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-105-002167 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-106a-002169 0.000 0.000 0.380 0.000 0.000 0.000 0.962 6.798 4.642 7.346 25.804 21.425

RNU44-001094 4.930 0.000 10.157 3.051 0.000 0.000 9.386 33.502 23.144 26.760 75.957 59.366

hsa-miR-106b-000442 0.000 0.024 0.000 0.056 0.036 0.760 0.091 0.153 0.127 0.110 0.511 0.451

hsa-miR-107-000443 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-122-002245 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mmu-miR-124a-001182 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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hsa-miR-125a-3p-002199 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-125a-5p-002198 0.000 0.000 0.000 0.159 0.000 0.000 0.042 0.000 0.059 0.058 0.000 0.041

hsa-miR-125b-000449 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-126-002228 0.476 0.000 0.000 0.000 0.000 0.000 0.043 0.000 0.000 0.000 0.023 0.008

hsa-miR-127-000452 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.000 0.000 0.000 0.000 0.000

hsa-miR-127-5p-002229 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-128a-002216 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.058 0.000 0.000 0.000 0.000

mmu-miR-129-3p-001184 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-129-000590 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-130a-000454 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-130b-000456 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-132-000457 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-133a-002246 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.472 0.000

hsa-miR-133b-002247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mmu-miR-134-001186 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-135a-000460 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-135b-002261 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-136-000592 0.008 0.002 0.018 0.000 0.003 0.000 0.000 0.007 0.008 0.067 0.000 0.000

mmu-miR-137-001129 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-138-002284 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-139-3p-002313 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-139-5p-002289 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-1NA-3p-002234 0.000 0.000 0.003 0.004 0.000 0.000 0.038 0.002 0.011 0.041 0.030 0.013

mmu-miR-1NA-001187 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.051 0.094

hsa-miR-141-000463 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-142-3p-000464 6.919 1.000 19.964 6.987 0.797 25.046 40.847 76.667 42.600 23.147 192.868 219.269

hsa-miR-142-5p-002248 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.025 0.000 0.002

hsa-miR-143-002249 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-145-002278 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-146a-000468 1.715 0.000 3.240 0.379 0.162 1.316 8.704 12.753 4.915 13.059 66.731 33.761

hsa-miR-146b-3p-002361 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-146b-001097 1.796 0.000 3.585 5.004 0.051 1.997 17.591 8.215 6.968 17.479 29.275 21.913

hsa-miR-147b-002262 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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hsa-miR-148a-000470 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.000 0.000 0.000

hsa-miR-148b-000471 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-149-002255 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-150-000473 47.879 1.303 101.845 27.250 2.046 103.065 208.094 197.455 202.407 440.445 826.040 860.383

hsa-miR-152-000475 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.191

mmu-miR-153-001191 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-154-000477 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-181a-000480 0.033 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.003 0.067 0.030

hsa-miR-181c-000482 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-182-002334 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RNU48-001006 83.431 2.174 51.182 31.341 2.008 23.165 172.832 203.260 92.921 238.339 562.758 287.227

hsa-miR-183-002269 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-184-000485 1.232 0.566 2.498 1.820 1.254 8.437 0.382 0.613 0.712 0.632 0.722 0.165

hsa-miR-185-002271 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-186-002285 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13332.567 5151.504 0.000 0.000

mmu-miR-187-001193 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-188-3p-002106 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-190-000489 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-191-002299 0.063 0.000 0.638 0.000 0.000 0.418 2.864 0.605 0.740 2.887 3.544 2.463

hsa-miR-192-000491 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.013 0.101

hsa-miR-193a-3p-002250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-193a-5p-002281 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-193b-002367 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-194-000493 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.055 0.000 0.448

hsa-miR-195-000494 0.000 0.000 0.078 0.017 0.000 0.000 0.260 0.127 0.153 0.131 0.132 0.338

hsa-miR-196b-002215 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-197-000497 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-198-002273 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-199a-000498 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-199a-3p-002304 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019

hsa-miR-199b-000500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-200a-000502 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-200b-002251 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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hsa-miR-200c-002300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-202-002363 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-203-000507 0.000 0.150 0.000 0.148 0.053 0.000 0.003 0.762 0.000 0.035 0.002 0.081

hsa-miR-204-000508 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.055 0.000 0.000

hsa-miR-205-000509 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-208b-002290 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-210-000512 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-214-002306 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-215-000518 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-216a-002220 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-216b-002326 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-217-002337 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-218-000521 0.674 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000

hsa-miR-219-000522 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-221-000524 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-222-002276 0.586 0.148 1.168 0.305 0.000 0.426 3.314 2.952 3.722 8.443 22.794 12.739

hsa-miR-223-002295 1.332 1.328 0.361 10.160 0.254 0.158 0.967 0.517 0.740 3.044 1.464 1.555

hsa-miR-224-002099 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-296-3p-002101 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-296-000527 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-299-3p-001015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-299-5p-000600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-301-000528 0.000 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.128 0.005

hsa-miR-301b-002392 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-302a-000529 0.000 0.000 0.000 0.000 2158.057 0.000 0.000 0.000 22.110 403.472 0.000 198.391

ath-miR159a-000338 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-302b-000531 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-302c-000533 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 305.185 0.000 0.000

hsa-miR-320-002277 0.170 0.000 0.506 0.000 0.000 0.000 2.659 1.185 1.931 3.807 7.127 5.155

hsa-miR-323-3p-002227 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000

hsa-miR-324-3p-002161 43176.270 26330.732 18254.455 10141.996 8395.363 0.000 16023.326 11854.909 3541.707 13024.424 7802.691 2228.381

hsa-miR-324-5p-000539 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-326-000542 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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hsa-miR-328-000543 0.112 0.000 0.000 0.037 0.000 0.000 0.251 0.204 0.107 2.191 1.997 0.566

hsa-miR-329-001101 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-330-000544 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-330-5p-002230 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-331-000545 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.000 0.132 0.973 2.448

hsa-miR-331-5p-002233 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-335-000546 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020

hsa-miR-337-5p-002156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.017 0.000

hsa-miR-338-3p-002252 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-339-3p-002184 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-339-5p-002257 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-3NA-002258 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000

hsa-miR-155-002623 2.178 0.000 1.925 0.000 0.069 0.088 6.340 8.133 3.700 10.890 20.976 15.503

hsa-let-7b-002619 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.078 0.000 0.000 0.128

hsa-miR-342-3p-002260 3.034 0.000 0.837 2.089 0.068 0.252 12.348 3.588 2.580 17.217 14.903 9.527

hsa-miR-342-5p-002147 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-345-002186 0.000 0.000 0.040 0.000 0.000 0.000 0.000 0.013 0.000 0.025 0.000 0.090

hsa-miR-361-000554 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-362-3p-002117 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-362-001273 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.181 0.000

hsa-miR-363-001271 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-365-001020 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-367-000555 0.000 0.000 2304.910 0.000 136.117 0.000 0.000 0.000 29.173 126.103 0.000 0.000

hsa-miR-369-3p-000557 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-369-5p-001021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-370-002275 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-371-3p-002124 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-372-000560 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-373-000561 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-374-000563 0.000 0.000 0.238 0.000 0.000 0.264 0.427 0.519 0.191 0.456 2.895 1.028

mmu-miR-374-5p-001319 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.132 0.041 0.016 0.000 1.000

hsa-miR-375-000564 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.147 0.037 0.022

hsa-miR-376a-000565 1.791 0.000 16.205 9.423 7.088 252.912 0.292 2.044 3.143 1.635 1.218 1.077
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hsa-miR-376b-001102 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-377-000566 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mmu-miR-379-001138 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-380-3p-000569 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-381-000571 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.000

hsa-miR-382-000572 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-383-000573 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-NA9-5p-002331 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-410-001274 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.036 0.000 0.000

hsa-miR-411-001610 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-422a-002297 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.142 0.000 0.000 0.177 0.000

hsa-miR-423-5p-0023NA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-424-000604 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-425-5p-001516 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-429-001024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-431-001979 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-433-001028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-449-001030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-449b-001608 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-450a-002303 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-450b-3p-002208 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.043 0.000

hsa-miR-450b-5p-002207 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mmu-miR-451-001141 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.731 0.000

hsa-miR-452-002329 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-453-002318 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-454-002323 0.000 256972.776 475011.198 0.000 1202140.425 0.000 0.000 422503.568 499717.425 776094.067 0.000 0.000

hsa-miR-455-3p-002244 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-455-001280 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-483-5p-002338 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.058 0.000 0.000

hsa-miR-484-001821 0.427 0.000 0.000 0.173 0.000 0.000 1.307 0.395 0.175 6.753 2.132 2.017

hsa-miR-485-3p-001277 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-485-5p-001036 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-486-3p-002093 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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hsa-miR-486-001278 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-487a-001279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-487b-001285 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-488-002357 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-489-002358 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-490-001037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-491-3p-002360 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mmu-miR-491-001630 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.075 0.000 0.000 0.000

hsa-miR-493-002364 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-494-002365 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.095 0.210 0.000

mmu-miR-495-001663 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mmu-miR-496-001953 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-499-3p-002427 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mmu-miR-499-001352 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000

hsa-miR-500-002428 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-501-3p-002435 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-501-001047 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-502-3p-002083 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-502-001109 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-503-001048 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-504-002084 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-505-002089 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-507-001051 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-508-001052 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-508-5p-002092 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-509-5p-002235 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-510-002241 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-512-3p-001823 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-512-5p-001145 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-513-5p-002090 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-515-3p-002369 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-515-5p-001112 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-516a-5p-002416 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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hsa-miR-516b-001150 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000

hsa-miR-517a-002NA2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-517c-001153 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-518a-3p-002397 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-518a-5p-002396 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-518b-001156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

hsa-miR-518c-002NA1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-518d-001159 26.364 18.566 22.411 30.973 11.821 136.842 0.000 9.249 7.311 24.069 10.763 2.939

hsa-miR-518d-5p-002389 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-518e-002395 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-518f-002388 0.000 0.000 0.000 0.000 0.023 0.010 0.000 0.000 0.000 0.056 0.022 0.000

hsa-miR-519a-002415 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-519d-002NA3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-519e-002370 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-520a-001167 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-520a#-001168 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-520d-5p-002393 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-520g-001121 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-521-001122 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-522-002413 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-523-002386 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.035 0.000 0.057 0.591 0.005

hsa-miR-524-5p-001982 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-525-3p-002385 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-525-001174 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-526b-002382 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-532-3p-002355 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.119 0.004

hsa-miR-532-001518 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-539-001286 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-541-002201 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-542-3p-001284 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000

hsa-miR-542-5p-0022NA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-544-002265 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-545-002267 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.576 0.131 5.108 0.000 0.000
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hsa-miR-548a-001538 0.215 0.047 0.201 0.243 0.050 0.000 0.006 0.045 0.000 0.274 0.108 0.000

hsa-miR-548a-5p-002412 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-548b-001541 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-548b-5p-002NA8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.328 0.000

hsa-miR-548c-001590 0.038 0.013 0.055 0.000 0.000 0.000 0.057 0.171 0.000 0.026 0.033 0.006

hsa-miR-548c-5p-002429 0.000 0.000 0.023 0.000 0.000 0.000 0.022 0.000 0.000 0.002 0.051 0.000

hsa-miR-548d-001605 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-548d-5p-002237 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.017 0.000 0.000

hsa-miR-551b-001535 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-556-3p-002345 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-556-5p-002344 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-561-001528 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-570-002347 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-574-3p-002349 4.074 0.000 0.124 1.328 0.000 0.000 8.188 9.528 4.368 43.003 44.047 9.785

hsa-miR-576-3p-002351 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-576-5p-002350 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-579-002398 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-582-3p-002399 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-582-5p-001983 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-589-002NA9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-590-5p-001984 0.000 0.000 0.000 0.000 0.000 0.607 0.017 0.000 0.077 0.047 0.168 0.131

hsa-miR-597-001551 0.000 0.972 2.310 1.203 1.464 9.071 0.000 0.799 0.433 2.303 1.000 0.411

hsa-miR-598-001988 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.000 0.064 0.000 0.058 0.024

mmu-miR-615-001960 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-615-5p-002353 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-616-002414 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-618-001593 0.000 0.000 0.000 0.109 0.000 0.000 0.000 0.000 0.013 0.212 0.172 0.022

hsa-miR-624-002430 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-625-002431 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-627-001560 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.134 0.000 0.000

hsa-miR-628-5p-002433 0.000 70352.984 199379.561 51316.601 111077.724 0.000 0.000 0.000 69029.050 13455.002 51730.840 17642.532

hsa-miR-629-002436 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-636-002088 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.132 0.000 0.138
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hsa-miR-642-001592 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.054

hsa-miR-651-001604 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-652-002352 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-653-002292 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-654-3p-002239 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000

hsa-miR-654-001611 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-655-001612 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-660-001515 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-671-3p-002322 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-672-002327 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-674-002021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-708-002341 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.001

hsa-miR-744-002324 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.000

hsa-miR-758-001990 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-871-002354 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-872-002264 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-873-002356 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-874-002268 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.073

hsa-miR-875-3p-002204 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-876-3p-002225 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-876-5p-002205 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-885-3p-002372 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-885-5p-002296 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-886-3p-002194 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-886-5p-002193 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-887-002374 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-888-002212 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-889-002202 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-890-002209 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-891a-002191 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-891b-002210 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-892a-002195 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-147-000469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.182 0.000 0.000
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hsa-miR-208-000511 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-211-000514 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-212-000515 0.000 0.000 0.143 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

hsa-miR-219-1-3p-002095 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-219-2-3p-002390 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-220-000523 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-220b-002206 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-220c-002211 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-298-002190 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-325-0005NA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-346-000553 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-376c-002122 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-384-000574 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-412-001023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-448-001029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-492-001039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-506-001050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-509-3-5p-002155 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-511-001111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-517b-001152 0.042 0.000 0.000 0.000 0.000 0.000 0.004 0.019 0.519 0.123 1.050 0.329

hsa-miR-519c-001163 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-520b-001116 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-520e-001119 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hsa-miR-520f-001120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CCR6
+

IL-17
+

 CCR6
+

IFNγ
+

IL-17
+

 CCR6
+

IFNγ
+

 CCR6
-

IFNγ
+

 


