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Abstract

This thesis is concerned with the construction of topographic maps of structured data. A

probabilistic generative model-based approach is taken, inspired by the GTM algorithm. De-

pending on the data at hand, the form of a probabilistic generative model is specified that is

appropriate for modelling the probability density of the data. A mixture of such models is

formulated which is topographically constrained on a low-dimensional latent space. By con-

strained, we mean that each point in the latent space determines the parameters of one model

via a smooth non-linear mapping; by topographic, we mean that neighbouring latent points gen-

erate similar parameters which address statistically similar models. The constrained mixture is

trained to model the density of the structured data. A map is constructed by projecting each

data item to a location on the latent space where the local latent points are associated with

models that express a high probability of having generated the particular data item.

We present three formulations for constructing topographic maps of structured data. Two

of them are concerned with tree-structured data and employ hidden Markov trees and Markov

trees as probabilistic generative models. The third approach is concerned with astronomical

light curves from eclipsing binary stars and employs a physical-based model. The formulation

of the all three models is accompanied by experiments and analysis of the resulting topographic

maps.
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Notation and Abbreviations

A list of the most repeated notation and symbols used in the thesis follows.

Γ Non-linear RBF mapping from space V to data/model space
δ(.) Dirac impulse function
δi,j Kronecker delta
D Dataset
DKL[.||.] Kullback-Leibler divergence
Ex[.] Expectation operator with respect to distribution of variable x
θ Parameter vector of probabilistic model
Θ Parameter vector of mixture model
H Space of all models p(·|x)
L Model likelihood
M Two-dimensional manifold of noise models p(·|x) constrained on latent space V
N Gaussian distribution
O Light curve from an eclipsing binary system
p(·|x) Local noise model addressed by latent point x
s Sequence data item
t Vector data item
V Latent space embedded in space H
x Coordinate vector of neuron on lattice (in neural-based formulations);

Latent point (in GTM formulations)
y Tree data item
W Weight matrix
W i i-th row of weight matrix
Z Set of indicator-hidden variables

EM Expectation-maximisation (algorithm)
FIM Fisher information matrix
GTM Generative topographic map (algorithm)
HMM Hidden Markov model
HMTM Hidden Markov tree model
KLD Kullback-Leibler divergence
MTM Markov tree model
RBF Radial basis function
SOM Self-organising map
SOMSD SOM for structured data
TPB Traffic-policemen benchmark
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Chapter 1

Introduction

1.1 Topographic Mapping

Topographic mapping [Kohonen, 1990, Hammer et al., 2004, Svensén, 1998, Kabán and Girolami, 2001]

is the data processing technique of constructing maps that capture relationships between the

data items in a given dataset. In geographical maps the affinities between objects on the map

are in correspondence to the distances between the real world objects that are represented on

the map. In topographic maps of data, distances between data reflect the similarity/closeness of

the data items which may be Euclidean, Mahalanobis, statistical etc. Clearly topographic map-

ping is a data visualisation technique when the constructed map is a two- or three-dimensional

map, but the term data visualisation1 spans a much wider thematic area than topographic map-

ping. In [Keim and Ward, 2002] a wide collection of data visualisation methods is presented,

from techniques that enhance the presentation of data by geometrically transforming displays

to techniques that produce plots capable of interaction, zooming or dynamic projection. For

example in [Kleiberg et al., 2001] an approach to visualising data structures is presented that is

based on the adeptness of the human visual system of observing large numbers of branches and

leaves on a botanical tree. The approach is demonstrated on a file system by adopting a botan-

ical representation where files, directories etc. are represented by elements such as branches or

leaves.

In this work we are not concerned with representational issues such as the adoption of

suitable colour schemes, icons or graphics that consider particular aspects of the human visual

system when constructing topographic maps. In our construction of a map, data items are

simply represented as points. The crux of the work is to endow topographic maps with a clear

1Nevertheless, after this clarification we shall interchangeably use the term “visualisation” instead of the more
accurate “topographic mapping”.
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understanding of why data points are mapped to their particular locations and how to interpret

the distances between them. The data items that will concern us here are structured types.

Specifically, a substantial part of this work is concerned with tree-structures. Moreover, a real

world example is studied at the penultimate chapter of the thesis, where a particular data type

holding information on a physical system is accommodated in the construction of topographic

maps.

1.2 Two Approaches to Topographic Mapping

Topographic mapping is a valuable tool for the analysis and interpretation of multivariate data.

The Self-Organising Map (SOM) [Kohonen, 1990] is one of the most celebrated tools that is of

vast assistance to this task. SOM is a type of neural network that allows a nonlinear projection

of data residing in a high dimensional space to a lower dimensional projection space. The lower

dimensional space is a discrete lattice of neurons (for visualisation purposes a two dimensional

lattice). The impact of SOM has been of great magnitude and it has established a kind of

paradigm that a number of techniques have followed. According to the SOM paradigm, the

formation of the map is realised by iterating two steps of competition and cooperation among

the neurons. The competition step involves the presentation of an input pattern and calcu-

lation of the response of all neurons. The neuron with the greatest response is declared the

winner of the competition. In the cooperation step, the winning neuron is appropriately ad-

justed to increase its future response to that particular pattern. Moreover, neurons that belong

to the neighbourhood (on the lattice) of the winner are also adjusted to increase their future

response, albeit proportionally to an (usually) exponentially decaying distance from the win-

ner. Techniques that belong to this paradigm typically modify SOM by equipping neurons with

additional feed-back connections that allow for natural processing of recursive data types such

as sequences or trees. Typical examples of such recursive neural-based models are the Tem-

poral Kohonen Map [Chappell and Taylor, 1993], recurrent SOM [Varsta et al., 1997], recursive

SOM [Voegtlin, 2002], merge SOM [Strickert and Hammer, 2005] and SOM for structured data

[Hagenbuchner et al., 2003].

Nevertheless, the heuristic nature of SOM inherently brings about certain limitations, for

example the lack of a principled cost function (although see developments in e.g. [Heskes, 1999]2

). Comparison of map formations resulting from different initialisations, parameter settings or

2Heskes [Heskes, 1999] suggests a modified version of SOM by redefining the codebook vector (winner unit)
associated with an input as the one closest to the input with respect to averaged distance across its local neigh-
bourhood on the codebook lattice.
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optimisation algorithms can be problematic. The aforementioned recursive neural-based models

also inherit such problems from SOM. Again, formulation of a principled cost function is prob-

lematic (although see developments in [Hammer et al., 2004] along the lines of [Heskes, 1999]).

Also problematic is the explanatory interpretation of the visualisation results in such approaches.

Clusters may be formed on the map that indicate some close relationship between the concerned

structured data items, but there is no explanation on what the characteristics of the clusters

are. Of course one can inspect the individual data points to deduce those relationships once

the map has been formed, but reasoning about mapping of new data items (not used for model

fitting) can be still challenging.

The Generative Topographic Map (GTM) algorithm [Bishop et al., 1998] was introduced

as a principled probabilistic analog to SOM. As a generative model GTM realises a “noisy”

low dimensional manifold in a high dimensional data space. It can be used to model a given

training dataset by adjusting its parameters so that the model-generated data lying around the

noisy low dimensional manifold match (in the distribution sense) the training data. GTM is a

mixture of local generative models (spherical Gaussians) that adheres to topological constraints

(constraints on the values that means of the Gaussians can take). A simple example is that

of requiring that the means belong to a straight line. This could be useful if we believed that

the data are intrinsically one-dimensional and are adequately represented by a “noisy line”.

This situation is illustrated in Fig. 1.1(a). The line on which the means of local Gaussians are

placed can be viewed as an image of a one-dimensional interval under a linear (affine) map.

Alternatively, one may want to constrain the Gaussian means to lie on a smooth curve. In

that case, the one-dimensional interval would be embedded in the high dimensional data space

through a smooth non-linear mapping. This is illustrated in Fig. 1.1(b). The GTM belongs to

the class of so called latent-variable models with latent space being the one-dimensional interval

through which the Gaussian means are constrained.

GTM sets a paradigm of a generative probabilistic approach to the construction of topo-

graphic maps. In this work we extend this paradigm to the visualisation of structured data. A

substantial part of this work is concerned with developing an extension for tree-structured data

that employs hidden Markov tree models as noise models. We compare our approach with a can-

didate member of the recursive neural-based techniques, the SOM for structured data (SOMSD)

[Hagenbuchner et al., 2003]. This comparison concerns also recursive neural-based approaches

in general and serves the purpose of illustrating the benefits of a principled probabilistic model-

based formulation. For example, the generative nature of our model formulation provides us

with an explanatory insight as to how the data might have been generated. By observing the
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(a) (b)

Fig. 1.1: Spherical Gaussians constrained on a one-dimensional line (a), spherical Gaussians
constrained on a one-dimensional curve (b). Note that the straight line (latent space) in (b) does
not belong to the data space and is only plotted in the same figure as its image for convenience.

generative process and its parameters we can understand characteristics of clusters of projected

data items and/or discern other patterns in the data. Also, the smooth character of the embed-

ding map from the latent space into the model space enables us to use techniques of information

geometry to characterise areas on the map of potentially clustered data by calculating local ex-

pansion/contraction rates in the statistical manifold of local models. Such knowledge is highly

desirable for topographic map understanding, but is impossible to obtain in a principled manner

from recursive extensions of SOM.

The thesis concludes with the study of a real-world problem. It formulates an extension

of GTM that constructs topographic maps of light curves that originate from binary eclipsing

stars. To that purpose a probabilistic physical model is formulated.

1.3 Merits of Generative Probabilistic Model-Based Formula-

tions

As aforementioned, this thesis discusses extensions of the GTM to novel data types as well as

the benefits of this approach over recursive neural-based extensions of SOM. The benefits of the

approach followed here stem from its probabilistic and model-based nature.

Amongst the benefits of generative probabilistic models, is their capability of modelling un-

certainty. In such models a function of likelihood arises that quantifies how well a given dataset

is modelled (e.g. [Bishop, 1999, Rabiner, 1989]). The likelihood of the model is a precise objec-

tive function that allows comparisons of different model-fittings as a result of alternative choices

of initialisation, training parameters and training algorithms. Furthermore, testing for overfit-
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ting is possible using the robust method of cross-validation which is applicable in most practical

settings, when more sophisticated methods are not available. Of course, error (cost/objective)

functions and detection of overfitting are also available in other machine learning models such

as discriminative models. However, one advantage of generative probabilistic models is the

capability of directly comparing alternative models that may not belong to the same family.

Moreover, probabilistic approaches can handle missing data in a principled manner as for

instance in [Ng et al., 2004] where the EM algorithm is employed. Also, in case overfitting is

detected, measures for regularisation can be taken to improve the generalisation performance of

the model. One possibility is maximum a-posteriori (MAP) estimation by the incorporation of

priors on the model parameters. For example the common practice in neural networks of adding

a penalty term (proportional to the norm of the weights) for regularisation purposes, is justified

when a probabilistic view is assumed [Bishop, 1996]. Another feature is that such models can

naturally form mixture models (e.g. mixture of probabilistic PCA models in [Bishop, 1999], e.g.

mixture of hidden Markov models in [Smyth, 1997]) and also composite models such as hidden

Markov models with emissions modelled as mixture of Gaussians or hierarchical models (e.g.

hierarchical hidden Markov models [Fine et al., 1998]).

Furthermore, generative model based formulations inherently lend themselves to being ex-

planatory [Smyth, 1999]; observing the underlying generative process, be it a mixture of Gaus-

sians, a hidden Markov model or a probabilistic grammar, provides clues as to how data items

arise. This may also inform us on whether the chosen model is a plausible one for a given

problem.

1.4 Thesis Organisation

A recurrent theme around the three basic data types of vectors, sequences and tree-structures

permeates most of the thesis:

• In chapter 2 we review SOM that processes vectorial data. SOM sets a paradigm that has

inspired various extensions that introduce feedback connections to allow for the processing

of data expressed as sequences and acyclic-directed graphs (trees are a special subcase of

graphs). We also review probabilistic extensions of SOM. A discussion of these approaches

follows.

• In chapter 3 generative probabilistic models are reviewed that model the three data types,

namely the Gaussian density for vectors, hidden Markov models for sequences and hid-

den Markov tree models and Markov tree models for tree-structures. These generative
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probabilistic models are trained via the Expectation-Maximisation algorithm that is also

reviewed in the same chapter.

• In chapter 4 the GTM algorithm is reviewed that constructs topographic maps of vectorial

data. We briefly mention an extension of GTM, which here we shall refer to as GTM-

HMM that processes sequences [Tiňo et al., 2004], and formulate our own two extensions

the GTM-HMTM and GTM-MTM that process tree-structures. Experimental results are

presented and analysed. We also discuss the advantages that the generative probabilistic

formulation of our approach brings compared to a candidate member of the recursive

neural-based approaches.

• Chapter 5 introduces magnification factors that reveal local contractions/expansions on

the topographic map. Magnification factors are derived for the GTM and the extensions

presented in chapter 4. Experimental results are presented and discussed.

• In chapter 6 we depart from the processing of vectors, sequences and tree-structures and

demonstrate the power of our generative probabilistic formulation by considering a real

world problem. We consider light curves from eclipsing binary stars and derive a GTM3

that constructs topographic maps of such astronomical objects. A probabilistic physical

model is formulated and employed as the local noise model for the new GTM. We present

the resulting topographic maps and plots of magnification factors.

• Chapter 7 concludes the thesis with a discussion of its main contributions.

1.5 Thesis Contributions and Publications

This thesis makes the following contributions:

• Develops two novel extensions of the GTM algorithm for the visualisation of tree-structured

data, accompanied by a discussion comparing these extensions to a representative of re-

cursive neural-based approaches (chapter 4).

• Develops a novel extension of the GTM algorithm for the visualisation of light curves from

eclipsing binary stars (chapter 6).

• Studies two approaches for the measurement of magnification factors in topographic maps

(chapter 5). The study is not limited to the extensions of GTM developed in this thesis,

3By ‘GTM’ we shall refer both to the GTM algorithm by [Bishop et al., 1998] and to the probabilistic generative
model-based formulation of topographic latent models that GTM dictates.
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but also concerns the original GTM and a previously developed GTM for the visualisation

of sequences [Tiňo et al., 2004].

This work has lead to the following publications:

1. Peter Tiňo, Nikolaos Gianniotis: Metric Properties of Structured Data Visualizations

through Generative Probabilistic Modeling. International Joint Conference on Artificial

Intelligence 2007: 1083-1088.

2. Nikolaos Gianniotis, Peter Tiňo: Visualisation of Tree-Structured Data through Generative

Probabilistic Modelling. European Symposium on Artificial Neural Networks 2007: 97-102.

3. Nikolaos Gianniotis, Peter Tiňo: Visualisation of Tree-Structured Data through Generative

Topographic Mapping. Submitted to IEEE Transactions on Neural Networks: Accepted

subject to minor modifications.
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Chapter 2

Neural-Based Approaches to

Topographic Mapping

The Self-Organising Map (SOM) [Kohonen, 1990] is the archetypal neural network algorithm

for the topographic mapping of vectorial data. SOM has enjoyed considerable success in

many diverse areas, a comprehensive array of applications can be found in [Kaski et al., 1998,

Oja et al., 2003]. Furthermore, it has inspired numerous extensions that deal with data of non-

vectorial types. An excellent overview of such extensions under a general framework can be

found in [Hammer et al., 2004]. SOM and its extensions rely on a Hebbian type of learning

where two processes, one of competition and one of cooperation, take place between the neurons.

For the purposes of visualisation, neurons are usually organised on a two dimensional rectan-

gular lattice. All neurons are supplied with weight vectors. At every time step a data item is

presented to the network and the neuron that is closest to the pattern is declared the winning

neuron. This is the competition step. The weights of the winning neuron are updated so as

to increase its future activation to this particular pattern. Next at the cooperation step, the

weight vectors of neighbouring neurons are also updated, albeit to a lesser extend. This type

of training leads to a topographic ordering of the neurons on the lattice. Extensions of SOM

to structured data types generally adhere to this framework of learning. However, in order to

capture the structure of the particular data type, a notion of context is introduced. Structured

data types, such as sequences or graphs, are processed in a recursive manner by adding feedback

connections, e.g. a sequence might be processed one symbol at a time and the neural activation

induced by each symbol is fed back to the network as complementary to the input of the next

symbol. During such recursive processing of a data item, a context is created and recursively

updated at each time step that represents the components of the data item processed until the
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current competition step.

For all of the techniques presented in this section we define here some common notation.

In particular each extension to SOM formulates a q-dimensional rectangular lattice of neurons

indexed by j = 1, ...,M (q is typically set to 2 for visualisation purposes). The location of a

neuron j on the lattice is referenced by a q-dimensional vector xj . Each neuron j is supplied

by a weight vector wj ∈ R
d, where d is the dimensionality of the input space, and its activation

(response) to an input t is denoted by yj(t).

2.1 Vector Quantisation

Before reviewing SOM, we consider the vector quantisation algorithm (VQ) [Gray, 1984] which

may be viewed conceptually as a precursor to SOM. We consider the domain of vectors t ∈ R
d.

The goal of VQ is dimensionality reduction or data compression. VQ seeks to achieve this by

producing a set of M codebook vectors w ∈ R
d, that are sufficient approximations of the set

of input vectors. In a practical setting, each time a vector t needs to be transmitted via a

communication channel, VQ selects the closest codebook w vector, in the Euclidean distance

type of sense, and transmits that instead. Provided both ends of the channel share the same

codebook, only the index of the codebook needs to be transmitted which procures a gain in

communication bandwidth.

VQ defines an encoding function γ(·) and a decoding function ζ(·). Thus, for perfect

encoding-decoding we have that ζ(γ(t)) = t. The distortion, that is the efficiency of the

encoding-decoding process, can be measured by the mean squared error:

D =

∫

t
p(t) ‖t− ζ(γ(t))‖2 dt, (2.1)

where p(t) is the probability distribution of the data.

The goal is then to adjust the encoding and decoding functions so that the distortion is

minimised. Training of VQ proceeds via the generalised Lloyd algorithm [Gray, 1984]:

• Step 1. Given input t, calculate its Euclidean distance to all codebooks and return the in-

dex of the codebook with the minimum Euclidean distance. Thus, γ(t) = argminj

{

‖t−wj‖2
}

.

• Step 2. Given codebook index γ(t) = j, replace codebook wj by the centroid of all vectors

that γ would encode as the codebook wj . Thus, ζ(j) = 1
|t∈{γ(t)=j}|

∑

t∈{γ(t)=j} t. Goto

step 1.

The algorithm alternates between these two steps until a minimum for D is achieved.
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2.2 The Original Self-Organising Map

The Self Organising Map (SOM) [Kohonen, 1990] is a neural network that can be used for

the visualisation of vectorial data. We denote elements of the domain of vectorial data by

t ∈ R
d. SOM may be viewed as a constrained version of VQ. The constraint is that neurons

are topologically ordered so that the spatial location of a neuron bears a relationship to its

weight. This means that neurons of “similar” locations on the lattice, have “similar” weights,

hence represent “similar” regions of the input space. The constraint is not imposed explicitly

but is a consequence of the training algorithm that introduces a lateral interaction between the

neurons favouring this organisation. This contrasts with VQ where codebooks are independently

updated.

Learning in SOM constitutes of two steps, a competitive step and a cooperative step. SOM

alternates between the two steps for each iteration i = 1, 2, . . . . Starting with the competition

at each iteration i, SOM is presented with a randomly chosen input vector t. The activation of

each neuron j is calculated as:

yj(t) = ‖t−wj‖2 , (2.2)

which is the squared Euclidean distance between the weight wj of neuron j and the presented

input t. A competition is then announced amongst all neurons with the purpose of finding the

best matching neuron to the presented input, i.e. the neuron whose weight has the minimum

Euclidean distance to the input. This neuron is declared the winner of the competition and is

denoted by I(t):

I(t) = argmin
j

{

yj(t)

}

. (2.3)

The cooperation step follows, which involves updating the weights of neurons so as to increase

their future activation to this particular pattern. This update is conditioned by a neighbourhood

defined around the winning neuron as its centre. Neurons in the neighbourhood have their

weights updated depending on their distance from the centre of the neighbourhood. Thus,

neurons closer to the winning neuron have their weights adjusted closer to the input pattern,

than neurons that are more distant. The distance between the winning neuron I(t) and a neuron

j is formally defined by a neighbourhood function h of the type:

h(j, I(t)) = exp(−dist(j, I(t))

σ(i)2
), (2.4)

where dist(j, I(t)) is the lateral distance between neurons j and I(t) (e.g. Manhattan distance),

and σ(i) is a parameter that controls the width of the neighbourhood. This distance is incorpo-
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rated in the update rule of the weights. Moreover, a learning rate η(i) is also included to form

the following expression for updating the weights of neuron j:

wj(i+ 1) := wj(i) + η(i)h(j, I(t))(t −wj(i)), (2.5)

where wj(i) is the weight of neuron j at iteration i. The neighbourhood function possesses two

important properties; it is symmetric around the winning neuron where d(I(t), I(t)) = 0, and

secondly it decreases monotonically. Also since d(I(t), I(t)) = 0, winning neuron I(t) receives

the greatest update. The learning rate η and neighbourhood function h are dependent on time.

These parameters adhere to a time-decaying schedule of the type:

η(i) = η0 exp(− i

η1
), (2.6)

σ(i) = σ0 exp(− i

σ1
), (2.7)

where the constants η0, σ0 define the initial values for the learning rate and neighbourhood and

constants η1, σ1 control the rate of decay respectively. The gradual decay of η and h is essential

for the topographic organisation of the neurons. Repeated presentations of input data, gradually

shift the weights of the neurons which eventually approximate the probability density of the data

p(t).

Training of the map continues until the weights of the neurons become stable. SOM with a

two (or three) dimensional lattice can be used for visualisation of the input data by projecting

each input t to the q-dimensional lattice of neurons. The image of each input t in the lattice is

given by the location vector x of the neuron that produces the greatest activation for input t:

x← I(t). (2.8)

2.3 Recursive Extensions to the Self-Organising Map

In this section we review some of the representatives of the recursive extensions to SOM for the

processing of structured data namely sequences and acyclic directed graphs.

The Temporal Kohonen Map (TKM) [Chappell and Taylor, 1993] has been designed for the

processing of sequences s = [s1, s2, . . . , sT ] over R
d. Each neuron j is equipped with a weight

vector wj ∈ R
d. At each iteration i, A single input symbol1 st, t = 1, . . . , T is processed in a

1The use of index t for symbols of sequences is in potential conflict with the notation of vectors t. We choose
index t because it appears more “natural” for this case of temporal data and because it widely used in the relevant
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context given by the past activations of the neuron. So neurons in TKM do not lose their past

activity immediately as in SOM when a new input is presented, but the context information

decays gradually. When the processing of an entire string s has been completed, the past activity

of all neurons is reset to zero. The activation of neuron j at iteration i for input st, is computed

as follows:

yj(st) = α‖st −wj(i)‖2 + (1− α)yj(st−1), (2.9)

where for the activation yj(s0) we define that s0 = � is the empty sequence so that yj(�) = 0,

and α ∈ (0, 1) is a decay parameter. The winner for input st is:

I(st) = argmin
j

{

yj(st)

}

. (2.10)

Training at each iteration i involves adapting weight wj to the current input st in the same

Hebbian fashion as in SOM, using the following rule:

wj(i+ 1) := wj(i) + ηh(j, I(st))(st −wj). (2.11)

The parameter η is the learning rate and h(·, ·) is a Gaussian neighbourhood function defined

on pairs of neurons on the map:

h(j, I(st)) = exp(−dist(j, I(st))

σ2
), (2.12)

where dist is the distance of neurons j and I(st) on the map and σ controls the neighbourhood

size. Parameters η and σ are decreased with time to allow for topographic convergence as in

SOM [Kohonen, 1990].

Recurrent SOM (RSOM) [Varsta et al., 1997] modifies TKM by summing the deviation of

the weights wj as opposed to distances. At iteration i the activation of neuron j for input st is:

yj(st) = α(st −wj(i)) + (1− α)yj(st−1). (2.13)

The result of this summation is a vector as opposed to a scalar in TKM and again previous

inputs are utilised in a recursive manner. The winning neuron in this case is the neuron that

satisfies:

I(st) = argmin
j

{

‖yj(st)‖
}

. (2.14)

Here however, adaptation takes into consideration the previous inputs, coded in yj(i), by

literature. We also ensure that both notations to not appear in together in the same model.
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adapting the weights as follows:

wj(i+ 1) := wj(i) + ηh(j, I(st))yj(st). (2.15)

Recursive SOM (RecSOM) [Voegtlin, 2002] takes into account the context of inputs by ex-

plicitly augmenting each unit j with a context vector cj ∈ R
q that represents the activations of

all the units in the map at the previous iteration. The activation is computed as:

yj(st) = α‖st −wj‖2 + β‖[exp(−y1(st−1)), . . . , exp(−yM (st−1))]T − cj‖2, (2.16)

where α and β are positive constants that control the contribution of the weight and context

vectors respectively. Training again is Hebbian for both wj and cj:

wj(i+ 1) := wj(i) + η1h(j, I(st))(st −wj), (2.17)

cj(i+ 1) := cj(i) + η2h(j, I(st))([exp(−y1(st−1)), . . . , exp(−yM (st−1))]T − cj), (2.18)

where η1 and η2 are the learning rates for weight and context vector respectively. Thus, neurons

do not compete only in matching their weight vector to the current input, but also their context

vector to the current context of the input.

[u  , nil , nil ]4 [u  , nil , nil ]5

[u  , I(4) , I(5) ]3

1

2

4 5

3

Fig. 2.1: Activation for label u3 of a tree-pattern in SOMSD: Activation is calculated bottom
up, thus the children of input node 3 are processed beforehand. Since nodes 4 and 5 are leaf
nodes their contexts are filled in with the special nil vector. The winner neurons I(4) and I(5)
of the input labels u4, u5 of nodes 4 and 5 respectively are supplied as the context for node 3.

Further in the context of sequence processing, the Merge SOM (MSOM) is introduced in

[Strickert and Hammer, 2005]. Similarly to RecSOM, each neuron is equipped with a context
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vector cj ∈ R
d. In this case, the context vector cj does not represent the activations of the

entire map, but is a combination of the weight and context cI(st−1) of the previous winner. The

activation of a neuron j is computed as:

yj(st) = α‖st −wj‖2 + (1− α)‖ci − cj‖2, (2.19)

where ci is the current context and α ∈ [0, 1] is a parameter that controls the contributions of

current input and context. The current context vector is given by the following linear combina-

tion:

ci = βcI(st−1) + (1− β)wI(st−1). (2.20)

At the beginning of the processing of a sequence, the context is set equal to c1 = 0. Training

again is Hebbian for both wj and cj , applied at each time step.

SOM for Structured Data (SOMSD) presented in [Hagenbuchner et al., 2003] is an extension

of SOM designed to process patterns expressed as directed acyclic graphs (trees and sequences

are special cases). Each node v of a graph pattern has a label uv ∈ R
d. Each neuron j besides

its weight vector wj ∈ R
d is supplied with k additional coordinate vectors cj ∈ R

q, where k is

the maximum out-degree of the graphs in the dataset. Similarly to RecSOM, these additional

vectors try to capture the context of the current input. The context is provided by the winning

neurons I(j) of children j = 1, 2, .., k of the node v currently processed. Thus, each context

vector cj tries to match winning neuron I(j). The augmented input to SOMSD is:

[uv, I(1), I(2), . . . , I(k)] .

The activation of neuron j is calculated as:

yj(v) = µ1‖uv −wj‖2 + µ2(‖I(1) − c1‖2 + · · ·+ ‖I(k)− ck‖2), (2.21)

where µ1 and µ2 are positive constants that control the contribution of the input label uv and

the context vectors ci. Processing of input items proceeds in a bottom-up fashion: before a node

v can be processed all of its children must be already processed. This is illustrated in Fig. 2.1.

Therefore, processing starts from the leaf nodes (nodes without children). When a leaf node is

processed the context vectors are set to some default values representing the empty tree nil. The

same applies for nodes with less than k children where the coordinate vectors cj of the missing

children are substituted by nil. The coordinate vector of nil is chosen to be (−1, . . . ,−1) so

that it resides outside the lattice. SOMSD is trained in a Hebbian fashion and as is usual in
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SOM-type formulations, the learning rate and the neighbourhood radius decay gradually. The

winner is the neuron with the closest weight and context vectors to the augmented input:

I(v) = argmin
j

{

yj(v)

}

. (2.22)

If µ1 is set to 1 and µ2 is set to 0, SOMSD reduces to the standard SOM algorithm.

2.4 Probabilistic and Kernel Extensions of the Self-Organising

Map

The approaches presented in the previous section do not use an explicit model for the data and

rely on the neural network to develop an internal suitable representation.

In [Hollmén et al., 1999] a Self-Organising Map for Clustering Probabilistic Models is pre-

sented, where each neuron stores as its weight a vector wj that contains the parameters of a

probabilistic model. Thus, each neuron parametrises a local density p(·|wj). The setting of

this study is the exploration of temporal data and more specifically of user-profiles on a mo-

bile communications network. User profiles are binary sequences s = {s1, . . . sT }, st ∈ {0, 1} of

length T . A call is described as an observed process of transition cases: (st = 0, st−1 = 1) is the

beginning of a call, (st = 1, st−1 = 0) is the end of a call, (st = 1, st−1 = 1) is an on-going call

and (st = 0, st−1 = 0) is on-going silence. The probabilistic model for user-profiles is a process

governed by a transition matrix B with entries of probabilities bkl = p(st = l|st−1 = k). The

sum of entries of matrix B of each row must equal to 1. The model instantiated by neuron j is:

p(s|wj) =

T∏

t=1

p(st = l|st−1 = k,wj),

log p(s|wj) =
T∑

t=1

log p(st = l|st−1 = k,wj). (2.23)

The log-likelihood in (2.23) is used to determine winner I(s) for input s presented at the

competition step:

I(s) = argmax
j

{ T∑

t=1

log p(st = l|st−1 = k,wj)

}

, (2.24)

The log-likelihood in (2.23) is also used in the adaptation rule:

wj(i+ 1) := wj(i) + ηh(j, I(s))
d

dwj
log p(s|wj(i)) (2.25)
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where neighbourhood function h and the learning rate η are reused from (2.4) and (2.6) respec-

tively. Note that this update rule can lead to invalid parameters (parameter are probabilities

which must be restricted in [0, 1]). Thus, measures in the form of a suitable parametrisation

or constraints must be taken. In [Hollmén et al., 1999] the solution of introducing a suitable

parametrisation is used.

In [Kaski et al., 2001] a SOM formulation is presented in the setting of bankruptcy analysis,

where the winner neuron is determined by a distance metric based on the Fisher information

matrix. Even though this approach is concerned with vectorial data, it is of interest since its

aim is to use a data-driven metric instead of the customary Euclidean distance metric. The

data are financial statements of companies and are pairs of feature vectors t ∈ R
d, describing

certain indicators such as growth, profitability etc. of a company, and binary indicator variables

c ∈ {0, 1} signifying the bankruptcy risk of the company in the next three years. The goal is to

achieve a topographic organisation of the data t driven by the implicit information present in c

that indicates which features are relevant to the task of bankruptcy risk analysis. A prediction

of bankruptcy risk for a statement t, is expressed as a conditional density p(c|t) which is (as

in many other application domains) unknown. The joint density p(c, t) is learnt from the data,

and the conditional density p(c|t) is then obtained via Bayes’ rule.

Small displacements in the conditional density, i.e. p(c|t+dt), reveal how variable c changes

depending on the directions dt. Such small changes can be measured by the KLD, which locally

is:

DKL[p(c|t)||p(c|t + dt)] = dtTF (t)dt, (2.26)

where F (t) is the Fisher information matrix evaluated at t, that reveals local scaling factors.

On the SOM lattice, each neuron j is equipped with a weight vector wj ∈ R
d. The weight

vector parametrises a local conditional density p(c|wj). When SOM is presented with input t

at competition step, winner I(t) is determined by:

I(t) = argmin
j

{

DKL[p(c|wj)||p(c|t)]
}

= argmin
j

{

dtTF (wj)dt

}

, (2.27)

where dt is the Euclidean distance betweenwj and t. The metric in (2.26) should strictly be used

for computing local distances within the neighbourhood of a neuron j, while non-local distances

should be calculated as path integrals. However, the same metric is also used to approximate

non-local distances by assuming that it will be locally accurate and that neighbours with a
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greater separating distance dt will still be calculated as being farther than close neighbours.

Thus, the winner should still be determined accurately. Although the winner is determined by

metric (2.26), the update rule for the weights is the same as in the original SOM.

An interesting approach is undertaken in [Verbeek et al., 2005] where Self-organising mix-

ture models (SOMM) are developed. The core idea of the approach is that a topology can be

introduced into a mixture model, by modifying the E-step of the EM algorithm. The approach

can be extended to any probabilistic model that can be optimised via EM, hence various data

types can be accommodated. Here we consider vectors t and a mixture model of C Gaussian

components p(t(n)|θc):

p(t|Θ) =
C∑

c=1

p(c)p(t(n)|θj), (2.28)

where Θ encapsulates vectors θj , the parameters of the individual Gaussian components. Each

component j is associated with a coordinate vector xj which for visualisation purposes is two-

dimensional. Coordinate vector xj determines the position of the component in a latent space

that will be used to project the high-dimensional dataset. To that purpose coordinate system

x is defined as a rectangular grid in the latent space.

When using EM to train a mixture of Gaussians, in the E-step the posterior distribution

of the components is estimated. The posterior may be factorised for independently generated

data, and we denote the posterior distribution concerning the n-th data item by p(j|t(n)). The

posterior is used in the M-step to weigh the contribution of each data item t(n) in updating

the parameters of each component j (for more details see 3.2.1). Intuitively, posterior p(j|t(n))

expresses the responsibility that component j bears for generating data item t(n). In SOMM,

the E-step is modified in order to introduce a sense of topology. Viewing posteriors p(j|t(n)) as

functions of components j, we restrict them to smooth, normalised distributions of the form:

hk(j) ∝ exp(−σ‖xk − xj‖2), with

M∑

j=1

hk(j) = 1, (2.29)

where k = 1, . . . , C is an index over components and σ controls the radius of the distributions.

Each distribution hk is centred at a component k and acts as a neighbourhood function similarly

to the one defined in SOM. In the modified E-step, for each input t(n) we choose a neighbour-

hood function hk that minimises DKL[hk||p(j|t(n))] as the posterior probability given t(n). This

introduces a lateral interaction between the mixture components when it comes to updating the

parameters in the M-step; for p(j|t(n)) = hk component k receives the most responsibility, while

neighbouring components also receive responsibility, albeit to a lesser degree.
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In the setting of Gaussian mixtures, the E- and M-step translate to the following update

equations:

1. E-step: p(j|t(n)) = argminhk

{

DKL[hk||p(j|t(n))]

}

2. M-step: Perform standard M-step, using the posteriors from modified E-step.

Parameter σ may be annealed from a wide neighbourhood function to a small neighbourhood

with an appropriate schedule. Once training has been completed, each data point t(n) is mapped

to the latent space as the mean of the posterior distribution over the latent space:

proj(t(n)) =

C∑

j=1

p(j|t(n))xj. (2.30)

In [Hofmann, 2000] ProbMap is introduced, which constitutes a probabilistic approach to vi-

sualising document collections. ProbMap learns K (K is a parameter of the algorithm) thematic

topics from a document collection and organises them on a two-dimensional lattice so that neigh-

bouring topics are similar. Each neuron indexed by k = 1, . . . ,K on the SOM lattice represents

one of the K topics to be learnt. A dataset of documents is a set D = {d(1), ..., d(N)}, where d(n)

with 1 ≤ n ≤ N is a document. Each document consists of T (n) number of words from a fixed

vocabulary V = {w1, ..., wR}, thus d(n) = (d
(n)
1 , . . . d

(n)
T (n)) with d

(n)
t ∈ V . Each document d(n)

has a parameter vector of probabilities τn = [p(1|d(n)) . . . p(K|d(n))], where p(k|d(n)) quantifies

the degree to which document d(n) expresses thematic topic k, with
∑K

k=1 p(k|d(n)) = 1. Also,

for each topic k a parameter vector of probabilities φk = [p(w1|1) . . . p(wR|K)] is defined where

p(wr|k) expresses the probability that word wr occurs under topic k, with
∑R

r=1 p(wr|k) = 1.

A fixed, symmetric neighbourhood function is imposed on the SOM lattice that returns the

distance between two neurons k and l:

p(l|k) =
exp(−σ h(k, l)2)

∑K
l′=1 exp(−σ h(k, l′)2)

, (2.31)

where σ controls the radius of the neighbourhood and h(k, l) is the Euclidean distance between

neurons k and l on the lattice. Thus, a distance is imposed on the K topics to be learnt.

ProbMap is a generative model operating as follows. A document d(n) is produced by gen-

erating one word d
(n)
t at a time. For each t = 1, . . . , T (n) a random topic k is chosen with

probability p(k|d(n)). Chosen topic k is corrupted with a probability p(l|k) into a second topic

l. However, the nature of p(l|k) is such that a topic is more likely to be corrupted into a topic

represented by neurons close to neuron k than into a topic represented by neurons distant to k.
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This introduces the topographic organisation of the topics. Having chosen the second topic l, a

word for d
(n)
t = wr is generated with probability p(wr|l).

The model likelihood given dataset D reads:

L(τ, φ|D) =

N∏

n=1

K∑

k
(n)
1 =1

K∑

l
(n)
1 =1

· · ·
K∑

k
(n)
T (n)

=1

K∑

l
(n)
T (n)

=1

T (n)
∏

t=1

p(k
(n)
t |d(n))p(l

(n)
t |k

(n)
t )p(d

(n)
t |l

(n)
t ),(2.32)

where vectors k
(n)
t and l

(n)
t refer to the topics responsible for generating the word d

(n)
t . The

model likelihood is maximised via the EM algorithm by postulating a set of hidden variables that

indicate which states were responsible for the generation of each word. Adjusting parameters τ

and φ in this framework leads to an organisation of K thematic topics on the two-dimensional

lattice.

Departing from the probabilistic extensions of SOM, in [András, 2002] SOM is modified to

incorporate a kernel function in calculating activations of neurons. A kernel function is a function

K that calculates the inner product K(t, t′) = F (t)TF (t′) of data items t ∈ R
d embedded in a

high dimensional space R
d′ (d′ > d), via a function F : R

d → R
d′ that transforms the originally

linearly inseparable dataset into a linearly seperable dataset. Although, topology preservation

is important here, the introduction of a kernel function aims to improve the classification ability

of SOM: a trained SOM may be used for classification by assigning each data item t the class

of the closest neuron j, i.e. class(t) = class(argminj

{

yj(t)

}

).

As stated in [András, 2002], SOM learns a Voronoi tessellation of the data space, which in

the case of a linearly inseparable dataset is a difficult task that requires a large lattice (i.e. high

number of neurons) in order to learn an accurate topographic map. However, if the data are

linearly seperable the task is easier and a smaller lattice suffices. The activation of a neuron

j given transformed data item F (t) is yj(t) = ‖F (wj) − F (t)‖2, where weights w are also

embedded into R
d′ . We may rewrite F in terms of K:

yj(t) = ‖F (wj)− F (t)‖2 = (F (wj)− F (t))T (F (wj)− F (t))

= F (t)TF (t) + F (wj)
TF (wj)− 2F (t)TF (wj)

= K(t, t) +K(wj,wj)− 2K(t,wj). (2.33)

Hence, the winner I(t) is determined by:

I(t) = argmin
j

{

K(t, t) +K(wj ,wj)− 2K(t,wj)

}

. (2.34)
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Also the update rule is formulated as:

wj(i+ 1) := wj(i) + ηh(j, I(t))
∂

∂w
yj(t)

:= wj(i) + ηh(j, I(t))(
∂

∂w
K(wj,wj)−

∂

∂w
2K(t,wj)). (2.35)

Of course one must choose the form of K. In [András, 2002] the kernel function K(t, t′) =

K(t, t′;ω) is parametrised by parameter vector ω which allows the adaptation of the kernel. The

learning of the kernel function is supervised and is performed via the LVQ algorithm. Once SOM

has been trained, the neurons are labeled e.g. by the majority class of data items in Voronoi

cell of the neuron. Parameters ω are set so that the best classification labels for the neurons are

found. Adapting parameter ω changes the the boundaries of the Voronoi cell and consequently

the membership of data points to the Voronoi cells in directions that better classifications may

be obtained.

In [Günter and Bunke, 2002] SOM is extended to work with data expressed as graphs. The

neuron associated weights w are no longer feature vectors (codebooks) but explicit graph repre-

sentations. Since graph data are not expressed in the convenient form of vectors, one must define

a suitable distance function that measures affinities between data vectors and the representa-

tions stored in the neurons of the lattice, and also formulate an update rule that decreases the

distances between data vectors and representations in neurons. The first requirement is satisfied

by employing the graph edit distance dedit which is defined as the least number of operations

that are necessary to transform a graph g into a graph g′. Edit operations include the insertion,

deletion or relabelling of a node or edge. Thus, the less operations needed to transform g into

g′, the less the distance dedit(g,g
′) between them. Moreover, edit operations are associated with

non-negative cost values. This makes the graph edit distance more robust to distortions (noise)

present in graph data (e.g missing edges or nodes) by typically assigning low costs to the edit

functions that remedy the most frequent type of distortions. The winner neuron is defined as:

I(g) = argmin
j

{

dedit(g,wj)

}

. (2.36)

By applying only a subset of the necessary edit operations that transform completely graph

g so that dedit(g,g
′) = 0, we obtain a graph go for which dedit(g,g

′) = dedit(g,g
o)+dedit(g

o,g′).

A function f is defined that for a given distance a with 0 ≤ a ≤ dedit(g,g
′), it returns a graph

f(a,g) = go such that the distance dedit(g,g
o) approximates a as closely as possible. This is

useful for the update rule that needs to update the neurons in varying degrees for a given input
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data item. The update for a neuron j is:

wj := f(a,g), (2.37)

where a must relate to a decreasing learning rate η and the distance on the lattice h(j, I(g)).

Neurons may be initialised by assigning to w a perturbed subset of the training data.

2.5 Discussion of Reviewed Extensions

Although, the recursive extensions of SOM have shown good results in various experimental

settings, they are challenged by certain theoretical problems. Neighbourhood preservation is

an important property of a good topographic map. It refers to the property of data points

maintaining their neighbours after projecting them into the low-dimensional visualisation space.

A map may sustain defects such as violations in neighbourhood relations or abrupt discontinuities

when a neuron appears to be significantly different to its neighbouring neurons. Of course

alteration of certain neighbourhood relations is inevitable since the reduction in dimension results

to a loss of certain topographic information. SOM and its recursive extensions rely on Hebbian

learning that does not explicitly optimise a certain neighbourhood preservation criterion. Thus,

apart from visually inspecting a map, judging objectively the quality of the achieved topographic

organisation is not straightforward.

Numerous suggestions of such quality measures have been put forward in the related litera-

ture. For example, quantisation error [Pölzlbauer, 2004] is a measure of how well the input pat-

terns match their winning neurons (in a Euclidean sense of distance). However, such a measure

does not respect topological aspects of the map. Another is topographic error [Pölzlbauer, 2004],

that does take into consideration the topology, but in a restricted way. Topographic error tests

whether for an input item the first and second best matching neurons are adjacent on the SOM

lattice. If they are, then the mapping is locally continuous, otherwise a discontinuity occurs.

Another example of such measures is the topographic product [Bauer and Pawelzik, 1992]. The

method measures distances of neurons on the lattice of the map and in the data space (weight

space). The intuition is that neurons with similar weights are neighbours in the data (weight)

space and for a topographically organised map such neurons should also be neighbours on the lat-

tice. The topographic product is concerned with preserving the relative ordering of neighbours,

instead of the absolute distances that separate them. Violations in the relative ordering signify

topographic defects. Furthermore in [Venna and Kaski, 2001], two measures are proposed for

two types of error: neighbourhood preservation addresses the issue of a data point maintaining
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its neighbours in the data space also after projection on the lattice, and trustworthiness refers

to the error made when data points that are mapped close to each other on the map are in fact

quite dissimilar.

Such criteria define a certain basis for evaluating topographic preservation of maps obtained

by SOM and its extensions (for static data). Even though they do capture certain desirable

properties of topographic preservation, we note that they are not related to some kind of ob-

jective that guides the optimisation of SOM. Therefore it is inappropriate to use these criteria

in evaluating a trained map, since the map is not trained toward yielding favourable values

according to the criteria. One can of course evaluate the topographic map at each iteration

during training according to some criterion of topographic preservation and stop the training

if no further progress (or degradation of the criterion) is observed. However, still in this case,

it is not clear that SOM’s Hebbian-type of training should monotonically increase the quality

criterion at hand; maybe certain steps that appear counter-productive according to the criterion

are necessary in order for the map to fit the data.

The problems above are related to the fact that SOM and its extensions do not formulate an

objective function that quantifies the level of topographic ordering of the concerned maps, that

could be used in training the maps. The SOM algorithm [Kohonen, 1990] does not explicitly

state what is being optimised. Strictly speaking, it is proved in [Erwin et al., 1992] that the

update rule of SOM does not constitute a gradient of any objective function. Nevertheless, in

[Heskes, 1999] a slight variant of SOM is introduced that does possess such an objective function.

The modification simply redefines the winning neuron as:

I(t) = argmin
j

M∑

k=1

h(j, k)‖t −wk‖. (2.38)

Hence, the winner in this variant is not simply the neuron closest to the current input,

but the neuron that minimises the quantisation error in the local neighbourhood. The form

of the update rule remains the same, taking into account that the winner is given by (2.38).

This idea of the winner neuron minimising quantisation error in the local neighbourhood, was

used in [Hammer et al., 2004] to derive a cost function for recursive neural-based approaches.

Computing such a cost function involves computing the activations of the neurons for the given

input. Optimising the cost function can then be used to update the weights of the network.

However, updating the weights so that the future activations of neurons match the input closer,

has an additional effect; changing the activations, changes the cost function. Thus, a cycle is

introduced: the cost function depends on the activations of the neurons, and the neurons are
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updated according to the cost function in order to achieve better activations for the inputs.

Thus, we are not faced with an ordinary optimisation problem, but something more complex

that is difficult to interpret. Note, that this is not the case in SOM: in SOM an immutable

Euclidean metric is defined to calculate neuron activations. Therefore, the cost function in

[Heskes, 1999] does not suffer from this problem.

Another limitation of the SOM paradigm, mentioned in [Bishop et al., 1996], is that no

density model is provided for the data. This deems the treatment of new incoming data items,

after training has been completed, problematic. In SOM the location of a new item may be

predictable, since we expect it to be placed closed to neurons of weights similar to the input

in the Euclidean sense. In recursive neural-based approaches, discussed in section 2.3, the

neural dynamics that dictate the placement of a new point are not as easily understood. In

these approaches the input is augmented by a context, the formation of which is not easily

interpreted. In SOM it is understood what it means to compare an input data item to the weights

of neurons and why updating neurons of high response is beneficial. In recursive approaches

two comparisons take place when presenting an input to the network. Again, as in SOM, the

actual input is compared to the weights of neurons, but also the context of the augmented input

is compared with the context of the augmented weights. The significance of comparing the

contexts and updating them in a Hebbian way, is not easily understood as for example in the

case of RecSOM in (2.16) and (2.18).

In connection to the difficulty of understanding projections, recursive neural-based ap-

proaches do not to define (at least not explicitly) a clear notion of data similarity. As afore-

mentioned, they rely on the training process to form appropriate internal representations that

capture data similarities, and this in an unsupervised setting. Thus, recursive neural-based ap-

proaches are faced with solving two tasks at the same time without external guidance: evolve

an appropriate notion of similarity while striving for topographic organisation. For example,

SOMSD is capable of processing graph-structured data as well as trees and sequences. These

three data types can be viewed as special subcases of each other, i.e. sequences are trees with

outdegree equal to one, and trees are directed-acyclic graphs where each node has a single par-

ent. However, if we were to construct a topographic map via SOMSD on a mixed dataset of

graphs, trees and sequences, it would be difficult to understand the learnt distance metric. The

absence of a notion of similarity makes it difficult to understand what the distances between

projected data points on topographic maps constructed by recursive approaches mean. It is

not clear whether distances between the projected points on the map can be measured accord-

ing to some criterion, and whether this criterion constitutes a proper metric that satisfies the
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triangle inequality. Furthermore, depending on the nature of the problem, various similarity

notions may be appropriate, even within a single data type. Interpretation of data is of course

problem dependent and datasets of the same data structure may require a different similarity

interpretation.

This brings us to the next point, that recursive neural-based approaches do not allow any

expressive control over the notion of data similarity to the user. This is important because data

similarity drives the organisation of the map. SOMSD does provide some control via parameters

µ1 and µ2 regarding the contribution of labels and context. However, if hypothetically we were

interested in sequences whose middle part (or alternatively their prefix or suffix) we knew was

more important than the rest of the sequence in judging similarity, the necessary modifications

to impose this are not obvious. It seems that such requirements cannot be easily accommodated.

The probabilistic extensions to SOM mentioned in section 2.4 seem to alleviate certain

problems. In the Self-Organising Map for Clustering Probabilistic Models [Hollmén et al., 1999],

a similarity metric is clearly defined in (2.23) that is also used in determining the winning neuron.

Neurons in this approach instantiate probabilistic models, the generative nature of which clearly

explains why a data item is assigned to its location. However, the update rule in (2.25), fashioned

after the update rule in SOM (2.5), seems to be problematic to a certain extent. The goal of

the update rule, as interpreted in SOM, is of course to update all neurons in the neighbourhood

so that the likelihood-response of each neuron to the current input is increased in the future.

After such an update, the winner neuron should remain the winner neuron for the current input

since it receives the greatest update after all. Although this is indeed the case in SOM, it is

not necessarily in this setting for two reasons. Firstly, in this extension we update the weight

of a neuron wj, that parametrises a probabilistic model, with a gradient rule. Thus, if the

step size taken in the update rule in the direction of the gradient is inappropriate, it could

happen that the likelihood of a neuron would decrease instead of increase. Also, this could

result in the likelihood of the winner neuron becoming less than the likelihood of one of its

neighbouring neurons regarding the current input. Secondly and more importantly, the weights

of neighbouring neurons may be quite different to each other and thus the parametrisation of

their induced probabilistic models may differ (due to random initialisation perhaps). This means

that the gradients in the update rule, are optimising different regions of the parameter space

of the probabilistic model. The current learning rate and value of the neighbourhood function

may then have a considerable effect on the adaptation of the likelihoods. Neighbouring neurons

with different parametrisation may not express statistically similar density models. On these

two accounts, the update rule in (2.25) does not appear to enforce a strict topological ordering
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on the lattice of neurons or at least not in the sense that SOM does.

In [Kaski et al., 2001], where a SOM formulation is presented in the setting of bankruptcy

analysis, a data driven metric is defined in the form of the conditional p(c|t), which implicitly

describes similarity relationships. The improvement of this approach is the decoupling of the two

tasks, that of learning a similarity metric and that of producing a topographic mapping. On the

contrary the recursive neural-based approaches, seem to treat the two as a single monolithic task.

Training in [Kaski et al., 2001], however, does not rely on an explicit objective function which

makes it problematic as aforementioned, rendering the comparison of different map formations

challenging.

SOMM [Verbeek et al., 2005] is a model based on a sound probabilistic formulation. The

objective function is the log-likelihood of the model and is maximised via the EM algorithm. The

topology is enforced by a fixed regularisation that ensures that neighbouring components are

similar. Another advantage of SOMM is its capability to handle missing values in a principled

way. Setting of parameter σ of the neighbourhood functions in (2.29) seems to be a problem, as

it is not part of the learning process. The framework is readily extended to other models that

can be optimised via EM. Similarly, ProbMap [Hofmann, 2000] is another probabilistically sound

model that possesses a clearly defined objective function, maximised also via the EM algorithm.

Again setting parameter σ of the neighbourhood functions in (2.31) appears problematic as

it is not included in the learning process. Furthermore in both SOMM and ProbMap the

neighbourhood functions play the role of the responsibilities (posterior probabilities) of the EM

algorithm. However, the fact that they are predefined and symmetrical, restricts the degree to

which they can approximate the true responsibilities. For example when an input is presented,

two neurons that are equidistant from the winner should not receive the same updates, unless

they express the exact same responsibility (posterior) for the input. Nevertheless, because the

neighbourhood functions are predefined and symmetrical, equidistant neurons receive the same

update even though their true responsibilities for the input may be different.

The approaches presented in [András, 2002] and [Günter and Bunke, 2002] are also charac-

terised by the lack of an objective cost function. Both approaches replace the standard Euclidean

metric employed by SOM with alternatives that may appear more suitable and are application

dependent: in [András, 2002] the kernel function operates in a high dimensional space where

data can be linearly separated, and in [Günter and Bunke, 2002] the specialised distance func-

tion measures the distance between graphs as the length of a sequence of edit operations. In

[András, 2002] the kernel function is adapted after the training of SOM which means that SOM

may work with a transformed dataset where the inter-distances of clusters are distorted. This
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can happen because of the non-linearity of the kernel, which may distort distances between data

points and place them farther apart or closer in the high dimensional space (although local neigh-

bourhoods will be preserved due to the continuity of the kernel). This can affect the visualisation

quality of the topographic map as clusters may not be placed next to their “kindred” clusters.

In [Günter and Bunke, 2002] the noise present in the graph data is handled by associating edit

operations with costs. No mechanism is provided to learn these costs from the dataset, which

are domain dependent and must be set by the user experimentally. This is important because

a data driven mechanism could adapt to the dataset and provide a higher quality visualisation

result by deciding which edit operations are significant in deciding the similarity of two graphs

for the particular dataset.

The probabilistic extensions of SOM mentioned here share a common element, that of mak-

ing use of explicit similarity measures. On the contrary the recursive neural-based extensions

do not define a clear notion of similarity. We view that a visualisation problem constitutes of

two components; a suitable notion of similarity or distance between the data items and the

parametrisation of a visualisation lattice. A step toward this direction is taken in this work

by defining the notion of data similarity via generative probabilistic models that bear a cer-

tain plausibility of generating the data at hand. A topographic organisation is introduced in

these generative models via a suitable parametrisation that constrains the models on a low-

dimensional space. Models such as the hidden Markov model, define a generative process for

the data items they produce/model and can be used to measure similarities for data items (e.g.

[Falkhausen et al., 1995]). The next chapter reviews a collection of generative probabilistic mod-

els that are employed in the subsequent chapter as components of a constraint mixture used for

constructing topographic maps.
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Chapter 3

Density Modelling

The intention of this chapter is to discuss some fundamental concepts necessary for develop-

ing probabilistic topographic mapping algorithms later in chapter 4. Density modelling is a

prerequisite, as it is necessary to obtain a probabilistic representation of the data. Here we

shall present four generative models for density modelling, namely the Gaussian distribution

for vectors, hidden Markov Models for sequences, hidden Markov tree models and Markov tree

models for tree structures. A single model of these types is capable of sufficiently approximating

a single-class density. More complex densities can be accommodated by mixture models that

employ the aforementioned models as components. A mixture model is a more flexible struc-

ture, able to accommodate complex datasets by devoting subsets of its components to modelling

different partitions of the dataset. Mixture models are particularly amenable to the Expectation-

Maximisation (EM) algorithm. EM constitutes an elegant procedure that iteratively estimates

the parameters of a mixture by introducing a distribution of unobserved variables, each of them

expressing how much responsibility each mixture component bears in explaining each data item.

Thus, we shall also briefly review key points of the EM algorithm. The chapter culminates with

a discussion of how constraints can be introduced to the parameters of a mixture model to con-

vert it into a constrained mixture model, the precursor of developing algorithms for topographic

organisation.
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3.1 Modelling Vectorial Data

3.1.1 Unimodal Density Modelling

We consider the domain of vectorial data with t ∈ R
d. A dataset of independently generated

data is D =
{
t(1), t(2), . . . , t(N)

}
. We choose to model D with a Gaussian density [Bishop, 1999]:

p(D|θ) =
N∏

n=1

p(t(n)|θ), (3.1)

where θ is a vector that refers to the parameters of the Gaussian density, namely the mean

µ ∈ R
d and covariance matrix Σ ∈ R

d×d. The form of the density is:

p(t|θ) = N (t;µ,Σ) =
1

(2π)d/2 det (Σ)
exp(−1

2
(t− µ)T Σ−1(t− µ)). (3.2)

The likelihood L(θ|D) of the Gaussian density is a function of parameters θ of the model that

expresses the occurrence of the sample D at hand:

L(θ|D) =

N∏

n=1

N (t(n);µ,Σ). (3.3)

One usually works with the log-likelihood instead:

logL(θ|D) =

N∑

n=1

logN (t(n);µ,Σ). (3.4)

Taking the derivatives of logL(θ|D) with respect to the mean µ and covariance Σ, we obtain

the following update equations [Bishop, 1999]:

µ̂ =
1

N

N∑

n=1

t(n), (3.5)

Σ̂ =
1

N

N∑

n=1

(t(n) − µ̂)T (t(n) − µ̂). (3.6)

Modelling a dataset with a Gaussian density is of course restrictive as only unimodal densities

can be adequately modelled. This issue can be addressed by employing a mixture of Gaussians.
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3.1.2 Multimodal Densities - Mixture of Gaussians

A mixture of C Gaussian densities is a composite model that comprises of Gaussian components

p(t|θc) indexed by c = 1, . . . , C:

p(t|θc) = N (t;µc,Σc). (3.7)

We simplify the notation of model components p(t|θc) to p(t|c). The mixture is expressed as a

linear combination of such components:

p(t|Θ) =
C∑

c=1

P (c)p(t|c). (3.8)

Here Θ is a vector that summarises the set of all parameters of the model, Θ = {P (1), . . . , P (c),θ1, . . . ,θc}.
Quantities P (c) are mixing coefficients subject to constraints

∑C
c=1 P (c) = 1 and 0 ≤ P (c) ≤ 1.

The log-likelihood reads:

logL(Θ|D) =

N∑

n=1

log

C∑

c=1

P (c)p(t(n)|c). (3.9)

As in the case of a single Gaussian, we could take derivatives of the log-likelihood with

respect to parameters Θ of the model to optimise it. However, a more elegant approach exists.

Suppose we knew which component generated each data item. Let us express this knowledge by

postulating a set of variables z that act as indicators of the origin of data items [Bishop, 1996]:

z(n)
c =







1, if t(n) was generated by component c;

0, otherwise.
(3.10)

We refer to the set of all such variables z by Z. In light of such information, the log-likelihood

in (3.9) is rewritten as:

logL(Θ|D,Z) =

N∑

n=1

C∑

c=1

z(n)
c log P (c)p(t(n)|c). (3.11)

The parameters of each component c could then be independently estimated by taking into

consideration only the data items that component c is responsible for generating:

P (c) =

∑N
i=1 z

(i)
c

N
, (3.12)
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µc =
1

(
∑N

i=1 z
(i)
c )

N∑

n=1

z(n)
c t(n), (3.13)

ΣC =
1

(
∑N

i=1 z
(i)
c )

N∑

n=1

z(n)
c (t(n) − µc)

T (t(n) − µc). (3.14)

Unfortunately in practice, information on variables z is not available. Nevertheless, it is

possible to take advantage of such hidden information of the problem via the EM algorithm that

treats variables z as random variables.

3.2 Overview of the Expectation-Maximisation Algorithm

The EM algorithm is an iterative optimisation technique for obtaining maximum-likelihood and

maximum a-posteriori estimates in problems where certain information is unobserved. The

information may be unobserved either because certain data values are missing in the dataset

or because it is hidden from us, that is it cannot be directly measured. In the previous section

we encountered the case of hidden information in the form of the Z variables. Here we shall

consider the EM for training a mixture model, so again we postulate variables z to express

hidden information on the component origin of each data item. Hence, we repeat:

z(n)
c =







1, component c generated the n-th data item;

0, otherwise.
(3.15)

We consider a dataset D = {t(1), ..., t(N)}, where t(n) are vectors in R
d, independently and

identically distributed. Information of just D is termed as incomplete since certain knowledge is

stored in the hidden variables Z. The complete information is (D,Z). In the previous section,

we saw that in the presence of complete information, the parameters of the mixture model could

be straightforwardly calculated.

Let us consider a general mixture model with C components and parameters Θ (we do not

specify the form of the components). The log-likelihood is written as:

logL(Θ|D) =

N∑

n=1

log

C∑

c=1

P (c)p(t(n)|c). (3.16)

This expression is termed as the incomplete-data log-likelihood. It expresses the occurrence of the

dataset D in the absence of the hidden information Z. If we incorporate the hidden information
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in Z, we obtain a new expression for the log-likelihood:

logL(Θ|D,Z) = log p(D,Z|Θ) =

N∑

n=1

C∑

c=1

z(n)
c logP (c)p(t(n)|c). (3.17)

This expression is called the complete-data log-likelihood [Bilmes, 1997]. Since the hidden

variables are random, logL(Θ|D,Z) is also a random quantity. Although variables z are hidden

from us, their underlying distribution can be estimated indirectly. This estimation relies on

dataset D and the current model parameters, let us say Θ(i), i.e. model parameters at the i-th

iteration of estimation process. An initial guess of the model parameters Θ(1) at iteration 1, can

be either obtained by picking Θ(1) randomly from the corresponding domain of parameters or

by some problem-specific initialisation procedure. What we are capable of calculating directly,

are the conditional densities p(t|c,Θ(i)) for each component c, determined by model parameters

Θ(i) at the i-th iteration. Using Bayes’ theorem it is possible to obtain posterior probabilities:

p(c|t,Θ(i)) =
P (c)p(t|c,Θ(i))

p(t)
=

P (c)p(t|c,Θ(i))
∑C

c′ P (c′)p(t|c′,Θ(i))
. (3.18)

These posterior probabilities are necessary in calculating the conditional expectation of hidden

variable z
(n)
c :

E[z(n)
c |D,Θ(i)] = (z(n)

c = 0)× p(t(n) not generated by component c)

+ (z(n)
c = 1)× p(t(n) generated by component c)

= (z(n)
c = 0)× p(z(n)

c = 0|Θ(i)) + (z(n)
c = 1)× p(z(n)

c = 1|Θ(i))

= 0× p(¬c|t(n),Θ(i)) + 1× p(c|t(n),Θ(i))

= p(c|t(n),Θ(i)). (3.19)

The conditional expectation q of variables z given the dataset and the current model param-

eters Θ(i) can be written as:

q(z|D,Θ(i)) = q(z
(1)
1 , z

(1)
2 , ..., z

(1)
C

︸ ︷︷ ︸

1

, z
(2)
1 , z

(2)
2 , ..., z

(2)
C

︸ ︷︷ ︸

2

, ..., z
(N)
1 , z

(N)
2 , ..., z

(N)
C

︸ ︷︷ ︸

N

|D,Θ(i)), (3.20)

where the braces identify N subsets of z variables that concern the same data item. We assume

that these N subsets of variables are independent from each other, given the dataset and the

current parameters; knowing the values of any of the N subsets, does not convey any information

about the values of any other subset. To rephrase: knowing that a data item originated from a
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particular component, does not shed any light on the origin of some other data item. Hence:

q(z|D,Θ(i)) = q1(z
(1)
1 , z

(1)
2 , . . . , z

(1)
C |t(1),Θ(i))q2(z

(2)
1 , z

(2)
2 , . . . , z

(2)
C |t(2),Θ(i))× . . .

× qN (z
(N)
1 , z

(N)
2 , . . . , z

(N)
C |t(N),Θ(i)). (3.21)

Taking into consideration that within each of the N subsets of z variables, only one variable is

equal to 1 (and the rest are equal to 0), the j-th factor of the conditional expectation in (3.21)

can be rewritten using (3.19):

qj(z
(j)
1 , z

(j)
2 , . . . , z

(j)
C |t(j),Θ(i)) =

C∑

c=1

z(j)
c p(c|t(j),Θ(i)). (3.22)

This helps rewrite the condition expectation q as:

q(z|D,Θ(i)) =

N∏

n=1

C∑

c=1

z(n)
c p(c|t(n),Θ(i)). (3.23)

Since expression (3.17) is random and cannot be maximised as it is, we could instead attempt

to maximise its expectation with respect to the q distribution. Intuitively, this provides an

estimate for the model parameters weighted by how likely each instance

z = (z
(1)
1 , . . . , z

(1)
C , z

(2)
1 , . . . , z

(2)
C , . . . , z

(N)
1 , . . . , z

(N)
C )

of the hidden variables is. This leads us to the following expression:

EZ [logL(Θ|D,Z)|D,Θ(i)] =
∑

z

q(z)
N∑

n=1

C∑

c=1

z(n)
c log[p(c)P (t(n)|c)]

=

N∑

n=1

C∑

c=1

∑

z

q(z)z(n)
c log[p(c)P (t(n)|c)]. (3.24)

Intuitively, the term
∑

z q(z|D,Θ(i))z
(n)
c expresses the expectation of variable z

(n)
c and must be
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equal to p(z
(n)
c ). We can see this by the following consideration using (3.23):

∑

z

q(z|D,Θ(i))z(n)
c =

∑

z

N∏

r=1

C∑

s=1

z(r)
s p(s|t(r),Θ(i))z(n)

c

=
∑

z

z(n)
c

( C∑

s=1

z(n)
s p(s|t(n),Θ(i))

)( N∏

r=1,r 6=n

C∑

s=1

z(r)
s p(s|t(r),Θ(i))

)

=
∑

z

p(c|t(n),Θ(i))

( N∏

r=1,r 6=n

C∑

s=1

z(r)
s p(s|t(r),Θ(i))

)

= p(c|t(n),Θ(i))
∑

z

N∏

r=1,r 6=n

C∑

s=1

z(r)
s p(s|t(r),Θ(i))

= p(c|t(n),Θ(i))

∑

z q(z|D,Θ(i))
∑

z qn(z|D,Θ(i))

= p(c|t(n),Θ(i)) = p(z(n)
c ). (3.25)

The result obtained by taking into consideration that
∑

z q(z|D,Θ(i)) = 1 and that:

∑

z

qn(z|D,Θ(i)) =
∑

z

C∑

c=1

z(n)
c p(c|t(n),Θ(i)) =

C∑

c=1

∑

z

z(n)
c p(c|t(n),Θ(i))

=
C∑

c=1

(

p(c|t(n),Θ(i))
∑

z

z(n)
c

)

=
C∑

c=1

p(c|t(n),Θ(i)) = 1. (3.26)

Substituting this in (3.24) yields:

EZ [logL(Θ|D,Z)|D,Θ(i)] =

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i)) log[P (c)p(t(n)|c)]. (3.27)

This expression is called the expected complete-data log-likelihood. It is a deterministic func-

tion of Θ. Note that Θ(i) refers to the parameters used to estimate distribution p(z|D,Θ(i))

and evaluate the expectation, while Θ are the free variables. Why is this expression useful?

Our original goal was after all to maximise the model log-likelihood logL(Θ|D). One may view

EM as a lower bound maximisation algorithm. That is, instead of optimising logL(Θ|D), it

optimises an auxiliary function. This auxiliary function is a lower bound of logL(Θ|D) that

can be made “tight”. Maximising the lower bound, effectively “pushes” logL(Θ|D) “upwards”.

Such a lower bound can be derived by starting from the model log-likelihood and introducing a
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distribution q(z) for the variables in Z as follows ([Salakhutdinov et al., 2003, Minka, 1998]):

logL(Θ|D) = log p(D|Θ) = log
∑

z

p(D,z|Θ)

= log
∑

z

q(z)
p(D,z|Θ)

q(z)

≥
∑

z

q(z) log
p(D,z|Θ)

q(z)
. (3.28)

The inequality in the last line is obtained from Jensen’s inequality [Cover and Thomas, 1991] for

convex functions. It provides a lower bound on logL(Θ|D) for any arbitrary, positive distribution

q. This lower bound is the auxiliary function that we optimise instead. We define the auxiliary

function as a function F :

F (q,Θ) =
∑

z

q(z) log
p(D,z|Θ)

q(z)
. (3.29)

Auxiliary function F (q,Θ) is a function of two parameters, the distribution q of hidden

variables z and model parameters Θ. The EM algorithm optimises function F in a coordinate-

wise fashion; it alternates between optimising q while keeping Θ fixed to the current parameters

Θ(i) and then optimising Θ while keeping q fixed to the values attained previously. In order to

optimise for q, we rewrite F as:

F (q,Θ(i)) =
∑

z

q(z) log
p(z|D,Θ(i))p(D,Θ(i))

q(z)

= −
∑

z

q(z) log
q(z)

p(z|D,Θ(i))
+
∑

z

q(z) log p(D|Θ(i))

= −DKL[q(z)||p(z|D,Θ(i))] + const, (3.30)

where in the second line we discard the second summand being a constant, andDKL[q(z)||p(z|D,Θ(i))]

is the Kullback-Leibler divergence (KLD) [Cover and Thomas, 1991] between the two distribu-

tions q(z) and p(z|D,Θ(i)). KLD is a non-negative scalar quantity that informs us of the

“distance” between two distributions. In order to maximise the non-negative KLD quantity

here, we simply set q(z) = p(z|D,Θ(i)). Thus, at each iteration, setting q involves the estima-

tion of the posterior distribution of z conditioned on the dataset D and the current parameters

Θ(i). This step is called the Estimation step or E-step. Having determined q(z) = p(z|D,Θ(i)),
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we proceed to the optimisation of Θ. To this purpose, we rewrite F as follows:

F (p(z|D,Θ(i)),Θ) =
∑

z

p(z|D,Θ(i)) log
p(D,z|Θ)

p(z|D,Θ(i))

=
∑

z

p(z|D,Θ(i)) log p(D,z|Θ)−
∑

z

p(z|D,Θ(i)) log p(z|D,Θ(i))

= EZ [logL(Θ|D,Z)|D,Θ(i)]− const. (3.31)

We see that F is equal to the expected complete-data log-likelihood in (3.27) plus a constant

entropy term that can be discarded in the optimisation of Θ since it is independent from it.

The step of optimising Θ is called the Maximisation step or M-step. As aforementioned, the

expected complete-data log-likelihood is a deterministic function of Θ and can be optimised by

a variety of optimisation techniques.

To summarise, the EM algorithm maximises indirectly the model log-likelihood via an aux-

iliary function that acts as a lower bound:

logL(Θ|D) ≥ F (q,Θ). (3.32)

The auxiliary function has two arguments, q the conditional expectation of the hidden variables,

and Θ the model parameters, that are optimised in a coordinate-wise fashion. This gives forth

to the following two steps:

• E-step: estimate the distribution of variables z given the dataset D and current model

parameters Θ(i):

p(z(n)
c |D,Θ(i)) =

P (c)p(t(n)|c,Θ(i))
∑C

c′ P (c′)p(t(n)|c′,Θ(i))
.

• M-step: optimise the expected complete-data log-likelihood as a function of Θ:

Θ(i+1) = argmax
Θ

{

EZ [logL(Θ|D,Z)|D,Θ(i)]

}

.

In the case of MAP estimation, where a prior p(Θ) is imposed on the model parameters Θ, the

model log-likelihood must account for an additional term:

logL(Θ|D) = log p(Θ) +
N∑

n=1

log
C∑

c=1

P (c)p(t(n)|c). (3.33)

The EM methodology changes only slightly ([Ng et al., 2004]); the E-step remains as is, while

the M-step now must take into consideration the simultaneous optimisation of the log-prior
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term:

Θ(i+1) = argmax
Θ

{

log p(Θ) +EZ [logL(Θ|D,Z)|D,Θ(i)]

}

. (3.34)

The next section presents the E- and M-step for training a mixture of Gaussians.

3.2.1 Training of Mixture of Gaussians

Let us return to the mixture of Gaussians. We state again the model log-likelihood:

logL(Θ|D) =

N∑

n=1

log

C∑

c=1

P (c)p(t(n)|c). (3.35)

Instead of directly maximising the model log-likelihood, we follow the EM methodology and

maximise the expected complete-data log-likelihood EZ [logL(Θ|D,Z)|D,Θ(i)] that acts as a

lower bound. To that purpose, we must estimate the conditional expectation q of the hidden

variables z given dataset D and model parameters Θ(i) at the E-step of the i-th iteration:

E[z(n)
c |D,Θ(i)] = p(z(n)

c = 1|Θ(i)) = p(c|t(n),Θ(i)) =
P (c)p(t(n)|c,Θ(i))

∑C
c′=1 P (c′)p(t(n)|c′,Θ(i))

. (3.36)

Once q is established, we can calculate the expected complete-data log-likelihood in (3.27).

We now improve the bound by maximising Θ. This is done by taking derivatives with respect to

the parameters of the model and setting them to zero. Following the derivation in [Bishop, 1996,

Bilmes, 1997], we obtain the following update equations for the M-step of i-th iteration:

P (c) =
1

N

N∑

n=1

p(c|t(n),Θ(i)), (3.37)

µc =

∑N
n=1 t

(n)p(c|t(n),Θ(i))
∑N

n=1 p(c|t(n),Θ(i))
, (3.38)

Σc =

∑N
n=1 p(c|t(n),Θ(i))(t(n) − µc)

T (t(n) − µc)
∑N

n=1 p(c|t(n),Θ(i))
. (3.39)

These equations make intuitive sense [Bishop, 1999] and should be compared to (3.5) and

(3.6). The posterior probability p(c|t(n),Θ(i)) can be interpreted as the responsibility of each

component c giving rise to data item t(n). Thus, if component c is highly responsible, that is the

posterior probability p(c|t(n),Θ(i)) is high, the contribution of data item t(n) in updating the

parameters of component c will be high. Conversely, low responsibilities weigh the contribution
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Fig. 3.1: Example of an underlying hidden state (states in gray) process emitting labels.

of the corresponding data items lowly.

Even though, we introduced the EM algorithm in the specific setting of finding parameters

of a mixture of Gaussian densities, the EM has a wider range of applications. In the following

sections the EM is employed in training hidden Markov models and hidden Markov tree models.

3.3 Modelling Sequences

3.3.1 Overview of Hidden Markov Models

We denote the domain of sequences by S. A variable over S is denoted by S. We assume

that all sequences are of equal length T and we index symbols of a sequence by t = 1, ..., T .

Thus, a sequence S is expressed as S = [S1S2 . . .ST ]. Sequences may be composed of symbols

that belong either to a discrete or continuous domain. In the first case symbols belong to a

fixed alphabet A with A number of elements, while in the second case to a domain R
d. An

instantiation of a sequence is expressed as S = s = [(S1 = s1)(S2 = s2) . . . (S1 = s1)].

Sequences can be modelled by a hidden Markov model (HMM) [Rabiner, 1989]. A HMM

defines a discrete random variable Qt for each symbol St, t = 1, . . . , T of a sequence S. The

variables can be in one of K discrete unobservable states, Qt = {1, 2, . . . ,K}. Each state variable

Qt emits a symbol St. This is illustrated in Fig. 3.1. What symbol will be emitted depends

on the particular state Qt = qt that is entered at step t. In particular, for discrete symbols the

emission is governed by a K × A matrix Ψ, where the k, j entry stands for the probability of

emitting symbol j at state k, that is ψkj = p(st = j|Qt = k). For the continuous domain each

state k is associated with a probability density f(·;ψk), where ψk is a vector of parameters

for state k. As one expects in a sequence, symbols St are not independent of each other. A

HMM captures this property of sequences by making a state Qt dependent on its preceding

state Qt−1. Transitions between states are governed by a K × K transition matrix B with

elements bkl = p(Qt = l|Qt−1 = k) with k, l = 1, . . . ,K. Note that the sum of elements bkl over

l = 1, . . . ,K, i.e. the sum of transitions from a state k to all other K states, must equal 1.

For the very first state Q1 we define a vector π of initial probabilities that governs the first
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state entered, with elements πk = p(Q1 = k) with k = 1, . . . ,K. We group the set of the

preceding HMM parameters in parameter vector θ.

A HMM implements a first-order Markov property by taking into account the following

conditional independencies [Bilmes, 1997]:

• A state Qt is independent from all other previous variables given its direct state predecessor

Qt−1:

p(Qt = qt|{Qr = qr}r=1,...,t−1, {Sr = sr}r=1,...,t−1) = p(Qt = qt|Qt = qt−1). (3.40)

• A symbol St is independent of all other variables given its state Qt:

p(St = st|{Sr = sr}r=1,...,T,r 6=t, {Qr = qr}r=1,...,T ) = p(St = st|Qt−1 = qt−1). (3.41)

Thus, a HMM can be factorised as follows:

p(S = s, Q1 = q1, . . . , QT = qT |θ) = p(Q1 = q1|θ)

T∏

t=2

p(Qt = qt|Qt−1 = qt−1,θ)

×
T∏

t=1

p(St = st|Qt = qt,θ). (3.42)

Henceforth, for brevity we shall drop stating both random variables and their instantiations,

keeping only the latter, i.e. p(St = st|Qt = qt,θ) = p(st|qt,θ). To compute the likelihood of a

HMM given a sequence, the forward-backward algorithm is employed. The motivation for using

this algorithm, stems from the observation that a direct calculation of the likelihood requires an

exponential number of steps:

p(s|θ) =
∑

q∈{1,2,...,K}T

p(s,q|θ) =

K∑

q1=1

K∑

q2=1

· · ·
K∑

qT =1

p(s, q1, . . . , qT |θ)

=

K∑

q1=1

K∑

q2=1

· · ·
K∑

qT =1

p(q1|θ)p(s1|q1,θ)p(q2|q1,θ) . . . p(sT |qT ,θ)p(qT |qT−1,θ),(3.43)

where vector q refers to a configuration of states q = [q1q2...qT ]. In [Bilmes, 1997, Rabiner, 1989]

the forward and backward algorithms are presented as efficient recursions for calculating the

likelihood. First we introduce the following quantity, called the forward probability:

αk(t;θ) = p(s1, s2, . . . , st, qt = k|θ), (3.44)
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which is the probability of observing sequence s up to step t where the state is k. Based on this,

we calculate the likelihood in the following recursive way:

• Initial step, starts from the beginning of the sequence:

αk(1;θ) = p(s1, q1 = k|θ) = p(s1|q1 = k,θ)p(q1 = k|θ). (3.45)

• Recursive step:

αk(t;θ) =

[
K∑

l=1

αl(t− 1;θ)p(qt = k|qt−1 = l,θ)

]

p(st|qt = k,θ). (3.46)

• Final step, the likelihood is calculated as:

p(s|θ) =

K∑

k=1

αk(T ;θ). (3.47)

In the same fashion we derive the backward algorithm, here we introduce the backward

probability:

βk(t;θ) = p(st+1, st+2, . . . , sT |qt = k,θ), (3.48)

which is the probability of observing sequence s from time step t + 1 onwards given that the

state at step t is k. Based on this we can calculate the likelihood in the following recursive way:

• Initial step, starts from the end of the sequence:

βk(T ;θ) = p(sT |qT = k,θ). (3.49)

• Recursive step:

βk(t;θ) = p(st|qt = k,θ)

K∑

l=1

p(qt+1 = l|qt = k,θ)βl(t+ 1;θ). (3.50)

• Final step, the likelihood is calculated as:

p(s|θ) =

K∑

k=1

αk(u;θ)βk(u;θ). (3.51)
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3.3.2 Training of Hidden Markov Models

Here we consider a dataset D =
{
s(1), s(2), . . . , s(N)

}
of independently generated sequences. The

model likelihood given dataset D is expressed as:

L(θ|D) =
N∏

n=1

p(s(n)|θ) =
N∏

n=1

∑

q∈{1,2,...,K}T

p(q1|θ)
T∏

t=2

p(qt|qt−1,θ)

×
T∏

t=1

p(s
(n)
t |qt,θ). (3.52)

We postulate the following hidden indicator variables:

z
(n,t)
k =







1, if for s(n) at step t, the state was qt = k;

0, otherwise.

z
(n,t)
k→l =







1, if for s(n) at step t− 1, the state was qt−1 = k

and at step t the state was qt = l;

0, otherwise.

Again, we refer to all variables z by Z. Training of HMMs proceeds via the EM algorithm. The

EM algorithm alternates between the E-step, where the expectation of the hidden variables at

the i-th iteration is estimated based on the dataset D and the current parameters θ(i), and the

M-step where the model parameters θ are updated by optimising the expected complete-data

log-likelihood. Using the above indicator variables and based on (3.42), we rewrite the model

likelihood and take the logarithm, which leads us to the complete-data log-likelihood function

as follows:

L(θ|D,Z) =

N∏

n=1

p(s(n)|θ) =

N∏

n=1

K∏

k=1

p(q1 = k|θ)z
(n,1)
k

T∏

t=2

K∏

k=1

K∏

l=1

p(qt = k|qt−1 = l,θ)z
(n,t)
k→l

×
T∏

t=1

K∏

k=1

p(s
(n)
t |qt = k,θ)z

(n,t)
k , (3.53)

logL(θ|D,Z) =

N∑

n=1

( K∑

k=1

z
(n,1)
k log p(q1 = k|θ) +

T∑

t=2

K∑

k=1

K∑

l=1

z
(n,t)
k→l log p(qt = k|qt−1 = l,θ)

+

T∑

t=1

K∑

k=1

z
(n,t)
k log p(s

(n)
t |qt = k,θ)

)

. (3.54)

We estimate the expectation of hidden variables z in the E-step, based on the current

model parameters θ(i). Estimation proceeds with the aid of the forward-backward probabil-
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ities [Rabiner, 1989]:

E[z
(n,t)
k |D,θ(i)] = p(qt = k|s(n),θ(i)) =

p(qt = k, s(n)|θ(i))

p(s(n)|θ(i))
=

p(qt = k, s(n)|θ(i))
∑K

j=1 p(qt = l, s(n)|θ(i))

=
α

(n)
k (t;θ(i))β

(n)
k (t;θ(i))

∑K
l=1 α

(n)
l (t;θ(i))β

(n)
l (t;θ(i))

, (3.55)

E[z
(n,t)
k→l |D,θ(i)] = p(qt = l, qt−1 = k|s(n),θ(i)) =

p(qt = l, qt−1 = k, s(n)|θ(i))

p(s(n)|θ(i))

=
α

(n)
k (t− 1;θ(i))p(qt = l|qt−1 = k, s(n),θ(i))p(s

(n)
t |qt = l,θ(i))β

(n)
l (t;θ(i))

∑K
k′=1

∑K
l′=1 α

(n)
k′ (t− 1;θ(i))p(qt = l′|qt−1 = k′, s(n),θ(i))p(s

(n)
t |qt = l′,θ(i))β

(n)
l′ (t;θ(i))

.

(3.56)

where α
(n)
k (t;θ(i)), β

(n)
k (t;θ(i)) are the forward and backward probabilities for the n-th sequence

corresponding to state k respectively. Based on (3.54), the expected complete-data log-likelihood

can now be written as:

EZ [logL(θ|D,Z)|D,θ(i)] =
N∑

n=1

( K∑

k=1

p(q1 = k|s(n),θ(i)) log p(q1 = k|θ)

+

T∑

t=2

K∑

k=1

K∑

l=1

p(qt = l, qt−1 = k|s(n),θ(i)) log p(qt = l|qt−1 = k,θ)

+

T∑

t=1

K∑

k=1

p(qt = k|s(n),θ(i)) log p(s
(n)
t |qt = k,θ)

)

. (3.57)

Calculating the derivatives of (3.57) with respect to the parameters of the model results in

the following update equations [Bilmes, 1997] at the i-th iteration:

πk =
1

N

N∑

n=1

p(q1 = k|s(n),θ(i)), (3.58)

bkl =

∑N
n=1

∑T
t=2 p(qt = l, qt−1 = k|s(n),θ(i))

∑N
n=1

∑T
t=2 p(qt−1 = k|s(n),θ(i))

. (3.59)

In the case of discrete symbols, the entries for matrix Ψ are updated as follows:

ψkj =

∑T
t=1 δj,stp(qt = k|s(n),θ(i))
∑T

t=1 p(qt = k|s(n),θ(i))
, (3.60)

where δ is the Kronecker delta. If emission distribution f(.;ψk) assumes the form of a Gaussian,
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then its parameters ψ = {ψk}k=1,...,K , with ψk = {µk,Σk} and µk ∈ R
d, Σk ∈ R

d×d the mean

and the covariance matrix for each state k respectively, are updated as follows:

µk =

∑N
n=1

∑T
t=1 s

(n)
t p(qt = k|s(n),θ(i))

∑N
n=1

∑T
t=1 p(qt = k|s(n),θ(i))

, (3.61)

Σk =

∑N
n=1

∑T
t=1(s

(n)
t − µk)T (s

(n)
t − µk)p(qt = k|s(n),θ(i))

∑N
n=1

∑T
t=1 p(qt = k|s(n),θ(i))

. (3.62)

The update equations have an intuitive interpretation similar to the update equations for the

mixture of Gaussians in section 3.2.1. Quantity p(qt = k|s(n),θ(i)) expresses the responsibility

of state k giving rise to emission s
(n)
t at time t. When updating parameters that correspond to

state k, the updates are weighted by the responsibilities so that: if state k is highly responsible,

then the data item contributes highly; conversely, if state k is only weakly responsible, the data

item contributes to a lesser degree.

3.3.3 Mixtures of Hidden Markov Models

Mixture of HMMs can be formulated in the same fashion as mixtures of Gaussian densities. Fol-

lowing the EM methodology in [Bilmes, 1997, Cadez et al., 2000], we heuristically demonstrate

how such a mixture can be realised, based on the intuitive interpretation of the update equations

that we saw in the training of mixture of Gaussians and HMMs.

Before proceeding further, however, we extend our notation with c = 1, . . . ,K to index

parameters that correspond to each of the C HMM components of the mixture model. Thus,

each HMM component c has a non-negative mixing coefficient P (c), with
∑C

c=1 P (c) = 1 and

0 ≤ P (c) ≤ 1, an initial probability vector πc = {πc
k}k=1,...,K , a transition probability matrix Bc

with elements bckl = p(qt = l|qt−1 = k, c), means for the emissions µc,k ∈ R
d with k = 1, . . . ,K

and covariances of the emissions Σc,k ∈ R
d×d with k = 1, . . . ,K.

We state the log-likelihood of the mixture model, for dataset D:

logL(Θ|D) =

N∑

n=1

log

C∑

c=1

P (c)p(s(n)|c). (3.63)

We convert the problem into a hidden information problem by postulating anew the hidden

variables with the addition of one extra set of variables that indicate the component-membership

of each data item:
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z(n)
c =







1, if s(n) was generated by component c;

0, otherwise.

z
(n,t)
c,k =







1, given s(n) was generated by component c, if at step t, the state was qt = k;

0, otherwise.

z
(n,t)
c,k→l =







1, given s(n) was generated by component c, if at step t− 1, the state was qt−1 = k

and at step t the state was qt = l;

0, otherwise.

The expectations of these hidden variables are respectively:

E[z(n)
c |D,Θ(i)] = p(c|s(n),Θ(i)), (3.64)

E[z
(n,t)
c,k |D,Θ(i)] = p(qt = k|c, s(n),Θ(i)), (3.65)

E[z
(n,t)
c,k→l|D,Θ(i)] = p(qt = l, qt−1 = k|c, s(n),Θ(i)). (3.66)

We can now calculate the expected complete-data log-likelihood of the mixture model:

EZ [logL(Θ|D,Z)|D,Θ(i)] =
N∑

n=1

C∑

c=1

p(c|s(n),Θ(i))

( K∑

k=1

p(q1 = k|c, s(n),Θ(i)) log p(q1 = k|c,Θ)

+
T∑

t=2

K∑

k=1

K∑

l=1

p(qt = l, qt−1 = k|c, s(n),Θ(i)) log p(qt = l|qt−1 = k, c,Θ)

+

T∑

t=1

K∑

k=1

p(qt = k|c, s(n),Θ(i)) log p(s
(n)
t |qt = k, c,Θ)

)

. (3.67)

These expectations measure the contribution of each data item in updating the parameters

of the mixture model. Thus, the mixing coefficients are updated in the same fashion as the

mixing coefficients for the mixture of Gaussians:

P (c) =
1

N

N∑

n=1

p(c|s(n),Θ(i)). (3.68)

The rest of the update equations are only slightly modified in order to calculate parameters

specific for each component c:

πc,k =
1

N

N∑

n=1

p(q1 = k|c, s(n),Θ(i))p(c|s(n),Θ(i)), (3.69)
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bc,kl =

∑N
n=1

∑T
t=1 p(qt = l, qt−1 = k|c, s(n),Θ(i))p(c|s(n),Θ(i))

∑N
n=1

∑T
t=1 p(qt−1 = k|c, s(n),Θ(i))p(c|s(n),Θ(i))

, (3.70)

µc,k =

∑N
n=1

∑T
t=1 s

(n)
t p(qt = k|c, s(n),Θ(i))p(c|s(n),Θ(i))

∑N
n=1

∑T
t=1 p(qt = k|c, s(n),Θ(i))p(c|s(n),Θ(i))

, (3.71)

Σc,k =

∑N
n=1

∑T
t=1(s

(n)
t − µk)T (s

(n)
t − µk)p(qt = k|c, s(n),Θ(i))p(c|s(n),Θ(i))

∑N
n=1

∑T
t=1 p(qt = k|c, s(n),Θ(i))p(c|s(n),Θ(i))

. (3.72)

We observe that the update equations bear very close resemblance to the update equations

when training a single HMM, the difference being that we now must also weigh the updates by

the component contributions p(c|s(n),Θ(i)).

3.4 Modelling Tree Structures

3.4.1 Overview of Hidden Markov Tree Models

A tree y is an acyclic directed graph and as such it consists of a set Uy = {1, 2, ..., Uy} of nodes

u ∈ Uy, a set of directed edges between the nodes (each edge goes from a parent node to a child

node) and a set of labels 1 ou ∈ R
d on nodes u ∈ Uy. Each node u has a single parent ρ(u)

(apart from the node number one, the root node) and each node u has a set of children ch(u)

(apart from the leaf nodes). Furthermore we designate subtrees. A subtree rooted at node u of

a tree y is referred to by yu. Hence the entire tree y is equivalent to the subtree y1 rooted at

its root. Moreover, yu\v denotes the entire subtree yu except for the subtree rooted at node v.

This notation is illustrated in Fig. 3.2(a).

We also introduce a model for the labels of the trees that captures the structure of the

trees. We associate with each node u a discrete random variable Qu which can be in one of K

unobservable states. The variable Qu stochastically determines the label for node u. Each state

k = 1, 2, ...,K is associated with a parametrised emission distribution f(.;ψk) that produces a

label. So given a tree structure y, the model can label each of the nodes depending on what

state Qu ∈ {1, 2, ...,K} each node u is in. What states will be entered and ultimately what

labels will be produced depends on the structure of the model. By structure we mean a joint

probability distribution over state variables that characterises the relationship between states

Qu of all nodes u ∈ Uy. The simplest structure is one where all the states are independent from

each other. In this case a node can enter any state regardless of the state of any other node and

the joint distribution simplifies to a product of simple probabilities. Such a simple structure,

1Labels ou can also be discrete similar to the symbols in HMM in section 3.3.1. Extending the model for
discrete symbols can be done in the same fashion.
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Fig. 3.2: Notation in tree structures (a), Example of an underlying hidden state (states in gray)
process emitting labels (b).

however, does not capture the structural information in the trees induced by the parent-child

relationship of the nodes. A more appropriate structure is to make each node u dependent on its

parent ρ(u). Thus, the state Qu is conditioned on the state Qρ(u) of its parent. Such a structure

implements a first-order Markov property. Moreover, we assume that when the model labels the

tree it does not reveal the states Qu entered. Thus, the underlying process that generates a tree

y is hidden from us, and only the labels ou, u ∈ Uy can be observed. This is illustrated in Fig.

3.2(b).

The resulting model, called the hidden Markov tree model (HMTM) [Crouse et al., 1998,

Durand and Gonçalvès, 2001], is an extension of the HMM. An HMTM models tree structure

y by expressing a joint probability density for the set of hidden state variables Q1, . . . , QUy ,

each defined on the support {1, 2, . . . ,K}, and the set of labels o1, . . . ,oUy in R
d. The model

is called hidden because the states cannot be directly observed, while Markov refers to the fact

that the current state of a node depends only on that of its immediate predecessor (parent).

An HMTM, in the same fashion as an HMM, is defined by three sets of parameters:

• initial probability vector π = {p(Q1 = k)}k=1,...,K – each element expressing the probabil-

ity of the root node being in state k ∈ {1, 2, . . . ,K}.

• transition probability matrix B = {p(Qu = l|Qρ(u) = k)}k,l=1,...,K – each element express-

ing the probability of transiting from parent ρ(u) in state k to the child node u in state

l. This probability is assumed to be position-invariant. Note that the sum of elements bkl
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over l = 1, . . . ,K, i.e. the sum of transitions from a state k to all other K states, must

equal 1.

• the emission parameters that parametrise Gaussian distributions, f(.;ψk), with ψk =

{µk,Σk} one for each state k = 1, . . . ,K. Here, µk ∈ R
d and Σk are the mean and

covariance matrix, respectively, of the Gaussian associated with emission process in state

k.

We shall reuse notation Θ to refer to this collection of HMTM parameters. The Markovian

dependencies of hidden states are realised by the following conditions [Durand and Gonçalvès, 2001]:

• Given the parent state Qρ(u) , the child state Qu is conditionally independent of all other

variables in the tree, apart from those that belong in the subtree yu:

p(Qu = qu|{Qv = qv}v∈Uy ,v /∈yu
, {Ov = ov}v∈Uy ,v /∈yu

) = p(Qu = qu|Qρ(u) = qρ(u)).

(3.73)

• Given the (hidden) state of a node, the corresponding label is conditionally independent

of all other variables in the tree:

p(Ou = ou|{Ov = ov}v∈Uy ,v 6=u, {Qv = qv}v∈Uy ) = p(Ou = ou|Qu = qu). (3.74)

Thus, the HMTM distribution can be factorised as follows:

p(y, Q1 = q1, . . . , QUy = qUy) = p(Q1 = q1)
∏

u∈Uy ,u 6=1

p(Qu = qu|Qρ(u) = qρ(u))

×
∏

u∈Uy

p(Ou = ou|Qu = qu). (3.75)

Henceforth, for brevity we shall drop stating both random variables and their instantiations,

keeping only the latter.

Similarly to the forward-backward algorithm for HMM, the likelihood of an HMTM can

be efficiently computed by the upward-downward algorithm. The motivation of this algorithm

stems again from the observation that a direct calculation of likelihood without knowledge of

the hidden states requires an exponential number of steps. For a tree y the upward algorithm

defines the following quantity:

βk(u;θ) = p(yu|qu = k,θ). (3.76)
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Based on this, we formulate the upward-recursion [Durand et al., 2004]:

• The recursion starts from the leaves u of the tree:

βk(u;θ) = p(ou|qu = k,θ). (3.77)

• Recursive step for non-leaf nodes u:

βk(u;θ) = p(yu|qu = k,θ)

=

{
∏

v∈ch(u)

p(yv|qu = k,θ)

}

p(ou|qu = k,θ)

=

{
∏

v∈ch(u)

K∑

i

p(yv|qv = i,θ)p(qv = i|qu = k,θ)

}

p(ou|qu = k,θ)

=

{
∏

v∈ch(u)

K∑

i

βi(v;θ)p(qv = i|qu = k,θ)

}

p(ou|qu = k,θ). (3.78)

• Final step:

p(y|θ) =

K∑

k

β
(n)
k (1;θ)p(q1 = k|θ). (3.79)

Similarly, we define the downward probability:

αk(u;θ) = p(qu = k,y1\u|θ), (3.80)

which is the probability of node u being at state k and observing the entire tree y apart from

subtree yu. Based on this, we formulate the downward-recursion [Durand et al., 2004]:

• The recursion starts from the root u1 of the tree:

αk(1;θ) = p(q1 = k|θ). (3.81)
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• Recursive step for all nodes u in the tree, apart from root node:

α
(n)
k (u;θ) = p(qu = k,y1\u,θ) =

K∑

i=1

p(qu = k, qρ(u) = i,y1\u,θ)

=

K∑

i=1

p(qu = k|qρ(u) = i,θ)
p(yρ(u)|qρ(u) = i,θ)p(qρ(u) = i,y1\ρ(u),θ)
∑K

j=1 p(yu|qu = j,θ)p(qu = j|qρ(u) = i,θ)

=

K∑

i=1

p(qu = k|qρ(u) = i,θ)
βi(ρ(u);θ)αi(ρ(u);θ)

∑K
j=1 βj(u;θ)p(qu = j|qρ(u) = i,θ)

. (3.82)

Thus, the model likelihood of a tree y can be calculated as follows:

p(y|θ) =
K∑

k=1

αk(u;θ)βk(u;θ). (3.83)

3.4.2 Training of Hidden Markov Tree Models

The model likelihood for a dataset of independently generated data items D = {y(1), ...,y(N)}
is:

L(θ|D) =
N∏

n=1

p(y(n)|θ) =
N∏

n=1

∑

q∈{1,2,...,K}
Uy(n)

p(q1|θ)
Un∏

u∈Uy(n) ,u 6=1

p(qu|qρ(u),θ)

×
Un∏

u∈Uy(n)

p(o(n)
u |qt,θ), (3.84)

where we denote the number of nodes Uy(n) of the n-th tree y(n) by Un. We require the likelihood

to be maximised. This can be achieved by adopting an EM formulation of the problem by writing

the (complete data) likelihood in terms of hidden indicator variables z, collectively referred to

as Z:

z
(n,u)
k =







1, if for tree y(n) node u was in state k;

0, otherwise.

z
(n,u)
k→l =







1, if for tree y(n) node u was in state l and its parent ρ(u) was in state k;

0, otherwise.

Using the above indicator variables and based on Eq. (3.57), we can rewrite the model likelihood

and take the logarithm as follows:
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L(θ|D,Z) =
N∏

n=1

p(y(n)|θ) =
N∏

n=1

K∏

k=1

p(q1 = k|θ)z
(n,1)
k

Un∏

u∈Uy(n) ,u 6=1

K∏

k=1

K∏

l=1

p(qu = l|qρ(u) = k,θ)z
(n,u)
k→l

×
Un∏

u∈Uy(n)

K∏

k=1

p(o(n)
u |qu,θ)z

(n,u)
k , (3.85)

logL(θ|D,Z) =
N∑

n=1

( K∑

k=1

z
(n,1)
k log p(q1 = k|θ) +

Un∑

u∈Uy(n) ,u 6=1

K∑

k=1

K∑

l=1

z
(n,u)
k→l log p(qu = l|qρ(u) = k,θ)

+

Un∑

u∈Uy(n)

K∑

k=1

z
(n,u)
k log p(o(n)

u |qu,θ)

)

. (3.86)

Following the EM formulation, we maximise instead the expected complete data log-likelihood,

a lower bound of the likelihood. In the E-step, the hidden variables are estimated by their pos-

terior expectation given the observed data and the current parameters θ(i) at the i-th iteration

[Crouse et al., 1998]:

E[z
(n,u)
k |D,θ(i)] = p(qu = k|y(n),θ(i)) =

p(qu = k,y(n)|θ(i))

p(y(n)|θ(i))
=

αk(u;θ(i))βk(u;θ(i))
∑K

l=1 αl(u;θ(i))βl(u;θ(i))
,

(3.87)
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E[z
(n,u)
k→l |D,θ(i)] = p(qu = l, qρ(u) = k|y(n),θ(i)) =

p(qu = l, qρ(u) = k,y(n)|θ(i))

p(y(n)|θ(i))

=
p(qu = l, qρ(u) = k,y

(n)
1\ρ(u),y

(n)
ρ(u)\u,y

(n)
u |θ(i))

p(y(n)|θ(i))

=
p(y

(n)
u |qu = l,θ(i))p(qu = l|qρ(u) = k|θ(i))p(y

(n)
ρ(u)\u|qρ(u) = k,θ(i))p(qρ(u) = k,y

(n)
1\ρ(u)|θ(i))

p(y(n)|θ(i))

=

p(y
(n)
u |qu = l,θ(i))p(qu = l|qρ(u) = k|θ(i))

p(y(n)
ρ(u)

|qρ(u)=k,θ
(i)

)

p(y(n)
u |qρ(u)=k,θ

(i)
)
p(qρ(u) = k,y

(n)
1\ρ(u)|θ(i))

p(y(n)|θ(i))

=

p(y
(n)
u |qu = l,θ(i))p(qu = l|qρ(u) = k|θ(i))

p(y(n)
ρ(u)

|qρ(u)=k,θ
(i)

)
∑

j p(y(n)
u |qu=j,θ

(i)
)p(qu=j|qρ(u)=k,θ

(i)
)

p(y(n)|θ(i))

×
p(qρ(u) = k,y

(n)
1\ρ(u)|θ(i))

p(y(n)|θ(i))

=

β
(n)
l (u;θ(i))p(qu = l|qρ(u) = k,θ(i))

β
(n)
k

(ρ(u);θ
(i)

)
∑

j p(β
(n)
j (u;θ

(i)
)p(qu=j|qρ(u)=k,θ

(i)
)
α

(n)
k (ρ(u);θ(i))

∑K
l=1 α

(n)
l (u;θ(i))β

(n)
l (u;θ(i))

,

(3.88)

where we have augmented notation α(u;θ(i)), β(u;θ(i)) with index n to denote the downward

and upward probabilities for the n-th tree, α(n)(u;θ(i)) and β(n)(u;θ(i)) respectively. We express

the expected complete-data log-likelihood as:

EZ [logL(θ|D,Z)|D,θ(i)] =

N∑

n=1

( K∑

k=1

p(q1 = k|y(n),θ(i)) log p(q1|θ)

+
Un∑

u∈Uy(n) ,u 6=1

K∑

l=1

K∑

k=1

p(qu = l, qρ(u) = k|y(n),θ(i)) log p(qu = l|qρ(u) = k,θ)

+
Un∑

u∈Uy(n)

K∑

k=1

p(qu = k|y(n),θ(i)) log p(o(n)
u |qu = k,θ)

)

. (3.89)

In the M-step we calculate the derivatives of (3.89) with respect to the parameters of the

model, which lead to the following update equations [Crouse et al., 1998]:

πk =
1

N

N∑

n=1

p(q1 = k|y(n),θ(i)), (3.90)
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bkl =

∑N
n=1

∑Un

u∈Uy(n)
p(qu = l, qρ(u) = k|y(n),θ(i))

∑N
n=1

∑Un

u∈Uy(n)
p(qρ(u) = k|y(n),θ(i))

. (3.91)

If the emission distribution f(.;ψk) assumes the form of a Gaussian, then its parameters ψ =

{ψk}k=1:K , with ψ = {µk,Σk} the mean and the covariance matrix for each state k respectively,

are updated as follows:

µk =

∑N
n=1

∑Un

u∈Uy(n)
o

(n)
u p(qu = k|y(n),θ(i))

∑N
n=1

∑Un

u∈Uy(n)
p(qu = k|y(n),θ(i))

, (3.92)

Σk =

∑N
n=1

∑Un

u∈Uy(n)
(o

(n)
u − µk)T (o

(n)
u − µk)p(qu = k|y(n),θ(i))

∑N
n=1

∑Un

u∈Uy(n)
p(qu = k|y(n),θ(i))

. (3.93)

3.4.3 Mixtures of Hidden Markov Tree Models

Mixtures of HMTMs are formulated in the precise same fashion as mixtures of HMMs and

Gaussian densities. Thus, we shall not reiterate the mixture formulation and the respective EM

optimisation machinery, especially since in section 4.2 we elaborate on a constrained mixture of

HMTMs.

3.4.4 Overview of Markov Tree Models
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Fig. 3.3: An example of a 3-regular tree. Nodes are labelled from the set {1, 2, 3} and edges
are annotated with the transition probabilities.

This section presents an additional generative model, the Markov Tree Model (MTM), for

density modelling of tree structures. Here we concentrate on a particular class of trees, namely

R-regular trees, which is the class of trees where the outdegree of parent nodes is fixed to R,

i.e. each parent node has exactly R children. A MTM is an observable process, that generates

a label ou = 1, . . . ,K for each node u ∈ Uy of tree y. Because it is observable, all information
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of the generative process, namely the set of assigned labels ou, is directly available. This is

in contrast to HMMs and HMTMs where a non-observable hidden state qu is associated with

each node u. The process labels the tree in a top-down fashion, starting from the root, node

u1, of the tree and working down to the leaves of the tree. At each transition from a parent

node ρ(u) to a child node ur, r = 1, . . . , R, a label our is assigned. The label assignment is

conditionally dependent on the label oρ(u) of the parent node ρ(u) and the position of the child,

i.e. whether its the 1-st, 2-nd . . . or R-th child. This dependency is expressed as a probability

p(ou|oρ(u), pos(u)), where pos(·) is a function pos : u→ {1, 2, . . . , R}, that returns the position

of node u. A MTM is a first-order Markov process, where the label of a node is conditionally

independent from all labels that belong to ancestor nodes, given its parent node and position.

The transitions are governed by R transition matrices B(r), one for each child position

r = 1, . . . , R, with entries brkl = p(ou = l|oρ(u) = k) for k, l = 1, . . . K. Given a tree y the MTM

likelihood is simply:

p(y) = p(o1)

Un∏

u=2

p(ou|oρ(u), pos(u)). (3.94)

Note that we impose a flat probability for the initial state probability distribution of the root

node, p(o1) = 1
K .

3.4.5 Training of Markov Tree Models

The (scaled2) model likelihood for a dataset D = {y(1), ...,y(N)} of independently generated

trees, is expressed as:

L(B|D) ∝ p(D|B) ∝
N∏

n=1

Un∏

u=2

p(ou|oρ(u), pos(u)). (3.95)

It is useful to rewrite the (scaled) likelihood in (3.95) as:

L(B|D) ∝
N∏

n=1

Un∏

u=2

K∏

k=1

K∏

l=1

R∏

r=1

p(ou = l|oρ(u) = k, pos(u) = r)
δoρ(u),kδou,lδpos(u),r

, (3.96)

2We discard the flat probability of root node p(o1) = 1
K

.
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logL(B|D) ∝
N∑

n=1

Un∑

u=2

K∑

k=1

K∑

l=1

R∑

r=1

δoρ(u),kδou,lδpos(u),r log p(ou = l|oρ(u) = k, pos(u) = r)

∝
N∑

n=1

K∑

k=1

K∑

l=1

R∑

r=1

( Un∑

u=2

δoρ(u),kδou,lδpos(u),r

)

log p(ou = l|oρ(u) = k, pos(u) = r)

∝
N∑

n=1

K∑

k=1

K∑

l=1

R∑

r=1

ν
(n)
rkl log p(ou = l|oρ(u) = k, pos(u) = r), (3.97)

where δi,j is the Kronecker delta function (with δi,j = 1 for i = j and δi,j = 0 for i 6= j), ν
(n)
rkl

is a count of how many times the transition from a parent node labelled by k to the r-th child

labelled by l occurs in tree y(n). We proceed to the optimisation of the model by calculating

derivatives of the model log-likelihood with respect to parameter brij . In doing so, we must take

into account the constraint
∑K

j=1 b
h
ij = 1, meaning that the sum of probabilities when transiting

from label i to all other labels j must be equal to 1. Hence, we include the Lagrange multiplier

λ:

∂

bhij
logL(B|D) ∝ ∂

∂bhij

[ N∑

n=1

K∑

k=1

K∑

l=1

R∑

r=1

ν
(n)
rkl log brkl − λ

( K∑

j=1

bhij − 1

)]

∝
N∑

n=1

K∑

k=1

K∑

l=1

R∑

r=1

ν
(n)
rkl

∂

∂bhij
log brkl −

∂

∂bhij
λ

( K∑

j=1

bhij − 1

)

∝
N∑

n=1

ν
(n)
hij

1

bhij
− λ. (3.98)

Set (3.98) to zero and sum over all labels j = 1, . . . ,K:

∂

∂bhij
logL(B|D) = 0,

K∑

j=1

( N∑

n=1

ν
(n)
hij

1

bhij
− λ

)

= 0,

K∑

j=1

( N∑

n=1

ν
(n)
hij − bhijλ

)

= 0,

N∑

n=1

ν
(n)
hi − λ = 0, (3.99)

to obtain λ =
∑N

n=1 ν
(n)
hi . We define ν

(n)
hi as a count of labels ou = i of all nodes u in position
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pos(u) = h in tree y(n). Return to (3.98) and substitute λ:

N∑

n=1

ν
(n)
i =

N∑

n=1

ν
(n)
ij

1

bhij
,

bhij =

∑N
n=1 ν

(n)
hij

∑N
n=1 ν

(n)
hi

. (3.100)

Thus, learning of parameter bhij is performed in a single pass which simply involves counting

labels.

3.4.6 Mixtures of Markov Tree Models

Once more, we note that mixtures of MTMs are formulated in precisely the same fashion as

mixtures of HMMs and Gaussian densities. In section 4.5 we shall elaborate on a constrained

mixture of MTMs.

3.5 Constrained Mixture Models

The generative probabilistic models presented in this chapter are suitable for density modelling.

Moreover, their respective mixtures extend their modelling capabilities to datasets with multiple

clusters. The generative nature of such models allows us to modify them for specialised purposes

in a transparent way. One can place constraints on the model parameters as a way of incorpo-

rating domain specific knowledge or as a way of exploring the dataset under such constraints.

To clarify our discussion we consider an artificial, yet concrete example of a constrained model.
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Fig. 3.4: Noisy, intrinsically one-dimensional dataset.

We wish to model a noisy, intrinsically one-dimensional dataset D ⊇ R
2,D = {t(1), . . . , t(N)}.
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Such a dataset is presented in Fig. 3.4. We employ a mixture of C Gaussian densities, however,

this time we impose that the means of the Gaussians belong to a straight line. Imposing that

all means lie on a line is straightforward; we simply require that for the two-dimensional means

µc ∈ D of each component c, the second coordinate of µc is generated by the line equation:

µc = [xc, (αxc + β)]T , (3.101)

where α and β are the slope and intercept of the line and xc ∈ R. Thus, the two-dimensional

means µc have only one degree of freedom. We define function l(xc) = [xc, (αxc + β)]T . The

model likelihood given the dataset is:

L(Θ|D) =

N∏

n=1

C∑

c=1

P (c)p(t(n)|c). (3.102)

where p(t|c) = N (t; l(xc),Σc) and Θ =

{

α, β, {Σc}c=1...C , {xc}c=1...C

}

are the free parameters

of the model. For ease of exposition we make two simplifications; one is setting a common

variance Σc = Σ and the second is fixing the priors to be equal to each other, P (c) = 1
C .

Following standard EM methodology presented in sections 3.2 and 3.2.1, we maximise in-

stead the (scaled3) expected complete-data log-likelihood that acts as a lower bound to the

log-likelihood of the model:

EZ [logL(Θ|D,Z)|D,Θ(i)] ∝
N∑

n=1

C∑

c=1

p(c|t(n),Θ(i)) log p(t(n)|c). (3.103)

where hidden variables z on the component origin of data items are introduced and posteriors

p(c|t(n),Θ) are calculated in the same way as in section 3.2. We proceed to the M-step by taking

derivatives of (3.103) with respect to the parameters in Θ and set them to zero. For convenience

we define Q(Θ,Θ(i)) = EZ [logL(Θ|D,Z)|D,Θ(i)] (more details on the derivations can be found

3Scaled since the equal and fixed priors P (c) = 1
C

are discarded.
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in appendix A):

∂

∂xc
Q(Θ,Θ(i)) = 0,

∂

∂xc

N∑

n=1

C∑

c′=1

p(c′|t(n),Θ(i)) log p(t(n)|c′) = 0,

N∑

n=1

p(c|t(n),Θ(i))
∂

∂xc
log p(t(n)|c) = 0,

N∑

n=1

p(c|t(n),Θ(i))
∂

∂xc
logN (t(n); l(xc),Σ) = 0,

N∑

n=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)

∂

∂xc
N (t(n); l(xc),Σ) = 0,

N∑

n=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)
N (t(n); l(xc),Σ)

∂

∂xc
(−1

2
(t(n) − l(xc))

T Σ−1(t(n) − l(xc))) = 0,

N∑

n=1

p(c|t(n),Θ(i))(−(t(n) − l(xc)))
T Σ−1 ∂

∂xc
(t(n) − l(xc)) = 0,

N∑

n=1

p(c|t(n),Θ(i))(tn1 − xc) = 0,

xc =

∑N
n=1 p(c|t(n),Θ(i))t

(n)
1

∑N
n=1 p(c|t(n),Θ(i))

. (3.104)

where t
(n)
1 is the first coordinate of t(n) = [t

(n)
1 , t

(n)
2 ]T .

Similarly, we determine α, β and Σ:
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∂

∂α
Q(Θ,Θ(i)) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
∂

∂α
log p(t(n)|c) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
∂

∂α
logN (t(n); l(xc),Σ) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)

∂

∂α
N (t(n); l(xc),Σ) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)
N (t(n); l(xc),Σ)

∂

∂α
(−1

2
(t(n) − l(xc))

TΣ−1(t(n) − l(xc))) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(−(t(n) − l(xc)))
T Σ−1 ∂

∂α
(t(n) − l(xc)) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(t
(n)
2 − αxc − β)xc = 0,

α =

∑N
n=1

∑C
c=1 p(c|t(n),Θ(i))(t

(n)
2 − β)xc

∑N
n=1

∑C
c=1 p(c|t(n),Θ(i))x2

c

. (3.105)

The update equation for parameter β is derived in the same way:

∂

∂β
Q(Θ,Θ(i)) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
∂

∂β
log p(t(n)|c) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
∂

∂β
(t

(n)
2 − αxc − β) = 0,

β =

∑N
n=1

∑C
c=1 p(c|t(n),Θ(i))(t

(n)
2 − αxc)

∑N
n=1

∑C
c=1 p(c|t(n),Θ(i))

(3.106)

As for the common covariance matrix Σ the same update equation (3.39) as for the mixture

of Gaussians is used.

We initialise the model with random parameters from a uniform distribution and set an

initial wide covariance matrix and use scaled conjugate gradients as the optimisation procedure

in the M-step employing gradients (3.104)-(3.106). After a few iterations of the EM algorithm,

the model discovers the clusters as shown in Fig. 3.5. Despite the trivial nature of this example,
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Fig. 3.5: Fitted dataset. The means of the mixture of Gaussians belong to a noisy one-
dimensional line.

it clearly demonstrates how a constraint can be incorporated in the mixture of Gaussians. The

constraint introduced has also a topological aspect; neighbouring means, address neighbouring

Gaussian components which in turn model neighbouring data items. That is, the closer two

Gaussians are, the closer the resemblance of the data items they model.
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Fig. 3.6: Noisy, non-linear, intrinsically one-dimensional dataset.

To further develop this topological aspect induced by the constraint mixture model, we apply

the same idea to a another dataset D ⊇ R
2,D = {t(1), . . . , t(N)}, illustrated in Fig. 3.6. This D

does not belong specifically to a “noisy” straight line, but to a general “noisy” curve. The goal

is to capture its intrinsic dimensionality. One way of going about, is to embed a one-dimensional

line ℓ = {x ∈ [−1,+1]} into the higher-dimensional data space. However, instead of embedding

the entire line we discretise it into C regularly spaced points xc and work only on these (see

Fig. 3.7). Picking regularly-spaced points ensures a uniform representation of the line in the

embedded space, and of course the more points we pick the better the embedding.
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Fig. 3.7: Regularly spaced points xc on line ℓ

The embedding is realised by a non-linear, smooth mapping Γ that maps each xc ∈ ℓ to a

point Γ(xc) in the data space. In order to capture the noisy nature of the data, we add some

independently generated Gaussian noise to projections Γ(xc) which induces Gaussian densities

in the data space of the form N (·; Γ(xc),Σc) of covariance Σc, where projections Γ(xc) act as

means. We also set the covariance matrices to fixed spherical Gaussians, Σc = σ2I. Mapping

Γ is realised as a RBF network Γ(x) = Wφ(x) with W ∈ R
M×C , where M is the number of

basis functions in the RBF network. RBF networks are suitable as they are universal function

approximators ([Park and Sandberg, 1991]). In this model, W contains the free parameters.

The parameters of the model contained in Θ are now a function of W , Θ(W ). However, for

simplicity instead of Θ(W ), we writeW . The likelihood of the constrained mixture of Gaussians

reads:

L(W |D) =

N∏

n=1

C∑

c=1

P (c)p(t(n)|c) =

N∏

n=1

C∑

c=1

P (c)N (t(n); Γ(xc), σ
2), (3.107)

where we use equal, fixed priors P (c) = 1
C that can be discarded.

The free parameters to train are the elements of matrix W . Again by turning the problem

into a hidden variable problem we employ EM and maximise the (scaled) expected complete-data

log-likelihood of the model:

Q(W ,W (i)) =

N∑

n=1

C∑

c=1

p(c|t(n),W (i)) logN (t(n); Γ(xc), σ
2). (3.108)

The derivatives of Q(W ;W (i)) with respect to the elements wij of matrix W are obtained as
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follows:

∂

∂wmj
Q(W ,W (i)) =

∂

∂wmj

N∑

n=1

C∑

c=1

p(c|t(n),W (i)) log[p(c)N (t(n); Γ(xc), σ
2)]

=
N∑

n=1

C∑

c=1

p(c|t(n),W (i))
∂

∂wmj
log[p(c)N (t(n);Wφ(xc), σ

2)]

=

N∑

n=1

C∑

c=1

p(c|t(n),W (i))
∂

∂wmj
(− 1

2σ2
(y(n) −Wφ(xc))

T (y(n) −Wφ(xc)))

=

N∑

n=1

C∑

c=1

p(c|t(n),W (i))
1

σ2
(y(n) −Wφ(xc))

TEmjφ(xc), (3.109)

where Emj is a matrix with all entries equal to zero apart from element m, j that is equal to

unity.
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Fig. 3.8: Fitted dataset: The means of the mixture of Gaussians belong to the one-dimensional
line ℓ in Fig. 3.7.

We set C = 10, initiate training by sampling W from a uniform distribution and employ

gradient descend as our optimisation procedure for the M-step using the gradient in (3.109).

After some iterations, weight matrix W is appropriately adjusted so that the constrained model

adequately models the data (see Fig. 3.8). Mapping Γ maps point xc on ℓ to a mean Γ(xc)

in the data space, so that the Gaussians form a constrained mixture on ℓ that “explains”

the distribution of data. Increasing C improves the embedding of ℓ, however, at a higher

computational cost. Nevertheless, Γ does not map only the points xc on ℓ into the data space; it

actually maps the entire set of points of ℓ into the data space in a continuous way. As we traverse

ℓ from −1 to +1 (Fig. 3.7), each point x ∈ ℓ we visit addresses (via Γ) a Gaussian that explains

a certain subset of data points. Neighbouring points on ℓ, address neighbouring Gaussians and

neighbouring Gaussians explain similar data points. By similarity, we refer to the closeness
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of coordinates of data points, that is the closeness of data points in the data space. Thus, a

one-dimensional topology is induced in the data space; neighbouring points are explained by

Gaussians that are neighbours on ℓ.

This idea of embedding a lower dimensional space to a higher data space via a constrained

mixture, is the fundamental idea of the Generative Topographic Mapping algorithm in [Svensén, 1998,

Bishop et al., 1998, Bishop et al., 1996]. A constraint mixture of Gaussians is formulated with

the purpose of obtaining a low-dimensional projection of the data residing in the higher dimen-

sional space in order to visualise them. For this purpose the dimensionality of the lower space is

set to two (i.e. dimension of computer screen). The algorithm is reviewed in the next chapter.
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Chapter 4

The Generative Topographic

Mapping Algorithm and Extensions

This chapter commences with reviewing the Generative Topographic Mapping (GTM) [Svensén, 1998,

Bishop et al., 1998], the foundation of this work. The GTM is a probabilistic principled approach

to visualising high-dimensional data based on the concept of a constrained mixture introduced

in section 3.5. It constitutes an alternative approach to SOM, addressing some of the limitations

that stem from its heuristic nature [Bishop et al., 1996]. In section 4.2 we present our own con-

tribution in extending the GTM to the visualisation of tree-structured data. This extension, the

GTM-HMTM, relies on the formulation of a constrained mixture of HMTM components. The

GTM-HMTM is tested on three datasets, a toy dataset, a set of artificial images that represent

houses, ships and traffic policemen expressed as trees and a set of real images expressed as

quadtrees. We compare GTM-HMTM with a candidate member of the recursive neural-based

approaches discussed in section 2.3, the SOMSD, and discuss the benefits brought by a proba-

bilistic model-based formulation. Finally in section 4.5 we present another contribution, namely

an alternative extension of GTM for tree-structured data that employs MTMs as local noise

models, the GTM-MTM, accompanied by a set of experiments.

4.1 The Original Generative Topographic Mapping Algorithm

Let us consider a dataset of static d-dimensional vectors D =
{
t(1), t(2) . . . , t(N)

}
that are inde-

pendently distributed. We model the density of D with a mixture of C spherical Gaussians:

p(D) =

N∏

n=1

M∑

c=1

P (c)p(t(n)|c) =

N∏

n=1

M∑

c=1

P (c)N (t(n);µc, σc), (4.1)
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Fig. 4.1: Mapping from latent points to the means of Gaussian densities in the data space.
Adapted from [Bishop et al., 1998]

where P (c) are the mixing coefficients with 0 ≤ P (c) ≤ 1 and
∑C

c=1 P (c) = 1, µc the means of

the Gaussians and σ2
c the variances. For brevity of presentation we shall assume that P (c) = 1

C

and that the variance σ2
c = σ2 is fixed. This model is the standard mixture model presented in

section 3.1.2. It is an unconstrained model in the sense that its parameters, the means, do not

adhere to any constraints and can move freely. This model which is useful for density modelling

can be further extended to capture topographic organisation of vectorial data.

Topographic organisation can be introduced by requiring that the means of the mixture

model reside on an image, under a smooth map Γ, of a continuous Euclidean latent space

V = [−1,+1]q of dimension q < d (q = 2 for the purposes of visualisation). The non-linear

smooth mapping Γ : V → R
d takes the form [Bishop et al., 1998]:

Γ(x) = Wφ(x), (4.2)

which can be viewed as a RBF network with M radial-basis functions φ(·) = [φ1(·) . . . φM (·)]T

and weight matrix W ∈ R
D×M . Matrix W contains the free parameters of the model and

plays the same role as the parameter vector Θ of mixture models, that was used throughout

chapter 3. Function Γ maps each latent point x ∈ V to a mean µ of the model in a non-linear

manner. Since Γ is smooth, the projected points will retain their local neighbourhood in the

higher dimensional data space R
d. Thus, neighbouring points in V will be projected to similar

means in R
d. Mapping Γ is illustrated in Fig. 4.1. We can now formulate GTM as a mixture of

64



Gaussians constrained on Γ-images of latent points x ∈ V. The likelihood function reads:

L(W |D) = p(D|W ) =

N∏

n=1

∫

x∈V
P (x)p(t(n)|x,W )dx, (4.3)

For tractability reasons we discretize the space V by a rectangular grid of points xc, c =

1, . . . , C. This is achieved by imposing a prior distribution on the latent space:

P (x) =
1

C

C∑

c=1

δ(xc − x), (4.4)

where δ(x) denotes the Dirac delta function, which is δ(x) = 0 for x 6= 0 and δ(x) = ∞ for

x = 0. Discarding the equal priors P (c) = 1
C and using (4.4), the integral in (4.3) transforms to

a sum, and we rewrite the (scaled1) likelihood function as:

L(W |D) ∝ p(D|W ) ∝
N∏

n=1

C∑

c=1

p(t(n)|xc,W ) ∝
N∏

n=1

C∑

c=1

N (t(n);Wφ(xc), σ)

∝
N∏

n=1

C∑

c=1

N (t(n);µc, σ). (4.5)

We seek to optimise the model likelihood L(W |D) by adjusting parameter matrix W . Train-

ing the GTM proceeds by maximising the model likelihood L via the Expectation-Maximisation

(EM) algorithm [Bishop et al., 1998] that we reviewed in section 3.2. To that end, we postulate

the following hidden indicator variables on the component origin of the data items:

z(n)
c =







1, if for t(n) was generated by component c;

0, otherwise.

Using these variables we write the (scaled) complete-data likelihood and take the logarithm

as follows:

L(W |D,Z) ∝
N∏

n=1

C∏

c=1

N (t(n);µc, σ)z
(n)
c , (4.6)

logL(W |D,Z) ∝
N∑

n=1

C∑

c=1

z(n)
c logN (t(n);µc, σ). (4.7)

In the E-step, at the i-th iteration, the hidden indicator variables z are estimated by their

1Scaled since the equal and fixed priors P (c) = 1
C

are discarded.
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expectation given the data and the current parameters W (i):

E[z(n)
c |D,W (i)] = p(xc|t(n),W (i)) =

p(t(n)|xc,W
(i))

∑C
c′=1 p(t

(n)|xc′ ,W
(i))

=
N (t(n);µc, σ)

∑C
c′=1N (t(n);µc′ , σ)

.

(4.8)

We are now ready to write the (scaled) expected complete-data log-likelihood:

EZ [logL(W |D,Z)|D,W (i)] ∝
N∑

n=1

C∑

c=1

p(xc|t(n),W (i)) logN (t(n);µc, σ). (4.9)

We now take derivatives of (4.9) with respect to the elements of matrix W . However in

[Bishop et al., 1998] a more elegant approach is taken by first rewriting (4.9) using (4.2) and

maximising it by setting its derivatives to zero:

N∑

n=1

C∑

c=1

p(xc|t(n),W (i))(Wφ(xc)− t(n))φT (xc) = 0. (4.10)

and then expressing it in matrix form:

ΦTGΦW = ΦTRT , (4.11)

where

• Φ is a C ×M matrix with element (i, c) equal to φi(xc),

• T is a N ×D matrix with element (n, k) equal to t
(n)
k ,

• R is a C ×N matrix with element (c, n) equal to p(xc|t(n),W (i)),

• G is a C × C diagonal matrix with element (c, c) equal to
∑N

n=1 p(xc|t(n),W (i)).

Matrix W may now be adjusted using matrix inversion techniques. Having trained the

model, it can be used for visualising the data. To that end, we note that the probability of

observing a data point t(n) given a latent point x is:

p(t(n)|x,W ) = N (t(n);µx, σ). (4.12)

We can reverse this probability, using Bayes’ theorem, to obtain the posterior probability of
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the latent point x given t(n):

p(xc|t(n),W ) =
p(t(n)|x,W )P (x)

P (t(n))
=

p(t(n)|x,W )P (x)
∑C

c′=1 p(t
(n)|xc′ ,W )P (xc′)

=
p(t(n)|x,W )

∑C
c′=1 p(t

(n)|xc′ ,W )
=

N (t(n);µx, σ)
∑C

c′=1N (t(n);µc′ , σ)
. (4.13)

We represent each data point t(n) with a point proj(t(n)) in the latent space given by the

expectation of the posterior distribution over all latent points xc:

proj(t(n)) =

C∑

c=1

p(xc|t(n),W )xc. (4.14)

4.2 Hidden Markov Tree Models as Noise Models for GTM

4.2.1 Model Formulation

This section presents an extension of GTM from vectorial to tree structured data, the GTM-

HMTM. Analogously to GTM, we want to construct a grid of latent points x in a latent space

V. Each latent point x is mapped to an HMTM via a smooth non-linear mapping Γ. Since

the neighbourhood of Γ-images of x is preserved, the resulting HMTMs will be topographically

organised. Here the observations are no longer fixed-length vectors t, but trees y as described

in section 3.4.1. For each latent point x ∈ V we calculate the likelihood p(y|x). Each data item

y is subsequently mapped to the location of the map where the p(y|x) of the local latent points

x is expected to be high.

We commence the formulation of the model in the spirit of [Bishop et al., 1998] and define

the latent space to be V = [−1,+1]2. The non-linear mapping Γ is realised by an RBF network

as considered previously in GTM:

Γ(x) = Wφ(x).

In this setting, however, mapping Γ maps each point x ∈ V to a set of HMTM parameters

{π(x),B(x),ψ(x)} (see section 3.4.1) of the same form, i.e. all HMTMs have the same number

of states, all have discrete emissions with the same number of symbols or all are continuous with

emissions of the same dimensionality (here we shall work with continuous emissions). Assuming

K number of states, emissions of dimension d that are modelled by a single Gaussian, we need:

K parameters for π(x), K × K parameters for B(x) and d ×K parameters for the means in

ψ(x). This is a total of K(1+K+d) number of parameters (note that we have not accounted for

the parameters of a covariance matrix, we will elaborate on this point later). In order to obtain
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the HMTM parameters, we require W to be a K(1+K+d)×M matrix, where M is the number

of radial basis function in φ(·) as defined in section 4.1. Thus, the product Wφ(x) produces a

K(1 + K + d) × 1 vector that summarises all HMTM parameters. However, an equivalent and

more convenient formulation is to define three separate matrices for initial, transition and mean

parameters. Each such matrix produces a vector of parameters. Thus, we define:

• One K ×M matrix W (π) for the initial probabilities π(x).

• One K × K matrix W (Bk) for each state k = 1, . . . ,K, for the transition probabilities

B(x). Each matrix W (Bk) generates a vector of probabilities for transits from state k to

the other K states. When these K column vectors are put in a matrix they form transition

matrix B(x).

• One d×K matrix W (ψk) for each state k = 1, . . . ,K, for the means in ψ(x). Each matrix

W (ψk) produces the means corresponding to state k.

The above matrices produce the HMTM parameters by the following RBF mappings:

π(x) = {p(q1 = k|xc)}k=1,...,K = W (π)φ(x), (4.15)

B(x) = {p(qt = l|qt−1 = k,xc)}k,l=1,...,K = {W (Bk)φ(x)}k=1,...,K , (4.16)

ψ(x) = {µk}k=1...K = {W (ψk)φ(x)}k=1,...,K . (4.17)

We must pay attention to the fact that outputs of the above RBF mappings are unbounded

which can result to invalid initial and transition parameters, since these parameters are prob-

abilities inherently restricted to the range [0, 1]. Moreover, the sum of transition probabilities

from a state k to all other K states must equal 1. Therefore, the particular mappings are not

appropriate and are treated with softmax function g:

π(x) = {gk(W (π)φ(x))}k=1,...,K , (4.18)

B(x) = {gl(W
(Bk)φ(x))}k,l=1,...K , (4.19)

where the softmax function is defined as gk((α1, α2, · · · , αq)T ) = exp(αk)
∑q

i=1 exp(αi)
and restricts the

outputs in the interval [0, 1]. Thus, we obtain the three mappings of (4.17), (4.18) and (4.19)

for the emission, initial and transition probabilities respectively, that are equivalent to a single

mapping Γ like the one encountered in section 4.1 for the GTM.

We assume a dataset of given trees D = {y(1),y(2), ...,y(N)} that are independently gener-

ated. Matrices W (π), {W (Bk)}k=1,...,K, {W (ψ)}k=1,...,K are summarised by block matrix W .
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Fig. 4.2: Mapping Γ from latent space V to the two-dimensional manifold M of HMTMs.

The HMTMs addressed by the latent points x ∈ V compose a constrained mixture of HMTMs:

L(W|D) = p(D|W) =

N∏

n=1

p(y(n)|W) =

N∏

n=1

∫

x∈V
P (x)p(y(n)|x,W)dx. (4.20)

For tractability reasons we discretize latent space V into a rectangular grid of points xc, c =

1, . . . , C. This effectively imposes a prior distribution of “impulses” δ on the latent space at

points xc:

P (x) =
1

C

C∑

c=1

δ(xc − x), (4.21)

Taking into account (4.21), the likelihood in (4.20) now reads:

L(W |D) =

N∏

n=1

C∑

c=1

p(y(n)|xc,W)P (xc), (4.22)

logL(W |D) ∝
N∑

n=1

log
C∑

c=1

p(y(n)|xc,W), (4.23)

where the mixing coefficients can be ignored as P (x) = 1
C . Finally, we expand the noise models

p(y(n)|xc,W) in (4.23) using (3.75). The (scaled) log-likelihood reads:

logL(W |D) ∝
N∑

n=1

log
C∑

c=1

∑

q∈{1,2,...,K}Un

p(q1|xc,W)

Un∏

u=2

p(qu|qρ(u),xc,W)

×
Un∏

u=1

P (o(n)
u |qu,xc,W). (4.24)
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The formulation of the constrained model is summarised pictorially in Fig. 4.2. We want

each point x in latent space V to address an HMTM. A smooth mapping Γ is formulated as a

RBF network, that takes each point x to a point Γ(x). Point Γ(x) is a set of HMTM parameters

and as such it addresses an HMTM. Space H is the set of all possible HMTM parameters that

address all possible HMTMs of the same form as that imposed by (4.17),(4.18) and (4.19).

However, points Γ(x) are constrained to a two-dimensional manifold M that is a subspace of

H. Thus, latent space V is embedded into space H as the constrained two-dimensional manifold

M, induced via the RBF mappings. Training can be visualised as the folding and stretching of

manifold M in response to the adjustment of parameters in W in order to explain/model the

data as well as possible. The quality of the fitting to the data is quantified by (4.23).

4.2.2 Model Training

The GTM-HMTM can be trained using the EM algorithm as previously considered in the setting

of mixture models in sections 3.2.1 and 3.3.3, and in the setting of a single HMTM in section

3.4.2. Regarding the GTM-HMTM extension, the E-step stays essentially the same as in section

3.4.2, while the M-step changes because of the different parametrisation used (parameters in

this setting are produced by the constrained RBF mapping).

Since the EM terrain is by now familiar, we move swiftly with the introduction of hidden

variables z ∈ Z:

z(n)
c =







1, if tree y(n) was generated by model c;

0, otherwise.

z
(n,u)
c,k =







1, given tree y(n) was generated by model c,

node u was in state k;

0, otherwise.

z
(n,u)
c,k→l =







1, given tree y(n) was generated by model c,

node u was in state l and its parent

in state k;

0, otherwise.
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Taking into account Z and using (4.23), we write the (scaled) complete-data log-likelihood:

logL(W |D) ∝
N∑

n=1

C∑

c=1

z(n)
c

[

z
(n,1)
c,k

K∑

k=1

log p(q1 = k|xc,W)

+

Un∑

u=2

K∑

k=1

K∑

l=1

z
(n,u)
c,k→l log p(qu = l|qρ(u) = k,xc,W)

+
Un∑

u=1

K∑

k=1

z
(n,u)
c,k log p(o(n)

u |qu = k,xc,W)

]

. (4.25)

The expectations of the hidden variables at iteration i, given dataset D and current weights

W
(i), are calculated as follows:

E[z(n)
c |D,W(i)] = p(xc|y(n),W(i)), (4.26)

E[z
(n,u)
c,k |D,W(i)] = p(qu = k|y(n),xc,W

(i)), (4.27)

E[z
(n,u)
c,k→l|D,W(i)] = p(qu = l, qρ(u) = k|y(n),xc,W

(i)). (4.28)

These expectations allow us to calculate at iteration i the (scaled) expected complete-data

log-likelihood:

EZ [logL(W |D,Z)|D,W (i)] ∝
N∑

n=1

C∑

c=1

p(xc|y(n),W (i))

×
[ K∑

k=1

p(q1 = k|y(n),xc,W
(i)) log p(q1 = k|xc,W)

+

Un∑

u=2

K∑

k=1

K∑

l=1

p(qu = l, qρ(u) = k|y(n),xc,W
(i))

× log p(qu = l|qρ(u) = k,xc,W)

+

Un∑

u=1

K∑

k=1

p(qu = k|y(n),xc,W
(i)) log p(o(n)

u |qu = k,xc,W)

]

.

(4.29)

In the M-step, the derivatives of the expected log-likelihood are calculated with respect to

the parameters of the model:

∂EZ [logL(W|D,Z)|D,W (i)]

∂W (π)
,
∂EZ [logL(W |D,Z)|D,W (i)]

∂W (Bk)
,
∂EZ [logL(W |D,Z)|D,W (i)]

∂W (ψk)
.

Optimum values for the parameters in W are calculated by setting the above derivatives to
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zero. This results in the following update equations:

Element wj,m in matrix W (π):

∂EZ [logL(W |D,Z)|D,W (i)]

∂wj,m
=

N∑

n=1

C∑

c=1

φm(xc)p(xc|y(n),W(i))

×
(

p(q1 = j|y(n),xc,W
(i))− p(q1 = j|xc,W)

)

, (4.30)

Element w
(r)
j,m in matrix W (Br):

∂EZ [logL(W |D,Z)|D,W (i)]

∂w
(r)
j,m

=

N∑

n=1

C∑

c=1

φm(xc)p(xc|y(n),W (i))

×
Un∑

u=2

(

p(qu = j, qρ(u) = r|y(n),xc,W
(i))

− p(qu = j|qρ(u) = r,xc,W)p(qρ(u) = r|y(n),xc,W
(i))

)

,

(4.31)

Element w
(r)
j,m in matrix W (ψr):

∂EZ [logL(W |D,Z)|D,W (i)]

∂w
(r)
j,m

=

N∑

n=1

C∑

c=1

φm(xc)p(xc|y(n),W(i))

Un∑

u=1

p(qu = r|y(n),xc,W
(i))ekΣ

−1(o(n)
u −W (ψr)φ(xc)).

(4.32)

where ek is defined as the row unit-vector which has all elements equal to zero apart from entry

k equal to 1, Σk, k = 1, 2, ...,K are the covariance matrices of the state-conditional Gaussian

emissions. Detailed derivations are found in Appendix B.

After training the model, we can represent each data item y(n) with a point proj(y(n)) in

the latent space given by the expectation of the posterior distribution over all latent points xc:

proj(y(n)) =

C∑

c=1

p(xc|y(n),W)xc. (4.33)
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Regarding the covariance of the emission distribution, we noticed that higher quality models

were obtained when instead of direct modelling of the covariance through the map Γ, the co-

variance was calculated in the fashion of [Bishop et al., 1998], at the end of each M-step using

standard update equations:

Σ
(c)
k,hj =

∑N
n=1 p(xc|y(n),W(i))

∑Un

u=1 p(qu = k|y(n),xc,W
(i))(o

(n)
u,h − µ

(c)
k,h)(o

(n)
u,j − µ

(c)
k,j)

∑N
n=1 p(xc|y(n),W(i))

∑Un

u=1 p(qu = k|y(n),xc,W
(i))

, (4.34)

where i, j = 1, 2, ..., d index the elements of the mean and label vectors µ and o respectively,

as well as the elements of the covariance matrix Σ. The problem with directly modelling covari-

ance seems to be the same one also encountered in mixtures of Gaussians. Once (co)variances of

a component become small, overfitting may occur as the component may concentrate on mod-

elling only a few (perhaps even one) data points. It is very difficult to alleviate this pathological

situation, especially in the absence (which is the case here) of an initialisation procedure, which

forces us to initialise parameters, including covariance, randomly.

After the training, to smooth the covariance structure of local HMTMs addressed by the

latent points, we recalculated the covariance matrices using the following scheme: Covariance

matrix Σk(x) of the HMTM addressed by x is expressed as a convex combination of the corre-

sponding covariance matrices2 Σ
(c)
k of HMTMs addressed by latent centres xc, c = 1, 2, . . . , C:

Σk(x) =
C∑

c=1

νc(x)Σ
(c)
k , (4.35)

where

νc =
exp(−β‖x − xc‖)

∑C
c′=1 exp(−β‖x − xc′‖)

, (4.36)

and ‖ ·‖ denotes the Euclidean norm on V. The parameter β > 0 quantifies to what degree local

neighbourhoods of x are considered.

Here we have set β = 10, but we have found that the visualisation plots were similar for a

wide range of β values. In practice, compared to the obvious choice of directly parameterising

the covariance matrices through a smooth mapping from the latent space, we found that this

scheme leads to superior models (viewed as density estimators and evaluated on a hold out set)

and hence better visualisation plots.

2Note that a convex combination of symmetric positive definite matrices is again a symmetric positive definite
matrix.
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Table 4.1: Parameters of HMTMs for creating the toy dataset. Variance was fixed to σ2 = 1.

Class Initial prob Transition prob Means of emissions

HMTM 1 0.7 0.3
0.9 0.1

0.1 0.9

(

−1.0

1.0

) (

4.0

2.0

)

HMTM 2 0.7 0.3
0.9 0.1

0.1 0.9

(

−2.0

3.0

) (

6.0

0.0

)

HMTM 3 0.7 0.3
0.1 0.9

0.9 0.1

(

−1.0

1.0

) (

4.0

2.0

)

HMTM 4 0.7 0.3
0.1 0.9

0.9 0.1

(

−2.0

3.0

) (

6.0

0.0

)
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Fig. 4.3: Labels of toy (a) and TPB (b) dataset. Each marker style indicates class membership
of the tree to which each label belongs.

4.3 Experimental Results for GTM-HMTM

4.3.1 Datasets

We have used three datasets in our experiments. The first dataset is an artificial toy dataset

produced by sampling from 4 HMTMs with 2 hidden states with two-dimensional Gaussian

emissions of fixed spherical variance, each corresponding to one artificial class. The dataset was

populated 320 data items by generating 80 samples for each class. All patterns have the topology

of a binary tree with 15 nodes. The parameters of the models were set in such a way as to ensure

that it would be impossible to distinguish the classes from the observations alone, without taking
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Table 4.2: Classes in TPB dataset.

Class Symbol Description

A © Policemen with the lowered left arm

B x Policemen with the raised left arm

C * Ships with two masts

D • Ships with three masts

E △ Houses with one upper right window

F ▽ Houses with upper left and lower left window

G ⊳ Houses with two upper windows

H ⊲ Houses with lower left and upper right window

I ⋆ Houses with three windows

J � Houses with one lower left window

K + Houses with no windows

L ♦ Houses with one upper left window

into account the underlying tree structure. A plot of two-dimensional observations of all the

nodes for all trees is presented in Fig. 4.3(a). The parameters of the HMTMs are summarised

in table 4.1.

The second dataset consists of benchmark images produced by the Traffic Policeman Bench-

mark (TPB) software [Hagenbuchner and Tsoi, 1999]. The same software was used to pro-

duce a dataset to demonstrate the functionality of SOM for Structured Data (SOMSD) in

[Hagenbuchner et al., 2003]. This software provides an artificial domain for evaluating learning

algorithms that process structured patterns. It produces images that resemble traffic policemen,

houses and ships of different shape, size and colour that are products of a rule based grammar.

Three sample images of each type are illustrated in Fig. 4.5. Connected components in each im-

age have a parent-child relationship, the object located lower and closer to the left edge being the

parent (i.e. the images must be interpreted bottom-up, left to right). In Fig. 4.5(d), 4.5(e) and

4.5(f) tree representations of the sample images corresponding to Fig. 4.5(a), 4.5(b) and 4.5(c)

are displayed. TPB produces general acyclic graph structures, but we restricted it to generate

only images expressed as trees. Each node in each tree is labelled with a two-dimensional vector.

This two-dimensional vector is a pair of coordinates for the centre of gravity of the component

that node stands for. The dataset defines 12 classes that are presented in table 4.2. For each

class 50 samples were generated resulting to a dataset of 600 samples. Also, a validation set of

84 tree data items was produced by generating 7 samples for each class. Fig. 4.3(b) is a plot of

the labels of trees in the dataset. This illustrates what the observed data look like if the tree
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Fig. 4.4: Example of an image represented as a quadtree. Numbers show the association between
quadrants in the image and nodes in the quadtree.

structure is ignored.

The third dataset consists of images interpreted as quadtrees. A quadtree is a data structure

used amongst other things for storage of images [Samet, 1990]. It is a 4-regular tree y, i.e. each

parent node u has exactly 4 children vr ∈ ch(u), r = 1, . . . , 4 (apart from the leaf nodes). An

example of a quadtree is displayed in Fig. 4.4. A quadtree y stores an image in a recursive

manner; the root note, node u1, represents the entire image. At the first level of the recursion,

the image is partitioned into four equal square quadrants. At the first level of quadtree y, each

node v ∈ ch(u1) represents a quadrant, and is labelled by a scalar that expresses the mean

colour intensity of the quadrant. At the next level of the recursion, each quadrant is partitioned

further into four quadrants and their mean colour intensities are stored as labels in the nodes

at the second level of quadtree y. Partitioning continues in this fashion either until a quadrant

becomes a single pixel, or when a certain criterion is met. Such a criterion can be a function

of the relative change in mean colour intensity between a node u and its parent ρ(u). We note

that quadtrees can represent only images of a dimension that is a power of 2 since images are

progressively divided into smaller square regions. Other images must be padded with extra

pixels or resized in order to become of appropriate dimension.

The images used here are taken from the Amsterdam Library of Object Images (ALOI)

database [Geusebroek et al., 2005]. We selected 72 images of a single object, a rubber duck,

photographed from different viewing angles. The dataset was divided into a training and valida-

tion set of 48 and 24 images respectively. The images were created in [Geusebroek et al., 2005]

by successively rotating the object by an angle of 5◦ degrees and photographing it from each

angle of rotation. The images are colour images of dimension 192 × 144 (pixels). We converted

the images into grayscale and resized them into square images of dimensions 64 × 64. The

number of grayscale levels was then further reduced to 4 levels, which still allows enough detail

to be discerned relative to the original images. The values of the 4 quantisation levels were

determined by first collecting the grayscale intensities of all pixels from all images and then
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Fig. 4.5: Sample images from TPB in (a), (b), (c) and their corresponding tree representations
in (d), (e), (f).

using the k-means algorithm to select 4 centres in the space of pixel intensities.

All three datasets were normalised in each dimension to zero mean and unit standard devi-

ation.

4.3.2 Training

The lattice was a 10x10 regular grid (i.e. C = 100) and the RBF network consisted of M = 17

basis functions; 16 of them were Gaussian radial basis functions of variance σ2 = 1 centred on a

4x4 regular grid and one was a constant function φ17(xc) = 1 intended to serve as a bias term

(analogous to the bias in neural networks).

The state-conditional emission probability distributions were modelled as two-dimensional

spherical Gaussians. During training the emission covariance was updated according to (4.34).

Parameters were initialised randomly with uniform distribution in [−1, 1].

We employed scaled conjugate gradient for optimising the cost function (4.29). The gradient

was calculated using (4.30), (4.31) and (4.32).

In [Durand et al., 2004] it is mentioned that the complexity of the upward-downward recur-

sion for processing a single tree y is O(UyK
2). In the GTM-HMTM the recursion must be

repeated N times for each tree y ∈ D and C times for each latent point xc ∈ V, c = 1 . . . C.
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(a) (b)

Fig. 4.6: Visualisation of toy (a) and TPB (b) dataset using GTM-HMTM.

Hence, the complexity of the E-step is estimated as O(NCŪK2) where Ū is the average number

of nodes of a tree in D. The complexity of the M-step is that of the scaled conjugate optimisation

which is calculated as O(2W 2) in [Moller, 1993], W being the number of free parameters to be

optimised. The number of free parameters in GTM-HMTM is W = MK(K + d + 1) which is

the number of elements on matrix W .

In practice, training times for learning a topographic map for each dataset were in hours 2

for the toy dataset, 18 for TPB and 15 for the quadtrees when run on a machine equipped with

an Athlon XP 3000+ CPU and 512MB of memory. Algorithms were implemented in MATLAB

(version 7.3) and were partially vectorised.

4.3.3 Results and Discussion

In Fig. 4.6(a) we see topographic organisation achieved by the GTM-HMTM of the toy dataset

for K = 2. The covariance of the emission distribution was initially set to Σk = 2I for both states

k = 1, 2 where I stands for the identity matrix. We also tried initialising it with Σk = 2I, 3I, 5I

with similar success. Each point on the plot represents an input pattern (tree) and four different

markers correspond to the four generative classes used to construct the data set. Training is

completely unsupervised and class markers are used only after the training when plotting the

projections. A clear topographic organisation of classes has been achieved - there is an evident

trend of patterns of the same class to belong to the same cluster.

Fig. 4.6(b) shows the visualisation of the traffic policeman benchmark (TPB) data set pro-
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duced by GTM-HMTM with K = 2. The initial covariance matrix for the emission distribution

was set to Σk = 2I for both states k = 1, 2. We also tried initialising the covariance matrix with

Σk = 1I, 3I which yielded similar results and Σk = 0.5I which failed to achieve the same level of

topographic organisation. Moreover, we attempted training for K = 3, 4, but with suboptimal

results. One problem that makes training difficult is that as the number of states (and conse-

quently the number of free parameters of the model) increases, it becomes more vital for an EM

trained model to use a good initialisation strategy for the weights. In GTM the initial weights

are determined by the linear projection space obtained through principal component analysis

[Bishop et al., 1998]. In our case we do not have such a luxury. One way of dealing (at least

to certain degree) with the initialisation problem would be to abandon the EM framework and

adopt a more stable parameter fitting strategy (e.g. Bayesian).

In Fig. 4.6(b), next to each cluster a representative image is displayed. The model has clearly

achieved a level of topographic organisation. It is interesting to note the emerging sub-clusters.

Class × has been split into two sub-clusters, one with policemen with the right arm lowered and

one with the right arm raised. The same has happened for class © which has been divided into

policemen with the right arm lowered and policemen with the arm raised. The sub-clusters of

ships are also interesting as not only has class ∗ been divided into three sub-clusters, but the

sub-clusters that surround class • possibly indicate how the classes are related. Thus, class •
seems to act as a “link” between the three discovered sub-clusters; class • represents ships with

three masts, while the three sub-clusters around class ∗ are composed of ships with either the

two masts, with either the left, centre or right mast missing. Nevertheless, the model has not

been successful in the visualisation of the classes representing houses. No clusters have been

formed as all classes have been merged into one big cluster representing a super-class of all

the images of houses. One possible explanation for this inability of discriminating between the

classes of houses, is the shallow tree representation of houses; typically they are shorter than

ships and traffic-policemen structures.

In Fig. 4.7 the underlying state transitions are visualised. The plot is organised as a grid of

K×K = 2×2 state transition matrices p(qu = l|qρ(u) = k), each transition matrix corresponding

to an underlying local noise model (HMTM). Topographic organisation of local noise models

with respect to their transition structure is evident in Fig. 4.7 as state transitions vary smoothly

with their “latent space addresses”. In Fig. 4.7 we see that state 1 acts as a “trap” state for the

entire plot, that is if the model visits state 1, it is extremely unlikely for it to ever visit state 2.

Regarding transitions from state 2 we observe a more interesting behaviour. A strong tendency

for self-loops in state 2 is observed at the upper-left and bottom-left corner of Fig. 4.7. However,
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Fig. 4.7: TPB task: grid of 2× 2-state transition matrices corresponding to the local HMTMs
underlying the visualisation plot.

this behaviour gradually changes as we move towards the centre of the map; transitions to state

2 progressively lose their strength benefiting transitions to state 1. Around the centre of the

map transitions to state 1 narrowly dominate transitions to state 2. Moving further towards the

upper right part of the plot, transitions to state 1 and 2 become almost equally likely. Moving

from the centre towards the bottom-right corner, transitions to state 2 regain their power, albeit

not to the same strength as in the upper-left and bottom-left corner of the plot.

The respective plot for the initial probabilities is not presented, as a particularly simple

structure has emerged as a result of the GTM-HMTM training; the initial probability vector of

all models is practically equal to π ≈ [0, 1]T . Thus, effectively all models pick the second state

as their starting state, q1 = 2.

In Fig. 4.8 the underlying means of the emissions are visualised. This plot is organised as a

grid of subplots. Each subplot presents the space of emissions R
d, where labels ou reside, in which

the means for states k = 1 and k = 2 marked with circles and crosses respectively. Evidently,

the means of the emissions are topographically organised as well as the state transitions, as the

positions of means change gradually as we move in the plot. We note that images in the TPB

dataset are interpreted bottom-up (see Fig. 4.5), and that x-coordinates of the labels decrease
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Fig. 4.8: TPB task: means of emissions for states k = 1, 2 corresponding to the local HMTMs.
Means corresponding to states 1 and 2 are marked with circles and crosses respectively.

leftwards while y-coordinates decrease upwards. Thus, components located at the lower part

of the TPB images have higher y-coordinates than components located closer to the top of the

TPB images. We observe that since state 2 is effectively the starting state for all models (since

π ≈ [0, 1]T ) and since images are interpreted bottom-up, the mean for state 2 naturally has a

greater y-coordinate than the mean for state 1 in the entire plot. We also observe the following

three general behaviours in the plot. The means close to the upper-left corner of the plot lie far

apart in the x-axis, while being close in the y-axis. This behaviour progressively changes as we

move towards the upper-right corner of the plot, where the means have similar x-coordinates

but are distant in the y-axis. Moving towards the bottom-centre and bottom-right regions of

the plot we notice that the means approach each other. This behaviour reflects the nature of
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the data points (trees) mapped in these particular regions of the latent space. In particular, the

ship-classes reserve the left part of the visualisation plot in Fig. 4.6(b). As it can be seen in Fig.

4.5, ships are generally “wide” and “short” structures. Policemen are concentrated at the right

upper part of Fig. 4.6(b), and are generally “narrow” and “thin”(see Fig. 4.5), while houses are

clustered densely at the bottom-centre of Fig. 4.6(b) and appear to be relatively “compact” (see

Fig. 4.5). In order to confirm these observations, we measured the variance for the three classes

of ships, policeman and houses. We found that the variance was 1.83, 0.69, 0.14 in the x-axis

and 0.58, 1.53, 0.42 in the y-axis for the three classes respectively.

Inspecting Fig. 4.7 in conjunction with Fig. 4.8 we make the following observations. In

general, the mean for state 1 concentrates more on modelling the labels of lower y-coordinates,

while the mean for state 2 seems to concentrate more on the labels of higher y-coordinates. The

classes of ships reserve the area that corresponds to the left area in Fig. 4.7 of self-loops for state

2, thus favouring the projection of “short” classes3. Furthermore, the upper right area of the

latent space, in Fig. 4.6(b), is reserved for the policemen classes, which are “tall” structures. As

noted, this corresponding area in the state-transition plot of Fig. 4.7 is where transitions from

state 2 to states 1 and 2 become almost equally likely, thus favouring such “tall” structures.

Of course, if transitions from state 2 to state 1 were further strengthened at the expense of

transitions from state 2 to itself, the projection of the policemen classes to the corresponding

area would be favoured even further. This particular area in Fig. 4.7 is the most favourable

for the projection of the policeman classes with respect to other regions of the latent space.

Finally, the respective area of the house classes in Fig. 4.7 corresponds to the area where a

strong tendency for self-loops for state 2 occurs, that favours the mapping of “short” structures.

Clearly, despite of the similarity in the state-transition probabilities in the respective areas of

the ship and house classes, the two classes are projected in well separated areas due to the

different underlying structure of the means. The model-based nature of the visualisation plots

brings a transparency of GTM-HMTM in analysing and understanding of how the data items

are organised in the visualisation plot in Fig. 4.6(b).

We also trained GTM-HMTM on the dataset of quadtrees. We set K = 3 and the variance

of the one-dimensional emissions equal to 1.0. However during training, GTM-HMTM displayed

numerical problems that prevented us from using the dataset at the 64× 64 resolution that we

specified earlier. Thus, we reduced the images from 64 × 64 to 16 × 16 pixels. The results

for GTM-HMTM on the quadtree dataset are displayed in Fig. 4.9. Unfortunately, although a

certain level of topographic organisation is evident, the model does not seem to be particularly

3recall that the values of y-coordinate in TPB data increase in a top-down direction.
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Fig. 4.9: Visualisation of reduced resolution quadtree dataset (16 × 16) for GTM-HMTM.
Images are plotted as transparent to allow visibility of overlapping ones.

successful at this task. We also trained GTM-HMTM setting K = 2, 4 in combination with

different values for the initial variance such as 0.1, 0.5, 0.8 with less success. We note certain

trends such as the presence of images at the bottom of the plot of ducks facing to the right, while

at the centre-left we come across images facing to the left. The top right is dominated to images

of frontal views. Finally, close to the centre and slightly to the left, we note an overlapping of

images of different orientations that have not been successfully organised on the map.

Further insight regarding the topographic organisation for the quadtree dataset can be gained

by observing the plots for the state transitions in Fig. 4.10 and the means of the emissions in Fig.

4.11. The state transitions are very similar across the entire plot and only subtle variations are

noticeable. All three plots for the means exhibit a very similar structure, with abrupt changes

close to the centre of the respective plots. These observations suggest that the underlying local

models are very similar in terms of transition probabilities, and that it is the means that mostly

drive the topographical organisation. The abrupt changes noted in the plots of the means, seem

to be related to the overlapping of images of different orientations, noted at about the same

location in Fig. 4.9 (close to the centre of the plot).
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Fig. 4.10: Quadtree task: grid of 3 × 3-state transition matrices corresponding to the local
HMTMs underlying the visualisation plot.

(a) (b) (c)

Fig. 4.11: Quadtree task: means of emissions of GTM-HMTM for quadtree dataset. Each plot
corresponds to a state. The plots are coloured as heat maps with the rank of colours ranging
from white to yellow to red to black corresponding from higher to lower values.

As a comparison we also present the results obtained by using SOMSD on the three datasets.

We tried numerous parameter settings for SOMSD all with rectangular lattices, Gaussian neigh-

bourhood functions, 600 training iterations and picked the best results for the toy and TPB

datasets where class information is provided, according to the criterion described below. For the

toy dataset we found that the best parameters were a lattice of dimensions 28 × 28, a learning
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(a) (b)

Fig. 4.12: Visualisation of toy (a) and TPB (b) dataset using SOMSD.

Fig. 4.13: Visualisation of reduced resolution quadtree dataset (8× 8) for SOMSD.

rate of 0.5, an initial radius of 5 and weighting coefficients of µ1 = 0.99 and µ2 = 0.01. For the

TPB dataset we chose a network of dimensions 114× 87, a learning rate of 1.5, an initial radius

of 60 and weighting coefficients of µ1 = 0.01 and µ2 = 0.99. Finally for the quadtree dataset,
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the parameters were a network of dimensions 90 × 90, a learning rate of 0.5, initial radius of

90 and weighting coefficients of µ1 = 0.05 and µ2 = 0.95. By inspecting the plots we can see

that GTM-HMTM is better at the toy dataset, while SOMSD is better at the TPB dataset as it

manages to distinguish between all of the classes, especially the classes of houses that are prob-

lematic in GTM-HMTM. This is interesting, because SOMSD seems to be more sensitive than

GTM-HMTM to data items of shallow structure. On the other hand, SOMSD does not discover

the sub-classes that GTM-HMTM does for the policemen and ships. Regarding the quadtree

dataset, although we tried numerous parameter settings we could not obtain a good result for

the same dataset of 16×16 pixel images. Nevertheless, when we further reduced the dimensions

of the images down to 8×8 pixels, SOMSD was able to a achieve good topographic organisation,

displayed in in Fig. 4.13, indicating that the transformed images preserve sufficient information.

However, SOMSD does not seem to utilise the entire map when projecting the quadtree data,

as it does for the toy and TPB dataset (the same problem also appeared when training with

smaller maps). Thus, in Fig. 4.13 only the region of the map containing projections is displayed.

The toy data set may be biased towards GTM-HMTM, but still, SOMSD was not able to

cluster the trees in a fashion reflecting the organisation of the underlying generative process.

This raises an important point we would like to stress. Of course, there is no single best model for

topographic organisation of data of a given form. This issue is even more pronounced in the case

of unsupervised learning in structured domains, where for models such as SOMSD a clear cost

functional being minimised during the parameter fitting process is missing. Besides not knowing

exactly what the model is optimised for, there is an additional difficulty: recursive models such

as SOMSD are non-autonomous dynamical systems that can be difficult to understand. But

without a clear understanding of the underlying dynamics, we can never know exactly what

is driving topographical organisation of the projections. As a consequence, given a new tree,

it might be possible to guess where its image on the SOMSD map will lie, but understanding

the process of its formation will remain problematic. Consequently, it is difficult to grasp the

structure of a trained topographic map on a deeper level - one is forced to produce only verbal

descriptions.

In contrast, a clear model-based formulation of GTM-HMTM enables us not only to anal-

yse and understand the trained model (and hence understand the organisation of the map in

terms of organisation of local prototype HMTM noise models), but also to understand exactly

what kinds of data our model is suitable for. It is also important to understand that the class

of noise models (in our case HMTM) inherently dictates along what lines will the data pro-

jections/representations be organised on the visualisation plot. Close regions on the computer
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screen (latent space V) will correspond to ”close” noise models (HMTMs) and hence trees will

be organised on the map with respect to how closely they adhere to different HMTMs defined

by different regions on the map.

Because of the absence of a clear cost function, the performance of SOMSD was measured

in [Hagenbuchner et al., 2003] as the accuracy of classification of data into known classes (the

class information was not used during the training) using data representations on the map. After

the map formation, a secondary hold-out test dataset was used. Items from the test set were

represented on the trained map and each test item was predicted to have the class label of its

closest neighbour (from the training set) on the map. The accuracy was then defined as the

percentage of correctly classified test points. The results of this measure on the toy dataset were

90% and 60% for GMT-HMTM and SOMSD respectively. The results were reversed as for the

TPB dataset GMT-HMTM and SOMSD achieved 55% and 95% of accuracy respectively (no

class information is provided for the quadtree dataset). We stress again, that such a procedure

makes sense only when the class organisation of the data correlates with the driving force behind

topographic map formation. If for example, the classes of trees are organised along the lines

that cannot be reasonably captured by HMTM modelling, there is simply no reason why the

achieved classification accuracy of GMT-HMTM should be high. But low classification rate

would just mean that our model-driven topographic map formation does not correlate with the

particular class labelling scheme. In such cases one can simply switch to local noise models that

are more correlated with the class labelling. Alternatively, one might say that he/she wanted

to see topographically organised data representations driven by aspects captured by HMTM (or

any other noise model employed) and stick with the obtained topographic maps, irrespective

of the class labels. This is an unsupervised learning setting after all. Again, without knowing

the exact mechanism behind the topographic map formation, it is problematic to assign any

performance-related interpretation to the classification rate obtained on the trained map.

Another advantage of a probabilistic model formulation is the possibility to inspect the

tendency of the model to overfit the training data, by measuring the log-likelihood on an inde-

pendent validation set. For example, for the TPB task, the validation set consists of 84 patterns

produced in the same manner as the training set. During training, the log-likelihoods of the

model on the training and validation sets were calculated in each iteration. The evolution of the

log-likelihood for both data sets is presented in Fig. 4.14. It is apparent that the constrained

nature of our model prevents it from overfitting the training sample.
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Fig. 4.14: Evolution of log-likelihood for GTM-HMTM on training (line with + marker) and
validation (line with o marker) set for TPB.

4.4 Hidden Markov Models as Noise Models for GTM

In [Tiňo et al., 2004] the GTM is extended to the processing of data expressed as sequences. To

that purpose, instead of formulating a constrained mixture of Gaussians, the technique relies on

the formulation of a constrained mixture of HMMs. HMMs and their training procedure were

reviewed in section 3.3. An HMM can be considered as a special case of HMTMs where the

number of children is restricted to one. In this light, the GTM extension for sequences can be

subsumed by the GTM-HMTM extension. Essentially all the machinery presented in section

4.2, is common to both approaches, with minor differences. In [Tiňo et al., 2004] the technique

was demonstrated on sequences representing the web navigation of users and on melodic lines.

4.5 Markov Tree Models as Noise Models for GTM

4.5.1 Model Formulation

In this section we present an alternative extension of the GTM for the visualisation of R-regular

tree-structured data, which employs MTMs (see 3.4.4) as noise models. Hence, we call this

extension GTM-MTM. We follow the same methodology used formulating the GTM-HMTM

extension in section 4.2. Since the methodology is common, our exposition covers only the key

points.

A latent space V = [−1,+1]2 is defined and discretized, for the same aforementioned

tractability reasons as in GTM and GTM-HMTM, by a rectangular grid of points xc, c =
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1, . . . , C. A RBF network maps each xc to a set of MTM parameters Γ(xc):

Γ(xc) = Wφ(xc),

where φ(·) = [φ1(·) . . . φM (·)]T and W is the weight matrix. Thus, each point xc is mapped

to a set of MTM parameters (namely to R transition matrices Br(xc), r = 1, . . . , R) that address

a MTM. Similarly to GTM and GTM-HMTM, the addressed MTMs belong to a constrained

two-dimensional manifold M that is embedded in the space H of all MTMs of the same form

as the ones induced by Γ(x).

The number of MTM parameters is R×K ×K, which means that W must be a matrix of

dimensions (R×K×K)×M in order to generate the necessary number of parameters. However,

it is more convenient to define R×K number of weight matrices instead of a single W matrix.

This is possible since each parameter is generated independently of the others in mapping Γ.

Thus, we define R×K number of weight matrices W r,k of dimensions K ×M for r = 1, . . . , R

and k = 1, . . . ,K. We summarise the set of all such matrices in W = {W r,k}r=1,...,R,k=1,...,K .

Each matrix W r,k generates the transition probabilities for the r-th child, from state k to all

other K states:

Br(xc) = {W r,kφ(x)}k=1,...,K . (4.37)

However, the elements in Br(xc) are probabilities, and must be in the range of [0, 1], which

is an issue since the RBF output in (4.37) is unbounded. Moreover, the sum of transition prob-

abilities from a state k to all other states K must equal 1. The same problem was encountered

in 4.2 when generating the initial probabilities and transition matrices for the GTM-HMTM.

The same remedy is used here, namely applying softmax function g to the RBF output:

Br(xc) = {gl(W
r,kφ(x))}k,l=1,...,K , (4.38)

We assume a dataset of independently generated regular trees D = {y(1), . . . ,y(N)}. The C

latent points x ∈ V are mapped via Γ to MTM models and form a mixture of C components.
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Using (3.95), the model likelihood of this mixture is:

L(W |D) = p(D|W) =

N∏

n=1

C∑

c=1

P (xc)p(t
(n)|xc,W) =

N∏

n=1

C∑

c=1

P (xc)

Un∏

u=2

p(ou|oρ(u), pos(u),W)

=
1

C

N∏

n=1

C∑

c=1

Un∏

u=2

p(ou|oρ(u), pos(u),W)

∝
N∏

n=1

C∑

c=1

Un∏

u=2

p(ou|oρ(u), pos(u),W), (4.39)

where we discard constant 1
C . We take the logarithm and use (3.96), so that the (scaled) log-

likelihood reads:

logL(W |D) ∝
N∑

n=1

log
C∑

c=1

Un∏

u=2

p(ou|oρ(u), pos(u),W)

∝
N∑

n=1

log

C∑

c=1

Un∏

u=2

K∏

k=1

K∏

l=1

R∏

r=1

p(ou = l|oρ(u) = k, pos(u) = r,W)
δoρ(u),kδou,lδpos(u),r

.

(4.40)

4.5.2 Model training

We perform training of the GTM-MTM via the EM algorithm. Similarly to section 3.2, we

postulate the following hidden variables that indicate the unobserved component origin for each

data item:

z(n)
c =







1, component c generated the tree y(n);

0, otherwise.
(4.41)

The conditional expectation of the hidden variables is calculated in the E-step by the fol-

lowing posterior probabilities:

E[z(n)
c |D,W(i)] = p(z(n)

c = 1|W (i)) = p(xc|y(n),Θ(i)) =
P (xc)p(y

(n)|xc,W
(i))

∑C
c′=1 P (xc′)p(y(n)|xc′ ,W

(i))
. (4.42)

Having calculated the conditional expectation of the hidden variables, we proceed with the

calculation of the expected complete-data log-likelihood, using (3.97):

EZ [logL(W |D,Z)|D,W (i)] ∝
N∑

n=1

C∑

c=1

K∑

k=1

K∑

l=1

R∑

r=1

p(xc|y(n),W(i))ν
(n)
rkl log p(ou = l|oρ(u) = k, pos(u) = r,W). (4.43)
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In the M-step we take derivatives of (4.43) with respect to j,m element wst
jm of matrix W s,t:

∂

∂wst
jm

EZ [logL(W|D,Z)|D,W (i)] ∝ ∂

∂wst
jm

N∑

n=1

C∑

c=1

K∑

k=1

K∑

l=1

R∑

r=1

p(xc|y(n),W(i))ν
(n)
rkl

× log p(ou = l|oρ(u) = k, pos(u) = r,W)

∝
N∑

n=1

C∑

c=1

K∑

l=1

p(xc|y(n),W(i))ν
(n)
stl

∂

∂wst
jm

log p(ou = l|oρ(u) = t, pos(u) = s,W)

∝
N∑

n=1

C∑

c=1

K∑

l=1

p(xc|y(n),W(i))ν
(n)
stl

1

p(ou = l|oρ(u) = t, pos(u) = s,W)

× ∂

∂wst
jm

p(ou = l|oρ(u) = t, pos(u) = s,W).

(4.44)

Derivative ∂
∂wst

jm

p(ou = l|oρ(u) = t, pos(u) = s,W), calculated in Appendix C, is equal to:

∂

∂wst
jm

p(ou = l|oρ(u) = t, pos(u) = s,W) =
∂

∂wst
jm

exp(W s,t
l φ(xc))

∑K
l′=1 exp(W s,t

l′ φ(xc))

= φm(xc)p(ou = j|oρ(u) = t, pos(u) = s,W)

×
(

δl,j − p(ou = l|oρ(u) = t, pos(u) = s,W)

)

.

(4.45)

Substitute (4.45) in (4.44) to obtain the equation:

∂

∂wst
jm

EZ [logL(W|D,Z)|D,W (i)]∝
N∑

n=1

C∑

c=1

K∑

l=1

p(xc|y(n),W(i))ν
(n)
stl

1

p(ou = l|oρ(u) = t, pos(u) = s,W)

× φm(xc)p(ou = j|oρ(u) = t, pos(u) = s,W)

×
(

δl,j − p(ou = l|oρ(u) = t, pos(u) = s,W)

)

. (4.46)

Thus, we finally obtain the derivative in (4.46) that can be used for optimising the model.

4.6 Experimental Results for GTM-MTM

We experimented with two datasets, a toy dataset constructed by sampling three MTM models,

and the quadtree dataset that was used in GTM-HMTM.

The complexity of the algorithm in the E-step is O(CNRK2), which follows from the number

91



1

1

1
11

1

1
1

11

11

1
1

1
1 111

1

1

1

1

1
1

1
1

1
1

1

11

1
1

1

1

1

1
1

1

2

2

2
2

2
2

22
2 2

2

2 222

2

2
2

2
2

22
2 2

2

2

222

2

2 2 2

2

2

2

2 2
2

2

3 3

3

3

3

33
3
33

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

3 33

3

3

33
3

3

3
3

3

3

Fig. 4.15: Visualisation of toy dataset for GTM-MTM.

of operations needed in (3.97) to calculate the log-likelihood of a single data item, multiplied by

the number C of latent points and the number N of data items in the dataset. Regarding the

M-step, the complexity is that of the scaled conjugate gradient algorithm [Moller, 1993] which

is O(2W 2), where W is the number of free parameters to be optimised. For the GTM-MTM

the number of parameters is W = MRK2 which is the number of elements in matrix W . A

MATLAB implementation of GTM-MTM (on the same machine as in 4.3.2) required 1 hour for

the toy dataset and 6 hours for the quadtree dataset to learn a satisfactory topographic map.

For the toy dataset we set K = 2 and instantiated 3 MTMs with randomly generated

parameters to simulate three classes of trees. The results for the toy dataset are displayed in

Fig. 4.15. The three clusters corresponding to the three randomly instantiated MTMs are clearly

discerned. Data points are numbered to indicate the MTM they originate from. Regarding the

quadtree dataset, the results are displayed in Fig. 4.16. Training GTM-MTM with the original

resolution of 64×64 did not yield any numerical problems as experienced in GTM-MTM. Clearly,

GTM-MTM has achieved a much higher quality of topographic organisation than GTM-HMTM.

The upper-left corner is dominated by images of ducks facing to the right, while the lower-right

corner is dominated by images facing to the left. In between the two, close to the centre of the

map, we find images of frontal views. Finally, as we move from the lower left corner towards

the top, we come across images of rear views.

We also examined the tendency of GTM-MTM to overfit the training set. For the case of the

quadtree dataset, we show log-likelihood evolutions in Fig. 4.17(a) and 4.17(b) on the training

and validation set. We examine two training sessions. The first one corresponds to a training
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Fig. 4.16: Visualisation of quadtree dataset (64 × 64) for GTM-MTM.

session where overfitting occurs (the topographic map of this session is the one displayed in

4.16). In order to avoid overfitting we changed the variance of the radial basis functions φ of the

RBF network from 1.0 to 2.0 and performed a second training session. Increasing the variance

in the RBF network, has the effect of making the basis functions wider, less localised, blending

them to a higher degree in their overlapping regions. In terms of the GTM, this has the effect

of not allowing local noise models to become very different from their neighbours in terms of

parameters, which enforces a form of regularisation. The evolution of the log-likelihood with

RBF variance equal to 2.0 is illustrated in Fig. 4.17(b). Even though, we observed practically

identical topographic organisations in both training sessions, the second session achieves better

generalisation performance, which is advantageous if new data items are to be projected on

the map. We stress, that checking the model likelihood on a hold-out sample is a natural way

of detecting possible overfitting. In case of a highly overfitted model, it would be difficult to

interpret visualisation plots as representing any general tendency in the data.
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Fig. 4.17: Evolution of log-likelihood for GTM-MTM on training (line with + marker) and
validation (line with o marker) set. In (a) the variance of the radial basis functions is set to 1.0
and in (b) it is set to 2.0.
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Chapter 5

Magnification Factors for

Topographic Mapping

In chapter 4 we saw that topographic organisation of a dataset on a two-dimensional latent space

enables us to visualise the data points and infer potential clusters and relationships between

them, by interpreting the distances between them. However, these distances can be “deceiving”

without proper interpretation; one must keep in mind that mapping Γ from the latent space V
to the manifoldM of local noise models is non-linear. Even though mapping Γ retains the local

neighbourhood of the projection of each point, in general the distances between projections are

not preserved. We illustrate this with a simple analogy. Consider the mapping of points x that

belong on a line segment [−2, 2] via f(x) = −x2 to y values, as depicted in Fig. 5.1. Points x = 1

and x = 0 are equidistant from x = 0.5. However, this does not apply for their respective images,

as y = −1, y = 0 are not equidistant from y = −0.25. This incurred expansion or magnification

is not visible on the line segment. Another possibility is the occurrence of a contraction in the

mapping. Furthermore in more complex mappings both effects may be manifested in various

degrees. Similarly in GTM and its extensions, RBF function Γ ((4.2) for GTM, (4.17)-(4.19)

for GTM-HMTM and (4.38) for GTM-MTM) is a nonlinear function. Thus on the latent map,

two data items that lie close to each other may in fact be separated as the space between them

is magnified. These magnifications are not visible in the latent space.

In order to appreciate how the latent space is magnified we present two approaches for

measuring the magnification around latent points x ∈ V. One approach relies on the local

approximation of the Kullback-Leibler divergence (KLD). Each latent point x is perturbed by

an infinitesimal distance of dx in various directions. If p(·|x) is the noise model that corresponds

to x, then p(·|x+dx) is the noise model addressed by the perturbed version x+dx of x. This
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Fig. 5.1: Graph of f(x) = −x2.

situation is illustrated in Fig. 5.2. For small perturbations we expect the distribution of the

perturbed noise model p(·|x+dx) to closely resemble the original distribution p(·|x). However,

perturbations corresponding to different directions will result to different noise models, some

more distant (statistically) to p(·|x) than others; how distant is measured via the KLD.

The second approach relies on the Fisher information matrix (FIM). This concept makes

explicit use of the geometry of the models in spaceM. Models are infinitesimally perturbed and

the distance between the original model p(·|x) and its perturbed version p(·|x+dx) is measured

via the Fisher information matrix that acts as a metric tensor on the induced Riemannian

manifold [Kullback, 1959].

latent point

perturbed latent points

Latent space

neigbouring
latent point

neigbouring
latent point

neigbouring
latent point

Fig. 5.2: Magnification factors may be measured via the perturbation of a latent point in regular
intervals on a small circle.

We shall first discuss how magnification factors are obtained in the original GTM algorithm.

We then present our own two approaches of measuring magnification factors, via KLD and
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FIM, and calculate them for GTM-HMM, GTM-HMTM and GTM-MTM. We also re-derive

magnification factors for GTM using these approaches and arrive at similar results.

5.1 Magnification Factors for Original GTM

Magnification factors for the GTM are presented in [Bishop et al., 1997]. Here however, we

follow a geometrical line of thought presented in [Svensén, 1998]. Each point x of latent space

V is mapped via Γ(x) = Wφ(x) (see (4.2)), implemented as a RBF network, to the high-

dimensional space R
d where the vector data items t reside. The Jacobian of mapping Γ is the

M × d matrix:

J =











W 1
∂

∂x1
φ(x) . . . W 1

∂
∂xq
φ(x)

W 2
∂

∂x1
φ(x) . . . W 2

∂
∂xq
φ(x)

...
...

...

W d
∂

∂x1
φ(x) . . . W d

∂
∂xq
φ(x)











, (5.1)

or in a more compact form:

J =
(

W ∂
∂x1
φ(x) . . . W ∂

∂xq
φ(x)

)

, (5.2)

where r = 1, . . . , q with q the dimension of the latent space.
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Fig. 5.3: An area element in the latent space when mapped to the high-dimensional space is
subject to magnification.

The Jacobian relates displacements dx in V to displacements dy in space R
d by dy = Jdx.

As illustrated in Fig. 5.3, we can take two very small orthogonal displacements dx1 and dx2

of equal length ‖dx1‖ = ‖dx2‖ = x, along the axis in V, which correspond to displacements
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dy1 and dy2 in R
d respectively. The area defined by dx1 and dx2 is transformed to the area

defined by dy1 and dy2. This is illustrated in Fig. 5.3. A result in [Bloom, 1979] states that the

(hyper)volume of the parallelepiped defined by the rows of a matrix A is equal to det(ATA)
1
2 .

We form matrices Dx =
[

dx1 dx2

]

and Dy =
[

dy1 dy2

]

of dimensions d × d and M × d
respectively. We note that Dx = xId. We obtain:

Dy = JDx,

Dy
TDy = Dx

TJTJDx,

det(Dy
TDy) = det(Dx

TJTJDx) = det(xJTJx) = x2 det(JTJ), (5.3)

where

JTJ =

(
∂

∂x1
φ(x)TW TW

∂

∂x1
φ(x) . . .

∂

∂xq
φ(x)TW TW

∂

∂xq
φ(x)

)

= γTW TWγ, (5.4)

where vector γ stores all partial derivatives ∂
∂xr
φ(x), r = 1, . . . , q. Hence, the ratio of the two

squared areas is equal to :

det(Dy
TDy)

det(Dx
TDx)

=
det(Dy

TDy)

x2
= det(γTW TWγ), (5.5)

with x2 = 1 if the columns in Dx form an orthonormal basis.

A ratio higher than 1 signifies that the area around latent point x is magnified under mapping

Γ, which means that the underlying local noise models, here Gaussian densities, vary in a

statistical sense from their neighbours. On the contrary, a ratio lower than 1 means that the

area is contracted under the mapping and that the underlying local Gaussians are very similar

to each other.

5.2 Kullback-Leibler Divergence

The Kullback-Leibler divergence (KLD) or relative entropy is a scalar quantity that informs us

of the “distance” between two distributions P and Q (assuming that P (t) > 0, Q(t) > 0,∀t ∈ T )

and is defined as [Cover and Thomas, 1991]:

DKL[P ||Q] =

∫

T
P (t) log

P (t)

Q(t)
dt. (5.6)
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and for the discrete case:

κ[w||w′] =
∑

i

wi log
wi

w′
i

. (5.7)

An important property, known as Gibbs’ inequality, is that KLD is always non-negative with

a minimum of zero whenQ exactly matches distribution P , DKL[P ||P ] = 0 [Cover and Thomas, 1991].

It is important to note that KLD is not symmetric in general DKL[P ||Q] 6= DKL[Q||P ], hence

it does not constitute a proper distance metric. By writing KLD as:

DKL[P ||Q] =

∫

T
P (t) log P (t)dt −

∫

T
P (t) logQ(t)dt, (5.8)

it may be interpreted as the statistical distance of approximating distribution P with distribution

Q. In [Rabiner, 1989] it is noted that KLD acts as a statistical measure between HMMs and

can be understood as a measure of how well HMM p(·|θ) matches observations generated by

model p(·|θ′) relative to how well HMM p(·|θ) matched the observations generated by itself.

In general, KLD can be applied to all kinds of probabilistic models. The models do not even

need to be both of the same form, e.g. we can measure the distance between a Gaussian and a

binomial distribution.

In practice, for two models p(·|θ) and p(·|θ′), KLD can be measured as the observed D̂KL

via a Monte-Carlo type approximation:

D̂KL[p(·|θ)||p(·|θ′)] =
∑

t∈T

p(t|θ) log p(t|θ)−
∑

t∈T

p(t|θ) log p(t|θ′). (5.9)

Even though the above formula is a robust method of estimating KLD and applicable for all

practical settings, we can do better than that and approximate KLD with efficient closed-

form formulae. In the following sections we demonstrate how KLD can be measured for the

density models presented in chapter 3, namely Gaussian densities, HMMs, HMTMs, HMMs and

mixture models. In particular, the calculation of KLD for Gaussian densities leads to the same

magnification factors calculated for GTM in section 5.1.
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5.2.1 KLD for Gaussian Densities

For two d-dimensional Gaussian distributions P (t) = N (t;µ,Σ) and Q(t) = N (t;µ′,Σ′) the

formula for KLD is [Kullback, 1959]:

DKL[P ||Q] =

∫

T
P (t) log

P (t)

Q(t)
dt

=

∫

T
N (t;µ,Σ) log

N (t;µ,Σ)

N (t;µ′,Σ′)
dt

=
1

2

[

log
detΣ′

detΣ
− d+ tr(Σ′−1Σ) + (µ− µ′)TΣ−1(µ− µ′)

]

. (5.10)

The formula circumvents the need of a Monte-Carlo approximation and calculates the precise

KLD for two Gaussian distributions.

In the particular case of GTM, where the local noise models are implemented by spherical

Gaussians of the same variance σ2, the KLD between two neighbouring models p(·|x) and

p(·|x + dx) is:

DKL[p(·|x)||p(·|x + dx)] =
1

2σ2
(µ− µ′)T (µ− µ′)

=
1

2σ2
(φ(x)−φ(x + dx))TW TW (φ(x)− φ(x + dx))

=
1

2σ2
dφ(x)TW TWdφ(x), (5.11)

where the primed quantities correspond to model p(·|x+dx). This formula is in correspondence

(ignoring constants) to the magnification factors of GTM in (5.5) (where the ratio of areas was

considered).

5.2.2 KLD for Mixture Models

Before moving to the approximation of KLD for HMMs and HMTMs, we present a result that

holds for two general mixtures of C components [Singer and Warmuth, 1998]:

P (t) =
C∑

c=1

P (c)p(t|c), Q(t) =
C∑

c=1

Q(c)q(t|c),

where P (c) is subject to the constraints 0 ≤ P (c) ≤ 1 and
∑C

c=1 P (c) = 1 and so is Q(c). Using

the log-sum inequality [Cover and Thomas, 1991], an upper bound D can be derived for the
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KLD:

DKL[P ||Q] =

∫

T
P (t) log

P (t)

Q(t)
dt =

∫

T

C∑

c=1

p(c)p(t|c) log

∑M
c=1 P (c)p(t|c)

∑M
c=1Q(c)q(t|c)

dt

≤
∫

T

C∑

c=1

P (c)p(t|c) log
P (c)p(t|c)
Q(c)q(t|c)dt,

D[P ||Q] =

C∑

c=1

P (c) log
P (c)

Q(c)
+

C∑

c=1

P (c)

∫

T
p(t|c) log

p(t|c)
q(t|c)dt

D[P ||Q] = κ[(P (1) . . . P (c))T ||(Q(1) . . . Q(c))T ] +

C∑

c=1

P (c)DKL[p(t|c)||q(t|c)]. (5.12)

Thus, the KLD between two mixtures is approximated by an upper bound D[P ||Q].

This result can be readily specialised for a mixture of Gaussians by substituting the com-

ponents with Gaussians or further extended for mixtures of Markov models with the aid of

results presented in the following sections. Bound D[P ||Q] in conjunction with (5.10) estimates

efficiently an upper limit on the statistical divergence of Gaussian mixtures.

5.2.3 KLD for Hidden Markov Tree Models and Hidden Markov Models

In [Do, 2003] an efficient procedure is presented that estimates an upper bound for KLD in

HMTMs and as a special case in HMMs. The procedure relies on the upward-recursion described

by (3.77)-(3.79). At each iteration it estimates an upper bound Dk, for state k = 1 . . . K, for

the KLD between the partially calculated upward probabilities for two HMTMs. Specifically,

the KLD between two HMTMs p(·|θ) and p(·|θ′) can be approximated as follows:

• Recursion initiates at leaf nodes; emissions p(ou|qu = k,θ) are Gaussian densities and we

apply (5.10) to (3.77):

Dk[u;θ,θ′] = DKL[p(ou|qu = k,θ)||p(ou|qu = k,θ′)] = DKL[N (ou;µk, σkI))||N (ou;µ′
k, σ

′
kI)].

(5.13)
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• Recursive step; apply (5.12) to equation (3.78):

DKL[βk(u;θ)||βk(u;θ′)] = DKL[p(ou|qu = k,θ)||p(ou|qu = k,θ′)]

+
∑

v∈ch(u)

DKL

[ K∑

i=1

βi(v;θ)p(qv = i|qu = k,θ)||
K∑

i=1

βi(v;θ′)p(qv = i|qu = k,θ′)

]

,

DKL[βk(u;θ)||βk(u;θ′)] ≤ Dk[u;θ,θ′] = DKL[N (ou;µk, σkI))||N (ou;µ′
k, σ

′
k)]

+
∑

v∈ch(u)

(

κ[p(qv |qu = k,θ)||p(qv |qu = k,θ′)] +
K∑

i=1

p(qv = i|qu = k,θ)Di[v;θ,θ′]

)

.

(5.14)

• Final step; the upper bound of KLD is found by applying again (5.12) to equation (3.79):

K[y;θ,θ′] = κ[p(q1|θ)||p(q1|θ′)] +

K∑

k=1

p(q1 = k|θ)Dk[1;θ,θ′]. (5.15)

The above recursive estimation of an upper bound for KLD depends solely on the parameters

of the models and is evidently more efficient than a Monte-Carlo approximation as no sampling

of the involved distributions is necessary. This recursion can be readily specialised for HMMs

by considering HMMs as a special case of HMTMs, by restricting the number of children of

each node to one. Thus, a tree structure degenerates to a sequence (a tree where each node has

no more than one child). Therefore, the KLD between two HMMs p(·|θ) and p(·|θ′), can be

approximated as follows:

• Recursion starts at the end of the sequence; apply (5.10) to (3.49):

DKL[βk(T ;θ)||βk(T ;θ′)] = Dk[T ;θ,θ′] = DKL[p(sT |qT = k,θ)||p(sT |qT = k,θ′)]

= DKL[N (p(sT ;µk, σkI))||N (p(sT ;µ′
k, σ

′
kI)]. (5.16)
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• Recursive step; apply (5.12) to equation (3.78):

DKL[βk(t;θ)||βk(t;θ′)] =

DKL[p(st|qt = k,θ)||p(st|qt = k,θ′)]

+DKL

[ K∑

i=1

βi(t + 1;θ)p(qt+1 = i|qt = k,θ)||
K∑

i=1

βi(t+ 1;θ′)p(qt+1 = i|qt = k,θ′))

]

,

DKL[βk(t;θ)||βk(t;θ′)] ≤ Dk[u;θ,θ′] = (5.17)

DKL[N (st;µk, σkI))||N (st;µ
′
k, σ

′
k)]

+κ[p(qt+1|qt = k,θ)||p(qt+1|qt = k,θ′)] +

K∑

i=1

p(qt+1 = i|qt = k,θ)Di[t+ 1;θ,θ′].

(5.18)

• Final step; the upper bound of KLD is found by applying again (5.12) to equation (3.79):

K[y;θ,θ′] = κ[p(q1|θ)||p(q1|θ′)] +

K∑

k=1

p(q1 = k|θ)Dk[1;θ,θ′]. (5.19)

Thus the KLD between two HMTs or HMTMs is approximated by the upper bound as:

DKL[p(·|θ)||(p(·|θ′)] ≤ K[y;θ,θ′]. (5.20)

5.2.4 KLD for Markov Tree Models

For MTMs we can resort to a fast approximation of KLD by assuming that generated trees

are sufficiently deep and that the compared MTMs are not too dissimilar. Using a result from

[Falkhausen et al., 1995] for HMMs, we approximate the KLD between a MTM addressed by

p(·|θ) and its perturbed version p(·|θ + dθ) by:

D̂KL[p(·|θ)||p(·|θ + dθ)] =
R∑

r=1

K∑

k=1

πr
k

K∑

l=1

p(ou = l|oρ(u) = k, pos(u) = r|θ)

× log
p(ou = l|oρ(u) = k, pos(u) = r|θ)

p(ou = l|oρ(u) = k, pos(u) = r|θ + dθ)
, (5.21)

where probabilities πr
k are obtained as the normalised left eigenvector when solving πr = πrB(r).
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5.2.5 KLD as a Magnification Factor for the GTM Extensions

In the preceding sections of 5.2.3 and 5.2.4 we approximate the KLD for HMTMs, HMMs and

MTMs, without considering them as part of a GTM-type parametrisation, i.e. parameter vectors

θ are free parameters, not generated via some constrained parametrisation. However, we can

also approximate KLD between noise models that belong on the manifold M induced by a

GTM formulation using the same preceding equations. Noise models in GTM are parametrised

by latent points x, thus x plays the role of parameter vector θ. As aforementioned in the

introduction of this chapter, magnification factors can be measured by perturbing a point x of

the latent space by an infinitesimal displacement dx in various directions. Point x addresses a

model p(·|x) on the manifold and its displaced version x+ dx addresses a model p(·|x+ dx).

The statistical distance between these two models is estimated via the KLD approximations

derived in the preceding sections of 5.2.3 and 5.2.4. This perturbation scheme is illustrated in

Fig. 5.2. Of course, we could also measure the KLD between two models on the manifold that

are not close neighbours, but belong to regions of the manifold distant from each other, in order

to reveal other properties of the map apart from local magnification factors. Even though KLD

would yield a valid result, that would be irrespective of the geometry of the manifold. A correct

approach for this case would be to measure KLD along the geodesic connecting the two models.

Here, however, we will not concern ourselves with this problem.

5.3 Fisher Information Matrix

Consider the problem of estimating a parameter θ of a probability density function (pdf) f(t|θ)
using the available data. An estimator of θ is a function θ̂(t) of the available data t. To assess

the error of the estimator, we calculate the mean squared error MSE(θ̂) = E[θ̂(t)− θ]2, E

denoting expectation. It is a well known fact that the mean squared error can be decomposed

into a sum of variance and squared bias of the estimator [Bishop, 1996]:

MSE(θ̂) = var(θ̂(t)) + (E[θ̂(t)]− θ)2. (5.22)

In the special case where we are dealing with an unbiased estimator θ̂(t), i.e. E[θ̂(t)] = θ, the

bias term of the error becomes zero and the variance becomes equal to the mean squared error

of the estimator. In [Frieden, 1998] an important result is proved that bounds error MSE. If

θ̂(t) is unbiased, we have:

E[θ̂(t)]− θ = 0⇔ E[(θ̂(t)− θ)] =

∫

T
(θ̂(t)− θ)f(t|θ)dt = 0. (5.23)

104



Differentiation of both sides follows 1:

∫

T
(θ̂(t)− θ)df(t|θ)dt

dθ
−
∫

T
f(t|θ)dt = 0. (5.24)

Since f is a pdf, we have:
∫

T
(θ̂(t)− θ)df(t|θ)

dθ
dt = 1. (5.25)

Introduce the logarithm:

∫

T
(θ̂(t)− θ)f(t|θ)d log f(t|θ)

dθ
dt = 1. (5.26)

Finally, we factorise and use the Schwartz-Cauchy inequality:

∫

T
(θ̂(t)− θ)

√

f(t|θ)d log f(t|θ)
dθ

√

f(t|θ)dt = 1,

[∫

T
(θ̂(t)− θ)2f(t|θ)dt

] [∫

T
(
d log f(t|θ)

dθ
)2f(t|θ)dt

]

≥ 1 (5.27)

We now discern the following two terms in the brackets on the left-hand-side:

MSE(θ̂)F (θ) ≥ 1. (5.28)

This important result, known as the Cramer-Rao inequality, holds for the mean squared

error of unbiased estimators. In (5.28) F is the Fisher information and it is defined as:

F (θ) = −Et[(
d

dθ
logf(t|θ))2]. (5.29)

Furthermore in [Degroot, 1996], an alternative form of the Fisher information is given that is

based on the second order derivatives of the log-likelihood:

F (θ) = −Et[
d2

dθ2
log f(t|θ)]. (5.30)

Regarding the multivariate case, when θ = {θ1, ..., θN} the Fisher information matrix is defined

in [Myung and Daniel, 2005] as the N ×N matrix with entries i, j = 1, . . . , N :

F (θ)i,j = Et[
∂2

∂θi∂θj
logf(t|θ)], (5.31)

In [Frieden, 1998] quantity F is interpreted as the quality of a measuring process. Thus, since

1assuming that the necessary conditions for differentiating inside the integral are met.
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F (or det(F) in the multivariate case) is reciprocal to the error in (5.28), the error of the mea-

surement increases as F decreases and vice versa. An example is presented in [Degroot, 1996]

where the Fisher information of a one-dimensional Gaussian distribution N (t;µ, σ2) is consid-

ered. The distribution is of known variance σ2 and we want to determine the mean µ. The

log-likelihood of the distribution is:

logL(µ) = −1

2
log(2πσ2)− (x− µ)2

2σ2
,

and its second derivative is:
∂2

∂µ2
logL(µ) = − 1

σ2
.

Thus, the Fisher information for parameter µ is:

F (µ) =
1

σ2
.

This means that the error of an unbiased estimator of µ is bound by the variance of the distri-

bution, MSE(θ̂) ≥ σ2. This result makes indeed intuitive sense; if we try to estimate the mean

by sampling, naturally we expect that for a “wide” Gaussian our estimate will be susceptible to

high error. Conversely, for a “narrow” Gaussian we expect our estimate to be more accurate.

It is worth noting that maximum-likelihood estimators are asymptotically unbiased and

normally distributed. In particular the variance of the distribution of a maximum likelihood

estimator is equal to the Fisher information matrix [Kay, 1993]:

(θ̂ − θ) ∼ N (0,F (θ)). (5.32)

Thus, the Fisher information can also be regarded as a quality measure for maximum likelihood

estimation.

As we will see in the following sections, Fisher information is linked to the geometry of the

model space M. Thus, it constitutes a tool useful in considering magnification factors on M.

5.4 Definition of a Manifold

Although we have not explicitly introduced the notion of a manifold so far, we have made

use of it numerous times in chapter 4. A familiar example of a manifold is the boundary of

a solid object. Though encountered in our three-dimensional space, when inspected closely it

looks like a flat plane. Another example is that of the locally flat appearance of the spherical
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earth. Mathematically speaking, the surface of the earth is a subset of R
3 that locally resembles

R
2. More precisely, this local resemblance means that the neighbourhood Ua of every point

a on the surface, must be homeomorphic to an open set in R
2. For two sets U and V to be

homeomorphic, a continuous and bijective function U → V must exist, whose inverse V → U is

also continuous. Such a homeomorphic function τ : Ua → R
2 is called a chart. A chart provides

a coordinate system that applies locally at point a. These definitions can be generalised from the

two dimensional surface to a d-dimensional object called a manifold [Small, 1996]. We denote a

manifold by M. On a d-dimensional manifold M, each neighbourhood U is homeomorphic to

an open set in Euclidean space R
d.

However a manifold is more than merely a collection of open subsets, local patches, that

resemble R
d. An additional criterion [Small, 1996] is necessary that states how these local

patches combine to create the manifold. Specifically, it is the overlapping of neighbouring patches

that needs to be addressed. The overlapping area U∪V is addressed by both coordinate systems

τ and ξ. We require the coordinate systems to be consistent with each other. Technically, it is

required that:

ξ ◦ τ−1 : τ(U ∪ V )→ ξ(U ∪ V ), (5.33)

Rn Rn

U V

M ξτ

x

x

x

Fig. 5.4: Two overlapping local patches U and V on manifold M. Patches U and V are
homeomorphic to a Euclidean space R

n via charts τ and ξ respectively. Moreover, U and V are
compatible charts via the homeomorphism ξ ◦ τ−1.

be a homeomorphism [Small, 1996]. Such a requirement ensures that patches are “glued”

together so as to form manifold M. The situation is illustrated in Fig. 5.4. However, this re-
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quirement may be extended to further ensure differentiability onM. To ensure differentiability,

functions in (5.33) are required to be diffeomorphic [Small, 1996]. A function is diffeomorphic

when it is bijective, differentiable and has a differentiable inverse. The property of diffeomor-

phism establishes manifold M as a differentiable manifold.

5.5 Manifold of Statistical Models

In [Amari, 1959] the structure of an n-dimensional manifold is introduced in probability distribu-

tions. We consider a spaceM where probabilistic models of the form p(t|θ) reside: M = {p(t|θ)}
where t is a random variable on a sample space T and θ is the n-dimensional parameter vector

of the model. A mapping ξ :M→ R
n, i.e. ξ(p(t|θ)) = θ, is defined that plays the role of a co-

ordinate chart. Thus, for each model p(t|θ) its parameter vector θ plays the role of a coordinate

vector. This introduces a differentiable structure which makes M a differentiable manifold. As

an example we consider a statistical manifoldM of Gaussian distributions [Amari, 1959]. M is

composed of all Gaussian distributions N (t;µ, σ) and each Gaussian distribution is addressed

on M by coordinate vector θ = (µ, σ).

As aforementioned in section 5.2, the KLD between two distributions P (·) and Q(·) is defined

as:

DKL [P ||Q] =

∫

T
P (t) log

P (t)

Q(t)
dt.

We now consider the KLD between a distribution p(·|θ), and its infinitesimal perturbation

p(·|θ + dθ) on M:

DKL [p(·|θ)||p(·|θ + dθ)] =

∫

T
p(t|θ) log

p(t|θ)

p(t|θ + dθ)
dt. (5.34)

Since we are interested in the KLD between p(·|θ) and perturbed versions of it, it is convenient

to define the following divergence function:

g(dθ) ≡ DKL [p(·|θ)||p(·|θ + dθ)] . (5.35)

Following [Calmet and Calmet, 2005], we take a second-order Taylor expansion of the new dis-

tance function in the neighbourhood of dθ:

g(dθ) = g(0) +∇0g(dθ)(dθ) +
1

2
dθT∇2

0g(dθ)dθ. (5.36)

Since DKL [p(·|θ)||p(·|θ + 0)] = 0, it follows that g(0) = 0. However, since g(0) = 0 which is
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the minimum value of the function, it follows that g(0) is an inflexion point, thus ∇0g(dθ) = 0.

The second order gradient of g(dθ) is:

∇2g(dθ) = −∇
∫

T
p(t|θ)∇ log p(t|θ + dθ)dt = −E[∇2 log p(t|θ + dθ)], (5.37)

which we identify as the negative Fisher information given by (5.31). Thus the KLD between a

distribution and its infinitesimally perturbed version is measured as:

DKL[p(·|θ)||p(·|θ + dθ)] =
1

2
dθTF (θ)dθ. (5.38)

Thus, the Fisher information matrix (FIM) acts as a metric tensor on the manifold of prob-

ability distributions parametrised by p(·|θ).

5.6 Fisher Information as a Magnification Factor for GTM and

Extensions

In the following sections we shall calculate the FIM, that acts as a metric tensor, for the original

GTM and its extensions discussed in chapter 4. The FIM is calculated locally at each latent

point x. Determination of FIM allows us to calculate distances between model p(·|x) addressed

by x and model p(·|dx) addressed by x+ dx. Such distances are calculated by:

DKL[p(·|x)||p(·|x + dx))] =
1

2
dxTF (x)dx. (5.39)

The situation is illustrated in Fig. 5.5. The same perturbation scheme as in the KLD ap-

proximation method for estimating magnification factors, is employed here. We note, however,

that unlike the KLD approximation this method constitutes an analytical way that explicitly

takes into consideration the manifold on which the local noise models lie and provides a more

theoretically satisfying approach.

5.6.1 FIM for Original GTM

We re-derive the magnification factors for the original GTM in [Bishop et al., 1997] using the

concept of FIM. In GTM, as discussed in section 4.1, the local noise models are spherical

Gaussians of common variance σ2. The log-likelihood for a vector input t under model p(·|x) is:

log p(·|x) = log
1

σ
√

2π
− 1

2σ2
(t − µx)T (t − µx). (5.40)

109



H

M

+1

+1

−1

x + dx

x

x1

x2

p(.|x+dx)

p(.|x)

V

Fig. 5.5: Two-dimensional manifold M of local noise models p(·|x) parametrised by the latent
space V (through (4.17)-(4.19) in the case of GTM-HMTM). The manifold is embedded in
manifold H of all noise models of the same form. Latent coordinates x are displaced to x+dx.
Kullback-Leibler divergence DKL[p(·|x)||p(·|x + dx)] between the corresponding noise models
p(·|x), (p(·|x + dx) ∈ M can be determined via Fisher information matrix F (x) that acts like
a metric tensor on the Riemannian manifold M.

The second order derivatives of the log-likelihood of model p(·|x) with respect to the param-

eters xr, xs with r, s ∈ 1, 2 are:

∂2

∂xr∂xs
log p(·|x) =

∂2

∂xr∂xs

(

log
1

σ
√

2π
− 1

2σ2
(t− µx)T (t− µx)

)

,

=
∂

∂xs

(
1

σ2
(t− µx)TW

∂

∂xr
φ(x)

)

,

= − 1

σ2

∂

∂xs
φ(x)TW TW

∂

∂xr
φ(x) +

1

σ2
(t− µx)TW

∂2

∂xr∂xs
φ(x).

(5.41)

Using the definition of FIM in (5.31), the elements of FIM are:

F (x)r,s = −
∫

T

∂2

∂xr∂xs
log p(t|x)dt

= −
∫

T
− 1

σ2

∂

∂xs
φ(x)TW TW

∂

∂xr
φ(x) +

1

σ2
(t− µx)W

∂2

∂xr∂xs
φ(x)dt

=
1

σ2

∂

∂xs
φ(x)TW TW

∂

∂xr
φ(x) +

∫

T

1

σ2
(t −µx)TW

∂2

∂xr∂xs
φ(x)dt

=
1

σ2

∂

∂xs
φ(x)TW TW

∂

∂xr
φ(x). (5.42)

This formula is in correspondence (discarding constants) to the magnification factors ob-

tained via the original derivation in section 5.1 (where the ratio of areas was considered) and

the KLD approximation in section 5.2.1.
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5.6.2 FIM for GTM-HMM

In [Tiňo et al., 2004] GTM is extended to the visualisation of symbolic sequences using HMMs

as noise models. Each point x ∈ V is mapped to a set of HMM parameters that address an

HMM in the constrained two-dimensional manifold M. The family of HMMs considered are

HMMs that emit discrete symbols from an alphabet A of A number of discrete symbols st. The

respective mappings for generating the initial, transition, and emission parameters are:

• Initial probabilities:

π(x) = {p(q1 = k|x)}k=1,...,K = {gk(W (π)φ(x))}k=1,...,K , (5.43)

• Transition probabilities:

B(x) = {p(qt = l|qt−1 = k,x)}k=1,...,K,l=1,...,K = {gl(W
(Bk)φ(x))}k=1,...,K , (5.44)

• Emission probabilities:

Ψ(x) = {p(st = s|qt−1 = k,x)}s=1,...,S,k=1,...,K = {gl(W
(ψk)φ(x))}s=1,...,S,k=1,...,K.

(5.45)

Thus, each point x ∈ V is mapped to a set of HMM parameters that address an HMM in

space M. We would like to calculate the local FIM and use it as the metric tensor to estimate

the local magnification factors. Unfortunately, there is no closed-form formula for calculating

FIM for HMMs. However in [Lystig and Hughes, 2002], a framework for the efficient calculation

of the observed FIM of HMMs is presented. It is based on a variant of the forward algorithm (see

(3.45)-(3.47)) that is immune to numerical underflow. We adapt the framework to the special

kind of GTM-parametrisation of HMMs expressed by (5.43)-(5.45).

We first calculate the likelihood using this revised forward algorithm. Similar to the forward

algorithm, the revised version is a recursive process that starts from the beginning of the se-

quence. Notation λk(t;x) that follows below, denotes the partially calculated likelihood of the

HMM addressed by latent point x, where parameter t = 1, 2, . . . , T indexes the time (position)

that a symbol occurs, while subindex k denotes the current state k = 1, 2, . . . ,K.

• Initial step, at first time step t=1:

λk(1;x) = p(s1|q1 = k,x)p(q1 = k|x). (5.46)
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• Recursive step, at time steps t = 2, . . . , T :

λk(t;x) = p(st, qt = k|s1, . . . , st−1,x)

=

K∑

i=1

[λi(t− 1;x)p(st|qt = k,x)p(qt = k|qt−1 = i,x)](Λ(t− 1;x))−1,

(5.47)

where Λ(t;x) =
∑K

j=1 λj(t;x). Thus, the model log-likelihood can be written as:

logL(x|D) =
T∑

t=1

log Λ(t;x). (5.48)

Of course, this quantity is in theory identical to the result of the forward algorithm, but in

practice it may be more accurate due to numerical instabilities.

What are the sequences used in estimating the local Fisher information matrix at point x?

As we saw in (5.31), FIM is defined as the expectation of all observations generated by the

considered probabilistic model p(·|x) at hand. Hence, when estimating the local FIM at latent

point x, we generate a set of sequences from the HMM p(·|x) addressed by x. We denote this

set of sequences by S(x). We assume that the sequences in S(x) = {s(1), . . . , s(N)} are of length

T .

Moreover, the FIM in (5.31) requires the 2-nd order derivatives of the log-likelihood which is

calculated by (5.48). Based on this revised forward algorithm, we need the 2-nd order derivatives

of (5.48) with respect to the coordinates of latent point x. However, before we calculate the

2-nd order derivatives of (5.48), it is necessary to calculate the 1-st order derivatives of (5.48).

These derivatives, as we shall see, require in turn the calculation of further derivatives, namely

the 1-st and 2-nd order derivatives of the parameters of p(·|x) with respect to the coordinates

of x.

We commence the calculation of the aforementioned menagerie of derivatives with the 1-st

order derivatives.

1-st Order Derivatives

In this step, as in the forward algorithm, we start at the beginning of the sequence, recursively

evaluating the 1-st order derivatives of the revised likelihood with respect to the coordinates of

latent point x. In this setting where the latent space V is a two-dimensional space, each latent

point has two coordinates xr, r = 1, 2:
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• Initial step, at first time step t=1:

ξk(1; r,x) =
∂

∂xr
p(s1|q1 = k,x)p(q1 = k|x)

= [
∂

∂xr
p(s1|q1 = k,x)]p(q1 = k|x) + p(s1|q1 = k,x)[

∂

∂xr
p(q1 = k|x)].

(5.49)

• Recursive step, at time steps t = 2, . . . , T :

ξk(t; r,x) =

T∑

i=1

{

ξi(t− 1;xr,x)p(st|qt = k,x)p(qt = i|qt−1 = k,x)

+ λi(t− 1;x)[
∂

∂xr
p(st|qt = k,x)]p(qt = k|qt−1 = i,x)

+ λi(t− 1;x)p(st|qt = k,x)[
∂

∂xr
p(qt = k|qt−1 = i,x)]

}

(Λ(t− 1;x))−1.

(5.50)

The 1-st order derivative of the log-likelihood with respect to xr is then:

∂

∂xr
logL(x|D) =

Ξ(T ; r,x)

Λ(T ;x)
, (5.51)

where Ξ(t; r,x) =
∑K

j=1 ξj(t; r,x).

The calculations recursively employ ξi(t; r,x), λi(t;x) and Λ(t;x). They also employ the

1-st order derivatives of the HMM parameters of p(·|x) induced by the GTM-HMM, namely

the derivatives of the initial probabilities ∂
∂xr

p(s1|q1 = k,x), transition probabilities ∂
∂xr

p(qt =

k|qt−1 = i,x) and emission probabilities ∂
∂xr

p(st|qt = k,x). We proceed with the calculation of

the derivatives of the HMM parameters of p(·|x).

• 1-st order derivative of initial probability for state k under the parametrisation in (5.43):

∂

∂xr
p(h1 = k|x) =

∂

∂xr
gk(W (π)φ(x)) =

∂

∂xr

exp(W
(π)
k φ(x))

∑K
i=1 exp(W

(π)
i φ(x))

= gk(W (π)φ(x))(W
(π)
k

∂

∂xr
φ(x)−

K∑

i=1

[gi(W
(π)φ(x))W

(π)
i

∂

∂xr
φ(x)]).

(5.52)

• 1-st order derivative of transition from state k to state l under the parametrisation in
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(5.44):

∂

∂xr
p(qt = l|qt−1 = k,x) = gl(W

(Bk)φ(x))

×
(

W
(Bk)
l

∂

∂xr
φ(x)−

K∑

i=1

[gi(W
(Bk)φ(x))W

(Bk)
i

∂

∂xr
φ(x)]

)

.

(5.53)

• 1-st order derivative of emission probability of symbol s at state k under the parametrisa-

tion in (5.45):

∂

∂xr
p(s

(n)
t = s|qt = k,x) = gs(W

(ψk)φ(x))

×
(

W
(ψk)
s

∂

∂xr
φ(x)−

q
∑

i=1

[gi(W
(ψk)φ(x))W

(ψk)
i

∂

∂xr
φ(x)]

)

.

(5.54)

Moreover, in the preceding equations, the calculation of the 1-order derivatives of the basis

functions, ∂
∂xr
φ(x) is required. We have:

∂

∂xr
φ(x) =

[

− 1

σ2
φm(x)(xr − µm,r)

]

. (5.55)

More detailed derivations are presented in Appendix D. We proceed with the calculation of

2-nd order derivatives.

2-nd Order Derivatives

We calculate the 2-nd order derivatives of the revised forward algorithm again in a recursive

fashion, with respect to the r-th and h-th coordinates of latent point x. We start at the beginning

of the sequence:

• Initial step, at time step t = 1:

ωk(1;h, r,x) = [
∂2

∂xh∂xr
p(s1|q1 = k,θ)]p(q1 = k|θ) + [

∂

∂xh
p(s1|q1 = k,θ)][

∂

∂xr
p(q1 = k|θ)]

+ [
∂

∂xr
p(s1|q1 = k,θ)][

∂

∂xh
[p(q1 = k|θ)] + p(s1|q1 = k,θ)[

∂2

∂xh∂xr
p(q1 = k|θ)].

(5.56)

114



• Recursive step, at time steps t = 2, . . . , T :

ωk(t;h, r,x) =

K∑

i=1

ωi(t− 1;h, r,x)p(st|qt = k,x)p(qt = k|qt−1 = i,x)

+ ψi(t− 1, h,x)[
∂

∂xr
p(st|qt = k,x)]p(qt = k|qt−1 = i,x)

+ ψi(t− 1, r,x)[
∂

∂xh
p(st|qt = k,x)]p(qt = k|qt−1 = i,x)

+ λi(t− 1;x)[
∂

∂xh
p(st|qt = k,x)][

∂

∂xr
p(qt = k|qt−1 = i,x)

+ λi(t− 1;x)[
∂

∂xr
p(st|qt = k,x)][

∂

∂xh
p(qt = k|qt−1 = i,x)

+ λi(t− 1;x)p(st|qt = k,x)][
∂2

∂xh∂xr
p(qt = k|qt−1 = i,x)(Λ(t− 1;x))−1.

(5.57)

The 2-nd order derivative of the log-likelihood with respect to xr, xh is then:

∂2

∂xh∂xr
logL(x|D) = Qh,r(x) =

Ω(T ;h, r,x)

Λ(T ;x)
− Ξ(T ;h,x)Ξ(T ; r,x)

(Λ(T ;x))2
, (5.58)

where Ω(t;h, r,x) =
∑K

t=1 ωt(t;h, r,x).

After these calculations, we obtain the elements of the observed Fisher information matrix

F̂ (x), given the set of sequences S(x), as:

F̂ (x)h,r = − 1

N

N∑

n=1

Q(n)
h,r(x), (5.59)

where we have augmented the notation of quantity Qh,r(x) with index n to denote the cal-

culation of the 2-nd order derivative of the log-likelihood for the n-th sequence in set S(x) =

{s(1), . . . , s(N)}.
The preceding calculations recursively employ ω(t− 1;h, r,x), ψ(t− 1;h,x), λ(t− 1;x) and

Λ(t − 1;θ). Moreover, they employ 2-nd order derivatives of the HMM parameters induced

by GTM-HMM, namely derivatives of the initial probabilities ∂2

∂xh∂xr
p(h1 = k|x), the transi-

tion probabilities ∂2

∂xh∂xr
p(qt = l|qt−1 = k,x) and the emission probabilities ∂2

∂xh∂xr
p(s

(n)
t =

s|qt = k,x). We proceed with the calculation the 2-nd order derivatives of the induced HMM

parameters.
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• 2-nd order derivative of initial probability for state k under the parametrisation in (5.43):

∂2

∂xh∂xr
p(h1 = k|x) =

∂2

∂xh∂xr
gk(W (π)φ(x)) =

∂

∂xh

(
∂

∂xr
gk(W (π)φ(x))

)

=[
∂

∂xh
gk(W (π)φ(x))](W

(π)
k

∂

∂xr
φ(x)−

K∑

i=1

[gi(W
(π)φ(x))W

(π)
i

∂

∂xr
φ(x)])

+gk(W (π)φ(x))

(

W
(π)
k

∂2

∂xh∂xr
φ(x)−

K∑

i=1

[
∂

∂xh
gi(W

(π)φ(x))W
(π)
i

∂

∂xr
φ(x)

+ gi(W
(π)φ(x))W

(π)
i

∂2

∂xh∂xr
φ(x)]

)

. (5.60)

• 2-nd order derivative of transition probability from state k to state l under the parametri-

sation in (5.44):

∂2

∂xh∂xr
p(qt = l|qt−1 = k,x) =

[
∂

∂xh
gl(W

(Bk)φ(x))]

(

W
(Bk)
l

∂

∂xr
φ(x)−

K∑

i=1

[gi(W
(Bk)φ(x))W

(Bk)
i

∂

∂xr
φ(x)]

)

+gl(W
(Bk)φ(x))

(

W
(Bk)
l

∂2

∂xh∂xr
φ(x)−

K∑

i=1

[
∂

∂xh
gi(W

(Bk)φ(x))W
(Bk)
i

∂

∂xr
φ(x)

+gi(W
(Bk)φ(x))W

(Bk)
i

∂2

∂xh∂xr
φ(x)]

)

. (5.61)

• 2-nd order derivative of emission probability for s at state k under the parametrisation in

(5.45):

∂2

∂xh∂xr
p(s

(n)
t = s|qt = k,x) =

gs(W
(ψk)φ(x))

(

W
(ψk)
s

∂

∂xh∂xr
φ(x)−

K∑

i=1

[
∂

∂xh
gi(W

(ψk)φ(x))W
(ψk)
i

∂

∂xr
φ(x)

+gi(W
(ψk)φ(x))W

(ψk)
i

∂2

∂xh∂xr
φ(x)]

)

. (5.62)

We conclude with the calculation of the 2-order derivatives of the basis functions, ∂2

∂xh∂xr
φ(x),

required in the preceding formulas. We have:

∂2

∂xh∂xr
φ(x) = − 1

σ2
φm(x) + (xh − µm,h)(x)(xr − µm,r)

1

σ4
φm. (5.63)

More detailed derivations can be found in Appendix D.
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5.6.3 FIM for GTM-HMTM

Magnification factors for GTM-HMTM are calculated in the same fashion as for GTM-HMM in

the previous section 5.6.2. Of course in the GTM-HMTM setting, points x in latent space V
are mapped to a p(·|x) which is an HMTM residing on a two-dimensional manifold M. Again,

in order to appreciate the magnification around a point x, we need to estimate the local FIM.

Just like in GTM-HMM, this requires the 1-st and 2-nd order derivatives of the model log-

likelihood of p(·|x) with respect to the coordinates of x. It also requires the 1-st and 2-nd

order derivatives of the HMTM parameters with respect to the coordinates of x. Moreover, as

required by the Fisher information matrix in (5.31), the likelihood is evaluated over a set of

sample trees Y(x) = {y(1), . . . ,y(N)} generated by p(·|x). First, the 1-st order derivatives are

presented followed by the 2-nd order derivatives.

1-st Order Derivatives

Likelihood for HMTMs is calculated via the upward recursion [Crouse et al., 1998] that was

presented in section 3.4.1. For ease of exposition, we restate here the steps of the upward

recursion:

• The recursion starts from the leaves u of the tree:

βk(u;x) = p(ou|qu = k,x). (5.64)

• Recursive step for non-leaf nodes u:

βk(u;x) = p(yu|qu = k,x) =

{
∏

v∈ch(u)

p(yv|qu = k,x)

}

p(ou|qu = k,x)

=

{
∏

v∈ch(u)

K∑

i=1

p(yv|qv = i,x)p(qv = i|qu = k,x)

}

p(ou|qu = k,x)

=

{
∏

v∈ch(u)

K∑

i=1

βi(v;x)p(qv = i|qu = k,x)

}

p(ou|qu = k,x). (5.65)

• Final step:

p(y|x) =
K∑

k=1

βk(1;x)p(q1 = k|x). (5.66)
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Starting again from the leaves of tree y, we recursively evaluate 1-st order derivatives of

likelihood, based on the upward recursion, with respect to the latent coordinates x1, x2. Let

r ∈ {1, 2}:

• The recursion starts from the leaves of the tree:

∂

∂xr
βk(u;x) =

∂

∂xr
p(ou|qu = k,x). (5.67)

• Recursive step for non-leaf nodes u:

∂

∂xr
βk(u,x) =

∂

∂xr
p(yu|qu = k,x) =

{
∂

∂xr
γk(u;x)

}

p(ou|qu = k,x)

+ γk(u;x)

{
∂

∂xr
p(ou|qu = k,x)

}

, (5.68)

where

γk(u;x) =
∏

v∈ch(u)

ζk(u, v;x),

ζk(u, v;x) =

K∑

i=1

βi(v;x)p(qv = i|qu = k,x),

∂

∂xr
γk(u;x) = γk(u;x)

∑

v∈ch(u)

∂

∂xr
log ζk(u, v;x),

∂

∂xr
ζk(u, v;x) =

K∑

i=1

∂

∂xr
βi(v;x)p(qv = i|qu = k,x) + βi(v;x)

∂

∂xr
p(qv = i|qu = k,x).

(5.69)

• Final step:

∂

∂xr
p(y|x) =

K∑

k=1

{
∂

∂xr
βk(1;x)

}

p(q1 = k|x) + βk(1;x)

{
∂

∂xr
p(q1 = k|x)

}

.

(5.70)

The above calculations depend on the 1-st order derivatives of initial state, state transition

and state-conditional emission probabilities with respect to the latent coordinates:

• 1-st order derivative for initial probability for state k under the parametrisation in (4.18):
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∂

∂xr
p(q1 = k|x) = gk(W (π)φ(x))

(

W
(π)
k

∂

∂xr
φ(x)−

K∑

i=1

gi(W
(π)φ(x))W

(π)
i

∂

∂xr
φ(x)

)

.

(5.71)

• 1-st order derivative for transition probability from state k to state l under the parametri-

sation in (4.19):

∂

∂xr
p(qu = l|qρ(u) = k,x) = gl(W

(Bk)φ(x))

(

W
(Bk)
l

∂

∂xr
φ(x)

−
K∑

i=1

gi(W
(Bk)φ(x))W

(Bk)
i

∂

∂xr
φ(x)

)

.

(5.72)

• 1-st order derivative for means of the emission distribution for state k under the parametri-

sation in (4.17):

∂

∂xr
µk =

∂

∂xr
W (ψk)φ(x) = W (ψk) ∂

∂xr
φ(x). (5.73)

The above derivatives regarding the initial state, state transition and emission parameters

are calculated in the same fashion as the corresponding 1-st order derivatives in the case of GTM-

HMM (Appendix D). The 1-st order derivatives of the basis function ∂
∂xr

φ(x) are identical to

(5.55).

2-nd Order Derivatives

We repeat the recursion once more, this time calculating the 2nd-order derivatives. Let h, r ∈
{1, 2}:

• The recursion starts from the leaves of the tree:

∂2

∂xh∂xr
βk(u;x) =

∂2

∂xh∂xr
p(ou|qu = k,x). (5.74)
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• Recursive step for non-leaf nodes u:

∂2

∂xh∂xr
βk(u;x) =

∂2

∂xh∂xr
p(yu|qu = k,x)

=
∂2

∂xh∂xr
γk(u;x)p(ou|qu = k,x) +

∂

∂xh
γk(u;x)

∂

∂xr
p(ou|qu = k,x)

+
∂

∂xr
γk(u;x)

∂

∂xh
p(ou|qu = k,x) + γk(u;x)

∂2

∂xh∂xr
p(ou|qu = k,x),

(5.75)

where

∂2

∂xh∂xr
γk(u;x) =

∂

∂xh

{

γk(u;x)
∑

v∈ch(u)

∂

∂xr
log ζk(u, v;x)

}

= γk(u;x)

(
∑

v∈ch(u)

∂

∂xh
log ζk(u, v;x)

)(
∑

v∈ch(u)

∂

∂xr
log ζk(u, v;x)

)

+ γk(u;x)

( K∑

i=1

−1

(ζk(u, v;x))2
∂

∂xh
ζk(u, v;x)

∂

∂xr
ζk(u, v;x)

+
1

ζk(u, v;x)

∂2

∂xh∂xr
ζk(u, v;x)

)

.

(5.76)

where

∂2

∂xh∂xr
ζk(u, v;x) =

K∑

i=1

∂2

∂xh∂xr
βi(v;x)p(qv = i|qu = k,x) +

∂

∂xh
βi(v;x)

∂

∂xr
p(qv = i|qu = k,x)

+
∂

∂xh
βi(v;x)

∂

∂xr
p(qv = i|qu = k,x) + βi(v;x)

∂2

∂xh∂xr
p(qv = i|qu = k,x).

(5.77)

• Final step:

∂2

∂xh∂xr
p(y|x) =

K∑

k=1

{
∂2

∂xh∂xr
βk(1;x)

}

p(q1 = k|x) +

{
∂

∂xh
βk(1;x)

}{
∂

∂xr
p(q1 = k|x)

}

+

{
∂

∂xr
βk(1;x)

}{
∂

∂xh
p(q1 = k|x)

}

+ βk(1;x)

{
∂2

∂xh∂xr
p(q1 = k|x)

}

.

(5.78)

Finally, we need the derivatives of the log-likelihood:
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∂2

∂xh∂xr
log p(y|x) =

p(y|x) ∂2

∂xh∂xr
p(y|x)− ∂

∂xh
p(y|x) ∂

∂xr
p(y|x)

(p(y|x))2
. (5.79)

The elements of the observed Fisher information matrix are calculated given a set of trees

Y(x) = {y(1), . . . ,y(N)} sampled by model p(·|x):

F̂(x)h,r = − 1

N

N∑

n=1

∂2

∂xh∂xr
log p(y(n)|x). (5.80)

The above calculations depend on the 2-nd order derivatives of initial state, state transition

and state-conditional emission probabilities with respect to the latent coordinates:

• 2-nd order derivatives for initial probability for state k under the parametrisation in (4.18):

∂2

∂xh∂xr
p(q1 = k|x) =

∂

∂xh
gk(W (π)φ(x))

(

W (π) ∂

∂xr
φ(x)−

K∑

i=1

gi(W
(π)φ(x))W

(π)
i

∂

∂xr
φ(x)

)

+ gk(W (π)φ(x))

(

W
(π)
k

∂2

∂xh∂xr
φ(x)−

K∑

i=1

[
∂

∂xh
gi(W

(π)φ(x))W
(π)
i

∂

∂xr
φ(x)

+ gi(W
(π)φ(x))W

(π)
i

∂2

∂xh∂xr
φ(x)

])

. (5.81)

• 2-nd order derivatives for transition probability from state k to state l under the parametri-

sation in (4.19):

∂2

∂xh∂xr
p(qu = l|qρ(u) = k,x) =

∂

∂xh
gl(W

(Bk)φ(x))

(

W
(Bk)
l

∂

∂xr
φ(x)−

K∑

i=1

gi(W
(Bk)φ(x))W

(Bk)
i

∂

∂xr
φ(x)

)

+gl(W
(Bk)φ(x))

(

W
(Bk)
l

∂2

∂xh∂xr
φ(x)−

K∑

i=1

[
∂

∂xh
gi(W

(Bk)φ(x))W
(Bk)
i

∂

∂xr
φ(x)

+gi(W
(Bk)φ(x))W

(Bk)
i

∂2

∂xh∂xr
φ(x)

])

. (5.82)

• 2-nd order derivatives for means of the emission distribution for state k under the parametri-

sation (4.17):

∂2

∂xh∂xr
µk =

∂2

∂xh∂xr
W (ψk)φ(x) = W (ψk) ∂2

∂xh∂xr
φ(x). (5.83)
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The above derivatives regarding the initial state, state transition and emission parameters

are calculated in the same fashion as the corresponding 2-st order derivatives in the case of

GTM-HMM (Appendix D). The 2-nd order derivatives of the basis function ∂2

∂xh∂xr
φ(x) are

identical to (5.63).

5.6.4 FIM for GTM-MTM

The same procedure for calculating magnification factors for GTM-HMM and GTM-HMTM

is re-iterated here in the setting of GTM-MTM. Points x in latent space V are mapped to a

two-dimensional manifoldM of MTMs. In order to appreciate the magnification around a point

x, we need to estimate the local Fisher information matrix. This requires the 1-st and 2-nd

order derivatives of the model log-likelihood of p(·|x) with respect to the coordinates of x. It

also requires the 1-st and 2-nd order derivatives of the MTM parameters with respect to the

coordinates of x. Moreover, as required by the Fisher information matrix in (5.31), likelihood

is evaluated over a set of sample trees Y(x) = {y(1), . . . ,y(N)} generated by p(·|x). First, the

1-st order derivatives are presented followed by the 2-nd order derivatives.

1-st Order Derivatives

The log-likelihood for MTMs is calculated in section 3.4.4 via (3.97). We restate it here for

p(·|x) addressed by x and calculated on a single tree y:

log p(y|x) =
K∑

k=1

K∑

l=1

R∑

r=1

νrkl log p(ou = l|oρ(u) = k, pos(u) = r,W), (5.84)

We calculate the 1-st order derivatives of the log-likelihood of MTM p(·|x) with respect to the

latent coordinates x1, x2. Let h ∈ {1, 2}:

∂

∂xh

K∑

k=1

K∑

l=1

R∑

r=1

νrkl log p(ou = l|oρ(u) = k, pos(u) = r,W) =

K∑

k=1

K∑

l=1

R∑

r=1

νrkl
1

p(ou = l|oρ(u) = k, pos(u) = r,W)

∂

∂xh
p(ou = l|oρ(u) = k, pos(u) = r,W).

(5.85)

The 1-st order derivative of transition parameter p(ou = l|oρ(u) = k, pos(u) = r) under the
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parametrisation in (4.38) is:

∂

∂xh
p(ou = l|oρ(u) = k, pos(u) = r,W) =

∂

∂xh
gl(W

r,kφ(x)) =
∂

∂xh

exp(W r,k
l φ(x))

∑K
j=1 exp(W r,k

j φ(x))

=

exp(W r,k
l φ(x))W r,k

l
∂

∂xh
φ(x)

(
∑K

j=1 exp(W r,k
j φ(x))

)

(
∑K

j=1 exp(W r,k
j φ(x))

)2

−
exp(W r,k

l φ(x))

(
∑K

j=1 exp(W r,k
j φ(x))W r,k

l
∂

∂xh
φ(x)

)

(
∑K

j=1 exp(W r,k
j φ(x))

)2

= gl(W
r,kφ(x))

(

W
r,k
l

∂

∂xh
φ(x)−

K∑

j=1

gj(W
r,kφ(x))W r,k

l

∂

∂xh
φ(x)

)

.

(5.86)

The 1-st order derivatives of the basis function ∂
∂xr

φ(x) are identical to (5.55).

2-nd Order Derivatives

We proceed with the calculation of the 2-nd order derivatives of the log-likelihood of MTM

p(·|x) via (5.84) with respect to the coordinates of x. Let j, h ∈ {1, 2}:

∂2

∂xj∂xh

K∑

k=1

K∑

l=1

R∑

r=1

νrkl log p(ou = l|oρ(u) = k, pos(u) = r,W) =

K∑

k=1

K∑

l=1

R∑

r=1

νrkl

( −1

(p(ou = l|oρ(u) = k, pos(u) = r,W))2
∂

∂xj
p(ou = l|oρ(u) = k, pos(u) = r,W)

× ∂

∂xh
p(ou = l|oρ(u) = k, pos(u) = r,W)

+
1

p(ou = l|oρ(u) = k, pos(u) = r,W)

∂2

∂xj∂xh
p(ou = l|oρ(u) = k, pos(u) = r,W)

)

. (5.87)

The 2-nd order derivative of transition parameter p(ou = l|oρ(u) = k, pos(u) = r) under the

parametrisation in (4.38) is:
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∂2

∂xj∂xh
p(ou = l|oρ(u) = k, pos(u) = r,W) =

∂

∂xj

{

gl(W
r,kφ(x))

(

W
r,k
l

∂

∂xh
φ(x)−

K∑

j=1

gj(W
r,kφ(x))W r,k

l

∂

∂xh
φ(x)

)}

=

{
∂

∂xj
gl(W

r,kφ(x))

}(

W
r,k
l

∂

∂xh
φ(x)−

K∑

j=1

gj(W
r,kφ(x))W r,k

l

∂

∂xh
φ(x)

)

+ gl(W
r,kφ(x))

(

W
r,k
l

∂2

∂xj∂xh
φ(x)−

K∑

j=1

∂

∂xj
gj(W

r,kφ(x))W r,k
l

∂

∂xh
φ(x)

+ gj(W
r,kφ(x))W r,k

l

∂2

∂xj∂xh
φ(x)

)

. (5.88)

The 2-nd order derivatives of the basis function ∂2

∂xh∂xr
φ(x) are identical to (5.63).

The elements of the observed Fisher information matrix are calculated given a set of trees

Y(x) = {y(1), . . . ,y(N)} that are sampled by model p(·|x) are given in the same fashion as for

GTM-HMTM in section 5.6.3:

F̂(x)h,r = − 1

N

N∑

n=1

∂2

∂xh∂xr
log p(y(n)|x). (5.89)

5.7 Experiments and Results on Magnification Factors

In this section we experimentally illustrate the KLD approximation and the FIM method in

revealing the magnification factors of the manifoldM of local noise models. In order to illustrate

the magnification factors on manifold M, for each latent centre xc, c = 1, 2, . . . , C, we compute

the KLD between each xc and its perturbation xc + dx by using the equations presented in

the preceding sections. Here we define a rectangular, regular grid of 25 × 25 points on the

latent space. This divides the grid in 625 squares with a latent point at the centre of each

square. Increasing the number of grid points results to finer magnification plots. As previously

described, we perturb each latent centre x in 16 regularly spaced directions on a small circle (we

have set its radius to 10−5). This is illustrated in Fig. 5.2. The same procedure is employed for

calculating the magnification factors around each xc via FIM. In the case of FIM, we note that

alternatively, we could have used singular value decomposition of the FIM to find and quantify

the local dominant stretching directions in the latent space.

For each latent point, out of the 16 directions of perturbation, the direction of maximal

magnification is represented by a straight line drawn through the centre of the corresponding
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Fig. 5.6: Visualisation of toy dataset of binary sequences (a) and Bach chorals [Tiňo et al., 2004]
(b) via GTM-HMM.

square. The length of the line signifies the level of the magnification, i.e. shorter lines indicate

lower magnification, longer lines indicate higher magnification. The plots are coloured as heat

maps. Colours rank from white (highest values) to yellow to red to black/dark (lowest values) and

signify the level of magnification. Thus, white squares are associated with high magnification,

whereas black squares are associated with low magnification.

5.7.1 Hidden Markov Models

As aforementioned, the GTM-HMM is introduced in [Tiňo et al., 2004] as an extension of GTM

to sequences. We illustrate the magnification factors for GTM-HMM on two datasets. The

first dataset is a toy dataset constructed by sampling 100 binary sequences of length 40 from

four HMMs (K = 2 hidden states) with identical emission structure, i.e. the HMMs differed
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(a) (b)

Fig. 5.7: Magnification factors via FIM (a) and KLD (b) for GTM-HMM on toy dataset.

only in transition probabilities. The other dataset is a set of 100 chorales by J.S. Bach from

the UCI repository of Machine Learning Databases and was used as one of the datasets in the

experiments in [Tiňo et al., 2004]. GTM-HMM was trained on both datasets and produced the

visualisation plots displayed in Fig. 5.6(a) and 5.6(b). In Fig. 5.6(a) toy sequences are marked

with four different markers, corresponding to the four different HMMs used to generate the

data set. We stress that the model was trained in a completely unsupervised way and that

the markers are used for illustrative purposes only. The four clusters are clearly discerned. Of

course, GTM-HMM benefits from the fact that the distributions used to generate data were

from the same model class as the local noise models. In Fig. 5.6(b) GTM-HMM has organised

the Bach choral sequences in a fashion that reflects certain melodic motives. Three main regions

are discerned, one in the upper part of the plot where flats dominate, the central left where

sharps dominate and the centre of the plot where we find that sharps and flats are very rare.

We used the trained GTM-HMM on the toy dataset to obtain representations of the induced

metric in the local noise model space based on the FIM and KLD approximation which can be

seen in Fig. 5.7(a) and 5.7(b), respectively. The plots are practically identical, which means

that the KLD approximation is accurate. The bright boundaries (white to yellow) indicate clear

separations on the map, and we identify four dark regions, one at the top left, one at the top

centre, one at the centre separated by a not a pronounced boundary from another dark region

at the right centre of the plot. These regions seem to correspond to the discovered clusters.

Fig. 5.8(a) and 5.8(b) illustrate the magnification factors for GTM-HMM trained on the

Bach chorals via Fisher information matrix and KLD approximation respectively. Here again
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(a) (b)

Fig. 5.8: Magnification factors via FIM (a) and KLD (b) for GTM-HMM on Bach chorals
dataset.

the KLD and FIM plots are practically identical. The magnification plots appear more complex

in this case, as there exist certain formations in locations where no data points are projected.

These formations are artifacts that do not model any subset of the data, but appear due to the

foldings of the map in the higher dimensional space as it attempts to capture the topographic

structure of the data. However, in the three main aforementioned locations in Fig. 5.6(b) where

data points do reside, dark regions are visible denoting the presence of data groups. Thus we

see that the upper region is clearly separated and that in the centre two mildly separated dark

regions are present. At the bottom left corner of the plot we see a small well separated dark

region that seems to correspond to the few sequences mapped in the same location in plot Fig.

5.6(b). These sequences seem to differ significantly when compared to the rest.

5.7.2 Hidden Markov Tree Models

We calculated magnification factors on all three datasets of section 4.3.1, the toy dataset created

by sampling HMTMs, the TPB, and the quadtree dataset. Regarding the toy dataset, we observe

that both plots of Fig. 5.9(a) and 5.9(b) illustrate very similar magnifications for the toy dataset.

It can be seen in both figures that the data have been organised in 4 distinct clusters, well

separated by bright regions that signify that the clusters have clear boundaries and are indeed

different from each other (compare with Fig. 4.6(a)).

Fig. 5.10(a) and 5.10(b) illustrate the magnification plots for the TPB dataset. The bright

region concentrated in the left upper corner of the plot concerns the topographic organisation of
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(a) (b)

Fig. 5.9: Magnification factors via FIM (a) and KLD approximation (b) for GTM-HMTM on
toy dataset.

(a) (b)

Fig. 5.10: Magnification factors via FIM (a) and KLD approximation (b) for GTM-HMTM on
TPB dataset.

the two ship classes (see Fig. 4.6(b)). The high magnification indicates that data points projected

in this area are very dissimilar to each other as abrupt changes occur in the underlying models.

This is verified by the fact that we have identified that class ∗, the class of ships with two masts,

has been split into three sub-clusters. On the other hand, the classes of policemen exhibit a

gentler separation between them as indicated by the moderately light area close to the right

upper corner. Finally the region of the classes of houses, which as we saw earlier have all been
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Fig. 5.11: KLD approximation for GTM-HMTM on quadtree dataset.

projected in one super-cluster, is characterised by very low magnification. This suggests, that

indeed this super-cluster is dense and that the underlying models fail to discern differences

between house patterns.

In Fig. 5.11 magnification factors for the quadtree dataset are displayed using the KLD

approximation method. The plot does not impart information on the presence of any clusters.

However, when inspected in conjunction with the state transitions in Fig. 4.10 and the means

of the emissions in Fig. 4.11, we can see how it reflects the situation of the visualisation plot

in Fig. 4.9 where an overlapping of images of different orientations occurs. We recall that

transition probabilities vary only little across the plot. Also, the plots of means exhibit a common

abrupt change close to their respective centres. We see that the magnification factors effectively

summarise the behaviour of the means corresponding to the three states: a high magnification

is observed at the centre of the plot where the means change the most. The magnification factor

plots via FIM were virtually identical to the ones obtained via KLD approximation.

5.7.3 Markov Tree Models

The magnification factors for the toy dataset of section 4.6 are presented in Fig. 5.12(a). The

clusters illustrated in Fig. 4.15 are visible here too, clearly separated by bright boundaries

signifying stretches in the manifold of local noise models. Inspecting the state transitions for

the toy dataset (similar to Fig. 4.7), a clear structure is observed. For example in Fig. 5.12(b),

where the transition probabilities that correspond to the 3-rd child are illustrated, the regions

underlying the three clusters indicate different trends. In the case of quadtree data set, the local
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Fig. 5.12: Magnification factors for GTM-MTM on toy dataset (a). State transitions for 3-rd
child node for toy dataset (b).

metric structure of GTM-MTM was varying rather slowly and so the magnification factor plot

(reflecting local differentiable structure of the noise manifold) was almost flat. The topographic

organisation is driven by small local changes in the noise models. Maps of magnification factors

are not well suited for such situations.

We also calculated magnification factors via FIM. The magnification factor plots were vir-

tually identical to the ones obtained via KLD approximation.
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Chapter 6

An Extension of GTM to the

Visualisation of Astronomical Light

Curves

Binary stars are gravitationally bound pairs of stars that orbit a common centre of mass. Astro-

nomical observations suggest that almost half of all stars are binary ones [Guinan and Engle, 2006].

Thus, study of such systems procures knowledge for a significant proportion of stars. Amongst

other reasons, binary stars are important to astrophysics because they allow calculation of fun-

damental quantities such as masses and radii. The increasing number of binary star discoveries,

provides samples for the testability of theoretical models for stellar formation and evolution.

Also, by measuring their fundamental parameters they can serve as distance indicators to galax-

ies. Moreover, the study of binaries has led to the discovery of extrasolar planets. A particular

subclass of binary stars are eclipsing binary stars. The luminosity of such stars varies over

time and forms a graph called a light curve. Light curves are important because they provide

information on the characteristics of stars and help in the identification of their type.

In this chapter we develop a novel GTM extension for the construction of topographic maps

of light curves of eclipsing binary stars. To that purpose we need to formulate an appropriate

noise model. Here the noise model is a physical model to which Gaussian noise is added.
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6.1 Light Curve Model

6.1.1 Physical Model

The physical model that generates light curves from eclipsing binary systems is described by

the following set of parameters: mass M1 ∈ [0.5, 100] (in solar masses) of the primary star

(star with highest mass of the pair), mass ratio q ∈ [0, 1] (hence mass of secondary star is

M2 = qM1), eccentricity e ∈ [0, 1] of the orbit and period ρ ∈ [0.5, 100] measured in days, all

of which specify the shape of the orbit. Furthermore, three angles describing the orientation of

the system are necessary [Hilditch, 2001]. Perpendicular to the line of sight of the observer is

a plane of reference called the plane of the sky (see Fig. 6.1). The plane containing the orbit

of the binary system is called the orbital plane. The angle between the plane of the sky and

the orbit plane is called inclination ı ∈ [0, π
2 ]. Thus, an angle of ı = π

2 signifies an edge on view

of the system. The plane of the sky and the orbit intersect at two points N and N ′. The line

connecting points N,N ′ is called the line of nodes. The angle that orients the orbital plane

with respect to the line of nodes is called the longitude of ascending node Ω ∈ [0, 2π] (and is

measured on the plane of sky). Angles ı and Ω together orient the orbital plane with respect to

the plane of the sky. Finally, the argument of periastron is the angle ω ∈ [0, 2π] that orients the

major axis of the elliptic orbit within its plane, that is ω is measured within the orbital plane.

These angles are illustrated in Fig. 6.1. However, angle Ω has no effect on the observed light

curves and is omitted from the model.

The mass of each star is linked to the luminosity radiated by a surface element of the star

according to the mass-luminosity relation:

L = M3.5. (6.1)

Moreover, masses are related to the radii of the stars according to the mass-radius relation:

R =







100.053+0.977 log10(M), if M < 1.728;

100.153+0.556 log10(M), otherwise.
(6.2)

From these relations we see that the primary star is the most luminous one and the one with

the greatest area of the pair (a star appears as a disc to an observer). Thus, the observed area

of a star is A = πR2 and the observed luminosity is LπR2. Henceforth, we shall index quantities

related to the stars of a binary system by 1 for the primary star (e.g. primary mass is M1) and

2 for the secondary star.
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It can be proved from Newton’s laws (amongst other methods also with pure geometrical

arguments [Goodstein and Goodstein, 1996]) that the orbits of one object in the gravitational

field of the other object is a conic section of eccentricity e. Values of e = 1 and e > 1 correspond

respectively to a parabola and hyperbola which are not closed orbits. Here we are interested in

the case where 0 ≤ e < 1. Furthermore, a two-body system can be equivalently formulated as

a system of two bodies where one is fixed and only one is in orbital motion. This formulation

is useful in the case we are interested in the relative motion of one of the bodies, as we are in

this case, where we are concerned with light curves. It is shown in [Hilditch, 2001] that in the

relative motion system, the eccentricity, period and semi-major of the moving body’s orbit are

equal to their counterparts in the two-body system, and only the masses transform.

The position of the orbiting body is calculated by Kepler’s equation as the distance r from

the fixed companion star on the elliptical orbit [Hilditch, 2001].

r(t) =
a(1− e2)

1 + e cos θ(t)
, (6.3)

where t is time and a is the semi-major axis of the ellipse calculated by Kepler’s third law. Point

Π in Fig. 6.1 is the periastron, the point where the distance between the orbiting and fixed body

is minimum. Angle θ is the angle between the radius and the periastron. Knowledge of θ would

allow us to determine the position of the orbiting body. Angle θ is indirectly inferred via an

auxiliary circle centred at the centre of the ellipse O and radius equal to semi-major axis. Point

Q is the vertical projection of the orbiting body’s position P to the auxiliary circle. Angle E is

called the eccentric anomaly and is given by Kepler’s equation [Hilditch, 2001]:

E(t) = e sinE(t) +
2π

ρ
(t− τ), (6.4)

where τ is the instance of time that the body was at the periastron. Kepler’s equation does

not admit an analytical solution. Instead an approximate solution may be found through the

Newton-Raphson method. The iteration starts with a first approximation of E0 = 2π
ρ (t− τ) and

is repeated until convergence:

E0(t) =
2π

ρ
(t− τ),

Ei(t) =
2π

ρ
(t− τ) + e sinEi−1(t). (6.5)

Via geometrical considerations it is proved that the relation between the true and eccentric
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anomaly is:

tan
θ(t)

2
= [(1 + e)/(1 − e)] 1

2 tan(
E(t)

2
) (6.6)

By knowledge of θ we can fix the position of the second star on the orbit using (6.3) and (6.6).

These positions correspond to the orbital plane and must be projected to the plane of the

observer in the form of Cartesian coordinates [Hilditch, 2001]:

X(t) = r(t)(cos(Ω) cos(ω + θ(t))− sin(Ω) sin(ω + θ(t)) cos(ı)), (6.7)

Y (t) = r(t)(cos(Ω) cos(ω + θ(t)) + cos(Ω) sin(ω + θ(t)) cos(ı)), (6.8)

Z(t) = r(t) sin(ω + θ(t)) sin(ı), (6.9)

which concludes the determination1 of positions of the stars with respect to the observer.

An observer of the binary system receives a variable luminosity from the eclipsing binary

system that plotted against time forms a light curve. This variability is due to the eclipses that

occur when one body passes in front (in the line of sight of the observer) of the other. This is

illustrated in Fig. 6.2. When no eclipse occurs (positions a, g) the luminosity is equal to the

sum of the luminosities radiated from the two bodies. The curved parts of the light curve occur

when a body partially obscures the other. We distinguish between partial eclipses (positions

b, f, h, l) where the phenomenon of the eclipse is at its beginning, and deep eclipses (positions

c, e, i, k) where the phenomenon is in a more advanced state. Two eclipses take place at each

period, one primary eclipse (position d) which occurs when the most luminous body of the pair

is obscured the most, and a secondary eclipse (position j) which occurs when the most luminous

body obscures its companion the most.

Obscured parts of the disks of the stars can be calculated via geometrical arguments in the

spirit of a simple light curve model in available2 at http://www.physics.sfasu.edu/astro/ebstar/ebstar.html.

The obscured area of each star is denoted by ∆A1(t) and ∆A2(t) at time t. The areas of the

visible parts of the discs of the stars are summarised in table 6.1. More details on the derivation

of the areas can be found in appendix F.

The luminosity received by the observer is:

fθ(t) = L1(A1 −∆A1(t)) + L2(A2 −∆A2(t)), (6.10)

where we introduce the notation fθ(t) that stands for the physical models of light curves

1Angle Ω does influence the position of the orbiting body. However, it does not have an influence on the light
curve and thus we treat it as a constant Ω = 0.

2Last accessed on the 12th September 2007.
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Fig. 6.1: Angles orientating the orbital plane with respect to the plane of sky. Adapted from
[Hilditch, 2001].

presented here. Vector θ = {M1, q, e, ı, ω, ρ} is a vector of the parameters of the physical model.

Having concluded an exposition of the light curve model, we note that the model is further

enhanced with limb-darkening. Limb-darkening [Hilditch, 2001] refers to the phenomenon of

the disc of the stars not being uniformly illuminated. Instead, a decrease in luminosity is

observed from the centre of the discs towards the edges of the discs. However, we shall not delve
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Fig. 6.2: Positions of stars (relative to observer’s line of sight) and corresponding light curve
phases. ∆ is the separation of the centres of gravity of the stars.

Table 6.1: Summary the areas of the visible discs of the stars. Column ‘pos’ refers to positions
in Fig. 6.2. Taken from http://www.physics.sfasu.edu/astro/ebstar/ebstar.html.

Primary star in front Secondary star in front

state pos A1 A2 A1 A2

no eclipse a,g πR2
1 πR2

2 πR2
1 πR2

2

partial eclipse b,f,h,l πR2
1 πR2

2 −∆A1 −∆A2 πR2
1 −∆A2 −∆A1 πR2

2

deep eclipse c,e,i,k πR2
1 ∆A1 −∆A2 πR2

1 − πR2
2 + ∆A2 −∆A1 πR2

2

eclipse d,j πR2
1 0 πR2

1 − πR2
2 πR2

2

into further detail regarding this phenomenon.

6.1.2 Prior Distribution on Model Parameters

The light curve model is supplemented by a set of prior densities on the physical parameters

{M1, q, e, ı, ω, ρ} of the model that have been obtained from relevant literature. Details on the

priors can be found in Appendix E.
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6.1.3 Generative Noise Model for Light Curves

Based on the physical model a probabilistic generative noise model arises naturally. Observed

light curves, denoted by O, are noisy signals:

O(t) = fθ(t) + ǫ(t), (6.11)

where ǫ is independent and identically distributed Gaussian noise with variance σ2. Thus, we

regard a light curve O as the emission of a multivariate homoscedastic normal distribution:

O ∼
ρ(O)
∏

t=0

N (fθ(t), σ2), (6.12)

where ρ(O) is the period associated with O.

Thus, in order to generate an observed light curve O the noise model simulates the physical

system, identified by parameter vector θ, to produce a theoretical light curve and subsequently

adds noise to it. We denote the noise model associated with parameters θ by p(O|fθ(.), σ2) or

simply by p(O|θ). Thus, the probability that the physical system identified by θ generates light

curve O is calculated by:

p(O|θ) =

ρ(O)
∏

t=0

N (O(t), fθ(t), σ2). (6.13)

In order to complete the noise model formulation p(O|θ), a few matters require attention.

Note that computing p(O|θ) is problematic if the period of the observed light curve and the

period of the noise model are not equal since time points t in (6.13) will exceed the time range

of the light curve with shorter period. Also, it is appropriate when computing p(O|θ) that

compared points O(t) and fθ(t) correspond to the same phase. Two measures need to be taken:

• All light curves in dataset D are phase-shifted so that the first point in each light curve

O corresponds to the point of its primary eclipse. We impose this requirement also to

the noise model by phase-shifting its generated light curve fθ in the same way. This is

illustrated in Fig. 6.3 where the light curve in Fig. 6.3(a) is shifted to yield the light curve

in Fig. 6.3(b).

• Each light curve O is resampled so that its length becomes T . This is done by sampling

O at T equally spaced points, with the first and last sampled points coinciding with the

first and last points of O respectively. The resampled light curve replaces the original

light curve O in dataset D. We impose that the noise model also produces light curves fθ
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Fig. 6.3: Light curve in (a) is phase shifted so that its deepest point at the primary eclipse
becomes the its starting point, which yields the light curve in (b). Light curve in (b) is then
resampled so that it consists of T observations, which yields the light curve in (c).

of length T following the same resampling. This is illustrated in Fig. 6.3 where the light

curve in Fig. 6.3(b) where has been sampled at T equally spaced points to yield the light

curve in Fig. 6.3(c).

These two measures ensure that when comparing light curve O to light curve emitted by

noise model p(O|θ) in (6.13), the compared points points O(t) and fθ(t) correspond to the same

phase.

6.2 Model for Topographic Organisation

The starting point of our model formulation is the form of a mixture model composed of C

components:

p(O|Θ) =
C∑

c=1

P (c) p(O|θc), (6.14)
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where P (c) are the mixing coefficients, Θ is the set of all parameter vectors {θc}c=1,...,C and

p(O|θc) corresponds to the c−th model component with parameter vector θc. We simplify

notation p(O|θc) to p(O|c). Assuming that the observations in D are independently generated,

the likelihood L of the mixture model p(O|Θ) is expressed as:

L(Θ|D) = p(D|Θ) =

N∏

n=1

p(O(n)|Θ) =

N∏

n=1

C∑

c=1

P (c)p(O(n)|c)

∝
N∏

n=1

C∑

c=1

p(O(n)|c), (6.15)

where the mixing coefficients can be ignored as P (c) = 1
C . Given the prior distributions on the

physical parameters in section E, we perform MAP estimation. We express the posterior of Θ

as:

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
,

log p(Θ|D) = log
p(D|Θ)

p(D)
+ log

p(Θ)

p(D)

∝ log p(D|Θ) + log p(Θ)

∝ logL(Θ) + log p(Θ)

∝
N∑

n=1

log

C∑

c=1

p(O(n)|θc) + log p(Θ), (6.16)

where p(Θ) is the prior probability term encompassing all priors θc of each model component

c. The prior probability term reads:

log p(Θ) =

C∑

c=1

log p(θc)

=

C∑

c=1

(

log p(M1c) + log p(qc) + log p(ec|ρc) + log p(ωc) + log p(i) + log p(ρc)

)

.

(6.17)

We would like to introduce a topographic organisation for the components of the mixture

model. This can be achieved in the spirit of the GTM formulations in chapter 4. We re-

quire that each parameter vector θc of component c is constrained on a regular grid of points

xc, c = 1, . . . , C in a two dimensional space [−1, 1]2 that we denote by V. A smooth nonlinear

function Γ maps each point x in V to a point Γ(x) that addresses a model p(·|x). Points Γ(x)

are constrained on a two-dimensional manifold M that is embedded in space H, the space of
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all models. Since the neighbourhood of Γ-images of x is preserved due to continuity of Γ, a

topographic organisation also emerges (locally) for models p(·|x). Function Γ is realised as a

RBF network:

Γ(x) = Wφ(x), (6.18)

where matrix W ∈ R
6×M contains the free parameters of the model (6 is the number of param-

eters in {M1, q, e, ı, ω, ρ}), and φ(.) = (φ1(.), ..., φM (.))T , φm(.) : R
2 → R is an ordered set of

M non-parametric nonlinear smooth basis functions. However, this mapping does not produce

valid parameter vectors Γ(x) that belong to parameter space M, since the output of the RBF

network is unbounded. Therefore, we introduce a vector-valued version of the sigmoid function

g:

g(y) =

[
1

1 + exp(−y1)
,

1

1 + exp(−y2)
, . . . ,

1

1 + exp(−yY )

]T

, (6.19)

that takes the output of the RBF network and “squashes” it between [0, 1]Y where Y is the

number of parameters of input y. Here the input y to g is the output of the RBF network.

Next, vector g(Wφ(x)) of “squashed” values needs to be scaled to the range of the parameters.

This is done by multiplying it with a diagonal matrix that has as diagonal elements the range

of each parameter:

A = diag[(100 − 0.5), (1− 0), (1− 0), (2π − 0), (
π

2
− 0), (100 − 0.5)]

where the ranges of the model parameters are listed in the order of primary mass, mass ratio,

eccentricity, argument, inclination and period. Finally, we still need to translate the resulting

values in order to obtain valid values by adding a vector v that contains the minimum value of

each parameter (in the same order aforementioned):

v = [0.5, 0.0, 0.0, 0.0, 0.0, 0.5]T .

Taking into consideration these transformations, we redefine mapping Γ:

Γ(x) = Ag(Wφ(x)) + v, (6.20)

that takes a latent point x in space V to a valid parameter vector Γ(x) that addresses a noise

model in M. Thus, Θ has become a function of the weight matrix W of the RBF network,
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Fig. 6.4: Formulation of the topographic mapping model.

Θ(W ). Thus, (6.16) now reads:

p(Θ(W )|D) ∝
N∑

n=1

log

C∑

c=1

p(O(n)|xc) + log p(Θ(W )), (6.21)

where the likelihood is now a function of W rather than Θ.

Fig. 6.4 summarises the model formulation. Each point x of latent space V is non-linearly

and smoothly mapped via Γ to model parameters that identify noise model p(·|x). The induced

parameters are constrained on a two-dimensional manifoldM that is a subspace of H, the space

of all possible parametrisations of our model. Thus, latent space V is embedded via Γ in H as

a two-dimensional manifold. We refer to this GTM extension as GTM-flux.

6.3 Training of the Model

MAP estimation requires the maximisation of (6.21). This can be achieved by adopting an

EM formulation of the problem by writing the (complete data) likelihood in terms of hidden

indicator variables z:

zn
c =







1, if light curve O(n) was generated by model c;

0, otherwise.

We refer to the variables z collectively as Z which is considered missing data (missing in the

sense that we have no information on the model-origin of the data points). Z in conjunction

with training set D form the complete data. Using (6.13), (6.15) the (scaled) complete data
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likelihood L(Θ(W )|D,Z) or in simpler notation L(W |D,Z) and its logarithm read:

L(W |D,Z) ∝
N∏

n=1

C∏

c=1

p(O(n)|xc)
zn
c

∝
N∏

n=1

C∏

c=1

T∏

t=1

N (O(n)(t); fΓ(xc)(t), σ
2)zn

c ,

logL(W |D,Z) ∝
N∑

n=1

C∑

c=1

T∑

t=1

zn
c logN (O(n)(t); fΓ(xc)(t), σ

2). (6.22)

As a reminder, we note that the presence of a prior term does not affect the E-step and

modifies only the M-step [Ng et al., 2004]. In the E-step, the hidden variables are estimated by

their posterior expectation given the observed data D and parameters W (i) at the i-th iteration:

E[zn
c |W (i)] = p(xc|O(n),W (i)). (6.23)

The posterior of latent point xc given observation O(n) is estimated in (6.23). Taking the

expectation with respect to the posterior distribution of hidden variables Z given the current

parameters W (i) and observed data D, we express the (scaled) expected complete-data log-

likelihood of the model as:

EZ [logL(W |D,Z)|D,W (i)] ∝
N∑

n=1

C∑

c=1

T∑

t=1

p(xc|O(n),W (i)) logN (O(n)(t); fΓ(xc)(t), σ
2).

(6.24)

In the M-step we maximise:

EZ [logL(W |D,Z)|D,W (i)] + log p(Θ(W )), (6.25)

Normally, in the M-step, the derivatives of (6.25) are calculated with respect to the RBF

network parameters W . However, in this case, the M-step cannot be carried out analytically

due to the nature of the physical model formulation in section 6.1. It is noted in [Ng et al., 2004]

that the EM algorithm does not necessarily require that an optimum be achieved in the M-step;

it is sufficient that the likelihood is merely improved. For our purposes we resort to numerical

optimisation by employing an evolutionary algorithm.

Having trained the model, it can be used for visualisation by calculating the posterior prob-
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ability of each latent point x given an observation O(n) using Bayes’ theorem:

p(x|O(n)) =
P (x)p(O(n)|x)

p(O(n))
=

P (x)p(O(n)|x)
∑C

c′=1 P (xc′)p(O
(n)|xc′)

=
p(O(n)|x)

∑C
c′=1 p(O

(n)|xc′)
. (6.26)

Each data item O is represented in the latent space V by a point proj(O) given by the

expectation of the posterior distribution over all points xc, c = 1, . . . , C of the latent grid in V:

proj(O) =

C∑

c=1

p(xc|O)xc. (6.27)

6.4 Experimentation

6.4.1 Datasets

We performed experiments on two datasets. Dataset 1 is a synthetic, toy dataset that consists

of 200 light curves. A common set of model parameters, {M1 = 5, q = 0.8, e = 0.3, ı = π
2 } was

defined. However, two distinct values ρ1 = 2, ρ2 = 5 of period and ω1 = 0, ω2 = 5
6π of argument

of periastron were used, to create 4 classes of light curves (50 in each class) by the combinations

of these values, {ρ1, ρ2} × {ω1, ω2}. The discerning characteristic of each class is the position

of each secondary eclipse and the widths of the eclipses. Each light curve was then generated

by these sets of parameters after adding to them Gaussian noise in order to introduce some

variability. Gaussian noise with standard deviation of 0.075 was also subsequently added to the

light curves themselves to simulate observational errors.

Dataset 2 consists of 71 light curves from real observations obtained from two resources avail-

able3 on the WWW, the Catalogue and Archive of Eclipsing Binaries at http://ebola.eastern.edu/

and the All Sky Automated Survey at http://archive.princeton.edu/ asas/.

6.4.2 Preprocessing

Dataset 2 of observed light curves was preprocessed before training. Preprocessing is necessary

as the light curves in dataset 2 are afflicted with observational errors such as noise, gaps and

overlapping of flux points. Such observational errors are not accounted for by our model and must

be treated before the data are to be used. To this purpose we employed linear interpolation as a

simple way of remedying these problems. Fig. 6.5 displays the outcome of linear interpolation on

3Last accessed on the 12th September 2007.
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Fig. 6.5: Raw, noisy light curve from dataset that has been phase-shifted so that its first point
is the point of the primary eclipse (a). Performing linear interpolation on the raw light curve
yields the light curve in (b).

a real light curve of dataset 2 . After linear interpolation, light curves must also be phase-shifted

so that their first point is the primary eclipse and resampled to equal length as described in

section 6.1.3.

Light curves in dataset 2 were resampled at 100 regular intervals which was judged an

adequate sample rate. While increasing the sampling rate retains more detail of the raw dataset,

it must be noted that it also takes a toll on training time. Furthermore, training becomes more

prone to numerical underflow when calculating likelihoods as the number of samples increases.

This is due to the multiplication of many probabilities in the calculation of the likelihoods

(see (6.13)) necessary for the posterior probabilities p(xc|O(n),W (i)) (see (6.23)). This can be

especially problematic in the initial iterations of training because the probabilities involved in

the likelihood calculation can be very low, when the model poorly fits the data. Thus, to avoid

this numerical problem in the implementation a minimum must be imposed on the probabilities

e.g. min(ǫ, p(xc|O(n),W (i))), where we set ǫ = 10−10.

6.4.3 Initialisation

A good initialisation strategy is important for the EM algorithm. We found that the following

initialisation protocol significantly aided training:

1. Dataset fitting: For each light curve O(n), n = 1, 2, ..., N in the dataset we fit regression

model fθ(t) using an evolutionary algorithm [Rowe and Hidović, 2004] and obtain a pa-

rameter vector θ(n). Likelihood p(O|θ) is the objective function maximised during the

fitting. The resulting parameter vectors are collected in the set Υ = {θ(1),θ(2), ...,θ(N)}.
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2. SOM training: We employ SOM [Kohonen, 1990] to organise the parameter vectors Υ

obtained at step 1. The topology of SOM is defined to be identical to the grid of latent

points in V, thus there are C neurons on the SOM lattice that share the same indexing

c = 1, . . . , C as latent points xc. Having trained SOM on Υ we obtain topographically

organised codebook vectors Bc from neurons c = 1, . . . , C.

3. Weight initialisation: We require that Γ maps each latent point xc to the codebook vector

corresponding to neuron c. To that purpose we optimise weight matrix W accordingly.

We denote the i−th row of W by W i. We note that in (6.20) each parameter θi of the

parameter vector θ depends only on W i. Thus, we can optimise W in a row-wise manner.

The error for parameter θi when optimising W i is the mean squared error:

MSE(θi) =

C∑

c=1

(Γi(xc)−Bc,i)
2, (6.28)

where Γi(xc) and Bc,i indicate the i−th component of Γ(xc) and Bc respectively. The

error is minimised by scaled conjugate gradients. In order to avoid overly large initial

weights in matrix W (and hence a potentially complex initial map Γ), we constrain the

optimisation of all elements of W in [−5, 5].

Even though the topographic organisation in step 2 uses an inappropriate Euclidean notion

of distance for organising the parameter vectors from step 1 (two parameter vectors θ and θ′

may be close in the Euclidean sense, but the models that they instantiate may lead to different

fluxes), this constitutes a useful heuristic to roughly approximate the range of parameters of the

local models (step 1), as well as their spatial relation (step 2).

6.4.4 Training

The lattice was a 10× 10 regular grid (i.e. C = 100) and the RBF network consisted of M = 17

basis functions; 16 of them were Gaussian radial basis functions of variance σ2 = 1 centred on a

4× 4 regular grid, and one was a bias term. Parameters were initialised using the initialisation

method described in section 6.4.3. In the M-step we did not used a gradient-based optimisation

procedure as we did for GTM-HMTM and GTM-MTM. Instead we employed an evolutionary

algorithm described in [Rowe and Hidović, 2004]. The fitness function was given by (6.25).

The evolutionary algorithm in [Rowe and Hidović, 2004] uses a single member population

and a real number representation for the search space. What is special about this algorithm is the

probability distribution that it uses for generating an offspring candidate from the single parent.
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This particular probability distribution is motivated, roughly speaking, by the following property

of Gray codes in genetic algorithms that use binary string representations: flipping a single bit

produces mostly small incremental changes, but occastionally larger jumps in the search space

may be made. The probability distribution emulates this property (amongst others) which helps

it escape local minima in the search space. The algorithm possess a single free parameter called

precision. This parameter corresponds to the string length in the binary representation: the

greater the precision, the longer the binary string and therefore the finer the exploration of the

search space and the closer to the optimum we can get. However, too great a precision can be

inefficient in reaching the optimum, as in the binary string length analogy this means that a

large number of mutations is necessary to reach the optimum. Therefore, setting the precision

is a delicate task that balances on one hand the quality of solution and on the other hand

computational time.

The evolutionary algorithm in [Rowe and Hidović, 2004] is particularly suited for optimisa-

tion problems where the parameters are bounded. Since in our problem we do not have any

bounds, we tried to confine the parameters in ranges [−u,+u] for u ∈ {1, 5, 10, 20, 50}. We

also tried different values for precision between 100 and 1200. We found that in practice the

best values for range and precision were [−10,+10] and 400 respectively. Moreover, we set the

number of iterations of the evolutionary algorithm to 1000.

The E-step complexity of GTM-flux is O(CNT ) which follows from (6.13) and the number C

of latent points and numberN of data items in the dataset. In practice, the training requirements

of a MATLAB (version 7.3) implementation of GTM-flux were in hours 1 for the toy dataset

1 and 12 for dataset 2 when run on a machine equipped with an Athlon XP 3000+ CPU and

512MB of memory.

6.4.5 Results

Fig. 6.6 is the topographic map constructed for the toy dataset. Each point stand for a light

curve projected to latent space V and is coloured according to class membership. Also next

to each cluster, a typical light curve has been plotted. The classes have been identified and

organised appropriately, each occupying one of the four corners of the plot. Starting clockwise

from the top left corner, we first come across the class corresponding to parameters {ρ2, ω1},
then {ρ1, ω1}, then {ρ1, ω2} and finally {ρ2, ω2}. In Fig. 6.7 we see six plots, each corresponding

to one of the six parameters of the light curve model. Each plot is a heat4 map and illustrates

how its corresponding parameter varies over the topographic map. As mentioned in 6.4.1, the

4The rank of colours ranges from white to yellow to red to black corresponding from high to low values.
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Fig. 6.6: Visualisation of toy dataset. A representative light curve is plotted next to each
cluster.

toy dataset is composed of four classes by combining two distinct values for period and argument

of periastron. The separation of the classes based on these characteristics, is depicted in the

period and argument of periastron plots in Fig. 6.7. Furthermore, in Fig. 6.8, the light curves

of the underlying local noise models p(·|x) are depicted, fully conforming to the visualisation of

Fig. 6.6.

Fig. 6.9 displays the visualisation of the dataset of real light curves, with the projected real

light curves in red and the light curves corresponding to the underlying local noise models in

black. We choose this type of plot instead of that in Fig. 6.6, since real light curves exhibit

more variability than the toy data, and thus it is more informative to see them drawn on the

visualisation plot. Here, the projections in Fig. 6.9 of the real light curves do not exhibit as

clear an organisation as in the case of the toy data. Nevertheless, we note certain trends. At

the top left corner of Fig. 6.9 we note the presence of light curves with both relatively shallow

primary and secondary eclipses. In Fig. 6.10 the plots of primary mass and mass ratio show

that the respected area constitutes of models of low masses that naturally leads to stars of low

luminosity and flat-looking light curves. Moving from there towards the right of the plot, we

find a few light curves with a more well-defined, deeper eclipse, and upon reaching the middle we
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Primary mass Mass ratio Eccentricity

Inclination Argument Period

Fig. 6.7: Toy dataset: Heat maps of model parameters. Hot and cold regions signify high and
low values respectively. We note how the plots of argument and period reflect the organisation
of the map in Fig. 6.6.

find light curves with both primary and secondary eclipses almost equally deep. Moving further

to the far right of the plot, the primary eclipses are gaining in depth as primary mass increases

and the secondary eclipses become shallower as the mass ratio decreases, again in accordance to

the respective plots in Fig. 6.10. On the other hand, moving from the top middle towards the

centre, the depths of both eclipses are almost equal, in agreement with the high mass ratio in

Fig. 6.10. However, the eclipses are narrower compared to the wider eclipses of the light curves

encountered in the upper right corner. This is explained by the decreasing primary mass of the

underlying local noise models as shown in Fig. 6.10. The lower half of the graph, as indicated by

the light curves of the underlying local noise models in black (where the secondary eclipse does

not occur at centre of light curve) in Fig. 6.9 and the eccentricity plot in Fig. 6.10, is dominated

by light curves that exhibit eccentric orbits. However, at the lower right part of the plot there

is a point where a concentration of light curves occurs that have narrow and almost equally

deep primary and secondary eclipses and exhibit little or no eccentricity. The reason that they

are projected there seems to be the high argument values seen in Fig. 6.10 which “cancel out”

the effect of eccentricity by shifting the secondary eclipse close to the middle of the light curve.

This is exhibited by the light curves in black corresponding to the underlying local noise models

of this location in Fig. 6.9. Upon inspection of these particular light curves projected there,
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Fig. 6.8: Toy dataset: Topographic map of underlying noise models.

their high periods seems to be the reason why they are projected in these regions instead of

somewhere closer to their similar looking counterparts at the centre of the visualisation plot.

High periods are favoured in this region as confirmed by the period plot in Fig. 6.10. The few

light curves projected above and right of this concentration point are light curves of very high

periods. At the lower left part of the plot, close to the centre, we come across a few eccentric

light curves and at the very far left we find some light curves that are arranged almost like on

a column. By inspecting the black curves of the underlying local noise models in Fig. 6.9, our

expectation is to find eccentric light curves in this region. However, not all of these light curves

are eccentric. The two light curves closest to the bottom-left, have an almost flat secondary

eclipse due to very low mass ratio and its difficult to understand why the are projected there
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Fig. 6.9: Visualisation of dataset 2 of real data. Light curves in red are the projected real data
and light curves in black are the light curves of the underlying local noise models.

(although their low mass ratio is understandable). The two light curves that are right above

seem to fit the eccentric profiles of the light curves of the underlying local noise models and

are appropriately positioned there. However, the light curves at the top of this column close to

the left edge of the plot, appear incongruous. These light curves have very high periods and

light curves of such periods require a finer sampling in order to capture their eclipses in detail.

Otherwise, for any sparser sampling only very few points correspond to the eclipses making the

processing and subsequent projection (after training) of such light curves problematic. This

appears to be the case for these light curves.
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Primary mass Mass ratio Eccentricity

Inclination Argument Period

Fig. 6.10: Real dataset: Heat maps of model parameters. Hot and cold regions signify high and
low values respectively.

6.5 Magnification Factors

Similarly to GTM and its extensions in chapter 5, we calculate magnification factors following

both approaches of Fisher information matrix (FIM) and Kullback-Leibler divergence (KLD).

6.5.1 Fisher Information

Each latent point has two coordinates x = [x1, x2] that are mapped via a smooth non-linear

mapping Γ to a noise model p(·|x) on manifold M of all noise models. As discussed in section

5.3, FIM is defined as the matrix:





∂2 log p(·|x)
∂x2

1

∂2 log p(·|x)
∂x1∂x2

∂2 log p(·|x)
∂x1∂x2

∂2 log p(·|x)
∂x2

2





Due to the nature of the physical model, closed-form derivatives are unattainable. Thus,

we resort to the numerical calculation of the second-order partial derivatives using difference
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approximations [Burden, 1997]:

∂2

∂x2
r

log p(·|x) =
log p(·|x+ [h, 0]T )− log p(·|x− [h, 0]T )

2h
, (6.29)

and

∂2

∂xr∂xs
log p(·|x) =

log p(·|x+ [h, h]T )− log p(·|x+ [h, −h]T )

4h2

− log p(·|x+ [−h, h]T ) + log p(·|x+ [−h, −h]T )

4h2
, (6.30)

where r, s ∈ {1, 2} with r 6= s and h is a sufficiently small positive constant, e.g. h = 10−6.

In order to illustrate the magnification factors on manifoldM, we followed the perturbation

scheme of chapter 5, illustrated in Fig. 5.2. Here we perturb each latent centre xc in 16 regularly

spaced directions on a small circle (we have set its radius to 10−5).

6.5.2 Kullback-Leibler Divergence

As stated in section 5.2.1, for two multivariate Gaussian distributionsN (·;µ,Σ) andN (·;µ′,Σ′),

KLD can be calculated as:

DKL[N (·;µ,Σ)||N (·;µ′,Σ′)] =
1

2

[
log(

detΣ′

detΣ
)− d+ tr(Σ′−1Σ) + (µ− µ′)TΣ′−1(µ− µ′)

]
.

Since noise model p(O|x) is a homoscedastic multivariate Gaussian distribution, the KLD be-

tween two noise models, p(O|x) and p(O|x + dx) simplifies to the inner product of the corre-

sponding means:

DKL[p(O|x)||p(O|x + dx)] =
1

2σ
(fΓ(x) − fΓ(x+dx))

T (fΓ(x) − fΓ(x+dx))

∝ (fΓ(x) − fΓ(x+dx))
T (fΓ(x) − fΓ(x+dx)), (6.31)

where fΓ(x) is the light curve produced by noise model p(O|x) (addressed by latent point x)

and fΓ(x+dx) is the light curve produced by noise model p(O|x + dx) (addressed by latent

point x + dx).

The same procedure as for the Fisher information matrix is applied for GTM-flux, namely

perturbing a latent point in 16 regularly spaced directions on a small circle (again the radius

is 10−5) and measuring the KLD between the original noise model addressed by x and the

perturbed model addressed by x+ dx.

152



 

 

(a)

 

 

(b)

Fig. 6.11: Magnification factors as heat maps for toy dataset based on Fisher information (a)
and KLD approximation (b).

6.5.3 Results

We follow the same procedure as described in 5.7 for the demonstration of magnification factors

for GTM-flux. However, we found that the calculation of FIM and KLD for GTM-flux was not as

time consuming as in the previous extensions of GTM, and we decided to calculate magnification

factors on a finer rectangular grid of 40× 40 points.

In Fig. 6.11(a) and 6.11(b) we see the magnification factors calculated for the toy dataset

based on Fisher information and KLD respectively. The two plots convey practically the same

information, they both express a strong separation between the upper and lower regions. As

one can see in Fig. 6.6, the upper and lower regions correspond to light curves of arguments of
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Fig. 6.12: Magnification factors as heat maps for real dataset based on Fisher information (a)
and KLD approximation (b).

periastron ω1 and ω2 respectively. Classes that differ in the argument of periastron are more

distant to each other since their secondary eclipse occur at different times. On the other hand,

classes that differ in period should experience a milder separation between them, since they

only differ at the width of the eclipses. Therefore, the magnification factors reveal that Fig. 6.6

experiences a high vertical stretch along the middle.

In Fig. 6.12(a) and 6.12(b) we see the magnification factors calculated for the dataset of real

lightcurves, based on FIM and KLD respectively. Again, the two plots are almost identical.

However, they are not as informative as in the case of the toy dataset. Here we see that a strong

magnification appears at the centre of the plot, gradually losing its power as we move away from

the centre. No information seems to be conveyed regarding the presence of clusters. Nevertheless,
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this seems to be related to the parameter plots in Fig. 6.10 where almost all parameters exhibit

high variations at the centres of their respective plots. Thus, the magnifications in Fig. 6.12

effectively summarise this volatile behaviour of all parameters of the local noise models at the

centre of the map.

6.6 Discussion

In [Brett et al., 2004], topographic maps of eclipsing binary light curves are constructed using

SOM. The light curves are treated as vectorial data and SOM is applied in its standard form,

i.e. weights are updated by the usual update-rule, neighbourhood is a Gaussian kernel while the

learning rate and neighbourhood radius are monotonically decreased. The only difference lies in

the determination of the winning neuron. When a light curve is presented to SOM, the squared

Euclidean distance is calculated between the light curve and the weight vector of each neuron.

After this comparison, the same light curve is phase-shifted by one sample point and the squared

Euclidean distances are calculated again. This procedure is iterated until the light curve has

been shifted by all increments (which eventually returns the original light curve). The winning

neuron is then the neuron that minimises the squared Euclidean distance between its weight and

any of the phase-shifted versions of the light curve. This alteration in determining the winning

neuron is necessary as the light curves in the dataset are not preprocessed and standardised

to some reference phase. This application of SOM organises light curves according to shape.

However, it does not convey any physical interpretation of how the light curves relate and could

in fact be used to organise any kind of curves since no specific domain knowledge on eclipsing

binary stars in incorporated. Also, inspecting the codebooks of the formed map indicates only

what kind of shapes are expected to be mapped in the affinity of the corresponding neurons, but

no information on model parameters is provided. Moreover, it is very likely that the training

of SOM leads to codebooks that are not valid light curves, which makes the interpretation of

the map more difficult. For example, a codebook that is close to two light curves with different

shapes and is updated to increase its future response when they are presented again, could form

an invalid light curve as illustrated in Fig. 6.13.

On the other hand, GTM-flux is a model-based approach. It employs a special local noise

model which drives the topographic organisation of the map. The underlying “codebooks” (i.e.

local noise models) correspond to templates of physical models. A clear notion of metric is

defined on the topographic map, based on the distances between the probabilistic local noise

models. This facilitates a principled interpretation of the visualisation plots Fig. 6.6 and 6.9

which is further supplemented by the parameter plots in Fig. 6.7 and 6.10 and the light curve
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Fig. 6.13: SOM for light curves: codebooks may form invalid light curves.

plot in Fig. 6.8. Moreover, magnification factors can be calculated, illustrated in Fig. 6.11 and

6.12, that reveal contractions/expansions in the latent space. Furthermore GTM-flux offers

control to the user over the metric induced by the local noise models, and could incorporate

other physical aspects of eclipsing binary systems such as non-spherical stars. Moreover, similar

to GTM-HMTM and GTM-MTM, GTM-flux has also the capability of detecting overfitting

(even though it was not demonstrated for the GTM-flux).

dR

Fig. 6.14: A one-dimensional latent space embedded in a higher-dimensional latent space. Two
fairly distant points of the latent space are mapped to similar locations in the high-dimensional
space which can cause a defect to the topographic map.

There is a limitation in GTM-flux that we would like to mention. There appears to be a

problem of identifiability in the local noise models. That is, noise models of different parameters

can generate very similar light curves. This makes the formation of a map problematic as

distant regions of the map may contain noise models that are statistically (almost) identical
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and therefore should model the density of the same data points. In such cases, defects may be

manifested in the topographic map, such as the map folding in order to bring distant regions

close together. This is demonstrated in Fig. 6.14 in the case of one-dimensional latent space

embedded in a high-dimensional data space. This problem is a potential explanation for the not

completely successful topographic organisation of the real light curves in section 6.4.5. Moreover,

this problem is not restricted in the case of GTM-flux, but may also be manifested in any GTM

formulation where the local noise models are not identifiable.
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Chapter 7

Conclusions

The GTM algorithm sets a paradigm for the development of topographic maps based on gen-

erative probabilistic model-based formulations. Following this, we developed two methods for

topographic organisation of tree-structured data, the GTM-HMTM and the GTM-MTM. We

also studied a real world problem and developed a model, the GTM-flux, for the topographic

organisation of astronomical lightcurves from eclipsing binary stars. Compared with the recur-

sive neural-based approaches discussed in chapter 2, there are a number of advantages when

following a generative probabilistic model-based approach.

In the GTM paradigm a form of local noise model must be chosen that bears a certain plau-

sibility in terms of generation of the dataset. The local noise models in the original GTM are

Gaussian densities that generate vectorial data. In GTM-HMM [Tiňo et al., 2004] where topo-

graphic maps of sequences are constructed, HMMs are chosen. In chapter 4, we have employed

HMTMs and MTMs as candidate generative processes for tree-structured data. Alternative lo-

cal noise model formulations allow the user to express in a principled way a notion of structured

data similarity that will be driving the topographical organisation in visualisation plots. Thus,

for the successful construction of a topographic map, a prerequisite is the selection of a suitable

generative probabilistic model. For instance, if one was studying a corpus of sentences from

various sources of origin (e.g. dialects) and wanted to construct a topographic map of such data

items, one possible choice for local noise models would be probabilistic context free grammars

[Manning and Schtze, 1999]. In chapter 6 we demonstrated this by formulating a probabilistic

physical model for the construction of topographic maps of astronomical light curves.

The choice of local noise model imparts a form of control over the shaping of visualisation

plots. In the GTM paradigm this is done by imposing the form of local noise models. For

GTM-HMTM two data items are viewed as “similar”, if they are highly probable under the
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same local HMTM. Of course, it is possible to have different notions of similarity even for the

same data set. It can well be that there are two users that would like to see the same data

items organised on the visualisation plot using different criteria for item similarity, depending

on what aspects of the data they are interested in. Then it is up to the user to formulate the

appropriate noise model and let the data visualisation be driven by it. It is difficult to quantify

what the induced notion of similarity is in recursive neural-based approaches. For instance in

recursive-neural based approaches such as SOMSD, what is the distance metric that places some

trees close together and some further apart? Can one have some form of control over the shaping

of visualisation plots in such approaches?

The model-based nature of GTMs allows great deal of transparency of the visualisation plot

formation and a principled interpretation of the data visualisations. A number of useful plots

are readily provided regarding the learnt structure of the underlying local noise models, such

as plots of state-transitions and means of emissions as illustrated in section 4.3.3, that aid the

interpretation of the map. Recursive model formulations along the lines of SOMSD do not lend

themselves naturally to obtaining insights of this sort.

Moreover, in our approach the optimisation of the free parameters of GTM-HMTM/MTM/flux

is driven by a well defined cost function, which is the negative log of the model likelihood. Train-

ing may be performed using a wide range of optimisation algorithms. In chapter 4 we trained

GTM-HMTM and GTM-HMT using gradient methods while in chapter 6 we trained GTM-flux

using gradient-free methods. We also note that an advantage of probabilistic model formulation

is the possibility to inspect the tendency of the model to overfit the training data, by measuring

the log-likelihood on an independent validation set. Despite the high number of parameters in

the GTM formulations (for GTM-HMTM there are M(K +K2 + Kd) number of parameters),

we found that in practice this does not present a significant difficulty in training the model

because of its highly constrained nature. What seems to make training difficult is the lack of a

good initialisation procedure.

Having trained a GTM model via EM, the data points are projected from the data space on

the latent space. To this end we calculate the responsibilities (posterior probabilities) of the un-

derlying local noise models. Our mixture of noise models is a constrained mixture, constrained

by the smooth two-dimensional structure of the latent space. Hence, neighbouring latent points

correspond to noise models that lead to similar answers (responsibilities) when queried about a

certain data point. Each data point can then be placed at the mean location of the responsibil-

ities in order to reflect the contribution of all local models. The same also applies to a newly

incoming data point. Clearly, this is a transparent method in the sense that we can understand
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why a certain point was placed in a particular position in the visualisation (latent) space by

inspecting the underlying local models. This level of transparency is not readily provided when

visualising new trees using SOMSD.

The generative nature of our approach allows further data exploration after a first impression

of the visualisation through hierarchical visualisation in the spirit of [Tiño and Nabney, 2002].

Also, the incorporation of priors on the model parameters is straightforward. MAP estimation

is possible by adding to the expected complete-data log-likelihood an additional term, namely

the log-likelihood of the prior density on the parameters.

Furthermore, the fact that the non-linear mapping of the GTM formulation from the latent

space to the local model space is smooth allows us to calculate magnification factors (chapter 5).

We have presented two approaches toward this end, precise Fisher information matrix and KLD

approximation, which have been verified by experiments. This constitutes a useful tool for the

study of clusters and can be used to further interpret the visualisation plot as magnifications of

the manifold of local models are not detectable from the visualisation plots alone. The presence

of low magnification in a certain region can help us infer the presence of a potential cluster as

we expect the generative process of the underlying local models to change slightly as we move

in that region. Thus, we expect neighbouring models to model roughly the same distribution of

the partition of data present in that certain area. On the contrary, high magnification signifies

the volatility of the local models and hence that data points in the region are expected to differ

significantly from each other.

The GTM extensions that we formulated in this work, GTM-HMTM, GTM-MTM and GTM-

flux suffer from certain limitations. One such limitation is the long time required to train them

which was observed during the experiments that we performed. As we saw in section 4.2, GTM-

HMTM is a double-hidden model; there is one set of hidden variables for the GTM part of

the model, and a set of hidden variables for the HMTM local noise model. This introduces

a considerable computational burden to GTM-HMTM during the E-step. On the other hand

in section 4.5, GTM-MTM was computationally less demanding than GTM-HMTM because

MTMs do not have hidden states as HMTMs do. In GTM-flux, section 6.2, the local noise

model does not have hidden underlying process either, but training was costly as it was carried

out with an evolutionary optimisation method.

In connection to this, another limitation of the presented GTM extensions is their lack of

a principled initialisation method. A good initialisation would offer a headstart to the training

algorithm, limiting training time and also eliminating the need of re-running the algorithm

several times with different initial random weights. A certain remedy to this, was proposed in
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the case of GTM-flux. Of course, this method could be transferred and applied to GTM-HMTM

and GTM-MTM as well. As aforementioned in section 6.4.3, we fit a noise model to each

data item, retrieve the sets of parameters of all fitted models and use SOM to produce a map of

topographically organised model parameters. This is purely a heuristic method, with an incorrect

notion of similarity is used, namely the Euclidean distance between model parameters, in order

to introduce topographic organisation in the model space. Nevertheless, in the experiments of

GTM-flux we found that it did provide a much better start than mere random initialisation.

GTM on the other hand, has an initialisation procedure, which initialises the weights so that

the GTM approximates principal component analysis [Bishop et al., 1998].

Another limitation, briefly mentioned in section 6.6, concerns the identifiability of the local

noise models. By identifiability we refer to the notion that if two probability density models

p(·|θ) and p(·|θ′) are equal then it must follow that θ = θ′, i.e. the parameter vector uniquely

identifies a probability model. For example, mixtures of Gaussians are not identifiable in the

sense that reordering the components results in a different parameter vector, even though the

mixture still models the same density as before. This also applies to HMMs, HMTMs and

MTMs where states may be reordered without any consequences to the modelled density. This

problem of identifiability may be manifested in the GTM extensions that employ these models

as local noise models, as a topological defect in the constructed map. For two latent points x

and x′ that reside in different locations in latent space V, it may occur that their respective local

noise models are (almost) identical p(·|x) ≈ p(·|x′). In this case the map sustains a topological

defect in the sense that two remote locations are (almost) connected. An approximate way of

detecting such occurrences is by defining a regular rectangular grid of points in the latent space

and measuring the KLD distance between all pairs of points. Of course the finer the grid is,

the better the approximation will be. Thus, if for two latent points x and x′ that belong to

different neighbourhoods we measure DKL[p(·|x)||p(·|x′)] ≈ 0, then this signifies a topographic

defect in the map. A potential solution to this problem involves imposing constraints on the

parameters so that a certain ordering of model components/parameters is enforced that ensures

identifiability.

Apart from addressing the above limitations, there also other issues open to investigation

for the future. One evident direction is of course the accommodation of additional data types

such as graphs or the creation of custom data types for specialised applications. However, apart

from the practical interest and perhaps the potential challenges in implementing efficiently the

processing of the new data types, the main framework would in essence be the same as in the

GTM extensions presented in this thesis. In actual fact, we have already seen that the GTM
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and its extensions (GTM-HMTM, GTM-MTM, GTM-HMM and GTM-flux) all share the same

basic components: the latent space V, a smooth mapping Γ, calculation of likelihoods and the

EM algorithm. Accommodating a new data type involves defining a new appropriate mapping Γ

that induces the parameters of the local noise models at hand, employing noise model dependent

algorithm for the calculation of likelihoods and posteriors and employing a suitable optimisation

algorithm for the M-step.

A more interesting line of research that could deal with domains where long training times are

required (such as the GTM-HMTM in section 4.2), is the adoption of a hierarchical visualisation

scheme. Given such a domain, one could train a top level GTM with local noise models of limiting

modelling capability but that would allow fast calculation of the model likelihoods for the input

data. Although such a map would not reflect accurately enough the topographic organisation

of the data, it could quickly impart a first impression. Further refinement of the top level map

could then be facilitated in the spirit of [Tiño and Nabney, 2002]. After the user has indicated

regions of interest on the map that he/she would like to examine in greater detail, a second level

of children GTMs could be built. However, this time the new GTMs would not employ the same

local noise models as the top level ones, but more refined noise models that would lead to more

detailed topographic maps. This refinement could be repeated in this fashion and allow the user

to explore certain regions of the maps in increasing detail. In conjunction with this scheme, if

a suitable initialisation strategy could be devised to initialise the parameters of the GTMs in a

more informative way than mere random initialisation, the computational time savings would

be significant.

A further enhancement to investigate is the incorporation of class information that may be

available on a subset of the dataset. The idea is that data items that belong to the same class

should be located (relatively) close to each other on the map as membership to the same class

must indicate a certain affinity between them. This kind of information should be taken into

account to guide the learning of the topographic maps. Tentatively speaking, such information

could be employed in the E-step so that neighbouring latent points express similar posterior

probabilities over data items of the same class.

Finally, another interesting direction would be the investigation of alternative map config-

urations. In GTM and its presented extensions the latent space V is the square [−1,+1] that

is mapped via a smooth mapping Γ a two-dimensional manifold of parameters. However, other

kinds of manifolds are admittable that elude the scope of the present work. One possibility

is the consideration of data that lie on manifolds with one or multiple “holes” 1 (that do not

1Roughly speaking this is known as the genus number in topology.
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disconnect the manifold) or even data that lie on multiple manifolds.

We conclude by summarising the main benefits of the generative probabilistic model-based

approach followed in this work, over recursive neural-based approaches:

• Trained models are topographic maps endowed with a well defined distance metric.

• There is a well defined cost function driving the model training that can be used for

principled model comparison.

• Trained models can be checked in a natural way for possible overfitting by comparing

log-likelihoods on training and validation sets.

• The smooth mapping from the latent to the data space enables the calculation of mag-

nification factors, a useful tool that supplements our understanding of the visualisation

plots.

• The methodology can be extended to include hierarchical visualisations for detailed user-

guided exploration of subsets of data.
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Appendix A

Derivatives for Constrained Mixture

Example

Regarding the first example of a mixture of Gaussians constrained on a straight line in section

3.5: We define Q(Θ,Θ(i)) = EZ [logL(Θ|D,Z)|D,Θ(i)]. The derivative of Q with respect to xc,

c = 1, . . . , C is:
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∂

∂xc
Q(Θ,Θ(i)) = 0,

∂

∂xc

N∑

n=1

C∑

c′=1

p(c′|t(n),Θ(i)) log p(t(n)|c′) = 0,

N∑

n=1

p(c|t(n),Θ(i))
∂

∂xc
log p(t(n)|c) = 0,

N∑

n=1

p(c|t(n),Θ(i))
∂

∂xc
logN (t(n); l(xc),Σ) = 0,

N∑

n=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)

∂

∂xc
N (t(n); l(xc),Σ) = 0,

N∑

n=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)
N (t(n); l(xc),Σ)

∂

∂xc
(−1

2
(t(n) − l(xc))

T Σ−1(t(n) − l(xc))) = 0,

N∑

n=1

p(c|t(n),Θ(i))(t(n) − l(xc))
T Σ−1 ∂

∂xc
(t(n) − l(xc)) = 0,

N∑

n=1

p(c|t(n),Θ(i))(t(n) − l(xc))
T Σ−1




1

α



 = 0,

N∑

n=1

p(c|t(n),Θ(i))




t
(n)
1 − xc

t
(n)
2 − αxc + βα





T 


σ1 σ2

σ2 σ3








1

α



 = 0,

N∑

n=1

p(c|t(n),Θ(i))[(t
(n)
1 − xc)(σ1 + ασ2) + (t

(n)
2 − αxc − β)(σ2 + ασ3)] = 0,

N∑

n=1

p(c|t(n),Θ(i))[(t
(n)
1 − xc)(σ1 + ασ2) + α(t

(n)
1 − xc)(σ2 + ασ3)] = 0,

N∑

n=1

p(c|t(n),Θ(i))(t
(n)
1 − xc)(σ1 + 2ασ2 + α2σ3) = 0,

(σ1 + 2ασ2 + α2σ3)
︸ ︷︷ ︸

>0

N∑

n=1

p(c|t(n),Θ(i))(t
(n)
1 − xc) = 0,

N∑

n=1

p(c|t(n),Θ(i))(tn1 − xc) = 0,

xc =

∑N
n=1 p(c|t(n),Θ(i))t

(n)
1

∑N
n=1 p(c|t(n),Θ(i))

. (A.1)

where t
(n)
1 is the first coordinate of t(n) = [t

(n)
1 , t

(n)
2 ]T . The quantity noted with the underbrace

is a positive constant. This can be seen by considering that since covariance matrix Σ is a
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positive definite matrix and consequently its inverse is too, we know that:




1

α





T

Σ−1




1

α



 > 0,




1

α





T 


σ1 σ2

σ2 σ3








1

α



 > 0,

(σ1 + 2ασ2 + α2σ3) > 0. (A.2)

The derivative of Q with respect to α is:

∂

∂α
Q(Θ,Θ(i)) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
∂

∂α
log p(t(n)|c) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
∂

∂α
logN (t(n); l(xc),Σ) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)

∂

∂α
N (t(n); l(xc),Σ) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)
N (t(n); l(xc),Σ)

∂

∂α
(−1

2
(t(n) − l(xc))

TΣ−1(t(n) − l(xc))) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(−(t(n) − l(xc)))
T Σ−1 ∂

∂α
(t(n) − l(xc)) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(t(n) − l(xc))
TΣ−1




0

xc



 = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(t(n) − l(xc))
T




σ1 σ2

σ2 σ3








0

xc



 = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))xc[(t
(n)
1 − xc)σ2 + (t

(n)
2 − αxc − β)σ3] = 0,

σ2

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))xc(t
(n)
1 − xc) + σ3

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(t
(n)
2 − αxc − β)xc = 0.

(A.3)

The first summand is equal to zero after updating each xc according to (A.1). For the second
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summand we have:

α =

∑N
n=1

∑C
c=1 p(c|t(n),Θ(i))(t

(n)
2 − β)xc

∑N
n=1

∑C
c=1 p(c|t(n),Θ(i))x2

c

. (A.4)

The derivative of Q with respect to β is:

∂

∂β
Q(Θ,Θ(i)) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
∂

∂β
log p(t(n)|c) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
∂

∂β
logN (t(n); l(xc),Σ) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)

∂

∂β
N (t(n); l(xc),Σ) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))
1

N (t(n); l(xc),Σ)
N (t(n); l(xc),Σ)

∂

∂β
(−1

2
(t(n) − l(xc))

T Σ−1(t(n) − l(xc))) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(−(t(n) − l(xc)))
T Σ−1 ∂

∂β
(t(n) − l(xc)) = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(t(n) − l(xc))
TΣ−1




0

1



 = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(t(n) − l(xc))
T




σ1 σ2

σ2 σ3








0

1



 = 0,

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))[(t
(n)
1 − xc)σ2 + (t

(n)
2 − αxc − β)σ3] = 0,

σ2

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(t
(n)
1 − xc) + σ3

N∑

n=1

C∑

c=1

p(c|t(n),Θ(i))(t
(n)
2 − αxc − β) = 0.

(A.5)

The first summand is equal to zero by setting each xc according to (A.1). For the second

summand we have:

β =

∑N
n=1

∑C
c=1 p(c|t(n),Θ(i))(t

(n)
2 − αxc)

∑N
n=1

∑C
c=1 p(c|t(n),Θ(i))

(A.6)
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Appendix B

Derivatives for GTM-HMTM

Here we give a detailed derivation of the derivatives encountered in section 4.2.2 at the M-step

for the GTM-HMTM:

⊲ Element wj,m in matrix W (π):

∂EZ [logL(W |D,Z)|D,W (i)]

∂wj,m

=
∂

∂wj,m

N∑

n=1

C∑

c=1

p(xc|y(n),W (i))

[ K∑

k=1

p(q1 = k|y(n),xc,W
(i)) log p(q1 = k|xc,W)

+

Un∑

u=2

K∑

k=1

K∑

l=1

p(qu = l, qρ(u) = k|y(n),xc,W
(i)) log p(qu = l|qρ(u) = k,xc,W)

+

Un∑

u=1

K∑

k=1

p(qu = k|y(n),xc,W
(i)) log p(o(n)

u |qu = k,xc,W)

]

=

N∑

n=1

C∑

c=1

p(xc|y(n),W (i))

K∑

k=1

p(q1 = k|y(n),xc,W
(i))

∂

∂wj,m
log p(q1 = k|xc,W)

=
N∑

n=1

C∑

c=1

p(xc|y(n),W (i))
K∑

k=1

p(q1 = k|y(n),xc,W
(i))

1

p(q1 = k|xc,W)

∂

∂wj,m
p(q1 = k|xc,W).

(B.1)

Calculate derivative ∂
∂wj,m

p(q1 = k|xc,W):
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∂

∂wj,m
p(q1 = k|xc,W) =

exp(W
(π)
k φ(xc))

∑K
l=1 exp(W

(π)
l φ(xc))

=

(

∂
∂wj,m

exp(W
(π)
k φ(xc))

)
∑K

l=1 exp(W
(π)
l φ(xc))− exp(W

(π)
k φ(xc))

(

∂
∂wj,m

∑K
l=1 exp(W

(π)
l φ(xc))

)

(
∑K

l=1 exp(W
(π)
l φ(xc))

)2

=
δj,kφm(xc) exp(W

(π)
k φ(xc))

∑K
l=1 exp(W

(π)
l φ(xc))− exp(W

(π)
k φ(xc))φm(xc) exp(W

(π)
j φ(xc))

(
∑K

l=1 exp(W
(π)
l φ(xc))

)2

=
δj,kφm(xc) exp(W

(π)
k φ(xc))

∑K
l=1 exp(W

(π)
l φ(xc))

(
∑K

l=1 exp(W
(π)
l φ(xc))

)(
∑K

l=1 exp(W
(π)
l φ(xc))

)

−
exp(W

(π)
k φ(xc))φm(xc) exp(W

(π)
j φ(xc))

(
∑K

l=1 exp(W
(π)
l φ(xc))

)(
∑K

l=1 exp(W
(π)
l φ(xc))

)

= δj,kφm(xc)p(q1 = k|xc,W)− φm(xc)p(q1 = k|xc,W)p(q1 = j|xc,W)

= φm(xc)p(q1 = k|xc,W)(δj,k − p(q1 = j|xc,W)). (B.2)

Substitute (B.2) in (B.1):

169



∂EZ [logL(W |D,Z)|D,W (i)]

∂wj,m

=

N∑

n=1

C∑
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p(xc|y(n),W (i))

K∑
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1
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=
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K∑
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N∑
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��������������:1
K∑
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p(q1 = k|y(n),xc,W
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)

=
N∑

n=1

C∑

c=1

φm(xc)p(xc|y(n),W (i))

(

p(q1 = j|y(n),xc,W
(i))− p(q1 = j|xc,W)

)

, (B.3)

where we have used the fact that
∑K

k=1 p(q1 = k|y(n),xc,W
(i)) = 1.

⊲ Element w
(r)
j,m in matrix W (Br):
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+

Un∑

u=2

K∑

k=1

K∑

l=1

p(qu = l, qρ(u) = k|y(n),xc,W
(i)) log p(qu = l|qρ(u) = k,xc,W)

+

Un∑

u=1

K∑

k=1

p(qu = k|y(n),xc,W
(i)) log p(o(n)

u |qu = k,xc,W)

]

=

N∑

n=1

C∑

c=1

p(xc|y(n),W (i))

×
Un∑

u=2

K∑

l=1

p(qu = l, qρ(u) = r|y(n),xc,W
(i))

∂

∂w
(r)
j,m

log p(qu = l|qρ(u) = r,xc,W)

=
N∑

n=1

C∑

c=1

p(xc|y(n),W (i))

×
Un∑

u=2

K∑

l=1

p(qu = l, qρ(u) = r|y(n),xc,W
(i))

1

p(qu = l|qρ(u) = r,xc,W)

∂

∂w
(r)
j,m

p(qu = l|qρ(u) = r,xc,W).

(B.4)

Calculate derivative ∂

∂w
(r)
j,m

p(qu = l|qρ(u) = r,xc,W):
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∂

∂w
(r)
j,m

p(qu = l|qρ(u) = r,xc,W) =
exp(W

(Br)
l φ(xc))

∑K
k=1 exp(W

(Br)
k φ(xc))

=

(

∂

∂w
(r)
j,m

exp(W
(Br)
l φ(xc))

)
∑K

k=1 exp(W
(Br)
k φ(xc))

(
∑K

k=1 exp(W
(Br)
k φ(xc))

)2

−
exp(W

(Br)
l φ(xc))

(

∂

∂w
(r)
j,m

∑K
k=1 exp(W

(Br)
k φ(xc))

)

(
∑K

k=1 exp(W
(Br)
k φ(xc))

)2

=
δl,j exp(W

(Br)
l φ(xc))φm(xc)

∑K
k=1 exp(W

(Br)
k φ(xc))

(
∑K

k=1 exp(W
(Br)
k φ(xc))

)2

−
exp(W

(Br)
l φ(xc)) exp(W

(Br)
j φ(xc))φm(xc)

(
∑K

k=1 exp(W
(Br)
k φ(xc))

)2

=
δl,j exp(W

(Br)
l φ(xc))φm(xc)

∑K
k=1 exp(W

(Br)
k φ(xc))

(
∑K

k=1 exp(W
(Br)
k φ(xc))

)(
∑K

k=1 exp(W
(Br)
k φ(xc))

)

−
exp(W

(Br)
l φ(xc)) exp(W

(Br)
j φ(xc))φm(xc)

(
∑K

k=1 exp(W
(Br)
k φ(xc))

)(
∑K

k=1 exp(W
(Br)
k φ(xc))

)

= δl,jp(qu = l|qρ(u) = r,xc,W)φm(xc)− p(qu = l|qρ(u) = r,xc,W)p(qu = j|qρ(u) = r,xc,W)φm(xc)

= φm(xc)p(qu = l|qρ(u) = r,xc,W)(δl,j − p(qu = j|qρ(u) = r,xc,W)). (B.5)

Substitute (B.5) in (B.4):
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∂EZ [logL(W |D,Z)|D,W (i)]

∂w
(r)
j,m

=

N∑

n=1

C∑

c=1

p(xc|y(n),W (i))

Un∑

u=2

K∑

l=1

p(qu = l, qρ(u) = r|y(n),xc,W
(i))

× 1

p(qu = l|qρ(u) = r,xc,W)
φm(xc)p(qu = l|qρ(u) = r,xc,W)(δl,j − p(qu = j|qρ(u) = r,xc,W))

=

N∑

n=1

C∑

c=1

φm(xc)p(xc|y(n),W(i))

Un∑

u=2

K∑

l=1

p(qu = l, qρ(u) = r|y(n),xc,W
(i))(δl,j − p(qu = j|qρ(u) = r,xc,W))

=
N∑

n=1

C∑

c=1

φm(xc)p(xc|y(n),W (i))

×
Un∑

u=2

( K∑

l=1

p(qu = l, qρ(u) = r|y(n),xc,W
(i))δl,j

−
K∑

l=1

p(qu = l, qρ(u) = r|y(n),xc,W
(i))p(qu = j|qρ(u) = r,xc,W)

)

=
N∑

n=1

C∑

c=1

φm(xc)p(xc|y(n),W (i))

×
Un∑

u=2

(

p(qu = j, qρ(u) = r|y(n),xc,W
(i))− p(qu = j|qρ(u) = r,xc,W)

K∑

l=1

p(qu = l, qρ(u) = r|y(n),xc,W
(i))

)

=

N∑

n=1

C∑

c=1

φm(xc)p(xc|y(n),W (i))

×
Un∑

u=2

(

p(qu = j, qρ(u) = r|y(n),xc,W
(i))− p(qu = j|qρ(u) = r,xc,W)p(qρ(u) = r|y(n),xc,W

(i))

)

,

(B.6)

where we have used the fact that
∑K

l=1 p(qu = l, qρ(u) = r|y(n),xc,W
(i)) = p(qρ(u) =

r|y(n),xc,W
(i)).

⊲ Element w
(r)
j,m in matrix W (ψr):
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∂EZ [logL(W |D,Z)|D,W (i)]

∂w
(r)
j,m

=
∂

∂w
(r)
j,m

N∑

n=1

C∑

c=1

p(xc|y(n),W(i))

[ K∑

k=1

p(q1 = k|y(n),xc,W
(i)) log p(q1 = k|xc,W)

+

Un∑

u=2

K∑

k=1

K∑

l=1

p(qu = l, qρ(u) = k|y(n),xc,W
(i)) log p(qu = l|qρ(u) = k,xc,W)

+

Un∑

u=1

K∑

k=1

p(qu = k|y(n),xc,W
(i)) log p(o(n)

u |qu = k,xc,W)

]

=

N∑

n=1

C∑

c=1

p(xc|y(n),W(i))

Un∑

u=1

p(qu = r|y(n),xc,W
(i))

∂

∂w
(r)
j,m

log p(o(n)
u |qu = r,xc,W)

=

N∑

n=1

C∑

c=1

p(xc|y(n),W(i))

×
Un∑

u=1

p(qu = r|y(n),xc,W
(i))

1

p(o
(n)
u |qu = r,xc,W)

∂

∂w
(r)
j,m

p(o(n)
u |qu = r,xc,W). (B.7)

Calculate derivative ∂

∂w
(r)
j,m

p(o
(n)
u |qu = r,xc,W):
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∂

∂w
(r)
j,m

p(o(n)
u |qu = r,xc,W)

=
∂

∂w
(r)
j,m

N (o(n)
u ;µr(xc),Σr(xc)) =

∂

∂w
(r)
j,m

N (o(n)
u ;W (ψr)φ(xc),Σr(xc))

=
∂

∂w
(r)
j,m

(
1

2π

)D/2

‖Σ‖− 1
2 exp

(

− 1

2
(o(n)

u −W (ψr)φ(xc))Σ
−1(o(n)

u −W (ψr)φ(xc))

)

=

(
1

2π

)D/2

‖Σ‖− 1
2 exp

(

− 1

2
(o(n)

u −W (ψr)φ(xc))Σ
−1(o(n)

u −W (ψr)φ(xc))

)

× ∂

∂w
(r)
j,m

(

− 1

2
(o(n)

u −W (ψr)φ(xc))Σ
−1(o(n)

u −W (ψr)φ(xc))

)

= N (o(n)
u ;µr(xc),Σr(xc))

∂

∂w
(r)
j,m

(

− 1

2
(o(n)

u −W (ψr)φ(xc))Σ
−1(o(n)

u −W (ψr)φ(xc))

)

= p(o(n)
u |qu = r,xc,W)

∂

∂w
(r)
j,m

(

− 1

2
(o(n)

u −W (ψr)φ(xc))Σ
−1(o(n)

u −W (ψr)φ(xc))

)

(B.8)

= p(o(n)
u |qu = r,xc,W)

(

�
��−1

2
2(Ejmφ(xc))

T Σ−1(o(n)
u −W (ψr)φ(xc))

)

(B.9)

= p(o(n)
u |qu = r,xc,W)φm(xc)(E

jm
j )TΣ−1(o(n)

u −W (ψr)φ(xc)). (B.10)

In line (B.8) we make use of the chain rule, and two formulas of derivatives of vectors and

matrices. These two formulas, which can be found in [Petersen and Pedersen, 2006], are:

• the derivative of ∂aTBa
∂a , where a is a vector and B a matrix, is

∂aTBa

∂a
= (B +BT )a. (B.11)

If B is a symmetric, then:

∂aTBa

∂a
= 2Ba. (B.12)

This is the case in line (B.8), since covariance matriced are inherently symmetric.

• the derivative of a matrix B with respect to one of its elements bij is:

∂B

∂bij
= Eij, (B.13)

where Eij is a matrix of zeros, apart from element (i, j) that is equal to 1.
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We apply the chain rule to ∂

∂w
(r)
j,m

(

− 1
2(o

(n)
u −W (ψr)φ(xc))

TΣ−1(o
(n)
u −W (ψr)φ(xc))

)

of

line (B.8). Let a = (o
(n)
u −W (ψr)φ(xc)). Take derivative according to (B.12):

∂

∂ai

(

− 1

2
aTΣ−1a

)

=

(
∂aT

∂ai
Σ−1a

)

. (B.14)

Substitute for a and use (B.13):

∂

∂w
(r)
j,m

(

− 1

2
(o(n)

u −W (ψr)φ(xc))
T Σ−1(o(n)

u −W (ψr)φ(xc))

)

=

(
∂

∂w
(r)
j,m

(o(n)
u −W (ψr)φ(xc))

T

)

Σ−1(o(n)
u −W (ψr)φ(xc))

= (Ejmφ(xc))
T Σ−1(o(n)

u −W (ψr)φ(xc))

= φ(xc)
T (Ejm)T Σ−1(o(n)

u −W (ψr)φ(xc)). (B.15)

Having explained the result in (B.10) we substitute it in (B.7):

∂EZ [logL(W |D,Z)|D,W (i)]

∂w
(r)
j,m

=
N∑

n=1

C∑

c=1

p(xc|y(n),W (i))
Un∑

u=1

p(qu = r|y(n),xc,W
(i))

× 1

p(o
(n)
u |qu = r,xc,W)

p(o(n)
u |qu = r,xc,W)φ(xc)

T (Ejm)TΣ−1(o(n)
u −W (ψr)φ(xc))

=

N∑

n=1

C∑

c=1

p(xc|y(n),W (i))

Un∑

u=1

p(qu = r|y(n),xc,W
(i))φ(xc)

T (Ejm)TΣ−1(o(n)
u −W (ψr)φ(xc)).

(B.16)
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Appendix C

Derivatives for GTM-MTM

Here we give a detailed derivation of ∂
∂wst

jm

p(ou = l|oρ(u) = t, pos(u) = s,W), encountered in

section 4.5.2 at the M-step for the GTM-MTM:

∂

∂wst
jm

p(ou = l|oρ(u) = t, pos(u) = s,W)

=
∂

∂wst
jm

bstl =
∂

∂wst
jm

exp(W s,t
l φ(xc))

∑K
l′=1 exp(W s,t

l′ φ(xc))

=

(

∂
∂wst

jm

exp(W s,t
l φ(xc))

)(
∑K

l′=1 exp(W s,t
l′ φ(xc))

)

(
∑K

l′=1 exp(W s,t
l′ φ(xc))

)2 −
exp(W s,t

l φ(xc))
∂

∂wst
jm

(
∑K

l′=1 exp(W s,t
l′ φ(xc))

)

(
∑K

l′=1 exp(W s,t
l′ φ(xc))

)2

=

δl,j exp(W s,t
l φ(xc))φm(xc)

(
∑K

l′=1 exp(W s,t
l′ φ(xc))

)

(
∑K

l′=1 exp(W s,t
l′ φ(xc))

)2 −
exp(W s,t

l φ(xc)) exp(W s,t
j φ(xc))φm(xc)

(
∑K

l′=1 exp(W s,t
l′ φ(xc))

)2

= δl,jb
s
tlφm(xc)− bstlbstjφm(xc)

= φm(xc)

(

δl,jb
s
tl − bstlbstj

)

= φm(xc)

(

δl,jb
s
tj − bstlbstj

)

= φm(xc)p(ou = j|oρ(u) = t, pos(u) = s)

(

δl,j − p(ou = l|oρ(u) = t, pos(u) = s,W)

)

. (C.1)
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Appendix D

Derivatives for Magnification Factors

The first derivative of the initial probability for state k in section 5.6.2 is:

∂

∂xq
p(q1 = k|x) =

∂

∂xq
gk(A(π)φ(x)) =

∂

∂xq

exp(A
(π)
k φ(x))

∑K
i=1 exp(A

(π)
i φ(x))

=
exp(A

(π)
k φ(x))A

(π)
k

∂
∂xq
φ(x)

∑K
i=1 exp(A

(π)
i φ(x))

∑K
i=1 exp(A

(π)
i φ(x))2

−
exp(A

(π)
k φ(x))

∑K
i=1[exp(A

(π)
i φ(x))A

(π)
i

∂
∂xq
φ(x)]

∑K
i=1 exp(A

(π)
i φ(x))2

=
exp(A

(π)
k φ(x))

(
∑K

i=1 exp(A
(π)
i φ(x)))




A

(π)
k

∂
∂xq
φ(x)

∑K
i=1 exp(A

(π)
i φ(x))

(
∑K

i=1 exp(A
(π)
i φ(x)))

−
∑K

i=1[exp(A
(π)
i φ(x))A

(π)
i

∂
∂xq
φ(x)]

(
∑K

i=1 exp(A
(π)
i φ(x)))



 ,

∂

∂xq
p(h1 = k|x) = gk(A(π)φ(x))(A

(π)
k

∂

∂xq
φ(x)−

K∑

i=1

[gi(A
(π)φ(x))A

(π)
i

∂

∂xq
φ(x)]).

The second derivative for the initial probability for state k is:
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∂2

∂xq∂xr
p(q1 = k|x) =

∂

∂xq

{

gk(A(π)φ(x))

(

A
(π)
k

∂

∂xr
φ(x)−

K∑

i=1

[gi(A
(π)φ(x))A

(π)
i

∂

∂xr
φ(x)]

)}

=

{
∂

∂xq
gk(A(π)φ(x))

}(

A
(π)
k

∂

∂xr
φ(x)−

K∑

i=1

[gi(A
(π)φ(x))A

(π)
i

∂

∂xr
φ(x)]

)

+ gk(A(π)φ(x))

{

∂

∂xr

(

A
(π)
k

∂

∂xr
φ(x)−

K∑

i=1

[gi(A
(π)φ(x))A

(π)
i

∂

∂xr
φ(x)]

)}

=

{
∂

∂xq
gk(A(π)φ(x))

}(

A
(π)
k

∂

∂xr
φ(x)−

K∑

i=1

[gi(A
(π)φ(x))A

(π)
i

∂

∂xr
φ(x)]

)

+ gk(A(π)φ(x))

(

A
(π)
k

∂2

∂xq∂xr
φ(x)

−
K∑

i=1

[
∂

∂xr
gi(A

(π)φ(x))A
(π)
i

∂

∂xr
φ(x) + gi(A

(π)φ(x))A
(π)
i

∂2

∂xq∂xr
φ(x)]

)

First and second order derivatives for transition and emission probabilities are calculated

similarly.
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Appendix E

Prior Densities for Physical

Parameters

The material of this appendix was provided by Steven Spreckley.

We have obtained prior distributions on the physical parameters from the relevant literature.

Primary mass M1 is distributed according to the [Miller and Scalo, 1979] logarithmic stellar mass

function:

ξ (logM1) = A0M1
A1 . (E.1)

where, A1 is the power law index or slope of the distribution, the values of which are given

in table E.1. We have set a lower mass limit of 0.5M⊙ (solar masses) and and upper limit of

100M⊙. The density is illustrated in Fig. E.1(a).

Mass range A1

0.5 < M⊙ < 1 -0.4
1 ≤M⊙ < 10 -1.5

10 ≤M⊙ < 100 -2.3

Table E.1: Power law index A1.

The mass ratio q obeys the following prior distribution which is a parameterized version of

the distribution presented in [Halbwachs et al., 2003]:

p(q) = B1 exp(−0.5(q − q1)2σ2
1) +B2 exp(−0.5(q − q2)2σ2

2) +B3 exp(−0.5(q − q3)2σ2
3),

where B1 = 1.25, B2 = 1.35, B3 = 2.26, q1 = 0.30, q2 = 0.65, q3 = 1.00, σ1 = 0.18, σ2 = 0.05,
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and σ3 = 0.10. The density is illustrated in Fig. E.1(b).

Period ρ of the system, obeys a log-normal distribution based on the periods of the detached

eclipsing binaries identified in the ASAS-3 survey [Paczyński et al., 2006]:

p(ρ) =
1√

2πσρ
exp

(

− ln
2(ρ/ρ0)

2σ2

)

, (E.2)

where ρ0 = 4.405, and σ = 0.77. For this distribution, we have imposed a lower limit on the

period of 0.5 days, and an upper limit of 100 days. The density is illustrated in Fig. E.1(c).

The probability density of the eccentricity, e, for systems with periods less than 5 days has

been derived from the eccentricities of the eclipsing binary systems in the OGLE-II galactic

bulge survey [Devor, 2005] and is given by,

p(e|ρ) = C0
Γ

e2 + Γ2
+D0 exp(− e

2σ2
), (E.3)

where C0 = 0.18, Γ = 0.0135, D0 = 0.18, and σ = is0.26. This first part of the density

is illustrated in Fig. E.1(d). This distribution then transitions into a uniform distribution of

eccentricities, but an upper limit to the range of allowed eccentricities is determined by the

period over the range of periods from 5 days to 100 days according to:

emax = 0.5

(

1 +
log10(ρ)− log10(5)

log10(100) − log10(5)

)

. (E.4)

The upper limits for the eccentricities are based on findings by [Halbwachs et al., 2003]. This

second part of the density is illustrated in Fig. E.1(e).

The argument of periastron ω is limited to the range [0, 2π]. We assume that ω is uniformly

distributed within its range. Finally inclination ı is assummed to be also uniformly distributed

within its range [0, π
2 ].
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Fig. E.1: Prior densities on parameters of physical model.
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Appendix F

Disc Areas for Eclipses

front star rear star

Fig. F.1: Partial eclipse.

In the case where one star is completely obscured by the other, the visible area is of course

simply the area of the star in the front. In the case where the disc of the star passing in front

of the other is enclosed within the disc of rear star, the visible area of the rear star is given by

the difference of the areas of the two discs.

In the case of a partial eclipse (see Fig. F.1), the occulted areas are cut by the line segment

through the two points of contact of the discs of the stars. The area cut by the line segment can

be easily calculated as follows. The area of a sector of a circle with radius R corresponding to

angle θ, as in Fig. F.2(a), is πR2 θ
2π = R2 θ

2 . Area ∆A of the circle cut of by the line segment,

can be calculated as the area of the sector minus the area of the triangle with sides the radii of

the circle and the line segment. If we bisect angle θ, two equal right-angle triangles are formed.

The area of one of them is equal to 1
2R cos θ

2R sin θ
2 . Thus, the area of the original triangle is

R2 cos θ
2 sin θ

2 . Area ∆A is equal to the difference:

∆A = R2 θ

2
−R2 cos

θ

2
sin

θ

2
= R2(

θ

2
− cos

θ

2
sin

θ

2
)

=
1

2
R2(θ − sin θ). (F.1)
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Fig. F.2: Occulted areas.

Considering now both stars, as in Fig. F.2(b), via the law of cosines angle θ is determined:

θ = 2 cos−1

(
R2

1 + ∆2 −R2
2

2R1∆

)

. (F.2)

Depending on which star is in front and the state of the eclipse, visible areas are calculated

according to table 6.1.
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