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Understanding the molecular role of NKG2D ligands in 

lymphoid stress recognition in cancer 

 

NKG2D is an activating immune receptor expressed on the surface of many lymphocytic 

cells.  Upon binding of “stress ligands” that are expressed on the surface of transformed or 

infected cells, NKG2D can trigger destruction of the target cell.  ULBP6 is one such stress 

ligand, and has been implicated in the variation in survival rates of patients that have 

undergone stem cell transplant (SCT) to treat haematopoietic malignancy.  Patient genotype 

for the two most common ULBP6 alleles (*01 and *02) is associated with significantly 

different survival rates.  To understand the molecular mechanism behind this difference, this 

study has conducted binding and structural investigation of the NKG2D-ULBP6 interaction.  

Firstly, binding affinities of NKG2D with ULBP6*01, ULBP6*02, and mutants that share one of 

the two amino acid variations between the two alleles were calculated using surface 

plasmon resonance experiments.  Variation in the ULBP6-NKG2D binding affinity was 

attributed to a polymorphism in residue 86 of ULBP6.  ULBP6*02, possessing a leucine at this 

position displayed a 13-fold increase in affinity.  Secondly, crystallisation of the NKG2D-

ULBP6*02 complex was performed in order to derive the structure from X-ray 

crystallography.  This study has furthered understanding of the NKG2D-ULBP6 interaction 

and may lead to improvements in SCT protocols. 
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INTRODUCTION 

 

1.1 NK cells are part of the innate immune response. 

 

The innate immune response forms one layer of an elaborate system that has evolved to 

protect the body from invading pathogens and toxins. The first of these layers is the physical 

barrier, such as the skin and mucosal tissues that protect vulnerable interior tissue from 

harm.  The second layer is formed by a non-specific innate line of defence. This includes anti-

microbial enzymes such as lysozyme, anti-microbial peptides such as the defensins, and the 

action of the complement system, which helps to trigger the third layer, the induced innate 

immune response. Complement binding to a pathogen will “flag” it for destruction by 

phagocytes, which in turn initiate an inflammatory response.  Inflammation recruits 

monocytes and dendritic cells, which through activation of their Toll-like receptors (TLRs) 

recruit a range of cytotoxic effector cells such as neutrophils, lymphocytes and natural killer 

(NK) cells.  If the infection has not been cleared by this stage, these recruited cells will illicit 

the fourth and final layer of defence, the adaptive immune response, by generating cells 

capable of targeting specific pathogen and forming an immunological memory to the 

pathogen in case of repeat infection. 

 

Both the innate and adaptive responses have the key ability to distinguish between self and 

non-self.  In the innate response, this distinction is made by macrophage TLRs  which bind to 

molecular patterns found in a wide range of common pathogen, including bacteria, viruses 

and fungi.  These patterns are usually repeated structures found in components of the 

microbe not found in vertebrate cells, such as the bacterial cell wall or double-stranded RNA 

in viruses.  In the adaptive response, B-cells and T-cells express receptors for a huge variety 

of specific antigens from many pathogens, and it is clonal selection and expansion of these 



activated lymphocytes that drives the adaptive immune response upon antigen recognition.  

The extensive polymorphism in antigen-recognising receptors is generated by gene 

rearrangement, a somatic recombination event that occurs in developing lymphocytes.  

 

NK cells are derived from the same progenitor cells as the B-cells and T-cells, and function in 

a similar manner to the cytotoxic T cell, releasing lytic enzymes that destroy target cells.  

However, antigen recognition in NK cells does not occur through receptors generated by 

gene rearrangement, but instead is performed by invariant, germ-line encoded receptors 

that recognise molecules expressed on the surface of damaged or infected cells.  NK cells are 

recruited to the site of infection by IL-12 secreted by activated macrophages, and 

interferons such as IFN- α and IFN-β which are secreted by virally-infected cells.  In this way, 

they form an innate immune response to intracellular pathogens in the same way that 

macrophages form part of the innate response to extracellular pathogens. 

 

1.2 NK cell activation is dependent on inhibitory “missing self” and activating “stressed 

self” recognition. 

 

Because NK cells target infected or damaged cells of the host organism and lack the fine 

specificity of lymphocyte antigen receptors, they need a method to distinguish between 

normal cells and infected cells to prevent unnecessary killing of healthy cells.   

 

To prevent the targeting of healthy cells, NK cells are able to recognise naturally-expressed 

cell surface markers of the major-histocompatibility complex (MHC) class I molecule family, 

normally with a cytolytically inhibitory receptor, such as the killer cell immunoglobulin-like 

receptors (KIRs) (Borrego et al, 2002).  MHC class I molecules are expressed on nearly all 



healthy tissues, with the exception of erythrocytes.  If a sufficient inhibitory signal is 

generated through the binding of inhibitory receptors to MHC class I molecules, the NK cell 

will not kill the target cell.  However, if cell surface MHC molecule expression is reduced 

through the action of intracellular pathogens in an attempt to evade the T-cell mediated 

immune response, the cell is more likely to be eliminated by NK cell action – the so-called 

“missing self” paradigm (Cerwenka & Lanier, 2001). 

 

NK cells (as well as other cells with similar roles, such as natural killer T cells, cytotoxic T cells 

and γδ T cells) also display, to a varying degree, cell surface receptors that recognise ligands 

that tend to be up-regulated on the surface of infected or transformed cells (Diefenbach & 

Raulet, 2002).  Binding of these ligands to the activating receptors triggers cytolytic activity 

and cytokine release which scales up the immune response towards the infected or 

damaged cells, and confers the ability of NK cells to recognise and eliminate “stressed-self”.  

Activating receptors in NK cells include immunoglobulin-like natural cytotoxicity receptors, 

e.g. NKp44 and NKp46, and the C-type lectin family member NKG2D. 

 

In this way, a combination of activating signals from stress-generated ligand binding, 

balanced by the inhibitory signals from MHC molecule binding, determines whether the NK 

cell exhibits cytotoxic effector activity towards the target cell. 

 

 

 

 

 



 

 

 

Figure 1.1: Tumour cell recognition by Natural Killer (NK) cells.  (a) Engagement of 

inhibitory NK receptors by MHC class 1 molecules on the surface of healthy cells prevents NK 

activation. (b) Reduction in surface expression of MHC class 1 molecules in tumour cells 

triggers activation of NK cells – the “missing self” paradigm. (c) Over-expression of “stress 

ligands” on tumour cell surface leads to activation of NK cells through stimulation of 

activating receptors, such as NKG2D – the “stressed self” paradigm. (Taken from Vivier et al, 

2012). 



1.3 NKG2D is an activating receptor that mediates the “stressed self” response. 

 

A prominent example of an activating receptor expressed in a variety of lymphocytes, 

including NKs (Bauer et al, 1999), CD8+ cytotoxic T cells (Upshaw & Leibsen, 2006) and γδ T 

cells (Rincon-Orozco et al¸2005), is Natural Killer group 2, member D (NKG2D).  This receptor 

is formed from a homodimer of proteins belonging to the C-type lectin-like family (Houchins 

et al, 1991).  It is a transmembrane type II protein forming a hexameric structure consisting 

of the NKG2D dimer and four DAP10 adaptor proteins that associate with the 

transmembrane domain of the NKG2D monomers, in a similar manner to the T cell receptor 

(TCR)-CD3 complex (Gilfillan et al, 2002 Garrity et al, 2005).  On activation of NKG2D by 

binding a complementary ligand, the intracellular YINM motif of DAP10 is phosphorylated, 

coupling the receptor/ ligand complex to the phosphatidylinositol-3-kinase (PI3K)/ Grb2 

signalling pathway that in NK cells triggers cytotoxicity and IFN-γ production to instigate an 

inflammatory response (Wu et al, 1999; Chang et al, 1999; Upshaw et al, 2006).  In cytotoxic 

CD8+ T cells, this mechanism provides a co-stimulatory effect (Groh et al, 2001), stimulating 

cytokine production but is insufficient to induce cytotoxicity without TCR engagement 

(Jamieson et al, 2002). 

 

The cell surface expression of NKG2D depends on the external concentrations of numerous 

cytokines.  IL-2 (Park et al, 2011), IL-12 (Zhang et al, 2008a),   IL-15 (Becknell et al, 2005) and 

IFNα (Zhang et al, 2008b) have all been demonstrated to upregulate transcription of NKG2D, 

while transforming growth factor β (TGFβ) (Espinoza et al, 2012) and INFγ (Zhang et al, 

2008b) have been shown to reduce transcription of NKG2D and DAP10.  A key element to 

the cell-surface regulation of NKG2D is the effect of chronic stimulation of the NKG2D 

receptor, either by cell surface-expressed ligand or soluble ligand in the extracellular matrix.  

Chronic stimulation leads to reduced expression of NKG2D through retention and 



degradation within the cell, a mechanism exploited by tumour cells to avoid 

immunosurveillance by NK cells (Groh et al, 2002), which will be discussed further later.  

 

1.4 The stressed-self response relies on the interaction of NKG2D with a family of MHC-like 

molecules. 

 

The binding site of NKG2D displays remarkable flexibility and binds to a number of MHC 

molecule-like ligands (Radaev et al, 2001; Culpepper et al, 2011).  In mice these ligands 

include the histocomptibility antigen 60 (H60) and the Rae1 family of proteins (Diefenbach 

et al, 2000; Cerwenka et al, 2000), encoded by the retinoic acid inducible early transcript 

gene family (Rae1).  In humans, the NKG2D ligands discovered to date are the two MHC-

class 1-polypeptide-related sequence A and B, and 6 cytomegalovirus UL-16-binding proteins 

(ULBP1-6), encoded by the human orthologue of the murine Rae1 genes, RAET1 (Cosman et 

al, 2001) (Figure 1.2).  MICA shares only 20-25% sequence homology with the ULBPs 

(Radosavljevic et al, 2002), and the structure of each varies fairly significantly from ligand to 

ligand, with some exhibiting transmembrane domains and others being anchored with a 

glycosylphospatidylinositol domain.  All exhibit an MHC-class-1-like αβ extracellular domain 

that binds the NKG2D receptor (Groh et al, 1996).  The genes encoding the NKG2D ligands 

are highly polymorphic, particularly MIC genes (Kasahara & Yoshida, 2012). 

 



 

Figure 1.2: Structure of known NKG2D ligands. Cartoon diagram showing the structure of 

human and orthologous mouse NKG2D ligands (taken from Raulet et al, 2013). 

 

 

It is likely that this diverse array of ligands has evolved as a defensive mechanism, allowing 

the host to counter viral immune evasion strategies, relying on the conformational plasticity 

of the NKG2D receptor to allow induced-fit binding of multiple ligands and propagate the 

cytotoxic immune response (Eagle & Trowsdale, 2007).  The human cytomegalovirus (hCMV) 

produces a protein that binds to at least 3 of the known NKG2D ligands (Muller et al, 2010), 

sequestering them within the cell, preventing trafficking and cell surface expression which in 

turn renders the infected cell invisible to the activating receptors on circulating lymphocytes 

(Dunn et al, 2003; Bennett et al, 2010).  This is an essential component of hCMV, as it also 

prevents cell surface expression of MHC Class I and II molecules on infected cells, which 

would protect the infected cells from T-cell mediated lysis, but not from NK-cell mediated 

attack, where “missing-self” will trigger the KIR to induce an immune response.  The high 



level of polymorphism found in some of the human NKG2D ligands, particularly MICA and 

ULBP 3, 4 and 6, may be a further mechanism employed in the arms race against viral 

infection (Fernandez-Messina et al, 2012). 

 

1.5 A number of challenges have been shown to upregulate NKG2D ligands, including DNA 

damage and other indicators of transformation. 

 

NKG2D ligand expression is regulated at many cellular levels, including transcription, mRNA 

degradation and post-translational sequestration, shedding and protein modifications 

(Champsaur & Lanier, 2010).  Unsurprisingly, this regulation occurs through many pathways, 

which vary in importance depending on the ligand concerned (Raulet et al, 2013).  Several 

transcription factors, including the E2F family (Jung  et al, 2012), p53 (Textor et al, 2011) and 

NF-êB (Molinero et al, 2004) have been demonstrated to affect NKG2D ligand transcription, 

as well as the heat shock pathway (Groh et al, 1996), indicating cell proliferation and the 

heat shock stress pathway has an effect of NKG2D ligand expression. 

 

The DNA damage pathway regulates NKG2D ligands via the Ataxia telengiectasia mutated 

(ATM)/ Ataxia telengiectasia and Rad3 related (ATR) response (Gasser et al, 2005), which 

promotes stabilisation of NKG2D ligand mRNA, via a mechanism that is poorly understood.  

This is important, as it is believed that lymphocytes expressing NKG2D have a key role in the 

immunosurveillance of tumour cells, and DNA damage is often a critical step of tumour 

formation. 

 

Oncogenes and tumour suppressor genes have been demonstrated to affect NKG2D ligand 

production in the case of MICA (Liu et al, 2012), but expression of oncogenes such as K-Ras 

and c-myc is insufficient to induce significant NKG2D ligand expression in ovarian epithelial 



cells (REFS). Therefore it is likely that transformation in and of itself is not sufficient to 

induce the “stressed self” NKG2D-mediated response.  One study has shown that expression 

of an adenovirus oncogene, E1A, upregulates NKG2D ligands in mice (Routes et al, 2005). 

 

An additional mechanism by which stress responses lead to increased NKG2D ligand 

expression is through decreasing the amount of ubiquitination of transmembrane ligands 

such as MICA or the murine MULT1, leading to decreased intracellular degradation of the 

protein (Nice et al, 2009).   

 

Several micro-RNAs have also been demonstrated to affect NKG2D ligand expression 

through enhanced degradation of ligand mRNA (Stern-Ginossar et al, 2008), although it is 

likely that these contribute to the regulation of NKG2D ligand expression in healthy cells.  

NKG2D ligands have been shown to be displayed on the surface of healthy cells, including T-

cells and macrophages, where it is hypothesised they have a role in down-modulating an 

immune response (Eagle et al, 2009a).  Indeed, NKG2D ligands are expressed in a wide 

variety of different tissues, suggesting NKG2D has a role beyond simply recognising stressed 

self.  The precise nature of these roles is likely to be defined by a combination of signals in 

the tissue microenvironment. 

 

Taken as a whole, these findings suggest that cells are likely to express NKG2D ligands when 

undergoing hyper-proliferation, heat shock stress pathway induction and/ or the DNA 

damage repair pathway, in addition to the presence of oncogenes within the cell.   All of 

these events occur to greater or lesser in extent in cells undergoing transformation.   

 

Research has indeed found that a large variety of primary tumours and tumour-derived cell 

lines express NKG2D ligands (Nausch & Cerwenka, 2008), although the actual ligands 



expressed depends on the location of the tissue/ tumour, the pathway of cellular stress 

involved and the cytokine cocktail present in the microenvironment.   

 

These findings suggest a mechanism by which the immune system surveys and eliminates 

nascent malignancies, thereby preventing the development of a significant number of 

tumours.   The system is far from perfect however, as cancers can avoid detection and 

elimination by NKG2D-mediated NK or T-cell attack by several mechanisms.  Shedding of 

soluble NKG2D ligands from the cell surface of transformed cells into the blood serves to 

downregulate the expression of NKG2D on NK and T-cells surfaces (Song  et al, 2006; Cao et 

al, 2007), as well as reducing the likelihood that the tumour cell will be targeted by these 

cells.  Cancer cells have been shown to upregulate matrix metalloproteinases (MMPs) 

(Waldhauer et al, 2008), as well as endoplasmic reticulum protein 5 (ERP5) (Jinushi et al, 

2008), which both serve to increase proteolytic cleavage of ligand extracellular domains.  In 

addition, transformed cells can also secrete TGF, which, as mentioned earlier, 

downregulates lymphocyte expression of NKG2D (Lee et al, 2004).   

 

Different types of cancer tend to exhibit altered patterns of NKG2D ligand expression, 

potentially due to either differential immunoediting or variation in stress-response pathways 

triggered by different cancers.  It is hypothesised that having multiple NKG2D ligands may 

help prevent cancer immunoediting and loss of the NKG2D-mediated anti-tumour response. 

 

1.6 The clinical importance of NKG2D and its ligands. 

 

It has long been established that immunocompromised individuals have a higher than usual 

incidence of developing malignancies (Gatti & Good, 1971), and although a large proportion 

of these malignancies are virally-associated, the evidence presented above has seen a re-



emergence of the once marginalised tumour immunosurveillance theory (Raulet & Guerra, 

2008).  Studies over the last 15 years have gone a long way to defining the role of the NKG2D 

receptor in tumour immunosurveillance (Nausch & Cerwenka, 2008). 

 

Early studies showed that NKG2D/ NKG2D-ligand engagement stimulates NK, CD8+ T cells 

and γδ T cell cytotoxicity towards transfectant and epithelial tumour cells (Bauer et al, 

1999).  Tumour cells expressing murine RAE-1 ligands are still eliminated by NK cells, despite 

tumour expression of MHC class I self antigens (Cerwenka et al, 2001).   This demonstrates 

the potential role of NK cells in the immune response to transformed self-tissue and 

confirmed that NKG2D-expressing lymphocytes have the capability of destroying tumour 

cells. 

 

NKG2D+ KLRG1+ CD11c+ CD8+ T cells preferentially infiltrate into tumour tissue and inhibit 

tumour growth (Choi et al, 2007).  In addition, upregulation of NKG2D ligands is seen in mice 

transfected with an oncogenic adenovirus, which subsequently enhances tumour rejection 

in vivo (Routes et al, 2005).  

 

NKG2D deficiency results in a higher incidence of malignant prostate adenocarcinomas in 

transgenic model of prostate adenocarcinoma (TRAMP) model Klrk1-/- knockout mice, as well 

as accelerating the progression of Eµ-myc-induced lymphomas in Eµ-myc transgenic mice 

(Guerra et al, 2008).  This study provided evidence of NKG2D action in the formation of 

primary tumours. 

 

NKG2D ligand expression is heterogenous and combinations of ligands can be used as a 

prognostic marker in colorectal cancer patients, with those expressing high levels of certain 

ligands showing a significant improvement in survival rates following surgery (McGilvray et 



al, 2009).  This suggests that the action of NKG2D-bearing cells is important in controlling 

tumour progression.  The same study demonstrated that tumour expression of NKG2D 

ligands decreases as tumour stage increases, indicating that late stage tumours have been 

driven toward lower expression of NKG2D ligands.   

 

This research demonstrates the clinical relevance of the NKG2D/ NKG2D-ligand interaction.  

Work is on-going into determining whether this interaction can be targeted for therapy in 

the treatment of cancers (Vivier et al, 2012) and autoimmune diseases (Van Belle & von 

Herrath, 2009), but there is another high profile clinical scenario where the NKG2D receptor 

may play an important role. 

 

1.7 The NKG2D/ NKG2D ligand interaction is thought to affect the outcome of 

haematopoietic stem cell transplants conducted as a therapy of haematological 

malignancies. 

 

Haematopoietic stem cell transplants (HSCT) represent a significant development in the 

treatment of haematological malignancies such as leukemia and lymphoma.  HSCTs were 

first developed to combat the toxicity to bone marrow caused by aggressive chemo- and 

radio-therapy of haematological malignancies (Thomas et al, 1959).  It was soon found that 

SCTs also trigger immune reactions, both toward the host malignancy (graft versus 

leukaemia, or GvL) and towards host tissues, particularly gut, skin and liver (graft versus host 

disease, or GvHD) (Goker et al¸2001).  These immune responses are mediated by the human 

leukocyte antigen (HLA) molecules, class I in the case of CD8+ T cells, class II in the case of 

CD4+ T cells (Bleakley & Riddell, 2004). 

 



By ablating the host immune system through chemo-and radiotherapy, the introduction of 

haematopoietic cells from an HLA-matched donor allows targeting of the malignant cells by 

donor T-cells (GvL) and reconstitution of the recipient immune system.  However, the donor 

T-cells can also mediate an immune response against host tissue (GvHD), necessitating T-cell 

depletion from the graft, which negatively impacts the GvL potential, increasing chances of 

relapse. 

 

The GvHD effect is worst in HLA-mismatched SCTs but still occurs in HLA-matched 

transplants due to the minor histocompatibility antigens displayed by HLA molecules of 

recipient cells.  The GvL effect has been shown to significantly reduce the chance of relapse, 

so separating the beneficial GvL and harmful GvHD effects is one of the prime focuses of SCT 

research (Blazar et al, 2012). 

 

Discovery of the GvL effect has led to switching the pre-transplant condition away from the 

very harsh chemo- and radio-therapies and towards the so called “non-myeloablative” 

conditioning, thereby allowing treatment of those for which myeloablative therapy may 

have proved fatal.  The objective of non-myeloablative conditioning is immunosuppression 

with insufficient strength to cause irreversible damage to the patient’s bone marrow 

(McSweeney et al, 2001). 

 

Due to the unique combination of receptors that recognise both MHC molecules and stress 

ligands, NK cells, and by inference their activating receptors such as NKG2D, have been 

shown to have a positive effect on HSCTs.  Alloreactive NK cells have been shown to be 

associated with improved GvHD effects in acute myeloid leukaemia (AML) patients (Ruggieri 

et al, 2002).  This is thought to be due to alloreactive NK donor cells attacking the recipient 

antigen presenting cells (APCs) that mediate GvHD.  In addition, HSCTs from a donor that 



shares only one HLA haplotype with the recipient show improved GvL by NK cells uninhibited 

by HLA-recognition on leukemic cells, which don’t target healthy recipient cells because of 

the lack of activating ligands (Moretta et al, 2011).  In this scenario, the T cell population can 

be almost entirely removed from the graft, which reduces GvHD effects. 

 

There is evidence to suggest that NKG2D is important in the HSCT scenario, with a recent 

clinical trial demonstrating that an engraftment of T cells expressing NKG2D demonstrated 

significantly increased killing of autologous myeloma cells compared with T cells that did not 

express the receptor (Meehan et al, 2012). 

 

1.8 ULBP6 has been demonstrated to be of particular significance in this scenario, with 

some single nucleotide polymorphism alleles showing significantly improved RFS and OS 

over others.   

 

As mentioned earlier, the ULBP/ RAET1 gene family exhibits extensive polymorphism, 

existing as a cluster of functionally and structurally related genes, likely due to evolutionary 

attempts to maintain viral resistance, and perhaps prevent cancer immunoediting.  Each 

ULBP locus exhibits between 10 and 28 single nucleotide polymorphisms (inter alia Hubbard 

et al 2007), but these polymorphisms occur in a wide variety of locations, including 

promoter regions and non-coding regions.  Importantly, they also occur in binding site 

regions, notably in the RAET1L (ULBP6) gene (Eagle et al, 2009b).  However, only three of the 

known NKG2D ligands have been demonstrated to have undergone preferential selection in 

discrete global populations (Antoun et al, 2010), while the ligands that also bind UL-16 

(ULBP1, 2 and 3) seem to be far more conserved. 

 



In MHC-matched HSCTs, allelic variation of the recipient’s RAET1L (ULBP6) gene has been 

shown to strongly contribute to relapse free survival (RFS) and overall survival (OS) (Antoun 

et al, 2012).  Improved RFS and OS were observed in patients carrying at least one copy of 

the second most common RAET1L allele, RAET1L*02, and patients homozygous for the 

RAET1L*02 allele had improved OS and RFS over heterozygotes.  Patients heterozygous for 

RAET1L*02 displayed a 14% better OS at 8 years than those without a copy of the allele, and 

patients homozygous for the RAET1l*02 gene displayed a 33% improvement in RFS relative 

to those without a copy of the RAET1L*02 gene.  Notably, this data was obtained from HLA-

identical transplantations between siblings, which removed the influence of the strongly 

immunogenic MHC-mismatch scenario. 

 

It is also important to note that it is the recipient’s expression of ULBP6 that has the effect.  

It is possible that ULBP6 is expressed on the malignant haematopoietic cells, which induces 

killing by NKG2D-expressing NK cells, γδ T-cells or CD8+ CTCs.  Alternatively ULBP6 could be 

mediating the killing of recipient APCs by the donor leukocytes.   

 

There is little evidence to show whether the improved OS of patients carrying at least one 

copy of the RAET1L*02 gene is due to enhanced GvL or reduced GvHD, or a combination of 

both effects.  The data suggests a much higher RFS in homozygotes and insignificant 

improvement in death in remission due to infection, GvHD and other causes in RAET1L*02 

carriers, which implies the improvement in OS is likely due to enhanced GvL.  Based on these 

observations, it is the ULBP6 on malignant cells, rather than APCs, that most likely 

contributes to a beneficial transplant outcome.  

 

 

 



 

 

 

 

Figure 1.3: Effect of RAET1L*02 gene possession on relapse free survival (RFS) and overall 

survival (OS) in patients that have undergone stem cell transplants to treat 

haematopoietic malignancies.  A clear increase in RFS and OS can be observed in both 

hetero- and homozygotes for the RAET1L*02 allele over the homozygotes for RAET1L*01. 

(Taken from Antoun et al, 2012) 

 

 

 

 



In addition, the mechanism for this improved survival effect of the RAET1L*02 gene is very 

poorly understood.   It may be due to enhanced cell surface expression with the *02 allele 

product, either through enhanced transcription, preferential transport to the cell surface, or 

resistance to degradation or shedding.  Alternatively the RAET1L*02 gene product could 

exhibit improved binding with the NKG2D receptor, eliciting a stronger lymphocyte 

response.  Polymorphisms and mutations in other NKG2D ligands have shown variation in 

binding affinity for NKG2D (Steinle et al, 2001; Radaev et al, 2002). Analysis of the molecular 

interaction between NKG2D and the ULBP6*01 and *02 variants, as well as determining the 

functional role and capabilities of these variant ligands and the cells that express them, is 

crucial in determining an explanation for the improved survival effect of RAET1L*02.   

Elucidating the molecular basis for these observations may hopefully lead to improved 

prognostics, transplantation protocols and potentially anti-cancer therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PROJECT AIMS 

 

Primary Aim: 

 

To determine the molecular mechanism underlying the improved survival of HSCT patients 

that display at least one copy of the RAET1L*02 allele. 

 

This will be carried out via two secondary aims: 

 

1) Investigating the binding of ULBP6 with NKG2D using Surface plasmon resonance 

(SPR). 

 

 Express, purify and biotinylate SDMs of ULBP6*02 in Drosophila expression system. 

 Use SPR to determine binding affinities of ULBP6*01, *02 and the two SDMs (ULBP6 

*02 L86R and ULBP6*02 T127I) for NKG2D. 

 Use SPR to investigate the kinetics of the NKG2D-ULBP6 interaction. 

 

2) Determining the structure of the NKG2D-ULBP6 complex using X-ray crystallography. 

 

 Express and purify E. coli-derived NKG2D 

 Express and purify E. coli-derived ULBP6*02 

 Produce diffraction-grade crystals of the NKG2D-ULBP6*02 complex 

 Determine three dimensional structure of the NKG2D-ULBP6*02 complex by X-ray 

crystallography 

 



MATERIALS AND METHODS 

 

2.1 ULBP6-NKG2D binding affinity experiments. 

2.1.1 Site directed mutagenesis (SDM) and analysis. 

 

For expression of ULBP6*02 proteins for use in Surface Plasmon Resonance studies, the 

pMT/BiP/V5-His plasmid vector (Invitrogen) was transfected into eukaryotic S2 Drosophila 

cells.  The RAET1L gene had previously been cloned into the vector (Figure 2.1), but two 

SDMs of pMT/BiP/V5-His containing the ULBP6*02 C14S were carried out to create 

mutations corresponding to each of the residues altered between the two alleles of ULBP6 

being investigated (*01 and *02). 200 ng DNA template, 200 µM dNTPs, 125 ng forward 

primer and 2.5 units Pfu Ultra Hotstart enzyme (Stratagene) was added to 1x Pfu buffer, and 

made up to 50 µL with PCR grade water. The PCR reaction was carried out using a 

thermocycler set to the following program: 

 98°C  98°C  55°C  68°C  72°C  4°C 

    

3mins   45secs  45secs  8mins  10mins  ∞ 

     X16 cycles 

 

SDMs were digested with 10 units of DpnI (New England Biolabs) for 1 hour to degrade 

parental DNA before transformation.  Correct DNA amplification was checked using 1% 

agarose gel electrophoresis run in TBE buffer (89 mM Tris base, 89 mM Boric acid and 2 mM 

EDTA) at 80 V.  Ethidium bromide was used to visualise DNA. 



 

Figure 2.1: Vector map of pMT/ BiP/ V5-His.  Cloning sites for the RAET1L genes are circled 

in red. 

 

2.1.2 Primer Details. 

 

Primers were used previously to mutate ULBP6*01 to ULBP6*02.  The details of the primers 

used to generate the two intermediary mutants (ULBP6*02 L86R and ULBP6*02 T127I SDMs) 

are shown below.  

Primer no.1 

CTT (L) > CGT (R) 

5’ CAGAGCAACTGCTTGACATTCAGCTGG 

 

PEF72 

Forward: 5' CTTACAGAGCAACTGCGTGACATTCAGCTGGAG 3' 



Reverse: 5' CTCCAGCTGAATGTCACGCAGTTGCTCTGTAAG 3' 

GC content: 51.52% Location: 8-40 

Melting temp: 79.4°C Mismatched bases: 1 

 

Primer no.2 

ACC (T) > ATC (I) 

5’ GTATCGATGGACAGACCTTCCTACTCTTTG 

 

PEF73 

Forward: 5' GTATCGATGGACAGATCTTCCTACTCTTTGAC 3' 

Reverse: 5' GTCAAAGAGTAGGAAGATCTGTCCATCGATAC 3' 

GC content: 43.75%. Location: 9-40 

Melting temp: 75.4°C. Mismatched bases: 1 

 

2.1.3 Transfection and culture of S2 Drosophila cells. 

 

3 ml of S2 Drosophila cells at 1 x 106 cells/ ml were plated into a 6 well plate and incubated 

at 27oC in complete growth medium (Schneider’s Drosophila medium plus L-glutamine and 

10% foetal calf serum) until they had grown to 2 – 4 x 106 cells/ml.  The Invitrogen calcium 

phosphate transfection kit (2M CaCl2, 2x Hepes buffered saline, dH2O) was used to co-

transfect 9.5 µg plasmid DNA with 0.5 g pCoHygro plasmid (Invitrogen - Figure 2.2) into the 

Drosophila cells, which were then incubated at 27oC for 24 hours before being washed and 

re-plated in fresh medium for another 48 hour incubation.  The cells were then centrifuged 



and re-suspended in complete growth medium supplemented with 300 g/ml hygromycin B 

to select for successful transformation, and grown in the same well for 3 weeks, replacing 

the medium, with antibiotic, every 4 – 5 days.  The cell cultures were upscaled to T-75 flasks, 

125 ml and then 500 ml Erlenmeyer flasks swirled at 80 rpm with 0.05% Plurionic F-68 

surfactant to prevent clumping. 

 

Figure 2.2: Vector map of the pCoHygro antibiotic resistance construct. 

 

2.1.4 Induction of protein expression and collection of supernatant. 

 

Once the cells had reached 3 – 5 x 106 cells/ml in the 500 ml flasks, protein expression was 

induced by addition of 500 µM CuSO4 and the cells were incubated for 5 days at 270C at 80 

rpm.  The cell cultures were then pelleted by centrifugation at 100 g for 10 minutes and the 

supernatant containing the target proteins decanted, centrifuged again at 2,500 rpm for 10 

minutes and then stored at 40C with 0.02% NaN3.  An aliquot of the supernatant was taken 

to test for target protein expression by Western blot analysis. 



2.1.5 Purification of target proteins. 

 

Target proteins were purified from the culture supernatant first by dialysis in 1:10 PBS using 

a 10kDa-restricted dialysis tube overnight at 4oC to remove soluble amino acids, particularly 

histidine, which interfere with nickel binding in the following step.  Dialysed supernatant was 

then passed through 1 ml of Ni-NTA agarose beads (Qiagen) packed in an Econo-column 

(BioRad) that had been equilibrated with 1x PBS/ 10 mM imidazole, at ~1 ml/min overnight 

at 4oC.  Non-specific proteins were washed from the column with ~100 ml 1x PBS/ 10 mM 

imidazole, before His-tagged proteins were eluted using 10 ml 1x PBS/ 250 mM imidazole.  1 

ml fractions were collected and OD280 measured to determine protein concentration, and 

analysed by Western blot.  

 

2.1.6 Biotinylation of target proteins. 

 

To facilitate immobilisation via streptavidin binding for BIAcore experiments, the purified 

Drosophila expressed ULBP6*02 mutants were biotinylated.  A PD10 desalting column (GE 

Healthcare) was equilibrated with biotinylation buffer (100 mM Tris pH 7.5, 20 mM NaCl, 5 

mM MgCl2) before ~3 ml protein sample was loaded and then eluted with an equal volume 

of biotinylation buffer.  Following this buffer exchange, biotinylation was carried out using 

0.56 mM Biotin (Sigma), 1 mM ATP (Sigma) 1x protease inhibitors (Roche) and BirA enzyme.  

The mixture was incubated at room temperature for 1 hour and then at 4oC overnight.  

Buffer exchange was performed as before, this time equilibrating column and eluting the 

protein with PBS.  100 µl aliquots were stored at -20oC and analysed for protein using a 

streptavidin-HRP Western blot. 



2.1.7 Protein analysis (Western blot). 

 

Protein samples were separated by SDS-PAGE as described above, then transferred to a 

PVDF membrane (Hybond LFP, GE Healthcare) in transfer buffer (10% methanol, 190 mM 

glycine, 25 mM Tris) at 400 mA for 1 hour.  The membrane was then blocked to prevent non-

specific interactions using either 5% milk in 1x Tris-buffered saline (20 mM Tris pH 7.5, 150 

mM NaCl) + 0.1% Tween (TBS-T), or 3% bovine serum albumin (BSA) in 1x TBS-T (streptavidin 

blot).  The membrane was washed three times with TBS-T before incubation with mouse 

anti-C terminal His primary antibody (Invitrogen) at 1:10,000 in TBS-T at room temperature 

for 1 hour.  For the streptavidin-HRP blot, streptavidin-HRP (Invitrogen) was added at 

1:20,000 after the block, incubated for 1 hour and then washed three times with TBS-T prior 

to the chemiluminescence step, below.  Unbound primary antibody was washed off with 3 

TBS-T washes before transfer of the membrane into 5% milk in TBS-T with 1:20,000 

secondary antibody (HRP-conjugated anti-mouse goat antibody (Sigma)).  This was 

incubated for one hour at room temperature before being washed 3 times with TBS-T and 

then bound antibody fluorescence was detected using EZ-ECL Chemiluminescence Detection 

Kit for HRP (Biological Industries).  Light sensitive film (Amersham Hyperfilm MP, GE 

Healthcare) was placed on the membrane in a dark room before being developed. 

 

 

 

 

 



2.1.8 Surface Plasmon Resonance 

 

Surface Plasmon Resonance experiments were carried out using a BIAcore 3000 instrument 

(BIAcore, GE Healthcare).  Experiments were performed at 250C using HBS-EP buffer (10 mM 

HEPES pH 7.4, 150 mM NaCl, 3.4 mM EDTA, 0.005% P20 surfactant). Following docking of a 

blank CM5 sensor chip and priming with water, the instrument was normalised with 500 µl 

BIAnormalising solution flowed at 10 µl/min.  The chip was then activated with a 1:1 mix of 

50 µl 0.2 M N-ethyl-N5 (3-diethylaminopropyl)-carbodiimide (EDC) and 50 µl 0.5 M N-

hydroxysuccinimide (NHS), flowed at 10 µl/min.  60 µl 0.5 mg/ml streptavidin was then 

flowed over the sensor chip, before 70 µl 1 M ethanolamine pH 8.5 was flowed to block any 

unbound binding sites on the chip.  Unbound streptavidin was removed with 500 µl pH 2.5 

glycine-HCl.  Biotinylated proteins (ULBP6*01, ULBP6*02, ULBP6*02 T127I SDM, ULBP6*02 

L86R SDM and a control protein - EPCR) were immobilised in HBS-EP buffer at a flow rate of 

5 µl/min.  Biotinylated proteins were flowed until a gain of ~1,000 response units was 

registered using the BIAevaluation software.  Prior to flowing over the sensor chips, purified 

NKG2D was filtered to remove aggregates by size exclusion chromatography using a 

Superdex HR200 column (GE Healthcare), using FPLC as described above.  A 10-fold serial 

dilution of NKG2D was performed from a starting concentration of 0.85 µl/ml and then the 

analytes were flowed over each flow cell at a rate of 5 µl/min, with a typical injection time of 

325 s and a wait time between injections of 7,300 s. 

 

 

 

 



2.2 X-Ray Crystallography 

 

Previous attempts to isolate and purify ULBP6*02 led to problems with cross-dimerisation of 

ULBP6 molecules from a cysteine residue at position 14, that resulted in incorrect re-folding 

and lack of crystals.  To ameliorate this, the C14 residue was mutated to a serine (K. Ali, 

unpublished).  The resulting PCR product was cloned into the pCR-blunt vector and 

sequenced to confirm correct sequence and restriction sites. The insert was then digested 

out of the pCR-blunt vector and sub-cloned into the pET23a expression vector (Novagen).  

ULBP6*02 C14S has been demonstrated to exhibit preferential crystal formation over the 

non-mutated version.  For the purposes of this report, ULBP6*02 will be used to denote the 

ULBP6*02 C14S mutant, unless specifically stated. 

 

2.2.1 Bacteria transformation. 

 

50 µl aliquots of competent E. coli cells (BL21 pLys DE3 (Bioline) for NKG2D or Rosetta BL21 

derivatives (Novagen) for ULBP6) were thawed on ice before a 30 minute incubation with 10 

µl of relevant plasmid DNA (pET23a expression vector with NKG2D/RAET1L gene cloned into 

it).  The cells were then heat shocked for 90 seconds at 42oC in a water bath and then chilled 

on ice.  200 µl of super optimised broth with catabolite repression (SOC medium) was then 

added to the cells and the mixture was incubated for 1 hour at 37oC and 200 rpm to allow 

transformation of the cells and incorporation of the antibiotic resistance gene.  100 µl of the 

culture was plated onto Luria Broth (LB)-ampicillin agar plates and incubated overnight at 

37oC to allow colony formation. 



2.2.2 Protein expression. 

 

A single colony from the LB-amp plates was picked and inoculated into 20 ml LB with 100 

µg/mL ampicillin.  This culture was incubated at 37oC for typically 2-3 hours until the 

medium was cloudy, before being added to 4 L LB with 100 µg/mL ampicillin, split equally 

between two 5 L conical flasks.  The flasks were incubated at 37oC and 200 rpm until the 

optical density (OD) at 600 nm reached between 0.4 and 0.6, and at this point a 100 µL 

aliquot was taken for pre-induction analysis by SDS-PAGE.  Protein expression was induced 

by adding 500 µM isopropyl â-D-1-thiogalactopyranoside (IPTG), and the cultures were then 

incubated for 4 hours at 37oC at 200 rpm.  A second aliquot was taken at this stage for post-

induction analysis. 

 

2.2.3 Inclusion body preparation. 

 

Bacterial cultures were pelleted at 4oC and 5,000 rpm in a Beckman Coulter Avanti J-26 XP 

centrifuge.  The pellets were resuspended in ~30 ml ice cold phosphate buffered saline (PBS) 

(2.7 mM KCl, 137 mM NaCl, 8.1 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.4) and then sonicated 

in five 45 s bursts using a Misonix 3000 sonicator.  The cell lysate was then pelleted by 

centrifugation for 15 minutes at 4oC and 13,500 rpm in a Sorvall RC 5C plus centrifuge.  The 

pellets were then resuspended and homogenised 3 times in 30 ml of Triton wash buffer (500 

mM Tris-HCl pH 8, 0.5% Triton X-100, 200 mM NaCl, 10 mM EDTA, 0.5% Na Azide) with 2mM 

DTT, to remove hydrophobic cellular debris and contaminants.  The homogenised lysate was 

centrifuged for 10 minutes at 4oC and 13,500 rpm between each wash, before a 

resuspension wash (500 mM Tris-HCl pH 8, 200 mM NaCl, 10 mM EDTA, 0.1% Na Azide with 



2mM DTT), homogenisation and centrifugation was performed to remove the detergent.  

The inclusion body pellet was then solubilised in denaturant buffer (8M urea, 25mM MES 

pH6.5, 10mM EDTA, 0.5mM DTT for NKG2D) or (6M Guanidine-HCl, 50mM MES pH6.5, 

12.5mM EDTA pH8.0, 1mM DTT for ULBP6*02) and incubated for 3 hours at 4oC on a rotary 

rocker.  Insoluble material was removed by centrifugation for 30 minutes at 4oC and 13,500 

rpm, and the supernatant stored in 1 ml aliquots at -80oC for refolding.  Supernatant protein 

concentration was determined using a Bradford dye-binding assay (BioRad).  

 

2.2.4 Inclusion body re-folding. 

 

Denatured inclusion bodies were refolded using the Garboczi oxidative dilution method 

(Garboczi et al, 1992).  For NKG2D, ~15 mg protein was refolded at 4oC in 500 ml refolding 

buffer (0.24M L-arginine, 2mM EDTA pH 8.0, 100mM Tris pH 8.0, 2.5mM reduced 

glutathione, 0.245 mM oxidised glutathione and 100 µM PMSF protease inhibitor), via three 

pulses of 5 mg protein over the course of 2 days.  For ULBP6*02, ~25 mg protein was 

refolded at 4oC in 1 L refolding buffer, via 5 pulses of 5 mg protein over 3 days.  For each 

pulse, one third of the 5 mg protein was diluted into 20 ml refolding buffer and added drop-

wise to the beaker to reduce protein aggregation, repeated twice.  The final protein solution 

was reduced to 10 ml using an ultrafiltration device (Amicon) fitted with a 10 kDa membrane 

under 50 psi N2 at 40C.  The concentrated sample was then filtered using a 0.45 µm acrodisc 

to remove unfolded aggregates.  

 

 

 



2.2.5 Size exclusion chromatography. 

 

Protein purification was carried out by size exclusion chromatography (SEC), performed 

using a Superdex S200 column (GE Healthcare) and AKTA Fast Protein Liquid 

Chromatography (FPLC) (GE Healthcare).  The column was pre-equilibrated and 

chromatography carried out with 20 mM Tris pH 8 and 50 mM NaCl buffer, at room 

temperature and a 3 ml/min flow rate.  Eluate was collected in 5 ml fractions, and those 

corresponding to peaks of interest were pooled, reduced to 500 µl using an 10kDa 

ultrafiltration unit (Millipore) and analysed for purity using SDS-PAGE. 

 

2.2.6 Anion-exchange chromatography. 

 

Further protein purification was carried out where necessary by anion-exchange 

chromatography, performed using a ResourceQ column (GE Healthcare) and AKTA FPLC.  500 

µl samples from SEC were diluted into 6 ml low-salt buffer (20 mM Tris pH 8 and 5 mM NaCl) 

and loaded onto the column with the same buffer in Line A and a high salt buffer (20 mM 

Tris pH 8 and 1 M NaCl) in Line B to generate the NaCl gradient.  Eluate was collected in 750 

µl fractions and those corresponding to peaks of interest pooled, reduced to 500 µl as 

previously and stored at -20oC. 

 

 

 



2.2.7 Protein analysis (SDS PAGE). 

 

Analysis of protein purity was carried out using sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE).  Typically 10 µg protein was added to 2 µl running buffer (125 

mM Tris pH 8, 8M urea, 10% glycerol, 6% SDS, bromophenol blue) and loaded onto a 15% 

acrylamide gel consisting of a resolving gel (765mM Tris pH 8.8, 0.2% SDS, 15% acrylamide 

(Protogel), 0.1% ammonium persulphate and 5 µL of tetramethylethylenediamine (TEMED) 

(Sigma)) and a stacking gel (150mM Tris pH 6.8, 0.12% SDS, 0.1% ammonium persulphate 

and 5 µL of TEMED).   For reduced sample analysis, the running buffer contained 200 mM 

DTT and the sample was denatured by incubating at 96oC for 10 minutes prior to loading.  

Protein gels were run at 100 mV through the stacking gel and 180 mV through the resolving 

gel and stained using coomassie blue (0.5 g Brilliant blue, 250 ml methanol, 50 ml acetic 

acid) for 1 hour before de-staining overnight in destain buffer (30% methanol, 10% acetic 

acid).  Gels were imaged using Genesnap software. 

 

2.2.8 Protein crystallisation. 

 

Crystallisation of NKG2D-UlBP6 complex was carried out with concentrations of protein 

complex from 10.6 – 12.4 mg/ml.  To determine optimum conditions for crystallisation, small 

scale screening was conducted using the hanging drop vapour diffusion method, using three 

screen conditions (Pact condition 26, 27 & 38 (Qiagen)) previously identified as being 

conducive to complex crystallisation (K. Ali, unpublished).  Hanging drops were formed of 

between 200 and 800 nl total volume (50% complex, 50% screen condition) on a 96-well 

plate seal (TTP LabTech) suspended over a 96-well plate (Iwaki) containing 100 µl relevant 



screen condition.  Pipetting was performed using the Mosquito nanolitre crystallisation 

robot (TTP Labtech).  Large scale crystallisation was carried out using 1 µl complex and 

between 1 and 4 µl screen, mixed on a cover slip and suspended above 1 ml screen 

condition in 24-well Linbro plates (Molecular Dimensions).  Plates were incubated at 23oC for 

3-10 days to allow crystal formation.  Crystal formation was assessed using a light 

microscope (LEICA). 

 

2.2.9 X-ray diffraction data collection. 

 

Selected crystals were picked using cryoloops and flash-cooled in liquid nitrogen.  The screen 

condition contained 25% polyethylene glycol (PEG) which served as a cryo-protectant.  

Crystals were stored in a cryogenic dewar (Molecular Dimensions) prior to X-ray diffraction 

experiments.  X-ray diffraction patterns were obtained using a Micromax 007HF rotating 

anode X-ray generator (Rigaku) and a Saturn charged coupled device.  Data collection and 

manipulation was carried out using CrystalClear (Rigaku) software, and intensity data 

integrated, scaled and merged using the XDS suite software (Kabsch, 2010).  Structure 

determination has been carried out using molecular replacement with MOLREP (Winn et al, 

2011). 

 

 

 

 

 

 



RESULTS 

 

3.1 Investigating the molecular mechanism for enhanced survival in patients with 

RAET1L*02 allele. 

 

3.1.1 Analysis of binding data for ULBP6*01 and ULBP6*02 with NKG2D. 

 

In order to determine the molecular mechanism behind the surprising improvement in 

overall survival (OS) and relapse-free survival (RFS) demonstrated in HSCT patients exhibiting 

the ULBP6*02 allele (Antoun et al, 2012), previous work had investigated the binding affinity 

between NKG2D and the two allelic forms of ULBP6, ULBP6*01 and ULBP6*02.  The affinity 

of the NKG2D-ULBP6 interaction was determined by Surface Plasmon Resonance 

experiments, with the dissociation constant (Kd) determined both by non-linear curve fitting 

and Scatchard analysis (Figure 3.1).  Maximum specific binding (ULBP6 response minus EPCR 

control protein response) for ULBP6*01 and ULB6*02 was ~1,100 RU and ~1,350 RU, 

respectively.  Kd was determined to be ~12 – 15 nM for ULBP6*02/NKG2D and ~123 – 140 

nM for ULBP6*01/ NKG2D, which represents an approximately 10 fold increase in affinity of 

the receptor for the ligand in the case of *02 allelic form compared with the *01 form.  

Based on this data, a reasonable hypothesis would be that the lower affinity ULBP6*01 allele 

in HSCT patients is associated with worsened OS and RFS due to reduced tumour killing by 

NKG2D-expressing cytotoxic lymphocytes, when compared with patients expressing the 

higher affinity ULBP6*02 allele. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: The affinity of the NKG2D-ULBP6*01 and *02 interaction, determined by SPR. 

(main) Non-linear curve fitting of the Langmuir binding isotherm to the data yielded Rmax and 

Kd for ULBP6*01, ULBP6*02.  In all cases the saturation point (Rmax) was nearly reached at 

the highest concentration of flowed NKG2D.  (inset) Scatchard analysis of the data yielded Kd 

(slope = -1/Kd) by linear regression.  Predicted Kd are indicated on the plot.  The NKG2D-

ULBP6*01 interaction was determined to have an approximately 10 fold lower affinity than 

the NKG2D-ULBP6*02 interaction (123 nM and 11.7 nM respectively). 
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3.1.2 Identification of ULBP6*02 SDMs 

 

Since there are only two single nucleotide polymorphisms (SNP) in the coding region 

between the two RAET1L genes, a key aim was to determine which, if any, were critical in 

affecting the affinity of NKG2D for these ligands.  The two amino acid polymorphisms that 

are observed between ULBP6*01 and *02 are located at positions 86 and 127.  The lower-

affinity allele, ULBP6*01, which is associated with reduced overall survival in HSCT patients, 

possesses an arginine residue at position 86 (R86) and an isoleucine residue at position 127 

(I127).  In contrast, the higher affinity ULBP6*02 has leucine and threonine residues at these 

respective positions.  Molecular modelling studies revealed the prospective position of these 

residues in the NKG2D-ULBP complex (Figure 3.2).  From these analyses, position 86 was 

found to be located in the ULBP6-NKG2D interface, while position 127 is located distal to the 

binding site.  A logical hypothesis would be that the observed differences in binding affinity 

for NKG2D between ULBP6*01 and ULBP6*02 may be due to the polymorphism at residue 

position 86.  It is also possible that the change in amino acid position 127 alters the 

conformation of the ULBP6 protein, and indirectly affects binding affinity.  To determine the 

importance of each residue to NKG2D-ULBP6 binding, two mutated forms of ULBP6*02 were 

generated by site directed mutagenesis, one with ULBP6*02 position 127 threonine mutated 

to the *01 isoleucine (T127I) and the other with ULBP6*02 position 86 leucine substituted to 

the *01 arginine (L86R).  These SDMs were carried out in a Drosophila expression vector for 

transfection into an S2 Drosophila cell line. 



 

Figure. 3.2 Molecular model of the ULBP6*02-NKG2D complex generated by Phyre.  

ULBP6*02 is shown in black with the two amino acid changes between the *02 allele and the 

*01 allele highlighted with arrows.  In ULBP6*01L86 is changed to an arginine residue, while 

T127 is substituted for an isoleucine.  ULBP6*02 cDNA was used as template to generate two 

SDMs, ULBP6*02 L86R and ULBP6*02 T127I, for transfection into S2 Drosophila cells. 

3.1.3 Expression and purification of ULBP6*02 SDMs. 

 

Previous attempts had been made to investigate the properties of the two intermediary 

mutant forms of ULBP6*02 (L86R and T127) by cloning the mutant genes into a prokaryotic 

expression vector and transforming E. coli cells for SDM expression in inclusion bodies which 

were then refolded in vitro, purified and flowed over immobilised NKG2D in SPR 

experiments.  The Kd of the ULBP6*02-NKG2D interaction was measured at 23 nM, which 

compares with the same protein interaction using Drosophila-expressed ULBP6*02 at 3 nM.  

This variation may be due to the different expression system used, where it is possible that 

improved folding of the ULBP6*02 proteins would occur in Drosophila through use of the 



cellular machinery of the host cells, rather than relying on in vitro refolding of E. coli–

expressed protein.  Kd for E. coli expressed ULBP6*02 T127I was ~33 nM and ULBP6*02 L86R 

was ~37 nM, which is not statistically different, and surprising given the modelling data 

presented in Figure 3.2.  Bearing in mind the likely improved folding in Drosophila, it was 

decided to repeat the ULBP6*02 mutation studies using the Drosophila expression system. 

 

Eukaryotic S2 Drosophila cells were transfected with the ULBP6*02 SDM - pMT/BiP/V5-His 

plasmid construct.  Successful cloning and amplification of the construct was ascertained by 

DNA gel electrophoresis (Figure 3.3a) with a clear band migrating at around 4,000 bp.  His-

tagged protein expression was determined post induction by Western blot analysis of cell 

supernatant, which yielded strong bands at ~28 kDa (Figure 3.3b).  Analysis of the ULBP6 

amino acid sequence suggested 2 possible sites for N-linked glycosylation, which may 

account for the band migrating to a slightly higher molecular weight than that predicted by 

primary protein structure alone (~22 kDa).  Protein purification was carried out using Ni-NTA 

agarose packed columns.  SDS-PAGE analysis of the resulting eluate confirmed the presence 

of relatively pure, strong bands migrating at around 28 kDa, indicating successful purification 

(Figure 3.3c).  Protein yields following Ni-NTA chromatography were 6.3 mg from 1 L 

supernatant for ULBP6*02 L86R and 4.2 mg from 1 L supernatant for ULBP6*02 T127I.  

Finally, purified ULBP6*02 SDMs were biotinylated to allow for immobilisation via 

streptavidin coupling on BIAcore chips.  Effective biotinylation was confirmed by Western 

blot analysis using streptavidin-conjugated horseradish peroxidase (HRP) to allow 

visualisation of biotinylated proteins by chemiluminescence (Figure 3.3d).  Bands for each 

SDM were observed at the predicted molecular weight of ULBP6*02, indicating successful 

biotinylation in advance of SPR experiments.  Final concentrations of biotinylated protein for 

ULBP6*02 L86R and ULBP6*02 T127I were 2 and 1 mg/ml, respectively. 

 



 

 

 

Figure 3.3:  Expression, purification and biotinylation of Drosophila derived-ULBP6*02 

L86R and ULBP6*02 T17I mutants.  (a) DNA gel agarose electrophoresis of PCR-amplified 

transfection construct containing primers for ULBP6*02 L86R and T127I SDM proteins.  Clear 

bands are present at ~4,000 bp indicating successful cloning of the SDM primers into the 

pMT/BiP/V5-His plasmid vector.  (b) Western blot analysis of ULBP6*02 SDM protein 

expression in Drosophila S2 cells (induced with copper sulphate) using an anti-His tag mouse 

antibody and an anti-mouse goat HRP-linked secondary antibody.  Both mutant proteins 

show high levels of expression.  (c) SDS-PAGE analysis of ULBP6*02 L86R and T127I SDM 

proteins following purification by Ni-NTA   chromatography.  Strong bands are present for 

each SDM at ~30 kDa, indicating effective purification.   

 

 

 

 



3.1.4 Binding affinity studies of ULBP6 isoforms and mutants with NKG2D 

 

Surface Plasmon Resonance (SPR) is a method of detecting increases in refractive index close 

to a sensor surface, and is commonly used to measure protein-protein interactions. One 

protein, the ligand, is immobilised to a sensor surface, while the other, the analyte, is 

injected over the surface.  As the analyte binds to the immobilised ligand, protein is 

concentrated and the refractive index increases. As increases in the refractive index have 

been found to be directly proportional to the amount of material concentrated at the 

surface, the signal detected, which is measured in Resonance Units (RU), gives an accurate 

indication of the extent of binding. 

 

SPR is highly sensitive to the presence of aggregated protein, which leads to 

unrepresentatively slow dissociation due to multimeric binding.  Before use in SPR 

experiments, recombinantly expressed renatured and S200 size-exclusion filtered NKG2D 

was purified further by size-exclusion chromatography on a high resolution HR200 column to 

remove any aggregates.  A single well-defined peak at the expected elution volume, defined 

by molecular weight standards, demonstrated the sample was suitable for use in SPR (Figure 

3.4). 

 

To test specific binding of NKG2D to the immobilised ligands, NKG2D was simultaneously 

flowed over each ULBP6 isoform and mutant as well as a control protein, endothelial protein 

C receptor (EPCR), in separate flow cells.  EPCR was selected as a negative control protein as 

it exhibits a similar overall structure to ULBP family members.  Larger responses were 

observed when NKG2D was flowed over the ULBP6 variants as compared with the control, 

indicating specific binding (Figure 3.5).  Significantly increased specific binding can be 



observed with ULBP6*02 and ULBP6*02 T127I relative to ULBP6*01 and ULBP6*02 L86R.  

Strikingly, the response of ULBP6*01 and ULBP6*02 L86R is almost identical. 

 

 

 

 

 

 

 

 

 

 

Fig 3.4 Purification of NKG2D by size exclusion.  Recombinantly expressed, refolded and 

purified NKG2D was filtered by size-exclusion chromatography on a high resolution HR200 

fast protein liquid chromatography column to remove any aggregates before SPR 

experiments.  A well defined single peak of ~450 mAU is present at an elution volume of 

~15.2 mL. 

 

 

 

 



 

 

Figure 3.5: Analysis of NKG2D-ULBP6 interactions using Surface Plasmon Resonance.  SPR 

profile of renatured  E. coli-expressed NKG2D  injected  over flow cells immobilised with 

Drosophila-derived ULBP6*01, ULBP6*02, ULBP6*02 T127I, ULBP6*02 L86R or control EPCR.  

The NKG2D was flowed at 5 µl/min, and the temperature was 25oC. All ULBP6 isoforms 

demonstrated greater binding response to NKG2D than the control EPCR, indicating specific 

binding.  A distinct difference in specific unit binding can be observed between ULBP6*02 

and ULBP6*01, with the ULBP6*02 T127I showing less binding than the wild type form, and 

the ULBP6*02 L86R almost exactly matching that of ULBP6*01.  

 

 



The affinity of an interaction can be measured directly by equilibrium binding analysis, which 

involves varying the concentration of the analyte, and observing the change in binding 

response.  In this case, the affinity of the NKG2D-ULBP6 interaction was determined by 

flowing varying concentrations of NKG2D over flow cells with immobilised ULBP6 isoform or 

an immobilised control protein, EPCR.  Specific binding was calculated in each case by 

subtracting the control response detected from the immobilised ULBP6 response.  These 

specific responses were then plotted against free NKG2D concentration.  Since the 

dissociation constant (Kd) is equivalent to free ligand (NKG2D) concentration at half maximal 

binding, by determining the Rmax (equivalent to the saturation point) from the plot by non-

linear curve fitting, it was possible to calculate the Kd (Figure 3.6).  The data shows that for 

all ULBP6 isoforms, Rmax was almost reached, which suggests the injection time and flow 

speed of the analyte was sufficient to avoid significant mass transport-associated artefacts, 

i.e. the NKG2D-ULBP6 interaction was approaching equilibrium by the end of the injection 

period.  Predicted Kd for ULBP6*02 and ULBP6*02 T127I were both around 16 nM, which 

indicates a high affinity interaction that is not affected by changing the position 127 

threonine to ULBP6*01 isoleucine.  Predicted Kd for ULBP6*02 L86R and ULBP6*01 were 117 

nM and 138 nM respectively, in the region of 10 fold higher than ULBP6*02, indicating a 

lower affinity interaction that is likely due, in part at least, to the alteration.  

 

The Kd for the NKG2D-ULBP6 interaction can also be determined by Scatchard analysis of the 

SPR data (ie. specific binding vs specific binding/free ligand concentration), and using linear 

regression where the slope of the linear plot = -1/Kd (Figure 3.7).  Analysis of this plot yields 

Kd similar to those predicted in Figure 3.6, with Kd for ULBP6*02 and ULBP6*02 T127I around 

11 nM for both and Kd for ULBP6802 L86R and ULBP6*01 at 114 and 144 nM respectively.  



This is consistent with the hypothesis that it is the amino acid residue at position 86 of 

ULBP6 that is crucial in defining the affinity of NKG2D for ULBP6. 

 

 

Figure 3.6:  Equilibrium affinity measurement of the NKG2D-ULBP6 interaction affinity - 

Non-linear curve fitting of SPR binding data.  Non-linear curve fitting of the Langmuir 

binding isotherm to the data yielded Rmax and Kd for ULBP6*01, ULBP6*02, ULBP6*02 T127I 

and ULBP6*02 L86R.  In all cases the saturation point (Rmax) was nearly reached at the 

highest concentration of flowed NKG2D.  Predicted Kd values are indicated on the plot. 

Similar Kd values were calculated for ULBP6*02 and ULBP6*02 T127I   (16 nM), while those 

of ULBP6*01 and the ULBP6*02 L86R   were almost an order of magnitude larger (138 nM 

and 117 nM respectively).  The plot represents one data set from 4 experiments. 

 



 

Figure 3.7:  Scatchard analysis of the NKG2D-ULBP6 interaction.  Scatchard analysis of the 

data yielded Kd (slope = -1/Kd) by linear regression.  Predicted Kd are indicated on the plot.  

Removal of some of the skewing outliers leads to a more robust measurement of Kd than by 

non-linear curve fitting, with Kd for ULBP6*02 and ULBP6*02 T127I coming down to 10.9 nM 

and 11.2 nM respectively.  The Kd for ULBP6*01 and ULBP6*02 L86R remain similar to those 

predicted by non-linear curve fitting (144 nM and 114 nM, respectively).  The plot represents 

one data set from 4 experiments. 

 

 

 

 



3.1.5 Kinetic analysis of NKG2D-ULBP6 interaction 

 

Information about the kinetics of protein-protein interactions can be derived from directly 

monitoring the rate of decay of response during the dissociation phase, which is 

independent of protein concentration, to yield Koff.  The rate of association is dependent on 

the association constant (Kon) and also the protein concentration, but can be derived from 

accurate measurement of the Kd and Koff.  For both ULBP6*01 and *02, equilibrium was 

reached within around 300 seconds of NKG2D injection, but ULBP6*02 showed a far slower 

dissociation rate than ULBP6*01.  First order exponentials fitted to the dissociation phase of 

the binding curves yielded Koff of 1.04 x 10-2 s-1 for ULBP6*01 and 7.64 x 10-4 s-1 for ULBP6*02 

(Figure 3.8).  This implies a half time of dissociation (the time taken for [ULBP6-NKG2D] to 

fall to half its starting value) of just over 1 minute (66 s) for ULBP6*01 and around 15 

minutes for ULBP6*02, which is very long.  Using Koff and Kd values enables calculation of the 

association constant, Kon, such that Kon = Koff / Kd.  Therefore, the Kon for ULBP6*02 and 

ULBP6*01 consisted of ≈ 69,500 M-1.s-1 and 72,000 M-1.s-1, respectively.  These rates are 

consistent with other protein-protein interactions (Davis et al, 1998), and indicates that the 

high affinities are not due to an unusually high Kon. 

 

 

 

 

 

 

 

 

 



 

 

 

Fig 3.8 Kinetics analysis of NKG2D-ULBP6 interaction.  (a) Renatured and purified NKG2D 

was flowed at 98.89 nM and 50 µl/min at 25oC over flow cells containing streptavidin-

immobilised ULBP6*01 (~650 RU), ULBP6*02 (~1400 RU) and control EPCR (~20 RU).  

Complete dissociation occurred after ~800 s (ULBP6*01) or ~6,000 s (ULBP6*02). (b and c) 

Varying concentrations of NKG2D were flowed over immobilised ULBP6*02 (b) and 

ULBP6*01 (c). The response from the control protein cell was subtracted from the ULBP6 

response prior to plotting.  The black lines represent first-order exponentials fitted to the 

data, with predicted dissociation rate constants (Koff) marked on the plots.  The average Koff 

for ULBP6*02 is 7.64 x 10-4 s-1 and for ULBP6*01 is 1.04 x 10-2 s-1. (d) Normalised binding 

responses from NKG2D flowed over immobilised ULBP6*01 and *02.  Koff for each allele is 

displayed on the plot. 



3.2 Solving the NKG2D-ULBP*02 complex structure using X-ray Crystallography. 

 

3.2.1 X-ray diffraction studies of NKG2D-ULBP6*02. 

 

In order to prove the biological basis of the results found in section 3.1, and gain more 

information about how the NKG2D receptor recognises and binds to ULBP6*02, it was 

necessary to determine the structure of the NKG2D-ULBP6*02 complex.  X-ray 

crystallography is capable of determining the three dimensional structures of proteins to a 

higher resolution than any other widely used techniques.  The success of X-ray 

crystallography depends on forming crystals of sufficient size and density that they diffract 

incident x-ray radiation to form a diffraction pattern that can be used to calculate the 

protein structure.  Amongst other factors, production of such crystals is often most 

dependent on protein purity.  

A crystal of NKG2D-ULBP6*02 complex of approximately 100 x 100 microns in size had 

previously been grown using the methods presented in section 2, and was deemed suitable 

for diffraction experiments.  The crystal had been soaked in mother liquor and flash cooled 

in liquid nitrogen.  X-ray diffraction experiments were carried out at the University of 

Birmingham macromolecular diffraction facility.  The NKG2D-ULBP6*02 complex crystal 

diffracted X-rays to a 3.2 Å resolution (Figure 3.9), in the C2 space group with unit cell 

parameters of a = 82.4 Å, b = 81.9 Å, c= 74 Å and á = 90o, â = 105.8o, ã = 90o.  A total of 720 

images were collected with an exposure of 10 s per frame, each covering an oscillation angle 

of 0.5o.  The crystal to detector distance was set to 100 mm.  Data collection was calculated 

by CrystalClear software and resulting intensity data were scaled and merged using XDS 

Suite programs.  Relevant processing statistics are presented in Table 3.1. 



 

Figure 3.9: X-ray diffraction pattern generated from crystallised NKG2D-ULBP6*02 

complex. 

Resolution Limits 20 – 3.2 Å (3.3 – 3.2 Å) 

Unit Cell Dimensions 
a = 82.4 Å, b = 81.9 Å, c= 74 Å;  

á = 90o, â = 105.8o, ã = 90o 

Space Group C2 

Total Observations 40,398 (2,133) 

Unique Observations 7,336 (494) 

Multiplicity 5.51 (4.32) 

Completeness (%) 92.3 (70.5) 

Rmerge (%) 12.9 (49.4) 

I/óI 13.1 (2.9) 

Table 3.1: Data processing statistics for NKG2D-ULBP6*02 complex. X-ray diffraction data 

were processed using XDS Suite programs.  Numbers in parentheses correspond to the 

highest resolution shell (3.3-3.2 Å). 



Assuming the NKG2D-ULBP6*02 crystals have one molecule per asymmetric unit, the solvent 

content was determined as 52% (Kantardjieff & Rupp, 2003).  To determine the NKG2D-

ULBP6*02 structure, molecular replacement was used to calculate initial phase information. 

The only ULBP family molecule to have had X-ray diffraction data published in complex with 

NKG2D to date is ULBP3 (Radaev et al, 2001). Hence, the NKG2D-ULBP3 complex was used 

as the phasing model in the subsequent molecular replacement calculations.  Despite 

identifying rotational and translational function solutions for the NKG2D dimer, no 

significant solutions were found for the ULBP6 molecule using the NKG2D-ULBP3 complex as 

the phasing model.  This lack of success may be due to ULBP3 having structurally different 

regions to ULBP6.  Indeed, sequencing studies have shown a 58% sequence homology 

between ULBP3 and ULBP6, which may have affected the superimposition process during 

molecular replacement.  Although it is possible to use alternative methods such as multi-

wavelength anomalous dispersion (MAD) or multiple isomorphous replacement (MIR) to 

solve the phase problem, it was deemed unfeasible due to the time constraints associated 

with this project.  Alternatively, the failure of molecular replacement to provide phase 

information could be attributed to poor quality of the initial NKG2D-ULBP6*02 diffraction 

data.  Hence, it was decided that a possible route for successful NKG2D-ULBP6*02 structure 

determination consisted of growing larger NKG2D-ULBP6*02 complex crystals in order to 

collect higher resolution data.  Importantly, this would require the production of high levels 

of purified NKG2D and ULBP6*02 protein for crystallisation complex trials. 

 

 

 

 



3.2.2 Expression and purification of NKG2D 

 

Human NKG2D had previously been cloned into a pET23a vector.  This expression vector was 

transformed into competent BL21 E. coli bacteria, which were then grown up in 4 L cultures.  

Analysis for expression of the NKG2D by SDS-PAGE showed an over-expressed band at 

approximately 15 kDa, which corresponds to the molecular weight of NKG2D of 15.82 kDa, 

as predicted from the primary sequence (Figure 3.10a).  NKG2D inclusion bodies were then 

purified from culture lysate and solubilised in an 8M urea buffer (O’Callaghan et al, 1998).  A 

typical yield of ~300 mg NKG2D inclusion body material was obtained from each 4 L culture.  

SDS-PAGE analysis of the inclusion body material suggested NKG2D was present in 

sufficiently high purity and quantity for refolding (Figure 3.10a).  Following refolding by the 

Garboczi dilution method, re-natured NKG2D was purified by size exclusion chromatography 

(SEC) using an S200 column.  A single major peak of around 300 mAU (per 50 mg of refolded 

inclusion bodies) was observed eluting at around 230 mL, which is consistent with dimeric 

NKG2D (~30 kDa), as determined by comparison with molecular weight standards (Figure 

3.10b).  Indeed, previous structural studies have shown that NKG2D crystallises as a dimer 

(Wolan et al, 2001). Corresponding fractions were pooled and analysed by SDS-PAGE for 

purity.  A strong single band migrating at ~15 kDa confirmed monomeric NKG2D, and the 

sample was deemed suitable for crystallisation complex trials, despite the likely presence of 

dimeric NKG2D, represented by the band migrating at ~30 kDa in non-reducing conditions 

(Figure 3.10c).   

 

 

 

 



 

Figure 3.10: Expression and purification of E. coli derived NKG2D. (a) SDS-PAGE analysis of 

NKG2D-pET23 vector transformed BL-21 E. coli protein expression pre (- lane 1) and post (+ 

lane 2) IPTG induction.  A strong band post IPTG induction at ~15 kDa corresponds with the 

predicted molecular weight of NKG2D. SDS-PAGE analysis of purified NKG2D inclusions 

following solubilisation in 8M urea under reducing (Lane 3) and non-reducing (Lane 4) 

conditions (b) Typical elution profile  for NKG2D following purification by  SEC (S200 

column).  A major peak at ~230 ml (310 mAU) is observed. (c) SDS-PAGE analysis of SEC peak 

fractions.  The presence of a single band migrating at ~15 kDa confirms NKG2D and the level 

of purity is deemed suitable for complex crystallisation trials.  The band at ~30 kDa under 

non-reducing conditions most likely represents the NKG2D homodimer. 

 

 



3.2.3 Expression and purification of ULBP6 

Human ULBP6*02 C14S SDM had previously been cloned into a pET23a expression vector.  

The C14S SDM was found necessary to prevent cross-dimerisation of ULBP6*02 by 

disulphide bridges forming between the C14 residues during refolding, which inhibited 

successful crystallisation in previous trials.  Hereafter, ULBP6*02 C14S SDM will be referred 

to as ULBP6*02.  The ULBP6*02-pET23a expression vector was transformed into Rosetta E. 

coli cells, which were grown up in 4 L cultures.  Analysis for expression of ULBP6*02 by SDS-

PAGE showed an over-expressed band at approximately 22 kDa, corresponding with the 

predicted molecular weight of ULBP6 of 20.48 kDa (Figure 3.11a).  ULBP6*02 inclusion 

bodies were then purified from culture lysate and solubilised in 6M Guanidine-HCl before 

refolding.  Transformations typically yielded ~300 mg inclusion bodies.  Analysis of the 

inclusion body material showed the same bands migrating to ~22 kDa, indicating presence of 

ULBP6*02.  Following refolding, ULBP6*02 was purified by SEC, typically yielding a major 

peak of around 100 mAU per 50 mg refold, eluting at around 235 mL.  This is consistent with 

the predicted molecular weight of ULBP6*02, as confirmed by the molecular weight 

standards run on the same column (Figure 3.11b).  Fractions corresponding with the major 

peak were pooled and analysed by SDS-PAGE (Figure 3.11c).  Two distinct and strong bands 

are observed migrating at ~22 and 30 kDa, respectively. The 22 kDa most likely corresponds 

with ULBP6*02.  A slight shift in the band migration to higher weight can be observed for 

ULBP6*02 under reducing conditions, which implies the protein is migrating at a slower rate  

because it is less compact without the disulphide bonds intact.  This shift is evidence of 

ULBP6*02 protein refolding having taken place.  There second band that migrates to around 

30 kDa most likely represents an unidentified contaminant protein that has carried over 

from the inclusion body preparation.  A further purification step would be necessary to 

isolate ULBP6*02 from the contaminant protein before proceeding with crystallisation 

complex trials. 



 

Figure 3.11: Expression and purification of E. coli derived ULBP6*02. (a) SDS-PAGE analysis 

of ULBP6-pET23 vector transformed Rosetta E. coli protein expression pre (- Lane 1) and post 

(+ Lane 2) IPTG induction.  An over-expressed band post IPTG induction at ~22 kDa 

corresponds with the predicted molecular weight of ULBP6*02. SDS-PAGE analysis of 

purified ULBP6*02 inclusions following solubilisation in 6M G-HCl under reducing (Lane 3) 

and non-reducing (Lane 4) conditions (b) Typical elution profile for ULBP6*02 following  

purification  by SEC (S200 column).  A major peak at 235 ml (510 mAu) is observed. (c) SDS-

PAGE analysis of SEC peak fractions. Two distinct bands are observed at ~22 kDa 

(corresponds to ULBP6*02) and ~30 kDa (represents a co-eluting contaminant).  

 

 



To separate ULBP6*02 from the co-eluting contaminant protein, the fractions corresponding 

to the SEC major peak at ~235 mL were pooled, concentrated and purified by anion 

exchange chromatography (AEC), using a ResourceQ column.  The resulting elution profile 

displayed two distinct peaks, one of around 65 mAU eluting at a NaCl gradient of around 8% 

and the other of around 100 mAU eluting at around 14% NaCl (Figure 3.12a).  SDS-PAGE 

analysis of the two peaks showed Peak 1 contained a single band migrating at ~30 kDa, while 

Peak 2 contained a single band migrating at ~22 kDa, consistent with ULBP6*02 (Figure 

3.12b).  The shift towards higher molecular weight under reducing conditions seen before is 

evident here also.  These results showed complete separation of the two proteins, and that 

ULBP6*02 was purified sufficiently to proceed with complex crystallisation trials.   

 

 

 

 

Figure 3.12:  Additional purification of E. coli derived ULBP6*02 with AEC. (a) Typical 

elution profile for ULBP6*02 and contaminant protein using AEC (ResourceQ column).  Two 

distinct peaks are observed; Peak 1 and Peak 2 elute at a NaCl gradient of 8 and 14%, 

respectively. (b) SDS-PAGE analysis of AEC Peaks 1 and 2.  Peak 2 shows a band at ~22 kDa 

which corresponds to ULBP6*02, whereas Peak 1 contains a contaminant band (~30 kDa). 

This demonstrates that AEC has been effective at separating the contaminant and ULBP6*02 

proteins. Peak 2 fractions were pooled and used for crystallisation trials. 

 



3.2.4 NKG2D-ULBP6*02 crystallisation trials 

 

Since the aim of these trials was to grow larger crystals than previously obtained (100 x 100 

microns), up-scaling of the hanging drop equilibrating mixture was likely to be the best 

method of growing larger crystals.  However, achieving successful large scale crystallisation 

proved to be difficult even though the crystals were reproducibly generated in small scale 

trials with the Mosquito crystallisation robot.  Initially, reproduction of previously achieved 

crystallisation was sought, to confirm a solid base for large scale experiments.  Previous 

small scale trials had found NKG2D-ULBP6*02 complex to crystallise at 12.4 mg/ml in three 

conditions from the Pact screen.  To replicate this crystallisation, repeat small scale trials 

were performed using 100 nl complex protein at 12.4 mg/mL, equilibrated against 100 nl 

Pact screen 26 (0.1 M sodium propionate, sodium cacodylate, and BIS-TRIS propane buffer 

(PCB), pH 5.0 and 25% polyethylene glycol (PEG) 1500), 27 (as 26 but at pH 6.0) and 38 (0.1 

M DL-malic acid, MES, Tris base (MMT), pH 5.0 and 25% PEG 1500).  Crystallisation hits were 

observed in all 3 PACT conditions, with crystal sizes ranging between 5 and 25 microns in 

length, confirming that these conditions were a suitable start point for generating larger 

crystals (Figure 3.13a).  The majority of the trials tended to produce showers of crystals, 

indicating an over abundance of nucleation sites.  Furthermore, each of these drops 

exhibited uncharacteristically high levels of precipitation.  One possibility for reducing the 

number of nucleation sites was to decrease the protein complex concentration.  Therefore, 

subsequent small scale optimisation of the NKG2D-ULBP6 complex consisted of lowering the 

complex concentration from 12.4 mg/ml to 10.6 mg/ml .  Alongside this strategy the size of 

the hanging drop sizes were increased (between 200 and 400 nl).  Using this approach 

regular crystals of up to 160 microns were observed forming after 3 -5 days, with the 

complex at 10.6 mg/mL equilibrated against Pact screen 26 (Figure 3.13b).  Finally, large 

scale crystallisation trials were performed using the same protein concentration and screen 



condition, using 1 µl NKG2D-ULBP6 complex.  After failure to generate any crystals with 1:1 

complex:screen mixtures,  the experiments were repeated with complex equilibrated in 

between 1.5 and 3 µl screen.  Large crystals of up to 250 microns in length and 20 microns in 

depth formed after 3 – 5 days (Figure 3.13c). Several crystals from the optimised small-scale 

and large scale trials were selected and flash cooled in liquid nitrogen, ready for X-ray 

diffraction experiments.  

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3.13:  Crystallisation of the NKG2D-ULBP6*02 complex.  (a)  Crystals of NKG2D-

ULBP6*02 complex were grown using the Mosquito robot. NKG2D-ULBP6 complex at 12.4 

mg/ml (100 nl) was equilibrated against 0.1 M sodium propionate, sodium cacodylate, and 

BIS-TRIS propane buffer (PCB), pH 6.0 and 25% PEG 1500 (100nl), forming showers of small 

jagged crystals. (b) Small-scale optimisation of the NKG2D-ULBP6*02 crystals. NKG2D-

ULBP6*02 complex at 10.6 mg/ml was equilibrated (400 nl) 0.1 M PCB buffer, pH 5.0 and 

25% PEG 1500 (400 nl), forming regular crystals of up to 160 x 20 microns.  (c) Large-scale 

optimisation of the NKG2D-ULBP6*02 crystals.  NKG2D-ULBP6*02 complex at 10.6 mg/ml (1 

ìl) was equilibrated against 0.1 M PCB buffer, pH 5.0 and 25% PEG 1500 (3 µl), forming large 

crystals with depth.  Crystals marked with an arrow were flash-cooled in liquid nitrogen for 

X-ray diffraction experiments. 

 

 

 

 

 

 



DISCUSSION 

 

 

Recent studies conducted on haematopoietic stem cell transplant (HSCT) patient cohorts 

have discovered a correlation between patient NKG2D-ligand ULBP6 alleles and overall 

survival following treatment (Antoun et al, 2012).  Those patients possessing at least one 

copy of the second most common RAET1L gene (RAET1L*02), which encodes ULBP6*02, had 

a 14% better overall survival at 8 years post-transplant than those without.  In addition, 

these patients had a 19% improved relapse-free survival (RFS) rate, and for RAET1L*02 

homozygotes, this increased to 33%.  There are several important aspects of this research to 

consider.  Firstly, the change in survival correlates with patient (recipient) genotype and not 

donor genotype.  Secondly, the data generated seems to indicate that the improved survival 

is likely due to increase in the so-called Graft versus Leukaemia effect (GvL), rather than 

decrease in the poor-outcome associated Graft versus Host disease (GvHD).  Thirdly, the 

difference in improved survival rate in patients with ULBP6*02 is remarkably large 

considering the small differences in sequence between ULBP6*01 (the most common allele) 

and ULBP6*02, just two amino acids in the coding region.  This large improvement suggests 

that ULBP6 in general is important as a focus of anti-tumour immune responses.  

Successful HSCTs tend to work via two mechanisms.  The first, and primary, mechanism is 

the repopulation of ablated recipient bone marrow, allowing the formation of a new, 

healthy lymphocyte population that can function in the recipient to restore a working non-

malignant immune system (Thomas et al, 1975).  The second mechanism is the targeting of 

residual tumour populations that have resisted the chemo- and radiotherapy treatment 

prior to transplant.  This targeting is mediated by cytotoxic lymphocytes in the donor 

infusion that are capable of recognising stressed cells in the recipient, and eliminating them 

(Weiden et al, 1979).  If ULBP6 is expressed on the surface of stressed cells in the host, then 



the recognition and binding of these ligands with the NKG2D activating receptors on the 

donor cytotoxic cells could mediate GvL (Vivier et al, 2012).  The fact that it is the recipient 

genotype for ULBP6 that correlates with improved survival in HSCTs is supportive of this 

hypothesis. 

As well as attacking recipient tumour cells, donor lymphocytes can also instigate an auto-

immune like response against recipient non-tumourigenic tissue (GvHD), which is often fatal.  

If the NKG2D-ULBP6*02 improvement in overall survival (OS) was due to reduced GvHD, one 

could expect there to be a correlation between expression of RAET1L*02 and reduced non-

relapse related mortality, which was not the case.  This suggests that improved GvL is the 

primary method by which ULBP6*02 expression in host cells contributes towards overall 

survival.  Strong GvL effects are very hard to predict and vary from patient to patient (Kolb et 

al, 1995), so it is possible that genetic effects such as the possession of a RAET1L*02 gene 

could contribute to this variability. 

Sequence comparison of the RAET1L*01 and RAET1L*02 gene revealed there to be only 2 

coding amino acid changes from the *01 form to the *02 form, with structural modelling 

studies suggesting that one of these amino acid changes occurs in the ULBP6-NKG2D binding 

interface.  In order to determine the molecular mechanism that underlies the Antoun et al 

results, this study undertook to measure the binding affinity of NKG2D for both allelic forms 

as well as for mutants of the ULBP6*02 protein that were generated with each amino acid 

altered individually to the ULBP6*01 sequence. 

Following successful cloning, transfection and biotinylation of the two ULBP6*02 mutants 

L86R and T127I, SPR binding experiments were carried out to determine what the affinity of 

the NKG2D-ligand interaction was for both ULBP6*01 and *02, as well as the mutant 

intermediates.  Binding affinities (Kd) of NKG2D with ULBP6*01 and ULBP6*02 were 144 nM 

and 11 nM respectively, which represents a 13-fold increase in affinity of the *02 form.   This 



data supports the hypothesis that increased affinity of NKG2D for ULBP6*02 over the *01 

form is responsible for increased induced cytotoxicity, either by induction of a stronger or a 

more prolonged cytotoxic response, which in turn increases the GvL effect in RAET1L*02+ 

HSCT patients, leading to enhanced RFS.  Kd of the L86R and T127I ULBP6*02 mutants with 

NKG2D were 114 nM and 11 nM respectively, which strongly suggests that it is the amino 

acid at position 86 that influences the NKG2D-ULBP6 interaction.  This is consistent with the 

structural modelling data which suggest that amino acid position 86 is in the binding site, 

while 127 is distal to the NKG2D-ULBP6 binding interface. In ULBP6*02, amino acid 86 is a 

hydrophobic leucine residue that protrudes into an area of the NKG2D-ULBP6 binding 

interface that is predominantly hydrophobic.  Hence, one would expect favourable 

hydrophobic interactions and corresponding high affinity for the NKG2D-ULBP6*02 

interaction. However, introduction of a long, positively charged arginine side chain into this 

interface, as in the case of ULBP6*01, would be unfavourable for binding and therefore likely 

to be associated with a reduced affinity.  Despite this, ULBP6*01 is the most common allele 

in Euro-Caucasoid populations (Antoun et al, 2010), which suggests there may be 

detrimental implications for those in possession of the higher affinity *02 form.  One 

hypothesis would be that possession of the *02 form leads to higher incidence of auto-

immune complications – NKG2D has often been cited as a mediator of auto-immunity 

(Caillat-Zucman, 2006).  Alternately, ULBP6*01 may have a reduced affinity for the viral 

protein UL-16, which is produced by hCMV to avoid immunodetection of infected cells by 

binding to and sequestering stress ligands such as ULBP6. 

It is clear that these affinities are both high with respect to those of NKG2D and its other 

ligands, where the highest previously recorded was for NKG2D-ULBP1 (Antoun, unpublished) 

at 228 nM, and the lowest for NKG2D-ULBP2 at 47,400 nM.  With this in mind, could a 

change in affinity from “high” in the case of ULBP6*01 to “very high” in the case of *02, 

really be responsible for such a remarkable improvement in HSCT patient outcome?  There 



are several alternative hypotheses for the effect of ULBP6*02 expression, beyond improved 

killing due to higher affinity NKG2D-ULBP6*02 interactions.  As well as there being two 

coding region polymorphisms between *01 and *02, there are 3 non-coding polymorphisms, 

and previous studies on other NKG2D ligands (NKG2DL) have shown that polymorphisms in 

the promoter regions do have an impact on gene expression (Rodriguez-Rodero et al, 2007).  

It is possible that ULBP6*02 has a higher rate of transcription due to a promoter region 

polymorphism, generating a higher cell surface expression and concomitant increased 

targeting by NKG2D-expressing lymphocytes.   It is also plausible that a regulatory microRNA 

has a greater effect on the transcription of ULBP6*01 than it does on *02.  hCMV-mIR-UL112 

has been shown to selectively downregulate MICB but not MICA, despite almost identical 

binding sites (Stern-Ginossar et al, 2007).  The same group later identified many microRNAs 

that affect MICA/B transcription and that they are upregulated in cancer cells (Stern-

Ginossar et al, 2008).  

Alternately, ULBP6*02 may be more resistant to proteolytic cleavage from the cell surface 

by matrix metalloproteinases or endoplasmic reticulum protein 5, perhaps due to the T127I 

mutation which is putatively located on the membrane-facing side of the ULBP6 extracellular 

domain.  Since cancer cells have been demonstrated to increase the shedding of 

extracellular domains of other NKG2D ligands (Kaiser et al, 2007), it is possible that ULBP6 is 

affected and that enhanced retention in the membrane of the *02 form would help maintain 

the cytotoxic response against the ULBP6-expressing cell, increasing killing.  An important 

step in determining the relative importance of any of these mechanisms will be to examine 

the relative transcription and surface expression of the two alleles and identifying whether 

there is any difference, and if so, at which stage of the transcription, translation and surface 

expression sequence. 



Whether any of these mechanisms have a role in the HSCT scenario needs further scrutiny, 

but the increased affinity of NKG2D for ULBP6*02 is certainly one possibly significant reason 

for improved outcome.  In addition to the binding affinity, SPR experiments gave insight into 

the kinetics of the NKG2D-ULBP6 interaction.  The dissociation constant (Koff) was 1.04 x 10-2 

s-1 for ULBP6*01 and 7.64 x 10-4 s-1 for ULBP6*02, which suggests a slow dissociation in both 

cases but particularly in the case of ULBP6*02, with a NKG2D-ULBP6*02 complex half-life of 

around 15 minutes.  When compared with T-cell receptor/ MHC interactions this is 

extremely long (Simpson et al, 2011; van der Merwe & Davis, 2003), and the biological 

implications are not entirely clear.  On the one hand, this long receptor-ligand half-life may 

stimulate more potent cytotoxicity, but some models of receptor-ligand interaction have 

suggested that it is the number of separate receptor stimulations by ligand binding that act 

cumulatively to prompt the cell into cytolytic activity, rather than the absolute strength of 

the receptor-ligand interaction (Rabinowitz et al, 1996).  This is likely the case with TCR-

peptide MHC interactions, where it has been shown that activation is dependent not on 

affinity but on dissociation rate of ligand from the receptor (Lyons et al, 1996).  If NKG2D- 

NKG2DL functioned in a similar fashion, this would suggest that ULBP6*02 may actually 

decrease the cytotoxicity of NKG2D-expressing lymphocytes through slow dissociation, 

reducing the number of interactions between ligand and receptor, as has been described for 

the interaction between TCR and peptide-MHC (Kalergis et al, 2001).  Clearly this is counter-

intuitive to the results presented by Antoun et al, but may provoke the need for an 

alternative hypothesis to explain the results found.    

Tumour cells have been demonstrated to reduce NKG2D expression in circulating 

lymphocytes through chronic stimulation of their NKG2D receptors (Oppenheim et al, 2005).  

In some cases this occurs through over-expression of NKG2DL (McGilvray et al, 2010) which 

are shed either proteolytically or in exosomes and then bind in soluble form to NKG2D, and 

in other cases by prolonged binding to membrane anchored NKG2DL.  It is possible that the 



slowly dissociating ULBP6*02 ligand has a reduced capacity to downregulate NKG2D due to 

long and therefore relatively few interactions with NKG2D, as compared with ULBP6*01.  

This would effectively reduce the ability of ULBP6*02-expressing tumour cells to evade 

immune detection and elimination. 

Another question raised by these data is that if possession of the RAET1L*02 gene has such a 

marked effect on survival, why is haematological malignancy still arising in the first place?  

The likely answer comes from this immunoediting hypothesis, where, in a diseased state, 

malignant cells reduce lymphocytic NKG2D expression and eventually evade immune 

detection.  On transplant, donor lymphocytic cells with a full complement of NKG2D 

receptors are able to detect the malignant cells and destroy them.  This lends weight to this 

idea that it is reduced immune evasion by malignant cells expressing ULBP6*02 that leads to 

enhanced patient survival, compared with those expressing ULBP6*01, since any residual 

leukaemic cells that evade the donor lymphocytes will likely do so again through the same 

immunoediting processes.   

Although the data suggest that it is a GvL effect that is most likely responsible for the ULBP6 

polymorphism effect on HSCT patient outcome, it is possible that there are also important 

indirect mechanisms involved.  For example, if ULBP6 was expressed on the surface of 

recipient antigen presenting cells, which is quite possible considering the patient will have 

undergone chemo- and/or radiotherapy (Rosental et al, 2012), then enhanced killing of 

these cells by NKG2D-expressing donor lymphocytes could contribute to a reduced GvHD 

effect, and thereby likely improve patient overall survival. 

There is no doubt that proving the structure of the NKG2D-ULBP6 complex would be 

beneficial in determining the molecular mechanism behind the improved ULBP6*02+ patient 

outcome. At present, differences in binding affinities of NKG2D for ULBP6*01 and *02 can 

only be explained by structural modelling and molecular predictions.  There could be 



conformational changes in NKG2D upon ligand binding which cannot be accounted for solely 

by modelling, particularly since the NKG2D binding site has been demonstrated to be flexible 

and accommodate a wide variety of ligands (Radaev et al, 2001).  Only solving the crystal 

structure of the NKG2D-ULBP6*02 complex will allow these questions to be answered and 

the molecular mechanism to be confirmed.  Following attempts to determine the structure 

of the complex from a crystal grown previously, which diffracted to 3.2 Å, additional crystals 

were grown following recombinant expression, refolding and purification of NKG2D and 

ULBP6*02.  Despite exhaustive screening and optimisation strategies the best diffraction 

obtained from these crystals was 3.7 Å.  Hence, there is a need to repeat large-scale 

crystallisation trials in order to produce better quality crystals and get a better diffraction 

dataset.  Nevertheless, reproducibility on a large-scale is not always guaranteed when 

growing protein crystals, especially in complex, and this work has achieved this, so it is 

reasonable to predict that eventually diffraction-grade crystals will be grown on a large 

enough scale to generate high resolution data and solve the complex structure. 

To fully elucidate the role of NKG2D and ULBP6 in the post-HSCT setting, it is vital that 

functional assays are performed to investigate which cytotoxic cells are responsible for the 

NKG2D-ULBP6 mediated killing, and in what proportion.  As well as describing the relative 

potency of effector cells, such experiments may also be able to ascertain whether there is a 

functional difference in cytotoxic cells towards cells transfected with either ULBP6*01 or 

ULBP6*02, which would certainly help refine the mechanistic hypothesis.  This work would 

have clinical implications for the HSCT setting, as it has become clear that pre-transplant 

conditioning regimes, as well as subsequent therapies such as T-cell infusions, are vitally 

important in affecting HSCT outcome.  Defining the role of lymphocytic subsets in NKG2D-

ULBP6 mediated anti-tumour effects may inform decisions made in treatment of 

haematological malignancies, which will build on the already apparent prognostic and 

stratification implications of ULBP6 genotype in HSCT patients. 
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Investigating neuroblastoma mediated immunosuppression 

 

  

Neuroblastoma, the most common extracranial solid tumour in children, has a long term 

survival rate of 45% but a very poor outcome in high-risk categorised patients, despite 

aggressive current therapies.  In order to develop more effective immunotherapies, it is 

critical that we understand the immune microenvironment fostered by neuroblastoma 

tumours.  In this study, we investigated potential mechanisms employed by neuroblastoma 

in suppression of the host’s immune response.  Using neuroblastoma-derived cell lines, we 

established that neuroblastoma is capable of suppressing allogeneic T cell proliferation in 

vitro, and that this suppression is not dependent on cell: cell contact.  Active Arginase II is 

present in suppressive cell lines, and inhibition of this enzyme restored T cell proliferation, 

suggesting for the first time enhanced arginine metabolism as a mechanism of 

immunosuppression in neuroblastoma.  We then established that neuroblastoma-derived 

cell lines are capable of activating monocytes to CD68+ macrophages, and that these 

macrophages also suppressed T cell proliferation.  Finally, using biopsied tumour material 

from neuroblastoma patients, we established arginase-dependent suppression of T cell 

proliferation and macrophage activation by neuroblastoma ex vivo, confirming the 

physiological relevance of the cell line data.  These results support the hypothesis that 

neuroblastoma creates an immunosuppressive microenvironment that may enhance disease 

progression. 
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INTRODUCTION 

 

 

1.1 The cellular basis of immune homeostasis 

 

During the course of a normal infection or other challenge to the immune system, the body 

launches a series of defences, beginning with an innate response mediated by macrophages 

and natural killer (NK) cells and, if necessary, following up with a dendritic cell (DC) and T 

cell-mediated adaptive response that confers immunological memory.  In an adaptive 

immune response, T cells are activated by recognition of their cogent antigen being 

presented by major histocompatibility complex (MHC) molecules.  Following activation, they 

then go on to rapidly proliferate and either directly destroy infected or damaged cells 

bearing their cogent antigen, or release a variety of pro- or anti-inflammatory cytokines that 

help to co-ordinate and regulate the immune response. 

 

The majority of effector T cells are programmed to die once antigen stimulation is removed, 

and consequently the immune response is reduced once the pathogen that instigated the 

response has been destroyed.  However, there are several additional mechanisms that exist 

to reduce or limit an immune response.  In most cases these are likely linked to the 

avoidance of autoimmune effects brought about by unwanted reaction to self-antigen, but 

several pathological conditions, including cancer, can hijack these mechanisms for their own 

purposes. 

 



1.1.1 Induction of T cell anergy 

 

In healthy individuals, several homeostatic mechanisms exist to maintain a physiologically 

suitable number of circulating naive T-cells in the periphery.  Although T-cells with a high 

avidity for self-antigens are removed from the T-cell population in the thymic selection 

process (Kappler et al, 1987), successful maturation of thymocytes requires suitable 

interaction with self-antigen presenting MHC molecules, as well as stimulation of the 

interleukin-7 (IL-7) receptor by IL-7 (Takada et al, 2009).  However, some self-reactive naive 

T-cells will escape the thymic selection process and reach the periphery (Liu et al, 1995).  

One mechanism to overcome this problem is induction of T-cell anergy, that is, a non-

responsive state, usually occurring when the TCR has been stimulated by cogent antigen 

recognition in the absence of a co-stimulatory factor such as CD28 (Schwartz, 2003).  Cells so 

stimulated display impaired TCR signalling, and are blocked at the G1/ S checkpoint of the 

cell cycle, leading to a hyporesponsive quiescence.  T cell anergy can also be induced by 

environmental cues processed by the serine-threonine protein kinase mammalian target of 

rapamycin (mTOR) (Chappert & Schwartz, 2010).  T cells are highly metabolically active, and 

their activation has been shown to depend on the availability of a wide variety of nutrients 

in their microenvironment (Fox et al, 2005).  These nutrients include amino acids such as 

tryptophan (Mellor et al, 2003), arginine (Munder et al, 2013), glutamine (Carr et al, 2010), 

cysteine and lysine (Cobbold et al, 2009), as well as glucose (Cham et al, 2008), oxygen and 

ATP.  An absence of these causes the cell to switch from an anabolic active state to a 

catabolic anergic state, a process regulated in a large part by mTOR (Powell & Delgoffe, 

2010).  This enforced quiescence is thought to help reduce the energy burden required to 

maintain the large and diverse T cell population.  Anergy can also be induced through the 

secretion of suppressive cytokines such as IL-4, IL-10 and IL-13 by IL-4 induced TH2 CD4+ 

helper lymphocytes, which also serve to stimulate the B cell mediated humoral response. 



1.1.2 Regulatory T cells 

 

Although regulatory T cells (Tregs) have defied cast-iron classification since their discovery 

during the 1980s, T cells expressing CD4, CD25 and the transcription factor forkhead box P3 

(Foxp3) are generally considered to have immunoregulatory function (Fontenot et al, 2003).  

They consist of around 5% of the total CD4+ T cell population (Wing & Sakaguchi, 2010).  

Natural Tregs (nTregs) are selected for and mature in the thymus, as normal effector T cells 

are.  nTregs serve to suppress T cell autoreactivity as well as excessive and unwanted 

immune responses to non-self-antigens, although the molecular mechanism by which they 

do this is still the subject of debate (Sakaguchi et al, 2008).  Naïve T cells also acquire Foxp3 

expression in the periphery, often following stimulation by the immunosuppressive cytokine 

TGF-β (Chen et al, 2003) or interleukin-2 (IL-2) (Laurence et al, 2007).  These are induced 

Tregs (iTreg), and are hypothesised to act as a braking mechanism to prevent excessive 

effector T cell mediated response in the periphery. Tregs function by several known 

mechanisms: out-competing naive T cells for interactions with antigen presenting cells 

(APCs) (Takahashi et al, 1998), modulating APC function through secretion of 

immunosuppressive cytokines (von Boehmer, 2005) and expression of cytotoxic T 

lymphocyte-associated molecule-4 (CTLA-4) (Read et al, 2000), and in some cases direct lysis 

or inactivation of effector T cells.  As well as CTLA-4, important cell surface receptors 

expressed by Tregs include programmed cell death protein 1 (PD-1) and glucocorticoid-

induced TNFR family related gene (GITR), both of which have been attributed with 

immunosuppression (Wang et al, 2009; Shimizu et al, 2002).  In this fashion, Tregs provide 

an additional mechanism to T cell anergy induction in the control of immune responses, 

although evidence suggests cross-talk between the two pathways to maintain a sufficient 

level of immunosuppression in the periphery (Chappert et al¸2010). 

 



1.1.3 Macrophage polarisation 

 

Macrophages are functionally diverse myeloid derived cells with a vital role in the innate 

immune response.  Perhaps the most widely recognised role of macrophages is in 

inflammation, where in response to microbial detection via Toll-like receptors and 

subsequent transcription factor nuclear factor-κB (NF-κB) activation, macrophages secrete 

proinflammatory chemokines and cytokines such as tumour necrosis factor α (TNF-α), 

interleukin-1 (IL-1), IL-12 and CC chemokine ligand 2 (CCL-2).  These cytokines serve to 

promote inflammation and induce an adaptive response by attracting T cells to the site of 

infection.  However, macrophages are capable of responding to a wide variety of 

extracellular signals in a number of functionally different manners, with two of the most 

important induced phenotypes mirroring those of the TH1/ TH2 lymphocyte polarisation 

following pathogenic challenge (Mosser & Edwards, 2008). “Classically activated” 

macrophages (M1) follow the TH1 pattern of cytokine secretion (proinflammatory, as 

described above) and play a similar inflammatory role to the TH1 cells of the adaptive 

immune response.  M1 polarisation is driven by microbially derived stimulants such as 

lipopolysaccharide (LPS) or interferon-γ (IFN-γ).  “Alternatively activated” macrophages (M2) 

broadly follow the TH2 pattern of cytokine release and are involved in immunoregulation and 

tissue remodelling, plus a number of other functions (Gordon, 2003).  M2 polarisation is 

driven by cytokines such as IL-4 or IL-13 via the signal transducer and activator of 

transcription 6 (STAT-6) intracellular signalling cascade, or interleukin-10 (IL-10) via the 

STAT-3 signalling cascade (Biswas et al, 2012).  In a normal healthy immune system, M2 

polarised macrophages are usually associated with the resolution phase of the immune 

response, and as such express immunosuppressive cytokines such as interleukin-10 (IL-10) 

and transforming growth factor β (TGFβ Gong et al, 2012).  In addition, they display 

increased levels of phagocytosis-associated surface receptors, such as the mannose receptor 



CD-206, and scavenging receptor CD-163, increasing their capacity for post-infection clear up 

of dead cells.  Further to varied cytokine release, differentially polarised macrophages also 

exhibit differential metabolisms of various molecules, such as glucose, lipids, iron and 

various amino acids, including arginine, cysteine and tryptophan (Biswas & Mantovani, 

2012). 

 

1.2 Cancer Immunoediting 

 

The role of the immune system in detecting and eliminating nascent tumours (immune 

surveillance) has been a subject of debate for over 100 years.  After initial hypotheses were 

proposed and then refuted, it wasn’t until the 1990s that improved mouse models allowed 

researchers to address the question on a sound scientific basis.  Their findings, and those of 

the considerable body of work that followed, suggest that the immune system does indeed 

play a role in the suppression of tumours. 

 

As well as eliminating potentially tumourigenic viruses and suppressing a pro-tumourigenic 

inflammatory environment through pathogen elimination, cells of the immune system have 

been shown to react directly against neoplastic cells through recognition of upregulated 

stress-related surface molecules or cancer-specific antigens.  In this way, the immune system 

is capable of killing many tumours before they become clinically recognizable.  This is the 

“Elimination” phase of the cancer immunoediting concept proposed by Schreiber and 

colleagues, and if completed, the host will remain cancer free (Schreiber et al, 2011).  The 

most immunogenic tumour cells will be eliminated rapidly, but on occasion some cells will 

evade immune detection.  In this case, rapid outgrowth of the tumour may be prevented 



through the action of the adaptive immune response, where a constantly evolving T cell 

population remain capable of keeping the nascent tumour in check – the “Equilibrium” 

phase.  During this time, the immune system will place a lot of selective pressure on the 

tumour, and due to this the tumour may lose immunogenicity, mainly through loss of 

antigen, become insensitive to immune effector mechanisms, or create an environment 

whereby the immune response is dampened and rendered ineffectual.  This is the “Escape” 

phase of cancer immunoediting, and since this phase leads to pathogenesis and detectable 

disease, much of the research in tumour immunology over the last 20 years has focused on 

elements of this phase in an effort to develop novel cancer therapies. 

 

1.3  Tumour mediated immunosuppression 

 

As described by the cancer immunoediting concept, eradication of many tumours is carried 

out by cells of both the adaptive and innate immune responses; cytotoxic T lymphocytes 

(CTLs) and natural killer (NK) cells respectively.  Studies have shown the benefit of a high 

tumour infiltrate of CD8+ lymphocytes to positive patient outcome in a number of solid 

tumours, including breast cancer (Mahmoud et al, 2011), melanoma (Oble et al, 2009) and 

colorectal cancer (Galon et al, 2006).  However, many attempts to stimulate this apparent 

anti-tumour activity, by methods such as vaccination or adoptive T cell transfer, have 

produced limited successful results, and this is thought to be due to the immunosuppressive 

environment created by the tumour itself.  Several mechanisms have been identified by 

which tumour cells can suppress the immune response and promote tumour outgrowth 

(Rabinovich et al, 2007).  Some of these pathways act on lymphoid lineage cells, either by 

disabling effector T cell function through secretion and/or expression of immunosuppressive 

or apoptosis inducing factors, or recruitment of regulatory cells to the tumour 



microenvironment.  Others act on the myeloid lineage cells, for example by arresting 

development of dendritic cells and monocytes, thereby forming populations of myeloid 

derived suppressor cells (MDSCs), or through recruitment and polarisation of macrophages 

to the immunosuppressive M2 phenotype.  This section will look at each of these 

mechanisms in more detail. 

 

1.3.1 Tumour associated macrophages 

 

Inflammation has been termed the seventh hallmark of cancer (after Hanahan & Weinberg, 

2000), as inflammatory conditions are linked with a pro-tumourigenic and metastatic 

microenvironment (Lin & Karin, 2007).  In some cases, inflammation is directly attributed to 

the onset of cancer, for example, chronic hepatitis C infection is attributed with the 

development of hepatocellular carcinoma (HCC Levrero, 2006) and Helicobacter pylori 

infection has been linked with the onset of  gastric cancer (Luigiano et al, 2012).  A major 

component of any inflammatory response is the infiltration of macrophages, and indeed 

macrophages have been demonstrated, via immunohistochemical staining, to consist of a 

large proportion of the tumour mass in some solid tumours (Kelly et al, 1988).  Increased 

tumour associated macrophage (TAM) burden has been linked with poor patient prognosis 

in several cancers, including Hodgkin’s disease (Steidl et al, 2010) pancreatic (Kuruhara et al, 

2011) and breast cancer (Tang, 2013).  Tumour influence on macrophages and their fate is a 

major component of the immunomodulatory action of many tumours.  Large areas of 

necrotic and hypoxic cells are common in many solid tumours, a condition that naturally 

instigates inflammation and the recruitment of macrophages (Doedens et al, 2010).  In 

addition, increased recruitment of circulating monocytes to the tumour microenvironment is 



mediated by chemokines such as CCL2 (Bailey et al, 2007), macrophage colony-stimulation 

factor (M-CSF Pyonteck et al, 2012) and CXCL12, secreted by neoplastic cells and the tumour 

associated stromal compartment.  In this way, tumours both passively and actively recruit 

monocytes to their locality.  Once present in the tumour microenvironment, the monocytes 

often differentiate favouring the M2 phenotype, as directed by tumour-secreted cytokines 

such as IL-10, TGFβ, IL-4 and IL-13 (Biswas & Mantovani, 2010).  These TAMs then foster 

tumour progression through a number of mechanisms; inhibitory modulation of cytotoxic T 

cells, secretion of pro-angiogenic and remodelling signals which in turn support tumour 

expansion and metastasis, and secretion of pro-survival and proliferation factors (Ruffell et 

al, 2012).   Although the mechanisms remain unclear, studies in mice suggest TAMs can 

promote T cell anergy through the metabolism of available arginine, through activation of 

the enzymes arginase or inducible nitric oxide synthase (iNOS Choi et al¸ 2009).  In addition 

TAMs in human HCC have been demonstrated to upregulate PD-L1 (Kuang et al, 2009), 

which instigates inhibition of activated T cells via the PD-1 receptor, and prostaglandin E2 

(PGE2).   TAMs secrete vascular endothelial growth factor, an important mediator of 

angiogenesis, which in turn has a positive impact on tumourigenesis (Stockmann et al, 2008) 

by improving blood supply and increasing available nutrients to the hyperproliferating 

tumour cells.  M-CSF, as well as inducing macrophage recruitment, also serves to enhance 

TAM epidermal growth factor (EGF), which regulates epithelial cell migration and enhances 

tumour cell mobility (Wyckoff et al, 2004).  TAMs also promote tissue remodelling through 

the secretion of matrix metalloproteinases and cathepsins, which allow tumour cell 

migration and metastasis (Kessenbrock et al, 2010). 

 

 

 



1.3.2 Treg induction 

 

Since Tregs compete with naïve T cells and inhibit the activity of effector T cells, their 

potential for disrupting the eradication of tumour cells by CTLs is clear.  The role in 

suppressive T cells in the promotion of tumour development was proven by North and 

colleagues in the 1980s (North & Bursacker, 1984).  Use of blocking antibody inoculation of 

mice has identified the CD4+ CD25+ Foxp3+ Tregs as prime instigators of this T cell mediated 

immunosuppression in cancer, where researchers found long term tumour immunity was 

conferred in mice after CD25+ cell knockout (Onizuka et al, 1999).  Increased numbers of 

infiltrating Treg cells has been recorded in many human cancers including pancreatic and 

breast (Liyanage et al, 2002), and some studies have suggested that a high proportion of 

Treg in the tumour infiltrating lymphocyte population correlates with poor outcome 

(Perrone et al, 2008).  Indeed, Curiel and co-workers showed that Tregs did indeed suppress 

tumour-specific CTL activity in ovarian cancer (Curiel et al, 2004).  Observed Treg 

suppression in tumours is possibly a result of the fact that some nTregs will exist for the 

cancer-testis antigens, a collection of antigens expressed only by transformed cells and male 

germ cells, but most of the Tregs associated with tumours seem to be iTregs, likely induced 

by immunosuppressive cytokine release by the tumour cells, tumour-associated stromal cells 

or TAMs (Anthony et al, 2005). 

 

1.3.3 Myeloid derived suppressor cells 

 

Myeloid derived suppressor cells (MDSC) are a highly heterogeneous population of 

immature myeloid cells, precursors of dendritic cells, macrophages and granulocytes.  In 



healthy individuals, these immature myeloid cells will rapidly differentiate, but in the 

typically inflammatory tumour microenvironment, these cells are prevented from doing this, 

and they subsequently exert a highly immunosuppressive influence on the anti-tumour T cell 

population (Gabrilovich et al, 2012).  In an active state, these cells are characterised by their 

production of arginase 1, iNOS, and/ or reactive oxygen species (ROS), and suppression of T 

cell activity, but they have no defined set of surface markers, making their identification 

challenging.  Nevertheless, a large increase in apparent MDSC numbers has been 

demonstrated in studies of cancer patient blood samples (Görgün et al, 2013). 

 

Several molecular instigators of MDSC formation have been attributed to various cancers, 

including cell surface expression and/or secretion of M-CSF, IL-6, PGE2, cyclooxygenase 2 

(COX-2) and VEGF (Lechner et al, 2010).   These factors mostly act through the Janus kinase 

(JAK) proteins and STAT3 transcription factor signalling cascade to increase the survival and 

proliferation of the immature myeloid cells, thereby preventing differentiation and 

promoting MDSC expansion (Gabrilovich & Nagaraj, 2009).  In addition to the pro-survival 

signalling, activation of the suppressive MDSC phenotype seems to require the presence of 

factors secreted by activated T cells or tumour-associated stromal cells, factors such as IFN-

γ, IL-4 and TLR ligands. 

 

Active MDSC suppress T cell activity through the action of arginase I and iNOS, both of which 

deplete L-arginine availability in the microenvironment, causing decreased expression of the 

CD3 ζ-chain of the T cell receptor (TCR) complex, resulting in a loss of antigen signalling 

capability and T cell anergy (Raber et al, 2012).  MDSC have also been demonstrated to 

secrete ROS and peroxynitrite, both powerful suppressors of T cell activity through 



modification of the TCR and other vital proteins (Nagaraj et al, 2007).   Mouse model work 

has demonstrated that MDSC have a role in the formation of iTregs, adding another 

potential layer of suppressive activity to this population of cells (Huang et al, 2006). 

 

1.3.4 Nutrient depletion 

In addition to the MDSC-derived nutrient depleting enzymes, many tumours have been 

demonstrated to upregulate catabolic enzymes themselves (Singer et al, 2011).  Indolamine-

2,3-dioxygenase (IDO) degrades tryptophan into kynurenine which subsequently 

downregulates T cell expression of the TCR CD3 ζ-chain through a lack of available 

tryptophan (Fallarino et al, 2006).  IDO expression and activity has been documented in 

prostate, cervical and pancreatic cancers, and elevated serum levels of tryptophan 

catabolites have been linked with poor prognosis in colorectal cancer patients (Brandacher 

et al, 2006).   Arginine depletion by tumour-derived arginase II has been detected in acute 

myeloid leukaemia (Mussai et al, 2013), as well as in several tumour derived cell lines (Tate 

et al, 2008).  Neoplastic cells generally exhibit altered metabolism, relying on glycolysis for 

energy production (Warburg, 1961).  The resulting depletion of glucose and high levels of 

lactate in the microenvironment has been shown via in vitro studies to suppress CTL activity 

(Fischer et al, 2007). 

 

1.4 Neuroblastoma 

 

Neuroblastoma is a neuroendocrine tumour of the sympathetic nervous system, developing 

from neural crest areas including adrenal glands and nerves of the neck, chest and abdomen.  

It is the most common extracranial solid tumour in children, accounting for approximately 



9% of all childhood cancers, and has a long-term survival rate of 45%, although the rate for 

those diagnosed with “high-risk” metastatic Stage IV disease is much worse, with only one 

third of patients so diagnosed expected to survive (Schmidt et al, 2005).  Infants under 12 

months of age diagnosed with neuroblastoma are the most successfully treated; 

spontaneous disease regression has been noted in some cases (Carvalho, 1973).  

Neuroblastoma in older children often does not present until metastasis has occurred, and 

the predominant methods of treatment for these high risk patients is aggressive 

chemotherapy and stem-cell transplantation, with generally poor outcome and relapse 

remains common (Matthay et al, 1999).  These variations in disease pathologies seem to be 

characterised by distinct genetic and biological characteristics.  Advance stage 

neuroblastoma tumours tend to be associated with amplification of the N-myc gene and 

with loss or rearrangement of part of the short arm of chromosome 1 (Brodeur et al, 1984).  

p73, which has structural and functional homologies to the p53 tumour suppressor gene, 

has been mapped to this region.  N-myc is an oncogene encoding a transcription factor that 

promotes hyperproliferation. 

 

1.4.1 The immunology of neuroblastoma 

 

As with many cancers, recent efforts into the treatment of neuroblastoma have looked, 

amongst other avenues, at immunotherapy as a potential addition to traditional chemo- and 

radiotherapies and/ or surgery.  Despite neuroblastoma cells often exhibiting the cancer 

testis-antigen melanoma antigen-1 (MAGEA1 Corrias et al, 1996) and apparently tumour-

specific antigen disialoganglioside 2 (GD2 Wu et al, 1986), no natural immune response to 

these peptides has been reported.  Although engineering reactive T cells specific to these 



antigens or other neuroblastoma related peptides such as the anti-apoptotic protein survivin 

(Coughlin et al, 2006; Fest et al, 2009) remains a viable source of potential 

immunotherapies, any successful immunotherapy will require knowledge of any 

immunosuppressive mechanisms used by the tumour to evade elimination.  Consequently, a 

body of work dedicated to understanding the interaction of neuroblastoma and the immune 

system is gradually being built up by numerous groups. 

 

Lymphocyte-mediated inhibition of cultured neuroblastoma cell line propogation was first 

demonstrated in 1968 (Hellström et al, 1968), although there is only limited data to 

document the infiltration of CTLs in neuroblastoma.  CD3+ lymphocytes (CTLs and NK cells) 

have been observed by immunohistochemistry in neuroblastoma tumour sections (Apps et 

al, 2013), but several factors have been demonstrated to be released by neuroblastoma that 

have a negative regulatory effect on T cells.  These factors include solubilised MHC-Class 1 

polypeptide-related sequence A (MICA), which when membrane bound acts as a stress 

ligand that is recognised by the NKG2D receptor of NK cells and CTLs but in soluble form 

down-regulates the same receptors on the surface of the effector cells (Raffaghello et al, 

2004).  In addition, neuroblastoma cells have been demonstrated to secrete galectin-1 (Gal-

1), which induces apoptosis in T cells and DCs (Soldati et al, 2011), and macrophage 

migratory inhibitory factor, which has been demonstrated to inhibit T lymphocyte activation 

both in vitro (Yan et al, 2006) and in vivo (Zhou et al, 2008).  One study also demonstrated 

that neuroblastoma expressed membrane bound TNF-α was capable of inducing CC 

chemokine ligand 20 (CCL20) expression in TAMs, which attracted invariant NKT cells to the 

hypoxic tumour microenvironment, where they are rendered anergic (Liu et al, 2012). 

 



Tumour associated macrophages have been observed in neuroblastoma, and their presence 

has been correlated with worsened 5-year prognosis (Song et al, 2009), as well as more 

advanced stage of disease progression (Asgharzadeh et al, 2012).  This study also confirmed 

a higher proportion of these TAMs were M2 polarised in Stage IV disease, as determined by 

surface expression of the scavenging receptor CD163.  In addition to the immunosuppressive 

effects detailed earlier, Morandi and colleagues discovered the release of soluble HLA-G 

(sHLA-G) non-classical MHC class 1 molecules by neuroblastoma-associated macrophages 

correlated with relapse.  sHLA-G inhibits CTL and NK response through CD8 ligation 

mediated apoptosis or upregulation of the Fas ligand, inducing Fas mediated cell death 

(Morandi et al, 2007).  Interestingly, it appears there may be a difference in the immune 

infiltrate of paediatric cancers compared with inflammation-associated adult cancers, with 

apparent heavier macrophage burden and reduced lymphocyte and DC burden in paediatric 

solid tumours (Vakkila et al, 2006).  The mechanism of macrophage activation and 

polarisation has not been defined, however. 

 

Little evidence exists for an immunosuppressive role of Tregs in neuroblastoma, although 

the STAT-3 pathway has been observed to be up-regulated in neuroblastoma (Zeng et al, 

2010), a pathway linked to induction of Tregs, reduction of CTL cytotoxicity and inhibition of 

DC differentiation, which may lead to MDSC formation (Yu et al, 2007).  Myeloid cells with 

immunosuppressive activity have been found in the blood and tumour of neuroblastoma 

patients (Santilli et al, 2013) although Gowda and co-workers found MDSC to be reduced in 

high-risk versus low-risk neuroblastoma patients (Gowda et al, 2011).   The exact role and 

effect of MDSC in neuroblastoma obviously remains unclear, and warrants further 

investigation. 

 



Despite an increasing number of studies that attempt to document the interaction of 

neuroblastoma with the immune system, a great deal is still very poorly understood, 

regarding both the amplitude and the mechanism of any immunoregulatory effects of this 

tumour on both its microenvironment and host on a systemic level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PROJECT AIMS 

 

Primary Aim:   

To determine the magnitude and mechanism of suppression of T cell proliferation mediated 

by neuroblastoma in vitro. 

 

Secondary Aims: 

1) To determine the magnitude and mechanism of suppression of T cell proliferation in 

vitro by co-culture of neuroblastoma-derived cell lines with allogeneic T cells. 

2) To determine the effect of neuroblastoma-derived cell lines on allogeneic 

monocytes in vitro, and to establish the extent of immunosuppression mediated by 

co-cultured monocytes. 

3) Reproduce any findings from secondary aims 1 and 2 in primary human 

neuroblastoma tumour samples. 

 

 

 

 

  

 

 

 



MATERIALS AND METHODS 

2.1 Cell lines 

Five human neuroblastoma cell lines were obtained.  IMR-32, isolated from a 1 year old 

male, exhibiting 1pdel chromosomal abnormality and N-myc amplification.  LA-N-1, isolated 

from a 2 year old female, exhibiting 1pdel chromosomal abnormality and N-myc 

amplification.  SK-N-AS, isolated from an 8 year old female, exhibiting 1pdel chromosomal 

abnormality but no N-myc amplification.  Kelly, source unknown, which displays N-myc 

amplification.  SK-N-MC isolated from a 14 year old female, a line originally thought to be 

neuroblastoma derived, but most likely Askin’s tumour (Ewing family of tumours) in origin 

(Dunn et al, 1994).  Cell lines were cultured in RPMI-1640 (Sigma), with 10% foetal calf 

serum (FCS), 2 mM L-glutamine, 1 mM sodium pyruvate, penicillin/ streptomycin (25 mg) 

and non-essential amino acids (1x), hereafter referred to as R10.  Cell lines were split every 

3-5 days, with fresh media added 24 hours before each experiment. 

 

2.2 Patient Samples 

 

Neuroblastoma tumour samples were kindly donated by Dr Carmel McConville, University of 

Birmingham.  Neuroblastoma cells from patients were obtained by chopping freshly-excised 

neuroblastoma tumours into small pieces and digesting them with collagenase (Worthington 

Biochemical Corporation) for 30 minutes at 37oC. Following this step, digested material was 

filtered using a cell strainer and neuroblastoma cells were purified by incubation with anti-

GD2-PE antibody for 20 minutes followed by incubation with anti-PE coated magnetic beads 

(Miltenyi Biotec). 



2.3 Isolation of T cells/ monocytes. 

 

Human peripheral blood mononuclear cells (PBMC) were isolated from the blood of healthy 

donors using a Ficoll gradient (LymphoprepTM, Fresenius Kabi Norge AS, density 1.077 ± 

0.001 g/ml).  Following blood separation by centrifugation at 2,000 rpm for 30 minutes, 

PBMC were collected from the “ring” using a Pasteur pipette and collected, washed in 

phosphate buffered saline (PBS) with 10% bovine serum albumin (BSA), then incubated at 

40C for 20 minutes with anti-CD14 coated magnetic beads (Miltenyi Biotec) to allow 

purification of CD14+ monocytes.  This mixture was washed again in PBS + 10% BSA (MACS 

buffer), before being resuspended in 2 ml MACS buffer and injected onto a magnetic 

activated cell sorting (MACS) column (Miltenyi Biotec).  CD14- cells were eluted with 2 

washes of 3 ml MACS buffer, and CD14+ cells were washed with 5 ml MACS buffer using a 

syringe. Both positively (monocytes) and negatively selected cells were washed in RPMI then 

resuspended in R10 culture medium + 50 μM β-mercaptoethanol for use in further 

experiments.  Purity of isolated monocytes was verified by flow cytometry staining for 

CD14+CD11b+ cells. 

 

2.4 T cell proliferation assays. 

 

96-well flat bottom plates were coated with 50 μl anti-CD3 at 3 μg/ml and incubated at 4oC 

overnight.  Cell lines were harvested, irradiated (5,000 rad) to prevent further proliferation, 

resuspended in R10 + 50 μM β-mercaptoethanol and plated in 50 μl at the relevant 

concentrations.  Alternately, supernatants harvested from 500,000 neuroblastoma cell line 

following 96 hour incubation were added at varying concentrations in a final volume of 100 



μl in place of the cell lines.  T cells obtained from donor PBMC were added at 200,000 cells in 

50 μl per well, and finally 50 μl anti-CD28 was added to a final concentration of 2 μg/ml.  In 

certain experiments, Nω-hydroxy-L-arginine (0.5 mM, NOHA) and L-Nω-monomethyl arginine 

(0.5 mM, L-NMMA) were added to MLR cultures to inhibit arginase and iNOS activity, 

respectively.  Cells were then incubated at 370C, 5% CO2 for 96 hours before 1 μCi per well 

[3H]-thymidine (Perkin Elmer Life Sciences) was added and the cells incubated for a further 

16 hours.  Incorporation of [3H]-thymidine was measured using a Packard TopCount NXT 

microplate scintillation and luminescence counter.  Data are presented as the percentage of 

PBMC-derived T cell proliferation driven by CD3 and CD28 stimulation in the presence of 

irradiated neuroblastoma cell lines compared with the same proliferation in the absence of 

cell lines (equivalent to 100%). 

 

2.5 Monocyte polarisation assay 

 

Neuroblastoma cell lines were harvested and plated in 24-well flat bottom plates, before 

CD14+ cells isolated from healthy donor blood as previously described were added, either 

directly or in a 1 µm pore size Transwell (Corning).  Positive controls were generated using 

CD14+ cells alone stimulated with 40 ng/ mL granulocyte macrophage colony-stimulation 

factor (GM-CSF).  0.5 mM NOHA and L-NMMA were added in certain experiments to 

investigate the effect of arginase and iNOS inhibition.  The cells were then incubated at 370C 

for 72 hours, before being harvested and incubated for 20 minutes at 4oC with anti-CD11b 

coated magnetic beads to isolate myeloid-derived cells using a MACS column as described 

earlier.  Monocyte polarisation was assessed by incubation with either anti-CD206-PE, anti-

CD163-PE or anti-CD115-PE (eBioscience) detailed below.  CD11b+ cells were then washed, 



irradiated and resuspended in R10 + 50 μM β-mercaptoethanol and plated into a 96-well flat 

bottom plate previously coated with anti-CD3 for assessment of effect on T cell proliferation, 

as described above. 

 

2.6 Flow cytometry 

 

Cells were stained for surface markers in a round bottom 96 well plate for 20 minutes at 4oC, 

washed and resuspended in 200 μL FACS buffer (PBS + 10% FCS).  For intracellular CD68 

staining, following surface staining, cells were fixed and permeabilised using fixation/ 

permeabilization solution containing 4% formaldehyde and 0.1% saponin (eBioscience), then 

washed, incubated with anti-CD68-FITC (eBioscience) for 20 minutes at 4oC and resuspended 

in FACS buffer.  Samples were acquired using an Accuri C6 flow cytometer, Accuri CFlow Plus 

software. 

 

2.7 Reverse transcription polymerase chain reaction (RT-PCR) 

 

RT-PCR was used to detect gene expression of arginase I, arginase II and iNOS in 

neuroblastoma cell lines.  RNA was extracted from pellets of 1 x 106 neuroblastoma or 

control line with RNAeasy columns (Qiagen).  Pellets were lysed in 350 μL Buffer RLT and 

homogenised before adding 1:1 volume:volume 70% ethanol.  The lysate was then 

transferred to an RNeasy spin column, centrifuged at 10,000 rpm for 15 s, before the column 

was washed with 700 μL Buffer RW1 and twice with 500 μL Buffer RPE to remove the 

ethanol.  RNA was eluted with 30 μL dH2O, and then quantified with a Nanodrop 



spectrophotometer.  cDNA was synthesized SuperScriptTM III Reverse Transcriptase 

(Invitrogen) following the manufacturer’s instructions, then PCR performed using the 

primers detailed below and Platinum Taq DNA polymerase (Invitrogen).  The PCR products 

were analysed by gel electrophoresis on a 2% agarose gel, and were visualised by staining 

with ethidium bromide.  

 

Arginase I -  Forward primer 5’CTCTAAGGGACAGCCTCGAGGA3’   

Reverse primer 5’TGGGTTCACTTCCATGATATCTA3’ 

 

Arginase II -  Forward primer 5’ATGTCCCTAAGGGGCAGCCTCTCGCGT3’ 

Reverse primer 5’CACAGCTGTAGCCATCTGACACAGCTC3’ 

 

iNOS -   Forward primer 5’CGGTGCTGTATTTCCTTACGAGGCGAAGAAGG3’ 

Reverse primer 5’GGTGCTGCTTGTTAGGAGGTCAAGTAAAGGGC3’ 

 

GAPDH -  Forward primer 5’CCAGCCGAGCCACATCGCTC3’ 

Reverse primer 5’ATGAGCCCCAGCCTTCTC3’ 

 

 

 



2.8 Western blotting 

 

Lysates of neuroblastoma cell lines were prepared by incubation of 5 x 106 cells with lysis 

buffer (150 nM NaCl, 20 nM Tris-HCl pH 7.5, 2mM ethlyenediaminetetraacetic acid (EDTA),  

1% Triton X-100) with protease inhibitors (Roche).  Lysates were centrifuged at 13,000 rpm 

for 30 minutes and supernatants collected, 15 μL of which was then added to 2 µL running 

buffer (125 mM Tris pH 8, 8M urea, 10% glycerol, 6% SDS, bromophenol blue, 200 mM DTT) 

and loaded onto a 12.5% acrylamide gel consisting of a resolving gel (765mM Tris pH 8.8, 

0.2% SDS, 12.5% acrylamide (Protogel), 0.1% ammonium persulphate and 5 µL of 

tetramethylethylenediamine (TEMED) (Sigma)) and a stacking gel (150mM Tris pH 6.8, 0.12% 

SDS, 0.1% ammonium persulphate and 5 µL of TEMED).  Protein gels were run at 100 mV 

through the stacking gel and 180 mV through the resolving gel and then transferred to a 

PVDF membrane (Hybond LFP, GE Healthcare) in transfer buffer (10% methanol, 190 mM 

glycine, 25 mM Tris) at 400 mA for 1 hour.  The membrane was then blocked to prevent non-

specific interactions using 5% milk in 1x Tris-buffered saline (20 mM Tris pH 7.5, 150 mM 

NaCl) + 0.1% Tween (TBS-T).  The membrane was washed three times with TBS-T before 

incubation with goat anti-arginase 1 or 2 primary antibody (Santa Cruz) at 1:1000 in TBS-T 

overnight at 4oC.  Unbound primary antibody was washed off with 4 TBS-T washes before 

transfer of the membrane into 5% milk in TBS-T with 1:20,000 secondary antibody 

(horseradish peroxidase-conjugated anti-goat rabbit antibody (Sigma)).  This was incubated 

for one hour at room temperature before being washed 3 times with TBS-T and then bound 

antibody fluorescence was detected using EZ-ECL Chemiluminescence Detection Kit for HRP 

(Biological Industries).  Light sensitive film (Amersham Hyperfilm MP, GE Healthcare) was 

placed on the membrane in a dark room before being developed. 

 



2.9 Arginase activity assay 

Arginase activity in neuroblastoma cell pellets and supernatants was determined from 

measuring production of urea following incubation with arginine.  Lysis buffer (0.1% Triton 

X-100, 5 μg pepstatin, 5 μg antipaina, 5 μg aprotinin) was added to 3 x 106 pelleted cell line 

cells or 50 μL cell line supernatant and the samples incubated at 37oC for 30 minutes, 

vortexed every 10 minutes.  Lysates were collected by centrifugation at 13,000 rpm for 20 

minutes.  Arginase was activated 10 mM MnCl2 was added with 25 mM Tris-HCl buffer and 

the mixture incubated at 56oC for 10 minutes.  0.5 M L-arginine was added as a substrate 

and incubated at 37oC for 60 minutes before the hydrolysis was stopped by addition of 800 

μL acid solution mixture (H2SO4/H3PO4/H2O 1:3:7).  Urea production was quantified by 

measuring absorbance at 540 nm using a BioRad 680 microplate compared to a standard 

curve, following addition of 9% α-isonitrosopropriophenone and heating at 100oC for 30 – 45 

minutes. 

 

2.8 Enzyme linked immunosorbent assay (ELISA) 

 

For measurement of cytokine production, supernatants of neuroblastoma cell lines were 

collected 96 hours following plating. The amounts of IL-1β, IL-4, IL-6, IL-10, IL-13, GM-CSF 

and TNFα were measured using capture and biotinylated antibodies purchased from e-

Bioscience. The plates were washed with PBS and blocked with 1% of BSA for 1 hour at room 

temperature. Supernatant samples were plated for 2 hours at room temperature. Finally, a 

streptavidin-HRP-coupled goat anti–mouse IgG (e-Bioscience) was added for 1 hour.  Colour 

reactions were developed with 3,3′,5-5′-tetramethylbenzidine (TMB; Sigma-Aldrich), and the 

absorbance was measured at 490 nm. 



RESULTS 

 

3.1 Neuroblastoma-derived cell line mediated suppression of T cell activity.  

3.1.1 Neuroblastoma cell lines suppress T cell proliferation in vitro. 

 

In order to establish a basis for further experiments using fresh primary tissue, we set out to 

examine the effect of co-cultured neuroblastoma cell lines on T cell proliferation in vitro, and 

to determine the nature of any direct mechanisms of T cell suppression mediated by 

neuroblastoma. To investigate if neuroblastoma cell lines could directly inhibit T cell 

proliferation, a T cell proliferation assay was performed using the following neuroblastoma 

cells lines; SK-N-AS, IMR-32, LA-N-1, Kelly and SK-N-MC.  

 

All cell lines were irradiated and co-cultured with allogeneic T cells for 96 h (Figure 3.1).  

When plated at a 1:1 ratio of neuroblastoma: T cells, four of the five lines tested exhibited 

strong suppression of T cell proliferation, limiting proliferation to under 30% of the control.  

One cell line, SK-N-AS, did not suppress T cell proliferation even at this high concentration of 

cell line cells.  Three of the suppressive cell lines (LA-N-1, Kelly and SK-N-MC) appear to lose 

suppressive ability when plated at 1 to every 4 T cells, but IMR-32 suppresses T cell 

proliferation even at the lowest concentration of cell line cells, a 1:8 ratio.  These results 

highlight the heterogeneous nature of cell lines and perhaps reflect the heterogeneous 

nature of the tumours from which the cell lines were derived, but nevertheless indicate that 

neuroblastoma-derived cells are capable of inhibiting T cell proliferation in vitro. 

 



 

 

 

 

 

 

 

 

 

 

Figure 3.1: Neuroblastoma-derived cell lines inhibit allogeneic T cell proliferation in co-

culture.  Five neuroblastoma cell lines were cultured with allogeneic T cells from a healthy 

donor in an MLR.  The ratio of neuroblastoma cells: T cells ranged from 1:1 to 1:8.  T cell 

proliferation was measured by [3H]-thymidine incorporation after 96 hours.  Four of the cell 

lines (IMR-32, LA-N-1, Kelly and SK-N-MC) strongly suppressed T cell proliferation at a 1:1 

ratio, with proliferation at less than 30% than that of the control of T cells cultured alone 

(100% proliferation).  One cell line (IMR-32) displayed strong suppression of proliferation at 

all ratios, while one cell line (SK-N-AS) did not suppress T cell proliferation at any ratio.  

These data are representative of four independent experiments. 

 

To further explore the potential mechanism of neuroblastoma mediated inhibition of T cell 

proliferation, we attempted to determine whether the suppressive effect was mediated 

through direct cell: cell contact with the T cells, or mediated indirectly through the release of 

soluble factors or removal of nutrients from the culture medium. 

 

1:1 1:2 1:4 1:8 0:1

0

20

40

60

80

100

120

140

%
 T

 c
e

ll 
p

ro
lif

e
ra

ti
o
n

 c
o

m
p

a
re

d
 w

it
h

 c
o

n
tr

o
l

Ratio of neuroblastoma cells: T cells 

 SK-N-AS

 IMR-32

 LA-N-1

 Kelly

 SK-N-MC



The previously conducted T cell proliferation assay was repeated using a transwell system to 

separate the T cells, plated in the lower compartment, and neuroblastoma cells, plated in 

the upper compartment.  The same inhibition of T cell proliferation was observed using the 

transwell system as when the co-cultures were plated normally in cell: cell contact (Figure 

3.2a).  These data suggest that the suppressive activity of these cell lines is not dependent 

on cell: cell contact, but occurs through secretion of immunosuppressive mediator or 

through depletion of nutrients vital to the proliferation of T cells.   

 

This hypothesis is supported by the results of an experiment where supernatants harvested 

from cell lines cultured in R10 were added at varying concentrations to allogeneic T cells 

from a healthy donor, which were stimulated by antibodies in a proliferation assay as before 

(Figure 3.2b).   At a high concentration of cell line supernatant (87.5% of the total 200 l of 

culture volume), all four of the cell line supernatants tested suppressed T cell proliferation to 

less than 10% of the control T cell population. However, at a culture volume with 50% 

supernatant, the four suppressive cell lines still inhibited T cell proliferation to around 10% 

that of the control.   As with the cell: cell assay, IMR-32 supernatant demonstrated the most 

potent suppression of T cell proliferation.  

 

To exclude the possibility that neuroblastoma cells suppress T cell proliferation by inducing 

death of the T cells, we stained the T cells with propidium iodide (PI) after 96 h of co-culture 

with neuroblastoma cells.  PI is a fluorescent molecule that binds nucleic acids and can 

therefore be used to differentiate apoptotic cells, since it cannot penetrate viable cell 

membranes.   

 



 

 

 

             

                                         

 

 

 

 

 

 

 

 

 

Figure 3.2: Neuroblastoma-derived cell lines inhibit T cell proliferation using a contact 

independent mechanism. (a) Three neuroblastoma cell lines were plated in the upper well 

of a transwell assay system at a ratio of 1:2 with allogeneic T cells from a healthy donor on 

the bottom well, in an MLR. T cell proliferation was measured by [3H]-thymidine 

incorporation after 96 hours.  T cell proliferation remained unchanged whether using a 

transwell or not in all three cases tested.  (b) Supernatants from 96 hour cultures of four 

suppressive neuroblastoma cell lines were added to T cell culture medium, at ratios varying 

between 87.5% and 25% of total culture volume.  T cell proliferation was measured by [3H]-

thymidine incorporation after 96 hours.  Supernatants of all four cell lines strongly 

suppressed T cell proliferation at 50% total culture volume.   Data are representative of 

three independent experiments. 
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Flow cytometry of the stained cells (Figure 3.3) demonstrates that between 94.6% and 

72.1% of the T cells remain viable post culture, suggesting neuroblastoma is not inducing T 

cell apoptosis, a mechanism of immune suppression that has been demonstrated in other 

solid cancers, either through cell: cell interactions or through secretion of soluble ligands 

such as PD-L1 (Murali & Mehrotra, 2011). 

 

 

 

 In addition, we investigated whether neuroblastoma cell lines can promote the expansion of 

iTreg, following evidence that some cancers (Whiteside, 2012) can induce the differentiation 

of iTreg phenotype.  T cells co-cultured with neuroblastoma cells were stained for the 

intracellular expression of Foxp3, but the results do not suggest that Treg induction is 

occurring (data not shown). The data accumulated suggests that the T cells co-cultured with 

suppressive neuroblastoma-derived cell lines enter a quiescent state.  

  

3.1.2 Neuroblastoma-derived cell line suppression of T cell proliferation is dependent on the 

action of arginase enzymes. 

 

 

Figure 3.3: Culturing neuroblastoma-derived cell lines with T cells does not induce T cell 

death.  Neuroblastoma derived cell lines were co-cultured with allogeneic T cells from a 

healthy donor for 96 h.  The T cells were then sorted and stained with propidium iodide (PI) 

to assess cell death.  Flow cytometry plots are shown.  In each case, the percentage of cells 

positively stained with PI was less than 26.8% of the total, indicating that T cells are not 

undergoing wholesale apoptosis in co-culture with neuroblastoma-derived cell lines. 

 



3.1.2 Neuroblastoma-derived cell line suppression of T cell proliferation is dependent on the 

action of arginase enzymes. 

 

Recent work by this group has highlighted the role of enhanced arginine metabolism by 

acute myeloid leukaemia (AML) blasts in AML-mediated immunosuppression (Mussai et al, 

2013).  T cell proliferation assays carried out using arginine-depleted medium (Figure 3.4a) 

highlight the importance of the presence of arginine to T cell proliferation.  Suppression of T 

cell proliferation of greater than 50% was observed when T cells were cultured with as little 

as 25% arginine depleted medium as a part of the total culture volume.  Since suppression of 

T cell proliferation by neuroblastoma-derived cell lines had already been demonstrated to be 

likely due to a secreted factor or nutrient depletion, we hypothesized that arginine depletion 

may also have a role in neuroblastoma-mediated immunosuppression. 

L-Arginine is metabolised by two different pathways, mediated by two different enzymes; 

arginase and nitric oxide synthase (NOS).  There exist two isoenzyme forms of arginase in 

mammals, Arginase type I (ARG1) and Arginase type II (ARG2) which both metabolise 

arginine into ornithine with the production of urea.   ARG1 is expressed in the cytosol of liver 

cells and forms part of the urea cycle which detoxifies ammonia, and is also produced by 

MDSC as one of their mechanisms of immune suppression.  ARG2 is expressed in the 

mitochondria of many peripheral tissues, including kidney, small intestine, prostate and 

mammary gland.  NOS converts arginine into citrulline and also produces NO, which is a key 

intermediate in the production of other reactive nitrogen species (RNS), including 

peroxynitrite.  Mammalian NOS exists in three forms, two constitutively expressed isoforms; 

endothelial and neuronal NOS, and one inducible isoform, iNOS, which is employed by the 

immune system to produce RNS as a defence mechanism against invading pathogens. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Arginase enzyme inhibitor, but not iNOS inhibitor, rescue T cell proliferation 

when co-cultured with neuroblastoma-derived cell lines.  (a)  Arginine deplete medium was 

added to T cell culture medium at a ration varying between 87.5% and 25% total culture 

volume.  T cells cultured in arginine depleted medium exhibited proliferation of less than 

50% that of the control of T cells cultured in 100% fresh R10 medium, even at 25% total 

culture volume.          
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Neuroblastoma cell lines IMR-32 (b) LA-N-1 (c) Kelly (d) SK-N-MC  (e)were cultured with 

allogeneic T cells in a MLR in the presence of the enzyme specific inhibitors for arginase 

(NOHA) and iNOS (L-NMMA), both added at 0.5 µg/ml.  The ratio of neuroblastoma cells: T 

cells ranged from 1:1 to 1:4. T cell proliferation was measured by [3H]-thymidine 

incorporation after 4 days. Culture with the arginase enzyme inhibitor restored T cell 

proliferation in three of the four suppressive cell lines. Culture with the iNOS enzyme 

inhibitor did not restore T cell proliferation in any of the cell lines.  Data are representative 

of three independent experiments. 

 

 

To determine whether the metabolism of arginine has a role in neuroblastoma mediated 

immunosuppression, the T cell proliferation assay was repeated with the addition of either 

Nω-hydroxy-L-arginine (NOHA), an inhibitor of both Arginase enzyme isoforms, or L-Nω-

monomethyl arginine (L-NMMA), an inhibitor of iNOS, prior to 96 hour incubation and the 

addition of [3H]-thymidine.  Three ratios of neuroblastoma cells: T cells were used, from 1:1 

to 1:4.  In the case of the three immunosuppressive neuroblastoma cell lines (LA-N-1 (Figure 

3.4c), Kelly (Figure 3.4d) and SK-N-MC (Figure 3.4e), the addition of 0.5 mM Arginase 

inhibitors fully restored T cell proliferation, while L-NMMA had no effect on T cell 

proliferation.  This is strongly indicative that suppression of T cell proliferation by these 

three neuroblastoma-derived cell lines is dependent on restricting arginine availability to T 

cells, thereby rendering the T cells quiescent, and that this depletion of arginine is 

dependent on tumour cell expression of Arginase. 

IMR-32 co-cultures continued to suppress T cell proliferation with both Arginase and iNOS 

inhibitors included (Figure 3.4b), suggesting the suppression mediated by this cell line is 

either not based on arginine depletion or the depletion is not mediated by ARG or iNOS.  

Since neuroblastoma is a cancer predominantly derived from neural cells, it is possible that 

the neural NOS isoform (nNOS) is expressed by these cells, however, L-NMMA is non-

selective for the various isoforms so it would seem likely that nNOS activity is not critical to 

arginine depletion mediated immunosuppression in any of the cell lines.  No restoration of T 



cell proliferation was detected in a repeat of the assay using increased doses of both ARG 

and iNOS inhibitors (data not shown), supporting the hypothesis that IMR-32 mediated 

suppression is not arginase or iNOS dependent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Neuroblastoma-derived cell lines that suppress T cell proliferation express 

active Arginase II.  (a)  Arginase I, II and iNOS expression in five neuroblastoma cell line 

lysates determined by RT-PCR.  K562 cell line lysate was used as a positive control for 

Arginase I and iNOS.  Three of the five tested neuroblastoma cell lines express Arginase II 

and iNOS, while the non-suppressive SK-N-AS cell line, as well as the suppressive IMR-32 cell 

line, do not.  None of the cell lines express Arginase I.  GAPDH was used to ensure equal 

loading.  
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 (b) Western blot of neuroblastoma cell line lysates for Arginase II.  Two of the cell lines 

tested (Kelly and LA-N-1) produce bands at the size expected for Arginase II, 40 kDa.  (c) 

Whole cell lysates of the neuroblastoma cell lines were tested for the ability to convert 

arginine into urea using a colorimetric assay.  Arginase activity was strong in three of the 

suppressive cell lines, while SK-N-AS did not display any arginase activity.  Arginase activity in 

cell line supernatants following 96 hour culture was also assessed.  In all cases apart from 

IMR-32, arginase activity in supernatants was barely above the detection limit.  This data is 

representative of three independent experiments. 

 

3.1.3 Suppressive neuroblastoma-derived cell lines express active Arginase II. 

 

We next attempted to prove Arginase expression by neuroblastoma-derived cell lines.  Cell 

line lysates were analysed for ARG1, ARG2 and iNOS mRNA using reverse transcription PCR 

(Figure 3.5a).  None of the cell lines appear to be transcribing the ARG1 gene as no bands are 

visible using the primers for this mRNA.  With a lack of positive control it is impossible to say 

with certainty that the primers for Arginase I were working, but the presence of bands 

corresponding to GAPDH mRNA suggest the PCR protocol worked in all cases.  Clear bands 

are visible for both Arginase II and iNOS mRNA in three of the four suppressive cell lines (LA-

N-1, Kelly and SK-N-MC), verified by the use of an acute myeloid leukaemia derived cell line 

K562 as a positive control for Arginase II and iNOS.  This indicates these three cell lines are 

all transcribing the gene for Arginase II and iNOS while growing in culture, a result consistent 

with the findings of Mussai and colleagues in the AML setting.  A Western blot was then 

performed on cell line lysates to detect protein expression, using a primary antibody specific 

for ARG2 (Figure 3.5b).  Bands migrating to the expected molecular weight for ARG2 (40 

kDa) are observed in both of the two cell lines positive for ARG2 mRNA (Kelly and LA-N-1), 

confirming that Arginase II is expressed by these cell lines.  No band migrating at 40 kDa is 

observed for IMR-32. 



Although iNOS is being transcribed in three of the neuroblastoma cell lines, data from the 

previous experiment suggests that it is Arginase activity that defines the immunosuppressive 

phenotype of these cells, since iNOS specific inhibitors did not rescue T cell proliferation.  To 

confirm Arginase activity in both cell lysates and culture supernatants, a colorimetric assay 

was used to determine urea production following enzyme activation and incubation with 

arginine.  All four suppressive cell lines exhibited Arginase activity in the cell lysates, with 

urea production ranging from 0.3 mg/mL to 0.92 mg/mL (Figure 3.5c).  Significant Arginase 

activity (0.25 mg/mL) was only detected in the supernatant of IMR-32.  Arginase activity in 

the supernatant is likely a result of secreted Arginase, which has been demonstrated in the 

case of AML blasts, rather than arginine depletion through intracellular upregulation of 

Arginase, which may explain the strong suppression of T cell proliferation mediated by IMR-

32 derived supernatant (Figure 3.2b).  In addition, it is possible that IMR-32 cells are induced 

to produce and secrete Arginase through the action of cytokines released by T cells during 

the co-cultured, hence explaining why the IMR-32 cell lysates did not seem to express ARG1 

or ARG2 mRNA.  However, this fails to explain why arginase inhibitors did not restore T cell 

proliferation in the assay.  There is likely an alternative mechanism involved in observed 

suppression of T cell proliferation by IMR-32 that likely warrants further investigation. 

 

This data supports the hypothesis that certain neuroblastoma-derived cell lines are capable 

of directly inhibiting T cell proliferation through the removal of arginine from the T cell 

microenvironment, a process dependent on tumour expression of Arginase II.  To the 

author’s knowledge, this is the first time that this has been demonstrated. 

 

 



3.2 Neuroblastoma-derived cell line mediated macrophage activation 

 

Besides arginine depletion, several other mechanisms of tumour-mediated immune 

suppression have been documented, including recruitment and activation of suppressive 

macrophages to the tumour microenvironment, which in turn dampen T cell-mediated 

responses to the cancer cells.  To investigate whether this mechanism is important in 

neuroblastoma biology, we set out to determine the level of macrophage activation and 

polarisation that neuroblastoma-derived cell lines induce in vitro, and whether monocytes 

co-cultured with neuroblastoma cells do indeed adopt an immunosuppressive phenotype. 

Monocytes are bone marrow derived leukocytes that circulate in the bloodstream before 

migrating into tissues and differentiating into dendritic cells and macrophages.  They are 

capable of phagocytic response to pathogen, in part mediated by a pattern recognition 

receptor CD14, which acts as a co-receptor in the detection of lipopolysaccharide (LPS), a 

major component of the outer membrane of Gram-negative bacteria.  CD14 can be used as a 

marker for monocytes and monocyte-derived cells, and was used in this study to sort these 

cells from healthy donor blood.  Monocytes and macrophages express a number of unique 

cell surface receptors other than CD14, including CD11b, one subunit of the heterodimeric 

integrin αMβ2, responsible for regulating cell adhesion and migration.  To address the 

question of whether neuroblastoma has an effect on co-cultured monocytes, we co-cultured 

neuroblastoma cell lines with monocytes at the ratio of 1:1 for 72 h and then stained for the 

intracellular expression of CD68. CD68 is expressed in activated macrophages intracellularly 

on the membrane of lysosomes and endosomes, and tumour associated macrophages 

expressing CD68 have been linked with poor outcome in several neoplasias, including 

Hodgkin lymphoma (Tan et al, 2012) and basal cell carcinoma (Glaser et al, 2011).  CD68 

expressing cells have been demonstrated to infiltrate neuroblastoma tumour tissue (Apps et 



al, 2013).  In this study, we observed that sorted CD14+ cells co-cultured with 

neuroblastoma-derived cell lines expressed CD68 (Figure 3.6a), with between 53% and 96% 

of cells analysed staining double positive for CD11b and CD68.  This compares with 

monocytes incubated alone, for which only 17.8% of cells are stained double positive for 

CD11b and CD68.  This demonstrates that macrophages are upregulating CD68 post-

incubation with neuroblastoma, suggesting macrophage differentiation and/ or activation is 

occurring in response to neuroblastoma derived signals.   

 

 

 

 

 

 

 

 

 

Figure 3.6:  Monocytes co-cultured with neuroblastoma-derived cell lines exhibit surface 

markers of activated macrophages.  (a) CD14+ cells were sorted from blood of a healthy 

donor and co-cultured at a ratio of 1:1 with four neuroblastoma-derived cell lines for 96 

hours.  Flow cytometry plots of cells stained for CD11b and CD68 are shown.  CD68 

upregulation on CD11b+ cells was observed in CD14+ cells co-cultured with all four 

neuroblastoma cell lines, as compared with a control of CD14+ cells alone. (b) The assay was 

repeated with the addition of 0.5 µg/ml NOHA and L-NMMA arginase and iNOS inhibitors.  

No significant difference in the number of CD68+ CD11b+ cells was observed.  This data is 

representative of two independent experiments. 

 



 

Recent work by this group has highlighted the role of enhanced arginine metabolism by AML 

blasts in polarization of healthy monocytes in M2 like phenotype (Mussai et al, 2013), and 

having demonstrated the role of arginine metabolism in the suppression of T cell responses 

induced by neuroblastoma, tumour expression of arginase as a mechanism of macrophage 

induction was investigated through addition of arginase and iNOS inhibitors to the cell lines 

while in culture with the CD14+ cells (Figure 3.6b).  No significant change in CD68 expression 

was observed, suggesting that arginine metabolism is not a key mechanism in 

neuroblastoma mediated macrophage activation. 

In order to determine whether the macrophages activated by neuroblastoma inhibit T cell 

proliferation in vitro,  CD14+ cells were sorted from the harvested neuroblastoma/ CD14+ co-

culture using antibody coated magnetic beads, irradiated to prevent further proliferation, 

and then added to a T cell proliferation assay with antibody stimulated T cells as before.  A 

titration was performed with CD14+ cells added at varying ratios to the T cells, from 1:1 to 

1:8, and T cell proliferation determined by incorporation of [3H]-thymidine (Figure 3.7).  All 

four cell lines that exhibited suppression of T cell proliferation in co-culture also induced a 

suppressive phenotype in co-cultured macrophages, with T cell proliferation limited to less 

than 60% of the control population in all cell lines at all ratios.  No apparent correlation 

exists between percentage of cells expressing CD68 as determined by flow cytometry and 

suppression of T cell proliferation in this assay, but further experiments would be required 

to confirm this on a statistical basis.   

 

One striking feature of this dataset is the apparent increased proliferation suppression with 

fewer CD14+ cells added to the culture, which is counter-intuitive, as one would expect any 

suppressive influence of co-cultured monocytes to be greater with a greater number of cells 



present.   One possible explanation is that the radiation dose was not high enough to arrest 

proliferation of CD14+ cells in the MLR, and therefore [3H]-thymidine incorporated by these 

cells as well as the T cells leads to a skewing of the data to suggest greater proliferation of T 

cells when CD14+ numbers are higher.  However, it is more likely that the macrophages are 

acting as antigen presenting cells, thereby stimulating the T cells in addition to the anti-CD3 

and anti-CD28 stimulation.  Higher numbers of antigen presenting macrophages would likely 

then induce a greater T cell proliferation response, as observed in Figure 3.7. 

 

 

 

 

 

 

 

 

Figure 3.7:  Monocytes co-cultured with neuroblastoma-derived cell lines inhibit T cell 

proliferation in vitro.   CD14+ cells were sorted from blood of a healthy donor and co-

cultured at a ratio of 1:1 with four neuroblastoma-derived cell lines for 96 hours.  These cells 

were then sorted again using anti-CD14 magnetic beads and cultured with T cells activated 

with anti-CD3 and anti-CD28 antibodies at a ratio of between 1:1 and 1:8 in an MLR.  T cell 

proliferation was measured by [3H]-thymidine incorporation after 96 hours.  T cell 

proliferation was inhibited by CD14+ cells from co-cultures with all four neuroblastoma cell 

lines as compared with T cells cultured alone (100% proliferation), and at all four ratios of 

CD14+ cells: T cells. 
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In addition to CD68, the presence of other macrophage specific markers was also 

investigated using fluorophore-linked antibody staining in conjunction with flow cytometry.  

CD206 is a mannose receptor and CD163 a scavenging receptor, both expressed on the 

surface of M2 polarised macrophages, those usually associated with immunosuppression 

and tissue remodelling.   Observations of initial stains with both these antibodies did not 

yield any significant apparent increase in surface expression of either.  This would suggest 

that neuroblastoma is not mediating an M2-like phenotype switch in macrophages in vitro, 

although this data is very preliminary and does need confirmation by repeat experiments. 

Previous studies have linked several cytokines with the activation of macrophages and 

induction of an immunosuppressive phenotype (Baay et al, 2011).  We measured the 

concentration of Il-1β, IL-4, IL-6, IL-10, IL-13, TNF-α  and GM-CSF in the supernatants of the 

neuroblastoma derived cell lines that upregulated CD68 expression in monocytes by ELISA.  

For each cell line, supernatants contained no detectable amount of any of the cytokines 

(data not shown).  This suggests an alternative mechanism is being employed by these cells, 

perhaps either a cytokine not measured here or a cell: cell contact dependent molecular 

interaction.   

 

3.3 Neuroblastoma tumour tissue is immunosuppressive and induces macrophage 

activation ex vivo. 

With previous work in this study supporting the hypothesis that neuroblastoma derived cell 

lines are capable of suppressing T cell proliferation in vitro, we set out to determine whether 

this was also the case using tumour tissue resected from human neuroblastoma patients.  

Following tissue chopping, digestion and the sorting of diasialoganglioside 2 (GD2)+ 

neuroblastoma cells from the samples by MACS, GD2+ cells from two patient samples were 



plated in an MLR assay with allogeneic T cells from a healthy donor.  As with the cell lines, 

suppression of T cell proliferation of up to 10% that of the control population was observed 

in one of the samples at a GD2+: T cell ratio of 1:1, while the second sample also suppressed 

proliferation to around 23% that of the control (Figure 3.8).  This result confirms that 

primary neuroblastoma tumour tissue is indeed capable of suppressing T cell proliferation ex 

vivo.  Further to this, when arginase inhibitor (NOHA) was added to the co-culture, T cell 

proliferation increased five-fold in the case of Tumour 1 at 1:1, and in general increased by 

around two fold in Tumour 2, constituting a significant restoration of T cell proliferation 

when arginase activity is prohibited.  This supports the viability of using neuroblastoma-

derived cell lines as a model of neuroblastoma behaviour in vivo and also suggests that 

arginine depletion may represent a mechanism of immune suppression in primary tumour 

samples ex vivo.   In contrast to the cell line experiments, restoration of T cell proliferation to 

the control level was not observed in these samples, perhaps as a consequence of toxicity of 

the inhibitor to the cells in the assay. 

Flow cytometry analysis of monocytes from a healthy donor co-cultured for 96 hours with 

GD2+ cells isolated from tumour biopsies of neuroblastoma patients revealed a significant 

fraction of CD11b+ cells expressed CD68 compared with the control population  (Figure 3.9).  

In one sample, 64% of monocytes were double positive for CD68 and CD11b, while in the 

second sample this total rose to over 90%, which suggests that primary neuroblastoma 

tissue is capable of inducing CD68 expression in co-cultured macrophages.  This data is 

consistent with the CD68+ populations observed in CD14+ cells co-cultured with 

neuroblastoma-derived cell lines, and suggests that the cell lines are again representative of 

their tumour of origin in vitro. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Neuroblastoma tissue inhibits allogeneic T cell proliferation in co-culture in 

vitro. Tumour samples from two neuroblastoma patients were MACS sorted for GD2+ cells 

and cultured with allogeneic T cells from a healthy donor in an MLR.  The ratio of 

neuroblastoma cells: T cells ranged from 1:1 to 1:8.  T cell proliferation was measured by 

[3H]-thymidine incorporation after 96 hours.  GD2+ cells from both tumours suppress T cell 

proliferation at all ratios investigated to at least 60% that of the control of T cells cultured 

alone.  Addition of arginase inhibitor (NOHA) restores T cell proliferation to around 50% that 

of the control in all cases. 
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Figure 3.9: Monocytes co-cultured with neuroblastoma tissue express CD68.  CD14+ cells 

were sorted from blood of a healthy donor and co-cultured at a ratio of 1:1 with GD2+ cells 

isolated from neuroblastoma patient tissue biopsy samples.  Flow cytometry plots of cells 

stained for CD11b and CD68 are shown.  CD68 upregulation on CD11b+ cells was observed in 

CD14+ cells co-cultured with GD2+ cells from both tumour samples, as compared with a 

control of CD14+ cells alone. 

 

This data, albeit from a limited set of samples, supports the previous results in this study, 

namely that neuroblastoma is directly suppressive of T cell proliferation via an arginase 

mediated pathway and that neuroblastoma is capable of inducing an actively 

immunosuppressive phenotype in co-cultured monocytes.  This data also confirms that 

these findings apply to ex vivo primary tissue samples, as well as neuroblastoma-derived cell 

lines.  This is important in demonstrating the potential clinical significance of this research.  

 

 

 

 



DISCUSSION 

 

This study has demonstrated that neuroblastoma-derived cell lines and primary 

neuroblastoma tissue are capable of suppressing T cell proliferation in vitro.  This 

suppression occurs in a contact-independent manner, and T cell proliferation is restored in 

most cases with the addition of an arginase inhibitor.  Three of the four suppressive cell lines 

expressed active Arginase II, an enzyme responsible for the catabolism of the amino acid 

arginine into ornithine and urea.  This data supports the hypothesis that neuroblastoma is 

capable of suppressing T cell activity through the depletion of arginine from the 

microenvironment, a mechanism that has been demonstrated to downregulate T cell 

expression of the CD3ζ chain and thereby induce anergy in effector T cells (Raber et al, 

2012). 

 

Due to the low frequency of new diagnoses and difficulty in obtaining fresh tumour biopsy 

material, it was decided to use neuroblastoma cell lines as a model of neuroblastoma 

activity in this investigation.  Once proof of concept had been established using these cell 

lines, the results could be used to inform experimental design on the relatively infrequent 

and consequently precious human tissue samples.  Previous studies conducted using the cell 

lines selected indicate that they are generally good models of neuroblastoma behaviour in 

vivo (Thiele, 1998), but, as with any data obtained from in vitro experiments with cell lines, 

care must be taken in interpreting the results and any implications for a real world clinical 

setting.  Cell lines are not subjected to the same environmental stresses of their in vivo 

counterparts, growing in hyperoxic conditions and without the interactions of cells in vivo 

with their microenvironment, often leading to non-representative genomic and/ or 



proteomic profiles.  Not only that, but cell lines in culture sometimes change phenotype with 

multiple passages, so what begins as a representative phenotype in vivo may not be after 

prolonged culture.  Nevertheless, cell lines provide a quick and straightforward way to 

investigate the biology of neoplastic cells in particular, since they are already immortalised, 

growing rapidly and without contact-based constraints, allowing large numbers of cells to be 

cultured quickly for experimentation.    

 

Previous research has uncovered the extent to which tumour cells are capable of influencing 

the microenvironment in which they proliferate, and the mechanisms employed by these 

cells in dampening the immune response to enhance their own survival.  These mechanisms 

include secretion of soluble factors, including immunosuppressive cytokines such as IL-6, IL-

10 and TGF-β, and other proteins such as PD-L1 and galectin-1, all of which act directly on 

effector cells such as CTLs or NK cells.  Other direct mechanisms include expression of pro-

apoptotic ligands such as Fas ligand and TRAIL, which act during cell: cell contact with 

effector cells, and depletion of critical metabolites such as tryptophan (through the action of 

indoleamine 2,3-dioxygenase) or glucose.  Finally, tumour cells have been demonstrated to 

interact with other cells in their microenvironment, such as fibroblasts and other stromal 

cells, macrophages and dendritic cells, plus immature myeloid cells.  These interactions 

often stimulate the target cell to adopt an immunosuppressive phenotype, forming M2 

polarised macrophages, MDSC, or expressing immunosuppressive cytokines.  

 

Previous studies have highlighted the ability of neuroblastoma to evade CLT mediated 

control through several direct mechanisms, including downregulation of HLA class I 

molecules and costimulatory molecules (Airoldi et al, 2003), downregulation of NKG2D 



ligands (Raffaghello et al, 2004) and upregulation of galectin-1 (Soldati et al, 2011) or 

macrophage migration inhibitory factor (Yan et al, 2006).  This study expands these known 

mechanisms to include arginine depletion, dependent on the action of arginase enzymes, 

and more specifically Arginase II.  

 

Despite myeloid derived suppressor cells (MDSC) having long been established as 

inactivating T cells through arginine depletion via the action of ARG1, direct suppression of T 

cell proliferation by cancer cells through arginine depletion has not been widely reported.  

Studies of prostate cancer cell lines have demonstrated that ARG1 and ARG2 expression in 

these lines has an immunosuppressive effect (Gannon et al, 2010), while ARG2 expression by 

AML blasts also appears to inhibit T cell proliferation ex vivo (Mussai et al, 2013).  However, 

AML blasts have a developmental origins similar to that of MDSC, so it is perhaps more likely 

that they may function in a similar manner.  Arginase II activity has been demonstrated to be 

important in regulating cell growth and T cell activity in murine renal carcinoma cell lines 

(Tate et al, 2008), and although other previous research has focused primarily on the effect 

of Arginase I activity, this study highlights the potential importance of ARG2 in solid tumours 

of tissues that constitutively express this isoform, including neuroblastoma.  Importantly, 

this study also describes arginase dependent immunosuppression in neuroblastoma patient 

tumour samples as well as cell lines, indicating that this is likely to be a clinically relevant 

process. 

 

It is likely that the increased expression of ARG2 in neuroblastoma derived cell lines 

observed in this study is due to the increased metabolic requirements of the tumour cells 

due to their uncontrolled proliferation.  Arginase II is involved in the synthesis of several 



amino acids, including L-ornithine, L-proline and L-glutamate (Jenkinson et al, 1996), and 

high arginase activity has been correlated with increased proliferation of breast cancer 

(Singh et al, 2000) and colorectal cancer (Buga et al, 1998) cell lines.  Neuroblastoma cells 

capable of upregulating their arginine metabolism are more likely to be able to proliferate 

(Pegg et al, 1982), but as an added effect, deplete arginine from their microenvironment and 

deny it to T cells, which also require comparatively high levels of nutrients to activate and 

proliferate.   Thus, through enhanced synthesis of arginase, these cells receive a double 

boost to their survival, and therefore it is reasonable to expect that these cells will increase 

the tumour burden and contribute to aggressive disease.   

 

Interestingly, since arginine has been demonstrated as being essential to the growth of 

many tumours, including breast cancer and colorectal cancer, one proposed cancer therapy 

is removal of arginine through recombinant arginase drugs such as peglyated arginine 

deiminase (ADI Feun et al, 2008).  This would most likely be administered to patients with an 

already weakened immune system (i.e. before haematopoietic stem cell transplant) and so 

the negative effect on patient T cell populations would be negligible compared with the 

impact on the tumour, but the potential immunosuppressive action of such drugs would 

need to be assessed if they are to be administered to immuno-competent patients. 

 

Although suppression of T cell proliferation does not appear to be dependent on iNOS 

activity, since addition of iNOS inhibitor (L-NMMA) did not restore proliferation in the MLR, 

iNOS is being transcribed in three of the suppressive cell lines.  Previous studies have 

highlighted the interaction of arginase and iNOS in the metabolism of arginine, suggesting 

that if both enzymes are expressed the production of peroxynitrite in the absence of 



arginine induces T cell apoptosis (Bronte et al, 2003).  Since we have not observed T cell 

apoptosis in this study, it may be that iNOS is not active, or only active at a low level.  

Further studies will determine the level of iNOS activity in these cell lines by assaying NO2
- 

production.  

One important limitation of this study is that the neuroblastoma mediated impact on the 

immune system was defined by suppression of T cell proliferation only.  Future work should 

investigate the impact of neuroblastoma on tumour specific T cell cytotoxicity.  Munder and 

colleagues recently demonstrated the maintenance of tumour antigen specific cytotoxicity 

of CD8+ cells in the absence of arginine in vitro (Munder et al, 2013).  It is therefore 

important to determine here whether cytotoxicity is impaired or merely proliferation, 

although clearly the potential total killing will be reduced if the T cells are prevented from 

proliferating.  This could be done by using T cells specific for neuroblastoma-specific 

antigens, such as GD2, NY-ESO or MAGEA1, and work on this is currently underway in our 

group.  The preliminary data obtained in this study suggests that the T cells are entering an 

anergic state, neither undergoing apoptosis nor becoming Tregs, but it would be useful in 

terms of generating potential therapies to confirm this by determining whether the T cells 

could be reactivated following co-culture with the neuroblastoma cell lines.  In addition, the 

physiological relevance of arginine depletion in the tumour microenvironment needs to be 

assessed in vivo.  This would not be straightforward, however, since either depleting 

arginine or knocking out arginase activity would have an effect not only on potential T cell 

activity but also on the tumour itself.  This also has implications for any prospective therapy 

of neuroblastoma or other ARG2 expressing tumours by targeting arginine metabolism.  

Arginase inhibitors, including the two used in this study, have not entered clinical trials due 

to concerns about disruption of the metabolically critical urea cycle.  One possible route to a 

therapeutic would be development of an antibody or siRNA that can specifically target 

ARG2, which is not involved in the urea cycle. 



Cancers are genomically and phenotypically heterogeneous, even within a single tumour, 

and neuroblastoma is no exception (Speleman et al, 2011).  Accordingly, one may expect cell 

lines developed from neuroblastoma samples to exhibit varying phenotypes, depending on 

their source.  Results from this study support this hypothesis, and highlight the potential 

variability of neuroblastoma biology from patient to patient.  SK-N-AS is the only cell line 

tested that is negative for N-myc amplification, and exhibited very little suppression on T cell 

proliferation, and no detectable arginase expression by RT-PCR or activity.  IMR-32 strongly 

suppressed T cell proliferation but this suppression does not appear to be dependent on 

arginase activity.  It is possible that with different primers for ARG1 transcription of this 

enzyme may be detected in IMR-32, as arginase activity was observed in IMR-32 pellets and 

supernatant.  Likewise, it is possible that addition of a stronger arginase inhibitor, such as 

nor-NOHA, would restore T cell proliferation in MLRs with this cell line.  This work needs to 

be carried out to confirm whether IMR-32 suppression is truly independent of arginase 

activity, but from this data it seems that another mechanism may be at work in this cell line, 

perhaps galectin-1 or MIF upregulation, which could be investigated in further studies.  The 

remaining cell lines (LA-N-1, Kelly and SK-N-MC) and the two patient tumour samples all 

exhibited arginase dependent suppression of T cell proliferation, suggesting this mechanism 

is employed in some but not all neuroblastoma tumours.  

 

This study has demonstrated that neuroblastoma-derived cell lines and primary 

neuroblastoma tissue induce monocyte differentiation in co-culture to a CD68+ macrophage 

phenotype, which is typically associated with tumour associated macrophages (TAMs).  This 

builds on previous research which highlighted the accumulation of CD68+ macrophages in 

neuroblastoma by immunohistochemical staining (Apps et al, 2013) and suggests that these 

TAMs may be activated once in the tumour microenvironment.  We also determined that 



these macrophages are capable of suppressing T cell proliferation, suggesting a second 

mechanism by which neuroblastoma may create an immunosuppressive tumour 

microenvironment, inhibiting the normal cytotoxic T cell response to antigen or stress ligand 

that may be presented by the neuroblastoma cells themselves.   Previous studies have 

associated CD68+ activated macrophages with disease progression in hepatocellular 

carcinoma (Budhu et al, 2006), highlighting that the potential immunosuppressive activity of 

these cells has a clinical relevance, and therefore further investigation of this mechanism 

may be justified.  Continuation of this work may involve assessment of CD68+ cell association 

with neuroblastoma xenografts in immunodeficient mice, but the analysis of human tumour 

sample and high level of CD68+ CD11b+ cells observed suggests this is reflective of in vivo 

conditions.  More tumour samples need to be analysed before any conclusions can be drawn 

from this data however.  

 

Morandi and colleagues also found that neuroblastoma cell lines are capable of activating 

monocytes and inducing differentiation into CD68+ macrophages (Morandi et al, 2007).  

They ruled out TGF-β, IL-10 or soluble GD2 as mediating factors in this activation, and our 

results confirm this, without identifying an alternative candidate.  Cell line supernatants 

were negative for several cytokines attributed with macrophage activation and M2 

polarisation, including IL-1β, IL-4, IL-6, IL-10, IL-13, TNF-α and GM-CSF, suggesting none of 

these as being important in neuroblastoma mediated macrophage activation.  

 

The glycosaminoglycan hyaluronan, a major component of the extracellular matrix, can be 

secreted by tumour cells and has been attributed with macrophage activation (Kuang et al, 

2007).  M-CSF is another possibility (Bottazzi, 1990) although this cytokine is mainly linked 



with proliferation of macrophages rather than activation.  It is possible that co-culture of the 

neuroblastoma cells with monocytes triggers production of an activating cytokine by the 

neuroblastoma cells and that since this experiment conducted on cell line supernatants 

alone, these cytokines would not be detected.  Repeat of the ELISA on supernatant from a 

co-culture may help identify the cytokines involved.  

 

Although they were immunosuppressive, monocytes co-cultured with neuroblastoma cell 

lines did not display markers of M2 macrophage polarisation (CD206 and CD163), and 

monocyte activation was arginase-independent, as arginase inhibitors had no effect on CD68 

expression.  This contrasts with a previous study by members of this group which 

determined that AML blasts are capable of activating monocytes and polarising them to an 

M2-like phenotype (Mussai et al, 2013).  This polarisation was dependent on arginase 

activity.   Further exploration of potential neuroblastoma mediated M2-like polarisation of 

monocytes is warranted however, since the data obtained during this study was preliminary 

and therefore inconclusive. 

 

Overall this study has identified a novel immunosuppressive mechanism in neuroblastoma, 

which may have implications for treatment of this important childhood disease.   
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