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Abstract 

Neutrophils constitute the main immune defence against microbial invasion. When activated, 

they migrate towards the site of infection where they eliminate any foreign material in an 

effort to prevent wide-spread tissue damage and ultimately resolve infection. Previous work 

on neutrophil function in the elderly has highlighted a number of neutrophil effector functions, 

including phagocytosis, superoxide production and migration that exhibit decreased 

efficiency suggesting the potential for reduced pathogen clearance in older adults.  

This thesis reveals a migratory phenotype distinctive of neutrophils isolated from healthy 

elderly donors (> 60 years) and characterised by a maintained speed of migration 

(chemokinesis) but with significantly reduced directional migration (chemotaxis) and overall 

migratory accuracy in response to a range of chemoattractants. This migratory phenotype 

was shown to be associated with a constitutive basal activation of PI3Kinase in neutrophils 

isolated from older donors and appears to be a causative factor as treatment of neutrophils 

with inhibitors selective for PI3Kinase-γ and –δ, was able to restore migratory dynamics. The 

‘old-migratory’ phenotype was amenable to correction by pre-incubation with 1nM 

Simvastatin in vitro and a two-week prescription of 80mg/day Simvastatin in vivo in healthy 

older adults.  

The ability of simvastatin to modulate migratory dynamics potentially provides a safe, cost 

effective intervention to reduce morbidity and mortality from infections in the elderly 

population. 
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INTRODUCTION 
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1.0 Introduction 

The demographics of our population are changing; since 2001 the number of males aged 75 

and over has increased by 26% [1]. Current projections estimate the proportion of our 

population aged > 60 years will reach 21% by 2050, a forecast based on past proportions in 

which older adults constituted 8% of the population in 1950 increasing to 10% in 2000 [2]. By 

2034 it is anticipated that 23% of the UK population will be over 65 years of age with 5% over 

85 years [3], proportions that will exceed those aged ≤ 16 years by 5% [4]. Driving these 

changes is the continual increase in life expectancy seen in the Western world, currently at a 

rate of approximately 2 years per decade [5]. Importantly, increments in lifespan are not 

matched by improvements in healthspan, defined as the number of years the average person 

can expect to remain in good health [5] thereby reducing quality of life in our later years and 

increasing healthcare utilisation which is associated with significant economic costs. For 

example, in-patient care for the treatment of community acquired pneumonia totalled £383.7 

million of which 65% of admissions were in the 64 years and over age group [6]. 

Furthermore, in 2007 – 2008, heath care costs associated with a retired household totalled 

approximately £5,200 per annum; this is compared to £2,800 for a non-retired household [7] 

while department of health estimates suggest the average cost for provision of both hospital 

and community healthcare for a single adult aged ≥85 years is approximately 3 times that of 

an adult aged 65 - 74 years [7]. 

The link between mortality and ageing was first described by Benjamin Gompertz in 1889 

when trying to model mortality rates mathematically. He wrote “…the power to oppose 

destruction loses equal proportions in equal times” [8], meaning that the older we get the less 

likely we are to survive. 123 years later we can now partly attribute the increased morbidity 

observed in old age to a progressive age-related decline in immune function. This is 

evidenced in part by:  
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 (1) An increased incidence of infectious diseases in the elderly population of both 

bacterial and viral origin. This includes influenza [9], community acquired [10,11] and 

nosocomial pneumonia [12], urinary tract infections [13,14], tuberculosis [15,16], periodontitis 

[17] and shingles [18], the latter arising from re-activation of the varicella zoster virus (VZV) 

in older adults. 

 

 (2) Poorer outcomes of the elderly from infectious diseases including Streptococcus 

pneumoniae and staphylococcal infections [19], influenza [20] and community acquired 

pneumonia [21] among others.  

 

 (3) Increased incidence of chronic inflammatory and autoimmune conditions including 

diabetes [22,23], cardiovascular disease [24,25] and rheumatoid arthritis [26,27] in the 

elderly population. 
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1.1 The Immune System 

The immune system has evolved to protect the host from infection, disease and injury and 

must therefore have the ability to immediately respond to both new and returning pathogenic 

threats. To achieve this, the immune system operates in two component parts: the adaptive 

and the innate (see Figure 1.1), though it is now clear that there is continual communication 

between the two and this divide is artificial in reality. 

The adaptive immune response refers to antigen-specific lymphocyte populations that 

respond to a large array of antigen epitopes and encompasses the subsequent development 

of immunological memory providing long-term protection against pathogens. It is also known 

as the acquired immune response and is mediated by clonal selection and expansion of T 

and B lymphocytes upon contact with antigen, with a fraction of cells retained after each 

infection to provide immune memory. However, as this arm of the immune response can take 

a number of days to reach an effective level of protection, initial immediate protection against 

invading pathogens is provided by the innate immune system, which is capable of 

responding in a matter of hours. This branch of the immune response is present in all 

individuals at all times, is not antigen specific and does not increase with repeated exposure 

to a given pathogen as the adaptive side does. The main cellular mediators of the innate 

response are: the granulocytes, which respond effectively to rapidly dividing bacteria, fungi 

and yeast; monocytes/macrophages, which play a role in antigen presentation to T cells and 

also in immunity to intracellular pathogens; Dendritic cells (DCs) which are the major antigen 

presenting cells; and natural killer (NK) cells which provide immunity to virally infected cells 

and cancer cells. 
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Figure 1.1 Mediators of the Innate and Adaptive Immune Response. 

The innate immune compartment mediates the first response to infection providing 

immediate, non-specific protection. Components if the innate immune response include 

macrophages, natural killer cells, granulocytes (basophils, eosinophils and neutrophils), 

dendritic cells, mast cells and complement factors. Although, technically part of the innate 

compartment, dendritic cells also constitute a significant link between the innate and adaptive 

compartments in addition to cytotoxic lymphocytes such as γδ T cells and Natural Killer T 

cells. The adaptive immune compartment responds much slower, generating protection 

hours of days after activation however, this compartment is highly specific and generates 

immunological memory. The adaptive response is mediated by antibodies, B cells and CD4+ 

and CD8+ T cells. 

Figure taken directly from [28] 

  

Innate 
Immunity 

 Adaptive 
Immunity 
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1.2 Ageing and the Immune System 

Ageing has been defined as a progressive, universal and intrinsic process that results in an 

increasing probability of death secondary to pathology [29], while Rossi et al [30] propose 

that ageing is characterized by a failure to maintain tissue homeostasis or return to normal 

homeostatic condition after exposure to stress or injury. The age-related decline or 

remodelling of the immune system was first described as immune-senescence by 

Makinodam and Kay [31] and manifests as an impairment of both cell-mediated and humoral 

immunity. 

 

1.2.1 Adaptive Immune-senescence  

Alterations in the adaptive immune compartment as a consequence of increasing age have 

been encompassed within the immune risk phenotype (IRP). This describes a set of immune 

parameters associated with poor immune function and increased mortality. The proportion of 

individuals within the population that satisfy the criteria of the IRP increases with advancing 

age [32]. 

The IRP was initially characterised by an altered ratio of CD4+:CD8+ cells (i.e. <1.0) with 

reduced proliferation to the T cell mitogen, Concanavalin A, [33]. An inverted CD4+:CD8+ 

ratio appears to be the result of both a reduction in the number of CD4+ and an increase in 

CD8+ cells. Immune senescence is also marked by atrophy of the thymus, which begins from 

puberty, and a decrease in the naive: memory ratio for T cells. The latter may be due to an 

attempt to maintain T cell homeostasis after thymic atrophy by expansion of the peripheral T 

cell pool [34,35]. Over subsequent years, the IRP has been expanded by various groups and 

now includes additional parameters including decreased telomerase activity and shortened 

telomeres in lymphocytes, cytomegalovirus (CMV) seropositivity, thymic atrophy and reduced 

CD19+ B cells among others, forming what we now recognise as a more comprehensive IRP 

(see Table 1.1). 
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Cytomegalovirus (CMV) is a latent β-herpes virus present within 60-85% of the western 

population and approximately 80-90% of adults aged over 65 years [36]. CMV infection is 

thought to be a contributing factor to the development of the IRP and associated immune-

senescence, and the driving force behind the accumulation of CD3+CD8+CD28- T cells [34]. 

CD28 is a co-stimulatory molecule required for full activation of T cells, of which reduced 

expression results in development of cellular anergy leading to limited activation and cytokine 

secretion. These cells have also been shown to be terminally differentiated [37] and exhibit 

an increased resistance to apoptosis [38]. In addition the terminally differentiated cells begin 

to express receptors normally associated with NK cells, such as NKG2D and killer cell lectin-

like receptor subfamily G member-1 (KLRG1) [39], they also express cytotoxic granules [40]. 

As a result these senescent T cells are able to react more easily to the self-antigens 

recognised by the NK cell receptors, thus making older adults more prone to autoimmune 

disease. Taken together these alterations result in the accumulation of dysfunctional, 

autoimmune-prone, senescent T-cells that remain in the circulation, taking up immunological 

space, thus preventing formation of new immunological memory to novel pathogens and 

vaccines [41]. Older adults are thus more at risk from outbreaks of novel pathogens. 
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Table 1.1 Parameters of the Immune Risk Phenotype (IRP) 

IL2, Interleukin-2; CMV, Cytomegalovirus 

Parameter

CD4+:CD8+ Ratio ≤ 1
Thymic Atrophy
Decrease in the number of naïve (CD8+ CD45RA CCR7+) cell in the periphery
Reduced T cell proliferation (related to reduced IL2 secretion and sensitivity)
Accumulation of memory T cells
Reduced numbers of B cells (CD19+)
CMV Seropositivity
Accumulation of CMV specific CD3+ CD8+ CD28- cells
Reduced Telomerase activity and subsequent telomere length
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Natural ageing is also associated with the development of a chronic, systemic, sub-clinical 

inflammatory state termed inflamm-ageing [42]. This term, describes the increased levels of 

serum pro-inflammatory cytokines including Interleukin-6 (IL6), Tumour Necrosis Factor-α 

(TNFα) and acute phase proteins such as C-reactive Protein (CRP) [42-45]. It is also now 

recognised that ageing is accompanied by reduced levels of anti-inflammatory cytokines, 

notably interleukin-10 (IL10) [43] which contribute to inflamm-ageing. CMV was initially 

thought to be causally associated with the development of inflamm-ageing; however, recent 

studies have called this into question by demonstrating the development of inflamm-ageing in 

the absence of CMV infection [43]. Nevertheless, a number of candidates remain as potential 

drivers of inflamm-ageing including the presence of other latent viruses such as Epstein Barr 

Virus (EBV), increased adiposity (and the concomitant increase in adipokine production) 

[46,47] and a sedentary lifestyle [48]. It has also been proposed that chronic antigen 

exposure and subsequent immune exhaustion over the lifetime may contribute to inflamm-

ageing [49]. 

Anti-inflamm-ageing is a term used to describe the activation of the hypothalamic-pituitary-

adrenal (HPA) axis to produce a number of immune-modulatory hormones in response to 

pro-inflammatory cytokines [50,51] including IL6 and TNFα [52]. Most notably, hormones 

produced include cortisol, a well-characterised corticosteroid produced by the adrenal glands 

with powerful immunosuppressive effects [53] and dehydroepiandrosterone (DHEA), an 

immune enhancing hormone [54] which is found in the serum in its sulphated form 

dehydroepiandrosterone sulphate (DHEAs) [55]. An elegant balance exists between cortisol 

and DHEAs in regulating immune function however, in the elderly, this ratio shifts resulting in 

an increased cortisol:DHEAs ratio and a propensity for immune suppression [56]. This shift is 

driven by a gradual decline in the production of DHEAs and maintenance of cortisol levels 

across the life span, termed adrenopause [57]. Serum DHEAs concentrations peak around 

24-30 years in males and 19-24years in females and decline thereafter to approximately 14% 
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of that maximal peak in males and 20% of maximum in females by the seventh decade 

[58,59]. 

Whether HPA activation is the result of chronic stress or an attempt to re-establish 

homeostasis as a result of the heightened pro-inflammatory state observed in the elderly 

remains to be determined. It is however, safe to conclude that the synergistic action of 

inflamm-ageing and anti-inflamm-ageing has consequences for immune function and may 

contribute to the senescent state observed in the elderly due to chronic low level stimulation 

of the immune system. Ultimately this renders these elderly individuals susceptible to 

infection, autoimmunity and disease. In addition low level systemic inflammation is now 

known to be a significant pathogenic factor in the major age-related conditions such as 

atherosclerosis [60], dementia [61] and sarcopenia [62]. 

Together, inflamm-ageing, the IRP and anti-inflamm-ageing document wide spread 

senescence within the adaptive and humoral compartments indicating significant immune re-

modelling as we age. A major clinical consequence of this is the reduced ability of the elderly 

population to produce a protective antibody titre and maintain that titre over time following 

vaccination against a number of pathogens including diphtheria, tetanus, polio [63], 

pneumococcal pneumonia [64] and influenza [65]. After initial vaccination, booster injections 

are recommended every 10 years in the UK irrespective of the age of the recipient. 

Unfortunately, protective titres are rarely maintained over this time period, particularly adults 

aged over 60 years: 10 years post-vaccination, of 734 donors tested, 20% of recipients aged 

over 60 years no longer retained a protective titre. In fact, a significant proportion of 

recipients aged over 60 years (16%) were unable to maintain a protective titre just 5 years 

following vaccination [66]. In persons under the age of 60 years, antibody titres below the 

level that confers protection only occurred in <3% of subjects tested [66]. This study 

suggests that current vaccination strategies leave too many people over 60 years 

unprotected resulting in increased morbidity and mortality from many vaccine-preventable 

diseases. New strategies are needed to combat this phenomenon including an increased 
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frequency of vaccination and the development of new vaccines utilizing antigens and 

adjuvants specifically tailored toward the ageing immune system. 

 

1.2.2 Innate Immune-senescence 

The innate immune compartment consists of a number of cell types working synergistically to 

provide near-immediate, non-specific protection from infection (see Figure 1.1). Monocytes 

fulfil this requirement two fold by possessing their own anti-microbial arsenal but also through 

differentiation into tissue resident macrophages, which patrol the tissues and alert the 

immune system to potential pathogenic threats, through secretion of cytokines and 

presentation of antigen-derived peptides. Macrophages are also professional phagocytes 

capable of phagocytosis and production of toxic metabolites. Neutrophils are the first cell 

type to be recruited to the site of infection where they mediate host protection in much the 

same was as macrophages as they are professional phagocytes themselves. NK cells exist 

to protect against viral infection, whilst DCs constitute the major link to initiation of the 

adaptive arm of the immune response through antigen presentation and cytokine secretion. 

Table 1.2 details the age-related changes observed in this compartment with the notable 

exception of neutrophils of which their development and function will be discussed in detail in 

later sections as these cells are the focus of this thesis. 
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Table 1.2 Innate Immune-senescence 

Cell Type  Effect of Ageing Reference 

Monocytes Number ↔ Unchanged [67,68] 
 Composition ↓ Classical (CD14+ CD16-) [69] 
  ↑ Non-Classical (CD14+ CD16+) [67,69] 
 Function ↓ Chemotaxis [70] 
     
Macrophages Number ↓ Frequency (alveolar 

macrophages) 
[71] 

 Function ↓ Chemotaxis [70] 
  ↔ Phagocytosis  
        Increased [72,73] 
        Unchanged [74] 
        Decreased [75,76] 
  ↓ ROS Production [77-79] 
  ↓ Cytokine Production [80-83] 
 Signalling ↓ MHC II, CD80 and CD86 

Expression 
[84,85] 

  ↓ TLR Signalling Impaired [81,82] 
     
pDCs Number ↔ Unclear  
        Reduced [86-89] 
        Unchanged [86-91] 
 Function ↓ Cytokine Secretion [86,87,89,92,93] 
 Signalling ↓ TLR-7 and -9 Expression [86,87] 
  ↓ TLR Signalling Impaired [93] 
mDCs Function ↓ Stimulatory Capacity [93-96] 
  ↓ IFNγ Production [96,97] 
     
NK Cells Number ↑ Increased [98-101] 
 Composition ↑ Mature CD57+ NK Cells [99,100,102] 
 Function ↓ NKCC [101,103,104] 
  ↓ ADCC [100,105,106] 
  ↓ Cytokine Production [107-110] 
 Signalling ↓ KLRG1 & NKG2A Expression [98,100,111] 
     
iNKT Cells Number ↓ Reduced [112] 
 Function ↓ IFNγ Production [112,113] 
     
Immune-senescence of the cell-mediated arm of the innate immune response. 

MHC II, Major Histocompatibility Complex class II; TLR Toll-like Receptor; pDCs, 

plasmacytoid Dendritic Cell; mDCs myeloid Dendritic Cell; IFNγ, Interferon-γ; iNKT Cell, 

Invariant Natural Killer T Cell; NK Cell, Natural Killer Cell, NKCC; Natural Killer Cell 

Cytotoxicity, ADCC, Antibody Dependent Cell Cytotoxicity, KLRG1, Killer Cell Lectin-like 

Receptor subfamily G member-1. 
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1.3 Neutrophil Immune-senescence 

Neutrophils form our first line of defence against bacterial infection and are the first 

cells to be recruited to the site of infection. In times of inflammation and infection, neutrophils 

leave the circulation and migrate into the tissues where they act in concert with tissue 

resident macrophages to neutralize and eliminate potentially pathogenic material utilising a 

diverse range of anti-microbial machinery. The absolute requirement of neutrophils in host 

defence is demonstrated in patients with chronic granulomatous disease (CGD) (reviewed in 

[114]) or leukocyte adhesion deficiency (LAD) syndrome (reviewed in [115]) who are 

extremely susceptible to bacterial and fungal infections which are often fatal. Underlying 

these pathologies are mutations in genes encoding key components of a neutrophils anti-

microbial arsenal resulting in loss of function and ultimately compromising host defences.  

 

1.3.1 Neutrophil Development 

Cells of the immune system are derived from, and are subsequently replenished throughout 

life by haematopoietic stem cells (HSCs) which reside within the bone marrow. During 

development, HSCs commit to either the myeloid (granulocytes, monocytes, megakaryocytes 

and erythrocytes) or lymphoid (T and B cells, NK cells) lineage and populate the immune 

system. Cells of the myeloid lineage leave the bone marrow as fully mature cells whereas T 

and B cells leave the bone marrow as immature cells, with maturation occurring in the 

thymus and lymphoid organs respectively. Neutrophil maturation occurs in six stages, each 

characterised by the presence or absence of cell surface markers, granule subsets and 

nuclear morphology (see Figure 1.2). 
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Figure 1.2 Neutrophil Bone Marrow Development. 

Neutrophil development occurs in the bone marrow in 6 stages. (i) Myeloblast: an 

undifferentiated cell with a large nucleus and nucleolus, free from cytoplasmic 

granules; (ii) Promyelocyte: characterized by its large size, rounded nucleus and 

the first appearance of the azurophil granules in the cytoplasm; (iii) Myelocyte: 

large rounded nucleus with the first appearance of specific granules (iv) 

Metamyelocyte: exhibiting a kidney bean shaped nucleus with a mixed 

cytoplasmic granule population, at this stage in development, subsets lose their 

ability to proliferate becoming post-mitotic; (v) Band Cell: contains a condensed 

band shaped nucleus, and the first appearance of cytoplasmic gelatinase granules 

(vi) Mature Neutrophil: Nuclear constituents further condense forming the 

characteristic multi-lobed nucleus of peripheral blood neutrophils with the first 

appearance of cytoplasmic secretory vesicles (vii) Release into the blood stream. 

 

 

i. Myeloblast 

  

ii. Promyelocyte 

 
 

iii. Myelocyte 

 
 

iv. Metamyelocyte 

  

v. Band Cell 

  

vi. Mature 
Neutrophil 

  

vii. Release into 
the Circulation 
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Under steady-state conditions, fully mature neutrophils are released into the circulation at a 

rate of approximately 5x1010 - 1x1011 cells/day [116] with numbers differing depending on 

age, gender, ethnicity and smoking status [117]. Adult caucasian females have 

approximately 7.4x109 neutrophils/litre and caucasian adult males 7.2x109 neutrophils/litre at 

any one time throughout the day [117]. Once in the circulation, neutrophils were widely 

thought to have a half-life of approximately 6-10 hours [116,118-122] due to the constitutive 

expression of the anti-apoptotic protein induced myeloid leukaemia cell differentiation 

protein-1 (Mcl-1), levels of which decline rapidly when cells are isolated from the blood and 

show a positive association with neutrophil survival [123]. However, neutrophil half-life has 

recently come under scrutiny with a new estimate, established using in vivo isotope labelling 

techniques, putting the half-life at 5.4 days [124]. During an infectious insult and in response 

to exposure to pro-inflammatory cytokines and bacterial products such as 

granulocyte/macrophage-colony stimulating factor (GM-CSF), Interleukin-1β (IL1β), 

Interferon-γ (IFNγ) and Lipopolysaccharide (LPS) [123,125], neutrophil output from the bone 

marrow increases approximately 10-fold [126] and the typical half-life of a neutrophil 

increases to 115 hours [125]. 

A number of factors are involved in the development of HSCs into mature neutrophils 

including differential expression of transcription factors, including CCAAT/enhancer binding 

protein (C/EBPs) and PU.1 [127], proteins including the small GTPase Ras-related C3 

botulinum toxin substrate (Rac2) [128] and soluble factors such as granulocyte-colony 

stimulating factor (G-CSF), GM-CSF and interleukin-3 (IL3) [129,130]. Of these three factors, 

G-CSF seems to be the dominant factor in generating mature neutrophils as mice lacking the 

G-CSF gene (G-CSF-/-) exhibit a 73% significant reduction in the number of mature 

neutrophils in the circulation compared to their wild type (G-CSF+/+) counterparts [129]. 

Regulation of G-CSF levels within the bone marrow is also involved in the resolution of 

inflammation utilizing a feedback mechanism which also includes Interleukin-23 (IL23), and 

Interleukin-17 (IL17). Uptake of apoptotic neutrophils by tissue resident macrophages, a 
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process known as efferocytosis, induces a reduction in the secretion of IL23 by macrophages 

and DCs and IL17 by γδ T cells with an ensuing reduction in bone marrow G-CSF levels 

[131]. This results in reduced neutrophil release into the circulation and therefore restores 

homeostasis.  

Within the hematopoietic stem cell compartment, a number of age-related changes have 

been observed. CD34, an adhesion molecule whose expression is gradually lost during 

development, is used to identify hematopoietic stem and progenitor cells present within the 

bone marrow and circulation. Numbers of CD34+ cells in the bone marrow remain unchanged 

with age [130], however, increasing age negatively correlates with the number of circulating 

CD34+ cells [132]. Within the circulation, CD34+ cells contribute to vascular health due to 

their endothelial progenitor cell capacity, hence the reduced frequency of these cells 

associates with increased risk of cardiovascular disease [133]. 

With increasing age there is also a shift in the homeostatic control of HSC differentiation 

favouring progenitors of the myeloid lineage at the expense of common lymphoid progenitor 

cells (CLP) [30,134,135]. This imbalance can be traced back to the genomic level with 70% 

of lymphoid genes differentially expressed in aged HSCs were found to be down-regulated 

while 76% of differentially expressed myeloid genes were up-regulated [30]. Modulation in 

this manner appears not to result from modification of the genes themselves but instead from 

epigenetic dysregulation [136]. This phenomenon seems to have a greater impact on the 

adaptive immune response and although it is worth noting, it does not appear to have an 

effect on the number of late myeloid progenitors in the bone marrow [130,137] or mature 

neutrophils in the circulation [130,138].  

Fully mature neutrophils can be found within the bone marrow, circulation and liver/spleen, 

with each compartment comprising 15%, 40% and 45% of the total marginated granulocyte 

pool [139]. If, and when, exposed to an inflammatory signal, neutrophils leave these sites 

and migrate through tissue to the site of infection where they mediate host defence by 

phagocytosing, eliminating and preventing further dissemination of pathogenic material.  
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1.3.2 Neutrophil Anti-microbial Functions 

Neutrophils have three main mechanisms for killing microbial targets: phagocytosis followed 

by generation of reactive oxygen and nitrogen species; release of degradative granule 

contents; and extracellular killing via neutrophil extracellular traps. Intracellular mediators of 

neutrophil anti-microbial functions are fully developed upon release from the bone marrow 

and are stored throughout the life of a neutrophil ready to be employed as soon as the 

appropriate stimulus is received thus mediating host defence.  

 

1.3.2.1 Neutrophil Degranulation 

Upon egression from the bone marrow, neutrophils contain anti-microbial proteins and pro-

inflammatory mediators utilized during an immune response in addition to a number of 

surface receptors and membrane proteins all of which are stored in four distinct granule and 

secretory vesicle subsets: the azurophil (primary), specific (secondary) and gelatinase 

(tertiary) granules and finally secretory vesicles, named according to their order of 

appearance during neutrophil development [140]. When the appropriate stimulus is received, 

granule release, known as degranulation, occurs in a hierarchical manner [141]. Neutrophils 

isolated from the inflammatory exudate obtained from a blister model of skin inflammation 

demonstrate 38.1% release of gelatinase, 21.9% of specific and 7% azurophil granule 

release with complete release of secretory vesicles [142]. Azurophil granules are thought to 

play a major role in the degradation of phagosomal contents [143] owing to the nature of anti-

microbial and cytotoxic proteins such as neutrophil elastase, myeloperoxidase (MPO) and 

cathepsin G which may account for their limited extracellular release upon stimulation. 

Granule contents are determined by their presence or absence during the developmental 

process, which is known as the targeting by timing hypothesis [144]. Azurophil granules are 

identified by the presence of MPO [145] whereas the presence of gelatinase but absence of 

lactoferrin denotes gelatinase granules [146] (see Table 1.3). There are also a number of 

protein markers specific for different granule subsets, for example CD63, CD67 and annexin 
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I which identify the azurophil, specific and gelatinase granules respectively [147-149] while 

alkaline phosphatase and CD35 (CR1) have been used as markers of secretory vesicles 

[142].  

Neutrophil functionality is mediated by synergistic granule release. For instance, proteins 

contained within all three granule subtypes are required for efficient production of reactive 

oxygen species [146]. In addition, mobilisation of secretory vesicles to the plasma membrane 

is thought to be the source of the adhesion complex CD11b/CD18 (Macrophage -1-antigen, 

Mac-1) which mediates firm adhesion upon the endothelium and allows extravasation from 

the circulation. CD11b (stored within the specific and gelatinase granules and the secretory 

vesicles) is also involved in recognition of complement protein C3bi and therefore mediates 

phagocytosis of opsonised material. 

Acting in unison, granules and their contents are thus able to modify both the neutrophil 

surface phenotype, and the extracellular environment as well as being critical mediators of 

anti-microbial functions.   

To date, there are few reports regarding the effect of ageing on neutrophil degranulation and 

the release of proteases. In 1990, MacGregor et al [150] found that the proportions of both β-

glucuronidase in primary granules or vitamin B-12 binding protein in secondary granules was 

not affected by increased chronological age; nor did they find any change in the extent to 

which granules were released either spontaneously i.e. in the resting state, or following 

stimulation with fMLP [150]. This is supported by Dalboni et al [151] who demonstrated 

maintenance of elastase activity in neutrophils from old donors when compared with those 

from young donors in response to 10ng/ml IL8 [151]. 
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  Adapted from [152] 

  

Table 1.3 Neutrophil Granule Constituents 

BPI, Bacterial Permeability Protein; MPO, Myeloperoxidase; fMLP-R, fMLP 

Receptor; TNF-R, TNF Receptor;  

Azurophil Specific Gelatinase Secretory

Granules Granules Granules Vesicles

Membrane CD63 CD11b/CD18 CD11b/CD18 CD11b/CD18
Cytochrome b558 Cytochrome b558 Cytochrome b558

fMLP-R fMLP-R fMLP-R
G-protein α-subunit CD16

Leukolysin Leukolysin Leukolysin
TNF-R CD45

Cytosol α1-antitrypsin Collagenase Acetyltransferase Plasma Proteins
BPI Gelatinase Gelatinase

Cathepsins Lactoferrin
Defensins
Elastase

MPO
Proteinase-3
Lysozyme Lysozyme Lysozyme
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1.3.2.2 Phagocytosis 

Phagocytosis is the process by which foreign or altered-self material is recognised and 

internalised into a membrane bound vesicle via cytoskeletal re-modelling in a receptor-

mediated manner. Following ingestion a complex network of intracellular signalling pathways 

are activated resulting in the degradation of ingested material [153]. These events include 

phagosome fusion with lytic granules, assembly of the enzyme nicotinamide adenine 

dinucleotide phosphate (NADPH oxidase; see the following section for more detail) and 

production of pro- or anti-inflammatory cytokines. Depending on the type of material 

ingested, the secretory cytokine profile of these cells can be altered i.e. ingestion of 

pathogenic material initiates production of pro-inflammatory cytokines such as TNFα and IL8 

[154] whereas ingestion of apoptotic cells induces secretion of anti-inflammatory cytokines 

such as transforming growth factor-β1 (TGFβ1), Prostaglandin E2 [155] commencing the 

resolution of inflammation.  

A diverse repertoire of receptors expressed on the neutrophil surface are capable of 

stimulating phagocytosis, these include but are not limited to, Fcγ Receptors (FCγRII [CD32] 

and FcγRIII [CD16]), which recognise antibody opsonised material and complement 

receptors (CR1 [CD35] and CR3 [CD11b]) which recognise complement opsonised material 

[156,157]. 

With ageing, a number of groups have observed a reduction in the phagocytic ability of 

neutrophils to a variety of stimuli including opsonised yeast [158-160]; Staphylococcus 

aureus (S.aureus) [161] and Escherichia coli (E.coli) [138,161]. 

Potential underlying mechanisms for reduced phagocytic ability in the elderly have been 

studied with a number of likely candidates put forward. Opsonisation marks material for 

destruction making phagocytosis more efficient. Major opsonins within the immune system 

are serum immunoglobulins and complement proteins. Serum concentrations of 

immunoglobulin-M (IgM) are significantly lowered with age whilst immunoglobulin-G (IgG) 

and immunoglobulin-A (IgA) concentrations remain unaltered [150]. Serum complement 
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proteins C3 and C4, show a 19% and 57% increase respectively in the elderly, however, 

values for both immunoglobulins and complement proteins remain within the normal clinical 

range [150] and are therefore unlikely to be driving reduced phagocytic function. In addition, 

surface expression of a number of phagocytic receptors remains unchanged with age 

including TLR2 and 4 [162], the fMLP receptor [163] and CR3 (CD11b) [138]. However, 

surface expression of FcγRIII (CD16) is significantly reduced on neutrophils from elderly 

donors and positively correlates with the observed reduction in phagocytic index [138]. At 

present, no studies have considered the effects of age on surface expression of other 

receptors involved in the phagocytosis of phagocytic material such as CD14 (an essential co-

receptor for TLR4 in recognising lipopolysaccharide (LPS)), CD32 or CD35 and therefore 

defects in phagocytic ability cannot yet be fully attributed to reduced CD16 expression alone. 

However, phagocytosis of gram-positive bacteria such as S.aureus, is highly dependent on 

Fc receptors [164] and therefore may contribute to the increased incidence of S.aureus 

infection evident in the elderly population [165]. 

 

1.3.2.3 ROS Production 

Reactive oxygen species (ROS) is an umbrella term that refers to a number of free radical 

oxidising species such as superoxide (O2
-) and hydroxyl species (OH-) as well as non-radical 

oxidising species such as  hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) [166]. 

ROS are produced primarily through the action of the enzyme NADPH oxidase [167], which 

is assembled on the phagosome membrane during maturation [168]. NADPH oxidase 

transfers electrons from NADPH onto molecular oxygen to produce the radical O2
- in a 

process known as the respiratory burst. This free radical is then metabolised by superoxide 

dismutase (SOD) to produce H2O2, which in itself is cytotoxic but can also be further 

metabolised by MPO, delivered to the phagosome through fusion with primary granules, to 

produce HOCl. In the basal state, the 5 subunits of NADPH oxidase reside independently, 

either membrane bound (p22phox and cytochrome b558, also known as gp91phox), or in the 
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cytosol (p40phox, p47phox and p67phox) and are assembled on the phagosome or plasma 

membrane along with the small GTPase Rac2 in response to stimulation [169]. In addition, 

other GTPases such as Arf protein family members, particularly Arf6 have been shown to be 

required for activation of NADPH oxidase in a phospholipase-D (PLD) dependent manner 

[170]. 

Production of ROS are vital for maintaining the anti-microbial defences of neutrophils and 

macrophages, but also have a role in maintaining homeostasis in the absence of 

inflammation, acting as second messengers in a number of signalling pathways (such as 

tyrosine kinase activation [171], NF-κB [172] and Protein Kinase C (PKC) [173] activation) 

and as electron carriers in the electron transport chain.  

The literature on the effect of age on the production of ROS is contradictory. A number of 

groups have reported a reduction in the levels of O2
- produced in response to GM-CSF and 

fMLP stimulation [174-177] while other groups have reported enhanced ROS production 

(particularly H2O2) by neutrophils from elderly donors [178,179]. This discrepancy has been 

clarified recently with ROS production varying across stimuli, including the response to gram-

positive or gram-negative bacteria. Neutrophils from elderly donors exhibit a significant 

reduction in ROS production in response to stimulation with S.aureus (gram-positive) 

compared to neutrophils from young donors, however, when stimulated with E.coli (gram-

negative), neutrophils from old donors demonstrated a maintained ability to produce ROS 

when compared to young donors [161]. Wenisch et al [161] postulated this discrepancy is 

due to the differential effects of ageing on receptor surface expression and the related signal 

transduction pathways e.g. the CD14-dependent, calcium-independent pathways involved in 

ROS production in response to E.coli but not S.aureus [161]. 

 

1.3.2.4 Neutrophil Extracellular Traps (NETs) 

In 2004 Brinkmann et al [180] described a novel neutrophil function that was believed to have 

extracellular anti-microbial properties persisting beyond the typical neutrophil lifespan. This 
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function was termed Neutrophil Extracellular Traps (NETs) and refers to the presence of 

neutrophil granule and nuclear constituents in an extracellular web-like structure made up of 

a chromatin backbone studded with cytoplasmic and granule proteins including histones 

(specifically H2A and H2B), MPO, serine proteases (neutrophil elastase, proteinase 3 and 

Cathepsin G), bacterial permeability increasing protein (BPI), lactoferrin and calprotectin 

[180-182]. Not only does the chromatin backbone provide the structural support for these 

anti-microbial proteins maintaining a high, localised concentration and potentially preventing 

collateral damage from these proteins, it also is hypothesised to limit microbial spread by 

physically trapping the bacteria and bringing them into direct contact with the anti-microbial 

proteins. A number of organisms that have been shown to bind to NETs include S.aureus 

[180], Streptococcus pneumoniae [183], Salmonella typhimurium [180] and the yeast 

Candida albicans [184]. NETs have also been shown to have both anti-fungal, mediating 

protection against fungal hyphae too large to be phagocytosed [184] and anti-viral activity 

against human immunodeficiency virus-1 (HIV1) mediating viral capture and subsequent 

elimination [185]. However, it is possible that the anti-viral activity of NETs is virus specific as 

NET formation is not required for protection against influenza infection [186]. 

Owing to their recent discovery, there is limited knowledge on the effect of increasing 

chronological age on NET production. Using a mouse model of severe skin infection, Tseng 

et al [187] demonstrated a reduced ability of neutrophils from aged mice to produce NETs in 

response to infectious stimuli with a concomitant increase in bacterial dissemination 

throughout the host [187]. As the production of reactive oxygen species has been shown to 

be essential in the formation of NETs [167], and since old age results in a stimuli-dependent 

reduction in ROS production [161] it is conceivable that NET production would decline with 

increasing age and may also be stimuli specific.  

Of course the efficiency of these anti-microbial functions would be irrelevant should 

neutrophils be unable to migrate from the blood stream to the site of aggression be that of 

infection or injury. The ability to migrate, mechanisms controlling directional migration and 
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the effects of age on this process form the focus of this thesis and shall therefore be 

discussed in much greater detail than other neutrophil functions 

 

1.4 Neutrophil Chemotaxis 

Chemotaxis is the process of directed movement along a chemotactic gradient observed in 

many areas of cell biology and development including egress of immune cells from the bone 

marrow, neuronal development in the brain [188], leukocyte homing to the thymus [189], 

angiogenesis [190], re-epithelialisation mediating wound healing [191], metastasis [192] and 

immune defence against disease, injury and infection [193]. 

Chemotaxis begins with extravasation, the process whereby neutrophils leave the blood 

stream by adhering to and then transmigrating through the vascular endothelium. In order to 

begin extravasating from the blood stream, the endothelium itself must first become 

activated. This occurs following exposure to pro-inflammatory cytokines such as TNFα and 

IL8 produced by tissue resident macrophages in response to infection [194-196]. This 

induces the expression of a number of adhesion markers on the endothelial surface e.g. P- 

and E- Selectin, which bind P-selectin glycoprotein ligand-1 (PSGL-1) and E-selectin ligand-1 

(ESL-1) respectively on the neutrophil surface inducing transient tethering allowing the 

neutrophils to roll along the vasculature [197,198]. This allows neutrophil recognition of 

chemotactic signals inducing neutrophil activation and delivery of β1 and β2 integrins, 

particularly Mac1 (αMβ2; a heterodimer consisting of CD11b and CD18) and leukocyte 

function associated antigen-1 (LFA1, αLβ2; a heterodimer of CD11a and CD18) stored within 

the cytoplasmic granules to the cell surface [199,200]. Cellular activation results in a 

conformational change within β2 integrins [201] allowing recognition of intercellular adhesion 

molecule-1 (ICAM-1) expressed on the endothelium. Ligation of integrins with endothelial 

ligands induces firm adhesion and arrest of rolling neutrophils onto the vasculature [199]. 

Platelet/endothelial cell adhesion molecule-1 (PECAM-1; CD31), CD99 and junctional 
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adhesion molecule-A (JAM-A) then facilitate homing to cell junctions allowing migration 

through the endothelium in a process known as diapedesis [202]. 

Two modes of diapedesis through the endothelium have been demonstrated: paracellular 

and transcellular [203]. Paracellular migration describes migration through the tight junctions 

between adjacent endothelial cells while transcellular migration describes migration through 

a pore an individual endothelial cell [204]. These modes of migration are thought to arise 

following the formation of ‘invadosome-like protrusions’, actin-dependent protrusive 

structures that ‘probe’ the endothelium finding sites at which diapedesis can occur [204]. 

Interestingly, vascular permeability does not appear to be affected by either mode of 

diapedesis due to formation of dome-like structures by endothelial cells encapsulating the 

migrating neutrophil and therefore preventing increases in vascular permeability [205]. 

Overall, the mechanisms driving diapedesis remain elusive however, blocking of PECAM-1 

using monoclonal antibodies results in neutrophils that are capable of locating endothelial 

junctions but are unable to initiate diapedesis and are therefore unable to migrate out of the 

vasculature [206] whilst ICAM-1 has been shown to facilitate diapedesis by forming ‘cup-like’ 

structures around migrating cells guiding diapedesis [207,208]. 

Once through the endothelium neutrophils begin the process of tissue migration also referred 

to as interstitial migration. Initiation of this process begins with the interaction between a 

chemoattractant and their receptors on neutrophils. Neutrophils are exquisitely sensitive to 

gradients of chemotactic molecules demonstrating accurate movement in very shallow 

gradients – a 2% change in chemoattractant concentration across the length of the cell is 

capable of inducing robust migration [209]. Various lipid mediators such as Leukotriene-B4 

(LTB4) and platelet activating factor (PAF), complement proteins such as C5a and C3bi, 

inflammatory cytokines including IL8 and stromal cell-derived factor-1 (SDF1) and bacterial-

derived proteins such as fMLP and LPS are all neutrophil chemoattractants.  

Chemotactic cytokines, known as chemokines, are classified into 4 groups based in the 

position of the first two, highly conserved cysteine (C) residues within the chemokine 
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structure: CXC, CX3C, CC and C where X denotes an amino acid residue other than cysteine 

[210]. The CXC chemokine IL8 (CXCL8) is a particularly potent chemokine produced in 

response to inflammation mediating neutrophil extravasation from the blood stream and the 

initial stages of interstitial migration. Given the complex nature of the immune system, it is 

entirely plausible that a migrating neutrophil may be surrounded by multiple chemoattractants 

at any given time and must therefore navigate towards the most appropriate signal. To do 

this, neutrophils respond to chemoattractants in a hierarchical manner taking preference for 

‘end-target’ chemoattractants over ‘intermediary’ chemoattractants. Heit et al [211] 

categorised intermediary chemoattractants e.g. IL8 and LTB4, as those that induce 

extravasation and bring neutrophils into the general vicinity of infection whereas ‘end-target’ 

chemoattractants are those produced directly by bacteria or through direct contact of immune 

components with bacteria e.g. fMLP and C5a and therefore hone directional migration to the 

site of infection. Therefore, not only do neutrophils respond to chemoattractants in a 

hierarchical manner [212] but chemoattractants themselves exist in distinct zones throughout 

the tissue guiding neutrophils directly and accurately to the site of infection or injury [213]. 

Production in this manner then requires neutrophils to ignore a particular chemoattractant 

once its source has been reached in order to continue toward the site of infection. This 

process is known as desensitisation and is achieved through internalisation of the 

chemoattractant receptor [211] a process involving G-protein-coupled receptor kinases 

(GRKs) and β-arrestin (reviewed in [214]).  

Most chemoattractants, and all thus far identified chemokine receptors, are G-protein 

coupled receptors (GPCR) composed of 7-transmembrane domains (3 extracellular and 3 

intracellular loops) coupled to heterotrimeric guanine nucleotide binding proteins (G-proteins) 

at the inner leaflet of the plasma membrane [210]. GPCRs constitute the largest superfamily 

of membrane receptors containing receptors for hormones, inflammatory mediators (both 

pro- and anti- inflammatory), lipids and calcium ions [215]. Known G-protein coupled 

chemoattractant receptors include CXCR1 (IL8-Ra) and CXCR2 (IL8-Rb) [210], FPR1 and 2 
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which recognise formylated peptides such as fMLP, C5a-receptor and BLT1 and 2 (LTB4 

receptors) allowing neutrophils to respond to both intermediary and end-point 

chemoattractants. 

G-proteins consist of 3 subunits – α, β and γ that, in the quiescent state, exist as a single 

heterotrimeric protein with guanosine di-phosphate (GDP) associated to the α subunit [216]. 

Interaction of the GPCR with its ligand causes a conformational change allowing the 

exchange of GDP for GTP (guanosine-tri-phosphate) by the Gα-subunit and dissociation 

from the Gβγ-subunit [216,217]. This allows independent activation of a diverse and complex 

range of intracellular signalling pathways including PI3Kinase, PLC and small GTPases such 

as Ras- and Rac- GTPase (reviewed in [218]). Pathways activated by G-protein subunits are 

shown in Table 1.4. Heterogeneity between GPCR and the responses they elicit have been 

attributed to the combination of G-protein isoforms making up the complete protein. 4 classes 

of the α subunit have been identified – Gαi/o, Gαq, Gαs and Gα12/13 which share 45-80% 

homogeneity whilst 5 β- and 12 γ- isoforms have been identified exhibiting 27-75% 

homegenity and a high rate of post-translational modification [219]. GPCR mediated 

signalling is antagonised through the intrinsic GTPase activating protein (GAP) activity of the 

Gα subunit hydrolysing GTP, restoring GDP to the nucleotide binding pocket. This causes 

the Gα subunit to re-associate with the βγ subunit once again rendering the complex inactive 

(reviewed in [218,219]). 

Through coupling of membrane receptors to G-proteins, neutrophils are thus able to respond 

to a number of stimuli co-ordinating the relevant cellular response that provides both host 

protection against infections and mediates tissue repair upon injury or damage. 

However, in order for effective migration to occur through tissues, we hypothesise that the 

release of granule-specific proteases during migration remodels the extracellular matrix 

(ECM) and facilitates recruitment to the site of infection. The major proteases involved in this 

process are elastase (EC 3.4.21.37), cathepsin G (EC 3.4.21.20) and proteinase 3 (EC 

3.4.21.76). These serine proteases are stored within the azurophil granules of neutrophils 
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and possess both anti-microbial and fungistatic ability [220]. Small amounts of neutrophil 

elastase have also been observed within mast cells, basophils [221] and tissue resident 

macrophages [222]. 
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ERK, Extracellular Related Kinase; GTP, Guanine-tri-phosphate; PLC, Phospholipase C; 

PLD, Phospholipase D; iNOS inducible Nitric Oxide Synthase; GEF, Guanine Exchange 

Factor; HSP, Heat Shock Protein; PI3Kinase, Phosphatidylinositol-3-kinase; GRK, G-protein 

coupled Receptor Kinase.  

Adapted from [218]  

Table 1.4 Function of Heterotrimeric G-protein Subunits  

G-protein 

Subunit

Effect on 

Activity
Effectors

Gαs Enhances Adenylyl cyclases
Src Tyrosine Kinases
GTPase of Tubulin

Gαi Reduces Adenylyl cyclase

Ca2+ Channels
Enhances Erk Activation

K+ Channels
GTPase of Tubulin
Src Tyrosine Kinases

Gαq Enhances PLCβ

K+ Channels
Bruton's Tyrosine Kinase

Gα12/13 Enhances PLD
PLCε
iNOS
p115 Rho-GEF
E-cadherin-mediated cell adhesion
HSP90

Gβγ Enhances PLCβ
PI3Kinase
K+ Channels
P-Rex-1
SRC Kinases
GRK membrane recruitment

Reduces Adenylyl Cyclase I
Ca2+ Channels
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1.4.1 Serine Proteases as an aid to Migratory Processes 

Upon neutrophil activation, serine proteases are released from the azurophil granules into 

either the extracellular space, although a proportion of this is retained within the plasma 

membrane [223-225], or released into the newly formed phagosome [226]. Importantly, 

serine proteases are also important mediators of non-oxidative host defence and act by 

facilitating transendothelial migration [223,227,228] and neutrophil detachment during 

migration [229]. Release of neutrophil elastase at the neutrophil leading edge mediates 

tissue digestion, allowing cells to move through dense tissue. The action of these proteases 

has also been associated with the progression of a number of chronic inflammatory 

diseases. For example, proteinase-3 (PR3) has been implicated in rheumatoid arthritis (RA) 

and anti-neutrophil associated autoantibody (ANCA) associated vasculitis [230] with an 

increased risk of relapse associated with increased surface expression of PR3 [231]. 

Elastase has also been implicated in disease pathogenesis, with an active role for this 

protease (usually acting in conjunction with other proteases) in the progression of chronic 

obstructive pulmonary disease (COPD) [232-235] and RA [236,237]. Mutations in the gene 

encoding neutrophil elastase, ELA2, have also been identified in 50% of patients diagnosed 

with severe congenital neutropenia (SCN), an inborn disorder of granulopoiesis due to arrest 

in the differentiation of granulocyte precursors, and in all cases of cyclic neutropenia (CN), a 

less severe form of granulopoiesis. Both SCN and CN leave individuals particularly 

susceptible to infection and have an increased propensity to develop acute myeloid 

leukaemia and myelodysplasia [238]. 

Although release of azurophil granules is relatively limited when compared to secretory 

vesicles or gelatinase granules, sequential release of single azurophil granules into the 

extracellular space has been shown to occur during neutrophil migration, each with 

concomitant protease activity [223,239]. Neutrophil elastase is released from granules at a 

concentration of 5.33mM [240], a concentration 150-1500 times greater than that of its 

endogenous inhibitors - α1-antitrypsin (α1-AT, 32.8μM) [239], secretory leukocyte peptidase 
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inhibitor (SLPI, 11μM) [241] and α2-macroglobulin (α2M, 3.5μM) [242] resulting in an area of 

obligate tissue damage at the point of release. Away from the point of release, the 

concentration of elastase decreases exponentially thus allowing inactivation of the protease 

once the elastase:inhibitor ratio has reached 1:1. At this point, protease activity is abolished 

by the action of local inhibitors, α1AT inhibiting free elastase in an irreversible manner and 

SLPI reversibly inhibiting membrane bound elastase [225], however this does not arise until 

a localised area of protease mediated tissue destruction has occurred, a phenomenon 

termed ‘quantum proteolysis’.  

Endogenous substrates for these proteases encompasses a number of extracellular matrix 

components including elastin [243], fibronectin [244] and collagen [245] however out of the 

three serine proteases, neutrophil elastase is the most potent due its ability to degrade the 

vast majority of extracellular matrix components (reviewed in [246]). This makes neutrophil 

elastase a particularly powerful protease at mediating large-scale tissue damage, particularly 

during interstitial migration. Consequences of matrix degradation are undoubtedly negative 

when prolonged, for example in the context chronic inflammatory diseases or in the absence 

of protease inhibitors e.g. α1-AT deficiency. However, matrix degradation when adequately 

regulated, may also facilitate interstitial migration by exposing extracellular matrix 

components and strengthening host defences. Interstitial migration can occur in the absence 

of the β2 integrins [247], with adhesion instead mediated through the action of β1 integins 

such as very late antigen-6 (VLA-6, α6β2) and -9 (VAL-9, α9β2), expression of which is up-

regulated following neutrophil activation e.g. in response to fMLP and transmigration 

following interaction with PECAM-1 [247,248]. β1 integrin ligands include a variety of 

extracellular matrix proteins including laminin [249], collagen [250] and fibronectin [251]. 

 

1.4.2 Signalling pathways involved in the regulation of migration 

In order for migration to occur, neutrophils adopt a polarized phenotype involving the 

formation of a leading edge and uropod tail as a function of general motility [252]. Within this 
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morphology, the leading edge demonstrates enhanced sensitivity allowing directional 

sensing of the chemotactic gradient [253]. There are a significant number of signalling 

pathways involved in the generation of directional migration however it is important to 

remember they do not act in isolation and instead exist as a complex signalling network 

involving both positive and negative regulation, see Figure 1.3.  
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Figure 1.3 A Diagrammatic Representation of the Complex Network of Signalling Pathways 

Thought to be involved in the Regulation of Migration to Date 

 

 

 

 

 

 

 

 

 

 

Taken directly from [254] 
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1.4.2.1 PI3Kinase 

The phosphotidylinositol-3-kinase (PI3Kinase) family consists of conserved enzymes present 

in mammalian cells that phosphorylate the D3-position of the inositol ring of phosphoinositide 

lipids. This produces a number of inositol lipid second messengers in response to a number 

of extracellular signals including cytokines, integrin engagement and FcγR ligation. The 

PI3Kinase family, through association with pleckstrin homology (PH) domains present in 

target proteins, recruits a number of signalling molecules to the plasma membrane thus 

amplifying the signal. 

The PI3Kinase family is divided into 3 classes based on their lipid products and the identity of 

the subunits present in each protein complex. Class I PI3Kinases, the most studied of the 

PI3Kinase subfamilies, are heterodimeric proteins consisting of both a regulatory and a 

catalytic subunit which phosphorylates phosphatidylinositol - 4,5 - bisphosphate (PI(4,5)P2) 

to produce phosphatidylinositol - 3,4,5 - triphosphate (PIP3), the only triphosphate inositol 

lipid present in mammalian species; Class II PI3Kinases exist as monomers and Class III as 

heterodimers both of which phosphorylate phosphatidylinositol (PI) to form 

phosphatidylinositol-3-phosphate (PI(3)P) (see Table 1.5).  

 Production of multiple lipid products places PI3Kinase at the centre of multiple signalling 

networks eliciting a role for this enzyme family in a multitude of cellular functions including 

migration, proliferation, cell survival and endocytosis. Human neutrophils are known to 

express all of the above mentioned isoforms [255], however, it is members of the class I 

family that are fundamental to the control of migration mainly due to their ability to be 

activated by a wide variety of cell surface receptors.  

Class I PI3Kinase is sub-divided into class IA and class IB based on the structure of its 

component subunits: class IA contains 3 isoforms consisting of either a p85 or p55 regulatory 

subunit coupled to a p110α, β or δ catalytic subunit; the single isoform making up class IB 

PI3Kinase consists of a p101 regulatory subunit and p110γ catalytic subunit. Class I 

activation occurs downstream of receptor-ligand interaction on the cell surface via 
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phosphorylation of the regulatory subunit thus facilitating binding of PIP2 by the catalytic 

subunit and its subsequent phosphorylation. In the case of Class IA and Class IB PI3Kinase, 

these are activated downstream of tyrosine kinase receptors and Gαi –containing GPCRs 

[256] respectively. However, recent evidence has demonstrated significant cross-talk in the 

activation both classes through the presence of a Ras binding domain (RBD) in the p110 

subunit rendering both class IA and IB sensitive to the GTPase Ras [257]. Ras and Gβγ are 

now known to act synergistically to control PI3Kinase activation. The structure and function 

of the PI3Kinase family has been extensively reviewed in number of excellent review articles 

[255,258-261]. 
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Table 1.5 PI3Kinase Isoforms in Mammalian Cells [255,258-260] 

 

 

 
 

 Regulatory 
Subunit 

Catalytic 
Subunit 

Product Activation Cellular Processes Localization 

Class I A p85 or p55 p110 α β δ PIP3 Tyrosine Kinase Receptors 
(Integrins, FcγR); Ras-GTPase; 
Insulin Receptor A [262] 

Neutrophil Directional 
Movement [263] 

Cytoplasmic then 
recruited to the plasma 
membrane upon 
activation  B p101 or p84 p110 γ PIP3 Gβγ subunit of Gαi-proteins; Ras-

GTPase; Insulin Receptor-A [262] 
Neutrophil 
Chemokinesis [264] 

Class II  None* C2 α β γ PI(3)P 
PIP3 [265]  

TC10-GTPase [266]; Clathrin 
[267]; Insulin-Receptor-B [265]; 
Calcium [268]; Chemokines; 
Integrin Engagement** 

LPA-mediated 
migration [269] , 
endocytosis 

Associated with 
membrane structures 
e.g. Clathrin coated 
vesicles [270]  

Class III  p150 hVsp43p PI(3)P ? Intracellular trafficking 
e.g. autophagy [271] 
and phagosome 
formation [272] 

Intracellular membranes 
e.g. Golgi & 
endosomes[273] 

*Although Class II does not, at present, appear to have a regulatory subunit per se; its protein structure does contain several protein domains through which 
interaction with adaptor proteins is thought to regulate activation [274]. 
**Mechanisms for activation for Class II PI3Kinase remain poorly understood with some current mechanisms being the result of speculation based in the 
crystal structure of the protein [274] 

36 
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Following activation, PI3Kinase catalyses the production of PIP3 which accumulates at the 

leading edge of migrating cells [275] and further recruits PH – domain containing proteins 

such as 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1), GEFs such as P-Rex1, 

Bruton’s tyrosine kinase (Btk) and PKB/Akt [276] which then activate effector proteins such 

as members of the Rho-GTPase family and the serine/threonine kinase Akt thus propagating 

the initial signal, eliciting a functional response.  

The role of PI3Kinase in controlling migration has been somewhat controversial with some 

groups reporting PI3Kinase to be an absolute requirement for migratory processes [263,277], 

while others report only limited involvement of PI3K [264,278]. There is also evidence of 

migratory processes occurring independently of PI3Kinase [211]. These discrepancies are 

likely to arise from the experimental model used as well as the type and length of stimulation. 

By considering chemokinesis (speed) as a separate parameter to chemotaxis (direction), a 

subtle but discrete role for both PI3Kinase-δ and –γ as the major PI3Kinase isoforms 

involved in migratory processes is now widely accepted. This observation may explain the 

earlier discrepancies observed regarding the involvement of PI3Kinase in migratory 

processes. PI3Kinase-γ has been shown to be the dominant PIP3 producing isoform at the 

leading edge during migration, as neutrophils from a PI3Kinase-γ deficient mouse produced 

negligible amounts of PIP3 in response to chemoattractant stimulation [279,280]. In contrast, 

PI3Kinase-δ has been shown to facilitate neutrophil spreading and polarisation across 

fibronectin-coated surfaces [281]).  

PI3Kinase signalling, and therefore PIP3 production, is regulated through the action of the 3- 

and 5- phosphatases Phosphatase and Tensin Homolog (PTEN) and Phosphatidylinositol-

3,4,5-triphosphate 5-phosphatase (SHIP1) respectively. These phosphatases are 

responsible for regulating PI3Kinase and confining PIP3 to the leading edge through de-

phosphoryation of PIP3 producing a further lipid product phosphatidylinositol- 3,4 – 

bisphosphate (PI(3,4)P2) and phosphatidylinositol – 4,5 – bisphosphate (PI(4,5)P2). In this 

manner PI3Kinase activity is antagonised maintaining cellular homeostasis. 
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1.4.2.2 Protein Kinase B (PKB)/Akt 

Akt, also known as protein kinase B (PKB), is an ~60kDa serine/threonine kinase that was 

originally identified as a retroviral oncogene [282] and most well-known for its ability to 

prolong neutrophil survival in response to pro-inflammatory cytokines [283]. Akt is abundantly 

expressed in mammalian cells as three highly homologous isoforms Akt-1 (PKBα), Akt-2 

(PKBβ) and Akt-3 (PKBγ). Akt1 and Akt2 are the most abundantly expressed isoforms with 

Akt-3 being solely expressed in the brain and testis where it has been shown to have a role 

in post-natal brain development [284,285]. Akt has been demonstrated as an essential 

component of a number of cellular processes including cellular proliferation [286], superoxide 

generation [287] and migration [288]. 

During migratory processes, Akt in known to translocate to the leading edge of migrating 

neutrophils from the cytosol by virtue of its PH domain recognising membrane localised PIP3 

produced by active PI3Kinase [289]. Current studies [290] suggest it is the Akt2 isoform that 

is recruited in this setting however, conclusive evidence of this is required before definitive 

conclusions can be drawn. Once at the membrane, Akt is phosphorylated by the action of 

two independent kinases, PDK1 and mTOR-complex 2 (mTORC2), these phosphorylate 

Threonine-308 (Thr308) and Serine-473 (Ser473) residues respectively. PDK1 is a kinase 

that has been shown to be dependent on PIP3 but unaffected by wortmannin, a broad-

spectrum PI3Kinase inhibitor, placing the action of PDK1 on Akt downstream of PI3Kinase 

[291]. For a long time the identity of the Ser473 kinase, now identified as mTORC2 (mTOR 

when in a rapamycin-insensitive complex with sin-1 and rictor) [292,293] was unclear and 

has previously been referred to as PDK2 or hydrophobic motif kinase (HM kinase). 

When phosphorylated solely at Thr308, Akt shows partial activation and in this state it is 

capable of activating mTORC1 (mTOR when complexed with raptor) through 

phosphorylation of PRAS40, a dominant negative regulator of mTORC1 [294]). Activity in this 

manner allows Akt-mediated regulation of protein synthesis and cell growth through the 

action of mTORC1. Phosphorylation of both Ser473 and Thr308 results in full-activation of 
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Akt increasing the number of Akt phosphorylation targets. These targets include caspase-9 

(phosphorylation of which prevents its protease activity [295]); Iκ-B Kinase (IκK) (affecting 

NF-κB gene transcription [296]); mTOR [297]; p47phox (mediating the respiratory burst [287]) 

and p21 Activated Kinase (PAK1) (influencing migration [298]). 

In order to maintain homeostasis, Akt signalling is antagonised through de-phosphorylation 

of Thr308 by protein phosphatase 2A (PP2A) [299], and Ser473 by PH-domain leucine-rich-

repeat-containing protein phosphatase 1 or 2 (PHLPP1/2) [300]. This is further controlled by 

de-phosphorylation of PIP3 by PTEN/SHIP1 to form PIP2. 

 

1.4.2.3 Rho-GTPases 

The Ras superfamily are a large (with approximately 150 members) conserved family of 

small (~21kDa) monomeric G-proteins consisting of 5 main groups (Ras, Rho, Rab, Ran and 

Arf) with Rho-family proteins forming the major branch. These GTPases act as molecular 

switches regulating a diverse range of cellular process by cycling between an active, 

Guanosine triphosphate (GTP) -bound and an inactive, guanosine-diphosphate (GDP) - 

bound state. This process is tightly regulated by both guanine nucleotide exchange factors 

(GEFs), which catalyse the exchange of GDP for GTP and thus activate the molecule, and 

GTPase activating proteins (GAPs), which inactivate the GTPase by exchanging GTP for 

GDP. Incorporation of prenyl groups (mainly geranylgeranyl pyrophosphates (GGP) and 

Farnesyl Pyrophosphate (FPP)) during biosynthesis allows the insertion of GTPases into the 

membrane. This supports activation through the exchange of GDP for GTP, a reaction 

catalysed by guanine nucleotide exchange factors already present in the membrane. In their 

GDP, inactive state, GTPases are sequestered in the cytoplasm where they are retained by 

GDP dissociation inhibitor (GDI) proteins by forming a high-affinity but biologically inert GDI-

GTPase complex. GDI proteins provide another checkpoint in GTPase activation by binding 

to prenyl groups and preventing their interaction with the membrane. In addition, GDI 

proteins are known to stabilize the binding of Mg2+, the dissociation of which is required for 
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nucleotide exchange. For full activation, GDP-bound GTPases must first dissociate from their 

GDI, a process that is catalysed by GDI dissociation factors (GDFs) whose identity still 

remains elusive however a single human GDF has been recently identified, PRA-1 [301]. 

Following dissociation, the GDP-bound GTPases must translocate to the membrane where, 

through interaction with GEFs, GDP is exchanged for GTP and thus activating the GTPase 

allowing interaction with effector molecules. It has been demonstrated that the interaction 

between the GDP-bound form of Rac-GTPase is modulated by inositol lipids, particularly 

PIP2 [302]. This process has been elegantly reviewed elsewhere [303]. 

In their active conformation, Rho GTPases have been shown to be key regulators of 

cytoskeletal rearrangement, stress fibre formation and cell-cycle progression and have also 

been implicated in a number of cellular functions including adhesion, migration, phagocytosis 

and ROS production, most likely owing to their ability to dynamically control remodelling of 

the cytoskeleton. Three Rho GTPases are particularly prominent in the control of migration – 

Ras homolog gene family member A (RhoA), Cell Division Control Protein 42 (Cdc42)  and 

Rac [304].  

During migration, Rac and Cdc42 are localized to the leading edge where they are involved 

in the assembly of the filamentous actin (F-actin) network through recruitment of actin 

polymers and in maintenance of the leading edge [305]. Rac- and Cdc42-GTPase are 

activated by GEFs such as P-Rex-1 [306], DOCK1/2 [307] and β-Pix localized in the 

membrane through association with PIP3. Once activated, these GTPases have been shown 

to modulate cytoskeletal rearrangement through activation of suppressor of cAR (SCAR)/ 

WASP family Verprolin-homologous protein (WAVE) family members and subsequently the 

actin nucleating complex actin-related protein 2/3 (Arp2/3) [308,309]. In addition, these 

proteins have also been shown to inhibit actin de-polymerization through phosphorylation 

and subsequent inhibition of Cofillin via LIM Kinase (LIMK) [310]. In comparison RhoA-

GTPase is found localised to the rear of the cell in the uropod where it mediates tail 

retraction and dissociation of adhesive complexes [311].  
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1.4.2.4 Reactive Oxygen Species (ROS) 

Production of ROS has been shown to occur at the leading edge of migrating neutrophils in 

an NADPH oxidase dependent manner [312]. The GTPase activating protein GIT2 links 

GPCR signalling at the surface with recruitment of NADPH oxidase [313] and subsequent 

ROS production at the leading edge. Chemoattractant-induced ROS production appears to 

function by amplifying the PIP3 signal though localized oxidation of PTEN thus suppressing 

its phosphatase activity [314-316]. Phosphorylation of Akt, itself is reduced in the presence of 

N-acetyl-L-cysteine (NAC) [317] suggesting a role for redox-mediated feedback in the 

regulation of migration. 

 

1.4.2.5 Actin Cytoskeleton 

The actin cytoskeleton is a dense network of actin fibres present within the cytoplasm that 

acts as a cellular scaffold governing cell shape, intracellular transport, cell division and, in 

motile cells, membrane protrusion and tail retraction. Protrusion in this manner is driven by 

polymerization of actin filaments just under the plasma membrane forming one of two basic 

actin structures: branched filament networks leading to sheet-like protrusions (lamellipodia) 

or un-branched actin bundles leading to finger-like protrusions (filopodia and pseudopodia) 

characteristic of the leading edge in motile cells (see Figure 1.4). The dense actin network 

present in the lamellipodia provides the scaffold upon which motility machinery can localize 

within the leading edge (reviewed extensively in [318]). 

Actin structures, once initiated, can continue extending owing to the abundance of 

monomeric actin within the cytoplasm and are only stopped through the action of capping 

protein concealing the barbed end of a growing filament [319]. However, for nucleation of 

new actin filaments, assistance is required from nucleating proteins such as the Arp2/3 

complex and the Formin family of proteins including the diaphanous-related formins (DRFs 

also known as mDia1-3). Arp2/3 is responsible for the formation of branched networks by 

nucleating actin polymerization at a 70° angle from the sides of pre-existing filaments [320], 
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while formins act to nucleate un-branched actin filaments [321] creating linear bundles 

required for membrane spikes and pseudopodia. However, these proteins do not act in 

isolation, Wiskott-Aldrich syndrome proteins (WASP) family members, PIP2 and Cdc42 are 

all required in addition to nucleating proteins to efficiently stimulate actin filament elongation 

[322].  

In order to maintain motility and the supply of monomeric actin in the cytoplasm, actin 

disassembly must also take place. This occurs through the action of cofillin by dissociating 

Arp2/3 and its associated branches from actin filaments resulting in debranching of the actin 

network [323]. This forms a cycle beginning with actin nucleation and depleting cytoplasmic 

stores of monomeric actin and ending with replenishment of those stores through actin 

filament dissociation, this cycle is known as the dendritic nucleation model [324] ensuring a 

constant supply of monomeric actin for actin nucleation and driving the leading edge forward. 

See Figure 1.5 
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Figure 1.4 Actin Structures at the Leading Edge. 

Growing actin filaments are found within the leading edge driving forward protrusion of the 

plasma membrane and generating motility. Actin filaments are found as two main 

conformations: (A) Lamellipodia, a dense actin network forming sheet-like protrusions and 

(B) Filopodia, bundles of parallel actin filaments creating finger-like protrusions. Adapted 

from [325]. 

 

Direction of Movement 

(A) Lamellipodia 

(B) Filopodia 

 

 Leading Edge 



44 
 

 
Figure 1.5 The Dendritic Nucleation Model. 

This model describes the retrograde flow of monomeric actin ensuring an adequate supply for nucleation of new fibers and the subsequent 

protrusion of the plasma membrane at the leading edge driving cell motility. Figure taken directly from [324]  

Figure 1.7  

44 
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1.4.2.6 Other Molecules controlling migration 

Although PI3Kinase and the Rho GTPases are widely accepted as mediators of accurate 

migration, a number of other signalling pathways have been implicated in the process. 

Mitogen activated protein kinase (MAPK) family members including ERK, p38 MAPK and Jun 

N-terminus kinase (JNK) have been shown to regulate migration through interaction with 

Paxillin, a docking protein that recruits certain proteins to focal adhesion complexes including 

serine/threonine kinases and GTPases [326] and Spir, a member of the WASP family of 

proteins, both of which results in reorganisation of the actin cytoskeleton (reviewed in [327]). 

Although activated downstream of PI3Kinase [328], inhibition of ERK had no effect on 

neutrophil migration in response to IL8 [329] implying that neutrophil migration is largely 

independent of MAPK activation.  

Genetic silencing of Phospholipase-D2 (PLD2), an enzyme involved in phospholipid 

metabolism in the plasma membrane, has been shown to induce arrest of migration [330]. 

However mechanisms underlying this involvement remain largely unknown. Peng et al 

showed PLD2 to contain two Cdc42/Rac Interactive binding (CRIB) domains within its 

structure allowing direct interaction with Rac-GTPase [331] highlighting a possible 

mechanism by which PLD2 could be involved in migration. PLC has also been shown to be 

important in the regulation of migration through the translation of integrin-dependent signals 

catalysing PIP2 to produce inositol-triphosphate (IP3) and DAG, inducing the release of 

calcium from intracellular stores subsequently enhancing ROS production [332]. 

In addition, in the presence of PI3Kinase inhibitors murine neutrophils are still able to 

migrate, albeit with significantly reduced efficiency of migration. This phenomenon has been 

attributed to PKBR1, a membrane-bound isoform of Akt that is uniformly distributed 

throughout the cytoplasm but exhibits localised activation by mTORC2 upon detection of a 

chemotactic gradient [333]. Upon activation PKBR1 acts through as yet undetermined 

mechanisms to modulate both actin nucleation and disassembly (reviewed in [334]). 
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1.4.3 Pathway integration resulting in co-ordinated control of migration 

We are still to fully understand the mechanisms involved in the control of directional 

migration; until recently directional migration was thought to be under the control of a single 

linear pathway governing both motility (chemokinesis) and directionality (chemotaxis) giving 

rise to a compass like model of migration. The role of the compass needle was attributed to 

PI3Kinase due to the essential localisation of PIP3 at the leading edge [275]. However, 

inhibition of PI3K in murine neutrophils causes a reduction in the absolute number of cells 

responding but does not affect their speed or directionality [335]. This suggests there are 

additional control mechanisms acting independently of PI3K and that chemokinesis and 

chemotaxis are independently regulated.  

The idea of a complex signalling network existing not only at the leading edge but also 

throughout the cell is now widely accepted [334]. Integration of concomitant signalling 

originating at both the leading edge and uropod determine polarity leading to the spatial and 

temporal orientation of signalling molecules and laying the foundation for a function that is 

both robust and generic whilst also exhibiting exquisite sensitivity. The extent to which 

individual elements of this signalling network contribute remains unclear. The process of 

directional migration can be divided into its three components parts: polarity, motility and 

directional movement in order to understand the pathways that govern migrational control.  

 

1.4.3.1 Polarity  

Polarisation refers to the morphological changes that occur as a direct consequence of 

chemoattractant-mediated cellular activation generating a polarised phenotype with a 

flattened ‘leading edge’ at the up-gradient edge of the cell and a tail, or uropod, at the down-

gradient edge. Concomitantly, intracellular components exhibit their own, interior polarisation 

generating an internal gradient of signalling molecules causing the formation of distinct 

domains around the cell periphery.  
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The leading edge is characterised by the accumulation of F-actin [336] and the localisation of 

a number of proteins involved in cytoskeletal re-organisation and gradient sensing. These 

proteins include: PI3Kinase, particularly the p110γ isoform [337] and therefore it’s lipid 

product PIP3, the actin-nucleating protein Arp2/3 and the small GTPases Rac and Cdc42 

which play fundamental roles in both the formation of the leading edge as well as its location 

and subsequent stability [305]. Addition of a cell-permeable ester of PIP3, PIP3/AM, to human 

neutrophils induces cell polarisation with 70% of cells exhibiting a flattened morphology with 

a contracted tail. In addition, cells treated with PIP3/AM show a significant accumulation of F-

actin at the leading edge and significantly increase their speed of migration [338]. 

Conversely, the uropod is devoid of these proteins and instead contains proteins such as 

PIP2 and RhoA-GTPase (which is not detected at the leading edge). Simultaneous signalling 

originating from the leading edge and uropod have been shown to antagonize each other’s 

activity [339,340] ensuring signalling networks are compartmentalised, generating and 

subsequently maintaining a self-organising polarity in response to a chemoattractant 

gradient. An excellent example of this is the lipid product PIP3 which has been shown to 

promote the activity of Rac- and Cdc42-GTPase at the leading edge and RhoA-GTPase in 

the uropod [341]. In the case of PIP3, polarity is further maintained through the presence of 

the phosphatases PTEN and SHIP1 at the sides of the cell and in the uropod which de-

phosphorylate PIP3 to produce PI(4,5)P2 and PI(3,4)P2 respectively. Using SHIP1-/- and 

PTEN-/- knock-out mice, PTEN appears to be involved in the maintenance of the anterior-

posterior PIP3 gradient and is the main antagonist of PI3Kinase activity whilst SHIP1 is 

involved in the regulation of PIP3 production upon cell adhesion preventing the development 

of a top-down PIP3 gradient [281]. Membrane composition and integrity have also been 

shown to be essential in the maintenance of polarity; depletion of cholesterol disturbs 

membrane organisation and inhibits cell polarisation and migration by preventing the 

sustained activation of signalling molecules necessary for maintenance of the migratory 

phenotype [342]. 



48 
 

The importance of polarity, both morphologically and internally, in orchestrating migration has 

been demonstrated using neutrophils deficient in various proteins involved in the process. 

SHIP1 deficient neutrophils, which are not able to localise PIP3 to the leading edge, exhibit 

an extremely flattened and weakly polarised morphology with significantly reduced speed 

[343], inhibition of RhoA or its downstream effector Rho-associated kinase (ROCK), does not 

appear to affect motility of the cell body (therefore the leading edge) but prevents 

detachment of the uropod thereby reducing the overall speed of migration [311]. However, in 

light of this, polarity does not appear to be a response to a chemotactic gradient per se as 

neutrophils exposed to a uniform stimulus i.e. one that is constant across the length of the 

cell, still display a polarized morphology [344]. 

Overall, polarity arises from the action of a localised activator and a global inhibitor, giving 

rise to the characteristic polarised phenotype and providing the foundation for locomotion 

and gradient sensing. 

 

1.4.3.2 Motility (Chemokinesis) 

In order for a cell to become motile it must first achieve a number of parameters: forward 

propulsion at the leading edge, retraction at the rear with release of adhesive contacts and 

maintenance of membrane tension and integrity preventing cell lysis. 

Signals involved in the maintenance of polarity have been grouped into ‘frontness’ and 

‘backness’ signals which are generated at the leading edge and uropod respectively [345]. 

‘Frontness’ signalling refers to the protrusion of the leading edge driven by polymerized F-

actin, which generates the power required to force protrusions of the plasma membrane 

commonly known as pseudopods (finger like projections) and/or lamellipodia (sheet-like 

projections). ‘Backness’ signalling, on the other hand, refers to retraction and ‘de-adhesion’ 

of the uropod facilitating forward motility. Both of these pathways occur downstream of 

chemoattractant stimulation but are independently regulated. Frontness signalling is under 

the control of Gi coupled GPCRs acting through PI3Kinase, the Rho family GTPases Cdc42 
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and Rac1 and Arp2/3, which stimulates actin polymerization [346,347], see Figure 1.6. 

‘Backness’ signalling occurs downstream of G12/13 coupled GPCRs, activating RhoA and its 

downstream kinase ROCK, which mediates detachment of the uropod and contraction of 

myosin fibres [339] generating a centripetal force against which actin filaments can push in 

order to force protrusions of the membrane at the leading edge, see Figure 1.7. 

Actin polymerisation occurs at areas of dense PIP3 accumulation and is driven by the 

recruitment and activation of Arp2/3 by members of the WASP family, particularly 

SCAR/WAVE, which is itself dephosphorylated for activity by the small GTPase Rac [348]. 

The production of PIP3 in this context has been attributed to the action of the p110γ isoform 

of PI3Kinase and although this isoform appears to be dispensable for gradient sensing (see 

subsequent section), it is critical for the initiation of general motility or chemokinesis 

[264,349]. In addition, a role for Akt but not Cdc42 has also been demonstrated in generating 

motility [350]. 

In the uropod, RhoA-GTPase-/ROCK activation occurs following activation of p115Rho GEF 

by the Gα12/13 subunit of heterotrimeric G-proteins and results in the activation of the calcium 

dependent enzyme myosin light chain kinase (MLCK). This enzyme is responsible for the 

light chain phosphorylation of Myosin II initiating filament contraction and therefore retraction 

of the uropod. Neutrophils treated with either a myosin inhibitor or a MLCK inhibitor exhibit a 

dose dependent reduction in chemokinesis due to impaired uropod retraction [351]. ROCK 

has also been shown to be able to act directly on Myosin II [352] whilst MLCK can also be 

activated downstream of Ras, Mitogen Activated Protein Kinase Kinase (MEK) and ERK 

[353]. Rho-GTPase stabilizes actin within actin-myosin bundles through its action on LIMK-2 

and Cofillin [354] and enables detachment of adhesive contacts within the uropod [311]. 

The cell membrane also has a role to play in the regulation of motility. Apart from acting as a 

physical barrier, separating the interior and exterior of the cell and acting as a signalling 

platform, the membrane also generates an inward force mechanically restraining actin 

protrusions [355,356] and contributing to retractions of the uropod [357]. This allows both 
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‘frontness’ and ‘backness’ signalling to set the rate of motility: if one of these functions occurs 

at a slower rate than the other, it becomes the rate-limiting factor in speed of cell movement. 

 

1.4.3.3 Directional Sensing (Chemotaxis) 

Being able to sense the direction of a chemotactic gradient is the crux of chemotaxis, the 

process of generating polarity and chemokinesis are redundant without navigation. The exact 

mechanism of gradient sensing remains elusive, but is likely to involve integrated signalling 

from multiple pathways.  

To date the most appropriate model to accurately describe gradient sensing is proposed by 

King and Insall in 2009 [254]. Here, the Bifurcation and Bias model suggests that de novo 

synthesis of pseudopods rarely occurs and instead the splitting of existing pseudopods 

creates ‘new’ pseudopods in a receptor occupancy dependent manner; the most accurate 

pseudopods (those that sense the highest chemokine concentration) are maintained while 

others are retracted. As receptor localisation appears to remain uniform across the plasma 

membrane during migration e.g. C5a-Receptor (C5aR) [289], (although in steep gradients, a 

higher concentration of chemoattractant at the leading edge will provide greater sensitivity) 

the internal gradient of signalling molecules appears to provide the sensitivity required to 

sense direction.  

Production of ROS has been suggested as a mechanism by which cells collapse their less 

accurate pseudopods as inhibition of NADPH oxidase leads to the formation of multiple, 

sustained pseudopods within the leading edge [312]. Microtubule stability has also been 

shown to have a role in selecting and maintaining the accurate pseudopods allowing 

neutrophils to choose between protrusions to give direction [358]. In addition, murine 

neutrophils lacking the protein GIT2, the GEF that links GPCR signalling with NADPH 

oxidase recruitment, exhibit a loss in directional migration [313]. mTORC2 has also been 

shown to be involved in the generation of directional migration acting through PKBR1 [333]. 
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An essential role for PI3Kinase-δ has been observed in the control of directional migration by 

selectively amplifying the PIP3 signal in localised areas of the cell above that of the 

PI3Kinase-γ mediated PIP3 signal. However, inhibition of PI3Kinase-δ does not block the 

synthesis of F-actin or prevent adhesion to the substratum [263]. Furthermore, signalling 

pathways involved in the molecular control of migration are not unidirectional and there are 

positive feedback loops existing within the leading edge involving PI3Kinase, PIP3, multiple 

G-proteins including heterotrimeric G-proteins and small GTPases as well as NADPH 

oxidase/ROS. This governs directional migration, bringing together polarity, movement and 

direction. For example, PIP3 has been shown to be able to activate PI3Kinase [338], while 

Rac- and Cdc42-GTPase have been shown to be able to act upstream of Akt in governing 

cell motility [350]. 
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Figure 1.6 Signaling Networks at the Leading Edge of Migrating Neutrophils.  

Neutrophil migration is under the control of a dense network of signaling pathways which 

interconnect to deliver a migratory phenotype that is both robust and sensitive. Signaling at 

the leading edge originates from activation of surface receptors and results in the 

polymerization of actin filaments causing protrusion of the leading edge and forward 

motility. GPCRs; G-protein coupled receptor; R, receptor; PLCβ, phospholipase C-β; PIP2; 

phosphatidylinositol-2-phosphate; IP3, inositol-triphosphate; DAG, Diacylglycerol; PKC, 

protein kinase-C; ROS, reactive oxygen species; PIP3, phosphatidylinositol-(3,4,5)-

phosphate; SHIP1, phosphatidylinositol-3,4,5-triphosphate 5 phosphatase; PTEN, 

phosphatase and tensin homolog; PDK1, 3-phosphoinositide dependent kinase-1; GEFs, 

guanine nucleotide exchange factors; mTORC1, mammalian target of rapamycin complex-

2; NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase; WASP, Wiskott-

Aldrich syndrome proteins; Arp2/3, actin-related protein-2/3; LIMK1, LIM-Kinase-1. 
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Figure 1.7 Signaling Networks within the Uropod of Migrating Neutrophils.  

Retraction of the uropod occurs due to the contraction of myosin light chain mediated 

though the activation of RhoA and myosin light chain kinase (MLCK) filaments. Uropod 

signaling originates from interaction of G-protein coupled receptors (GPCRs) coupled to the 

Gα12/13 subunit. GEFs, guanine nucleotide exchange factors; RhoA, RhoA-GTPase; ROCK, 

Rho-associated Kinase; LIMK2, LIM-Kinase-2; ERK, extracellular-signal-related protein 

kinase; MEK, mitogen-activated protein kinase kinase; Ras, Ras-GTPase 
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1.5 Plasma Membrane Structure 

Biological membranes, consisting mainly of phospholipids, such as phosphatidylcholine (PC), 

glycolipids such as sphingomyelin (SM) and cholesterol, provide a physical barrier 

distinguishing the cell interior from the extracellular environment. Transport across the lipid 

membrane is a tightly controlled process made possible by the presence of proteins 

embedded within the fluid lipid structure. 

 

1.5.1 Phospholipids 

Phospholipids (PLs) are a major class of membrane lipid. The most common form is 

composed of a glycerol backbone attached to a phosphorylated alcohol and two esterified 

fatty acid chains, creating an amphipathic molecule with both a hydrophilic, polar head group 

and a hydrophobic tail.  Once in the bi-layer conformation, PLs are capable of interaction with 

aqueous media found in the extracellular environment or cellular cytosol whilst 

simultaneously forming a hydrophobic barrier.  

Cellular PL biosynthesis begins with the synthesis of phosphatidate which then reacts 

successively with DAG and an alcohol (one of which must be activated by cytidine 

triphosphate [CTP]) in a multi-step process forming the complete PL. Some of the more 

common PLs found in cell membranes include PC which accounts for 50% of phospholipids 

in eukaryotic membranes [359], Phosphatidylethanolamine (PE), Phosphatidylinositol (PI), 

Phosphatidylglycerol (PG), Phosphatidylserine (PS) and SM. See Figure 1.8 for the 

chemical structure of these molecules.  
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Figure 1.8 Structure of Common Membrane Lipids. 

Chemical structure of lipid species commonly found in eukaryotic membranes. 

CH, Cholesterol; PS, Phosphatidylserine; PC, Phosphatidylcholine; PI, 

Phosphatidylinositol; PG, Phosphatidylglycerol; PE, Phosphatidylethanolamine; 

SM, Sphingomyelin. 
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The main site of phospholipid biosynthesis is the endoplasmic reticulum; however, synthesis 

also occurs within the golgi body and mitochondria [359], see Figure 1.9. Newly synthesized 

phospholipids are used to populate various cellular membranes including but not limited to, 

the plasma membrane and endosomes. As the cytosol is an aqueous solution, intracellular 

transport occurs via the endocytic pathway in the form of small membrane bound vesicles 

produced through budding of the endoplasmic reticulum and/or golgi body, or with the help of 

transport proteins [359,360]. Upon reaching the plasma membrane, PLs are distributed 

asymmetrically throughout the structure with SM and PC restricted to the exoplasmic face 

and PS and PE restricted to the cytosolic leaflet (the leaflet of the bi-layer that interacts with 

the cytoplasm) [361]. Asymmetry is achieved through the action of membrane-bound lipid 

translocases, which transport lipids across the lipid bi-layer in both an adenosine-

triphosphate (ATP) - dependent and –independent manner. Enzymes responsible for this 

movement include the P4 subfamily of P-type ATPases such as aminophospholipid 

translocase, responsible for the restriction of PC and PS to the cytosolic leaflet and 

Scramblase, a less specific translocase that has been shown to be important in the exposure 

of PS on the exoplasmic face during apoptosis [362], see Figure 1.10. 
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Figure 1.9 Differential Membrane Composition of Organelles in the Steady State. 

Membrane phospholipid (PL) composition is shown as a percentage of total PL in mammals 

(blue bars) and yeast (light blue bars) with sterol content, expressed as a molar ratio of 

cholesterol (CHO) or ergosterol (ERG) to PL, is also shown as a measure of membrane 

sterol content. Sites of synthesis are shown (central panel) for major phospholipids (blue) 

and organelle recognition and signalling pathways (red). Most lipid synthesis occurs in the 

endoplasmic reticulum (ER) and includes synthesis of Phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), Phosphatidylinositol (PI), phosphatidylserine (PS), 

phosphatidic acid (PA), Ceramide (Cer) galactosylceramide (GalCer), cholesterol and 

ergosterol. The major exceptions are Sphingomyelin (SM) and complex glycosphingolipids 

(GSLs) which are synthesized in the golgi lumen. Some synthesis of PC also occurs within 

the golgi. Lipids populating the mitochondrial membrane are synthesized within the 

organelle. R, remaining lipids; TG, triacylglycerol; PI(3,5)P2, CL, cardiolipin; BMP, 

bis(monoacylglycerol)phosphate); ISL, inositol sphingolipid; Sph, sphingosine; DAG, 

diacylglycerol; phosphatidylinositol-(3,5)-bisphosphate; PI(4,5)P2, phosphatidylinositol-(4,5)-

bisphosphate; PI(3,4,5)P3, phosphatidylinositol-(3,4,5)-triphosphate; PI4P, 

phosphatidylinositol-4-phosphate; S1P, sphingosine-1-phosphate. Taken directly from [359]. 
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Figure 1.10 Membrane Asymmetry in Intracellular Compartments. 

(A) Asymmetry within the plasma membrane occurs through P4-ATPase –dependent 

transport of Phosphatidylserine (PS) and Phosphatidylethanolamine (PE) to the cytosolic 

leaflet of the plasma bilayer whilst little transport of sphingomyelin (SM) and 

phosphatidylcholine (PC) exist confining these species to the outer (or exoplasmic) leaflet (B) 

Little asymmetry occurs within the endoplasmic reticulum which non-specific transport 

occurring resulting in near symmetrical distributions across the bilayer (C) Asymmetry across 

the golgi bilayer is the result of P4-ATPase transport of phosphatidylserine (PS) and 

phosphatidylethanolamine (PE) to the cytosolic face. SM is produced on the luminal leaflet 

and remains there due to the lack of transporters within the membrane structure. Taken 

directly from [359]. 
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The composition of different phospholipid species within the plasma membrane of 

neutrophils is characteristic of neutrophils. This is due to the fatty acid structure located at 

positions sn1 and sn2 of phosphatidylcholine (PC). Characteristically, neutrophils have been 

shown to be depleted in arachidonoyl-containing PC species common in other cell types 

instead containing a greater amount of the 1-alkyl-2-acyl species with the fatty acid located at 

position sn2 to be joined to the head group via an ether- rather than an ester-bond. 

The primary role of membrane phospholipids is their barrier function, but they also have a 

role in cellular metabolism, by releasing large quantities of ATP and are important signalling 

molecules involved in many signal transduction pathways. The phosholipase-A2 (PLA2) 

family of enzymes cleave the fatty acid at the sn2 position of many membrane-bound 

phospholipids producing arachidonic acid and lysophospholipids. Arachidonic acid 

metabolism leads to the production of pro-inflammatory mediators such leukotriene B4 

(LTB4), which propagate the inflammatory response and attract more cells to the site of 

infection [254]. Other phospholipids such as PS have a regulatory role in ROS production 

[363] and are also essential in the activation of other enzymes such as phospholipase-C 

(PLC) [363] which is required for the release of calcium ions from the endoplasmic reticulum, 

an important second messenger in propagating the signalling cascade. 

 

1.5.2 Glycolipids 

Glycolipids, such as sphingomyelin, are a class of membrane lipids derived from sphingosine 

that consist of a sphingosine backbone linked to a single saturated fatty acid chain and 1 or 

more carbohydrate units such as glucose or galactose. It is the presence of the sugar units 

within the molecule that gives glycolipids their characteristic structure and their asymmetrical 

distribution across the membrane favouring the luminal leaflet. Orientated in this manner, the 

carbohydrate moiety functions as a recognition molecule and provides membrane stability. 

Within the membrane, glycolipids pack together much tighter than phospholipids due to the 

presence of a fully saturated fatty acid chain which are therefore devoid of the ‘kinks’ 
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commonly seen in the fatty acid chains of phospholipids, caused by the presence of C=C 

double bonds. This reduces the mobility of the membrane in glycolipid rich areas and is 

thought to further concentrate signalling molecules. These areas are known as lipid rafts and 

will be discussed in subsequent sections.  

 

1.5.3 Membrane Cholesterol 

Cholesterol is the major sterol species found in vertebrate membranes. Although cholesterol 

falls within the lipid class of molecules, it has a very unique structure consisting of a fatty acid 

chain and a hydroxyl group separated by 4-linked hydrocarbon rings providing the bulk to the 

structure (see Figure 1.8). Cholesterol is an important precursor to a number of biologically 

important substances including bile acids, important for absorption of dietary lipids, and 

steroid hormones such as testosterone. Within the plasma membrane, cholesterol is known 

to have an important role in regulating both membrane permeability and fluidity through 

association with the acyl chains of other membrane lipids [364], particularly glycolipids. 

Cholesterol is also an integral part to other biological process such as caveolae- and clathrin-

dependent endocytosis, the process by which external material in internalized utilizing 

membrane pits coated with calveolin or clathrin respectively which then bud into the cell from 

the plasma membrane forming specialized coated vesicles within the cytoplasm [365]. 

Cholesterol biosynthesis occurs mainly in the liver however, a limited number of other 

organs, such as the brain, are capable of producing cholesterol [366]. Cholesterol 

biosynthesis begins with the conversion of 5-hydroxy-3-methylglutaryl-coenzyme A (HMG-

CoA) to Mevalonate by the enzyme HMG-CoA Reductase, the rate-limiting step in 

cholesterol biosynthesis. Mevalonate is then further metabolised in a multistep process 

resulting in the production of cholesterol and a number of prenyl groups used in the post-

translational modification of small GTPases such as Ras and Rho family members [367]. In 

addition to hepatic biosynthesis, cholesterol can also be absorbed though the intestine from 

the diet, however, increased dietary uptake will attenuate de novo cholesterol biosynthesis in 
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the liver through cholesterol-mediated inhibition of HMG-CoA Reductase. This negative 

feedback loop ensures homeostasis is maintained regulating the availability of cholesterol for 

incorporation into membranes or for further metabolism.   

Due to the amphipathic nature of the cholesterol molecule, cholesterol remains insoluble in 

the blood and must therefore be transported around the body by carrier proteins known as 

lipoproteins. Lipoproteins are classified according to the density of the protein: high-density 

lipoproteins (HDL), intermediate-density lipoproteins (IDL), low density lipoproteins (LDL) and 

very low-density lipoproteins (VLDL). These carrier proteins not only solubilise the lipid 

allowing transport but also contain cell-targeting moieties. Uptake of cholesterol occurs 

through expression of HDL and LDL receptors on the surface of target cells. 

 

1.5.4 Membrane Fluidity and Lipid Rafts 

Together, phospholipids, glycolipids and cholesterol are all important molecules in regulating 

membrane fluidity including the ability of proteins to move laterally within the bi-layer. Both 

the length of the fatty acid chain, their degree of saturation and cholesterol content contribute 

to membrane fluidity and subsequently the rate of lateral diffusion within the membrane. 

Long, saturated fatty acid chains with high level of interaction with cholesterol favours a more 

rigid membrane whereas short, unsaturated fatty acids with little interaction with cholesterol 

favours a more fluid state [368].  

Overall, membrane fluidity is not thought to be continuous throughout the entire membrane 

structure. Instead, there exist small (26-70nm) lipid-ordered zones within the more fluid, 

liquid dis-ordered structure. These liquid-ordered zones, often termed rafts, are detergent 

insoluble glycolipid and cholesterol rich areas of the membrane that are thought to be 

present in the cell membranes at all times [369]. Upon stimulation, rafts are thought to 

aggregate, increasing in size, becoming visible by light microscopy [304] and forming ‘large’ 

areas of the membrane within an otherwise fluid structure. Aggregated rafts establish a 



62 
 

platform from which signal transduction can occur, bringing molecules into the correct 

juxtaposition.  

Little work exists on the effects of age on neutrophil membrane composition and fluidity. 

Larbi et al  found the cholesterol content of lipid rafts present in the plasma membrane of T 

cells was significantly increased with age and that membrane fluidity was decreased as a 

consequence [370] however, Alvarez et al, remain the only study to date who consider the 

effects of age on neutrophil plasma membrane composition. These authors found an age 

related decrease in the cholesterol: phospholipid ratio in neutrophils, the result of a decrease 

in free cholesterol and in increase in phospholipid content in neutrophils from rat peritoneum. 

This also correlated with an observed increase in membrane fluidity [371]. However, this 

work was carried out in neutrophils isolated from rat peritoneum and therefore further 

research is required before absolute conclusions can be drawn with regard to human cells. 
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1.6 Effects of Age on Neutrophil Chemotaxis 

Age related changes in neutrophil migration have been reported since 1978, however there 

is still no consensus as to the influence of age on chemokinesis or chemotaxis.  A number of 

groups have reported no effect for age [150,372-374] while an equal number report reduced 

migratory function with increasing age [162,375-379], see Table 1.6. Of the studies 

describing no effect for age on neutrophil migration, the average age of older adults was 

commonly in the late 70s to 80s. Alonzo-Fernandez et al demonstrated migratory dynamics 

in healthy centenarians that were comparable to those observed in healthy younger adults 

(aged 25 - 35 years) [378]. It is however conceivable that no age-related changes in 

migration were observed in these studies due to the successful ageing of participants 

included in the study. Phair et al used an old cohort aged 65 to 85 years [372], therefore 

including a more diverse older cohort with respect to ageing. However the young cohort used 

in this study ranged from 27 – 43 years and although no data currently exists on the effects 

of age on migratory dynamics across the lifespan, changes may not be observed when 

young and middle aged groups are combined. In addition, Biasi et al  used the SENIEUR 

protocol to select their older adults [373], a protocol designed in 1984 by Ligthart et al [380] 

to standardize the health status on older adults being included in gerontological research by 

distinguishing extremely healthy older adults from those considered to be ‘almost healthy’ in 

order to eliminate any co-morbidities. However, this means that the older subjects included in 

this study were not representative of the general population and therefore results cannot be 

applied generally. 

A number of studies presented found neutrophil migratory dynamics to be significantly 

reduced with increasing age. This collection of studies includes both in vitro and in vivo 

studies and includes the effect of ageing in humans and rodents. There are a greater number 

of studies finding reduced migration with increasing age compared to those observing no 
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differences while also including studies utilising the SENIEUR protocol as well as assessing 

migration in cohorts with an average age skewed towards older participants. 

The majority of the studies observing both no change and significant reductions in migratory 

dynamics have done so using a modified Boyden chamber. This experimental set-up 

requires neutrophils placed in an upper chamber to migrate across a filter, which itself could 

affect migration, towards a chemotactic source placed in a lower chamber. Studies use filters 

of varying pore sizes (0.8μm-5μm) making conclusive arguments difficult to draw. In addition, 

the limitation of the Boyden chamber is principally that it assesses chemokinesis and not 

chemotaxis. Wenisch et al are the only group to have considered the effects of ageing on 

chemokinesis and chemotaxis as separate parameters [161]. In response to fMLP, 

chemokinesis appeared to be maintained while a trend toward reduced chemotaxis was 

observed in the elderly. However, this study utilised the under-agarose assay and can only 

provide rough estimations of cell movement and cannot comment on individual cell migratory 

behaviour. 

As migration relies upon a complex signalling network in order to regulate a process that is 

both robust and extremely sensitive, it is conceivable that signal transduction itself may be 

altered as a consequence of increasing age thus compromising migration.  Expression of 

triggering receptor expressed on myeloid cells-1 (TREM-1) and TLR2 and TLR4 remain 

unchanged with age [162]. However in the basal state TREM-1 has been shown to be 

present in the lipid rafts in the leading edge of neutrophils from elderly donors which cannot 

be further increased upon stimulation [381], implying dysregulated signal transduction as 

opposed to altered receptor expression as a mechanism for distorted migratory function in 

the elderly. This has been further explored by Lipschitz et al who demonstrate a significant 

reduction in the generation of a number of second messengers including IP3, DAG and PIP2 

and Ca2+ in neutrophils from the elderly [163]. In addition, neutrophils from elderly donors 

exhibit reduced actin polymerisation in response to fMLP stimulation [382]. To date, 

alterations in signalling pathways have not been causally related to aberrant migratory 
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phenotypes of the healthy elderly. However, neutrophils isolated from patients with COPD, a 

chronic inflammatory disease common in the elderly population in which neutrophils exhibit 

aberrant migration has been attributed to aberrant PI3Kinase signalling [383], suggesting that 

altered neutrophil migration may indeed be a feature of ageing and may be driven by 

dysregulated signal transduction. 
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 Table 1.6 Current Literature Examining the Effects of Increasing Chronological Age on Neutrophil Migration 

 
fMLP, f-Met-Leu-Phe; C5a, Complement Protein 5a; KC, keratinocyte chemoattractant; ZAP, zymosan activated plasma, GM-CSF, 
granulocyte/macrophage-colony stimulating factor; LPS, lipopolysaccharide, PMN, polymorphonuclear neutrophils; mo, months old 
 
* Utilized SENIEUR Protocol 
 
Details of each study are presented as completely as possible based on information available in each publication 

 Author (Year) Method Chemotactic Factor Primed Young 

n (mean; range) 

Old 

n (mean; range) 

Unchanged Phair et al (1978) Modified Boyden Chamber Insulin Generated 
Chemotactic Factor 

No 20 (27 – 43) 70 (65-88) 

 Biasi et al (1996) Method not Reported fMLP; Zymosan No * 25 (27.7 ± 2.59; 
22 - 34) 

* 25 (76.56 ± 
7.36; 69 – 100) 

 MacGregor et al (1990) Modified Boyden Chamber with 
51Cr labelling of neutrophils; 5µm 

filters 

Homologous C5a No 10 (25.5) 10 (78.9) 

 Wenisch et al (2000) Under Agarose fMLP No 11 (27 ± 5; 21 - 
36) 

11 (71 ± 7.5; 62 – 
83) 

Reduced Niwa et al (1989) Under Agarose 
Boyden; filter size not reported 

10-7M fMLP; 10-7M 
PAF; ZAP 

No 
 

30 (19 – 48)  

 Whyte et al (1993) Boyden; 5µm and 0.8µm filter fMLP; 10% ZAP No Isolated PMN aged 24 hours in culture 
 Izgüt-Uysal et al (2003) 

(Rat Model) 

Boyden 3µm filter ZAP No 20 Rats aged between 2 and 24 
months 

 Fulop et al (2004) Boyden; filter size not reported GM-CSF; LPS; fMLP Yes (90min GM-
CSF) 

Cohort details not reported 

 Alonso-Fernández et al 
(2008) 

Boyden; filter size not reported 10-8M fMLP No * 30 (28; 25 – 35) * 30 (69; 65 – 75) 

 Brubaker et al (2003) 
(BALB/c Mouse Model) 

In vivo recruitment to site of KC 
injection 

1100-1000pg KC In vivo 
inflammatory 
environment 

12 (3-4 mo) 12 (18-20 mo) 

66 
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1.7 Potential Therapies 

1.7.1 Anti - TNFα therapy 

Potential interventions to improve aberrant neutrophil migration in the healthy elderly are 

severely lacking. Recent evidence has shown that Adalimumab, an anti-TNFα monoclonal 

antibody capable of neutralising TNFα currently used in the treatment of RA, is capable of 

restoring the migration of neutrophils isolated from the joints of RA patients to that 

comparable with healthy, disease-free patients [384]. Although this highlights the importance 

of TNFα in regulating neutrophil chemotaxis and points to a role for inflamm-ageing in driving 

defective neutrophil migration in older donors, TNFα is an essential cytokine involved in 

orchestrating the immune response and therefore neutralisation would likely increase the 

susceptibility of otherwise healthy older adults infectious diseases. 

 

1.7.2 Statin Therapy 

Statins are a class of drugs commonly prescribed to patients with hypercholesterolemia in 

order to lower serum cholesterol. This class of drugs includes 5 members, atorvastatin, 

fluvastatin, pravastatin, rosuvastatin and simvastatin, all of which act on the mevalonate 

pathway to competitively inhibit HMG-CoA reductase, preventing the conversion of HMG-

CoA to Mevalonate, a precursor to cholesterol [385].This attenuates cholesterol biosynthesis 

and is associated with a reduction in total serum as well as low-density lipoprotein 

cholesterol. In 2011, simvastatin was the most commonly prescribed drug in the UK with a 

total of 41.2 million prescription dispensed throughout the year [386]. In recent years, the 

pleiotropic effects of statins have received significant attention with statins being able to 

reduce the risk of developing a number is diseases including dementia [387], lung cancer 

[388] and cardiovascular disease [389]. Of relevance to this thesis, a number of retrospective 

cohort studies and meta-analysis have also demonstrated the ability of statins to confer a 

survival advantage in older adults with pneumonia reducing rates of morbidity and mortality 
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[390-396]. These benefits are most apparent during the early stages in infection, which 

coupled with the knowledge that statins do not confer a survival advantage to patients with 

influenza [397], would suggest that in this situation statins may be acting on the innate 

immune response and may be able to modulate neutrophil anti-microbial function.  

A number of studies have demonstrated the ability of statins to modulate neutrophil migration 

in both human and animal studies [398-401] by inhibiting the activity of RhoA-GTPase [398], 

post-translational modification of which occurs downstream of the mevalonate pathway [402]. 

Statins have also been shown to inhibit both MAPK activity and NF-κB-associated signalling 

leading to a reduction in the production of inflammatory mediators such as TNFα; IL-1β; IL-6 

and IL-8 [402]. Levels of CRP have also been shown to be sensitive to modulation by statins 

[393,403]. 

Based on current evidence, statins present a likely candidate for therapeutic intervention to 

modulate migration in the healthy elderly having been shown to affect multiple pathways 

involved in the regulation of migration a concept that therefore needs further exploration. 

 



 

 

 

 

 

 

 

 

 

CHAPTER 2 

 

 

METHODS 

  



70 
 

2.1 Participants 

Healthy volunteers were recruited from staff and students of the University of Birmingham 

and staff at Selly Oak and Queen Elizabeth Hospitals, alumni at the University of 

Birmingham, relatives of patients admitted into the Lung Investigation Unit, Queen Elizabeth 

Hospital and the Birmingham 1000 Elders Cohort, a research cohort of healthy older people 

aged over 60 years. To be considered “healthy” subjects were non-smokers, had no active 

symptoms or physical signs of acute or chronic disease (as assessed by attending 

physicians) and were medication free. Ethical approval was obtained and all volunteers gave 

informed consent prior to participation (REC 10/h1211/16) as per GCP guidelines.  

Initially, participants were limited to younger (mean age 28 years; range 20-35years) or older 

(mean age 70 years; range 65-91 years) volunteers, but studies were then expanded to 

include subjects across a broad age range (from age 20 – 91). 

 

2.2 Neutrophil Isolation 

Human neutrophils were isolated from the peripheral blood of healthy donors and separated 

on a Percoll density gradient (pH 8.5-9.5; Sigma Aldrich) as described previously [138]. 

Briefly, whole blood was collected into sterile vacutainers coated with Lithium heparin (BD 

Biosciences) and mixed gently to prevent coagulation. Whole blood was then mixed with 2% 

Dextran (Amersham Bioscience) in a 6:1 ratio to sediment erythrocytes. The leukocyte 

fraction was then removed and layered on to a discontinuous Percoll gradient consisting of 

56% Percoll overlaid onto 80% Percoll. Gradients were then centrifuged at 220 x g for 20 

minutes at room temperature and granulocytes were removed from the interface between 

56% and 80% Percoll. Isolated granulocytes were then washed in sterile phosphate buffered 

saline (PBS; Sigma Aldrich) and subsequently re-suspended at 2x106/ml in sterile RPMI-

1640 (with sodium bicarbonate and L-glutamine) (Sigma Aldrich). Sample purity was 

assessed using a commercial Giemsa statining kit (Reastain Quick-Diff Kit, Gentaur Europe) 
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and were routinely ≥ 95% neutrophils and neutrophil viability was above 98% as assessed by 

trypan blue exclusion. 

 

2.3 Migratory Dynamics 

Migratory parameters were assessed using an Insall Chamber [404] an improved chemotaxis 

chamber (Weber Scientific International Ltd, Teddington) as described previously [335]. 

Briefly, Bovine Albumin Fraction V (Sigma Aldrich) was added to a final concentration of 

1.125% v/v to freshly isolated neutrophils re-suspended at 5x106/ml. Neutrophils were then 

allowed to adhere to an albumin coated coverslip (22x22mm, Surgipath Medical Industries 

Inc. Europe) previously cleaned by acid washing (0.4M H2SO4) for 20 minutes at room 

temperature. Once neutrophils were adhered, the coverslip was inverted and placed onto an 

Insall chamber pre-filled with RPMI 1640. RPMI was then replaced with either fresh RPMI or 

a chemotactic stimulant (see chapter 3 for doses of stimulants used). Gradients were allowed 

to develop for up to 1 minute prior to assessment of migration.  

For investigation of the role of PI3Kinase signalling, neutrophils were pre-incubated in the 

presence of either the non-selective PI3Kinase inhibitor LY294002 (Selleck, USA 1nM); 

PI3Kinase p110α inhibitor (PIK-75, [ChemieTek; CT-PIK75] 7.8nM), PI3Kinase p110β 

inhibitor (TGX-221 [Selleck Chemicals; S1169] 10nM); PI3Kinase p110γ inhibitor (AS-

252424 [Selleck Chemicals; S2671] 33nM); PI3Kinase p110δ inhibitor (CAL-101 [Selleck 

Chemicals; S2226] 65nM). For investigation into the effects of statins on cell migration, cells 

were pre-treated Simvastatin (Sigma Aldrich; 1nM). All compounds were pre-incubated with 

neutrophils for 40 minutes prior to loading onto the Insall chamber. All incubation times 

included 20 minutes in which cells are allowed to adhere to an albumin-coated coverslip. 

Incubation times selected were based on pilot data collected by Dr. Elizabeth Sapey, prior to 

initiation of this project. 
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2.3.1 Chemo-attractant dose responses 

To determine the optimum strength of chemotactic signal which would induce the most 

efficient migration over the 12-minute period, dose response experiments were conducted in 

the presence of RPMI-1640 alone (negative control) followed by increasing doses of each 

chemo-attractant (see Table 2.1) 

Initial migration studies: stimulants selected for use in studies of migration and ageing were 

100nM Interleukin 8 (IL8 [rhCXCL8/IL8] R&D Systems); 100nM Growth Related Oncogene α 

(GROα [rhCXCL1/GROα] R&D Systems); 10nM N-Formyl-Methionyl-Leucyl-Phenylalanine 

(fMLP, Sigma Aldrich); 10nM Leukotriene B4 (LTB4, Sigma Aldrich) and 1nM complement 

protein 5a (C5a, Sigma Aldrich). 

 

2.3.2 Treatment with PI3Kinase Inhibitors 

Concentrations of LY294002, a broad-spectrum PI3Kinase inhibitor, and all isoform specific 

PI3Kinase inhibitors (PIK75, TGX-221, AS252424 and CAL-101) used during migration 

studies corresponded to IC50 values (see Table 2.2). 

 

2.3.3 Assessing migratory dynamics 

Migratory dynamics were assessed using real-time video microscopy using a Zeiss Axiovert 

200 microscope with HAL100 camera or a Leica DMI6000B with DFC360FX camera, 

capturing 36 frames over a 12 minute period with a 20 second delay between frames. 

Previous work has shown this duration of film provides similar migratory pathway data in 

comparison to longer filming times (30 minutes). A 20 second delay was optimal for studying 

migration between frames (personal communication, Dr. Elizabeth Sapey). Analysis was 

performed using vector analysis and ImageJ software (Wayne Rasband, NIH, Bethesda) on 

10 randomly assigned cells per experiment. Cells were randomly selected by dividing image 

fields into equal segments and one cell tracked from each segment. 
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Neutrophil migration was assessed measuring 4 different parameters. Firstly, the average 

speed of movement (or chemokinesis) was measured from the distance travelled between 

frames in any given direction over time and subsequently expressed as µm/minute. All 

lengths and distances were initially recorded in units of pixels and converted to μm with 

reference to the resolution of the digital image itself, and the image magnification using a 

stage graticule (Electron Microscopy Sciences, Hatfield, USA). 

 

Secondly, directional migration or chemotaxis, was measured as the average speed of 

migration in a consistent direction relative to the orientation of the chemotactic gradient, also 

expressed as µm/minute. Due to the orientation of the stage, the stable chemoattractant 

gradient was always formed in the y direction [404], therefore, only distance travelled in the y 

direction over time was included in calculations of chemotaxis. 

 

Thirdly persistence, for each frame  the orientation of the cell (as a line from tip to tail) was 

compared to the previous orientation and calculated by the cosine of the angle between 

cellular orientations in consecutive frames, expressed  with reference to the y direction and 

expressed as a score between 0 to 1. Cells that tend to move in a straight line, or cells that 

execute slow changes in direction have a high persistence value (~1); whereas cells that 

move randomly and rapidly change direction do not (~0).  

Finally chemotactic index - the accuracy of directional orientation of each cell relative to the 

chemotactic gradient throughout the duration of the film, calculated using the cosine of the 

angle between the cells direction and the orientation of the chemo-attractant gradient at each 

time from forming a vector analysis of movement. This parameter is expressed in a 

comparative scale ranging from -1 to 1 where 1 represents movement directly towards the 

chemo-attractant in all frames and -1 represents movement directly away from the chemo-

attractant source in all frames.  
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Table 2.1 Chemoattractant Dose Responses 

Doses used to determine the concentration of each 

chemoattractant capable of inducing the most efficient migration 



75 
 

 

  

Table 2.2 PI3Kinase Inhibitor Concentrations 

PI3Kinase Inhibitor concentrations used in 
migration studies 
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2.3.4 PI3Kinase Isoform selective Inhibitor cytotoxicity 

The PI3Kδ inhibitor used in this study is currently in clinical trials to be used as a 

pharmacological intervention in patients with B cell malignancies due to its ability to induce 

apoptosis in these cells [405]. We therefore assessed neutrophil viability following incubation 

with all isoform selective inhibitors used in this study to determine the effects on neutrophil 

lifespan. Following isolation, neutrophils were incubated with isoform selective inhibitors for 

40 minutes at room temperature and were then pelleted (250 x g, 4°, 5 minutes) and re-

suspended in 1x binding buffer (0.1M HEPES [pH7.4], 1.4M NaCl, 25nM CaCl2) before 

incubation with mouse anti-human Annexin-v (1:50 dilution, BD Biosciences), a marker of 

early apoptosis, for 10 minutes on ice. Sytox Blue (1:8000, Invitrogen, UK), a nuclear stain 

that is excluded from healthy cells, was then added to the cell suspension and cell viability 

measured by Flow Cytometry (CyAN, Beckman Coulter) counting 10,000 events to reduce 

sample variability. Cell viability was determined by the percentage of cells that remained both 

AnnexinV and Sytox Blue negative following 40-minute incubation with PI3K isoform 

selective inhibitors. 

 

2.4 ELISA for neutrophil elastase activity 

Neutrophil elastase (NE) activity was determined by quantifying the amounts of the elastase-

specific fibrinogen breakdown product, AαVal360, in the plasma from both young and old 

volunteers. AαVal360 quantification was determined by competition ELISA as described 

previously [406]. Briefly, rabbit anti-sera raised against the free carboxyl group of AαVal360 

was mixed with plasma samples at a 1:2500 dilution and incubated overnight at 4°C. This 

was then added into a 96-well tissue culture plate pre-coated with neutrophil elastase 

cleaved fibrinogen.  Any free AαVal360 antibody remaining in the antisera binds the degraded 

fibrinogen and is detected and quantified using a europium-conjugated anti-rabbit IgG 

secondary antibody. Individual samples were assessed in triplicate with the average result 

quoted per person to reduce intra-sample variability. 
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2.5 Neutrophil Phagocytosis (pHrodo) 

Neutrophil phagocytosis was measured using a commercially available assay and as per 

manufacturer’s instructions. Briefly, neutrophils were isolated as described in section 2.2 

and re-suspended at 1x106/ml in RPMI-1640 medium. 100ul aliquots were then incubated 

with either Staphylococcus aureus (S.aureus) or Escherichia coli (E.coli) bioparticles 

conjugated to the fluorescent dye pHrodo (Invitrogen Life Technologies, California, USA), 

which fluoresces at low pH i.e. once the particles, have been internalised into the 

phagosome. Un-opsonised particles were added at a final concentration of 0.33mg/ml for 

either 60, 45 or 30 minutes at 37°C. An equal volume of neutrophils were also stimulated 

with S.aureus or E.coli bioparticles and kept on ice for 60 minutes as a negative control. 

Following stimulation samples were washed (250 x g, 4°C, 5 minutes) in 2% cold PBS/BSA, 

transferred to cytometric tubes for analysis and quantified by flow cytometry (CyANADP, 

Beckman Coulter). Data were expressed as a phagocytic index, as described previously 

[138]: Phagocytic Index = % of phagocytosing neutrophils X mean fluorescence intensity 

(MFI). Un-opsonised particles were specifically chosen to more closely replicate the 

pulmonary environment in which non-opsonized phagocytosis predominates as the airways 

are not a particularly serum-rich environment [407]. 

 

2.6 Reactive Oxygen Species Production 

Neutrophil reactive oxygen species (ROS) production was measured in quiescent or 

stimulated neutrophils and quantified using a luminol-based assay which detects both 

extracellular and intracellular free radicals [408]. Freshly isolated neutrophils were re-

suspended at 1x106/ml in Hanks Balanced Salt Solution (HBSS: Gibco Invitrogen; 12.61mM 

CaCl2, 4.93mM MgCl2, 4.07mM MgSO4 and Phenol Red Free). 1x105 neutrophils were then 

plated out into 96-well white plates containing 25ul luminol (working concentration 100uM) 

and 75ul 1x HBSS. Neutrophil were then stimulated with 2.5μM fMLP or 1.25μM IL8 using 

25nM PMA a positive control. ROS production was measured at 1 minute intervals for 60 
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minutes using a Berthold luminometer and ROS generation calculated as area under the 

curve.  

 

2.7 Flow Cytometry 

2.7.1 Antibody Titration 

All antibodies used for flow cytometry were titrated to determine a minimum concentration 

that would saturate expression of all target molecules. Table 2.3 shows concentrations used 

for each titration, the maximum concentration used for each antibody titration was that 

suggested in the manufacturer’s instructions. Freshly isolated neutrophils or those in whole 

blood were stained for target molecules as described in subsequent sections (2.7.2 and 

2.7.3). CD63 has been described as an activatory receptor on neutrophils [409], therefore 

expression was measured in whole blood to avoid artificially high expression levels due to 

cellular activation during the isolation process. 

 

2.7.2 Neutrophil Degranulation 

Surface and internal expression of primary granule marker CD63 was measured on 

neutrophils stained in whole blood following red cell lysis. 100μl whole blood collected in 

Lithium heparin vacutainers (BD Biosciences) was washed twice (250 x g, 4°C, 5 minutes) in 

1%PBS/BSA to remove autologous plasma and re-suspended in 1% PBS/BSA. Samples 

were then incubated with relevant antibodies for 20 minutes in the dark on ice to allow 

relevant antibody binding. Post-incubation, samples were washed twice (250 x g, 4°C, 5 

minutes) in cold 1% PBS/BSA and then red cells were lysed using FACS lysing solution (BD 

Biosciences) for 10 minutes at room temperature. Samples were then washed twice (250 x g, 

4°C, 5 minutes) in cold 1% PBS/BSA and subsequently fixed and permeabilised using a 

commercially available kit according to the manufacturers instructions (Fix and Perm, 

Invitrogen-Life Technologies). During permeabilisation, relevant antibodies were added 
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simultaneously to facilitate the detection of internal epitopes and incubated for 30minutes in 

the dark on ice. Samples were then washed twice in cold 1%PBS/BSA and transferred to 

cytometric tubes for analysis. Neutrophil degranulation was assessed by flow cytometry 

(Accuri C6, BD Accuri). 

Antibodies were sourced as follows: mouse anti-human CD63-PE 1:20 dilution (Invitrogen – 

Life Technologies, clone #: CLB-gran/12 (CLB-180). Isotype control antibodies were sourced 

as follows: IgG1-PE (BioLegend, clone #: MOPC-21). 
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Table 2.3 Antibody Titrations 

Dilution of all antibodies used to determine a minimum 
concentration that would saturate expression of all target 
molecules 

Antibody Titration
Selected 

Dilution

CXCR1 1:100; 1:50; 1:25; 1:17 1:25
CXCR2 1:100; 1:50; 1:25; 1:17; 1:10 1:17
FPR1 1:50; 1:25; 1:12.5; 1:8.3 1:8.3
C5aR 1:50; 1:25; 1:12.5; 1:8.3 1:12.5
BLT1 1:50; 1:25; 1:12.5; 1:8.3 1:8.3

CD63 1:200; 1:100; 1:50; 1:20 1:20
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2.7.3 Chemokine Receptor Expression 

Surface expression of chemo-attractant receptors (CXCR1 [IL8 receptor], CXCR2 [IL8 and 

GROα receptor], FPR1 [fMLP receptor], C5aR [C5a Receptor] and BLT1 [LTB4 receptor]) 

were measured on freshly isolated peripheral blood neutrophils. Neutrophils and all reagents 

were maintained on ice to reduce receptor down-regulation and/or shedding. 2x105 

neutrophils were re-suspended in 1% PBS/BSA (Sigma Aldrich) and incubated with relevant 

FITC-labelled antibodies for 20 minutes in the dark, on ice. Post incubation, samples were 

washed (250 x g, 4°C, 5 minutes) in 1% cold PBS/BSA and transferred to cytometric tubes 

for analysis. Receptor expression was determined by flow cytometry (CyANADP, Beckman 

Coulter) counting 10,000 events to reduce sample variability. 

All antibodies were sourced from R&D systems as follows: Mouse anti-human CXCR1 

2µg/ml (clone #: 42075); mouse anti-human CXCR2 3µg/ml (clone #: 48311); mouse anti-

human FPR1 3µg/ml (clone #: 350418); mouse anti-human BLT1 3µg/ml (clone #: 

203/14F11); mouse anti-human C5aR1 2µg/ml (clone #: 347214). Isotype control antibodies 

were sourced from Dako as follows: mouse anti-human IgG2a 2µg/ml (clone #: DAK-GO5) 

and mouse anti-human IgG1 3µg/ml (clone #: DAK-GO1). 

 

2.8 Mass Spectrometry 

2.8.1 Sample Preparation 

1ml aliquots of freshly isolated neutrophils were re-suspended at 5x106/ml in RPMI-1640. 

Neutrophils from old donors were also pre-incubated ± 1nM Simvastatin for 40 minutes at 

room temperature. All samples were then centrifuged (6000rpm, 5 minutes [MSE, Micro 

Centaur]) and supernatants aspirated leaving a dry pellet. Pellets were then snap frozen in 

liquid nitrogen and stored at -80°C until use. 
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2.8.2 Lipid Extraction  

Membrane lipids were extracted from whole cell lysates with acidified chloroform and 

methanol as described previously [410]. Dimyristoyl – phosphatidycholine (DMPC, 2nmoles), 

Low-substituted Hydroxypropyl Cellulose (LHPC, 0.2nmoles), Dimyristoyl-phosphatidic acid 

(DMPA, 0.24nmoles), Dimyristoyl-phosphatidylethanolamine (DMPE, 0.8nmoles), 

Dimyristoyl-phosphatidylglycerol (DMPG, 0.4nmoles) and Dimyristoyl-phosphatidylserine 

(DMPS, 0.4nmoles) were added as internal standards with values in brackets denoting 

amounts of each standard added. Briefly, cell pellets were re-suspended in 0.8ml Dulbecco’s 

PBS (Ca2+ and Mg2+ free; Gibco) and briefly sonicated to ensure adequate dispersion of the 

pellet before addition of internal standards in the presence of butylated hydroxytoluene (BHT, 

1g/50ml). Lipids were then extracted from cell lysates with the sequential addition of 

chloroform, methanol, chloroform (1:2:1) and allowed to separate overnight at -20ºC. The 

lipid containing, chloroform-rich fraction was removed and dried under oxygen free nitrogen 

at 37°C to remove chloroform and the dry samples were stored at -20°C until use. 

 

2.8.3 Membrane Lipid Quantification 

Membrane lipid content was determined by electrospray ionisation mass spectrometry (ESI-

MS). Samples were reconstituted in 30ul of a solution containing 20% Butanol, 60% 

Methanol, 16% water and 4% concentrated aqueous ammonia (NH3(aq)) and introduced by 

direct diffusion into a triple quadropole mass spectrometer (Quattro Ultima, Micromass, 

Manchester, UK) equipped with a nanoflow electrospray ionisation interface. Phospholipid 

species were selectively detected and quantified from a variety of precursor (P) and neutral 

loss (NL) scans. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were 

analysed in positive ionisation from tandem MS/MS precursor scans of the 

phosphatidylcholine fragment (P184) or neutral loss of the phosphoethanolamine fragment 

(NL141+) respectively. Phosphatidylinositol (PI) and phosphatidylserine (PS) were quantified 

directly from the negative ionisation spectrum. Data were processed using Mass Lynx 
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software (Waters) and analysed using a macro developed at the University of Southampton, 

as employed in previous studies [411]. The macro enabled spectra to be smoothed, 

background subtracted and converted into centroid format and exported into individual Excel 

sample files, which were subsequently imported into the analyser programme. Correction for 

the 13C isotope was performed prior to calculation of percentage composition and 

incorporation of labelled phospholipid head groups. Only species of PC, PE, PI and PS that 

made up >2% of the total molar percentage of the respective phospholipid class are reported 

for compositional analysis. 

As free cholesterol does not ionise well using ESI-MS, it was first derivatised to cholesterol 

acetate by the action of acetyl chloride as described previously [412] using D6 cholesterol as 

an internal standard, Cholesterol species were quantified from neutral loss scans of the 

acetate fragment (NL77). 

 

2.9 SDS-Page and Western blot 

1x106 aliquots of isolated neutrophils were centrifuged at 1500xg for 2-minutes at 4°C, re-

suspended in lysis buffer (20mM 3-[N-Morpholino] propanesulfonic acid (MOPS), 50mM 

NaF, 50nM β-glycerophosphate, 10mM Na3VO4, 1% Triton X-100 [Sigma-Aldrich, UK], 1mM 

4-(2-Aminoethyl) benzensulfonyl fluoride hydrochloride (AEBSF, Sigma Aldrich), 1mM 

Dithiothreitol (DTT, Sigma Aldrich) and protease inhibitor cocktail [Sigma Aldrich]) and 

incubated on ice for 15 minutes, vortexing at 5-minute intervals. Lysates were then mixed 1:1 

with 2x SDS-sample buffer (4% Sodium Dodecyl Sulfate (SDS), 0.1M Dithiothreitol, 20% 

Glycerol, 0.0625M Tris-HCl [pH 6.8], 0.004% bromophenol blue) and boiled for 10 minutes at 

100°C. Cell lysates were then stored at -20°C until use. Prior to running the gel, defrosted 

samples were centrifuged at 3000rpm (MSE, Micro Centaur) for 2 minutes at room 

temperature.  

Cell lysates were loaded onto a 5% stacking gel and 12% resolving gel and separated by 

SDS-polyacrylamide gel electrophoresis. Lysates and pre-stained molecular weight markers 
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(GeneFlow Ltd) were run at 140 volts and subsequently transferred onto a 0.45 micron 

polyvinylidene difluoride (PVDF) membrane (Geneflow Ltd) at 450mA for 90 minutes using a 

wet blotting system (BioRad). Membranes were incubated with 5% bovine serum albumin 

made up in TBS-Tween (0.1% Tween-20 in 1xTBS [20mM Tris; 150mM NaCl]) for 1 hour at 

room temperature to prevent non-specific binding of primary antibody. Membranes were then 

probed with either 1/1000 dilution of rabbit anti-human phospho-PI3K p85 (Tyr485)/p55 

(Tyr199) (Cell Signalling Technology) or phospho-Akt (Ser473) XP (Cell Signalling 

Technology) both diluted in 5% BSA in 1xTBS-Tween overnight at 4°C with gentle agitation. 

Blots were subsequently washed 3 times in TBS-Tween for 15 minutes before incubation 

with anti-rabbit IgG secondary antibody conjugated to horse-radish peroxidase (HRP) (Dako 

Cytomation). Following incubation, blots were washed three times in 1xTBS-Tween as before 

and proteins were visualised using enhanced chemiluminescence (EZ-ECL; Geneflow Ltd) 

and autoradiography against X-ray film (Amersham Pharmacia). Equal protein loading was 

assessed by probing blots for β-actin using a mouse anti-human β-actin (Sigma Aldrich) 

primary antibody followed by anti-mouse HRP secondary antibody (Cell Signalling 

Technology) or rabbit anti-human Akt (pan) (Cell Signalling Technology) followed by anti-

rabbit HRP secondary antibody (DakoCytomation) using the same protocol. 

 

2.10 Retrospective study of hospital outcomes following admission with a 

diagnosis of community acquired pneumonia to assess whether statins impact 

upon outcomes.  

This study was a retrospective analysis of data for patients admitted to the Queen Elizabeth 

Hospital Birmingham NHS Foundation Trust, UK with a clinical and radiological diagnosis of 

community acquired pneumonia occurring between November 2009 and October 2011. 

Patients were included if they had an acute admission with a diagnosis of pneumonia in 

accordance with British Thoracic Society guidelines, namely symptoms and signs consistent 
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with an acute lower respiratory tract infection associated with new radiographic shadowing 

for which there is no other explanation, where the illness is the primary reason for hospital 

admission and is managed as pneumonia (see Figure 2.1 for selection procedure). Patients 

with other acute respiratory presentations diagnosed from medical assessment or chest 

radiography were excluded from the study. See Table 2.4 for diagnoses included and 

excluded from this study.  

Patients were classified as being on statin therapy prior to admission if they were prescribed 

a statin within 24 hours of hospital admission. 

 

2.10.1 Covariates 

Using electronic medical records, a range of clinical parameters were also collated to 

determine potential confounding effects on pneumonia outcomes. In addition to diagnosis, 

statin therapy and patient outcome, data collected included age, gender, diabetic status, 

hospital length of stay, admittance onto the intensive care unit (ICU) and ICU length of stay 

(LoS). Levels of C-reactive protein (CRP) and numbers of circulating white blood cells (WBC) 

were also recorded to monitor the inflammatory state. Biochemical data collected included, 

Haemoglobin (Hb), clotting potential (expressed as International Normalized Ratio, INR). 

Sodium (Na), Potassium (K), Urea (Ur) and Creatinine (Cr) blood levels.  

 

2.10.2 Pneumonia Outcomes and statistical analysis 

The primary outcome for this study was defined as all-cause mortality during hospital stay. 

Patients who recovered and were subsequently discharged from hospital left the study 

without the occurrence of the primary outcome and therefore constitute censored data. 
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Figure 2.1 Selection Procedure for Retrospective Cohort Study. 

Admission into the Queen Elizabeth Hospital, Birmingham UK between October 2009 and 

November 2011 were screened according to diagnosis to identify patients admitted with 

Pneumonia of unspecified of bacterial origin in their starting episode (stages 1-3). Qualifying 

patients were then split into users and non-users according to statin prescription prior to 

admission (stage 4) 
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Table 2.4 Inclusion and Exclusion Diagnoses for Retrospective Cohort Study 

Inclusion Exclusion

Pneumonia, unspecified Pneumothorax
Bacterial Pneumonia, unspecified Other spontaneous pneumothorax
Other Pneumonia, organism unspecified Traumatic Pneumothorax
Lobar Pneumonia, unspecified Traumatic Haemopneumothorax
Hypostatic Pneumonia, unspecified Pneumocystosis
Bronchopneumonia, Unspecified Pneumococcal meningitis
Pneumonitis Influenza with Pneumonia
Pneumonitis due to food and vomit Viral Pneumonia
Abscess of lung with Pneumonia Cytomegalovirus Pneumonitis
Pneumonia due to Haemophilus influenzae Septicemia due to Streptococcus pneumoniae

Pneumonia due to Escherichia coli HIV disease resulting in Pneumocystis carinii pneumonia
Pneumonia due to Klebsiella pneumoniae Abscess of lung without Pneumonia
Pneumonia due to Mycoplasma pneumoniae Hypersensitivity pneumonitis due to unspecified organic
Pneumonia due to Streptococcus pneumoniae Pneumoconiosis due to asbestos and other mineral fibres
Pneumonia due to other Streptococcus sp.

Pneumonia due to Staphylococcus sp.

Pneumonia due to Pseudomonas sp.

Varicella pneumonia

Inclusion and Exclusion diagnoses for to identify patients admitted into Queen Elizabeth 

Hospital with Pneumonia of unspecified or bacterial origin between November 2009 and 

October 2011. 
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The cohort used in this study was stratified into 2 groups - patients who were on statins upon 

admission into hospital and those who were not. The cohort was then summarised by 

comparing statin-users to non-users and continuous variables reported as means ± standard 

deviations when variables were normally distributed and as medians and interquartile ranges 

when variables were non-normally distributed. When considering categorical variables, data 

were reported as numbers with percentages in parenthesis. Normality was assessed using 

the Kologmorov-Smirnov test. Statin-users and non-users were compared using Mann-

Whitney-U test when variables were continuous and χ2-test for categorical variables.  

Logistic regression was used to calculate a predicted probability of death and evaluate the 

effects of statin therapy on the predicted survival after pneumonia. This was done using an 

uncorrected model taking into account age and statin therapy in the first instance. This model 

was then updated to correct for gender, patient diabetic status and plasma levels of CRP. 

Significance was accepted at p<0.05.  

 

2.12 Statistical Analysis 

Statistical analyses were carried out using PASW v18.0 (Chicago, IL, USA). Data were 

tested for normality using the Kolmogorov-Smirnov or Shapiro-Wilk when samples sizes 

were small. Differences between two independent or paired samples were assessed using 

either a paired or un-paired T-test and a one-way, factorial or mixed analysis of variance 

(ANOVA) was used to compare more than two groups when data sets were normally 

distributed. When data sets did not follow a normal distribution, non–parametric Mann-

Whitney-U tests were performed. Differences between categorical variables were assessed 

using χ2 test. Post-hoc analysis was performed using Bonferroni correction for multiple 

comparisons where appropriate. The effects of chronological age on migratory parameters 

were assessed by linear regression to determine the relationship. Data were subsequently 

categorized by decade and assessed using a two-way ANOVA controlling for both age and 
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gender to determine the pattern of the relationship. In all instances, graphs are presented as 

mean ± standard error of the mean (SEM) and statistical significant was accepted at p ≤ 0.05 

unless otherwise stated. Unless otherwise stated all p-values are from a 2-tailed test. 



 

 

 

 

 

 

 

CHAPTER 3 

 

NEUTROPHIL FUNCTIONS IN THE HEALTHY 

ELDERLY 
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3.1 Introduction 

Over the past 15 years, ageing research has uncovered numerous differences in immune 

cell function between young and old donors occurring as a consequence of natural ageing, 

termed immune-senescence. A significant proportion of this research has focussed on the 

adaptive arm of the immune response and the immune risk phenotype (IRP) which describes 

a set of parameters giving rise to an increased risk of mortality in the elderly population 

[44,413]. In comparison, our understanding of age-related alterations in innate immune 

function lags behind considerably. Ageing is associated with an increased susceptibility to 

bacterial infections [9,10,13,15] and reduced outcomes following infective events [20,21] 

which are suggestive of dysregulation of the innate immune compartment. Neutrophils are 

vital during the initial immune response to bacterial infection and therefore, these short-lived 

cells are ideal candidates for investigation into mechanisms driving immune decline 

associated with increasing age. 

The existing literature on neutrophil migration with age is contradictory with reports of both 

unchanged [150,372-374] and reduced migratory function [375-379] with age. To date, only 

one study has assessed migration in terms of both speed of migration (chemokinesis) and 

direction of migration (chemotaxis) as independent parameters, describing maintained 

chemokinesis and a trend towards reduced chemotaxis in neutrophils isolated from the 

elderly [161]. However, this study utilised the under agarose assay which can only provide 

rough estimations of cell movement and cannot comment on individual cell migratory 

behaviour. 

Altered neutrophil migration with age would clearly impact upon efficiency of pathogen 

removal, but could have consequences beyond this. There is evidence to support the 

hypothesis that neutrophils utilise proteinases to aid migration [228,239]. Neutrophil 

proteinases also facilitate cell adhesion and polarisation by interactions with integrins and 

cell signalling pathways [229]. Aberrant migration could be associated with increased 
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proteinase release, either as a consequence of cell activation by low grade systemic 

inflammation or could in fact contribute to increased systemic inflammation in older subjects 

as more proteinase would be released if the cells migratory pathways were not optimal [414]. 

If this were true, one would predict that neutrophils from older subjects may express more 

markers of primary granule degranulation on their surface, and systemically, there may be 

increased evidence of neutrophil proteinase activity, however, these data have not been 

collected in an older population. 

Studies have suggested that other anti-microbial functions of neutrophils are altered in 

elderly adults [160,161,174], however, assessment of these functions have been performed 

by separate researchers, and there are no data to compare key neutrophil functions 

(migration, phagocytosis and ROS) in the same cohort of individuals. If all functions were 

suboptimal, this may have a significant impact on the ability of cells to reach and clear 

bacterial infection.  

In this chapter it is hypothesised that neutrophils from elderly donors exhibit aberrant 

migration and that this would be associated with evidence of enhanced primary granule 

degranulation and neutrophil proteinase activity. Also where one neutrophil function was 

compromised with age, all others would be.  This hypothesis was tested by the following 

aims. 

1. To clarify the effects of increasing age on neutrophil migration by studying a cohort of 

healthy adults across the life-span; 

2. To compare markers of azurophil granule degranulation and neutrophil elastase activity in 

in vivo in young and old adults; 

3. To assess a broad range of neutrophil functions in a cohort of healthy young and old 

subjects. 
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3.2 Results 

 
3.2.1 Neutrophils respond to chemotactic stimuli in a dose dependent manner 

In order to determine the most appropriate concentration of chemokine at which to measure 

migration of neutrophils, migration of cells isolated from young donors was measured in 

response to increasing concentrations of Interleukin-8 (IL8); Growth Related Oncogene-α 

(GROα); Complement protein 5a (C5a); Leukotriene B4 (LTB4) and the bacterial peptide N-

Formyl-Methionyl-Leucyl-Phenylalanine (fMLP). All concentrations were within the range 

noted in previous studies of biological secretions in man [415]. See Table 3.1 for selected 

doses used in all subsequent migratory assays. Most chemokines tested showed a classic 

bell shaped response curve and the final concentrations for all subsequent studies were 

chosen based on the greatest chemotactic response (see Figure 3.1). 

 

3.2.2 Neutrophils from older adults show decreased migratory accuracy 

In order to assess the effects of increasing age on neutrophil migration, time-lapse video 

microscopy was used to track migration towards IL8, GROα, C5a, LTB4 and fMLP at 

concentrations as described in Table 3.1. Neutrophils were isolated from healthy elderly (age 

> 65) and young donors (age < 35). Initial analysis of migratory tracks suggested a loss of 

migratory accuracy in the elderly in response to all chemoattractants tested. Figure 3.2 A 

and B show representative images of cell tracks of neutrophils from a young and old subject 

towards IL8. Figure 3.2 C and D show composite data for 5 healthy old and young subjects 

and demonstrate clear differences in migration patterns towards the chemoattractant source 

(top of figure). Cell tracks towards GROα, C5a, LTB4 and fMLP showed similar 

characteristics (data not shown).  
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Neutrophil migratory parameters were measured in response to 0.5 – 500nM 

IL8, GROα, C5a, LTB4 or fMLP. The optimum dose of each chemoattractant was 

selected based on the ability to efficiently stimulate neutrophil migration in 

comparison to all other doses and used in all subsequent migratory assays.  

Chemoattractant

Dose Response 

(nM)

Optimum 

Dose (nM)

Interleukin-8 (IL8) 1; 10; 100; 250; 500 100
Growth Related Oncocgene-α (GROα) 1; 10; 100; 500 100
Complement Protein 5a (C5a) 0.5; 1; 10; 100; 250 1
Leukotriene B4 (LTB4) 0.5; 1; 10; 100; 250 10
f-Met-Leu-Phe (fMLP) 0.5; 1; 10; 100; 250 10

Table 3.1 Chemoattractant Dose Response 
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A 

C D 

E 

B 

Figure 3.1 Neutrophil Chemotactic Index in Response to Increasing 

Concentrations of IL8 GROα C5a LTB
4
 and fMLP. Neutrophil Chemotactic 

Index was measured in response to 0.5 – 500nM (A) IL8 (B) GROα (C) C5a (D) 

LTB4 and (E) fMLP. All data sets were normally distributed (Kolmogorov-Smirnov 

test) and statistical significance measured by repeated measures ANOVA. 

 * p<0.05 0.5nM vs. 250nM. Data are mean ± SEM (n=3). 
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Figure 3.2 Migratory Tracks of Neutrophils isolated from Young and 

Elderly donors. Images show migratory tracks on a per cell basis following 

exposure to a chemotactic gradient of 100nM IL8 (greatest at the top of the 

image). Migratory trajectories of neutrophils from (A) young and (B) old donors 

were tracked using Image J. Each track begins at the starting position of each 

respective cell and ends at the final position of the cell following 12 minutes 

recording. Neutrophil migration was further studied by arranging 5 migratory 

tracks from (C) young and (D) old donors to show their origins at x = y = 0. 

The y axis of the tracks represents the direction of the chemotactic gradient 

and the x axis denotes deviation from a straight line. All images are 

representative plots of multiple experiments.  

A B 

C D 
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3.2.3 Chemokinesis is preserved but Chemotaxis is impaired in neutrophils from older 

adults 

Neutrophil migration was then analysed using parameters of chemokinesis (non-directional 

speed of movement), chemotaxis (directional migration towards the chemoattractant source), 

directional persistence and chemotactic index. Neutrophils isolated from young and elderly 

donors demonstrated no difference in their chemokinesis (see Figure 3.3): Young vs. Old, 

mean ± SEM; IL8: 4.05 ± 0.19 vs. 4.06 ± 0.19, p=0.983; GROα: 3.73 ± 0.3 vs. 4.02 ± 0.16, 

p=0.381; C5a: 3.77 ± 0.15 vs. 3.58 ± 0.1, p=0.286; LTB4: 3.93 ± 0.26 vs. 3.6 ± 0.12, p=0.191; 

fMLP: 3.58 ± 0.2 vs. 3.96 ± 0.21, p=0.327. However, chemotaxis was significantly reduced in 

the elderly when migrating in response to all chemoattractants studied: Young vs. old, mean 

± SEM; IL8:1.41 ± 0.22 vs. 0.57 ± 0.20 p= 0.014; GROα: 0.78 ±0.19 vs. 0.09 ± 0.18 p=0.02; 

C5a: 1.24 ± 0.28 vs. 0.26 ± 0.16 p=0.01; LTB4: 0.97 ± 0.21 vs. 0.10 ± 0.18 p=0.006; fMLP: 

0.84 ± 0.11 vs. 0.29 ± 0.16 p˂0.001 (see Figure 3.3). 

Neutrophils from elderly donors also showed a significant reduction in migratory persistence, 

equating to a loss of cell orientation in respect to the chemotactic gradient, in response to 

GROα, C5a and fMLP: Young vs. old, mean ± SEM; GROα: 0.44 ± 0.03 vs. 0.24 ± 0.05 

p=0.002; C5a: 0.42 ± 0.05 vs. 0.17 ± 0.06 p=0.007; fMLP: 0.49 ± 0.05 vs. 0.27 ± 0.05 

p=0.007. Directional persistence was maintained with ageing towards IL8 and LTB4: Young 

vs. Old, mean ± SEM: IL8: 0.37 ± 0.06 vs. 0.37 ± 0.04, p=0.878; LTB4: 0.39 ± 0.06 vs. 0.27 ± 

0.05, p=0.153 (see Figure 3.4).  

Chemotactic index, an overall summary of migratory accuracy taking into account all 

parameters, was significantly reduced in neutrophils isolated from elderly donors compared 

to those isolated from young donors in response to all chemoattractants studied: Young vs. 

old, mean ± SEM; IL8: 0.27 ± 0.05 vs. 0.08 ± 0.04 p=0.011; GROα: 0.22 ± 0.05 vs. 0.04 ± 

0.04 p˂0.001; C5a: 0.26 ± 0.06 vs. 0.04 ± 0.04 p=0.008; LTB4: 0.23 ± 0.05 vs. 0.01 ± 0.04 

p=0.001; fMLP: 0.18 ± 0.04 vs. 0.04 ± 0.01 p=0.004 (Figure 3.4). 
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Figure 3.3 Neutrophil Chemokinesis and Chemotaxis in Response to IL8, 

GROα, C5a, LTB
4
 and fMLP. Chemokinesis and Chemotaxis of neutrophils 

isolated from young (black bars) and old (white bars) in response to shallow 

gradients of (A) 100nM IL8; (B) 100nM GROα; (C) 1nM C5a; (D) 10nM LTB4 and 

(E) 10nM fMLP. All data sets were normally distributed (Kolmogorov-Smirnov 

Test) and statistical significance measured using an independent samples T-Test. 

*p<0.05 young vs. old. Data are mean ± SEM (n=10). 

A 

C D 

E 

B 
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Figure 3.4 Neutrophil Persistence and Chemotactic Index in Response to 

IL8, GROα, C5a, LTB
4
 and fMLP. Persistence (frequency of directional change) 

and Chemotactic Index (overall summary of migration) of neutrophils isolated from 

young (black bars) and old (white bars) in response to shallow gradients of (A) 

100nM IL8; (B) 100nM GROα; (C) 1nM C5a; (D) 10nM LTB4 and (E) 10nM fMLP. 

All data sets were normally distributed (Kolmogorov-Smirnov Test) and statistical 

significance measured using an independent samples T-Test. *p<0.05 young vs. 

old. Data are mean ± SEM (n=10). 

A B 

C D 

E 
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3.2.4 Neutrophil migratory accuracy correlates with increasing age 

The results above demonstrated reduced migratory accuracy in the healthy elderly (aged > 

65) compared to those under the age of 35 years. It is therefore not clear whether a 

reduction in migratory accuracy is a late consequence of ageing, perhaps due to impending 

pathology, or occurs gradually during adulthood and is a biomarker of the ageing process. To 

assess migration across the life-course, migratory accuracy of neutrophils isolated from 

donors aged between 20 and 89 years old was determined. Donors were grouped according 

to decade with 10 participants in each group. See Table 3.2 for subject demographics in this 

cohort. 

Neutrophils isolated from 70 healthy donors (non-smokers with no clinical evidence of 

pathology and medication free) were migrated towards IL8 (100nM). When migratory 

parameters were plotted by age (see Figures 3.5 and 3.6) there was a significant 

relationship between increasing chronological age and chemotaxis (F(1,68)= 28.32; β = -0.542; 

p<0.001) and chemotactic index (F(1,68)= 46.42; β = -0.637; p<0.001). By applying a model of 

linear regression, these data show that ageing accounts for 28.4% (R2=0.284) of the 

observed reduction in neutrophil chemotaxis and 39.7% (R2=0.397) of the reduction in 

chemotactic index. There was no significant relationship between age and either 

chemokinesis or persistence, which was preserved across decennials.  
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  Table 3.2 Cohort Demographics 

Age (years) Gender (male)
mean ± SEM n (%)

Total 70 55 ± 2.4 35 (50)

By Decade
20-29 10 26.7 ± 0.4 5 (50)
30-39 10 34.0 ± 0.6 5 (50)
40-49 10 44.4 ± 0.8 5 (50)
50-59 10 55.0 ± 0.9 5 (50)
60-69 10 66.4 ± 0.5 5 (50)
70-79 10 75.9 ± 0.9 5 (50)
80-89 10 81.8 ± 0.6 5 (50)

n
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Figure 3.5 Relationship between Age and Neutrophil Chemokinesis and 

Chemotaxis. (A) Chemokinesis and (B) Chemotaxis of neutrophils isolated 

from donors aged between 20 and 89 years in response to shallow gradients of 

100nM IL8. All data sets were normally distributed (Kolmogorov-Smirnov test) 

and statistical significance measured by linear regression with significance 

accepted at * p<0.05.  

A 

B 
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Figure 3.6 Relationship between Age and Neutrophil Persistence and 

Chemotactic Index. (A) Persistence and (B) Chemotactic Index of neutrophils 

isolated from donors aged between 20 and 89 years in response to shallow 

gradients of 100nM IL8. All data sets are normally distributed (Kolmogorov-

Smirnov test) and statistical significance measured by linear regression with 

significance accepted at * p<0.05.  

A 

B 
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3.2.5 Loss of migratory accuracy from 60 years of age 

These data are a cross sectional sample of neutrophil function at one time point in each 

individual, and cannot be used to extrapolate what happens to an individuals neutrophil 

functions over time. However, they demonstrate a clear reduction in neutrophil migration with 

advancing age in a significant number of people. When migratory parameters were grouped 

according to decennial, there was a significant decline in chemotaxis and chemotactic index 

from the sixth decennial: Chemotaxis mean ± SEM; comparing 20-29 years to 60-60 years: 

1.78 ± 0.19 vs. 0.53 ± 0.22 p=0.006; comparing 20-29 years to 70-79 years: 1.78 ± 0.19 vs. 

0.41 ± 0.12 p=0.002; Chemotactic Index mean ± SEM; comparing 20-29 years to 60-69 

years: 0.36 ± 0.04 vs. 0.09 ± 0.04 p=0.001; comparing 20-29 years to 70-79 years: 0.36 ± 

0.04 vs. 0.05 ± 0.02 p˂0.001; comparing 20-29 years to 80-89 years: 0.36 ± 0.04 vs. 0.13 ± 

0.05 p=0.002 (see Figure 3.7). 

 

3.2.6 Neutrophils from older adults exhibit increased expression of granule specific 

markers 

To assess the extent to which neutrophils from older adults had mobilised their primary 

(Azurophil) granules, surface expression of CD63 (Granulophysin), a marker of Azurophil 

granule fusion with the plasma membrane was measured [147,416]. CD63 is also considered 

to be a marker of neutrophil activation [147] therefore, to minimise the extent to which 

neutrophils were artificially activated, expression of CD63 was measured in whole blood as 

described in chapter 2, section 2.7.2. Neutrophils from healthy older adults expressed 

significantly more CD63 on their surface compared to neutrophils isolated from young adults 

(mean ± SEM; 3218.56 ± 562.41 vs. 4364.61 ± 258.41 p= 0.044). There was no difference in 

the level of CD63 stored internally (see Figure 3.8).  

  



105 
 

 

  

Figure 3.7 Neutrophil Migration across the Lifespan. (A) Chemotaxis and 

(B) Chemotactic Index of neutrophils isolated from donors aged between 20 and 

89 years in response to shallow gradients of 100nM IL8. All data sets are 

normally distributed (Kolmogorov-Smirnov Test) and statistical significance 

measured by two-way ANOVA controlling for age and gender. There was no 

effect for gender on migratory parameters. *p<0.05 vs. 20yrs; # p<0.05 vs. 

30yrs; ɸ p<0.05 vs. 40yrs. Data are mean ± SEM (n=10). 

A 

B 
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Figure 3.8 Neutrophil Degranulation in cells from the Healthy Elderly. 

(A) Surface and (B) Internal expression (mean fluorescence intensity, MFI) of the primary 

granule marker CD63 on neutrophils isolated from young (filled circles) and old (open circles) 

donors. All data sets follow normal distribution (Kolmogorov-Smirnov test) and statistical 

significance assessed by independent samples T-test.    * p<0.05 young vs. old. Bar denotes 

the mean for each group. 

  

B A 
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3.2.7 Increased Neutrophil Elastase activity with age 

Neutrophil elastase cleaves fibrinogen leaving a stable by-product, termed Aα Val360, which 

can be measured in plasma.  Plasma levels of AαVal360 were measured as a footprint of 

neutrophil elastase activity in 10 healthy young and old donors. There was a significant 

increase in the concentration of AαVal360 in the plasma of old adults when compared with 

plasma from young adults (Young vs. old, mean ± SEM; 10.18 ± 0.87 vs. 25.92 ± 3.45 

p=0.002) indicating increased neutrophil elastase release and activity in the healthy elderly 

(see Figure 3.9). 

 

3.2.8 Neutrophil Phagocytosis of S.aureus but not E.coli is affected by increasing age 

Data generated so far suggest that neutrophil migration is sub-optimal in older subjects. To 

assess whether all functions were equally compromised, migration, phagocytosis and ROS 

production were assessed in a cohort of healthy old people (aged > 65) where neutrophil 

migratory function was known to be reduced (n= 8) and a cohort of healthy young adults (age 

< 35) where migratory function was known to be preserved (n=8). The phagocytic capacity of 

neutrophils isolated from both young and old donors was measured in response to 

Staphylococcus aureus (S.aureus) or Escherichia coli (E.coli). Neutrophils were co-incubated 

for 30, 45 or 60 minutes and phagocytic capacity expressed as the phagocytic index (PI) 

calculated as the percentage of neutrophils capable of phagocytosing bacteria multiplied by 

the mean fluorescence intensity (MFI). When compared to neutrophils isolated from young 

donors, the PI of neutrophils isolated from old donors in response to S.aureus showed a 

significant reduction at all time points (young vs. old, mean ±SEM; 30 minutes: 73.03 ± 9.2 

vs. 39.04 ± 11.8; p=0.019; 45 minutes: 100.6 ± 11.3 vs. 60.8 ± 15.8; p= 0.029; 60 minutes: 

139.9 ± 13.8 vs. 86.7 ± 20.7, p= 0.025). There was no difference observed in the phagocytic 

index of neutrophils from young and old donors following co-incubation with E.coli (see 

Figure 3.10). 
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Figure 3.9 Neutrophil Elastase Activity in Neutrophils Isolated from Young 

and Elderly donors. Concentration of the neutrophil-elastase specific 

fibrinogen breakdown product AαVal
360

 in plasma collected from young (filled 

circles) and elderly (open circles) donors. All data sets follow normal distribution 

(Kolmogorov-Smirnov test) and statistical significance assessed by independent 

samples T-test. *p<0.05 young vs. old. Bar denotes the mean for each group 

(n=10). 
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Figure 3.10 Neutrophil Phagocytosis of S.aureus and E.coli. Phagocytic 

Index of neutrophils isolated from young (filled circles) and old (open circles) in 

response to (A) Staphylococcus aureus or (B) Escherichia coli for 30, 45 or 60 

minutes. All data sets are normally distributed (Kolmogorov-Smirnov Test) and 

statistical significance measured by repeated measures ANOVA. *p<0.05 young 

vs. old. Data are mean ± SEM (n=8). 
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3.2.9 Neutrophil Superoxide Production is not affected by increasing age 

The production of reactive oxygen species (ROS) was measured in both quiescent and 

activated (fMLP or IL8 stimulated) neutrophils isolated from both young and old donors. PMA 

was used as a positive control. There was no significant difference in the amount of ROS 

produced either in the basal state or in response to 2.5μM fMLP, 1.25μM IL8 or 25nM PMA 

by neutrophils from either young or old donors (see Table 3.3). 

 

In summary, aberrant migration in old subjects was associated with reduced phagocytosis to 

the gram positive pathogen S.aureus, but not to the gram negative pathogen E.coli, while 

reactive oxygen species was preserved with age. 
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Neutrophils isolated from young and elderly donors and either unstimulated or 

stimulated with 2.5µM fMLP, 1.25µM IL8 or 25nM PMA in the presence of 

100µM luminol to measure the production of reactive oxygen species. There 

were no significant differences between groups. Data are mean ± SEM (n=8). 

AUC: Area under the curve. 

Unstimuated fMLP IL8 PMA
Young 46.5 ± 9.7 169.7 ± 15.4 49.7 ± 10.2 312.7 ± 28.5

Old 45.8 ± 5.4 184.2 ± 38.3 62.8 ± 7.3 337.0 ± 40.6

AUC (x1000)

Table 3.3 Neutrophil Reactive Oxygen Species Production. 
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3.3 Discussion 

Neutrophil migration is the process by which neutrophils migrate through tissue towards the 

site of infection guided by sequential chemoattractant gradients consisting of cytokines, 

lipids, complement and bacterial proteins. Upon reaching the site of infection, neutrophils 

mediate bacterial clearance and degradation utilizing a variety of anti-microbial functions. 

Within the elderly population rates of both morbidity and mortality due to bacterial infections 

are significantly increased when compared to the younger population [165,417,418]. As 

neutrophils are the first cell to be recruited to the site of infection, the aim of this chapter was 

to accurately assess the effects of increasing age on neutrophil function with a particular 

focus on neutrophil migration. A number of studies have attempted to define the effects of 

increasing chronological age on neutrophil migration [150,373,376,379], however no 

consensus has been achieved. This study is therefore the first to provide a detailed analysis 

of migratory parameters of neutrophils isolated from healthy older adults when compared to 

those isolated from younger, gender matched controls and considered some of the 

physiological consequences of the changes observed. 

Neutrophils isolated from healthy adults ≥ 60 years of age exhibited maintained 

chemokinesis but exhibit a significant reduction in chemotaxis and chemotactic index (overall 

accuracy) when migrating towards optimum concentrations of a number of physiologically 

relevant chemoattractants. Wenisch et al, the only report to date that has considered 

chemokinesis as an independent parameter to chemotaxis, reported maintained speed with a 

trend towards reduced directional migration in the elderly [161] supporting the findings 

presented here. However, due to the methodology used, direct comparisons cannot not be 

drawn. Discrepancies between work presented here and other published work reporting 

either no change or a reduction in neutrophil migration with age are also likely to be due to 

the methodology used. Most studies use a Boyden Chamber to assess migration, which 

does not allow for chemokinesis to be studied independently of chemotaxis and the results 

gained are influenced by the pore size of the filter which can vary between studies.  
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Data presented here are able to expand on the effect of age on neutrophil migration 

demonstrating a similar pattern of reduction in response to chemoattractants from different 

levels of the hierarchy e.g. intermediary chemoattractants (IL8 and LTB4) and end-point 

chemoattractants (C5a and fMLP). Cross sectional analysis of migration across the life span 

demonstrated a significant correlation between age and both chemotaxis and chemotactic 

index with maximal velocity being achieved between 20 and 30 years of age and thereafter 

exhibiting a gradual decline in function, becoming significantly compromised from 60 years 

and onwards. It is noteworthy that this initial decline in migratory parameters coincides with 

the age at which hormone changes such as the adrenopause, a gradual decline in serum 

levels of the steroid hormone dehydroepiandrosterone–sulphate (DHEAS), become 

physiologically significant by 60-70 years of age resulting serum levels being reduced to 20-

30% of those observed in younger cohorts [58]. However, DHEAS has been shown to have 

conflicting effects on neutrophil function; it enhances neutrophil superoxide generation in 

vitro through activation of Protein Kinase-Cβ (PKCβ) [419], but inhibits the migration of 

peripheral blood neutrophils although the mechanism of action remains unknown as this 

effect was shown to be independent of Akt, PKC, p38 and ERK, the classical regulators of 

migration [420]. This suggests that adrenopause is unlikely to be a driving factor behind 

reduced migratory accuracy with increasing age.  

The analysis shown here suggests that increasing chronological age can only account for 

28.4% of the reduction seen in chemotaxis and 39.7% of the reduction seen in chemotactic 

index. It is likely, therefore that other age-related changes must also influence migratory 

accuracy. Inflamm-ageing for example may affect cellular function by inducing a state in 

which neutrophils exhibit chronic low-level activation and are perhaps desensitized to 

chemokine stimulation as a result. Complement proteins present in the plasma of aged rats 

have also been shown to reduce migration of neutrophils isolated from young donors [421]. 

However, a link between these factors and an age-related reduction in neutrophil migration 

still remains to be proven and was not considered here. 
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Immune function has been shown to be an essential factor in increased longevity through the 

study of centenarian immune function. Alonso-Fernandez et al demonstrated neutrophil 

chemotaxis, phagocytosis and superoxide generation of neutrophils isolated from 

centenarians to be at a level comparable to that of a younger cohort (age 25 – 35 years) 

[378]. This suggests that those people who preserve their immune function are more likely to 

achieve extreme longevity. As shown in Figure 3.7, neutrophil chemotaxis progressively 

declines until the 8th decade after which the curve becomes more U-shaped. It may be that 

those people who have reached their 8th decade are those that exhibited a reduced level of 

immune-senescence in earlier life and are therefore the most likely to become centenarians. 

Only prospective longitudinal studies can determine how neutrophil functions decline with 

age and how this impacts on health. However, it may possible to compare an individual’s 

‘immunological age’ to that of a healthy cohort, in order to provide an indication as to how 

well their immune system is fairing against physiological changes that occur with increasing 

chronological age. 

The natural ageing process has been causally related to a decline in organ function including 

the kidneys [422], liver [423] and lungs [424]. Specifically, decline in respiratory function has 

been shown to correlate with the systemic inflammatory burden in a dose-dependent manner 

[424] and it has been hypothesised that neutrophil infiltration may be a contributing factor. 

Certainly, neutrophils contain sufficient damaging proteins to cause tissue damage if 

released extracellularly, and neutrophil proteinases have been shown to cause significant 

cell and tissue damage in vitro and animal studies. Aberrant migration in the elderly may 

further exacerbate this situation due to the internal polarisation and exocytosis of serine 

proteases such as neutrophil elastase (NE) during migratory processes [223] leaving behind 

an area of obligate tissue damage [239]. Work presented here would support this hypothesis 

as surface expression of the azurophil granule specific marker, CD63 and plasma 

concentrations of the NE-specific fibrinogen breakdown product AαVal360 were raised in the 

elderly indicating an augmented release of neutrophil elastase and evidence of its activity. 
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Coupled to aberrant migration, increased neutrophil elastase release has the potential to 

severely compromise organ function, particularly in the lungs where function relies upon the 

elastic nature of elastin, the main substrate for NE. This is demonstrated in chronic 

obstructive pulmonary disease (COPD) where plasma concentrations of AaVal360 correlate 

with disease progression and severity of emphysema [232]. 

Work presented here, although demonstrative of aberrant migration in the elderly with 

consequences for tissue integrity, included volunteers who were considered to be healthy i.e. 

medication free and having no inflammatory diseases or experiencing any infections. 

However in vivo, neutrophil migration occurs in response to infection or injury in the tissues 

with a concomitant increase in soluble inflammatory mediators favouring a pro-inflammatory 

micro-environment. It would be important to establish whether age-associated aberrant 

neutrophil migration was preserved or whether it was corrected during inflammatory insult, as 

this would have implications for the relevance of the described neutrophil phenotype in vivo. 

To investigate this, inflammation was compared during an acute episode of Streptococcus 

pneumoniae related community acquired pneumonia between young and old patients. Old 

patients (age > 65years) had significantly higher levels of inflammatory mediators and a 

greater sputum neutrophil count however, the bacterial load was also over 10 times greater 

than that observed in young patients (age < 35years) (see Table 3.4). This suggests that 

infiltrating neutrophils were either unable to efficiently phagocytose bacteria or exhibited 

delayed in arrival at the site of infection thus allowing a greater opportunity for substantial 

bacterial replication and infiltration. Neutrophil migration was also measured in these patients 

both during pneumonia infection and following recovery. Neutrophils isolated from young 

donors showed enhanced chemokinesis and chemotaxis during infection when compared to 

health, however this increase in function was absent in neutrophils isolated from old donors 

with chemotaxis exhibiting a significant reduction rather than an increase (Figure 3.11) 

(personal communication by Dr Elizabeth Sapey). These data suggest aberrant neutrophil 

functions are not corrected during heightened inflammation, are associated with worsening 
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inflammatory and infective profiles and therefore may be an important predictor of poor 

outcome and thus a target for therapeutic intervention. 

Due to the number, age range, health status and array of stimuli used, we have 

demonstrated a robust, generic migratory phenotype that is a feature of natural immune-

senescence and may be a contributing factor to increased rates of morbidity and mortality 

observed in the elderly population. 

 

In addition to migration, both phagocytosis and the production of reactive oxygen species 

(ROS) have been reported to exhibit an age related functional decline in response to specific 

stimuli [161]. The data presented here suggest that if migration is impaired, phagocytosis of 

gram positive (but not gram negative) bacteria is also reduced, without an effect on ROS 

generation. The data for ROS generation were gained utilising pro-inflammatory mediators 

and not bacteria. Niwa et al also found no difference in ROS generation to the same 

chemoattractants [375] but interestingly, Wenisch et al demonstrated a significant reduction 

in ROS response to S.aureus stimulation but not E.coli [161], again suggesting a differential 

effect between gram positive and negative stimuli. 
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Table 3.4 The Inflammatory Response during Pneumonia Infection 

Inflammatory response of 5 young and 5 elderly patients admitted into QEHB with 

pneumonia infection. All data sets were normally distributed (Kolmogorov-Smirnov 

Test) and statistical significance measured using an independent samples T-test. 

*p<0.05 young vs. old. 

IQR, Interquartile Range; IL8, Interleukin-8; LTB4, Leukotriene-B4; TNFα, Tumor 

Necrosis Factor-α; IL1β, Interleukin-1β; CRP, C-Reactive Protein; SD, Standard 

Deviation. 

*Table provided by Dr. Elizabeth Sapey 

Age < 35 Age > 65
n 5 5
Streptococcus pneumoniae  in Sputum 5 5
Bacterial Load (Sputum; cfu/ml); Median (IQR) 6x108 (3-8) 8x109 (5-10) *
Neutrophil Count/ml (Sputum); Median (IQR) 15x106 (11-25) 23x106 (14-30) *
IL8 (Sputum); nM (IQR) 33.9 (17-46) 60 (43-64) *
LTB4 (Sputum); nM (IQR) 47.3 (14-72) 74.1 (18-84) *
TNFα (Sputum); pM (IQR) 15.6 (10-28) 40.3 (24-51) *
IL1β (Sputum); pM (IQR) 17.2 (9-22) 40.1 (22-63) *
CRP (Plasma); mg/dl (IQR) 67 (21-98) 102 (52-139) *
Neutrophil Count/ml (blood); Median (IQR) 16.9x106 (12-23) 17.1x106 (11-24)
AαVal360 (Plasma); nM ± SD 2.3 ± 0.3 4.1 ± 0.4 *
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Figure 3.11 Neutrophil Migration in Response to IL8 during Pneumonia 

Infection.  

(A) Chemokinesis (speed of migration), (B) Chemotaxis (direction of migration) 

and (C) Chemotactic Index (accuracy) of neutrophils isolated from both young and 

old donors during pneumonia infection (dark grey bars) and following recovery 

(light grey bars). Migration was measured in response to shallow gradients of 

100nM IL8. All data sets were normally distributed (Kolmogorov-Smirnov Test) 

and statistical significance measured using a factorial mixed ANOVA. *p<0.05 

health vs. disease. Data are mean ± SEM (n=5). 

* Data provided by Dr. Elizabeth Sapey 

A B 

C 
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This stimuli-specific response may reflect the nature of the response required when these 

stimuli are received in vivo. For example, exposure to IL8 would normally occur during the 

initial stages of migration where ROS production would be required to facilitate migration, 

whereas exposure to S.aureus would naturally occur at the site of infection where large-scale 

ROS production would be required to eliminate pathogenic material at the site of infection. In 

order to gain a more accurate picture of ageing and ROS production, stimuli should 

encompass a number of both particulate (e.g. S.aureus) and soluble (e.g. IL8, fMLP) stimuli, 

measured in both primed and un-primed neutrophils to more accurately represent the 

inflammatory environment and should use multiple chemiluminescent substrates in order to 

detect both intra- and extra-cellular ROS [425,426] and the different radical species 

produced.  However, this is the first report where neutrophil functions have been studied in 

the same individuals where aberrant migration is coupled with poor phagocytosis of gram-

positive bacteria. These findings represent significant impairments in vital innate host 

immunity which could contribute to the poorer responses seen to acute infection in the 

elderly, together describing the decline in the anti-bacterial capacity of from elderly donors 

neutrophils, both in travelling to and at the site of infection. This also provides a potential 

mechanism by which older adults exhibit increased susceptibility gram-positive infections 

such as pneumonia [21] and bacterial sepsis [427]. 

Here it is proposed that aberrant migration in the healthy elderly results in increased 

collateral damage and delayed arrival at the site of infection, potentially allowing invading 

bacteria a greater opportunity for host infiltration. This might contribute to the increased rates 

of morbidity and mortality observed in the elderly population. The cross sectional data 

suggest that the decline in migration might progress gradually over time and that loss of 

function is due to the accumulation of changes during the ageing process rather than a single 

catastrophic event.  

Mechanisms driving this process remain unclear, however, in order to improve healthspan 

(the amount of time the average person can expect to spend in good health); a clearer 
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understanding of the mechanisms regulating neutrophil migration must be obtained. These 

data support the concept that the neutrophil is an immunotherapeutic target in both acute 

infections and chronic disease, however in order to ensure an adequate immune response 

remains, it would be important to normalise and not neutralise neutrophil function. 



 

 

 

 

 

 

 

CHAPTER 4 

 

 

MECHANISMS OF ALTERED NEUTROPHIL 

MIGRATION WITH AGEING 
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4.1 Introduction 

Chapter 3 demonstrated a robust aberrant migratory phenotype in neutrophils isolated from 

old donors specifically, a reduced migratory accuracy with maintained speed of migration. 

This may result in delayed arrival at the site of infection and be a major contributing factor to 

the increased rates of morbidity and mortality associated with bacterial infections in the 

elderly population.  

When a cell receives an external stimulus, it must first transmit this signal across the plasma 

membrane in order to evoke a cellular response, which in the case of cell migration would 

involve rearrangement of the actin cytoskeleton and modulation of adhesive contacts on the 

cell surface [428]. The first stage of this response is the binding of the stimulus to its 

complementary receptors on the cell surface e.g. IL8 binding to CXCR1 and/or CXCR2 

inducing ‘outside-in’ with concomitant ‘inside-out’ signalling inducing increases in integrin 

avidity on the surface [429]. This then initiates an internal signalling cascade either through 

recruitment of cellular signalling molecules to the plasma membrane or through interaction 

with the cytoskeleton inducing rearrangement, all of which results in a functional cellular 

response. As previously mentioned, signalling pathways involved in neutrophil directional 

migration are only partially understood, however signalling molecules such as 

phosphatidylinositol-3-kinase (PI3Kinase) [430], Akt/PKB [431], mammalian target of 

rapamycin (mTOR) [432] and members of the Rho-GTPase family [305] have all been 

heavily implicated in the regulation of migration. In order to identify the mechanisms driving 

aberrant neutrophil migration in the elderly and potentially intervene to improve innate 

immunity in the aged, the effects of increasing age on signalling pathways must be better 

understood.  

It was hypothesised that aberrant migration would not be caused by differential expression of 

chemoattractant receptors, as migration to a broad range of chemokines was affected by 

ageing, and would instead be driven by dysregulated cell signalling through PI3Kinase, 
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particularly the class 1 isoforms γ and δ. This hypothesis would be tested by the following 

aims: 

1. To assess chemokine receptor expression on the surface of quiescent neutrophils isolated 

from young and old adults; 

2. To measure the membrane phospholipid content of neutrophils isolated from young and 

old donors;  

3. To compare PI3Kinase and Akt activity in neutrophils isolated from young and old donors; 

4. To determine the effect of PI3Kinase inhibition on neutrophil migration using both broad-

spectrum and isoform selective inhibitors. 
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4.2 Results 

4.2.1 Effects of age on Surface Expression of Chemoattractant Receptors 

To assess any age-related defects in the proximal step of signal transduction, surface 

expression of receptors for the chemoattractants used in chapter 3 were measured on 

quiescent neutrophils isolated from healthy young (n = 20) and healthy old (n = 20) donors. 

Surface expression of CXCR1 (Young vs. old MFI ± SEM 109.8 ± 8.2 vs. 66.9 ± 9.7; 

p=0.001) and CXCR2 (Young vs. old MFI ± SEM; 68.4 ± 5.7 vs. 49.01 ± 7.8; p=0.025) was 

found to be significantly reduced on quiescent neutrophils isolated from old donors compared 

to young donors. However, there was no significant difference in surface expression of 

C5aR, BLT1 or FPR1 in neutrophils isolated from old donors (see Figure 4.1). 
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Figure 4.1 Surface Expression of Chemoattractant Receptors on Quiescent 

Neutrophils. Expression of (A) CXCR1, (B) CXCR2, (C) C5aR, (D) BLT1 and (E) 

FPR1 on the surface of quiescent peripheral blood neutrophils isolated from 

young (filled circles) and elderly (open circles) donors. Data sets were non-

normally distributed (Kolmogorov-Smirnov test), statistical significance was 

assessed via Mann-Whitney U test. Bar denotes the mean for each group (n=21). 
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4.2.2 Ageing does not alter phospholipid composition of the plasma membrane 

Alterations in the composition of phospholipids within the plasma membrane, particularly 

those with long fatty-acid chains, has been suggested as a possible mechanism by which 

age-related alterations in signal transduction may occur [162]. This may be due to reductions 

in membrane fluidity and therefore the ability of receptors to co-localize. This chapter 

therefore assessed the proportions of phosphatidylcholine (PC); phosphatidylethanolamine 

(PE), phosphatidylserine (PS) and phosphatidylinositol (PI) present in the membrane of 

quiescent neutrophils isolated from young and old donors. This work was done in 

collaboration with Professor Anthony D. Postle, Southampton Centre for Biomedical 

Research, NIHR Respiratory Biomedical Research Unit, University Hospitals Southampton, 

UK.  

 

Neutrophils isolated from old donors showed a significant reduction in the proportion of total 

PS species present in the membrane (young vs. old, mean ± SEM; 12.03 ± 0.6 vs. 9.73 ± 

0.6, p=0.009) while total proportions of total PC, PE and PI species remained unchanged 

with age (see Figure 4.2).  

 

Individual phosphatidylcholine (PC) species showed minor alterations with age: PC16:0/22:6 

and PC18:0/22:6 were significantly reduced (young vs. old, mean ± SEM; PC16:0/22:6: 0.9 ± 

0.2 vs. 0.5 ± 0.06, p=0.037; PC18:0/22:6: 0.8 ± 0.2 vs. 0.4 ± 0.05, p=0.05). There were no 

age related alterations in the proportions of individual PE, PS and PI species (Figures 4.3 - 

4.6).  
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Figure 4.2 Plasma Membrane Phospholipid Composition 

Percentage of Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), 

Phosphatidylserine (PS) and Phosphatidylinositol (PI) present in the plasma 

membrane of human neutrophils isolated from young (black bars) and old (clear 

bars) donors. All data sets follow normal distribution (Kolmogorov-Smirnov test) 

and statistical significance testing by independent samples T-test. Data are mean 

± SEM (n=10). *p < 0.05 young vs. old. 
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Figure 4.3 Composition of Phosphatidylcholine species in the Plasma 

Membrane 

Percentage of Phosphatidylcholine (PC) species present in the plasma membrane 

of human neutrophils isolated from young (black bars) and old (clear bars) donors. 

All data sets follow normal distribution (Kolmogorov-Smirnov test) and statistical 

significance was assessed by independent samples T-test. Data are mean ± SEM 

(n=10). *p < 0.05 young vs. old. 
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Figure 4.4 Composition of Phosphatidylethanolamine species in the Plasma 

Membrane 

Percentage of Phosphatidylethanolamine (PE) species present in the plasma 

membrane of human neutrophils isolated from young (black bars) and old (clear 

bars) donors. All data sets follow normal distribution (Kolmogorov-Smirnov test) 

and statistical significance assessed by independent samples T-test. Data are 

mean ± SEM (n=10). 
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Figure 4.5 Composition of Phosphatidylserine species in the Plasma 

Membrane 

Percentage of Phosphatidylserine (PS) species present in the plasma membrane 

of human neutrophils isolated from young (black bars) and old (clear bars) donors. 

All data sets follow normal distribution (Kolmogorov-Smirnov test) and statistical 

significance testing by independent samples T-test. Data are mean ± SEM (n=10). 
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Figure 4.6 Composition of Phosphatidylinositol species in the Plasma 

Membrane. Percentage of Phosphatidylinositol (PI) species present in the plasma 

membrane of human neutrophils isolated from young (black bars) and old (clear 

bars) donors. All data sets follow normal distribution (Kolmogorov-Smirnov test) 

and statistical significance testing by independent samples T-test. Data are mean 

± SEM (n=10). 
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4.2.3 PI3Kinase is constitutively active in Neutrophils from older adults 

The effects of increasing chronological age were also assessed on signal transduction 

pathways known to be involved in migration. PI3Kinase is thought to be a major pathway 

involved in the control of directional migration generating an internal gradient of the inositol 

lipid PIP3, concentrated at the leading edge of migrating cells [275]. In order to assess the 

effects of age on PI3Kinase activity, neutrophil lysates from young and old donors were 

probed for the phosphorylated form of the Class IA regulatory subunit p85 in the presence or 

absence of IL8. Phosphorylation was determined via western blot using β-actin as a loading 

control and subsequently quantified by densitometry.  

Neutrophils from young adults demonstrated low-level activation in the basal state followed 

by a transient increase in p85 phosphorylation (peaking at 1 minute) in response to IL8. In 

contrast, neutrophils from older adults demonstrated constitutive, basal activation of 

PI3Kinase that was not increased further by stimulation with IL8 (see Figure 4.7). 

 

4.2.4 Dysregulated PI3Kinase activation has differential effects on Akt activity 

To determine the extent to which dysregulated PI3Kinase activity extended downstream, 

Akt/PKB activity was measured by phosphorylation of Serine473 (Ser473) in neutrophil 

lysates from both young (n = 3) and older (n = 3) adults. Akt plays a central role in multiple 

cellular responses in addition to the control of migration and can therefore be activated by 

numerous cellular signalling pathways. Neutrophils isolated from young and old donors 

showed little or no phosphorylation at Ser473 in the basal state but exhibited differential 

activation when stimulated with IL8 for 1 minute and 2 minutes which was lost by 5 minutes 

(see Figure 4.8).  
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Figure 4.7 PI3Kinase Activity with IL8 Stimulation in Neutrophils from Young 

and Old donors. Peripheral blood neutrophils isolated from (A) young and (B) old 

donors were stimulated with 100nM IL8 for the times indicated and PI3Kinase 

activation measured by the phosphorylation of the regulatory subunit p85. β-actin 

was used as a loading control. (C) Levels of phosphoPI3Kinase were quantified 

by densitometry and expressed as a ratio of phosphorylated PI3Kinase (pPI3K):β-

actin in neutrophils from both young (black bars) and old (white bars) donors. 

Images in (A) and (B) are representative of multiple independent experiments (3 

young and 4 old) which are presented in (C) as mean ± SEM.  
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Figure 4.8 Akt Activity in response to IL8 in Neutrophils from Young and Old 

donors. Peripheral blood neutrophils isolated from (A) young and (B) old donors were 

stimulated with 100nM IL8 for the times indicated and Akt activation measured by the 

phosphorylation of Ser473. Total Akt was used as a loading control. (C) Phosphorylation 

of Ser473 was quantified by densitometry and expressed as a ratio of phosphorylated Akt 

(pAkt):total Akt (tAkt) in neutrophils from both young (black bars) and old (white bars) 

donors. Images in (A) and (B) are representative of 3 independent experiments which are 

presented in (C) as mean ± SEM. Statistical significance was measured by independent t-

test. 
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4.2.5 Dysregulated PI3Kinase activity contributes to aberrant migration  

To confirm a role for constitutive PI3Kinase activity in the manifestation of aberrant migration 

in neutrophils from elderly donors, neutrophils from both young and old donors were pre-

incubated with 1μM LY294002 a broad-spectrum PI3Kinase inhibitor prior to measuring 

migratory parameters in response to IL8. 

Pre-treatment of neutrophils from young donors with LY294002 significantly reduced 

chemokinesis (untreated vs. treated, mean ± SEM; 4.9 ± 0.3 vs. 3.3 ± 0.5 μm/min; p=0.002), 

chemotaxis (untreated vs. treated, mean ± SEM; 2.0 ± 0.2 vs. 0.8 ± 0.3 μm/min; p=0.001) 

and chemotactic index (untreated vs. treated, mean ± SEM; 0.4 ± 0.03 vs. 0.1 ± 0.03 μm/min; 

p=0.008). However, when neutrophils isolated from old donors were used LY294002 had no 

effect on chemokinesis but significantly improved both chemotaxis (untreated vs. treated, 

mean ± SEM; 1.1 ± 0.2 vs. 1.7 ± 0.1 μm/min; p=0.01) and chemotactic index (untreated vs. 

treated, mean ± SEM; 0.2 ± 0.02 vs. 0.4 ± 0.02 μm/min; p-0.03) to levels observed in young 

cells (see Figure 4.9). These data support the proposal that constitutive PI3Kinase signalling 

in neutrophils from old donors is involved in the generation of an ‘old migratory’ phenotype. 
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Figure 4.9 The effect of LY294002 on Neutrophil Migration.  

Peripheral neutrophils isolated from young (black bars) and old (white bars) 

donors were incubated in the absence or presence of 1μM LY294002 and (A) 

chemokinesis, (B) chemotaxis and (C) chemotactic index were measured in 

response to 100nM IL8. All data sets were normally distributed and statistical 

significance measured by repeated measures ANOVA. * p<0.05 young vs. old; Φ 

p<0.05 young untreated vs. treated; # p<0.05 old untreated vs. treated. Data are 

mean ± SEM (n=10).  
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4.2.6 Inhibition of PI3Kinase p110 γ and δ isoforms restores migratory accuracy in 

neutrophils from older adults 

Class I PI3Kinase consists of 4 different isoforms of the p110 catalytic subunit, (α, β, γ and δ) 

all of which are expressed in human neutrophils and involved in migratory processes [255]. 

Therefore, to further elucidate the role of specific PI3Kinase isoforms in aberrant neutrophil 

migration, migratory studies were repeated in the presence or absence of inhibitors selective 

for each isoform: p110α PIK-75 (7.8nM); p110β TGX-221 (10nM); p110γ AS-252424 (33nM) 

and p110δ CAL-101 (65nM); all concentration used correspond to IC50 values to ensure 

inhibitor selectivity. 

Inhibition of p110α or p110β in neutrophils isolated from young donors resulted in a 

significant reduction in all migratory parameters: untreated vs. treated, mean ± SEM; p110α 

inhibitor: chemokinesis: 5.4 ± 0.3 vs. 4.1 ± 0.4 p=0.002; chemotaxis: 3.3 ± 0.3 vs. 1.5 ± 0.4 

p<0.001; persistence:  0.5 ± 0.06 vs. 0.35 ± 0.05 p=0.012; and chemotactic index: 0.5 ± 0.06 

vs. 0.3 ± 0.05 p=0.011; p110β inhibitor: chemokinesis: 5.4 ± 0.3 vs. 3.4 ± 0.3 p<0.001; 

chemotaxis: 3.3 ± 0.3 vs. 0.7 ± 0.2 p<0.001; persistence: 0.5 ± 0.06 vs. 0.2 ± 0.06 p=0.001; 

chemotactic index: 0.5 ± 0.06 vs. 0.1 ± 0.04 p=0.001 (see Figure 4.10). A significant 

reduction in chemokinesis was also seen in cells isolated from old donors: untreated vs. 

treated, mean ± SEM; p110α inhibitor: 4.6 ± 0.4 vs. 3.6 ± 0.5 p= 0.035; p110β inhibitor: 4.6 ± 

0.4 vs. 3.6 ± 0.4 p=0.044.  However, chemotaxis, persistence and chemotactic index were 

unaffected by inhibition of either isoform (see Figure 4.10). 

In contrast, inhibition of p110γ had no effect on chemokinesis but significantly reduced: 

chemotaxis: untreated vs. treated, mean ± SEM; 2.9 ± 0.3 vs. 1.1 ± 0.2 p=0.002; persistence: 

untreated vs. treated, mean ± SEM; 0.5 ± 0.05 vs. 0.3 ± 0.05 p=0.001; and the chemotactic 

index: untreated vs. treated, mean ± SEM; 0.5 ± 0.05 vs. 0.2 ± 0.04 p=0.001 of cells isolated 

from young adults (see Figure 4.11). However in cells isolated from older adults, inhibition 

p110γ was able to partially restore migratory accuracy by improving chemotactic index: 

untreated vs. treated, mean ± SEM; 0.2 ± 0.04 vs. 0.4 ± 0.05 p=0.01 whilst preserving 
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chemokinesis, chemotaxis and persistence (see Figure 4.11). A similar effect was seen 

upon inhibition of p110δ which restored both chemotaxis: untreated vs. treated, mean ± 

SEM; 1.2 ± 0.2 vs. 2.7 ± 0.3 p=0.001, and the chemotactic index: untreated vs. treated, 

mean ± SEM; 0.2 ± 0.04 vs. 0.6 ± 0.04 p<0.001 (see Figure 4.11) of cells isolated from older 

adults to levels comparable with those isolated from their young counterparts. In young cells, 

inhibition of p110δ resulted in a significant reduction in all migratory parameters (see Figure 

4.11). 

 

Due to the widespread reductions seen in migratory parameters following inhibition of p110 

isoforms, especially in cells isolated from young donors, the percentage of viable neutrophils 

remaining following inhibition with PI3Kinase isoform selective inhibitors (as determined by 

the percentage of cells remaining annexinV and Sytox negative following incubation) were 

measured to ensure the inhibitors used during migratory studies were not toxic.  

Following a 40-minute incubation with isoform selective PI3Kinase inhibitors, the number of 

viable cells was unchanged when compared to untreated cells (see Figure 4.12). 
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Figure 4.10 Effect of PI3Kinase p110 α and β selective inhibitors on 

Neutrophil Migration. Peripheral neutrophils isolated from young (black bars) 

and old (white bars) donors were pre-incubated in the absence or presence of 

PI3Kinase inhibitors selective for the p110α (PIK-75, 7.8nM) or p110β (TGX-221, 

10nM) catalytic subunit of class I PI3Kinase and (A) chemokinesis, (B) 

chemotaxis, (C) persistence and (D) chemotactic index measured in response to 

100nM IL8. All data sets were normally distributed (Kolmogorov-Smirnov test) and 

statistical significance measured by factorial repeated measures ANOVA. * 

p<0.05 young vs. old; ϕ p<0.05 young untreated vs. treated; # p<0.05 old 

untreated vs. treated. Data are mean ± SEM (n=10). 

A B 

C D 
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Figure 4.11 Effect of PI3Kinase p110 γ and δ selective inhibitors on 

Neutrophil Migration. Peripheral neutrophils isolated from young (black bars) 

and old (white bars) donors were pre-incubated ± PI3Kinase inhibitors selective 

for the p110γ (AS-252424, 33nM) or p110δ (CAL-101, 65nM) catalytic subunit of 

class I PI3Kinase and (A) chemokinesis, (B) chemotaxis, (C) persistence and (D) 

chemotactic index measured in response to 100nM IL8. All data sets were 

normally distributed (Kolmogorov-Smirnov test) and statistical significance 

measured by factorial repeated measures ANOVA. * p<0.05 young vs. old; ϕ 

p<0.05 young untreated vs. treated; # p<0.05 old untreated vs. treated. Data are 

mean ± SEM (n=10). 

A B 

D C 
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Fig. 4.12 Percentage Viable Cells in the Presence of PI3Kinase Isoform 

Selective Inhibitors. Percentage of viable neutrophils isolated from (A) young 

and (B) old donors following 45 minute incubation with isoform selective 

PI3Kinase inhibitors. Cell viability was determined as those that remain both 

Annexin V and Sytox negative following incubation ± PI3Kinase inhibitors. Bar 

denotes the mean for each group (n=5). 

A B 
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4.3 Discussion 

Mechanisms driving neutrophil migration are no longer thought to exist downstream of a 

single linear pathway and instead occur through the complex interaction of multiple pathways 

when in the correct spatial and temporal orientation [254]. The aim of this chapter was to 

elucidate any age-related alterations in receptor expression, membrane composition and/or 

in the PI3Kinase/Akt signalling pathway that may be involved in the generation of the ‘old-

migratory phenotype’ observed in chapter 3. The data show constitutive basal activation of 

Class I PI3Kinase, which is insensitive to further stimulation in the neutrophils of elderly 

donors but did not confirm data reported in rat neutrophils of a change in membrane fluidity 

with ageing [371]. Furthermore inhibition on PI3Kinase- and PI3Kinase-δ was able to correct 

the defects in migratory behaviour in the neutrophils from old donors. 

Detection of a chemotactic gradient through GPCRs is the first stage in responding to a 

chemotactic gradient. Surface expression of CXCR1 (IL8 Receptor A) and CXCR2 (IL8 

Receptor B which also ligates GROα, neutrophil activating peptide-2 (NAP2) and epithelial 

neutrophil activating protein-78 (ENA-78)) showed a significant reduction with increasing 

age. Neutralisation of CXCR1 has been shown to severely impair neutrophil migration [433] 

while inhibition of CXCR2 abrogates the age-associated increase in pulmonary inflammation 

following burn injury [434]. IL8 is considered to be an intermediary chemokine [211] therefore 

reduced expression of both IL8 receptors may impair migration during the early stages of 

recruitment. However, this discrepancy is unlikely to be the underlying cause of the aberrant 

migration observed here as the ‘old-migratory phenotype’ was also present when migrating 

towards C5a, fMLP and LTB4 which signal independently of CXCR1 and CXCR2. This 

suggests a generic dysregulation of signal transduction downstream of receptor-ligand 

interactions as opposed to altered receptor specific signalling or expression. 

Within the literature, few reports exist on the effects of age on neutrophil membrane 

composition and fluidity. Alvarez et al reported an age-related increase in the phospholipid 
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content of rat peritoneal neutrophils [371] while Ponnappan et al showed that increasing age 

did not affect the fatty acid composition of membrane phospholipids in human lymphocytes 

[435].To date these reports remain the only published work investigating the effects of ageing 

on membrane lipid composition. Here small but statistically significant changes in both the 

proportion of membrane phospholipid species and in individual phospholipid species were 

detected in neutrophils from old donors. The discrepancies with published work are likely due 

to the intrinsic differences between rat and human neutrophils or could also arise from the 

fact that here peripheral blood neutrophils were assessed, whereas Alvarez et al used 

peritoneal cells which would be activated. However, the changes observed in phospholipid 

species are small in magnitude and are therefore unlikely to underlie any changes in 

membrane fluidity and subsequently aberrant migration with ageing. The significant 

reductions in phosphatidylserine (PS), a phospholipid essential in the recognition apoptotic 

neutrophils, may impact on the resolution of inflammation through reduced clearance of 

apoptotic neutrophils, though this has not been tested here. 

All chemoattractants utilized in this study signal through GPCRs with a common downstream 

event being the activation of class I PI3Kinase isoforms [436]. Work presented here 

demonstrated a constitutive activation of PI3Kinse in the basal state of neutrophils isolated 

from healthy elderly donors which could not be further activated following stimulation with 

IL8. PI3Kinase signalling is a significant contributor to the regulation of migratory processes 

acting as both an initiator and amplifier of the PIP3 response during inflammation. Inflamm-

ageing may be a contributing factor to the sustained PI3Kinase activity observed with ageing, 

with heightened inflammatory mediators, such as IL8 itself [437], leading to basal activation 

and desensitisation of immune cells. Indeed exposure to chemokines can result in 

internalisation of their receptor [211], which could explain the reduced CXCR1 and 2 seen in 

neutrophils from old donors.  

Interestingly, inhibition of PI3Kinase-γ reduces mortality in a murine model of bacterial 

sepsis, partly by reducing the systemic inflammatory response syndrome (SIRS) [438]. This 
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thesis is the first study to demonstrate dysregulated PI3Kinase during natural ageing [439]. 

Although not directly related, mutations in the gene encoding PI3Kinase are a common 

feature in a number of cancers including glioblastomas (27% of cases), gastric (25%), breast 

(8%) and lung (4%) cancers which are causally related to aberrant migration, a requirement 

for invasive migration and metastasis [440]. 

Increased basal PI3Kinase activity did not directly translate into a downstream signal, at least 

not through Akt phosphorylation which was not raised in the basal state. At early time points 

after stimulation with IL8 Akt phosphorylation was significantly higher in the elderly than in 

the young however; this was not sustained over time. There are a number of possible 

reasons for this, firstly, phosphorylation of the p85 subunit may not represent a concomitant 

increase in the levels of membrane localised PIP3, the p85 regulatory subunit controls the 

activity of class IA isoforms (α, β and δ) while PI3Kinase-γ, which is under the control of a 

p101 regulatory subunit, constitutes the dominant PIP3 producing isoform at the leading edge 

[279,280]. However the ability of inhibitors of both PI3Kinase  and δ to correct the aged 

migratory phenotype do not support this proposal.  

Secondly, sustained, dysregulated PI3Kinase activity may not be sufficient to induce 

sustained up regulation of Akt activity. Additional levels of regulation exist for both PIP3 and 

Akt independent of PI3Kinase in the form of PTEN and SHIP1 for PIP3 [281] and PP2A [299] 

and PHLPP1/2 [300] for Akt. This possibility was not investigated here but the differential 

activity of either PIP3 or Akt regulators in neutrophils from old vs. young donors should be 

included in future research. In the literature, there are a number of animal models 

demonstrating the importance of PI3Kinase and PIP3 phosphatases in the control of 

directional migration. Dictyostelium discoideum lacking PTEN demonstrate preserved 

chemokinesis but reduced chemotaxis [441]; knockout of PTEN in Zebrafish results in 

reduced accuracy of migration, a phenotype that is amenable to correction by LY294002, a 

broad-spectrum PI3Kinase inhibitor [442] and finally, by using a green fluorescent protein 
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(GFP) construct specific for the PH domain of Akt, in the absence of SHIP1, Akt exhibits 

limited translocation to the leading edge of migrating murine neutrophils [343]. These models 

suggest that the balance between PI3Kinase and PTEN/SHIP1 activity in the regulation of 

PIP3 production and localisation is essential in the co-ordination of chemotaxis and could be 

altered with ageing. This is supported by data presented here demonstrating a causal 

relationship between PI3Kinase activity and the generation of the ‘old migratory’ phenotype 

through inhibition of PI3Kinase using LY294002. 

Thirdly, it is possible that the constitutive activation of PI3Kinase presented here does not 

result in irregular PIP3 production per se (potentially due to compensation by PI3Kinase-γ 

and/or PTEN/SHIP1), and instead this activity results in inappropriate localisation of PIP3. 

Here directional migration was partly restored through inhibition of PI3Kinase-γ while 

inhibition of PI3Kinase-δ was able to recover migratory parameters in old donor neutrophils 

to levels comparable with the young. It is well documented within the literature the 

importance of these isoforms in the regulation of chemokinesis and chemotaxis 

[256,264,278]. Here it is proposed that 50% inhibition of these isoforms (the concentration 

used was in the IC50 range) during migratory processes is sufficient to normalize PIP3 

production reducing the background ‘noise’, allowing greater amplification of the PIP3 signal 

upon activation of PI3Kinase-δ and better orientating the cell along the chemotactic gradient. 

This is supported by work carried out by Boulven et al who reported a biphasic PIP3 

response when stimulated with fMLP and attributed the early peak to the action of 

PI3Kinase-γ and the later peak to an unidentified Class IA PI3Kinase isoform [278]. The data 

shown here would support the notion that the other Class IA isoform involved is in fact 

PI3Kinase-δ.  

Restoring neutrophil migration through inhibition of PI3Kinase-γ and –δ isoforms will reduce 

both collateral damage caused by aberrant migration and pathological inflammation thus 

improving clinical outcomes during infection. Aberrant signalling as a consequence of 

increasing age may be a function of inflamm-ageing but restoring these pathways may 
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prevent the concurrent amplification of inflammation thus restoring immune homeostasis and 

rebuilding neutrophil functions. 



 

 

 

 

 

 

 

 

CHAPTER 5 

 

SIMVASTATIN AND NEUTROPHIL MIGRATION  
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5.1 Introduction 

So far the data in this thesis have established an ‘old-migratory phenotype’ exhibiting 

reduced migratory accuracy with maintained speed of migration in neutrophils from old 

healthy donors. This phenotype is causally related to constitutive PI3Kinase signalling and 

can be corrected by inhibition of either PI3Kinase-γ or –δ isoforms highlighting a mechanism 

by which therapeutic intervention may be possible.  

Development of new drugs, from conception to clinical use, can take up to 20 years however 

in this study, it was decided to look for treatments which had the potential to impact upon 

immune-senescence in the short term. The influence of statins, specifically simvastatin, on 

neutrophil migration in the healthy elderly was selected as this drug is widely prescribed to 

treat high serum cholesterol. Importantly, a number of studies have also shown multiple 

members of the statin family to have pleiotropic effects independent of their cholesterol 

lowering abilities, particularly in conferring a survival advantage in older adults with 

pneumonia [390-396]. In addition, the inhibition of HMG-CoA Reductase by statins also leads 

to reduced prenylation of small GTPases such as Rho and Rac, inhibiting their function 

[398,443,444]. As Rac lies downstream of PI3Kinase it was possible that inhibiting this 

pathway with statins would have the same effect as a PI3Kinase inhibitor.  

 

Considering these data, it was hypothesised that statins would be able to correct the 

migratory deficit in older adults and thus increase innate immunity. This hypothesis was 

tested by the following aims: 

1. To evaluate the effects of statins on pneumonia outcomes in a retrospective cohort study; 

2. To assess the effects of simvastatin in vitro on the migration of neutrophils isolated from 

young and old donors; 

3. To identify a mechanism by which statins may act to influence neutrophil migratory 

dynamics in the healthy elderly.  
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5.2 Results 

5.2.1 Statin Therapy prior to admission to hospital improves Pneumonia outcomes 

To confirm published work on the effects of statin therapy on pneumonia outcomes, patients 

admitted into the Queen Elizabeth Hospital between November 2009 and October 2011 with 

pneumonia of a bacterial or unspecified origin as their starting episode, were grouped 

according to statin therapy and outcomes assessed based on their age, gender, 

inflammatory- and diabetic - status with the clinical endpoint being death.  

Of the 2068 patients admitted into QEHB with pneumonia, 634 were taking a statin upon 

admission and 1434 were not. Clinical data relating to white blood cell (WBC) count, 

Haemoglobin, C-reactive Protein (CRP), Haemoglobin (Hb), Creatinine (Cr) and Diabetic 

status was also collated from the hospital database and stratified according to statin therapy.  

Patients taking statins prior to admission into hospital had a significantly longer hospital stay 

than non-users (statin user vs. statin free, mean ± SD; 13.5 ± 15.2 vs. 8.7 ± 12.7 days, 

p<0.001), but were also more likely to survive (statin user vs. statin free, %; 83.1 vs. 75.5, 

p<0.001). Patients taking statins prior to admission were also significantly older (statin user 

vs. statin free, mean ± SD, 75.66 ± 11.7 vs. 69.2 ± 20.1, p<0.001), more likely to be admitted 

onto ITU during their hospital stay (statin user vs. statin free, %; 10.6 vs. 7.1, p=0.008) and 

more likely to be diabetic (statin user vs. statin free, %; 36.4 vs. 12.1, p<0.001). In addition, 

those on statin therapy prior to admission had higher levels of circulating potassium, urea 

and creatinine but lower levels of haemoglobin and sodium than those not on a statin. 

Although differences between these two groups are statistically significant they are not 

considered to be clinically significant and are therefore unlikely to impact on patient outcome. 

There was no difference in CRP or numbers of circulating WBC between the two groups (see 

Table 5.1).  
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Characteristics of patients admitted into the Queen Elizabeth hospital with pneumonia of 

unspecified or bacterial origin in their starting episode. ICU, Intensive Care Unit; IQR, 

Interquartile Range; CRP, C-reactive Protein; WBC, White Blood Cell Count; INR, 

International Normalized Ratio. Mann-Whitney U-test was conducted for continuous variables 

and χ
2
-test for categorical variables 

  

Table 5.1 Cohort characteristics split according to Statin treatment   
Statin User Statin Free n (%) p value

n (%) 634 (30.7) 1434 (69.3) 2068
Age, mean ± SD (years) 75.66 ± 11.7 69.2 ± 20.1 <0.001

Male 356 (56.2) 691 (48.2) 1047 (50.6) 0.001
Female 278 (43.8) 743 (51.8) 1021 (49.3)

Survived 527 (83.1) 1083 (75.5) 1610 (77.9) <0.001
Died 107 (16.9) 351 (24.5) 458 (22.2)

Yes 231 (36.4) 173 (12.1) 404 (19.6) <0.001
No 403 (63.6) 1259 (87.9) 1662 (80.4)

Hospital Length of Stay, mean ± SD (days) 13.5 ± 15.2 8.7 ± 12.7 <0.001

Yes 67 (10.6) 102 (7.1) 169 (8.1) 0.008
No 567 (89.4) 1332 (92.9) 1899 (91.8)

8.6 ± 10.3 7.7 ± 8.86 0.483
93 (34 - 211) 102 (43-215.25) 1801 0.188

11.9 (10.7-13.3) 12.6 (11.1-14) 1572 <0.001
12.8 (9.3-16.5) 12.6 (8.9-16.9) 1573 0.709

1.1 (1-1.3) 1.1 (1-1.3) 1270 0.907
138 (134-141) 139 (136-142) 1505 <0.001
4.2 (3.8-4.7) 4.1 (3.7-4.6) 1510 0.005
8.5 (6.1-12.3) 7.3 (4.9-11.3) 1683 <0.001
102 (70-176) 83 (61-134) 715 <0.001

Gender, n (%)

Diabetic, n (%)

Patient Outcome, n (%)

Admittance onto ICU, n (%)

ICU Length of Stay, mean ± SD (days)

Potassium, median (IQR)
Urea, median (IQR)
Creatinine, median (IQR)

CRP, median (IQR)
Haemoglobin, median (IQR)
WBC, median (IQR)
INR, median (IQR)
Sodium, median (IQR)
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Utilizing logistic regression, it was possible to assess the predicted probability of death 

(PPoD) from pneumonia, controlling for age and gender, demonstrating a significant positive 

relationship between age and PPoD (see Figure 5.1). The unadjusted Odds Ratio (OR) for 

death from pneumonia was 1.045, meaning for every 1 year increment in age, the probability 

of death increases by 4.5% (p<0.001). However when on a statin prior to admission, the OR 

is reduced to 0.525 (p<0.001) (model 1). There was also a significant effect for gender on 

this model while diabetic status had no effect on PPoD (p=0.946) (model 2; see Table 5.2). 

This model was then further expanded to take into account the inflammatory burden, 

represented by plasma CRP levels (model 3). Taking CRP into account (in addition to age, 

statin therapy and gender), the OR increased by 0.7 to 1.744 (p<0.001). In this model, 

gender no longer had a significant effect on the PPoD. This is represented graphically in 

Figure 5.2 where PPoD is shown as a function of plasma CRP levels in patients aged 79 

years, an age bracket chosen to give the greatest spread of data between the groups. 

  



152 
 

 

Figure 5.1 Relationship between Predicted Probability of death from Pneumonia and 

Increasing Chronological Age. The relationship between predicted probability of death 

from Pneumonia and increasing chronological age stratified according to statin usage prior to 

admission (not taking a statin, black lines; taking a statin, grey lines) and gender (male, 

circles; female, triangles). Relationships were assessed by linear regression controlling for 

age, statin therapy, gender and diabetic status. 

 
  

 

 

 

p<0.005 
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Table 5.2 Relationship between Predicted Probability of Death from Pneumonia 

and Increasing Chronological Age  

Values were obtained from logistic regression models. Model 1 was adjusted for 

Statin Therapy; Model 2 was adjusted for Statin Therapy, Gender and Diabetic 

status; Model 3 was adjusted for Statin Therapy, Gender and C-reactive Protein 

(CRP), diabetes was removed from this model as it has no significant effect in 

model 2. 

S.E, Standard Error; OR, Odds Ratio 

Lower Upper

Model 1 Age .044 .004 <0.001 1.045 1.037 1.053
Statin User -.645 .126 <0.001 .525 .410 .671

Model 2 Age .045 .004 <0.001 1.046 1.038 1.054
Statin User -.652 .130 <0.001 .521 .404 .672
Gender .222 .112 .047 1.248 1.003 1.554
Diabetes -.055 .146 .707 .946 .710 1.261

Model 3 Age .052 .005 <0.001 1.053 1.044 1.063
Statin User -.679 .137 <0.001 .507 .388 .644
Gender .145 .123 .240 1.156 .908 1.472
CRP .556 .126 <0.001 1.744 1.450 2.233

β S.E p OR
95% CI for OR
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Figure 5.2 Relationship between Predicted Probability of death from Pneumonia and 

C-reactive Protein at 79 years old. The relationship between predicted probability of death 

from Pneumonia and increasing levels of C-reactive protein (CRP) at 79 years old stratified 

according to statin therapy prior to admission (not taking a statin, black lines; taking a statin, 

grey lines) and gender (male, circles; female, triangles). Relationships were assessed by 

linear regression controlling for CRP, age, statin therapy and gender. *p<0.05 statin free vs. 

statin given 

  

 

 
p<0.005 
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5.2.2 Simvastatin restores directional migration of neutrophils from older adults 

To begin establishing a causative relationship between statin therapy and pneumonia 

outcomes, migratory parameters were measured on freshly isolated peripheral blood 

neutrophils from both young and old donors in the presence or absence of 1nM simvastatin, 

a plasma concentration equivalent to clinical clinically prescribed doses. Migratory studies 

were repeated using the Insall chamber, imaged using real-time video microscopy and cell 

tracked using ImageJ in response to 100nM IL8 and 10nM fMLP. 

Neutrophils isolated from, young (n=10) and elderly (n=10) donors demonstrated maintained 

chemokinesis and persistence in response to IL8 and fMLP as reported in chapter 3. Both 

chemotaxis and chemotactic index were significantly reduced in neutrophils isolated from 

elderly donors when compared to those isolated from young donors (young vs. old, mean ± 

SEM; IL8: chemotaxis 1.7 ± 0.2 vs. 0.4 ± 0.2 p<0.001; chemotactic index 0.4 ± 0.04 vs. 0.1 ± 

0.04 p<0.001; fMLP: chemotaxis 1.7 ± 0.2 vs. 0.9 ± 0.2 p=0.008; chemotactic index: 0.4 ± 

0.04 vs. 0.1 ± 0.03 p<0.001). Pre-incubation with 1nM simvastatin had no effect on migratory 

parameters of neutrophils isolated from young donors but significantly improved both the 

chemotaxis and chemotactic index of neutrophils isolated from old donors in response to 

both IL8 and fMLP (old untreated vs. treated, mean ± SEM; IL8: chemotaxis 0.4 ± 0.2 vs. 2.2 

± 0.1 p<0.001; chemotactic index: 0.09 ± 0.03 vs. 0.5 ± 0.04 p<0.001; fMLP: chemotaxis 0.9 

± 0.2 vs. 1.8 ± 0.2 p=0.005; chemotactic index 0.1 ± 0.03 vs. 0.4 ± 0.03 p=0.001 ) restoring 

these parameters to levels comparable to neutrophils isolated from young donors (see 

Figures 5.3 and 5.4). 
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Figure 5.3 Effect of Simvastatin on Neutrophil Migration toward IL8. 

Peripheral neutrophils isolated from young (black bars) and old (white bars) were 

pre-incubated for 40 minutes with 1nM Simvastatin and (A) chemokinesis (B) 

chemotaxis (C) persistence and (D) chemotactic index measured in response to 

100nM IL8. All data sets were normally distributed (Kolmogorov-Smirnov test) and 

statistical significance measured by factorial repeated measures ANOVA. *p<0.05 

young vs. old; # p<0.05 old untreated vs. treated. Data are mean ± SEM (n=10). 

A B 

C D 
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Figure 5.4 Effect of Simvastatin on Neutrophil Migration toward fMLP. 

Peripheral neutrophils isolated from young (black bars) and old (white bars) were 

pre-incubated for 40 minutes with 1nM Simvastatin and (A) chemokinesis (B) 

chemotaxis (C) persistence and (D) chemotactic index measured in response to 

10nM fMLP. All data sets were normally distributed (Kolmogorov-Smirnov test) 

and statistical significance measured by factorial repeated measures ANOVA. 

*p<0.05 young vs. old; ϕ p<0.05 young untreated vs. treated; # p<0.05 old 

untreated vs. treated. Data are mean ± SEM (n=10). 

A B 

C D 
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5.2.3 Simvastatin does not alter phospholipid composition of the plasma membrane  

In order to ascertain a potential mechanism by which simvastatin was able to modulate 

neutrophil migration, the membrane phospholipid composition of neutrophils isolated from old 

donors pre-incubated for 40 minutes with 1nM simvastatin prior to lipid extraction was 

assessed. Compared to neutrophil isolated from older adults not pre-treated with simvastatin, 

there was no significant difference in the proportion of total PC, PE, PS and PI species in the 

plasma membrane (see Figure 5.5). Comparing individual phospholipid species, there were 

also no significant differences in the composition of PC, PS or PI species however, the 

proportion of PE 18:0p/18:2 in the membrane of neutrophils from older adults pre-treated 

with simvastatin was significantly reduced (old untreated vs. old treated, mean ± SEM; 8.43 ± 

0.43 vs. 7.36 ± 0.68, p=0.05) (see Figures 5.6 to 5.9). This work was done in collaboration 

with Professor Anthony D. Postle, Southampton Centre for Biomedical Research. 
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Figure 5.5 Effect of Simvastatin on Plasma Membrane Phospholipid 

Composition.  

Percentage of Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), 

Phosphatidylserine (PS) and Phosphatidylinositol (PI) present in the plasma 

membrane of human neutrophils isolated from old donors and pre-treated with 

(hashed bars) and without (clear bars)  1nM Simvastatin for 40 minutes prior to 

measurement. All data sets were normally distributed (Kolmogorov-Smirnov test) 

and statistical significance assessed by independent samples T-test. Data are 

mean ± SEM (n=10).  
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Figure 5.6 Effect of Simvastatin on Composition of Phosphatidylcholine 

Species  

Percentage of Phosphatidylcholine (PC) species present in the plasma 

membrane of were measured in human neutrophils isolated from old donors 

(clear bars) a proportion of which were treated with 1nM Simvastatin for 40 

minutes prior to measurement (hashed bars). All data sets were normally 

distributed (Kolmogorov-Smirnov test) and statistical significance assessed by 

independent samples T-test. Data are mean ± SEM (n=10). 
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Figure 5.7 Effect of Simvastatin on Composition of Phosphatidylethanolamine 

Species.  

Percentage of Phosphatidylethanolamine (PE) species present in the plasma 

membrane of were measured in human neutrophils isolated from old donors (clear 

bars) a proportion of which were treated with 1nM Simvastatin for 40 minutes prior 

to measurement (hashed bars). All data sets were normally distributed 

(Kolmogorov-Smirnov test) and statistical significance assessed by independent 

samples T-test. Data are mean ± SEM (n=10). *p<0.05 untreated vs. treated.  
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Figure 5.8 Effect of Simvastatin on Composition of Phosphatidylserine 

Species.  

Percentage of Phosphatidylserine (PS) species present in the plasma membrane 

of were measured in human neutrophils isolated from old donors (clear bars) a 

proportion of which were treated with 1nM Simvastatin for 40 minutes prior to 

measurement (hashed bars). All data sets were normally distributed (Kolmogorov-

Smirnov test) and statistical significance assessed by independent samples T-

test. Data are mean ± SEM (n=10). 
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Figure 5.9 Effect of Simvastatin on Composition of Phosphatidylinositol 

Species. 

Percentage of Phosphatidylinositol (PI) species present in the plasma membrane 

of were measured in human neutrophils isolated from old donors (clear bars) a 

proportion of which were treated with 1nM Simvastatin for 40 minutes prior to 

measurement (hashed bars). All data sets were normally distributed (Kolmogorov-

Smirnov test) and statistical significance assessed by independent samples T-

test. Data are mean ± SEM (n=10). 
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5.2.4 Membrane Cholesterol:PC Ratio is not altered by increasing age or Simvastatin 

treatment 

Cholesterol is the major sterol species found within membranes and is known to play a 

significant role in influencing membrane fluidity through interactions with the fatty acid tails of 

membrane phospholipids thereby preventing lateral movement and inducing a more rigid 

membrane structure [368]. Serum cholesterol is known to increase with age however, little is 

known about the effects of age on membrane cholesterol content. Although it was felt 

unlikely that pre-incubation with 1nM simvastatin for 40 minutes would significantly alter 

membrane composition, statin therapy has been shown to modulate cholesterol levels of 

synaptosomal plasma membranes within the brains of patients with Alzheimer’s disease 

ultimately altering membrane micro-domains and affecting membrane fluidity [445]. This 

possibility was therefore examined. 

Neutrophils isolated from old donors showed a significant increase in membrane content of 

both cholesterol and PC when compared to young donors (young vs. old, mean ± SEM; 

cholesterol: 1.1 ± 0.2 vs. 1.8 ± 0.2 p=0.019; PC: 5.2 ± 0.5 vs. 7.8 ± 0.9, p=0.012) resulting in 

an unchanged cholesterol: PC ratio. Pre-incubation of neutrophils from old donors with 1nM 

simvastatin had no effect on either membrane cholesterol or PC content nor on the ratio of 

cholesterol:PC (see Figure 5.10). 
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Figure 5.10 Composition of free Cholesterol and Phosphatidylcholine 

species in the Plasma Membrane. Proportion of (A) Cholesterol and (B) 

Phosphatidylcholine (PC) and (C) ratio of cholesterol: PC species present in the 

plasma membrane of human neutrophils isolated from young (black bars) and old 

(clear bars) donors. Neutrophils isolated from old donors were also pre-incubated 

with 1nM Simvastatin for 40 minutes (hashed bars) prior to measurement. All data 

sets follow normal distribution (Kolmogorov-Smirnov test). Data are mean ± SEM 

(n=10). *p < 0.05 old vs. young. 

A B 

C 
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5.3 Discussion 

Statins have been shown to have pleiotropic effects beyond their ability to lower serum 

cholesterol conferring a survival advantage to patients with pneumonia [390-396]. However 

their specific mechanisms of action remain elusive although effects on the innate immune 

system have been indirectly implicated. The aim of this chapter was to investigate the effects 

of simvastatin on the migratory dynamics of neutrophils isolated from young and old donors 

and identify any potential mechanisms by which this may occur. The data confirm previously 

published work documenting the ability of statins to confer a survival advantage during 

infection [390-396] and demonstrate for the first time how migration in the elderly but not the 

young is sensitive to modulation by simvastatin. 

Statins have been shown to modulate the function of small GTPases known to be essential 

in mediating a number of neutrophil anti-microbial functions including phagocytosis, ROS 

production and migration due to their capacity to dynamically re-model the cytoskeleton 

[446]. In the case of migration, addition of C3 exo-enzyme, a specific inhibitor for Rho 

proteins, significantly impairs the ability of THP-1 monocytes to migrate towards monocyte 

chemoattractant protein-1 (MCP1) [401]. Statins are able to mediate this effect on small 

GTPases by preventing their isoprenylation [401,447] through inhibition of the enzyme 3-

hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting step in the 

mevalonate pathway. In the absence of a prenyl group (either farnesyl pyrophosphate (FPP) 

or geranylgeranyl pyrophosphate (GGP)), small GTPases cannot be inserted into the 

membrane thereby preventing interaction with activatory molecules and inducing functional 

inactivity [447]. 

In recent years, the pleiotropic effect of statins have received significant attention with statins 

being suggested to reduce the risk of a number of diseases including dementia [387], lung 

cancer [388] and cardiovascular disease [389]. Stains have also been recently recognized as 

having anti-inflammatory properties through modulation of cytokine secretion [448] and 

prevention of endothelial dysfunction [449]. Although the observation is well documented, the 
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mechanism by which statins confer a survival advantage during pneumonia infection remains 

unclear. It was hypothesised that this may be due to the improvement of neutrophil function, 

strengthening defences previously weakened by natural ageing. 

A number of previous studies have demonstrated the ability of statins to reduce neutrophil 

migratory efficiency in both human and animal studies [398-400], however these authors 

used statin concentrations 1,000 – 10,000 times that which would be considered 

therapeutically relevant. Data presented here indicate the ability of simvastatin, when used at 

therapeutic concentrations, to act directly on neutrophils in such a way as to reverse the age-

associated decline in neutrophil migratory accuracy.  

Statins are most well known for their ability to lower serum cholesterol which itself is known 

to increase with during ageing [450], however little is known on the effects of statins on 

membrane composition and therefore their ability to alter membrane fluidity. To date, no 

reports exist on the ability of statins to modulate neutrophil membrane phospholipid 

composition. Here the data show no change in the proportion of phospholipids in the 

membrane following pre-incubation of neutrophils from older adults with 1nM simvastatin with 

the exception of PE 18:0p/18:2. However the observed reduction on this single species is 

unlikely to constitute the mechanism by which statins modulate improvements in neutrophil 

migration especially as this phospholipid would not be considered to have a particularly long 

fatty acid chain and therefore its ability to alter membrane fluidity would be severely limited. 

The data also show a significant increase in the amount of cholesterol present in lipid 

extracts from neutrophils isolated from older adults. However the amount of 

phosphatidylcholine (PC), the most abundant phospholipid in eukaryote membranes [359], 

also showed a significant increase with age resulting in a cholesterol:PC ratio that was not 

affected by ageing. Pre-incubation of neutrophils from older adults with 1nM simvastatin prior 

to lipid extraction did not appear to have any effect on membrane composition and is 

therefore not a contributing factor to the ability of simvastatin to modulate neutrophil 

migration in the elderly.  
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It is proposed that restoring neutrophil migration through the action of simvastatin may have 

the potential to impact upon immune senescence in the short term reducing both pathological 

inflammation and the rates of morbidity and mortality from bacterial infections observed in the 

elderly population. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER 6 

 

 

CAN SIMVASTATIN IMPROVE NEUTROPHIL 

FUNCTIONS IN THE HEALTHY ELDERLY?  
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6.1 Introduction 

The data so far have demonstrated a robust aberrant migratory phenotype in the healthy 

elderly which was restored in in vitro studies through inhibition of class I PI3Kinase isoforms, 

specifically PI3Kinase γ and δ, or through inhibition of the mevalonate pathway by treatment 

with simvastatin. Inhibition of either of these pathways may be particularly effective at 

improving innate immunity and thus reducing the rates of morbidity and mortality associated 

with infection. PI3Kinase-δ isoform inhibitors have been used in clinical trials of patients 

chronic lymphoid leukaemia for lymphoid malignancies with some suggestion of efficacy 

[451], however these trials have reported a number a grade 3 (severe) adverse events 

including pneumonia and neutropenia [452] which may limit clinical use, particularly in the 

elderly population. In contrast, Statins, a class of drugs widely prescribed to treat 

hypercholesterolemia, are safe in most patients and relatively well tolerated. This makes 

them an attractive intervention to improve neutrophil function in the elderly. 

Existing population-based retrospective studies already suggest statin therapy may improve 

innate immune function in vivo as well as in vitro as reduced rates of morbidity and mortality 

from bacterial pneumonia have been observed in elderly patients when on statin therapy 

prior to admission into hospital [393,395,396]. However, in vivo pleiotropic effects of statins, 

specifically on neutrophil anti-microbial functions with advancing age, are yet to be 

elucidated.  

Based on data presented in chapter 5, it was hypothesised that in vivo simvastatin therapy in 

older adults would restore neutrophil anti-microbial functions to levels comparable to the 

young. This hypothesis was tested by carrying out a double-blind placebo controlled trial 

investigating the effects of 80mg/day Simvastatin on neutrophil anti-microbial functions. The 

primary outcome was neutrophil chemotaxis in response to IL8 and fMLP. Secondary 

outcomes were other neutrophil migratory parameters (chemokinesis, persistence and 

chemotactic index, percentage cells adhering, migrating and time to initiation of migration), 
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neutrophil phagocytosis of S.aureus and E.coli bioparticles, reactive oxygen species 

production in response to IL8 and fMLP, patient safety and drug tolerability. 

 

Work presented in this chapter was completed in partnership with Dr. Jaimin Patel, under the 

clinical supervision of Dr Elizabeth Sapey and Dr David Thickett, University Hospital 

Birmingham, Birmingham, UK  
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6.2 Methods 

In order to assess the effect of statin treatment on neutrophil function in vivo, a randomised 

double blind, placebo-controlled, crossover study was used to assess whether a daily dose 

of 80mg Simvastatin taken orally for two weeks was sufficient to correct any age-related 

defects in neutrophil functions namely migration, phagocytosis and superoxide production.  

 

6.2.1 Study Design 

Power analysis suggested that a sample size of 20 was adequate. 22 healthy older (age > 

60) volunteers were recruited into the study to allow for non-completion and were 

randomised to receive either a matched placebo or 80mg Simvastatin daily for 2 weeks in a 

cross–over, double-blinded, placebo controlled trial.  This followed a two week wash out 

period (chosen to allow a new population of blood neutrophils to be released) and then 

subjects received the alternative treatment, again in a double blinded fashion. Simvastatin 

and placebo were both manufactured by Bilcare Ltd to GMP standards and the trial received 

ethical approval, Medicines and Healthcare Products Regulatory Agency (MHRA) approval 

and was sponsored by the University of Birmingham in accordance with national regulations 

for Clinical Trials of an investigational medicinal product [453]. Neither medical nor laboratory 

staff involved in the trial were aware of the identity of the drug being taken until all analysis 

was competed and the trial database unblinded. All assays were performed by a single 

analyst. 

Subjects were recruited from the 1000 Elders Cohort, a research cohort of healthy older 

people and written informed consent was obtained (REC 11/SC/0356). Subjects attended the 

Wellcome Trust Clinical Research Facility (WTCRF) for 4 visits over a 6-8 week period.  

Visit 1: Subject eligibility for the study was assessed by fulfilment of all inclusion criteria and 

none of the exclusion criteria (see Table 6.1). In order to assess liver function (LTFs), thyroid 

function (TFTs), creatine kinase (CK), urea and electrolyte levels (U&Es), and baseline 

cholesterol a peripheral blood sample was collected from each participant. Results were 
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reviewed by the trial physicians (Sapey and Thickett) to ensure all criteria were met and 

there were no contraindications to inclusion. 

Visit 2: Inclusion and exclusion criteria were reassessed and patients were randomised to 

receive either placebo or simvastatin. A 35ml peripheral blood sample was collected from 

each subject to measure neutrophil function (migration, phagocytosis and superoxide 

production) immediately prior to simvastatin/placebo administration.  

Visit 3: Following completion of the first 2 weeks of therapy, subjects returned to the WTCRF 

where a 35ml blood sample was collected to allow measurement of neutrophil function 

(migration, phagocytosis and superoxide production) and assessment of relevant health 

parameters (clinical review, LFTs, TFTs, U&Es, CK and full blood count) following 

simvastatin or placebo administration to ensure there were no adverse effects of the 

treatment. Cholesterol levels were assessed but were not made available to trial personnel. 

Subjects were then prescribed the alternative treatment (80mg Simvastatin or placebo) and 

asked to begin taking these tablets in 14 days time to allow a 2 week wash out period.  

Visit 4: After completion of the second treatment, subjects returned to the WTCRF where 

their health status and cholesterol levels were assessed as before, and a 35ml blood sample 

was collected to measure neutrophil function following the second set of treatment. Subjects 

were asked to return all medication packaging and a treatment diary to prove compliance. 
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Table 6.1 Inclusion and Exclusion Criteria for Statin Clinical Trial 

MRC, Medical Research Council; FEV, Forced Expiratory Volume; FVC, Forced 

Vital Capacity; TLC, Total Lung Capacity; KCO, Gas Transfer Coefficient; COPD, 

Chronic Obstructive Pulmonary Disease; TB, Tuberculosis 
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6.2.2 Measurement of Neutrophil Function 

Neutrophil migration was measured as described in section 2.3 in response to 100nM IL8 

and 10nM fMLP; phagocytosis was measured as described in section 2.5 and superoxide 

production was measured as described in section 2.6. 

Additional migratory parameters were determined as described below: 

Neutrophil adherence (%): the number of adherent cells present within the field of view 

divided by the total number of cells in the field x100. 

Proportion of migrating cells (%): the number of migrating cells present within the field of 

view divided by the number of adhered cells in the field x 100 

Time to first movement (seconds): average time taken to migrate 5µm (half the average body 

length of a polarised cell) and presented in 20s intervals due to time delay between frames. 

 

6.2.3 Rational for choice of drug and dose 

The in vitro data collected had suggested a positive effect on neutrophil migration with 

simvastatin, but other classes of statins have not been tested. It was therefore decided to 

utilise simvastatin. Although there is a large amount of data suggesting statins may be 

beneficial in animal models of infection and acute lung injury, only a single study has 

compared 2 doses of simvastatin (5 or 20 mg/kg given intraperitoneally 24 hours before and 

concomitantly with the injury to induce lung injury) and only the higher dose was effective in 

attenuating lung injury [454]. In a double-blind placebo-controlled study, Steiner et al 

exposed healthy volunteers to low dose intravenous endotoxin, which produces a detectable 

systemic inflammatory and pro-coagulant response without adverse effect [455]. Simvastatin 

80mg for 4 days before endotoxin challenge inhibited these processes [455]. No other clinical 

studies have been published demonstrating that a lower dose is effective. Furthermore, in a 

study where 2265 patients following an acute coronary syndrome were randomised to 

receive 80 mg simvastatin, myopathy (CK >10 times the upper limit of normal associated 
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with muscle symptoms) occurred in only 0.4% and rhabdomyolysis (CK > 10000 units/L with 

or without muscle symptoms) in 0.13% after 24 months treatment [456]. 

14 days therapy had been selected based on two factors. Firstly, 80mg Simvastatin once 

daily achieves steady-state plasma concentrations, as demonstrated by a study of healthy 

volunteers (with no reported adverse events in this healthy group) [457]. Secondly, 14 days 

will allow all circulating neutrophils to be exposed to the simvastatin, based on studies of 

average neutrophil maturation and lifespan of approximately 11 days [124]. 

In light of these data, it was proposed that Simvastatin 80mg was the only choice where both 

in vitro studies and clinical data supported efficacy while maintaining an acceptable safety 

profile. 
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6.3 Results 

To assess the in vivo effects of simvastatin on neutrophil function, 20 healthy volunteers 

aged over 60 years (range 60-94 years) were recruited to the study and given either placebo 

or 80mg/day simvastatin for two weeks after which neutrophils were isolated from whole 

blood. The trial was unblinded following all data analysis in an “intention to treat” manner. 

Demographics and health status at enrolment of all patients who completed the trial are 

shown in Table 6.2. During the study, there were no serious adverse events (SAE). Adverse 

events (AE) consisted of 1 subject who developed a migraine whilst on placebo (although 

this patient reported a medical history of migraines) and 2 subjects who developed 

generalised aches whilst on the statin however none of these patients felt these side-effects 

were severe enough to withdraw from the trial, with all patients successfully completing the 

study protocol. 1 additional patient presented with a raised Creatine Kinase (CK) after taking 

the statin however, this was asymptomatic and did not result in this patient withdrawing from 

the trial. Upon consulting their GP, their CK levels had returned to baseline two weeks after 

completing the study protocol. 1 patient developed a chest infection whilst taking the placebo 

and subsequently withdrew from the trial before taking the statin, with one further patient 

withdrawing from the trial due to reports of negative side-effects of simvastatin appearing in 

the media during the course of the trial.  19 out of the 20 patients included in the study took 

the full statin course, with only 1 patient failing to take 1 tablet during the middle of the statin 

course.  
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Table 5.2 Subject Characteristics upon Enrolment  

Demographics and health status of study participants at visit 1. Participant health status 

was determined on the basis of lung function and biochemical blood tests and assessed 

by medical staff at the QE hospital. Upon determination of health status, qualifying 

participants were then enrolled into the trail and subsequent visits arranged. PYH, Pack 

year history; FEV1, Forced Expiratory Volume; FVC, Forced Vital Capacity; pp, 

percentage predicted; BMI, Body Mass Index; IQR, Interquartile Range; eGFR, estimated 

Glomerular Filtration Rate; TSH, Thyroid Stimulating Hormone.  

n completed (total) 20 (23)
Age, mean (range), years 71.9 (60-94)
Gender, n (%)

Male 9 (43)
Female 12 (57)

Smoker
Never 13
Ex, n (PYH) 6 (21.5)
Current, n (PYH) 2 (21.5)

FEV1 , mean ± SD (L) 2.67 ± 0.7
FEV1pp, mean ± SD (L) 115.5 ± 19.1
FVC, mean ± SD (L) 3.573 ± 0.8
FVCpp, mean ± SD (L) 123.25 ± 21.9
Ratio , mean ± SD 74.7 ± 9.1
BMI, mean ± SD 26.04 ± 3.7

Heart Rate, median (IQR) bpm 67 (64.5-72.0)
Blood Pressure, median (IQR) mmHg

Systolic 142 (132-149)
Diastolic 82 (74-90.5)

Oxygen Sats, median (IQR) % 97 (96-98)
Urea, median (IQR) mmol/L 5.3 (4.4-6.5)
Creatinine, median (IQR) μmol/L 79 (69.5-80.5)
eGFR, median (IQR) ml/min/1.73m2 78 (66-85.5)
Bilirubin, median (IQR) μmol/L 8 (7-10)
Alkaline Phosphatase, median (IQR) IU/L 70 (60-78.5)
Alanine Transferase, median (IQR) IU/L 17 (15-22)
TSH,  median (IQR) mU/L 1.9 (1.1-3.7)
FreeT4, median (IQR) pmol/L 15 (14.1-16.8)
Creatine Kinase, median (IQR) IU/L 80 (59.5-134.5)

Health Status at 

Enrollment



179 
 

6.3.1 80mg/day Statin Therapy does not affect the health status of older adults 

Throughout the trial, the health status of each volunteer was monitored to ensure there were 

no adverse side effects related to statin administration. There was no significant change in 

parameters used to quantify health status following prescription of 80mg/day simvastatin 

compared to placebo. See Table 6.3. 

 

6.3.2 Statin administration reduced serum cholesterol 

To ensure tablets taken during this trial had therapeutic value, serum cholesterol was 

measured at baseline and after taking both placebo and statin as a marker of compliance. 

Serum cholesterol values remained unchanged following placebo but were significantly 

reduced following statin administration (baseline vs. placebo, median (IQR); 5.7 (5.2-6.4) vs. 

5.8 (5.1-6.1) mmol/L p=0.1; baseline vs. statin, median (IQR); 5.7 (5.2-6.4) vs. 3.8 (3.6-4.4) 

mmol/L p<0.001). See Figure 6.1. 
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B v P B v S P v S

Heart Rate, median (IQR) bpm 67 (64.5-72.0) 73 (65-78) 72 (65.3-79.8) 0.023 0.025 1.000
Blood Pressure, median (IQR) mmHg

Systolic 142 (132-149) 136 (122-145) 139.5 (127.8-144.8) 0.155 1.000 0.758
Diastolic 82 (74-90.5) 81 (73.5-85) 77 (68-82) 0.757 0.214 1.000

Oxygen Sats, median (IQR) % 97 (96-98) 97 (97-98) 97.5 (96-98) 0.254 0.429 1.000
Urea, median (IQR) mmol/L 5.3 (4.4-6.5) 5.7 (5.1-6.2) 5.6 (4.9-6.8) 1.000 0.902 1.000
Creatinine, median (IQR) μmol/L 79 (69.5-80.5) 74.5 (64-81.3) 74.5 (68.5-80) 1.000 1.000 0.668
eGFR, median (IQR) ml/min/1.73m2 78 (66-85.5) 80.5 (68-89) 79 (66.3-86.8) 0.845 1.000 0.614
Bilirubin, median (IQR) μmol/L 8 (7-10) 7 (6.5-10) 7 (2.3-10.8) 1.000 1.000 1.000
Alkaline Phosphatase, median (IQR) IU/L 70 (60-78.5) 74 (58.5-83.50 69.5 (56.8-79.5) 0.427 1.000 0.314
Alanine Transferase, median (IQR) IU/L 17 (15-22) 17 (13-21) 17 (15-21.5) 1.000 1.000 0.942
TSH,  median (IQR) mU/L 1.9 (1.1-3.7) 1.9 (0.9-5.3) 1.81 (1.1-6.2) 0.889 1.000 1.000
FreeT4, median (IQR) pmol/L 15 (14.1-16.8) 15.5 (12.9-17.2) 15.9 (13-16.5) 1.000 1.000 1.000
Creatine Kinase, median (IQR) IU/L 80 (59.5-134.5) 78 (56.5-104) 74.5 (64.8-115.25) 1.000 0.928 0.909

Baseline Placebo Statin
p value

Participant health status was determined on the basis of biochemical blood tests and assessed and monitored though out the trial 

by medical staff at the QE hospital. Upon determination of health status, qualifying participants were then enrolled into the trail and 

subsequent visits arranged. IQR, Interquartile Range, eGFR, estimated Glomerular Filtration Rate, TSH, Thyroid Stimulating 

Hormone.  

Table 6.3 Health status of Study Participants throughout the Trial Protocol 
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Figure 6.1 Serum Cholesterol levels Throughout Trial Protocol 

Serum Cholesterol was measured at baseline and following prescription of both 

placebo and simvastatin to confirm compliance with trial protocol. Data sets were 

normally distributed and significance assessed by repeated measured ANOVA. 

*p<0.05 baseline vs. simvastatin; φ p<0.05 placebo vs. simvastatin, Data sets are 

from 20 independent experiments with bar showing the mean for each group. 
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6.3.3 In vivo statin therapy restores neutrophil migration in the healthy elderly 

Neutrophil migration was measured in response to 100nM IL8 and 10nM fMLP at baseline 

and following prescription of placebo or 80mg/day simvastatin for two weeks. Statistical 

significance was measured using the Wilcoxon Signed-Rank test and p values manually 

adjusted for Bonferroni correction and therefore significance was accepted at p ≤ 0.017 with 

the exception of neutrophil persistence which was normally distributed and therefore 

assessed using a repeated measured ANOVA with significance accepted at p < 0.05. 

Following a two week prescription of 80mg/day of simvastatin, chemokinesis was reduced in 

the basal state (in the presence of buffer alone) compared to baseline (mean ± SEM; 2.92 ± 

0.1 vs. 2.6 ± 0.1, p = 0.16) but not when compared to placebo (placebo vs. simvastatin, 

mean ± SEM; 2.78 ± 0.15 vs. 2.6 ± 0.12, p = 0.184). In the presence of IL8, chemokinesis 

following simvastatin treatment was unaffected when compared to both baseline and placebo 

values (baseline vs. simvastatin, mean ± SEM; IL8: 4.05 ± 0.13 vs. 3.94 ± 0.17 p = 0.297; 

placebo vs. simvastatin, mean ± SEM; 4.06 ± 0.13 vs. 3.94 ± 0.17, p = 0.221). Chemokinesis 

towards fMLP was also unaffected by simvastatin therapy when compared to baseline 

(baseline vs. statin, mean ± SEM; 4.12 ± 0.12 vs. 3.71 ± 0.18, p = 0.025) or placebo (4.06 ± 

0.15 vs. 3.71 ± 0.18, p = 0.091) (see Figure 6.2). 

Chemotaxis was unaffected by simvastatin treatment in the basal state (mean ± SEM; 

baseline vs. simvastatin, 0.19 ± 0.07 vs. 0.21 ± 0.07, p = 0.174; placebo vs. simvastatin, 4.06 

± 0.13 vs. 3.93 ± 0.17, p = 0.184). There was a trend towards increased chemotaxis with 

statin therapy when migrating towards IL8 (baseline vs. simvastatin, mean ± SEM; 0.96 ± 

0.13 – 1.28 ± 0.16, p = 0.020; placebo vs. baseline, mean ± SEM; 0.86 ± 0.17 vs. 1.28 ± 

0.16, p = 0.022). Migration towards fMLP was significantly increased when compared to both 

baseline and placebo values (baseline vs. simvastatin, mean ± SEM; 0.766 ± 0.15 vs. 1.09 ± 

0.09, p = 0.013; placebo vs. simvastatin, mean ± SEM, 0.55 ± 0.13 vs. 1.09 ± 0.09, p = 
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0.001). There was no significant difference in chemotaxis following placebo treatment 

compared to baseline (see Figure 6.3).  
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Figure 6.2 Effect of Simvastatin on Neutrophil Chemokinesis in response to 

IL8 or fMLP. Migration of neutrophils isolated from old donors at baseline (black 

bars) and after prescription of placebo (hashed bars) or 80mg/day simvastatin 

(white bars) for two weeks. Chemokinesis was measured in response to 100nM 

IL8 or 10nM fMLP. Data sets were non-normally distributed and statistical 

significance assessed by Wilcoxon-Signed Rank Test with significance accepted 

at p<0.017 to adjust for Bonferroni correction.  Data are mean ± SEM (n=20). 

*p<0.017 compared to baseline; #p<0.017 compared to placebo 
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Figure 6.3 Effect of Simvastatin on Neutrophil Chemotaxis in response to 

IL8 or fMLP. 

Migration of neutrophils isolated from old donors at baseline (black bars) and after 

prescription of placebo (hashed bars) or 80mg/day simvastatin (white bars) for two 

weeks. Chemotaxis was measured in response to 100nM IL8 or 10nM fMLP. Data 

sets were non-normally distributed and statistical significance assessed by 

Wilcoxon-Signed Rank Test with significance accepted at p<0.017 to adjust for 

Bonferroni correction.  Data are mean ± SEM (n=20). *p<0.017 compared to 

baseline; #p<0.017 compared to placebo 
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Persistence, a measure of cell orientation toward the chemotactic gradient, was unaffected in 

the basal state following simvastatin treatment (baseline vs. simvastatin, mean ± SEM; 0.24 

± 0.03 vs. 0.25 ± 0.02, p = 1.000; placebo vs. statin, mean ± SEM, 0.17 ± 0.02 vs. 0.25 ± 

0.02, p = 0.213). In response to a gradient of IL8, persistence was significantly increased 

following simvastatin treatment when compared to baseline (baseline vs. simvastatin, mean 

± SEM; 0.26 ± 0.03 vs. 0.41 ± 0.04) but not when compared to placebo (placebo vs. 

simvastatin, mean ± SEM; 0.31 ± 0.03 vs. 0.41 ± 0.04, p = 0.106). Persistence toward fMLP 

was unaffected by statin therapy when compared to baseline (baseline vs. simvastatin, mean 

± SEM; 0.25 ± 0.03 vs. 0.30 ± 0.03 p = 0.983). Following placebo treatment, persistence was 

unaffected in the basal state and when migrating towards IL8 but was significantly increased 

when compared to baseline and following simvastatin therapy when migrating toward fMLP 

(baseline vs. placebo, mean ± SEM; 0.25 ± 0.03 vs. 0.4 ± 0.02, p = 0.001; placebo vs. 

simvastatin, mean ± SEM; 0.4 ± 0.02 vs. 0.29 ± 0.03, p = 0.044) (see Figure 6.4). 

 

In the basal state, the chemotactic index (CI), an overall measure of migratory accuracy, was 

unaffected by simvastatin therapy. When migrating towards IL8, CI was significantly 

increased when compared to placebo (placebo vs. simvastatin, mean ± SEM, 0.16 ± 0.03 vs. 

0.24 ± 0.03, p = 0.007) but not when compared to baseline (baseline vs. simvastatin, mean ± 

SEM; 0.15 ± 0.02 vs. 0.23 ± 0.03, p = 0.091). In response to fMLP, CI was significantly 

increased following simvastatin treatment when compared to both baseline and placebo 

(baseline vs. simvastatin, mean ± SEM; 0.12 ± 0.02 vs. 0.20 ± 0.03, p = 0.015; placebo vs. 

simvastatin, mean ± SEM; 0.09 ± 0.03 vs. 0.20 ± 0.03, p = 0.001). There was no significant 

difference following placebo treatment compared to baseline (see Figure 6.5).  
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Figure 6.4 Effect of Simvastatin on Neutrophil Persistence in Response to 

IL8 or fMLP. Migration of neutrophils isolated from old donors at baseline (black 

bars) and after prescription of placebo (hashed bars) or 80mg/day simvastatin 

(white bars) for two weeks. Persistence was measured in response to 100nM IL8 

or 10nM fMLP. Data was normally distributed and significance assessed by 

repeated-measured ANOVA with significance accepted at p<0.05. Data are mean 

± SEM (n=20). *p<0.017 compared to baseline; Φ p<0.017 compared to statin 
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Figure 6.5 Effect of Simvastatin on Neutrophil Chemotactic Index in 

response to IL8 or fMLP. Migration of neutrophils isolated from old donors at 

baseline (black bars) and after prescription of placebo (hashed bars) or 80mg/day 

simvastatin (white bars) for two weeks. Chemotactic index was measured in 

response to 100nM IL8 or 10nM fMLP. Data sets were non-normally distributed 

and statistical significance assessed by Wilcoxon-Signed Rank Test with 

significance accepted at p<0.017 to adjust for Bonferroni correction. Data are 

mean ± SEM (n=20). *p<0.017 compared to baseline; #p<0.017 compared to 

placebo 
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Additional parameters pertaining to neutrophil migration were also collated, namely 

percentage of cell adhered to the coverslip (% adherent), the percentage of those adherent 

cells that initiated migration (% migration) and the time to first movement defined as the 

average time taken to migrate five micrometres (chosen to represent half the average body 

length of a polarised cell). 

In the basal state, the proportion of adherent cells was significantly reduced following 

placebo treatment compared to baseline (baseline vs. placebo, mean ± SEM, 79.15 ± 1.57 

vs. 73.35 ± 1.88, p <0.001) and further reduced following simvastatin therapy (baseline vs. 

simvastatin, mean ± SEM, 79.15 ± 1.57 vs. 67.25 ± 2.81, p < 0.001; placebo vs. simvastatin 

73.35 ± 1.88 vs. 67.25 ± 2.81, p = 0.017). In the presence of IL8, % adherent cells was 

significantly reduced following simvastatin therapy when compared to both baseline and 

following placebo therapy (baseline vs. placebo, mean ± SEM; 90.85 ± 1.06 vs. 73.4 ± 1.79, 

p < 0.001; placebo vs. simvastatin, mean ± SEM, 89.1 ± 1.36 vs. 73.4 ± 1.79, p < 0.001). In 

response to fMLP, % adherent cells was unchanged when compared to baseline (baseline 

vs. simvastatin, mean ± SEM, 85.63 ± 2.27 vs. 82.8 ± 1.70, p = 0.097) while there was a 

trend towards reduced adherence following statin therapy compared to placebo (placebo vs. 

simvastatin, mean ± SEM, 87.45 ± 1.7 vs. 82.8 ± 1.70, p = 0.029). There was no effect on % 

adherence following placebo treatment when exposed to either IL8 or fMLP (see Figure 6.6). 
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Figure 6.6 Effect of Simvastatin on Neutrophil Adherence when Migrating 

towards IL8 and fMLP. Migration of neutrophils isolated from old donors at 

baseline (black bars) and after prescription of placebo (hashed bars) or 80mg/day 

simvastatin (white bars) for two weeks. Adherence was measured in response to 

100nM IL8 or 10nM fMLP. Data sets were non-normally distributed and statistical 

significance assessed by Wilcoxon-Signed Rank Test with significance accepted 

at p<0.017 to adjust for Bonferroni correction. Data are mean ± SEM (n=20). 

*p<0.017 compared to baseline; #p<0.017 compared to placebo 
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The proportion of cells migrating (% migration) was unaffected by simvastatin in the basal 

state when compared to baseline or placebo (baseline vs. simvastatin, mean ± SEM, 26.9 ± 

1.34 vs. 23.65 ± 1.60, p = 0.105; placebo vs. simvastatin, mean ± SEM, 22.3 ± 1.85 vs. 23.65 

± 1.60, p = 1.000). When migrating towards IL8, the proportion of migrating neutrophils was 

significantly increased following simvastatin therapy compared to baseline (baseline vs. 

simvastatin, mean ± SEM, 48.35 ± 1.57 vs. 65.6 ± 4.48, p = 0.002) but not compared to 

placebo (placebo vs. simvastatin, mean ± SEM; 74.45 ± 3.94 vs. 65.6 ± 4.48, p = 0.882). In 

response to fMLP, the proportion of migrating cells was significantly increased following 

simvastatin therapy when compared to both baseline and placebo (baseline vs. simvastatin, 

mean ± SEM; 56.7 ± 1.82 vs. 47.33 ± 1.68, p < 0.001; placebo vs. simvastatin, mean ± 

SEM,; 56.35 ± 1.52 vs. 47.33 ± 1.68, p = 0.002). Following placebo treatment, the proportion 

of migrating cells was significantly increased in response to IL8 compared to baseline 

(baseline vs. placebo, mean ± SEM; 48.35 ± 1.56 vs. 74.45 ± 3.94, p < 0.001) but unaffected 

in the basal state or when migrating towards fMLP (see Figure 6.7). 

In the basal state, the time to first movement was unaffected by simvastatin treatment when 

compared to both baseline and following placebo (baseline vs. simvastatin, mean ± SEM, 

114 ± 4.83 vs. 121 ± 3.40, p = 0.086; placebo vs. simvastatin, mean ± SEM, 122 ± 4.32 vs. 

121 ± 3.40, p = 448). When migrating towards IL8 and fMLP, this was significantly increased 

following simvastatin therapy when compared to both baseline and placebo (baseline vs. 

simvastatin, mean ± SEM; IL8: 95 ± 3.51 vs. 113 ± 3.33, p = 0.003; fMLP: 87.37 ± 2.74 vs. 

110 ± 4.35, p < 0.001; placebo vs. simvastatin, mean ± SEM; IL8: 92 ± 2.25 vs. 113. ± 3.33, 

p < 0.001; fMLP: 89 ± 2.70 vs. 110 ± 4.35, p = 0.003). There was no effect on the time to first 

movement following placebo treatment when exposed to either IL8 or fMLP or in the basal 

state (see Figure 6.8). 
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Figure 6.7 Effect of Simvastatin on Percentage of Migrating Neutrophil in 

response to IL8 and fMLP. Migration of neutrophils isolated from old donors at 

baseline (black bars) and after prescription of placebo (hashed bars) or 80mg/day 

simvastatin (white bars) for two weeks. Proportion of migrating neutrophils was 

measured in response to 100nM IL8 or 10nM fMLP. Data was normally distributed 

and significance assessed by repeated-measured ANOVA with significance 

accepted at p<0.05. Data are mean ± SEM (n=20). *p<0.017 compared to 

baseline; #p<0.017 compared to placebo 
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Figure 6.8 Effect of Simvastatin on Neutrophil Time to First Movement in 

response to IL8 and fMLP. Migration of neutrophils isolated from old donors at 

baseline (black bars) and after prescription of placebo (hashed bars) or 80mg/day 

simvastatin (white bars) for two weeks. Initiation Time was measured in response 

to 100nM IL8 or 10nM fMLP Data sets were non-normally distributed and 

statistical significance assessed by Wilcoxon-Signed Rank Test with significance 

accepted at p<0.017 to adjust for Bonferroni correction. Data are mean ± SEM 

(n=20). *p<0.017 compared to baseline; #p<0.017 compared to placebo 
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6.3.4 In vivo statin therapy has no effect on neutrophil phagocytosis in the healthy 

elderly 

Neutrophil phagocytosis was measured in response to S.aureus and E.coli bioparticles at 

baseline and following prescription of placebo or simvastatin and the phagocytic index (PI) 

calculated. Changes in Phagocytic Index (mean ± SEM) between treatment groups are 

presented in Figure 6.9.  

There was no significant difference following statin prescription compared to baseline at any 

time point nor was there any difference between baseline and placebo at any time point. 

There was a significant effect for placebo treatment at 30 minutes when compared to statin 

treatment (placebo vs. statin, mean ± SEM, 54.09 ± 9.04 vs. 31.56 ± 6.39, p=0.046); this 

effect was lost at later time points.  

Upon co-incubation with E.coli bioparticles for 30-minutes, there was a significant increase in 

the phagocytic capacity of neutrophils isolated following placebo prescription when compared 

to baseline (Baseline vs. placebo, mean ± SEM; 19.2 ± 4.3 vs. 33.21 ± 4.5, p=0.042). There 

was no difference observed in the phagocytic capacity of neutrophils in response to E.coli 

bioparticles at any subsequent time points or following prescription of 80mg/day simvastatin 

(see Figure 6.9). 
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Figure 6.9 Effect of Simvastatin on Neutrophil Phagocytosis of S.aureus and 

E.coli. 

Phagocytic Index of neutrophils isolated from old donors at baseline (black circles) 

and after prescription of placebo (black triangles) or 80mg/day simvastatin (black 

diamonds) for two weeks. Phagocytosis was measured in response to (A) 

Staphylococcus aureus and (B) Escherichia coli for 30, 45 or 60 minutes. All data 

sets are normally distributed and statistical significance measured by repeated 

measured ANOVA with significance accepted at p<0.05. Φp<0.05 Placebo vs. 

Statin; *p<0.05 Baseline vs. Placebo. Data are mean ± SEM (n=20). PI: 

Phagocytic Index. 

A 

B 
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6.3.5 In vivo statin therapy has no effect on ROS production in the healthy elderly  

Production of reactive oxygen species (ROS) was measured by neutrophils isolated from 

healthy elderly donors at baseline and following placebo or simvastatin therapy using PMA 

as a positive control. There was a significant increase in the amount of ROS produced in 

response to 2.5μM fMLP and 25nM PMA but not 1.25nM IL8 when compared to unstimulated 

neutrophils (unstimulated vs. stimulated, mean ± SEM; fMLP: 47.75 ± 6.84 – 191.168 ± 

41.43, p= 0.009; PMA: 47.75 ± 6.84 – 342.84 ± 51.75, p < 0.001). There was however, no 

significant difference in the amount of ROS generated by neutrophils isolated from donors 

following prescription of placebo or simvastatin for two weeks compared to baseline or 

placebo (see Figure 6.10).  

In summary, a daily dose of 80mg Simvastatin for two weeks, improved neutrophil 

chemotaxis, reduced neutrophil adherence to albumin, reduced the percentage of cells that 

migrate but increased the time taken to initiate movement. In addition, 80mg/day Simvastatin 

did impact upon phagocytosis or ROS production. 
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Figure 6.10 Effect of Simvastatin on Neutrophil ROS Production in 

Response to fMLP, PMA and IL8. 

Production of Reactive Oxygen species (ROS) by neutrophils isolated from old 

donors at baseline (black bars) and after prescription of placebo (hashed bars) or 

80mg/day simvastatin (white bars) for two weeks. ROS production was measured 

in response to 2.5μM fMLP, 25nM PMA or 1.25μM IL8 in the presence of 100μM 

luminol. Data are mean ± SEM (n=20). AUC: area under the curve. 
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6.4 Discussion 

Statins are a family of drugs widely prescribed in the general population to lower serum 

cholesterol. Simvastatin, the most commonly prescribed member of this family, is relatively 

well tolerated, safe to prescribe and inexpensive to manufacture as it is off patent. The 

previous chapter demonstrated the in vitro ability of simvastatin to restore aberrant neutrophil 

migration in neutrophils from the healthy elderly to levels comparable to that seen in young 

donors. This medication was therefore used in a clinical trial as a potential intervention to 

overcome immune-senescence in the healthy elderly population. The data demonstrate for 

the first time the ability of simvastatin to improve neutrophil migration but not ROS production 

in response to both intermediate (IL8) and end-point (fMLP) chemoattractants, or 

unopsonised phagocytosis of S.aureus or E.coli bioparticles in a small cohort of older adults.  

Little work exists on the in vivo effects of simvastatin of neutrophil function in the healthy 

elderly with this report forming the most complete assessment to date. The primary endpoint 

of this trial was the improvement of neutrophil chemotaxis in response to IL8 and fMLP. A 

number of secondary endpoints were also modified by simvastatin including neutrophil 

chemokinesis, persistence and chemotactic index along with percentage adherence, 

percentage cells migrating and time to first movement. Other secondary end-points were not 

improved including phagocytosis and ROS production. Overall, prescription of simvastatin 

improved migratory dynamics without negatively impacting on other neutrophil functions and 

would therefore appear to be a safe intervention with which to improve neutrophil migration in 

older adults.  

The only other clinical trial to date investigating the effects statins on neutrophil migration 

found migration to be reduced following a two week prescription of 40mg atorvastatin [458], 

while data presented here describe a beneficial effect of simvastatin on neutrophil migration 

in the healthy elderly. Comparisons between these two studies should however be drawn 

with caution for a number of reasons: firstly, different statins were used. It is currently unclear 
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whether actions on cell behaviour are a class effect or limited to certain statins. Secondly the 

statins used were at different doses. Although within the clinical range, the concentration of 

simvastatin used in this thesis was 80mg/day whereas atorvastatin was used at 40mg/day, 

the mid-range dose. Mita et al have suggested differential effects across the statin family: in 

an open-label prospective crossover trial, pravastatin was found to have a more favourable 

effect on pancreatic β-cell function compared to Atorvastatin in patients with type-2 diabetes 

[459]. This suggests that different statins have the ability to differentially regulate cell function 

perhaps owing to their different chemical structures and doses used. Secondly, studies 

performed by Kinsella et al measured neutrophil function in 15 male healthy volunteers who 

ranged from 25 – 60 years [458], therefore utilizing a different cohort in both age and gender 

compared to studies presented here. Thirdly, discrepancies in methodology may explain the 

differences observed; Kinsella et al quantified neutrophil migration in response to 10nM fMLP 

using a modified Boyden chamber assay in which neutrophils migrated across a human 

pulmonary artery endothelial cell (HPAEC) monolayer grown on a transwell filter, as 

compared to albumin coated glass coverslips used in our studies. The former method does 

not allow for chemokinesis to be measured independently of chemotaxis as defined in this 

study and in our studies it was only the latter that was improved by simvastatin.  

Mechanisms underlying the ability of simvastatin to modulate neutrophil migration remain 

unknown, however modulation of adhesive contacts may provide some explanation. Cellular 

adhesion to the substratum constitutes a major component of forward movement by 

providing traction and driving cellular motility during migratory processes. Here it was 

demonstrated that there was a reduced percentage of adherent cells following simvastatin 

therapy, both in the basal state and in response to IL8. Weitz-Schmidt et al  reported a novel 

binding site within the structure of the β2 integrin LFA1 to which simvastatin and lovastatin 

have been shown to bind subsequently preventing integrin activation [460]. In the model 

used in this study, neutrophils migrate across albumin-coated surfaces (a surrogate for 

ICAM-1) utilizing β2 integrins for traction, a process which is therefore susceptible to 
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modulation by simvastatin and lovastatin through allosteric binding to β2 integrins. Whether 

or how this could contribute to improved directional migration is unclear.  

The time to first movement was also significantly increased while the % of migrating cells 

was reduced in response to IL8 and fMLP following statin therapy. This suggests that in the 

presence of statins, as well as improving migratory accuracy (evidenced by increased 

chemotaxis and chemotactic index), statins are also able to improve the efficiency with which 

neutrophils from old donors respond i.e. fewer cells respond to a chemotactic gradient but of 

those that do, migration occurs more accurately. This may be a result of simvastatin reducing 

baseline activation (demonstrated as a reduced chemokinesis in the basal state) allowing 

greater amplification of activatory signals upon meeting an inflammatory stimulus i.e. a 

chemokine gradient. Within the context of infection and inflammation, this may correct the 

hypothesised “delayed arrival” at the site of infection driven by poor accuracy, and also 

reduce the increased ‘bystander’ tissue damage postulated to occur in the elderly, by 

reducing “wandering” and ultimately improving patient outcomes.  

In some instances, data presented in this study also shows a significant effect following 

prescription of placebo for two weeks. Reasons underlying this are unclear however it may 

stem from the experimental design used as 50% of participants received the placebo after 

previously taking simvastatin for two weeks. Although a two week wash-out period was 

deemed to be sufficient time to allow for complete renewal on neutrophils within the bone 

marrow, it is plausible that some neutrophils exposed to the statin during treatment 1 still 

remained and were contributing to migratory dynamics when measured following placebo 

prescription. Based on data collected here, we are unable to conclusively test this hypothesis 

due to the small number of subjects randomised to the group which received the statin first. 
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7.1 Ageing and neutrophil migration 

We are currently living through a demographic shift in the population, with the proportion of 

those aged over 65 years soon to outnumber those aged under 16 years for the first time in 

history [2]. However, although we, as a population, are living longer, we are not living 

healthier with increments in health-span lagging significantly behind increments in lifespan 

[5]. This severely compromises the quality of life of older adults with an increased incidence 

of infectious diseases and chronic inflammatory conditions [9,10,15,26], both associated with 

poorer clinical outcomes and ultimately increasing burdens on the provision of hospital and 

community based healthcare. 

Natural ageing is accompanied by wide spread immune senescence evident within both the 

adaptive and innate compartments of the immune response (reviewed in [137,414]). 

Adaptive immune senescence is widely documented encompassing observations of a 

reduced vaccine response [63-65], including a lesser ability to produce a protective antibody 

titer [66], an inverted CD4+:CD8+ T cell ratio [33] and a reduced output of naïve T cells from 

the thymus (reviewed in [461]).  

In comparison, our knowledge of innate immune senescence is not as well advanced in 

particular with reference to neutrophil senescence. The effects of age on neutrophil 

migration, the process by which these cells migrate out of the blood toward to site of 

infection, was first investigated in 1978 [372] however in the intervening 35 years, no clear 

picture has emerged. Here a body of data describe a robust ‘old-migratory’ phenotype in 

healthy older adults, characterised by a maintained speed of migration but with reduced 

directional speed and overall accuracy of migration [439]. This phenotype was characteristic 

of neutrophils from older adults over the age of 60 years, was present in response to a 

number of physiological chemoattractants encompassing multiple stages of the inflammatory 

response and is therefore not stimuli specific. Related data suggested this defect does not 
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“correct” during infective episodes, data presented here (and provided by Dr. Elizabeth 

Sapey) showed worsening migration towards IL8 during pneumonia infection in older adults. 

 

7.2 Reduced Neutrophil chemotaxis and health 

The age-related reduction in chemotactic accuracy could have implications both when older 

people are uninfected and during acute infective events. Poor migratory accuracy could limit 

an effective response to invading bacteria, but may also be associated with increased 

bystander tissue damage. While there remains debate as to whether neutrophils need to 

utilise neutrophil elastase to migrate [462,463], there is clear evidence to suggest elastase is 

released upon migration [223,239,464]. There is also evidence to support an area of obligate 

tissue damage directly next to neutrophils following neutrophil elastase release [239]. The 

‘old-migratory’ phenotype presented here may lead to increased “wandering” during 

interstitial migration, if this were the case, and elastase were released  throughout the 

extended migratory period, then increased tissue damage would occur as a result of the 

circuitous route of migration. 

While this thesis has no direct evidence to support this proposal, the data provide indirect 

evidence which is in keeping with this hypothesis. Neutrophils from healthy elderly donors 

with no clinical symptoms or signs of acute or chronic infection exhibited increased 

expression of CD63, an azurophil specific granule specific marker on their surface with 

concomitant increases in the concentrations of the neutrophil elastase-specific fibrinogen 

breakdown product AαVal360 in the plasma. CD63 was measured on neutrophils using a 

protocol to minimize experimental activation, and the increased expression is consistent with 

mobilisation of primary granules to the cell surface and degranulation in the basal state in the 

elderly. AαVal360 is a well-validated systemic footprint of elastase activity [406] and since 

there is no evidence of there being more circulating neutrophils with old age [130] and the 

propensity for apoptosis of neutrophils from the elderly is increased in the basal state (as 
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measured in this study) [465] we propose that this equates to more elastase being released 

per cell, although this would need to be confirmed. Altered neutrophil migration may also 

have implications in health, as transient movements into tissue as the cells circulate will 

generate tissue damage and an inflammatory response. Therefore the reduced chemotactic 

accuracy could contribute to inflamm-ageing. 

Alternatively, inflamm-ageing may be a driver of neutrophil senescence and not a 

consequence. Although adults included in this study were considered healthy, a typical 

“western” lifestyle with low physical activity, a calorie-rich but nutrient-poor diet and endemic 

obesity may impact on results. In 2011, 25.9% of women and 23.6% of men in England were 

considered to be obese (a body mass index > 30kg/m2) and 35.8% of women and 35.5% of 

men in the United States [466]. Obesity has been reported to be associated with increased 

systemic inflammation (Inflamm-ageing), particularly TNFα and IL6 [467,468] secreted by an 

abnormal accumulation of macrophages present within white adipose tissue, the magnitude 

of which is proportional to adipocyte size and body index [468]. Inflamm-ageing may affect 

cellular function by inducing a state in which immune cells, in this case neutrophils, are 

exposed to chronic low level activation reducing their ability to respond to activatory signals 

during infection, thereby compromising function. There are few studies of neutrophil function 

with age in populations where obesity is less endemic. In Japan, where only 2.3% of men 

and 3.4% of women were considered to be obese in 2000 [466] and the proportions of 

centenarians equates to 53/100,000 of the population [469], neutrophil immune-senescence 

has not been associated with BMI (although none of the participants in the relevant study 

were obese), but instead correlated with stressful life events [470]. Psychological stress has 

also been associated with systemic inflammation and subsequent immune-senescence 

[471], once again supporting the hypothesis that inflammation drives immune dysfunction, 

perhaps including the ‘old-migratory’ phenotype. It would be informative to repeat these 

studies in elderly adults from communities with extended longevity and less ‘negative’ 

lifestyle practices (such as traditional Japanese diet consisting mainly of fish and protein 
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[472] and low psychological stress to try and determine if alterations in neutrophil behaviour 

are an intrinsic, unalterable process of ageing of whether environmental factors are key. 

In addition, this thesis only tested neutrophil functions in a cohort of healthy older adults on a 

single occasion. Although there was a negative relationship between neutrophil directional 

migration and accuracy of migration with increasing age, we can only hypothesise that 

neutrophil function declines within an individual over time due to the cross-sectional nature of 

the study. It would be of value to prospectively and longitudinally measure neutrophil function 

in healthy older adults to see if a decline in migratory dynamics occurs as they age.   

 

7.3 Potential technical study limitations 

The chosen migratory assay has enabled us to adequately differentiate between 

chemokinesis and chemotaxis revealing differences that up until now have remained largely 

elusive. However, there are limitations associated with our methods. Firstly any protocol 

utilised to isolate neutrophils will result in a degree of neutrophil activation, although Percoll 

(as used in this thesis) has been shown to induce minimum neutrophil activation [473]. There 

is a clear difference between migratory dynamics of “older” and “younger” cells which were 

prepared using the same technique, reducing the possibility of cellular activation as a driving 

factor behind the ‘old-migratory’ phenotype. Secondly, the study used an albumin coated 

surface to overcome hydrostatic forces of glass alone, which in itself may impact on results. 

Albumin is a surrogate for ICAM-1 [474] an adhesion marker highly expressed on the 

endothelium facilitating extravasation from the blood stream and also on fibroblasts present 

within the interstitium upon initiation of inflammation [475-477]. ICAM-1 is recognised by 

LFA-1/Mac-1 expressed on the neutrophil surface however, neutrophils lacking CD18 are still 

capable of migration (albeit with a 50% reduction in efficiency [478]) implying migration can 

occur independently of CD18 ligation with ICAM-1. Neutrophils are also thought to utilise 

VCAM-1 (which is bound by VLA-4, [478]) to provide traction during migratory processes. It 
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would therefore be of value to repeat initial migration studies using different surfaces to 

determine a role for ICAM-1 and/or CD18 in the development of the ‘old-migratory’ 

phenotype as observed here. Thirdly, this assay utilises shallow gradients and migratory 

measurements are taken in 2D. This is not physiological and does not replicate the 

complexity inherent within a neutrophils journey from the blood to areas of infected or 

inflamed tissue. A more physiological in vitro model would be to establish a 3D system where 

cells transmigrate through endothelium, into a collagen based gel (forming the interstitum). 

 

 

7.4 Mechanisms of reduced chemotaxis with age 

Following the initial observation of reduced chemotaxis in old donor cells, this thesis went on 

to investigate potential mechanisms which may underlie this migratory defect. 

Phosphatidylinositol-3-kinase (PI3Kinase) and its lipid product phosphatidylinositol - 3,4,5 - 

triphosphate (PIP3) are important components of the signalling network present within the 

leading edge of migrating cells. PI3Kinase-dependent PIP3 production is confined to the 

leading edge [346] where it initiates a signalling cascade resulting in the localised assembly 

of F-actin protrusions driving the forward motility of the plasma membrane [315] through 

recruitment and activation of a number of downstream effectors including small-GTPases, 

WASP family members and actin nucleating proteins (reviewed in [479]).  

The data presented here demonstrated constitutive, basal activation of PI3Kinase in 

neutrophils isolated from old donors while, in those isolated from young donors this activity 

was transient. The antibody utilised has the advantage of measuring PI3Kinase regulatory 

subunit phosphorylation, and thus is a surrogate of kinase activity.  However, it only 

measures Class IA activity (p85) and therefore it is not possible to comment on Class IB 

activity; studies of the p110 subunit would be needed in order to clarify this.  In addition, 
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increased PI3Kinase activity might not have influenced migration, and alternative elements 

involved in directional migration could be the key effectors.  

To explore this and try to confirm the importance of dysregulated PI3Kinase, the study 

utilised isoform selective inhibitors and repeated the migratory assays.  PI3Kinase-γ is the 

main isoform responsible for PIP3 production at the leading edge in response to GPCR 

stimulation, while PI3Kinase-δ is responsible for the localised production in response to 

tyrosine kinase receptor stimulation [256]. The data demonstrated PI3Kinase-γ and –δ to be 

the most relevant isoforms in the generation of the ‘old-migratory’ phenotype with inhibition of 

these isoforms able to restore migratory parameters of neutrophils isolated from old donors 

to levels comparable to those observed in neutrophils isolated from young donors [439]. 

Crucially inhibition of the phosphatase SHIP which regulates PI3Kinase phosphorylation and 

activity, further reduces neutrophil chemotactic accuracy in “old” cells (personal 

communication, Dr. Elizabeth Sapey), further supporting the suggestion that aberrant 

migration is driven by constitutive activation of the PI3Kinase pathway. 

  

The mechanisms driving up-regulation of PI3Kinase activity remain to be determined. 

Activation of PI3Kinase was measured through phosphorylation of the p85 regulatory subunit 

which is responsible for the regulation of PI3Kinase-α, -β and -δ isoforms, while PI3Kinase-γ 

is under the control of a p101 regulatory subunit [480]. The ability of PI3Kinase-γ selective 

inhibitors to restore migratory dynamics as well as the δ isoform inhibitor would suggest this 

isoform is also dysregulated as a consequence of natural ageing.  Dysregulation of class IA 

PI3Kinase could suggest dysregulated integrin signalling with increasing age as these 

isoforms are activated downstream of tyrosine kinase receptors including members of the 

integrin family [481]. However, inhibition of SHP-1, a tyrosine kinase specific protein 

phosphatase, does not alter the migratory phenotype of older adults (Dr. Adam Usher, 

personal communication). Class IB PI3Kinase is under the control of the Gβγ subunit of 

GPCRs [280], the activity of which may be influenced by an increased pro-inflammatory 
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micro-environment (a result of inflamm-ageing) leading to sustained GPCR activation and 

subsequent aberrant signal transduction (see Figure 7.1). The apparent combined 

dysregulation of PI3Kinase-γ and –δ isoforms may have a number of explanations. Firstly, in 

the model used here, both PI3Kinase-γ and –δ isoforms are activated due to the adhesive 

nature of the assay (via integrins) and exposure to pro-inflammatory chemokine gradients 

respectively. Secondly, there is emerging evidence of redundancy within the class 1A and 1B 

isoforms, with different isoforms sharing activity streams previously considered to be 

separate [482,483]. Finally, although inhibitors used in this thesis are selective for the 

different isoforms of PI3Kinase, it is unclear whether they are also isoform specific. 

Measuring migratory dynamics and PI3Kinase activity of young neutrophils pre-incubated 

with plasma or serum from elderly donors may reveal environmental factors influencing 

PI3Kinase activity (and by extension the migratory phenotype). This would also determine if 

the phenotype observed here is a consequence of intrinsic age-related alterations or is 

modulated thought environmental factors.  

  



Figure 7.1 Proposed Age-Related Alterations in Leading Edge Signalling. 

Homeostatic signalling pathways within the leading edge of neutrophils isolated from young donors (A) lead to compartmentalized PIP3 at the leading edge (B), however, within the elderly 
(C), inflamm-ageing (chronic pro-inflammatory micro-environment) leads to sustained stimulation of GPCRs resulting in basal PI3K activity and enhanced PIP3 production which is no 
longer compartmentalised  within the leading edge (D) thus affecting the spatial and temporal localization of down-stream signalling molecules ultimately compromising actin nucleation.  
Part (B) and (D) adapted from [281].  
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7.5 Correcting the age-related decline in chemotaxis 

If increased PI3Kinase activity were to be a consequence of the altered micro-environment 

i.e. inflamm-ageing, interventions aimed at reducing systemic inflammation could be effective 

in improving neutrophil migration. For example increasing physical activity may be effective 

as exercise is known to reduce inflammation [484,485], reducing BMI could also help as 

adipose tissue is a major source of inflammatory cytokines [486]. Interestingly, by stratifying 

200 older adults according to their levels of physical activity, the migratory dynamics of those 

who were in the lowest decile for physical activity were significantly lower than those who 

were the most physically active (David Bartlett, personal communication). This suggests 

modulation of physical activity may improve migratory outcomes, although lifestyle 

interventions are notoriously difficult to implement with poor levels of compliance. 

 

The alternative to this is pharmacological intervention, however drug development can take 

anywhere up to 20 years from conception to treatment therefore the use of PI3Kinase 

inhibitors may take many years to implement. Such drugs may also be expensive and not 

suitable for long term use. In contrast the data reported here showed the beneficial effects of 

simvastatin on neutrophil migratory function. In recent years statins have received a great 

deal of attention due to their pleiotropic, anti-inflammatory properties that occur outside of 

their ability to lower serum cholesterol for example, in a number of retrospective cohort 

studies and meta-analyses, statins have been show to confer a survival advantage to 

bacterial pneumonia patients when taking a statin prior to admission [390-396]. Work 

published by other groups have previously demonstrated the ability of statins to modulate 

neutrophil migration in younger cohorts [398] however, work presented here is the first in 

which statins have been shown to restore migration in a cohort made up exclusively of older 

adults (age ≥ 60 years). Mechanisms driving this phenomenon have been previously 

attributed to the inactivation of GTPases by inhibiting their isoprenylation and subsequent 



211 
 

insertion into the membrane [398]. This study did not test this mechanism but did not support 

changes in either the phospholipid composition or cholesterol content of the plasma 

membrane as contributory factors to statin-mediated modulation of migratory dynamics. 

Stains are a class of drugs relatively well tolerated within the population that are widely 

prescribed to treat hypercholesterolemia or reduce cardiovascular risk. The ability of 

simvastatin to restore neutrophil migration in the healthy elderly was shown here both in vitro 

and in vivo. Restoration of neutrophil migration in the elderly by simvastatin, potentially 

through inhibition of RhoA [398], downstream of PI3Kinase-γ and –δ isoforms could imply 

broader dysregulation of signalling pathways involved in the control of migration (see Figure 

7.1A), or even other neutrophil functions which rely upon small GTPases. Upstream of 

PI3Kinase is the small GTPase Ras to which all isoforms containing a p110 catalytic subunit 

(i.e. all class I isoforms) are sensitive and the action of which is essential for full activation of 

both p110γ and p110δ isoforms [256,487,488]. Statins would also inhibit Ras function and 

this could explain their beneficial effect on migration. In addition, the small GTPases, RhoA, 

Rac and Cdc42 which are classically thought to exist downstream of PI3Kinase, are also 

capable of positive feedback onto PI3Kinase activity (see Figure 7.1A). As the inhibitory 

activity of statins is generic to all isoprenylated proteins, simvastatin may be able to 

simultaneously affect both Rho-family-GTPases and PI3Kinase/Akt signalling. One surprising 

aspect of the results in this context was that other neutrophil functions affected by ageing, 

specifically phagocytosis, were not improved by the stain intervention. As phagocytosis also 

involves small GTPases [489,490] it was anticipated that this would also be improved. 

However, the decline in phagocytosis with age appears to be due largely to reduced CD16 

expression [138] and thus affecting signalling events may not overcome this issue. 

Determination of small GTPase activity before and after statin treatment of neutrophils from 

old donors would significantly enhance our understanding of the mechanism driving the 

pleiotropic effects of statins and the age-related defect in migration. Such studies were 
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attempted during the latter stages of the thesis, but significant variability was found in the 

data making firm conclusions difficult to draw. 

In addition to the inhibition of small-GTPases, there are a number of additional potential 

mechanisms through which statins may act. Endothelial dysfunction is a common feature of 

natural ageing [491], a process in which there is a systemic imbalance between vasodilating 

agents, such as nitric oxide, and vasoconstricting agents, such as endothelin -1, thus 

favouring the vasoconstricting state [449]. This results in a pro-inflammatory environment 

characterised by reduced nitric oxide (NO) generation, up-regulation of adhesion molecules 

such as V-CAM1 and ICAM-1 and generation of chemokine molecules such as MCP-1 [491]. 

Statins have been shown to inhibit this process restoring the balance between 

vasoconstriction and vasodilation essential for proper endothelial function. Here the ability of 

statins to activate a signalling pathway in the endothelium involving PI3Kinase, Akt and 

endothelial nitric oxide synthase (eNOS) [492] was key to their mode of action and results in 

increased nitric oxide (NO) production. In a murine model of endothelial activation induced by 

thrombin, intraperitoneal injection of rosuvastatin prior to thrombin injection resulted in 

increased release of NO from the vasculature and a 70% reduction in endothelial expression 

of P-selectin thus reducing leukocyte adherence and transmigration [493]. In the healthy 

elderly, where inflamm-ageing, the systemic sub-clinical elevation of pro-inflammatory 

cytokines is common, statins may act to limit inappropriate activation of the endothelium by 

IL6 and/or TNFα indirectly preventing inappropriate extravasation of leukocytes including 

monocytes and neutrophils. Thus statins may be having quite different effects on endothelial 

and neutrophil PI3Kinase activity. 

The anti-inflammatory effects of statins have also been shown to result from reductions in the 

circulating levels of pro-inflammatory mediators: statin therapy correlates with reductions in 

CRP in a number of clinical trials [403,494], while monocyte expression of TNFα and IL-1β in 

previously hyperlipidaemic patients following an 8-week course of 20mg/day of simvastatin 

has been shown to be significantly reduced [495]. Interestingly, CRP has also been shown to 
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decrease eNOS activity [496,497] heightened levels of which, as part of the inflamm-ageing 

phenotype, may further exacerbate endothelial dysfunction in the elderly. 

Work presented in this thesis invites the proposition that simvastatin has therapeutic potential 

in reducing rates of morbidity and mortality from bacterial diseases in the elderly population, 

possibly by modulating neutrophil migration. Throughout this thesis, only the effects of a 

single statin (at a single dose) were considered. Although undoubtedly critical to mounting an 

effective immune response, neutrophils do not act in isolation. The effects of statins on T cell 

function have been well studied with reports documenting suppression of the acute 

inflammatory response by favouring a Th2 mediated response, potentially protecting against 

Th1 driven diseases such as rheumatoid arthritis [498,499]. Additional reports also document 

the opposing actions of simvastatin and atorvastatin on expression of HLA-DR and the 

immune response to bacterial super-antigens [500].  

Lipophilic statins (including simvastatin, atorvastatin, lovastatin and fluvastatin) have also 

been shown to compromise natural killer (NK) cell degranulation and cytotoxicity through 

inhibition of conjugate formation between NK and target cells by inhibiting LFA-1 [501]. 

Further exploration of the most effective statin at mediating restoration of neutrophil 

migratory parameters, may lead to an intervention able to reduce the rates of morbidity and 

mortality from bacterial infections in the elderly. However such studies must also establish a 

therapeutic regime that does not compromise other immune functions, that could for example 

reduce NK cell function and increase susceptibility to viral infections to which older adults are 

already susceptible [9]. 

 

7.6 Future Work 

This thesis has provided a detailed description of neutrophil immune-senescence with a 

specific focus on neutrophil migratory dynamics, identified mechanisms possibly driving this 

aberrant migration and highlighted a potential therapeutic intervention to restore neutrophil 



214 
 

migration in the healthy elderly. However, many studies are still required in order to 

completely understand mechanisms driving migratory senescence, and to efficiently 

intervene to improve immunity in older adults.  

1. Migratory dynamics should be characterised when cells are migrating across 

components of the extracellular matrix such as fibronectin, collagen, hyaluronic acid 

and/or laminin as well as through 3D gels/matrices to determine if the migratory 

phenotype is applicable to interstitial migration. 

2. Migratory dynamics should be characterised in response to inflammatory biological 

secretions, such as sputum from patient with bacterial infections, containing a complex 

milieu of chemotactic mediators to better characterise migratory defects during clinical 

inflammation. 

3. Expression of chemoattractant receptors should be examined to include expression on 

activated cells as well as receptor placement with respect to the chemotactic gradient, 

localisation to lipid rafts and membrane fluidity to determine if receptor localisation 

contributes to migratory defects.  

4. Expression of adhesion receptors on the surface of quiescent and activated neutrophils 

to examine a role for altered adhesive contacts in migratory dynamics. 

5. To assess the effects of ageing on the activity of class 1B PI3Kinase isoforms; on 

molecules governing PI3Kinase activity (SHIP1 and PTEN) and on the intensity and 

cellular localisation of the lipid product PIP3 in migrating neutrophils from old donors. 

This would generate a more complete picture of the role PI3Kinase plays in generation 

of the ‘old-migratory’ phenotype.  

6. To examine the effects of ageing on other pathways known to be involved in the 

regulation of migration including mTOR and small GTPase family members.  

7. To determine the effects of age on the interaction between small-GTPases, actin 

nucleating proteins and the actin cytoskeleton and the effects this may have on 

pseudopod formation, sustainability and retraction on during directional sensing. 
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8. It would also be pertinent to determine the mechanism by which simvastatin is able to 

modulate neutrophil migration and to examine in more detail the effects of other statins 

on neutrophil functions including phagocytosis and ROS production. 

9. Pre-incubating neutrophils isolated from young and old donors with plasma or serum 

from old or young donors prior to measuring migratory dynamics would determine if the 

defect observed in this work is cell intrinsic or a product of the inflammatory 

microenvironment. 

 

 

In conclusion, work presented here describes a generic, robust migratory phenotype 

characterised by a maintained speed of migration but with reduced migratory accuracy. This 

phenotype appears to be driven by dysregulated PI3Kinase activity and is amenable to 

correction through inhibition of PI3Kinase-γ and -δ isoforms and treatment with Simvastatin. 

Aberrant migration as described here may cause increased collateral damage to otherwise 

healthy tissue and manifest as delayed arrival to the site of infection and raised systemic 

inflammation, ultimately compromising host defences and contributing to the increased rates 

of morbidity and mortality observed in the elderly population. 
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