Humphreys, Nicholas James (2013). The computational modelling of centrifugal casting, as a process to manufacture titanium aluminide aero engine components. University of Birmingham. Ph.D.
Humphreys13PhD.pdf
Text - Accepted Version Restricted to Repository staff only until 1 July 2032. Download (22MB) | Request a copy |
Abstract
Significant research has been undertaken into the use of intermetallic gamma titanium aluminide alloys (γ- TiAl). The first-rate high temperature properties of the alloys, coupled with an inherent low density, make them an attractive prospect for the aerospace and automotive industries. In this work, the utilisation of γ-TiAl as a structural material, specifically as low pressure (LP) turbine blades for aerospace engines, was considered as a replacement for conventional nickel-based superalloys.
These alloys however are difficult to work with, being highly reactive in a molten state, dictating a low superheat during processing. Centrifugal casting is therefore utilised as a production method, as under the centrifugal force, metal can fill cross sections substantially less than a millimetre. However, due to the high liquid metal velocity developed there is a high risk of turbulent flow and the trapping of any gas present within the liquid metal.
The objective is to develop a comprehensive computational model of centrifugal casting that can reliably predict the macro defects that arise from the process. This challenging application involves a combination of complex rotating geometries, significant centrifugal force, and high velocity, transient free surface flows, coupled with heat transfer and solidification. Capturing these interacting physical phenomena and associated defects is a complex modelling task.
This contribution will describe the development and enhancements required to enable conventional free surface algorithms to capture the details of the flow: by maintaining a sharp metal-gas interface and reducing numerical diffusion whilst maintaining solution stability, on what are inevitably complex three dimensional geometries.
Validation of the model has been done using a series of water experiments and castings to capture the flow dynamics.
Type of Work: | Thesis (Doctorates > Ph.D.) | ||||||
---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | ||||||
Supervisor(s): |
|
||||||
Licence: | |||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | ||||||
School or Department: | School of Metallurgy and Materials | ||||||
Funders: | None/not applicable | ||||||
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) | ||||||
URI: | http://etheses.bham.ac.uk/id/eprint/4777 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year