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Abstract

Metaheuristics are approximation optimisation techniques widely applied to

solve complex optimisation problems. Since metaheuristics are general al-

gorithmic frameworks, a metaheuristic algorithm can have many variants if

different configurations (e.g., choice of search operator, numerical parameters,

etc.) are applied. In particular, it is widely acknowledged that finding good

algorithm configurations is essential to obtain robust and high algorithm per-

formance. Despite a large number of developed metaheuristic algorithms, a

limited amount of work has been done to understand on which kinds of prob-

lems the proposed algorithm will perform well or poorly and why. Given this

lack of understanding of the problem difficulty in relation to algorithms, fun-

damental questions like how to select and configure the best suited algorithm

for solving a particular problem instance remain unanswered. A useful solu-

tion to this dilemma is to use fitness landscape analysis to gain an in-depth

understanding of which algorithms, or algorithm variants are best suited for

solving which kinds of problem instances, even to dynamically determine the

best algorithm configuration during different stages of a search algorithm.

This thesis for the first time bridges the gap between fitness landscape analy-

sis and algorithm configuration, i.e., finding the best suited configuration of a

given algorithm for solving a particular problem instance. In particular, this

thesis addresses three prominent issues in applying fitness landscape analysis

to build enhanced techniques for algorithm configuration. First, there is a lack

of an effective approach for fitness landscape analysis that can be computed

efficiently and used to guide search. Second, in the static algorithm config-

uration, there is a lack of a generic approach to automatically determine a

priori the best suited configuration of a given algorithm on a per-instance

base. Third, in the dynamic algorithm configuration, there is a lack of predic-

tive methods to determine the optimal configuration during the search process

based on the expected performance instead of past performance only. Studies

in this thesis contribute to the following:

a. Developing a novel and effective approach to characterise fitness land-

scapes and measure problem difficulty with respect to algorithms.

b. Incorporating fitness landscape analysis in building a generic (problem-

independent) approach, which can perform automatic algorithm con-

figuration on a per-instance base, and in designing novel and effective

algorithm configurations. Results from the case studies show that the



developed automatic algorithm configuration method significantly out-

performs the state-of-the-art in automatically configuring the (µ + λ)

EAs for solving the unique input output sequence problem. Results also

show that the local search heuristic developed using results from fitness

landscape analysis significantly outperforms a stochastic hill climber and

the state-of-the-art in solving the next release problem in software engi-

neering.

c. Incorporating fitness landscape analysis in establishing a generic frame-

work for designing adaptive heuristic algorithms. Results from the case

study, where the framework is applied to develop an adaptive heuristic

algorithm for the minimum vertex cover problem (MVC), show that the

proposed algorithm either outperforms or is comparable to the state-of-

the-art algorithms for MVC on both well-studied benchmarks and real-

world instances. New lower bounds have been found by the proposed

algorithm on several hard problem instances.
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Chapter 1

INTRODUCTION

1.1 Fitness Landscape Analysis in Combinatorial

Optimisation

In recent years, metaheuristics such as Evolutionary Algorithm (EA), Stochas-

tic Local Search (SLS), Simulated Annealing (SA), Tabu Search (TS), Ant Colony

Optimization (ACO) and others are emerging as successful approaches for solving

complex optimisation problems where classical exact methods are either infeasible

or perform poorly. This is due to the fact that many optimisation problems are

NP-hard [43], which can require exponential time for exact methods to solve. Nev-

ertheless, metaheuristics are to find good solutions within reasonable time without

the guarantee of finding the optimal solutions. Moreover, metaheuristics often re-

quire little knowledge about the optimisation problems being solved such as the

gradient information, and therefore can be applied to solve a wide spectrum of opti-

misation problems where the objective function is not differentiable or can only be

computed by simulation.

Metaheuristics are a general class of optimisation techniques which include many

different approaches, e.g., local search algorithms such as Tabu Search (TS), Stochas-

1



tic Local Search (SLS) and Simulated Annealing (SA); population-based algorithms

such as Evolutionary Algorithm (EA), Ant Colony Optimization (ACO). In ad-

dition, metaheuristics are general algorithmic frameworks which potentially have

many different variants under different configurations (e.g., choice of search opera-

tor/heuristic, parameter settings, etc.). For solving an optimisation problem with

metaheuristics, a problem naturally arises of how to select and configure an appro-

priate algorithm.

Over the years the research focus in metaheuristics has largely been on the algo-

rithmic side. Many different metaheuristics have been developed which empirically

demonstrated the effectiveness on one or more optimisation problems, or failed on

some other problems. In contrast, relatively little attention has been paid to study

the implications behind the empirical results, i.e., on understanding which kinds of

problems the proposed algorithm will perform well or poorly and why. Given this

lack of understanding of problem difficulty in relation to algorithms, despite many

successes of metaheuristics in solving complex optimisation problems, fundamental

questions like how to select and configure the most effective algorithm for solving

a given problem remain unanswered. Recent theoretical investigations such as run-

time analysis [68] have made some progress in addressing this problem, where on

particular problem instances the EA-hardness [58], when a large population is use-

ful [56] and the interactions between mutation and selection [77] are investigated.

However, in practice there is in fact very limited understanding of which algorithms,

or algorithm variants are best suited for solving which kinds of problems. The most

common technique for selecting and configuring an appropriate algorithm for solv-

ing a given problem is by trial and error, as expressed by Culberson [26]: “The

researcher trying to solve a problem is then placed in the unfortunate position of

having to find a representation, operators and parameter settings to make a poorly

understood system solve a poorly understood problem. In many cases he might be

2



better served concentrating on the problem itself”.

To overcome this long standing challenge, the ideal would be to have a single

best algorithm for every problem. However, this is infeasible as the well-known no

free lunch theorem [133] for optimisation has concluded that no one optimisation

algorithm is superior to the other on all problems. Furthermore, it is widely ac-

knowledged that finding good algorithm configurations are essential to obtain robust

and high algorithm performance. Therefore, instead of finding the best algorithm

in general, the problem becomes that of finding the best suited configuration of a

given algorithm for solving a particular problem. This problem is referred to as

the algorithm configuration problem [66] throughout this thesis. It is worth noting

that while some work refers to setting numerical parameters of metaheuristics as

parameter tuning, algorithm configuration concerns not only the problem of tuning

numerical parameters, but selecting and combining discrete building blocks (e.g.,

categorical parameters such as choice of search operator/heuristic) to build an ef-

fective algorithm.

The algorithm configuration problem has been studied extensively, particularly

in selecting appropriate configurations automatically. This idea was introduced in

[138] where two mutation operators were used in the Improved Fast Evolutionary

Programming. After this seminal work, the studies of automatic algorithm configu-

ration proceed in two routes. Static algorithm configuration attempts to determine a

priori the optimal configuration of a given algorithm for solving a particular problem,

before applying the algorithm [1, 12, 66, 89, 137]. In contrast, dynamic algorithm

configuration tends to determine an optimal time-varying schedule for applying dif-

ferent algorithm configurations during the search process [24, 29, 45, 59, 71, 116, 128].

Despite a large number of proposed techniques for tackling both the static and dy-

namic algorithm configuration problems, as of yet no satisfactory technique has been

developed .
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A useful solution to this dilemma is to use fitness landscape analysis to gain an

in-depth understanding of which algorithms, or algorithm variants are best suited

for solving which kinds of problems. The notion of fitness landscapes, originally

proposed in [134], underlies a large body of work in problem difficulty studies with

reference to metaheuristics. The fitness landscape analysis can be regarded as a

powerful analytical tool, particularly in understanding characteristics of optimisa-

tion problems and the associated behaviours of metaheuristics in optimising them.

Typically a fitness landscape is defined under the notion of neighbourhood/distance,

therefore the same fitness function can have many different fitness landscapes de-

fined under different neighbourhood operators. Formally, the fitness landscape is

defined as a triple (X,N, f), where X is a set of candidate solutions, the objec-

tive function f : X 7−→ < assigns a real-valued fitness to each solution in X and

the neighbourhood operator N : x 7−→ N(x) imposes a neighbourhood structure

among X. Given a candidate solution x ∈ X,N(x) is the neighbourhood set that

are obtained by applying one step of the neighbourhood operator.

Many studies on fitness landscape analysis for in-depth understanding of prob-

lems in relation to algorithms exist in the literature. The existing approaches for

fitness landscape analysis proceed along two main routes. On one hand, the qual-

itative approaches [14, 15, 30, 38, 44, 63, 120] focussed on describing which char-

acteristics make the fitness landscapes hard to optimise and which do not. On the

other hand, the quantitative approaches [28, 70, 84, 101, 119] defined an algebraic

measure to explicitly quantify the difficulty of fitness landscapes.

This thesis identifies the fundamental link between fitness landscape analysis

and algorithm configuration, in a sense that the in-depth understanding of problem

difficulty in relation to algorithms gained through fitness landscape analysis should

naturally be of help in determining the optimal configuration of a given algorithm

for solving a particular problem.
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Although fitness landscape analysis shows great promise to address the algo-

rithm configuration problem, there are three important research issues to be fully

addressed:

• First of all, despite a large number of techniques developed for fitness landscape

analysis, very few techniques are used in practice. This is due to the fact that

the developed techniques are either proved to be unreliable or unable to be

used in practice due to their own limitations (e.g. require the global optima

to be known). There is a lack of a reliable and effective approach for fitness

landscape analysis, which can potentially be incorporated to directly address

the algorithm configuration problem.

• In static algorithm configuration, most automatic algorithm configuration

methods either produce a one-size-fits-all configuration of an algorithm for

an entire set of instances [66] or perform per-instance configuration for a par-

ticular problem by making use of problem-specific features. There is a lack of

a generic (problem-independent) approach to automatically find the optimal

configuration for a given algorithm on a per-instance base.

• In dynamic algorithm configuration, the optimal configuration of a heuristic

algorithm is determined based on utilisation of historical information only un-

der the assumption that a configuration that performed well in the past is

bound to perform well in the future. There is a lack of a predictive method

which can determine the optimal configuration dynamically based on the ex-

pected performance of candidate configurations instead of past performance

only.

This thesis aims to address these three important issues, particularly in develop-

ing a novel and effective approach for fitness landscape analysis. In particular, this

thesis proposes for the first time to bridge the gap between fitness landscape analysis
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and algorithm configuration through explicitly applying results from fitness land-

scape analysis to address two prominent issues in both static and dynamic algorithm

configuration, and design of novel and effective heuristics. The main contributions

and the organisation of this thesis are presented in the following sections.

1.2 Major Contributions

1.2.1 A Novel Approach for Characterising Fitness Land-

scapes and Measuring Problem Difficulty

The first and foremost contribution of this thesis relates to the development of

a novel, effective approach arising from theoretical investigations for characterising

fitness landscapes and measuring problem difficulty. This contribution also estab-

lishes the foundations of other contributions in this thesis. Metaheuristics have been

widely applied to solve hard optimisation problems, but the difficulty of selecting and

configuring the best algorithm remains a huge challenge for practitioners. Fitness

landscape analysis is to overcome this challenge by means of better understanding

which algorithms, or algorithm variants are best suited for solving which kinds of

problems. Although a large number of studies have been conducted to characterise

fitness landscapes and measure problem difficulty with respect to metaheuristics,

most developed techniques are either proved to be unreliable or unable to be used in

practice due to their own limitations (e.g. require the global optima to be known),

and there is a lack of a reliable and effective approach for characterising fitness land-

scapes and measuring problem difficulty. This thesis addresses this need through

proposing a novel approach arising from theoretical investigations related to time

complexity studies of metaheuristics for characterising fitness landscapes, where a

predictive measure can be derived to explicitly quantify the problem difficulty with

respect to algorithms.
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The notion of escape probability is formally defined and a theoretical analysis

is performed to investigate the relationship between the escape probability and the

expected runtime which is usually taken as a difficulty measure in time complexity

studies of metaheuristics. The results suggest that the escape probability is a critical

factor in determining the expected runtime. Two further developments are obtained

based on the escape probability. First, the fitness-probability cloud [82] is defined

to obtain an overall characterisation of fitness landscapes. Second, a predictive

problem difficulty measure, the accumulated escape probability, is derived from the

fitness-probability cloud to explicitly quantify the problem difficulty with respect

to algorithms [82]. This generic measure can be used irrespective of the choice of

algorithm or the problem of interest.

1.2.2 Incorporating Fitness Landscape Analysis for Static

Algorithm Configuration

The second contribution of this thesis relates to incorporating the insight ob-

tained by fitness landscape analysis to build a generic (problem-independent) ap-

proach to automatically find the optimal configuration for a given algorithm on a

per-instance basis. Since metaheuristics are general algorithmic frameworks which

potentially have many different variants under different configurations (e.g., choice

of search operator/heuristic, parameter settings, etc.), it is widely acknowledged

that finding good configurations is essential to obtain robust and high performance

of metaheuristics. Furthermore, it is observed that a metaheuristic algorithm re-

quires different configurations in order to find good solutions for different problem

instances [41, 94, 137]. The problem of finding good configurations, also referred

to as the static algorithm configuration problem, concerns determining a priori the

most effective configuration of an algorithm for solving a particular problem in-

stance. This problem is traditionally formulated as an optimisation problem, but
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unlike standard optimisation problems, the static algorithm configuration problem

cannot be optimised directly due to the cost function to evaluate an algorithm con-

figuration cannot be written analytically and is typically highly non-linear and very

expensive to compute. Despite a number of approaches developed to tackle the static

algorithm configuration problem, most previous approaches either only produce a

one-size-fits-all configuration of the target algorithm for an entire set of problem in-

stances [66] or perform per-instance configuration only for a particular problem by

making use of problem-specific features [137]. There is a lack of a generic (problem-

independent) approach to automatically find the optimal configuration for a given

algorithm on a per-instance basis.

This thesis addresses this need in two steps. First, the static algorithm configu-

ration problem is reformulated as a decision problem, which is to determine whether

a configuration of the target algorithm is suitable for solving a particular problem

instance. This reformulation is in the interest of practice since it is usually infeasible

to explore the entire configuration space for finding the optimal configuration, it is

somehow sufficient if an approximation solution can be efficiently identified within

a finite set of candidate configurations. Second, the problem difficulty measure, the

accumulated escape probability, is incorporated to build a generic approach which

performs automatic algorithm configuration on a per-instance base. The proposed

approach is based on learning the pattern which governs the relationship between

the algorithm configurations and the characteristics of problem instances, where

the characteristics of problem instances are extracted using the accumulated escape

probability [78, 81].

Results from the case study on the unique input output sequence problem (UIO)

show that the proposed approach can reliably determine whether a candidate config-

uration of the target algorithm, (µ+λ) EA, is suitable for solving a UIO instance, in

terms of the pre-defined performance metric [78, 81]. More importantly, for a finite
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set of candidate configurations of the target algorithm, the proposed approach sig-

nificantly outperforms a state-of-the-art automatic algorithm configuration method,

ParamILS [66], in finding effective configurations of the target algorithm for solving

the UIO problem.

Further to determining the best suited configuration within a finite set of can-

didate configurations, it is always useful to produce a novel, problem-specific con-

figuration such as a new search operator or heuristic which potentially outperforms

existing configurations for a particular class of problem instances. The design of

such an effective configuration must account for the characteristics of problem in-

stances. This thesis establishes a link between fitness landscape analysis and design

of novel algorithm configuration, through proposing an approach to explicitly apply

the theoretical results on elementary landscape to design novel and effective local

search heuristics [80]. Results from the case study on the next release problem

(NRP) in software engineering confirms the utility of the proposed approach, where

the proposed elementary hill climbing algorithm developed using results from ele-

mentary landscape analysis significantly outperforms both the standard stochastic

hill climber and the state-of-the-art in solving the NRP [80].

1.2.3 Incorporating Fitness Landscape Analysis for Dy-

namic Algorithm Configuration

The third contribution of this thesis relates to incorporating the insight gained

through fitness landscape analysis to build enhanced techniques to address the dy-

namic algorithm configuration problem. Traditionally algorithm configuration meth-

ods determine a priori the most appropriate configuration of the target algorithm

for solving a particular problem instance. However, there are both empirical and

theoretical evidence showing that the most effective configuration of a given algo-

rithm for solving a particular problem instance can vary during the search process
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[116]. This motivates the development of heuristic algorithms that dynamically

adapt their configurations (search operators, numerical parameters, etc.) during

the search process. In particular, the behaviours of such heuristic algorithms are

adapted to specific characteristics of problem instances, the generality of such algo-

rithms would be improved to be able to solve a broad class of problems with diverse

characteristics.

The design of adaptive heuristic algorithms concerns two main issues, the credit

assignment mechanism and the selection mechanism. The former assigns a reward

to a configuration based on evaluating the contribution of the configuration to the

overall performance and the later serves as a selection rule in charge of selecting

the configuration to use. It is noted that most existing adaptive heuristic algo-

rithms perform adaptations based on the utilisation of historical information (past

behaviours) only under the assumption that a configuration performed well in the

past is bound to perform well in the future. However, considering only the past

performance can be misleading, as the optimal fitness assigned to a configuration is

a dynamic random variable and the underlying distribution of this random variable

changes as the search proceeds.

This thesis addresses this important issue through incorporating predictive infor-

mation provided by the predictive problem difficulty measure to design a systematic

mechanism for adaptive heuristic search. The predictive measure originates from the

fitness landscape analysis and explicitly quantifies problem difficulty with respect

to algorithms. Equivalently the measure can be used to quantify the predicted per-

formance of a specific algorithm for solving a given problem instance. A generic

framework for designing adaptive heuristic algorithms using the predictive problem

difficulty measure is proposed. To demonstrate the effectiveness of the proposed

approach, the proposed framework is applied to design the fitness landscape based

adaptive search algorithm (FAS) for tackling the minimum vertex cover problem
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(MVC). FAS either outperforms or is comparable to the state-of-the-art algorithms

for MVC on both well-studied benchmarks and real-world instances. New lower

bounds have been found by FAS on several hard problem instances.

1.3 Overview of the Thesis

The remainder of this thesis is structured as follows.

Chapter 2 first reviews the existing approaches developed for fitness landscape

analysis with the emphasis on discussing their limitations and drawbacks, highlight-

ing why the development of an effective approach for characterising fitness land-

scapes is valuable. Second, the static and dynamic algorithm configuration prob-

lems are introduced with a review of existing approaches for both problems. This

helps to identify the need and importance for incorporating fitness landscape analy-

sis to build enhanced techniques for tackling both the static and dynamic algorithm

configuration problems.

Chapter 3 presents the definition of the escape probability and a theoretical

analysis on investigating the relationship between the escape probability and the

expected runtime. Two further developments achieved based on the escape prob-

ability are then described. First, the fitness-probability cloud is proposed as an

overall characterisation of fitness landscapes. Second, a problem difficulty measure,

the accumulated escape probability is defined to explicitly quantify the problem dif-

ficulty with respect to algorithms. Finally, the sampling method used to estimate

the accumulated escape probability in practice is introduced.

Chapter 4 first provides the reformulation of the static algorithm configuration

as a decision problem. The generic (problem-independent) approach to perform per-

instance algorithm configuration is described and illustrated through the case study

of automatically configuring the (µ + λ) EAs for solving the unique input output
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sequence problem arising from software testing. In particular, an experimental study

has been conducted to compare the proposed approach with the ParamILS which

is a state-of-the-art algorithm configuration method. Furthermore, the approach to

perform elementary landscape analysis is described with a case study on developing

a novel and effective stochastic hill climbing algorithm for solving the next release

problem (NRP) in software engineering.

Chapter 5 proposes to incorporate predictive information provided by the pre-

dictive problem difficulty measure to design a systematic mechanism for adaptive

heuristic search. A generic framework for designing adaptive heuristic algorithms

using the predictive problem difficulty measure is presented and applied to develop

the fitness landscape based adaptive search algorithm (FAS) for the minimum ver-

tex cover problem (MVC). A detailed experimental study is performed to evaluate

the performance of FAS, and to further understand the behaviours of FAS and the

predictive problem difficulty measure on instances with different characteristics.

Finally, Chapter 6 concludes this thesis by reviewing the main contributions of

the preceding chapters and remarking on directions for further research.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides an introduction to the motivation behind fitness landscape

analysis and a review of previous approaches. Despite many successful applications

of metaheuristics in solving complex optimisation problems, there is in fact very

limited understanding of which algorithms, or algorithm variants are best suited for

solving which kinds of problems. Fitness landscape analysis is a powerful analytical

tool that could be used to address this problem. In particular, two broad classes

of approaches for characterising fitness landscapes and thus the problem difficulty

with respect to metaheuristics, i.e., the qualitative approaches and the quantitative

approaches, are reviewed and discussed. In addition to the two main classes of

approaches, a promising but less general approach is introduced, which theoretically

characterises a particular class of fitness landscapes, where the objective function

is an eigenfunction of the Laplacian of the graph induced by the neighbourhood

operator, as an elementary landscape.

Whilst fitness landscape analysis focuses on understanding problem difficulty in

relation to algorithms in an analytical way, in practice, a number of approaches have

been developed to directly tackle the problem of finding the best configuration of
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a given algorithm for solving a particular problem. This is motivated by the fact

that metaheuristics are general algorithmic frameworks with two general classes of

parameters to tune [86], namely, the behavioral parameters (mainly numerical pa-

rameters associated with search operators/heuristics) and the structural parameters

(e.g., those related with the encoding and the choice of search operators/heuristics).

Although some work refer to setting numerical parameters of metaheuristics as pa-

rameter tuning, this thesis is interested in the algorithm configuration, which con-

cerns not only the problem of tuning numerical parameters, but of selecting and

combining discrete building blocks (e.g., categorical parameters such as choice of

search operator/heuristic) to build an effective algorithm.

In the literature, this algorithm configuration problem has been tackled under

two distinct formulations. First, the static algorithm configuration, which takes

place before actually running the algorithm and determines a priori the optimal

configuration of the target algorithm for solving a particular problem. Second,

the dynamic algorithm configuration, which is determining an optimal time-varying

schedule for applying different algorithm configurations during the search process.

Both static and dynamic algorithm configuration are extensively studied in the liter-

ature with a number of developed techniques. This chapter formally defines both the

static and dynamic algorithm configuration problems, with the existing approaches

reviewed and discussed.

This chapter identifies the fundamental link between fitness landscape analysis

and algorithm configuration, in the sense that in-depth understanding of problem

difficulty in relation to algorithms gained through fitness landscape analysis should

naturally be of help in determining the optimal configuration of a given algorithm

for solving a particular problem. Although it sounds very promising to incorporate

the fitness landscape analysis in addressing the algorithm configuration problem,

this chapter reviews the literature in the fields of fitness landscape analysis and
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algorithm configuration, and identifies three important research issues to be fully

addressed:

• In fitness landscape analysis, there is a lack of a reliable and effective approach

which can potentially be incorporated to build enhanced methods to directly

address the algorithm configuration problem.

• In static algorithm configuration, most existing approaches either produce a

one-size-fits-all configuration of an algorithm for an entire set of instances [66]

or perform per-instance configuration for a particular problem by making use

of problem-specific features. There is a lack of a generic (problem-independent)

approach to automatically find the optimal configuration for a given algorithm

on a per-instance base.

• In dynamic algorithm configuration, the optimal configuration of a heuristic

algorithm is determined based on utilisation of historical information only un-

der the assumption that a configuration that performed well in the past is

bound to perform well in the future. There is a lack of a predictive method

which can determine the optimal configuration dynamically based on the ex-

pected performance of candidate configurations instead of past performance

only.

This chapter proceeds as follows. Section 2.1 reviews the previous approaches

for characterising fitness landscapes and measuring problem difficulty with respect

to algorithms, including the qualitative and the quantitative approaches, as well as

elementary landscape. A discussion is also provided in this section to summarise

the strengths and weaknesses of the existing approaches. Section 2.2 first formally

defines the static algorithm configuration problem, then reviews and discusses a

number of existing approaches. Section 2.3 describes the motivation to formulate

the algorithm configuration as a dynamic problem, and formally defines the dy-
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namic algorithm configuration problem. Again a number of previous approaches are

reviewed and discussed. Finally, Section 2.4 presents a summary of this chapter,

highlighting the need and importance of resolving the research issues identified in

the literature review and the contributions to be made by the work presented in this

thesis.

2.2 Existing Approaches for Fitness Landscape

Analysis

Metaheuristics are approximate optimisation techniques which can find good so-

lutions for hard optimisation problems within reasonable time but with no guarantee

of finding the optimal solutions. There are a plethora of techniques within the field

of metaheuristics such as Stochastic Local Search (SLS), Simulated Annealing (SA),

Evolutionary Algorithm (EA), Ant Colony Optimization (ACO) and others. Also,

since metaheuristics are general algorithmic frameworks, even a metaheuristic algo-

rithm can have a number of variations under different configurations. Given such a

plethora of algorithms and algorithm variants, for solving a given optimisation prob-

lem, the difficulty in selecting the best suited algorithm has been a long standing

challenge for practitioners.

Furthermore, over the years the research focus in metaheuristics has largely been

on the algorithmic side, where a large number of algorithms have been developed

to solve one or more optimisation problems. In contrast, relatively little attention

has been paid to studying the implications behind the empirical results, i.e., the

analysis of which problems the proposed algorithm will perform well or poorly on

and why. This lack of in-depth understanding of problem difficulty in relation to

algorithms has made it more difficult to identify the best suited algorithm for solving

a given problem. In the meantime, the necessity of addressing the problem of finding
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the best suited algorithm for solving a particular problem has been confirmed by

the well-known no free lunch theorem [133] which states that no one optimisation

algorithm is superior to the other on all problems, i.e. a single best algorithm for

every problem does not exist.

Analysing characteristics of fitness landscapes, also referred to as the fitness land-

scape analysis, is a powerful analytical tool, particularly for understanding charac-

teristics of optimisation problems and the associated behaviours of metaheuristics

in optimising them. Therefore, the results obtained through fitness landscape anal-

ysis can be of help in understanding which algorithms, or algorithm variants are

best suited for solving which kinds of problems, and thus in determining the best

suited algorithm for solving a particular problem. The notion of fitness landscapes,

originally proposed in [134], underlies a large body of work in problem difficulty

studies in the field of metaheuristics. Typically a fitness landscape is defined under

the notion of neighbourhood/distance, therefore the same fitness function can have

many different fitness landscapes defined under different neighbourhood operators.

Formally, the fitness landscape is defined as a triple (X,N, f), where X is a set of

candidate solutions, the objective function f : X 7−→ < assigns a real-valued fitness

to each solution in X and the neighbourhood operator N : x 7−→ N(x) imposes

a neighbourhood structure among X. Given a candidate solution x ∈ X,N(x) is

the neighbourhood set that is obtained by applying one step of the neighbourhood

operator.

Many observations can be made on the visualisation of such a fitness landscape

(X,N, f) for properties such as ruggedness, smoothness, neutrality and etc, which

can give an indication about the problem difficulty for a search algorithm. However,

it is generally impossible to plot the fitness landscapes of most practical problems due

to the huge size of the search space and the complexity of neighbourhood structure.

Even assuming a fitness landscape can be plotted, the mere observation of its shape
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still lacks formality [51], it is then suggested that the ideal form of fitness landscape

analysis would be to condense critical information on fitness landscapes into an

algebraic measure [95].

Motivated by this distinction, a classification of the existing approaches for fit-

ness landscape analysis is provided to break them into two main classes. First, the

qualitative approaches which focussed on describing which characteristics make a

fitness landscapes hard to optimise and which do not, based on the observations

made on the visualisation of such a fitness landscape. On the other hand, quantita-

tive approaches propose to condense the critical information on fitness landscapes

into an algebraic measure to explicitly quantify problem difficulty with respect to

search algorithms. In addition to these two main classes of approaches which focus

on direct difficulty studies of fitness landscapes, a promising but less general ap-

proach theoretically characterises a particular class of fitness landscapes, where the

objective function is an eigenfunction of the Laplacian of the graph induced by the

neighbourhood operator, as elementary landscape.

2.2.1 Qualitative Approaches

Most early approaches emerging in the study of fitness landscapes attempted to

link certain characteristics of fitness landscapes to problem difficulty, where char-

acteristics such as isolation [44], multi-modality (presence of more than one local

optimum) [63] and deception (presence of misleading information) [30, 38] were

considered to be what make a problem hard for search heuristics. Many of these

approaches consisted of constructing functions that should a priori be easy or hard

for search algorithms to solve [95], e.g., isolation, multi-modality and deception. It

is clear that an isolated fitness landscape (needle-in-a-haystack) is difficult for search

heuristics. But in terms of multi-modality and deception, Naudts and Kallel [91]

observed that fitness landscapes with those characteristics are not necessarily hard
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for search heuristics, and vice versa. Moreover, many counterexamples have been

identified. Horn and Goldberg [63] constructed a multi-model function that is easy

to solve. Also a unimodel long path problem [64] was proposed which can require

exponential time to solve with hill climbing and GA. Wilson [132] constructed some

deceptive functions that are GA-easy. Vose and Wright [122] presented a fully non-

deceptive function which defeats the GA by an exponential number of sub-optimal

attractors.

The fitness landscapes have also been characterised using properties of smooth-

ness, ruggedness and neutrality [120], which attempt to link the geometric properties

of fitness landscapes to the problem difficulty with respect to search heuristics. In-

tuitively a unimodal, very smooth and regular landscape seems straightforward for

a searcher to locate the optimal solution. The opposite is true for a rugged fit-

ness landscape with many local optima that are irregularly distributed, on which

the local search algorithms would surely stagnate, even global search algorithms (as

opposed to local search) might have trouble in optimising a rugged landscape. In

general, search algorithms struggle to optimise very rugged fitness landscapes. Also,

the neutral regions on fitness landscapes can make the search stagnate since the

objective function is unable to provide any useful information when the search is on

plateaus.

Recently the concept of fitness cloud [121] has been proposed to obtain a visual

rendering of the evolvability properties of fitness landscapes. Let Γ be a set of

individuals sampled from the search space and let fi = f(γi) where f is the fitness

function. Then for each γi ∈ Γ generate K neighbours by applying a genetic operator

to γi and let f ′i denotes the maximum fitness value amongK neighbours of γi. Finally

the set of points {(f1, f ′1), ..., (fn, f ′n)} is taken as the fitness cloud. Although the

fitness cloud is predictive (does not require known global optima) and has proved its

effectiveness in both Genetic Programming and GA, in practice it is vulnerable to
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Figure 2.1: Plot of Fitness Cloud for OneMix function (Problem Size = 20) with
varying Neighbourhood Sample Size K [82].

an experimental parameter which is the neighbourhood sample size K and there is

no proper method in tuning this parameter [82]. As an illustration, for the OneMix

function (problem size = 20) w.r.t. the bitwise mutation with probability 1/n,

13 different fitness clouds are generated as a result of using 13 different values of

K varying from 100 to 10000000. The results showed that the fitness cloud is

not a reliable characterisation of fitness landscapes unless the parameter K can be

appropriately tuned.

The qualitative approaches for fitness landscape analysis summarised above can

provide straightforward interpretations of the problem difficulty based on the obser-

vations made for certain characteristics of visualised fitness landscapes. However,

it is generally impossible to visualise the fitness landscapes of most practical prob-

lems due to the huge size of the search space and the complexity of neighbourhood

structure. Even assuming a fitness landscape can be plotted, the mere observation

of its shape still lacks formality [51]. As for the fitness distribution [14] and informa-

tion landscapes [15], they are not predictive since the information about the global

optima is required.
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2.2.2 Quantitative Approaches

The qualitative approaches for fitness landscape analysis only apply to low-

dimensional problems where it is possible to plot the associated fitness landscapes,

then observations can be made for the geometric properties of fitness landscapes

such as ruggedness, smoothness, neutrality, etc. Nevertheless, fitness landscapes are

unlikely to be plotted for most practical problems, due to the huge size of the search

space as well as the complex neighbourhood structure. Even assuming a fitness

landscape can be plotted, the mere observation of its shape still lacks formality [51],

as a result, further to the qualitative characterisations of fitness landscapes, it is

suggested to characterise fitness landscapes in a quantitative way, i.e., to compress

the critical information on fitness landscapes into a single algebraic measure to ex-

plicitly quantify the problem difficulty with respect to algorithms. Typically such a

problem difficulty measure is defined based on the fitness function and the under-

lying structure of the search space. Along this line of consideration, many problem

difficulty measures have been proposed.

An early attempt in defining a useful problem difficulty measure is the epistasis

variance [28], which assumes a binary representation and is computed based on the

fitness function only. Basically the epistasis is measured under a linear composition

of a string solution from its bits. The epistasis variance of the linear decomposition

of the function is used to estimate the amount of non-linearity in the function. As a

result, the epistasis variance gives a single value (from 0 to a non-normalised positive

number), where 0 indicates no dependency between genes.

Weinberger proposed the autocorrelation function and correlation length [126]

focussing on quantifying the geometric properties of fitness landscapes, i.e., the

ruggedness. This approach is based on random walks through a binary fitness land-

scape. For all landscapes, for a sequence of fitness values obtained from random walk

through the fitness landscape, calculate the correlation with the same sequence of
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values a small distance away. For autocorrelation function, the results are a plot

of autocorrelation q(s) against step size s (distance between sequences being cor-

related), where q(s) = 1 indicates maximal correlation and a value of q(s) close

to 0 indicates almost no correlation. The correlation length is a single numerical

value computed based on the autocorrelation function, which indicates the distance

beyond which the majority of points become uncorrelated, and a smaller value in-

dicates a more rugged landscape. The main drawback of the correlation length as

a problem difficulty measure lies in that it considers the problem difficulty as in-

dependent of the algorithm, however, it is widely acknowledged that the problem

difficulty can vary for different search algorithms.

Later a significant contribution to this field was given by Jones through the

introduction of a problem difficulty measure called fitness distance correlation [70]

for measuring the GA-hardness. The fitness distance correlation (fdc) uses the

joint variation of distances and fitness values [70]. Given a set F = {f1, . . . , fn} of

n fitness values and a corresponding set D = {d1, ..., dn} of the n distances away

from the nearest global optimum, SF and SD are standard deviations of F and D.

the correlation coefficient r is defined as:

r =
CFD
SF · SD

, whereCFD =
1

n

n∑
i=1

(fi − f)(di − d). (2.1)

Ideally we will have r = 1 when minimising (the fitness decreases while approach-

ing a global optimum), and r = −1 when maximising (the fitness increases while

approaching the global optimum).

One common limitation of most problem difficulty measures summarised above

is they are not predictive, i.e., the optimal solutions to the problems are required to

be known for computing these measures. This has also been confirmed in theoretical

investigations by Jansen [67] which pointed out that the exact computation of these

measures including fdc and epistasis variance requires the entire search space to be
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explored. Considering the huge size of the search space, one immediately realises

that this is infeasible for most problems. In practice, statistical approaches such as

sampling have to be employed, and only approximate values of these measures can

be estimated based on samples of the search space. Motivated by the distinction

between theoretical and empirical versions of problem difficulty measures, He et al.

[54] proposed to classify realizations of difficulty measure into two types: namely

exact and approximate realisations.

Nevertheless, both exact and approximate realisations of the existing problem

difficulty measures are shown to be unreliable. In theory, Jansen [67] defined exam-

ple functions where a simple evolutionary algorithm exhibits a completely different

behaviour, whilst these functions are measured to be of the same difficulty in terms

of fitness distance correlation and epistasis variance. It has also been proved that the

expected runtime of this algorithm can vary from polynomial to exponential values

even if the difficulty measure does not change at all. In practice, many counterexam-

ples have been identified for fdc [3, 72, 100] and epistasis variance [102, 105] to show

the approximate realisations of these problem difficulty measures are unreliable as

well.

Furthermore, in an in-depth review of the previous problem difficulty measures,

Reeves [103] pointed out their inherent flaws and concluded that a satisfactory prob-

lem difficulty measure with reference to metaheuristics is yet to be found. Given

the disappointing outcome in finding a useful problem difficulty measure, Reeves

[103] also raised an important theoretical question: can we know the difficulty of a

problem without exploring the whole universe (search space)?

He et al. [54] provided a definite answer to this question. Assuming a worst-

case perspective, it has been rigorously proved for both exact and approximate

realisations, the predictive versions of the problem difficulty measure that can be

computed in polynomial-time do not exist unless P = NP or BPP = NP. In other
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words, to find a useful predictive measure in general is impossible. This result is

important in determining the right direction for the future developments of problem

difficulty measures. Although it is impossible to find a reliable predictive measure

in general, one can still design a predictive measure which is useful for a broad class

of problem.

More recently, the negative slope coefficient (nsc) [119] has been proposed as a

problem difficulty measure based on the notion of fitness cloud. Fitness cloud is a

set of points C = {(f1, f
′
1), · · · , (fn, f

′
n)}, where f is the fitness function, fi denotes

the fitness value of a solution and f
′
1 denotes the fitness value of its neighbours. C

can be partitioned into a number of discrete bins C1, · · · , Cm such that (fa, f
′
a) ∈ Cj

and (fb, f
′

b) ∈ Ck with j < k implies fa < fb. For each of the line segments defined

between the centroids of adjacent bins, a slope Si is defined as:

Si =
f

′
i+1 − f

′
i

fi+1 − fi
(2.2)

Finally the negative slope coefficient is defined as:

nsc =
m−1∑
i=1

min(0, Si) (2.3)

The hypothesis proposed in [119] stated that nsc should classify the problem dif-

ficulty in the following way: nsc = 0 indicates an easy problem and smaller values

indicate more difficult problems when nsc < 0. nsc has been applied to a number

of genetic programming (GP) problems and exhibited certain reliability. However,

it has been identified that the partition of the abscissas of a fitness cloud can have

a considerable impact on the performance of nsc. Limitations of the standard par-

titioning technique were shown in that it can generate bins which contain too few

points. Furthermore, it was empirically shown that the nsc with this partition-

ing technique was unable to correctly predict the difficulty of two well known GP
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benchmarks: the multiplexer problem and the intertwined spirals problem [119]. In

sum, nsc is unable to serve as a reliable problem difficulty measure unless the fitness

cloud can be partitioned appropriately, and what is worse is that there is a lack of

a formal partitioning method.

Independently, some problem difficulty measures which are theoretical in nature

have been proposed. For example, the Kolmogorov complexity (KC), also known as

algorithmic information theory, is a measure of an object related to the complexity

of the computer program required to produce the object then halt. A discrete

fitness function defined over a finite space can be described by a single binary string

consisting of all possible output values of the function. The KC of this string is

expected to capture the difficulty of the function [16]. Although the approach of

using KC to quantify function complexity has been used extensively in theoretical

studies and proofs, the KC, just like other measures which are theoretical in nature,

cannot be practically implemented.

2.2.3 Elementary Landscape

The approaches for fitness landscape analysis summarised above focussed on

gaining general understanding of problem difficulty in relation to algorithms. The

emergence of elementary landscape provides a promising but less general approach,

which characterises fitness landscapes by theoretically defining a particular class of

fitness landscapes. The elementary landscapes have unique properties which can

potentially be used to facilitate the search.

First observed by Grover [49] that the landscapes of certain combinatorial op-

timisation problems such as Travelling Salesman Problem (TSP), could be charac-

terised by a wave equation. Stadler [109] formally defined this kind of landscape as

“elementary landscapes”.

For a fitness landscape (X,N, f), where X denotes a set of candidate solutions,
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the objective function f : X 7−→ < assigns a real-valued fitness to each solution

in X and the neighbourhood operator N : x 7−→ N(x) imposes a neighbourhood

structure among X. Let G(X,E) be the underlying graph induced by N and assume

G is regular with vertices of degree d. A ∈ R|X|×|X| is the adjacency matrix of G, if

x1 and x2 are adjacent, A(x1, x2) = 1. 4 = A−dI ∈ R|X|×|X| is the Laplacian of G.

On an arbitrary fitness landscape, f and N are unrelated. However, on an

elementary landscape, the following wave equation holds:

4f = λf (2.4)

λ is a scalar. In other words, a landscape is elementary when the objective func-

tion is an eigenfunction of the Laplacian of the graph induced by the neighbourhood

operator.

Elementary landscapes possess unique properties which are considered beneficial

for the search. In general, the properties are classified into two main categories.

Implicit properties, landscapes with this property tend to be relatively smooth

when contrasted to other combinatorial optimisation problems with well-studied

local move operators, which could be considered to be an advantage for local search

algorithms [130]. And the wave equation also imposes constraints on the structure

of local optima and precludes the existence of certain plateau structures. Explicit

properties, a wave equation in terms of the expected value of the neighbours is

proposed, which more concretely expresses the properties of elementary landscapes

[130]. Suppose x is some fixed but arbitrary element of X, y is an element drawn

uniformly at random from the neighbourhood set N(x) of x and f is the mean value

over all solutions in X. On an elementary landscape, the following wave equation

holds.

E[f(y)] = f(x) +
k

d
(f − f(x))
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for k which is fixed for the entire landscape. Since y is drawn uniformly at ran-

dom, the expected value of the fitness value of a neighbour y is always equal to the

average fitness value over all solutions in the neighbourhood [130]. In addition to

computing the expected fitness value of the full neighbourhood can be predicted by

the wave equation. It is even possible to expand a partial neighbourhood during

the search, and predict for the remaining neighbourhood. This property gives sig-

nificant insight to the search algorithm that could be explicitly applied in designing

algorithms. The wave equation also imposes constraints on the structure of local op-

tima and precludes the existence of certain plateau structures. One of the following

observations by Codenotti and Margara [23] is true.

• if f(x) = f f(x) = E[f(y)] = f

• if f(x) < f f(x) < E[f(y)] < f

• if f(x) > f f(x) > E[f(y)] > f

Grover [49] observed similar consequences. Let Zmin and Zmax be a local mini-

mum and a local maximum, respectively. Then

Zmin < f < Zmax

In other words, all local minima lie below the average function value of the search

space.

Barnes et al. [9] classified the elementary landscapes as either smooth or rugged.

The wave equation holding for smooth elementary landscapes has resulted in several

properties, which include relative smoothness, constraints on certain plateau struc-

tures and local optima, as well as allowing for predictions about the fitness values

of partial or full neighbourhoods during search, etc. In addition, arbitrary fitness
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landscapes can be decomposed into a superposition of elementary landscapes.

Whitley et al. [130] also proved that for a plateau P on a (non-flat) elementary

landscape, if x ∈ P has only equal and not improving neighbours, then there cannot

exist a solution z ∈ P with only equal and improving neighbours. A plateau is a

set P of candidate solutions in X such that for all a, b ∈ P , f(a) = f(b) and there

is a path (a = x1, x2, ..., xk = b) such that xi+1 ∈ N(xi). Plateaus (also known as

neutral networks) are structural features that arise in many combinatorial problems

[39]. Plateau structure is a challenge for local search that can cause the algorithm

to cease progress.

Whitley et al. [130] observed that several interesting consequences that arise

from the expected value equation. In most practical elementary landscapes studied,

the objective function for a particular candidate solution can be written as a linear

combination of a subset of a collection of components. A good example is TSP, in

which a fitness function is a linear combination of edge weights. Let C be a set

of real valued components and there exists Cx ⊂ C such that f(x) =
∑
c∈Cx

c. The

set Cx is referred to as the intracomponents of a solution x and the set C − Cx

as the intercomponents of x. When a local search move has been made from an

incumbent solution x to a neighbouring solution, an exchange of components is

made. In particular, a subset of the intracomponents is removed and a subset of the

intercomponents is added.

On this basis, Whitley et al. [130] constructed a component-based model that

can be used to characterise a neighbourhood structure. In this model, the neigh-

bourhood size is regular and denoted by d. The model consists of the following

equations.

f = p3
∑
c∈C

c
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E{f(y)} = f(x)− p1f(x) + p2(
∑
c∈C

c− f(x))

= f(x)− p1f(x) + p2(
1

p3
f − f(x))

where 0 < p1 < 1 is the proportion of the intracomponents that are removed

from the solution in one move, 0 < p2 < 1 is the proportion of the intercomponents

that are added to the solution in a move. Finally, 0 < p3 < 1 is the proportion of

the total components in C that contribute to the cost function for any randomly

chosen solution, which is independent of the neighbourhood size. Based on this

model, a component theorem has been proposed to determine whether a landscape

is elementary or not:

Theorem 1 (Component Theorem [129])

If p1, p2 and p3 (must be constants) can be defined for any regular landscape such

that the evaluation function can be decomposed into components where p1 = α/d and

p2 = β/d and

f = p3
∑
c∈C

c =
β

α + β

∑
c∈C

c

then the landscape is elementary.

It has been shown that the elementary landscape is a special type of landscape

with unique properties which have implications in both theory and practice. How-

ever, an arbitrary fitness landscape is not always elementary, actually only a small

number of combinatorial optimisation problems have search spaces that correspond

to elementary landscapes [22].

In fact, arbitrary fitness landscapes can be decomposed into a superposition

of ”elementary landscapes” via a Fourier series expansion. A series expansion

f(x) =
∑N

i=1
αiϕi(x), where ϕi forms a complete and orthonormal system of eigen-

functions of the graph Laplacian, is termed a Fourier series expansion of the objective
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function. This decomposition is helpful in a sense that some statistical properties of

the landscape could be computed and the decomposed elementary landscapes can be

studied individually. The information about the effective hardness of an elementary

landscape is contained in the relative ordering of the associated eigenvalues [110]

More recently, Chicano et al. [22] proposed a methodology to addresses this issue

to generalise the definition of elementary landscape to an arbitrary landscape. They

presented an algebraic method that can be used to decompose the fitness function

of an arbitrary combinatorial optimisation problem as a superposition of multiple

elementary landscapes if the underlying neighbourhood is symmetric. In addition to

generalise the definition of elementary landscape to an arbitrary landscape, such a

decomposition has more uses in both theory and practice. In theory, the landscape

decomposition of a problem can be used to compute the exact expression for the

autocorrelation functions, the autocorrelation coefficient, and the autocorrelation

length [126]. In practice, the decomposition allows the search to obtain the average

fitness value of the neighbourhood of any solution without expanding and evaluating

all the solutions in the neighbourhood.

2.2.4 Discussion

Despite extensive research on fitness landscape analysis and a number of tech-

niques developed over the years, very few techniques are used in practice. This is

partly because fitness landscape analysis being complex in itself, which has made it

inaccessible for many practitioners. On the other hand, a considerable amount of

computational overhead will be incurred by fitness landscape analysis, however, the

results given by the existing approaches are still unreliable.

As summarised above, the qualitative approaches for fitness landscape analysis

provided a straightforward indication of the problem difficulty with respect to search

algorithms. However, these qualitative approaches only applied to low-dimensional
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problems such as artificially constructed functions with simple structure, and they

were unable to deal with most practical problems with huge search space and com-

plex neighbourhood structure. Even assuming a complex fitness landscape can be

visualised, the mere observation of its shape still lacks formality, not to mention

the many counterexamples identified which showed that the geometric properties of

fitness landscapes are neither a sufficient nor a necessary condition for the problem

difficulty with respect to algorithms. From the perspective of practitioners, the mere

observation of fitness landscapes cannot be used to compare and discriminate the

expected performance of different algorithms for solving a given problem, and there-

fore are of limited use in addressing the problem of finding the best suited algorithm

for solving a given problem.

The existing quantitative approaches were either shown to be unreliable by many

counterexamples or unable to be used in practice due to their own limitations, e.g.,

require known global optima, vulnerable to experimental parameters. It is worth

noting that finding a useful problem difficulty measure in general is impossible. The

emphasis is then on developing a useful problem difficulty measure for a broad class

of problems.

Given a lack of a reliable approach for fitness landscape analysis, further studies

are required to develop a reliable approach for characterising fitness landscapes and

measuring problem difficulty with respect to search algorithms, ideally for a broad

class of problems. In the interest of practical applications, it is interesting to not

only develop a standalone method for fitness landscape analysis, but to explore

the possibility of incorporating such a fitness landscape analysis method with other

powerful techniques such as the machine learning algorithms to more directly tackle

the problem of finding the best suited algorithm for solving a given problem.
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2.3 Static Algorithm Configuration

Metaheuristics are general algorithmic frameworks, even a metaheuristic algo-

rithm can have many variants if different configurations are used. It is widely ac-

knowledged that finding good algorithm configurations is essential to obtain robust

and high algorithm performance. For example, a simulated annealing algorithm can

perform extremely differently with different values of the temperature parameter

even on the same problem instance. Furthermore, it has been observed that an al-

gorithm requires different configurations in order to find good solutions for different

problem instances [41, 94, 137].

As of yet, finding the best algorithm configuration for solving a particular prob-

lem instance remains one of the persisting challenges in the field of metaheuristics.

This is due to the fact that there is in fact very little understanding of which algo-

rithm configurations are best suited for solving which problem instances. Previous

work revealed that a large fraction of time in algorithm development has been spent

on configuring the algorithm [1, 11], since in many cases the algorithm is configured

manually by trial and error, and the configuration space is essentially very large even

for a handful of parameters [79]. Clearly it is not only inefficient and laborious, but

very unlikely to locate the optimal algorithm configuration, if the algorithm were to

be configured manually. Therefore, developing automatic algorithm configuration

methods is of high practical relevance in several aspects [66]:

• Algorithm Development Manually configuring an algorithm is both time-

consuming and labour-intensive. The use of automatic algorithm configuration

techniques can lead to significant reduction of the time spent on configuring the

algorithm, one can them focus on the algorithm design and testing, which will

potentially achieve better results than algorithms developed and configured

with manual methods.
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• Empirical Comparison of Algorithms When comparing different meta-

heuristics for solving an optimisation problem, it is difficult to distinguish

whether an algorithm outperforms another since it is fundamentally better

suited or it is more appropriately configured. Automatic algorithm configura-

tion methods can alleviate this problem by means of performing fair configura-

tion for different algorithms, and thus facilitate objective comparison between

algorithms.

• Real-world Applications In practical applications of metaheuristics, the

performance of an algorithm on real-world problem instances often depends

critically on the use of appropriate configurations of the algorithm. In the

meantime, finding appropriate configurations requires extensive knowledge

about both the problem and the algorithm, but the practitioners often have

limited knowledge about the algorithm, and the performance of the algorithm

simply using the default configuration optimised on benchmarks might signifi-

cantly deteriorate on real-world instances. Automatic algorithm configuration

methods can provide a systematic solution to this problem.

This section first formally defines the static algorithm configuration problem,

then reviews and discusses the existing approaches for static algorithm configuration.

2.3.1 Static Algorithm Configuration Problem

To avoid potential confusions between the algorithm to be configured and the

method developed to undertake the configuration task, the former is referred to as

the target algorithm and the latter as algorithm configuration method [66]. Let A

denote the target algorithm with a set of parameters P which can be numerical,

ordinal (large, medium, small) or categorical (choice of search operator/heuristic).

The configuration space Θ consists of the domain of values for each parameter p ∈ P .

Let θ = {p1 · · · pk} denote a configuration of the target algorithm A, H is a function
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to measure the performance of the target algorithm executed under configuration

θ on a problem instance. The evaluation function H can be in many different

forms, for example, one might be interested in minimising the runtime of the target

algorithm for finding a solution or maximising the quality of the solution found

within fixed time. The overall goal of an algorithm configuration method is to find

a configuration θ of the target algorithm A for each problem instance I ∈ D, where

the performance of the target algorithm A over a set of instances D is optimised.

The static algorithm configuration problem is formally defined as:

Definition 1 (Static Instance-based Algorithm Configuration Problem).

An instance of the algorithm configuration problem is a tuple 〈A, P,Θ,D,H,m〉,

where:

• A: A parameterised algorithm;

• P : Parameters of A;

• Θ: Configuration space of P ;

• D: A class of problem instances;

• H: A function that measures the performance of running A(θ), θ ∈ Θ on an

instance;

• m is a statistical parameter. (Examples are expectation, mean, and variance.)

The cost function for any candidate configuration θ is:

c(θ) = mI∈D[H(A, θ, I)] (2.5)
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Assuming minimising H, the static algorithm configuration problem is to find

a configuration θ ∈ Θ of A for each problem instance I ∈ D such that c(θ) =

mI∈D[H(A, θ, I)] is minimised.

2.3.2 Automatic Algorithm Configuration Methods

One of the main challenges in developing effective automatic algorithm configu-

ration methods lies in determining whether there are patterns or rules governing the

choice of algorithm configurations, and whether such patterns can be learnt [79]. In

the last two decades, many approaches have been developed to determine a priori

the best suited configuration of the target algorithm for solving a problem. In gen-

eral, the existing automatic algorithm configuration methods can be classified into

two categories:

• Generic, one-size-fits-all Configuration Methods Generic (problem-

independent) methods which produce a one-size-fits-all configuration of a given

algorithm for an entire set of problem instances.

• Problem-dependent, per-instance Configuration Methods Problem-

dependent methods which perform algorithm configuration on a per-instance

base. Each method only applies to one particular optimisation problem by

making use of problem-specific features.

2.3.2.1 Generic, one-size-fits-all Configuration Methods

Gratch and Dejong [47] developed a hill climbing algorithm to directly search

the configuration space by taking moves when a neighbouring configuration is sta-

tistically significantly better than the incumbent configuration. This hill climbing

algorithm was successfully applied to configure a scheduling algorithm with five

parameters.
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MULTI-TAC [89] takes as input a number of generic heuristics and a set of

problem instances, then adapts the generic heuristics to the problem domain and

automatically generated problem-specific LISP programs as their implementations.

A beam search is then performed to select the best LISP implementation where each

program is evaluated over an entire set of problem instances.

Adenso-Diaz and Laguna [1] developed an automatic algorithm configuration

system called CALIBRA, based on a combination of experimental design and gra-

dient descent. CALIBRA uses a fixed training set for evaluation. The experimental

results showed great promise in that CALIBRA was able to find parameter set-

tings for six independent algorithms that matched or outperformed the respective

originally proposed parameter configurations. CALIBRA’s main drawback is its

limitation to tuning numerical and ordinal parameters, and to tuning a maximum

of five free parameters [66].

Birattari et al. [12] proposed F-race based on adaptations of racing algorithms in

machine learning to the algorithm configuration problem, and applied F-race to the

configuration of stochastic local search algorithms. Various applications of F-race

have demonstrated good performance. However, since at the start of the procedure

all candidate configurations are evaluated, this approach is limited to situations in

which the number of candidate configurations considered simultaneously is not too

large.

More recently, Hutter et al. proposed ParamILS [66] to employ the iterative

local search for finding the optimal algorithm configuration of a given algorithm for

solving a set of problem instances. ParamILS has a large number of academic and

industrial applications, which has yielded substantial improvements of heuristic al-

gorithms for hard combinatorial problems, such as propositional satisfiability (SAT),

mixed integer programming (MIP), AI planning, answer set programming (ASP),

and timetabling. ParamILS is a direct search method which searches the configu-
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ration space using an iterative local search method (ILS). It uses a combination of

default and random settings for initialization, employs iterative first improvement

as a subsidiary local search procedure, uses a fixed number (s) of random moves

for perturbation, and always accepts better or equally-good configurations, but re-

initializes the search at random with a small probability. Furthermore, it is based

on a one-exchange neighbourhood, that is, it always considers changing only one

parameter at a time. ParamILS returns a one-size-fits-all configuration for an entire

set of problem instances.

The approaches summarised above have in common one drawback that they only

produce a one-size-fits-all configuration of the target algorithm for an entire set of

problem instances. However, given a search algorithm for solving an optimisation

problem, it has been observed that the algorithm requires different configurations

in order to find good solutions for different problem instances [137].

2.3.2.2 Problem-dependent, per-instance Configuration Methods

Patterson and Kautz [94] first introduced the approach to perform automatic

algorithm configuration on a per-instance base. This approach was specifically de-

signed to configure local search heuristics for solving SAT problems.

Hutter and Hamadi [65] proposed an instance-aware algorithm configuration

method based on approaches which can predict performance for the problem in-

stance at hand and each (continuous) parameter configuration. The proposed al-

gorithm then simply chooses the configuration that minimises the prediction. The

experiments demonstrated that this approach can fairly accurately predict the run-

time of SAPS, one of the best-performing stochastic local search algorithms for SAT.

The application of this method is limited to SAT problems since the performance

prediction method is based on SAT problems.

Cavazos and O’Boyle [21] proposed automatically selecting the best suited config-
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uration of optimisation heuristics on a per method basis within a dynamic compiler.

This approach uses the machine learning technique of logistic regression to automat-

ically derive a predictive model that determines which configuration of optimisation

heuristics to apply based on the features of a method. The application domain of

this method is limited to method optimisation in compiling.

Xu et al. proposed SATzilla [137] which constructs per-instance algorithm port-

folios for SAT. SATzilla uses 48 features, most of which are SAT-specific features.

The approaches summarised above aim to automatically choose the optimal con-

figuration of the target algorithm on a per-instance basis. The main drawback of

these approaches is in that each method can only be used for a particular problem

due to the use of problem-specific features.

2.4 Dynamic Algorithm Configuration

Traditionally, algorithm configuration methods determine a priori the most ap-

propriate configuration of a given heuristic algorithm for solving a particular prob-

lem instance. However, there is both empirical and theoretical evidence showing

that the most effective configuration of a given algorithm for solving a particular

problem instance can vary during the search process [116]. For example, theoreti-

cal analysis of mutation operators on binary encoded problems concluded that the

mutation probability should be decreased as the genetic algorithm is approaching

the global optimum [90]. Empirically Davis [29] used a time-varying schedule of

operator probabilities and observed improved performance.

Therefore, the performance of a heuristic algorithm depends not only on the ini-

tial choice of its configuration, but strongly on the management of its configuration

along the search. This motivates the development of dynamic algorithm configura-

tion methods, often referred to as adaptive heuristic algorithms, which dynamically

adapt their configurations (search operators, numerical parameters, etc.) during
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the search process. The behaviours of such heuristic algorithms are adapted to spe-

cific characteristics of problem instances. These algorithms have gained increasing

popularity in recent years, as such algorithms with improved generality would in-

crease the potential applicability for solving a broad class of problems with different

characteristics.

Adaptive heuristic algorithms are extensively studied in the literature with a

number of approaches developed. The design of adaptive heuristic algorithms mainly

concerns selecting the most effective configuration for the algorithm at each decision

point during the search procedure. Many such mechanisms to control the adaptation

of algorithm configurations have been proposed, which fall within three main cate-

gories [35]: Deterministic, algorithm configurations are predefined functions of time;

Self-Adaptive, algorithm configurations are part of the genotype and optimized by

evolution itself; Adaptive Rules: algorithm configurations are predefined functions

of the search history.

This section first formally defines the dynamic algorithm configuration problem,

then reviews and discusses a number of previous adaptive heuristic algorithms.

2.4.1 Dynamic Algorithm Configuration Problem

Let A denote the target algorithm with a set of parameters P which can be

numerical, ordinal (large, medium, small) or categorical (choice of search opera-

tor/heuristic). The configuration space Θ consists of a set of pre-defined configura-

tions for A. Instead of determining a priori the most effective configuration, dynamic

algorithm configuration changes the configuration of A at each decision point during

the search process. Let the vector θ = {θ1 · · · θk} denote a sequence of configurations

to use in one execution of the target algorithm A, where θi ∈ Θ is the configuration

to select at decision point i. H is a function which measures the performance of

the target algorithm executed under sequence θ on an instance I. The evaluation
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function H can be in many different forms, for example, we might be interested in

minimising the runtime of the target algorithm for finding a solution or maximising

the quality of the solution found within fixed time. The overall goal is to find a

sequence of configurations θ of the target algorithm A for each problem instance

I ∈ D, where the performance of the target algorithm A over a set of instance D is

optimised. The dynamic algorithm configuration problem is formally defined as:

Definition 2 (Dynamic Algorithm Configuration Problem).

An instance of the algorithm configuration problem is a tuple

〈A, P,Θ, θ,D,H,m〉, where:

• A: A parameterised algorithm;

• P : Parameters of A;

• Θ: Configuration space of P ;

• θ = {θ1 · · · θk}, θi ∈ Θ: A sequence of configurations.

• D: A class of problem instances;

• H: A function that measures the performance of running A(θ) on an instance;

• m is a statistical parameter. (Examples are expectation, mean, and variance.)

The cost function for a sequence θ is:

c(θ) = mI∈D[H(A, θ, I)] (2.6)

Assuming minimising H, the dynamic algorithm configuration problem is to find

a sequence of configurations θ of the target algorithm A for each problem instance

I ∈ D such that c(θ) = mI∈D[H(A, θ, I)] is minimised.
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2.4.2 Adaptive Heuristic Algorithms

Adaptive heuristic algorithms aim to select the most effective configuration of

a given heuristic algorithm to use at each decision point during the search process.

Many different mechanisms to control the adaptation of algorithm configurations

have been developed, which fall within three main categories [35]:

• Deterministic: algorithm configurations are predefined functions of time.

• Self-Adaptive: algorithm configurations are part of the genotype and opti-

mized by evolution itself.

• Adaptive Rules: algorithm configurations are predefined functions of the

search history.

Deterministic methods essentially raise even higher difficulties than static algo-

rithm configuration: as the optimal configuration of the target algorithm changes

with time, these functions must pre-define a schedule for applying different config-

urations along the search process. Self-Adaptive method is acknowledged as one of

the most effective approaches to evolutionary parameter setting, specifically in the

framework of continuous parameter optimization [31]. In the general case however,

self-adaptive approaches often significantly increase the size of the search space, and

thus the complexity of the optimization problem (not only should a successful indi-

vidual have good genes; it should also bear parameter values enforcing some effective

transmission of its genes) [35].

Adaptive rules, also referred to as feedback-based control, use information from

the search history to adapt the configuration of a given heuristic algorithm while

solving the problem. In particular, adaptive rules aim at defining an online strategy

to determine the most effective configuration on the fly. In the context of adaptive

rules, the design of adaptive heuristic algorithms concerns two main issues, the credit

assignment mechanism and selection mechanism, where the former assigns a reward
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to a configuration based on evaluating the contribution of the configuration to the

overall performance and the later serves as a selection rule in charge of selecting the

configuration to use.

2.4.2.1 Credit Assignment Mechanisms

Several mechanisms for credit assignment have been proposed which mostly con-

cern how to compute the rewards to be assigned to candidate configurations. Most

existing mechanisms mainly differ in the metric used for evaluating performance of

candidate configurations.

Most approaches defined the performance metric as the fitness improvement

between the offspring and the parents or other objects. To be more specific, the

fitness improvement is assessed in comparison with i) the current best individual

[29]; ii) the median fitness [71]; or iii) the parent fitness [116]. To avoid premature

convergence of the population-based algorithms, Maturana and Saubion [87] took

into account the population diversity and proposed a measure defined as a weighted

sum of both the fitness improvement and the offspring diversity.

Instead of considering instantaneous or average improvement, Whitacre et al.

[128] considered extreme improvements, using a statistical measure aimed at out-

lier detection in numerical optimisation. The experimental results showed that the

proposed measure significantly outperformed its competitors on a set of continuous

benchmark problems.

In addition, some other work proposed that the impact of candidate configu-

rations on the overall performance should be measured after the genealogy of the

outstanding offspring, e.g., rewarding the operators producing the ancestors of a

good offspring according to a bucket brigade algorithm [29].

One common shortcoming of the credit assignment mechanisms summarised

above is the rewards are determined based on the historical performance of can-
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didate configurations only, however, it is noted that considering only the past per-

formance can be misleading on problems with complex structure such as deception

[30, 88]. Furthermore, the optimal reward assigned to a configuration is a dynamic

random variable and the underlying distribution of this random variable changes as

the search proceeds [29, 90].

2.4.2.2 Selection Mechanisms

Extensive research efforts have been devoted to developing effective selection

mechanisms in the last two decades. Most selection mechanisms transform the

rewards assigned to candidate configurations into a probability distribution consists

of probabilities indicating the likelihoods for selecting the candidate configurations

along the search process. Many different approaches are proposed for learning the

optimal probability values of applying a fixed set of algorithm configurations.

Most existing methods belong to the probability matching type [24, 45, 59, 116,

127]. The basic probability matching selection rule computes each configuration’s

selection probability as the proportion of the configuration’s reward to the total sum

of all rewards. The main drawback of probability matching is that this can lead to

the loss of some candidate configurations. If the selection probability of an algorithm

configuration would become too low at some point, it would never be used again

and its reward can no longer be updated. This is an unwanted property since the

operator might become valuable again in a future stage of the search process [114].

To ensure no candidate configuration gets lost, a minimum selection probability can

be enforced. In practice, all mildly relevant operators keep being selected, hindering

the probability matching performance [35]. To address this issue, the adaptive

pursuit method [114, 115] has been proposed, in which the selection probability is

updated in such a way that the algorithm pursues the configuration that currently

has the maximal reward. To achieve this, the pursuit method increases the selection
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probability of the configuration with the maximal reward and decreases selection

probabilities of all other configurations.

Alternatively, there has been a class of methods based on the Multi-armed Bandit

Paradigm [6, 27], which formulates the configuration selection as a Exploration

vs. Exploitation (EvE) dilemma, where Exploitation aims at selecting the best

rewarded configuration in the last stages of search whereas Exploration is concerned

with checking whether other configurations might in fact become the best ones at

some later stages. The EvE dilemma has been intensively studied in Game Theory,

more specifically in the so-called Multi-Armed Bandit (MAB) framework [6]. The

MAB framework considers a set of K independent arms, each one of which having

some unknown probability of getting a (boolean) reward. The optimal selection

strategy is one maximizing the cumulative reward along time. A vital limitation

of the standard MAB framework lies in that it only considers a static environment

(the unknown reward probability of any arm being fixed along time), whereas the

adaptive algorithm is intrinsically dynamic (the quality of any configuration is bound

to vary along evolution). Even though every configuration keeps being selected and

it can ultimately be realised that some new configuration has become the best one,

in practice this would need to wait way too long before the new best configuration

can be discovered.

2.5 Summary

In summary, fitness landscape analysis, a powerful analytical tool in understand-

ing the problem difficulty in relation to algorithms, shows great promise in overcom-

ing a long standing challenge in the field of metaheuristics, i.e., finding the best

suited configuration of a given algorithm for solving a particular problem instance,

also referred to as the algorithm configuration problem.

Two main classes of approaches for fitness landscape analysis, as well as a promis-
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ing but less general approach, have been reviewed. The qualitative approaches

attempted to characterise the problem difficulty by means of describing which char-

acteristics make the fitness landscape hard to optimise and which do not. However,

many counter-examples have been identified to show that these characteristics are

neither sufficient nor necessary for a difficult problem with respect to algorithms

[63, 64, 91, 122]. Instead, the quantitative approaches proposed to condense the criti-

cal information on fitness landscapes to a single algebraic measure to explicitly quan-

tify the problem difficulty in relation to algorithms. Further to the many counter-

examples identified for previous problem difficulty measures [3, 67, 100, 102, 105],

theoretically it has been concluded that a useful predictive problem difficulty mea-

sure can never be found [54]. As for the elementary landscape, where the objective

function is an eigenfunction of the Laplacian of the graph induced by the neighbour-

hood operator, it is noted that only a small number of combinatorial optimisation

problems have search spaces that correspond to elementary landscapes [22]. As a

result, the applicability of this approach is significantly limited. In sum, despite

extensive research on fitness landscape analysis and a large number of developed

approaches, very few approaches are used in practice. This is due to the fact that

most existing approaches are either proved to be unreliable or unable to be used in

practice due to their own limitations (e.g. require known global optima).

The algorithm configuration problem has been studied extensively, under two

distinct formulations. The static algorithm configuration problem is of determining

a priori the optimal configuration of the algorithm for solving a particular problem,

before applying the algorithm. In contrast, the dynamic algorithm configuration

problem is of determining an optimal time-varying schedule for applying different

algorithm configurations during the search process.

This chapter identified the fundamental link between fitness landscape analysis

and algorithm configuration, in the sense that in-depth understanding of problems
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in relation to algorithms gained through fitness landscape analysis should naturally

be of help in determining the optimal configuration of a given algorithm for solving

a particular problem. Although fitness landscape analysis shows great promise in

addressing the algorithm configuration problem, in order to effectively incorporate

fitness landscape analysis to build enhanced techniques for algorithm configurations,

three important research issues need to be fully addressed:

• In fitness landscape analysis, there is a lack of a reliable and effective approach

which can potentially be incorporated to build enhanced methods to directly

address the algorithm configuration problem.

• In static algorithm configuration, most existing approaches either produce a

one-size-fits-all configuration of an algorithm for an entire set of instances [66]

or perform per-instance configuration for a particular problem by making use

of problem-specific features. There is a lack of a generic (problem-independent)

approach to automatically find the optimal configuration for a given algorithm

on a per-instance basis.

• In dynamic algorithm configuration, the optimal configuration of a heuristic

algorithm is determined based on utilisation of historical information only

under the assumption that a configuration performed well in the past is bound

to perform well in the future. There is a lack of a predictive method which

can determine the optimal configuration dynamically based on the expected

performance of candidate configurations instead of past performance only.

This thesis aims to contribute towards addressing these three research issues.

First, to develop a novel, effective approach for characterising fitness landscapes

and measuring problem difficulty with respect to algorithms. Second, to incorporate

fitness landscape analysis in building a generic approach which can perform auto-

matic algorithm configuration on a per-instance base, and potentially to design novel
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algorithm configurations using the insight gained through fitness landscape analy-

sis. Third, to incorporate fitness landscape analysis to build a predictive method

which can determine the optimal configuration dynamically based on the expected

performance of candidate configurations instead of the past performance only.
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Chapter 3

FITNESS LANDSCAPE

ANALYSIS FOR MEASURING

PROBLEM DIFFICULTY WITH

RESPECT TO

METAHEURISTICS

3.1 Introduction

Despite many successes of metaheuristics in solving complex optimisation prob-

lems and a large number of developed techniques, relatively little attention has been

paid to study the implications behind the empirical studies of the proposed algo-

rithms. In fact, there is very limited understanding of which algorithms, or which

algorithm variants are best suited for solving which kinds of problems.

Given this lack of understanding of problem difficulty with respect to algorithms,

the answer to fundamental questions in the field of metaheuristics such as “how
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to determine if a problem is difficult or easy for a given search algorithm?”, was

sought after for over two decades, but no satisfactory answer has been found yet. In

particular, the notion of fitness landscapes, originally proposed in [134], underlies

a large body of work in problem difficulty studies with respect to metaheuristics.

Most existing approaches for fitness landscape analysis proceed along two main

routes. The qualitative approaches focus on describing which characteristics make

the fitness landscape hard to optimise and which do not. However, it is generally

impossible to plot fitness landscapes for most practical problems due to the huge

size of search space as well as the complex neighbourhood structure. Even assuming

a fitness landscape can be plotted, the mere observation of its shape still lacks

formality [51]. Moreover, many counter-examples have been identified to show that

these characteristics are neither sufficient nor necessary for a problem to be difficult

[63, 64, 91, 122, 132]. Instead, the quantitative approaches propose to condense the

critical information on fitness landscapes to a single algebraic measure to explicitly

quantify the problem difficulty with respect to algorithms. However, the previous

measures haven been shown to be unreliable both theoretically [67] and empirically

[3, 72, 100, 102, 105]. More importantly, He et al. [54] have rigorously proved for

both exact and approximate realisations, a reliable problem difficulty measure that

can be computed in polynomial-time does not exist unless P = NP or BPP = NP.

The emphasis is then not on finding a useful measure in general, but rather on

developing a measure that can be used for a broad class of problems.

It is noted that the problem difficulty in relation to algorithms have been exten-

sively studied in time complexity theory of metaheuristics and there exists a large

number of results on convergence [46], runtime analysis [68], etc. Although theoret-

ical analysis can provide useful information to better understand problem difficulty

in relation to algorithms, the results from theoretical analysis are often under several

assumptions that can hardly be satisfied in practical scenarios. Effective approaches
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are therefore required on how to make use of the theoretical results in practice.

This chapter proposes for the first time to bridge the gap between time com-

plexity studies of metaheuristics and fitness landscape analysis. The concept of the

escape probability is formally defined and a theoretical analysis is performed to in-

vestigate the relationship between the escape probability and the expected runtime,

which is usually taken as a measure of problem difficulty in time complexity studies

of metaheuristics [93]. Two further developments are obtained based on the escape

probability. First, the fitness-probability cloud is defined to obtain an overall char-

acterisation of fitness landscapes. Second, a predictive problem difficulty measure,

the accumulated escape probability, is derived from the fitness-probability cloud to

explicitly quantify the problem difficulty with respect to algorithms.

The remainder of this chapter is organised as follows. Section 3.1 introduces

the motivation of proposing the escape probability and investigates the relationship

between the escape probability and the expected runtime. Section 3.2 defines the

fitness-probability cloud for characterising fitness landscapes, and the accumulated

escape probability (aep) to explicitly quantify the problem difficulty with respect

to algorithms. Section 3.3 presents a detailed experimental study of the aep on

measuring difficulties of four different problems with respect to the mutation-based

(µ + λ) EAs.

3.2 The Relationship Between the Escape Prob-

ability and the Expected Runtime

Metaheuristics usually do not have any explicit access to the function for which

an optimum is sought. The only way to obtain information on the unknown function

is by evaluating different search points and an evaluation of the fitness function is

the most costly part in optimisation. The runtime of a metaheuristic for optimising

50



a fitness function is defined as:

Definition 3 (Runtime) [54]

Let a metaheuristic A and a fitness function f : X → R be given, X is a set of

candidate solutions. The runtime TA(f) of A on f is defined as the smallest number

of function evaluations t such that f(xt) = max{f(x)}.

The runtime of a metaheuristic for optimising a fitness function in general is

a random variable. Its expectation E(TA(f)), the expected runtime of A on f , is

usually taken as a measure of difficulty of f for A [54]. In time complexity studies

of metaheuristics, rigorous runtime analysis for studying the expected runtime of

metaheuristics has emerged as a solid theoretical means to understand how meta-

heuristics work and get to know their capabilities and limitations. The results can

be used to judge the difficulty of problems with respect to different algorithms in

a rigorous way. Runtime analyses have been performed for many pseudo-Boolean

functions [125] as well as for many problems from combinatorial optimisation [92].

Markov chains are widely used mathematical models in runtime analysis of meta-

heuristics. The sequence of random variables {ξt; t = 0, 1, 2, · · · } can be modelled

by a Markov chain, since the offspring solution often depends only on the parent

solution [106]. For any states x, y in the search space, the transition probability

P (x, y; t) is given by:

P (x, y; t) := P (ξt+1 = y)|ξt = x) (3.1)

A metaheuristic with elitism strategy (the best fitness value in the population

never decreases) can be modelled as an absorbing Markov chain. Let {ξt; t =

0, 1, 2, · · · } be an associated Markov chain with a meta-heuristic, the transition

probabilities from the initial solution/state to the optimal solution/state can be
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used to estimate the expected runtime (the number of function evaluations to reach

the optimum).

The fitness-level method, also known as the method of f-based partitions [125], is

a direct approach used for proving upper bounds of expected runtime [111]. Assum-

ing maximisation, the fitness-level method for proving upper bounds is introduced

below.

Definition 4 (Fitness-level method for proving upper bounds) [112]

For two sets A,B ⊆ {0, 1}n and fitness function f let A < B if f(a) < f(b) for

all a ∈ A and all b ∈ B. Consider a partition of the search space into non-empty

sets A1, · · · , Am such that A1 < A2 < · · · < Am and Am only contains global optima.

For a metaheuristic A we say that A is in Ai or on level i if the best solution created

so far is in Ai. Consider A with elitism strategy and let si be a lower bound on

the probability of creating a new offspring in Ai+1 ∪ · · · ∪ Am, provided A is in Ai.

Then the expected optimization time of A on f (without the cost of initialization) is

bounded by

m−1∑
i=1

P (A starts in Ai)
m−1∑
j=i

1

si
≤

m−1∑
i=1

1

si
(3.2)

The canonical partition is the one in which Ai contains exactly all search points

with fitness i.

From the fitness-level method, it is noted that the probability of creating a new

offspring on higher levels {i + 1, . . . ,m}, provided A is on level i, is critical in

determining general upper bounds of the expected runtime.

Inspired by this, the probability of creating a new offspring on higher levels

{i+ 1, . . . ,m} provided A is on level i is formally defined as the escape probability.

And the relationship between the escape probability and the expected runtime is
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further investigated.

3.2.1 Preliminaries

The search process of a metaheuristic with elitism strategy has been modelled as a

time-homogeneous Markov chain, where the transition matrix P is time-independent

and the k − step transition matrix P k can be computed as the k − th power of the

transition matrix P . The notations used in the analysis are defined below.

• Runtime mi: Average time of a metaheuristic to reach the optimum of a fitness

function f when search starts from state i, i = 1, 2, . . . , n. Assuming n states

in the search space, each state contains a set of similar solutions. The canonical

partition is applied in which state i contains exactly all solutions with fitness

fi.

• Escape probability pei =
∑
pij

j:fj>fi

, i, j = 1, 2, . . . , n: pei represents the probability

of escaping from state i to another state of better fitness.

• Column sum in probability transition matrix P: cj =
∑n

i=1 pij, where i =

1, 2, . . . , n;

• Let P(k) = Pk, and c
(k)
j =

n∑
i=1

p
(k)
ij , where i, j = 1, 2, . . . , n, and k = 1, 2, 3, . . .

3.2.2 Investigating the Relationship Between the Escape

Probability and the Expected Runtime

This section presents the theoretical investigation on the relationship between

the escape probability pei and the expected runtime exp(mi) [81].
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Equation 3.3 below shows that mi can be expanded as state i and j are adjacent:

mi =
n∑
j=1

mjpij + 1, i = 1, 2, . . . , n (3.3)

Equation 3.3 can be rewritten as:

mi =
n∑
j=1

(mj + 1)pij (3.4)

The sum of mi:

∑
i

mi =
n∑
i=1

n∑
j=1

(mj + 1)pij

=
n∑
j=1

n∑
i=1

(mj + 1)pij

=
n∑
j=1

mj

n∑
i=1

pij +
n∑
j=1

n∑
i=1

pij

=
n∑
j=1

mjcj + n

(3.5)

In Equation 3.6 below, mi is computed as an expectation of the runtime for the

search to escape from state i to another state j at different times. t× (1−pei )t−1pei +∑
j 6=imjp

(t)
ij represents the runtime for the search to escape from state i to state j
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at time t. mi can be expanded as:

mi = 1× pei +
∑
j 6=i

mjp
(1)
ij

+ 2× (1− pei )1pei +
∑
j 6=i

mjp
(2)
ij

+ . . .

+ t× (1− pei )t−1pei +
∑
j 6=i

mjp
(t)
ij

+ . . .

(3.6)

Summing both sides of the Equation 3.6, the following is obtained:

n∑
i=1

mi =
n∑
i=1

1/pei +
∑
t>0

(
n∑
j=1

mj(c
(t)
j − p

(t)
jj ))

=
n∑
i=1

1/pei +
n∑
j=1

mj

∑
t>0

(c
(t)
j − p

(t)
jj )

(3.7)

Given that c
(t)
j − p

(t)
jj ≥ 0, the following can be obtained:

n∑
i=1

mi ≥
n∑
i=1

1/pei +
n∑
j=1

mj(cj − pjj)

≥
n∑
i=1

1/pei +
n∑
j=1

mjcj −
n∑
j=1

mjpjj

(3.8)

By solving the system of equations formed by equations 3.5 and 3.8:



n∑
i=1

mi ≥
n∑
i=1

1/pei +
n∑
j=1

mjcj −
n∑
j=1

mjpjj

n∑
i=1

mi =
n∑
j=1

mjcj + n

(3.9)
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The following can be obtained:

n∑
i=1

mipii ≥
n∑
i=1

1/pei − n (3.10)

n∑
i=1

mi ≥
n∑
i=1

mipii ≥
n∑
i=1

1/pei − n (3.11)

The relationship between the escape probability and the expected runtime is

given below:

exp(mi) ≥
∑n

i=1 1/pei
n

− 1 (3.12)

Equation 3.12 gives a general lower bound of the expected runtime exp(mi),

which is determined by the escape probability pei and a constant n.

3.3 Fitness-Probability Cloud for Characterising

Fitness Landscapes and Measuring Problem

Difficulty

Given that the escape probability can determine general lower bounds of the

expected runtime, the escape probability shows great promises to serve as a reli-

able indicator of the problem difficulty in relation to algorithms. To bridge the

gap between the theoretical results on the escape probability and empirical fitness

landscape analysis, two important developments are obtained. First, the fitness-

probability cloud [82] is defined to obtain an overall characterisation of fitness land-

scapes. Second, a predictive problem difficulty measure, the accumulated escape

probability [82], is derived from the fitness-probability cloud to explicitly quantify

the problem difficulty with respect to algorithms.
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3.3.1 Escape Probability

In theoretical analysis, the escape probability which represents the probability

for a metaheuristic A to reach higher fitness levels from a certain fitness level, can

be computed by assuming the transition matrix is known. However, this assumption

cannot be met in practical scenarios. The escape probability can be estimated in

a way that the information about the transition matrix is not required, i.e., the

escape probability at level i is taken as the average from the probability for A to

reach better solutions from each solution at level i.

Definition 5 (Escape Probability) [82]

For two sets A,B ⊆ {0, 1}n and fitness function f let A < B if f(a) < f(b) for

all a ∈ A and all b ∈ B. Consider a partition of the search space into non-empty

sets A1, · · · , Am such that A1 < A2 < · · · < Am and Am only contains global optima.

For a metaheuristic A we say that A is in Ai or on level i if the best solution created

so far is in Ai.

The escape probability for A to escape from level i to levels {i + 1, · · · ,m} is

defined as:

P e
i =

∑
s∈Ai

pes, (3.13)

where pes represents the escape probability of a solution s ∈ Ai to reach better

solutions by applying one step of A. Obviously, the higher the value of P e
i , the

easier to escape from level i for A.

3.3.2 Fitness-Probability Cloud

The escape probability lays the foundation to develop a novel approach for char-

acterising fitness landscapes and measuring problem difficulty based on it. Based

on the notion of escape probability, a natural way to study whether a problem is

57



difficult or easy for a given algorithm, is to plot the fitness values against the escape

probabilities, where the escape probability is obtained for each fitness level. This

plot is formally defined as the fitness-probability cloud.

Definition 6 (Fitness-Probability Cloud) [82]

Given the definition of P e
i as the escape probability from fitness level i to a better

fitness level, for fitness function f with m distinct fitness levels, the fitness-probability

cloud is defined as a set of points on a bi-dimensional plane:

fpc = {(f1, P e
1 ), (f2, P

e
2 ) . . . , (fm, P

e
m))} (3.14)

Fitness-probability cloud gives an overall characterisation of the underlying fit-

ness landscape, and thus indicating the problem difficulty with respect to the al-

gorithm applied to optimise it. In particular, the shape of the fitness-probability

cloud can give some hints on understanding behaviours of different algorithms. For

example, assuming maximisation, if the escape probability on a fitness-probability

cloud starts out very high but drastically decreases to a very low level as the fitness

value increases, we can hypothesize that the algorithm can efficiently find approx-

imation solutions, but is not very effective in locating the optimal solution of the

problem; in contrast, if the escape probability on a fitness-probability cloud starts

out at a relatively low level but increases as the fitness value increases, we can hy-

pothesize that the algorithm seems inefficient to find approximation solutions, but

shows promise in finding the optimal solution of the problem.

3.3.3 Measuring the Problem Difficulty: Accumulated Es-

cape Probability

The fitness-probability cloud provides an illustrative characterisation of the un-

derlying fitness landscape, which gives a straightforward indication of the problem
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difficulty with respect to the algorithm applied to optimise it. Also the fluctuations

of the escape probability over fitness can give some hints on better understanding

strengths and weaknesses of search algorithms. However, the mere observation of its

shape still lacks formality, also it is very difficult for practitioners to select the best

suited algorithm by means of comparing the fitness-probability clouds generated

from different algorithms.

Therefore, an algebraic measure needs to be derived which can capture the crit-

ical information on the fitness-probability cloud. The definition of such a measure

also opens up the possibility of incorporating it to build enhanced techniques for

finding the best suited algorithm for solving a particular problem. In fact many

forms of algebraic measure can be derived from the fitness-probability cloud. Here

a first attempt is made to define the accumulated escape probability to explicitly

measure the problem difficulty with respect to algorithms. The accumulated escape

probability is formally defined as:

Definition 7 (Accumulated Escape Probability) [82]

aep =
m∑
i=1

wiP
e
i , (3.15)

where (wi) is a set of weights which determine the contributions of the escape

probabilities from different fitness levels to the final aep measure. The aep measures

problem difficulty with respect to algorithms in the following way: the lower the value

of aep, the more difficult the problem is with respect to the algorithm.

The definition of aep is general and has many degrees of freedom as different

forms of (wi) can be considered. In its simplest form, if the escape probabilities from

different fitness levels are taken as equally important, the aep measure is defined as
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the average escape probability for all fitness levels:

aep =

∑m
i=1 P

e
i

m
(3.16)

3.3.4 Sampling Method

In this section, the sampling method to estimate escape probability and generate

the fitness-probability cloud is described. For an NP-hard optimisation problem, the

size of the search space is exponentially large which does not allow consideration of

all candidate solutions, the only feasible approach is to use samples. To estimate the

escape probability P e
i , a set of solutions with different fitness values is needed. Since

sampling is computationally expensive, a compact yet representative set of samples is

desired. It is noted that not all solutions in the search space are equally important,

for example, good-quality solutions play a more crucial role in determining the

overall difficulty of the problem, therefore it is preferred to sample the search space

according to a distribution that gives higher weights to good-quality solutions. This

can be achieved by any importance sampling method such as the Metropolis method

[83]. In this case, the Metropolis-Hastings sampling method is selected which is an

extension of Metropolis to non-symmetric stationary probability distributions [117].

Let f be the fitness function, the procedure to generate a set of samples

{s1, s2, · · · , sn} using the Metropolis-Hastings sampling method is described in Al-

gorithm 1.

To estimate the escape probability, for each sampled solution, a set of neighbour-

ing solutions are generated by applying one step of the search operator/heuristic.

The escape probability of a sampled solution is estimated as the proportion of neigh-

bouring solutions with better fitness values out of the sampled neighbourhood set.

And the escape probability P e
i is then estimated as the mean value of the escape

probabilities of sampled solutions with fitness value fi. Hereafter {f1, · · · , fm} is
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Algorithm 1: Metropolis-Hastings sampling method

begin

α(x, y) = min(1,
y

x
)

s1 is sampled uniformly at random;
i = 1;
while i < n do

1. a solution θ is sampled uniformly at random;
2. a random number u is generated from a uniform (0,1) distribution;
3. if u ≤ α(f(si), f(θ)) then

si+1 ← θ;
end
else

Go to 1;
end
i+ +;

end

end

referred to as a set of distinct fitness values in the sampled solutions obtained us-

ing the Metropolis-Hastings method, and for each fi, P
e
i is the estimated escape

probability computed from the sampled neighbourhood set.

3.4 Experimental Studies on Unination Functions

and Subset Sum Problem w.r.t. (µ + λ) EAs

In this section, a detailed experimental study is presented to evaluate the per-

formance of the proposed predictive problem difficulty aep. The effectiveness of aep

as a predictive difficulty measure is verified with experiments on predicting the per-

formance of mutation-based (µ + λ)EAs on the unitation functions and the subset

sum problem. First, the unination functions [88] and the subset sum problem are

introduced, where unitation functions are a set of benchmark functions extensively

studied in the literature, and the subset sum problem is a well studied NP-hard

problem. Second, the performance of aep is demonstrated by verifying the perfor-

mance predictions given by aep with the actual performance measured by a standard
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a posteriori performance measure. Furthermore, the performance predictions given

by a widely used predictive problem difficulty measure, the negative slope coefficient

(nsc), are obtained for comparison.

3.4.1 Test Problems

3.4.1.1 Unitation Functions

Three unitation functions: OneMax, Trap, OneMix [88] are used.

Definition 8 Let s be a bit string of length l, the unitation u(s) of s is a function

defined as: u(s) =
l∑

i=1

si.

OneMax functions are generalisations of the unitation u(s) of a bit string s:

f(s) = d · u(s), where d is 1.

Trap function[30] is defined as follows:

f(s) =


a
z
(z − u(s)), if u(s) ≤ z

b
l−z (u(s)− z), otherwise

(3.17)

where a represents a local optimum and b is a global optimum, z is a slope-change

location.

OneMix function is a mixture of OneMax function and ZeroMax function, which

is formally defined as:

f(s) =


(1 + a)( l

2
− u(s)) + l

2
, if g(s)

u(s), otherwise

(3.18)
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where a represents a constant above zero and g(s) is equal to 1 when u(s) is even

and u(s) < l
2
.

3.4.1.2 Subset Sum Problem

The Subset Sum problem is a constrained optimisation problem. Given a set of

n items each with an associated weight w, the problem is to select a subset out of

n items, where the weighted sum is maximised and does not exceed the budget W .

Mathematically this problem is formulated as follows:

Maximise
n∑
i=1

wixi,

Subject to
n∑
i=1

wixi ≤ W, xi ∈ {0, 1}, W =

∑n
i=1wi
2

3.4.2 Experimental Setup

For each of the four test problems: OneMax, Trap, OneMix and the Subset Sum

problem, four problem instances with varying problem size from 20 to 200 are used

throughout the experiments.

The target algorithm is the mutation-based (µ+λ) EAs (µ denotes the number of

parent solutions in the population, and λ denotes the number of offspring solutions

in the population). A population of µ parents generate λ offspring, then the best

µ solutions in µ parents and λ offspring are selected as the next generation. The

(µ + λ) EA uses only a mutation operator, no crossover is involved. The mutation

operator is the bitwise mutation with flip probability 1/n, n is the problem size.

Three different configurations of the target algorithm are considered.

Evaluating a predictive problem difficulty measure requires suitable metrics for

evaluating the performance of metaheuristics on problem instances. The perfor-

mance metrics are used to validate whether the performance predictions given by a
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predictive problem difficulty measure are correct or not. For any two problems, the

metrics should distinguish the relative difficulty of solving the problems by a given

algorithm. And equally, given two algorithms, the metrics should distinguish the

relative difficulty in the algorithms solving the same problem. A common way of

measuring the performance of metaheuristics is using the number of function eval-

uations required by an algorithm to find the solution for a problem instance. For

real-world problems where the optimal solutions are unknown, the number of func-

tion evaluations consumed by the algorithm upon satisfying the stopping criteria

is taken as the performance metric. To ensure fair comparisons between different

algorithms, a sufficient number of independent runs of each algorithm needs to be

performed and usually the average number of function evaluations is taken as the

metric for comparison.

In our experiments, the performance of the mutation-based (µ + λ)EAs are

measured by the number of function evaluations taken upon reaching the stopping

criteria, i.e., there is no improvement in terms of the best solution found in 500

function evaluations. This is determined by preliminary experiments which showed

that the algorithm converged with no progress in 500 function evaluations. To obtain

the performance metrics for the mutation-based (µ + λ) EAs on four test problems

with problem size 20, 40, 80 and 200. For each problem instance, 100 independent

executions are performed and the mean number of function evaluations is taken as

the performance metric for comparison.

3.4.3 Experimental Results

First of all, the fitness-probability clouds for the test algorithm and test prob-

lem instances have been generated. To be more specific, for each fitness-probability

cloud, 1000 samples were obtained from the search space using the Metropolis-

Hastings sampling method. For each sampled solution, by applying one step of the
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bitwise mutation operator with flip probability 1/n, 10000 solutions in the neigh-

bourhood are sampled for estimating its escape probability. The fitness-probability

clouds generated for four test problems of problem sizes 20, 40, 80 and 200 w.r.t. (µ

+ λ) EAs with the bitwise mutation operator (flip probability 1/n) are illustrated

in Figure 3.1.
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(b) Problem Size = 40
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(c) Problem Size = 80
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(d) Problem Size = 200

Figure 3.1: Plot of Fitness-Probability Clouds for Four Test Problems with Problem
Size 20, 40, 80 and 200 [82].

Based on the generated fitness-probability clouds, the corresponding values of the

accumulated escape probability (aep) can be derived. For the sake of comparison,
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Table 3.1: Actual Performance Measured by the Number of Function Evaluations
vs. aep Predictions vs. nsc Predictions of Three Different (µ+λ) EAs on Four Test
Problems with Size 20, 40, 80 and 200 [82].

Problem Problem Size (1+1) EA (3+7) EA (7+3) EA aep nsc

OneMax 20 641 1166 1110 0.135 0

Trap 20 627 1158 1105 0.135 0

OneMix 20 745 1375 1330 0.09 -8.1932

Subset Sum 20 548 1009 928 0.22 -1.1572

OneMax 40 821 1434 1430 0.175 -0.333

Trap 40 829 1422 1438 0.182 0

OneMix 40 1028 1776 1728 0.105 -16.3114

Subset Sum 40 533 1009 928 0.239 -6.818

OneMax 80 1267 2002 2134 0.202 -0.5

Trap 80 1273 2004 2115 0.209 -0.25

OneMix 80 1609 2608 2678 0.121 -20.4879

Subset Sum 80 547 1015 936 0.246 -7.5286

OneMax 200 2640 3848 4221 0.225 -3

Trap 200 2590 3860 4242 0.222 0

OneMix 200 3070 4724 4952 0.121 -30.175

Subset Sum 200 534 1021 945 0.252 -8.6169

aep has been compared with the negative slope coefficient (nsc) [119], which has been

widely tested on a variety of Genetic Programming (GP) and Genetic Algorithm

(GA) problems showing considerable reliability in distinguishing easy from hard

problems. This is because aep and nsc are both predictive measures which do not

require any domain-specific knowledge, whilst other previous measures such as the

fitness-distance correlation and the epistasis variance require known global optima.

The nsc is defined based on the notion of fitness cloud [121], which is a set of

points C = {(f1, f
′
1), · · · , (fn, f

′
n)} on a bi-dimensional plane, where f is the fitness

function, fi denotes the fitness value of a solution and f
′
1 denotes the fitness value

of its neighbours. C can be partitioned into a number of discrete bins C1, · · · , Cm
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such that (fa, f
′
a) ∈ Cj and (fb, f

′

b) ∈ Ck with j < k implies fa < fb. For each of the

line segments defined between the centroids of adjacent bins, a slope Si is defined

as:

Si =
f

′
i+1 − f

′
i

fi+1 − fi
(3.19)

Finally the negative slope coefficient is defined as:

nsc =
m−1∑
i=1

min(0, Si) (3.20)

The hypothesis proposed in [119] is that nsc should classify the problem difficulty

in the following way: nsc = 0 indicates an easy problem and smaller values indicate

higher problem difficulty when nsc < 0.

The experimental results on the performance of the mutation based (µ + λ)

EAs on all instances of the four test problems measured by the number of function

evaluations, as well as the predictions of aep and nsc, are summarised in Table 3.1

[82].

The third to fifth columns in Table 3.1 presented the performance of the

mutation-based (µ+λ) EAs executed under three different configurations measured

by the number of function evaluations. Each of the results is the mean value over 100

independent executions. According to the performance metric, i.e. the number of

function evaluations, the relevant problem difficulty between four test problems (in

the same problem size) w.r.t. the mutation-based (µ+λ) EAs under three different

configurations are consistent. To be more specific, the order of problem difficulty

given by the performance metric was: Subset Sum < OneMax ≈ Trap < OneMix.

The sixth column in 3.1 showed the results of the aep measure. By definition

the smaller the value of aep, the more difficult the problem is for the algorithm.
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Applying this rule to judge the problem difficulty given by aep, one can observe

that aep consistently gave the relative problem difficulty of the same size across four

different problem sizes: Subset Sum < OneMax ≈ Trap < OneMix. The results

were illustrated in Figure 3.2(a). It is clear to see that the results given by aep were

in qualitative agreement with the results given by the performance metric.

In contrast to the correct predictions made by the aep measure, as can be seen

from Table 3.1, the negative slope coefficient (nsc) gave an order of problem diffi-

culty: OneMax ≈ Trap < Subset Sum < OneMix, as illustrated in Figure 3.2(b).

This result failed to correspond to the order of problem difficulty given by the perfor-

mance metric. As a consequence, the nsc measure seemed to be unable to correctly

distinguish the relative problem difficulty between OneMax, Trap, OneMix and Sub-

set Sum w.r.t. the mutation-based (µ+λ) EAs.

Since the aep measure was able to broadly discriminate easy and hard problems

with reference to mutation-based (µ+λ) EAs, a further question is whether the aep

measure was able to quantify the difference between various problems in terms of

the problem difficulty w.r.t. the algorithm. In this case, if the problem instances of

size 20 and (1+1) EA are taken as an example, the subset sum problem seemed to

be the easiest, on one hand, in terms of the performance metric for (1+1)EA, the

onemax and trap functions were approximately 17% harder than the subset sum,

and the onemix function was about 36% harder. On the other hand, in terms of

the aep values, the onemax and trap functions were approximately 38% harder than

the subset sum and the onemix function was about 59% harder. Therefore, the

problem difficulty between the onemix and the subset sum were twice as much as

the that between onemax/trap and the subset sum, which was roughly the case as

indicated by the aep measure. Consequently, the aep measure was able to quantify

the relative difference in problem difficulty, however, it was unable to quantify the

absolute difference in problem difficulty.
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3.5 Summary

In summary, this chapter has for the first time bridged the gap between time

complexity studies of metaheuristics and fitness landscape analysis. In particular,

the notion of escape probability originated from runtime analysis has been formally

defined and a theoretical analysis to investigate the relationship between the escape

probability and the expected runtime has been conducted. Based on the escape

probability, two important developments have been obtained. First, the fitness-

probability cloud has been defined to obtain an overall characterisation of fitness

landscapes. Second, a predictive problem difficulty measure, the accumulated escape

probability (aep), has been derived from the fitness-probability cloud to explicitly

quantify the problem difficulty with respect to algorithms.

aep is a predictive problem difficulty measure which does not require any domain-

specific knowledge. It is hypothesized that aep should measure the problem difficulty

with respect to a given algorithm in the following way: the smaller the aep value,

the more difficult the problem is with respect to the algorithm. The effectiveness of

the aep has been verified with experiments on measuring difficulties of four different

problems including the subset sum problem and the unitation functions such as one-

max, onemix and trap with respect to the mutation-based (µ+λ) EAs. The experi-

mental results showed that aep can serve as a reliable predictive problem difficulty

measure for discriminating the relative problem difficulty w.r.t. the mutation-based

(µ+λ) EAs. For comparison purpose, the negative slope coefficient (nsc), a widely

applied problem difficulty measure in GP and GA, has been applied to predict perfor-

mance of the mutation-based (µ+λ) EAs on four test problems. This is due to that

aep and nsc are both predictive measures which do not require any domain-specific

knowledge, whilst other previous measures such as the fitness-distance correlation

and the epistasis variance require known global optima. The results showed that

nsc failed to correctly discriminate the relative problem difficulty of the subset sum
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problem, onemax, onemix and trap w.r.t. the mutation-based (µ+λ) EAs.

The proposed fitness-probability cloud and aep measure showed great promise

in effectively characterising fitness landscapes and reliably measuring problem diffi-

culty. Since the fitness-probability cloud and aep are generic approaches which do

not require any domain-specific knowledge, also the definition of aep is general and

has many degrees of freedom, the fitness-probability cloud and aep can serve as an

effective and reliable approach for fitness landscape analysis, and can potentially be

incorporated to build enhanced techniques for finding the best suited algorithm for

solving a particular problem.
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Chapter 4

INCORPORATING FITNESS

LANDSCAPE ANALYSIS FOR

STATIC ALGORITHM

CONFIGURATION

4.1 Introduction

Metaheuristics are general algorithmic frameworks, even a metaheuristic algo-

rithm can have many variants if different algorithm configurations are used. It is

widely acknowledged that finding good algorithm configurations is essential to ob-

tain robust and high algorithm performance. For example, a simulated annealing

algorithm can perform extremely differently with different values of the temperature

parameter even on the same problem instance. Furthermore, it has been observed

that an algorithm requires different configurations in order to find good solutions

for different problem instances [41, 94, 137].

As of yet, finding the best algorithm configuration for solving a particular prob-
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lem instance remains one of the persisting challenges in the field of metaheuristics.

This is due to the fact that there is in fact very limited understanding of which

algorithms, or which algorithm variants are best suited for solving which kinds of

problem instances. Previous work has revealed that a large fraction of time in algo-

rithm development has been spent on configuring the algorithm [1, 11], since in many

cases the algorithm is configured manually by trial and error, and the configuration

space is essentially very large even for a handful of parameters [79]. Clearly it is

not only inefficient and laborious, but very unlikely to locate the optimal algorithm

configuration, if the algorithm were to be configured manually.

Recent years have seen many approaches proposed to automatically determine

a priori the best suited configuration of a given algorithm for solving a particular

problem instance. In general, most existing approaches proceed along two main

modes:

• Generic, one-size-fits-all Configuration Methods Generic (problem-

independent) methods which produce a one-size-fits-all configuration of a given

algorithm for an entire set of problem instances.

• Problem-dependent, per-instance Configuration Methods Problem-

dependent methods which perform algorithm configuration on a per-instance

base. Each method only applies to one particular optimisation problem by

making use of problem-specific features.

To the best of our knowledge, there exist very few generic (problem-independent)

techniques for automatically configuring a given algorithm on a per-instance basis,

that is, taking into account the characteristics of the problem instances to solve

and past performance on similar instances. This chapter addresses this need via

incorporating a problem difficulty measure, the accumulated escape probability, to

build a generic approach which performs automatic algorithm configuration on a
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per-instance base. The proposed approach is based on learning the pattern which

governs the relationship between the configurations of a given algorithm and the

characteristics of problem instances, where the accumulated escape probability is

employed as a feature to characterise problem instances. Further to determining

the best suited configuration within a finite set of candidate configurations, it is

always useful to produce a novel, problem-specific configuration (e.g. a new search

operator/heuristic) that potentially outperforms other configurations on a particu-

lar class of problem instances. This chapter establishes a bridge connecting results

of theoretical fitness landscape analysis and the design of novel, effective heuris-

tics, through proposing an approach to perform elementary landscape analysis and

further to explicitly apply the analytical results to build novel and effective local

search heuristics. This chapter proceeds as follows. Section 4.1 first reformulates the

static algorithm configuration problem as a decision problem to be studied, followed

by the descriptions of the proposed automatic, per-instance algorithm configura-

tion method developed with learning the pattern between the configurations of a

given algorithm and the problem instances represented by the accumulated escape

probability. The utility of the proposed approach is illustrated by automatically

configuring the (µ + λ) EAs for solving the unique input output sequence problem

(UIO) in software testing [74]. Section 4.2 presents the theoretical results arising

from studies of elementary landscape, and proposes the approach to perform ele-

mentary landscape analysis and further to explicitly apply the analytical results for

developing enhanced search heuristics. The proposed approach is applied to develop

a novel and effective stochastic hill climbing algorithm for solving the next release

problem (NRP) [8]. Section 4.3 summarises this chapter with a discussion.
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4.2 Incorporating Problem Difficulty Measure to

Build Automatic Algorithm Configuration

Methods

4.2.1 Motivation

Given an algorithm to solve a combinatorial optimisation problem, finding good

configurations of the algorithm is essential to obtain robust and high algorithm per-

formance. Manual methods are not only inefficient and laborious, but very unlikely

to find the optimal algorithm configuration. This motivates the development of

automatic algorithm configuration methods. Several generic approaches have been

proposed which returns a one-size-fits-all configuration for an entire set of instances.

However, different instances may require the algorithm to use very different config-

urations in order to find good solutions. In contrast, the approaches which perform

automatic algorithm configuration on a per-instance basis only apply to particular

problems by making use of problem-specific features.

An interesting research question is whether there are patterns or rules governing

the choice of algorithm configurations, and whether such patterns can be learnt.

This chapter proposes a generic (problem-independent) approach to perform auto-

matic algorithm configuration on a per-instance base. The proposed approach em-

ploys classification algorithms to learn the pattern which governs the relationship

between the configurations of a given algorithm and the characteristics of prob-

lem instances, where the accumulated escape probability is used to characterise the

problem instances.
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4.2.2 Reformulating Static Algorithm Configuration As a

Decision Problem

The static algorithm configuration problem is commonly formulated as an opti-

misation problem, where the overall goal of the problem is to find a configuration

θ such that the cost function c(θ) is optimised. However, unlike standard optimisa-

tion problems, this problem cannot be optimised directly since the cost function c(θ)

cannot be written analytically and is typically highly non-linear and very expensive

to compute. Therefore, it is unlikely to explore the entire configuration space for

finding the optimal configuration within reasonable time.

Due to the fact that the static algorithm configuration problem is intractable

to be solved to optimality, a more practical scenario to consider is how to find

approximation solutions to this problem efficiently. This subsection reformulates

the static algorithm configuration problem as a decision problem, which determines

whether a given algorithm configuration θ is suitable for solving a particular problem

instance.

To avoid potential confusions between the algorithm to be configured and the

algorithm developed to undertake the configuration task, the former is referred to

as the target algorithm and the latter as algorithm configuration method [66]. Let

A denote the target algorithm with a set of parameters P which can be numerical,

ordinal (large, medium, small) or categorical (choice of search operator/heuristic).

The configuration space Θ consists of the domain of values for each parameter p ∈ P .

Let the vector θ = {p1 · · · pk} denote a configuration of A. H is a function to measure

the performance of the target algorithm executed under a given configuration θ for

solving a problem instance. The evaluation function H can be in many different

forms, for example, we might be interested in minimising the runtime of the target

algorithm for finding a solution or maximising the quality of the solution found

within fixed time. The overall goal of an algorithm configuration method is to find
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a configuration θ for each problem instance I ∈ D, where the performance of the

target algorithm A over D is optimised.

The static algorithm configuration problem considered in this thesis is formulated

as a decision problem:

Definition 9 (Static Algorithm Configuration As a Decision Problem).

An instance of the algorithm configuration problem is a tuple 〈A, P,Θ,D,H,m〉,

where:

• A: A parameterised algorithm;

• P : Parameters of A;

• Θ: Configuration space of P ;

• I: A problem instance;

• H: A function that measures the performance of running A(θ), θ ∈ Θ with

random seed rs on I;

• RS: A set of random seeds;

• T: A threshold which determines if the performance of a configuration θ in

terms of H is satisfactory.

• m is a statistical parameter. (Examples are expectation, mean, and variance.)

The cost function for any candidate solution θ is:

c(θ) = mrs∈RS[H(A, θ, I, rs)] (4.1)

Assuming minimising H, for a configuration θ and a problem instance I, the

static algorithm configuration problem is to determine whether the performance of θ

given by c(θ) = mrs∈RS[H(A, θ, I, rs)] is satisfactory or not, i.e., whether c(θ) < T.
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4.2.3 Problem Difficulty Measures

This section introduces the problem difficulty measure, the accumulated escape

probability, to be incorporated in building a generic approach that can perform

automatic algorithm configuration on a per-instance base, and summarises the defi-

nitions of fitness-probability cloud, accumulated escape probability and the sampling

method to estimate them in practice.

The accumulated escape probability (aep) [82] is defined based on the fitness-

probability cloud [82]. The fitness-probability cloud (fpc) is a metaphor to obtain

an overall characterisation of fitness landscapes which can give an indication of the

problem difficulty with respect to the algorithm applied to optimise it. For a thor-

ough characterisation of a problem instance, multiple fitness-probability clouds are

required. This is because a problem instance can have a number of different fitness

landscapes under different neighbourhood operators, and a fitness-probability cloud

can only provide a partial characterisation of a problem instance, as the instance

can exhibit different characteristics on the fitness-probability cloud when different

neighbourhood operators are applied.

For the sake of extracting features from a problem instance, a set of fitness-

probability clouds are required to be generated using different neighbourhood oper-

ators, where a set of aep measures computed based on the fitness-probability clouds

generated are taken as the features to characterise the problem instance. It is hy-

pothesized that there is a tight correlation between fitness-probability cloud and

characteristics of problem instances, and a tight correlation between characteristics

of problem instances and algorithm performance, therefore similar problem instances

under the representation of aep measures should require similar configurations of a

given algorithm to obtain robust and high algorithm performance.
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4.2.3.1 Fitness-Probability Cloud and Accumulated Escape Probability

Escape Probability P e
i , as defined in Definition 5, represents the probability for

a metaheuristic A to reach higher fitness levels from a certain fitness level. Based

on the notion of escape probability, a natural way to study whether a problem is

difficult or easy for a given algorithm, is to plot the fitness values against the escape

probabilities, where the escape probability is obtained for each fitness level. Let

f be a fitness function with m distinct fitness levels, the fitness-probability cloud

(fpc), as in Definition 6, is a set of points on a bi-dimensional plane:

fpc = {(f1, P e
1 ), (f2, P

e
2 ) . . . , (fm, P

e
m))} (4.2)

Although a fitness-probability cloud can obtain an overall characterisation of

fitness landscapes, the proposed automatic algorithm configuration method requires

quantitative measures that can be used as features to characterise problem instances.

A problem difficulty measure, the accumulated escape probability (aep), is proposed

which contains critical information on the fitness-probability cloud. The original

definition of aep in Definition 7 is general and has many degrees of freedom, in this

case, a simple form of aep is used which regards escape probability at each fitness

level equally.

aep =

∑m
i=1 P

e
i

m
(4.3)

For computing the fitness-probability cloud and the accumulated escape proba-

bility in practice, statistical approaches such as sampling have to be employed due

to the huge size of search space. In this case, the Metropolis-Hastings sampling

method is used which is described in Section 3.3.
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4.2.4 Proposed Automatic Algorithm Configuration

Method

In this section, the proposed approach for automatically configuring a given

algorithm on a per-instance base is introduced as illustrated in Figure 4.1. The

major components of the proposed approach: feature extraction, the classification

algorithm and the procedures for training and testing are described.

Figure 4.1: The Proposed Automatic Algorithm Configuration Method on a Per-
instance Base.

4.2.4.1 Feature Extraction and Classification Algorithm

In the proposed automatic algorithm configuration method, the problem in-

stances are represented as a set of aep measures computed based on a set of fitness-

probability clouds generated using different neighbourhood operators. The overall

goal is to train a classifier to learn the pattern which governs the choice of algorithm

configurations, and thus identifying whether a configuration of the target algorithm
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is suitable for solving a problem instance. Since the learning is supervised, i.e., learn-

ing where a training set of correctly-identified observations is available. In this case,

a training sample D consists of an instance’s features and a configuration will be

labelled as L ∈ {1,−1}, indicating whether the configuration is suitable for solving

the instance or not.

A training sample consists of a problem instance’s features and a configuration

of the target algorithm, which is denoted as D = (PF, θ), where PF in D denotes

the features of a problem instance and θ denotes a configuration of the target algo-

rithm. In the proposed approach, problem instances are represented by a set of aep

measures computed based on the fitness-probability clouds generated using different

neighbourhood operators.

To determine the label for a training sample, for the target algorithm in a given

configuration θ, a number of independent runs on the problem instance need to

be performed where a statistical measure (e.g. mean number of the function eval-

uations) is taken to determine the algorithm performance. According to a pre-

defined threshold on the algorithm performance, the label L is then determined as

L ∈ {1,−1}, where 1 represents the configuration of the target algorithm is suitable

for the problem instance, and -1 not.

The choice of the classification algorithm is essential to the performance of the

proposed automatic algorithm configuration method. Typically the classification

algorithm is selected based on the characteristics of the training data. In this case,

the size of training samples is relatively small especially at the beginning since

repeated executions of the target algorithm in different configurations are needed for

each problem instance to generate training samples which is quite time-consuming.

Also the training data is expected to be imbalanced since the training samples with

the label L = 1 can be much less than those with the label L = −1.

In light of these characteristics of the training data, support vector machine
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(SVM) [25] is selected as the classification algorithm. SVM has strong theoretical

foundations and excellent empirical successes, which is developed on the basis of

statistical learning theory and structural risk minimization and can handle small

samples, nonlinear, high dimensionality, over learning and local minimum. Support

vector machines have been considerably developed in pattern recognition, regression

analysis, function estimator and time series prediction [33].

In the binary classification setting, SVM is a non-probabilistic binary linear

classifier which takes a set of input data and predicts, for each given input, which

of two possible classes forms the output. Given a set of training data {x1, · · · , xn}

that are vectors in some space, and their labels {y1, · · · , yn} where yi ∈ {−1, 1},

an SVM classification algorithm builds a model that assigns new examples into one

category or the other. An SVM model is a representation of the examples as points

in space, mapped so that the training data are separated by a maximal margin.

New examples are then mapped into that same space and predicted to belong to a

category according to which side they fall on.

4.2.4.2 Training and Testing Phases

The overall steps in training and testing phases are summarised in Algorithm 2.

In the training phase, the features of a problem instance, i.e., a set of aep measures

are first obtained. The label attached to a training sample is determined by execut-

ing the target algorithm under a given configuration on a given problem instance.

This procedure is repeated until the entire training data set is built. Then a classifier

is obtained by running the classification algorithm on the training data, which can

be used to determine whether a configuration of the target algorithm is suitable for

solving a given problem instance. In the testing phase, the classifier takes input a

configuration of the target algorithm and features of a given problem instance, i.e.,

a set of aep measures, and predicts whether the configuration is suitable for solving
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Algorithm 2: Procedures for Training and Testing

Training Phase
Inputs:
A: the target algorithm;
I : a set of training instances;
Θt: a set of configurations;
Outputs:
C: A classifier to determine if a given algorithm configuration is suitable for
solving a problem instance;
Procedure:
begin

Let PF = Features of an instance in I;
Let L = {−1, 1}
Let F = a function to evaluate performance of the target algorithm
executed under a configuration on an instance;
for inst ∈ I do

for θ ∈ Θt do
F = Execute target algorithm A under configuration θ on instance
inst;
L = Attach the label to (PF, θ) according to F ;
training sample(i) = (PF, θ, L)
i+ +;

end

end
C = Run classification algorithm on the training sample ;
Output C;

end

Testing Phase
Inputs:
C: the classifier;
inst: an arbitrary instance;
θ: a configuration in Θ;
Outputs:
L: Performance prediction of the configuration θ on inst;
Procedure:
begin

Let PF = Features of inst;
L = Feed (PF , θ) to the classifier C;
Output L;

end

83



the problem instance or not.

4.2.5 Automatically Configuring (µ+ λ) Evolutionary Algo-

rithms for Solving the Unique Input Output Sequence

Problem

The utility of the proposed automatic algorithm configuration method is illus-

trated by configuring the (µ + λ) evolutionary algorithms (EAs) for solving the

unique input output sequence problem. First, the unique input output sequence

problem is introduced. Second, the target algorithm (µ + λ) EA is described with

the domains of possible values for its parameters. Third, the performance metrics to

evaluate the performance of the target algorithm and the proposed automatic algo-

rithm configuration method are defined, followed by the descriptions of the training

data set.

4.2.5.1 Unique Input Output Sequence Problem

Finite state machines (FSMs) have been widely used to model software, commu-

nication protocols and circuits [74]. In FSM–based testing, a standard test strategy

consists of two parts, namely, transition test and tail state verification. The former

part aims to determine whether a transition of an implementation under test (IUT)

produces the expected output while the latter checks that the IUT arrives at the

specified state when a transition test is finished. Nearly all FSMs have Unique In-

put/Output Sequences (UIOs) for each state [2], and UIOs are the most widely used

technique to generate robust and compact test sequences in finite state machine

(FSM) based testing.

Computing UIOs is an NP-hard problem [74]. Lee and Yannakakis [74] note

that adaptive distinguishing sequences and UIOs may be produced by constructing

a state splitting tree. However, no rule is explicitly defined to guide the construction
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of an input sequence. Metaheuristics have proven efficient and effective in providing

good solutions to some NP-hard problems in software engineering. Similarly to

other problems in search-based software engineering [53], the UIO problem has been

reformulated as an optimisation problem, and several evolutionary algorithms (EAs)

such as genetic algorithm and simulated annealing [32, 50] were develop to tackle it.

The experimental results show that EAs can efficiently find UIOs for some FSMs.

Theoretical investigations have confirmed that EAs can outperform random

search on the UIO problem [75]. The expected running time of (1+1) EA on a

counting FSM instance class is polynomial, while random search needs exponential

time [75]. The UIO problem is NP-hard, so one can expect that there exist EA-hard

instance classes. Theoretical results show that the EA configurations (operators and

parameters) have an essential impact on finding the UIOs for an FSM efficiently [76].

The remainder of this section introduces definitions and notations of the UIO

problem.

Definition 10 (Finite State Machine).

A finite state machine(FSM) is a quintuple: M = (S,X,Y, δ, λ), where X,Y

and S are finite and nonempty sets of input symbols, output symbols, and states,

respectively; δ : S×X −→ S is the state transition function; and λ : S×X −→ Y

is the output function.

Definition 11 (Unique Input Output Sequence).

A unique input output sequence for a state si in an FSM is an input/output

sequence x/y, where x ∈ X∗, y ∈ Y∗,∀sj 6= si, λ(si, x) 6= λ(sj, x) and λ(si, x) = y.

Section 2 in [50] gives an example of the unique input output sequence problem.

To generate UIO using an EA, candidate solutions are represented by input

strings restricted to Xn = {0, 1}n, where n is the number of states of the FSM.

In general, the length of the shortest UIO is unknown, assume the objective is to
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search for a UIO of input string length n for state s1 in all FSM instances. The

fitness function is defined as a function of the state partition tree induced by the

input sequence [50, 75, 76].

Definition 12 (UIO fitness function).

For a FSM M with m states, the fitness function f : Xn −→ N is defined as

f(x) := m− γM(s, x), where s is the initial state, and γM(s, x) := |{t ∈ S|λ(s, x) =

λ(t, x)}|.

The instance size of the UIO problem is defined as the length of the input se-

quence n. The value of γM(s, x) is the number of states in the leaf node of the state

partition tree containing node s, and is in the interval from 1 to m. If the shortest

UIO for state s in FSM M has length no more than n, then f(x) has an optimum

of m− 1.

4.2.5.2 Target Algorithm

The (µ+λ) EAs described in Algorithm 3 is employed to tackle the UIO problem.

The (µ + λ) EAs has three parameters: population size, variation operator, and

selection operator, the domains of possible values for the three parameters are listed

below:

• Population size: 3 different (µ+λ) options are considered: {(4+4), (7+3), (3+

7)}.

• Variation operator Nj, (j = 1, 2, . . . , 12): Three variation operators with dif-

ferent probabilities are considered:

– N1(x) ∼ N5(x): Bit-wise mutation, flip each bit with probability p = c/n,

where c ∈ {0.5, 1, 2, n/2, n− 1};

– N6(x) ∼ N9(x): flip c-th bits, where c = {1, 2, n/2, n− 1};

86



– N10(x) ∼ N12(x): Non-uniform mutation[20], for each bit i, 1 ≤ i ≤ n,

flip it with probability χ(i) = c/(i+ 1), where c = {0.5, 1, 2}.

In total 12 variation operators are considered. These variation operators are

applied to generate 12 fitness-probability clouds and obtain a set of 12 aep

measures for each UIO instance.

• Selection operator Si, (i = 1, 2): Two selection operators are considered:

– Truncation Selection: Sort all µ+ λ individuals in P(k) and P
(k)
m by their

fitness values, then select µ best individuals as the next generation P(k+1).

– Roulette Wheel Selection: Retain all the best individuals in P(k) and P
(k)
m

directly, and the rest of the individuals of the population are selected by

roulette wheel.

Algorithm 3: (µ+ λ)- EA

Choose µ initial solutions P(0) = {x(0)1 , x
(0)
2 , . . . , x

(0)
µ } uniformly at random

from {0, 1}n
k ←− 0
while Termination criterion not satisfied do

P
(k)
m ←− Nj(P

(k)) %%mutation

P(k+1) ←− Si(P
(k),P

(k)
m ) %%selection

k ←− k + 1
end

4.2.5.3 Performance Metric

The performance metric H and the performance evaluation function F to eval-

uate the performance need to be clearly defined. The former is to evaluate the

performance of the algorithm configuration method over an entire set of testing

instances, the later is to evaluate the performance of the target algorithm when

executed under configuration θ on a problem instance inst.
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Definition 13 (Performance metric H and Performance evaluation function F )

Let inst be a UIO instance, given a cut-off time t, F is defined as the number

of function evaluations taken by the target algorithm executed under configuration θ

to find a unique input output sequence for inst. H is defined as the mean value of

F over an entire set of testing UIO instances. The lower the value of H , the better

the algorithm configuration method.

4.2.5.4 Training Data Generation

The SVM takes as input a set of training samples {D1, · · · , Dm}, and their labels

{L1, · · · , Lm} where Li ∈ {1,−1}.

A training sample Di = (PF, θ), where PF in D denotes a problem instance,

which is represented by a set of aep measures computed based on the fitness-

probability clouds generated using different neighbourhood operators. In this case, a

UIO instance is represented by a set of 12 aep measures {aep1, · · · , aep12} computed

based on the fitness-probability clouds generated using 12 different neighbourhood

operators. With respect to θ in D, θ represents a configuration of the target algo-

rithm (µ + λ) EA, where the candidate configurations of the (µ + λ) EA are listed

in the above section.

The label Li for a training sample Di is determined by the performance of the

target algorithm (µ + λ) EA executed under configuration θ on the UIO instance.

100 independent runs are performed and the performance is measured by the per-

formance metric F , which is the mean number of function evaluations taken by the

target algorithm to find a unique input output sequence for the UIO instance. The

performance metric F is then compared to a pre-defined threshold to determine the

label Li in the following way: if F < threshold, Li = 1, otherwise Li = −1.
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4.2.6 Experimental Studies

This section presents a detailed experimental study to evaluate the performance

of the proposed automatic algorithm configuration method on 24 UIO instances with

problem size n = 20 generated at random. First, the generalisation performance of

the proposed automatic algorithm configuration method is evaluated by predicting

whether a configuration of the (µ+λ) EA is suitable for solving a UIO instance. To

ensure unbiased evaluation, the 10× 10-fold cross validation [52] is used. Second, the

performance of the proposed automatic algorithm configuration method is evaluated

by comparing with ParamILS [66] which is a state-of-the-art automatic algorithm

configuration method.

4.2.6.1 Generalisation Performance

Performance Measure

To evaluate the generalisation performance of the proposed classification method

in predicting the performance of the target algorithm executed under configuration

θ for solving a UIO instance, the most common performance measure of overall per-

formance in binary classification is employed. The performance measure accuracy

is the proportion of true results (correctly predicted performance of algorithm con-

figurations on problem instances) among all predications.

accuracy =
TP + TN

TP + TN + FP + FN
, (4.4)

where TP, TN, FP and FN are the numbers of the true positive, the true nega-

tive, the false positive and the false negative, respectively.

10-fold cross-validation

Cross-validation is an estimator used to assess the performance of learning algo-

rithm (SVM) and can be used to estimate the accuracy of a classifier [4]. 10-fold
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cross-validation partitions the original sample into 10 equal size subsamples. Of the

10 subsamples, a single subsample is retained as for testing, and the remaining k-1

subsamples are used for training. The cross-validation process is repeated 10 times

(the folds). The classification accuracy of the classification algorithm is obtained by

averaging the results from the folds. The advantage of this method over repeated

random sub-sampling is that all observations are used for both training and valida-

tion, and each observation is used for validation exactly once.

Classification Accuracy

The measure-based classification is the most important part of the proposed

automatic algorithm configuration method. The performance of the classification

algorithm is illustrated by the experiments on predicting whether a configuration of

the (µ + λ) EAs is effective for solving a UIO instance or not. The effectiveness of

the configuration is determined by the performance measure of the target algorithm

and a pre-defined threshold. In this case, the performance of the target algorithm

is measured by the number of function evaluation taken to find a unique input

output sequence for a UIO instance, and the threshold v is determined by a function

v = pr · Ēi, where Ēi is the average from the performance F of each candidate

configuration on the UIO instance i, and pr is a coefficient to adjust the value of v.

The 10-fold cross-validation was used to ensure unbiased evaluation. The perfor-

mance of the measure-based classification was measured by the accuracy as defined

in Equation 4.4. The overall performance of the measure-based classification is sum-

marised in Table 4.1. The accuracy is an average from each of the 10-fold results.

The variation of accuracy as the value of pr changes is illustrated in Figure 4.2.

As indicated in Table 4.1, pr controls the threshold v which is used to determine

whether a configuration of (µ + λ) EA is deemed as suitable for solving a UIO in-

stance or not. The second column in Table 4.1 showed the number of samples with
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label = 1, i,e., the configuration deemed as effective for solving the UIO instance.

By varying the value of pr from 0.7 to 0.01, the accuracy of the measure-based clas-

sification varied in the range of 0.5 and 0.933 showing certain reliability. In partic-

ular, when pr was between 0.12 and 0.08, i.e., only configurations with performance

significantly better than average are considered as effective, the measure-based clas-

sification demonstrated high reliability with accuracy = 0.864 at minimum. This

result showed that the proposed measure-based classification approach can reliably

determine if a configuration of the (µ + λ) EA is suitable for solving a given UIO

instance, if a configuration is considered as effective when the (µ+ λ) EA executed

under the configuration shows high (significantly above average) performance.
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Figure 4.2: Plot of accuracy of the Classification Algorithm by Varying the Value
of pr from 0.01 to 0.7.

4.2.6.2 Comparison with ParamILS

ParamILS is a state-of-the-art method for automatic algorithm configuration

developed by Hutter et al. [66]. ParamILS has a large number of academic and

industrial applications, which has yielded substantial improvements of heuristic al-

91



Table 4.1: Performance of the Measure-based Classification. pr is the Coefficient
Used to Adjust the Threshold Which Determines Whether the Performance of the
Target Algorithm is Considered Effective or Not. The 2nd Column Shows the Num-
ber of Positive Samples in the Training Data Set. accuracy is the Proportion of
Accurate Predictions in Testing. The 3rd Column Gives the Mean and the Stan-
dard Deviation of accuracy from the 10-fold Results [78, 81].

pr no. of samples label = 1 accuracy

0.7 1180 0.600 ± 0.0382
0.6 1115 0.610 ± 0.0288
0.5 1007 0.709 ± 0.0369
0.45 955 0.690 ± 0.0456
0.4 874 0.689 ± 0.0562
0.35 806 0.685 ± 0.0427
0.3 716 0.726 ± 0.0657
0.25 604 0.689 ± 0.0308
0.2 489 0.653 ± 0.0557
0.18 441 0.656 ± 0.0595
0.16 391 0.709 ± 0.0398
0.15 377 0.694 ± 0.0553
0.14 343 0.698 ± 0.0466
0.135 328 0.632 ± 0.0367
0.13 326 0.687 ± 0.0443
0.125 306 0.875 ± 0.0518
0.12 299 0.764 ± 0.0382
0.115 286 0.903 ± 0.0551
0.11 267 0.933 ± 0.0459
0.1 237 0.925 ± 0.0533
0.09 200 0.861 ± 0.0298
0.08 177 0.864 ± 0.0358
0.05 71 0.782 ± 0.0477
0.01 50 0.620 ± 0.0288

gorithms for hard combinatorial problems, such as propositional satisfiability (SAT),

mixed integer programming (MIP), AI planning, answer set programming (ASP),

and timetabling.

ParamILS performs one-size-fits-all algorithm configuration which is for find-

ing an optimal configuration of the target algorithm for an entire set of instances.

ParamILS is a direct search method which searches the configuration space using

an iterative local search method (ILS). It uses a combination of default and random
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settings for initialisation, employs iterative first improvement as a subsidiary local

search procedure, uses a fixed number (s) of random moves for perturbation, and

always accepts better or equally-good configurations, but re-initialises the search

at random with a small probability. Furthermore, it is based on a one-exchange

neighbourhood, that is, it always considers changing only one parameter at a time.

ParamILS returns a one-size-fits-all configuration for an entire set of problem in-

stances.

We evaluated the performance of the proposed automatic algorithm configuration

method, the problem difficulty measure-based classification (PDMC), against the

ParamILS. ParamILS returned a one-size-fits-all configuration of the (µ + λ) EA

for the entire set of 24 UIO instances. In contrast, PDMC returned a configuration

of the (µ + λ) EA on a per-instance base. In particular, PDMC can indicate more

than one configuration as effective for solving a UIO instance. When this is the

case, PDMC returned one configuration selected uniformly at random from the set

of configurations indicated as effective. The performance of PDMC and ParamILS

were measured by the performance metric H described in Definition 13, i.e. the

average number of function evaluations taken by the (µ+λ) EAs to solve the entire

set of 24 UIO instances. The parameter pr was set at 0.1, i.e., a configuration

with the number of function evaluations taken by the (µ+ λ) EA for solving a UIO

instance i below 0.1 × Ēi was deemed as effective. The results of PDMC was an

average from each of the 10-fold results, since the 10 folds are partitioned randomly,

PDMC has been executed 10 times. Similarly, the results of ParamILS was an

average from 10 times of executions.

The experimental results of PDMC and ParamILS are summarised in Table 4.2

and illustrated in Figure 4.3. A statistical analysis has been performed to compare

the significance of the results using the Wilcoxon rank-sum test [131], where p-

value below 0.05 is considered to be statistically significant (confidence level 95%).
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Table 4.2: Performance of ParamILS and PDMC Measured by the Average Number
of Function Evaluations Taken by the (µ + λ) EAs in Solving an Entire Set of 24
UIO Instances, Where Mean and Standard Deviation of 10 Independent Executions
are Given. The Best Average Result is Highlighted in Bold.

ParamILS PDMC

1860.64 ± 11.09 1630.21 ± 20.10
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Figure 4.3: Illustration of Performance Between ParamILS and PDMC
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The results showed that PDMC statistically significantly outperformed ParamILS

in automatically configuring the (µ+ λ) EAs for solving the UIO problem, and the

average improvement of using PDMC over ParamILS was 12.3%.

4.3 Applying Elementary Landscape Analysis for

Designing Novel Algorithm Configurations

4.3.1 Motivation

Finding good configurations for metaheuristics are essential to obtain robust and

high algorithm performance. Whilst automatic algorithm configuration methods

mainly concern selecting the best suited configuration from the configuration space,

it is noted that the configuration space is not exhaustive and it is always useful

to produce a novel, problem-specific configuration such as a new search operator

or heuristic that potentially outperforms other configurations on a particular class

of problem instances. The design of such novel and effective configurations must

account for the characteristics of problem instances. This demand can be met by

fitness landscape analysis, which is a powerful analytical tool, particularly in gaining

in-depth understanding of the problem characteristics and the associated behaviours

of algorithms.

This chapter for the first time bridges the gap between fitness landscape anal-

ysis and the design of novel heuristics, through proposing an approach to perform

elementary landscape analysis and further explicitly apply the analytical results to

design novel and effective local search heuristics.

In the next sections, a particular class of fitness landscapes called elementary

landscape is introduced with emphasis on its unique properties which can potentially

be applied to facilitate search, followed by descriptions of the proposed approach to

perform elementary landscape analysis. Finally the proposed approach is applied to
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develop a novel and effective stochastic hill climbing heuristic for solving the next

release problem in software engineering.

4.3.2 Elementary Landscape

Based on Grover’s observations that the landscapes of certain combinatorial opti-

misation problems such as the Travelling Salesman Problem (TSP), could be charac-

terised by a wave equation [49], Stadler [109] formally defines this kind of landscape

as “elementary landscapes”, where the objective function is an eigenfunction of the

Laplacian of the graph induced by the neighbourhood operator.

Elementary landscapes possess unique properties which are considered beneficial

for the search. In general, the properties are classified into two main categories.

Implicit properties, landscapes with this property tend to be relatively smooth

when contrasted to other combinatorial optimisation problems with well-studied

local move operators, which could be considered to be an advantage for local search

algorithms [130]. And the wave equation also imposes constraints on the structure

of local optima and precludes the existence of certain plateau structures. Explicit

properties, a wave equation in terms of the expected value of the neighbours is

proposed, which more concretely expresses the properties of elementary landscapes

[130]. Suppose x is some fixed but arbitrary element of X, y is an element drawn

uniformly at random from the neighbourhood set N(x) of x and f is the mean value

over all solutions in X. On an elementary landscape, the following wave equation

holds.

E[f(y)] = f(x) +
k

d
(f − f(x))

for k which is fixed for the entire landscape. Since y is drawn uniformly at

random, the expected value of the fitness value of a neighbour y is always equal
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to the average fitness value over all solutions in the neighbourhood [130]. Also all

local minima lie below the average function value of the search space. In addition

the expected fitness value of the full neighbourhood can be predicted by the wave

equation. It is even possible to expand a partial neighbourhood during the search,

and predict for the remaining neighbourhood. This property gives significant insight

knowledge to the search algorithm that could be explicitly applied in designing

algorithms.

For determining whether a regular landscape is elementary or not, Whitley et

al. [130] constructed a component-based model that can be used to characterise

a neighbourhood structure. In this model, the neighbourhood size is regular and

denoted by d. The model consists of the following equations.

f = p3
∑
c∈C

c

E{f(y)} = f(x)− p1f(x) + p2(
∑
c∈C

c− f(x))

= f(x)− p1f(x) + p2(
1

p3
f − f(x))

where 0 < p1 < 1 is the proportion of the intracomponents that that are removed

from the solution in one move, 0 < p2 < 1 is the proportion of the intercomponents

that are added to the solution in a move. Finally, 0 < p3 < 1 is the proportion of the

total components in C that contribute to the cost function for any randomly chosen

solution, which is independent of the neighbourhood size. Then the component

theorem described in Theorem 1 (in Section 2.2) can be used to determine if a

regular landscape is elementary or not.
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4.3.3 Elementary Landscape Analysis

The special properties of elementary landscape, such as computing the average

fitness value of the neighbourhood of any solution without evaluating all the solu-

tions in the neighbourhood, shows a promising prospect of application in developing

novel and effective local search heuristics. Nevertheless, to use the properties of

elementary landscape requires that the fitness function is an eigenfunction of the

Laplacian that describes the neighbourhood structure of the search space. This

condition does not hold for an arbitrary fitness landscape and it is essential to find

out whether a landscape is elementary or not, and further how to construct an ele-

mentary landscape by choosing an appropriate neighbourhood operator, in order to

make use of the properties of elementary landscape.

Algorithm 4: Elementary Landscape Analysis

Input:
f : the fitness function of a combinatorial optimisation problem;
N : a set of neighbourhood operators;
Output:
A novel and effective local search heuristic;
begin

Check to see if the fitness function f is linearly decomposable;
if f is linearly decomposable then

for neighbourhood operator n ∈ N do
Determine if the landscape L formed by n and f is elementary
using the component theorem;
if L is elementary then

break;
end

end
Apply the elementary properties of L to develop a novel and effective
local search heuristic for solving f ;

end

end

This chapter addresses this need by proposing an approach to perform elemen-

tary landscape analysis, which constructs an elementary landscape by choosing an

appropriate neighbourhood operator for a fitness function, based on the component
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theorem [129] which determines whether a fitness function and a neighbourhood

operator form an elementary landscape. It is worth noting the component theorem

assumes a linearly decomposable fitness function. Once a landscape is proved to be

elementary, the properties of elementary landscape can be used to develop novel and

effective local search heuristics. The overall steps of elementary landscape analysis,

i.e., constructing an elementary landscape and applying the results to develop novel

heuristics, are summarised in Algorithm 4.

4.3.4 Applying Elementary Landscape Analysis to Develop

Novel and Effective Stochastic Hill Climbing for the

Next Release Problem

To demonstrate the effectiveness of the proposed approach, the elementary land-

scape analysis is applied to the next release problem (NRP) for developing novel

and effective stochastic hill climbing heuristics. First, the next release problem

is formally formulated as an optimisation problem. Second, elementary landscape

analysis is applied to construct an elementary landscape based on the NRP, and the

properties of elementary landscape are incorporated to develop novel and effective

stochastic hill climbing for solving the NRP.

4.3.4.1 The Next Release Problem

The Next Release Problem (NRP) was originally formulated by Bagnall et al.

[8]. The variant of the NRP studied in this chapter is a representative of a class of

combinatorial optimisation problems where the fitness functions could be linearly

decomposed. The problem is formulated as follows.

Given a software product, let R denote a set of candidate requirements to be

considered to implement for the next release of the software, each r ∈ R has an

associated cost(r) which is a measure of the resource consumption to implement it.
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and a weight wi which reflects the requirement’s importance. Also there is a budget

for the total cost of the implemented requirements.

Associated with R, there is a directed acyclic graph G = (R,E) where (ri, rj) ∈ E

iff ri is a prerequisite of rj, G is also transitive since (ri, rj) ∈ E ∧ (rj, rk) ∈ E ⇒

(ri, rk) ∈ E. If the company decides to satisfy requirement ri, it must satisfy the

prerequisites of ri. In a special case where no requirement has any prerequisite

E = ∅, we say the problem is basic.

Assuming there are n requirements, the problem is to find a subset S with car-

dinality k of R, such that

∑
ri∈S

wi is maximised,

∑
ri∈S

cost(ri) is minimised.

Different search algorithms have been applied to NRP [8], but they were all

experimental work. There is no analysis of whether the obtained results are good

and whether they could be improved. There is no analysis either what characteristics

the NRP has and whether the search algorithms used are appropriate.

4.3.4.2 Elementary Landscape Analysis for NRP

In most search algorithms, there is an objective function to guide the search. Ac-

cording to the problem formulation of the Next release problem (NRP), the objective

function f(S) is defined as [8]:

f(S) =
∑
Ri∈S

wi +Budget−
∑
Ri∈S

cost(Ri) (4.5)

The neighbourhood operator considered is the two− exchange, which randomly
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exchanges two requirements in S and R\S.

We apply the component theorem to determine whether the objective function

f(S) and the neighbourhood operator two−exchange form an elementary landscape.

First of all, the objective function f(S) is a combination of weights and costs,

which is similar to Whitley’s observation of components. Let the set wi − cost(Ri)

make up the set of components C, where |C| = |R|, we could apply the component-

based model and component theorem to determine whether the induced landscape

is elementary or not.

According to the component based model (in Section 4.3), p3 and f are com-

puted, since a solution consists of k items, the objective function f(S) consists of k

components, p3 =
k

|R|
and f can be obtained:

f = p3
∑
c∈C

c

=
k

|R|
(
∑
Ri∈S

wi −
∑
Ri∈S

cost(Ri) + |R| ∗Budget)
(4.6)

To compute p1, note that there are k components in any solution, and two-

exchange changes exactly 2 components at a time, p1 = 2/k.

To compute p2, note that there are |R| − k components with the components in

f(x) removed and 2 new components are picked from these, p2 =
2

|R| − k
.

Adding the terms to the component based model yields:

Avg{f(y)} = f(x)− p1f(x) + p2(
1

p3
f − f(x))

= f(x)− 2

k
f(x) +

2

|R| − k
(
|R|
k
f − f(x))

= f(x) +
2|R|

(|R| − k)k
(f − f(x))

(4.7)
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where k = 2|R| and the neighborhood size is d = (|R| − k)k, and the landscape

is elementary.

4.3.4.3 Novel and Effective Local Search Heuristic Using Properties of

Elementary Landscape

It has been shown that the next release problem under the two-exchange neigh-

bourhood has the search space that corresponds to elementary landscape. Further

to implicit properties of elementary landscape, it is now possible to explicitly incor-

porate properties of elementary landscape to develop novel and effective local search

heuristics.

First of all the stochastic hill climbing is considered. As a simple but effective

local search algorithm, and involving only a single variation operator, determin-

istic hill climbing algorithms such as Simple Hill Climbing (first-best neighbour),

Steepest-Ascent Hill Climbing (best neighbour) are extensively used in the field of

optimisation. With all the advantages, deterministic hill climbing is by no means

without its limitations, e.g., it is likely to get stuck in local optima due to their

greedy acceptance of better neighbouring solutions. The strategy of the stochastic

hill climbing algorithm (SHC) is proposed to address this limitation, which iterates

the process of randomly selecting a neighbour for the incumbent solution and only

accept it if it results in an improvement [37, 124]. A basic form of stochastic hill

climbing is described in Algorithm 5.

Even though the SHC uses a stochastic process, it can still get stuck in local

optima. To avoid getting stuck in local optima in optimising multi-modal functions,

we chose to continue the search by accepting the sampled solution irrespective of

whether it is better than the incumbent solution or not. The algorithm terminates

after a fixed number of iterations. This iterative stochastic hill climbing for NRP is

described in Algorithm 6.
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Algorithm 5: Basic Stochastic Hill Climbing

begin
Current← RandomSolution()
while step < MaxStep do

Candidate← RandomNeighbour(Current)
if Candidate is better than Current then

Current← Candidate;
end
step+ +;

end

end

Algorithm 6: Iterative Stochastic Hill Climbing for NRP

begin
N = MaxStep;
Current← RandomSolution();
Best← Current;
while Termination criteria not satisfied do

step = 0;
for step < N do

step+ +;
Candidate← TwoExchange(Current)
if f(Candidate) > f(Current) then

Current← Candidate;
end

end
if f(Current) > f(Best) then

Best← Current;
end
else

Current← Candidate;
end

end

end
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The iterative stochastic hill climbing for NRP summarised in 5 is considered as

the initial algorithm, the properties of elementary landscape are incorporated to

improve the initial algorithm.

The properties of elementary landscape are categorised into two classes. One is

implicit, which are inherent given the landscape is elementary and does not affect the

design of the algorithm, e.g. relative smoothness. The other one is explicit, which

can be explicitly applied to algorithm design, for example, allowing prediction for

partial neighbourhoods.

Since the landscape is elementary, the algorithm can make use of the informa-

tion provided by the properties of elementary landscape. In particular, the initial

stochastic hill climbing does not have any knowledge about the neighbourhood of

the incumbent solution. There is a lack of exploration in terms of the search, as the

algorithm might keep exploiting a less promising neighbourhood and wastes a lot of

efforts.

Nevertheless, for any solution x in an elementary landscape, one of the following

observations is true:

• if f(x) = f f(x) = E[f(y)] = f

• if f(x) < f f(x) < E[f(y)] < f

• if f(x) > f f(x) > E[f(y)] > f

When f(x) < f f(x) < E[f(y)], the neighbourhood can be regarded as promis-

ing, the search is very likely to find an improving move by exploring this neighbour-

hood.

When f(x) > f f(x) > E[f(y)], one cannot be sure that this neighbourhood

is promising. However, in light of the elementary properties which allow prediction

for partial neighbourhoods, the search can expand a partial neighbourhood of the
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incumbent solution x to discover promising neighbourhoods. The prediction is ex-

pected to consistently guide the search to more promising regions and reduce the

efforts wasted in less promising regions.

By incorporating the insight knowledge of elementary landscape summarised

above, a predictive stochastic hill climbing can be obtained. The developed elemen-

tary stochastic hill climbing is described in Algorithm 7.

4.3.4.4 Experimental Studies

Whilst some work formulated NRP as a multi-objective optimisation problem

[36], this chapter considers NRP in its single-objective formulation, as this thesis

is focussing on the single-objective optimisation. Several heuristic algorithms have

been proposed to tackle the single-objective NRP, where a simulated annealing al-

gorithm (SA) with Lundy and Mees cooling schedule (β = 1× 10−8) seemed to give

the best overall results [8]. In Lundy Mees SA, the temperature drops after each

move.

To evaluate the performance of the elementary stochastic hill climbing (ESHC)

developed through elementary landscape analysis, ESHC is compared with the it-

erated stochastic hill climbing (ISHC) and the SA with Lundy and Mees cooling

schedule. All three algorithms have been implemented in Matlab. The algorithm

parameters used are presented in Table 4.3.

In total 16 NRP instances with different sizes of candidate requirements set |R|

and the selected requirements set |S| are used in the experiments. These synthetic

NRP instances are generated using the NRP data sets generator described in [36].

For each NRP instance, 100 independent runs of ESHC, ISHC and Lundy Mees

SA are performed. The performance is measured by the quality of the best solution

found within the cut-off time K, i.e., 1000 iterations. The cut-off time is determined

by preliminary experiments which showed that the three algorithms would converge
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Algorithm 7: Elementary Stochastic Hill Climbing

begin
C = ∅;
Current = RandomSolution();
while Termination criteria not satisfied do

Flag = False;
%% Current neighbourhood is promising

if f(Current) <= f then
for A steps, A << N do

Candidate← TwoExchange(Current);
if f(Candidate) > f(Current) then

Current← Candidate;
end

end

end
%% Expand partial neighbourhood

else
for B steps, B << N do

Candidate← TwoExchange(Current);
C ∪ Candidate;
Compute the expected fitness value of the neighbourhood
Exp[f(N(Candidate))];
if Exp[f(N(Candidate))] > f(Current) then

Flag = True;
Break;

end

end
%% Partial neighbourhood is not promising

if Flag == False then
Current← The best move in C

end
%% Partial neighbourhood is promising

else
for C steps, C << N do

Candidate← TwoExchange(Current);
if f(Candidate) > f(Current) then

Current← Candidate;
end

end

end

end

end

end
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within the cut-off time. The experimental results are illustrated in Table 4.4. The

first column in Table 4.4 describes the parameters of the NRP instances: the value

after slash is the size of candidate requirements set R and the ratio before slash

specifies the proportion of R to be selected.

To conduct statistical comparisons of ESHC, ISHC and Lundy Mees SA over

16 NRP instances, the Friedman test is performed. The Friedman’s test is a non-

parametric equivalence of the repeated-measures analysis of variance (ANOVA) un-

der the null hypothesis that all the algorithms are equivalent and so their ranks

should be equal [40].

The Friedman’s test is to determine whether there are global difference in the

results. If the test result rejects the null hypothesis, i.e. these algorithms are

equivalent, the post-hoc test can be applied to detect concrete differences among

algorithms [42]. The power of the post-hoc test is much greater when all algorithms

are compared with a control algorithm and not among themselves. Therefore the

pairwise comparisons are not needed since the purpose of comparison here is to

determine whether the proposed algorithm is better than the existing ones. In this

case, ESHC is used as the control algorithm, where ISHC and Lundy Mees SA are

compared against ESHC.

The Bonferroni-Dunn’s test [34] is employed to conduct the post-hoc statistical

analysis for detecting significant differences for the control algorithm ESHC. The

performance of pairwise algorithms is significantly different if the difference between

two average ranks is at least the critical difference:

CD = qα

√
k(k + 1)

6N
, (4.8)

where N denotes the number of instances, k denotes the number of algorithms

and α denotes the level of significance considered. Here N = 16, k = 3, and q0.05 =

2.241.
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The results from the Friedman’s test and the post-hoc analysis are summarised

in Table 4.5. First, given that the p-value of Friedman’s test is lower than the level of

significance considered α = 0.05, there are significant differences among the results

given by the three algorithms. Second, the differences between average ranks of

ESHC vs. ISHC (1.75) and ESHC vs. Lundy Mees SA (1.1875) are greater than the

critical difference CD = 0.79, it is concluded that ESHC significantly outperforms

both ISHC and Lundy Mees SA.

Within the same cut-off time, i.e., 1000 iterations, the advantages of ESHC over

ISHC and Lundy Mees SA showed that the predictive ability provided by the use

of properties of elementary landscape in ESHC can be of help in determining if the

current neighbourhood is promising or not, leading the search to focus on promising

directions and avoid wasting efforts in unpromising neighbourhoods. In this way,

the algorithm can achieve a balance between exploration and exploitation.

The use of the properties of elementary landscape in this case study is still pre-

liminary, since only one elementary property has been explicitly incorporated, i.e.,

predicting the average fitness values of the partial or full neighbourhood. There is

large room for developing approaches to make use of the properties of elementary

landscape both theoretically and empirically. In particular, the decomposition of el-

ementary landscape can generalise applications of results from elementary landscape

analysis to an arbitrary combinatorial optimisation problem.
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Table 4.3: Experimental Parameters

Parameters Values

Cut-off time K 1000 iterations
Step size N in ISHC 10−3 * full neighbourhood size
Step size A in ESHC 0.1 * N
Step size B in ESHC 0.6 * A
Step size C in ESHC 0.4 * A

Control parameter β in Lundy Mees SA 1 × 10−8

Table 4.4: Comparative Results of ESHC, ISHC and Lundy Mees SA on 16 NRP
Instances, Where Mean and Standard Deviation of the Best Solutions Found by
Three Algorithms Within the Cut-off Time are Given.

NRP Instance ESHC ISHC Lundy Mees SA

PI-1 (10%/50) 31.2±0.88 25.8±2.17 29.8±2.1
PI-2 (20%/50) 63.2±1.4 61.9±1.9 61.5±0.5
PI-3 (50%/50) 121±0.5 118.6±1.56 120.1±1.1
PI-4 (80%/50) 146.2±2 146.1±2.74 146.1±1.13
PI-5 (10%/100) 74.76±0.43 72±1.02 72.3±0.98
PI-6 (20%/100) 139.1±1.5 137.9±0.81 137.8±0.3
PI-7 (50%/100) 272.4±0.95 270.3±0.79 270.9±0.9
PI-8 (80%/100) 327.1±1.1 327.1±1.1 328±0.1
PI-9 (10%/200) 159.9±0.9 150.5±0.71 152.1±0.37
PI-10 (20%/200) 243.1±0.7 241.7±0.5 241.9±0.2
PI-11 (50%/200) 539.6±0.1 536.8±0.5 537.1±1.4
PI-12 (80%/200) 373.4±0.64 371±0.71 371.5±0.38
PI-13 (10%/500) 362.7±0.57 358.5±0.71 359.7±2.6
PI-14 (20%/500) 677.2±0.84 675.4±5.37 674±2.5
PI-15 (50%/500) 1305.2±2.3 1302±0.45 1302.2±1.9
PI-16 (80%/500) 1610.8±4.2 1604.2±0.3 1605.1±1.2

Table 4.5: Results From the Friedman Test (α = 0.05 and Average Ranks of ESHC,
ISHC and Lundy Mees SA Over 16 NRP Instances, as Well as the Critical Difference
CD0.05 of the Bonferroni-Dunn’s Test.

p-value of Friedman’s Test CD0.05 ESHC ISHC Lundy Mees SA

< 0.0001 0.79 1 2.75 2.1875
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4.4 Summary

In this chapter, the need and importance for finding suitable configurations of

metaheuristics have been reiterated with emphasis on the need of a generic (problem-

independent) approach for automatically configuring algorithms on a per-instance

base. An interesting research question arises as to whether there are patterns or

rules governing the choice of algorithm configurations, and whether such patterns

can be learnt. This chapter provided an answer to this research question in two

steps. First, instead of formulating the algorithm configuration as an optimisation

problem, it has been reformulated as a decision problem. This reformulation mo-

tivates the development of a computationally inexpensive predictor of whether a

configuration of a given algorithm is suitable for solving a particular problem in-

stance. Second, fitness landscape analysis has been incorporated to build a generic

approach which can perform automatic algorithm configuration on a per-instance

base. The proposed approach is based on learning the pattern which governs the re-

lationship between the algorithms configurations and the characteristics of problem

instances, where the accumulated escape probability has been employed as features

to characterise problem instances [78, 81]. In particular, results from the case study

showed that the proposed approach can reliably determine if a configuration of the

(µ+λ) EA is suitable for solving a UIO instance, provided a configuration was con-

sidered as effective when the (µ + λ) EA executed under the configuration showed

high performance. Furthermore, the proposed approach significantly outperformed

ParamILS, a state-of-the-art automatic algorithm configuration method, on auto-

matically configuring the (µ+ λ) EAs for solving the UIO problem.

Further to determining the best suited algorithm configuration within a finite set

of existing algorithm configurations, it is always useful to produce a novel, problem-

specific configuration (e.g. new heuristic/search operator) which potentially outper-

forms other configurations on a particular class of problem instances. This chapter
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has established a bridge connecting results of theoretical fitness landscape analy-

sis and the design of novel, effective heuristics, through proposing an approach to

perform elementary landscape analysis and further explicitly apply the analytical

results to build novel and effective local search heuristics [80]. The results from

the case study illustrated that the elementary hill climbing algorithm developed us-

ing results from elementary landscape analysis significantly outperformed both the

standard stochastic hill climber and the state-of-the-art in solving the next release

problem in software engineering.
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Chapter 5

INCORPORATING FITNESS

LANDSCAPE ANALYSIS FOR

DYNAMIC ALGORITHM

CONFIGURATION

5.1 Introduction

Finding good configurations of heuristic algorithms is essential to obtain robust

and high algorithm performance. Traditionally algorithm configuration methods at-

tempt to determine a priori the most appropriate configuration of a given heuristic

algorithm for solving a particular problem instance. However, there is both em-

pirical and theoretical evidence showing that the most effective configuration of a

given algorithm for solving a particular problem instance can vary during the search

process [116]. For example, theoretical analysis of mutation operators on binary

encoded problems concluded that the mutation probability should be decreased as

the genetic algorithm is approaching the global optimum [90]. Empirically Davis
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[29] used a time-varying schedule of operator probabilities and observed improved

performance.

This motivates the development of heuristic algorithms that dynamically adapt

their configurations (search operators, numerical parameters, etc.) during the search

process. These algorithms, often referred to as adaptive heuristic algorithms, aim

to identify and select the most effective configuration of a given algorithm at each

decision point during the search. In particular, the behaviours of such heuristic

algorithms are adapted to specific characteristics of problem instances, and the

generality of such algorithms would be improved to be able to solve a broad class of

problems with diverse characteristics.

Adaptive heuristic algorithms are extensively studied in the literature with a

number of approaches developed. The design of adaptive heuristic algorithms con-

cerns two main issues, the credit assignment mechanism and the selection mecha-

nism, where the former assigns a reward to a configuration based on evaluating the

contribution of the configuration to the overall performance and the latter serves as

a selection rule in charge of selecting the configuration to use.

The research focus of most existing approaches has been on the selection mech-

anisms, such as Probability Matching [24, 59, 116, 127], Adaptive Pursuit Method

[115] and Multi-armed Bandit Paradigm [27]. However, these selection mechanisms

are based on the mere observation for past behaviours of the candidate configura-

tions. It is noted that considering only the past performance can be misleading

on problems with complex structure such as deception [30, 88]. Furthermore, the

optimal fitness assigned to a configuration is a dynamic random variable and the un-

derlying distribution of this random variable changes as the search proceeds [29, 90].

To address this important issue and build enhanced adaptive heuristic algo-

rithms, this chapter proposes to incorporate predictive information provided by the

predictive problem difficulty measure to design a systematic mechanism for adaptive
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heuristic search. The predictive measure originates from fitness landscape analysis

which explicitly quantifies the problem difficulty with respect to algorithms, based

on the fitness function and the structure of search space [54]. Equivalently the mea-

sure can be used to quantify the predicted performance of a specific algorithm for

solving a given problem instance.

A generic framework for designing adaptive heuristic algorithms using the pre-

dictive problem difficulty measure is proposed. The framework has access to a set

of specific configurations for the target algorithm (the algorithm to be configured).

At each decision point, the value of the predictive problem difficulty measure for the

corresponding configuration is computed by exploiting information extracted from

the search trajectory. It is pointed out that the predictive measure delivers the

predicted performance of the target algorithm in candidate configurations, which

enables selection of the best suited configuration to be based on the expected per-

formance rather than the performance in the past. In the long run, a more accurate

mapping from candidate configurations to search spaces with specific characteristics

can be established. In terms of the selection mechanism, the proposed framework

adopts the most widely used probability matching method, in which the predictive

measures for candidate configurations are normalised into probabilities which rep-

resent the likelihoods to select those configurations at a decision point. The use of

the predictive problem difficulty measure does not compromise the generality of the

framework, as the measure does not require any a priori knowledge and is there-

fore suitable for cross-domain problems. To demonstrate the effectiveness of the

proposed framework, it is applied to develop the fitness landscape based adaptive

search algorithm (FAS) for the minimum vertex cover problem (MVC). FAS is tested

on a large set of MVC instances with different characteristics.

This chapter contributes to the following:
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a. Proposing a new approach to bridge the gap between fitness landscape analysis

and algorithm design.

b. Proposing a generic framework for designing adaptive heuristic algorithms

using predictive problem difficulty measures.

c. Designing an effective fitness landscape based adaptive search algorithm (FAS)

for MVC by instantiating the proposed framework. FAS either outperforms

or is comparable to the state-of-the-art algorithms for MVC on both widely

studied benchmarks and real-world instances.

The remainder of this chapter is organised as follows. Section 5.2 introduces the

predictive problem difficulty measure derived from our fitness landscape analysis,

and the method to compute it. Section 5.3 describes a generic framework to design

adaptive heuristic algorithms using the predictive problem difficulty measure. In

Section 5.4, the proposed framework is applied to design an effective FAS for MVC.

Section 5.5 briefly describes the experimental setup that is used throughout our

experiments. Section 5.6 presents comparative results and analysis with state-of-the-

art algorithms for MVC and the constituent algorithms. Further empirical analysis

for FAS is also given. Finally, the chapter is summarised in Section 5.7.

5.2 Predictive Problem Difficulty Measure

It has been shown the notion of escape probability is critical in proving bounds

of the expected runtime [125], which is usually taken as the difficulty measure in

time complexity studies of metaheuristics [55, 57, 113]. Further investigation into

the relationship between the escape probability and the expected time gives general

lower bounds of the expected runtime in terms of the escape probability.

This section provides a brief introduction to the fitness-probability cloud [82]

defined based on the notion of escape probability, and the predictive problem dif-
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ficulty measure, the accumulated escape probability (aep) [82], derived from the

fitness-probability cloud to explicitly quantify the problem difficulty with respect

to algorithms. In particular, since the original definition of the accumulated es-

cape probability is general and has many degrees of freedom, a new definition of

the accumulated escape probability (aep) is provided, which takes into account the

arrival probabilities to differentiate contributions of escape probabilities at different

fitness levels to the final aep measure. More importantly, an efficient methodology

to compute the new aep is provided, which facilitates the application of aep in online

optimisation techniques such as the adaptive heuristic algorithms.

5.2.1 Fitness-Probability Cloud and Accumulated Escape

Probability

Escape Probability P e
i , as defined in Definition 5 (in Section 3.3), represents the

probability for a metaheuristic A to reach higher fitness levels from a certain fitness

level. Based on the notion of escape probability, a natural way to study whether

a problem is difficult or easy for a given algorithm, is to plot the fitness values

against the escape probabilities, where the escape probability is obtained for each

fitness level. Let f be a fitness function with m distinct fitness levels, the fitness-

probability cloud (fpc), as in Definition 6 (in Section 3.3), is a set of points on a

bi-dimensional plane:

fpc = {(f1, P e
1 ), (f2, P

e
2 ) . . . , (fm, P

e
m))} (5.1)

Although the fitness-probability cloud provides an illustrative characterisation

of the underlying fitness landscape and gives an indication on the problem difficulty

with respect to the algorithm applied to optimise it, the adaptive heuristic algorithm

requires a quantitative evaluation of the performance of a candidate algorithm con-
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figuration. A problem difficulty measure, the accumulated escape probability (aep),

is proposed which contains critical information on the fitness-probability cloud. The

original definition of aep in Definition 7 (in Section 3.3) is quite general and has many

degrees of freedom, which can be extended by determining a specific set of weights

(wi). Here the arrival probabilities (P a
i ) are considered as an appropriate set of

weights, where P a
i denotes the probability for the algorithm to reach fitness level i

from other fitness levels. This is motivated by the fact that the escape probabilities

at different fitness levels are not equally important, and the arrival probabilities can

indicate the importance of corresponding escape probabilities in determining the

problem difficulty in terms of aep. The particular aep is defined:

Definition 14 (Accumulated Escape Probability)

aep =
m∑
i=1

P a
i P

e
i , (5.2)

5.2.2 Efficient Method for Computing aep

The original method for computing aep via sampling is described in Chapter 3.

In this section, an efficient method is presented for computing aep by exploiting the

search trajectory instead of sampling from the search space.

We keep a record of a path of solutions in the search history of length K (K

steps). By analysing these K samples, a set of distinct fitness values {f1, · · · , fm}

can be obtained. The escape probability for the set of solutions with fitness fi or

level i is estimated as the number of improving steps (the step from level i to level

j, where fj > fi) over the total number of steps from level i. The arrival probability

of level i is estimated as the number of steps reaching level i over the total number

of steps K. In the original method the Metropolis-Hastings sampling method [118]

is used to give higher weights to more important search points, since not all fitness

117



levels in the search space are equally important. Here the arrival probability is used

for the same purpose. Hereinafter {f1, · · · , fm} are referred to as a set of fitness

values obtained from a path of solutions in the search history of length K, and for

each fi, P
e
i is the estimated escape probability and P a

i the estimated arrival proba-

bility from level i, respectively.

5.3 A Generic Framework for Designing Adap-

tive Heuristic Algorithms Using the Predic-

tive Problem Difficulty Measure

In this section, a generic framework for designing adaptive heuristic algorithms

using the predictive problem difficulty measure is presented. First, the motivations

to introduce the predictive problem difficulty measure into the design of adaptive

heuristic algorithms are explained. Second, the mechanism to incorporate the pre-

dictive measure with the adaptive heuristic algorithm is presented. Finally, the

proposed framework is described in detail.

5.3.1 Motivations

A typical adaptive heuristic algorithm consists of two main components: a set of

candidate configurations (heuristics/search operators) and a decision maker which

determines which candidate configuration to use. The adaptive heuristic algorithm

has access to a set of candidate configurations, and the goal of the decision maker

is to combine them to produce an effective self-configured algorithm. The decision

maker assesses the performance of each candidate configuration upon the progress
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of search, and employs a specific mechanism to select the optimal configuration of

the algorithm at each decision point.

A number of adaptive mechanisms have been proposed in the literature, it is

noted that most existing approaches are based on historical information only, mainly

the quality of offspring produced. However, the goal of the adaptive heuristic algo-

rithm is to find the best suited configuration to use when search proceeds to a new

stage, rather than the configuration that performed best in the past. The predictive

measure described in Section 5.2 quantifies the difficulty of a problem instance in

relation to a specific algorithm, which can be used to approximately predict the

performance of the algorithm on the problem instance. This generic problem diffi-

culty measure can provide predictive information to enable the adaptive heuristic

algorithm to select the configuration based on the expected performance instead of

past performance only. As a result, a more accurate mapping between configura-

tions of the target algorithm and search space with specific characteristics can be

established.

5.3.2 Incorporating the Predictive Problem Difficulty Mea-

sure

In the literature there exist many interesting results on predictive fitness land-

scape measures, which provides an intuitive explanation of the problem hardness

with respect to the heuristic/operator. Most applications of fitness landscape mea-

sures are offline, mainly involved in the algorithm selection stage, due to some

limitations in the nature of measures or the methodology to compute them in prac-

tice. The fitness-distance correlation [70] requires known global optima, which is

not possible for real-world problems. Others include negative slope coefficient (nsc)

[119], correlation length and operator correlation [84], fitness variance [101], epista-
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sis variance [28], all of them are computed based on a large set of samples. If these

measures were to be used in an adaptive heuristic algorithm, sampling is required to

generate sufficient samples at each decision point resulting in a huge computational

overhead.

aep is a suitable measure to use in our proposed framework. The reasons are

twofold. On one hand, aep is a reliable problem difficulty measure with theoretical

underpinning in complexity theory of metaheuristics; on the other hand, the val-

ues of aep can be computed efficiently by exploiting the search trajectory upon the

progress of search, which avoids incurring a considerable computational overhead

since sampling is not required.

The adaptive heuristic algorithm using the predictive measure works in a way

that, at each decision point, the algorithm passes the search information to the

measure. Then, the measure for the most recent heuristic is updated and the prob-

abilities for selecting the heuristics are updated and returned to the algorithm. The

interactions between the adaptive heuristic algorithm and the predictive measure is

illustrated in Figure 5.1.

5.3.3 The Proposed Framework

After describing how to incorporate the predictive problem difficulty measure into

an adaptive heuristic algorithms, this subsection presents the algorithmic framework

for designing adaptive heuristic algorithms using the predictive problem difficulty

measure. The framework is summarised by the pseudo code in Algorithm 8.

The framework takes two inputs: the problem instance to solve and a set of prob-

lem specific configurations of the target algorithm. The output is the best solution

ever found upon satisfying the stopping criteria. At each decision point, the value
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Figure 5.1: The Interactions Between the Adaptive Heuristic Algorithm and the
Predictive Problem Difficulty Measure

of the predictive measure for the most recently applied configuration is computed

based on the up-to-date search information. The algorithm is then to select the most

effective algorithm configuration according to the probability distribution generated

by the measure vector.

5.4 Fitness Landscape Based Adaptive Search Al-

gorithm for the Minimum Vertex Cover

5.4.1 Minimum Vertex Cover

Given an undirected graph G = (V,E), where V = {v1, v2, · · · vn} is the set of

vertices, E is the set of edges. The minimum vertex cover problem (MVC) is that

of finding the minimum sized cover set C ⊆ V such that for any edge e{u, v} ∈ E

at least one of its endpoints is in C.

MVC is an NP-hard [73] combinatorial optimisation problem with wide appli-
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Algorithm 8: The Adaptive Algorithm Framework Using the Predictive Prob-
lem Difficulty Measure

{conf1, conf2, · · · , confk}: A set of candidate configurations of the algorithm;
{m1,m2, · · · ,mk}: Values of the predictive measure for corresponding
candidates;
P = {p1, p2, · · · , pk}: Probabilities for selecting the heuristics;
begin

Initialisation;
while Termination criteria not satisfied do

Configure the algorithm with the initial configuration confini;
Apply the algorithm;
if Adaptive condition is satisfied then

Compute the measure for the most recent configuration confi;
Update mi in the measure vector;
Normalise {m1,m2, · · · ,mk} to generate P ;
Select the new configuration according to P ;

end

end

end

cations in network security, scheduling and computer graphics. It is worth noting

that the Maximum Independent Set (MIS) problem and the Maximum Clique (MC)

problem [13] with applications covering areas of information retrieval, experimental

design, signal transmission, computer vision, and bioinformatics [69], are equivalent

to MVC. Since MVC is NP-hard, one usually resorts to heuristics for solving it. A

number of heuristic algorithms have been proposed, mainly local search algorithms.

Recent successful heuristics [10, 17, 18, 19, 48, 99, 104] mainly perform the

plateau search on a single incumbent solution, i.e., swapping one vertex in the

solution with another one not in the solution. In particular, many algorithms use

the notion of edge weight, where a non-negative integer is assigned to an uncovered

edge to diversify the search. This edge weighting scheme was first introduced in

[104], then modified and applied subsequently [17, 18, 19]. For example, EWLS[17]

and EWCC[18] only update the weights of uncovered edges upon reaching local

optima, COVER[104] and NuMVC [19] update the weights of uncovered edges at

each step, NuMVC even introduces a mechanism to reduce the edge weights upon
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reaching a pre-defined threshold.

5.4.2 Designing the Fitness Landscape Based Adaptive

Search Algorithm for MVC

In this subsection, the proposed framework is employed to design a fitness land-

scape based adaptive search method (FAS) for tackling MVC. The FAS is sum-

marised by the pseudo code in Algorithm 9. For solving MVC, the FAS takes two

inputs, a set of heuristics for MVC and a pre-defined interval for reconfiguring the

algorithm. The output is the best solution ever found upon satisfying the stopping

criteria. In particular, the algorithm maintains a list of probabilities for selecting

candidate heuristics. At each decision point, the value of the predictive measure for

the most recently applied heuristic is computed by the method described in Section

5.2. The updated list of measures are normalised into probabilities for selecting

heuristics. FAS constitutes its candidate heuristics set with a set of heuristics for

MVC.

5.4.2.1 Constituent Heuristics

Typically heuristic algorithms solve MVC by iteratively solving the k-vertex

problem. The initial cover set of size k is generated at random. Basically the

algorithm maintains an incumbent solution of size k and iteratively performs plateau

search which exchanges two vertices in and out of the solution until it becomes a

vertex cover. The constituent heuristics of FAS are based on the plateau search

and employ different strategies to select the vertex from the solution C and the

vertex not from the solution V \C for exchange. For the sake of diversification, FAS

maintains a tabu list of size one that prohibits the vertex swapped into the solution

being swapped out immediately. The five heuristics in FAS are briefly described

below and illustrated in Algorithm 10-14, with the notations explained in Table
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Algorithm 9: Fitness Landscape Based Adaptive Search

H{heuristic1, heuristic2, · · · , heuristick}: A set of candidate heuristics;
M = {m1,m2, · · · ,mk}: Values of the predictive measure for the heuristics;
P = {p1, p2, · · · , pk}: Probabilities for selecting the heuristics;
intv: pre-defined intervals for updating operators/heuristics;
begin

Generate an initial solution ind;
Select the initial heuristic heuristici uniformly at random;
step = 0;
while Termination criteria not satisfied do

ind = search (ind, heuristici);
step+ +;
if step == intv then

Compute the predictive measure mi of heuristici;
Update mi in M ;
Transform M into the new probability distribution P

′
;

heuristici = heuristic selected from H based on P
′
;

step = 0;
end

end

end

5.1. Note that H0 is based on the edge weighting scheme adopted from NuMVC

[19]. In H1-H4, only a subset of vertices in the solution are considered for swap,

the definition of the subset is extended from the neighbourhood definition used by

Pullan and Hoos [97].

Table 5.1: Notations Used in the Constituent Heuristics

Symbols Meanings

si = {0, 1} state of vertex vi, si = 1 if v ∈ C, si = 0 if v /∈ C

S = {0, 1}n S is a binary string which represents the candidate solution

w(e) weight (non-negative integer) associated with edge e

w(v) weight of vertex v, w(v) =
∑

u/∈C,e={u,v}

w(e)

age(v) age of a vertex (steps since its state was last changed)

D = (p0, · · · , pn−1) probabilistic model of solutions, ∀i ∈ V , pi represents the likelihood of vertex i in C.

N(i) = {vj|vj ∈ V, {vi, vj} ∈ E} the vertices adjacent to vi

Sp(C) = {vi|vi ∈ C, |V \C\N(i)| = p}, p = {0, 1} the set of vertices adjacent to exactly p vertex in V \C

• H0
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– From C: Select a vertex v ∈ C with the lowest w(v), breaking ties in

favour of the vertex with a larger age(v).

– From V \C: Select an uncovered edge e at random, and select the end-

point with a higher weight, ties broken favouring the vertex with a larger

age(v).

• H1

– From C: First obtain S0(C) and S1(C), if S0(C) is not empty, randomly

choose a vertex v ∈ S0(C); otherwise choose a vertex v ∈ S1(C) at

random.

– From V \C: The adjacent vertex of v.

• H2

– From C: First obtain S0(C) and S1(C), if S0(C) is not empty, randomly

choose a vertex v ∈ S0(C); otherwise choose a vertex v ∈ S1(C) with the

highest pi within the probabilistic model D.

– From V \C: The adjacent vertex of v.

• H3

– From C: First obtain S0(C) and S1(C), if S0(C) is not empty, randomly

choose a vertex v ∈ S0(C); otherwise choose a vertex v ∈ S1(C) with the

lowest pi within the probabilistic model D.

– From V \C: The adjacent vertex of v.

• H4

– From C: First obtain S0(C) and S1(C), if S0(C) is not empty, randomly

choose a vertex v ∈ S0(C); otherwise choose a vertex v ∈ S1(C) at

random.
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– From V \C: A randomly selected vertex.

Algorithm 10: Heuristic H0

begin
select a vertex v ∈ C with the lowest w(v),
ties broken favouring the vertex with greater age(v);
C ← C\{v};
select an uncovered edge e{u,w} at random,
select the endpoint w with greater weight;
C ← C ∪ {w};
for each uncovered edge e do

w(e)← w(e) + 1;
end

end

5.5 Experimental Setup

5.5.1 Benchmarks

In this section, an experimental evaluation is performed for the FAS on two stan-

dard benchmarks in the literature of MVC: DIMACS [69] and BHOSLIB [135], and

a new set of instances: MESH [107]. DIMACS and BHOSLIB were widely used in

the MVC research, whilst MESH was recently introduced which originated from a

real-world application in Computer Graphics [5].

The DIMACS benchmarks originally come from the Second DIMACS Challenge

Test Problems (1992-1993), which contain many instance families generated from

different problems.

• p hat family: a generalization of the classical uniform random graph generator,

with a wide node degree range.

• brock family: random graphs with a unique minimum vertex cover, purposely

developed to defeat greedy heuristics.
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Algorithm 11: Heuristic H1

begin
Compute S0(C), S1(C);
if S0(C) is not empty then

randomly choose a vertex v ∈ S0(C);
C ← C\{v};
return;

end
if S1(C) is not empty then

randomly choose a vertex v ∈ S1(C);
choose the only vertex w ∈ V \C adjacent with v;
C ← C\{v} ∪ {w};
return;

end
else

randomly choose a vertex v ∈ C;
randomly choose a vertex w ∈ V \C;
C ← C\{v} ∪ {w};
for each vertex vi ∈ C do

Increase pi in D;
Update the probabilistic model D;

end
return;

end

end
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Algorithm 12: Heuristic H2

begin
Compute S0(C), S1(C);
if S0(C) is not empty then

choose a vertex v ∈ S0(C) with the highest pi in the probabilistic
model D,
ties broken randomly;
C ← C\{v};
return;

end
if S1(C) is not empty then

choose a vertex v ∈ S0(C) with the highest pi in the probabilistic
model D,
ties broken randomly;
choose the only vertex w ∈ V \C adjacent with v;
C ← C\{v} ∪ {w};
return;

end
else

randomly choose a vertex v ∈ C;
randomly choose a vertex w ∈ V \C;
C ← C\{v} ∪ {w};
for each vertex vi ∈ C do

Increase pi in D;
Update the probabilistic model D;

end
return;

end

end
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Algorithm 13: Heuristic H3

begin
Compute S0(C), S1(C);
if S0(C) is not empty then

choose a vertex v ∈ S0(C) with the lowest pi in the probabilistic model
D,
ties broken randomly;
C ← C\{v};
return;

end
if S1(C) is not empty then

choose a vertex v ∈ S0(C) with the lowest pi in the probabilistic model
D,
ties broken randomly;
choose the only vertex w ∈ V \C adjacent with v;
C ← C\{v} ∪ {w};
return;

end
else

for each vertex vi ∈ C do
Increase pi in D;
Update the probabilistic model D;

end
randomly choose a vertex v ∈ V ;
C ← {v};
return;

end

end
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Algorithm 14: Heuristic H4

Heuristic H4
begin

Compute S0(C), S1(C);
if S0(C) is not empty then

randomly choose a vertex v ∈ S0(C);
C ← C\{v};
return;

end
if S1(C) is not empty then

randomly choose a vertex v ∈ S1(C);
choose the only vertex w ∈ V \C connected with v;
C ← C\{v} ∪ {w};
return;

end
else

for each vertex vi ∈ C do
Increase pi in D;
Update the probabilistic model D;

end
randomly choose a vertex v ∈ V ;
C ← {v};
return;

end

end
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• gen family: random graphs with a unique minimum vertex cover.

• hamming family: from coding theory problems.

• C family: random graphs with given size n and density 0.p.

• MANN family: Steiner triple graphs.

• keller family: based on Keller’s conjecture on tilings using hypercubes.

The BHOSLIB (Benchmarks with Hidden Optimum Solutions) benchmarks are

a set of transformed satisfiability instances arising from SAT’04 competition. These

instances were randomly generated using the model RB in the phase transition area.

Due to the fact that the optimal solutions were deliberately hidden, these instances

have been proved to be hard both theoretically [136] and practically [135].

The last family, MESH, is relatively new in the context of MVC and MIS [5].

MESH is motivated by an application in computer graphics [107]. To be more

specific, to process a triangulation efficiently in graphics hardware, the algorithm

needs to find a small subset of triangles that covers all the edges in the mesh. This

is equivalent to finding a small set cover on the corresponding dual graph (adjacent

faces in the original mesh become adjacent vertices in the dual). The MESH family

contains the duals of well-known triangular meshes. The vertices of degree one and

zero from the dual have been eliminated during the conversion from the original

primal meshes to the duals, since there is always a maximum independent set that

contains them. Almost all vertices in the resulting MVC instances have degree

three. The MESH instances originated from real-world problems, for which the

optimal solutions are unknown. However, Sander et al. [107] have computed lower

bounds on the cover sizes for several MESH instances, e.g., gargoyle (10880), feline

(21937) and bunny (36382).
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5.5.2 Performance Measures

On benchmark problem instances with known optimal solutions, comparing the

performances of different algorithms implies to take into account that some algo-

rithms may have a small probability of success but converge quickly whereas others

may have a larger probability of success but are slower. Auger et al. [7] use the ex-

pected running time (ERT) and the expected running length (ERL) to measure the

performance of an algorithm by conducting independent restarts of the algorithm.

The ERT and ERL to reach the optimal solution are:

ERT (opt) = RTS +
1− ps
ps

RTUS (5.3)

ERL(opt) = RLS +
1− ps
ps

RLUS (5.4)

where ps denotes the fraction of successful trials, the running times RTS and RTUS

denote the average cpu time for successful and unsuccessful trials, respectively. And

the running length RLS and RLUS denote the average number of function evalu-

ations for successful and unsuccessful trials, respectively. ERT and ERL take into

account both the success rate and time cost and give a fair evaluation on an al-

gorithm’s performance, therefore ERT and ERL are employed as the performance

measure to compare the performance of different algorithms for solving the DIMACS

and BHOSLIB benchmarks.

On real-world problem instances where the optimal solutions are unknown, the

most common way of measuring the performance of an algorithm is in terms of the

quality of the solution found in comparison to the quality of the solution found by

some other algorithm. Given sufficient independent runs of both algorithms, it is
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reported whether there is a statistically significant difference in the quality of the

solutions found by the algorithms. To ensure fair comparisons between different

algorithms, the quality of the solution found is usually based on the best or average

solution found after a set number of function evaluations by the algorithm.

On the MESH instances, the performance of different algorithms are measured

by the average of the best solution found within a cut-off time over a sufficient

number of independent runs.

5.5.3 Computing Environment

The FAS is implemented in C++. The source code of PLS and NuMVC are

also implemented in C++ as provided by their authors. All three algorithms are

compiled by g++ with the ’-O2’ option. All runs were made on a 3.4 GHz Intel

CPU and 8GB RAM under Linux. To ensure fair comparison, for each algorithm,

100 independent runs are performed on the DIMACS and BHOSLIB benchmarks

with different random seeds, and 20 independent runs on the MESH instances. The

parameters used in the experiments are listed below:

• Adaptive Interval: The adaptive interval for FAS is set at 1e+07 steps, i.e.,

the algorithm updates the search heuristic every 1e+07 steps.

• Stopping Criteria: Since the optima of DIMACS and BHOSLIB benchmarks

are known, for these instances each run terminates upon finding the optimal

solution or reaching the cut-off condition which is set at 1.5e+09 steps. Since

the optima of MESH instances are unknown, each run terminates upon reach-

ing the cut-off condition which is set at 1.5e+09 steps.

133



5.6 Experimental Studies

This section presents a detailed experimental study to evaluate the performance

of FAS on DIMACS, BHOSLIB and MESH instances. First, the performance of

FAS is evaluated by comparing with two other state-of-the-art algorithms PLS and

NuMVC. Second, the performance of FAS is evaluated by comparing with con-

stituent algorithms including the individual heuristics H0 - H4 in FAS and the

algorithm using random heuristic selection.

Furthermore, to gain a deep understanding of the behaviours of FAS, additional

empirical analysis is performed. First, the run-time behaviours of FAS are explored

through its run-time distributions (RTD). Then the impact of two parameters on

the algorithm performance is studied. Finally the behaviours of both FAS and the

predictive measure on different problem instances are visualised for investigation.

5.6.1 Comparison with State-of-the-art Algorithms

In this section, FAS is compared with PLS [99] and NuMVC [19], both acknowl-

edged as state-of-the-art algorithms for MVC in the literature.

• PLS: Phased local search algorithm, originally proposed for the maximum

clique problem, a later version for MVC is given in [96]. PLS demonstrates

dominating performance on most DIMACS benchmarks except for the MANN

family.

• NuMVC: A local search algorithm for MVC. NuMVC presents competitive

results with PLS on DIMACS benchmarks except for the brock family, and it

is the best algorithm on BHOSLIB benchmarks in the literature.
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5.6.1.1 Comparative Results on DIMACS

Comparative Results on DIMACS benchmarks are reported in Table 5.2. Most

DIMACS instances are now too easy for modern solvers, which can be easily solved

by all three algorithm in a few seconds, the results on those instances are omitted

here. The Friedman’s test [40] is employed to determine if there are global difference

in the results given by three algorithms, where p-value below 0.05 is considered to be

statistically significant (confidence level 95%). The results suggest that there is no

global difference between the three algorithms in terms of the success rate (p-value

= 0.1561). Since NuMVC and PLS completely failed on some instances, it is not

possible to conduct statistical analysis on performance measured by ERL.

Statistical analysis suggests that the three algorithms are equivalent over the

entire set of DIMACS benchmarks, the Wilcoxon rank-sum test [131] with 95%

of statistical confidence is employed to compare the results on each instance, in

terms of 100 independent runs. As indicated in Table 5.2, on the brock instances

which are explicitly generated to defeat greedy heuristics, NuMVC failed on its hard

instances like most greedy heuristics, whilst both FAS and PLS achieve significantly

better results, however, the statistical analysis shows that there is no significant

difference between FAS and PLS. On the putatively hard MANN a81 instance, most

previous heuristics completely failed, so does PLS. FAS achieves a 97% success rate

which is much better than 54% by NuMVC, and the statistical test shows that FAS

significantly outperforms NuMVC in terms of the run length. There is no significant

difference among the three algorithms in terms of both the success rate and the run

length on C4000.5, C2000.9, gen400 p0.9 55, keller6 and p hat1500-1.

In sum, FAS significantly outperforms both NuMVC and PLS on the putatively

hard MANN a81 instance, and is comparable to either PLS or NuMVC on the rest

of DIMACS instances.
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Table 5.2: Comparative Results on Selected DIMACS Benchmarks, the Best Success
Rate Obtained for Each Instance is Highlighted in Bold.

Instance n opt
NuMVC PLS FAS

Success ERL ERT(s) Success ERL ERT(s) Success ERL ERT(s)

brock400 2 400 371 96 645631471 572.3 100 425333 0.44 100 15192380 11.31

brock400 4 400 367 100 6322882 4.98 100 61292 0.1 100 5201368 3.5

brock800 2 800 776 0 n/a n/a 100 30410290 72.8 100 133592306 239.12

brock800 4 800 774 0 n/a n/a 100 8337099 20.3 100 7775114 17.54

C2000.9 2000 1920 1 149002136870 268949.1 0 n/a n/a 3 49348820324 86316.19

C4000.5 4000 3982 100 7989361 124.4 100 4927525 114.87 100 8098165 148.06

gen400 p0.9 55 400 345 100 38136 0.13 100 83928 0.18 100 38009 0.11

keller6 3361 3302 100 438972 28.19 100 3369403 18.17 100 462975 3.31

MANN a45 1035 690 100 90427670 70.4 0 n/a n/a 100 168461871 90.84

MANN a81 3321 2221 54 1939835273 4800.59 0 n/a n/a 97 477085773 999.76

p hat1500-1 1500 1488 100 585133 5.01 100 194304 2.03 100 593697 4.01

5.6.1.2 Comparative Results on BHOSLIB

Comparative Results on BHOSLIB benchmarks are illustrated in Table 5.3. It

is clear that PLS is dramatically worse than NuMVC and FAS on most instances

except for the relatively simple ones. The Wilcoxon rank-sum test [131] with 95%

of statistical confidence is used to analyse the results given by NuMVC and FAS.

In particular, FAS finds the optimal solution with 100% success rate for 21 out of

30 instances. For NuMVC the number is 22, the only difference occurs on frb53-

24-4 where the success rate of FAS is 97%. The statistical analysis shows that the

differences between FAS and NuMVC are insignificant in terms of both the success

rate and ERL, with p-values at 0.3412 and 0.2861, respectively.

In sum, FAS significantly outperforms PLS and is comparable to NuMVC on

BHOSLIB benchmarks.

5.6.1.3 Comparative Results on MESH

Comparative Results on MESH are summarised in Table 5.4. It is worth noting

that MESH instances are fundamentally different from the previous DIMACS and

BHOSLIB benchmarks. On one hand, MESH instances are from real-world problems
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Table 5.3: Comparative Results on the BHOSLIB Benchmarks, the Best Success
Rate Obtained for Each Instance is Highlighted in Bold.

Instance n opt
NuMVC PLS FAS

Success ERL ERT(s) Success ERL ERT(s) Success ERL ERT(s)

frb40-19-1 760 720 100 213918 0.32 100 730969 0.81 100 209992 0.28

frb40-19-2 760 720 100 4256938 3.86 100 16584810 17.94 100 7208289 6.83

frb40-19-3 760 720 100 851291 0.88 100 4622106 5.08 100 846588 0.84

frb40-19-4 760 720 100 2852893 2.65 100 17570890 19.86 100 4687772 4.55

frb40-19-5 760 720 100 12201973 10.83 100 119752273 130.27 100 22820479 22.92

frb45-21-1 945 900 100 2463140 2.71 100 26285666 30.11 100 3180485 3.55

frb45-21-2 945 900 100 4506735 4.82 100 83355260 96.36 100 6405142 7.2

frb45-21-3 945 900 100 11841684 12.38 85 740500037 858.72 100 31652816 35.66

frb45-21-4 945 900 100 4266486 4.56 100 17859728 21.35 100 6436128 7.09

frb45-21-5 945 900 100 8949554 9.42 100 114747722 136.19 100 21764395 24.49

frb50-23-1 1150 1100 100 32154438 38.95 99 359320205 475.44 100 63777048 80.01

frb50-23-2 1150 1100 100 148966929 182.58 0 n/a n/a 100 290146916 347.96

frb50-23-3 1150 1100 98 450069508 554.25 0 n/a n/a 91 698235096 816.04

frb50-23-4 1150 1100 100 5028196 6.35 100 14916125 19.54 100 7002153 8.9

frb50-23-5 1150 1100 100 15781442 19.5 100 239489970 311.78 100 35739625 43.64

frb53-24-1 1272 1219 85 752108726 995.41 0 n/a n/a 71 1226530252 1569.74

frb53-24-2 1272 1219 100 153216458 203.5 3 49130964367 67082.67 100 231949492 302.3

frb53-24-3 1272 1219 100 27031953 36.06 60 1345232923 1823.23 100 81763482 108

frb53-24-4 1272 1219 100 244370626 319.34 30 4276679947 5834.77 97 348219300 445.96

frb53-24-5 1272 1219 100 30242273 39.23 40 2458241640 3348.8 100 60860727 81.53

frb56-25-1 1400 1344 96 416907891 581.87 0 n/a n/a 94 614172789 837.07

frb56-25-2 1400 1344 91 552882515 772.36 0 n/a n/a 91 741094488 969.44

frb56-25-3 1400 1344 100 78477490 109.72 0 n/a n/a 100 181148020 247.67

frb56-25-4 1400 1344 100 25231074 35.4 35 3264476237 4711.4 100 80152900 112.9

frb56-25-5 1400 1344 100 14444131 20.32 93 395447115 565.86 100 44546145 63.82

frb59-26-1 1534 1475 83 844792024 1271.41 0 n/a n/a 77 1015432521 1478.78

frb59-26-2 1534 1475 43 2659650657 4167.1 0 n/a n/a 25 5216501456 7621.81

frb59-26-3 1534 1475 94 471839485 727.53 20 6419008890 9516.55 87 743375266 1066.11

frb59-26-4 1534 1475 86 702870774 1080.79 0 n/a n/a 75 1042081257 1480.42

frb59-26-5 1534 1475 100 35111811 53.84 89 538749308 781.47 100 64968815 95.5
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and the optimal solutions are unknown. On the other hand, MESH instances are

large, very sparse graphs with average vertex degree three. Here FAS has clear

advantages over both PLS and NuMVC across all instances. No statistical analysis

is required in this case, as for each MESH instance, the worst results given by FAS

are better than the best results given by PLS and NuMVC.

Table 5.4: Comparative Results on MESH Instances, the Best Average Solution and
the Best Solution Found in Each Case are Highlighted in Bold.

Instance n
NuMVC PLS FAS

MAX AVG MIN MAX AVG MIN MAX AVG MIN

blob 16068 8846 8844.5 8839 8856 8850.1 8843 8825 8822.1 8820

gargoyle 20000 11198 11195.8 11193 11198 11188.2 11176 11152 11149.1 11148

face 22871 12704 12701.9 12700 12707 12701.1 12697 12658 12656.1 12654

feline 41262 22478 22474.3 22467 22564 22551.1 22541 22428 22425.2 22419

gameguy 42623 21915 21912.1 21910 22048 22030.2 22015 21904 21901.3 21899

bunny 68790 36508 36506.1 36505 36693 36667.2 36653 36490 36480.7 36472

5.6.2 Comparison with Constituent Algorithms

In this section, an empirical comparison and analysis between FAS and con-

stituent algorithms is carried out to show the effectiveness of the proposed measure-

driven adaptive mechanism.

The investigation is performed on representative instances selected from different

instance classes. For DIMACS benchmarks, brock800 2 and MANN a81 are selected,

as they are the hardest instance of brock and MANN family, respectively. For

BHOSLIB benchmarks, frb59-26-1 and frb59-26-2 are selected, since they are of

large size and challenging difficulty within the BHOSLIB benchmark. For MESH

instances, face and gameguy are selected. face is of reasonable size within MESH

instances, while gameguy is much larger and tends to be more difficult.
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5.6.2.1 Comparison with Individual Heuristics

First of all, FAS is compared with the individual heuristics H0 - H4 in FAS.

The comparative results on selected instances from DIMACS and BHOSLIB

benchmarks are summarised in Table 5.5. Since H0 adopts the strategies to select

vertices for exchange from NuMVC [19], it gives exactly the same performance as

NuMVC under identical experiment settings. It is clear that H0 and FAS are sig-

nificantly better than H1-H4, as H1-H4 completely failed on the frb instances, and

it has been shown that H0 and FAS are equivalent on frb instances. In particu-

lar, FAS significantly outperforms all individual heuristics on the putatively hard

MANN a81 instance. As for the brock800 2, the Wilcoxon rank-sum test [131] with

95% of statistical confidence has been applied which indicates that H3, H4 and FAS

present equivalent performance.

The comparative results on selected MESH instances are summarised in Table

5.6. No statistical analysis is required in this case, as for each MESH instance, the

worst results given by FAS are better than the best results given by H0-H4.

Table 5.5: Comparative Results with Individual Heuristics on Selected DIMACS
and BHOSLIB Instances, the Best Success Rate Obtained for Each Instance is High-
lighted in Bold.

(a)

Instance
H0 H1 H2

Suc ERL ERT(s) Suc ERL ERT(s) Suc ERL ERT(s)
frb56-25-2 91 552882515 772.36 0 n/a n/a 0 n/a n/a
frb59-26-1 83 844792024 1271.41 0 n/a n/a 0 n/a n/a

brock800 2 0 n/a n/a 80 889349615 2125.75 0 n/a n/a
Mann a81 54 1939835273 4800.59 0 n/a n/a 0 n/a n/a

(b)

Instance
H3 H4 FAS

Suc ERL ERT(s) Suc ERL ERT(s) Suc ERL ERT(s)
frb56-25-2 0 n/a n/a 0 n/a n/a 91 741094488 969.44
frb59-26-1 0 n/a n/a 0 n/a n/a 77 1015432521 1478.78

brock800 2 100 22329070 53.3 100 43319358 104.01 100 133592306 239.12
Mann a81 0 n/a n/a 0 n/a n/a 97 477085773 999.76
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Table 5.6: Comparative Results with Individual Heuristics on Selected MESH In-
stances, the Best Average Solution and the Best Solution Found in Each Case are
Highlighted in Bold.

(a)

Instance n
H0 H1 H2

MAX AVG MIN MAX AVG MIN MAX AVG MIN
face 22871 12704 12701.9 12700 12663 12659.4 12659 12745 12735.6 12725

gameguy 42623 21915 21912.1 21910 21962 21951.2 21926 22057 22047.1 22034

(b)

Instance n
H3 H4 FAS

MAX AVG MIN MAX AVG MIN MAX AVG MIN
face 22871 12766 12760.7 12752 12702 12698.6 12692 12658 12656.1 12654

gameguy 22032 22022.6 22007 22003 22073 22065.9 22063 21904 21901.3 21899

5.6.2.2 Comparison with Algorithm Using Random Heuristic Selection

To show the predictive measure as an effective approach for dynamically adapting

heuristics, FAS is compared with the algorithm that selects the heuristic uniformly

at random at the fixed interval. The algorithm using random heuristic selection

operates on the identical set of heuristics as FAS which consists of H0 - H4. But

unlike FAS which updates the new search heuristic according to the predictive mea-

sure, the algorithm using random heuristic selection selects the new search heuristic

uniformly at random at each decision point.

The comparative results on selected instances from DIMACS and BHOSLIB

benchmarks are summarised in Table 5.7(a). A statistical analysis has been per-

formed to compare the significance of the results using the Wilcoxon rank-sum test

[131], where p-value below 0.05 is considered to be statistically significant (confi-

dence level 95%). Although FAS and the algorithm using random heuristic selection

operate on the identical set of heuristics, it is clear that FAS achieves much bet-

ter success rate on most instances, and is on par with the algorithm using random

heuristic selection on brock800 2. In terms of the performance measured by run

length in 100 independent executions on each instance, the statistical test shows

that FAS significantly outperforms the algorithm using random heuristic selection.

140



Table 5.7: Comparative Results with the Algorithm Using Random Heuristic Selec-
tion on Selected DIMACS, BHOSLIB and MESH Instances.

(a) DIMACS and BHOSLIB, the Best Success Rate Obtained for Each Instance
is Highlighted in Bold.

Instance
RANDOM FAS

Suc ERL ERT(s) Suc ERL ERT(s)
frb56-25-2 20 1481457578 2079.2 91 741094488 969.44
frb59-26-1 10 14173757252 20997.9 77 1015432521 1478.78

brock800 2 100 726690275 139.7 100 133592306 239.12
Mann a81 50 2630482830 2283.5 97 477085773 999.76

(b) MESH, the Best Average Solution and the Best Solution
Found in Each Case are Highlighted in Bold.

Instance
RANDOM FAS

MAX AVG MIN MAX AVG MIN
face 12667 12662 12658 12658 12656.1 12654

gameguy 21914 21908 21902 21904 21901.3 21899

The comparative results on selected MESH instances are summarised in Table

5.7(b). A statistical analysis has been performed to compare the significance of

the results using the Wilcoxon rank-sum test [131], where p-value below 0.05 is

considered to be statistically significant (confidence level 95%). The test suggests

that FAS is significantly superior to the algorithm using random heuristic selection

on both face and gameguy, in terms of the best solutions found in 20 independent

executions.

5.6.3 Characterising Run-time Behaviours of FAS

Due to the inherent randomness, the time needed by a randomised algorithm to

find a solution differs from run to run even for a single instance. This variability of

run time between multiple independent runs also demonstrates certain important

characterisations for the behaviour of the algorithm. The run time of a randomised

algorithm can be defined as a random variable which is fully characterised by the

run-time distribution (RTD). Hoos et al. [62] proposed a RTD-based empirical anal-

ysis methodology for studying the run-time behaviour of algorithms, which has been

141



widely applied to empirical analysis and performance modelling of heuristic algo-

rithms.

Here the RTD-based empirical analysis methodology has been applied for study-

ing run-time behaviour of FAS on selected representative instances from different

instance classes. For DIMACS benchmarks, brock800 2 and MANN a81 are selected,

as they are the hardest instance from brock and MANN family, respectively. For

BHOSLIB benchmarks, frb56-25-2 and frb59-26-1 are selected, since they are of

large size and challenging difficulty within the BHOSLIB benchmark.

The RTDs can be approximated using the cumulative form of an exponential

distribution ed[m](x) = 1− 2−x/m, where m is the median of the distribution and x

the number of steps required to find a solution. Note the representation ed[m] using

m = ln 2/λ here is equivalent to the exponential distribution exp(λ), usually defined

by P (X ≤ x) = 1− e−λx in the statistical literature. Instead of measuring run-time

distributions in terms of CPU-time, it is often preferable to use a more machine in-

dependent measure of an algorithm’s performance such as representative operation

counts. An appropriate operation count for FAS and other heuristic algorithms for

MVC is the swap operation, commonly referred to as a step.

The RTDs for FAS on selected instances are illustrated in Figure 5.2 (based on

100 independent runs for each instance). From the diagrams it is clear to see that the

RTDs are quite well approximated by exponential distributions. Similar exponential

RTDs are observed for FAS applied to other DIMACS and BHOSLIB instances. For

testing the goodness of these approximations the Kolmogorov−Smirnov tests [85]

have been used. The K-S test is a useful nonparametic test to compare a sample with

a reference probability distribution. The K-S tests for the approximations fail to
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reject the null hypothesis that the sampled RTDs abide by the exponential distribu-

tions at a standard significance level α = 0.05, with p-values at 0.8719 (frb56-25-2),

0.6643 (frb59-26-1), 0.7956 (MANN a81) and 0.9671 (brock800 2).
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Figure 5.2: RTDs of FAS Applied to the Selected Instances

Similar exponential RTDs have been observed for many other effective ran-

domised algorithms, e.g., for Maximum Clique [97], for SAT [60, 61], for MAXSAT

[108], and for scheduling [123]. By the arguments made in [62] for algorithms ex-

hibiting an exponential RTD, the probability of finding a solution within a fixed

time interval is independent of the run-time spent before, namely, the algorithms
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are essentially memoryless, as for a given total time t, restarting at time t
′
< t

does not significantly influence the probability of finding a solution in time t. It

is concluded, for FAS, that the probability of finding an optimal solution within a

fixed amount of time (or steps) does not depend on the number of search steps done

in the past. Consequently, they are robust w.r.t. the cut-off parameters like the

maxsteps parameter and the number of random restarts.

5.6.4 Sensitivity Analysis of Adaptive Interval and Cut-off

Parameter

This subsection performs additional empirical analysis for the adaptive interval

parameter and the cut-off parameter, which are the only two parameters to tune

before actually applying the algorithm.

5.6.4.1 Adaptive Interval

The adaptive interval determines when to change the dynamics of the algorithm.

To study the impact of this parameter on the algorithm’s performance, empirical

comparison has been performed for four different adaptive interval values ranging

from small to large: 5e+06, 1e+07, 2.5e+07, 5e+07 on selected instances from

DIMACS, BHOSLIB and MESH. The experimental results are summarised in Table

5.8. The Friedman’s test [40] is employed to determine if there are global difference

in the results, where p-value below 0.05 is considered to be statistically significant

(confidence level 95%). The results suggest that the differences between FAS with

different values of adaptive interval are statistically insignificant. It is therefore

concluded that the performance of FAS is robust with respect to the adaptive interval

parameter.
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Table 5.8: Performance of FAS in Different Adaptive Intervals on Selected DIMACS,
BHOSLIB and MESH Instances

(a) Performance of FAS in Different Adaptive Intervals on Selected DIMACS and BHOSLIB Instances

Instance
5e+06 1e+07 2.5e+07 5e+07

Suc ERL ERT(s) Suc ERL ERT(s) Suc ERL ERT(s) Suc ERL ERT(s)
frb56-25-5 90 587248497 810.7 91 741094488 969.44 88 966017282 1329.06 91 748535331 1024.28
frb59-26-1 80 1348983905 2007.8 77 1015432521 1478.78 70 1516226852 2202.7 68 1672182547 2439.3

brock800 2 90 341287890 586.67 100 133592306 239.12 93 341280769 563.5 100 101491996 193.8
Mann a81 95 283767098 652.3 97 477085773 999.76 98 465275170 938.9 95 593001274 973.4

(b) Performance of FAS in Different Adaptive Intervals on Selected MESH Instances

Instance n
5e+06 1e+07 2.5e+07 5e+07

MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN
face 22871 12661 12657.6 12655 12658 12656.1 12654 12658 12656.4 12654 12662 12658.8 12656

gameguy 42623 21909 21905.6 21902 21904 21901.3 21899 21911 21906.6 21907 21912 21907.4 21899

5.6.4.2 Cut-off Parameter

The cut-off parameter determines when to terminate the algorithm unless the

optimal solutions are found before reaching the cut-off time. For DIMACS and

BHOSLIB benchmarks where the optima are known, FAS terminates upon finding

the optimal solution or reaching the cut-off condition which is set at 1.5e+09 steps.

For MESH instances where the optima are unknown, FAS terminates upon reaching

the cut-off condition which is set at 1.5e+09 steps.

Since RTDs of FAS exhibit an exponential distribution when applied to DIMACS

and BHOSLIB benchmarks, the performance of FAS is robust w.r.t. the cut-off

parameter and thus it is concluded that setting the cut-off parameter of FAS at

1.5e+09 steps is appropriate. To ensure fair comparison on MESH instances where

the optimal solutions are unknown, an empirical analysis has been conducted to

show the cut-off parameter is set appropriately. Figure 5.3 shows the solutions (Size

of Independent Set) found for the largest instance of MESH as the number of steps

increases for NuMVC, PLS and FAS, respectively. The three algorithms seem to

converge after 1.5e+09 steps, which is set as the cut-off parameter.
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Figure 5.3: The Minimum Vertex Cover Found for the Largest Instance of MESH
as the Number of Steps Increases for NuMVC, PLS and FAS.

5.6.5 Behaviours of FAS and the Predictive Measure

This subsection aims to perform additional empirical analysis to further investi-

gate the behaviours of FAS and the predictive measure present on different instance

classes.

To perform this empirical analysis, two representative instances are selected from

each instance class. For DIMACS benchmarks, brock800 2 and MANN a81 are se-

lected, as they are the hardest instance from brock and MANN family, respectively.

For BHOSLIB benchmarks, frb56-25-2 and frb59-26-1 are selected, since they are

of large size and challenging difficulty within the BHOSLIB benchmark. For MESH

instances, face and gameguy are selected. face is of reasonable size within MESH,

whilst gameguy is much larger and tends to be more difficult.

Pullan et al. [98] have noted that instances from DIMACS and BHOSLIB bench-

marks have different characteristics. Furthermore, MESH instances are fundamen-

tally different from DIMACS and BHOSLIB benchmarks [5]. Note the following
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conclusions on DIMACS are for the complementary DIMACS graphs.

• The DIMACS MANN instances have a large proportion of plateaus in the

instance search space, and thus greedy heuristics are unsuitable to solve them.

• The DIMACS brock instances have minimum vertex covers that consist of

medium to lower degree vertices, and are designed to defeat greedy heuristics.

• The BHOSLIB instances have minimum vertex covers consisting of vertices

whose distribution of vertex degree closely matches that for the complete

graph. These are difficult instances for both greedy and diversification heuris-

tics

• The MESH instances are large, sparse graphs, mostly with average vertex

degree three. The characteristics of the minimum vertex covers are unclear

since MESH are arising from real-world problems where the optimal solutions

are unknown.

5.6.5.1 On DIMACS

The results of the investigation on MANN a81 and brock800 2 are illustrated in

Figure 5.4(a) and Figure 5.4(b), respectively. In FAS, the best solution is updated

if and only if the size of the new vertex cover obtained is smaller than or equal to

the size of the current best solution.

The upper graph in Figure 5.4(a) illustrates the best solution found by different

heuristics during the course of a FAS run on MANN a81. As reported in Table

2, the existing state-of-the-art algorithms NuMVC and PLS only achieve success

rate of 54% and 0% for MANN a81, respectively. According to [98], this difficulty

of MANN a81 is due to the fact that MANN instances have a large proportion of

plateaus in the search space, where little information can be obtained to guide the
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search for most heuristic algorithms. From the upper graph in Figure 5.4(a), it

is clear to see that heuristics H1 and H2 of FAS are performing plateau moves on

vertex covers of size opt(MANN a81) − 2 most of the time during the run, where

opt(MANN a81) denotes the optimal vertex cover size of MANN a81. In FAS, the

best solution found so far is taken as the starting point for the next heuristic being

selected. The plateau moves performed by H1 and H2 has taken the search to the

right region in the search space, which has has resulted in the convergence of FAS

to the optimal solution.

With respect to behaviours of the predictive measure on MANN a81, the lower

graph in Figure 5.4(a) shows the probabilities for selecting different heuristics over

the course of a FAS run on MANN a81. These probabilities are normalised values of

the predictive problem difficulty measure computed based on the latest performance

of heuristics. On MANN a81, H0 is the dominant heuristic with the probability for

selecting it above 0.75 all the time, this is confirmed by the upper graph in Figure

5.4(a) that H0 quickly finds the vertex cover of size opt(MANN a81)−2, and takes

the search to escape from the plateau to converge to the optimum. In the meantime,

despite the probabilities for selecting heuristics H1 and H2 are much lower than that

of H0, the efficacy of H1 and H2 are essential for finding the minimum vertex cover

of MANN a81. As seen in the upper graph in Figure 5.4(a), the plateau moves

performed by H0 and H1 take the search to more promising regions in the search

space, as a consequence, enabling the escape from the plateau to convergence by

H0.

The upper graph in Figure 5.4(b) illustrates the best solution found by different

heuristics during the course of a FAS run on brock800 2. It is noted in [98] that brock

instances are deliberately designed to defeat greedy heuristics by explicitly incorpo-
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Figure 5.4: Adaptive Behaviours of FAS and the Predictive Problem Difficulty Mea-
sure on the Selected DIMACS Instances.

rating medium to lower degree vertices with the minimum vertex covers. Similarly

to the observations on MANN a81, in most of the time FAS is performing plateau

moves on vertex cover of size opt(brock800 2)−3, where opt(brock800 2) denotes the

optimal vertex cover size of brock800 2. But unlike on MANN a81, these plateau

moves are performed by H1, H2, H3 and H4 and it is H4 that takes the search to

escape from the plateau to converge to the optimum. It is worth noting that a large
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number of different vertex covers on the plateau are discovered, this indicates a large

proportion of plateaus might exist in the search space of brock800 2.

Regarding behaviours of the predictive measure on brock800 2, the lower graph

in Figure 5.4(b) shows the probabilities for selecting different heuristics over the

course of a FAS run on brock800 2. The pattern for the probabilities presents rela-

tively large fluctuations, H1 and H2 have clear advantages, with probabilities over

0.25 and 0.5 most of the time, respectively. The probabilities for H3 and H4 are

significantly smaller than that of H1 and H2. This pattern for the behaviours of the

predictive measure is unique in a sense that it is very different from the behaviours

of the predictive measure on other instances.

5.6.5.2 On BHOSLIB

The results of the investigation on frb56-25-2 and frb59-26-1 are illustrated in

Figure 5.5(a) and Figure 5.5(b), respectively. The upper graphs in Figure 5.5(a) and

Figure 5.5(b) illustrate the influence of different heuristics in terms of finding bet-

ter/plateau solutions as FAS proceeds on frb56-25-2 and frb59-26-1, respectively.

The patterns observed for behaviours of FAS on these two frb instances are very

similar, which has confirmed that FAS recognises the two instances with very similar

characteristics. H0 turns out to be the most critical heuristic for finding the optimal

solutions of these two frb instances, this result is in line with our expectations since

H0 is adopted from NuMVC which is the most effective algorithm in solving frb

instances.

The lower graphs in Figure 5.5(a) and Figure 5.5(b) demonstrate the probabil-

ities for selecting different heuristics over FAS runs on frb56-25-2 and frb59-26-1.
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Figure 5.5: Adaptive Behaviours of FAS and the Predictive Problem Difficulty Mea-
sure on the Selected BHOSLIB Instances.

Very similar patterns are observed again, H0 turns out to be the dominant heuristic

with significantly higher probabilities to be selected than all other heuristics. In this

case, FAS has identified H0 as the most effective heuristic for solving frb instances

where H0 is known to be the best heuristic for frb instances so far. This has demon-

strated that FAS is able to recognise the characteristics of the instance and match

it with the most effective heuristic.
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Figure 5.6: Adaptive Behaviours of FAS and the Predictive Problem Difficulty Mea-
sure on the Selected MESH Instances.

5.6.5.3 On MESH

The results of the investigation on face and gameguy are illustrated in Figure

5.6(a) and Figure 5.6(b), respectively. MESH instances are fundamentally different

from the previous benchmarks, which are large, sparse graphs with linear-sized ver-
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tex covers. The upper graphs in Figure 5.6(a) and Figure 5.6(b) show the influence

of different heuristics in terms of finding better solutions on face and gameguy. It

is noted that FAS starts from relatively bad solutions on both face and gameguy,

which are then steadily improved by different heuristics iteratively, mainly H0, H1

and H2.

The lower graphs in Figure 5.6(a) and Figure 5.6(b) show the probabilities for

selecting different heuristics of FAS on face and gameguy. The graphs present

similar patterns which are different from the previous graphs. Here H1 has clear

advantages, followed by H0 and H2. According to Tables 5.4 and 5.6, the state-of-

the-art algorithms NuMVC and PLS only deliver very low-level solutions for MESH

instances, and so do individual heuristics in FAS. The outstanding performance

of FAS on MESH instances are the consequence of cooperation between different

heuristics.

5.7 Summary

Adaptive heuristic algorithms have gained increasing popularity in recent years.

This is motivated by the fact that there is evidence, both empirical and theoretical,

that the most effective configuration of a given algorithm for solving a particular

problem instance can vary during the search process. Also such algorithms with

improved generality would increase the potential applicability for solving a broad

class of problem instances with diverse characteristics. A common limitation in

most existing adaptive heuristic algorithms lies in that these algorithms utilise his-

torical information only while selecting from candidate configurations. However, an

accurate selection must account for the fact that the optimal configuration could

be regarded as a dynamic random variable and the underlying distribution of this

random variable changes as the search proceeds.
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To address this issue, a generic framework for designing adaptive heuristic al-

gorithms using the predictive problem difficulty measure has been proposed. To

demonstrate the effectiveness of the proposed approach, the proposed framework

has been applied to design the fitness landscape based adaptive search algorithm

(FAS) for tackling the minimum vertex cover problem (MVC). The experimental re-

sults showed that FAS is competitive with the state-of-the-art algorithms NuMVC

and PLS on the widely studied DIMACS and BHOSLIB benchmarks. In particular,

FAS significantly outperformed NuMVC and PLS on the putatively hard MANN a81

instance, achieving a success rate of 97%. Furthermore, FAS achieved dominant per-

formance over NuMVC and PLS on a new instance class MESH arising from real-

world problems. Further empirical analysis on selected instances from DIMACS,

BHOSLIB and MESH revealed that the predictive measure was essential to the

adaptivity of FAS when solving a broad class of instances with diverse characteris-

tics, where the candidate heuristics were prompted to cooperate for solving different

instances accordingly.
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Chapter 6

CONCLUSIONS

The overall goal of this thesis is to develop an effective approach for analysing

fitness landscapes, which can then be used to build enhanced techniques for finding

best algorithm configurations of metaheuristics for solving optimisation problems.

The motivations are twofold. On one hand, finding the best suited configuration of a

given algorithm for solving a particular problem requires in-depth understanding of

the problem in relation to the algorithm, which can be provided by fitness landscape

analysis. On the other hand, despite extensive research on fitness landscape analysis

and a number of developed approaches, very few approaches are used in practice, due

to the fact that the existing fitness landscape analysis approaches have either proved

to be unreliable or are unable to be used in practice due to their own limitations

(e.g. require known global optima).

The work presented in this thesis has contributed to fulfil this goal and addressed

three important research issues in incorporating fitness landscape analysis to design

an algorithm. In particular, a novel and effective approach for characterising fitness

landscapes and measuring problem difficulty has been developed. Furthermore, the

proposed approach, along with the existing fitness landscape analysis techniques,

have been incorporated to build enhanced techniques for both static and dynamic

algorithm configurations.

This chapter summarises the contributions presented in preceding chapters of the
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thesis with remarks for future work. Section 6.1 reiterates the need and importance

to develop an effective and reliable approach for characterising fitness landscapes

and measuring problem difficulty. The study presented in Chapter 3 is summarised

which proposed the fitness-probability cloud as a novel approach for characterising

fitness landscapes, and the accumulated escape probability for measuring problem

difficulty, motivated by a theoretical investigation of the escape probability and the

expected runtime. Section 6.2 summarises the motivation and conclusion of the

study in chapter 4 that incorporated the problem difficulty measure, the accumu-

lated escape probability, with classification algorithms to build automatic algorithm

configuration methods on a per-instance base. Section 6.3 summarises the moti-

vation and conclusion of the study in chapter 5 that incorporated the predictive

problem difficulty measure to develop a generic framework for designing adaptive

heuristic algorithms. Section 6.4 concludes this thesis with remarks for future work.

6.1 A Novel Approach for Characterising Fit-

ness Landscapes and Measuring Problem Dif-

ficulty

Metaheuristics are extensively developed and applied in solving complex opti-

misation problems. Nevertheless, relatively little attention has been paid to study

the implications behind the empirical results, i.e., on understanding which kinds of

problems the proposed algorithm will perform well or poorly and why. Given this

lack of understanding of problems in relation to algorithms, despite many successes

of metaheuristics in solving complex optimisation problems, fundamental questions

like which algorithms or algorithm variants are best suited for solving a given prob-

lem remain unanswered. Recent theoretical investigations such as runtime analysis

[68] have made some progress in addressing this problem, where on particular prob-

lem instances the EA-hardness [58], when a large population is useful [56] and the
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interactions between mutation and selection [77] are investigated. However, theo-

retical investigations are often under several assumptions which cannot be met in

practical scenarios, finding the best suited algorithm for solving a particular problem

remains a daunting task for practitioners.

Fitness landscape analysis, a powerful analytical tool particularly in understand-

ing characteristics of optimisation problems and the associated behaviours of meta-

heuristics, shows great promise in overcoming this long standing challenge. Although

extensive studies have been conducted on fitness landscape analysis to develop gener-

ally effective techniques, the developed techniques have either proved to be unreliable

or are unable to be used in practice due to their own limitations (e.g. require the

global optima to be known), and there is a lack of an effective and reliable approach

for characterising fitness landscapes and measuring problem difficulty.

This thesis fulfilled this need through proposing a fitness-probability cloud as

a novel approach for characterising fitness landscapes, and the accumulated escape

probability to explicitly quantify the problem difficulty with respect to algorithms,

based on the notion of escape probability arising from time complexity studies of

metaheuristics.

In particular, this thesis has for the first time bridged the gap between time

complexity studies of metaheuristics and fitness landscape analysis, where the no-

tion of escape probability has been formally defined and a theoretical investigation

has been conducted to show that the escape probability is a critical factor in deter-

mining lower bounds of the expected runtime, which is usually taken as a difficulty

measure in time complexity studies of metaheuristics. Two further developments

have been obtained based on the escape probability. First, the fitness-probability

cloud [82] has been defined to obtain an overall characterisation of fitness land-

scapes. Second, the accumulated escape probability (aep) [82] has been derived

from the fitness-probability cloud to explicitly quantify the problem difficulty with
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respect to algorithms.

Results from the case studies showed that aep outperformed the negative slope

coefficient, which is a widely applied problem difficulty measure in GP and GA,

and can serve as a reliable predictive problem difficulty measure for discriminating

the relative problem difficulty of the subset sum problem, onemax, onemix and trap

w.r.t. the mutation-based (µ+λ) EAs. The proposed fitness-probability cloud and

aep measure showed great promise in effectively characterising fitness landscapes and

reliably measuring problem difficulty. Since the fitness-probability cloud and aep are

generic approaches which do not require any a priori knowledge, and the definition

of aep is general and has many degrees of freedom, the fitness-probability cloud and

aep can serve as an effective and reliable approach for fitness landscape analysis,

and can potentially be incorporated to build enhanced techniques for finding the

best suited algorithm for solving a particular problem.

6.2 Incorporating Fitness Landscape Analysis for

Static Algorithm Configuration

It is widely acknowledged that finding good algorithm configurations is essential

to obtain robust and high algorithm performance, also it has been observed that

a given algorithm requires different configurations in order to find good solutions

for different problem instances [41, 94, 137]. The static algorithm configuration

concerns determining a priori the most effective configuration of a given algorithm

for solving a particular problem instance.

Commonly the static algorithm configuration problem is to find the best suited

configuration in a finite set of candidate configurations, which is traditionally for-

mulated as an optimisation problem. But unlike standard optimisation problems,

the objective function of the static algorithm configuration problem cannot be writ-

ten analytically and is typically highly non-linear and very expensive to compute.
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The most common technique for selecting the best suited configuration is by trial

and error, which is not only inefficient and laborious, but very unlikely to locate

the optimal configuration due to the size of the configuration space. Recent years

have seen many approaches proposed to automatically determine a priori the best

suited configuration of a given algorithm for solving a particular problem. In partic-

ular, most previous approaches are either generic (problem-independent) but only

produce a one-size-fits-all configuration for an entire set of problem instances, or

perform per-instance configuration only for a particular problem by making use of

problem-specific features. To the best of our knowledge, there exists very few generic

(problem-independent) techniques for automatically configuring a given algorithm

on a per-instance basis.

This thesis addressed this need in two steps. First, the static algorithm configu-

ration problem has been reformulated as a decision problem, which is to determine

whether a given algorithm configuration is suitable for solving a given problem in-

stance. This reformulation is in the interest of practice since it is usually infeasible

to explore the entire configuration space for finding the optimal configuration, it is

somewhat sufficient if an approximation solution can be efficiently identified within

a finite set of configurations. Second, a problem difficulty measure, the accumu-

lated escape probability, has been incorporated to build a generic approach which

performs automatic algorithm configuration on a per-instance base [78, 81]. The

proposed approach is based on learning the pattern which governs the relationship

between the configurations of a given algorithm and the characteristics of problem

instances, where the accumulated escape probability has been employed as features

to characterise problem instances.

Results from the case study on the Unique Input Output Sequence problem

(UIO) showed the proposed approach can reliably determine whether a configuration

of the (µ + λ) EA is suitable for solving a UIO instance, provided a configuration

159



was considered as effective when the (µ + λ) EA executed under the configuration

showed high performance. Furthermore, within a finite set of configurations, the

proposed approach significantly outperformed ParamILS, which is a state-of-the-art

automatic algorithm configuration method, on automatically configuring the (µ+λ)

EAs for solving the UIO problem.

Further to finding the best suited algorithm configuration within a finite set of

existing algorithm configurations, it is always useful to produce a novel, problem-

specific configuration (e.g. new heuristic/search operator) which potentially outper-

forms other configurations on a particular class of problem instances. This thesis

has established a bridge connecting results of theoretical fitness landscape analysis

and design of novel, effective heuristics, through proposing an approach to perform

elementary landscape analysis and further explicitly apply the analytical results

to develop efficient local search heuristics [80]. Results from the case study illus-

trated that the proposed elementary hill climbing algorithm developed using results

from elementary landscape analysis significantly outperformed both the standard

stochastic hill climber and the state-of-the-art in solving the next release problem

in software engineering.

6.3 Incorporating Fitness Landscape Analysis for

Dynamic Algorithm Configuration

Traditionally algorithm configuration methods attempt to determine a priori the

most appropriate configuration of a given heuristic algorithm for solving a partic-

ular problem instance. However, there are both empirical and theoretical evidence

showing that the most effective configuration of a given algorithm for solving a par-

ticular problem instance can vary during the search process [116]. This motivates

the development of heuristic algorithms that dynamically adapt their configurations

(search operators, numerical parameters, etc.) during the search process. These
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algorithms, often referred to as adaptive heuristic algorithms, aim to identify and

select the most effective configuration of a given algorithm at each decision point

during the search. In particular, the behaviours of such heuristic algorithms are

adapted to specific characteristics of problem instances, and the generality of such

algorithms would be improved to be able to solve a broad class of problems with

diverse characteristics. A common limitation in most existing adaptive heuristic

algorithms lies in that these algorithms utilise historical information only while se-

lecting from candidate configurations. It is noted that considering only the past

performance can be misleading, as the optimal configuration could be regarded as

a dynamic random variable and the underlying distribution of this random variable

changes as the search proceeds.

This thesis addressed this vital issue through incorporating predictive informa-

tion provided by the predictive problem difficulty measure to design a systematic

mechanism for adaptive heuristic search. A generic framework for designing adap-

tive heuristic algorithms using the predictive problem difficulty measure has been

proposed, in which the predictive measure can predict the expected performance of

candidate configurations by exploiting information extracted from the search trajec-

tory, therefore selection of the best suited configuration can be based on the expected

performance instead of past performance only. As a result, a more accurate mapping

between candidate configurations of a given algorithm and specific characteristics of

search space can be established.

Results from the case study, which applied the proposed framework to develop

the fitness landscape based adaptive search algorithm (FAS) for the minimum vertex

cover problem (MVC), showed that FAS either outperformed or was comparable to

the state-of-the-art algorithms for MVC on both widely studied benchmarks and

real-world instances. New lower bounds have been found by our algorithm on sev-

eral hard problem instances. Further empirical analysis revealed that the predictive
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measure was essential to the adaptivity of FAS when solving a broad class of in-

stances with diverse characteristics, where the candidate heuristics were prompted

to cooperate for solving different instances accordingly.

6.4 Future Work

The future research identified for this thesis proceed along several directions.

6.4.1 Exploiting Fitness-Probability Cloud

The fitness-probability cloud provides an overall characterisation of fitness land-

scapes, where the critical information on the underlying fitness-probability cloud can

be exploited to further understand the problem difficulty with respect to the algo-

rithm applied to solve it. The accumulated escape probability can be regarded as the

first attempt to extract information from the fitness-probability cloud to explicitly

quantify the problem difficulty with respect to algorithms. However, the definition

of the accumulated escape probability is simple and intuitive, there is large room for

research efforts in attempting to extract the information on the fitness-probability

cloud in many alternative ways, e.g., by considering the importance of different

fitness values instead of treating them equally.

6.4.2 Identifying Effective Application Domains for Prob-
lem Difficulty Measures

Assuming a worst-case perspective, He et al. [54] have rigorously proved for

both approximate and exact measures, the predictive versions that can be com-

puted in polynomial-time do not exist unless P = NP or BPP = NP. This result

has concluded that finding a useful predictive problem difficulty measure in general

is impossible. In this thesis, the accumulated escape probability derived from the

fitness-probability cloud has been proposed as a predictive problem difficulty mea-

sure, although the results from case studies on unitation functions and the subset
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sum problem suggested it is a reliable measure, if we refer to the theoretical con-

clusion [54] it is obvious to see that the accumulated escape probability cannot be

useful in all problem domains. For the sake of practitioners to apply this measure,

an important issue to address in the future work of this thesis would be to identify

the problem domains where the proposed problem difficulty measure, accumulated

escape probability, is reliably useful, and to further determine the limitations of the

predictive problem difficulty measure which can potentially lead to implications on

how to improve and design an enhanced problem difficulty measure.

6.4.3 Exploring Theoretical Results for Fitness Landscape
Analysis

Fitness landscape analysis aims to gain in-depth understanding of problem char-

acteristics and thus determining the problem difficulty with respect to algorithms,

which is fundamentally linked with theoretical investigations in the field of meta-

heuristics, such as time complexity studies of metaheuristics. Fitness-probability

cloud served as the first attempt to bridge theoretical results in the field of meta-

heuristics and fitness landscape analysis. In fact, there exists a number of theoretical

studies such as convergence [46] and runtime analysis [68] on understanding the re-

lationship between problem characteristics and behaviours of search algorithms. It

is very promising to investigate a wider spectrum of theoretical studies and find

out whether the results can be applied to build enhanced approaches for fitness

landscape analysis or not.

6.4.4 Extending the Proposed Automatic Algorithm Con-
figuration Method

The automatic algorithm configuration method proposed in Chapter 4 appeared

to be the first generic approach to automatically configure a heuristic algorithm

on a per-instance base. This approach was studied on configuring EAs for solving
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the UIO problem in software testing, since the features (a set of problem difficulty

measures) used to represent the instances are problem-independent, it is very in-

teresting to apply the proposed approach to a wider class of problems, particularly

software engineering problems. Search based software engineering [53] is emerging

as a popular approach which applies metaheuristics to tackle software engineering

problems, but despite a large number of algorithms being developed, it is difficult

for software engineers to apply these algorithms since finding good configurations of

a given algorithm requires extensive knowledge about the algorithm. The proposed

automatic algorithm configuration method is a promising solution to address this

issue.

Furthermore, the proposed automatic algorithm configuration is based on learn-

ing the pattern which governs the relationship between the configurations of the

algorithm and the characteristics of instances. The choice of the classification algo-

rithm is essential to the performance of the algorithm configuration method, we start

with the support vector machine, but more classification algorithms can be tested

and compared. In addition, automatic algorithm configuration which takes into ac-

count the characteristics of the problem instance and past performance on similar

instances lends itself nicely to incremental learning. In an incremental setting, it

is very interesting to study the trade off between exploitation (choosing the best

suited configuration) and exploration (choosing other configurations from which the

classifier can learn more about poorly known configuration regimes).

6.4.5 Extending the Proposed Framework for Designing
Adaptive Heuristic Algorithms

Although effective adaptive heuristic algorithms require problem-specific algo-

rithm configurations (e.g. search operators/heuristics), the proposed framework

does introduce a generic measure to design a systematic mechanism for adaptive

heuristic search. This generic framework, along with problem-specific algorithm
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configurations, can be applied to a wider spectrum of combinatorial optimisation

problems.

In terms of improving the proposed framework, the previous work focussed on

evaluating the performance of candidate heuristics using the problem difficulty mea-

sure, however, the selection mechanism is also important to the success of an adap-

tive heuristic algorithm. It is necessary to carry on investigating the influence of the

selection mechanism on the algorithm performance by comparing different selection

mechanisms.
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