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Abstract. 
 

Hepatitis C virus (HCV) is a major human pathogen and the leading cause of 
cirrhosis and liver cancer worldwide. HCV entry is clathrin- and pH-
dependent, and requires CD81, Scavenger receptor BI (SR-BI), and the tight 
junction (TJ) proteins Claudin-1 and Occludin.  
 
Primary HCV strains cannot be efficiently cultured in vitro, making the 
evaluation of potential antiviral compounds in a biologically relevant context 
extremely difficult. Despite being suitable for high-throughput screening, most 
cell-based reporter assays rely on the secretion of serine alkaline 
phosphatase and thus do not allow the selection of HCV infected cells, or the 
screening of patient samples to identify cell culture infectious viral strains. We 
aimed to develop a cell-based reporter assay, which utilizes the viral NS3/4A 
protease to cleave and activate a fluorescent reporter protein constitutively 
expressed in Huh-7.5 hepatoma cells. 
 
HCV tropism is restricted to the liver, where hepatocytes are polarized and 
form TJ, which are indispensable for normal liver functionality. We 
demonstrate that in confluent cells, SR-BI and Claudin-1 expression is 
increased and that HCV entry is enhanced when cellular contact is 
established. Furthermore, cell junction formation and SR-BI overexpression, 
respectively, accelerated virus entry, suggesting a key role for SR-BI in HCV 
internalization.  
 
The mechanisms underlying HCV-associated hepatic injury are poorly 
understood, however, it is thought that HCV may disrupt TJ integrity, thus 
compromising hepatocyte polarity and function. We demonstrate that the HCV 
structural proteins modulate the expression and localization of TJ proteins, 
leading to their redistribution to cytoplasmic vesicles with possible 
consequences for TJ integrity in vivo.  
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1 Introduction 
 

1.1 A brief history of non A, non B post-transfusion hepatitis 

 

Post-transfusion hepatitis (PTH) was first appreciated during and immediately 

after World War II, when the increasing number of blood and plasma 

transfusions led to a considerable increase in the number of hepatitis cases in 

the US. First evidence for the viral etiology of PTH was provided during the 

1940s, when research groups in the United Kingdom and the US identified 

two immunologically distinct types of hepatitis, namely type A (infectious) and 

type B (serum).  Several reports documented the faecal/oral transmission 

route of hepatitis type A, eliminating hepatitis A virus (HAV) as a causative 

agent of PTH (167, 260, 306, 316). Hepatitis type B, on the other hand, was 

demonstrably transmitted through blood and blood products (220, 222), and 

the discovery of the “Australia antigen”, also referred to as HBV surface 

antigen (HBsAg), and its association with hepatitis B virus (HBV) confirmed 

the viral etiology of the disease (53, 221). In 1972, soon after the link between 

PTH and the Australia antigen was established (152), screening of blood from 

volunteer donors for HBsAg became a US federal regulation. As predicted by 

many researchers, exclusion of HBsAg-positive and commercial donors 

reduced the PTH rate by up to 97% (14). However, cases of hepatitis 

continued to occur even in recipients of HBsAg-negative blood transfusions, 

indicating that those individuals had contracted an infection associated with 

virus(es) other than HAV or HBV (13, 122, 330). Transfusion-associated Non-
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A, non-B hepatitis (NANBH) was characterized by a shorter incubation period 

than HBV, and did not conform to the bimodal curve observed for HAV and 

HBV infection. Further evidence for an unknown infectious agent was 

provided by epidemiological studies reporting patients with recurring episodes 

of hepatitis post transfusion, something that was not observed in hepatitis 

type A and B infections (166, 238, 294, 340). 

 

Despite extensive research in the 1970s and 1980s, the etiological agent(s) of 

NANBH remained elusive, mainly because no cell culture or animal model 

was available for the propagation of the unknown agent. The successful 

transmission of the NANBH agent into chimpanzees eventually made it 

possible to show that NANBH was caused by a small, enveloped virus (15, 

123, 168, 381). However, due to the insufficient concentration of viral antigen 

in the chimpanzee serum, identification of the virus was delayed until 

Houghton and colleagues at Chiron, in collaboration with Daniel Bradley at the 

Center for Disease Control, tackled the problem with a blind immunoscreening 

approach. They extracted and reverse-transcribed nucleic acid from 

chimpanzee plasma containing the NANBH agent and used the resulting 

cDNA fragments to design a recombinant expression library in E.coli. By 

screening the expressed proteins against the serum of a chronically infected 

NANBH patient they were able to isolate and sequence a single 

immunoreactive clone designated 5-1-1 (81, 82). Based on the characteristics 

of the nucleotide sequence - the NANBH virus contains a 10,000 nucleotide 

positive-strand RNA genome consistent with members of the Togaviridae and 
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Flaviviridae families - the new virus was classified within a separate genus 

(Hepacivirus) of the Flaviviridae family and designated Hepatitis C Virus 

(HCV). 

1.2 The disease. 

1.2.1 Epidemiology. 
 

To date about 170 million individuals worldwide are persistently infected with 

HCV (WHO, 2002). The prevalence of HCV infection varies in different parts 

of the world and is high in Northern Africa, South-East Asia and the Eastern 

Mediterranean, where up to 5% of the population are infected, compared to 

approximately 1.7% in Western Europe and North America (WHO, 2002; 

(17)). The clinical progression of the disease is usually slow and 

asymptomatic and in most cases it takes decades before severe liver damage 

occurs (5). Of the 70 to 80% of individuals who develop a chronic infection 

following exposure to HCV (10, 57, 60), approximately 30% develop liver 

cirrhosis, while end-stage liver failure and hepatocellular carcinoma are 

observed in 0.04 to 2.5% of chronically infected patients (10, 16, 71, 90). 

There is currently no vaccine (237) and antiviral therapies are only effective in 

about 50% of treated individuals (102, 169).   

 

There are six major HCV genotypes which show approximately 30% 

divergence (366, 367). Despite sharing a basic virology, these genotypes 

differ in their geographical distribution and prevalence; genotypes 1,2 and 3 

are distributed worldwide and are prevalent in Western Europe, Canada and 
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the USA (110, 197, 276, 382), while genotypes 4, 5 and 6 can be found in 

more distinct geographic areas (64, 72, 367).  

 

The outcome of HCV infection is determined early, generally within six months 

of exposure to the virus, and seems to be partly associated with the HCV 

genotype (119). Individuals infected with HCV genotype 1 are more likely to 

develop chronic infection (270, 334) and hepatocellular carcinoma (101), 

whereas steatosis, an abnormal accumulation of lipids in the liver which is 

possibly associated with fibrosis, is most frequently observed in genotype 3 

infection (342, 343). Also, genotype 1 shows greater treatment resistance 

than genotypes 2 and 3, with only 40-50% chronically infected individuals on 

combination therapy resolving a genotype 1 infection compared to 70-80% of 

those infected with genotype 2 and 3 (124, 426). 

1.2.2 Immunobiology. 
 

The main reservoir for HCV replication is hepatocytes in the liver, although 

several studies suggest that other cell types, such as peripheral blood 

mononuclear cells (PBMC) and dendritic cells may also be affected (21, 22, 

226, 227, 236, 305, 312, 373). The frequency of HCV positive hepatocytes 

within an infected liver has proven difficult to determine (224, 228), however, 

viraemia is thought to be high with virus production rates in the range of 

1x1012 RNA copies per day (231). Antibodies against HCV are usually 

detectable 6 to 8 weeks post infection (317) and can be detected in acutely 

and chronically infected individuals (251, 282). However, conflicting evidence 
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exists regarding the role of humoral immunity and B cells in viral clearance 

(111, 230, 251, 319, 372), particularly since antibody titers are usually high in 

chronic hepatitis C, suggesting limited neutralizing efficacy (111, 251, 282). 

Interestingly, sequence changes in the hypervariable-1 region (HVR1) of the 

HCV envelope glycoprotein E2 have been reported to occur around the same 

time as antibody seroconversion (56, 57, 119), suggesting that the virus might 

evade the immune response through escape mutations. Sequencing studies 

have revealed that clearance of the virus is associated with a reduction in viral 

diversity in the E1 and E2 coding regions, while a variety of viral quasispecies 

can be found in persistently infected individuals (119, 120). 

 

Studies of infected individuals have shown that a strong and sustained CD4+ T 

cell response is crucial to control acute HCV infection (56). RNA appears in 

the plasma a few days post infection and typically peaks about 8 to 10 weeks 

later, regardless of outcome (1, 38). Although viraemia is present early, T-cell 

responses are usually delayed and follow one of three basic patterns (1): in 

persistent infection, CD4+ and CD8+ T-cell responses are weak or 

undetectable (91, 284, 393) and fail to control viraemia. In some cases, the 

viral RNA level is transiently controlled, but viraemia rebounds as a result of a 

contracted CD4+ T-cell response (91, 284, 393). In acute resolving infection, 

T-cell responses are vigorous and sustained and target multiple MHC class I-

restricted epitopes in structural and non-structural HCV proteins (91, 233). It is 

not known whether the failure to develop a sustained antiviral response is the 

result of antigen overload during immunological priming, virus-induced defects  
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in antigen presentation, mutational escape of epitopes, deletion and 

functional anergy of T cells, or other causes (56). Overall, the outcome of 

HCV infection is most likely determined by the magnitude, diversity and quality 

of the adaptive immune response, while the primary failure to induce a T-cell 

response or T-cell exhaustion predict viral persistence (79, 333, 362). 

Figure 1-1 Possible mechanisms of immune evasion by HCV.  
Red lines annotate mechanisms for which there is supporting in vivo 
evidence; dotted lines indicate mechanisms that are involved in viral 
persistence; triangles indicate inhibition of antigen presentation (image from 
(56)). 

In addition to its ability to successfully evade host immune responses, HCV is 

also known for efficient allograft re-infection following liver transplantation. 

During the anhepatic phase of transplantation, HCV RNA levels typically 

decrease with a calculated elimination half-life of about 2 hours (144). This 

decrease in viral RNA concentration can be explained in part by the lack of 
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virion production by hepatocytes (135). After reperfusion of the graft, the viral 

load continues to decline rapidly and typically reaches its low about 24 hours 

later, presumably due to a massive entrance of HCV into the hepatocytes and 

uptake of the virus by the liver reticuloendothelial system (144). Viral kinetics 

then follows one of three basic patterns: RNA serum levels can increase 

rapidly, remain unchanged, or decrease progressively. From week 2 post 

transplantation, however, the viral RNA concentration in the serum increases 

exponentially in most patients, peaking by the fourth month after implantation 

(74). One year after transplantation, viral RNA levels usually exceed 

pretransplant levels by 10- to 20-fold (143). 

 

To date the standard antiviral therapy for acute hepatitis C infection is 

treatment with pegylated interferon-α in combination with ribavirin, a 

guanosine analogue with antiviral activity (reviewed in (124)). In cell culture, 

virtually any cell type is able to produce type I IFN in response to viral 

exposure, however, in vivo, plasmacytoid dendritic cells (pDC) are seen as 

the “professional IFN α/β producing cells” (86, 194, 274). In addition to their 

direct antipathogenic activity, IFN-I has been shown to synergize with 

proinflammatory cytokines to activate innate effectors such as NK cells, 

macrophages, and dendritic cells (69) and may modulate antigen presentation 

and the adaptive immune response (232).  

 

IFN-I production is induced when the innate mechanisms in infected cells and 

patrolling immune cells recognize pathogen-associated molecular patterns 
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(PAMPs), e.g. single-stranded and double-stranded viral RNA, and polyuridine 

signatures (reviewed in (207)). In hepatocytes, HCV dsRNA and proteins are 

engaged by retinoic-acid-inducible-gene-I (RIG-I) and Toll-like receptor (TLR)-

3 (91, 119, 193). This engagement results in the phosphorylation and 

activation of Interferon-regulatory factor (IRF)-3 and the subsequent 

production and secretion of type I interferons IFN-α/β, both of which induce 

the transcription of various IFN-stimulated genes (ISG) through the JAK-STAT 

signalling pathway and establish a non-virus-specific antiviral state within the 

cell (39, 354).  

 

HCV induces vigorous intra-hepatic IFN-I responses, however, these 

responses do not correlate with the outcome of infection (111, 139, 232, 378, 

393). Intriguingly, HCV replicons are highly sensitive to IFNα in vitro (130), 

indicating that in vivo the virus disables IFN response pathways through 

multiple mechanisms (Figure 1-2): the core protein, for example, can 

suppress the JAK-STAT-pathway, while the viral protease NS3-4A functions 

as an antagonist of IRF-3 activation and IFN-β secretion by interfering with the 

TLR-3 and RIG-I signalling pathways (129, 242). In addition, the HCV proteins 

NS5A and E2 can inhibit RNA-regulated protein kinase (PKR), allowing the 

virus to evade in part the translational-suppressive actions of IFN-I (205). IFN-

α therapy aims to substitute for the disrupted IFN production in infected 

hepatocytes, therein re-establishing ISG expression, promoting memory T-cell 

proliferation, and stimulating the activation of natural killer cells and dendritic 

cell maturation (124, 395).  
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Figure 1-2 Attenuation of IFN signalling by HCV.  
Receptor signalling by autocrine and paracrine IFN is subject to feedback 
inhibition by suppressor of cytokine signalling (SOCS) proteins. The HCV core 
protein induces expression of SOCS-3, which can suppress Jak–STAT 
signalling events and block the IFN-induced formation of ISGF3 (12). HCV 
protein expression in liver cells is associated with induction of the protein 
inhibitor of activated STAT (PIAS) expression and concomitant inhibition of 
STAT function in vivo. Patients with chronic HCV infection can exhibit high 
levels of serum IL-8 (328, 329), which interferes with IFN signalling events 
that catalyse ISGF3 assembly and function (image from (141)).  
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Interestingly, the resistance of different HCV genotypes to IFN therapy may in 

part be determined by the ability of E2 and NS5A to inhibit PKR. Indeed, E2 

sequences of genotype 1, which is relatively resistant to IFN therapy, inhibit 

PKR more efficiently than E2 sequences of genotypes 2 and 3, which respond 

much better to IFN therapy (333, 388). Likewise, the outcome of IFN 

treatment of HCV-infected patients in a Japanese cohort correlated with the 

NS5A genotype (reviewed in (387)).  

 

In order to prevent allograft rejection, patients are treated with 

immunosuppressive drugs after transplantation. The effect of most of these 

drugs on viral replication is unknown, although it has been reported that 

corticosteroid treatment enhances HCV RNA levels in vivo (143). Of the 

calcineurin inhibitors that are routinely used to reduce rejection after organ 

transplantation, only the effect of cyclosporin A (CSA) on HCV replication has 

been studied in more detail. CSA suppresses replication of HCV RNA in 

cultured human hepatoma cells carrying subgenomic (411) or full-length HCV 

replicons (189). Furthermore, CSA seems to inhibit HCV genome 

multiplication in cultured hepatocytes infected with plasma from HCV-infected 

individuals (411). Intriguingly, two other drugs, FK506 (tacrolimus) and 

rapamycin, which share pharmacological mechanisms that suppress T-cell 

activation with CSA, do not have any inhibitory effect on HCV RNA replication 

(300) supporting the hypothesis that the antiviral effect of CSA is not linked to 

its immunosuppressive activity (411). Instead, CSA might inhibit HCV 
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replication by binding to cyclophilin B, which has been shown to support 

replication by associating with the viral NS5B polymerase (412). 

1.2.3 Immunopathogenesis. 
 

The effective elimination of HCV infection requires the coordinated function of 

the innate and adaptive immune responses. However, evidence suggests that 

the activation of the immune response also plays a key role in the 

pathogenetic processes leading to progressive tissue damage (reviewed in 

(371)). Of note, hepatic injury usually coincides with the onset of an immune 

response during acute infection, but not with that of viral replication, which can 

occur in the absence of an inflammatory response (11, 60, 118). Also, it has 

been observed that immunosuppressive therapy may be accompanied by a 

transient amelioration of inflammatory activity and hepatocellular damage 

despite increased viraema (89) while termination of immunosuppressive 

therapy may result in inflammatory aggravation (116, 160). However, in the 

same study, HCV patients whose immune system was compromised due to 

hypogammaglobulinemia rapidly progressed to severe liver disease (89), 

suggesting that the host immune response may still be an important factor in 

the control of chronic infection. 

 

HCV proteins including NS5A, core and NS3 have been reported to up-

regulate TLRs (103, 261), resulting in the activation of transcription factors 

IRF3 and NF-κb and increased production of IFN-I (172). This in turn 

stimulates expression of ISGs and provides an amplification loop to further 
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promote IFN-I and ISG expression (129). In chimpanzees, acute resolving 

HCV infection is associated with a robust host response characterized by high 

level ISG expression in the liver (47). However, in chronic hepatitis C high ISG 

expression is apparently correlated with the extent of liver damage (301, 315), 

most likely because the up-regulation of TLRs and the stimulation of 

proinflammatory cytokines contribute to the pro-inflammatory environment. 

More importantly, the continued activation of cytokine secretion and HCV non-

specific effector pathways in the absence of a functional cellular immune 

response may result in hepatocyte damage, fibrogenesis and malignant 

transformation (371).  

 

Of note, IFN-inducible protein IP-10, the natural ligand of the CXCR3 

chemokine receptor, is induced in hepatocytes surrounded by infiltrating 

lymphocytes (358) and may promote non-specific recruitment of CXCR3-

expressing immune cells to sites of inflammation (339). In cytotoxic T-cells 

and NK cells, triggering of Fas or TNFR1 by Fas ligand or TNF secretion 

induces the activation of caspase 8 in susceptible target cells and, 

subsequently, apoptosis. HCV infection induces TNF production in 

hepatocytes, although elevated serum TNF levels are mostly observed in the 

acute phase of hepatitis C (154, 397). However, it is interesting to speculate 

that in HCV infection, intrahepatic T-cells expressing Fas ligand may interact 

with Fas-positive hepatocytes to induce cell death, since high Fas serum 

levels seem to correlate with the severity of hepatic injury in chronic hepatitis 

C (176, 180, 311). Furthermore, the amount of infiltrating cytotoxic (CD8+) T-
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cells reportedly correlates with hepatocellular apoptosis (321), unlike the level 

of transaminases, which are released into the serum following hepatocellular 

injury. 

 

In addition to stimulating IFN-I production, NF-κb is involved in the regulation 

of chemokines, thus activating the recruitment of NK and NKT cells, which 

exert cytolytic activity and inhibit viral replication by secreting inflammatory 

cytokines. NK cells play a crucial role in the antiviral host response, however, 

in chronic HCV infection they secrete abundant levels of interleukin-10 and 

TGFβ (304), both of which stimulate the proliferation and extracellular matrix 

deposition of hepatic stellate cells (HSCs) (325). In normal liver, HSCs are 

nonparenchymal, quiescent cells whose main functions are to store vitamin A 

and to maintain the normal basement membrane-type matrix. However, in 

response to liver injury, HSCs switch to an activated state in which they 

become highly proliferative and synthesize "fibrotic" matrix rich in type I 

collagen (131, 132). 

1.3 Model systems for HCV study. 

1.3.1 Primary cell culture and cell lines. 
 

For more than two decades the major limitation for HCV research was the lack 

of a cell culture system that allowed efficient propagation of the virus. Until 

HCV was identified in 1989, insight into the elusive NANBH agent was 

provided almost exclusively by serological and epidemiological studies, since 

immortalized cell lines seemed to be unsusceptible to HCV infection, while 
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systems based on the cultivation of primary cells isolated from the tissues of 

chronically infected patients and infection of primary hepatocytes with HCV, 

respectively, were hampered by the low level of HCV replication. Moreover, 

experiments were difficult to reproduce since the infectivity of the sera 

generally did not correlate with the HCV RNA titre. HCV-specific antibodies 

present in the sera of most chronically infected patients also impaired the 

productivity of infection, as did the quality of the hepatocyte preparation. To 

add to the difficulties, the low viral replication rate demanded the use of a 

highly sensitive detection method. Flaviviruses, like other positive strand RNA 

viruses, replicate via a negative strand RNA intermediate and it was assumed 

that HCV was no exception. Thus, in vitro studies used strand-specific reverse 

transcriptase polymerase chain reaction (RT-PCR) to detect the negative-

sense molecule, which was believed to be indicative of viral replication (347). 

Although it was now possible to detect very low levels of HCV RNA, the new 

method was fraught with problems, including the potential for contamination 

and lack of strand-specificity of the reaction due to self-priming of the RNA, 

false priming of the incorrect strand, and random priming by cellular nucleic 

acids (162, 225, 384). Since these problems were difficult to overcome, 

additional criteria were introduced to verify replication in HCV-infected cells. 

These included sequence analysis to demonstrate genomic variability, 

successful transmission from infected to naïve cells, “curing” infected cells 

with interferon a, and detection of viral antigens.  
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Despite the technical difficulties implied with the primary cell culture system, 

Iacovacci et al. (185, 186) and Lanford et al. (225) were able to propagate 

serum-derived HCV in primary human and chimpanzee hepatocytes, 

respectively. Both studies reported a significant increase of HCV positive 

stranded RNA within the first four days of infection, while the negative 

stranded RNA signal became first detectable on day four and increased 

markedly thereafter. Lanford and colleagues furthermore noted that primary 

liver cells isolated from baboons were not susceptible to infection supporting 

the idea that HCV has a narrow host range. Interestingly, a positive stranded 

RNA signal was detectable in these cells up to 11 days post inoculation 

despite their apparent non-permissiveness, demonstrating that caution must 

be exercised when differentiating between newly synthesized RNA and the 

original inoculum. 

1.3.2 The replicon system. 
 

Although primary cell culture provided some insight into the basic principles of 

HCV infection, the heterogeneity of the inoculum, the low RNA replication 

rate, and the inability to manipulate the genome made it difficult to analyze the 

viral life cycle in any detail. In a first attempt to overcome these obstacles, 

Lohmann et al. created a neomycin-selectable HCV minigenome (replicon) 

based on the Con1 consensus genome cloned from liver-derived viral RNA 

(254). Originally, a full-length genome was used to transfect various cell lines 

and primary human hepatocytes. However, the full-length RNA failed to 

replicate for unknown reasons prompting Lohmann et al. to generate a 
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number of bicistronic constructs, which comprised of the 5’-HCV internal 

ribosome entry site (IRES), a neomycin phosphotransferase gene, the 

genotype 1b non-structural genes NS2 or NS3 to NS5B under the control of 

an Encephalomyocarditis virus (EMCV) IRES, and the HCV 3’-nontranslated 

region (NTR).  

 

Subsequently, Blight et al. generated similar neomycin-selectable replicons 

based on a HCV-H genotype 1a infectious clone described by Kolykhalov and 

colleagues (50, 213). Unlike their full-length counterparts the new subgenomic 

replicons replicated to a high level, a fact that was attributed to cell-culture 

adaptive mutations in the NS3, NS5A and NS5B region (50, 219, 253). Based 

on these findings, several groups successfully generated full-length replicons 

with single amino acid substitutions in the genes encoding the non-structural 

viral proteins (51, 187, 203, 322). As expected these cell culture-adaptive 

mutations markedly enhanced RNA levels as well as the frequency of cells 

supporting replication. However, Huh-7 cells harbouring full-length replicons of 

the prototypic viral strains Con1 and HCV-H still failed to produce infectious 

particles although the Con1 strain was infectious in vivo (63), indicating that 

the structural proteins were assembly competent. Furthermore, the number of 

HCV RNA replication-competent cells within the total population remained low 

even for adapted replicons, suggesting that the cellular background was a 

major determinant of replication efficiency.  
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To enhance permissiveness of the Huh-7 cell line, Blight et al. transfected 

Huh-7 cells with subgenomic replicons with either the wildtype amino acid 

sequence, a serine-to-ileucin substitution (S2204I) in the NS5A region, or a 

47-amino acid NS5A deletion (5AD47) (52). Cells supporting viral replication 

were selected and cured of HCV RNA by prolonged treatment with interferon 

(IFN) a. The resulting clonal cell lines were then tested for their ability to 

support HCV replication following re-transfection with subgenomic and full-

length replicons. One clone in particular, designated Huh-7.5, showed an up 

to 33-fold increase in the frequency of cells able to support HCV replication, 

as well as a significantly enhanced replication capacity. A key feature of the 

host antiviral defense is the production of IFNα and IFNβ and subsequent 

expression of IFN-stimulated genes in response to viral double stranded RNA 

or GU-rich single stranded RNA (354). In most cells, these specific pathogen-

associated molecular patterns (PAMPs) are recognized by Toll-like receptors 

(TLRs) (310). However, in cultured hepatocytes PAMPs are recognized by a 

cellular helicase, RIG-I, which triggers activation of the IFN-regulatory 

transcription factor-3 (IRF3), IFN production, and expression of the IFN-

stimulated genes. In Huh-7.5 cells, however, a mutation in RIG-I abolishes 

PAMP signalling to IRF3, thus inhibiting the cellular antiviral response and 

conferring increased permissiveness for HCV RNA replication (380). 

1.3.3  HCV pseudoparticles (HCVpp) and cell-culture derived HCV 
(HCVcc). 

 

The replicon system provides a valuable tool to study HCV replication. 

However, it does not allow studies of virus attachment and entry as mediated 
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by glycoprotein-receptor interactions. First attempts to generate HCV-like 

particles in insect cells using Baculoviruses that contained the cDNA of the 

HCV E1/E2 structural proteins (37) were only moderately successful. 

Recombinant Vesicular stomatitis virus (VSV) that expressed genes encoding 

the HCV structural proteins fused to domains of the VSV envelope proteins 

also failed to infect permissive cell lines (65), although the HCV glycoproteins 

were efficiently incorporated into the carrier-virus-envelope. Several groups 

finally developed infectious HCV pseudoparticles (HCVpp) by expressing the 

E1/E2 structural proteins in 293T cells together with a packaging construct 

encoding the HIV genome minus the env gene, and the gag and pol genes of 

murine leukaemia virus (MLV) or VSV (30, 106, 183). Co-expression of these 

constructs led to the efficient assembly of infectious replication-deficient HCV 

pseudoparticles, which allowed in depth studies of virus binding, attachment, 

and internalization, and helped to identify novel HCV receptors. 

 

Finally, Wakita and colleagues cloned a genotype 2a replicon (JFH-1) from a 

Japanese patient with fulminant hepatitis, which replicated efficiently in liver-

specific and non-liver specific cell lines without the need for adaptive 

mutations and supported the secretion of infectious viral particles in cell 

culture (244, 408). Subsequently, another research group produced infectious 

HCV genotype 1a (Hutchinson strain; H77-S) (419), a strain that is most 

prevalent in the U.S. and many other countries (424). Using these cell culture-

derived infectious particles (HCVcc) it is now possible to study the HCV life 

cycle from entry to release. Recently, Lindenbach et al. constructed a chimeric 
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JFH-1 genome containing the core to NS2 region of HCV strain J6 (244), 

which not only produced infectious particles in vitro, it also replicated 

efficiently in chimpanzees and uPA-SCID mice (245), allowing for the first time 

the dissection of the HCV life cycle in vitro as well as in vivo. 

1.3.4 Animal models. 
 

For more than a decade, the chimpanzee was the only animal model available 

to study HCV infection. Like humans, chimpanzees have detectable HCV 

RNA within a few days of infection with viral titers usually reaching 105–107 

RNA genome copies/ml, and a rise in viraemia is usually followed by an 

increase in serum aminotransferase (ALT) levels (reviewed in (94)). 

Furthermore, the majority of infected animals display necroinflammatory 

changes in liver biopsies and 40-60% of infected animals progress toward 

chronic viral persistence (33, 48). The chimpanzee model was used to 

characterize the infectious agent of NANBH (15, 123, 381), and to clone the 

HCV genome for the first time (81). Finally, the chimpanzee model was 

instrumental in the establishment of HCV infectious molecular clones (213, 

416).  

 

One major advantage of the chimpanzee model is the ability to monitor the 

progression of hepatitis C from beginning to end. This is of particular interest 

since HCV infection in humans is usually asymptomatic, making it difficult to 

study the acute phase of infection. In chimpanzees, however, liver biopsy 

samples can be obtained before the exposure and at intervals post-
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inoculation, allowing the analysis of events starting immediately after HCV 

infection, such as changes in gene regulation and cellular immune responses 

to viral antigens (94). Furthermore, studies in the chimpanzee model have 

shed light on different aspects of the cellular immune responses and their role 

in viral clearance and persistence, respectively (91, 302, 363, 392), and the 

role of memory immune responses in HCV re-infection (34, 48, 331, 413).  

 

The ideal model for studying HCV would be one that adequately represents 

most aspects of human HCV infection and disease, is affordable, easily 

available, and reproducible. During the past decade, several groups have 

developed transgenic mouse models to examine the effects of the HCV core 

and the envelope glycoproteins on hepatocytes. However, studies using these 

transgenic mice yielded conflicting results (292, 293, 314, 342), putting into 

question the suitability of this in vivo model. Recently, however, several 

groups have reported the creation of chimeric (xenograft) mice harbouring 

human hepatocytes (99, 279, 281). These mice are immunodeficient and 

suffer from severe, chronic liver disease caused by overexpression of the 

noxious protein urokinase. Overproduction of urokinase not only causes 

hepatocyte death, it also causes individual hepatocytes to delete portions of 

the urokinase transgene and to acquire a replicative advantage over 

surrounding cells. As a result, the liver is rapidly repopulated with largely 

nontransgenic cells, a survival advantage that is extended to hepatocytes 

transplanted from mouse, rat, and human (279). Chimeric mice, such as the 

SCID/uPA mouse, have been successfully infected with HCV derived from 
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human serum and have been shown to support viral replication at clinically 

relevant titers (281), allowing investigators for the first time to study HCV 

infection in a small animal model.  

 

Indeed, the new in vivo model system has proven useful in the evaluation of 

novel anti HCV therapies. uPA/SCID mice were used to test a gene therapy 

approach to treat HCV by delivering a modified form of the BH3-interacting 

death agonist (BID), a member of the Bcl-2 family of pro-apoptotic proteins 

which is crucial for death receptor-mediated apoptosis (182). More recently, 

the xenograft mouse model was employed to study the neutralizing efficacy of 

human monoclonal antibodies (mAbs) against genetically diverse HCV 

isolates (230). Here, Law et al. were able to demonstrate that human mAbs 

from the serum of HCV infected patients protected against heterologous viral 

infection, suggesting that a prophylactic vaccine against HCV may be 

achievable. Meuleman et al. in turn demonstrated that CD81 is required for 

HCV infection in vivo and that prophylactic treatment with anti-CD81 

antibodies protects uPA/SCID mice from a subsequent infection with HCV 

strains of various genotypes (280). 
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1.4 The HCV Life Cycle. 

 Figure 1-3 The HCV life cycle.  
(modified from Tibotech Pharmaceuticals, Belgium) 
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1.4.1 HCV genome replication and polyprotein processing. 
 

The genome of HCV is well characterized as a single-stranded 9.6 kb RNA 

molecule comprising a single open reading frame (ORF) that encodes a 3000 

amino acid polyprotein precursor flanked by two nontranslated regions 

(NTRs). As the HCV genome lacks a 5’ cap, translation of the genome 

depends on an internal ribosome entry site (IRES) which is located within the 

highly conserved 5’NTR and directly binds 40S ribosomal subunits to induce 

translation of the precursor protein (246). The polyprotein precursor is co- and 

posttranslationally processed by viral and host proteases into a variety of 

structural and non-structural proteins. The amino terminal one-third of the 

polyprotein harbours the core protein and the envelope glycoproteins E1 and 

E2, followed by a small integral membrane protein, p7, a metalloprotease that 

might function as an ion-channel (158). The carboxy-terminal two-thirds of the 

precursor protein encode the non-structural proteins, which are involved in the 

coordination of the virus life cycle. 
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Figure 1-4 The HCV genome and proteins.  
Translation depends on an internal ribosome entry site (IRES) within the 5’ 
non-translated region (NTR). The polyprotein precursor is posttranslationally 
processed by host and viral proteases and the HCV structural (red) and non-
structural proteins are localized within the ER membrane. (image modified 
from (78)).  
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Following cleavage of the structural proteins by host proteases, two viral 

enzymes further process the polyprotein. The NS2-3 proteinase cleaves at the 

NS2/3 junction (157, 175), whereas the NS3-4A serine protease cleaves at all 

downstream sites with a temporal sequence that is thought to be crucial for 

replication (100).  In addition to its protease function, NS3 serves as a RNA 

helicase, unwinding double-stranded RNA in a 3’ to 5’ direction. Recently, it 

was also shown that NS3-4A cleaves the mitochondrial antiviral signalling 

(MAVS) protein, which interacts with a receptor for intracellular viral dsRNA 

(RIG-I) and induces the IFN response. Cleavage of the MAVS protein results 

in its dislocation from the mitochondria and perturbance of its activity, helping 

HCV to evade innate immunity (243). 

 
HCV replication proceeds via synthesis of a complementary minus-strand 

RNA using the viral genome as a template. This minus-strand RNA then 

serves as a template to generate multiple nascent HCV genomes. The key 

enzyme responsible for both steps is NS5B (289), which is localized to the ER 

lumen, where it is anchored to the membrane via an insertion sequence (350) 

that may serve as a docking site for transmembrane protein-protein 

interactions. NS5B is able to initiate synthesis of the minus- and plus-strand 

RNA in a primer-dependent way as well as de novo, although in vitro the 

enzyme seems to prefer the primer-dependent variant (9, 126, 201). 

Interestingly, NS5B binds to a wide variety of RNA and DNA templates and so 

far it is unclear how template specificity is achieved, although it has been 

shown that recombinant NS5B can recognize HCV RNA through a conserved 

stem-loop structure made up from sequences of the 3’ coding region and the 
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3’NTR of the polyprotein (77). Interestingly, protease treatment of 

permeabilized cells destroys most non-structural proteins without 

compromising the activity of NS5B, suggesting that only a small fraction of NS 

proteins is actively engaged in replication (286). 

 

Not much is known about the function of the serine phosphoprotein NS5A, 

except that it exists in a hypo- and a hyperphosphorylated form (199, 332, 

390) and that it modulates HCV RNA replication by interacting with NS5B and 

various cellular regulatory factors (149, 402), (361). Indeed, adaptive 

mutations in NS5A domains I and II enhance the ability of the virus to replicate 

in vitro (50, 219, 252). NS5A domain III is not involved in RNA replication, 

however, Tellinghuisen et al. recently demonstrated that a single serine 

residue deletion in domain III inhibits phosphorylation of the casein kinase II 

consensus motif in this region of NS5A (389), disrupting the production of 

infectious virus at an early stage of particle assembly. Furthermore, it has 

been suggested that NS5A might play a role in the development of IFN 

resistance, due to the protein’s ability to inactivate double-stranded RNA 

dependent kinase (PKR), thus modulating the IFN-stimulated antiviral 

response (140). Finally, NS5A can function as a transcriptional trans-activator. 

The exact nature of this mechanism is unclear but it has been proposed that 

the protein, which is localized to the ER, activates cellular transcription factors 

by inducing oxidative stress in the host cell (153). In this way NS5A might also 

contribute to the liver disease pathogenesis associated with HCV infection. 
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1.4.2 HCV Attachment And Entry. 
 

The first step in the viral life cycle is the binding of the virus to the host cell via 

interaction of the viral glycoproteins with one or more cell surface receptors.  

In some cases these receptors serve as mere attachment factors, however, 

they may also be involved in the internalization of bound virus particles via 

one of two major entry routes, namely fusion of the viral envelope with the 

plasma membrane or uptake via endocytic-like pathways (reviewed in (267, 

369)). 

 

 

 
 
Figure 1-5 HCV entry receptors.  
The receptor activity of CD81 and Claudin-1 (CLDN1) depends on critical 
residues within the LEL and EC1 domains, respectively.  
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Tetraspanin CD81 
 

CD81 is a 26-kDa surface protein composed of four hydrophobic 

transmembrane domains and two hydrophilic extracellular domains (EC1 and 

EC2) (239). Like other members of the tetraspanin superfamily, CD81 is 

expressed in a range of organisms, including mouse and chimpanzee, and on 

most human tissues apart from red blood cells and platelets (113). The 

cytoplasmic and transmembrane domains as well as small extracellular loop 

of CD81 are highly conserved between species, while the large extracellular 

domain varies considerably both in length and sequence, thus contributing to 

species-specific interactions. Cross-linking experiments have shown that 

human CD81 mediates a number of signal transduction events involved in the 

regulation cell proliferation, morphology, differentiation, adhesion, and motility 

(241).  

 

Soluble truncated versions of HCV glycoprotein E2 bind with high affinity to 

human lymphoma and hepatocarcinoma cell lines. By screening a cDNA 

expression library from a subclone of the human T-cell lymphoma cell line 

Molt-4 with recombinant E2, Pileri et al. identified CD81 as the E2-binding 

partner (324). Binding of E2 to CD81 was mapped to the large (major) 

extracellular loop of the tetraspanin and it was furthermore demonstrated that 

the E2-CD81 interaction is species-specific; only fusion proteins containing 

the large extracellular loop (LEL) of the human protein bound E2 in 

immunoblots, while no interaction with mouse protein was observed (324). 

Using alanine scanning mutagenesis positions L162, I182, N184 and F186 
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within the LEL were subsequently shown to be involved in the CD81-E2 

interaction (98, 107, 128).(174). 

 

Further evidence for the important role of CD81 in HCV entry was provided by 

studies demonstrating that the soluble form of CD81 LEL and monoclonal 

anti-CD81 mAbs inhibit HCVpp and HCVcc infection of human hepatoma cells 

and primary human hepatocytes (32, 183, 244, 427). Furthermore, CD81 

knockdown hepatoma cells are no longer susceptible to HCVpp and HCVcc 

infection (8, 427), while ectopic expression of CD81 confers HCVpp and 

HCVcc permissiveness to otherwise non-permissive HepG2 and HH29 

hepatoma cells (93, 183, 229, 427). Furthermore, HCVpp bearing 

glycoproteins from various genotypes varied in their ability to infect HepG2 

expressing CD81, suggesting genotype specific differences in CD81-E2 

interactions (229, 273). However, infection with all genotypes could be 

blocked by CD81 and SR-BI specific antibodies in a dose-dependent manner 

(156). Together these data suggest that susceptibility to HCV is CD81-

dependent. However, CD81 alone is not sufficient to mediate glycoprotein-

dependent HCV cell entry since ectopic expression of CD81 fails to confer 

permissiveness to non-hepatic cell lines (30, 183) and retroviral particles 

displaying functional E1E2 glycoprotein complexes fail to infect some human 

cell lines although CD81 expression levels are comparable to those of HCV-

permissive cells (427). Also, the capacity of CD81 to internalize is poor 

compared to receptors like SR-BI (320), and the abundant expression of 

CD81 is unlikely to explain the hepatotropism of HCV. However, the level of 
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CD81 surface expression seems to determine the efficiency of HCV infection 

in human hepatoma cells and it has furthermore been reported that a minimal 

threshold of CD81 expression is necessary to render these cells HCV 

permissive (215). Recently, the importance of CD81 for in vivo HCV infection 

was confirmed by Meuleman et al. who showed that prophylactic treatment 

with anti-CD81 antibodies completely protected human liver-uPA-SCID mice 

from a subsequent challenge with HCV consensus strains of different 

genotypes (280). 

 

Tetraspanins build ‘tetraspanin webs’ through interaction with each other and 

other protein partners (240, 344). Within these multi-molecular complexes 

tetraspanins form primary associations with a limited number of so-called 

tetraspanin partners. CD81 specifically interacts with two novel 

immunoglobulin proteins, EWI-F (FPRP, CD315) and EWI-2 (PGRL, CD316) 

(75, 76, 84, 376, 377), which are thought to link the tetraspanin web to the 

actin cytoskeleton by interacting with the Ezrin-Radixin-Moesin (ERM) protein 

Ezrin (345). Very recently, it has been demonstrated that ectopic expression 

of a cleavage product of EWI-2, designated EWI-2wint (without its N-

terminus), markedly reduces HCVpp and HCVcc infection in human hepatoma 

cells, most likely by blocking the E2-CD81 interaction (337). Interestingly, 

EWI-2wint is not present in primary hepatocytes indicating that 

permissiveness of a cell line to HCV infection might not only depend on the 

presence of specific entry factors but also on the absence of specific 

inhibitor(s). 
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Scavenger-Receptor Type B Class I (SR-BI) 
 

Human SR-BI (CLA-I) is a 82 kDa glycoprotein consisting of a cytoplasmic C-

terminal and N-terminal domain and two membrane-spanning domains which 

are separated by a large extracellular loop (ECL) (336). SR-BI is highly 

expressed in tissues with crucial roles in cholesterol metabolism, i.e. adrenal 

glands, ovaries and hepatic tissues, and is responsible for the selective 

uptake of various lipids including native, oxidized, and acetylated low density 

lipoprotein (LDL) (4), high density lipoprotein (HDL) (3), and very low density 

lipoprotein (VLDL) (67). In its role as a lipoprotein receptor, SR-BI mediates 

the bidirectional exchange of lipids at the cell membrane via a three step-

process. Binding of cholesteryl ester (CE)-rich HDL and LDL leads to 

formation of a productive ligand-receptor complex (374) , which then facilitates 

incorporation of CE molecules into the plasma membrane (338), as well as 

the efflux of cholesterol to lipoproteins and other acceptors (195, 196). 

 

Soluble E2 (sE2) binds to CD81-negative human HepG2 hepatoma cells via 

SR-BI (349), and this interaction has been shown to be specific (26, 349) 

although attempts to demonstrate a direct interaction between SR-BI and the 

E1E2 heterodimer have been unsuccessful, probably due to the SR-BI binding 

sites not being accessible to E2 in the context of the E1E2 heterodimer 

(reviewed in (87)). However, SR-BI has been shown to interact with HCVpp 

via the hypervariable region-1 (HVR-1) of the E2 glycoprotein (32) and that 

this region is essential for the HDL-mediated enhancement of HCVpp 

infectivity (407). The exact role of SR-BI in HCV entry is poorly understood. 
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However, recent evidence suggests that both CD81 and SR-BI are required 

for productive HCV entry, and that SR-BI might form a receptor complex with 

CD81 and/or other cell surface molecules to facilitate uptake of virus particles. 

While CD81-/SR-BI+ HepG2 cells are not susceptible to HCVpp infection 

despite their E2-binding capacity, ectopic expression of CD81 restores 

permissiveness in these cells (30, 427). Further evidence for the importance 

of SR-BI has been provided by the findings that pre-incubation of CD81+/SR-

BI+ HepG2 and Huh-7 cells with anti-SR-BI antiserum reduces HCVpp 

infectivity up to 80% depending on the HCVpp genotype (32), while high 

levels of SR-BI significantly increase the susceptibility of Huh 7.5 cells to HCV 

infection (159). Finally, ectopic expression of SR-BI in rat hepatoma cells, 

where endogenous SR-BI expression levels are undetectable, confers 

permissiveness to HCVpp and HCVcc infection (105), confirming that SR-BI is 

indispensable for HCV infection.  

 

In human plasma, circulating HCV particles can be complexed with HDL, LDL, 

or VLDL (20, 263, 309, 394) and it seems plausible that SR-BI might mediate 

viral entry through indirect interaction with HCV-associated lipoproteins. 

Indeed, native HDL has been shown to markedly increase HCVpp infectivity 

(31, 407), not only when added pre binding but also when added to 

pseudoparticles prebound to target cells. In addition, it has been observed 

that lipid transfer inhibitors strongly reduce the enhancing effect of HDL on 

HCVpp infectivity (407). Together, these findings indicate that HDL might 
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facilitate viral entry by affecting the lipid transfer activity of SR-BI, rather than 

by serving as a carrier for virus particles. 

 Claudin-1 (CLDN1) 
 

The 21 kDa CLDN1 protein belongs to a family of highly conserved 

transmembrane proteins involved in tight junction (TJ) formation (291). Like 

occludins, another group of TJ proteins, claudins consist of short cytoplasmic 

amino and carboxy-termini, four membrane spanning domains, and a large 

(EL1) and small (EL2) extracellular loop. Claudins are expressed in most 

tissues including the liver, where they interact with each other to form 

intercellular TJ strands (reviewed in (155). In addition, most claudins carry a 

PDZ-binding motif on their C-terminus through which they directly interact with 

the tight junction-associated zonula occludens (ZO) proteins -1, -2, and -3 

(190). Blocking this interaction results in the formation of aberrant TJ strands 

along the lateral cell membrane (271), suggesting that the interaction with  

ZO-1 and/or additional factors is essential for the correct incorporation of 

claudins into tight junctions. Furthermore, it has been shown that claudins are 

crucial for the barrier function of tight junctions, as mutations in claudin-16 and 

claudin-4 (paracellin-1) impair the paracellular permeability to calcium, 

magnesium and sodium, respectively (181, 368), and claudin-1 knockout mice 

die from dehydration within one day of birth due to defects in their epidermal 

barrier function (137). 
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CD81 and SR-BI are essential for HCV entry but do not confer susceptibility to 

HCV to non-hepatic cells (32, 183, 427), indicating that additional hepatocyte-

specific factor(s) are required for productive infection. In a recent study it has 

been demonstrated that non-permissive 293T cells, human embryonic kidney 

cells that express CD81 and SR-BI, but not CLDN1, become susceptible to 

HCV infection as a result of CLDN1 expression (114), identifying CLDN1 as a 

crucial HCV entry factor. When a Flag epitope is inserted in the large 

extracellular loop of CLDN1, an anti-Flag antibody inhibits HCVpp infection in 

a dose-dependent manner (114), suggesting a direct interaction between the 

tight junction protein and HCV. On the other hand, the expression level of 

CLDN1 does not modulate HCVpp or HCVcc infectivity, which hints at an 

indirect interaction. Evans and colleagues therefore propose that virus-

receptor interactions prior to CLDN1 engagement might trigger conformational 

changes in the TJ protein that are required for HCV binding, similar to HIV 

binding to the CCR-5 co-receptor, which requires prior interaction with CD4 

(415). Even more recently, CLDNs 6 and 9, which are expressed in the liver 

and on peripheral blood mononuclear cells (PBMCs), were identified as 

additional co-receptors for HCV (428) based on the observation that 293T 

cells expressing CLDN6 or 9 become HCVpp permissive, while the 

expression of other claudins does not confer susceptibility to infection. 

Interestingly however, not every CD81+/SR-BI+ non-permissive human cell 

lines becomes susceptible to HCV infection, even when ectopically 

expressing CLDN1 (114), suggesting that productive viral infection requires at 

least one more human-specific viral entry factor.  
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Indeed, another TJ protein, occludin (OCLN), was recently identified as a 

crucial factor for HCV entry (326). Ectopic expression of OCLN rendered non-

permissive murine and human cell lines susceptible to HCVpp infection, 

whereas OCLN silencing in permissive cells impaired HCV entry. However, 

OCLN alone was not sufficient to confer permissiveness to unsusceptible 

cells, indicating that all four HCV entry factors have to act in concert to allow 

efficient infection.  

Other putative HCV attachment and entry factors. 
 

In binding studies using soluble E2 (sE2) it has been observed that the HCV 

envelope glycoprotein interacts with a number of different cellular factors 

including the C-type lectins L-SIGN and DC-SIGN (145, 258, 327), the low 

density lipoprotein (LDL) receptor (LDLr) (6, 288), and glycosaminoglycans 

(GAGs) (27, 423). GAGs are proteoglycans that have been posttranslationally 

modified by glycosyltransferases in the Golgi apparatus. where 

polysaccharides are added to the protein (proteoglycan) core (142).  

 

GAGs are thought to capture HCV on the cell surface and transfer bound 

particles to a second – and more specific – receptor. This initial attachment is 

probably mediated by interaction of E2 with heparan sulfates, which are a 

highly sulfated form of GAGs and commonly found in the plasma membrane, 

where they serve as a ubiquitous target for viral attachment (28, 44). 

However, conflicting evidence exists regarding the role of GAGs in HCV entry. 
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Soluble E2 reportedly interacts with heparin, a structural homologue of 

heparan sulfate (27, 423). Also, heparinase, an enzyme able to degrade 

heparan sulfates at the cell surface, inhibits HCV attachment to target cells 

(148, 216). Furthermore, the hypervariable region (HVR1) of E2 has been 

shown to interact with heparan sulfates, however this interaction does not 

result in the binding of HCVpp (35). In line with this observation, E2 does not 

bind to heparin in the context of HCVpp, possibly because the heparin-binding 

domain is not accessible on the mature form of the glycoprotein (66). Instead, 

the association of the E2 glycoprotein with heparan sulfates might occur via 

electrostatic interactions involving basic residues probably including the E2 

HVR1 (27, 28). 

 

The LDL receptor was proposed as a HCV entry factor because of the 

association of the virus with LDL and VLDL, and indeed Agnello et al. 

demonstrated that LDLr-mediated endocytosis of serum-derived HCV is 

inhibited by anti-LDLr-antibodies (6). In the same study, HCV endocytosis was 

inhibited in competition assays with LDL and VLDL, indicating that the LDLr is 

involved in the internalization of HCV in hepatoma (HepG2) and B cell lines. 

Furthermore, the LDLr has been shown to mediate endocytosis of serum-

derived HCV in primary hepatocytes (287). Intringuingly, these results could 

not be reproduced with HCVpp (30), suggesting that to enter cells via the 

LDLr, HCV particles might need to associate with LDL or VLDL.  
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The intercellular adhesion molecule 3-grabbing nonintegrins DC-SIGN and L-

SIGN have been proposed as HCV candidate receptors as sE2 binds to both 

receptors with high affinity (258). Furthermore, DC and L SIGN bind HCV 

virus like particles (HCV VLPs), HCVpp and serum-derived HCV and this 

interaction can be inhibited using exogenous mannose ligands and receptor 

specific antibodies (29),(145, 257, 258). 

 

Since DC-SIGN and L-SIGN are expressed on dendritic cells and liver/lymph 

node sinusoidal endothelial cells, respectively, but not on hepatocytes, it is 

likely that these lectins contribute to the persistence of infection and/or the 

dissemination of HCV to target organs by capturing and transmitting virus 

particles to susceptible cells (92, 257). 

1.4.3  HCV enters cells via clathrin-mediated endocytosis. 
 

Following attachment to the cell surface, virus particles are internalized, which 

requires fusion of the viral envelope with the cellular membrane. In the case of 

viruses like human immunodeficiency virus (HIV) and herpes simplex virus 

(HSV), this event takes place at the cell surface at neutral pH, while for 

classical flaviviruses fusion occurs in an endosomal compartment at low pH 

(161, 170). Recent studies based on HCVpp (183) and HCVcc (401) have 

demonstrated the pH-dependency of  HCV entry. Furthermore, it is now 

known that HCV enters cells via the clathrin-mediated endocytic pathway (49, 

278). Clathrin and associated proteins assemble at the cell membrane to form 

a so-called coated pit in a process that is driven by dynamin (reviewed in 
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(295). Maturation of the clathrin-coated pits into early endosomes is 

characterized by shedding of the protein coat and acidification. Once HCV 

has entered the target cell, the low pH of the coated pit triggers 

conformational changes of the envelope glycoprotein and fusion with the 

endosomal membrane leading to release of the viral genome into the 

cytoplasm.  

 

The fusion of viral and host membranes is mediated by two major classes of 

viral fusion proteins, class I and II (reviewed in (210)). The HCV envelope 

proteins are thought to resemble the folding pattern of class II fusion proteins 

(318), which change conformation in response to a cellular trigger such as low 

pH, leading to the exposure of the fusion peptide (209, 268). As discussed, 

HCV entry requires acid pH and indeed, compounds that prevent acidification 

of the endosomes inhibit HCVpp infection (49, 88, 183, 278). Interestingly, 

exposure of cell-bound virus to low pH does not affect HCV infectivity (49, 

401), suggesting that HCV glycoproteins require an additional trigger, such as 

receptor interaction, to become sensitive to low pH.  

 

HCVpp entry is significantly reduced in Huh-7 cells expressing a dominant-

negative Rab5 GTPase mutant, which interferes with cargo delivery to early 

endosomes, but not in cells expressing a Rab7 GTPase mutant, which 

interferes with transport to late endosomes, indicating that HCV entry requires 

delivery of the virus to early but not to late endosomes (278). Furthermore, 

Meertens et al. observed a 20-min lag between HCVpp internalization and 
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fusion, while for other viruses, like semliki forest virus or vesicular stomatitis 

virus, both of which fuse in early endosomes, these events were closely 

related (278). These findings suggest that additional post-internalization 

events, for instance interactions with cellular protein factors and/or enzymatic 

modifications within the endosome, may be required for productive HCV entry. 
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Figure 1-6 Attachment, receptor binding and clathrin-mediated 
endocytosis of HCV.  
Circulating HCV particles can be associated with low- and very-low-density 
lipoproteins. Virus attachment and entry possibly involve the low density 
lipoprotein receptor (LDLR), glycosaminoglycans (GAG), SR-BI, CD81 and 
CLDN1. The latter functions at a late stage of cell entry, possibly in 
conjunction with occludin (326) at tight junctions of polarized hepatocytes. 
Following internalization via clathrin-mediated endocytosis, acidification of the 
endosome induces HCV glycoprotein membrane fusion, and uncoating and 
genome release into the cytoplasma via an unknown mechanism (image 
source: (290)). 
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1.4.4 Assembly of the nucleocapsid and budding of virions. 
 

Each HCV particle consists of a nucleocapsid, which is composed of the core 

protein, and a lipid bilayer envelope studded with E1E2 heterodimers. How 

the viral particles are assembled remains largely unknown, but it is assumed 

that following translation, the polyprotein is targeted to the ER membrane by 

its C-terminal tail and subsequently processed at the core/E1, E1/E2, and 

E2/p7 junctions to generate the mature forms of E1 and E2.  

 

 

 

Figure 1-7 Structure of the HCV virion.  
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The envelope glycoproteins are anchored to the ER membrane by their C-

terminal hydrophobic domains, while their N-terminal ectodomains translocate 

to the ER lumen where they are extensively glycosylated and acquire disulfide 

bonds (58). E2 then interacts with E1 to form a non-covalent heterodimeric 

complex, which is believed to represent the building block for the viral 

envelope (30, 108, 109). Core is cleaved by a host signal-peptide peptidase to 

generate a 23 kDa precursor form of the protein (p23) (248). p23 remains 

anchored to the cytoplasmic side of the ER membrane via its C-terminal 

hydrophobic tail (157) and undergoes further processing to produce the 21 

kDa mature core protein (p21) (248, 275, 418), which is a pre-requisite for the 

assembly of the viral envelope (7). Furthermore, p21 associates with lipid 

droplets (275), and is probably involved in the biogenesis of these structures 

(23), suggesting a role for core protein in steatosis, the retention of lipids in 

the liver (reviewed in (150).  

 

Once core protein processing is completed, several positively charged amino 

acid residues at the N-terminus of the mature protein are thought to interact 

with defined structures within the 3’ and 5’ NTR of the HCV RNA (96, 117). 

This interaction probably facilitates the oligomerisation of the core protein and 

initiates the virus packaging reaction (264). In addition, core may repress 

translation from the IRES, thereby inducing a switch from 

translation/replication to assembly (359).  
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E1 and E2, which are actively retained in the ER (109, 112) are likely to 

interact with the core protein via their C-terminal membrane anchors, as none 

of the envelope proteins contains a long cytoplasmic tail that could serve as a 

recognition sequence for core to initiate the assembly process (255). 

Retention of the envelope glycoproteins suggests that the viral nucleocapsids 

bud through the ER membrane to acquire their lipid bilayer envelopes. In this 

case, the completed virions may be released from the cell via the secretory 

pathway, a theory that is supported by the observation that N-linked glycans 

can be found on the surface of purified virus particles, suggesting virus transit 

through the Golgi apparatus (25). 

 

The mechanisms underlying HCV particle assembly and release are still 

largely unknown. However, it becomes increasingly clear that HCV utilizes the 

hepatic VLDL assembly pathway to produce infectious lipo-viral-particles 

(LVP). Intriguingly, secreted infectious HCV particles are of lower buoyant 

density than intracellular HCV particles, suggesting that low density is gained 

during egress (147). Indeed, inhibition of VLDL assembly using MTP inhibitors 

and silencing of apolipoproteins prevented release of particles (73, 146, 299). 

Furthermore, treatment with Brefeldin A, which blocks protein export from the 

endoplasmic reticulum (ER) and causes disruption of the Golgi complex 

therein inhibiting the secretory pathway, led to an intracellular accumulation of 

virus (184). Together, these findings support the important role of the VLDL 

assembly machinery in HCV particle assembly and release.  
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The association between the HCV structural proteins and host apoproteins is 

possibly mediated by lipid droplets (LD), which are intracellular organelles 

responsible for lipid storage. Indeed, virus particles are often found in close 

proximity to LDs, indicating that some steps of virus assembly may take place 

around these structures (285). Viral core protein reportedly translocates to 

LDs and recruits nonstructural viral proteins and replication complexes to LD-

associated membranes (54, 55, 355). Furthermore, core directs the 

redistribution of droplets along the microtubule network to membranes bearing 

genome replication complexes (54). Thus, it is currently believed that 

assembly occurs at these juxtapositions, where viral RNA and proteins 

frequently accumulate (184, 259, 285, 386).  
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1.5 Project objectives. 

 

This study is divided into two main sections.  

 

The aim of the study described in chapter 3.1 was to generate an indicator 

Huh-7.5 cell line suitable for the screening of patient-derived HCV strains and 

the isolation of HCV permissive cells. Most cell-based reporter assays are 

based on cells expressing (sub)genomic replicons in which cleavage of a 

fusion protein by the viral serine protease NS3/4A results in secretion of 

serine alkaline phosphatase (SEAP) into the culture medium (235, 313). We 

constructed a reporter plasmid, which encodes for a fusion protein consisting 

of a GFP protein linked to a proteasome targeting signal through a recognition 

site for NS3/4A protease. In cells constitutively expressing the fusion protein, 

NS3/4A-mediated cleavage liberates GFP from its proteasome-targeting 

signal and results in the accumulation of green fluorescence in the cytoplasm, 

allowing the identification and selection of HCV infected cells.  

 

The recent identification of CLDN1 and Occludin as crucial HCV entry factors 

(114, 326) highlights the importance of studying the role of tight junctions (TJ) 

in HCV infection. We facilitated the HCVcc system to investigate (i) the role of 

cell junctions in the regulation of viral entry co-receptor expression and 

distribution, and (ii) possible effects on viral entry.  

Chronic hepatitis C infection can lead to progressive liver damage including 

fibrosis and cirrhosis. The mechanisms underlying HCV-associated hepatic 
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injury are poorly understood, however, it becomes increasingly clear that TJ 

integrity is compromised in HCV infected liver. In chapter 3.3 we focussed on 

the HCV-mediated modulation of TJ protein expression and localization and 

the mechanism(s) underlying these processes. 
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2 Materials and Methods 
 

2.1 Tissue culture. 

 
Cells were maintained in T75 tissue culture flasks (Becton Dickinson, NJ, 

USA) in Dulbecco’s modified Eagle’s Medium (DMEM) supplemented with 

10% foetal bovine serum (FBS) (Gibco, CA, USA), 1% non-essential amino 

acids (Gibco), 1% L-Glutamine (Gibco), and 50 units/ml penicillin and 50 

µg/ml streptomycin (P/S) (Gibco). Cells were maintained at 37°C and 5% CO2 

throughout. 

 

Table 2-1 List of cell lines used. 

Name Species/Tissue Source

Huh-7 Human hepatoma Dr. Y-J. Tan, Institute of Molecular and Cell Biology, Singapore

Huh-7.5 Human hepatoma Dr. C.M. Rice, Rockefeller University, NY

Huh-7.5/CLDN1 Human hepatoma In house; see entry on lentivirus transduction

Huh-7.5/SR-BI Human hepatoma In house; see entry on lentivirus transduction

293T Human embryonic kidney American Type Culture Collection

Hep-G2 Human hepatocellular carcinoma American Type Culture Collection

Hep-G2/CD81 Human hepatocellular carcinoma In house

Cell lines



48 

2.2 Basic techniques. 

2.2.1 Antibodies.  

Table 2-2 List of antibodies used. 
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2.2.2 Preparation of human serum-derived IgG. 
 

Isolation of IgG . 
 

Blood samples from patients infected with HCV were kindly provided by Dr. 

David Mutimer and Dr. David Adams of the Queen Elizabeth Hospital Liver 

Unit.  

Vacutainers containing 3-5ml blood and a clotting activator were centrifuged 

at 3000 rpm, brake 4, for 10 mins at 4°C in a 5804R centrifuge (Eppendorf, 

Germany) in sealed buckets. Using a disposable Pasteur pipette, the serum 

was carefully collected, transferred to Falcon tubes, and stored in a secure 

biological hazard container at -80°C. 

Prior to isolation of IgG, serum was heat inactivated by incubation at 60°C for 

1.5 hrs. A 5ml column containing 2.5ml of Fast Flow protein G conjugated 

sepharose beads (GE Healthcare, UK) was prepared and connected to a 

peristaltic pump (Pharmacia, Sweden). 

Following a wash with 10ml phosphate buffered saline (PBS) (Gibco), 10ml 

serum was passed through the column, followed by another PBS wash. 

IgG was eluted with 10ml 0.1M glycine (Sigma-Aldrich, MO, USA) at pH 2.7, 

thereafter, the acidic eluate was immediately neutralized with 650µl 1M TRIS 

(Sigma-Aldrich) at pH 9.0. 

The eluate was dialysed against PBS over night at 4°C and the IgG 

concentration determined using a UV spectrophotometer (Amersham, UK). 
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IgG neutralization assay. 
 

To test the neutralizing efficiency of serum-derived IgG, Huh-7.5 cells were 

seeded at 1.5x104 cells/well in 48-well microplates.  

HCVcc were diluted in DMEM + 3% FBS + P/S containing the appropriate 

concentration of IgG (ranging from 10 to 50 µg/ml) and inoculated with the 

cells for 1 hr at 37°C. Thereafter, the HCV-IgG mix was removed, the cells 

washed with excess PBS and the infection allowed to proceed for 48 hrs.  

Viral infectivity was determined by enumerating NS5A positive foci and 

expressed as mean foci forming units (FFU). The percentage neutralization 

was calculated by comparison of the level of infection after inhibitory 

treatment to that of untreated (no serum) cells. Serum from a HCV negative 

patient was used as a control. 

2.2.3 Flow cytometry. 
 

Flow cytometry is a technique used for counting, examining and sorting of 

cells suspended in a stream of fluid. When a beam of single wavelength laser 

light is directed onto this stream of fluid, suspended particles passing through 

the beam scatter the light and attached fluorescent dyes are excited into 

emitting light at a higher wavelength than the light source. The combination of 

scattered and fluorescent light is picked up by detectors, which are set up in 

line with the laser beam (Forward Scatter; FSC) or perpendicular to it (Side 

Scatter; SSC). Fluctuations in brightness at each detector provide information 

about the physical and chemical structure of each individual particle; FSC 

correlates with the cell volume and SSC depends on the inner complexity of 
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the particle such as the type of cytoplasmic granules or the membrane 

roughness (reviewed in (375)).  

 

To retrieve them from cell culture dishes (Corning, NY, USA) cells of interest 

were treated with trypsin (Gibco) for 3-5 min at 37°C, resuspended in 10% 

DMEM and counted using a haemocytometer.  

Thereafter, cells were pelleted in a 5804R centrifuge (Eppendorf, Germany) at 

1200 rpm for 3 min and diluted to 2x106 cells/ml in PBS + 0.5% bovine serum 

albumin (BSA) (Sigma-Aldrich).  

If cells required fixation prior to staining, they were treated for 5 min with 1% 

paraformaldehyde (PFA) on ice (TAAB, UK), followed by a PBS wash and 

resuspension in PBS + 0.5% BSA. If permeabilization was necessary, fixed 

cells were resuspended in PBS + 0.5% BSA + 0.01% saponin (Sigma-Aldrich) 

and all subsequent steps carried out in this buffer. To block non-specific 

binding, cells were incubated for 20 min on ice. If using saponin, this also 

served as a permeabilization step. 

Antibody staining was performed in 96 well U bottomed microplates (Corning, 

NY, USA) with 2x105 cells/well (for antibody concentrations see ). Briefly, 100 

µl of cell suspension was transferred to each well, the cells pelleted by 

centrifugation at 1200 rpm for 3 min and resuspended in 70-100 µl of primary 

antibody diluted in PBS + 0.5% BSA (+0.01% saponin). Species matched 

IgGs were used as controls throughout. 
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After 45 min incubation with the primary antibody, cells were washed twice 

with excess PBS and resuspended in 70-100 µl of fluorescently conjugated 

secondary antibody diluted as above.  

Cells were incubated for 45 min in the dark to prevent photobleaching, and 

washed twice with PBS as above. In the case of live staining the cells were 

fixed prior to analysis. Staining intensities were measured using a Facscalibur 

flow cytometer (Becton Dickinson), the data captured with Cell Quest (Becton 

Dickinson) and analyzed using FlowJo software (Tree Star, OR, USA). 

2.2.4 Indirect immunofluorescence. 
 

 
Table 2-3 List of antibody concentrations used.  
IF, indirect immunofluorescence; FC,  flow cytometry; WB, Western blotting. 

Antibody Application Dilution

9E10 IF, FC 1/200

9E10 WB 1/400

Rabbit Anti-CLDN1 IF 1/500

Anti-CLDN1 (Abnova) IF, WB 1/1000

FC 1/500

Rabbit Anti-Occludin IF 1/500

Rabbit Anti-ZO-1 IF 1/500

Anti-ClaI IF 1/400

WB 1/250

Anti-SRBI (R25) FC 1/100

M38 IF, FC 1/20

Anti-CD81 1.3.3.22 WB 1/200

2s.131 IF 1/5

C1 IF 1/4000

ERGIC53 IF 1/2000

GM130 IF 1/250

EEA1 IF 1/250

Lamp1 IF 1/250

beta-Actin WB 1/5000

Alexa Fluor 488 IF, FC 1/1000

Alexa Fluor 594, 633 IF, FC 1/500

TRITC IgG IF 1/250

Anti-mouse HRP WB 1/2500

Primary antibodies

Secondary antibodies
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Fluorescence microscopy. 
 

(Epi)fluorescence microscopy is based on the following principle: a 

component of interest in the specimen is specifically labelled with 

fluorophores and illuminated with light of a specific wavelength. The absorbed 

light excites the fluorphores, causing them to emit longer wavelengths of light 

(i.e. of a different colour than the absorbed light). To make the emitted 

fluorescence visible, the illumination light is separated from the much weaker 

emitted light by using an emission filter (341). 

 

Cells were seeded in 48- well cell culture microplates at 1.5x104 cells/well and 

stained 72 to 96 hrs post seeding (unless stated otherwise).   

To fix specimens, cells were washed twice with excess PBS and treated for 5 

min with ice cold methanol (Fisher Scientific, UK) or, in the case of CD81 

staining, by 20 min treatment with 2% EM-grade formaldehyde (TAAB 

Laboratories, UK) diluted with serum-free DMEM. Subsequently, cells were 

washed twice with PBS and blocked for 20 min with PBS + 1% BSA.  

Primary antibody staining was achieved by incubation for 45 min at RT with 

antibody diluted in PBS + 1% BSA. In the case of SR-BI staining, cells were 

incubated with the primary antibody over night at 4°C to ensure sufficient 

binding. 

To wash the cells, diluted antibody was removed by careful aspiration, 

followed by the addition of excess PBS; the process was then repeated. 
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Secondary antibody staining was achieved by incubation for 45 min at RT in 

the dark with fluorescently conjugated secondary antibody diluted in the 

appropriate buffer. 

Cells were washed twice as above and the staining visualized using a 

fluorescent microscope (Nikon TE2000, Japan). Images were taken using a 

digital camera (Hammatsu, Japan). 

Laser scanning confocal microscopy (LSCM). 
 

Cells were seeded in 24-well culture microplates on 13µm borosilicate cover 

slips. Prior to seeding, cover slips were sterilized by dipping in pure ethanol 

and washed once with PBS, after which they were pre-treated with 1 mg/ml 

collagen IV (Sigma) diluted with PBS for 1 hr at RT followed by a PBS wash.  

Staining was performed as described for fluorescence microscopy. In 

addition, nuclei were counterstained by incubation with 10 µg/ml DAPI 

(Sigma) for 1 min at RT in the dark followed by a PBS wash. Cover slips were 

mounted onto glass slides using ProLong Antifade mounting reagent 

(Invitrogen, CA, USA) and mounted slides stored at -20°C.  

LSCM was performed on a Zeiss Meta Head Confocal Microscope utilizing a 

63x 1.2NA objective. Background fluorescence of samples was corrected 

based on control samples stained with species-matched IgG and secondary 

antibody only, respectively. 
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Linear plot profile analysis (LPPA). 
 

LPPA was used to measure HCV receptor expression levels at the plasma 

membrane and in the cytoplasma of sub-confluent and confluent cells, the 

hypothesis being that the amount of fluorescently labelled receptor molecules 

correlates with fluorescence intensity viz. brightness.  

 

Figure 2-1 Linear plot profile analysis.  
A 1 pixel wide line was drawn across a single cell and grey values 
(brightness) recorded along the line. Peaks represent the plasma membrane 
(PM) in contrast to the space between cells and the cytoplasma (CP).  
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5-10 images were acquired per receptor and cell seeding density. LPPA in 

ImageJ (v1.83) (2) was used to analyze receptor expression.  

A linear plot profile involves using a line histogram of 1 pixel thickness to 

display fluorescence intensity in a graphical format. To achieve this, a line 

was drawn horizontally across the cell of interest, making sure that it crossed 

the plasma membrane at each side (Figure 2-1). The linear plot profile 

generated a histogram with two obvious peaks, representing the grey value 

(brightness) of the plasma membrane in contrast to the empty space between 

cells (background) and the intracellular space (cytoplasma).  

 On the histogram, the x-value indicates the distance (in µm) from the start of 

the line and the y-value indicates the brightness of the pixel. The histogram 

plot was converted to a list of x/y values; per cell, 5 values were recorded per 

peak and 10 random values for the area in between peaks. Data was 

expressed as arbitrary fluorescence units (AFU) i.e. mean grey value. 

Statistical analysis and comparison of plasma membrane and cytoplasmic 

receptor expression levels was performed using a paired t test. 

LSCM of HCVcc infected cells. 
 

For the analysis of receptor distribution in HCV infected cells, naïve Huh-7.5 

cells were seeded at 0.5x106 cells per T25 tissue culture flask. 24 hrs post 

seeding, the culture media was replaced with 3.5ml of HCVcc virus diluted in 

DMEM + 3%FBS + P/S or culture media only (negative control). 
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Cells were inoculated with HCVcc virus for 18-20 hrs, after which they were 

trypsinized and re-seeded onto collagen treated borosilicate cover slips at 

1.5x105 cells/well in DMEM + 3% FBS + P/S.  

72 hrs post infection, cells were methanol fixed and stained for indirect 

immunofluorescence as described previously. 

To determine the level of infection, 5x104 cells/well were seeded in a 48-well 

tissue culture plate and stained for NS5A at 72 hrs post infection. 

2.2.5 Western Blotting. 
 

Proteins were routinely dissolved in suitable buffers and stored at -20°C. 
 

Lysates were prepared by seeding 2x106 Huh-7.5 cells in 10 cm Petri dishes 

in DMEM + 10% FBS + P/S. 24-26 hrs after seeding the culture media was 

removed and the cell monolayer rinsed with PBS at RT. All subsequent steps 

were carried out on ice using fresh, ice-cold buffers to prevent protein 

degradation. 

 

5 ml of ice cold PBS were added per Petri dish and adherent cells removed 

using the barrel end of a small syringe. The cell suspension was transferred to 

Universals and pelleted by centrifugation at 1200 rpm for 5 min at 4°C.  

The cell pellet was resuspended in 1 ml ice cold RIPA buffer (PBS + 1% 

Triton X-100 + 0.5% Sodium Deoxycholate + 0.1% SDS; 1x Complete Mini 

Protease Inhibitor Cocktail Tablet + 1x Complete PhosStop Phosphatase 

Inhibitor Cocktail Tablet (Roche)) and incubated on ice for 30 min. 
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The lysate was centrifuged at 15 000 rpm in a Biofuge primo R centrifuge 

(Heraeus) for 15 min at 4°C to separate nuclei and unsolubilized cell 

membranes from protein, after which the supernatant was collected and 

frozen at -20°C. 

Protein was quantified using the BCA Protein Assay kit (Thermo Scientific, IL, 

USA) according to the manufacturer’s instructions. Briefly, 10 µl of each 

sample or BSA standard were mixed with 200 µl of BCA Working Reagent in 

a 96-well microtiter plate in triplicates and incubated at 37°C for 30 min. 

Thereafter, the plate was allowed to cool to RT and the absorbance at 590 nm 

measured using an ELISA plate reader. 

To determine the protein concentration of each sample, a standard curve was 

prepared by plotting the average Blank-corrected 490 nm measurement for 

each BSA standard versus its concentration in µg/ml. 

Figure 2-2 BCA protein assay standard curve.  
BSA protein standards were diluted in RIPA buffer and incubated with BCA 
working reagent for 20 min at 37°C, thereafter absorbance at 490nm was 
measured using an ELISA plate reader. 
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SDS Polyacrylmide Gel Electrophoresis (SDS-PAGE). 
 

Proteins were separated on 12% slab polyacrylamide (PAA) gels. To prepare 

samples, defined amounts of protein were mixed with 3x Laemmli loading dye 

(H2O + 30% v/v Glycerol + 6% w/v SDS + 0.02% v/v Bromophenol Blue + 

0.2M Tris-HCl; pH 6.8) with or without 10% 2-mercaptoethanol and the total 

volume adjusted to 25 µl with H2O. Samples were heat-denatured at 95°C for 

5 minutes and allowed to cool to RT prior to loading. 

Proteins were separated by electrophoresis using the Mini Protean 3 System 

(Bio-Rad Laboratories, CA, USA) according to the manufacturer’s instructions. 

Briefly, 20 µl of protein sample were loaded per lane and gels run at 200 volts 

for 30-45 min. 

Proteins were transferred onto PVDF membranes (Millipore, MA, USA) using 

a Mini Trans-Blot Electrophoretic Transfer Cell System (Bio-Rad) according to 

the manufacturer’s recommendations. Briefly, PVDF membranes were cut to 

the appropriate size and pre-treated with methanol for 1-2 min, rinsed with 

ultra pure water, and incubated in transfer buffer  (25mM Trizma base + 0.2M 

Glycine + 200 ml MeOH + 0.5 ml 10% SDS) at RT for 5-20 min. Gels were 

equilibrated in transfer buffer for 5 min to prevent shrinking and incomplete 

transfer. Transfer was carried out at 350 mA for 60 min at RT. 

Immunoprobing and chemiluminescent detection of proteins. 
 

All subsequent steps were carried out in 50 ml Falcon tubes with gentle 

agitation on a tube roller (Barloworld Scientific, UK) at RT. To block unspecific 

binding of antibodies, membranes were incubated in 2.5 ml of TBST (10mM 
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Trizma base + 0.1M Sodium Chloride + 10% v/v Tween 20) + 5% dry milk for 

30 min at RT.  

After which the blocking buffer was removed and the membranes were 

incubated with primary antibodies (for concentrations see ) diluted in 2 ml 

TBST + 5% dry milk for 60 min followed by three 5 min washes with excess 

TBST. Incubation with HRP-conjugated secondary antibodies (diluted 1/2500 

in TBST) was carried out as described above. 

Chemiluminescent detection of HRP-conjugated antibodies was performed 

using the ECL Western Blotting Detection System (Amersham, UK) according 

to the manufacturer’s instructions. Briefly, membranes were immersed in ECL 

detection reagent for 1 min, wrapped in Saran foil, and exposed to CL-

XPosure Blue X-Ray Film (Thermo Scientific) for 1-5 min.  

2.3 HCVpp and HCVpp based work. 

2.3.1 Plasmids. 

 
Table 2-4 List of plasmids used. 
 

Name Source

HCVcc JFH-1 Dr. T. Wakita, National Institute of Infectious Diseases, Tokyo

HCVcc J6/JFH Dr. C. M. Rice, The Rockefeller University, New York

JFH-1 SGR Dr. T. Wakita, National Institute of Infectious Diseases, Tokyo

TRIP SR-BI In house

TRIP CLDN1 In house

TRIP CD9 In house

HIV gag-pol 8.2 Aaron Diamond AIDS Research Center

VSV-G Aaron Diamond AIDS Research Center

CSGW GFP Aaron Diamond AIDS Research Center

NL4.3.Luc.R-E- Aaron Diamond AIDS Research Center

JFH E1E2 Dr. J. Zhang, The Rockefeller University, New York

H77 E1E2 Dr. J. Zhang, The Rockefeller University, New York

MLV.env Aaron Diamond AIDS Research Center

Plasmids
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2.3.2 Preparation of HCV pseudoparticles (HCVpp). 
 

The HCVpp system used in this study is similar to that described by Hsu et al. 

and Pohlmann et al. (183, 327). HCVpp are based around a replication 

deficient HIV gag-pol core but carry the HCV E1E2 glycoproteins. Infection is 

detected by an eGFP or Luciferase (Luc) reporter gene packaged into the 

HCVpp. As the particles do not encode any HCV structural proteins and are 

incapable of further rounds of replication they only mimic the entry process of 

HCV. 

 

HCVpp were synthesized in a similar manner to TRIP particles (see section 

2.4). 24 hrs prior to transfection, 293T cells were seeded in 6-well cell culture 

microplates coated with 0.1 mg/ml poly-L-lysine hydro bromide (Sigma, CA, 

USA) at 6x105 cells/well in P/S free DMEM + 10% FBS. Media was replaced 

with P/S free DMEM + 3% FBS 1 hr prior to addition of DNA. 

Cells were transfected using the Fugene (Roche, Switzerland) kit according to 

the manufacturer’s instructions. Briefly, 6 µl Fugene mixed with 100 µl 

Optimem (Gibco) were added to a mix of plasmids encoding HCV E1E2 (800-

1000 ng), HIV gag-pol (250 ng) and an eGFP (250 ng) or Luc reporter gene 

(800 ng). The Fugene- DNA mix was incubated 20 min at RT and then added 

to the cells. Transfection was performed for 6 hrs at 37°C, thereafter, the 

culture media was refreshed.  

Culture media containing HCVpp was harvested 48 hrs post transfection and 

infection of target cells performed immediately.  
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2.3.3 Luciferase infection assay. 
 

Target cells were seeded at 1.5x104 cells/well in 48-well cell culture 

microplates and inoculated for up to 8 hrs with HCVpp containing culture 

media diluted 1:2 in DMEM + 3% FBS + P/S. Thereafter, the media was 

refreshed.  

Infection was assessed after 72 hrs with a luminometer (Luc reporter) using a 

Luciferase Assay System (Promega) according to the manufacturer’s 

instructions. 

Renilla luciferase assay. 
 

1x lysis buffer and luciferase reagent were prepared according to the 

manufacturer’s instructions and stored at -20°C.  

To prepare the cell lysates, culture media was removed and cells once 

washed with excess PBS. Thereafter, 50 µl of lysis buffer were added to each 

well and the mix incubated for 10 min at RT.  

20 µl of lysate was then transferred to a white polystyrene 96-well assay plate 

(Corning, NY, USA). Following priming of the reagent injector with 1-2 ml of 

Renilla luciferase agent, 100 µ of luciferase reagent were dispensed per well 

and luminescence recorded over 10 seconds with a 2 second delay using a 

Centro LB960 luminometer Berthold Technlogies, UK). 

Firefly luciferase assay. 

1x lysis buffer was prepared and stored as described above. Luciferase assay 

reagent was prepared by adding 10 ml of luciferase assay buffer to a vial of 
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lyophilized luciferase assay substrate. Working aliquots were stored at -80°C 

for up to one month. 

Cell lysates were prepared as described above. 20 µl of lysates were 

transferred to white polystyrene 96-well assay plates, mixed with 40 µl of 

luciferase assay reagent and luminescence measured immediately.  

2.3.4 Preparation of cell culture proficient HCV (HCVcc). 
 

Currently, all HCVcc viruses are constructed around the non-structural 

proteins of HCV strain JFH-1, a unique isolate capable of producing particles 

in certain hepatoma cell lines (244, 408, 429). The HCVcc viruses used in this 

study are JFH-1 wildtype and a chimeric J6/JFH virus, which encodes core, 

E1, E2, p7 and NS2 of strain J6 HCV (244, 408, 429). In each case, virus was 

produced by transcription of RNA from a plasmid encoding the HCV genome, 

introduction of RNA plasmids into Huh-7.5 cells by electroporation, and 

subsequent harvest of secreted HCVcc particles.  

RNA synthesis. 
 

RNA transcripts of the HCV genome were produced using the T7 RNA 

polymerase kit (Ambion, TX, USA) according to the manufacturer’s 

instructions. Briefly, 5 µg of plasmid containing a cDNA clone of the HCV 

genome were linearized by XbaI digest (Promega). 

1 µg of linearized plasmid was used as a template for RNA transcription, the 

reaction mixture was incubated at 37°C for 3-4 hrs, after which the RNA was 
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purified using the RNeasy MinElute kit (Qiagen, NL) according to the 

manufacturer’s instructions. 

RNA quality was assessed by gel electrophoresis on a 1% agarose gel 

(Bioline, UK). Typical yields, as measured by UV spectrophotometry 

(Amersham), were 250-1000 ng/µl.  

Electroporation (EP). 
 

Huh-7.5 cells at 60-80% confluence were trypsinized, resuspended in DMEM 

and counted using a haemocytometer. 

To prepare, cells were washed with excess ice cold PBS and pelleted by 

centrifugation at 1250 rpm for 5 min at 1°C. This process was repeated and 

the cells were resuspended in ice cold PBS at 1.5x107 cells/ml and placed on 

ice. 

To electroporate, 400 µl of cell suspension was mixed with 3 µg of genomic 

RNA and transferred to a 0.2 cm EP cuvette (Sigma-Aldrich). EPs were 

carried out at 780 volts in an Electro Square Porator (Harvard Apparatur, MA, 

USA). 

Following the EP the cells were allowed to stand for 5 min at RT prior to being 

transferred into 10 ml of pre-warmed DMEM + 10% FBS + P/S. 8 ml of the cell 

suspension were seeded in a T75 tissue culture flask (Corning), and the 

remainder put into 2 wells of a 24-well tissue culture plate to allow the 

monitoring of HCV protein expression.  
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At 48 hrs post EP; the efficiency of viral replication was quantified by detection 

of the HCV non-structural protein NS5A. Indirect immunofluorescence was 

carried out following the protocol detailed in section 2.2. 

HCVcc particles were harvested between 4 and 14 days post EP; after which 

the cells were discarded. To harvest, cells were cultured in a minimal volume 

of DMEM + 3% FBS + P/S (usually 7 ml per T75 tissue culture flask) and 

media containing secreted virions collected every 8-14 hrs. Harvested virus 

was clarified by centrifugation at 3000 rpm for 5 min and frozen at -80°C until 

use.  

2.3.5 HCVcc infection assay. 
 

All HCVcc infectivity data presented in this thesis was obtained using the 

following protocol (unless stated otherwise): 

Naïve Huh-7.5 cells were seeded at the appropriate density (usually 1.5x104 

cells/well) in 48-well cell culture microplates 24 hrs prior to infection. To infect, 

the media was replaced with 150 µl of HCVcc virus diluted in DMEM + 3% 

FBS + P/S. 

Cells were inoculated for 1-8 hrs at 37°C, washed with PBS, and 150 µl of 

DMEM + 3% FBS + P/S added per well. Infections were allowed to proceed 

for 48 to 72 hrs, as stated in the figure legends. 

Infected cells were methanol fixed and NS5A positive cells or foci enumerated 

using indirect immunofluorescence. 



66 

2.3.6 HCVcc internalization assay. 
 

Proteinase K-dependent HCVcc internalization assay. 
 

2x106 Huh-7.5 cells were seeded in T75 tissue culture flasks and incubated at 

37°C over night. The following day, the cells were trypsinized and counted.  

2x105 Huh-7.5 cells were pelleted at 1200 rpm for 3 min, resuspended in 1 ml 

DMEM + 3%FBS and transferred to Eppendorf tubes. 

To infect, cells were pelleted as described above and resuspended in HCVcc 

diluted with ice cold hepes-buffered DMEM + 3%FBS. Cells were incubated 

for one hour on ice, thereafter unbound virus was removed by washing cells 

once with cold PBS. 

HCVcc entry was initiated by incubating the cells at 37°C. After different time 

periods, the cells were pelleted and resuspended in ice cold hepes buffered 

DMEM + 3% FBS containing 50 µg/ml proteinase K (Sigma) to remove non-

internalized particles, and incubated on ice for 1 hr. 

Post treatment the cells were washed twice with ice cold hepes-buffered 

DMEM + 10% FBS to inactivate proteinase activity, counted, and re-seeded at 

equal densities in duplicates in 24-well tissue culture plates. 

Viral infectivity was determined 48 hrs post infection by counting NS5A 

positive foci. Data was expressed as percentage HCVcc entry; this was 

calculated by comparison of the level of infection in proteinase treated cells to 

that in untreated cells at each time point. 
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 Neutralizing antibody-dependent HCVcc internalization assay.  
 

Huh-7.5 cells were plated at 1.5x104 cells/well in 48-well plates and the 

following day infected with virus diluted in hepes-buffered DMEM + 3% FBS 

for 1 hr on ice.  

Thereafter, unbound virus was removed by washing cells once with cold PBS 

and entry initiated by elevating the temperature to 37°C.  

To neutralize non-internalized particles, 10 µg/ml of mouse-anti-E2 mAb (C1) 

or 50 µg/ml of patient-derived polyclonal IgGs were diluted in DMEM + 3% 

FBS and added directly to the cells.  

Viral infectivity was determined at 48 hrs post infection as described above. 

The data was expressed as percentage HCVcc entry; this was calculated by 

comparison of the level of infection at every given time point to the level of 

infection after 2 hr (100% loss of inhibition). 

2.3.7 Treatment of cells with inhibitors. 
 

Table 2-5 List of inhibitors and growth factors used. 
 

Inhibitors were reconstituted in ultrapure water or DMSO and stored at 4°C or 

-20°C according to the manufacturer’s guidelines. 

Name Effect Opt. Conc. Source

Calpain Inhibitor-I (ALLN) Proteasome inhibitor 36 µM Sigma-Aldrich

Cycloheximide (CHX) Inhibitor of protein biosynthesis 20 mg/ml Sigma-Aldrich
Chlorpromazine Inhibits clathrin-mediated endocytosis 15 µM Sigma-Aldrich

Tumor necrosis factor-! (TNF!)Growth factor 1 ng/ml Sigma-Aldrich

Interferon-" (IFN") Proinflammatory cytokine 100 U/ml Sigma-Aldrich

Inhibitors and growth factors
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The cytotoxicity of all compounds was tested using the CellTiter One Solution 

Cell Proliferation (MTS) Assay (Promega). Briefly, cells of interest were 

seeded at 1.5x104 cells/well of a 48-well cell culture microplate in DMEM + 

10% FBS + P/S and incubated over night. The following day, cells were 

washed once with excess PBS and 200 µl of the MTS (tetrazolium compound) 

working solution added per well. 

Cells were incubated at 37°C for 1 hr, thereafter 100 µl of the supernatant was 

transferred to a 96-well ELISA plate and absorbance at 490nm measured 

using an ELISA plate reader. To determine the cell survival rate, a standard 

curve was prepared by seeding cells at increasing densities ranging from 0.3 

to 6x104 cells/well and plotting the average Blank-corrected 490 nm 

measurement for each density against the cell number. 

Figure 2-3 MTS cell proliferation assay standard curve. 
 
 

Inhibitors were diluted in DMEM + 3% FBS + P/S and incubated with the cells 

as stated in the respective figure legends. 
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2.4 Generation of TRIP viruses and transduction of cells to 
express receptors of interest. 

 
The TRIP system (425) is based on a retrovirus gene expression vector and 

produces virus vector particles, formed around a replication deficient HIV gag-

pol core, that bear the envelope glycoprotein of vesicular stomatitis virus 

(VSVG). TRIP virus particles can package a gene of interest as an RNA 

transcript, subsequent transduction of a cell line with the TRIP system results 

in reverse transcription of the target gene and insertion into the host genome. 

In this study, transduced cells were not under selection, however, they 

maintained exogenous gene expression for around 2-3 weeks, after which 

they were discarded. 

 

TRIP particles were produced by Fugene transfection of 293T cells with 

plasmids encoding the constituent elements as described in section 2.3.2. 

293T cells were seeded in 6-well culture microplates coated with 0.1 mg/ml 

poly-L-lysine hydro bromide (Sigma, CA, USA) at 6x105 cells/well in DMEM + 

3% FBS.  

The following day, 400ng VSVG, 600ng HIV gag-pol and 600ng of target gene 

plasmid DNA were introduced into the cells by a 6 hr transfection, after which 

the culture media was changed to DMEM + 3% FBS + P/S. 

Culture media containing assembled TRIP particles was harvested at 48 hrs 

post transfection and passed through a 0.2 µM filter to remove contaminating 

293T cells. Harvested supernatants were pooled and target cells infected 

immediately. 
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Target cells were seeded at 4x105 cells/well in 6 well culture microplates 24 

hrs prior to transduction. To transduce, cells were incubated over night with 

TRIP culture media diluted 1:1 in DMEM + 3% FBS + P/S, after which the 

media was replaced with DMEM + 10% FBS + P/S. 

Transduction efficiency was assessed after 24-48 hrs by monitoring 

expression of the TRIP eGFP control and flow cytometric detection of target 

gene(s). 

2.5 Molecular cloning. 

 
In order to construct plasmids carrying the gene of interest, the following basic 

procedures were used: 

2.5.1 Restriction enzyme digest. 
 

1 to 2 µg of DNA were digested using 5 or 10 units of the respective restriction 

enzyme in a total volume of 20 µl. Digests were performed for 60 min at 37°C 

using the buffers recommended by the manufacturer. 

2.5.2 Ligation. 
 

Following restriction digest, DNA samples were run on 1% agarose gels at 50 

volts and purified using the Qiagen MinElute kit (Qiagen) according to the 

manufacturer’s instructions. 

The ligation reaction was carried out in a total volume of 10 µl, including 5 µl 

of 2x ligation buffer (Promega) and 10 units of T4 DNA ligase (Promega).  50 

ng of vector DNA was used per ligation reaction, the molar ratio of vector: 



71 

insert was 1:10. The ligation reaction was allowed to proceed for 30 min at 

RT. 

2.5.3 Transformation of competent cells. 
 
Competent cells were thawed on ice for about 5 minutes and kept on ice 

during the whole procedure. For each transformation reaction 50 µl of 

competent One Shot E. coli T1 Phage-resistant cells (Invitrogen) and 5 µl of 

the ligation reaction (10 pg - 100 ng DNA) were carefully mixed and incubated 

on ice for 30 min. Subsequently, DNA uptake was enabled by heat shocking 

the cells at 42°C for 45 sec in a water bath. Following 1 min incubation on ice, 

150 µl of pre-warmed T-Broth medium (23g TB + 2 ml Glycine +/- 5g agarose 

in sterile H2O) were added to the cell suspension, which was then spread on 

TB agar plates containing 100 µg/ml ampicillin and 20 µg/ml kanamycin for 

selection of cells carrying the plasmid of interest.  

2.5.4 PCR colony screening and plasmid DNA isolation. 
 

50µl 10x PCR buffer (w/o MgCl2) , 30µl 25mM MgCl2, 15µl 10mM dNTPs, 15µl 

of each 10µM primer and 1 unit/100µl Taq polymerase were adjusted to a final 

volume of 500 µl with sterile water. 

 

For colony screening, single colonies were picked with sterile toothpicks and 

transferred to a 96-well PCR plate by dipping into wells containing 25 µl of 

PCR reaction. After which the toothpicks were inoculated over night in 2 ml of 
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liquid TB medium supplemented with 100 µg/ml ampicillin and 20 µg/ml 

kanamycin at 37°C with agitation for subsequent preparation of plasmid DNA. 

 

PCR was performed following the program detailed below:  

5 min   95°C 
15 sec  94°C  

15 sec  50°C  30 cycles 

90 sec  72°C  

∞  4°C 

  

Plasmid DNA was isolated with the Fast plasmid MINI prep system 

(Eppendorf) according to the manufacturer’s instructions. Briefly, 1.5 ml of the 

bacterial culture was pelleted by 1 minute centrifugation at 13000 rpm. The 

supernatant was discarded, 400 µl ice-cold Complete Lysis Solution were 

added and the suspension mixed thoroughly by constant vortexing at full 

speed for 30 seconds. The lysate was incubated at RT for 3 min and 

transferred to a Spin Column Assembly by decanting. The Spin Column 

Assembly was centrifuged for 60 sec at 13000 rpm. 400 µl of Wash buffer 

were added and the column centrifuged again for 60 sec at maximum speed. 

The filtrate was discarded and the column centrifuged at maximum speed for 

1 min. Subsequently, the Spin Column was transferred to a Collection Tube, 

50 µl of Elution buffer were added and the assembly centrifuged at 13000 rpm 

for 1 minute. The eluted DNA was used immediately or stored at –20°C. 
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2.6 Generation of the RCGFP(∆5AB)MODC indicator cell line. 

 

Our cloning strategy used an existing plasmid, the pZSProSensor-1 

(Clontech, CA, USA). This eukaryotic vector encodes a high efficiency 

proteolytic targeting signal (mouse ornithine decarboxylase; MODC) fused to 

the 3’ end of the gene for Zoanthus sp. Green Fluorescent Protein (ZsGreen; 

RCGFP) and can be used to monitor proteasome activity in living cells. When 

the proteasome is active, RCGFP will not accumulate, however, when 

proteasome activity is inhibited, the fusion protein will accumulate in cells, 

resulting in an increase in green fluorescence under 496 nm light. By inserting 

the gentoype 1a NS5A/5B sequence (∆5AB) between the RCGFP and the 

MODC gene, we aimed to generate a reporter protein that will be cleaved by 

the viral NS3/4A protease, allowing the detection and isolation of HCV 

infected cells. This work was carried out in collaboration with Dr. Peter Balfe. 

 

The ∆5AB insert was generated by annealing two redundant oligonucleotides 

(Invitrogen) that contained substitutions (W) for adenine (A) and thymidine (T) 

in the region encoding the NS3/4A protease recognition site (cytosine-

cytosine-serine; CCS): 

 
∆5AB+ GGG AAG CAG ATA CTG AGG ACG TCG TCT GCW GCW GCA TGA GCT ACG GAT CCG CGC 

∆5AB- GCG GAT CCG TAG CTC ATG CWG CWG CAG ACG ACG TCC TCA GTA TCT GCT TCC CGC 

 

Sense and antisense strand oligonucleotides were mixed 1:1 and annealed at 

94°C for 1 min with controlled cool-down. 
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The pZS-1 vector (1 µg) was linearized by digestion with SacII and gel purified 

using the Qiagen Elution kit (Qiagen, NL) according to the manufacturer’s 

instructions and the ∆5AB insert ligated into the vector.  

 

 

 

 

 

 

 

 
Figure 2-4 Basic pZS-1 plasmid map (modified from Clontech, USA). 
 

Transformation of E.coli with RCGP(∆5AB)MODC plasmids was carried out as 

described in section 2.5.3.  

 

Colonies were screened for the ∆5AB insert by PCR using the following insert 

flanking primers (Invitrogen): 

 

 forward   5’ TTCATCCAGCACAAGCTGAC  

reverse   5’ CCATGGCTCTGGATCTGTTT 

    (the sequence shown is the reverse complement) 
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∆5AB positive colonies were cultured over night in TB medium and plasmid 

DNA isolated using the Qiagen Fast Plasmid MINI kit as described previously.   

In addition to generating the NS3/4A recognition site, replacement of the 

amino acid substitutions with A or T will result in formation of PstI and/or PvuII 

restriction sites. (see diagram below). 

 

 
 
 
 
 
 
 

 
Figure 2-5 Restriction maps of the pZS-1 vector and ∆5B insert.  
Amino acid substitutions generate PstI and/or PvuII restriction sites in the 
∆5AB sequence, which are characteristic for the respective NS3/4A cleavage 
motifs. Below: Restriction map of the pZS1 vector encoding the ∆5AB (red), 
RCGFP (green) and MODC (yellow) sequences.  
 

 

To determine whether the ∆5AB sequence was encoding a functional (CCS) 

or non-functional fusion protein, plasmids were test digested with PvuII and 

Pst/SalI, respectively. Since the wildtype pZS1 vector contains a PstI and two 

PvuII restriction sites and the ∆5AB insert may contain a PvuII and /or a PstI 

restriction site depending on the A/T substitutions, PvuII digestion results in 3 
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bands (608, 1037, 3225 bp) for plasmids encoding the CSC protease target 

site and 2 bands for all other versions of the insert. Likewise, PstI/SalI double 

digestion results in 3 bands (148, 492, 4229 bp) for plasmids encoding the 

CCS, CSS, or CSC target sites, and 2 bands (580, 4229 bp) for the wildtype 

vector and plasmids encoding the CCC sequence. A representative test digest 

is shown in Figure . 

 
 

 
Figure 2-6 PstI/SalI restriction digest of the RCGFP(∆5AB)MODC 
plasmid.  
Digestion of plasmids encoding serine-containing NS3/4A cleavage motifs 
results in 3 bands at ∼150, 490 and 4229bp (clones A3-C7), whereas the 
triple cysteine motif (clone A1) and the self-ligated wildtype vector (SL) yield 2 
bands at 580 and 4229bp. Additional bands are due to partial digestion. 
Samples were run on a 3% agarose gel. 
 

 

Selected clones were sequenced using the insert flanking primers described 

above to determine orientation of the insert and to confirm the sequence of 

the protease target site.  
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For transient transfection, 293T cells were seeded at 3x105 cells/well in poly-

L-lysine coated 12-well tissue culture plates in P/S free culture media, which 

was replaced with pre-warmed Optimem prior to transfection. 

Transfections were carried out using the Calcium Phosphate Profection 

(Promega, WI, USA) kit according to the manufacturer’s instructions. Briefly, 2 

µg of plasmid DNA was diluted with nanopure water to a final volume of 37,7µl 

and 5,3µl of 2M calcium phosphate added, followed by 43µl of 2x HBS. The 

mix was incubated at RT for 30 min, after which the transfection mixture was 

added to the cells. Transfections were carried out for 5 hrs at 37°C, thereafter 

the media was replaced with DMEM + 3% FBS + P/S. Expression efficiency 

was typically monitored 24 hrs post transfection. 

 

Transient transfection of Huh-7.5 cells was carried out using the 

Lipofectamine 2000 (Invitrogen, CA, USA) kit according to the manufacturer’s 

instructions. Briefly, Huh-7.5 cells were seeded at 6x105 cells/well in 6-well 

culture plates in P/S free media.  

Per transfection reaction, 6 µl of Lipofectamie reagent were mixed with 250 µl  

serum-reduced medium (Optimem) and combined with 4 µg DNA diluted with 

250 µl Optimem. The mix was incubated at 37°C for 30 min and added to the 

cells. Transfections were carried out at 37°C over night, thereafter the media 

was replenished with DMEM + 10%FBS + P/S. Expression efficiency was 

typically monitored 24 hrs post transfection.  
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To generate stable cell lines, cells were passaged 1:10 into fresh culture 

DMEM + 10% FBS 24 hrs post transfection. The following day, the media was 

changed to DMEM + 10% FBS + 1 mg/ml G418 (Sigma-Aldrich) and 

refreshed on a regular basis to remove dead cells. Stable cell lines were 

maintained in G418 containing culture media and expression of the RCGFP 

reporter gene monitored by fluorescent microscopy. 
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3 Results 
 

3.1 Developing an indicator cell line for HCV infection. 

 

Since primary HCV strains cannot be efficiently cultured in vitro, the 

evaluation of potential antiviral compounds in a biologically relevant context 

has so far proven extremely difficult. However, with the recent development of 

the replicon system it is now possible to design cell-based assays for the 

analysis of potential HCV inhibitors. These cell-based assays complement 

enzymatic assays, because they can determine whether potential inhibitors 

are able to penetrate the cell and act in an appropriate cellular environment. In 

theory, every step in the viral replication cycle can be considered as potential 

drug targets. However, as many fundamental aspects of HCV replication are 

still unknown, efforts to develop new antiviral agents have focused on the 

NS3/4A serine protease and the NS5B RNA-dependent RNA polymerase, 

both of which have been shown to be essential for viral replication. Early cell-

based assays to study HCV protease activity relied on the cleavage of 

peptidic substrates by purified viral enzymes (177, 370). To enable efficient 

screening of inhibitors, cell-free assays were engineered that relied on 

chromatographic (383), colorimetric (HPLC) (379) or fluorescence (385) 

detection methods. However, while these assays allowed high-throughput 

screening, they were also laborious, inefficient or sensitive to interferences, 

and did not allow one to assess the ability of compounds to penetrate the cell 

membrane. The most recent generation of cell-based reporter assays with the 
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potential to identify inhibitors of NS3/4A protease is based on the co-

expression of HCV protease and a cleavable reporter substrate, such as 

serine alkaline phosphatase (SEAP), which is linked to a secretion signal (80, 

235, 313). As secretion of the reporter substrate into the culture medium 

depends on cleavage by NS3/4A, efficient inhibition is reflected by a decrease 

in the reporter substrate concentration (42, 234, 235).  

 

Despite being fast, sensitive and suitable for high-throughput screening, the 

aforementioned cell-based reporter assays do not allow the identification and 

selection of HCV infected cells or the screening of patient samples to identify 

cell culture infectious viral strains. Therefore, we aimed to develop a cell-

based reporter assay, which utilizes the viral NS3/4A protease to cleave and 

activate a fluorescent reporter protein constitutively expressed in HCV 

permissive Huh-7.5 hepatoma cells. 

 

The HCV genome consists of a single open reading frame encoding a 3000 

amino acid polyprotein precursor, which is co- and post-translationally 

processed into the structural and non-structural viral proteins. Following 

cleavage of the structural proteins by host proteases, the viral proteinase 

NS2/3 cleaves at the NS2/3 junction, whereas the NS3/4A serine protease 

cleaves further downstream at the NS3/4A, NS4A/4B, NS4B/5A and NS5A/5B 

junctions with a temporal sequence that is thought to be crucial for replication 

(reviewed in (100). We used the transcleavage ability of NS3/4A on the 

NS5A/5B domain of genotype 1a to generate a GFP-fusion protein which will 
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be liberated in cells expressing the HCV genome and can be monitored by 

fluorescence microscopy, flow cytometry or in a 96-well plate reader equipped 

with FITC filter sets.  

 

It has been demonstrated that processing at the NS4B/5A and NS5A/5B sites 

is affected by amino acid substitutions at the conserved acidic (P6) and 

cysteine (P1) positions. In fact, NS5A/5B processing is completely abolished 

when a Cys→Gly, Arg, Asn or Asp substitution is introduced at P1 (24, 214), 

making this cleavage site an ideal target for a cell-based reporter assay. 
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3.1.1 RCGFP(∆5AB)MODC plasmid construction.  
 

As a backbone for the reporter plasmid we used a Proteasome Sensor Vector 

(pZS-1; Clontech), which is designed to express a proteasome-sensitive 

fusion protein composed of a Zoanthus sp. derived green fluorescent protein 

(Reef Coral Green Fluorescent Protein; RCGFP) and a mouse ornithine 

decarboxylase degradation domain (MODC) (Figure 3-1). An NS3-4A-specific 

cleavage site (Δ5AB; EADTEDVVCCSMSY), which corresponds to the amino 

acid sequence spanning the NS5A and NS5B junction, was inserted in frame 

between the RCGFP reporter gene and the MODC, thereby creating the 

RCGFP( ∆5AB)MODC fusion protein. In cells expressing the viral proteins the 

NS3/4A protease should cleave at its designated site thus liberating the 

RCGFP reporter protein from the MODC proteasome-targeting signal and 

leading to an accumulation of green fluorescence in the cytoplasm, which can 

be detected and quantified by microscopy, flow cytometry, or in a 96-well plate 

reader with FITC filter sets. In uninfected cells, the fusion protein is 

constitutively targeted to the proteasomes and degraded once it is translated.  

The sequence for NS3/4A cleavage, ∆5AB, was based on the NS5A/5B 

domain of genotype 1a and constructed by annealing two redundant 

oligonucleotides (Figure 3-1), which contained substitutions (W) for adenine 

(A) and thymidine (T) in the nucleotide region coding for the recognition site 

(cytosine-serine-cytosine; CCS) of the viral enzyme. In addition to the S→C 

substitution, random replacement of the redundant nucleotides generated PstI 

and/or PvuII restriction site(s), which allowed subsequent discrimination of the 
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four possible NS3/4A target sequences (CCS, CSS, CCC, CSC). Furthermore, 

the blunt-end insertion of the Δ5AB oligonucleotide between the RCGFP and 

MODC genes via a single SacII restriction site resulted in random sense- or 

anti-sense orientation of the insert. Consequently, translation of the 

RCGFP(∆5AB)MODC sequence yielded eight different versions of the fusion 

protein: six proteins containing a non-functional cleavage site (CCC, CSC, 

CSS) in sense or antisense orientation, one containing a functional cleavage 

site (CCS) in antisense orientation, and one encoding the functional fusion 

protein.  

 

Transformation of the ligation reaction into E. coli yielded a total of 218 clones 

that were screened for the Δ5AB insert by PCR (for primer sequences see 

Materials and Methods). ∆5AB positive plasmids were test digested with PstI 

and PvuII to identify clones carrying one or both restriction sites (Fig. 1/1). Of 

the 92 clones carrying the ∆5AB sequence, 19 were PstI positive i.e. 

contained either a functional (CCS; null-PstI) or non-functional (CSS; PstI-null) 

cleavage site, 37 were PstI/PvuII positive i.e. carried a non-functional CSC 

cleavage site, and 36 were PstI/PvuII negative i.e. contained a non-functional 

CCC cleavage site. Eighteen of these clones were sequenced to confirm the 

results of the test digest and to determine orientation of the ∆5AB insert. 
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Figure 3-1 Schematic diagrams of the RCGFP(∆5AB)MODC plasmid and 
NS3/4A cleavage sequence  
A. The NS3/4A cleavage sequence was inserted between the RCGFP 
reporter gene and the MODC proteasome targeting sequence on the pZS-
ProSensor-1 vector (Clontech) via a single SacII restriction site. B. Redundant 
oligonucleotides were used to generate four different versions of the NS3/4A 
cleavage site. C. Random replacement of the redundant nucleotides (W) with 
adenine or thymidine generates three non-functional (NF) and one functional 
(F) protease cleavage site. In addition, the S→C substitution generates a PstI 
and/or PvuII restriction site, allowing discrimination of the different fusion 
protein versions by restriction digest. 

NS3-4A target sequence: 
 

Δ5AB+ GGG AAG CAG ATA CTG AGG ACG TCG TCT GCW GCW  GCA TGA GCT ACG GAT CCG CGC 
Δ5AB- GCG GAT CCG TAG CTC ATG CWG CWG CAG ACG ACG TCC TCA GTA TCT GCT TCC CGC 

                                          PvuII 
          SacII                            PstI PstI      BamHI 
           |                                |   |          | 
   5’ GCCCCCGCGGGAAGCAGATACTGAGGACGTCGTCTGCT

AGC
T
AGCATGAGCTACGGATCCGCGCTCACGGCCA 3’ 

          
       F        E  A  D  T  E  D  V  V  C  C  S  M  S  Y  R  S    null-PstI 
       NF       E  A  D  T  E  D  V  V  C  S  S  M  S  Y  R  S    PstI-null 
       NF       E  A  D  T  E  D  V  V  C  S  C  M  S  Y  R  S    PstI-PvuII 
       NF       E  A  D  T  E  D  V  V  C  C  C  M  S  Y  R  S    null-null 
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3.1.2 Proteolysis of the RCGFP(∆5AB)MODC fusion protein in 
transiently transfected 293T and Huh-7.5 cell lines 

 

To assess functional expression of the fusion protein, 293T cells, which 

showed higher transfection efficiency than Huh-7.5 cells, were transiently 

transfected with the different reporter plasmids and subsequently treated with 

the proteasome inhibitor ALLN (N-acetyl-leucyl-leucyl-norleucinal; Calpain 

Inhibitor-I) to induce accumulation of green fluorescence. To optimize ALLN 

concentration and treatment time, 293T cells were transfected with the 

parental pZS1 vector and treated with 10 or 50 µg/ml ALLN for 2, 4 and 6 hrs. 

Treated cells were fixed and mean fluorescence intensity (MFI) and the 

percentage of fluorescent cells determined by flow cytometry (Figure 3-2). We 

found that the effect of ALLN on RCGFP protein accumulation was increased 

with prolonged treatment time, whereas a higher inhibitor concentration did 

not increase fluorescence intensity or the percentage of green cells. To avoid 

cytotoxic effects, transfected 293T cells were treated with 10 µg/ml ALLN for 6 

hrs in all subsequent experiments.  
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Figure 3-2 ALLN treatment of 293T cells expressing the parental fusion 
protein.  
293T cells were transiently transfected to express the parental pZS1 vector.  
A. 24 hrs post transfection, cells were treated with 10 µg/ml ALLN for 1-6 hrs 
and mean fluorescence (MFI; black bars) and the percentage RCGFP positive 
cells (white bars) determined by flow cytometry. B. cells were treated with 10 
or 50 µg/ml ALLN for 2, 4 or 6 hrs, untreated cells (pZS1) were used as a 
control. MFI and % RCGFP + cells were monitored by flow cytometry. Both 
experiments were performed in duplicate; data from representative 
experiments is shown. 
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293T cells expressing functional and non-functional RCGFP(∆5AB)MODC 

fusion proteins were treated with ALLN for 6 hrs and fluorescence in the 

presence and absence of the inhibitor was monitored by flow cytometry. 

Relatively high mean fluorescence was detected in most of the ALLN-

untreated cell lines and in control cells transfected with the parental pZS-1 

vector (Figure 3-3). Transfection with lower amounts of plasmid DNA reduced 

protein expression levels slightly, however, green fluorescence was still 

detectable in ALLN-untreated cells. Overall, fluorescence levels were on 

average 2-fold increased following proteasome inhibition, indicating that in the 

absence of ALLN the fusion protein was still efficiently degraded.  

 

Since the effect of ALLN on fusion protein degradation was only modest, it 

was difficult to select plasmids based on their susceptibility to proteasome 

inhibition. Instead, we chose one plasmid with amino acid substitutions in 

Δ5AB (clone U1) and one plasmid carrying a functional NS3/4A cleavage 

sequence (clone U9). Both clones responded comparably well to ALLN-

mediated proteasome inhibition, demonstrating 5-fold (U1) and 6-fold (U9) 

increased fluorescence levels, respectively, following proteasome inhibition. In 

addition, we chose one plasmid (clone A3) as a negative control, which did 

not respond to ALLN treatment but which contained a triple cysteine cleavage 

site that we believed to be definitely non-functional. All three plasmids were 

transiently transfected into Huh-7.5 cells and functional expression of the 

fusion protein assessed 24 hrs post transfection by treating the cells with 

ALLN for 2, 4, 6 and 12 hrs. Fluorescence was monitored by fluorescent 
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microscopy throughout to assure maximum inhibition. Following treatment 

with ALLN for 12 hrs cells were fixed and their fluorescence determined by 

flow cytometry. In the presence of ALLN the percentage of fluorescent cells 

(Figure 3-4), as well as the mean fluorescence intensity (MFI) were increased 

up to 10-fold compared to untreated cells, confirming efficient degradation of 

the fusion protein in Huh-7.5 cells in the absence of the proteasome inhibitor.  
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Figure 3-3 Degradation of the RCGFP(∆5AB)MODC fusion protein in 
293T cells.  
Cells were transiently transfected to express functional and non-functional 
versions of the fusion protein and 24 hrs post transfection treated with the 
proteasome inhibitor ALLN for 6 hrs. Following treatment, cells were fixed with 
paraformaldehyde and fluorescence (MFI) analyzed by flow cytometry. 
Shaded boxes represent clones that were used in subsequent experiments. 
(n.a.= not applicable). 
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Figure 3-4 Proteloytic degradation of the RCGFP(∆5AB)MODC fusion 
protein in transiently transfected Huh-7.5 cells.  
Cells were transiently transfected to express fusion proteins containing a 
functional (U9) or non-functional (A3, U1) NS3/4A cleavage motif. 24 hrs post 
transfection, cells were treated with the proteasome inhibitor ALLN (black 
bars) for 12 hrs. Untreated cells (white bars) were used as controls. Following 
treatment, cells were fixed and the mean fluorescence intensity (MFI) and 
percentage RCGFP positive cells monitored by flow cytometry. The 
experiment was performed in triplicate; data from a representative experiment 
is shown. 
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3.1.3 Generation of RCGFP(∆5AB)MODC Huh-7.5 cells - NS3/4A 
mediated cleavage of the fusion protein 

 

To generate stable cell lines, Huh-7.5 cells were transfected with plasmids 

derived from clones U1 and U9 or the parental pZS-1 vector, and put under 

G418 selection at 48 hrs post transfection. Clone A3, which contained an 

antisense oriented CCC cleavage site was omitted because of possible 

negative effects of the triple cysteine sequence on correct protein folding. As 

before, functional expression of the fusion protein was determined by treating 

the stable cell lines with ALLN and analyzing fluorescence by flow cytometry. 

Mean fluorescence levels in all transfected untreated cell lines were 

comparable to parental Huh-7.5 cells, indicating that the fusion protein was 

efficiently degraded by the proteasome. Following proteasome inhibition, the 

number of RCGFP positive cells increased 35% (Figure 3-5).  

 

In order to determine the efficiency of NS3/4A mediated cleavage of the ∆5AB 

fusion protein the stable cell lines were infected with high titer J6/JFH and the 

number of NS5A-RCGFP double positive cells determined by flow cytometry 

at 48 hrs post infection. Unexpectedly, although up to 80% of cells were NS5A 

positive J6/JFH infection did not induce accumulation of green fluorescence in 

infected cells (Figure 3-6), indicating that NS3/4A mediated cleavage of the 

fusion protein was inefficient or absent. The lack of cleavage can be explained 

by the discrepancy in NS3/4A and target sequence localization, since the 

fusion protein is randomly distributed within the cytoplasm, while the viral 

protease is targeted to the endoplasmic reticulum (ER). By inserting an ER-
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targeting signal or an ER-resident protein such as PERK upstream of the 

RCGFP gene this problem could be solved, although it is not clear whether 

targeting of the fusion protein to the ER would interfere with subsequent 

targeting to the proteasomes.  

 

In summary, although the RCGFP(∆5AB)MODC reporter constructs were 

shown to function as expected, their failure to respond to the presence of 

NS3/4A in infected cells was disappointing. We therefore decided to suspend 

further development of this system in order to focus on the work described 

elsewhere in this thesis. Future work on this approach to detecting infection, 

including the modifications suggested above, should allow us to increase the 

probability of success. 
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Figure 3-5 Proteloytic degradation of the RCGFP(∆5AB)MODC fusion 
protein in stable Huh-7.5 cell lines.  
Cells were transfected to express fusion proteins containing a functional (U9) 
or non-functional (A3, U1) NS3/4A cleavage motif and maintained in G418-
containing media. Cells were treated with 10 µg/ml ALLN for 12 hrs (black 
bars), untreated cells were used as controls (white bars). Mean fluorescence 
intensity (MFI) and percentage RCGFP positive cells were monitored by flow 
cytometry. Data from a representative experiment is shown. 
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Figure 3-6 Analysis of NS3/4A mediated fusion protein cleavage.  
Stable cell lines were infected with J6/JFH in the absence of G418. 72 hrs 
post infection, cells were fixed and stained with an NS5A-specific antibody 
(9E10; 1/200 dilution), bound antibody was detected using the Alexa Fluor 
633 (1/1000 dilution). Fluorescence was monitored by flow cytometry. 
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3.1.4 Discussion 
 

In this study, we aimed to develop a live cell assay for the identification and 

selection of HCV infected cells based on the ability of the viral NS3/4A serine 

protease to cleave in trans the non-structural proteins NS4A to NS5B. Our 

system is based on the Proteasome Sensor Vector (pZS-1) (85), which was 

designed for studies of proteasome function in mammalian cells and encodes 

the Zoanthus sp. GFP gene (Reef Coral Green Fluorescent Protein; RCGFP) 

coupled to a mouse ornithine decarboxylase (MODC) proteasome 

degradation domain. By inserting the NS5A/5B cleavage domain of genotype 

1a (∆5AB) between the RCGFP reporter gene and the MODC domain we 

modified the RCGFP-MODC fusion protein to become a substrate for NS3/4A 

(Fig. 1). In the presence of viral protease the constitutively expressed reporter 

protein is liberated from the proteasome targeting signal and green 

fluorescence accumulates in the cytoplasm. Based on this one component 

system we aimed to produce a novel ‘indicator’ cell line, Huh-7.5-

RCGFP(∆5AB), that would allow quantification of HCV infectivity by flow 

cytometry, real-time studies of viral replication, and the isolation of infected 

cells.  
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Figure 3-7 NS3/4A mediated cleavage of the RCGFP(∆5AB)MODC fusion 
protein.  
In HCV infected cells, NS3/4A cleaves in trans at the ∆5B recognition site and 
liberates the GFP reporter protein from the MODC proteasome targeting 
signal, resulting in the intracellular accumulation of green fluorescence. 
 

 

In the absence of NS3/4A protease, the RCGFP(∆5AB)MODC fusion protein 

is constitutively degraded by the proteasome and only accumulates in the 

cytoplasm when proteasome activity is altered, for instance by treating cells 

with an inhibitor of proteasome-dependent proteolysis such as ALLN. We 

measured relatively high green fluorescence in transiently transfected 293T 

cells in the absence of ALLN (Figure 3-3), which we assume was due to 

incomplete degradation of the fusion protein. One reason for this might be that 

the ∆5AB domain affects correct folding of the fusion protein, thus interfering 

with proteasome targeting. The mean fluorescence intensity (MFI) of 293T 

cells expressing RCGFP(∆5AB)MODC constructs varied significantly between 
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clones and was in some cases up to 7-fold increased compared to the 

parental vector (Figure 3-3), which may suggest that fusion protein folding is 

hampered in these cells. However, considering that accumulation of RCGFP 

was also observed in 293T cells expressing the parental fusion protein, it is 

likely that proteasome ‘overload’ due to each cell containing multiple plasmids 

is responsible for the incomplete degradation. Notably, the activity of 

lysosomal as well as proteasomal proteolytic pathways depends on the 

growth conditions of cells and it has been reported that proteasome activity is 

markedly reduced at cell confluence, especially in cells already deprived of 

amino acids (133, 134). These findings may offer an additional explanation for 

the inefficient protein degradation in transiently transfected 293T cells. In our 

experience, transfection is most efficient when cells are in the growth phase 

i.e. approximately 50-70% confluent. Which means that the cells – 

considering a 24-28 hour doubling time - had reached confluence by the time 

fluorescence was monitored. 

 

In transiently transfected 293T cells, proteasome inhibition with ALLN 

markedly increased the cytoplasmic accumulation of RCGFP, as reflected by 

increases in the fluorescence intensity and the percentage of RCGFP-positive 

cells within the population (Figure 3-3), suggesting that the fusion protein was 

functional. Based on the results from the proteasome-inhibition assay, we 

selected several clones containing functional and non-functional NS3/4A 

cleavage sites for transient transfection into Huh-7.5 cells. Interestingly, we 

measured up to 5-fold higher mean fluorescence in ALLN-untreated Huh-7.5 
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cells expressing the parental pZS-1 vector than in cells carrying a 

RCGFP(∆5AB)MODC construct (Figure 3-4). Likewise, the percentage of 

RCGFP-positive cells within the population was up to 5-fold increased in pZS-

1 expressing Huh-7.5 cells. These findings probably suggest that insertion of 

the ∆5AB domain alters transfection efficiency in Huh-7.5 cells. It is known 

that constructs of large size, such as bacterial artificial chromosome (BAC) 

and P1-derived artificial chromosome (PAC) DNA, substantially reduce 

transfection efficiency. However, the size-effect of a 54 bp DNA fragment on 

transfection efficiency is debatable. Alternatively, insertion of the ∆5AB 

domain downstream of the reporter gene might affect the ability of the CMV 

promoter to drive RCGFP expression. Indeed, Yin and colleagues have 

reported previously that inserting DNA fragments ranging from a couple of 

hundred to a couple of thousand base pairs downstream of a luciferase 

reporter gene significantly reduced relative luciferase activity in transient 

transfection assays through modulation of promoter activity (420).  

 

Overall, we observed low initial fluorescence in transiently transfected Huh-

7.5 cells expressing the RCGFP(∆5AB)MODC constructs. Following 

proteasome inhibition, the mean fluorescence intensity increased 

approximately 4-fold in the clones containing non-functional NS3/4A cleavage 

sites and approximately 12-fold in the clone containing the functional domain, 

confirming efficient degradation of the fusion protein. Stable transfection of 

these plasmids into Huh-7.5 cells yielded similar results, with pZS-1 and all 
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RCGFP(∆5AB)MODC clones showing low initial fluorescence and markedly 

increased fluorescence following proteasome inhibition (Figure 3-5).  

 

To test the ability of NS3/4A protease to cleave the RCGFP(∆5AB)MODC 

fusion protein, we infected the stable cell lines with high-titer HCVcc J6/JFH 

and monitored green fluorescence by flow cytometry at 72h post infection. 

Interestingly, we did not detect any RCGFP accumulation in NS5A-positive 

cells (Figure 3-6), suggesting that NS3/4A had failed to cleave at its 

designated site. Possible explanations for this observation include (i) 

insufficient NS3/4A expression, (ii) inability of the J6/JFH (genotype 2a) 

protease to recognize the genotype 1a ∆5AB domain, (iii) failure to provoke 

cleavage due to localization of viral protease and fusion protein to different 

cellular compartments.  

 

In a recent study, Breiman et al. reported that in HCV infected Huh-7 cells 

efficient cleavage and activation of a PERK(∆5AB)GalVP16 chimeric protein 

positively correlated with high expression of the viral proteins (59), while 

chimera activation was low in HCV-infected hepatocytes, which are known for 

poor infection and low replication rates (68). However, it is worth noting that in 

the same study it was demonstrated that in Huh-7 cells cleavage at the 

NS5A/5B domain occurs even when NS3/4A is expressed at the low level 

typical for normal infection conditions (i.e. low infectivity and/or inefficient 

genome replication). In our experiments, infection with high-titer J6/JFH (MOI 

of >0.3) yielded 60-80% NS5A positive cells and a more detailed analysis of 
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the mean fluorescence intensity by flow cytometry revealed that a great 

proportion of infected cells expressed NS5A at a high level (Figure 3-6). Since 

the polyprotein precursor is cleaved in trans by the NS3/4A protease, NS5A 

expression is most likely indicative of the expression of other viral proteins. 

Therefore, we conclude that NS3/4A levels were sufficient to efficiently cleave 

the fusion protein and induce the intracellular accumulation of detectable 

amounts of RCGFP.  

 

The ∆5AB transcleavage motif used in our study was derived from the 

genome sequence of HCV gentoype 1a strain H77. In theory, NS3/4A 

protease activity could be strain specific resulting in failure of the genotype 2a 

(J6/JFH) protease to recognize and cleave a NS5A/5B motif derived from a 

different strain. However, the active site residues of the NS3 protease are 

strictly conserved between genotypes with the exception of positions 123 

(canonic arginine) and 168 (aspartic acid), which in genotype 3a have been 

replaced with threonine and glutamine, respectively (46). More importantly, 

NS3/4A proteases of different HCV genotypes including 1a, 1b, 2a and 3a 

showed comparable activity on genotype 1a polyprotein substrates and the 

genotype 1a NS5A/5B transcleavage motif (46, 159).  

 

In the absence of the NS4A cofactor the NS3 serine protease is diffusely 

distributed in the cytoplasm and nucleus. However, when co-expressed with 

NS4A, NS3 is directed to the endoplasmic reticulum (ER) (414), which is the 

principal site for the biosynthesis of HCV proteins. The RCGFP(∆5AB)MODC 
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fusion protein, on the other hand, either resides in the cytoplasm or is targeted 

to the proteasome for degradation. Given that NS3/4A failed to cleave the 

chimera despite high expression of the viral proteins, it is likely that the 

protease and its substrate have to be in close proximity i.e. in the same 

cellular compartment to provoke cleavage. Linking the chimera to an ER-

targeting signal would solve this problem, however, we assume that targeting 

to the ER would interfere with proteasomal degradation.  

 

Two different strategies could be employed to circumvent this problem: (i) a 

one component system in which cleavage at the transcleavage motif of the 

chimera releases a tagged membrane-bound protein, (ii) a two component 

system in which cleavage at the ∆5AB domain leads to the release of a 

transcription factor and subsequent activation of a reporter protein. Both 

strategies would allow targeting of the chimera to the ER through fusion with 

an ER resident protein, such as PERK, and the detection of HCV infection in 

live cells. We propose a one component system in which the fluorescently 

tagged extracellular domain of a membrane-anchored protein such as CD8α 

is fused with an ER-retention signal (ERS), generating a ERS(∆5AB)CD8α 

chimera. Upon cleavage by NS3/4A, CD8α would be transported to the cell 

membrane and cytoplasmic fluorescence would be markedly reduced, 

allowing the identification of HCV positive cells. A similar approach in which 

the localization of CD8α is dependent on NS3/4A protease activity has been 

reported previously (313). However, while the aforementioned assay requires 

fixation or cell lysis and staining with an anti-CD8α antibody to quantify HCV 
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infection and NS3/4A activity, our system could be used to isolate and 

propagate cells capable of supporting HCV replication.  

 

While our study was in progress, Breiman et al. reported the development of a 

two component system for the NS3/4A dependent identification and selection 

of HCV infected cells (59). This NS3/4A transactivation system is based on 

processing of a PERK(∆5AB)Gal4VP16 chimera by viral protease, which 

releases the Gal4VP16 transcription factor and amplifies expression of a GFP 

reporter gene, allowing simple and effective monitoring of HCV expression in 

different cell lines and the clonal selection of cells permissive to HCV 

infection. 
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3.2 Cellular contact promotes HCV infection through the 
modulation of HCV entry receptor expression  

 

Cell junctions are membrane specializations that can be visualized as dense 

structures by electron microscopy and are characterized by a close apposition 

of the membranes of neighbouring cells and a cytoplasmic plaque (121, 211). 

Cell junctions are composed of different cell adhesion molecules (CAMs) and 

proteins such as occludins, claudins, and junctional adhesion molecules 

(JAMs), and can be divided into three groups depending on their function 

(reviewed in (406): anchoring junctions, communicating (gap) junctions, and 

tight junctions (TJ). Through serving as a barrier to the intra-membrane 

diffusion of components, TJ play an important role in maintaining cell polarity, 

which is characterized by the asymmetric distribution of macromolecules 

within the cell and the organization into functionally distinct apical and 

basolateral domains (reviewed in (360). 

 

Conflicting evidence exists as to whether human hepatoma cells form 

functional tight junctions (TJ). Benedicto et al. recently reported increased 

transepithelial resistance (TER) and reduced permeability to soluble dextran 

in confluent Huh-7 cells (40), while in our experience Huh cells from different 

sources failed to polarize ((277), unpublished observations). However, 

regardless of polarization status, the TJ proteins claudin-1 (CLDN1), occludin 

(OCLN) and Zonula occludens-1 (ZO-1), are enriched at cellular junctions in 

confluent cells and form a polygonal web resembling the TJ protein 
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distribution pattern characteristic for polarized MDCK and Caco-2 cell lines 

(95, 136).  

 

The importance of CLDN1 in the viral entry process is indisputable. However, 

it is unknown whether CLDN1 expression levels define productive HCV entry. 

Evans and colleagues suggest that the protein acts at the post-binding stage, 

where it may facilitate fusion between the virion and the cell membrane (114), 

but whether high CLDN1 levels promote this process is unclear. In contrast, 

high CD81 and SR-BI surface expression levels have been shown to enhance 

HCV infectivity (159, 215). In our experience, cell density is an important 

determinant of HCV infectivity in vitro and a certain degree of cellular contact 

is required for productive infection. Given that CLDN1 and other TJ proteins 

are enriched at sites of cellular contact, it seems likely that the expression of 

other surface receptor molecules may be modulated in a similar manner, thus 

promoting HCV entry.  

 

Recently, it has been demonstrated that HCV can transmit in cell culture by 

the release and infection of cell-free particles and through direct dissemination 

between cells (396). The latter route is enhanced at cell confluence and 

appears to be CLDN1-dependent since ectopic expression of CLDN1 in 293T 

cells allowed cell-cell transmission of HCV infectivity. Indeed, a recent study 

proposes a correlation between the TJ-like distribution of CLDN1 and the 

cellular tropism of HCV (249, 417), suggesting that the protein may have to be 
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localized to the plasma membrane to render non-permissive cell lines 

susceptible to HCV infection.  

3.2.1 Cellular contact modulates expression and localization of HCV 
entry receptors 

 

To study the effect of cellular contact on HCV entry receptor expression and 

localization, Huh-7.5 cells were plated on collagen-treated borosilicate 

coverslips at sub-confluence (7.5x103 cells/cm2) or confluence (30x103 

cells/cm2) and CD81, SR-BI or CLDN1 imaged by laser-scanning confocal 

microscopy (Figure 3-8). Both CLDN1 and SR-BI were predominantly 

localized to cellular junctions and showed no detectable immuno-staining at 

cell-cell contact free membrane domains, whereas CD81 localization to the 

plasma membrane was independent of cellular contact. Quantitative analysis 

of receptor expression at the plasma membrane and within the cytoplasm by 

pseudo-linear profiling of individual cells showed that in confluent cells, 

CLDN1 and SR-BI plasma membrane expression was significantly enhanced 

(p<0.001, unpaired t-test) compared to sub-confluent cells, while CD81 

expression was unaltered (Figure 3-8). No significant increase in the 

cytoplasmic expression of the receptors was observed suggesting that cellular 

contact specifically modulates the expression of CLDN1 and SR-BI at the 

plasma membrane. These findings were supported by Western Blotting 

analysis of total cell lysates from sub-confluent or confluent Huh-7.5 cells, 

which demonstrated increased protein levels of CLDN1 and SR-BI, but not 

CD81, in confluent cells, whereas RNA levels were unchanged (P. Balfe, 
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unpublished observations), suggesting a cell contact-mediated translational 

regulation of CLDN1 and SR-BI expression. 
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Figure 3-8 Receptor expression is modulated in confluent Huh-7.5 cells.  
A. Sub-confluent and confluent cells were stained with antibodies specific for 
CD81 (M38), SR-BI (Cla-I), or CLDN1 (1C5-D9, Abnova). Images were taken 
at 63x magnification with a 1.2NA objective. B and C. A representative 
histogram of a linear profile plot for confluent cells is shown in B. Expression 
of plasma membrane (black bars) and cytoplasmic (white bars) receptor forms 
was quantified by linear profile plot analysis and is presented as arbitrary 
fluorescence units (AFU); arrows indicate plasma membrane staining. 
Background fluorescence was 20 AFU for CLDN1 and CD81, respectively, 
and 2,5 AFU for SR-BI. A minimum of 15 cells was analyzed per receptor at 
each seeding density. D. Western blotting analysis of protein expression in 
sub-confluent and confluent Huh-7.5 cells. Cells were plated at low (L) or high 
(H) seeding density and 5µg of total protein separated by SDS PAGE under 
reducing (r) or non-reducing (nr) conditions, transferred to membranes and 
probed for CD81, CLDN1, or SR-BI.  
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3.2.2  Cellular contact promotes HCV infection at the entry level 
 

To determine the effect(s) of increased SR-BI and CLDN1 surface expression 

on viral entry, Huh-7.5 cells were plated at low (7.5x103 cells/cm2), standard 

(15x103 cells/cm2), or high seeding density (30x103 cells/cm2) (Figure 3-9) 

and infected with JFH-1 or J6/JFH for 1 to 6 hrs. Following a 48 hrs incubation 

period viral infection was determined by staining with an NS5A-specific 

monoclonal antibody (9E10) and enumerating the number of infected foci, 

which are thought to represent primary infection events ( 

Figure 3-10). JFH-1 and J6/JFH infection, respectively, increased linearly over 

time and were enhanced ~1.5-fold with each doubling in cell density. 

Furthermore, the infection rates (FFU/ml/h) of both virus strains were 

significantly enhanced in confluent cells (∼800 FFU/ml/h) compared to sub-

confluent cells (∼400 FFU/ml/h) (p<0.005, comparison of slopes).  

 

Taken together, these data suggest a relationship between cell density and 

HCV infectivity. To determine whether this was mediated at the viral entry 

level, we analyzed the infectivity of pseudoparticles (HCVpp), which display 

functional viral glycoproteins on retroviral core particles and carry a luciferase 

or GFP reporter gene, allowing measurement of HCV-glycoprotein dependent 

entry. In preliminary experiments designed to optimize the infection, the 

number of HCVpp-JFH (genotype 2a) and HCVpp-H77 (genotype 1a) infected 

Huh-7.5 cells increased more or less linearly over time ( Figure 3-11) when 

cells were plated at standard seeding density, indicating that a prolonged 
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incubation time promotes HCV entry. Of note, HCVpp-H77 infectivity was 50% 

increased compared to HCVpp-JFH, therefore, the genotype 1a strain was 

used in subsequent experiments. 

Figure 3-9 Phase images of Huh-7.5 cells plated at low, standard and 
high density.  
Cells were plated on collagen-treated borosilicate cover slips and 26h later 
imaged with a Zeiss fluorescent microscope. Nuclei were counterstained with 
DAPI. Scale bars represent 100 µm. 
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Figure 3-10 Cellular contact modulates HCVcc infectivity.  
Huh-7.5 cells were plated at low (), standard (), or high () density and 
26 hrs post plating infected with JFH-1 or J6/JFH HCVcc for 1 to 6 hrs. 48 hrs 
post infection, infectivity was quantified by counting NS5A-positive foci Data is 
presented as foci forming units (FFU)/ml. Values represent means ± standard 
deviation. 
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 To define the effect of cellular contact on viral entry, Huh-7.5 cells were 

plated at increasing cell densities from 7.5x105 to 30x105 cells/cm2 and 

HCVpp-H77 allowed to adsorb for 5 hrs at 37°C. Thereafter, non-internalized 

particles were removed by washing and luciferase activity was determined 

following a 72 hrs incubation period. A modest increase in HCVpp-H77 

luciferase activity was observed from low to standard seeding density ( Figure 

3-11), whereas HCVpp-H77 infectivity was enhanced more than 2-fold at high 

cell density. In contrast, the effect of cell confluence on the infectivity of 

murine leukaemia virus pseudoparticles (MLVpp), which were used as an 

independent control, was negligible, indicating that the effect of cellular 

contact on viral infection was HCV glycoprotein-specific. 
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 Figure 3-11 Cellular contact modulates HCV entry.  
A. HCVpp infectivity is governed by incubation time. Huh-7.5 cells were 
plated at standard seeding density and incubated with HCVpp-JFH or HCVpp-
H77 for up to 8 hrs, envelope-deficient pseudoparticles (NoEnv) and MLVpp 
were used as controls. Viral infectivity (per cent GFP positive cells) was 
determined by flow cytometry. B. HCVpp infectivity increases with cell 
confluence. Huh-7.5 cells were plated at different densities and infected with 
HCVpp-H77 or MLVpp for 5h. Luciferase activity (relative light units; RLU) was 
measured 72h post infection.  Statistical analysis was performed using a 
paired two-tailed t-test (p=0.0046). 
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3.2.3 Effect of cellular contact on HCV internalization kinetics  
 

Escape from proteinase K dependent proteolysis  
 

Cellular contact modulates CLDN1 and SR-BI expression and distribution, and 

promotes HCV infection at the entry level. To determine whether a loss of cell-

cell contact affected the internalization kinetics of HCV, we utilized a well-

described proteolytic assay in which proteinase K (PK) is used to remove cell-

bound, non-internalized virus particles from the cell surface, the hypothesis 

being that internalized particles become resistant to proteolysis (Figure 3-12). 

Receptor-mediated endocytosis is an energy-dependent process, therefore 

inoculation with the virus was carried out on ice to prevent uptake of bound 

virus particles. This also resulted in synchronized internalization of bound 

virus once the temperature was elevated to 37°C.  

 

Since the PK-dependent internalization assay requires the trypsinization of 

cells prior to inoculation with HCVcc, we sought to ascertain, whether trypsin 

treatment reduced receptor expression at the cell surface. Huh-7.5 cells were 

treated with trypsin or an enzyme-free buffer (cell dissociation buffer; CDB) for 

10 min and subsequently infected with HCVcc for 1 hr at 37°C. Thereafter, 

cells were washed thoroughly to remove unbound virus and re-plated at equal 

densities. 48 hrs post infection the percentage of NS5A positive cells was 

determined by flow cytometry (Figure 3-13). 
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Figure 3-12 Proteinase K dependent HCV internalization assay.  
Huh-7.5 cells were trypsinized, washed and the cell suspension infected with 
HCVcc for 1 hr on ice. Unbound particles were removed by washing and the 
temperature elevated to 37°C. At different time points post entry initiation, 
cells were incubated with proteinase K (PK) for 1 hr on ice to remove non-
internalized particles, thereafter cells were re-plated. 48 hrs post infection, 
infectivity was determined by counting infected foci. 
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 Viral infectivity was reduced by approximately ~30% for cells in suspension 

compared to adherent cells, suggesting that loss of cellular/ECM contact 

reduced the efficiency of virus-receptor interactions. However, trypsin-treated 

and CDB-treated cells were equally susceptible to infection, indicating a 

modest proteolytic effect of trypsin on the surface expressed HCV entry 

factors. Concomitantly, analysis of receptor levels by flow cytometry 

confirmed the presence of CD81, CLDN1, and SR-BI on trypsinized cells 

(Figure 3-13).  

 

To determine the efficiency of PK at removing cell-bound infectious virus, cells 

in suspension were infected with HCVcc for 1 hr on ice, unbound particles 

removed by washing thoroughly, and the cells immediately treated with PK at 

4°C. Using 50 µg/ml PK we were able to remove ~90% of cell-bound virus 

from the cell surface (Figure 3-14A). Furthermore, we noted that viral 

infectivity reached a plateau 1 hr post entry initiation (Figure 3-14B) , 

indicating that 100% of cell-bound virus had become resistant to PK. Due to 

the variability of infectivity over time, the percentage entry was calculated by 

comparison of the level of infection in PK treated cells to that of untreated 

cells. 

 

To establish the PK-dependent escape kinetics of HCVcc, trypsinized Huh-7.5 

cells were infected with JFH-1 or J6/JFH for 1 hr on ice, washed to remove 

unbound virus, and entry initiated by elevating the temperature to 37°C. At 

different time points thereafter, the cells were incubated with 50 µg/ml PK on 



116 

ice to remove non-internalized particles and re-plated in 24-well tissue culture 

plates. 48 hrs post infection, HCVcc infectivity was determined by 

enumerating NS5A-positive foci. J6/JFH internalized with a half-maximal entry 

rate (t50%) of 19 min., while JFH-1 internalization was 9 min. faster (Figure 

3-15), suggesting that different HCV strains may internalize with different 

efficiencies. However, overall the HCVcc internalization kinetics for cells in 

suspension were comparable to the entry kinetics reported previously for 

adherent cells (278). 
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Figure 3-13 HCV infection of adherent and non-adherent Huh-7.5 cells.  
A. Cells were treated with trypsin or an enzyme-free buffer (CDB) and infected 
with J6/JFH for 1 hr at 37°C. Cells were re-plated and viral infectivity 
measured by flow cytometry 48 hrs post infection. Values represent per cent 
infected cells of the total population. B. Surface expression levels of CD81, 
SR-BI and CLDN1 in adherent (solid line) and trypsin-treated (dashed 
line) Huh-7.5 cells were analyzed by flow cytometry. Species matched IgGs 
(black) were used as controls. 
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Figure 3-14 PK-mediated proteolysis of cell-bound infectious virus.  
J6/JFH was pre-bound to non-adherent Huh 7.5 cells for 1 hr on ice. 
Thereafter, unbound particles were removed by washing.  A. Efficiency of 
proteolysis. Cells were treated with 10, 25 or 50 µg/ml PK for 1 hr at 4°C to 
remove non-internalized particles. After which cells were re-plated and the 
number of infected cells determined at 48 hrs post infection. B. PK mediated 
inhibition of HCV entry. Cells were either treated with PK (black bars) on ice 
(0 min time point) or shifted to 37°C for 15 to 120 min, thereafter non-
internalized particles were digested with PK for 1 hr on ice. Untreated cells  
(white bars) were used as controls. 
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Figure 3-15 Time course of HCVcc sensitivity to proteolysis.  
JFH-1 or J6/JFH was pre-bound to non-adherent Huh-7.5 cells for 1 hr on ice. 
Thereafter, unbound particles were removed by washing and entry initiated by 
shifting the temperature to 37°C. At the indicated time points, the cell 
suspension was treated with proteinase K for 1 hr on ice. Cells were re-plated 
and infected foci enumerated 48 hrs post infection. Per cent HCVcc entry 
were calculated relative to the 1h time point, values represent the combined 
data from 2 independent experiments performed in triplicate ± standard 
deviation; arrows indicate half maximal internalization.  
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Escape from neutralizing antibodies 
 

Confluent cells support a higher level of HCV entry, concomitant with 

increased cell surface expression of CLDN1 and SR-BI. To elucidate whether 

the cell contact-mediated modulation of receptor expression promotes HCV 

internalization, we studied the kinetics of viral entry by monitoring the 

resistance of internalized virus to the neutralizing effect of antibodies  (Figure 

3-16). In this assay, virus is pre-bound to the cell surface at 4°C for 1 hr. 

Based on the assumption that internalized virus is resistant to neutralization, 

neutralizing antibodies (nAb) were added to the cells at different time points 

post entry initiation and infectivity enumerated 48 hrs post infection. 

 

To establish a baseline, we measured the escape/internalization rate of JFH-1   

and J6/JFH for Huh-7.5 cells plated at standard seeding density (15x103 

cells/cm2) from a neutralizing anti-E2 monoclonal antibody (C1). As described 

above, virus was adsorbed onto cells at 4°C for 1 hr, unbound particles were 

removed by washing thoroughly, and entry was initiated by elevating the 

temperature to 37°C. At different time points cell bound virus was neutralized 

by adding C1 and infectivity determined 48 hrs post infection. We noted that 

following C1 treatment, the number of infected cells reached a plateau at 2 hrs 

post entry initiation, indicating that 100% of bound virus was resistant to 

neutralization (Figure 3-17). In subsequent experiments data was expressed 

as per cent HCVcc entry and calculated by comparison of HCV infectivity in 
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nAb treated cells to the HCV infectivity measured at the 2h time point; half-

maximal internalization rates were defined as 50% loss of inhibition (t50%).  

 

 

Figure 3-16 Neutralizing antibody (nAb) escape assay.  
HCVcc was pre-bound to adherent Huh-7.5 cells on ice. Unbound particles 
were removed by washing and internalization initiated by elevating the 
temperature to 37°C. To block internalization, neutralizing antibodies were 
added at different time points post entry initiation. Infectivity was determined 
by counting NS5A-positive foci.  
 

 

With ~23 min and ~18 min, respectively, JFH-1 and J6/JFH showed 

comparable half-maximal internalization rates at standard seeding density 

(Figure 3-18A). However, given that C1 was more efficient at neutralizing 

JFH-1 (~82% neutralization) than J6/JFH (~68% neutralization), JFH-1 was 



122 

used in further studies. To rule out the possibility that the observed entry 

kinetics were specific for the C1-mediated inhibition of E2-receptor 

interaction(s), we repeated the nAb escape assay using a mix of polyclonal 

human IgGs to neutralize cell-bound JFH-1 (Figure 3-18B). Again, the 

neutralizing efficacies of polyclonal IgGs (~83% neutralization) and C1 (~79% 

neutralization) were comparable. Similar internalization kinetics were 

observed after blocking infection with either antibody, with t50% of ~16 min. 

(IgGs) and ~22 min. (C1), respectively, indicating that the observed viral entry 

kinetics at standard seeding density are not specific for the C1-mediated 

neutralization of JFH-1. 

 

To study the effect of cellular contact on HCV internalization kinetics, the half-

maximal entry times of JFH-1 were compared for sub-confluent and confluent 

Huh-7.5 cells. At sub-confluence, 50% of cell-bound particles became 

resistant to neutralization within ~30 min. post entry initiation (Figure 3-19). 

When cellular contact was established, the half-maximal entry time of JFH-1 

was reduced to ~15 min., representing a significant acceleration of virus 

internalization during the early stages of the entry process (p<0.031; paired t-

test). These data support the hypothesis that cellular contact promotes HCV 

internalization, presumably through the modulation of CLDN1 and/or SR-BI 

expression or other unidentified receptors such as occludin. 
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Figure 3-17 Neutralizing activity of anti-E2 nAb C1. 
JFH-1 was adsorbed onto Huh-7.5 cells for 1 hr on ice, thereafter entry was 
initiated by elevating the temperature to 37°C. At different time points post 
entry initiation, virus infectivity was neutralized with an anti-E2 antibody (C1). 
Infectivity (foci forming units; FFU) reached a plateau approximately 2 hrs 
post entry initiation. Data is from a representative experiment performed in 
quadruplicate; error bars represent standard deviation. 
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Figure 3-18 Time course of HCVcc sensitivity to antibody-mediated 
neutralization.  
A. JFH-1 and J6/JFH internalization. Cells were infected with JFH-1 or 
J6/JFH for 1 hr on ice and entry initiated by elevating the temperature to 37°C. 
To neutralize infectivity, an anti-E2 antibody (C1) was added to the cells at the 
indicated time points. B. Neutralization with anti-E2 antibody and 
polyclonal human IgG. Huh-7.5 cells were infected with JFH-1 as described 
in (A). Viral infectivity was neutralized using an anti-E2 antibody (C1) or a mix 
of polyclonal human IgGs. Viral infectivity was enumerated 48 hrs post 
infection and per cent HCVcc entry calculated relative to the 2 hr time point 
(100% internalization); arrows indicate half maximal internalization (t50%). 
Values are the combined data from 3 independent experiments performed in 
triplicate; error bars represent standard deviation. 
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Figure 3-19 Modulation of HCVcc internalization kinetics with cell 
confluence.  
Huh-7.5 cells were plated at low or high density and incubated with JFH-1 for 
1 hr on ice. Post entry initiation, internalization was blocked with an anti-E2 
antibody (C1) at the indicated time points. Infectivity was determined 48 hrs 
post infection, the per cent viral entry were calculated relative to the 2 hrs time 
point. Statistical analysis was performed as described in section 3.2.4. Values 
are the combined data of 2 independent experiments done in triplicate ± 
standard deviation. 
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3.2.4 Statistical analysis of internalization assays. 
 

To ascertain whether the internalization kinetics for cells plated at low or high 

density were significantly different, we used a two-tailed paired t-test to 

compare the percentage entry at individual time points. When the mean 

values for all six time points (0 to 120 min) were compared, no significant 

difference between the two curves was detected. However, comparison of the 

mean values of individual time points showed a significant difference of the 

percentage entry at 15 and 30 min as summarized in Table 3-1. 

A two-tailed paired t-test was also used to compare the internalization kinetics 

of parental and SR-BI and CLDN1 over-expressing cell lines. 

 

 Two-tailed paired t-test 
Time points P value  

(two-tailed)  
< 0.05? 

Correlation 
coefficient; r 

P value  
(one-tailed) 

Pairing 
significantly 
effective? 

0 – 120 min 0.1776 0.9194 <0.0001 Yes *** 

15 – 30 min 0.031  na Na na 

Table 3-1 Statistical analysis of HCVcc entry kinetics.  
Comparison of the entry kinetics in sub-confluent and confluent cells with the 
two-tailed paired t-test following the guidelines in the GraphPad statistics 
handbook. 
 

3.2.5 Defining the role of SR-BI and CLDN1 in HCV internalization. 
 

The surface expression of SR-BI and CLDN1 is significantly increased at cell 

confluence. Likewise, HCVcc internalization is significantly accelerated in 

confluent cells during the early stages of the entry process when cellular 



127 

contact is established, suggesting a relationship between viral entry kinetics 

and the surface expression of CLDN1 and/or SR-BI. To assess the role of SR-

BI and CLDN1 expression levels in HCV internalization, Huh-7.5 cells were 

transduced with lentiviral vectors to over-express human SR-BI or CLDN1 and 

viral internalisation kinetics determined by means of the nAb escape assay.  

 

Flow cytometry confirmed 2 to 3-fold elevated CLDN1 and SR-BI surface 

expression levels in transduced Huh-7.5 cells (Figure 3-20). Furthermore, we 

did not observe any indirect effects of CLDN1 over-expression on SR-BI or 

CD81 levels, and vice versa (data not shown). Attempts to generate a Huh-7.5 

cell line overexpressing CD81 failed, most likely because human hepatoma 

cells already express relatively high levels of CD81. LSCM analysis of 

receptor distribution in parental and tranduced cells demonstrated a 

cytoplasmic accumulation of SR-BI and CLDN1 (Figure 3-21) in the majority of 

over-expressing cells.  

 

Quantification of receptor levels by linear profile plot analysis confirmed that a 

significant proportion of receptor molecules were retained intracellularly and 

receptor expression at the plasma membrane was only modestly increased. 

Similar observations were recently reported for HeLa and NIH3T3 cells, where 

ectopically expressed CLDN1 appeared to reside predominantly in 

intracellular vesicles (417). 
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Figure 3-20 CLDN1 and SR-BI overexpression in Huh-7.5 cells. 
A. Cells were transduced to overexpress human CLDN1 or SR-BI and 
receptor levels determined by flow cytometry. CLDN1 and SR-BI levels were 
up to 3-fold elevated in transduced (dashed lines) compared to parental cells 
(black). Species-matched irrelevant IgGs (grey) were used as controls. B. 
Transduced and parental cells were infected with HCVpp-H77, MLVpp, or 
envelope-defective pseudoparticles (NoEnv) for 1h and luciferase activity 
measured at 72h post infection.  
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Figure 3-21 Localization of CLDN1 and SR-BI in transduced Huh-7.5 
cells.  
A. Parental and transduced cells were plated at standard seeding density on 
collagen-treated cover slips and 26 hrs post plating stained with antibodies 
specific for CLDN1 or SR-BI. B. Receptor expression levels at the plasma 
membrane and in the cytoplasm were determined by linear profile plot 
analysis, values are expressed as arbitrary fluorescence units (AFU); 
Background fluorescence was determined by staining with the secondary 
antibody only and was 36 AFU (TRIP CLDN1) and 27 AFU (TRIP SR-BI), 
respectively. 

A

B
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In accordance with published observation (159) high levels of SR-BI 

enhanced HCVpp infection ~ 1.5 fold, whereas high levels of CLDN1 failed to 

modulate HCVpp infectivity (Figure 3-20) in Huh-7.5 cells plated at standard 

density. Over-expression of CLDN1 or SR-BI also failed to enhance the 

infectivity of MLVpp, which were used as a negative control, confirming the 

enhancing effect of SR-BI on viral entry is HCV glycoprotein-specific. 

 

To determine the effect(s) of CLDN1 and SR-BI over-expression on HCV 

internalization, transduced Huh-7.5 cells were plated at standard seeding 

density and the nAb escape kinetics of JFH-1 measured as described above. 

In support of the observation that high CLDN1 levels do not enhance HCVpp 

infection, CLDN1 over-expression failed to accelerate JFH-1 internalization 

Figure 3-22. In SR-BI overexpressing cells, on the other hand, JFH-1 

internalization kinetics were significantly accelerated during the early entry 

stages with a half-maximal time (t50%) of 6 min (compared to t50% = 15 min at 

cell confluence). Of note, the neutralizing efficacy of anti-E2 antibody C1 was 

markedly reduced in SR-BI overexpressing cells (∼65% neutralization) 

compared to parental Huh-7.5 cells (∼79% neutralization). In summary, these 

data highlight the crucial role of SR-BI in HCV entry and furthermore suggest 

that the receptor may be an important determinant of HCV internalization. 
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Figure 3-22 Effect of CLDN1 and SR-BI over-expression on the entry 
kinetics of JFH-1. 
Huh-7.5 cells transduced to over-express CLDN1 or SR-BI were plated at 
standard seeding density and incubated with JFH-1 for 1 hr on ice. Entry was 
initiated by elevating the temperature to 37°C, thereafter infection was 
neutralized with an anti-E2 antibody (C1). NS5A-positive foci were 
enumerated 48 hrs post infection, and the percentage of C1-resistant particles 
calculated relative to the 2 hrs time point. Statistical analysis was perfomerd 
as described in section 3.2.4 .Values represent the means of 2 independent 
experiments  ± standard deviation. 
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3.2.6 Discussion 
 

The recent identification of CLDN1 (114) and occludin (OCLN) (326) as crucial 

HCV co-receptors alluded to the possible effect(s) of tight junction (TJ) 

formation and cell polarization on HCV entry, especially since polarized 

hepatocytes within the liver are thought to be the main reservoir of HCV 

replication. In our experience, the susceptibility of non-polarized Huh-7.5 

hepatoma cells to HCVcc infection is dependent on cell seeding density. We 

also observed that in non-polarized hepatoma cells, the TJ proteins CLDN1, 

occludin and ZO-1 were enriched at cell junctions (95, 136), prompting us to 

investigate the role(s) of these ‘TJ-like’ structures in HCV entry. In this study, 

we demonstrate that cellular contact (i) modulates CLDN1 and SR-BI cell 

surface expression and distribution, (ii) promotes HCVpp and HCVcc 

infectivity, and (iii) enhances the rate of HCVcc internalization through an 

unknown mechanism(s). 

 

CD81 and SR-BI surface expression levels are key determinants for HCV 

infectivity (159, 215); therefore, we sought to establish whether cellular 

contact affected the expression and/or localization of HCV entry receptors. 

Using confocal imaging and linear plot profile analysis we demonstrated that 

CD81 surface expression levels were comparable between sub-confluent and 

confluent cells and the protein was uniformly distributed in the plasma 

membrane with no detectable enrichment at cell-cell borders (Figure 3-8). 

Western blotting analysis of total cell lysates confirmed that CD81 protein 
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levels were unaffected by confluency status. Huh 7.5 cells express relatively 

high levels of CD81 and we presume that minor changes in CD81 expression 

may therefore be undetectable. Concomitantly, we were unable to increase 

CD81 surface expression using lentiviral vectors, suggesting that endogenous 

CD81 expression may be saturated in these cells. In contrast, we found that 

SR-BI and CLDN1 cell surface expression, but not intracellular forms, was 

significantly increased with cell confluence (Figure 3-8C). Western blotting 

analysis confirmed elevated SR-BI and CLDN1 protein levels in confluent cells 

(Figure 3-8D), whereas mRNA levels were unaffected by the confluency 

status (P. Balfe, unpublished observations), suggesting a post-transcriptional 

modulation of CLDN1 and SR-BI. A similar effect has been observed in 

human breast cancer cells constitutively expressing CLDN1, where protein 

levels at sub-confluence were low despite high CLDN1 mRNA levels (179). 

Likewise, the adaptor protein PDZK1, which is required for proper sorting and 

delivery of SR-BI to the plasma membrane (364, 365), has been shown to up-

regulate hepatic SR-BI protein expression in vivo without affecting mRNA 

levels (212). These findings suggest that cellular contact induces a rapid 

translational regulation of CLDN1 and SR-BI mRNA, resulting in increased 

CLDN1 and SR-BI protein levels with possible consequences for HCV entry. 

 

In addition to elevated CLDN1 and SR-BI surface expression levels, we 

observed that both receptors were enriched at cell junctions, an observation 

that was previously reported for CLDN1 in human, murine and canine tumour 

and non-tumour cell lines (136, 138, 179, 188, 223). In polarized epithelial 
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cells, surface expression of membrane proteins involves the sorting of 

proteins from the trans-Golgi network to the correct plasma membrane 

domains and anchoring and/or retention at the cell surface, followed by 

endocytosis, transcytosis or recycling (reviewed in (61). Delivery of proteins to 

the cell surface is mainly mediated by peripheral membrane (PDZ-domain) 

proteins, which interact with the C-terminal PDZ-ligand binding domains of 

membrane proteins including CLDN1 and SR-BI (190, 364). Potential 

interaction partners are the aforementioned SR-BI adaptor protein PDZK1, 

and the Zonula occludens (ZO) proteins -1 and -2, which localize to sites of 

cell-cell contact in sub-confluent cell cultures (206) where they facilitate 

assembly of tight junctions by directly interacting with CLDN1 and occludin 

(125, 190, 191, 297). The regulatory pathways involved in CLDN1 protein 

expression and targeting are not well understood. However, several studies 

suggest that mechanisms regulating membrane trafficking may be conserved 

between polarized and non-polarized cells and that all cells are principally 

equipped for polarized protein delivery (298, 403, 421).  

 

To determine the effect of cell confluence on HCV entry, we studied the 

infectivity of HCVpp in Huh-7.5 cells plated at cell densities ranging from low 

(single cells) to high (intact monolayer) (Figure 3-9). HCVpp demonstrated a 

significant boost of luciferase activity at cell confluence, when cell-cell contact 

was established between most cells within the culture ( Figure 3-11). In 

contrast, MLVpp infectivity was markedly enhanced at standard compared to 

low density, while the establishment of cellular contacts did not result in a 
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further increase in luciferase activity, indicating that the effect of cell density 

on viral entry was HCV glycoprotein-specific. The same enhancing effect was 

observed for HCVcc infection, with JFH-1 and J6/JFH infection increasing 

significantly when cellular contact was established (Figure 3-10). In our 

experience, prolonged inoculation promotes HCV infection (Figure 3-10 and  

Figure 3-11), suggesting that attachment and/or internalization are rate-

limiting steps in the viral entry process. There is currently no evidence for a 

direct interaction between HCV particles or recombinant E1E2 glycoproteins 

with CLDN1 (114) and it is possible that CLDN1 may interact directly with 

CD81 or SR-BI, thus modulating E2-binding capacity, or the transport of virus-

receptor complexes to membrane compartments permissive for virus 

internalization and fusion.  

 

It is worth noting that HCV RNA replication and cell density are closely related 

in most human hepatoma cell lines. Within 48 hrs of reaching cell confluence, 

intracellular RNA levels can drop up to 20-fold in cells harbouring genomic 

replicons (352). Likewise, serum starvation markedly reduces RNA 

abundance, while cell cycle arrest reportedly has no effect on intracellular 

RNA levels, indicating that viral replication depends primarily on actively 

growing host cells (323, 352). A recent study by Nelson et al. (308) 

furthermore reports that confluence-mediated replicon inhibition can be 

reversed by supplying exogenous nucleosides, leading the authors to 

conclude that the diminished pools of endogenous nucleosides may be partly 

responsible for the decrease in HCV RNA in confluent cells. 
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Cellular contacts formed by CLDN1 probably promote HCV co-receptor 

interactions and/or the formation of specialized membrane domains amenable 

to the uptake of receptor-bound HCV particles (97). To determine whether 

cellular contact promotes the internalization of cell-bound HCVcc, we 

examined the ability of anti-E2 antibody to inhibit infection of sub-confluent 

and confluent cells when added at various times during entry. We noted that 

the inhibitory activity of an anti-E2 antibody was lost much earlier at cell 

confluence than sub-confluence (Figure 3-19), with half maximal inhibition 

being attained at 15 min and 30 min., respectively. Interestingly, the 

internalization kinetics in sub-confluent and confluent cells differed 

significantly during the first 30 min of the entry process and converged 

thereafter, suggesting that cellular contact modulates an early step in HCV 

entry.  

 

It has previously been demonstrated that the inhibitory activity of anti-CD81 

antibodies is lost approximately 17 min. post entry initiation (45, 114), while 

half-maximal HCV fusion requires 73 min. as determined by sensitivity to 

bafilomycin A (278) and a monoclonal anti-Flag CLDN1 antibody (114). 

However, in studies using antibodies against the extracellular loop of CLDN1 

the viral internalization kinetics were comparable to those measured in anti-

CD81 antibody escape experiments (Dr. Thomas Baumert, SA Texas HCV 

Meeting). In non-adherent (i.e. cell-contact deprived) Huh-7.5 cells, the 

inhibitory activity of proteinase K was lost approximately 19 min post entry 

initiation (Figure 3-15). These data were comparable to the escape kinetics 
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measured in 60% confluent adherent cells in the presence of an anti-E2 

antibody (Figure 3-18).  

 

To further dissect the roles of SR-BI and CLDN1 in the cell contact-mediated 

modulation of HCV entry, we studied HCVcc internalization kinetics in sub-

confluent Huh-7.5 cells transduced to over-express SR-BI or CLDN1. 

Overexpression of CLDN1 failed to accelerate virus internalization (Figure 

3-22). This might be due to (i) a large proportion of CLDN1 being retained in 

the cytoplasm in transduced cells (Figure 3-21), which may hinder the 

formation of functional virus-receptor complexes; (ii) efficient internalization 

requiring the interaction of CLDN1, CD81 and SR-BI, in which case the co-

receptors would likely have to be expressed at equally high levels to exert an 

enhancing effect; (iii) both CLDN1 and OCLN being required for efficient 

internalization, which might explain why high levels of CLDN1 failed to 

enhance internalization in sub-confluent cells, where TJ protein levels are 

naturally low. Since SR-BI over-expression significantly enhances HCVpp 

infectivity despite the large proportion of intracellular retained molecules 

(Figure 3-22), we concluded that the amount of SR-BI cell surface protein was 

sufficient to enhance infection and that the intracellular forms of the protein 

may be functional.  

 

CLDN1 on the other hand may have to be localized to the plasma membrane 

to promote viral entry. Two studies recently proposed that the specific 

localization of CLDN1 to TJ might play a crucial role in the regulation of HCV 
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cellular tropism (249, 417). Indeed, ectopic expression of CLDN1 in 

CD81+/SR-BI+ cell lines does not necessarily confer susceptibility to HCV 

infection (114), possibly because a large proportion of CLDN1 is retained in 

intracellular vesicles. Furthermore, the disruption of TJ-enriched CLDN1 by 

TNFα treatment markedly reduces the susceptibility of Huh7.5.1 cells to HCV 

infection (417), suggesting that the protein may have to be localized to the cell 

surface to allow functional virus-receptor and/or receptor-receptor interactions.  

 

Overexpression of SR-BI accelerated the entry of cell-bound JFH-1 in a 

manner similar to that observed for confluent cells (Figure 3-22), suggesting a 

crucial role for SR-BI in HCV internalization. In addition, high levels of SR-BI, 

but not CLDN1, reduced the neutralizing efficacy of an anti-E2 antibody, 

lending support to a model of HCV entry where CD81 and SR-BI interact 

directly with virus particles, while CLDN1 faciliates internalization via 

interaction with SR-BI and other co-receptors (reviewed in (171, 290)). We 

presume that CLDN1 and SR-BI/CD81 have to interact to allow efficient 

uptake of bound particles and that high surface expression of at least SR-BI is 

crucial to promote internalization.  

 

In sub-confluent cells, CLDN1 protein levels are low and plasma membrane 

expression virtually undetectable. Over-expression of SR-BI increases these 

cells’ susceptibility to infection i.e. the efficiency of virus-receptor interactions 

as well as the efficiency of virus internalization.  
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CD81, SR-BI and CLDN1 co-localize in normal and HCV-infected liver and 

also in various liver-derived cell lines (164, 335, 417) and have to be in close 

proximity to allow efficient viral cell entry (164), which supports the hypothesis 

of a receptor-complex.  

 

It is noteworthy that Coxsackievirus B virus utilizes TJ associated proteins to 

enter target cells (43) through binding to its primary receptor, decay 

accelerating factor (DAF), on the basolateral surface of epithelial cells. DAF 

binding is followed by lateral migration of the virus-receptor complex to the TJ 

and subsequent interaction with CAR co-receptor in a OCLN-dependent 

fashion (95). Similarly, HCV may interact with SR-BI, either directly or through 

HCV-associated lipoproteins, and subsequently with CD81, followed by lateral 

migration of the virus-receptor complex to the TJ and CLDN1/OCLN-mediated 

endocytosis and fusion (reviewed in (171).  
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3.3 HCV induced alterations of tight junction protein expression 
and localization 

 

3.3.1 HCV infection modulates expression and localization of the tight 
junction protein CLDN1. 

 

We previously observed that Claudin-1 (CLDN1) expression is increased in 

HCV infected liver (335), suggesting direct and/or indirect effect(s) of HCV on 

TJ protein expression. These findings are in line with recent studies 

demonstrating the modulation of TJ protein expression by RNA viruses such 

as HIV-1 (19, 200) and West Nile virus (405). To assess the effect of HCV 

infection on CLDN1 expression in vitro, Huh-7.5 cells were infected with high 

titer JFH-1 over night. Since previous studies showed (see chapter 3.2) that 

cellular contact modulates CLDN1 expression, infected and naïve cells were 

re-seeded at 60% confluence the day before harvesting to minimize cell 

density associated effect(s). 72h post infection, cells were harvested in RIPA 

buffer and defined amounts of protein separated by SDS PAGE. 

Immunoblotting showed markedly increased CLDN1 levels in JFH-1 infected 

total cell lysates, whereas CD81 levels were comparable between naïve and 

infected cells (Figure 3-23A).  

 

To determine whether HCV infection modulates CLDN1 localization, JFH-1 

infected and subgenomic replicon (SGR) bearing cells were stained for 

CLDN1 and CD81 expression and analyzed by laser scanning microscopy 

(LSCM) (Figure 3-23B). This allowed us to assess whether expression of only 
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the non-structural proteins was sufficient to modulate TJ protein localization. 

In naïve and SGR bearing cells, the majority of CLDN1 localized to the 

plasma membrane. However, in JFH-1 infected cells, which express the 

structural and non-structural viral proteins, CLDN1 localized to the plasma 

membrane and intracellular vesicular locations, whereas CD81 staining was 

unaltered and comparable to naïve and SGR cells. The intracellular dot-like 

accumulation of CLDN1 was also observed for another HCV strain, J6/JFH 

(data not shown). Together these findings suggest that the structural viral 

proteins, core-E1E2-p7, modulate CLDN1 localization in Huh-7.5 cells.  
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Figure 3-23 JFH-1 modulates CLDN1 expression and localization. 
A. 0.5 µg of naïve and JFH-1 infected Huh-7.5 cell lysates obtained from a 
95% NS5A positive culture were separated by SDS PAGE under reducing 
(CLDN1, NS5A) or non-reducing (CD81) conditions and probed for NS5A, 
CLDN1 and CD81; β−Actin was used as a loading control. B. CLDN1 (green) 
and CD81 (green) localization in naïve, JFH-1 infected, and subgenomic 
replicon (SGR) bearing Huh-7.5 cells. Cells were plated at equal densities on 
collagen-treated cover slips and fixed 24 hrs post plating. Viral protein was 
visualized by staining with an anti-NS5A antibody (9E10; red). LSCM images 
were obtained using a 63x 1.2NA objective (scale bars represent 20 µm). 
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3.3.2 JFH-1 infection modulates localization of OCLN and ZO-1 
 

To assess whether HCV infection alters the localization of other tight junction 

proteins, we investigated the localization of occludin (OCLN) and ZO-1 in 

JFH-1 infected cells at 48 and 72 hrs post infection. Dual staining of infected 

cells for NS5A and CLDN1, OCLN and ZO-1, demonstrated a redistribution of 

all three TJ proteins to the cytoplasm as early as 48 hrs post infection (Figure 

3-24), with ZO-1 and OCLN forming dot-like structures similar to those 

observed for CLDN1. As the number of infected cells within the culture 

increased over time this redistribution became more marked, with 70% of 

JFH-1 infected cells showing an intracellular accumulation of TJ proteins at 72 

hrs post infection. 

 

To determine whether the cytoplasmic forms of CLDN1, OCLN and ZO-1 

localize to the same vesicular compartments, JFH-1 infected Huh-7.5 cells 

were co-stained for CLDN1 and OCLN or ZO-1 and analyzed by confocal 

microscopy. Since it was not possible to simultaneously stain cells for two TJ 

proteins and NS5A, the level of infection was determined separately by 

enumerating NS5A positive cells; the HCV infectivity obtained was 60-70% in 

two independent experiments. As expected, CLDN1 co-localized with OCLN 

and ZO-1, respectively, at cellular junctions (Figure 3-25). We observed 

partial co-localization of intracellular TJ protein forms. However, it is worth 

noting that intracellular forms of CLDN1 were present in the majority of cells 

within the culture, whereas OCLN and ZO-1 relocalization occurred less 

frequently and not necessarily in conjunction with CLDN1. 
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Figure 3-24 JFH-1 infection modulates CLDN1, occludin, and ZO-1 
localization.  
Naïve and JFH-1 infected Huh-7.5 cells were plated on collagen-treated cover 
slips and stained for NS5A (TRITC; red) and either CLDN1, occludin or ZO-1 
(Alexa Fluor 488; green) at 48 and 72 hrs post infection. Nuclei were 
counterstained with DAPI (blue) and LSCM images obtained with a 63x 1.2NA 
objective (scale bars represent 20 µm). The boxed areas on the images 
obtained at 72 hrs are enlarged to show details of the intracellular staining 
pattern. 
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Figure 3-25 Co-localization of TJ proteins in HCV infected Huh-7.5 cells.  
Cells from a 90% JFH-1 infected culture were seeded at equal density prior to 
analysis. TJ proteins were visualized by staining with mouse anti-CLDN1 
(Abnova), and rabbit anti-OCLN and anti-ZO-1 antibodies; bound antibodies 
were detected with Alexa Fluor 488 (green) and Alexa Fluor 594 (red), 
respectively. LSCM images of single 1 µm Z sections were obtained with a 
63x 1.2NA objective. Images are enlarged to show details of TJ protein 
localization (scale bars represent 20 µm). 
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3.3.3 CLDN1 localizes to an unknown intracellular compartment in HCV 
infected cells 

 

The envelope proteins E1 and E2 are actively retained in the endoplasmic 

reticulum (ER) during replication (109, 112), where they interact with viral 

proteins such as core (250, 255) and NS2 (269, 353), and a number of host 

proteins such as calnexin and calreticulin (83). A modulation of CLDN1 

localization was not observed in cells expressing subgenomic replicons 

(Figure 3-23), leading us to speculate that the structural viral proteins may be 

involved in the relocalization of CLDN1. Since the viral glycoproteins are 

localized to the ER, we sought to define the intracellular localization of CLDN1 

in JFH-1 infected cells. CLDN1 showed no detectable colocalization with early 

endosomes (EEA1), late endosomes (Lamp1), the Golgi matrix protein 

GM130, or the Golgi-ER intermediate compartment (ERGIC53). These data 

suggest that intracellular CLDN1 is not retained in the ER and may localize to 

an unknown cytoplasmic storage compartment (192). In line with these 

observations, CLDN1 failed to co-localize with the HCV structural proteins E2 

(C1) and core (JM122) in JFH-1 infected cells (Figure 3-27).  
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Figure 3-26 Localization of intracellular CLDN1 in HCV infected cells. 
JFH-1 infected cells from a 90% NS5A positive culture were grown on 
collagen-treated glass cover slips and stained with antibodies specific for 
CLDN1, early endosomes (EEA1), late endosomes (Lamp1), Golgi matrix 
protein (GM130), and the Golgi-ER intermediate compartment (ERGIC53), at 
72h post infection. Bound antibodies were visualized using an Alexa Fluor 488 
anti-rabbit conjugate (CLDN1; green) and a TRITC anti-mouse IgG conjugate 
(compartment markers; red). Nuclei were counterstained with DAPI (blue) and 
LSCM images of single 1µm Z-sections obtained using a 63x 1.2NA objective. 
Representative enlarged images of single cells are shown.  
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Figure 3-27 Co-localization of CLDN1 and HCV proteins. 
JFH-1 infected cells were plated on collagen-treated cover slips and co-
stained for CLDN1 (Alexa Fluor 488; green) and core (JM122; Alexa Fluor 
594; red), E2 (C1; red) or NS5A (9E10; red). LSCM images of 1 µm Z sections 
were obtained at 63x magnification and enlarged for better visualization of 
protein localization.  
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3.3.4 Relocalization of TJ proteins in Huh-7.5 cells is cytokine-
independent and requires infection with HCV 

 

The disassembly and internalization of epithelial TJ is a rapid process that can 

be induced in response to pathophysiological stimuli such as oxidative stress 

(36) and pro-inflammatory cytokines (125, 163). Several studies have 

demonstrated that IFNγ and TNfα down-regulate the expression of TJ proteins 

in epithelial and endothelial cell lines (265, 422). Furthermore, IFNα has been 

shown to induce the internalization of TJ proteins in epithelial cells (62). 

Schmitt et al. recently reported that VEGF induces the disruption of 

hepatocellular TJ (351). Recent reports have furthermore demostrated that 

HCV gene expression induces VEGF expression (198, 303) and in line with 

these observations we found that HCV infection increases VEGF secretion in 

HepG2 and, to a lesser extent, in Huh-7.5 cells (Dr. Christoper Mee, 

manuscript in preparation).  

 

To assess whether the intracellular accumulation of TJ proteins in HCV 

infected Huh-7.5 cells is mediated by cytokines, naïve Huh-7.5 cells were 

incubated with IFNγ, TNFα or recombinant VEGF165 (isoform 165) for 48 hrs. 

Thereafter, cells were stained for CLDN1, OCLN and ZO-1 and analyzed by 

LSCM (Figure 3-28). Stimulation with either cytokine had no effect on TJ 

protein distribution, indicating that the intracellular accumulation of CLDN1, 

OCLN and ZO-1 is associated with HCV infection or may be mediated by 

unknown cellular factors. 
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Figure 3-28 Effect of cytokines on TJ protein distribution.  
Naïve Huh-7.5 cells were seeded at equal density on collagen-treated cover 
slips and treated with 1 ng/ml TNFα, 100 U/ml IFNγ or 500 ng/ml VEGF165 for 
48 hrs. Untreated cells were used as a control. TJ proteins (Alexa Fluor 488; 
green) were visualized with the respective antibodies and LSCM images taken 
with a x63 1.2NA objective (scale bars represent 20 µm). 
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Our data suggests that HCV infection induces the localization of TJ proteins to 

intracellular vesicles. To confirm this, Huh-7.5 cells were infected with JFH-1 

and non-internalized virus particles removed 24 hrs post infection by washing 

thoroughly. 72 hrs post infection the conditioned culture media from these 

cells was collected and cleared by centrifugation to remove cell debris. Naïve 

Huh-7.5 cells were inoculated with the conditioned media for 72 hrs in the 

presence of an anti-CD81 monoclonal antibody (2s131) to block HCV infection 

or an anti-VEGF antibody (VG76e) to neutralize the effects of VEGF (Figure 

3-29). Dual staining for CLDN1, OCLN and NS5A demonstrated intracellular 

TJ protein localization in the cell cultures treated with conditioned media with 

or without VG76e. However, neutralization of virus infectivity with anti-CD81 

ablated the effect(s) on TJ protein localization. Furthermore, intracellular 

forms of CLDN1 were only observed in NS5A positive cells, whereas adjacent 

cells were unaffected. Together, these findings suggest HCV-dependent, 

VEGF-independent mechanism(s) of TJ protein relocalization. 
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Figure 3-29 CLDN1 relocalization is associated with HCV infection.  
Naïve Huh-7.5 cells were treated with conditioned media collected from a 
JFH-1 infected cell culture in the presence of anti-CD81 (2s131) or anti-VEGF 
(VG76e) antibodies. Cells incubated with conditioned media only were used 
as a control. Following 72 hrs incubation cells were stained for CLDN1 (Alexa 
Fluor 488; green) and NS5A (TRITC; red), nuclei were counterstained with 
DAPI (blue). LSCM images were taken with a 63x 1.2NA objective and 
enlarged for better visualization of CLDN1 staining (scale bars represent 20 
µm). 
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3.3.5 HCV glycoproteins mediate CLDN1 and OCLN relocalization in 
infected cells 

 

Cells supporting genomic HCV replication demonstrate a redistribution of 

CLDN1 to the cytoplasma, whereas hepatoma cells supporting subgenomic 

replicons encoding only the non-structural proteins fail to induce this 

relocalization (Figure 3-23). To assess the effect(s) of the viral glycoproteins 

on TJ protein localization we transfected Huh-7.5 cells with constructs 

encoding the JFH-1 (genotype 2a) structural proteins E1 and E2. Staining with 

a monoclonal antibody specific for E2 (C1) revealed a diffuse staining pattern 

of JFH-1 reminiscent of the endoplasmic reticulum (ER) (Figure 3-30). 24% 

and 16% JFH-1 E1E2 positive cells showed an intracellular accumulation of 

CLDN1 and OCLN, respectively, while no relocalization was observed for ZO-

1 (data not shown). In contrast, all three TJ proteins localized exclusively to 

the plasma membrane of mock-transfected cells. These data suggest that the 

redistribution of CLDN1 and OCLN observed in infected cells may in part be 

mediated by the HCV encoded glycoproteins. However, ZO-1 failed to 

recapitulate the phenotype seen with HCVcc, suggesting that additional 

factor(s) may be required. Attempts to co-precipitate the viral glycoproteins 

and CLDN1 were repeatedly unsuccessful, as previously reported (114). 

However, neither CLDN1 nor OCLN co-localized with E2 (Figure 3-30), 

suggesting that the proteins do not associate.  

 

Since the structural region of the HCV genome is highly variable between 

genotypes, we sought to confirm the effect on TJ protein localization with 
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glycoproteins derived from a genetically diverse strain, H77 (genotype 1a). 

Intracellular CLDN1 and occludin were readily observed in 30% and 61% of 

H77 E1E2 positive cells, respectively (Table 3-2). The frequency of cells 

showing CLDN1 and occludin redistribution was significantly higher in H77 

than in JFH-1 E1E2 expressing Huh-7.5 cells (Fisher’s exact test, p=0.0066), 

indicating that glycoprotein diversity may have functional consequences for TJ 

protein localization and hepatocyte polarity.  
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Figure 3-30 HCV glycoproteins induce CLDN1 and OCLN redistribution.  
Huh-7.5 cells were transfected with constructs expressing JFH-1 
glycoproteins E1E2 or an empty vector (mock) and co-stained for E2 (C1 
mAb; Alexa Fluor 594; red) and either CLDN1 or occludin (Alexa Fluor 488; 
green); nuclei were counterstained with DAPI (blue). LSCM images of single 
1mm Z-sections were obtained using a 63x 1.2NA objective (scale bars 
represent 20 µm). Boxed areas are enlarged to show details of E2 and TJ 
protein localization.  

Table 3-2 CLDN1 and OCLN relocalization frequency in E1E2 expressing 
cells.  
Quantitative assessment of the frequency of transfected cells showing 
intracellular forms of CLDN1 or occludin (per 100 E1E2-positive cells).  
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3.3.6 CLDN1 localizes to a longer-lived storage compartment in HCV 
infected cells 

 

To assess the effect(s) of HCV infection on the synthesis and degradation of 

CLDN1, HCV infected cells were treated with cycloheximide (CHX), which 

inhibits protein biosynthesis by blocking translational elongation. Naïve and 

JFH-1 infected cells were treated with 20 µg/ml of CHX and CLDN1 

expression studied after 4, 8, and 12 hrs. There was no demonstrable change 

in protein expression following 8 hrs of CHX treatment. However, by 12 hrs 

CLDN1 expression was no longer detectable in naïve cells (Figure 3-31, left 

panel). Likewise, following a 12 hr treatment of JFH-1 infected cells CLDN1 

expression at the plasma membrane was undetectable, however, the 

cytoplasmic forms were still visible, suggesting an extended half-life of the 

intracellular protein compared to the plasma membrane form(s) (Figure 3-31, 

middle panel). When naïve and JFH-1 infected Huh-7.5 cells were washed 

extensively following CHX treatment and new rounds of protein synthesis 

monitored after 1, 3, 6 and 9 hrs, newly synthesized CLDN1 was first detected 

after 9 hrs and localized to the plasma membrane in both naïve and infected 

cells (Figure 3-31, right panel). We hypothesize that in HCV infected cells 

CLDN1 is redistributed into a longer-lived intracellular compartment. 

Furthermore, our data suggests that the accumulation of CLDN1 in HCV 

infected cells is not the result of enhanced protein synthesis.  
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Figure 3-31 Increased half-life of intracellular CLDN1 in HCV infected 
cells.  
72 hrs post infection JFH-1 infected cells were treated with 20 µg/ml 
cycloheximide (CHX) for 12 hrs. Following treatment, cells were either fixed 
immediately (middle panel) or washed thoroughly and incubated for a further 
9h (right panel). Cells were co-stained for CLDN1 (Alexa Fluor 488; green) 
and NS5A (TRITC; red) Nuclei were counterstained with DAPI (blue) and 
LSCM images obtained using a 63x 1.2NA objective (scale bar represents 20 
µm). Areas in the treated cells where intracellular CLDN1 expression persists 
in association with NS5A are annotated with arrows. 
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To assess whether intracellular forms of CLDN1 are retained in proteasomes, 

we treated infected cells with ALLN (Calpain inhibitor-I), a well-described 

proteasome inhibitor (283, 357, 409), the hypothesis being that the inhibition 

of proteolysis will result in the accumulation of CLDN1 if the protein indeed 

resides in proteasomes. Huh-7.5 cells were infected with JFH-1 and 24 hrs 

post infection incubated with 10 µg/ml ALLN for 24 hrs. Thereafter, cells were 

fixed and CLDN1 distribution in naïve and infected cells analyzed by confocal 

microscopy (Figure 3-32). No significant protein accumulation was observed 

in naïve cells, suggesting that CLDN1 degradation is proteasome-

independent. Likewise, ALLN treatment had no visible effect on the level of 

intracellular protein in JFH-1 infected cells, lending support to the hypothesis 

that CLDN1 is retained in a long-lived storage compartment of unknown 

origin. 
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Figure 3-32 Effect of proteasome inhibition on CLDN1 protein level. 
24 hrs post infection, naïve or JFH-1 infected Huh-7.5 cells were treated with 
36 µM ALLN for 24 hrs. Thereafter, cells were fixed and stained for CLDN1 
(Alexa Fluor 488; green) and NS5A (TRITC; red). LSCM images were taken at 
63x magnification (scale bars represent 20 µM). 
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3.3.7 Endocytosis of intracellular forms of CLDN1 in HCV infected cells 
 

Recent reports have illustrated the dynamic nature of proteins within the TJ, 

with up to 50% of proteins redistributing from the TJ area within a 10 min 

period (356). For some TJ proteins including Claudins -1 and -4, OCLN and 

ZO-1 internalization from the plasma membrane has been shown to occur via 

a clathrin-mediated process (192).  

 

To ascertain whether the accumulation of intracellular CLDN1 forms in HCV 

infected Huh-7.5 cells is due to enhanced internalization from the plasma via 

clathrin-mediated endocytosis, we first attempted the pharmacological 

inhibition of this pathway using chlorpromazine. However, following 4 to 12 

hrs incubation with 15 to 30 µM chlorpromazine we observed intracellular 

accumulation of CLDN1 in naïve and infected cells (data not shown), 

suggesting unspecific side-effects of the inhibitor. To circumvent this problem, 

transfection experiments were carried out using a dominant negative EPS15 

construct (EPS15-GFP) to inhibit clathrin-mediated endocytosis. In these 

experiments, JFH-1 infected Huh-7.5 cells were transfected with EPS15-GFP 

expression plasmids and CLDN1 localization analyzed by LSCM 72 hrs post 

infection (i.e. 24 hrs post transfection) (Figure 3-33). EPS15-GFP expression 

was monitored by flow cytometry 24 hrs post transfection, confirming a 15-

20% transfection efficiency GFP in two independent experiments. To test the 

ability of the EPS15 mutant to inhibit clathrin-mediated endocytosis, we 

monitored the internalization of fluorescently labelled transferrin from the cell 
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surface. We found that expression the uptake of transferring was 50% 

reduced in GFP positive cells (Dr. Jennifer Timpe, unpublished observations). 

 

Due to the construct already being GFP-tagged, it was not possible to co-stain 

the cells for CLDN1 and NS5A, therefore, HCV infectivity was determined 

separately by counting NS5A positive cells. In two independent experiments, 

70% infectivity and 15-20% transfection efficiency were obtained (Figure 

3-33A). Also, staining of transfected cells for NS5A showed that expression of 

the EPS15-GFP construct did not interfere with HCV protein expression. 

Overall, we did not observe cytoplasmic accumulation of CLDN1 in JFH-1 

infected cells expressing EPS15-GFP, whereas intracellular forms of CLDN1 

were readily observed in untransfected JFH-1 infected cells (Figure 3-33B). 

These findings suggest that internalization events may be involved in the 

accumulation of the TJ proteins to vesicular compartments. 
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Figure 3-33 CLDN1 localization in HCV infected Huh-7.5 cells following 
inhibition of clathrin-mediated endocytosis. 
A. JFH-1 infected Huh-7.5 cells were transfected with constructs encoding a 
GFP-tagged dominant negative EPS15 mutant (GFP-EPS15) 48 hrs post 
infection. 24 hrs post transfection, cells were stained for NS5A (Alexa Fluor 
594; red) and the level of infection determined by counting NS5A positive 
cells. In two independent experiments, 70% infectivity was obtained (left 
panel). EPS15 expression (GFP; green) did not interfere with expression of 
viral proteins (right panel). LSCM images were taken at 40x magnification 
(scale bars represent 20 µm). B. Intracellular forms of CLDN1 (Alexa Fluor 
594; red) were only observed in mock-transfected JFH-1 infected cells (upper 
right panel). A total of 50 cells were analyzed. LSCM images were obtained 
using a 63x 1.2NA objective and enlarged to show details of CLDN1 
localization (scale bars represent 20 µm).  
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3.3.8 Discussion 
 

In polarized cells, tight junctions limit the intra-membrane diffusion of 

molecules between the apical and basolateral membrane domains (‘fence’ 

function) and create a semi-permeable barrier between epithelial cells 

restricting diffusion of molecules through the intercellular space  (‘barrier’ 

function). Hepatocyte polarity is crucial for liver functioning, with apical 

(canalicular) and basolateral (sinusoidal) cell surfaces performing specific 

tasks like the canalicular secretion of bile and the sinusoidal secretion of 

serum proteins, respectively. In this study we confirmed our earlier 

observation that CLDN1 expression is increased in HCV infected liver tissue 

(335). Furthermore, we demonstrate that the viral envelope glycoproteins can 

disrupt the localization of CLDN1 and other members of the tight junction (TJ) 

complex, with possible in vivo implications regarding the progression of liver 

disease in chronic hepatitis C. 

 

In naïve Huh-7.5 cells, CLDN1 localizes predominantly to the plasma 

membrane with minimal intracellular staining (Figure 3-23), whereas in JFH-1 

infected cells the protein shows a significant accumulation into dot-like 

perinuclear structures as early as 48 hours post infection (Figure 3-24). A 

similar intracellular staining pattern was observed for the tight junction (TJ) 

proteins ZO-1 and occludin (Figure 3-24). Interestingly, TJ protein 

redistribution was confined to NS5A+ cells with no detectable perturbation of 

uninfected neighbouring cells. In line with this observation, conditioned 
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medium from JFH-1 infected cells failed to induce CLDN1 accumulation when 

HCV infection was inhibited with a monoclonal CD81-blocking antibody 

(Figure 3-29), implying that the effect(s) were not mediated by soluble 

diffusible factor(s). There was no detectable redistrubtion of CD81 from the 

plasma membrane as previously reported (400).  

 

Increased epithelial permeability is characteristic for systemic and local 

inflammation and may be caused by bacterial and viral pathogens, 

respectively, or endogenous stimuli such as proinflammatory cytokines (202, 

348). Interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα) can cause the 

disruption of epithelial barriers (202, 348) (204, 346) and have been shown to 

increase the permeability – characterized by a decrease in transepithelial 

resistance (TER) and increased paracellular flux of solutes - across 

monolayers of various polarized cell lines (262, 266, 422). Both IFNγ and 

TNFα down-regulate OCLN expression in HT-29 cells (265). Likewise, IFNγ 

has been shown to decrease ZO-1 mRNA and protein levels in T84 cells 

(422) and to induce the internalization of epithelial TJ proteins into vesicular 

structures (62, 404). Another cytokine, vascular endothelial growth factor 

(VEGF), which regulates tumor angiogenesis, has been shown to down-

regulate the expression of OCLN (351, 410) and ZO-1 (127) in endothelial 

cells, resulting in increased paracellular permeability (208). We hypothesized 

that the intracellular accumulation of TJ proteins in HCV infected cells may be 

mediated by cytokines, however, we found that CLDN1, OCLN and ZO-1 
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distribution was unaltered in Huh-7.5 cells treated with IFNγ, TNFα or VEGF 

(Figure 3-28).  

 

Interestingly, TNFα is reportedly the central mediator of inflammation in 

hepatitis C (217) and elevated serum levels have been correlated with 

severity of fibrosis in HCV infected individuals (430). Indeed, viral NS3 

protease reportedly induces TNFα production in HepG2 and Huh-7 cell lines 

(165), suggesting a link between HCV and the inflammatory processes in 

acute and chronic hepatitis C. Similarly, HCV gene expression induces 

stabilization of hypoxia-inducible factor 1α (HIF-1α) (303) and enhances 

androgen receptor-mediated transcriptional activity (198) thus stimulating the 

VEGF expression. Schmitt et al. recently reported that treatment of HepG2 

cells with recombinant VEGF resulted in a loss of apical canalicular structures 

and a re-localization of OCLN, leading the authors to conclude that VEGF 

may promote hepatocellular metastasis within the liver (351). In accordance 

with these data we demonstrated that VEGF reduces TJ integrity in HepG2 

cells (Dr. Christopher Mee, manuscript in preparation). Furthermore, HCV 

stimulated the secretion of VEGF in HepG2 and, to a lesser extent, in Huh-7.5 

cells by stimulating the relocalization of OCLN (Dr. C. Mee, manuscript in 

preparation). In summary, these data establish a link between HCV gene 

expression, cytokine production and the development and progression of 

cirrhosis and fibrosis in hepatitis C. 
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Calcium-induced disassembly of adherent intracellular contacts in polarized 

epithelial cells involves endocytosis of TJ and AJ (adherens junction) proteins 

via a clathrin-mediated pathway (192). To test whether the intracellular forms 

of TJ proteins in HCV infected Huh-7.5 cells are trafficked from the plasma 

membrane, we attempted the pharmacological inhibition of clathrin-mediated 

endocytosis and immunofluorescence analysis of TJ protein localization.  No 

visible effect(s) on TJ protein localization were observed when infected Huh-

7.5 cells were treated with 15 µM chlorpromazine over a 4 hour-period (data 

not shown). The use of a higher chlorpromazine concentration resulted in cell 

detachment, whereas prolonged treatment time(s) led to a significant 

intracellular accumulation of TJ proteins and induced severe changes in cell 

morphology (data not shown). Moreover, the cytoplasmic accumulation of TJ 

proteins was observed in infected and uninfected cells, suggesting an 

unspecific alteration of TJ protein trafficking. To circumvent these problems, 

we transfected JFH-1 infected Huh-7.5 cells with dominant-negative EPS15 

constructs to inhibit clathrin-mediated endocytosis and analyzed TJ protein 

localization in NS5A+/EPS15+ cells by immunofluorescence (Figure 3-33). 

Since it was not possible to co-stain EPS15-GFP expressing cells for TJ 

proteins and NS5A due to technical limitations, we aimed to achieve at least 

90% infectivity to ensure a sufficient number of Eps15+/NS5A+ cells within the 

infected population. We failed to observe intracellular CLDN1 in NS5A+/ 

Eps15+ expressing cells, suggesting that the intracellular accumulation may 

be the result of internalization events. However, it is important to take into 

account the 70% infection rate and the 50% inhibition of clathrin-mediated 



167 

endocytosis by the EPS15 dominant negative mutant (Dr. Jennifer Timpe, 

unpublished observations), when interpreting these results.  

 

Because it is known that clathrin-coated pits deliver their cargo to early 

endosomes (reviewed in (296)), we sought to determine whether CLDN1 

localizes with markers of the endocytic pathway. CLDN1 did not co-localize 

with the Golgi complex (GM130) and the ER-Golgi intermediate compartment 

(ERGIC53), respectively. Furthermore, CLDN1 showed no co-localization with 

markers of the endocytic pathway, like early (EEA1) and late (Lamp1) 

endosomes, indicating that intracellular forms of the protein may be retained 

in an unknown storage compartment (Figure 3-26). Ivanov et al. demonstrated 

that in depolarized T84 epithelial cells, the cytoplasmic compartment 

containing junctional proteins did not acquire markers of any classic 

organelles involved in protein trafficking such as recycling and late 

endosomes/lysosomes, trans-Golgi network, or the ER (192). Instead, it was 

demonstrated that the TJ protein containing vesicles were enriched in 

syntaxin-4, resembling the syntaxin-4-containing storage compartment for 

basolateral membrane proteins found in non-polarized MDCK cells (256).  

 

Membrane proteins that are internalized by receptor-mediated endocytosis or 

macropinocytosis are delivered to early endosomes for sorting (247). 

Interestingly, the intracellular forms of CLDN1 in infected Huh-7.5 cells failed 

to colocalize with the early endosomal markers EEA1 (Figure 3-26) and CD63 

(data not shown), indicating that the protein was not associated with early 
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endosomes. Ubiquitin-mediated proteolysis plays an important role in the 

cellular response to stress and extracellular effectors (reviewed in (151)) and 

instead of following the endocytic pathway, CLDN1 may be targeted to the 

proteasome for degradation. Proteasome inhibition promotes rapid protein 

accumulation to aggresomes (proteinaceous inclusion bodies) as a result of 

impairments in protein removal and we speculated that an inhibition of 

proteasome-mediated proteolysis would lead to a visible increase in 

intracellular CLDN1 in HCV infected cells if the protein was destined for 

degradation. However, treatment with ALLN had no significant effect on the 

distribution of CLDN1 in naïve or NS5A positive cells (Figure 3-32), 

suggesting that the intracellular protein is not targeted to proteasomes in HCV 

infected cells.  

 

To further investigate a possible degradation of intracellular TJ proteins, we 

studied CLDN1 localization in JFH-1 infected Huh-7.5 cells following treatment 

with cycloheximide (CHX), the hypothesis being that a block of protein 

synthesis will result in a decrease of intracellular CLDN1 if the protein is 

targeted to proteasomes or lysosomes. CHX blocking of protein biosynthesis 

for 12 hrs markedly reduced the expression of CLDN1 at the plasma 

membrane in naïve cells (Figure 3-31). In contrast, intracellular forms of 

CLDN1 in infected cells were still detectable, suggesting a longer half-life. 

Following the removal of CHX, CLDN1 was detected at the plasma membrane 

in naïve and infected cells, suggesting that ‘trapping’ of CLDN1 in infected 

cells occurs in a relatively long-lived intracellular compartment. Furthermore, 
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the inhibition of protein synthesis did not affect the level of cytosolic CLDN1, 

indicating that the accumulation of TJ proteins in the cytoplasma of HCV 

infected cells is not the result of enhanced synthesis. 

 

In non-polarized cells, proteins are synthesized on ER-bound ribosomes 

followed by post-translational modification in the Golgi apparatus and sorting 

at the trans-Golgi network (TNG) (reviewed in (247)). Unless they contain a 

specific targeting signal, proteins are constitutively trafficked to the plasma 

membrane, where they are either retained or internalized (178, 218, 247, 

398). Despite the availability of intracellular protein CLDN1 levels at the cell 

surface were drastically reduced following CHX treatment, indicating that the 

cytoplasmic forms of the protein are not recycled and transported back to the 

plasma membrane.  

 

Conflicting evidence exists as to whether hepatoma cells are capable of 

forming functional tight junctions. Two recent studies demonstrate increased 

transepithelial electric resistance (TER) and dextran permeability following 

calcium depletion in Huh-7 cells, suggesting that these cells exhibit barrier 

function ((40, 417). In our experience, Huh-7 and Huh-7.5 cells from several 

independent sources failed to form functional tight junctions as assessed by 

the flow of small molecular weight dextrans, fluorescent lipids, transeptithelial 

resistance measurements, and the localization of multidrug resitance 

associated protein-2 (MRP2) and multidrug resistance protein-1 (MDRP1), 

which localize to the apical canalicular domain in polarized epithelial cells 
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(115, 391). HCV permissive HepG2-CD81 cells demonstrated decreased 

formation of canalicular structures following JFH-1 infection, indicating a loss 

of cell polarity (Dr. Christopher Mee, unpublished observations). Interestingly, 

both NS5A positive and naïve cells showed reduced MRP2 staining, 

suggesting that the depolarization of one cell within a sheet or monolayer may 

affect the polarity of neighbouring cells and promote virus transmission via 

cell-cell routes (396). Recent observations that HCV entry is significantly 

enhanced in calcium-depleted compared to polarized Caco-2 cells (277) led 

us to speculate that HCV may preferably enter hepatocytes where cell-cell 

contacts are damaged and tight junctions disrupted. It is worth noting that 

following liver transplantation, the allograft is in most cases rapidly re-infected 

(272). Tissue damage inflicted during the surgical procedure may facilitate this 

process. In addition, a low level infection with HCV in an immuno-suppressed 

environment may evoke a ‘depolarization chain reaction’, resulting in rapid 

viral spread within the transplanted organ.  

 

Viruses such as HIV-1 (19, 200), human cytomegalovirus (41), and West Nile 

virus (405) have been shown to alter TJ protein expression and/or distribution 

in polarized brain endothelial cells, the disruption of the blood-brain barrier 

resulting in the infiltration of infected immune cells into the central nervous 

system. Likewise, HCV induced alterations of TJ protein localization may lead 

to a perturbation of hepatocyte barrier function and promote the local 

infiltration of leukocytes into the parenchyma (reviewed in (70)). Several 

reports demonstrate the infiltration of lymphocytes into the liver (reviewed in 
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(111). Furthermore, clinical studies suggest a link between the tissue damage 

characteristic for chronic hepatitis C and the sustained secretion of pro-

inflammatory cytokines by intrahepatic immune cell infiltrates (reviewed in 

(173, 371). It is also worth noting that in hepatocytes, surrounding infiltrating 

lymphocytes have been shown to induce expression of the chemokine 

receptor ligand interferon-inducible protein (IP)-10 (358), thus promoting the 

infiltration of HCV non-specific natural killer (NK) cells and cytotoxic T 

lymphocytes (CTLs) into the liver (339). Several lines of evidence suggest that 

HCV is non-cytopathic (11, 60). However, by perturbing hepatocyte barrier 

function and promoting the local infiltration of lymphocytes into the liver, the 

virus may directly contribute to liver cell damage and accelerate disease 

progression to fibrosis and cirrhosis.  

 

There was no observable re-organization of TJ proteins in Huh-7.5 cells 

supporting sub-genomic JFH-1 replication (Figure 3-23), suggesting that the 

structural proteins alone or in combination with the non-structural proteins 

mediate the changes in protein localization. Transfection of Huh-7.5 cells to 

express JFH-1 E1E2 induced a re-organization of CLDN1 and occludin 

staining in a proportion of cells (Figure 3-30). Interestingly, the genotype 1a 

H77 glycoproteins exerted a more profound effect on TJ protein localization 

than the genotype 2a JFH-1 (Table 3-2), despite comparable levels of E1E2 

expression, leading us to speculate that, in vivo, the ability of HCV to disrupt 

hepatocyte barrier functions may be variable. This is consistent with clinical 

observations noting considerable differences in the severity of HCV-
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associated defects in liver function associated with biliary cirrhosis and 

cholestatic liver disease (18, 104, 272, 399).  
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3.4 Concluding remarks. 

 

In this study we have employed the HCVcc system to investigate the 

mechanisms of viral entry. We have demonstrated that the formation of 

cellular contacts increases CLDN1 and SR-BI expression and promotes the 

internalization of cell-bound virus particles in vitro. The mechanism(s) 

underlying this phenomenon remain to be identified, however we were able to 

show that in the absence of cellular contact SR-BI alone is sufficient to 

modulate the entry kinetics of HCVcc, demonstrating a crucial and rate-

limiting role for the receptor in virus internalization. In contrast, the expression 

levels of CLDN1, which has been proposed to act at a late stage during viral 

entry (114), did not limit the rate or frequency of HCVcc internalization. 

Compared to other enveloped viruses HCVcc internalization is slow, which 

probably reflects the time required to form higher order protein complexes 

between CD81, SR-BI and CLDN1. Based on our findings we propose a 

model in which high SR-BI expression promotes receptor complex formation, 

resulting in the more efficient internalization of cell-bound virus particles 

(Figure 3-34). 
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Figure 3-34 Model of HCV entry. 
Within the receptor complex SR-BI acts as a primary receptor. SR-BI bound 
particles then interact with CD81 and CLDN1, possibly followed by TJ protein 
mediated endocytosis. 
 

Chronic hepatitis C is associated with progressive liver injury, which, in many 

cases, leads to fibrosis and cirrhosis. The pathology of HCV infection is 

thought to be caused predominantly by a virus-specific cell-mediated immune 

response (reviewed in (307)) while the virus itself is seen as non-cytopathic 

(11, 60). In our study, we have demonstrated that HCV infection modulates TJ 

protein expression and localization and, moreover, that in Huh-7.5 cells this 

modulation is mediated by the viral envelope glycoproteins rather than soluble 

factors. Furthermore, we have demonstrated that HCV infection results in 

decreased cell polarity, alluding to the effect(s) the virus may have on 

hepatocyte functionality. In future studies we aim to define the mechanism(s) 

underlying the HCV-mediated disruption of TJ protein localization, which may 
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provide further insight into the pathogenesis of HCV infection and support the 

identification of alternative therapeutic targets. 

 

Taken together, our findings highlight the importance of studying the role of TJ 

in HCV entry, and the effect(s) of HCV infection on TJ formation and cell 

polarity.  It is worth noting, however, that to date the majority of in vitro studies 

facilitate Huh-7.5 cells, which, unlike human hepatocytes, do not form 

functional TJ. Polarized cell lines, such as Caco-2 and Hep-G2 cells, 

constitute a more physiological model of human hepatocytes but have the 

disadvantage of relatively low susceptibility to HCV infection. In this context, 

the recently developed uPA/SCID mouse model (279) represents a valuable 

tool, which will allow in depth studies of the role(s) of HCV in the progression 

of liver disease. After all, a detailed understanding of the pathology of HCV 

infection is of paramount importance for the development of effective antiviral 

therapeutics and the prevention of HCV-related liver injury in chronic hepatitis 

C.  
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