
A Computational study of Visual
Template Identification in the
SAIM: A Free Energy Approach

by

KEYVAN YAHYA

A thesis submitted to
The University of Birmingham

for the degree of
Master of Philosophy (MPhil)

School of Psychology
Centre for Computational Neuroscience
and Cognitive Robotics
The University of Birmingham
Nov 2013



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Birmingham, 2013

1



Abstract

This thesis aims to understand how humans could recognize and identify objects. Our

main method for doingso is developing a computational model of recgnition/ identification

process. This work will account for the process of visual object identification which usually

takes place in multiple environments including varioud objects. Since we assumed that vi-

sual selective attention is central in disambiguating of objects, the results of our work will

include an implementation of what visual selective attention does. Initially this thesis will

draw on two successful approaches to human information processing. On one hand, we

will base our work on the Selective Attention for Identification model(SAIM). The SAIM

combines visual selective attention and object recognition. On the other hand, I will use

the ”Free Energy” approach proposed by Karl Friston to implement the fundaments of

SAIM and expand it by incorporating an identification process. We will then reason for

our cliam that holds that perceptual recognition, attention and identification minimizes

the ”surprise” (prediction error) about incoming sensory signals (Friston, 2006). It will

be demonstrated that identification process would lead to an unsupervised extraction of

object templates (prior beliefs about the causes of sensory input) from a series of multiple

visual scenes to execute a successful object recognition task. At the end of our work, we

would test our model by doinga series of computational experiments which are performed

in Matlab environment consisted of various neural networks.
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In general, this thesis is divided into two main sections. The first section explains

our approach that is ging to apply the methods of free energy and information theory

to resolve template identification problem. Also it addresses the key concepts of free

energy and the architecture of the SAIM. Besides, it compares the capability of the SAIM

which benefits from both of top-down and bottom-up streams at the same time to extract

the expected object from a shattered scene witht he other models. The second section,

envisages the problems our model aims to resolve them through modifying the SAIM by

free energy method and then gives a model in which our newversion of free energy methd

accounts for the template identification problem. As we will show, repressing the surprise

that comes from the environment (herewe we refer to visual information) makes our model

provide a new interpretation of the SAIM that augments its efficiency. In other words, we

will demonstrate that carrying out the SAIM tasks by a top-down approach is possible

and bilogically plausible too.
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Chapter 1

Introduction

1.1 Motivation

Computational models of selective visual attention have been widely brought into the

center of cognitive studies which attempt to reveal the different concealed mechanism

of the brain that overall ruling over visual attention. By doing many cognitive studies,

people have started speculating about the possibility of grasping a reciprocal knowledge

held between different cognitive functions such as perception and attention. Regarding

this possibility, people have come up with some ideas which utterly claimed to show how

the different cognitive functions originated from different cognitive levels could interact

and affect each other(Merikle & Joordens, 1997).

Within this interdisciplinary field of study, for many years we have faced relatively

many difficulties which put into question that how could we approach to figure out the

way attention and identification join together. So far the former studies have implied that

selective attention and learning have been so tightly linked that one is likely to think of

expressing each discipline in terms of the another one. Furthermore, this kind of prox-

imity led many scientists to build up some computational models that not only shed a
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light on these phenomena but inspire scholars who are working on image processing in

order to offer as efficient as algorithms to recognize the objects appear on the visual field

. According to (Posner, 1994), attention and identification are indistinctly coupled some-

how: whenever an object appears on the visual field,our complex neural system starts to

bring it into attention (consciously or unconsciously) via identifying and recognizing that

and this very process occurs through many inter-related mechanisms such as searching,

orienting and filtering. Hence, many scientists have gathered a plenty of psychological

and computational evidences in favour of the models in which attention and identification

would be merged.

Now, one of the most important problem we are dealing with in this respect is template

identification: a basic preliminary process which is the prerequisite for object recognition

and by making more progress in computer science and neuroscience it would have more

scientific contribution upon studying attention. We are better to note that from now on

by attention we mean selective attention and by template we mean visual template. So,

the terms will sound simpler and more straightforward. Given a scattered visual fields

consisted of a group of objects, we are going to simulate how the visual information of an

attended object enters the brain to be learnt and from there goes up to be identified with

the aid of a computational model of attention-identification. Yet, a few scientists have

paid attention to the template identification problem and up to this time, no significant

study has been done to build a model which benefits from a combination of information

theory, non-linear dynamical systems and neural network theory. Up to now, many schol-

ars have put forward a series of important question liaised to this issue, for instance how

’gist perception’ takes place in human cognition or how the brain recognized a camou-

flaged object among other similar objects in a scatter scene (Tononi & Laureys, 2008).
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In this section we will introduce the scope of my thesis including its essential in-

gredients and explain selective visual attention and free energy method which would be

elaborated later n. In the next section (1.2.1) we will introduce the computational frame-

work which has been interestingly used to study attention and summarize some of the

results along with the relevant implications of the model. Furthermore, we will also give

a bundle of basic definitions and terminology that are necessary to follow our discussion

at later levels.

1.2 Background

1.2.1 Basics of visual attention

Selective attention is an ubiquitous cognitive process emerged from the complexity of

human perception so as to help us efficiently to stand out among a plenty of non-stop

incoming information in every instance (Frintrop, 2011). Selective attention plays a fun-

damental cognitive role which helps the brain to avoid being overloaded by too many

information received from the environment. The brain therefore needs to have a mech-

anism to classify and categorize a sequence of more special and limited information and

process this smaller portion of selected information then (Tononi & Laureys, 2008).

Since the the mid-nineteenth century, scientists has begun to address selective visual

attention as a famous metaphor that’s called ’spotlight’ suggested for the first time by

Hermann Von Helmholtz (Helmholtz, 1850). According to Hemholtz, selective visual at-

tention could be gained by intentional changing the direction of gaze to focus upon any

point-whether peripheral or central- in the visual field. However, among the theories of

attention (inspired by this spotlight metaphor) developed by psychologists there came

a leading and well established theory called ’Posner Paradigm’ which is relied upon the
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’biased competition’ (Posner, 1994). Before talking about Posner paradigm in the next

part, let’s brief some essential terms applied to build up this theory.

Given the fact that we always deal with the limited attentional resources, firstly there

would be a close competition between stimuli trying to catch the resources and secondly

winning the competition strongly depends on the attributes of stimuli and the task of at-

tention (Desimone & Duncan, 1995). Thus, since only one stimulus could be winner and

represented by neural mechanisms, a limited capacity would be relocated to the attended

stimulus. Seeking for a general framework to explain attention has led the people to take

many psychophysical experiments from which some important results emerge. Based on

the type of visual search , there would be two kinds of attentional processes, namely

bottom-up and top-down to carry out the task of visual search, that is finding a target

among some other objects and distractors. The former(bottom-up) is a stimuli-driven and

inductive attentional process while the latter(top-down) is a goal-directed and deductive

one(Tononi & Laureys, 2008).

On one hand, bottom-up process, takes into account visual saliency that is a percep-

tual property of the stimulus and its contrast, for example, popping a pink stimulus out

of a gray visual scene including some other gray objects. Saliency is essentially related

to stimulus-driven processes and the main property of bottom-up control which does not

depend on the attributes of the task and is also very fast and could be influenced by

’figure-ground’ effects (Itti & Koch, 2001). In such a process, even if stimuli are task-

irrelevant they could catch attention. So, among a scattered visual scene, the visual search

that is conducted by a bottom-up process would be biased towards the most salient ob-

ject.(saliency encompasses various trends like brightness, contrast, geometrical properties

and etc.). On the other hand, top-down expectation (prior knowledge) highly emphasizes
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on visual task(instead of visual stimulus) and so is a task oriented and biased attentional

mechanism. For example, suppose you are seeing a scattered scene in which you are in-

tentionally seeking for a particular object which is camouflaged, now followed by a cue

pointing out your target object, the object would be quickly attended and unravelled.

In other words, top-down process control the spotlight-mentioned above-by putting that

over different objects during visual search.

These two bottom-up and top-down processes do have their own neurological sub-

strates. According to (Itti & Koch, 2001), ’the expression of this top-down attention is

most probably controlled from higher areas, including the frontal lobes, which connect

back into visual cortex and early visual areas’ whereas the bottom-up is triggered ’in a

pre-attentive manner across the entire visual field, most probably in terms of hierarchical

CENTRESURROUND MECHANISMS’. Finally, they proposed that each time , only one

object could be grasped from the visual field and others remain untouched. This process

is done by ’inhibition of return’(IOR), that is another import mechanism involved in at-

tentional deployment that prevents already selected location or spot from being selected

again (Frintrop et al., 2010).

In neurobiology, through bottom-up processing, selecting the location of attention(where

to attend) is primarily controlled by the Dorsal Stream that goes from the primary visual

cortex (V1) up to the superior regions of the occipito-parietal cortex. Also, it is worth

reminding that object recognition occurs due to the Ventral Stream which affords to af-

fect top-down control. Bottom-up control is usually imposed by ventral stream that goes

from V1 down to Inferiotemporal cortex(IT) and from there to the visual cortex (Milner,

2012). In the model we are going to offer, both of the two types of information processing

(what and where) would be join and complement together by the virtue of a parallel neu-

ral network architecture (Desimone & Duncan, 1995). Also, (Olshausen et al., 1993) has
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Figure 1.1: bottom-up vs. top-down. Left: The red T seems to be the first object that
quickly draws your attention. This is an example of bottom-up processing, in which your
attention is captured by salient sensory information. Right: the second letters of both
of the words are cut in half and so look like a same thing like two ladders of same size
and shape, but top down processing allows us to read the statement and recognize the
disfigured words. adopted from (Mederio et al., 2010).

shown that those features related to identification are involved with cells in inferotemporal

cortex, ”concerned with representating the properties of known visual shapes”. It shall

be noticed that the SAIM- a computational model of selective visual attention where-

upon we build up our model-is deprived of tuning to retinal position in retinal position

throughout the whole model. Besides, ”though the templates in SAIM are translation-

invariant(Another important property that will be describe later but simply means that

it does not matter where stimuli (objects, templates and s on) are going to appear on

the visual field), they are sensitive to the spatial positions of parts from a particular van-

tage point. The SAIM is therefore, sensitive to view angle.” (Heinke & Humphreys, 2003).

Finally, we shall point to ’eye movements’, which is another important elements that

must be considered in modelling of visual attention but because for some reason, the model

we build is without eye movement, we will not take that into consideration. Perhaps we

are better now just to point out that any model which comprises eye movements is called

overt models and any model which does not- that means it explains attention without eye

movement-is called covert model(Ryu et al., 2009).
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1.2.2 Computational models

Computational studies of visual attention aims to understand the predicted behaviour

of primate visual attention and find a proper explanation to elaborate visual perception.

To do so, scientists usually exploit a broad range of disciplines including mathematics,

physics, computer science and so on to discover as many novel fact as possible. By this

account, we could have different architectures to attack the problem from different stand-

points but there exists an element that almost every model should take into account, that

is, neural information processing and so should we do so too. These models try to insert

an information-processing mechanism that controls the visual information going to enter

short-term memory (Desimone & Duncan, 1995). As we will show later, we assume an

information theory-based approach to build up our computational model.

History reveals that the first attempts at building the computational models of atten-

tion were made with the help of the notion of ’saliency’ (Koch& Ullman, 1985). Dating

back to the 80’s decade , (Koch& Ullman, 1985) came up with a over bottom-up model

to explain attention. Their model in fact encoded saliency at different locations of the

visual field and then took control of visual information processing at the focal point. We

ought to note that the vast majority of the computational models have been so far built,

tried to gain as much knowledge as possible about bottom-up process and since top-down

stands beyond a simple topographical framework, top-down modelling of attention turned

out to be a big challenge for neuroscientists. Since top-down approach is involved with

higher levels of cognition , one such a low level approach was less likely to answer the

challenging questions (Itti & Koch, 2001).

To the best of my knowledge, the majority of the suggested computational models

focused on ’space-base attention’ which means the target toward which our attentional
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finder(WTA)

Focus of Attention
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Input Image

etc.channels

Figure 1.2: A general architecture of a bottom-up model in which information coming
into the higher level and a sigmoid function like WTA(winner take all, a neural function
which detects the maximum value of what is concerned like saliency) has them summed
up to terminates finally into the focus of attention

focus is directed (Frintrop et al., 2010) (Bisley& Goldberg, 2003). Of these all models, we

can refer to one of the famous one known as FIT(Feature Integration Theory) proposed

by (Treisman & Gelade, 1980). According to FIT, looking over different objects to find

the target is done ’serially’ such that ”different features are registered early, automatically

and in parallel across the visual field, while objects are identified separately and only at

a later stage, which requires focused attention”. Although FIT has shown a remarkable

capability when it comes to search the location of a target(where), it fails with doing

the same task about identification of the same target(what)(Treisman & Gelade, 1980)

(Frintrop et al., 2010). Also, there exist some contradictions that oppose to what the

model claims such as Parallel conjunction search,distractor inhomogeneity and grouping

which degrade the reliability of the model (Koch, 2000).
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As time went by, researchers still carried on and took forward their agenda by propos-

ing other theories which even though could not completely put the space-base attention

assumption away but tried to find a better explanation for what occurs at higher levels us-

ing bottom-up approach. In fact, these new types of models((Treisman & Gelade, 1980),

(Bisley& Goldberg, 2003), (Desimone & Duncan, 1995) and many others) have shown

more validity in compare to their previous peers. Furthermore, most of the models which

take a high level top-down approach are more liaised to our problem than other ones

because of sharing a common concern e.g., template matching. Braun’s model belongs

to this new category who built up a model that could operate simultaneously in serial

and parallel manner (Braun, 1994). Braun’s model or more precisely ”Binary Theory

of Attention’, proposes that ’attention encompasses two components: a bottom-up, fast,

primitive mechanism that selects stimuli based on their saliency (most likely encoded in

terms of center-surround mechanisms) and a second, slower, top-down mechanism with

variable selection criteria, the spotlight of attention, that is under cognitive, volitional

control” (Koch, 2000).

By now, we are gradually getting a bit far away from the bottom-up based theories

of visual attention and going towards those models which benefit from a higher level

standpoint. ’Posner Paradigm’, as such, is another successful framework for selective at-

tention which is not only grounded upon the mechanism we mentioned above namely,

bottom-up, saliency and top-down, but involves both central and peripheral cues. Posner

paradigm also known as ’cueing paradigm’, suggests a three step covert model to carry out

an attentional task. Attending to an object usually involves looking at it and placing its

image at the fovea (the central area of the retina with highest acuity) (Posner et al., 1978).

So according to Posner paradigm, when a peripheral target appears, subjects would
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move towards a central point and start responding as fast as they can. The target is cued

with either a central arrow indicating the side it will appear on, or a peripheral box around

the targets eventual location (Posner et al., 1978). Posner, also introduces two types of

cues and uses both of them in his theory, e.g., exogenous and indigenous.Exogenous and

endogenous cuing fit well with biased competition theory: Exogenous cues are triggered

through bottom-up process, ”based on the prior expectation that salient events recur in

the same part of the visual field” (Frintrop, 2011). Endogenous cues on the contrary, are

brought into the visual field by top-down process.

1.2.3 Selective Attention Identification Model(SAIM)

Selective Attention Identification Model (hereafter the SAIM), is a covert model for se-

lective attention proposed for the first time by (Heinke & Humphreys, 2003) and contains

a biologically plausible feature extraction property. Because our work are tightly coupled

with the SAIM and borrowed some essential features of its structure, now we are going

to give to some extent a detailed explanation about that. Although the SAIM has been

originally built up to explain selective attention, it gives us further capability to work on

higher level functions therein, e.g., Image recognition and template matching and achieve

remarkable results. ”SAIM was developed to model normal attention and attentional dis-

orders by implementing translation-invariant object recognition in multiple object scenes”

(Heinke & Backhaus, 2011). In other words, the SAIM privileges of translation-invariant

property it does have. Translation-invariant is a basic property which is necessary to build

a well-fitted model for selective attention. It could be formally defined as the following :

suppose we are given a curved space X -loosely speaking, a curved space is a vector space

consisted of scalars, vectors and a rule like addition that let us to have linear combina-

tions. This space is called curved if every line that links every two elements of it, lies on
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the same space-on which some metric function d is defined-metric is a function that takes

any two points of the space as input and calculate the distance between them- d is called

translation-invariant if and only if :

d(x, y) = d(x+ a, y + a) ∀x,y ∈ X (1.2.1)

Therefore, in visual attention we can redefine this property in that sense that ”the

contents of any location in the input image can be mapped through to the FOA. The map-

ping is controlled by the selection network.” (Heinke et al., 2008). Translation-invariant in

fact, keeps the distance between any two point always the same regardless of any change

and thus every thing(points, vectors, objects) in space could be mapped in the same

way it was . Besides, the recent achievements in neuroimaging studies confirmed that to

carry out the task of the mapping of incoming visual data, our visual system always uses

translation-invariant to do so successfully.

The standard version of the SAIM is consisted of several parts and three main neural

networks that work simultaneously, namely, the content network , the slection network

and the knowledge network which takes on and processes any information appears on the

visual field and the focus of attention respectively. At the lowest level, visual information

come up to enter both of the content network and the selection network in a parallel

manner. The content network , as we said, receives visual information and also makes

a translation-invariant mapping from input image to the FOA. To keep a translation-

invariant representation, there is a mutual interaction between the selection network and

the content network. the Selection network, controls and modifies the units of the content
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network and FOA alike by running a competition between it’s units , so that each time

”input from only one (set of )locations is dominant and mapped into the FOA” (Heinke

et al., 2008). This process is called ’Inhibition of Return’ (IOR)as we quickly pointed it

before. Finally, at the highest level, knowledge network is responsible to store the template

and identify the visual information coming up from FOA(identifying and recognizing

the objects mapped into FOA). Moreover, the Knowledge network would ”modulate the

behaviour of the selection network by sending top-down signals down to that”.(see fig 1.4)

Architecture of SAIM

Focus of Attention

(FOA)

Top down
modulation

Inhibition Map

Knowledge Network

Template

Units

Contents Network

Selection Network

Input

Image

modulation

Inhibition

of return

Figure 1.3: General Structure of the SAIM adopted from(Heinke & Humphreys, 2003)

In order to do this job, a translation-invariant representation of an object is formed in

the focus of attention (FOA) through a selection process. The contents of the FOA are

then processed with a simple template-matching process that implements object recog-

nition. These processing stages are realized by non-linear differential equations often

characterized as competitive and cooperative interactions between neurons.
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1.3 Discussion

It seems that, up to this time, the models which benefits from a top-down control mecha-

nism have tuned out to be more successful than the other ones whose tasks are mediated

by bottom-up process. Moreover, they have shown less capability to demonstrate tem-

plate identification program. It is believed that being privileged of top-down process

inside the model is necessary to explain template matching and template identification

processes but as we will depict in the next chapter, it is a necessary but not sufficient

condition at all. Since our work is going to end up with building up a computational

model for template identification, we will point out some basic issues derived from the

topics on visual template matching and template identification.

Having the models which could work at higher levels would bring on this question that

whether these models could also been be applied to understand a concealed learning pro-

cess which is very likely to be adhered to identification process. It is also worth pondering

if these models could be reunited under a certain grand unified theory which not only

affords to enables them to complement each other and holds a loosely liaison amid, but

could shed a light on the important elements that play a decisive role in accomplishing

the whole process of template identification.

Identifying objects and classes have been one of the most challenging computational

problems for anybody who is interested in the underlying mechanisms of visual attention.

Computational studies of visual attention suggested that identification process could not

occur without the target being attended. Basically, this hypothesis asserts that the brain

should be inevitably endowed with a volitional attention in order to identify objects. As

we go further, we would see that having a storage including the basic templates would be
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the necessary condition for the brain to identify the objects that appears on the visual

scene. The benefit of a storage might collide a learning process, a fluid process by which

the brain would be capable of perceiving the objects in a dynamic manner like a child who

is going to interact with his world. Here the problem is that how a child can store visual

templates during a learning process through which he could both perceive and react to

environment simultaneously.

For more than 20 years people have been kept working on computational model either

in visual attention or selective visual attention from different standpoints ranging from

neuroimaging studies to statistical inferential theories but though almost every model as-

serts that grasping knowledge about template identification is a necessary step should be

taken to accomplish the identification process, no one yet could have provided any consid-

erable account to learn out more about that. That is precisely the way we like to conduct

our work. It is nt at all hard to show that we are still deprived of a computational model

which take both attention and identification into consideration predicated by learning.
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Chapter 2

Template Identification

2.1 Introduction

One of the most important cognitive task that our brain does is taking objective targets

out of the environment and then have it then learnt via a complex process including neu-

ral feature extraction, neural representation and information processing. We can divide

the visual perception function into three different but related categories: low level func-

tions(specified to pre-processing), intermediate level functions(specified to representation)

and high level functions(specified to recognition). As we already mentioned, there are no

distinct clear-cut boundaries in between to segregate these different level each of them is

situated at some different parts of the brain.

By far and large, low level functions are involved with treating incoming sensory in-

formation consisted of the processes which require no part of intelligence. In this regard,

all the visual pre-processing and receiving tasks(image formation and adaptation) occur

at lower level of cognition. When sensory information came into the brain, some other

functions would begin to process them afterwards. In the next level, these intermediate

functions are dealing with feature extraction and characterizing component (Gonzalez &
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Woods, 2002). As long as the brain is operating at lower levels, intelligence wouldn’t need

to reveal until it gets on higher levels. Intelligence as Hofstadter assigns it to flexibility of

the human mind that allows the most abstract concepts interact to each other through-

out all cognitive levels: an emergent high level cognitive epiphenomenon which can not

be seemingly found among mechanical robots at least as much as we could see among

humans(Hofstadter, 2000). This kind of flexibility emanate from the enormous number

of different rules help us humans to execute intermediate and higher levels procedures.

Finally, higher level functions are involved with recognition and interpretation both of

which are strongly assimilated by ’intelligent cognition’. The common property that un-

derlies most of the higher level functions is using prior knowledge and expectation to play

their important roles in perception and decision making (Gonzalez & Woods, 2002).

Segmentation
Representation 

& description

Recognition

Intermediate-level functions

Image 

acquisition

Pre-processing
Recognition

Interpretation

Knowledge base

Low-level functions High-level functions

Figure 2.1: Different levels of cognition involved in human visual functions

In this work we only focused on template identification as a simplification of higher

level cognitive function. To expand it more than this level, let us begin with a general
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review of the problem including its mathematical formalism. First of all, we would like

to give a general perspective of template identification and its underlying mechanisms

controls that in the brain.

Up to now, lots of models for template identification and pattern recognition have

been proposed and since most of them turned out to be successful the field of in digital

image processing, we can suspect that they might have enough validity to be generalized

so as to depict what really occurs in the brain. As long as pattern recognition within

an image processing network is concerned, these models could be quite useful for their

abilities to do visual search and grasp the salient object but as we move toward template

identification in the brain, it could be no longer as plausible as it was thought. This

specific field has been enlarged particularly for specific domains such as face detection

and for more general object domains (Rutishauser et al., 2004). Simply and plainly, all

of the pattern recognition algorithms in image processing are divided into two different

categories: Filtered-base and Differential Equation-based(particularly Partial Differential

Equations) approaches but what seems to become their common denominator is the ap-

plication of convolution to achieve expected result.

2.2 Templates and Recognition

By far and large, there exists a prevalent approach in image processing which suggests

to divide the visual scene to a mesh consisted of a finite number of pixels. the more the

number of pixels , the higher the resolution would be in a picture. It looks somewhat

trivial to assume a scene as a mesh of pixels so that each of them contains a certain

degree of intensity. Therefore, we can assume a picture as a function from a spatial space
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X domain to the intensity range I, denoted by :

u : (x, y) −→ I (2.2.1)

Now, we can propose an easy to do algorithm which aims to match the template already

stored in memory with the input visual image by carrying out a serial tasks of search and

adaptation. This could be implemented by masking a particular image domain of the

template size and starting a visual search that is ensued by adaptation. Let us suppose

we have a template denoted by T(x,y) and an extracted sample image that has to be

searched, denoted by S(x,y). Hence, the algorithm pin the template to the centre of the

sample image and then run a sub-procedure to calculate the differences between intensi-

ties.(this culd be done by metric functions we briefly noted in previous chapter) We can

write the algorithm as follows:

1. put the template T

2. size(T )—calculate the size of the matrix T

3. get a S where size(S )= size(T )

4. translate S to T (S 7−→ T )

5. calculate D=
∑ ∑

x,y | S(x,y) - T(x,y)|

As we saw, these methods all emphasize on the notion of saliency and serial visual

search belong to bottom-up based models and of course they can extract useful informa-

tion about the location, size and shape of objects out of a given images (Rutishauser et

al., 2004). What comes next should be obtaining a detailed knowledge about the way this

bottom-up approach is implemented. As we mentioned above, this approach is usually
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accompanied by two efficient methods namely , filters and PDE’s. Filter-based methods

usually convolve a kernel(like Gaussian function N ) with the sample image to extract

useful information such as location, colour, intensity. Now, we could take ’cross-scale’

difference (the nonlinear coupling of picture elements) with regards to these local at-

tributes(l,c,s stand for attributes of each extracted map):

FI,c,s=N | Ic(x,y) -Is(x,y) |

Fθ,c,s=N | Iθ(x,y) -Iθ(x,y) |

and eventually to sum over these feature maps:

Fl= N (⊕ Fl,c,s ) where l ∈ LI ∪ LO and (LI , LO) are the feature maps extracted with

regards to intensity I and orientation O. Finally , all the locations start to compete each

other to get the highest intensity by a winner-take-all(WTA) function.(WTA is a function

which runs a competition between different neurons of a layer till a neuron reaches to its

highest activation(the only winner) and makes other neurons turn off) Now, we could eas-

ily take the best template to be matched using some different methods such as euclidean

distance (Minimum distances), correlators, Bayes classifiers and neural network. We will

show it later how to combine Bayes classifiers and neural networks as long as free energy

theory is concerned.

Although, many model have been given rise by these computational models, but the

human brain is of a high order of complexity and operating in so complex parallel manner

that it could perform many recognition, storage and representation tasks in hundreds of

a second. So in such a framework, it sounds a bit too irrational to think of the brain as a

simple machine in which these enormous tasks are done by a simple serial masking and vi-

sual search as in the way mentioned above. That is why the advocates of template theory,

feature theory and structural description have been trying for a long time to gather some

plausible evidence to cope with theoretical dilemma they have encountered. For exam-
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ple, that simple parallel search described above(serial masking) even in a super-computer

show far less capability in doing the same kind of cognitive tasks than humans do.

First of all, We Should find out what goes wrong whenever we want to model ur

visual system. Daniel Dennett, the American philosopher and cognitive scientist, sug-

gests a mental experiment which can enlighten a paradox that will be revealed through

the experiment itself. In his famous book, ’Consciousness Explained’, he put forwards

a mental experiment which brings up some astonishing results implying that our visual

perception is not as enriched as we thought (Dennett, 1991). The experiment is simple:

Dennett ”asks us to imagine walking into a room papered all over with identical portraits

of Marilyn Monroe. We would, he says, see within a few seconds that there were hun-

dreds of identical portraits, and would quickly notice if one had a hat or a silly moustache.”

Our natural conclusion is that we must now have a detailed picture of all those Mar-

ilyns in our head. But, says Dennett, this cannot be so. Only the fovea, in the centre

of our retina, sees clearly, and our eyes make only about four or five saccades (large eye

movements) each second, so we could not possibly have looked clearly at each portrait.

Our ability to see so much depends on texture detectors that can see a repeating pattern

across the whole room, and dedicated pop-out mechanisms that would draw attention

to oddities like a silly moustache or a different colour. So what we see is not a detailed

inner picture at all but something more like a guess, or hypothesis, or representation that

there are lots of identical portraits. The brain does not need to represent each Marilyn

individually in an inner picture, and does not do so. We get the vivid impression that

all that detail is inside our heads, but really it remains out there in the world. There is

no need to fill in the missing Marilyns and the brain does not do so.” So the problem is

that when we know that there a few limited light receptors placed in the retina surface,
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there wouldn’t be wise to assume the brain could achieve as much information as it gets.

So, how come we are having with to some some extent little information while we can

instantly recognize the disturbed and wrong Marilyn’s photo?”(Blackmore, 2005)

Here, of course we shall notice that people have come up with a theory named senso-

rimotor theory which actually dismissed the problem, taking the viewer as an actor and

the visions as the actions. Actually we will build our model back to a similar one (free

energy method) which shares some assumption in common with the sensorimotor theory.

Besides, some authors accounts this theory as an adequate explanation for deploying of

human vision. Aaron Sloman and James Gibson each one defends this theory in a similar

way somehow: ”for organisms the function of vision (more generally perception)is not to

describe some objective external reality but to serve biological needs. (Gibbson, 1986)

(Sloman, 2011) So now it must explain how actions can become subjective experiences

Henceforth, here the question is how this sort of action(seeing) would exploit all the in-

struction designed for movement and actions sensory motor parts of the brain. Could we

make an analogy between action and seeing and further do the same for visual cortex and

sensory motor cortex in order to exploit all the achievements and instructions ruling over

the Brain.(Blackmore, 2005)

Based on what Dennett suggests we could gather that granting a bottom-up structure

of visual search to direct attention and eventually finding the expected object is not a

worth doing idea. Roughly speaking , this idea reminds us again the important role that

the other attentional mechanism could play, that is, top-down processing through which

a control coherent signals relates the focus of attention with other parts of the model that

send up information. Given this fact, we could figure out that no matter how rapid a

visual search task could be executed it is almost impossible to grasp such subtle changes
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Figure 2.2: if you were to enter a room whose walls were papered with identical photos
of Marilyn Monroe, you would ”instantly” see that this was the case. We know that
there are a little visual information are allowed to come into the brain at each instance,
so searching and matching is definitely out of question. What makes that moustache
Marilyn pops up whenever we take a look at the wall?

(in Marilyn’s photo) in a millisecond, nor in image recognition. By now, we could take the

attention role specifically top-down process in object recognition into account. (Mozzer

& Sitton, 1996) proposed brought one of the first types of the models which claim that

selective attention is a necessary element of object recognition. They simply ask us how

could we orient our attention in order not to be caught by the most local salient spot in

the visual scene. Therefore, putting the recognition task into an attentional framework

would endow the model with a mechanism to disambiguate recognition by focusing on

one object each time (Itti & Koch, 2001).

Some others have progressively taken the problem from different view that privileges

more neural plausibility than the other models we have reviewed. (Schill et al., 2001),

offered a model which suggests that recognition task is a matter of ’information gaining’

and gives us an explanation as to why the brain prefers some particular object in compare

to some other ones. According to their theory, object recognition is dealt with informa-

22



tion gaining in that sense that attention could be oriented to those parts which entail the

most relevant information in compare to other spots with far more less information. In

other words, attention would be fixed on the location of object which gains as maximum

information as possible. Therefore, given a bundle of potential objects to be identified,

attention is to distinct and classify them and finally gain the amount of information each

of them contain.

Although we are aware of this fact that object recognition is a cognitive function of

high level, but as we mentioned once before, it couldn’t be accomplished without being

involved with lower level activities. That is why today it has been accepted to impose

’what’ and ’where’ memory to keep this balance. In most of the model which have been

proposed so far, the potential objects are selected and identified via bottom-up approach

from the visual field and since then they would be scanned serially until a specific object

obtain the highest recognition score which depends on feature analysis (Itti & Koch, 2001).

2.3 Template Identification

Generally speaking , we can address a recognition problem as a process of naming an

object in a sense that we tend to identifying objects either as an individual object like a

specific ’token’ or an object which may belong to a number of a certain class and cate-

gory(’a truck’)(Ullman, 1996) (Hofstadter, 1996).

As it is clear, so many different models which have been proposed to account for atten-

tion and object recognition, share some key regularities and ideas which holds that, firstly

to identify an object the brain does not need a huge restoration of all types of shapes and

variations of an object which is supposed to be recognize and secondly, all different varia-
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tions of a particular object contain some necessary information carrying similar attributes

which put together represent that object. Regarding this kind of information, the brain is

going to recognize the object. All the methods we have looked over aim at undermining

these regularities which constitute various transformation and variations. Now, we intend

to shift incrementally from object recognition to novel object learning problem that of

course has many things in common with object recognition but for some reason a few

research programs have been devoted to unravel the complexes of this problem.

The vast majority of the models which have been offered to provide an insightful ac-

count for object recognition, usually take into account the learning problem in the extent.

According to (Ullman, 1996), we can sum up almost all the models offered for object

recognition over the three main methods: (i) invariant properties methods, (ii) parts de-

compositioned method, and (iii) alignment method. the first method says that all the

object would remain invariant under all kind of transformation they might get whilst

the the second method suggests that to recognize an object, the target object should be

decomposed in smaller constituents. Intuitively, this method is fairly straightforward:

objects contain their fundamental parts such as face, nose and eyes. These parts could be

found and put them together to accomplish the recognition process. Essentially, These

methods could also be considered like an inductive bottom-up process. Finally, the (iii) is

to ”compensate for the transformations separating the viewed object and the correspond-

ing stored model and then compare them.” (Ullman, 1996).

Although these three approaches have shown a considerable success in making recog-

nition tasks, deeming that these too would grant success in object learning is far from

what is really going on in the brain and we would reason for that. First of all we shall

point out that by saying a novel object we mean an object that is being seen for the
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first time through visual sense or how could we perceive a previously unknown object not

seen before?(Saxena et al., 2006) Also we should notice that even learning a novel object

like a triangle or square for a child is quite far from some geometrical transformation in

that sense that if the learning process just encompasses sheerly geometrical elements, the

robots should have been able to do the same as us human. This question immediately

pops out that so why should this very problem be revealed of that high difficulty and then

what are the true mechanism undergone to this task?

Perhaps the main problem with template identification is that it is not wholly liaised

to the problem of how the brain is going to do decomposition task and feature extraction

nor it is precisely a simple confectionist model in which some information are integrated

and joint together. If we try to undermine the learning template process by sticking with

confectionist approach and information theory, we would probably get into some conclu-

sion which are indeed of great importance to notice. Firstly, we shall notice that as long

as we are working on the learning template problem, ”there is compelling evidence that

different kinds of information” are involved in such that its seems fairly acceptable to

assume distinct types of information such as visual knowledge, semantic knowledge and

object naming (Eysenck & Keane, 1997).

In order to sort it out , Humphreys and Bruce did some studies comprising both cog-

nitive and lesion ones. One of the most important results of their studies is presumably

a hierarchical structure they came up with to explain the different kinds of information

and functionalities which are proceeding at the same time. According to (Humphreys

& Bruce, 1989), there are several distinct stages of information processing which are in-

volved in the identification problem. Of the stages involved in identification, we could

particularly refer to perceptual classification and semantic classification where the former
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”involves matching the visual information extracted from an object with its stored struc-

tural description” and the latter ”involves the retrieval of information about functions

and associates of the object” such as naming (Eysenck & Keane, 1997).

Early visual 

processing

Viewpoint-

dependent object 

description

Perceptual 

classificationclassification

Semantic classification

Naming

Figure 2.3: The stages involved in object identification, adopted from (Humphreys &
Bruce, 1989)

David Marr was one of the greatest leading figures usually known for his contribution

on computer vision, developed a theory on vision which got a good deal of acclaim af-

terwards. According to Marr’s theory of vision proposed in 1982 , vision is considered

as a proceeding process which maps the two-dimensional retinal contents to a three di-

mensional description of them as output. From an information processing standpoint this

process consisted of three stages as follow:

• ”the primal sketch, which is mainly concerned with the description of the inten-

sity changes in the image and their local geometry, on the grounds that intensity

variations are likely to correspond to physical reality like object boundaries.

26



• the 2 1/2 sketch, which is a viewer-centred description of orientation, contour and

depth and other properties of visible surface.

• the 3-D model, which is an object-centred representation of three dimensional ob-

jects, with the goal of allowing both handling and recognition of the object.” (Poggio,

1981)

According to Marr’s theory, Objects could be created, restored and represented through

a vision process which implies that the process contains some independent stages should

concur and get integrated in order to produce the fine representation of the object which

has been viewed. Although , the motivation along with Marr’a theory seems quite in-

teresting, but the results show that it rarely could provide an appropriate account for

identification (Poggio, 1981).

By far and large, as (?) interestingly put in, most of the models(including (Marr,

1982) and (Biederman, 1995)) suggest a bundle of functions involved in recognition and

identification task, namely,

• Coding of the edge

• Grouping or encoding into higher-order features

• Matching to stored structural knowledge

• Access to semantic Knowledge

They combined their approaches with a connectionist model that privileges from sev-

eral neural networks working simultaneously.
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2.4 Connectionist Approach and Identification Prob-

lem

Connectonism has brought into the attention of neuroscientists since the early years of

the 80th decade, although it could alsobe traced back to a century ago (Pinker & Mehler,

1988). Nowadays, connectionst is usually referred to as a set of approaches which aim at

modelling functionalities of the mind via producing inter-connected networks of unified

neurons(like sigma pi neurons-sigma pi neurons are the neurons who input units separately

come in with their corresponding weights, the neuron would fire only if the summation of

the weights passes its own threshold).

In general, a connectionist network or a parallel distributed processing (PDP) network,

is a set of inter-related neurons linked together in some architectural form. To carry out a

given task, the connectionist network benefits from ”many small, independent units cal-

culating very simple functions in parallel” to which the task is given to be learnt. ”These

networks are composed of two basic building blocks: idealized neurons (often called units)

linked via weighted connections. Each unit has an associated activation value, which can

be passed to other units via the links with the connection weights mediating the amount of

activation that is passed between units.”(Rumelhart & McClelland , 1986) (Blank, 1997).

It is usually claimed that a connectionist processing unit is in some sense taken simi-

lar to a biological neural system. A formal connectionist network consists of some layers

through which information flow in and out. These layers called input, hidden and output,

are to link and gather neurons together via establishing weights. An activation value is

given to each value which could be conveyed to the other neurons.
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Along with some little differences, most of connectionist networks work in a fairly

straightforward way as follow: we set out to feed the lowest level of the network by a

set of activations(mostly initialized randomly) called input pattern, then activation could

be spread over the hidden layers which are to make deduction upon the input activity

by summing them up and get them passed through an activation function and finally

the new activation for the output layer would be calculated and exposed , called output

pattern. (Blank, 1997) In a single neuron model , after getting the incoming activations

denoted by ai the network would calculate its net input by summing them up and have

them multiplied by an activation function f through the weights as follow:

an = f(σi) (2.4.1)

σm =
∑

aiwi−→m (2.4.2)

where the previous units denoted by the index i are linked to unit m, and ai indicates

the activation of i. wi−→m is the weight of the connection from unit i to unit m via

imposing a logical activation function f (Berkeley, 1997) (Blank, 1997).

Based upon two assumptions, an prevalent interest about connectionist network to the

template identification problem has started raising up. The first one is that each template

like a circle or triangle has its own activity pattern spreading over the unit which represent

them and the other one is that by posing an input activation, the network would be able

to make analogy, learn and generalize accordingly. Alongside these two presumption , we

could also build up more complex inter-connected networks which gain encoded visual

pattern as the input pattern and imposed deduction through activation of inhibitory and

exhibitory connections. And so we can rephrasing the problem and redefine it in terms of

such framework.
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A connectionist network, by far and large, aims at producing a desirable output which

is recognized, categorized, induced and generalized. This all is done by delta rule which

holds that: given ”random weights and feed it a particular input vector from the corpus”,

activity would propagate ”forward to the output layer. Afterwards, for a given unit u at

the output layer, the network takes the actual activation of u and its desired activation

and modifies weights according to the following rule”:

δiu = α(desiredu − au).ai (2.4.3)

where α is the learning rate and au and ai are the correspondent activations of the

current actual u and unit i successively. Therefore, after learning occurred, having fed

input data, the network would go to take them and produced them in output as such.

Moreover, interestingly if just a part of input is exposed, the network could detect and

make the correspondent and appropriate values activated. And this all is done by by

making adjustment such that the internal input would always remain equal to the total

input, as expressed in the above formula.(Eysenck & Keane, 1997)

A major success of connectionist networks is to learning problem is that these models

could be regarded as more insightful than the classical learning approach for it allows to

the input data to do sophisticated tasks through running different kinds of interaction

and competition. They, in general, take input as the encoded representation of the object

that is to be learnt and trigger a learning process amongst hidden layers.

Nevertheless, still a lot of problems have not so intimately been raised up, particularly

those which twist around validity of the postulates the connectionism encompasses.One
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of the vigorous critiques ever imposed belongs to (Block, 1995) who strongly believed

that the brain does not work in such a superficial way the connectionism suggests. For

instance, he goes to challenge what we are usually dealing with in this area. According

to Block, ”Connectionist networks have been successful in various pattern recognition

tasks, for example discriminating mines from rocks. Of course, even if these networks

could be made to do pattern recognition tasks much better than we can, that wouldn’t

suggest that these networks can provide models of higher cognition. Computers that are

programmed to do arithmetic in the classical symbol-crunching mode can do arithmetic

much better than we can, but no one would conclude that therefore these computers

provide models of higher cognition”.(Block, 1995) Connectionist do not aim at simulating

a broad range of various tasks of the brain neurons. Furthermore, it is not generally

accepted that the prevalent methods in connectionist models such as back-propagation

really take place in the brain. (Pinker & Mehler, 1988) Anyhow, according to Block, in

general having supposed an exact similarity between connectionist models and what the

brain does, looks like a bit superficial.

However, foundations of connectionism reveal that it could not be far too much from

the brain functionalities. At the first glance, connectionist models may resemble some

sort of what is going on in the brain, that is, a highly complicated inter-connected system

consisted of neurons and dendrites. The motivation right on the contrary to classical and

sceptical approaches seems intimidatingly outlaw. As Hofstadter points out in his intro-

duction to the new edition of the well-known Ernst Nagel’s book, ”since the cells of the

brain are wired together in certain patterns, and since one can imitate any such pattern

in software that is, in a fixed set of directivesa calculating engines power can be harnessed

to imitate microscopic brain circuitry and its behavior. Such models been studied now for

many years by cognitive scientists, who have found that many patterns of human learn-

ing, including error making as an automatic by-product, are faithfully replicated” (Nagel
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et al., 2001). But, still a lot of problems have not so intimately been raised up, partic-

ularly those which twist around validity of the postulates the connectionism encompasses.

In conclusion, connectionist models benefit from many advantages over the classical

symbol processing models in which everything is analysed and processed in terms of ab-

stract symbols rather than actual numerical values. Perhaps the most famous aspect

by which these models are known, is that giving a few example would be fairly enough

to trigger a learning process without resorting to all symbolic representation. Also, as

Feldman truly put in, a concept should not necessarily be represented by an unique unit

but every concept is mostly exhibited as a pattern of activity which is distributed parallel

one the space. Nonetheless, connectionist networks are to map the pathway in which

information are mapped from retinal parts to a head-centred coordinate system (Zisper

& Anderson, 1998).

2.5 Discussion

Since the capacity of visual system is very limited , a few amount of information could

be passed through retina. That is why incoming information starts competing to reach

the focus of attention. Making much progress in psychophysics of attention as well as

information theory positively has affected ongoing research in competition for attention.

It has tentatively been more appealing when neurological experiments affirmed that the

firing rate of receptive cells would change the stimuli which is going to be attended. So

far, most of the models are determined to establish a paradigm which leans back to infor-

mation processing taking place in saliency map but again experiments revealed that it is

very likely that the brain attend some less salient spot or weak stimulus among a bundle

of more salient stimuli. Here, most of the model explained above come to collapse and
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the appeal for those models which could enable us to swallow some strange behaviours of

our attentional mechanisms would increase.

Biased competition theory have been very favourable to assume a loop of forward/backward

feedback signals dispatched from the outer areas of the visual field. to violate the obliga-

tion of attention and then conduct it towards some certain stimulus given a loaded scene

of different stimuli. Even though, due to the brain-imaging studies that such an outer

signal does exist and is projected to an occipital area called ”extrastriate visual cortex”,

the whole theory fails in offering a proper explanation for template identification.

Roughly speaking, most of the models considered above are not going far too much

from some sort of locality in that sense that their attempt at indicating a detailed tiny

aspect of selective attention backed up by task experiments, would not be able to shed a

light on some other vague aspects of the problem which require a different paradigm to

be resolved. These models all share a trend that is they usually turn out successful in

explaining something and terribly unsuccessful when it comes to explaining else. Hence,

we are dealing with the models which could not grant any final explanation. Since each

one benefits from different strong points , they are thought to be brought together to get

more flourished view in hand. But we shall note that it would be pretty misleading if

we suppose these models and theories are essentially to complement each other towards

finding a ultimate explanation none of them solemnly entails.

In philosophy of science, a prolong controversially discussion has been kept fresh via

the people who push forward the question of the way science do make progress. It used to

be a prevalent belief that science keeps going forward its way due to all the theories have

so far come into existence and put together provide us with a great deal of knowledge on
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the issue they all take that into account. On the other hand and right on contrary to this

theory which seems fairly acceptable by common sense, a decade after the mid of the pre-

vious century there came another theory which strongly shook the basis of the old theory.

The new theory by challenging the cumulative essence of science, turn around its pivotal

theme that science is not working in the way we used to think that is by collecting theories

and have them summed up to complement each other, rather according to Kuhen, science

proceeds through scientific revolutions which come to abrogate the paradigms upon which

normal science leans back ( Kuhn, 1996). As long as we rest on the Kuhn’s theory, it is

very natural to encounter a cluster of theories on some specific issue that some or many

of them come to contradict each other. Hence, to assume these theories are to gather to

demise either a larger perspective or a new more general theory seems a bit absurd. In the

next chapter, we will discuss how a new paradigm named ”free energy theory of the brain”

come into being along with many consequences of great import which not only cover most

of the issue have so far been offered, but it could truly unite them in a very subtle manner.
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Chapter 3

Free Energy Principle

3.1 Introduction

Connectionist and symbolic approach(that constitutes that the brain operates solely based

on symbols like a Turing machine) have been competing each other for a long time and

hereby, every now and then, some people tried to bring up some novel approaches which

could grant the other aspects have been neglected so far. Like the other disciplines,

coming up with a grand unified theory of the brain has been a big motivation. Having

inspired by Helmholtz’s theory in statistical physics, free energy principle indicates that

”what cause our sensory inputs and learning causal regularities in the sensorium can be

resolved”.(Friston & Klaas, 2007) In this chapter , we will give an introduction to the free

energy principle and its reminiscent seeds spreading across the cognitive models which

attempt at finding action/perception regularities.

The second law of thermodynamics is a firm physical theory which deduces a trend,

that is, differences in temperature, pressure, and chemical potential equilibrate in an iso-

lated physical system or generally the entropy of the system would increase, as time goes

bye. in statistical mechanics entropy is defined a bit differently from what information
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theory is based on, commonly known as the Shannon entropy. Friston comes to build up

his theory upon this concept of entropy makes an analogy between thermodynamics and

human perception in the brain.

Prior to free energy theory, Bayesian theory of the brain and some of its variations

went towards the centre of cognitive science. Most of these theories regard the brain as

an inference machine that adopts to the rules to deduce and infer over the information

obtained by sampling data with our senses. Naturally as long as we are dealing with

the outer environment whereupon we have no control, uncertainty would be an undistin-

guished and big part of the life. Bayesian models, therefore try to provide an explanation

for how the brain goes to cope with uncertainty. Given the hierarchical deployment of

cortical areas and also existence of forward and backward connections, Bayesian theory of

the Brain aims at explaining the essence of this hierarchy and the functional asymmetries

in these connections by statistical methods.

So far, many aspects of the cognitive problem have been models by Bayesian theory

of the Brain. For instance, in psychophysics: some of the problems regarding human

perceptual or motor behaviour have been worked out as such. Moreover, in neural infor-

mation processing, a theory called Hierarchical Temporal Memory came out to describe

how information could be categorized and processed in the brain given Bayesian network

of Markov chains. Also, it has been a big help to obligate the studies upon the represen-

tation of probabilities in the nervous system.
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3.2 Basics of Free Energy

Actually, free energy principle would account for any self organizing system which wants to

retain within its state and avoids being distracted and such systems ranging from cellular

organism to the large networks. As evolutionary biology asserts, biological systems(such

as animals or brains) usually tend to run away from disorder through interaction with the

environment which is always changing (Friston, 2006). Such an interaction with a chang-

ing environment is called homoestasia that is defined a process whereby a system(open or

close) regulates its internal environment to maintain within a stable and constant condi-

tion (Cannon, 1929).

Again we like to ask what is free energy? Free-energy is a mathematical model based

on a modified version of information theory and inverse Bayesian theory that puts a

bound on the surprise the system is gaining from its environment. In other words, the

range of the states in which a biological system retains is limited and mathematically it

means that the probability of these limited state is of a low entropy. Entropy in simply

a tool to measure uncertainty, technically it defined as the average surprise of outcomes

sampled from a probability distribution or density. It is computed as the negative log of

the information content of input data:

H(x) = E(−lnP (X)) =
∑

P (X)ln(P (X)) (3.2.1)

where X is a discrete random variable, p is the probability distribution function and E

is mathematical expectation. Intuitively, entropy H tells us how much information does

the sampled data X contain citepRe61. It is easy to do to show that if the probability

of occurrence is zero, the entropy would also be zero and for the probability of 1, the

same is held too. It points out that, if we are perfectly certain about occurrence of
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something, let’s say X, it has no information to get and also if there is no probability of

occurrence of X, still no information would be passed out. Therefore, we say entropy is

a measure of uncertainty which is dealt with the amount of surprise. the less probably

something, the more surprise it would have. For example, a living fish out of water would

be surprise. In conclusion, what free energy does is to gather more evidence for existing

of something(sensory data) by putting a bound on surprise(to be more certain of it) via

violating its internal states.

Figure 3.1: Different levels of cognition involved in human visual functions

In fact, according to free energy principle what a biological creature does is to make

prediction about what is going on in the environment, given a prediction error , it would

go up to improve it by making its internal states change. Simply free energy could be

defined as a joint coincidence of causes and its causation and ”is a function of sensory

data and brain states” (Cannon, 1929). It is known from information theory that surprise

couldn’t be directly computed and the bound on surprise actually allow us to cope with
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this obstacle because as such it is a function of sensory input and internal states.

Although mathematical formalism of free energy looks to some extent sophisticated,

but as such, its pivotal claim is simple and plain: given a generative model, by suppress-

ing and minimizing surprise the brain gets from its environment, the brain could gather

more evidence for its existence. This simple sentence has hitherto been the core of free

energy. Intuitively, the more the brain minimize surprise, the more it gathers evidence for

its existence in that sense that having been provided with a generative model, the brain

would go to suppress surprise by either changing sensory sample input. Perhaps before

going through giving mathematical formula at this disposal, we’d better to give short

explanations about some technical terms upon which those formulas would be written.

The first one we shall talks a little bit about is generative model that is a fundamen-

tal requirement to build up our framework. Basically, generative model is probabilistic

structure which tell us how data and causes are dependant to each other in terms of

of the likelihood of data, given their causes (parameters of a model) and priors (initial

expectations or the probability distribution function of the causes gives the brain some

beliefs about those causes before observing the data.) on the causes (Friston, 2006). To

us, the second priority goes to recognition density which is mentioned very often in almost

every model that has been built up based on free energy principle. Recognition density is

actually a probability distribution function of the causes of the input (sensory) data; some

sort of conditional density of the causes given the internal states of the brain. This condi-

tional density that is also called posterior density is the probability distribution function

of causes which corresponds causes to observed data. Eventually, maybe we should give

a short explanation about the term Kullback-Leibler divergence. As we said a couple of

lines above, in information theory, entropy is taken as equal to the negative log of the
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probability of a random variable. This surprise is mostly known as ”self-information” in

that sense that it says how much information(in terms of bit) does it contain but when

it comes to pass up information from one thing to the other , we would be dealing with

”mutual information” or joint entropy in which there is a ”source” to send up information

and a recipient that is called ”target”. Likewise, the same formula (3.1.1) with a little

difference would be revealed. Given an ordered couple of (X,Y ) which are our source

and target respectively, the amount of information passing between these two denoted by

H (X,Y ), could be computed as follow:

H(X, Y ) = E(−lnP (X, Y )) = −
∑
x,y

P (x, y)ln(P (x, y)) (3.2.2)

and when it comes to deal with information transformation or transinformation, we would

be willing to find about information gain.

This term is applied very often in neuroscience and relevant topics which have some-

thing to with information gaining or loosing such the problem of neural coding (Dimitrov

& Miller, 2001). However, when we have two random variables which lay into a trnas-

information state, we could measure the amount of information via comparing the the

probability distribution of each one. Here, Kullback-Leibler divergence comes to mea-

sure this amount by subtracting these two probability distribution. Suppose we have a

posterior probability distribution P(X ) and a posterior probability distribution Q(X )

that is to predict the content of the prior P(X ). Kullback-Leibler divergence denoted by

DKL(P(X ) ‖ Q(X )), basically says how close the model Q(X ) is to the true probability
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distribution P(X ):

DKL(P (X) ‖ Q(X)) = −
∑
x

P (x)ln(P (x))− xQ(x)ln(Q(x))) = −
∑
x

P (x)ln
P (x)

Q(x)

(3.2.3)

presumably, the potent the Kullback-Leibler divergence is endowed with, has persuaded

the people who keen on to know more about something through observing something else

in that sense that given an expectation, we could find out how remarkable and reliable it

would be.

3.3 Predictive Coding and Attention

Now, time to build up the foundations of our free energy based version of the SAIM.

As such, these formulas might seem a bit sophisticated though having a key theme upon

which they lean back, could make them more convenient to swallow. To make life easier,

we’d better to begin with reminding that free energy is formulated in terms of a non-linear

dynamical system and its pivotal ingredient lies upon the notion of entropy and surprise

as we described above except roughly speaking, on contrary to surprise, free energy has

the privilege of being easily computed for it depends on the brain states and sensory data.

Suppose, Given the brain internal states µ(t) and brain action a(t), we do have sensory

signal s=[s,s’,s”,...] and its causes ϑ of sensory input(that is a function of hidden states

and some other parameters such as precision ). According to free energy principle ,

the brain minimizes free energy F(s,µ) by taking action on environment or changing its

internal states. the free energy could be written as follow:

F = − < ln(P (s, µ) | m) >q + < ln(q(ϑ) | µ) >q (3.3.1)
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F = D(q(ϑ | µ) ‖ P (ϑ))− < ln(P (s) | ϑ, µ) >q (3.3.2)

F = D(q(ϑ | µ) ‖ P (ϑ | s))− < ln(P (s) | m) >q (3.3.3)

where, a=argmax Accuracy and a=argmax Divergance.

These equation put together describe the condition in which free energy is repressed.

Since free energy could be considered as the difference between two p.d.fs namely, con-

ditional and recognition density, by taking action a, by minimizing free energy the brain

adjusts its internal states and optimizes recognition density as the a-posterior model to

predict that is p.d.f of causes given generative model-for conditional density(prior p.d.f of

causes).Again it’s wroth asserting that free energy is nothing but the difference between

”energy” and ”entropy”. (Friston, 2009)It could be simply realized that free energy at-

tempts to derive causes from sensory input data. The action the brain takes is tightly

liaised with accuracy and changes the way the brain samples sensory data.

Relatively, environment could affect us by giving sensory information and we could act

on it by changing the way we sample sensory states. Henceforth, action could minimize

free energy by changing sensory input and and perception could suppress free energy by

violating predictions. This is usually known as active inference. Actually, the last two

equations above (3.2.5) and (3.2.6)-which could be coupled-indicate that the brain ought

to infer causes based on their correspondent sensory input data it figures out how sensa-

tions are caused.(Friston, 2012)

The term L(t) = −ln(p(s, ϑ | m)) is called Gibb’s energy and shows the surprise

coming from the joint coincident of sensory data and its causes. As such, free energy

could put a measurable bound on this surprise. To compute and minimize surprise we

could rewrite recognition density in terms of a hierarchical forms comprising prediction
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units and error units. To model sensory information in a hierarchical structure, we bring

about some equations which represent our state-space consisted of sensory states:

s = gν(x1, v1, θ1) + ων : ων ∼ N(0,Σν(x, ν, γ)) (3.3.4)

x = f ν(x1, v1, θ1) + ωx : ωx ∼ N(0,Σν(x, ν, γ)) (3.3.5)

where, f, g are nonlinear functions to which map hidden and causal states which are

parametrized by parameter θ. the causal states ν which are mediated by hidden states x

through which the hierarchical states link together and provide some kind of memory for

the system and establish a dynamic over time. ων , ωx are random fluctuations which are

produced along with observation.In such a structure, there are two kinds of units, namely

those forward connections putative units that convey prediction error and backward con-

nection units which bring up predictions. It could be put in this was during a series of

the forward and backward interaction, prediction error would be minimized via imposing

a gradient descent on free energy. (Friston, 2012) , (Friston, 2006)

Looking at the fig. 13 reveals that predictions are encoded from the same level and

level below whilst prediction error messages are conveyed through the same level and the

level above. Fortunately, we can rewrite recognition density totally in terms of prediction

error and so what remains is likelihood of prediction errors on the causal and hidden

states, that is :

ξi = 1/2
i∏

(ε)i (3.3.6)

this interaction between the state units and error units, trigger a top-down process to

lead conditional expectation µi towards making better prediction. These top-down ex-

pectations are indicated by f(µi) and g(µi).
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3.4 Discussion

In conclusion, what free energy points out could be summed up in a simple term: by

optimizing of synaptic gain or mutual information between states, the brain tries to get

in hand what caused its sensory input. This is simply done by a series of forward and

backward neural coding which put a gradient descent on free energy and make the pre-

diction gets better and the precision to increase.

Free energy has taken many research areas into consideration and provoked questions

coming out mostly from prolong discussion have not yet been resolved. Intuitively, its well-

defined equations and pivotal notions which came to reconcile information and Bayesian

brain theory has, could provide account for those connectionist models which particularly

deal with action/perception. Even though its initial masterminds were to give an expla-

nation for ”how we represent the world and come to sample it adaptively”, it has gone

beyond the Sensory-Oculomotor processes and certainly could be applied in attention and

biased competition(Feldman & Friston , 2010), associative plasticity (Mathys et al., 2011),

perceptual learning and memory(Chumbley et al., 2008), probabilistic neuronal coding,

predictive coding and hierarchical inference(Kilner et al., 2008), the Bayesian brain hy-

pothesis (Kilner et al., 2008), the free-energy principle(Friston, 2006), model selection

and evolution (Friston, 2009), computational motor control(David et al., 2005), optimal

control and value learning (Friston, 2012) and infomax and the redundancy minimiza-

tion principle(Friston & Kiebel, 2009). Actually, i has been held that free energy aims

managing to gather different theories of the brain together and give them all a common

denominator which make them look similar at some higher level. For instance, it would

come to claim that any kind of modification in ”synaptic activity, connectivity and gain”

would affect their counterpart coming out as the brain cognitive functions such as per-
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ceptual inference, learning and attention (Friston, 2012).

We will show in the next chapter that how free energy could be imposed in a con-

nectionist framework(here the SAIM) to explain template identification process such that

it retains both bottom-up and top-down process. This could in the extent compensate

what has been repeatedly pointed out as lacking of the top-down models in unravelling

selective visual attention.

Information theory have nowadays been a pretty appealing disciplinary to neurosci-

entists who are favourable to know more about how neural information are encoded and

perceived in different distributed parts of the brain.
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Chapter 4

FR-SAIM

4.1 Introduction

As described above, free energy principle came to study the integration of Bayesian brain

theory, action/perception, neural coding and optimal control in various domains. A piv-

otal distinction between free energy and other theories of the brain is that it embodies

identification as well. We want to indicate that free energy not only could explain those

cognitive functions and incorporates it as a direct result coming from suppression of en-

ergy.

Now the question is given a scene consisting of two objects, how the visual system

is going to represent them on focus of attention and eventually identify them as the

best match with template stored in knowledge network.(described at section 1.2.3) As we

noted, there is a serious discussion over what kind of mechanisms underlay learning process

through selective attention. We aim at showing how energy suppression, that is finding

causes based on incoming data, have liaison with identification and object recognition

through which we would come across some critical concepts derived originally from game

theory and reinforcement learning.
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Figure 4.1: reciprocal relation between the content network and the selection network in
the SAIM(Heinke & Humphreys, 2003)

4.2 Identification and the Selective Visual Attention

Identification SAIM

Identification and representation are two appealing cognitive aspects every successful

model shall incorporate them, as such. In this section, first, we will put forward and

amplify the problem and then show that how the new version SAIM working based on

free energy come to encompass it. As we showed before, selective attention identification

model(SAIM) is a successful model of visual attention consisted of three neural networkds

working in parallel, namely, the content network, the selection network and the knowledge

network. The SAIM came initially to study a cognitive impairment called visual neglect

but later on it reveals it is technically strong enough to explain most of the important

attentional functions. Its functionality seems fairly straightforward : given an object in

visual fields, the SAIM that is based on a Hopfield network (a recurrent neural network

that is formed by a pair of binary nodes which get either 1 or -1 values and the whole

nodes like a closed graph are related by corresponding weights ) is to project the object

47



to focus of attention.

We know that feed-forward structures are considered as a strong tool to represent and

interpret objects via mapping and projecting them through modifying the correspondent

neural weights. According to classical theories, it’s just enough to find a way so that the

network(known as universal approximator) could find such a suitable functions which are

to modify the weights. But this processing of changing the weights called adaptation has

encountered important problems that could not be easily resolved. As we said in chapter

2, one of the most appealing for such neural network coming from the fact that the net-

work could learn its weight values from a bundle of examples it is given. But the problem

arises when the network is fed by a loaded scene in which objects are not in a rest mood

but they run a competition process and besides metaphorically what happens if there is

no teacher(supervisor) to conduct the student(network) about how to approximate proper

functions based on examples which have been arbitrarily distributed? Albeit there came

people like Kohonen who suggested an unsupervised learning structure(Kohonen, 1990)

which is devoted to find more about self organizing feature maps but the problem still

seems fresh for the efficacy of these methods have been challenged by those problems

comprising both state of supervision and self organization.

The problem have been drawn in different scales, for instance recognition of an visual

template has gone to be a key theme in image processing and visual science. There exist

many procedures and algorithm in amongst textbooks but their efficacy and success in

representing an object as it really looks like, is in the extent limited. ( Trappenberg,

2009)A crude part of this difficulty goes back to the theories which push forward different

structures and assign different values to the network neurons to represent a visual scene.

We believe that most of this difficulty gets strength from a theoretical mistake that is
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image recognition is not a lower level task and couldn’t be treated as in the same way

as simple process have been so far. In the chapter 1, we showed how people came to

built up models which take recognition and identification into account by assuming them

a bottom-up low level process(Itti & Koch, 2001) and we also showed to what extent

their models works naively. A crucial common mistake that many of them shared is that

they take image representation as a homogeneously distributed process which could be

modelled by assigning a feed-forward linear network whilst brain-imaging findings and

psychophysics experiments tell another story.( Trappenberg, 2009) Here the SAIM came

to say first, how the visual inputs are internally represented and then backed by free en-

ergy principle go them up to be projected on focus of attention and eventually identified.

4.3 Free Energy-Based Reconstruction of the SAIM

As the structure of the SAIM suggests, information from visual fields come to be mapped

to the focus of attention through two parallel networks, namely, content network and

selection network working in a reciprocal manner. Again we shall assert that what is im-

portant here is that the SAIM is a translate-invariant model of selective visual attention

and this property is gained via mapping contents of visual field to focus of attention which

make the model to be capable of identifying retinal inputs. When multiple objects appear

in retinal spot, the model would select one and only one object in order to prevent them

from being overlapped in focus of attention and this inhibition mechanism is imposed by

selection network. At the same time, content network would rectify the objects already

selected. This mechanism is divided in the two interconnected phases: one carries out the

mapping process which go from retinal parts to the FOA and the other one that takes

the mapping process under control.
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In this models , two different streams go up and carry the visual information harassed

from the retinal parts. Every neuron ”in the contents network represents a correspon-

dence between the retina and the FOA” and ”the selection network determines which

correspondences are instantiated”. We should note that units in content network are

”simga-pi” nodes. Henceforth, both of the content network and the selection network are

to launch two correspondences which put together link the second level of the network

dynamic. These following equations imply these correspondences which yield translation

invariance through visual data to the FOA: generate translation invariance.:

yFOAij =
∑
k

∑
lyV Fkl y

ikjl
SN (4.3.1)

where, yFOAij stands for activation of units in FOA, yV Fkl stands for activation of units in

visual field and yikjlSN stands for activation of units in selection network. We have also two

different spatial indices, namely kl and ij which refer to the visual field and the FOA

respectively.

The selection network adjusts the mapping from retinal units to the FOA by imposing

some constraints which ensure that each time only one unit in retinal field is selected to

be mapped on the FOA. Besides, selection network prevents the network from selecting

one unit twice that is mostly called inhibition of return. Finally, selection networks keeps

the neighbourhood units that are spread around the selected unit and have them mapped

as well. To do this, the standard version of the SAIM applies an energy function called

Hopfield network. This energy function puts in a winner-take-all(WTA) to select the the

best match unit amongst the input data. This energy function is written as following :

yWTA(yi) = a.(
∑
i

yi − 1)2 −
∑
i

Ii (4.3.2)
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where, Ii is the input data coming into the visual field and yi is the output of the units.

As soon as yi is selected, the other units rests in zero and hence the Energy function

would be minimized.

Now, times to see how a free energy approach could give rise to the same results of

course with a little bit difference. First of all, we have to notice that the standard version

of the SAIM is constructed on a bottom-up approach and event though it encompasses a

top-down control but there is no such a thing as expectation and prediction error as sug-

gested by the free energy approach. We are going to show that how having been provided

with expectation and prediction error could give rise to the same hierarchy that after all

converge together.

Free energy approach implements both of feed-forward and backward connections

which are to equip the system with memory and expectation. Roughly speaking, we

come to claim that identification occurring in the SAIM is i) a high level activation and

ii) could be rebuilt based on free energy dynamical structure. Being a high level activity

has been shown before particularly the brain-imaging studies have held that identification

take place at inferiotemporal cortex(IT) that categorically belongs to the higher levels of

the brain. About rebuilding the model, we’d better to say that we are determined to take

the action/perception equations and put them all in a prediction-error type. To begin

with energy function ought to be derived in order to be used to take its derivatives in

respect to each variable.

In fact, as long as the generality is concerned, we prefer to preserve the same structure

the SAIM does have and so all the networks and their orders remained the same. Initially,

we distinguished the selection network from the location map and wrote different equations
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but as the present results strongly suggested, we decided to combine them as consequently

the model exhibited a better performance. To do that, we come up with this idea to

write an equation comprising both of them. Another important point refers back to

the difference that our model is having with the standard models of free energy. Free

energy-based models have all a dynamic property and there some hidden state which are

responsible to pose the motion of the environment and there exist some noises to make

the model to adopt itself with environment. Basically,these dynamical states which is

issued from the nature of environment have no part in our model. To our knowledge, up

to now, no model has ever offered which leans upon statistic states and works with static

states. Therefore, the variables and parameters have been flourished in the extent to let

the model works well as long as it has represent a static environment.

We are hitherto determined to push forward the problem from the standard version of

the SAIM viewpoint and then go to offer our free energy-based model and draw a com-

parison between them via showing the results. These results could be compared either

intuitively through showing the mapped objects at each level or technically by showing

the matrices stand for the objects.

To make a conclusion, we shall make a subtle hint. Strictly speaking, each free energy-

based model firstly needs to be turn into a dynamical system and the correspondent

equation of energy should be written carefully. Here, energy means the same as what the

theory entails, that is the joint coincident of data and its causes. A model of selective

visual attention naturally require visual sensation as its incoming input and so data is

defined as represented visual data in retina and then lower level of the visual cortex.

Further implementation would imply causes restrictedly as the source of data or precisely

what causes incoming data which is obviously visual template.
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Figure 4.2: The free energy structure of the SAIM

4.4 The Generative Model

First of all, we begin with bringing our generative model to which the model is leaning

back. Since we want to write all equations in such a form that is adaptable with ’the

neural message passing’ system to let predictive coding embarked.

As such, the SAIM is not working as in the way the usual free energy-based models

suggest that is environment should be defined based on the equations describing motion.

Therefore, we’d better to consider our model as kind of steady state version of free energy.
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As we said , we intend to sort out all formulas in terms of prediction error and as we will

see, error terms would lye in all of the equations. We are going to write energy function for

each part and then integrate them up and we’d also come along with some explanations

to interpret what the equations assert.

Since the hidden states have vanished and recombined to causal states, the generative

model bears a predictive scheme to map causes to consequences. This scheme has only

two levels , the first one is to gauge the spatial representation of the object and the

second one is their neural weights in selection network. However, the generative model

could be written in terms of these two ingredients and we should point out one of the

most important results of free energy perhaps, that is, the inversion of generative model is

taken equivocally as precision.(Friston, 2009) In conclusion, this generative model comes

to appear in the following form:

si = f(x(i)) + w : w ∼ N(0,Σν(x, ν, γ)) (4.4.1)

and also P (s, u) = P (s|u)P (u) so we would have:

x(0) = f(x(1)) (4.4.2)

x(1) = f(x(2) + Ui) (4.4.3)

x(2) = f(x(1)) bottom− up (4.4.4)

x(2) = f(x(3)) top− down prediction (4.4.5)

where U(i) is the action the networks takes to violate the selection process of sensory data
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and could be put in this way, Ui = max[x(2), x(3)]. Also, f is a continuous nonlinear

function.

This generative model, as shown above, benefits from both bottom-up and top-down

streams when it comes to calculate the values of x. The essentials of our problem require

to take internal states the same as causal states(i.e. x = µ).Now to launch the two impor-

tant streams in visual search, namely, ”what” and ”where”, we correspond a backward

prediction error signal to each hierarchical level starting airing all over the network, as

follow:

εi = x1i − f(x1i , u) (4.4.6)

and moreover the theory says a bit more and goes further. Given such backward con-

nections(giving us synaptic gains) existed between the levels of the network, all x values

could be backwardly derived due to these very prediction error signals.

x1i−1 = x1i +
∂εi
∂x1i

ε (4.4.7)

4.4.1 Energy Function for the Content Network

It’s worth bearing in mind that we could expose the Energy function for the content

network follows the free energy approach except a tiny difference. Since we take a re-

ciprocal relation between content network and selection network, we write the content

network Energy function so that it could encompass the relevant component coming form

the selection network in addition according to the results, it would increase the network

efficacy.

ESCN(xCNij , xSNkl ) =
bCN

2

∑
ij

(
∑
kl

xCNij − ySNkl −
∑
kl

xV Fkl y
SN
k+i,l+j)

2 +
∑
kl

(yklSN − 1)2 (4.4.8)
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It’s conveniently traceable to find two highlighted streams in the above formula. The last

term of the formula(i.e.
∑

kl(y
kl
SN −1)2) which has expressed in terms of activation units in

the selection network. As such, since our model is actually a statistic steady state model,

neither noises nor hidden states have been taken into account. To flourish the equations

we decided to write them entirely in terms of causal states and some parameters coming

from the SAIM per se and hereafter no hidden states would appear in the equations. As

we can see in the above equations, what comes to form the bottom-up control is the term

xV Fkl y
SN
k+i,l+j which itself is a convolution operation; a prevalent function in vision and im-

age processing to impose controls and filters on raw input data. Here, input data coming

out from retinal areas are going to be convolved with the values of the selection units ySN

and then after mapped on the content network. On the contrary to the standard version

of the SAIM and because of the occurrence of this convolution which adhere selection to

data, we take the energy function such that it depends on both units of content network

and selection network.

To run the program, we feed the network with two visual stimuli, namely, a two(2)

and a cross(+), each of them are represented as square matrix of 7 dimension. These two

matrices of zeros and ones are fed the network and taken up from visual field. The first

level of the network that is the lowest level too, is in charge to receive data and deliver

them to the level above to be processes.

Input data are gone up from the lowest level to be sent through the higher levels. In

the knowledge network, both visual templates of ’2’ and ’+’ have priori been restored. At

first and because of competitive underlying mechanisms , both of them try to lay down

the FOA and henceforth, an overlapping figure include both of the template would appear

right as it is shown in fig.16.
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What is really happening here is a generative model comes into being and is prescribed

as a neuronal message-passing scheme. Then two different endogenous and exogenous

mechanism emerge; ”namely, a lateral and top-down modulation of synaptic gain in prin-

cipal cells that convey sensory information (prediction error) from one cortical level to

the next.” (Feldman & Friston , 2010) What our free energy-based model would reveal

later on is that identification in the usual senses could be corresponded with perpetual

inference as is articulated and paraphrased by free energy theory.

Overall, the predictive attribute of our model ensues a precise interaction that is metic-

ulously done in this following way: whenever a stimulus presented, the work and content

network begin to make prediction and send them all the way down to the level below(top-

down stream) whereas appearance of stimuli suffices to induce the error prediction error

which itself evokes the activation of causal states at the levels above.(bottom-up stream).

Overall, our model like the standard version of SAIM is privileged to entail both top-down

and bottom-up streams simultaneously except in the standard model of the SAIM it is

the bottom-up stream which launches the process of identification whereas in the new

version of the model we are presenting, this process is originated in the onset of top-down

approach.

Energy Function for Knowledge Network

Here the energy function is derived from the original energy function we do have in

the standard version of the SAIM.

EWTA(yi) =
a

2
.(
∑
i

yi − 1)2 − b.
∑
i

yi.Ii (4.4.9)

In fact, despite using a ”softmax-function” is commonplace amongst the free energy based

57



models, here the equation (4.4.9) is applied instead. Of course they do have something

important in common and that is both of them are to take the winner neuron regarding

a set of input data. As we said, the prediction error

εKNm =
∑
ij

(xCNij − yKNm .wlij)
2 (4.4.10)

dispatches the input data to the knowledge network where yKNm .wlij is top-down stream.

Thus, the energy function for the knowledge network could be depicted as follow :

EKN(yKNm , xCNij ) =
aKN

2

∑
l

(yKNl −1)2)2+bKN .
∑
l

(ylKN .(
∑
ij

xCNij −yKNl .wlij)
2)) (4.4.11)

We shall notice that since the error is sent up to the WTA, this WTA should be looser

take all and therefore the sign of term
∑

l would be positive.

Energy function for location map

like what we’ve done for the content network, again we use the energy function from

the standard version of the SAIM(the looser take all function). Here again the prediction

error

εLMkl = (xSNkl − yLMkl ) (4.4.12)

puts the input data into the location map and the energy function for the location map

could be written as follow:

ELM(yLMkl , xSNkl ) =
aLM

2

∑
(

l(yLMkl − 1)2)2 + bLM .
∑
l

(yLMkl .(xSNkl − yLMkl )) (4.4.13)

Total energy function
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The total energy function for the whole network would be :

Etotal(yLMkl , xSNkl , x
CN
ij , yKNm ) = ELM(yLMkl , xSNkl ) + ESCN(xCNij , xSNkl ) + EKN(yKNm , xCNij )

(4.4.14)

Gradient Descent

To impose a gradient descent on the WTA-energy functions we’ve already obtained,

we choose the Hopefield method. According to the nature of the energy function(a con-

tinuous, differentiable function which could pass the ”second derivative test” ) , there are

some minima points distributed across the certain values of yi. Now a gradient descent

method could be applied to find the minima points:

ẋi = −∂E(yi)

∂yi
(4.4.15)

In the Hopfield approach xi, yi are linked together by the sigmoid function:

yi =
1

1 + e−m.(xi−s)
(4.4.16)

By using the Euler-approximation the gradient descent would turn into:

xi(t+ 1) = xi(t)−
∂E(yi)

∂yi
(4.4.17)

with regards to the two equations expressed above , the gradient descent is applied to a

dynamic, neural-like network, where yi could be liaised to the output activity of neurons,
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xi the internal activity and E(yi)∂yi gives us the input to the neurons. We by then,

ensued the same approach to calculate gradient descent(a linear version of the hoffield

version) for the other energy functions, that is

xi(t+ 1) = xi(t)−
∂E(xi)

∂xi
(4.4.18)

We could write down the gradient descent formulas imposed on the energy functions as

well.

∂Etotal

∂yLMkl
= aLM .(

∑
kl

yLMkl − 1) + bLM .(xSNkl − yLMkl ) (4.4.19)

∂Etotal

∂xSNkl
= bCN .

∑
ij

(xCNij − xSNkl .xV Fk+i,l+j) + bLM .yLMkl (4.4.20)

∂Etotal

∂xCNij
= bKN .

∑
ij

(yKNl .2.(xCNij − yKNl .wlij) + bCN .(xCNij −
∑
kl

xSNkl .x
V F
k+i,l+j) (4.4.21)

∂Etotal

∂yKNl
= aKN .(

∑
l

(yKNl −1)+bKN .
∑
ij

(xCNij −yKNl .wlij)
2+bKN .yKNl .2−

∑
ij

((xCNij −yKNl .wlij).w
l
ij)

(4.4.22)

Initial values To proceed the algorithm , we set out the following initial values:

yLMkl (0) =
1

N2
, xSNkl (0) =

1

N2
, xCNij =

1

L
.
∑

l w
l
ij, y

KN
m = 1

L

where N is the size of input image and L is the number of templates.

4.5 Implement

Now everything is ready to have the program run. To do so, let’s begin with setting the

initial values. We shall remind it that these values have been obtained after a series of

trial and errors to find the best initial points which make the program work as good as it

gets. We have to notice that since the algorithm has assertively been written with regards
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to competition, we render the program when both stimuli as illustrated in the following

picture presented together. What follows would first consider the standard version of the

SAIM and then our new model called the FR-SAIM.

Results and Discussion

As we could see, the figures following are divided in two parts and each part itself is di-

vided in three counterparts. Here we come to make a comparison between the to version

of our model, namely the standard original version of the SAIM(Heinke & Humphreys,

2003) and our Free Energy-based SAIM(FR-SAIM). To do it better, we decided to derive

the results out from each network in a point-wise manner in that sense that the results

of each network in the one version and whatever reveal, would be compared with its peer

in the other version of the model. The following figures are to illustrate what is going

on in the selection networks and the content networks of each version. Also, to depict

the efficiency of each version, we feed the system with three different input data shall be

processed accordingly: the first one , is the multiple incoming data consisted of a ’2’ and

a ’+’ which are presented together, the second, is a single ’+’ and finally the third one

would be a single ’2’.

At the beginning, you can see a multiple scene including incoming input data consisted

of a ’2’ and a ’+’ as illustrated in the fig. 4.3. Running the both of versions at t=1, give

us back some results which are indicated in the fig.4.4 and fig.4.7. As the reader could

realized from the caption, the first picture from the left shows the initial input, the middle

shows the activity units in the selection network and the righteous shows the activity of

units in the content network. From the beginning it is easily detectable that at t=1

the unit activities of the selection network in the FR-SAIM quietly differs with the unit
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activities of the same network in the standard version of the SAIM and this difference

obviously goes back to the different ”metric norms” we have used in our vector space.

For the standard version of the SAIM we applied ”inner product” norm whilst in the FR-

SAIM, we worked out our computations backed by ”Euclidean norm”. But as time passes

by, they try somewhat to converge together and heading the similar results in spite of

the different metrics we used and this occurrence could be mathematically proved mostly

known as a theory called ”strong convergence in Hilbert space ” which could be easily

found in most of the books on Real Analysis.( Rudin, 1986) For instance, in both firgures

4.8 and 4.9 the template ’2’ wins the competition and appears robustly at the content

network as indicated experimentally in (Heinke & Humphreys, 2003).

The other important thing we have to definitely take into account is the reaction time

each experiment shows. Fortunately all the reaction times have turned out in the way

we expect from experimental results.( Wolfe, 1998) Whenever the FR-SAIM is fed with

a multiple objects, the reaction time to catch the winner(’2’) is recorded rt = 201 whilst

to catch the ’+’ and ’2’ templates, the reaction times would be recorded rt = 191 and

rt = 195 respectively.These time reaction recordings again affirm what ( Wolfe, 1998)

elaborates in their publication on how people come to catch the ’2’ faster than ’+’. Albeit

running the standard-SAIM gives us back different reaction time which are considerably

slower than what we’ve already illustrated. In the standard-SAIM, rt for multiple objects,

single ’+’ and single ’2’ are 198, 169 and 160 all of them are comparatively slower than the

FR-SAIM. Therefore, it is obvious that the latter model works faster as long as selecting

the templates is concerned and also the reaction times are considerably shorter.

Now, we begin with the results derived from the standard version of the SAIM which

is essentially undertaken based on a bottom-up process as we describe above. At the first

epoch, these results were achieved in the way that is shown in the figure 4.4. We shall

notice to the reaction time each version take to catch up the desired template and get to
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Figure 4.3: the three types of stimuli , namely a ’2’, a ’+’ and both ’2’ and ’+’ presentd
together

fix on it.
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0.500         0.500

The Knowledge Network for 

‘+’ and ‘2’

0.5309       0.5373

0.2858       0.9124

Figure 4.4: This picture shows the input multiple image(both ’+’ and ’2’ presented) fed
to the standard-SAIM, also activities of the selection network activity and the content
network at t=1, t=35 and t=169 at which the template ’2’ won the competition and has
been identified and knowledge network reached to 0.9124
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The Knowledge Network for 

‘+’ and ‘2’

0.500               0.500

0.5347            0.5304

0.9003            0.1368

Figure 4.5: This picture shows that a single ’+’ fed to the standard-SAIM, also activities of
the selection network activity and the content network at t=1, t=35 and t=160 at which
the template ’+’ won the competition and has been identified and knowledge network
reached to 0.9003
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The Knowledge Network

for ‘+’ and ‘2’

0.500                 0.500

0.5229              0.5429

0.1232            0.9167

Figure 4.6: This picture shows that a single ’2’ fed to the standard-SAIM, also activities of
the selection network activity and the content network at t=1, t=35 and t=198 at which
the template ’2’ won the competition and has been identified and knowledge network
reached to 0.9167
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The Knowledge Network

for ‘+’ and ‘2’

0.500                     0.500

0.3854                   0.5579

0.8343                   0.1649

Figure 4.7: This picture shows the input multiple image(both ’+’ and ’2’ presented) fed
to the FR-SAIM, also activities of the selection network activity and the content network
at t=1, t=35 and t=201 at which the template ’2’ won the competition and has been
identified and knowledge network reached to 0.8343
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The Knowledge Network for 

‘+’ and ‘2’

0.500                      0.500

0.5692                    0.3738

0.6234                     0.2295

Figure 4.8: This picture shows that a single ’+’ fed to the FR-SAIM, also activities of the
selection network activity and the content network at t=1, t=35 and t=91 at which the
template ’+’ won the competition and has been identified and knowledge network reached
to 0.6234
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The Knowledge Network

for ‘+’ and ‘2’

0.500                     0.500

0.3854                   0.5579

0.8343                   0.1649

Figure 4.9: This picture shows that a single ’2’ fed to the FR-SAIM, also activities of the
selection network activity and the content network at t=1, t=35 and t=195 at which the
template ’2’ won the competition and has been identified and knowledge network reached
to 0.8343
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Chapter 5

Outlook

This study has offered a new version of the SAIM which approached a hard problem

in cognitive neuroscience (combination of top-down and bottom-up approach to explain

identification) that to my knowledge almost no model has ever succeeded in doing that

so far. Although the structure of the SAIM (both the standard and FR-based versions)

is consistent enough to run a spatial serial and temporary parallel process simultane-

ously, in this study we only applied the algorithm to single and multiple scene of objects.

What might be hitherto considered as a significant progress on this case, will be designing

an algorithm which could successfully execute the selection procedure and identification

process amongst a multi-objects scattered scene in which the object may overlap or cam-

ouflaged.

Quite apart from the problem of identification in single and multi scenes explained

above, a future study will embark a novel approach to a well-known problem that is ”tem-

plate learning”. Since, we have so far shown how the template can be taken on , identified

and recognized within a top-down free energy approach and so in a subsequent project

we could develop a model which ends up with learning visual templates. These templates

should be learnt throughout the hierarchy of model and stored in the knowledge network.
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This problem has been highlighted by a few neuroscientists like (Brady & Kersten, 2003)

and (Op Beeck & Baker, 2009) both of them present some evidences as to how humans

learn novel objects. Of course many neuroscientists have so far faced this question of how

visual objects are basically learnt and stored but it seems paying too much attention to

its neural substrate and neglecting computational ideas consequently seems inadequate

to resolve it. In general, those aspects which might have contributed to unravel the so-

phistication of the template learning, did not gain much weight in this current study.

Whenever we hear the word ’learning’, an important issue could raise up: firstly, it

is important to consider learning a contextual process not an obligatory one. Secondly,

what type of learning we are talking about: ”non-associative learning” or ”associative

learning”. Determining that which category does engulf our desired learning process is

the first step ought to be taken in order to going forward (Wood, 1988) According to

the classical definitions which are comparatively agreed upon, it is held that any type of

learning is dealing with ”habituation” that is a learning response and could be gained

via reiterating of a certain stimulus. Normally, this type of learning occurs in instinctive

low level behaviours in animal and humans (Wood, 1988). On the other hand associa-

tion is a vital cognitive capability which yields an association between two stimulus or

behaviours attending together usually. The latter type of learning is perhaps one of the

most important cognitive mechanisms having many things to do with complexity and

neural network. This kind of learning in spite of the former type of learning , reflecting

a response that is gained due to either simultaneous presenting(classical conditioning) or

reward or punishment directing the learning process(operant conditioning). Nevertheless,

most of the known learning mechanisms have heavily leant back to association whether

classical(Pavlovian, Hebbian) or oprant(supervised learning) and further research needs

to work details for these questions.
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Here we’d better to say that when we attempt to embark this venture this study will

revolve around many distinguished whilst inter-related fields like visual attention, infor-

mation theory, learning, free energy , dynamical systems and etc. To do that we initially

design a pilot study given the Kohonen’s self organising feature map theory to see whether

the model could identify the templates without any supervision and only by the virtue

of SOM data classification. We initially came up with a hypothesis on how the standard

version of the SAIM could be extended by a learning process. Some of the biological

process to which the attentional mechanisms relied inspired us to try unsupervised learn-

ing algorithm (particularly Self Organising Map)to make it ( Hinton et al., 1999). The

implementation followed the standard model: A grid containing some randomly initial-

ized nodes is trained with incoming input data, according to Kohonen’s SOM algorithm.

The shortest distant between the input and the nodes of the grid is computed (based on

Euclidean norm) to find the nearest node to input data called best match unit(BMU).

Then after, by a simple updating rule,Wv(t + 1) = Wv(t) + θ(v, t)α(t)(I(t) −Wv(t)) the

BMU neighbour nodes are drawn towards it, where θ is the lattice neighbourhood func-

tion between the grid nodes and input data and α is the learning rate. The aim of the

learning algorithm was to classify the objects and then have the grid developed the most

similar structure with input data. Having fed the network with the same stimulus we

used throughout this study namely, ’2’ and ’+’ , we obtained this following results with

regards to classification of input stimuli.

And as you may find in fig 5.2 a cross has been shaped in within the randomly initial-

ized grid, but neither the classification nor learning the ’+’ template learning seem fairly

successful.

Analogy making is another successful higher level theories backed primarily to the

Marvin Minsky’s works in artificial intelligence and then has been blossomed particularly
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Figure 5.1: scattered data which should be classified after applying the SOM algorithm
to the stimuli ’2’ and ’+’

by Douglas Hofsteader and his pupils later on. Even Hofstadter went so fas as to say

analogy in the core of human cognition (Hofstadter, 1996). Analogy making is basically

”perception of two or more non-identical objects or situations as being the ‘same’ at some

abstract level.” (Mitchell, 2001) In other word, in accordance with AI terminology, anal-

ogy making is to find out how people can extract classes from instances.

Simply, Hofstader tried to explain that people could easily recognize the letter ‘A’

given a different class of shapes and handwriting styles of ’A’ ”because of some essential

abstract similarity”. so far, analogy making could be considered as one of the best well-

established theories which would directly address the template identification problem and

puts that in a better way to go forward. Although, it has apparently nothing to do with

vision problem but has inspired many people working on visual perception. (Hofstadter,

1996)

To my knowledge, a few models have came out to being some knowledge about novel

object learning. Amongst model, I can particularly refer to the two models which tried
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Figure 5.2: The neurons of the SOM grid trying to reshape the template ’+’ based on the
best match unit algorithm.(after 500 epochs)

to resolve the problem by using two different approaches. (Saxena et al., 2006) offered a

’supervised learning’ algorithm to which they exposed some novel objects to be learned

and then claimed that this learning method named ’logistic regression algorithm’ work

out as such in an uncluttered visual scene. However, the model Sexana et al. offered

is not neuro-biologically plausible. As we’ve seen, they grounded their model upon a

supervised learning paradigm and derived the results through implementing an algorithm

which definitely requires a ’feedback error signal’. Perhaps, it’s bizarre that there is no

such thing as a feedback control in visual system in that sense that we are dealing with

in machine learning. Indeed there are some sort of feedback signals in visual system

as we will take them into account later, but the point is that the brain operates in a

more complex manner than it might look. Even though Sexana et al. themselves don’t

make any claim about validity of their theory when it comes to be applied in the human

visual perception, but a few tried to follow the same supervised approach : For instance ,
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Figure 5.3: Analogy making goes to figure out how people can recognize letters of
the alphabet, e.g., A, in many different typefaces and handwriting styles. adopted
from(Hofstadter, 1996)

instead of emphasizing on attentional resources as is prevalent among cognitive scientists,

Dayan et al. ”consider statistical and informational aspects of selective attention, divorced

from resource constraints” by offering a Reinforcement learning based model which turns

the problem into some sort of conditioning and learning one.(Dayan et al., 2000) They

suggested an articulated form of TD(0) (Temporal Difference algorithm) along with a

more sophisticated ’Rescolar Wagner’ update rule.

ŵi(t+ 1) = ŵi(t) + αi(t)δ(t); δ(t) = r(t)− x(t)ŵi(t) (5.0.1)

αj(t) =
σi(t)xi(t)∑

j σj(t)xj(t) + E
(5.0.2)

(Brady & Kersten, 2003) also addressed somewhat the same problem but the way

they went through amplifying that could not be considered as a learning algorithm we are
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having in common sense . They truly point out that to recognize an object , the visual

needs to be fed properly by enough knowledge about an object properties and what if the

system is deprived of them?

To cope with this dilemma, they began to argue for a specific kind of learning process

which might be engaged in and have nothing to do with usual methods like segmenta-

tion and decomposition. With regards to a camouflages object amid a scattered scene,

their algorithm called ’bootstrapped learning’ seems capable to meet the required task.

Here, we would like to assert that generally speaking any kind of learning model should

have some essential common properties none of the above models do comprise; namely,

generalization, interaction, induction and adaptation. We hope in the near prospect we

could accommodate template learning in the FR-SAIM based on the basic fact of free

energy principle. Perhaps the change in connection strengths that minimise the same free

energy that is used to optimise the activity. This usually reduces to some form of Hebbian

plasticity that is formally related to back propagation of errors. The connection between

the back propagation of errors and free energy minimisation is revealed (intuitively) in

the predictive coding formulation of free energy minimisation.
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