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ABSTRACT 

  

Increasing fat oxidation rates during exercise may be beneficial for the athletic population. At 

rest, ingestion of Green Tea Extract (GTE) has been found to augment fat oxidation, but there 

are limited data on the effects during exercise. This thesis systematically investigated the 

effects of GTE ingestion on exercise metabolism in physically active males. We set out to 

determine if longer-term feeding of GTE could increase fat oxidation rates during a steady 

state exercise bout to a greater degree than an acute dose. However, irrespective of the length 

of ingestion no measureable change in substrate metabolism was found.  

Due to the large individual differences in fat oxidation at a given absolute and relative 

exercise intensity, we investigated the effects of acute GTE ingestion during a graded exercise 

test. Again, no change in fat metabolism was found over a wide range of exercise intensities. 

Finally, we collected fat oxidation data from a large cohort of athletes. From these data we set 

new criteria to define individuals as either a fat or carbohydrate metabolic type. Although it is 

still not known fully what determines metabolic type, the use of a nutritional intervention may 

be more effective in one type over the other.   
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1.1 Overview 

During exercise skeletal muscle is the main site for fat oxidation and an increased capacity to 

utilise fats is often associated with health and exercise performance benefits.  This 

introduction firstly describes the regulation of fat metabolism in skeletal muscle under 

exercise conditions.  Then the concept of metabolic flexibility and the importance of fat 

oxidation for the prevention of disease are briefly explained. The focus of this introduction 

then shifts to the benefits of increasing fat metabolism during exercise in healthy athletic 

populations, as well as discussing the exercise protocol used to measure fat oxidation and the 

potential determinants.  

Manufacturers often claim that their food/ beverage/ supplement can increase fat oxidation 

rates. Thus, this introduction reviews the evidence for some of these nutritional interventions. 

However a more detailed discussion is presented on the potential role of green tea and green 

tea extract (GTE) ingestion on increasing fat oxidation rates and, in light of the current 

literature, highlights what is still left to be determined in this area of research.    

1.2 Regulation of Fat Metabolism in Skeletal Muscle 

The heart and skeletal muscle are proficient in the handling of fatty acids (FAs) for oxidation 

(energy) (25). Skeletal muscle also has the ability to store small amounts of FAs however 

adipose tissue is the main site for FA storage (25). At rest, and during periods of fasting, 

energy is mainly derived from the hydrolysis (lipolysis) of adipose tissue triglyceride (ATGL) 

stores, subsequently increasing plasma FA concentration for uptake into other tissues for 

oxidation (Please refer to Frayn et al (26) for a detailed review on the regulation of fat 

metabolism in adipose tissue). Thus under resting conditions, especially when in a fasting 
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state, FAs are the predominant fuel used by the skeletal muscle (46). At the onset of exercise 

there is an increased utilization of FAs in skeletal muscle, as a result of increased blood flow 

and energy demand of the contracting muscles. The available FAs oxidised by the skeletal 

muscle are derived from lipolysis of ATGLs, lipolysis of the skeletal muscles own 

triglyceride stores (intramuscular triglycerides; IMTGs) and plasma FAs.  

Using blood sampling and isotope tracers Romijn et al (78) quantified fat and carbohydrate 

(CHO) kinetics and oxidation during exercise performed at different intensities. On three 

consecutive days five endurance trained cyclists performed three exercise bouts at 25%, 65% 

and 85% maximal oxygen uptake (  O2max). The authors observed that during the exercise 

bout performed at low intensity (25% VO2max) plasma FAs were the predominant energy 

source and on average fat oxidation rates were ~27 µmol∙kg∙min-1.  During the moderate 

intensity exercise bout (65%    2max) fat oxidation rates increased to ~43 µmol∙kg∙min-1. 

Rates of plasma FA oxidation were still relatively high during this moderate exercise bout 

however, there was an increase in IMTG derived FA oxidation (~500% increase). With 

further increases in exercise intensity (85%    2max) fat oxidation rates decreased (~30 

µmol∙kg∙min-1) and substrate use shifted towards predominately CHO sources (muscle 

glycogen and plasma glucose), despite maintaining high levels of whole body lipolysis. This 

study by Romijn et al (78) is well cited as it clearly shows the change in substrate utilisation 

with increases in exercise intensity however the low sample size (N=5) is a major limitation. 

In 2001 Van Loon et al (96) confirmed these findings when taking muscle biopsies, in 

addition to isotopic tracers, during three separate exercise bouts performed at 40%, 55% and 

75%  maximal work load (Wmax). Thus, it appears that when exercise intensity increases 

from low to moderate there is a shift in substrate from predominately plasma FAs to a greater 

utilisation of FAs derived from IMTG lipolysis. However, with further increases in exercise 
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intensity fat oxidation decreases, despite high rates of whole body lipolysis, and CHO sources 

become the predominant energy substrate.   

There are several sites which may regulate the utilisation of FAs in the skeletal muscle during 

exercise these include: 1) the transport of FAs into the myocyte (skeletal muscle cell); 2) the 

uptake of FAs across the mitochondrial membrane and 3) the release of FAs from IMTG. 

Each of these potential rate limiting steps will be discussed.  

It was once believed that uptake of FAs into the skeletal muscle was by simple diffusion (31). 

However, with advances in scientific technology it has been established that several transport 

mechanisms are responsible for FA uptake into the myocyte (12, 41, 56). Thus, the trafficking 

of FAs into the muscle may be a potential rate limiting step in FA oxidation (42, 47). The 

proteins involved in the shuttling of FAs into the skeletal muscle are: FA binding protein 

(FABPpm) (41); FA translocase CD36 (FAT/CD36) (12) and FA transport protein (FATP) 

(56).  

Unlike FABPpm, which is membrane bound protein, FATCD/36 is primarily located in the 

sarcoplasm. In 2000, Bonen et al (14) extracted rat skeletal muscle and found that with acute 

muscle contraction FATCD/36 translocated from the intracellular pool to the plasma 

membrane. In the same study, contraction mediated translocation of FATCD/36 was 

accompanied with increased uptake of palmitate (14). Furthermore, overexpression of 

FATCD/36 in mice only increased FA oxidation during acute muscle contraction and not a 

rest (38). These studies highlight the role of FATCD/36 for fat oxidation during acute muscle 

contraction. Multiple exercise bouts have also been found to increase plasma FA uptake and 

oxidation (94). In 1997 Kiens et al (49) found increases in FABPpm with endurance training. 

In addition, chronic electrical stimulation of rat skeletal muscle (indicative of endurance 
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training in humans) found increased fat oxidation which was associated with increases in the 

FA transporter FAT/CD36 protein (13). Taken together the literature suggests that FA uptake 

into the myocyte is regulated by FA transporter proteins but, due to the increases in 

translocation (resulting in increases in fat oxidation rates) with acute exercise bouts and 

increases in FA transporter protein expression with exercise training, FA uptake may not be a 

rate limiting step. 

IMTG stores are an important fuel source during exercise (97). As already mentioned rates of 

FA oxidation derived from IMTGs are increased during exercise performed at moderate 

intensity (78, 96).  The breakdown of IMTGs is regulated by the neutral enzyme hormone 

sensitive lipase (HSL). One known activator of HSL is noradrenaline, via increases in β-

adrenergic activation (54). However, when a β-adrenergic blockade was used in rat muscle no 

impairment in HSL activation was found during electrical stimulation (53). Thus other HSL 

activators have been reported including calcium (Ca2+) (52), translocation of HSL to the lipid 

droplet (19) and the energy status of the cell (free AMP and ADP) (27).  Watt et al (107) 

measured HSL activity during three 10 min exercise bouts differing in intensity (30%, 60% 

and 90%    2peak). After one min of exercise HSL activation rapidly increased at all exercise 

intensities but was maintained in only the low (30%) and moderate (60%) exercise bout. 

Given that HSL activation was highest in the first min of exercise, a time at which fat 

oxidation is negligible, other factors such as FA uptake into the mitochondria must play a 

crucial role in the regulation of fat metabolism.    

Once in the sarcoplasm FAs are activated by the enzyme acyl-CoA synthase to form acyl-

CoA. Carnitine is involved in transporting this activated FA (acyl-CoA) across the otherwise 

impermeable inner mitochondrial membrane for oxidation to take place. Carnitine 
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palmitoyltransferase I (CPTI) is an important oxidative enzyme that catalyses the esterifaction 

of carnitine with the acyl moiety forming acyl-carnitine to allow transportation into the 

mitochondrial matrix. The acyl-carnitine complex is then shuttled through the inner 

mitochondrial membrane into the matrix where it is converted into acyl-CoA and free 

carnitine (catalysed by Carnitine palmitoyltransferase II; CPTII).  The activated FA is cleaved 

by the β-oxidation pathway and oxidised and the free carnitine is released back into the 

sarcoplasm and becomes available to transport more FAs across the mitochondrial membrane.  

Another function of carnitine is the buffering of acetyl-CoA, forming acetlycarnitine. With 

increases in exercise intensity glycolytic flux is heightened subsequently increasing the 

formation of acetyl-CoA and reducing the availability of free carnitine. Van Loon et al (96) 

found that exercise performed at 75% Wmax increased the acetylation of carnitine reducing 

the free carnitine pool compared to exercise performed at 55% Wmax. Therefore it has been 

suggested that the reduction in free carnitine may reduce the formation of fatty acyl-CoA and 

decrease the uptake of FAs into the mitochondria (96, 105).   

Malonyl coenzyme A (CoA), an enzyme involved in FA synthesis, may also play a role in 

limiting fat utilisation during exercise. Malonyl CoA allosterically binds to CPT1 inhibiting 

the enzyme (59) and subsequently preventing the uptake of FAs into the mitochondria. At rest 

Rasmussen et al (75) found, as expected, suppressed fat oxidation and increased CHO 

oxidation during a 5 h period of hyperglycemia and hyperinsulemia. Interestingly the authors 

found skeletal muscle concentrations of malonyl-CoA to be increased with no change in FA 

uptake, suggesting that the FAs were being shunted towards storage than oxidation. During 

exercise malonyl-CoA kinetics are less clear. Odland et al (69) measured skeletal muscle 

malonyl-CoA concentrations in eight volunteers at rest and during three 10 min exercise bouts 

performed at 35, 65 and 90%    2max. Respiratory data reflected previous literature with fat 
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utilisation the predominant fuel during the low and moderate exercise bouts (RER 0.84 and 

0.92 respectively) and the high intensity exercise bout indicating a large reliance on CHO 

(RER > 1.0). However the authors found no difference in skeletal muscle malonyl-CoA 

concentrations at rest and during all three of the exercise bouts. An additional study from 

Copenhagen also found no difference in skeletal muscle malonyl-CoA concentrations during a 

one legged exercise protocol performed at 60%, 85% and 100%    2max (20). Thus the role 

of malonyl-CoA on inhibiting fat oxidation still remains unclear.   

In summary, despite an abundance of studies investigating the mechanisms on fuel selection it 

is not entirely known what the main regulator(s) of fat oxidation during exercise are. In a 

recent study fat oxidation rates during steady state exercise were increased when skeletal 

muscle carnitine concentrations were augmented over a 24 week period (104). However more 

intervention studies are needed to fully elucidate the role of carnitine on regulating fat 

oxidation.  

1.3 The Role of Fat Oxidative Capacity for Health  

Skeletal muscle of healthy individuals has the capacity to respond to metabolic and 

environmental stimuli resulting in changes in substrate metabolism. For example, during 

periods of fasting, FAs are the predominant fuel for skeletal muscle (6). In the postprandial 

state (a situation where plasma insulin is elevated) fuel selection shifts from fat oxidation to 

predominately CHO (in the form of glucose) (45). The ability to alter substrate use is often 

referred to as skeletal muscle metabolic flexibility (45, 46).  Obese individuals are less able to 

response to environmental and metabolic changes and therefore metabolic flexibility is 

impaired (46). For instance, under fasting conditions CHO oxidation is higher in obese 

skeletal muscle compared to lean, despite comparable rates of skeletal muscle FA uptake (46). 
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Thus, fat oxidation rates are lower leading to accretion of IMTGs (46).  Furthermore, during 

periods of elevated plasma insulin (e.g in a postprandial state), CHO uptake, oxidation and 

storage is blunted (46) (Figure 1.1).  Thus, the dynamic metabolic flexibility of skeletal 

muscle is diminished which may have a negative impact on health.  

Increased delivery of FAs to the skeletal muscle (a tissue not suited for fat storage) leads to 

the synthesis of long-chain acyl-CoAs (LCACoAs) and other FA metabolites such as 

diacylglycerols (DAGs) and ceramides (82). In brief, these named FA metabolites are known 

to activate protein kinase C (PKC) and ceramide- activated protein kinase (CAPK), which 

phosphorylate and inactivate the insulin signalling pathway (51). This in turn reduces glucose 

uptake resulting in skeletal muscle insulin resistance and if untreated may lead to Type II 

diabetes. For a detailed review see (82).     

Goodpaster et al (28) compared skeletal muscle insulin sensitivity and IMTG content in lean, 

obese (with and without type 2 diabetes) and endurance trained individuals. As expected, 

histochemical analysis of muscle samples showed the highest IMTG content in the obese 

subjects with Type II diabetes (28). These individuals also displayed the lowest insulin 

sensitivity. Therefore interventions to increase fat oxidation, in order to reduce plasma FAs 

and IMTGs, in obese populations have been the topic of investigation in recent years (29, 84). 

Low and moderate intensity exercise training has been found to elicit higher fat oxidation 

rates in obese individuals compared to high intensity training (95, 100). This increase in fat 

oxidation, may aid body fat loss in the long term, if coupled with a negative energy balance, 

and result in improved health (76).  
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Figure 1.1.Metabolic flexibility  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph adapted from Kelley et al (46) comparing the metabolic differences in lean and obese individuals in a fasted and insulin stimulated state.  
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 1.4 The Importance of Fat Oxidation for Athletes and Exercise Performance   

Interestingly, endurance trained individuals are also characterised by having high IMTG 

content (28). This apparent “paradox” provides the trained individual with IMTGs which are 

an important substrate during endurance type exercise (97). Using magnetic resonance 

spectrometry (MRS) Van Loon et al (97) collected data on mixed muscle IMTG content 

before, immediately after and 48 h after a 3 h cycle exercise bout at moderate intensity (~55% 

Wmax). The authors observed a 21% reduction in IMTG content immediately following the 

exercise bout, which had fully recovered to pre-exercise levels in the 48 h recovery period. In 

an additional study IMTG content was reduced by 49% and 67% (depending on analytical 

technique) following a 3 h cycle (85). Taken together these findings emphasise the 

importance of IMTGs as a substrate and an insight into the time course of IMTG repletion. 

This cycle of IMTG depletion and repletion, as a result of repeated exercise bouts, is thought 

to reduce the accumulation of FA metabolites interfering with the insulin signalling cascade; 

thus in this athletic population insulin sensitivity is not compromised (28). 

Endurance exercise training is also associated with a change in IMTG density and 

intracellular location. Tarnopolsky et al (91) investigated the effects of a seven week 

endurance exercise regimen (60 min cycle exercise 5 days/week) in 12 untrained male and 

females. Muscle biopsies were obtained before and after training to quantify changes in 

IMTG content, density, location as well as changes in mitochondria and oxidative enzymes. 

Endurance exercise training was found to significantly increase skeletal muscle mitochondria 

content as well as mitochondrial size, which was accompanied with increases in measured 

oxidative enzymes (citrate synthase (CS) and β-hydroxyacyl-coenzyme A dehydrogenase 
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(βHAD) (91). Furthermore, a strong trend for an increase in IMTG density was observed 

following training, attributed to changes in IMTG number not size (91). Interestingly the 

authors also found a higher proportion of IMTGs in close proximity of mitochondria which 

was associated with higher fat oxidation during exercise (91). This structural/functional 

relationship may reflect the high exercise capacity (74) and efficiency to oxidise fats often 

seen in endurance athletes.  

Studies in the 1960s demonstrated the crucial role of glycogen for endurance capacity (9, 10, 

32). Unlike endogenous fat stores, endogenous glycogen stores are limited and can be 

depleted in the first 30-90 min of intense exercise (32). Therefore research suggested that any 

intervention to reduce glycogen breakdown (sparing glycogen) may potentially increase 

endurance capacity (34). More specifically this led to the theory that any method to increase 

fat oxidation could spare glycogen use and in turn enhance endurance performance. Odland et 

al  (68) infused intralipid and heparin during exercise to increase plasma FA concentration 

and found an increase in fat oxidation and a concurrent decrease in CHO oxidation. However 

these increases in fat oxidation were relatively small (68). Several nutritional manipulations 

including high fat feeding, starvation and the use of various dietary constituents are 

alternative ways to alter fat oxidation. However, in all these studies comparisons were made 

during exercise pre- and post intervention at one exercise intensity. Thus day to day variation 

in substrate metabolism, which has been found to vary from 15 – 25% (109), cannot be 

accounted for. It is possible that changes may only occur at lower or higher intensities and 

therefore it was essential to develop methods that measured fat oxidation over a wide range of 

intensities.    
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1.5 Validation of the FATMAX test 

In 2002 Achten et al (2) developed the FATMAX test to accurately establish the relationship 

between exercise intensity and fuel selection on an individual level.  This FATMAX test, 

performed either on a cycle ergometer or treadmill, increases the work rate in relatively small 

incremental steps. During each stage of the test breath by breath samples are collected and 

using indirect calorimetry (44) whole body rates of fat and CHO oxidation rates are estimated. 

The estimated rates of fat oxidation are then used to construct a fat oxidation curve (See 

Figure 1.2 for an example of a typical fat oxidation curve). To describe fat oxidation over a 

wide range of intensities several parameters relating to fat metabolism can be determined 

including maximal fat oxidation (MFO) rates, the exercise intensity at which MFO occurred 

(FATMAX; expressed as a percentage of    2max) and the exercise intensity where fat 

oxidation rates are negligible/ can no longer be estimated (FATMIN; RER > 1.0) (2) (Figure 

1.2). The determination of fat oxidation rates at high exercise intensities cannot be estimated 

due to increases in bircarbonate production, from an increase in glycolytic flux, resulting in 

excess non-oxidative CO2. As CO2 production is used to calculate fat oxidation rates (using 

indirect calorimetery), the determination of fat oxidation rates at high exercise intensities is 

flawed (44).  

Achten et al (2) first developed the FATMAX test in 18 healthy males. Using a cycle 

ergometer the test started at 95 W, every 5 min the work rate increased by 35 W until an RER 

of 1 was reached (indicating negligible fat oxidation rates), hereafter the workload was 

increased every 2 min until exhaustion. In these 18 subjects the average MFO rate was 0.60 ± 

0.07 g·min-1 occurring at 64 ± 4%    2max (2). Although maximal rates of fat oxidation were 

determined, the authors also acknowledged that MFO and FATMAX may be influenced by 
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Figure 1.2. Typical fat oxidation curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A typical fat oxidation curve illustrating the change in fat oxidation rates (g/min-1) with increases in exercise intensity (expressed as %    2max). MFO; maximal fat 
oxidation rates. FATMAX; exercise intensity at which maximal fat oxidation rates occur. FATMIN; the exercise intensity at which fat oxidation rates are zero.  
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the exercise performed in the previous stages of the test. To validate the test, the same 

subjects performed steady state exercise trials (lasting between 80 to 35 min = 2.8 MJ) at 

exercise intensities corresponding to the stages of FATMAX test where RER was < 1 

(between 95 to 270 W). During these exercise trials substrate metabolism was measured every 

5 min.  On average, maximal fat oxidation rates during the steady state exercise bouts were 

not statistically different from the stages of graded exercise tests (2). Furthermore, the authors 

found no statistical difference in FATMAX between the graded and steady state exercise trials 

(2).  Pérez-Martin et al (72) conducted a similar study in which 10 healthy males performed 

an initial incremental exercise test consisting of four workloads (30, 40, 50, 60% Wmax), 

calculated from predicted Wmax. The same subjects then completed four, six min, constant 

workload exercise trials corresponding to the exercise intensities of each stage of the 

incremental test.  In accordance with Achten et al (2), Perez-Martin found no differences in 

ventilatory response or fat oxidation in each stage of the incremental test when compared to 

the steady state exercise trials (72). These findings suggest that substrate metabolism, 

measured in the latter stages of the FATMAX test, is not influenced by the early intensities. 

Therefore the FATMAX test is an accurate tool to measure MFO rates and FATMAX.  

Achten et al (2) wanted to develop the test protocol so that it was as practical as possible, 

without reducing validity. Therefore seven subjects, on separate occasions, completed three 

variations of the FATMAX tests differing in duration of stage and increment of work load. 

The protocols were as follows 1) 35 W increments every 5 min until the RER reached 1.0, 

after which the work rate was increased by 35 W every 2 min until exhaustion 2) 35 W 

increments every 3 min until exhaustion and 3) 20 W increments every 3 min until exhaustion. 

All tests started at 95 W. All three test protocols elicited maximal oxygen uptake (   2max) 

and maximal heart rate (HRmax). Stage duration and workload increment did not affect 
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FATMAX (61, 59 and 65%    2max for the three test protocol described above). Therefore 

the authors concluded that 35 W increments every 3 min until exhaustion was the most 

practical test protocol, as it reduces the total test time, and allows for valid assessment of 

FATMAX (2).  

The reliability of the FATMAX test is also of importance if this test is to be used to track 

changes in MFO and FATMAX over time. In a follow up study by Achten et al (4) 10 trained 

males (   2max 60.1 ± 0.3 ml∙kg∙min-1) completed a FATMAX test on three separate 

occasions. All tests were completed following a standardized diet and at the same time of day 

to avoid circadian variance. The FATMAX test protocol was performed on a cycle ergometer 

and was identical to that described above (35 W increments every 3 min). The average 

coefficient of variation (CV) was 3.7%, 4.5%, 3.2%, 9.6% and 9.4% for    2,     2, RER, 

FATMAX and FATMIN respectively. However, the 9.6% variation in FATMAX equated to a 

difference of ~10 beats per min (BPM), when expressed as percentage of maximal heart rate.   

Similarly, Pérez-Martin et al (72) found a CV of ~11.4% in FATMAX when an incremental 

exercise test (using specific exercise intensities) was repeated twice. Therefore, detecting 

small changes in FATMAX (if used as an outcome variable in an intervention study) may be 

difficult due to the variation in the measurement.  

Meyer et al (61) in 2009 recognised the need for more reliability studies on the FATMAX test 

protocol. In this study subjects performed a baseline FATMAX test during which the protocol 

was modified depending on body weight, gender and training history (initial stage 50 or 100 

W with either 25 or 50 W increments). Subjects then completed two further individualised 

graded exercise tests, based on the results from initial FATMAX, consisting of five 

incremental stages lasting six min. On average the authors found no difference in the stage at 

which maximal rates of fat oxidation occurred between the two exercise trials (60). However, 
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large intraindiviual variation in FATMAX was found which may be partly explained by the 

lack of control on standardising physical activity and diet prior to the exercise trials (60). Both 

of these factors can have a significant impact on substrate metabolism (3)  

There are other factors to take into consideration when using the FATMAX test protocol to 

establish variables of fat oxidation. The test protocol was originally developed in relatively 

well-trained individuals (2). It could be argued that the 35 W increments may be too large 

resulting in missed MFO rates and FATMAX when testing other populations (i.e sedentary or 

children). Thus, it is vital that the FATMAX test, when performed on the cycle ergometer, is 

modified and validated before use in other populations (110). Furthermore, performing a 

FATMAX test on a cycle ergometer may not be the suitable for all individuals. Cycling 

economy is a measure of oxygen consumed per unit of work (63). In some individuals the 

amount of oxygen consumed is higher than what is needed to perform the work. This is 

common in individuals who are unaccustomed to cycling and as a result cycling economy is 

low. Since fat oxidation rates are calculated using oxygen consumption this can result in an 

overestimation of fat oxidation rates. In these circumstances it may be beneficial to perform 

the FATMAX test on a treadmill.  

A treadmill FATMAX protocol was also developed by Achten et al (5).  On two separate 

occasions 12 healthy males completed the incremental FATMAX exercise test on a cycle 

ergometer and a treadmill (5). Using the same principle, of incremental increases in work rate, 

the treadmill protocol started with subjects walking at 7.5 km∙h-1 at a 1% gradient. The 

gradient of the treadmill was increased with 2% every 3 min until an RER of 1.0 was reached. 

The subjects then started running at 10 km∙h-1 at 10% and speed was further increased by 2 

km∙h-1 every 3 min until exhaustion. FATMAX occurred at ~62%    2max when the test was 

performed on the cycle ergometer and ~59%    2max on the treadmill; there were no 
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significant differences between the two protocols. However, MFO were significantly higher in 

treadmill test compared to the cycle test (0.65 ± 0.05 and 0.47 ± 0.05 g∙min-1 respectively), 

this difference was explained by more muscle fibre recruitment during running compared to 

cycling (5).  

In conclusion it appears that the FATMAX test is an accurate and valid means to measure 

FATMAX and MFO. The variation in FATMAX is ~10% (when the test is repeated) however 

there is a lack of reliability studies available. Finally, when measuring FATMAX and MFO 

the test protocol should be specific and valid to the population being tested.  

 

1.6 Determinates of Fat Oxidation rates 

Since the development of the FATMAX test it is has been adopted in many research studies in 

order to establish what may predict MFO and FATMAX (3-5, 67, 90, 98). Achten et al (4) 

recruited 55 endurance trained individuals (average    2max ~65 ml∙kg-1∙min-1) who 

underwent a FATMAX test after an overnight fast. The average MFO in this cohort of 

individuals was 0.52 g∙min-1 reached at an average of ~70%    2max (4). Despite the subjects 

being classed as endurance trained the authors observed a wide spread of    2max values. 

Therefore further analyses of these results were completed to establish if fitness level 

(according to    2max) altered MFO or FATMAX. Subjects were separated into two groups; 

those who had a    2max above and below the mean. The authors found no difference in the 

exercise intensity at which maximal rates of fat oxidation occurred (FATMAX equalled ~ 

63%    2max in both groups) (4). However, the MFO rates were significantly higher in the 

high    2max group when compared to the low    2max group (0.56 and 0.48 g∙min-1 
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respectively) (4).  Additionally the authors found a positive correlation (r=0.64) between 

MFO rates and    2max (4). However only a small subgroup of subjects (moderately to highly 

trained athletes) were used in this study meaning that the results could not be extrapolated to 

other groups of individuals. Using a similar study design Nordby et al (67) took a group of 16 

individuals who all completed a FATMAX test. However in this study subjects were either 

classified as untrained or trained (average    2max ~47 and 57 ml∙kg-1∙min-1 in the untrained 

and trained group respectively). Once more it was found that on average the trained 

individuals had higher rates of MFO compared to their untrained counterparts. In addition, the 

exercise intensity at which peak rates occurred was also significantly higher in the trained 

group compared to the untrained (67). Although this is in contrast to the findings by Achten 

(4) it could be explained by the larger difference in    2max between the two groups. 

However, another study found no difference in MFO rates and FATMAX in eight endurance 

trained and nine untrained females (90). The low sample size in this study may explain these 

findings.  

In order to elucidate what predicts fat oxidation rates a large scale study was completed in 

2005 (98). In this cross-sectional study 300 volunteers, differing in training status, age, 

weight, body mass index (BMI) and gender underwent a FATMAX test (at least 4 h fasted). 

The authors found that on average the maximal rate of fat oxidation was 0.46 ± 0.01 g∙min-1 

occurring at 48 ± 1%    2max (98). Interestingly, what the authors also observed was the 

large inter individual variation in both of these variables. Peak oxidation rates in these 300 

volunteers ranged from 0.18-1.01 g∙min-1 occurring at exercise intensities as low 22% 

   2max up to 77%    2max (98). Correlation analysis of these results showed that fat free 

mass, self-reported physical activity,    2max, gender and fat mass were all significant 

predictors of peak fat oxidation rates accounting for 34% of the variance (98). However the 
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authors could not elucidate what accounted for the remaining 66% variance in maximal fat 

oxidation rates.  

Wade et al (103) found lower RER (indicative of higher fat oxidation rates), during steady 

state exercise, in individuals who had a higher proportion of oxidative slow twitch muscle 

fibres (slow twitch are characterised as having high mitochondria content and capillary 

network). Additionally habitual diet may play a role in determining fat oxidation rates. A low 

CHO diet, consumed for five days, has been found to significantly increase rates of fat 

oxidation compared to a one day high fat diet (89). Thus, individuals who habitually consume 

a low CHO and/or high fat diet may display higher rates of fat oxidation. However to date it is 

still unknown what the main predictors of maximal fat oxidation rates are.   

 

1.7 Fat Oxidation in Young Children and Adolescence   

An adaptation of the FATMAX test protocol has also been used to measure FATMAX and 

MFO in young adolescent boys and girls. The FATMAX test protocol described above (see 

section 1.4 Exercise and Fat Oxidation) was developed in adults therefore Zakrzewski et al 

(110) set out to validate an exercise test protocol suitable for children. In this study 26 

children aged 8 -10 y completed an incremental exercise test on a cycle ergometer starting at 0 

W and increasing by 6-8 W every 3 min until a respiratory exchange ratio (RER) of 0.95 was 

reached. Furthermore, on two separate occasions the same children performed six 10 min 

exercise bouts at intensities corresponding to the stages in the incremental test.  On average 

MFO rates were similar in the incremental and constant exercise bouts (110). Additionally the 

type of exercise test (incremental vs. constant) did not influence the exercise intensity at 
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which MFO occurred (~55%    2peak for both test protocols). Therefore the authors 

concluded that an incremental exercise test is valid for measuring fat oxidation variables in 

children.   

Using this incremental test protocol Tolfrey et al (93) performed FATMAX tests on a group 

of 19 children (8 boys and 11 girls) with an average age of 14. On average peak fat oxidation 

rates were 0.50 g∙LBM-1∙min-1 which occurred at 35%    2peak (93). The authors found that 

the boys displayed higher MFO rates than girls (93). However, the boys had higher    2peak 

than the girls and as mentioned above this may predict fat oxidation rates to some extent. The 

results from this study and others also show that there is inter individual differences in MFO 

and FATMAX in young children similar to what is observed in adults (93, 111).  

The studies described in this section have used healthy, but not exercise trained, children. In 

adults, exercise training is an effective intervention in increasing absolute and relative fat 

oxidation rates (73). As previously mentioned highly trained endurance athletes have higher 

MFO than their less trained counterparts (4). Therefore there is a gap in the literature 

comparing fat oxidation rates in exercise trained children and adolescents. 

A few factors have been suggested which may predict fat oxidation rates in young children. A 

cross sectional study found FATMAX and MFO lower in obese than in non-obese pubertal 

boys (112).  Pubertal status may also influence rates of fat oxidation in young and adolescent 

children. A cross sectional study investigated the influence of puberty on fat oxidation (86). 

Stephens et al (86) found FATMAX occurred at a higher exercise intensity (40%    2peak) in 

early and mid-pubertal boys compared to late pubertal boys (30%    2peak). Furthermore, fat 

oxidation rates at the same relative exercise  intensity, were found to be higher in pre-pubertal 
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boys than pubertal boys (86). Although these findings provide an insight into pubertal status 

on substrate utilisation it is limited in the fact that it is a cross-sectional study.  

In 2008 Riddell et al (77) completed a longitudinal study which measured fat oxidation using 

a graded exercise test in a cohort of pre-pubertal healthy boys (aged 11 – 12 y). These young 

boys were tested annually, as they developed through puberty. The results obtained during 

each annual test were compared in addition to a group of healthy male adult subjects (aged 22 

– 26 y). Riddell et al observed peak oxidation rates in pre-pubertal boys to be 2-fold greater 

when compared to the male adults (77). Furthermore, as the boys progressed through puberty 

there was a significant decrease in peak fat oxidation rates, despite no change in aerobic 

capacity (77). It may be that changes in gender hormones during puberty could explain the 

change in substrate metabolism. Thus, similar to the adult population, it appears that the main 

determinants of MFO and FATMAX are still yet to be determined in adolescent individuals.  

1.8 Exercise training and Fat Oxidation  

In the long term endurance training can promote skeletal muscle adaptations favourable for fat 

metabolism. In 1967 it was first observed that endurance exercise training promoted skeletal 

muscle adaptations (34). Rats that underwent treadmill running 5 day/ week increased skeletal 

muscle mitochondrial content which subsequently increased exercise capacity (34).  A few 

years later it was discovered that the enzymatic activity of mitochondrial enzymes, involved 

in fat metabolism (CPT1, palmityl CoA dehydrogenase, and palmityl CoA synthetase), were 

upregulated following the same exercise protocol in rats (62).  

Endurance training has the same effect on human skeletal muscle (48). Following thirty-one 

days of endurance exercise training (2 h cycle 5-6 times/ week) muscle oxidative capacity, 
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estimated from succinate dehydrogenase activity, was found to increase by 41% (73).  In fact 

as little as five endurance training sessions has been found to alter skeletal muscle 

metabolism, evidenced by reductions in lactate production and glycogen depletion (73). 

Endurance training is also associated with an upregulation of fatty acid transporter proteins 

(35, 49). Thus, endurance exercise training per se is an effective means of increasing fat 

oxidation. However, individuals are always striving to achieve additional gains in metabolism 

above that of exercise training alone.  

1.9 Increasing Fat Oxidation: Nutritional interventions  

There is an abundance of the nutritional foods, beverages and supplements (often known as 

‘fat burners’) that claim to improve health, increase fat metabolism at rest and during exercise 

and promote weight loss (43). The reasons for their popularity is that they can easily be 

incorporated into habitual diet, little effort is required and they are often marketed using too 

good to be true before and after photographs. Some examples of ‘fat burners’ include L-

carnitine, fucoxanthin and green tea and are often sold on their own or as a combination in the 

hope to produce additive effects (43). Although these supplements often have a proposed 

mechanism on how they may upregulate fat metabolism, the scientific evidence for the 

efficacy and practicality is often lacking.  

L-carnitine (carnitine) has received a lot of interest over the recent years. Carnitine is involved 

in the shuttling of FAs across the mitochondrial membrane (see section 1.1 Regulation of Fat 

Metabolism for more detail). Therefore it was assumed that carnitine supplementation may 

increase muscle carnitine stores, increasing the uptake of FAs into the mitochondria for 

oxidation. This theory was originally flawed when many studies found that carnitine 

supplementation alone did not increase muscle carnitine content (8, 101, 102). However in 
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2006 Stephens et al (87, 88) were able to increase muscle carnitine content by simultaneously 

increasing plasma insulin levels. Since this discovery, 24 weeks of carnitine supplementation, 

alongside consuming 80 g of CHO (to increase plasma insulin), was found to reduce muscle 

glycogen breakdown by 50% during exercise (indicating higher rates of fat utilisation) (104). 

Therefore, it appears possible that carnitine supplementation (in addition to consuming large 

quantities of CHO) may be effective in increasing fat metabolism, however this is a relatively 

new area and research and there are currently limited studies. Furthermore the practicality of 

supplementing with carnitine could be questioned as it requires several months of ingestion 

for muscle carnitine concentrations to increase and consuming a relatively large dose of CHO 

may not be practical for all athletes, especially those who need to make weight.   

Fucoxanthin has also been associated with having fat burning properties. A carotenoid found 

in brown seed, fucoxanthin has been found to significantly reduce adipose tissue of mice fed 

0.4% body mass after a 4 week period (57). The authors of this study proposed that the fat 

loss was due to increases in metabolism. However, when applying this to humans this would 

result in an impractical amount of fucoxanthin consumed daily (for an 80 kg man this would 

equate to 320 g/ day).  A recent study, conducted in overweight females, found that just 2.4 

mg of fucoxanthine consumed daily for 16 weeks resulted in significant weight loss (1). The 

weight loss observed in the fucoxanthine supplemented women was accompanied with 

increases in resting energy expenditure (EE). In this study fat metabolism was not measured 

therefore it cannot be established if the change in EE was due to increases in fat oxidation. To 

date there is limited data on fucoxanthine and fat oxidation and no study has investigated the 

effects under exercise conditions. Therefore if it unknown if fucoxanthine ingestion would be 

of benefit to an athletic population.   
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Green tea and/ or green tea extract (GTE) is one nutritional intervention with promising 

metabolism enhancing effects at rest and during exercise. The potential role of green tea/GTE 

ingestion on metabolism will be discussed in the more details in the following sections.  

1.10 Green Tea 

Tea originates from the leaves of Camellia Sinensis L a species of the Theaceae family. The 

leaves are processed as green, oolong and black tea, differing in composition due to 

differences in the fermentation process.  Green tea is processed from non-oxidised/ non-

fermented leaves, therefore it contains high quantities of catechin polyphenols which are 

absent in black tea. The most abundant of the catechin polyphenols are epicatechin, 

epigallocatechin, epicatechin-3-gallate and epigallocatechin-3-gallate (EGCG), the latter 

being the most abundant and pharmacologically active. Caffeine is present in all teas 

regardless of the fermentation process.   

1.11 Green Tea: Fat Oxidation at rest (Acute)  

In recent years tea has received a growing interest in the literature partly because of its 

potential ability to stimulate fat oxidation.  In a short term human study, encapsulated green 

tea extract (GTE) plus caffeine (120 mg GTE/50 mg caffeine), caffeine (50 mg) or placebo 

were consumed three times a day on three separate occasions (23). Relative to placebo, 

consumption of GTE/caffeine significantly increased 24 h fat oxidation (RER 0.88 and 0.85 

for placebo and GTE respectively). Interestingly the increase in 24 h fat oxidation, seen 

following ingestion of GTE/caffeine, exceeded that which was observed when subjects 

received caffeine alone (20% higher) (23). Similar observation have been found when oolong 

tea (EGCG + caffeine, 244 and 270 mg/d respectively) was consumed three days prior to a 24 
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h calorimetry measurement (12% increase in fat oxidation) (80). However in this study the 

authors found no difference when a lower dose (~122 mg/d EGCG, 135 mg/d caffeine) was 

consumed (80).  Similarly, Gregersen et al (30) administered capsules containing either 

EGCG or a mixture of all catechins(enriched with caffeine (25 mg/ capsule)) in addition to a 

caffeine and placebo control. In this study the authors measured fat oxidation rates during a 

13 h period in a respiratory chamber. Irrelevant of the nutritional intervention no change in fat 

metabolism was found compared to placebo (30). However, this finding might be explained 

by the feeding protocol employed. Subjects received low doses of catechins (40-101 

mg/capsule EGCG) intermittently throughout the day. Suggesting that ingestion of ≤ 100 mg 

EGCG (in one serving) may be beneath the threshold to elicit the substrate enhancing effect 

seen in other studies. In addition, no dose-dependent relationship exists between the amount 

of catechins consumed and the degree of change in fat metabolism. Berube-Parent et al (11)  

found no change in 24 h fat oxidation when subjects ingested GTE differing in EGCG content 

(270-1200 mg plus 600 mg of caffeine) However, the authors speculated that the relatively 

high caffeine content (600 mg) may have masked the effects of GTE on enhancing fat 

oxidation. However, these studies seem to suggest that a moderate amount of catechins 

(EGCG = 244-270 mg/d) is required in order to augment fat oxidation rates at rest. 

The aforementioned studies investigate the effects of GTE ingestion on resting metabolism in 

healthy normal weight adults. A recent study by Thielecke et al (92) investigated the potential 

substrate enhancing effects of GTE in overweight/ obese volunteers. In a cross over, placebo 

controlled study ten overweight/ obese adults consumed a moderate dose of EGCG (300 mg/ 

d), a high dose of EGCG (600 mg/ d), caffeine (moderate dose of 200 mg/ d) and a 

EGCG/caffeine mixture (300 and 200 mg/ d respectively) for three days. On the third day 

following an overnight fast substrate metabolism was measured over a 4 h period. Under 
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fasting conditions the moderate and high dose of EGCG did not alter fat metabolism (92). 

However, ingestion of EGCG/caffeine increased fat metabolism by 35% compared to placebo 

(92). Furthermore, fat oxidation was significantly increased in all GTE trials in a postprandial 

state when compared to placebo.  These findings suggest that GTE may have different effects 

in different populations.  

Many studies have investigated the effects of acute GTE/caffeine feeding on resting fat 

oxidation rates (Table 1.1). Therefore, Hursel et al (36) recently conducted a meta-analysis to 

determine the size of the effect. Of the six studies included in this meta-analysis the authors 

found that consumption of GTE/caffeine to increase fat oxidation rates by 16%. Although it 

appears that GTE consumption does have the potential to increase fat oxidation at rest. This 

meta-analysis was conducted on a small and select number of studies therefore the results 

should be interpreted with caution.  

1.12 Green Tea: Fat Oxidation during exercise (Acute) 

Venables et al (99) is the only study which has investigated the effects of acute GTE ingestion 

(24 h before plus an additional dose one hour before exercise ~366 mg/d EGCG) on substrate 

metabolism during moderate intensity exercise in humans. The authors found fat oxidation, 

during a 30 min cycling at 60%    2max, were significantly higher (17%) following GTE 

ingestion compared to placebo (99). Although this provides promising data on the effects of 

acute GTE ingestion on increasing fat oxidation rates during exercise the literature is limited 

to this one study.  
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1.13 Green Tea: Mechanisms (Acute) 

Catechol-O- methyl- transferase (COMT) is a membrane bound and soluble enzyme found 

ubiquitously in all cells of the human body. COMT is involved in the O-methylation of free 

noradrenaline (NA) causing degradation to NA metabolites (58, 70). Catechins, more 

specifically EGCG, are thought to directly inhibit COMT (15).   It is suggested that this acute 

increase in sympathetic nervous system stimulation results in elevated activation and 

concentration of NA. As NA is indirectly involved in lipolysis, it is believed that FA 

mobilization may be upregulated increasing the availability for oxidation. This is the most 

referenced mechanism explaining GTE potential effect on upregulating fat oxidation albeit no 

convincing evidence. An in vitro study by Borchardt et al is the most often cited study to 

support the theory (15). However this study did not find a direct inhibitory effect of EGCG on 

COMT.   

Plasma concentration of NE is a good indicator of sympathetic nervous activity.  However, 

the majority (16, 22, 39, 92, 99) of the studies investigating the role of GTE on fat oxidation 

have not measure plasma NE.  Dulloo et al found 24 h urinary NA to be significantly higher 

during an acute GTE trial (24 h ingestion) compared to placebo and caffeine (23).  However, 

others have found no difference in urinary NA concentration following consumption of GTE 

or EGCG (79, 80).  

Caffeine ingestion is also associated with the upregulation of fat metabolism. Caffeine is 

known to reduce degradation of cyclic AMP (cAMP), by inhibition of phophodiesterase, and 

increase NA release through the antagonism of adenosine receptors. It is believed that the 

increase in cAMP, which is an important intracellular mediator for lipolysis, and NA will 

result in higher rates of IMTG breakdown and in turn increase FA availability for oxidation. 
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Taken together, these two theories provide a rationale for the synergist effect of GTE and 

caffeine on increasing fat oxidation (Figure 1.3). However there is no human study to support 

this theory.     
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Figure 1.3 Schematic of the potential acute GTE mechanism 
 

 

 

 

 

 

 

 

 

 

 

Schematic of the potential synergistic effect of acute GTE and caffeine ingestion on upregulating fat metabolism.  
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Table 1.1 Human studies investigating the effects of green tea ingestion on resting fat oxidation  

Authors 
Total 

Catechins/ 
day (mg) 

EGCG/ day (mg) Caffeine/ day (mg) Ingestion period Fat oxidation rates  

Rumpler et al. (80) 662 244 270 3 days ↑ 12% * 
Rumpler et al. (80) 331 122 135 3 days ↔ 

Dulloo et al. (23) 375 270 150 24 h ↑ 35% * 
Rudelle et al. (79) 540 282 300 3 days ↔ 

Berube-Parent et al. (11) EGCG only 270 600 24 h ↔ 
Berube-Parent et al. (11) EGCG only 600 600 24 h ↔ 
Berube-Parent et al. (11) EGCG only 900 600 24 h ↔ 
Berube-Parent et al. (11) EGCG only 1200 600 24 h ↔ 

Boschmann et al. (16) EGCG only 300 ~0.3 2 days ↓ in postprandial RQ only * 
Gregersen et al. (30) EGCG only 645 150 13 h ↔ 
Gregersen et al. (30) 684 EGC only 150 13 h ↔ 
Gregersen et al. (30) 493.8 242.4 150 13 h ↔ 
Diepvens et al. (22) 1125 264 225 87 days ↔ 

Auvichayapat et al. (7)   750 100.7 86.6 12 weeks ↓ in RQ at 8 weeks only † 
Westerterp-Plantenga et al. 

(108) 
 270 150 3 months ↓ in RQ in low caffeine 

consumers † 
 

* statistically different from placebo, † statistically different from baseline 
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1.14 Green tea: Fat Oxidation at rest (Chronic) 

The above studies all investigated the acute/short term effects of GTE feeding (24 h – 3 days). 

However, it is possible that effects may be greater if GTE is consumed over an extended 

period of time.  

Long term GTE ingestion is reported to have positive effects on reducing and maintaining 

body weight (17, 33, 65, 66, 106).  Westerterp-Plantenga et al (108) administered a GTE to 

subjects during a weight maintenance period of 3 months (270 mg/ d EGCG). Compared to 

placebo, body weight regain was significantly smaller in the group that received the GTE but 

only in those who were low habitual caffeine consumers. In contrast, Diepvens et al (22) 

found that a high dose of GTE (1125 mg/ d catechins) ingested alongside a low energy diet 

had no effect on any body composition parameters. However when a low dose of 300 mg/ d 

catechins was consumed alongside a hypocaloric diet substantial weight loss of 14 kg was 

observed,  compared to 5 kg lost in the diet only group (21). In this study (21) catechin intake 

was low and the authors did not report what proportion of the supplement was EGCG.  

Therefore, the results of this study should be interpreted with caution.  

However, a recent meta-analysis found a favourable effect of catechin ingestion on weight 

loss and weight maintenance. It was estimated from the results of 11 studies, that subjects in a 

green tea intervention group lost on average 1.31 kg more weight, over a 12-13 week 

supplementation period, than a control group. Furthermore, the effect size was larger in 

populations with a low regular caffeine intake compared to moderate-to-high (mean weight 

loss -1.63 and -0.27 kg respectively). Interestingly this meta-analysis also highlighted the 

interaction of ethnicity as a moderator. Studies that used Asian subjects had a larger effect 
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size than Caucasian (37). Factors such as ethnicity and caffeine consumption should be taken 

into account when conducting future studies.   

Although it appears that GTE ingestion may have favourable effects on maintaining and 

reducing body mass these findings cannot be entirely attributed to increases in fat metabolism. 

In the aforementioned study by Westerterp-Plantenga (108) RQ was significantly lowered 

(indicative of increase fat oxidation) in those subjects who consumed GTE during the weight 

maintenance period. Furthermore, Auvichayapat et al (7) found the RQ of subjects ingesting a 

GTE (~130 mg/d) was significantly lower after 8 weeks compared to placebo (0.81 and 0.83 

respectively). However, when a second measurement was taken at 12 weeks this effect had 

diminished by week 12 (7). Diepvens et al (22) also found no change in postprandial RQ 

when GTE was ingested for 32 days compared to baseline measures.  Thus more studies are 

needed to establish if long term/ chronic GTE ingestion can increase fat metabolism at rest 

(Table 1.1).  

1.15 Green Tea: Fat Oxidation during exercise (Chronic) 

Few studies have investigated the effects of chronic green tea ingestion in combination with 

an exercise intervention. Murase et al (64) subjected mice to a 10 week intervention of dietary 

GTE ingestion (0.2% and 0.5% GTE) in combination with exercise training. Following the 

intervention, β-oxidation activity significantly increased in the GTE+exercise group above 

that of exercise alone (74% and 36% respectively). Furthermore Shimotoyodome et al (83) 

found that high fat fed mice supplemented with GTE and undergoing exercise training for 

four weeks showed higher fat utilisation at rest and during exercise.   
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In humans when a low dose of catechins (70 mg/d EGCG) was ingested over 3 weeks no 

change in fat oxidation rates were observed compared to a baseline trial (24). However, Ota et 

al (71) supplemented 14 healthy male subjects with a placebo or GTE beverage (570 mg/ d 

catechins of which 218 mg was EGCG) three times a week for 2 months. In addition to the 

prescribed GTE feeding volunteers underwent regular low intensity treadmill exercise (5 km/ 

h for 30 min 3 times a week). The authors found that following the 2 month period the 

subjects who had consumed the GTE test beverage had 24% higher fat oxidation rates during 

exercise than the placebo group (71). A more recent study investigated the effects of 10 weeks 

GTE consumption in combination with a training regimen in humans (60 min cycle at 60% 

   2peak 3 days/ week) (39). The GTE group in this study showed lowered respiratory 

exchange ratio during a 90 min cycle exercise bout from 0.84 to 0.82 pre to post GTE 

feeding/training (see Table 1.2 for all human studies investigating the effects of GTE 

ingestion on fat oxidation rates during exercise). Thus, longer term supplementation may be 

more effective in increasing fat metabolism during exercise. However, both of the studies 

which found an effect of GTE were performed in healthy untrained individuals. Therefore it is 

unknown if the same effects would be seen in a physically active population. 
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Table 1.2 Human studies investigating the effects of green tea on fat oxidation during exercise 

Authors 

Total 

Catechins/ 

day (mg) 

EGCG/ day (mg) Caffeine/ day (mg) Ingestion period 
Fat oxidation rates during 

exercise 

Venables et al. (99) 890 366 - 24 h ↑ 17% * 
 

Eichenberger et al. (24) 

 

169 

 

68 

 

28 

 

3 weeks 

 

↔ 

Ota et al. (71) 570 175 - 

 
10 weeks (plus exercise 

training) 
 

↑ 24% * 

Ichinose et al. (40) 572 125 77 10 weeks (plus exercise 
training) 

↓ in RQ † 

      
* statistically different from placebo, † statistically different from pre-training 
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1.16 Green Tea: Mechanism (Chronic)  

Regular consumption of GTE may increase fat metabolism as a result of the mechanism 

described above (See section 1.13). However skeletal muscle and adipose tissue adaptations 

may also occur if GTE is ingested over an extended period. Lee et al (55) demonstrated that in 

high-fat diet-induced obese mice, diets supplemented with EGCG resulted in reductions of 

body weight and mass of adipose tissues at various sites in a dose-dependent manner. These 

findings were accompanied with changes in adipose proteins involved in fat metabolism. In 

the epididymal white adipose tissue of EGCG diet-fed mice, the mRNA levels of adipogenic 

genes such as proliferator-Activated Receptor- γ (PPAR-γ), CCAAT enhancer-binding 

protein-α (C/EBP-α), regulatory element-binding protein-1c (SREBP-1c), adipocyte fatty 

acid-binding protein (aP2), lipoprotein lipase (LPL) and fatty acid synthase (FAS) were 

significantly decreased (55). In addition, the mRNA levels of CPT-1 and uncoupling protein 2 

(UCP2), as well as lipolytic genes such as hormone sensitive lipase (HSL) and adipose 

triglyceride lipase (ATGL), were significantly increased (55). These findings suggest a shift 

from FA storage to oxidation. This theory was confirmed by Kim et al who found suppression 

of lipogenic enzymes in hepatic and adipose tissue (50). 

Additionally, Chen et al (18) found increased expression of UCP-2 and PPAR- γ in perirenal 

fat tissue in rats fed EGCG for six months (18). Interestingly there were no changes in 

enzyme expression of the quadriceps muscle in any of the treatment groups when compared to 

a control group. A recent study investigated the effects of 16 weeks EGCG ingestion on 

skeletal muscle adaptation in high fat-fed mice (81). The authors observed increased mRNA 

levels of mitochondrial enzymes (MCAD, NRF1, UPC3 and PPARα) involved in fat 

metabolism in the EGCG mice (81). Furthermore body weight gain was lower in the EGCG 
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mice compared to the high fat fed mice. This suggests that long term ingestion of GTE may 

have favourable effects on different tissues throughout the body at rest. However no study has 

investigated this in humans.  

Similar results are observed when GTE catechins are ingested alongside exercise training. 

Murase et al (64) performed a study in which over a 10 week period mice underwent an 

exercise training program in addition to consuming a diet containing 0, 0.1, 0.2 or 0.5% 

EGCG. Firstly the authors found that the swimming time to exhaustion was increased in the 

mice fed 0.5% EGCG compared to an exercise only group. This increase in endurance 

capacity was accompanied with higher β-oxidation activity in the muscle as well as increased 

expression of the FA transporter enzyme FAT CD/36.  In addition mRNA expression of 

MCAD, an enzyme involved in mitochondrial β-oxidation, was also increased in the EGCG 

fed mice. Again this has not been studied in humans however the two available studies which 

have combined exercise training with GTE ingestion (in humans) have found favourable 

effects on fat oxidation (40, 71). Although highly speculative, these results suggest that the 

augmentation of fat metabolism found with chronic GTE ingestion in combination with 

exercise may due to increased expression of certain fat metabolism enzymes.  

1.17 Aims  

It appears that GTE ingestion may be effective in increasing fat oxidation under resting 

conditions. However there is a lack of research investigating the effects of GTE ingestion on 

fat oxidation during exercise. Only one acute study has been conducted and although long 

term ingestion appears to increase fat oxidation rates during exercise it is unknown if the same 

effects would be observed in physically active individuals.  
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Furthermore the precise mechanism into how GTE may exert its fat metabolism enhancing 

effects on the human body is highly speculative. Therefore the main aim of my thesis is to 

extend and contribute to the already existing scientific literature on the effects of GTE on fat 

oxidation during exercise conditions. Firstly I set out to determine if longer term (7 days) 

ingestion of a caffeinated GTE beverage could further increase fat metabolism in physically 

active males during a moderate intensity exercise bout compared to an acute (24 h) dose 

(Chapter 3). Here I hypothesized that 7 days of ingestion would increase fat oxidation rates 

more than an acute 24 hour supplementation period. In addition, to gain a deeper insight into 

the possible acute and chronic mechanisms I designed a study which investigated the effects 

of a single bolus, 7 days and 28 day decaffeinated GTE (dGTE) ingestion on substrate 

metabolism (Chapter 4). It was hypothesized that ingestion of dGTE, at all time points, will 

alter fat oxidation during a 30 min steady state exercise bout compared to placebo. 

Furthermore, I hypothesized that 28 days dGTE ingestion will result in greater alterations of 

fat oxidation compared to a single bolus and 7 days. In Chapter 5 I employed the FATMAX 

test protocol (described above) to study the effects of GTE on substrate metabolism over a 

wide range of intensities. I hypothesized that ingestion of a dGTE would elicit changes in fat 

oxidation rates and the exercise intensity at which maximal rates occur, compared to placebo 

acute. A second aim of this study was to develop and use a new mathematical model to 

analyse individual fat oxidation curves.  Finally, in Chapter 6, FATMAX data were collected 

from athletes differing in age, gender, body composition and sport. The main purpose of 

Chapter 6 was to establish MFO and FATMAX from a large heterogeneous sample of 

athletes, with a focus on team sports. A second aim of Chapter 6 was to use the new and 

validated mathematical model (from Chapter 5) to determine the fat oxidation profile of each 

athlete and to use these profiles to classify athletes by metabolic type.  
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2.1 Respiratory gas analysis 

2.1.1 Oxycon Pro 

Breath by breath data was collected in Chapter 3-5 using an Online Gas Analyser (Oxycon 

Pro, Jaeger, Wuerzburg, Germany). The Oxycon system can be used to measure a variety of 

cardiopulmonary variables during exercise and at rest. The Oxycon Pro was primarily used in 

this thesis to measure ventilation (   ), oxygen uptake (   2) and carbon dioxide (    2) 

production during exercise at a range of exercise intensities. Participants breathed through a 

mouth piece and a nose clip was placed to eliminate any air leaking from the nasal passage. 

The inspired air is passed through a sensitive volume transducer (Triple V) to determine    . 

Additionally the expired air is passed through a sample tube (twintube) and analysed by 

paramagmatic and infrared absorption principles to determine concentrations of   O2 and 

    2.     

 

2.1.1.1 Oxycon Pro Calibration 

Prior to using the Oxycon Pro, a three step calibration process was always completed. Flow 

volume was calibrated using a calibrated 3-L syringe. This calibration process ensured that 

the mouth piece was set up correctly and that the Triple V was working. The calibration 

required the mouth piece to be placed onto the end of the syringe. Six smooth, slow pumps of 

the syringe were then performed, each time the system recorded the volume of each pump. 

This process was completed twice and the system measured the percent difference between 

the two. If the percent difference was more than 2% the calibration was repeated.  

An automated volume calibration was also completed, this time the mouth piece was inserted 

onto the system. The system automatically passed a flow through the mouth piece at a low 

and high volume. This process was completed twice and the percent difference was 
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calculated. As before, if the percent difference was more than 2% the automatic volume 

calibration was repeated.  

Finally a calibration of the gas analyser was performed. This was an automated calibration 

procedure where a cylinder containing a mix of known gases (~21.00% Oxygen (O2) and 

0.03% Carbon Dioxide (CO2)) was passed through the Oxycon and the analyser adjusted the 

concentration accordingly. This procedure was repeated until there was < 2 % difference in 

the current and previous data.     

 

2.1.2 Moxus Modular 

In Chapter 6 breath by breath data was collected using the Moxus Modular VO2 system (AEI 

technologies, Pittsburgh, USA). The Moxus system can be used to measure a variety of 

cardiopulmonary variables during exercise and at rest. The Moxus was used in Chapter 6 to 

measure ventilation (   ), oxygen uptake (   2) and carbon dioxide (    2) production during 

an incremental exercise test.  

In more detail, participants breathed through either a face mask or a mouth piece, if the latter 

a nose clip was placed to eliminate any air leaking from the nasal passage. The data was 

acquired on a breath-by-breath basis. The mouth piece/ mask were fitted to a two-way 

breathing valve. During the exercise tests the inhaled and exhaled air was passed through two 

separate tubing connectors.  Breath-by-breath exhaled gas concentrations were measured (by 

a mixing chamber) and saved after incorporating an appropriate phasing delay. This delay is 

necessary because of two factors: 1) the time necessary for the expired air to transverse the 

volume of the non-rebreathing valve, tubing and mixing chamber and 2) the gas analyser 

tubing and response delays (O2 Analyzer Delay and CO2 Analyzer Delay). Following the end 
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of each breath the system waits until the participant has exhaled. It then waits a specified 

number of seconds for each of the analyzer time delays. It then phases the Mixed O2 and 

Mixed CO2 data with the breath that produced that data. 

 

2.1.2.1 Moxus Modular Calibration  

Prior to using the system a stringent calibration process was completed. Firstly a gas 

calibration was performed. Two calibration gas cylinders were used for the gas analyser 

calibration: typically 21.00% O2 and 0.03% CO2 for one cylinder; and typically 16.00% O2 

and 4.00% CO2 for the other. The system performed the calibration automatically the values 

displayed for O2 and CO2 on the calibration screen should track the values displayed on the 

individual analyser panel meters. The acceptable tolerance for this correlation is +/- 0.02% for 

the individual channels. If this is not the case for either channel, the calibration sequence was 

run again. 

Secondly a gas verification calibration was completed. This gas calibration is performed to 

verify against the calibration gas cylinders. On the calibration screen ‘Calibrate Air’ was 

selected. Approximately one min was waited to allow for the analysers to stabilise. On the 

calibration screen the Mix O2 Average Data should display the value (± 0.01%) for the high 

calibration value (~21.00%) and the Mix CO2 Average Data should display the low 

calibration value (0.03%). The ‘Calibrate Exp’ option was then selected. This time, following 

a one min period, the Mix O2 Average Data should display the low calibration value 

(~16.00%) and the Mix CO2 Average Data should display the high calibration value 

(~4.00%). Again this value should be within ± 0.01%. The dials on the front of the analyser 
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panels were adjusted if the values were ±0.01%. If the dials were adjusted the gas cylinder 

calibration (see above) was repeated.  

 
Finally flow calibration was performed. The two way breathing valve was attached to a 3- L 

syringe. Seven smooth and consistent pumps of the syringe were performed, after the first two 

pumps the system recorded the volume. This process was completed twice; an initial 

calibration followed by verification. The desired average error was defined as ±2%. If the 

error was greater than ±2% the volume calibration was repeated.   

 

2.2 Calculations 

2.2.1 Indirect Calorimetry 

Research undertaken in as early as 1920 measured pulmonary gas exchange to calculate 

energy expenditure at rest and during exercise (7).  Since this early work it was established 

that breath- by-breath measurements could be used to determine the contribution of fat and 

carbohydrate oxidation to total energy expenditure.  Indirect calorimetry is a method to 

determine substrate oxidation at a whole body level using measurements of O2 consumption 

and CO2 excretion.  Carbohydrate (CHO), fat and protein, all differ in chemical structure thus 

the ratio of O2 needed relative to CO2 production is different in order for oxidation to take 

place. In all chapters of this thesis it was assumed that during exercise the contribution of 

protein to overall energy expenditure was negligible.   

 

In Chapter 3-5 fat and CHO oxidation was calculated using  indirect calorimetry with the 

following equations proposed by Jeukendrup and Wallis (6): 
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Fat oxidation (g∙min-1) = 1.65∙   2 - 1.701∙    2 

CHO oxidation (g∙min-1) = 4.21∙    2 - 2.962∙   2 

 

In Chapter 6 fat and CHO was calculated using the following equations (5):  

Fat oxidation (g∙min-1) = 1.718∙   2 – 1.718∙    2 

CHO oxidation (g∙min-1) = 4.170∙    2 – 2.965∙   2 

The variation in fat oxidation rates from using different equations is as small as ~3% (6).  

 

2.2.2 Respiratory Exchange Ratio (RER):  

The ratio of CO2 produced relative to the O2 consumed at tissue level.  

 

RER =     2/    2 

 

RER is an indirect measure of substrate utilisation. To oxidise one mol of glucose 134 L of O2 

are needed and 134 L of CO2 are produced therefore an RER of 1.0 (134 L/134 L = 1.0) is 

indicative of predominately CHO oxidation. In order to oxidise one mol of palmitate 515 L of 

O2 are needed, producing 358 L of CO2. Thus an RER of 0.7 (358 L/515 L = 0.7) indicates 

that fat is the predominant fuel (6).   
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2.2.3 Maximal power output  

Wmax was calculated in Chapter 3 and 4 in order to set the exercise intensity for subsequent 

trials (~50% Wmax). The following equation was used to calculate Wmax  (8):  

 

Wmax = Wout + [(t/180)∙35] 

 

Where Wout is the power output of the last stage completed during the test, and t is the time 

spent, in seconds, in the final stage.  

 

2.2.4 Cycling Economy  

In Chapter 5 cycling economy was calculated for each work rate (Watts (W)) performed by 

the all participants. Economy is defined as a measure of oxygen consumption per unit of 

power output (9):   

 

Cycling economy =    2/ W 

 

If economy at a certain workload was lower than the average minus two times the standard 

deviation then the whole trial was excluded from the final data set.  
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2.3 FATMAX test protocol  

2.3.1 Test protocol: Cycle Ergometer  

 

In Chapters 3, 4 and 5  all participants completed a FATMAX test (1) during the preliminary 

trial to establish maximal oxygen uptake (   2max). In more detail, the test protocol involved 

a 5 min warm up at 75 W on an electronically braked cycle ergometer (Lode Excalibur Sport, 

Groningen, Netherlands). The test started at 95 W, every 3 min the effort was increased in 

incremental steps of 35 W, until voluntary exhaustion was reached. During each stage of the 

test respiratory gas measurements (   2 and     2) were collected using an Online Gas 

Analyser (Oxycon Pro, Jaeger, Wuerzburg, Germany).    2 was considered maximal 

(   2max) and the test was stopped if 2 out of the 4 following criteria were met. 1) if    2 did 

not increase even when workload increased (< 2 mL∙ kg-1∙min-1 increase from the previous 

stage) 2) a respiratory exchange ratio (RER) of >1.05 3) a heart rate within 10 beats per min 

of age predicted maximal heart rate 4) a cadence of 50 rpm could not be maintained. Heart 

rate (HR) was recorded during each stage of the test using a HR monitor (Polar RS800CX, 

Polar Electro (UK) Ltd, Warwick, United Kingdom).  In Chapters 5 participants did not 

complete a warm up however the first test stage was set at 60 W.    

In Chapter 4 after 15 min of rest participants completed a steady state cycle. This involved 

participants cycling for 20-min at a pre-determined exercise intensity of 50% Wmax (55% 

   2max; calculated from the    2max test).  To ensure the correct intensity was set (W) a 4-

min measurement of    2 was obtained, using an Online Gas Analyzer (Oxycon Pro, Jaeger, 

Wuerzburg, Germany), every 5 min. If the recorded    2 values did not equate to 55% 

   2max (± >5%) the resistance on the cycle ergometer was adjusted accordingly.            
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2.3.2 Test protocol: Treadmill  

In Chapter 6 FATMAX tests were completed on a treadmill. A standardised protocol was 

used for all treadmill FATMAX tests. In more detail, the test started at 5.0 km∙h-1 and at a 

gradient of 1% for three min. The speed then increased to 7.5 km∙h-1. Speed was increased by 

1 km∙h-1 every 3 min until an RER of 1 was reached thereafter the speed remained constant 

and the gradient was increased by 1% every 1 min until voluntary exhaustion. Respiratory gas 

measurements (   2 and     2) were collected continuously using the Moxus Modular    2 

system (AEI technologies, Pittsburgh, USA). Furthermore, HR was measured throughout the 

whole test and rating of perceived exertion (RPE) was recorded during each stage.  

In Chapter 6    2 was considered maximal and the test was stopped if 2 out of the 4 

following criteria were met. 1) if    2 did not increase even when workload (gradient) 

increased 2) a respiratory exchange ratio (RER) of >1.01 3) a heart rate within 10 beats per 

min of age predicted maximal heart rate. If 2 out for the 4 criteria were not met (i.e    2max 

was not reached) the data was not included in the average FATMAX curve.  

 

2.4 Construction of average fat oxidation curve 

2.4.1 Manual Analysis  

Previous studies have used the FATMAX test protocol, under different conditions, to produce 

an average fat oxidation curve (1-4, 10). In these studies, in order to construct an average fat 

oxidation curve, each individual fat oxidation curve was analyzed manually. In more detail, 

the maximal rate of fat oxidation (MFO) and the intensity at which it occurred was 

determined for each participant. The authors then calculated fat oxidation rates which were 5, 
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10 and 20% below the maximal rate. Each individual graph was then used to determine the 

work rate (  O2) at each of these fat oxidation rates. However, this is a time consuming 

process and as a result the authors only calculated fat oxidation rates 5, 10 and 20% below the 

maximal rate. Furthermore this method of analysis was subjective and therefore there is a 

greater chance of human error.  

In this thesis (Chapter 5-6), a computer programming software (Matlab) was used for the 

first time to analyze each participant’s fat oxidation curve to created an average curve.  

 

2.4.2 Matlab analysis 

MFO for each individual was determined as the highest rate (g∙min-1) estimated using the 

stoichiometric equation described above. Using Matlab (MathWorks Matlab 2011a, Natick, 

Massachusetts, U.S.A) 95% to 50% of MFO was calculated in intervals of 5% (i.e. 95%, 90%, 

85%, 80%, 75%, 70%, 65%, 60% 55%, and 50%). To calculate the absolute    2 (mL) 

associated with these 11 fat oxidation rates, linear interpolation was applied between 

subsequent intercepts of the measured fat oxidation and    2 (mL) values. Each interpolated 

link consisted of 1000 hypothetical intercepts of    2 (mL) and fat oxidation. Depending on 

the    2 at MFO a hypothetical    2 value, for each of the 11 fat oxidation rates intervals, 

could be determined. These values of absolute    2 were converted to a percentage of each 

individual’s    2max. This interpolation process was then repeated for heart rate and 

carbohydrate oxidation at the calculated fat oxidation rates.  

In order to compare the agreement between the manual analysis and Matlab analysis 13 

FATMAX tests were analysed using both techniques. For the manual analysis the maximal 

rate of fat oxidation and the intensity at which it occurred was determined for each 
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participant. Fat oxidation rates which were 5, 10, 15, 20 and 30% of the maximal rate were 

then calculated. Each curve was printed and by hand the    2 (mL) corresponding to the each 

of the fat oxidation rates was recorded. The Matlab analysis was run automatically using the 

method described above. There was no difference in fat oxidation rates, at any exercise 

intensity, when the manual analysis was compared to Matlab (Figure 2.1). 
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Figure 2.1Fat Oxidation curve: Matlab verses Manual  
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2.5 Biochemical analyses 

2.5.1 Plasma metabolites 

Plasma metabolites were measured using the ILAB 650 (Instrumentation laboratory, UK), 

unless otherwise stated. The ILAB 650 is an automated blood analyser used commonly in 

clinical chemistry laboratories to quantify plasma metabolites by spectrophotometry or 

turbidity. Enzyme catalysed assays are commonly used, and typically absorbance values 

correlate with the concentration of the blood metabolite in question.  

 

2.5.2 Plasma FA  

Plasma FA concentrations were analysed using an ILab 650. In Chapter 3 the human plasma 

samples obtained were analysed using the NEFA-HR 1and 2 reagent (Wako Diagnostics, 

Richmond, USA) 

The Wako enzymatic method relies upon the acylation of coenzyme A (CoA) by the fatty 

acids in the presence of added acyl-CoA synthetase (ACS). The acyl-CoA thus produced is 

oxidized by added acyl-CoA oxidase (ACOD) with generation of hydrogen peroxide, in the 

presence of peroxidase (POD) permits the oxidative condensation of 3-methy-N-ethyl-N(β-

hydroxyethyl)-aniline (MEFA) with 4-aminoantipyrine to form a purple coloured adduct 

which can be measured colorimetrically at 550 nm.  

In Chapter 4 and 5 the NEFA reagent was supplied by RANDOX. The enzymatic method is 

described:   
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   Acyl CoA Synthetase 

NEFA+ATP+CoA                                                            Acyl CoA+AMP+ PPi 

 

 

Acyl CoA Oxidase 

Acyl CoA+02                                                               2,3,-trans-Enoyl-CoA+H202 

 

 

   Peroxidase 

2H202+TOOS+4-AAP                                                           purple adduct + 4H20 

 

 

2.5.3 Plasma glycerol 

Plasma glycerol was quantified using a colorimetric method on the ILAB 650 using a glycerol 

reagent (Randox, County Antrium, UK).  Three enzymatic reactions took place involving 

glycerol kinase, glycerol phosphate oxidase and perioxidase. The resultant intensity of n-(4-

antipyryl)-3-chloro-5-sulphonate-pbenzoquinoneimine (ACSB: red dye) was measured 

colorimetrically.  

           Glycerol Kinase 

Glycerol + ATP                         Glycerol-3-phosphate + ADP 

 

 

    

                    Glycerol Phosphate Oxidase 

Glycerol-3-phosphate + O2                         H202 + DAP 
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Perioxidase 

2H2O2 + DCHBS + 4-aminophenazone      ACSB   

 

 

2.5.4 Plasma EGCG 

Plasma EGCG was measured on a mass-spectrometer, this analysis was undertaken off site at 

Unilever, Vlaardingen, The Netherlands.   

To measure the concentrations of deconjugated EGCG, EDTA plasma (200 µL), stabilizer 

solution (20 µL, 10 % ascorbic acid containing 0.1 % EDTA), sodium acetate (20 µL of 1.5 

mol∙L-1 NaOAc, pH 4.8), and β-glucuronidase (10 µL, 50k U∙L-1 in acetate buffer) were 

mixed and incubated at 37 °C for 45 min. From the supernatant, 5 µL was injected into the 

high-performance liquid chromatography multiple-reaction monitoring mass spectrometer 

(HPLC-MRM-MS) system (Agilent 6410 mass spectrometer equipped with an Agilent 

1200SL HPLC (Agilent Technologies, Amstelveen, The Netherlands) and an HTC PAL 

autosampler (CTC Analytics, Zwingen, Switzerland). Samples were analysed batch-wise and 

controlled by two quality control samples (QCs) per sample batch. EGCG was quantified in 

plasma by means of 10-point calibration curves. The peak areas of the internal standards as 

well as the target compounds were determined using Agilent’s MassHunter Quantitative 

Analysis software (version B.03.02, Agilent Technologies, Santa Clara, CA).  
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5.1 Abstract 

Purpose: The aim of this study was to investigate the effects of acute decaffeinated green tea 

extract (dGTE) ingestion on fat oxidation rates over a range of exercise intensities during a 

graded exercise test (FATMAX test).  

Method: Twelve moderately trained male participants completed four FATMAX tests on a 

cycle ergometer. In a counterbalanced, cross over, design two trials were performed following 

acute (24 hour prior to, plus 2 hour before the exercise bout) ingestion of dGTE (1141 ± 21 

mg total catechins/day), the other two trials were completed following placebo ingestion. 

Breath-by-breath samples were collected during each stage of the FATMAX test to calculate 

rates of whole body fat oxidation. Blood samples were collected at rest and following the 

exercise bout to determine plasma fatty acids (FAs) and glycerol concentrations.   

Results: On average acute ingestion of dGTE did not alter fat oxidation rates at any exercise 

intensity compared to placebo. In addition, average maximal rates of fat oxidation (MFO) 

were not statistically different following acute dGTE ingestion, compared to placebo (0.49 ± 

0.03 and 0.50 ± 0.03 g∙min-1, respectively). Plasma concentrations of FAs and glycerol were 

unchanged in the dGTE trial at rest and at cessation of the exercise bout compared to placebo. 

Conclusion: Acute ingestion of dGTE did not result in measureable changes in fat oxidation, 

over a range of exercise intensities, during a graded exercise type test in physically active 

males.   
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5.2 Introduction  

Most studies that investigate the effects of a nutritional intervention on exercise metabolism 

make comparisons at one single exercise intensity (15, 17, 19, 20). It is known, however, that 

fat oxidation during exercise displays large intra-individual variation with some showing 

maximal fat oxidation rates at 22%     2max and others at 77%    2max (18). There are also 

large individual differences in absolute rates of maximal fat oxidation (3, 18) . Therefore it is 

likely that responses to an intervention are also variable at different exercise intensities.  

For these reasons it may be preferred to make comparisons, not at a single intensity, but over 

a wide range of intensities. This was recognised by Achten (1) and colleagues who developed 

the FATMAX test. This test, under taken on a cycle ergometer or treadmill, increases the 

work load (watts or speed) every 3 min. In order to estimate rates of whole body fat and 

carbohydrate (CHO) oxidation (using indirect calorimetry (10)) during each stage of the test 

breath-by-breath samples are collected. As a result, individual maximal fat oxidation rates 

(MFO), the exercise intensity at which MFO occurred (FATMAX: expressed as percentage of 

   2max) as well as fat oxidation rates above and below FATMAX can be established (1).  

The ability to utilise fats and subsequently spare muscle glycogen stores is one determinant 

for exercise performance (9); therefore, measuring fat oxidation is of interest to athletes. In 

the present study we wanted to investigate the effects of a green tea extract (GTE) on fat 

metabolism during exercise. Although in an early study Venables et al (19) observed an 

increase in fat oxidation with acute GTE ingestion, in Chapter 3 and Chapter 4 we were 

unable to replicate these findings. In these studies, fat oxidation was compared at the same 

relative submaximal intensity (~55%    2max) with no information about lower or higher 
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exercise intensities. Therefore in this study we investigated the effects of acute decaffeineated 

GTE ingestion on fat oxidation during the FATMAX test.  

Thus, the primary aim of this study was to determine if acute ingestion (24 hour) of a dGTE 

can alter fat oxidation rates at any given exercise intensity during a FATMAX test in 

physically active males. We hypothesized that compared to placebo acute ingestion of a 

dGTE would elicit changes in fat oxidation rates and the exercise intensity at which this 

occurs will be determined. A second aim of this study was to develop and use a new 

mathematical model to analyse individual fat oxidation curves.  

   

5.3 Participants and Methods 

Participants 

Participants were all physically active males recruited from the student population at the 

University of Birmingham. All volunteers gave written informed consent to participate in this 

study and were healthy according to the results of a general health questionnaire. Inclusion 

criteria included habitual caffeine intake of ≤ 400 mg/day (approximately ≤ 4 cups coffee/ 

day) and participation in exercise 3-5 times/ week for 30-90 min. All procedures and 

protocols were approved by the Life and Sciences Ethical Review Committee at the 

University of Birmingham, UK. 
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Preliminary Testing  

At least 1 week prior to the first experimental trial, all participants reported to the Human 

Performance Laboratory, at the University of Birmingham, where they were familiarised with 

the equipment and testing procedures. During this visit all volunteers performed a FATMAX 

test (adapted from Achten et al (1)) on a cycle ergometer. This test was identical to the test 

performed during the experimental trials and will be explained in more detail below and in 

Chapter 2.  

Following the preliminary trial participants were asked to fill out a weighed three day diet 

diary, including two week days and one weekend day. Verbal and written instructions were 

given to the participants and they were also provided with a set of food weighing scales 

(SALTAR, ARC Electronic Kitchen Scale, Kent, UK) to weigh all foods where appropriate.  

 

General Design 

This double blind, cross over, counterbalanced study involved 4 exercise trials (1 trial per 

week) which were completed over a 4 week period. The exercise trials were all identical and 

consisted of a 2 hour rest period followed by a FATMAX test. In the 24 hours prior to each 

exercise trial participants ingested dGTE or placebo. Participants completed two dGTE trials 

and two placebo trials.  The order of the trials assigned to each participants was randomised. 

Each exercise trial was separated by a 5 day wash out period. 

 

Exercise Trial 
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Participants arrived at the Human Performance Laboratory at a prearranged time following a 

10-12 overnight fast. The exercise trials were always completed on the same day and time to 

avoid any circadian variation.   

On arrival body weight was recorded (Seca Alpha, Hamburg, Germany) and a flexible 20-

gauge Teflon catheter (Venflon; Becton Dickinson, Plymouth, United Kingdom) was inserted 

into an antecubital vein. A 3-way stopcock (Connecta; Becton Dickinson, Plymouth, United 

Kingdom) was attached to the catheter to allow for repeated blood sampling during the whole 

trial. An initial 15 mL (5 mL collected in Sodium Fluoride-containing tubes and 10 mL 

collected into EDTA-containing tubes) blood sample was collected (t=0). Participants then 

consumed two capsules (of either dGTE or PLA) with at least 200 mL of water and rested for 

2 hours in a seated position. Participants were allowed to consume water ad libitum 

throughout the whole trial. During the 2 hour rest period blood samples (15 mL) were 

obtained every 30 min. The catheter was kept patent by flushing with 4-5 mL isotonic saline 

(0.9% w∙v; B Braun, Sheffield, United Kingdom) after every blood sample. A final resting 

blood sample was taken at 120 min (t=120). Participants then mounted the cycle erogmeter to 

undergo a FATMAX test.  

The test protocol was adapted from Achten et al (1). In more detail, the test started at 60 W, 

this stage also acted as a warm up. Every 3 min the workload was increased in incremental 

steps of 35 W until voluntary exhaustion was reached. During the last two min of each stage 

respiratory gas measurements (   2 and     2) were collected using an Online Gas Analyser 

(Oxycon Pro, Jaeger, Wuerzburg, Germany). Once RER had reached 1.0 the mouth piece 

remained in and breath-by-breath measurements were collected continuously until participants 

reached exhaustion. Heart rate (HR) was recorded during each stage of the test using a HR 
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monitor (Polar RS800CX, Polar Electro (UK) Ltd, Warwick, United Kingdom) as well as 

cadence and Rating of Perceived Exertion (RPE).   

   2 was considered maximal (   2max) and the test was stopped if 2 out of the 4 following 

criteria were met. 1) if    2 did not increase even when workload increased 2) a respiratory 

exchange ratio (RER) of >1.05 3) a heart rate within 10 beats per min of age predicted 

maximal heart rate 4) a cadence of 50 rpm could not be maintained. Wmax was calculated 

using the following equation (11):  

 

Wmax = Wout + [(t/180) X 35] 

 

Where Wout is the power output of the last stage completed during the test, and t is the time 

spent, in seconds, in the final stage.  

 Immediately following cessation of exercise a final 15 mL blood sample was obtained. 

Participants were then free to leave the laboratory and the exercise trial was repeated the 

following week.  

 

Diet  

Food diaries were analysed using an online food analysis website (12). Average total energy 

intake and the percent contribution of carbohydrate (CHO), protein and fat over the three day 

period were calculated. On average participants consumed a total of 2898 ± 569 kilocalories 

(kcal)/ day consisting of 48% CHO, 18% protein and 34% fat. Short term (5 days) ingestion 
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of a low carbohydrate diet has been found to increase fat oxidation rates during exercise (6). 

Therefore we used the food diary data to plan individual 24 hour diets which were similar in 

composition and total energy intake to each participant’s habitual diet.  

The diet included three main meals plus snacks. All food was weighed and prepared at the 

testing facility and was given to the participant to consume in the 24 hours before each 

exercise trial. Participants were given strict instructions to only eat what they had been 

provided, they were allowed to self select the quantity of liquid they consumed throughout the 

day but were asked to refrain from drinking any caffeinated or alcoholic beverages. Exercise 

was also prohibited in the 24 hours prior to each exercise test.  

 

Nutritional Intervention  

In addition to the control diet in the 24 hours before each exercise trial participants consumed 

four capsules. Participants received the capsules in white (opaque) pots. The pots were 

labelled with a number (corresponding to the trial which was unknown to the experimenters 

and participants) and instructions on when to consume the capsules.   

The dGTE capsules contained 285 ± 5 mg total catechins/ capsule, of which 157 ± 3 mg was 

EGCG (1141 ± 21 mg total catechins/day, 627 ± 12 mg EGCG/day). A negligible amount of 

caffeine was present in the dGTE (~ 3mg/ capsule). The placebo capsules contained cellulose 

(~310 mg/capsule). All capsules were identical in colour (blue and white) and size (Size 0). 

Two capsules were consumed an hour before lunch and the additional two capsules were 

consumed an hour before dinner. Participants were instructed to consume the capsules with at 

least 200 mL of water. On the morning of each exercise trial, following an initial blood 

sample, participants ingested two more capsules (~570 mg total catechins) in a fasted state.  
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 Indirect calorimetry and calculations 

Breath-by-breath data were collected for two min during each 3 min stage of the FATMAX 

test. Of the data collected, values for    2 and     2 in the last 30 sec of each stage were 

discarded. Thus, the  remanding    2 and     2 values were averaged and used to calculate fat 

and CHO oxidation using the following stoichiometric equations (10).  

 

Fat Oxidation = 1.65∙   2 – 1.701∙    2 

CHO Oxidation = 4.210∙    2 – 2.962∙   2 

 

For each trial the results from the exercise test were used to construct individual fat oxidation 

curves. Fat oxidation rates, during each stage of the test, were plotted against exercise 

intensity (expressed as percent of    2max). This graph allowed us to determine a number of 

variables such as MFO, FATMAX and FATMIN. 

MFO = maximal fat oxidation rate (g·min-1) 

FATMAX = the exercise intensity (expressed as %    2max) at which the highest rate of fat 

oxidation was observed. 

FATMIN = the exercise intensity (expressed as %    2max) where fat oxidation becomes 

negligible and carbohydrate becomes the predominant fuel source (i.e. RER ≥ 1.0). 
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These data were then used to create an average fat oxidation curve for the dGTE and placebo 

trials. If participants did not complete 4 stages of the test where RER was < 1 data was 

excluded from the average curve analysis. In total 2 trials were excluded from the final data 

set (Chapter 2). 

 

To produce the average fat oxidation curve for the dGTE and placebo trial the data was 

analysed using Matlab (MathWorks Matlab 2011a, Natick, Massachusetts, U.S.A.). MFO for 

each individual was determined as the highest rate (g∙min-1) calculated using the 

stoichiometric equation described above.  For each trial 95% to 50% of the MFO rate was 

calculated in intervals of 5% (i.e. 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60% 55%, and 

50%). To calculate the absolute    2 (mL∙min-1) associated with these 11 fat oxidation rates, 

linear interpolation was applied between subsequent intercepts of the measured fat oxidation 

and    2 (mL∙min-1) values. Each interpolated link consisted of 1000 hypothetical intercepts 

of    2 (mL∙min-1) and fat oxidation. Depending on the    2 at MFO a hypothetical    2 

values, for each of the 11 fat oxidation rates intervals, could be determined. These values of 

absolute    2 were converted to a percentage of each individuals    2max 

 

Previous studies have used the FATMAX test to produce an average fat oxidation curve (1-4, 

18). In these studies average fat oxidation curves were constructed manually. In more detail, 

the maximal rate of fat oxidation and the intensity at which it occurred was determined for 

each participant. The authors then calculated fat oxidation rates which were 5, 10 and 20% 

below the maximal rate. Each individual graph was then used to determine the work rate 

(   2) at each of these fat oxidation rates. However, this is a time consuming process and as a 

result the authors only calculated fat oxidation rates 5, 10 and 20% below the maximal rate. 
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Furthermore this method of analysis was subjective and there was a greater chance of human 

error.  

In order to compare the agreement between the manual analysis and Matlab analysis 13 

FATMAX tests were analysed using both techniques. For the manual analysis the maximal 

rate of fat oxidation and the intensity at which it occurred was determined for each 

participant. Fat oxidation rates which were 5, 10, 15, 20 and 30% of the maximal rate were 

then calculated. Each curve was printed and by hand the    2 corresponding to the each of the 

fat oxidation rates was recorded. The Matlab analysis was run automatically using the method 

described above. We found no difference in fat oxidation rates, at any exercise intensity, when 

the manual analysis was compared to Matlab (Figure 5.1). Thus the use of this mathematical 

model is a valid technique for the analysis of fat oxidation curves (Chapter 2).  
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Figure 5.1 Fat Oxidation curve: Matlab verses Manual 

 

 

 

 

 

 

 

 

 

 

 

 

Mean (±SD) absolute fat oxidation rates (g∙min-1) plotted against exercise intensity (expressed relation to    2max
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Economy is defined as the amount of energy (i.e oxygen) required to perform work at a given 

workload (13). For all trials cycling economy, at each stage of the exercise test, was 

calculated (13).  

 

Cycling economy (W/L) = Work rate (W) /    2 (mL∙min-1) ∙1000 

 

The average economy for each given workload was calculated. If economy at a certain 

workload was lower than the average minus two times the standard deviation then the whole 

trial was excluded from the final data. In total four trials were excluded from the final data set.  

 

Blood Variables 

All tubes were centrifuged at 3500 rpm for 15 min at 4 °C. Aliquots of plasma were stored at -

80 °C for later analysis. Plasma FAs (NEFA-C; Wako Chemicals, Neuss, Germany), and 

glycerol (Glycerol; Randox, England) were analysed on an ILAB 650 (Instrumentation 

Laboratory, Cheshire, United Kingdom) (Chapter 2).  

 

Statistical Analysis 

For each individual the median was calculated for fat oxidation rates in the two placebo and 

dGTE trials. This data was used in the statistical analysis. Data analysis was performed by 

using SPSS for WINDOWS software (version 19; SPSS Inc, Chicago, IL). Data are expressed 

as means ± SEMs unless otherwise stated. Statistical differences between FATMAX, 

FATMIN,    2max, Wmax, RERmax and HRmax in the dGTE and placebo trials were 

analysed using a Student’s paired samples t-test. Differences in the fat oxidation rates at 
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different exercise intensities between trials were identified using a general linear model for 

repeated measures.  For all statistical analyses significance was set at p <0.05.  Bivariate 

correlations were carried out between maximal fat oxidation (g∙min-1) and FATMAX (% 

   2max) with habitual CHO intake expressed in absolute (g) and relative terms (g∙kg∙bw-1) as 

well as a percentage of total energy intake.  

 

5.4 Results  

Twelve healthy, physically active males participated in the study. Participant anthropometric 

information can be found in Table 5.1. 

 

Habitual CHO Intake and Fat Oxidation 

 

No significant correlation was found between maximal fat oxidation rates, measured in the 

placebo trials, and habitual CHO intake.  There was however a significant negative correlation 

between FATMAX and habitual CHO intake when expressed and as a percent of total energy 

intake (r = -0.32, p <0.001), accounting for 10.2% of the variance.  
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Table 5.1. Participant Characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

Mean (± SD) of participant anthropometric and physical characteristics  

 

 

 

 

 

 

 

 

 

 

  

Mean (± SD) 

 

Age (y) 19 ± 1 

Height (m) 1.79 ± 0.07 

Weight (kg) 74.4 ± 8.7 

BMI (m∙kg-2) 23.2 ± 2.2 

   2peak (mL∙min-1∙kg-1) 52.6 ± 7.6 

Wmax (W)  281 ± 37 
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dGTE ingestion and Fat Oxidation 

 

In some individuals a decrease in fat oxidation rates was observed after the first and lowest 

exercise intensity. As a consequence, the exercise intensities below FATMAX could not be 

determined for all participants. Therefore, the graph in Figure 5.2 contains data from all 

participants but does not display any data points at exercise intensities below FATMAX.  

 

On average acute dGTE ingestion did not alter substrate metabolism at any exercise intensity 

during the graded exercise test. Thus, the average FATMAX curve was similar in the dGTE 

and placebo trials. On average, there was no statistical difference in FATMAX in the dGTE 

trials compared to placebo (Table 5.2). In addition acute ingestion of dGTE did not alter 

maximal rates of fat oxidation compared to placebo (0.49 ± 0.03 g∙min-1and 0.50 ± 0.03 

g∙min-1 for the dGTE and placebo trial respectively).  

 

 

Plasma FA and Glycerol  

Under resting conditions on the morning of the exercise trials, at t=120, plasma FAs and 

glycerol were unchanged compared to the plasma trial (Figure 5.3 A and B). In addition, there 

were no differences in circulating concentrations of plasma FAs (p= <0.05) and glycerol (p= 

<0.05) immediately post exercise between the two conditions.  
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Maximal Oxygen Uptake (   2max) 

 

Each FATMAX test was completed until voluntary exhaustion. Therefore, measurements of 

maximal oxygen uptake (   2max), RER and HR were recorded following both dGTE and 

placebo ingestion. These results can be found in Table 5.2.  Ingestion of dGTE did not alter 

maximal work output (Wmax) during the graded exercise test compared to placebo (P = 

<0.05).  

 

  



 

156 
 

 

Figure 5.2 dGTE and placebo fat oxidation curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean (±SEM) Fat oxidation rates (g∙min-1) versus exercise intensity (%   2max) in the placebo and dGTE trial.  N=10 
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Figure 5.3 Effects of dGTE on plasma fatty acids and glycerol 

 

 

 

 

 

 

 

 

 

 

 
 
Mean (±SEM) plasma FA (A) and glycerol (B) measured at rest (t=120) in the dGTE (black bar) and placebo (white bar) trials. 
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Table 5.2 Exercise metabolism in dGTE and Placebo trials  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean (±SEM)    2max (L∙min-1), RERmax, HRmax (beats∙min-1), Wmax, FATMAX (%    2max) and  
FATMIN (%    2max) in the placebo and dGTE trials.   
 

  

  

Placebo 

 

dGTE 

   2max (L∙min-1) 3.98 ± 0.09 3.99 ± 0.10 

RERmax 1.09 ± 0.01 1.09 ± 0.01 

HRmax (beats∙min-1) 187 ± 2 184 ± 2 

Wmax (W) 279 ± 13 281 ± 14 

FATMAX (%    2max) 46 ± 3 43 ± 2 

FATMIN (%    2max) 91 ± 2 89 ± 2 
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MFO and FATMAX variation  

 

All participants completed each condition twice as a result the variation in MFO and 

FATMAX could be calculated. Data was analysed if complete data sets of all four trials were 

available (N= 9). The average variation in MFO for placebo and dGTE was 19% and 6% 

respectively. Furthermore the variation in FATMAX was similar in the two interventions 

(10% and 9% for the placebo and dGTE trials respectively).   

 

 

 

5.5 Discussion  

All previous studies (including Chapter 3 and Chapter 4) investigating the effects of GTE 

ingestion on substrate metabolism have used a steady state exercise protocol at a fixed 

intensity (8, 14,19). In the present study we investigated the effects of acute decaffeinated 

GTE ingestion on fat oxidation during a graded exercise test in physically active males. We 

found that dGTE did not alter whole body fat oxidation rates at any given exercise intensity 

compared to placebo.  

 

Our findings are in line with Chapter 3 and Chapter 4 which found no effect of acute (24 

hour or a single bolus) caffeinated or decaffeinated GTE ingestion on substrate utilisation 

during exercise in physically active males. Furthermore, we observed no change in plasma FA 

and glycerol concentrations during rest and following the exercise bout. It is often proposed 

that GTE exerts an effect on fat metabolism by indirectly increasing FA availability through 
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augmentations in sympathetic nervous activity (5). However, in Chapter 4 I also found no 

effect of acute caffeine free GTE ingestion on plasma FA and glycerol. Taken together these 

studies question the potency of acute (or chronic) GTE ingestion on augmenting fat oxidation 

rates in this population of individuals. 

 

GTE and maximal oxygen consumption  

 

In humans, a three day period of EGCG ingestion was found to significantly increase absolute 

maximal oxygen uptake (   2max) compared to placebo (16). The authors speculated that 

EGCG was effective in increasing    2max by attenuating the degradation of noradrenaline 

and as a result increasing heart rate and stroke volume. In the present study, the exercise test 

protocol allowed us to determine    2max. However, we found no difference in    2max 

following acute dGTE ingestion compared to placebo. Furthermore performance (defined as 

change in Wmax) was also unaffected by acute dGTE which is in line with previous work by 

Richards et al (16). Although research is limited these data suggest that GTE ingestion may 

not be effective in improving certain aspects of performance.  

 

Habitual CHO Intake and Fat Oxidation  

 

Fat free mass, fat mass, gender,    2max and self reported physical activity levels have been 

found to account for 34% of the intra-individual variance in MFO (18). However, habitual 

diet also plays a role in substrate utilisation during exercise (6, 7). Many studies have found 

that manipulating daily carbohydrate intake can influence fat utilisation (6, 7). In the present 

study habitual macronutrient intake was predicted using information obtained from 3-day diet 
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diaries. From this we could establish if diets that are low/high in CHO (resulting in high/low 

fat diets, respectively) can predict MFO rates and FATMAX. Analysis of the results obtained 

in the placebo trials, show a significant negative correlation between CHO intake and 

FATMAX (r= -0.32). Although our sample size was relatively small (N=12) these data 

suggest that habitual diet may explain ~10% of the variance of the exercise intensity at which 

fat oxidation rates are maximal. Therefore future studies investigating the effects of a 

nutrition intervention on exercise metabolism should record habitual dietary intake and be 

aware of the implications that habitual diet may have on exercise metabolism when 

undertaking exercise trials.  

   

Conclusion 

In conclusion, acute ingestion of a decaffeinated GTE did not alter fat oxidation rates at any 

given exercise intensity in physically active males. Furthermore    2max and performance 

(indicated by Wmax) was unchanged by decaffeinated GTE consumption. However, our 

mathematical model is a valid and comprehensive tool to use for the analysis of fat oxidation 

curve.   
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6.1 Abstract 

Purpose: The aim of this study was to establish maximal fat oxidation rates (MFO) and the 

exercise intensity at which it occurred (FATMAX) in a large athletic population. In addition, 

on the basis of each athlete’s fat oxidation-exercise intensity relationship, athletes were 

classified as a fat or carbohydrate metabolic type (FMET and CMET).  

Method: For the purpose of this study 281 athletes, from a variety of sports and competitive 

level, undertook a graded exercise test to exhaustion on a treadmill in a fasted state (≥ 5 h 

fasted). Rates of fat and carbohydrate (CHO) oxidation during each stage of the test were 

determined using indirect calorimetry. Fat oxidation curves were constructed for each 

individual using mathematical modelling.  

Results: On average the MFO of all 281 athletes was 0.59 ± 0.17 g∙min-1 occurring at an 

average exercise intensity of 53 ± 15%    2max. Using set criteria 187 athletes were classified 

as FMET and the remaining 94 as CMET. MFO were significantly greater (0.63 ± 0.17 versus 

0.51 ± 0.13 g∙min-1) and occurred at a higher exercise intensity (61 ± 10% versus 38 ± 8% 

   2max) in the FMET group compared to CMET. sex, age, FFM,    2max, body mass, and 

percent body fat may account for 33% of the variation.   

Conclusion: Here we propose new criteria to group individuals as either FMET or CMET. 

CMET elicit MFO at the first exercise intensity, whereas individuals who showed an increase 

in fat oxidation followed by a decreased were classed as FMET. FMET appear to have higher 

MFO rates compared to CMET. Sex, training and body composition may explain some of the 

differences between the two groups (~33%).    
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6.2 Introduction 

Carbohydrate (CHO) and fat are the predominant energy sources during exercise (10). 

However, the absolute and relative contributions of CHO and fat are, amongst other factors, 

dependent on exercise intensity. In fact exercise intensity may be the single most important 

factor influencing substrate utilisation. In 2002, Achten et al (1) developed a graded exercise 

test protocol that allowed the determination of substrate metabolism over a wide range of 

intensities. This test provides a measure of maximal fat oxidation (MFO) as well as the 

exercise intensity at which fat oxidation is maximal (FATMAX).  This test is unique in that 

an individual has to perform only one bout of exercise to determine differences in metabolism 

at various intensities. Other studies have investigated substrate metabolism during prolonged 

exercise at different intensities where each exercise bout was performed on a separate 

occasion (8, 18, 21). However, day-to-day variation in metabolism (as a result of diet and 

other factors) could increase the variability (24) and make interpretation of results more 

difficult.  

Since the development of the FATMAX test, it has been used in numerous studies to 

determine fat oxidation profiles in trained (2, 13, 19), untrained (13, 19), obese (14, 22) and 

sedentary (22) individuals, as well as in children (25, 26) and adults (2, 3, 14, 19, 22). A 

common finding from all these studies is that large inter-individual differences exist in MFO 

and FATMAX, yet reproducibility seems to be good (intra- individual variation is small) (1, 

2, 14). In 2005 Venables et al (22) performed a cross sectional study of 300 individuals, 

ranging in body composition and aerobic capacity, and described MFO and FATMAX as well 

as the factors that influenced these parameters. The authors observed that on average MFO 

was 0.46 ± 0.01 g∙min-1 with a wide range of 0.18 – 1.01 g∙min-1 (22). MFO was reached at an 
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exercise intensity of 48 ± 1 %    2max again with a wide range (25 – 77%    2max) (22). Fat 

free mass (FFM), self reported physical activity,    2max, sex and fat mass (FM) accounted 

for 34% of the variance however the remaining 66% was unaccounted for. Some have 

suggested that young age may also play a role in the body’s ability to oxidise fats. Riddell et 

al (16) found higher (2-fold) peak fat oxidation rates in young boys (aged 11 – 12 y) 

compared to male adults (aged 22 – 26 y). Furthermore, as the boys progressed through 

puberty the authors reported a decrease in peak oxidation rates, despite no change in aerobic 

capacity (reported as    2max expressed relative to body mass) (16).  

Athletes typically have higher rates of fat oxidation compared to untrained individuals at a 

given relative and absolute exercise intensity (13, 19). This is because exercise training 

promotes skeletal muscle adaptations as well as whole body changes that favour fat oxidation 

(11). For example, trained individuals have high intramuscular triglyceride (IMTG) content 

located close to the mitochondria suggesting an increased efficiency in oxidation (15). 

Exercise training also promotes increases in mitochondrial mass which will allow fat 

oxidation and reduce the need for energy production through glycolysis (20).  Irrespective of 

sporting activity, competitive athletes may benefit from increasing fat oxidation rates. The 

ability to utilise fats and spare muscle glycogen is often associated with delays in fatigue and 

potentially improving endurance performance (9) and because higher rates of fat oxidation 

reflect an enhanced oxidative capacity it may also impact on recovery in team sports athletes 

in between high intensity exercise bouts.   

Previously we observed that fat oxidation in some individuals start high but decline as soon as 

the exercise intensity increases (Chapter 5). In other individuals, fat oxidation increases with 

exercise intensity until a certain point where it then declines. Reliability of this data is good 

(2), and results within an individual seem reproducible. However, it appears that inter-



Chapter 6 –Fat Oxidation in an athletic population  

168 
 

individual differences in fat oxidation are large (2, 8). Generally there may be different 

metabolic types i.e  those that have a higher capacity to oxidise fat during exercise and those 

who have a reduced ability to increase fat oxidation, despite similarities in some physical and 

physiological attributes. It may be possible to develop criteria to divide individuals into 

different categories based on metabolic type. This may help to elucidate why such differences 

exist and what health (and performance) implications this may have.  

Currently there are no normative data on MFO rates and FATMAX from an athletic 

population. Furthermore, no study to date has compared MFO and FATMAX of competitive 

athletes ranging in age, body mass,    2max and sporting activity. Therefore the purpose of 

the present study was to establish MFO and FATMAX from a large heterogeneous sample of 

athletes, with a focus on team sports. A second aim of this study was to use a new and 

validated mathematical model to determine the fat oxidation profile of each athlete and to use 

these profiles to classify athletes by metabolic type.  

6.3 Participants and Methods 

General Design 

Data were collected from two separate exercise physiology laboratories; 1) The Gatorade 

Sports Science Institute (GSSI), IMG Academy, Bradenton, Florida, US (GSSI US) and 2) 

GSSI, Loughborough University, Loughborough, UK (GSSI UK). The two separate 

laboratories tested 281 male and female athletes in total, 216 athletes were tested at GSSI US 

and the remaining 74 were tested at GSSI UK. All athletes performed a FATMAX test during 

a single visit to either testing location. The exercise protocol and equipment used were 

identical between the two sites. The graded exercise test was performed on a treadmill 
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(h/p/cosmos sports & medical, Germany). Whole body rates of fat and carbohydrate were 

calculated during each stage of the exercise test, using indirect calorimetry, to establish MFO 

and FATMAX. Environmental conditions varied slightly across the research sites but 

remained constant for all trials (20 – 23 °C and 41 – 37% relative humidity for GSSI UK and 

GSSI US respectively).  

 

Participants  

All volunteers were recruited via e-mail, personal visits/ meetings, telephone calls or the 

athlete personally contacting the testing facility. The majority of the athletes were recruited 

from the student pool at the IMG academy, the student pool at Loughborough University and 

athletes local to the GSSI UK and GSSI US area.  

The 281 athletes recruited for the purpose of this study ranged in competitive level however 

the inclusion criteria were the same for all athletes with the exception of age which was 16 – 

60 y in GSSI UK and 13 – 60 y in GSSI US.  Additional inclusion criteria included regular 

training or participation in sporting activity (≥ 1 session per week), healthy (assessed by 

completion of a general health questionnaire) and no known cardiovascular or metabolic 

disorders. Local ethical approval was obtained for each of the study sites. For GSSI UK the 

study was approved by the South Birmingham NHS National Research Ethics Committee 

(West Midlands, UK). For GSSI US the study was approved by The Sterling Institutional 

Review Board, Atlanta, Georgia.  

On initial contact the purpose and nature of the study was explained to all athletes. Informed 

consent was signed on-site, prior to the exercise test and following a more in-depth 

explanation of the testing protocol. Parental consent was obtained from volunteers who were 
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under the age of 18 (N=144).  All volunteers were healthy as assessed by a general health 

questionnaire. Prior to testing medical clearance was obtained for all participants who 

completed the testing at GSSI US.  

 

Experimental Design 

Each athlete reported to the laboratory in a fasted state (≥ 5 h) having consumed their normal 

habitual diet and abstained from strenuous physical activity, alcohol and caffeine 

consumption in the preceding 24 h. Before the initiation of the FATMAX test body 

composition was measured and height and nude body weight were recorded. Different 

techniques were used to measure body composition at the two different testing locations.  

Athletes underwent air displacement plethysmography (BODPOD, COSMED, Chicago, IL, 

US) at GSSI UK. Whereas Dual-energy X-ray absorptiometry (DXA) (Lunar iDXA, GE 

Healthcare, Buckinghamshire, UK) was used to measure body composition at GSSI US.    

The exercise test protocol was adapted from a previously described and validated protocol (1, 

14, 22). These studies demonstrated that 3 min stages can result in accurate and valid 

measurements of MFO and FATMAX. In the present study the exercise test was performed 

on a treadmill (h/p/cosmos sports & medical, Germany). The test started at 5.0 km/h-1 and at a 

gradient of 1% for three min. The speed then increased to 7.5 km/h-1. From this point, speed 

was increased by 1 km/h-1 every 3 min until an RER of 1 was reached. The speed then 

remained constant and the gradient was increased by 1% every 1 min. The test ended when 

athletes reached voluntary exhaustion or the test was stopped if two out of the three following 

criteria were reached: 1) levelling off in    2 with further increases in workloads (< 2 mL∙kg-

1∙min-1); 2) Heart rate within 10 beats/min (bpm) of age predicted max or 3) Respiratory 
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exchange ratio (RER) of >1.05.  Respiratory gas measurements (   2 and     2) were 

collected continuously using a Moxus Modular VO2 system (AEI technologies, Pittsburgh, 

USA). Furthermore, HR (Polar RS800CX, Polar Electro Ltd, Kempele, Finland) was 

measured throughout the whole test and Rating of Perceived Exertion (RPE) was recorded 

during each stage (Chapter 2).  

 

Indirect calorimetry and Calculations  

To calculate substrate metabolism the breath-by-breath data was averaged in 10 s increments, 

this was calculated automatically by the Moxus Modular    2 system (AEI technologies, 

Pittsburgh, USA) system. These raw data were then analysed manually for each athlete. In 

more detail, the first min and last 30 s of oxygen uptake (   2) and carbon dioxide production 

(    2) recorded during each stage of the test were excluded from analysis. The remaining 90 

s of data was averaged for each stage. Using this averaged data whole body fat and 

carbohydrate oxidation rates were calculated using Stoichiometric equations (7) assuming that 

protein oxidation was negligible throughout the test.   

 

Fat oxidation (g∙min-1) = 1.718∙   2 – 1.718∙    2 

CHO oxidation (g∙min-1) = 4.170∙    2 – 2.965∙   2 

  

For each athlete MFO, FATMAX and FATMIN (FATMIN; exercise intensity (expressed as 

%    2max) where fat oxidation becomes negligible and carbohydrate becomes the 
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predominant fuel source (i.e. RER ≥ 1.0)) were established. Furthermore, a metabolic profile 

was constructed where substrate oxidation rates were plotted against exercise intensity 

(expressed as a percentage of    2max) (Chapter 2).  

 

Determining Metabolic Type 

Each individual metabolic profile was used to determine the metabolic type of the athletes. 

From visual analysis of the metabolic profiles it became apparent that individuals could be 

split into two groups depending on the exercise intensity at which rates of fat oxidation were 

maximal. Firstly, we found a high proportion of athletes who had the highest fat oxidation 

rate (MFO) at the lowest exercise intensity of the test (e.g walking at 5.0 km/h-1). In these 

individuals any increase in exercise intensity resulted in a decrease in absolute fat oxidation. 

Therefore we have classified these individuals as having a CHO metabolic type (CMET). The 

metabolic profiles of the remaining athletes displayed an increase in fat oxidation with 

increases in exercise intensity until a certain threshold. Thus we classified these individuals as 

having a fat metabolic type (FMET).  This classification was independent of sex, age and 

sport. These differences in the fat metabolism-exercise intensity relationship has been found 

by others (8, 22) however this is the first study to group individuals based on their metabolic 

profile.   

 

Construction of Average Fat Oxidation Curves  

Further analysis of the data was performed, using Matlab (MathWorks Matlab 2011a, Natick, 

Massachusetts, U.S.A.), to construct average fat oxidation curves for both FMET and CMET. 
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In more detail, MFO for each individual was determined as the highest rate (g∙min-1) 

calculated using the stoichiometric equation described above. Then, 95% to 50% of MFO was 

calculated in intervals of 5% (i.e. 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60% 55%, and 

50%). To calculate the absolute    2 (mL) associated with these 11 fat oxidation rates, linear 

interpolation was applied between subsequent intercepts of the measured fat oxidation and 

   2 (mL) values. Each interpolated link consisted of 1000 hypothetical intercepts of    2 

(mL) and fat oxidation. Depending on the    2 at MFO a hypothetical    2 values, for each of 

the 11 fat oxidation rates intervals, could be determined. These values of absolute    2 were 

converted to a percentage of each individual’s    2max. This interpolation process was then 

repeated for heart rate and carbohydrate oxidation at the calculated fat oxidation rates. This 

mathematical model for calculating rates of fat oxidation has been validated in Chapter 5.  

 

Statistical Analysis  

Data analysis was performed using SPSS for WINDOWS software (version 19; SPSS Inc, 

Chicago, IL). Data are expressed as means ± standard deviations (SDs) unless otherwise 

stated. Sex, age and metabolic type differences in any anthropometric characteristics, MFO, 

MFO/FFM and FATMAX were identified using an independent t-test.  Differences in 

anthropometric characteristics, MFO, MFO/FFM and FATMAX between sports were 

identified using a one-way ANOVA. Differences in substrate utilization across different 

exercise intensities between the FMET and CMET were identified by using a repeated-

measured ANOVA.  
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Bivariate correlations were undertaken between MFO with the following as independent 

variables; age, sex, body mass, percent body fat (%BF), FFM, FM and    2max. Hierarchical 

linear regression analysis was then used to predict MFO with all the significant independent 

variables found in the bivariate analysis. Bivariate correlations, between MFO and the 

dependant variables mentioned above, were also performed on the FMET and CMET groups 

separately.   

It should be noted that a different technique (air displacement plethysmography and DXA) 

was used to assess body composition (FFM, FM and %BF) between the two testing locations. 

Lockner et al (12) found air displacement plethysmography (using a BODPOD) to under-

report %BF by 2.9% when compared to DXA in children aged between 10-18 y. Furthermore, 

a significant difference has been found between reported %BF obtained from DXA and 

BODPOD measurements in collegiate females (5). Therefore, to investigate whether the body 

composition technique used would impact the outcome of this study statistical analysis was 

performed once on the whole data set and also excluding the data where body composition 

was measured using air displacement plethysmography. No differences were found in any of 

the outcome measures, expressed relative to FFM, when air displacement plethysmography 

measurements had been removed. Therefore the statistical analysis was performed on the 

whole data set.         
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6.4 Results 

Athlete Characteristics 

 

The data presented in this study are from a diverse cohort of athletes including those who 

participate in team sports and individual sports/events. The competitive level of the athletes 

ranged from recreational all the way though to elite/professional. The physical characteristics 

of all athletes can be found in Table 6.1.  

 

Substrate Metabolism  

 

The average relative (MFO/FFM) and absolute MFO of the combined 281 athletes was 10.0 ± 

2.6 mg∙kg∙FFM-1∙min-1 and  0.59 ± 0.17 g∙min-1 respectively, occurring at a FATMAX of 53 ± 

15%    2max. Using our set criteria, 94 athletes were deemed CMET and 187 FMET. 

Anthropometric characteristics of the two groups can be found in Table 6.1. The two groups 

did not differ in body mass or HRmax. However the FMET group had significantly lower body 

fat percentage and fat mass and significantly greater FFM and    2max compared to CMET 

(P < 0.01).  On average, MFO (0.63 ± 0.17 versus 0.52 ± 0.13 g∙min-1) and MFO/FFM (10.4 ± 

2.6 versus 9.2 ± 2.3 mg∙kg∙FFM-1∙min-1) were significantly greater and occurred at a higher 

exercise intensity (61 ± 10 versus 38 ± 8%    2max) in the FMET compared to CMET.  

 

The average fat and CHO oxidation curves for the two groups can be found in Figure 6.1 A 

and B. The “cross-over” point of substrate metabolism (the point at which CHO becomes the 

predominant fuel over fat) was found at approximately 65%    2max in the FMET and 50% 

   2max in the CMET.  
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Sex Differences 

 

Of the 281 athletes tested 47 were females and 234 were males. Age was similar between the 

two groups (Table 6.3). The males were significantly heavier, had higher FFM and lower 

body fat percentage. In addition,    2max expressed per kg body mass and per FFM, was 

significantly higher in the males compared to females (P < 0.01) (Table 6.3). During the 

graded exercise test average absolute MFO rates (g∙min-1) were significantly greater in the 

males. However when MFO was expressed relative to FFM no sex difference was found. 

FATMAX did not differ between the males and females (Table 6.3). 
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Table 6.1 Participant characteristics in combined group, CMET and FMET 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are mean (±SD), ranges are in parentheses, of body mass Fat Free Mass; FFM, Fat Mass; FM, Maximal oxygen uptake;    2max (relative to body mass and 
FFM), Maximal heart rate; HRmax, Absolute (g∙min-1) and relative (mg∙kg FFM-1∙min-1) maximal fat oxidation (MFO), FATMAX and heart rate at FATMAX 
(HRfatmax) in the total athletes (N=281) and when grouped depending on metabolic type (CMET and FMET). * significantly different (p = <0.05) to CMET

 

Variable 

 

Combined Group 
(N=281) 

 

CMET (N=94) 

Males (N=70) 
Females (N=24) 

 

FMET (N=187) 

Males (N=164) 
Females (N=23) 

Age (y) 20 ± 7 (13 – 52) 18 ± 6 (13 – 45) 20 ± 7 (13 – 52)* 

%BF 18 ± 7 (4 – 37) 20 ± 7 (4 – 37) 16 ± 6 (4 – 36)* 

Body Mass (kg) 72 ± 13 (38 – 116) 71 ± 13 (39 – 116) 73 ± 13 (38 – 104) 

FFM (kg) 59 ± 12 (27 – 93) 56 ± 11 (27 – 83) 61 ± 12 (32 – 93)* 

FM (kg) 13 ± 5 (3 – 36) 15 ± 6 (3 – 36) 12 ± 5 (3 – 29)* 

   2max (ml∙kg-1∙min--1) 51 ± 6 (34 – 71) 48 ± 6 (34 – 60) 53 ± 6 (34 – 71)* 

   2max (ml∙kg FFM-1∙min--1) 62 ± 6 (42 – 78) 60 ± 5 (47 – 71) 63 ± 6 (42 – 78)* 

HRmax (bpm) 191 ± 9 (164 – 216) 192 ± 10 (167 – 210) 191 ± 9 (164 – 216) 

MFO (g∙min-1) 0.59 ± 0.17 (0.11 – 1.09) 0.51 ± 0.13 (0.11 – 0.87) 0.63 ± 0.17 (0.25 – 1.09)* 

MFO/FFM (mg∙kg FFM-1∙min-1)  10.0 ± 2.6 (1.9 – 17.6) 9.3 ± 2.3 (1.9 – 14.8) 10.4 ± 2.6 (4.3 – 17.6)* 

FATMAX (%    2max) 53 ± 15 (25 – 91) 38 ± 8 (25 – 73) 61 ± 10 (35 – 91)* 

HRfatmax (bpm) 130 ± 26 (77 – 180) 105 ± 16 (77 – 171) 142 ± 20 (99 – 180)* 
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Age Differences     

 

Athletes were grouped into two age categories; over 18 y (using the assumption that these 

individuals had reached Tanner stage 5) and under 18 y. Of the 281 athletes tested, 144 were 

under 18 y and 137 were over 18 y. The average age in these two groups was 15 ± 1 and 24 ± 

7 y respectively. The over 18 y group was significantly heavier, had a higher FFM and %BF 

compared to the under 18s.  Furthermore, absolute    2max was significantly higher in the 

over 18 y group when compared to the under 18 y (3991 ± 754 and 3381 ± 622 mL (P < 0.01).  

However, when    2max was expressed relative to body mass and FFM there was no 

difference between the two age groups (Table 6.2). MFO rates were significantly greater in 

the over 18 y however, when expressed relative to FFM no differences between the two 

groups were found (Table 6.2). Furthermore, there was no significant difference in FATMAX 

or HRFATMAX (Table 6.2). 
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 Table 6.2 Participant characteristics of males, females, under 18s and over 18s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are mean (±SD), ranges are in parentheses of body mass, Fat Free Mass; FFM, Fat Mass; FM, Maximal oxygen uptake; Percent body fat; %BF,    2max 
(relative to body mass and FFM), Maximal heart rate; HRmax., maximal fat oxidation; MFO, FATMAX and heart rate at FATMAX; HRfatmax. * P < 0.05 compared to 
males. † P < 0.05 compared to under 18s.  

 

Variable 

 

Males   

(N=234) 

 

Females  

(N=47) 

 

Under 18s (N=144) 

Males N=123 
Females N=21  

 

Over 18s  (N=137) 

Males N=111 
Females N=26 

Age (y) 19 ± 6 (13 – 52) 21 ± 8 (14 – 45) 15 ± 1 (13 – 17) 24 ± 7 (18 – 52)† 

%BF 16 ± 6 (4 – 37)  25 ± 7 (9 – 37)* 19 ± 6 (6 – 37) 16 ± 7 (4 – 37)† 

Body Mass (kg) 74 ± 13 (38 – 116) 64 ± 9 (39 -82)*  67 ± 12 (38 – 102) 77 ± 12 (39 – 116)† 

FFM (kg) 62 ± 11 (27 – 93) 48 ± 6 (33 – 55)* 55 ± 10 (27 – 81) 65 ± 12 (33 – 93)† 

FM (kg) 12 ± 5 (3 – 36) 16 ± 6 (5 – 29)* 13 ± 5 (3 – 36) 12 ± 5 (3 – 33)  

   2max (ml∙kg-1∙min--1) 53 ± 5 (34 – 71) 44 ± 6 (34 – 63)* 50 ± 6 (34 – 64) 52 ± 7 (34 – 71)† 

   2max (ml∙kg FFM-1∙min--1) 63 ± 6 (42 – 78) 59 ± 5 (47 – 75)* 62 ± 6 (42 – 78) 62 ± 6 (47 – 78) 

HRmax (bpm) 192 ± 9 (164 – 216) 191 ±10 (167 – 205) 194 ± 8 (174 – 216) 189 ± 9 (164 – 209) † 

MFO (g∙min-1) 0.61 ± 0.16 0.50 ± 0.17* 0.54 ± 0.14 0.64 ± 0.18† 

MFO/FFM (mg∙kg FFM-1∙min-1)  9.9 ± 2.4 10.4 ± 3.2 10.0 ± 2.4 10.0 ± 2.7 

FATMAX (%    2max) 54 ± 15 52 ± 13 53 ± 17 54 ± 12 

HRFATMAX (bpm) 130 ± 20 128 ± 24 131 ± 28 129 ± 23 
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Sporting Activity   

 

Athletes were divided into different subgroups depending on the energy demand of their 

sporting activity. Using the metabolic equivalent (MET) intensity levels, as proposed by 

Ainsworth et al (4), sports were grouped as 1) Low (LOW; 3 – 6 METS) 2) Moderate (MOD; 

8 – 10 METS) and 3) High (HIGH; > 10 METS). The sporting activities associated with the 

three groups can be found in Table 6.3.  

Anthropometric data of the three groups (LOW, MOD and HIGH) can be found in Table 6.4. 

On average absolute MFO rates were significantly greater in the MOD and HIGH group 

compared to LOW (Table 6.4). However when MFO was expressed relative to FFM there 

were no differences between any of the groups. FATMAX was significantly higher in the 

HIGH group compared to LOW. However there was no difference in FATMAX in the MOD 

group when compared to LOW and HIGH (Table 6.4).    
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Table 6.3 Sport/Activity classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sport/ Activity classification based on the energy demand of the sport (Low, Moderate and High) (4). Number 
(N) of athletes who participate in each sport are shown in parenthesis.   
 

 

 

LOW 

 

MOD 

 

HIGH 

Baseball (N=27) Basketball (N=32) Decathlon (N=1) 

Golf (N=31) Beach Volleyball (N=2)  Rowing (N=1) 

Polevault (N=1) Boxing (N=2) Running (N=5) 

Weight Lifting (N=1) Jump Rope (N=1) Track (N=8) 

 Lacrosse (N=10) Triathlon (N=7) 

 Rugby League (N=11) Ultra Endurance (N=9) 

 Rugby Union (N=16)  

 Soccer (N=70)  

 Taekwondo (N=1)  

 Tennis (N=35)  
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Figure 6.1 Fat and carbohydrate profile for FMET and CMET 

 

 

Mean absolute (kcal∙min-1) substrate oxidation over a range of exercise intensities in the FMET (A) and CMET (B) athletes. Values are means ± SE; fat and 
carbohydrate oxidation represented by filled and open circles respectively.  
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 Table 6.4 Participant characteristics of athletes grouped by sporting activities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are mean (±SD), ranges are in parentheses, for body mass, percent body fat; %BF, Fat Free Mass; FFM, Fat Mass; FM, Maximal oxygen uptake;    2max 
(expressed relative to body mass and FFM), Maximal heart rate; HRmax maximal fat oxidation; MFO, FATMAX and heart rate at FATMAX; HRfatmax. Means with 
different superscript letters are significantly different from each other, P < 0.05. 

 

Variable 

 
LOW 
(N=60) 

 
MOD 
(N=181) 

 
HIGH 
(N=32) 

Age (y) 17 ± 2 (13-27)a 18 ± 4 (13–36)a 29 ± 8 (17–52)b 

%BF 20 ± 6 (9–37)a 17 ± 7 (4–37)b 16 ± 6 (6–29)b 

Body Mass (kg) 71 ± 11 (50–102) 72 ± 13 (38–116) 70 ± 13 (39–97) 

FFM (kg) 57 ± 10 (40–81) 60 ± 12 (27–93) 60 ± 12 (33–78) 

FM (kg) 14 ± 5 (5–27)a 12 ± 5 (3–36)a,b 11 ± 4 (5–22)b 

   2max (ml∙kg-1∙min--1) 48 ± 6 (34–60)a 52 ± 6 (34–64)b 54 ± 8 (38–71)b 

   2max (ml∙kg FFM-1∙min--1) 60 ± 5 (52–74)a 63 ± 6 (50–78)b 64 ± 7 (47–78)b 

HRmax (bpm) 193 ± 9 (170–212)a 192 ± 9 (167–216)a 187 ± 9 (164–202)b 

MFO (g∙min-1) 0.53 ± 0.12a 0.60 ± 0.17b 0.62 ± 0.20b 

MFO/FFM (mg∙kg FFM-1∙min-1)  9.4 ± 2.0 10.2 ± 2.6 10.5 ± 3.3 

FATMAX (%    2max) 49 ± 16a 54 ± 14b 57 ± 12b 

HRFatmax (bpm) 125 ± 30 132 ± 24 127 ± 22 
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.Figure 6.2 Correlation analysis 

 

 

 

 

Correlations between absolute maximal fat oxidation rates (g∙min-1) and body mass (kg), FFM (kg) and    2max (ml∙kg∙min-1). Open and filled circles represent the 
FMET and CMET respectively. Linear regression lines are shown as a solid and dashed line for the FMET and CMET respectively.  
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Table 6.5 Predictors of maximal fat oxidation 

 

 

 

 

 

 

 

 

 

 

 

 

 Multiple regression analyses of the whole data set (N=281) with MFO (g·min-1) as the dependant variable.

 

Dependant Variable 

 

Independent Variable 

 

R 

 

R
2 

 

Adjusted R2 

Coefficients Correlations 

β Sig. Zero order 
(r value) 

Partial Part 

MFO  FFM 0.58 0.34 0.33 0.62 0.16 0.50 0.09 0.07 

 Sex    -0.10 0.13 0.25 -0.09 -0.08 

    2max (ml∙kg-1∙min--1)    0.43 0.00 0.32 0.35 0.30 

 %BF     0.28 0.13 -0.25 0.09 0.07 

 Body Mass    -0.02 0.95 0.46 -0.04 -0.03 

 Age     -0.00 0.99 0.15 0.00 0.00 
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Determinants of MFO in an athletic population  

Bivariate correlation analysis was performed on the whole data set with MFO as the 

dependant variable. FFM, body mass, age, sex,    2max (ml∙kg-1∙min-1) and %BF were 

significantly correlated (Table 6.5). No correlation was found between absolute FM and 

MFO. In addition, multiple regression analysis was performed with MFO as the dependant 

variable. The predicator variables included in the analysis were those variables that were 

significantly correlated with MFO in the bivariate correlations (Table 6.5). The results show 

that FFM, body mass,    2max (ml∙kg-1∙min-1), sex, age and percent body fat account for 33% 

of the variance in MFO.  

Furthermore, correlation analyses were performed on the CMET and FMET data sets with 

MFO as the dependant variable (Figure 6.2). MFO rates in the FMET group were 

significantly correlated with age (r=0.17, < 0.05), body mass (r = 0.46, P < 0.01), %BF (r = -

0.21, P < 0.01),    2max (r = 0.21, < 0.01), and FFM (r = 0.47, P < 0.01). MFO rates in 

CMET individuals were correlated to body mass (r = 0.42, P < 0.01), FFM (r = 0.42, P < 

0.01) and FM (r = 0.26, P < 0.05).  

6. 5 Discussion 

These data confirmed previous data (8, 22) that individuals have different metabolic profiles. 

Here we defined criteria to divide participants into two groups based on the shape of their fat 

oxidation curve. This is also the first time that fat oxidation rates have been described in a 

diverse and large athletic population (N=281). On average we found absolute and relative 

MFO rates of 0.59 ± 0.17 g∙min-1 and 10.0 ± 2.6 mg∙kg∙FFM-1∙min-1 respectively, occurring at 



Chapter 6 –Fat Oxidation in an athletic population 

187 
 

an exercise intensity of 53 ± 15%    2max. However as reported previously we also observed 

large inter-individual variation in MFO and FATMAX (Table 6.1).  

Using a similar graded exercise test, only one other large scale (N=300) study has 

investigated fat oxidation rates in healthy adults. (22). This study (22) described fat 

metabolism in a population including the opposite ends of the spectrum in terms of body 

composition and aerobic capacity. On average, MFO was 0.46 ± 0.01 g∙min-1 reached at a 

FATMAX of 48 ± 1%    2max (22). Averages however only tell part of the story, as a large 

inter-individual variation in both MFO (0.18 – 1.01 g∙min-1) and FATMAX (25 – 77% 

   2max) was found. Only a fraction of this variation was explained by body composition and 

aerobic capacity (34%). In other words, a highly trained professional cyclist in that study did 

not necessarily have higher fat oxidation rates than an untrained and overweight individual.  

In the present study we investigated fat metabolism in an athlete population. This population 

included athletes that ranged in body mass (range 38 – 116 kg) and aerobic capacity (   2max 

ranged from 34 – 71 ml∙kg-1∙min-1). In the previous study by Venables et al (22) body mass 

ranged from 46 – 132 kg and the    2max of the sample population ranged from 21 – 82 

ml∙kg-1∙min-1. However on average we observed greater MFO rates, occurring at a higher 

FATMAX. One explanation for this could be that the majority of athletes in our sample 

population were classed as having a fat metabolic type.  

This is the first study to group individuals depending on the exercise intensity at which MFO 

occurred introducing two new terms; 1) fat metabolic type (FMET) and 2) carbohydrate 

metabolic type (CMET). We defined CMET as individuals who displayed highest rates of fat 

oxidation at the first stage of the exercise test. In the context of the present study this related 

to a slow walk (5.0 km/h). In these individuals any increase in exercise intensity resulted in a 
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decrease in absolute rates of fat oxidation. On the other hand, FMET were defined as 

individuals who displayed an increase in fat oxidation with increases in exercise intensity 

until FATMAX occurred. Hereafter, absolute rates of fat oxidation decreased and CHO 

became the predominant fuel. We found that absolute and relative rates of MFO were 

significantly higher in the FMET when compared to CMET. In addition the “cross-over” 

point (a concept introduced by Brooks and Mercier (6)), where the relative contribution of 

lipids and CHO equally contribute to energy expenditure occurred at a higher exercise 

intensity in the FMET athletes compared to the CMET (~65 vs. 50%    2max respectively).  

In the present study we observed a higher proportion of individuals as FMET (N=187) than 

CMET (N=94). Thus accounting for the differences in average MFO between the current 

study and the previous study by Venables et al (22).  

It is obvious that there are different metabolic types however it is still unclear what exact 

variables predict fat metabolism during exercise. In the present study we have shown that 

MFO is positively correlated with    2max (r = 0.32). Investigating the role of    2max on fat 

oxidation Achten et al (2) divided 55 trained cyclists into two groups; 1)    2max higher and 

2)    2max lower than the group average (~80 vs. ~59 ml∙kg-1∙min1 for the high and low 

group respectively). Interestingly Achten et al (2) found that MFO rates in the high    2max 

group were significantly greater (0.56 ± 0.14 g∙min-1) compared to the low    2max group 

(0.48 ± 0.15 g∙min-1). When looking at our two metabolic type groups, the average    2max in 

the FMET individuals was significantly higher than CMET. 

In addition we found FFM to be positively correlated with MFO (r = 0.50). Again when 

comparing our two metabolic groups, FFM was significantly higher in the FMET group 

compared to CMET. It was previously found that individuals with a higher proportion of type 
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I (oxidative) muscle fibre had a great capacity to oxidise fats (23). However several years 

later, Goedecke et al (8) found no link between skeletal muscle composition and substrate 

metabolism. These authors found that it was the activity of oxidative enzymes and the ratio of 

oxidative to glycolytic enzymes which determined exercise metabolism at different workloads 

(25, 50, and 70% of peak power output). Increases in oxidative enzyme activity may be a 

result of current training volume (which has been found to negatively correlate with exercise 

RER (8) and subsequent skeletal muscle adaptations). Training volume and skeletal muscle 

enzyme activity were not measured in the present study but it could be suggested that both of 

these predictor variables may have been higher in the FMET group.   

We also observed a small but significant positive correlation between MFO rates with age (r = 

0.15) and sex (r = 0.25). It has been reported that peak fat oxidation rates decrease with age 

(17). However in the present study the FMET individuals, who displayed higher MFO, were 

significantly older than the CMET. In regards to sex differences in substrate metabolism, 

previous research has found higher MFO in females compared to males (22). However we 

found no sex differences in fat oxidation (when expressed relative to FFM). Furthermore there 

were equal numbers of females in the two metabolic type groups. Therefore using the current 

data, taking into account the relatively low female sample size, we cannot fully determine 

what impact sex has on fat metabolism in this athletic population. 

However, we can be confident that the differences we observe in metabolic type/metabolic 

profiles are not due to day-to-day variation. Figure 6.3 shows fat oxidation curves of 5 

athletes who undertook a FATMAX test on two occasions, under identical testing conditions. 

From these graphs it is apparent that our metabolic type and metabolic profile is individual 

and does not vary from day-to-day or from test-to-test. Therefore taken together, we have 

found body composition (FFM, body mass, %BF)    2max, age and sex to account for 33% of 
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the variance in MFO. These observations are in agreement to Venables et al (22) who found 

similar predictor variables to account for 34% of the variance in MFO, in a group of healthy 

adults. Thus, factors which may explain the remaining ~60% of variance are still left to be 

determined.   

One of these factors is likely to be the habitual diet. In 2001, Helge et al (9) manipulated the 

diet and training regime of 13 healthy males. During a 7 week period participants consumed a 

low-CHO diet (21% CHO and 62% fat) or a moderate-CHO diet (65% CHO and 20% fat), 

whilst following the same training protocol. After the 7 week period participants completed a 

steady state exercise bout during which substrate metabolism was measured. Helge et al (9) 

found that the respiratory exchange ratio (RER) was significantly lower (indicative of higher 

fat utilisation) in the participants who had consumed the low-CHO diet. Furthermore, Coyle 

et al found a 27% decrease in fat oxidation rates during exercise when participants consumed 

a high CHO diet (of which 88% of the total energy intake was CHO and <2% fat) compared 

to a moderate CHO diet (68% CHO and 22% fat). Also, when a very large amount of glucose 

was ingested pre-exercise, fat oxidation was suppressed by 34% compared with no 

carbohydrate ingestion .This figure would represent the largest expected reduction in fat 

oxidation. What can be taken from this finding is that habitual diet may be responsible for an 

additional ~30% of the variance observed in fat oxidation. 
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Figure 6.3 Fat oxidation curves: multiple tests 

 

 

 

 

 

 

 

 

 

 

Metabolic profiles (absolute fat oxidation on the y axis and exercise intensity on the x axis) of five different athletes who completed a FATMAX test on two separate 
occasions Open and filled circles represent test 1 and test 2 respectively. .   
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Goedecke et al (8) found, in 61 endurance trained cyclists, that resting muscle glycogen 

content was positively correlated to RER during exercise at 25% of peak workload (Wpeak). At 

the same exercise intensity and when the intensity was increased to 50% Wpeak a negative 

correlation was found between plasma FA concentrations and RER (8). Furthermore, a 

positive association was found between plasma lactate levels and RER at 50 and 70% Wpeak 

(8). This highlights the influence of endogenous substrate availability on substrate oxidation.  

In conclusion, this is the first study to present MFO from an athletic population. In addition, 

we have established that individuals can be grouped as having a fat metabolic type (FMET) or 

CHO metabolic type (CMET). FFM, percent body fat, age,    2max may account for some 

but not all of the difference between these two groups. Future research should investigate the 

role of habitual diet, current training program and endogenous substrate availability on fat 

oxidation rates in athletic and healthy populations.   
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7.1 General Discussion  

Green tea extract ingestion has been found in some (8, 24) but not all studies (5, 23) to 

increase fat oxidation rates under resting conditions. On balance, it is reported that resting 24 

h fat oxidation may be increased by up to 16% through ingestion of caffeinated GTE (14). 

Under exercise conditions the effects of GTE ingestion on upregulating fat metabolism is 

equivocal at best and there are a limited number of studies. Therefore, the main aim of the 

series of studies in this thesis (Chapters 3-5) was to systematically investigate if GTE 

ingestion increases fat oxidation during exercise. In addition, these studies were designed to 

elucidate if the duration of ingestion and the composition of GTE could alter metabolism to a 

greater degree.  

Venables et al (27) were the first to investigate acute (24 h) GTE (~890 mg total catechins) 

ingestion on fat oxidation during steady state exercise (30 min cycle at ~60%    2max). In 

this study the authors found GTE to increase whole body rates of fat oxidation by 17% 

compared to placebo. The first study presented in this thesis (Chapter 3) was designed to 

expand on this previous work and investigated differences between short term (24 h) and 

longer term (7 days) ingestion on substrate metabolism during exercise. In Chapter 3, one 

group of physically active males received a placebo for 6 days followed by GTE on the final 

day (~1200 mg total catechins). A second group of participants ingested the same GTE 

beverage for a total of 7 days. Both groups undertook a steady state exercise trial (60 min 

cycle at ~55%    2max) before and after the ingestion period.  

In contrast to Venables et al (27) we found no difference in fat oxidation in the one day GTE 

group compared to the baseline trial. This was unexpected as the study design and sample 

population was similar between the two studies (27). Following 7 days of GTE ingestion, 

plasma concentrations of fatty acids (FAs) and glycerol were elevated at rest and during 
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exercise compared to baseline. However despite this increase in fuel availability, fat 

oxidation rates during the exercise bout were unchanged.  

Hodgson et al (13) performed metabolomics analysis on the plasma samples collected in 

Chapter 3 (from the placebo and the 7 day GTE group only). It was found that ingestion of 

GTE did not enhance adrenergic stimulation (indicated by no change in plasma adrenaline or 

noradrenaline) during exercise. Thus, not providing support for the often proposed acute GTE 

ingestion mechanism (For more information refer to Introduction 1.13). We also found in the 

GTE group an increase of glycolytic metabolites during exercise compared to placebo. 

Therefore, taking together the metabolomics data with the substrate metabolism data obtained 

in Chapter 3, it appears that acute/ longer term ingestion of GTE did not result in the 

expected metabolic changes.  

One of the differences between the study described in Chapter 3 and the previous work by 

Venables et al (27) is that in Chapter 3 the GTE contained a moderate dose of caffeine 

whereas Venables et al (27) used a decaffeinated extract. In fact in Chapter 3, when the 

participants were consuming GTE, daily caffeine intake by the participants was moderate 

(240 mg/ day, equivalent to ~3-4 cups of coffee) and on the morning of the exercise trial an 

additional 120 mg of caffeine was consumed. Interestingly, Hodgson et al (13) also found 

increases in plasma lactate during exercise in the GTE group, which was not observed in the 

placebo group. Caffeine has been found to increase glycolysis and has been associated with 

subsequent inhibition of fat metabolism (12). It is likely that the effect of caffeine is dose 

dependent, with lower doses stimulating predominantly fat metabolism and higher doses 

stimulating carbohydrate metabolism more. If this is the case, the moderate caffeine intake in 

Chapter 3, may have counteracted any effect of GTE on fat oxidation and could explain why 

fat oxidation rates were unchanged.     
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Therefore, in the next study (Chapter 4) we investigated the effects of decaffeinated GTE 

(dGTE: containing ~1140 mg total catechins/ day) on exercise metabolism (during a 30 min 

steady state cycle at ~55%    2max) following a single bolus and 7 days of ingestion. We 

also changed the design of the study from a parallel design with 2 groups to a cross over 

study as was the case in study by Venables et al (27). One final addition in this study was that 

participants continued to consume the extract for a total of 28 days, following which a further 

exercise test was performed. This was designed to gain insight in the mechanisms that would 

be responsible for potential effects of long term GTE ingestion (reader is referred to section 

1.16 of the introduction). In this cross-over placebo controlled study we again found no effect 

of GTE ingestion on exercise metabolism at any of the measured time points (single bolus, 7 

days and 28 days). Furthermore, no change was found in plasma metabolites (FA and 

glycerol) at rest or during exercise when compared to the placebo trials.  

These findings are in agreement with a recent study by Eichenberger et al (9) in which 

endurance trained males ingested GTE (160 mg total catechins and 30 mg caffeine/ day) and 

placebo for three weeks, in a cross-over study design. Following both intervention periods 

participants completed a 2 hour steady state cycle ride. Similar to our findings (Chapter 4), 

Eichenberger et al (9) found no change in fat related plasma metabolites or substrate 

metabolism compared to placebo. Thus, our data (Chapter 3 and 4) and the data reported by 

Eichenberger et al (9) suggests that irrespective of feeding duration, GTE ingestion does not 

change substrate metabolism during steady state exercise in physically active males.  

It is well known that large inter-individual variation exists in absolute fat oxidation during 

exercise performed at the same absolute and relative intensity (1, 10, 25, 26). In addition, the 

exercise intensity at which fat oxidation is maximal (FATMAX) can also vary significantly 

between individuals (10, 26). Therefore it may be difficult to determine the true effect of a 

nutritional intervention on fat metabolism during steady state exercise (set at a standardised 
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intensity), as it may result in some people exercising above or below FATMAX.  It is also 

possible that effects of an intervention are dependent on the exercise intensity and whether fat 

oxidation is close to maximal fat oxidation in a control condition. In Chapter 5 we employed 

a graded exercise test (FATMAX test) to measure substrate metabolism over a wide range of 

exercise intensities following acute (24 h) dGTE and placebo ingestion. In this study 

physically active males consumed a standardised diet, in the 24 h prior to the exercise trial, 

which was similar in composition to their habitual diet. This was implemented in order to 

eliminate any effects that change in habitual diet may have on substrate metabolism (in the 

previous chapters all participants consumed the same standardised diet) (6, 7). Participants 

also consumed dGTE or placebo in this 24 h period and an additional dose two hours before 

the exercise trial.   

We constructed fat oxidation curves (absolute fat oxidation rates plotted against exercise 

intensity) for both of these intervention groups and observed no difference in the shape of the 

fat oxidation curves between the dGTE and placebo trials. Furthermore there were no 

statistical differences in absolute fat oxidation rates at any given exercise intensity between 

the two interventions. These findings in addition to our previous findings suggest that GTE 

has no effect on fat oxidation during exercise. 

In Chapter 5 I used, for the first time, a mathematical model in order to construct an average 

metabolic profile (absolute fat oxidation rates plotted against exercise intensity) for both 

interventions. I validated this mathematical model against manual analysis (the analytical 

technique used in previous studies (1, 3, 26)) and found that methods produced similar fat 

oxidation curves (Chapter 2 and Chapter 5). Therefore I used this model in Chapter 6 to 

describe the fat oxidation-exercise intensity relationship of a large athletic population.  
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Using this mathematical model I was able to construct a fat oxidation curve for each 

individual.  As I had observed in Chapter 5, some individuals have fat oxidation curves that 

are distinctly different from others. Based on these observations, we distinguished two 

categories, and using well defined (but arbitrary) criteria we introduced two new terms 

(metabolic types): fat metabolic type (FMET) and carbohydrate metabolic type (CMET). 

FMET individuals displayed an increase in fat oxidation with increases in exercise intensity 

until FATMAX occurred. On the other hand, METC individuals displayed the highest rates 

of fat oxidation at the lowest exercise intensity (walking a 5 km/h-1) and any increase in 

exercise intensity resulted in a decrease in absolute rates of fat oxidation. To our knowledge 

this is the first study to categorise individuals based on metabolic type according to set 

criteria. Although we found body composition, age, gender and aerobic capacity to explain 

some of variance, and diet may explain another part, a relatively large component of the 

variation is still unexplained. The next step for this area of research would be to run 

metabolomic analysis to establish if CMET and FMET individuals differ in their blood 

metabolic response during a FATMAX test. This may provide more systematic criteria to 

define the two metabolic types.  

7.2 Limitations and Future Directions  

Collectively the three studies presented in Chapter 3, 4 and 5 question the efficacy of GTE 

ingestion on increasing fat oxidation rates. It is possible that different effects may be found in 

other populations as these studies were all performed in physically active males. It cannot be 

excluded that a population with a lower aerobic capacity would display different results. In 

this thesis we recruited healthy, physically active males who were exercising at least 3 days a 

week for 30 – 90 minutes. The average    2max of these participants was ~50 ml∙kg-1∙min-1, 

indicative of a moderately trained population. Exercise training results in skeletal muscle 
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adaptations in favour of fat metabolism. Therefore, it could be assumed that the individuals in 

our studies already had a greater capacity to oxidise fats and any increase in fat oxidation 

from a nutritional intervention may go undetected. To support this proposed theory, in 

Chapter 4 we performed additional analysis and separated participants into two groups; 1) 

individuals who had a    2max higher and 2) individuals who had a    2max lower than the 

mean average. Although no statistical difference was found between the two groups the graph 

in Figure 7.1 illustrates that the percent change in fat oxidation following dGTE ingestion 

was greater in the low    2max group compared to the high group. Furthermore, studies 

which have found chronic (10 weeks) GTE ingestion to increase fat oxidation rates during 

exercise have been undertaken in healthy but sedentary individuals (16, 21). However, in 

these studies they combined 10 weeks of GTE ingestion with an exercise training program. 

Future studies should investigate the effects of chronic GTE ingestion on sedentary 

individuals (not undertaking an exercise program) to establish if GTE ingestion has an effect 

in this population.  

Individuals can now be classed into one of two metabolic types: FMET or CMET (using the 

metabolic type criteria described in Chapter 6). Using this classification system future 

research may want to explore the effects of a nutritional intervention on certain metabolic 

types. From revisiting the data in Chapter 5 it is apparent that the majority of the participants 

were CMET (illustrated in Figure 5.2). In these individuals acute dGTE feeding did not alter 

fat oxidation rates. There are many nutritional beverages, foods, supplements which claim to 

increase ‘fat burning’ however there is often a lack of conclusive literature to confirm these 

effects (17). It may be possible that the metabolic type of an individual may impact the 

effectiveness of some of these ‘fat burners’. Therefore, future research may wish to screen 

and group individuals based on metabolic profile to establish if a nutritional intervention has 

more or less of an effect depending on metabolic type.     
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Future research may also wish to explore the possible fat metabolism enhancing effects of 

GTE in aging and overweight populations, and the implications this may have on disease 

prevention and health. Overweight/ obese individuals have high levels of plasma FAs and 

IMTGs. However, they have a reduced capacity to oxidise these available fat stores (18), a 

situation which can lead to the development of Type II diabetes (18). Therefore, endurance 

exercise is often prescribed to obese individuals to promote weight loss and also increase fat 

oxidation rates (11). One study has found 12 weeks ingestion of GTE catechins, in 

conjunction with exercise training, to promote weight loss in overweight individuals (19). 

However, these findings cannot be attributed to increases in fat metabolism as substrate 

metabolism was not measured. Therefore, it would be of great interest to investigate if GTE 

ingestion could further augment fat oxidation rates in obese/ overweight individuals 

undergoing an exercise training program. In 2008, Murase et al (20) observed, in accelerated 

aging mice, that the age related decline in endurance capacity was prevented when fed a 

0.35% GTE diet (combined with exercise training). This finding was paralleled with greater 

skeletal muscle β oxidation rates (20). It is unknown if the same effects would be found in 

aging humans and the implications this may have on healthy aging. 

Ethnicity may also determine the potency of GTE ingestion.  The enzyme COMT is thought 

to play a crucial role in augementating fat oxidation following GTE ingestion (see 

introduction for more detail). However, COMT activity levels have been found to vary 

between individuals, with heredity and ethnicity playing a crucial role in determining the 

enzymatic activity (22, 28). The frequency of low activity COMT allele in Caucasian 

individuals is as high as 50% compared to 20-30% in Asian individuals and only 6% 

observed in Ghanaians (4, 22). A recent meta-analysis reported that GTE ingestion had a 

greater effect on weight loss in Asian populations (1.51 kg) than Caucasian individuals (0.82 

kg) (15). In addition, studies that have found chronic ingestion of a GTE to increase fat 
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oxidation rates during exercise were conducted in Asian countries (16, 21). In this thesis all 

participants were Caucasian; therefore, it could be suggested that GTE was less potent in this 

sample population. Therefore, GTE may have a more potent effect in Asian populations or 

populations with a high COMT activity level.  

Finally, future research should investigate the optimal time point at which to measure fat 

oxidation. At the onset of exercise, substrate metabolism is upregulated several fold 

compared to resting conditions (please refer to the introduction for a more detailed 

explanation). Day-to-day variation in fat oxidation rates during exercise have been found to 

be around 10% (2) (Randell et al, Chapter 5). Therefore, the fat metabolism enhancing 

effects of GTE may be small and go undetected, especially when fat oxidation rates are 

elevated as a result of exercise. Despite consistently finding no effect of GTE on exercise 

metabolism, we did find 7 days of GTE to increase plasma FA metabolites under pre-exercise 

resting conditions and during the exercise bout (Chapter 3). Unfortunately, more 

sophisticated measures (isotopic tracers or muscle biopsies) were not used to determine the 

fate of these FAs.  

In summary, to elucidate if GTE ingestion does have any substrate enhancing effects future 

studies may wish to investigate:   

 1) GTE ingestion on sedentary, overweight/obese and aging individuals  

 2) The impact of metabolic type on the effects of GTE ingestion  

 3) The interaction between ethnicity and GTE 

4) Use blood metabolomic analysis to systematically define metabolic type  
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