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Abstract 

Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of 

Doctor of Philosophy  

Phytoremediation potential for co-contaminated soils 

By 

Chigbo Chibuike Onyema 

Phytoremediation is a plant-based remediation process for treating contaminated soils. 

The overall aim of this thesis was to determine whether phytoremediation could be 

applied to co-contaminated soils. Copper (Cu) and pyrene, and Chromium (Cr) and 

Benzo[a]pyrene (B[a]P) were used as contaminants.  

The first study involved the joint effect of Cu and pyrene or Cr and B[a]P on the early 

seedling growth of Lolium perenne. Results suggest that co-contamination showed 

several types of interactions for seedling growth with different combinations of the 

pollutants. The second study involved the role Brassica juncea and Zea mays during the 

remediation of Cu and/or pyrene, and Cr and/or B[a]P co-contaminated soils 

respectively. Brassica juncea and Z. mays showed contrasting results for metal and 

polycyclic aromatic hydrocarbon (PAH) remediation. The third study compared freshly 

spiked soils and aged soils. Ageing affected the plant biomass, metal phytoextraction 

and PAH dissipation in different ways when compared to fresh soils. Finally, the 

efficiency of ethylenediaminetetraacetic acid-EDTA and/or citric acid as chelators in co-

contaminated soils was studied. The combined application of EDTA and citric acid was 

more effective in co-contaminated soils.  

The overall findings from the four studies suggest that phytoremediation could be   

applied to co-contaminated soils. 
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CHAPTER 1  

Introduction 

1.1 Background 

Contaminated land could be described as surface environments which have been affected 

by both natural and anthropogenic sources (US EPA 2008). It is a global problem that has 

both environmental and health implications. Internationally, contaminated land has 

occurred more extensively since the 1800s but its risk management is a 1970s phenomenon 

(Rivett et al. 2002). As the population increases globally, the need for land is likely to rise 

for purposes such as housing, production of food and energy and other activities. An 

estimated one-third of a million sites have been identified as contaminated in England and 

Wales (Ashworth et al. 2005). Due to the excessive need for land, many countries are 

encouraging the use of brownfield land rather than exploiting undisturbed land. These 

brownfield lands could have been previously contaminated with substances that are 

hazardous or could be potentially harmful. In United States of America for example, land 

development for both residential and commercial use in 2003 increased by 48 percent from 

its level in 1982 while population still increased (US EPA 2008). Therefore the need to re-

develop or re-use brownfield lands would mean the application of remediation technologies 

for its specific use. The need for sustainable development and land recycling has been 

increased by a number of governments since the Bruntland report was published in 1987. 

As an example, the UK government agreed that by 2008, previously developed lands 

should be used for building three out of five new homes (Batty and Anslow 2008) and 

about three out of four new homes by 2010. Also in developing countries, for example 

Nigeria where there are large cases of land contamination by its oilfield activities, there is a 
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need for improved treatment of the affected land (Chigbo 2009). Therefore, although the 

technological advances for land remediation have been improved, most of them are 

environmentally not sustainable as they mostly involve certain processes like ‘dig and 

dump’, which is the removal of soil to landfill (Batty and Anslow 2008). This method 

although effective just moves the contaminated soil (problem) elsewhere and due to the 

implementation of the European Union landfill directive (99/31/EC) that aims at reducing 

the negative impact of landfilling of waste to the environment, has become an unviable 

process (Jones and Hills 2002). Alternative methods, which include the application of other 

substances that could be potentially harmful to the environment or even thermal treatment, 

which destroys soil structure, are all unsustainable. 

Sustainable approaches to land remediation, which include the use of plants and microbes 

to transform or uptake toxic substances, have been proposed. These techniques have not 

been widely applied due to time restraints (Cost and risk), the identification of species that 

are appropriate for remediation and the cost in the case of use of microbes (Chen et al. 

2004). As much as these remediation technologies (both sustainable and unsustainable) 

have shown promise for individual pollutants (Gao and Zhu 2004), it has not been the case 

for sites that are contaminated by more than one single pollutant. This has been the 

challenge for soil remediation as many contaminated sites do not contain one single 

pollutant but instead a number of different substances (Lin et al. 2008, Zhang et al. 2011). 

Therefore combinations of traditional techniques are used to remediate these soils, which of 

late have included methods that use microbes. This combination of techniques uses energy 

in many cases and with the emphasis on sustainability, low energy and environmentally 

friendly technologies are required and phytoremediation could solve this problem.  
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 1.1.1 Phytoremediation Potential for contaminated land 

Phytoremediation is the use of green plants and their associated microbes to remove 

environmental pollutants or to render them harmless (Kambhampati and Vu 2013). It is a 

plant-based technology that enhances environmental clean-up (Pilon-Smiths 2005, Cook 

and Hesterberg 2013). It has the advantage of being less expensive than most traditional 

methods (the fact that it is carried out in-situ), environmentally sustainable since solar 

energy drives the process and aesthetically pleasing (Singer et al. 2007). However 

phytoremediation has limitations: for example, it is limited to sites where contamination is 

low and confined to rooting depth and the remediation process could affect the food chain 

when chemicals are degraded or taken up by plants (Pilon-Smiths 2005). Phytoremediation 

makes use of natural processes where the plants in combination with their microbial 

rhizosphere degrade and take up pollutants (organic and inorganic). It has shown to be 

effective in clean up of both organic and inorganic pollutants (Pilon-Smiths 2005). Most 

organic pollutants that are released into the environment are anthropogenic and are 

xenobiotic to organisms showing evidence of toxicity and carcinogenicity (Meagher 2000). 

The uptake or degradation of organics by plants is dependent on the pollutant properties 

such as their recalcitrant nature and solubility in water (Smith et al. 2006). Some organics 

such as Trichloroethylene (TCE) (Newman et al. 1997, Lewis et al. 2013), the herbicides 

atrazine (Burken and Schnoor 1997, Murphy and Coats 2011), petroleum hydrocarbons 

(Schnoor et al. 1995, Cook and Hesterberg 2013), polychlorinated biphenyls (Harms et al. 

2003, Li et al. 2013) have been successfully removed using plants.  

 In comparison to organics, inorganics are non-degradable and can only be stabilized or 

taken up by plants during the phytoremediation process. The science and technology of 

phytoremediation of inorganics has progressed significantly over recent years because of 
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the ease of inorganic detection in various plants (Salt et al. 1998, French et al. 2006, Zhu et 

al. 2012). Plant micronutrients, trace elements, non-essential elements and radioactive 

elements can be remediated by this method in solid, liquid and gaseous forms (Pilon-Smiths 

2005). This process relies on the ability of some plants to tolerate and accumulate high 

concentration of inorganics or in some cases, to be able to transform or stabilize the 

inorganics. In other words, the plants would be able to either tolerate or avoid uptake of the 

inorganic compounds.  

With land contamination, where both organic and inorganic substances are present, there 

has been limited work carried out to understand the potential use of phytoremediation for 

clean up. When studying these sites, it is very important to consider the interactions of both 

organic and inorganic substances with respect to those that can affect the form and 

availability of pollutants. Certain concentration of metals has been shown to inhibit the 

biodegradation of organics by microorganisms (Sandrin and Maier 2003, Thavamani et al. 

2013) and also interact with organic pollutants to affect metal bioavailability (Gao et al. 

2006). Plant growth could also be affected by a combination of pollutants. For example, 

Lin et al. (2006) concluded in their research that combinations of PCP and Cu sometimes 

exerted a toxic antagonistic effect on the growth of Raphanus sativus and Lolium perenne. 

Also, Zhang et al. (2009)  showed that the toxicity of Cd to Z. mays was not alleviated by 

pyrene. However, research in this area of combined effects has been limited and the 

methods of interaction are still unclear. 

 In as much as there are these negative effects, some literatures have reported positive 

effects of co-contaminants (organic and inorganic). Chen et al. (2004) showed that the 

reduction in the uptake of zinc in the shoot of rye grass was caused by the presence of 2,4-

dichlorophenol while Lin et al. (2008) concluded that at 50, 100 and 500mg kg-1, pyrene 
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showed the tendency to alleviate Cu inhibition to growth of Zea mays L. Therefore the 

question is, if organics reduce the uptake of metals in accumulators, could the potential of 

accumulators as phytoremediating plants be compromised? 

It is widely acknowledged that differences in plant species richness could cause resource 

partitioning and therefore affect ecosystem processes (Hooper 1998). Total resource 

capture could be increased by plants in more diverse communities (Macdonald et al. 2012). 

There was an observed increased productivity associated with increasing species richness, 

and mixed cultures of ryegrass, white clover and celery significantly helped in the 

dissipation of PAH more than mono cultures (Meng et al. 2010). Jiang et al. (2010) also 

showed increased growth stimulation and increased metal uptake (Cd and Zn) for the 

individual plants during co-planting in metal contaminated soils. The rates of respiration for 

microorganisms were also found to be dependent upon the composition and functional 

group of plant communities (Johnson et al. 2008). Therefore, there could be an argument 

that if diverse plant communities are provided which would in turn increase microbial 

diversity, there could be an enhanced degradation of individual pollutants and multiple 

contaminants in a co- contaminated sites. Presently there is limited research carried out to 

investigate this. For example, Echinochloa crusgalli, Helianthus annuus Abutilana 

vicennae and Aeschynomene indica removed TNT irrespective of it being mixed or 

monoculture as shown in the experimental phytoremediation of 2,4,6-trinitrotoluene, Cd 

and Pb co-contaminated soil carried out by Lee et al. (2007) for 180 days. They also 

reported that mixed species of Echinochloa crusgalli extracted more of Cd and Pb although 

all other mixed species extracted Cd and Pb in low to negligible amounts probably due to 

competition between species. Therefore, there is a need for research on a thorough 

understanding of the complex interactions between plant species. 
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In order to enhance the availability of metals and PAHs, as well as the translocation of 

metals from root to shoot, enhancing chemicals have proven to be efficient. For example, 

different kinds of chelates like EDTA, ethylenediamine disuccinic acid (EDDS), 

nitrilotriacetic acid (NTA) have all been effective in enhancing metal uptake by plants 

(Huang et al. 1997, Chen et al. 2003). Similarly, surfactants like Tween 80 improved the 

dissipation rate of fluoranthene and phenanthrene in PAH contaminated sewage sludge 

(Zheng et al. 2007). With soils co-contaminated with metal and PAH, there has been 

limited research to understand the role of enhancing chemicals during phytoremediation. 

Therefore the question is, if enhancing chemicals are applied to co-contaminated soils, will 

contaminants availability be enhanced? And will there be a simultaneous uptake of metals 

and PAH dissipation? 

As pollutants occur in aged soils in many brownfield sites (Olson et al. 2003), they may be 

highly soluble and unlikely to be immobilised. There could be questions as to why 

remediation would be necessary giving the non-bioavailability of the contaminants, but the 

interaction between pollutants which could be of particular concern in mixed contaminated 

sites could affect their bioavailability and subsequent uptake or removal by plants (Chen et 

al. 2004). This is a concern as many of the contaminants such as PAH and metals remain 

extremely persistant and toxic (Hamdi et al. 2012, Zhong et al. 2012)). Research in this 

area still remains unclear. 

1.2 Statement of problem 

 Most of the methods used for contaminated soil remediation in emerging countries are 

adaptations of technologies originally developed in industrialized countries (Adam and 

Guzman-Osorio 2008). These methods were designed for areas with different kinds of 
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economies, culture and mostly different physical and biological environments. 

Implementation of these methods is extremely costly as it requires materials, machinery 

and skills importation. However, in many developing regions especially in the humid 

tropical and subtropical environment, physical, chemical and biological processes occur 

which can be applied to remediate contaminated soils. Both in developed and developing 

countries, large amount of lands are contaminated mostly by more than one single 

pollutant. These multiple pollutants could be of the same form e.g., land contamination 

with different kinds of metal or with different kinds of PAHs etc or could be of different 

forms e.g. land contamination with organic pollutants (e.g. PAH) mixed with inorganic 

pollutants (e.g. metals). Research in this area is very limited and there have been gaps in 

knowledge on the use of plants to remediate the latter land types. As of present, most 

studies on phytoremediation of organic and inorganic contaminants in soil are mostly 

treated as two distinct topics both in the manner in which the contaminants behave and the 

remediation prospects As phytoremediation has been mostly used on single contaminants or 

multiple contaminants of same type, this research work will try to address the problems 

posed by the mixture of organic and inorganic contaminants during phytoremediation of co- 

contaminated industrial soils.  

  1.3 Aims and objectives.  

The overall aim of this research is to determine whether phytoremediation could be applied 

to co-contaminated sites. 

Within this overall aim there are several objectives: 

• To determine whether single and mixed contaminants affect seed germination rate 

and early seedling growth of selected plant species. 
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• To establish which plant species used in phytoremediation are tolerant of mixed 

contaminants 

• To determine whether uptake of metals by accumulating species is reduced in the 

presence of organic pollutants. 

• To determine whether soil amendments can facilitate phytoremediation in co-

contaminant soils 

• To determine the effect of soil ageing on phytoremediation of co-contaminated soils 

An understanding of the complex interactions between organic and inorganic pollutants 

within a contaminated land will be gained from this research work.   

1.4 Structure 

The chapter 2 of this thesis consists of an introductory literature review that outlines the 

mainstream concept of contaminated soils and methodologies for remediation. It also 

briefly described plant mechanisms responsible for the phytoextraction of metals and 

dissipation of PAHs in contaminated soils. Chapter 3 contains the description of soil 

localities, classifications and characterization for sites and soils used for this study. The 

description of sample preparation, greenhouse studies and analytical methods common to 

studies described in subsequent chapters are also included. 

The four main objectives of this thesis are individually addressed in chapters 4, 5, 6 and 7. 

Two model contaminant mixture (Cu+ pyrene and Cr + B[a]P) are used for each of the 

study and as such,  each of the chapters are made up of two separate individual study. 

Chapter 4 evaluated the effect of Cu and pyrene, and Cr and B[a]P on the germination and  

early seedling growth of L. perenne using growth media; Chapter 5 investigated the role of 

B. juncea or Z. mays as model plants for the remediation of soils co-contaminated with Cu 



31 

 

and pyrene, and Cr and B[a]P respectively; Chapter 6 compared freshly spiked soils and 

aged soils of Cu and pyrene, and Cr and B[a]P contaminated soil using B. juncea and Z. 

mays respectively; and Chapter 7  assessed the role of EDTA and citric acid as chelates in  

soils contaminated with Cu and pyrene, and Cr and B[a]P using M. sativa and Z. mays as 

model plants respectively. The findings from chapters 4 to 7 were individually discussed at 

the end of each study while chapter 8 concluded the thesis with a general discussion and 

approaches for further study. 

 

 

 

 

 

 

 

 



32 

 

  

 

        

               2 
                                                                                                     

Literature review 

 

 

 

 



33 

 

CHAPTER 2  

Literature review 

2.1 Soils - Characteristics 

Soils are formed by the physical, chemical and biological weathering of rocks to small 

particles (Chapin III et al. 2002). They are composed of three major phases: solid, liquid 

and gas. The phases are arranged in different ways to produce different soil types (Lozet 

and Mathieu 1991). The combination of the mineral component and the organic matter 

forms the solid phase.  The exact rock from which a soil is derived is reflected by the 

chemical components of a particular soil. Silica is the dominant component of the soil and 

it is present in silt, sand and clays (Derry et al. 2005), although some soils consists of very 

high organic matter with no inorganic mineral matter (Feurstenau 2003). The organic 

matter in soil is made up of plants, animals, humus microorganisms and their metabolites. 

The spaces between the solid articles are filled with water, which is made up of weak 

solution of salts and forms the solvent system by which plants and microorganisms 

assimilate nutrients (Feurstenau 2003).  The soil biological community ismade up of the 

microbiota (includes the algae, bacteria, fungi, protozoa etc), the mesobiota (includes the 

nematodes, small oligochaete worms, smaller insects and larvae etc) and the macrobiota 

(includes the root of plants, the larger insect, earthworms, other larger organisms etc). 
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2.2 Contaminated land 

2.2.1 Overview 

In the UK, land is classified as contaminated only when there is a risk of significant harm to 

humans, ecosystem, controlled waters, buildings, etc based on the existence of a pathway 

by which pollutants may impact on these receptors (Giusti 2013). Contaminated land is a 

global problem that constitutes significant threat to human and environmental health both in 

the present and future. As a result of increasing agricultural, civil and industrial practices, 

soils are severely degraded (Vamerali et al. 2010). Contaminated land has been an 

important topic in many areas of research, practice and policy within different countries, 

which has also been extended internationally (CLARINET 2002). The attached importance 

to contaminated land has been increasing over the years. Contaminated land is a term used 

to describe sites, including wider land areas with increased concentration of chemicals or 

other substances as a result of both anthropogenic and natural causes: the former being the 

major cause (CLARINET 2002). In many countries, government are actively encouraging 

non-exploitation of agricultural land, rather the use of sites that have been previously 

contaminated with potentially harmful substances (Urban Task Force 2005).However, 

before this land can be reused, it has to undergo some remedial work to make it fit for the 

purpose.In the UK, due to its long history of industrialization, many areas of land have 

become contaminated in different ways over a long period of time. For example arsenic can 

be found in high levels and in less bioaccessible forms in some areas of North Devon due to 

their long history of mining and smelting of arsenic and metalliferous ores (Palumbo-Roe 

and Klinck 2007). Contamination could be from point sources or non-point/diffuse sources. 

The point sources are from localized zones of high concentration of contaminant or a major 

release from a location that is defined whereas in the non point sources, the contaminants 
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are spread over a wide area, e.g. fallout from the atmosphere during smelting (Nathaniel 

and Bardos 2004). Soil contamination mostly affects the buffering, transforming and 

filtering abilities of the soil (EEA 2003). 

2.2.2 Impacts of contaminated land  

Certain environmental impacts are associated with land contamination. These include, 

1. Health impact on humans 

2. Impact on the ecosystem 

3. Impact on groundwater and surface water quality 

4. Impact on archaeology and building conditions 

These impacts lead to economic and social impacts, not only the cost of remediation, but 

the wider effects it has on the value of land and the well being of local inhabitants. In the 

past, some of these impacts received more attention than the others. Therefore, tools and/or 

technologies required for the assessment of these impacts and the choice of solution are not 

always perfect or mostly not available to address the emerging problems (CLARINET 

2002). 

2.2.3 Policy approaches 

Approaches to policy on contaminated land are often viewed in two perspectives. 

1. Protection perspective- This relates to the effects/impacts of land contamination on 

human health and also impacts on quality of the environment. 
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2. Planning perspective- This relates to the management of the impacts of 

contaminated land by the way land is used, .e.g. regeneration of old industrial 

areas(Ferguson 1999). 

The major aim of policy development is to address the above-mentioned perspectives 

simultaneously, but there is no consistency in the way that these perspectives are used by 

different countries to influence their legal requirements (Ferguson 1999). Whereas some 

countries use environmental legislation as the main means of avoiding contaminated land 

impacts, others use planning legislation. However,  a more holistic approach to urban 

development management  is linked to economic issues (Vegter et al. 2003). This includes 

changes to land valuation and the use of market to drive environmental improvements. 

However, this holistic approach should ensure sustainable development. For example, the 

need to consider the timing of any intervention as well as the future environmental, 

economic, social and cultural consequences of any particular solution (Vegter et al. 2003). 

2.2.4 Brownfields 

There is no fixed definition for brownfield. In Europe, it is used in different contexts and 

the meaning varies whereas in some countries, brownfield (complexity and context) is not 

recognised. Brownfield sites could be defined as sites that have been affected by its former 

use or the use of surrounding land, are neglected, have real or apparent contamination 

issues, and require intervention to restore it to beneficial use (CLARINET 2002). The most 

widely used definition of brownfields is provided by US EPA as ‘abandoned, idled, or 

under-used industrial and commercial facilities where expansion or redevelopment is 

complicated by real or perceived environmental contamination’ (De Sousa 2003). They are 

known as localized contaminated soils (French et al. 2006), since previous use of land 
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mainly for industrial purposes may have caused contamination problems.  As brownfield 

sites are used in reference to sites of known or perceived/suspected contamination probably 

because of former use, the problem could be extensive especially in terms of remediation 

and redevelopment. Previous research has shown that greening of brownfields improves the 

social well-being of residents in associated areas in different ways (De Sousa 2003). 

Therefore in as much as the major focus environmentally is to remediate these sites, using 

plants (phytoremediation) to achieve this could also improve residents well being by 

reducing stress for example (Kaplan 1993). 

2.3 Co-contaminated sites 

Co-contaminated sites could be described as sites that are simultaneously contaminated 

with pollutants of different nature (Almeida et al. 2009). For example, sites that are 

contaminated with trace metals are frequently contaminated with other chemicals of 

different nature such as petroleum hydrocarbon, pesticides, surfactants, etc. It is difficult to 

quantify the extent to which land is contaminated. Over two million sites have been termed 

as contaminated in Europe (European Environment Agency 2005) and about a sixth of that 

in the UK (Ashworth et al. 2005).  About 30,000 to 40,000 sites covering an area of about 

55,000-80,000 ha have been identified as being affected by contamination in England and 

Wales according to the recent research carried out by the Environment Agency, Department 

of Environment Food and Rural Affairs (DEFRA) and the Welsh assembly, excluding 

Scotland and northern Ireland as similar exercise are yet to be carried out in these areas 

(Land contamination,United Kingdom: statistics and related ) and from calculations, about 

750 sites covering an area of 30 ha is thought to be newly contaminated from 2001 to 

present day (Ashworth et al. 2005). As with the case of brownfield sites, records of use and 

potential contamination may be very limited most especially in cases where there is a long 
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history and therefore it could be difficult to ascertain the exact mix of pollutants associated 

with the contaminated land if thorough testing is not accomplished. This is in part due to 

the multiple use of land that was not recorded. Co-contaminated sites are in abundance and 

those contaminated with organic and inorganic compounds are most difficult to remediate. 

According to the review by Sandrin and Maier (2003), about 40% of the waste sites in US 

are co-contaminated with organic and inorganic compounds. This forms part of the 37% of 

contaminated sites in US reported to contain both organic and inorganic pollutants 

(Springael et al.1993). Depending on how land has been and/or is presently used, 

contamination would be of different combinations. For example, petrol stations could 

contain PAHs, benzene, toluene, ethyl benzene, xylene and solvents (Herwijnen and 

Hutchings 2005). In land that served as a timber industry in its former use, about 2/3 of the 

sites contain a mixture of organics and inorganics due to timber treatments used (Ensley 

2000). In cases where there is an existence of multiple contaminants in soil, the type of 

compound varies extensively as well as their concentrations and the background soil type.  

2.3.1 Assessment of contaminated sites 

Most brownfield sites in the UK do not contain high amount of contaminants and may not 

even be classified as contaminated land according to statutory definition (French et al. 

2006). This makes remediation a low priority. The decision on the need for remediation is 

based upon the source-pathway-receptor model which assesses the likely exposure of adults 

and children in contact with the contaminated site. DEFRA and Environment Agency have 

developed a model known as Contaminated Land Exposure Model (CLEA) and it is in use 

in UK for this assessment. It predicts the likely exposure of a child or adult in use of a land 

based on soil contaminant toxicity and exposure estimates and generates maximum safe 

limits for humans (DEFRA 2006). This approach focuses solely on human health and risk 
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to the environment is not covered. The direct measurement of bioavailable fractions are not 

included as well as potential interactions between contaminants which can affect their form, 

thereby altering the exposure and associated risks. For example work carried out by Chen et 

al. (2004) showed remarkable changes in the bioavailability of metals in the presence of 

organics (2,4- dichlorophenol). When pollutants are superficial and less bioavailable, it 

makes for the unsuitability of many of the existing remediation technologies (Chen 2009), 

likely due to high cost and the difficulty in removing the low levels of contaminants that 

may not be bioavailable (Chen 2009). Also in brownfield sites, most contaminants occur in 

aged soil and could be more recalcitrant and more difficult to remediate than in newly 

contaminated soils because contaminants are highly insoluble and are unlikely to be 

mobilized (Olsen et al. 2003). Therefore it could be asked that if contaminants are not 

bioavailable, what is the rationale for its remediation? The reason is that the evaluation of 

risk was based on total values and not bioavailability or the interaction between 

contaminants. Secondly, the environmental conditions change with time, which could 

impact upon the form in which contaminants occur, therefore affecting the way they behave 

within the environment. Therefore it is important that remediation of these low-level 

contaminated soils be dealt with appropriately. 

2.3.2 Remediation of contaminated land 

There are various ways a contaminated land can be remediated. According to Stegmann et 

al. (2001), they include, mechanical, thermal or biological processes such as- 

1. Restricting the use of the contaminated land and leaving the contaminants as they 

are. 

2. Encapsulation of the contaminated land (complete or partial). 
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3. Landfilling: carried out after excavation of the contaminated soil. 

4. In-situ or ex-situ treatment of contaminated soil. 

The processes listed above could be classified into two categories: isolation/containment 

and decontamination (Lambert et al.1997). The first three methods refer to the former as 

they do not remove contaminants from the soil but rather restricts the use of the 

contaminated soil. Based on the four processes listed above, different remediation methods 

have been developed in the last three decades due to the risk of contaminants to 

groundwater and air (Stegmann et al. 2001). These methods are discussed below which are 

otherwise known as traditional remediation technique- 

The physical method of remediation uses impermeable physical barriers to isolate and 

contain the contaminants, preventing/reducing their movement/permeability to less than 

0.0000001 m s-1 as required by US EPA (Mulligan et al. 2001). Soil washing is a well 

practised ex-situ physical technique in the U.S and Europe. It removes organic, inorganic or 

radioactive pollutants accumulated in the fine fraction of the soil matter by 

dissolving/suspending them in wash solution. Following the Landfill Regulation (2002) and 

the increased cost of disposing contaminated land this method may become more desirable 

in the UK. 

Chemical extraction is a technique that uses chemicals to extract contaminants from the 

soil. Solvent extraction uses organic solvents while acid extraction uses different types of 

acids for extracting different contaminants. For example, using a leaching solvent to 

remediate petroleum contaminants via partitioning (Friend 1996, Schifano and Thurston 

2007) and using citric acid, ethylenediaminedisuccinic acid (EDDS) and 
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methylglycinediacetic acid to efficiently extract Cu, Pb and Zn from soil (Arwidsson et al. 

2010, Wuana et al. 2010). 

Reductive/oxidative remediation detoxifies metal contaminants (Evanko and Dzombak 

1997) using hypochlorite, H2O2 and chlorine gas in the oxidation process or Na2SO3 salts, 

sulphur dioxide and ferrous sulphate in the reduction process. When carried out in-situ, the 

chemical agents for both the oxidation/reduction process should be selected carefully to 

prevent further soil contamination (Mulligan et al. 2001).  

The thermal decontamination technique involves heating the contaminated soil between 

150 oC and 500 oC to induce the transfer of the pollutants to a gas stream physically 

separating these pollutants from the soil (thermal desorption) or uses higher temperatures 

between 600 oC and 900 oC to induce the chemical modification of the contaminants 

(thermal destruction) (Merino and Bucala 2005). According to Risoul et al. (2002), Larsen 

et al. (1994) and Gilot et al. (1997), the properties of the contaminants, soil characteristics 

and the operating conditions are key parameters for thermal decontamination of organic and 

inorganic pollutants. 

2.4 Bioremediation 

Bioremediation is a process that allows the remediation of harmful/toxic chemicals by 

natural processes (US EPA 2001). It exploits the metabolic diversity and adaptation of 

microbes for degrading and transforming various organic and inorganic contaminants 

(Cunningham and Philip 2000). For practical application of bioremediation to be 

considered, there should be a demonstration that the removal of contaminants is the primary 

effect of biodegradation and that the degradation rate is greater than the natural rate of 

decontamination (Bento et al. 2005). Since microbes existing in soils/groundwater feed on 
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certain chemicals, the complete digestion of these chemicals by microbes convert them into 

water and gases such as CO2 (US EPA 2001). Commonly used organisms for this purpose 

are bacteria, fungi or protozoa either naturally occurring or genetically modified (Mathew 

2005). Organisms have been widely studied and shown to destroy organic chemicals, 

whereas they can either remove or convert metals to a stable form. For bioremediation to be 

successful, it is important to ensure that the correct environmental conditions are in place to 

maximise the growth and activity of the microbes. These conditions include nutrient 

content, soil structure and texture, temperature and oxygen content as well as the correct 

assemblage of the microorganisms (Baptista et al. 2005). If these conditions are not met, 

the microbes could grow too slowly, die or even create more harmful chemicals (US EPA 

2001). Different kinds of bioremediation methods have been developed to reduce the time 

required for degradation and reduce cost by increasing the degradative activity of native 

microbial populations (Perfumo et al. 2007). These approaches include the following, 

which can be in-situ or ex-situ: 

2.4.1 Biostimulation 

 This involves the addition of oxygen or mineral nutrients to stimulate the numbers and 

activities of natural populations, usually bacteria and fungi so that they can break down 

pollutants into harmless products ( Perfumo et al. 2007). In most environments, the 

presence of nitrogen and phosphorous is limited, even when total concentrations are high, it 

may be in a mineral form that is biologically unavailable (Hazen 2010). Therefore, 

biostimulation accerlerates the decontamination rate as the addition of one ore more rate 

limiting nutrients improves the microbes degrading potential (Nikolopoulou and 

Kalagerakis 2009). Nitrogen and phosphorous has been widely used in biostimulating 

processes to support growth of microorganisms. For example, Sakar et al. (2005) showed 
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that the addition of nitrogen and phosphorous as inorganic fertilizers and the addidtion of 

biosolids enhanced the biodegradation of petroleum hydrocarbon by up to 96%. However 

in some cases, addition of nutrients can negatively affect the microorganisms and 

biodegradation is suppressed. For example work carried out by Johnson and Scow (1999) 

showed that phenanthrene mineralization rates were depressed or remained the same with 

the addition of nitrogen and phosphorus to phenanthrene-contaminated soil. This could be 

as a result unbalanced or inappropriate level of nutrients, adsorption of the pollutant to the 

medium (soil) that prevents the availability of the pollutants for destruction or inactivity of 

the indigenous microbes caused by high concentration of pollutants.  

2.4.2 Bioaugumentation 

The success of bioremediation usually requires the application of strategies that are specific 

to the particular environmental conditions of the contaminated sites. Bioaugumentation 

which includes the addition of pre-adapted consortium, introduction of genetically 

engineered bacteria or the addition of biodegradation relevant genes packaged in a vector to 

be transferred by conjugation into indigenous microorganisms plays a major role during 

biodegradation (EL Fantroussi and Agathos 2005). From an application perspective, using 

microbial consortioum instead of a pure culture for bioaugumentation is advantageous 

(Nyer et al. 2002). Two factors limit the use of added microbial pure cultures for 

contaminated land treatment. Firstly, the non-indigenous cultures are unable to compete 

properly with the indigenous population to develop useful population levels and secondly, 

most soils that have been exposed to biodegradable contaminants for a long period have 

indigenous microorganisms that can effectively degrade the contaminant if treatment is 

properly managed (Vidali 2001). Although this method of remediation is simple, there have 

been many records of failures. For example, Bouchez et al. (2000) showed that there was 
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no improvement on nitrogen removal when a nitrifying batch reactor was inoculated two 

times with aerobic denitrifying bacteria even after addition of acetate as a nutrient. 

Nevertheless, some work has shown promise for the strategy of combining both 

bioaugumentation and biostimulation to enhance bioremediation (El Fantroussi and 

Agathos 2005). Alisi et al. (2009) successfully obtained complete degradation of diesel oil 

and phenanthrene to an overall 75% reduction of the total hydrocarbon in 42 days. 

Indigenous and exogenous microbes could benefit from the addition of energy sources or 

electron-acceptors. For example, Silva et al. (2004) with their development of a combined 

bioaugumentation and biostimulation process for treatment of site highly contaminated with 

atrazine, showed that bioaugumentation with Pseudomonas sp. strain ADPand citrate or 

succinate biostimulation increased attrazine mineralisation. 

2.4.3 Composting 

This method is based on ancient method of turning household waste into usable organic 

amendments. It uses the biological system of microbes in the compost to breakdown or 

transform contaminants in soil/water (USEPA 1997). This method of remediation has 

received little attention although it has been used for treatment of contaminated soils for 

many years (Atagana 2008). Most of the work has been carried out on low levels of 

contamination although compost has shown potential for remediation of heavily 

contaminated sites (Garcia Gomez et al. 2003). Many contaminants like PAH (Cajthaml et 

al. 2002), heavy metal (Barker and Bryson 2002) and pesticides (Frazer 2000) have been 

remediated by this method. For example Cajthanel et al. (2002) showed that after 42 days 

of composting, 35 to 68% of both 3 to 4 rings and other higher molecular mass PAH were 

removed. Metallic contaminants are not degradable, therefore during composting, they are 

converted into organic combinations that are less bioavailable than the mineral combination 
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of the metals (Barker and Bryson 2002). For example, Paré et al. (1999) showed that during 

composting of biosolids and municipal wastes, there was a decline in soluble components 

of metals like Zinc (Zn), Cr and Cu and an increase in residual, organically bound forms. 

Compost remediation works in the same way as the biological process of soil remediation. 

As there is increased temperature in compost than in soil, there is increased solubility of 

contaminants in compost which increase the destruction of contaminants helped with an 

increase and diversity of microbial population (Barker and Bryson 2002). Microbes play an 

important role from the beginning to the end of composting. Their increase and diversity 

are controlled by changes in levels of moisture, temperature and nutrients, these ensure that 

the contaminants are exposed to a wider range microbe-environment conditions (Ling and 

Isa 2006). Although composting has been effective (Carcama and Powers 2002, Ahiamadu 

and Suripno 2009), its vulnerability to high concentration (> 2500 ppm) of heavy metal 

(microbial growth could be inhibited), its requirement for impermeable liners and its 

requirement for large area of land for treatment has limited its use (Kalogerakis 2005). 

2.4.4 Land Farming  

This is an ex-situ remediation method that involves the application of contaminated soil to 

the land surface and with periodic mixing with agricultural equipment contaminant 

biodegradation is achieved (Irvine and Frost 2003). Contaminants such as total petroleum 

hydrocarbon (TPH) can also be volatilized using this process (Paudyn et al. 2008). Tilling 

of the soil periodically disrupts the aggregate, which accelerates nutrient and contaminant 

distribution throughout the soil while providing oxygen to the soil (Irvine and Frost 2003). 

As microbes in soil have diverse catabolic activities, adding compounds containing 

microbes to the contaminated site leads to pollutant degradation (Mmom and Deekor 2010). 

Cover crops could be planted during land farming remediation. This would enhance 
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rhizosphere degradation (Frazer 2000). Detailed assessment of rhizospheric degradation 

will be discussed in the phytoremediation section.  Land farming is slow because the 

conditions that affect degradation such as temperature and rainfall are uncontrolled (EPA 

1994), but it is a low cost technology. The rate of application is calculated and the size of 

land is based on the application rate. This is done to avoid concentrations that would be 

detrimental to the soil (Frazer 2000). Most land farming remediation requires the addition 

of nutrients to accelerate degradation by indigenous microbes. For example, with the 

addition of fertilizer, biodegradation was enhanced and enough hydrocarbons were 

degraded when land farming remediation was applied on hydrocarbon-contaminated soil in 

the Canadian Arctic (Paudyn et al. 2008). Although land farming is an effective 

remediation technique, it has its shortfalls. These include its remediation potential for 

inorganics since they are non-biodegradable and the presence of heavy metal concentration 

of 2500 mg kg-1 or more may inhibit microbial growth.  Also, volatile constituents may 

evaporate during aeration and could cause air pollution and it requires large land area for 

treatment.  Similarly, dust generated could cause air pollution and it is difficult to achieve 

more than 95% contaminant reduction (EPA 1994). 

2.5 Phytoremediation 

2.5.1 Definition 

Phytoremediation is a broad term that incorporates all the different processes that plants use 

to remove, transform or stabilize pollutants in soil, water or atmosphere. It is a  plant based 

remediation technology that is applied to both inorganic and organic contaminants in soil, 

water and sediments globally (Nwoko 2010). Natural processes by which plants and their 

associated microbes degrade and/or sequester inorganic and organic pollutants are 
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incorporated in this technology which makes it a cheaper and environmentallysustainable 

option to mechanical and chemical methods of removing contaminants from soil (Nwoko 

2010). It also generates fewer secondary wastes and less environmental impact than would 

be obtained using other traditional methods (Mohanty et al. 2010). Results of research for 

phytoremediation potential show that it is applicable to a broad range of contaminants 

including metals (Jadia and Fulekar 2009), radionuclides (Kaushik et al. 2008), organic 

compounds e.g, chlorinated solvents, BTEXbenzene, toluene, ethylbenzene and xylene 

(Weishaar et al. 2009), polychlorinated biphenyl (Chen et al. 2010), PAHs (Denys et al. 

2006) and pesticides (Chang et al. 2005). 

The term phytoremediation was not used until the 1980s although the use of plants to 

remediate radionuclide-contaminated soils was explored in the 1950s (Gerhardt et al. 

2009). According to Green and Hoffangle (2004), numerous laboratory and greenhouse 

studies are carried out to determine plant toxicities and contaminant uptake abilities. In 

order for phytoremediation to achieve global acceptance as a remedial method, field scale 

applications need to be carried out and documented. There have been extensive studies on 

application of constructed wetlands and vegetative covers in the field to demonstrate their 

phytoremediation capabilities as well as field scale studies of the use of plants for ground 

water and soil remediation (Olsen et al. 2003). 

2.5.2 Processes of phytoremediation 

The success of phytoremediation depends on the plants’ ability to assimilate and/or 

accumulate organic and inorganic contaminants in their cellular structures and to carry out 

deep oxidative degradation of organic xenobiotics (Kvesitadze et al. 2006). These are based 
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on some natural processes that are carried out by plants and according to Ralinda and 

Miller (1996), they include: 

1. The uptake of metals and some moderately soluble organic compounds like BTEX 

from soil and water. 

2. Accumulation or assimilation of organic contaminants through lignification, 

metabolization, volatilization and mineralization with CO2 and water as end products. 

3. Break down of complex organic molecules into simpler ones by enzymes. 

4. Increasing the carbon and oxygen content of the soils around the roots through the 

release of exudates and decay of root tissues. This helps in promoting microbial activity.   

5. Capture of groundwater (contaminated or otherwise) and using it for plant 

processes.  

2.5.3 Phytoremediation Technologies 

Depending upon the processes by which plants remove or reduce the toxic effects of 

contaminants in soil, phytoremediation technology can be classified as follows: 

a) Phytostabilization 

 Berti and Cunningham (2007) described phytostabilization as the use of plants to stabilize 

contaminants in soil. This could be either by preventing erosion, leaching or run off, or by 

transforming contaminants to less bioavailable forms through rhizospheric precipitation and 

preventing their migration into the food chain or ground water (Pillon-Smits 2005). The 

microbiology and the chemistry of the root zone helps the course of phytostabilization as 

soil pH may be changed by plant root exudates which leads to the alteration of the soil 
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environment or contaminant chemistry (EPA 2000). When this happens, there can be 

change in metal solubility or mobility (Salt et al. 1995) as well as dissociation of organic 

compounds if organic contaminants are present. Decrease in soluble arsenic (As) and 

cadmium (Cd) in soil as well as increase of soil pH with high concentration of the metals 

(As and Cd) present in root suggested that Lupinus albus can phytostabilize contaminants 

in soil in a field trial carried out by Vazquez and co workers in 2006. Phytostabilization has 

promising advantages as a soil remediation technology. Soil removal is unnecessary, 

leading to lower cost and less disruption to the environment (Pierzynski et al. 2002). With 

revegetation, the ecosystem is enhanced and there is no need for disposal of hazardous 

materials (EPA 2000). However, there are limitations to this technology. The contaminants 

remain in place and there could be a need for extensive monitoring (if the specific 

contaminant inhibits the reversal of the stabilization process), fertilization or amendment of 

vegetation since contaminants with an elevated toxic effect can affect plant growth 

drastically (Pierzynski et al. 2002). Plants used for this remediation technique should be 

tolerant to metals in metal contaminated sites (King et al. 2008) and/or the particular 

growing conditions of the site, have a shallow root system that enables stabilisation of the 

soil as well as uptake of soil water and should not be able to take up contaminants into plant 

parts above ground. Certain plants have been used to achieve phytostabilization. For 

example, poplars have a remediation potential of about 5 to 10 ft depth of a soil (EPA 2000, 

Pierzynski et al. 2002), Lupinus albus for Cd and As (Vazquez et al. 2006), Festuca 

cultivars for various heavy metals (Krzyzak et al. 2006), Agrostis tenuis for Zn (Panfili et 

al. 2005) and research have shown that native plants in Montana like Poa ampla, Elymus 

trachycaulus and Vicia americana can be used for phytostabilization of mine tailings 

(Neuman et al. 2005). An important aspect of phytostabilization is the identification of the 
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factors limiting the growth of plant. For example, poor soil properties (physical and 

chemical), phytotoxicity of metals, very high or low pH, salinity and inadequate plant 

nutrients can all affect plant growth. For successful vegetation establishment, these limiting 

factors need to be addressed (Pierzynski et al. 2002). However, studies have shown that 

amendments can address the issue of physical and chemical properties of soil and 

phytotoxicity. For example, Alvarenga et al. (2009) showed that sewage sludge, municipal 

waste and garden waste imomobilized Cu, Zn and Pb and decreased their mobile fractions 

in a highly acidic metal contaminated soil. Also, research carried out by Zanuzzi and Cano 

in 2010 showed changes in plant colonization, reduction in Pb and soil characteristics when 

organic and lime amendments was used for phytostabilization of a Pb polluted site. 

Inorganic fertilizer alone did not improve plant growth on a metal mine contaminated site 

when compared to animal wastes (Hetrick et al. 1994) although it improved growth of 

Thysanlaena maxima when grown on a lead-contaminated site (Rotkittkhun et al. 2006). 

b) Phytoextraction: 

Phytoextraction is the use of plants to remove inorganic (mostly metals) contaminants 

(Lasat 2002) and/or organic contaminants (Utmazian and Wenzel 2006) from contaminated 

soils, water, sludges or sediments. In practice, the contaminants are taken up by the plant 

roots, and moved to the above ground parts (EPA 2000).  For this technique to be 

successful, there should be soil-to-metal-to-plant interactions, which could be dependent on 

the extent of the soil contamination, bioavailability of contaminants, and plant 

accumulation capacity for contaminants in above ground parts (Lasat 2002). Plants have a 

natural tendency of taking metals (e.g. Ag, Cu, Co, Fe, Ni, Zn, Hg, Mo, Pb), non-metals 

(e.g. B, radionuclides such as 90Sr, 137Cs, 239Pu, 238U, 234U), metalloids (e.g. As and Se) and 

organics (e.g. TNT and PCBs) (EPA 2000, Alkorta and Garbisu 2001, Lasat 2002, and 



51 

 

Ficko et al. 2010). The roots of plants play an important role in phytoextraction. As 

phytoextraction is limited to the zone influenced by the roots of plants, the depth and size 

of the root determines the depth of phytoextraction (Keller et al. 2003). During a 

phytoextraction process, there should be restricted access to plants as well as proper 

disposal of harvested plant materials; this is because phytoextraction allows for 

accumulation of toxic levels of contaminants in the above ground parts of the plant (EPA 

2000). There are two basic strategies employed for efficient phytoextraction (Salt et al. 

1998). It can be continuous/natural using hyperaccumulators or accumulators or induced 

using chelates to increase bioavailability in soil (Utmazian and Wenzel 2006). However, 

some authors have reported that when EDTA was used as chelate, metal complexes 

remained in the soil water for several weeks, hence environmental issues could be a 

problem (Lombi et al. 2001, Wenzel et al. 2003). Hyperaccumulators/accumulators and 

chelates will be discussed later. For an efficient phytoextraction process, soil conditions 

must be appropriate for plants to grow and allow for contaminant migration with no metal 

leaching. Therefore to achieve this, soil pH could be adjusted to allow for contaminant 

bioavailability and subsequent uptake by plants (EPA 2000). Extracted contaminants in 

harvested plant biomass in a phytoextraction process could be a resource. For example, 

harvested plant biomass containing selenium could be used for animal feed (Banuelos and 

Mayland 2000). However, there are some limitations such as, the slow growth of 

hyperaccumulators, phytotoxic effect of contaminants on plants, and the need for plants to 

be harvested and disposed of (Prasad and Freitas 2003). 

c) Phytovolatilization: 

Phytovolatilization entails the uptake and transportation of contaminants by plants with 

subsequent release of the contaminant in normal or modified form to the atmosphere 
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(Vanek et al. 2010). It is mainly applied to groundwater but can be applied to soils, 

sediments and sludges (EPA 2000). It occurs as the plants take up water and contaminants 

(organic and inorganic) and the transport route could either be through open stomata in 

leaves with subsequent evaporation or by direct volatilization into the atmosphere from 

stems. For example, methyl tert-buthyl ether (MTBE) has the tendency to escape through 

the leaves, stem and even the barks of trees to the atmosphere (Hong et al. 2001, Ma et al. 

2004). Phytovolatilization mostly works with both organic and inorganic contaminants such 

as BTEX, trichloroethylene (TCE), vinyl chloride, selenium (Se), mercury (Hg) and arsenic 

(As) (EPA 2000, Kamath et al. 2004). The common characteristic of these organic 

contaminants (BTEX, TCE and vinyl chloride) is that they have a Henry’s constant greater 

than 10 atm m3 water m-3 air. Most organic contaminants with lower values have low 

volatility (Kamath et al. 2004). With the release of these contaminants into the atmosphere, 

those with double bonds such as trichloroethylene (TCE) and perchloroethylene (PCE) 

could be quickly oxidised in the atmosphere by OH radicals (Kamath et al. 2004). 

However, in some situations such as poor atmospheric conditions, the contaminants can 

pose a risk of precipitation. For example, mertyl ert-butyl ether (MTBE) can pose a risk to 

shallow ground water due to precipitation because it stays long in the atmosphere (Morgan 

et al. 2005). Studies have shown that hybrid poplars have the ability to take up and 

transform organic contaminants such as TCE to several metabolic products such as 

trichloroethanol, trichloroacetic acid and dichloroacetic acid and therefore demonstrating its 

potential for in-situ phytoremediation (Newman et al. 1997,Orchard et al. 2000, Muller et 

al. 2011). Also indian mustard (Brassica juncea L.) and canola (Brassica napus) have been 

used to phytovolatilize inorganics such as Se where the Se is converted to dimethyl selenide 

that is less toxic to the environment and released to the atmosphere (De Souza et al. 1999, 
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EPA 2000, De Souza et al. 2002). However, because the transfer of contaminants is 

involved in phytovolatilization, its effect on the ecosystem should be addressed before 

carrying out the process and for transpiration to occur significantly, the soil must be able to 

transmit sufficient water to the plant. Phytovolatilization has its advantages as more toxic 

contaminants are biotransformed to non-toxic forms and when they are released to the 

atmosphere, they could be subject to a more effective degradation. However, there could be 

a passage of toxic metabolites in late products of plants like fruits (EPA 2000). 

d) Phytodegradation: 

Phytodegradation entails the breakdown of contaminants accumulated by plants through 

metabolic activities within the plants (EPA 2000) or the breakdown of contaminants 

directly by compounds produced by plants such as enzymes from roots (Greipsson 2011). It 

is used for the treatment of soil, sediments, groundwater, sludges and surface water (EPA 

2000). In this process, contaminants are taken up from the soil or medium for remediation 

process by plant roots and metabolised into less toxic/non-toxic compounds in plant tissues 

by compounds produced by the plants (Salt et al. 1998, Singh and Jain 2003). The 

metabolic processes involved in phytodegradation are partly the same as that of human 

detoxification or elimination metabolic processes known as the ‘green liver’ model (Burken 

2003, Singh and Jain 2003). When contaminants are moderately hydrophobic, their uptake 

is efficient whereas that cannot be said for hydrophilic or extremely hydrophobic 

contaminants that are not easily translocated within the plant because they are strongly 

bound to the roots (Singh and Jain 2003). Very soluble compounds are not sorbed onto 

roots and neither are they translocated within plants while lipophilic compounds can only 

be bound or partitioned to root surfaces but with no further translocation within the plants 

(Pevetz 2001). Plants can metabolize various types of organic compounds. These include 
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TCE (Newman et al. 1997), TNT (Medina et al. 2000, Zhu et al. 2012)), atrazine (Burken 

and Schnoor 1997, Wang et al. 2010), hexachlorobenzene (fungicide), dichloro-diphenyl-

trichloroethane and polychlorinated biphenyls in plant cultures (EPA 2000). However, 

since phytodegradation requires the transformation of toxic contaminants to non/less toxic 

forms, the case of phytodegradation of TCE has been a concern as vinyl chloride which is 

highly toxic can be formed (Pevetz 2001), but work carried out by Newman et al. (1997) 

reported low levels of TCE metabolites in plants with no release of vinyl chloride. Organic 

compounds are mostly subject to phytodegradation although in addition inorganics can also 

be through uptake by plants and metabolism (EPA 2000, Pevetz 2001). The log K octanol-

water (logKOW) of organic compounds determines their possibilities for phytodegradation 

because uptake by plants is dependent on the hydrophobicity, solubility and polarity of the 

organic compound. However, phytodegradation outside the plant does not depend on 

logKOW and plant uptake. Plant-formed enzymes such as dehalogenase, nitroreductase, 

peroxidase, laccase and nitrilase have been discovered in soils and plant sediments (Pevetz 

2001). For example, Schnoor et al. (1995) showed that the concentration of dissolved TNT 

in flooded soil decreased by over 92% in the presence of parrot feather (Myriophyllum 

aquaticum)that produces the nitroreductase enzyme. The advantages of this remediation 

method are rewarding. Contaminant degradation by enzymes from plants can take place 

without the need for microorganisms. Therefore when an environment lacks suitable 

microorganisms probably due to high contaminant level, phytodegradation could serve a 

useful remediation process and secondly, plants can grow in soil with high contaminant 

concentration that are not conducive for microorganisms (EPA 2000). However, the 

presence of metabolites within a plant might be a hard task to determine. Therefore 

confirmation of contaminant destruction could be difficult, although Newman et al. (1997) 
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determined the presence of metabolites of TCE like trichloroethanol, trichloroacetic acid 

and dichloroacetic acid in the degradation of TCE in their research using poplars and 

coupled with the transpiration of measurable amount of TCE, the possibility that 

degradation was produced by rhizosphere microorganisms were eliminated. 

2.5.4 Phytoremediation of organic contaminants 

Organic contaminants are those that contain carbon. They can be released into the 

environment via a range of industrial activities such as timber treatments (Mills et al. 2006, 

Robinson and Anderson 2007), oil exploration (Rogge et al. 1997), coal processing 

(Chmielewski et al. 2001) and gas works (Cofield et al. 2008). They vary widely in types 

which include the polyaromatic hydrocarbons (PAHs), trichloroethylene (TCE), petroleum 

hydrocarbons, 2,4,6 trinitrotoulene, benzene, toluene, ethylbenzene and xylene (BTEX), 

polychlorinated phenol, methyl-tert-butyl ether (MTBE), gasoline etc. PAHs are mostly 

common because they are widespread due to human activities and are by-products of major 

industrial processes such as pyrolysis reaction leading to charcoal formation and 

incomplete combustion of coal and gas (Ledesma et al. 2000, Barbosa et al. 2006). 

Organic compounds exist in different structural form and chemical composition, and in 

order for phytoremediation to take place, the compounds needs to be mineralised into non-

toxic compounds such as CO2, NO3
-, Cl- and NH4

+ (Meagher 2000), and also be in forms 

that are available to plants or microbes. Organic compounds have a wide range of chemical 

composition and structure and this affects both the potential for, and the mechanism of 

remediation and inorder for a successful phytoremediation, the compounds need to be in 

forms that are available to the plants and/or microbes (Parrish et al. 2005). Typical 

examples are PAHs, which are less soluble in water due to their non-polar nature (Nazzal 
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2007). Their solubility decreases with increase in molecular weight (Werner 2003) as they 

become increasingly hydrophobic and may become sorbed to the soil (Neuhauser et al. 

2006). The more strongly sorbed they are, the less bioavailable and biodegradable they 

become (Neuhauser et al. 2006).  

When plants absorb organic contaminants to their roots, the fate of the organic compound 

varies (Cunningham et al. 1996) and depending on the organic contaminant in question, the 

partitioning between the roots and the above ground tissues will vary (Alkorta and Garbisu 

2001). They can be extracted, degraded, volatilized or stabilized (US EPA 2000, Greipson 

2011) depending on the organic compounds’ chemical nature, the external temperature, 

type of plant and the stage of growth of the plant (Kvesitadze et al. 2009). According to  

Gao and Zhu (2003), organic contaminant uptake in plant roots is complicated and occurs 

through active and/or passive transport and in the passive process, the pollutants 

accompany the transpiration water through the plant. Specific transporters such as carrier 

proteins are involved with active transport (Nardi et al. 2002). However, because organic 

compounds are man-made except for hydrocarbons which are naturally formed compounds 

but with increased accumulation in the environment through anthropogenic sources 

(Widdel and Rabus 2001), there are no transporters for uptake in plants; rather transport 

takes place by diffusion and are dependent on the hydrophilic or hydrophobic nature of the 

contaminants. The hemicelluloses in the cell wall and and the lipid bilayer of plant 

membrane have been shown to bind hydrophobic organic pollutants effectively (Cherian 

and Oliveira 2005). Hydrophobicity is determined by the octanol-water partition coefficient 

(Log KOW) and a range of 0.5 to 3.0 is termed moderately hydrophobic (Alkorta and 

Garbisu 2001). This range is sufficient for organic contaminants to move through the lipid 

bilayer of membranes and taken up by plants (Pilons-Smith 2005). However, with a log 
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KOW of less than 0.5, passage through the membranes and subsequent uptake becomes 

impossible. There are, however, disparities in organic contaminant uptake and translocation 

among plant species in addition to the factors that affects their bioavailability (Alkorta and 

Garbisu 2001). Cofield et al. (2008) found that although PAH concentration in soils 

decreased in the presence of tall fescue and switch grass, the nonlabile PAHs were 

unaffected,  

The age of the compound plays an important role during phytoremediation of organic 

contaminants. According to Smith et al. (2006), the process of ageing of PAHs makes 

extraction by plants more difficult and thus compromising phytoremediation. This could be 

advantageous to living organisms in contact with the soil, as aged PAHs will be less 

accessible. The process of ageing starts with the binding or sorbing of PAHs to the humin, 

fulvic and humic acid components of the soil (Li and Liu 2005). This process (soil-PAH 

contact time) is very important to the fate and transportation of PAHs in soil (Hwang and 

Cutright 2002) by causing slow desorption of organic contaminants leading to low 

microbial degradation. If organic compounds age in the soil, there could be a decline in 

their lability and bioavailability with less effect on the total concentration. For example, 

Cofield et al. (2008) found that with the presence of Festuca arundinacea and Panicum 

virgatum, the non-labile PAHs were unaffected whereas the total PAHs in the soil reduced. 

In recent years, non-aged PAH spiked soils have been used for phytoremediation studies 

(Olsen et al. 2007). However some studies have shown that the age of the contaminants in 

the soil limits their degradation (Allard et al. 2000, Rezek et al. 2008). Therefore, spiking 

of soils with fresh PAH could likely give results that do not conform to the real 

environment sparking controversies in phytoremediation research. In as much as these 

controversies exist, phytoremediation of organic contaminants have been successful. 
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Various kinds of plants including the grasses and legumes have successfully remediated 

organic contaminants. For example, the major mechanism of PAH dissipation in vegetated 

soil is associated with the microbial activity in the rhizosphere, therefore remediation varies 

across plant species and type of environment (Lee et al. 2008).  The grass has been 

successful mainly because of the short growth season with large fibrous root system that 

results in increased rhizospheric soil and the legumes have the ability to germinate when 

nutrient availability is poor and are able to fix atmospheric nitrogen (Lee et al. 2008, Smith 

et al. 2006).  Dzantor et al. (2000) showed that legumes like alfalfa (Medicago sativa), 

crown vetch (Coronilla varia), bush clover (Lespedeza cuneata) and flatpea (Lathyrus 

sylvestris) helped in trinitrotoluene (TNT) and pyrene dissipation in contaminated soils 

ranging from 51% for flatpea, 64-70% for bush clover and 80% for alfalfa and crown vetch. 

Also Lee et al. (2008) showed that the legumes (Astragalus membranaceous and 

Aeschynomene indica) withstood phenanthrene and pyrene contamination better than 

grasses (Panicum bisulcatum Thunb and Eschinochloa crus-galli). However the results are 

of limited value as comparisons were made with no indication of starting concentration. A 

variety of plant trials for remediation of organics have been completed and the most 

common include willows, grasses and herbs (Trapp and Karlson 2001). 

Depending on the organic contaminant in question, phytoremediation can be achieved 

through uptake by plants. According to Gao and Zhu (2004), there were significant 

differences in phenanthrene and pyrene accumulation in shoot and root of Glycine max, 

Phaseolus vulgaris, Capsicum annum, Solanum melongena, Brassica parachinensis, 

Lolium multiflorum, Amaranthus tricolor, Raphanus sativus, Ipomoea aquatica, Brassica 

chinenis, Brassica oleracea and Spinacea oleracia. The probable uptake route could be 

through uptake of volatilized portion of contaminants from the soil as well as root to shoot 



59 

 

translocation. There is also evidence of removal of volatile organic compounds through 

volatilization for example the presence of trees in naphthalene contaminated site helped in 

direct volatilization of naphthalene to the atmosphere (Marr et al. 2006). But the key to the 

success of phytoremediation of organic contaminants is not the plant alone, but the 

interaction between the plants and the consortium of microorganisms in the rhizosphere 

also known as phytodegradation as discussed earlier. These microbes degrade the organic 

contaminants, which is enhanced with the presence of plants. For example, PAHs degraded 

faster in planted soils when compared to unplanted soils (White et al. 2006). This was as a 

result of increased microbial numbers, which results in increased activity (Lu et al. 2010). 

Also for TNT, vegetated plots had more microbial colonies forming in each gram of soil 

relative to unvegetated plots (Travis et al. 2008). When compared to the bulk soil, there are 

more PAH-degrading microorganisms in the rhizosphere (Parrish et al. 2005). For example, 

in the rhizosphere of Bermuda grass (Cynodon dactylon), there was a 400% increase in the 

number of pyrene degraders when compared to the bulk soil (Krutz et al. 2005). This 

increase could be associated with the release of phenolics and salicylates by plants (Chen 

and Aitken 1999) as flavones such as morusin, morusinol, and kuwanon c which are 

phenolic compounds have showed support for PCB degrading bacteria in some plant 

species (Leigh et al. 2002). In phytoremediation trials involving aliphatic and aromatic 

hydrocarbons, there have been clear correlations between the number of microbes in the 

rhizosphere and the dissipation of the hydrocarbon. For example, Günter et al. (1996) 

showed that the microbial plate count values increased with increased removal of 

artificially applied aliphatic hydrocarbon from the rhizosphere when planted with Lolium 

perenne, and similarly Fan et al. (2008) showed that residual pyrene concentration in soil 

planted with Medicago sativa was lower in the rhizosphere with increased microbial 
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numbers in this region. However in contrast work carried out by Kaimi et al. (2006), soil 

dehydrogenase activity was preferred to number of aerobic bacteria as the reason for total 

petroleum hydrocarbon (TPH) dissipation as there was no correlation between TPH and the 

number of aerobic bacteria. In this case, the plot was planted with Medicago sativa. There 

are suggestions that the microbial population differs according to plant species. Kirk et al. 

(2005) observed that after the seventh week of study, the microbial population was higher 

in plots planted with Medicago sativa than with Lolium perenne and that the combination 

of Medicago sativa and Lolium perenne showed the greatest microbial number 

differentiation from the bulk soil. 

The degradation of organic contaminants is highly problematic. With few microorganisms 

with the ability to use high molecular weight PAHs as their sole source of carbon, it is 

expected that remediation with microbes independently will be likely inefficient (Huang et 

al. 2004). Even in cases when bacteria from PAH contaminated sites were used, or when 

nutrients were supplemented, they have been highly ineffective (Cunningham et al. 1996). 

The result of the work carried out by Huang et al. (2004) showed that bioremediation alone 

was ineffective for the removal of benzo[a]pyrene and dibenzo[ah] pyrene until the 

establishment of Festuca arundinacea. This shows that with the right plant, the rate of 

degradation of organic contaminants will be improved during bioremediation. 

Table 2.0 shows some example of successful phytoremediation of organic contaminants
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Table 2.0: Selected examples of phytoremediation trials for organic contaminants. All concentrations are maximum values except otherwise 

stated. 

Pollutant Soil 
concentration 
(mg kg-1) 
 

Plant species Growth 
condition 

Amme-ndment 
/Fertilizer 

Measure of 
success 

Reference 

Phenanth-
rene, Pyrene 

Phe-332.06 
(av),  
Pyrene- 321.42 
(av) 

Sorghum vulgare L. Greenhouse None Phenanthrene and 
Pyrene dissipated 

Xin et al. 2009 

PAH 1251.7 Vicia faba,  
Zea mays, 
Triticum aesitivum 

Field None PAH dissipated Diab 2008 

Benzo[a] 
pyrene 

100 Medicago sativa L Glasshouse None B[a] P removal Shiliang et al. 
2004 

Alkylated 
PAHs 

9175 Lolium arundinaceum, 
Lolium multiflorum, 
Cynodon dactylon. 

Field Fertilized Greater 
degradation for 
anthracenes and 
phenanthracenes 

White et al. 2006 

Pyrene 100 Zea mays Greenhouse/ 
Spiked soil 

NPK Pyrene removal Zhang et al. 
2009a 

TNT 80 Vetiveria zizanioides Glasshouse/ 
Spiked 

Urea Removal of TNT 
helped by Urea. 

Das et al. 2010 

PAH Unknown Festuca arundinacea, 
Lolium multiflorum 

Glasshouse Compost PAH removal Parrish et al. 
2005 

TPH 6400 Lolium perenne Glasshouse None Loss of TPH Hou et al. 2010 
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Chrysene 500 Lolium perenne, 
Trifolium repens L 

Glasshouse/ 
Spiked soil 

None Degradation of 
Chrysene 

Johnson et al. 
2004 

Phenanthrene, 
Pyrene 

Phenanthrene- 
87.56 

Panicum bisulcatum, 
Echinogalus crusgalli, 
Astragalus membranace-
us, 
Aeschynomene indica 

Greenhouse/ 
Spiked soil 

N Greater pyrene 
removal 

Lee et al. 2008 

Pyrene 500 Zea mays Greenhouse/ 
Spiked soil 

N Pyrene removal Lin et al. 2008 

Hydrocar-
bons 

11400 (av) Pinus sylvestris, 
Populus deltoids, 
Trifolium repens 

Field Fertilized 65% hydrocarb-on 
removal 

Palmroth et al. 
2006 

PAH 
(creosite) 

3000 Festuca arundinacea Greenhouse/ 
Spiked 

N Successful 
degradation of 
larger PAHs 

Huang et al. 
2004 

PAH 753 Poaceae,  
Verbenaceae, 
Polygonaceae 
Lamiceae, 
Germiniaceae, 
Fabaceae, 
Astraceae, 
Aslepiadaceae. 

Greenhouse/ 
aged soil 

N 30% of PAH was 
degraded in the 
presence of 
ryegrass 

Olsen et al. 2007 
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2.5.5 Phytoremediation of inorganics 

Inorganic contaminants are mineral-based and unlike organics, they cannot be mineralised 

or degraded. Therefore their remediation must be either physical removal, conversion into 

biologically inert form or stabilization (Cunningham et al. 1996). However, as physical 

removal cannot be fully accomplished, conversion into biological inert form and 

stabilization should be a priority. Some plants have the ability of accumulating, transferring 

or stabilizing inorganic compounds. For the latter, the plant species only need to be tolerant 

to the inorganic compounds and avoid uptake, while for the former, hyperaccumulator 

plants have shown to accumulate high concentrations of inorganic compounds thereby 

removing the contaminants from the soil (Ghosh and Singh 2005).  

According to Baker (1981) hyperaccumulators are plants (when growing in their natural 

habitat) with the ability to accumulate high concentration of metals without toxic effects 

when compared to other species or genotype and also the ratio of shoot to root or leaf to 

root concentration of metals accumulated is greater than one. Presently there are about 400 

plants that hyperaccumulate metals. Brassicaceae, Asteraceae, Caryophyliaceae, 

Cyperaceae, Cunouniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, Violaceae 

and Euphorbiaceae dominates the 45 families (Prasad and Freitas 2003). Most of the 

hyperaccumulators accumulate nickel while, manganese, cadmium, zinc and cobalt are 

accumulated by some. Thlaspii caerulescens, which is a hyperaccumulator of zinc and 

cadmium, has been identified as one of the most studied hyperaccumulators (Wang et al. 

2006). 

With the exception of mercury, the uptake of metals into plant occurs from aqueous phase. 

Therefore to control the uptake of metals, speciation of metals within the soil is very 



64 

 

important. In non-accumulating plants there are evidences of enhanced metal uptake even 

when some essential metals are not available. One way this happens is for the plants to 

cause rhizospheric changes such as the release of phytosiderophores or increase 

acidification to increase the mobility of some metals (Marschner 2002). However in 

hyperaccumulators there are limited processes for enhanced uptake. For example, increased 

acidification of the rhizosphere does not enhance metal uptake (Jing et al. 2007), but 

release of exudates have shown some promises in few studies (McGrath et al. 2001). Once 

metals are taken up into plants, they are stored within the tissues, which can be harvested. 

Some of these metals inside the plant are very insoluble and so do not freely move in the 

vascular system, and therefore carbonates, sulphates or phosphates are formed (Ghosh and 

Singh 2005). However, selenium and mercury can be transformed within plants and 

volatilized if released to the atmosphere (Meagher 2000), which is dependent on root 

uptake absorption as in the case of organics (Moreno et al. 2008). Some groups of plants 

are also able to survive and reproduce in highly metal contaminated soil without 

hyperaccumulating the metals. These are known as pseudometallophytes and they achieve 

this by developing tolerance through rhizospheric precipitation of metals. For example 

Dahmani-Muller et al. (2000) showed that metal (Pb, Zn, Cu and Cd) concentration in 

Agrostis tenuis was higher in roots than in leaves which suggested the immobilization of 

metals in roots. Amendment of soil increases the availability of metals for uptake during 

phytoremediation process. For example, Pterocarpus indicus and Jatropha curcas. L 

removed higher amount of chromium with addition of compost (Mangkoedihardjo et al. 

2008) while ethylenediaminetetraacectic acid (EDTA) enhanced the uptake of Pb by 

Vetiveria zizanioides (Gupta et al. 2008). Other compounds such as citrate, oxalate, tartrate, 

malate, acetate and some synthetic chelates have been used as chelators of metals (Prasad 
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and Freitas 2003). However their effect on the microbial communities of the soil has not 

been fully assessed. The microbial communities within the rhizosphere can also play an 

important role during phytoremediation of inorganics. For example, the presence of 

rhizospheric bacteria increased the concentration of Zn in Thlaspi caerulescens (Whiting et 

al. 2001) and Ni in Alyssum murale (Abou-Shanab 2003). The increase in metal 

concentration in the respective plants is evidence of the role plant growth promoting 

rhizobacteria (PGPR) plays. They can affect heavy metal mobility and availability to plant 

by releasing chelating agents, acidification and redox changes or they can improve plant 

growth and nutrition though nitrogen fixing and transformation of nutrient elements (Jing et 

al. 2007). However, under high soil contaminant level, the growth of plant growth 

promoting bacteria can be inhibited. For example, Nie et al. (2002) showed a 30% 

germination of seeds of canola irrespective of the presence or absence of plant growth 

promoting bacteria. 

Many glasshouse and laboratory studies on phytoremediation of inorganics have been 

successfully carried out as shown in table 2.1. However, full- scale application has been 

limited compared with organics. Some species that have been used include Elsholtzia 

splendens (Jiang et al. 2004) for Cu, Salix sp, Populus sp and Alnus sp (French et al. 2006) 

for phytoextraction of zinc and stabilization of nickel, and Brassica juncea and Brassica 

carinata for phytoextraction of Pb, Zn, Cu and Cd, although Brassica juncea showed better 

phytoextraction potential (Del Rio et al. 2000). 
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Table 2.1. Selected examples of successful phytoremediation trial for inorganic contaminants. All concentrations are maximum values except 

stated otherwise. 

Pollutant Soil 
concentration 
(mg kg-1) 
 

Plant species Growth 
condition 

Ammendment 
/Fertilizer 

Measure of success Reference 

Cu unknown Brassica juncea 
Zea mays 

Glasshouse EDTANa Removal of Cu Inoue et al. 2003 

Cu 1200 Elsholtzia 
splendens 

Glasshouse, 
Field 

Urea, KH2PO4 Removal of Cu Jiang et al. 2004 

Cu, Pb, Mn, 
Zn 

Cu- 640 
Pb- 2400 
Mn- 27000 
Zn- 7800 

Brassica juncea Greenhouse None Removal of metals Bennett et al. 2003 

Zn, Cd Zn- 25200 
Cd- 170 

Thlaspi 
caerulescens 

Greenhouse Compost Removal of metals Escarre et al. 2000 

Cd, Zn, Pb Cd- 20 
Zn- 500 
Pb- 1000 

Dianthus 
chinensis, 
Vetiveria 
zizanioides 

Greenhouse EDTA Removal of Metals 
greater with EDTA 

Lai and Chen 2004 

Cr 10 Trigonella 
foenumgraecum. 
L,  
Spinacia oleracea, 
Brassica 
campestris 

Glasshouse None Removal of Cr Dheri et al. 2007 
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Cr 90 Pterocarpus 
indicus 
Jatropha curcas L. 

Glasshouse Compost Removal of chromium Mangkoedihardjo 
et al. 2008 

Zn, Ni Ni- 109 
Zn- 1300 

Salix sp 
Populus sp 
Alnus sp 

Field N Removal of Zn and 
stabilization of Ni 

French et al. 2006 

Cd 1.6 (av) Averrhoa 
carambola 

Field N Removal of metal Li et al. 2009 

Cd, Zn Zn- 600 
Cd- 8 

Pennisetum 
americanum, 
Pennisetum 
atratum 

Greenhouse, 
spiked soil 

Basic fertilizer Removal of metal Zhang et al. 2010 

Pb 20 Vetiveria 
zizanioides 

Greenhouse EDTA Removal of metal Gupta et al. 2008 

As, Co, Cu,  
Pb, Zn 

As- 886 (av) 
Co- 100 (av) 
Cu-1735 (av) 
Pb- 473 (av) 
Zn- 2404 (av) 

Populus alba 
Populus Nigra 
Populus tremula 
Salix alba 

Glasshouse, 
Field 

NPK Species successfully 
stabilized metals 

Vameralli et al. 
2009 
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2.5.6 Phytoremediation of mixed contaminants 

Phytoremediation of mixed contaminated soils (mix of organic and inorganic) is poorly 

understood but very important as most sites are exposed to mixed contaminants (Zhang et al. 

2011). The approaches for the remediation of these sites are different. It is very important to 

understand the interaction between both contaminants, which could affect their availability, 

and form. 

When pollutants are mixed or combined, phytoremediation could be influenced as 

contaminants may interact with themselves as well as with plants and the rhizosphere (Almeida 

et al. 2005). Previous research has shown that an increase in metal bioavailability can occur 

when they interact with organic compounds (Chen et al. 2004, Gao et al. 2006). In addition 

severe inhibition of biodegradation of organic pollutants by toxic metals such as cadmium 

(Maslin and Maier 2000), as well as stimulation of microbial activity has been shown. A 

comprehensive review on the impacts of metals on biodegradation of organic pollutants was 

provided by Sandrin and Maier (2003). The review however highlighted a wide range of 

concentration of metals that could cause inhibitory effects. The non-specificity of 

concentrations was attributed to limited information on metal speciation as well as variety in 

experimental protocol. 

Degradation of organic pollutants during phytoremediation depends extensively on the 

presence of suitable microbes as well as their activities. Therefore if metals cause any negative 

effect on microbes, limiting their activity, the success of phytoremediation could be severely 

compromised. Research carried out by Chaudri et al. (1993) and Dobbler et al. (2000) showed 
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that heavy metals decreased the number of specific populations of microbes and microbial 

diversity respectively. For example, inhibition of the activity of hydrocarbon degrading 

organisms was observed in the presence of heavy metals in work carried out by Al-Saleh and 

Obiekwe (2005). Also phenanthrene showed toxicity effects on Allysum lesbiacum, a hyper-

accumulator of nickel in phenanthrene- nickel co-contaminated soil although soil was amended 

with sorbitan triolate, salicylic acid or histidine (Singer et al. 2007) 

Much as the combination of organic and inorganic contaminants have shown negative effects, 

such as effect on plant growth and toxicity (Lin et al. 2006, Sun et al. 2011), Palmaroth et al. 

2006 showed in a field based study that the removal of hydrocarbon by Pinus sylvestris and 

Populus deltoides x wettsteinii was enhanced in the presence of metals such as Zn, Pb and Cu. 

However, about 80% of the trees died due to toxicity. Cadmium was shown to improve the root 

and shoot accumulation of pyrene in Zea mays L., but the more important factor for pyrene 

dissipation was plant-promoted biodegradation in the rhizosphere (Zhang et al. 2009a). Zhang 

et al. (2011) showed that the presence of phenanthrene and pyrene at 50 or 250 mg kg-1 

partially alleviated the toxicity of cadmium to Juncus subsecundus. Also 50 to 500 mg kg-1 of 

pyrene, increased shoot yields of Zea mays L. in the presence of Cu  (Lin et al. 2008), 

suggesting the alleviation of toxicity of Cu to Zea mays L. by pyrene. In research carried out 

by Sun et al. (2011), although plant growth was affected, the presence of Cd, Pb and Cu 

reduced the uptake of benzo[a]pyrene in the ornamental plant- Tagetes patula.  2, 4 

dichlorophenol also reduced the accumulation of zinc in the shoots of Lolium perenne L. (Chen 

et al. 2004) and low concentration of Cu and Cd (0.01 mg L-1) increased the biodegradation of 

benzoate and 2-chlorophenol by 185 and 168% respectively (Kuo and Genthner 1996). 
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The issue of co-contamination could be addressed by using diverse plant communities. Plant 

diversity has shown to have an effect upon microbial community in their associated 

rhizosphere (Kowalchuk et al. 2002). For example, Lolium perenne L and Medicago sativa in 

combination increased the number of bacteria in the rhizosphere as well as the number of 

bacteria capable of degrading petroleum contamination (Kirk et al. 2005). Also when Lolium 

perenne, Trifolium repens and Apium graveolens were used in mixed culture in a PAH 

contaminated soil, the average amount of PAH remaining in soil was significantly lower than 

in monocultures although plant uptake contributed under 2% (Meng et al. 2011). However 

plant promoted biodegradation, which was the major pathway, increased with multiple species. 

Since diversity of plant and bacteria community is mostly affected in polluted environment 

(Travis et al. 2008), it is necessary during phytoremediation, to choose plants with known 

capabilities of degrading or accumulating contaminants. For example, Batty and Anslow 

(2008) showed that the presence of Zn and pyrene significantly affected the growth of B. 

juncea and compromised its ability to accumulate Zn whereas Festuca. arundinacea showed 

no growth reduction in Zn and pyrene contaminated soil. This suggests that F. arundinacea 

could be used for remediation trials for mixed contaminated soils. 

It is also important to select plants that complement each other rather than those that compete 

with each other. For example, when Echinochloa crus-galli, Helianthus annuus and Abutilon 

avicennae and Aeschynomene indica were used as mixed and mono-cultures in a 2,4,6- 

trinitrotoluene, Cd and Pb phytoremediation trial, trinitrotoulene was removed irrespective of 

mixed or monocultures. Moreover, more Cd was removed by mono-culture than mixed culture 

and there appeared to be competition as slower growth rate was reported in the mixed culture 
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(Lee et al. 2007). When different plant species interact, the normal response of a plant to a 

contaminant may change. For example, in a mixed culture of Carex flava, Centaurea 

angustifolia and Salix caprea, the negative effect of Zn in Carex flava was improved in the 

presence of Salix caprea (Koelbener et al. 2008). Very little phytoremediation trials on mixed 

pollutant has been carried out and examples are shown in Table 2.2. 
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Table 2.2: Few phytoremediation trials for mixed contaminants. All concentrations are maximum values 

Pollutant Soil 
concentration 
(mg kg-1) 

 

Plant species Growth 
condition 

Amendment 

/Fertilizer 

Measure of success Reference 

Pyrene, Cd Pyrene- 100 

Cd- 4.5 

Zea mays Glasshouse/ 
Spiked 

Fertilized: NPK Pyrene uptake stimulated by 
presence of Cd 

Zhang et al. 2009b 

Benzo[a]pyrene, 
Cu, Cd, Pb 

B[a] P – 5 

Cd- 50 

Cu- 500 

Pb- 3000 

Tagetes patula Glasshouse/ 
Spiked 

None Greater degradation of B[a]P in 
the presence of Cd 

Sun et al. 2011 

Pyrene, 
phenanthrene, Cd 

Pyrene- 250 

Phe- 250 

Cd- 50 

Juncus 
subsecondus 

Glasshouse/ 
Spiked 

Fertilized Dissipation of PAH influenced by 
Cd. 

Zhang et al. 2011 
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PCP, Cu PCP- 100 

Cu- 300 

Lolium perenne 
L. 

Raphanus 
sativus 

Greenhouse/ 
Spiked 

Fertilized Higher dissipation of PCP under 
50 mg kg-1 with increasing Cu 
concentration. 

Lin et al. 2006 

Pyrene, Cu Pyrene- 500 

Cu- 400 

Zea mays L Greenhouse/ 
Spiked 

Fertilized Increasing concentration of pyrene 
alleviated inhibition of Cu to Zea 
mays. Also increasing 
concentration of Cu increased 
residual pyrene in soil 

Lin et al. 2008 
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CHAPTER 3  

Methodology 

3.1 Soil localities and classification 

Due to concerns about confidentiality, the exact location and full site details of study sites will 

not be mentioned. Two sites were surveyed, the first site was an old former vehicle service 

garage with diesel underground tanks in Great Shelford, Cambridgeshire undergoing clean up 

process at the time of visit while the other site, was a former refinery located at Swansea, 

South Wales under remediation by monitored natural attenuation. Both sites are 

redevelopment projects. Soil samples were collected in triplicates from different trial pits and 

points in Cambridgeshire and Swansea sites respectively and analyzed to understand the 

variety of contaminants present in contaminated sites. The soils used for the greenhouse plant 

trial experiments in Chapters 5 and 6 (Batch 1) and Chapter 7 (Batch 2) were agricultural 

topsoil purchased from Travis Birmingham, UK in February 2010 and are also included in 

Tables 3.2 and 3.4. 

 

Figure 3.1: Sample site undergoing remedial process 
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3.2 Soil Sampling 

Soil sample from Swansea and Cambridge sites were collected from selected sampling points 

and transferred into glass containers using a decontaminated hand trowel, sealed properly and 

kept in a box containing ice packs to maintain samples at 4 °C during transport to the 

laboratory. The samples were stored at 4 °C until analysis. 

3.3 Characterization of soils from sites and soils used for planting 

Top soil used for the present study was purchased from Travis Birmingham UK. All soils 

were air-dried at 20 ºC except those for PAH analysis before being ground and sieved through 

a 2 mm stainless steel sieve. Soils were stored in polythene bags for metal and other analysis 

or in glass bottles in cold rooms at 4 ºC for PAH analysis. 

Soil pH: Approximately 10 g±0.1 of prepared soil sample was weighed and about 25 mLof 

deionized water was added, and left to stand for one hour to equilibrate (Blakemore et al. 

1987) Soil pH in water was recorded using a potable combo probe (Hanna Instruments, 

Birdfordshire UK) calibrated using buffer solutions of pH 4.0 and 7.0 and pH 7.0 and 10 at 25 

ºC (Table 3.1). 

Electrical conductivity: Soil suspension prepared with soil and deionized water in 1:5 ratios 

(20 grams of soil and 100 mL of water) was allowed to stand for one hour. Soil electrical 

conductivity was analyzed using a potable combo probe (Hanna Instruments Bedfordshire 

UK). 
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Moisture content: about 10 g±0.01 g of soil was weighed into a crucible and placed in an 

oven at 105 ºC for 24hrs. Soil samples were placed in desiccators using tongs; allowed to cool 

and then weighed to a constant weight. The moisture content was expressed as a percentage. 

Moisture content = (mass of air − dried soil)– (mass of oven − dried soil)  × 100  

Table 3.1: pH, electrical conductivity and calculated moisture content for sample sites and 

two batches of top soil used in experiments described in Chapters 5, 6 and 7. 

Soil pH (In 
water) 

Electrical 
conductivity 
(mS/cm) 

Moisture 
content (%) 

Topsoil batch 1 
(planting trials) 

6.2 640 0.29 

Topsoil batch 2 
(planting trials) 

7.1 660 0.35 

Cambridge 6.9 645 0.4 

Swansea site 1 7.4 1795 0.84 

Swansea site 2 6.6 1453 0.80 

 

3.4 Plant and soil analysis using flame apart absorption spectrometry (FAAS) 

All metal concentrations in the extraction methods described below were analyzed using 

AAnalyst 300 flame atomic absorbtion spectrophotometer (FAAS- PerkinElmer Instrument) 
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following a 5-point (1, 2, 3, 4 and 5 mg L-1) calibration with standard solutions of Cu and 

(0.2, 0.4, 0.6, 0.8 and 1.0 mg L-1) of Cr to be analyzed.  

3.4.1 Analysis of plant samples for metal content 

All plant samples (Z. mays, B. juncea and M. sativa, purchased from vegetable plant direct 

Sandford, UK) were rinsed thoroughly in deionized water to remove dust and sediments/soils 

contaminating their surfaces. Each plant was then divided into roots and shoots, carefully 

blotted dry, sealed in envelopes and dried in an oven at 65 ºC for 48 hours. After cooling in 

desiccators, plant was ground to a homogeneous sample and stored in a clean polythene bag 

prior to digestion. Sample was prepared for analysis by digesting 0.5 g of ground plant sample 

(or as described in individual experiments were plant growth was limited) in 5 mL of 30% 

HNO3 (concentrated) and heated on a digestion block (DigiPREP MS-SCP SCIENCE) for 

8hrs (up to 90 ºC). The resulting digest was made up to 15 mL with deionized water. All plant 

samples were analyzed for total Cu and Cr using FAAS. A reference standard (WEPAL-IPE-

638 maize (plant) Zea mays L inorganic composition, Wageningen, Netherlands.) was used 

during batches of analysis to check the accuracy of the results and recovery was 

89.13±2.232% and 82.73±1.903% for Cu and Cr respectively. The Translocation Factor (TF) 

was calculated as the ratio of root Cu/Cr concentrations to shoot Cu/Cr concentrations while 

the shoot and root Cr concentration factors were calculated as the ratio of Cr concentration in 

shoot or root of plant to the initial soil Cr concentration. The shoot/root accumulation of 

Cu/Cr was calculated as follows- 

𝑋 = 𝑀 × 𝐶 
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Where  

X= Shoot/root Cu or Cr accumulation (µg pot-1) 

M= Shoot/root Cu or Cr concentration in mg kg-1 

C= Shoot/root dry weight of plant in kg 

3.4.2 Analysis of soil samples for total metal concentration 

Total recoverable Cu and Cr were extracted by Aqua regia method. About 3 g of ground oven 

dried soil was weighed and placed in a digestion tube. Twenty-three milli litre of concentrated 

HCl and 7 mL of concentrated HNO3 were added to the soil, shaken and allowed to stand 

overnight. A condenser was placed over each tube and refluxed for 2 hours on a heating block 

(DigiPREP MS- SCP SCIENCE) at 80 °C. The tubes were allowed to cool and the resulting 

digest was filtered through a Whatman number 1 filter paper into a 100 mL volumetric flask. 

About 1 mL of 10% potassium chloride was added as an ionisation suppressant to the digest 

and made up to 100 mL with repeated washings of the digestion tube and filter paper. The 

resulting solution was stored at 4 °C until analysis by FAAS. A soil-certified reference 

standard (EnviroMAT-SCP SCIENCE) was used during batches of analysis to check the 

accuracy of results. The recovery for Cr and Cu were 94.92±2.742% and 98.83±0.427% 

respectively. 



80 

 

3.4.3 Water extractable metal in soils 

The water-extractable metal content of soil was determined using methods described in Erica-andrea 

et al. (2010), where 5 g of prepared soil sample was shaken with 50 mL of deionized water in a 1:10 

soil to water mixture for 2 hrs at room temperature. The solution was filtered through a Whatman 

number 1 filter paper and made up to 50 mL with deionized water. The water-extractable metal 

content was determined by FAAS.   

Table 3.2: Total metal concentration for sample sites and two batches of top soil used in 

experiments described in Chapters 5, 6 and 7  

Soil Cr (mg kg-1) Cu (mg kg-1) 

Top soil batch 1 50.13 ±2.50 25.58 ±0.53 

Top soil batch 2 16.55 ±0.99 53.24 ±1.02 

Cambridge site 42.71 ±2.52 22.0 ±4.42 

Swansea site 1 27.34 ±1.17 132.72 ±9.36 

Swansea site 2 36.3 ±1.34 298.9 ±2.66 
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3.5 Soil PAH analysis by microwave extraction and gas chromatography-mass 

spectrometry (GC-MS)  

3.5.1 Microwave extraction 

Approximately 7 g of sodium sulphate (VWR Chemicals, Lutterworth UK) was added to 5 g 

of soil sample spiked with 40 µl of 500 ng.µl-1 recovery standard- p-terphenyl-d14 (VWR 

Chemicals, Lutterworth UK) in microwave tubes. The blanks were treated in a similar way. 

This was followed by additions of 15 mL of hexane:acetone (2:1, v/v) solvent mixture and 5 

mL triethylamine:acetone (4:1, v/v) mixture (Fischer chemical, Loughborough UK). The 

contents of the tubes were mixed using a vortex mixer (VWR collection) and shaken by 

inversion to dislodge solid material from the base. Extraction was carried out with the 

following conditions: temperature increased to 100 °C at 800 W for 12 minutes, held at 100 

°C at 800 W for 10 minutes then cooled for 5 minutes. Following extraction, tube contents 

were mixed and allowed to settle. Clear extracts were transferred into vials and stored at 4 °C 

prior to clean-up and GC-MS analysis. 

3.5.2 Clean up 

PAH clean up was carried out using 2 g, 12 mL silica gel cartridges (Agilient, Wokingham 

UK). The silica gel cartridges were conditioned using 5 mL of hexane (Analytical grade VWR 

chemicals, Lutterworth UK). One ml of soil extract was filtered through the silica gel 

cartridge followed by the addition of 10 mL 1:1 hexane:dichloromethane mixture, and 

allowed to flow through the column until it reaches the frit. Sample blanks were also allowed 

to pass through the same process. The extract was concentrated by evaporation of the 
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dichloromethane under a stream of nitrogen and the residue was dissolved in hexane with a 

final volume of 1.0 mL for GC analysis.  

3.5.3 GC-MS analysis 

Concentrations of the 16 priority PAHs were analysed by an Agilent gas chromatography 

equipped with a mass spectrometer detector (Agilent Technologies 6890N). A HP 5MS fused 

silica capillary column with dimensions 30 m by 0.25 mm by 0.25 um film thickness was 

used. The GC-MS operating condition for USEPA method 8270D (mass range 35 to 500 amu, 

scan time: #1 sec/scan, initial temperature: 40 °C, held for 4 minutes, temperature program: 

40 to 320 °C at 10 °C/min, final temperature: 320 °C, held for 2 minutes after benzo [g,h,i 

]perylene eluted, transfer line and injector temperature: 250 to 300 °C) was used with helium 

as a carrier gas at a constant flow rate of 30 cm/sec. The GC-MS was calibrated with 

RESTEK NJDEP EPH Aromatics Calibration Standard (2,000 μg ml-1 each of 16 Priority 

PAHs >98% purity in dichloromethane) internal standards mix (1,4-dichlorobenzene-d4, 

naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12) and 

surrogate standard, p-terphenyl-d14 (Sigma chemical Co. UK). A six-point calibration 

standard of 50 pg µl-1, 200 pg ul-1, 500 pg µl-1, 1000 pg𝑢l-1, 5000 pg µl-1 and 10000 pg µl-1 

was carried out. Quality controls were also set up with solvent blanks and matrix spikes 

controls. The concentration of each PAH in sample was determined by the MSD chemstation 

software based on the following calculation 

𝑥 (𝑝𝑔.𝑢𝑙) =
𝐴(𝑥) × 𝐶(𝑖) × 𝑉(𝑒) × 𝐷
𝐴(𝑖) × 𝑅𝐹(𝑥) × 𝑊(𝑠)   
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Where: 

A(x) – area under the chromatogram of component x (pg.µl-1) 

A (i) – area under the chromatogram of the internal standard (pg.µl-1) 

C (i) –concentration of internal standard (pg.µl-1) 

W (s) – weight of soil sample extracted (g) 

RF (x) – response factor of component of interest 

V (e) – volume of extract (ml) 

D –dilution factor, if further dilution is required 

Table 3.3: Detection limits of GC-MS for 16 priority PAHs 

Compounds Detection limit 

(pg.µl-1) 

Naphthalene 0 

Acenaphthylene 1.06 

Acenaphthene 0 

Fluorene 0.5 

Phenanthrene 0 

Anthracene 0.79 

Fluoranthene 0.93 

Pyrene 1.03 

Benzo[a] anthracene 40.04 

Chrysene 0 

Benzo[b] fluoranthene 1.69 
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Benzo[k] fluoranthene 1.66 

Benzo[a] pyrene 0.9 

Indo [1,2,3] pyrene 0.67 

Dibenzo[a,h] anthracene 0.26 

Benzo [g,h,i] perylene 0.63 
 

Table 3.4: Mean concentrations of 16 priority PAHs for sample sites and two batches of top 

soil used in experiments described in chapters 5, 6 and 7. 

Compounds 
 

Topsoil 
batch 1  
(mg kg-1) 

Topsoil 
batch 2 
(mg kg-1) 

Swansea 
1 
(mg kg-1) 

Swansea 2  
(mg kg-1) 

Cambridge 
site (mg kg-1) 

Naphthalene N.D N.D N.D N.D 0.17±0.01 
Acenaphthylene N.D N.D N.D 0.26±0.13 N.D 
Acenaphthene N.D N.D N.D N.D N.D 
Fluorene N.D N.D N.D N.D 0.30±0.01 
Phenanthrene N.D N.D N.D N.D 1.12±0.07 
Anthracene N.D N.D 0.42±0.02 0.21±0.11 1.65±0.07 
Fluoranthene N.D N.D 0.81±0.34 0.51±0.36 1.49±0.07 
Pyrene N.D 0.49±0.0

5 
0.95±0.52 2.06±0.15 1.14±0.05 

Benzo[a] 
anthracene 

7.33±0.0
3 

N.D 0.63 1.48±0.05 1.30±0.07 

Chrysene N.D N.D 0.15±0.14 1.27±0.4 0.60±0.02 
Benzo[b] 
fluoranthene 

N.D N.D 0.17±0.17 0.64±0.23 0.41±0.08 

Benzo[k] 
fluoranthene 

N.D N.D 0.26±0.26 0.77±0.19 0.60±0.07 

Benzo[a] pyrene 9.33±0.0
2 

0.48±0.0
2 

0.75±0.02 1.23±0.41 0.94±0.02 

Indo 
[1,2,3]pyrene 

N.D N.D 0.67 0.95±0.29 N.D 

Dibenzo[a,h] 
anthracene 

N.D N.D N.D N.D N.D 

Benzo [g,h,i] 
perylene 

N.D N.D 0.66 0.89±0.32 N.D 
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3.5.4 Experimental design and statistical analysis 

The experimental layout for the greenhouse and germination studies was designed in a 

completely randomized design, where individual treatments are replicated 3 times as 

discussed for individual experiments in sections 4.1.1, 4.6.1, 5.2.2, 5.7.2, 6.1.2, 6.6.2, 7.2.2 

and 7.7.2. ANOVA was used for the germination experiments instead of non-parametric tests 

because of the number of replicates and also because non-parametric tests are robust only 

when there are more than 3 replicates. One way ANOVA using the Minitab 15.0 statistical 

software was used for the analysis of data in all studies except for ageing experiments 

(Chapter 6) where two-way ANOVA with SPSS 20 was used to compare the effects of soil 

ageing and fresh soil within treatments during phytoremediation. The ANOVA is robust in 

analysis when data is normal, hence data that are not normally distributed were normalized 

using the log transformation when required and as discussed in individual chapters. Similarly, 

seed germination percentages were transformed using the arcsin conversion before analysis. 

This was done because percentages cannot be less than zero or more than 100 (have fixed 

limits), and data should be normally distributed and free to vary widely about the mean 

without imposed limits. When a significant difference is observed, multiple comparisons were 

made using Tukey Honestly Significant Difference (HSD). The mean of the the three sample 

replicates for each study was used for graphical representation and the standard error of mean 

was calculated with the following equation: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑚𝑒𝑎𝑛 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑛

√𝑛
 

Where, n= number of replicates 
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Some of the results in this study showed low standard error of means. Although the sampling 

error of mean should decrease or lower as the size of the random samples increases, it should 

be noted that as the variability on the treatments reduces, the sampling error reduces as well. 

QC procedures were undertaken for all analysis (see Section 3.4.1) and therefore there is no 

justification for not accepting the data despite a smaller error than might be expected with 3 

replicates. 
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4 
Single and joint toxicity of metal and PAH on early seedling growth 

of plants 

 

 

4.0 Single and joint toxicity of Cu and pyrene on seedling 

growth of L. perenne using the water culture method- 

Introduction 

Concerns regarding the toxicity effect of chemicals present in the environment have increased 

in recent years leading to additional efforts to provide an early evaluation method for their 

potential toxicity (Lee et al. 2000, Banni et al. 2009). 
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Copper (Cu) is a phytotoxic micronutrient when the concentration is above the macromolar 

level (Marschner 1995). The seed is well protected against various stresses, however after 

subsequent seedling emergence, they become stress-sensitive (Li et al. 2005). The toxicity 

effect of Cu on plants is first observed in the root while the translocation to the shoot is 

effectively restricted by large accumulation in the root. Therefore it is expected that 

rhizotoxicity will precede toxicity to shoot (Sheldon and Menzies 2005, Michaud et al. 

2008,). Increasing concentration of Cu in plants induces oxidative stress, results in membrane 

damage and inhibits photosynthetic activity (Quartacci et al. 2000). Germination is an 

important stage in plant growth and is very sensitive to contaminants (Maila and Cloete, 

2002) most especially heavy metal pollution (Jadia and Fulukar 2008). 

Pyrene is one of the polycyclic aromatic hydrocarbons that have both mutagenic and 

tetragenic properties (Haritash and Kaushik 2009). They are persistent in the environment and 

their contamination is becoming prevalent due to increased industrialization (Srogi 2007). The 

effect of pyrene on plants includes morphological symptoms such as reduced growth and 

chlorosis, as well as physiological symptoms including oxidative stress induction, DNA 

damage and cell death (Alkio et al. 2005, Oguntimehin et al. 2010).   

Although the individual toxicity of pyrene and Cu to plants has been investigated by 

researchers (Alkio et al. 2005, Li et al. 2005), pyrene and Cu often co-exist in the 

environment, particularly in contaminated situations. Recently, different researchers (Lin et 

al. 2008, Almeida et al. 2009) have tried to investigate the phytoremediation potential of 

plants to Cu and pyrene co-contaminated soil. However, the effect of contaminants on early 

plant growth needs to be investigated to better understand the early effects of co-
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contamination. Hence the aim of this study is to determine the tolerance of L. perenne to co-

contamination of Cu and pyrene by understanding their effect on germination as well as root 

and shoot length. The results of this research would provide valuable information for the 

application of L. perenne in Cu and pyrene co-contamination remediation. 

4.1 Methods 

 4.1.1 Materials 

All reagents used in this study are analytic grade. Seeds of L. perenne were commercially 

available from Vegetable Direct Seeds Co. Ltd, England. Pyrene and Cu2SO4 were supplied 

by VWR chemicals Lutterworth UK. Test solutions of pyrene were prepared by dissolving in 

0.1% acetone and making up with deionized water while Cu2SO4 was prepared with deionized 

water only. Control treatments were also exposed to 0.1% acetone. Three replicates were set 

for each concentration. 

4.1.2 Seed germination and root and shoot elongation tests. 

Seeds of L. perenne were sterilized in 6% (v/v) hydrogen peroxide for 15 minutes and washed 

with tap water. Ten seeds of L. perenne were carefully placed on each petri dish and 

moistened with 3 mL of toxicants solution. The concentration of pyrene was set at 0, 1, 2, 3 

and 4 mg L-1 and the tested concentration of Cu was 0, 2.15, 4.3, 8.6 and 12.9 mg L-1. Petri 

dishes were sealed with Para film and allowed to germinate under daylight at 24 ±2 °C in the 

glasshouse for 9 days. First seed emergence was monitored on daily basis and germination 

percentage calculated on the 6th day. A 1 mm radical  emergence was considered as seed 
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germination. Seedling development was regarded as inhibited when the seed coat was visibly 

broken with the embryo not growing further. On the 9th day, germinated seeds were used for 

root and shoot length measurement. The Germination Rate Index (GI) was determined by the 

following formula, 

GI = 𝐺3
3

+ 𝐺6
6

+ 𝐺9
9

   (Ali 2007) 

Where G3, G6 and G9 are germination percentages at 3, 6 and 9 days after initiation of 

germination 

4.1.3  Statistical analysis 

Statistical analysis including calculation of average values, standard error (S.E) was 

calculated by Microsoft office Excel 2007. One-way analysis of variance was carried out with 

Minitab 15. The shoot length results were log transformed prior to analysis. When a 

significant (p< 0.05) difference was observed between treatments, multiple comparisons were 

made by the Tukey test.  

4.2         Results 

4.2.1  Effects of Cu on seed germination 

The final germination percentage reduced from 100 to 44% relative to control treatments 

as the concentration of Cu in solution increased from 2.15 to 12.9 mg L-1 (Figure 4.1). The 

final germination percentage of seeds of L. perenne on different concentrations of Cu 

showed no inhibition for the lowest concentration (2.15 mg L-1) used in this study and a 
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slight but non- significant (p>0.05) 3% inhibition at 4.3 mg L-1 Cu2+ in solution. 

Germination was also inhibited by 37 and 50% for 8.6 and 12.9 mg L-1 culture medium 

respectively Relative to the control treatments, the average toxicity was highest for the 

highest concentration of Cu, and decreased to 3.7% as the concentration of Cu reduced to 

4.3 mg L-1. There was no total inhibition of seed germination in all concentration of Cu. 

One-way ANOVA showed that the inhibition of germination when the concentration of 

Cu in the growth medium was 2.15 and 4.3 mg L-1 were not significant (p> 0.05) but were 

significant  when concentration increased to 8.6 and 12.9 mg L-1 cu. 
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Figure 1Figure 4.1: Effect of Cu on final germination relative to control of seeds of Lolium 

perenne. Bars (mean ± SE, n= 3) followed by the different letter are significantly different 

based on Tukey HSD (p ≤ 0.05). Appendix 4A.1 

Over a 9-day germination period, the germination index (GI) significantly decreased with 

an increase in Cu concentration in solution. . Lower concentrations of Cu (2.15 and 4.3 

mg L-1) did not seem to affect the germination rate index, but there were significant 

differences a at 8.6 mg L-1  Cu or more. 
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Figure 4.2: Effect of different concentrations of Cu on germination rate index relative to 

control of seeds of L. perenne. Different letters indicate a significant difference at P< 0.05 

according to the Tukey- HSD. Appendix 4A.2 

 

 

4.2.2 Effect of Cu on seedling growth of L. perenne 

The effect of various Cu concentrations on the shoot and root length of L. perenne are 

shown in figures 4.3 and 4.4. The shoot length and root length in the present study was 
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expressed as a percentage of the growth of the control plants. Relative to control 

treatments, the shoot length of L. perenne was adversely affected by  Cu and results 

showed a 19.2 and 39.6% significant (p<0.05) inhibition for 2.15 to 12.9 mg L-1 Cu 

contaminated media. There was a direct relationship between the increase in Cu 

concentration in solution and the severity of the response and the correlation coefficient 

reached -0.96. Similar results were observed for roots,. but the root length inhibition was 

higher than the shoot length inhibition. The present result showed that as the concentration 

of Cu in solution increased from 2.15 to 12.9 mg L-1, the inhibition to the root length of L. 

perenne increased significantly (p<0.05) from 29 to 83.6% relative to control treatments. 

The reduction in the root length of L. perenne exposed to increasing concentration of Cu 

was ≥ 1.5 times that of the inhibition to the shoot.  
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Figure 4.3: Effect of Cu on shoot length relative to control of seeds of L. perenne. Different 

letters indicate a significant difference at p< 0.05 according to the Tukey- HSD. Appendix 

4A.3 
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Figure 4.4: Effect of Cu on shoot length relative to control of seeds of L. perenne. Different 

letters indicate a significant difference at p< 0.05 according to the Tukey- HSD. Appendix 

4A.4 

 

4.2.3 Effect of pyrene on seed germination 

Pyrene seemed to have no effect on the  germination rate of seeds of L. perenne (Figure 

4.6). There were no significant differences with increasing concentration of pyrene in 

solution. The germination rate index over the 9-day period of germination was affected by 
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pyrene contamination and results in  an 8.5-11.5% significant  (p<0.05) inhibition as the 

pyrene concentration increased from 1-4mg L-1.  

 

 

 

 

 

 

 

 

Figure 4.5: Effect of pyrene on final germination relative to control of seeds of L. perenne. 

Different letters indicate a significant difference at p< 0.05 according to the Tukey- HSD. 

Appendix 4A.1 
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Figure 4.6: Effect of different concentrations of pyrene on germination rate index relative to 

control of seeds of L. perenne. Different letters indicate a significant difference at P< 0.05 

according to the Tukey- HSD. Appendix 4A.2 
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4.2.4 Effect of pyrene on seedling growth of L. perenne 

The shoot and root growth of L. perenne was inhibited by different concentrations of 

pyrene in the present study (Figures 4.7 and 4.8). Results showed that the shoot length of 

L. perenne decreased significantly (p<0.05) from 31 to 52%  as the concentration of 

pyrene increased from 1 to 4 mg L-1. . The correlation coefficient was used to understand 

the linear relationship between the concentration of pyrene and the inhibition of shoot 

length. The inhibition of the shoot length of L. perenne was negatively correlated with 

increasing concentration of pyrene in solution and the correlation coefficient reached -

0.992. 

The root length inhibition of L. perenne varied with increasing concentration of pyrene 

(Figure 4.8). As the concentration of pyrene in solution culture increased from 1 to 4 mg 

L-1, the root length inhibition increased significantly (p<0.05) from 52 to 71% relative to 

control treatments. However, it was clear that as the concentration of pyrene in solution 

culture increased to 2 mg L-1, the inhibition of the root length relative to control 

treatments remained at 66% and further increase in the concentration of pyrene to 3 and 4 

mg L-1, did not seem to further inhibit the root length (p>0.05). 
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Figure 4.7: Effect of pyrene on shoot length relative to control of seeds of L. perenne. 

Different letters indicate a significant difference at p< 0.05 according to the Tukey- HSD. 

Appendix 4A.3 
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Figure 4.8: Effect of pyrene on root length relative to control of seeds of L. perenne. 

Different letters indicate a significant difference at p< 0.05 according to the Tukey- HSD. 

Appendix 4A.4 
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4.2.5 Joint effect of Cu and pyrene on seed germination 

The joint toxicity of Cu and pyrene on the final germination percentage was different from 

that of single effects of Cu or pyrene. The final germination rate was inhibited more than 

in single contamination of Cu or pyrene. From Figure 4.9, it can be seen that when the 

concentration of Cu in solution remained at 2.15 mg L-1, the final germination of L. 

perenne increased significantly (p<0.05) from 48 to 74% relative to control treatments 

with an increase in pyrene concentration from 1 to 4 mg L-1. The relative toxicity based on 

final germination percentage reduced from 52 to 26%. Similarly, when the concentration 

of Cu in solution was increased to 4.3 and 8.6 mg L-1, the final germination rate of L. 

perenne increased significantly (p<0.05) from 51 to 70% and 41 to 63% respectively as 

the concentration of pyrene in solution increased from 1 to 4 mg L-1. The relative toxicity 

also reduced from 48 to 29% and 59 to 37% respectively. However at 12.9 mg L-1 fixed 

concentration of Cu, the final germination percentage of L. perenne reduced with 

increased concentration of pyrene. The present results showed a 48 to 33% reduction in 

final germination percentage as the concentration of pyrene increased from 1 to 4 mg L-1 

which is a 51 to 66% increase in relative toxicity based on the final germination 

percentage.  
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Figure 4.9: Joint effect of fixed Cu and pyrene on final germination rate of seeds of L. 

perenne. Error bars are standard error. Appendix 4A.1 
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Similarly, when the fixed concentration of pyrene remained at 1 and 2 mg L-1, the final 

germination rate was similar with increasing concentration of Cu in solution. However, as 

the fixed concentration of pyrene increased to 3 and 4 mg L-1, the effect of added Cu on 

final germination rate varied. The present results showed that when the fixed 

concentration of pyrene remained at 3 mg L-1 (Figure 4.10), the final germination rate was 

similar with the addition of 2.15, 4.3 and 8.6 mg L-1of Cu, but was significantly decreased 

to 37% when 12.9 mg L-1 of Cu was added. Also when the concentration of pyrene 

increased to 4 mg L-1, the final germination rate of L. perenne was similar when 2.15, 4.3 

or 8.6 mg L-1 of Cu was added, while the addition of 12.9 mg L-1 of Cu significantly 

(p<0.05) decreased the germination rate to 30%. 
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Figure 4.10: Joint effect of fixed pyrene and Cu on final germination rate of seeds of L. 

perenne. Error bars are standard error. Appendix 4A.1 
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4.2.6 Joint toxicity of Cu and pyrene on seedling growth of L. perenne 

The nature of the joint effects of Cu and pyrene on shoot and root growth was strongly 

dependent on their concentrations in the mixture (Figure 4.11 and 4.11). The root growth 

in joint contamination was severely inhibited when compared to single concentration of 

Cu or pyrene. Roots were very stunted and there were no root hairs present. Compared to 

single contamination with 2.15 mg L-1 of Cu, the addition of 1, 2, 3 and 4 mg L-1 of 

pyrene significantly (p<0.05) decreased the shoot length of L. perenne. The present results 

showed that in solution containing only 2.15 mg L-1 of Cu, the shoot length of L. perenne 

remained at 85 mm while with the addition of 1, 2, 3 and 4 mg L-1 of pyrene, the shoot 

length decreased significantly (p<0.05) by over 58%. However, the increasing 

concentration of pyrene from 1 to 4 mg L-1 in the presence of 2.15 mg L-1 of Cu did not 

significantly (p>0.05) affect the shoot length. In contrast, when the concentration of Cu 

remained at 4.3 mg L-1, the shoot length of L. perenne decreased to 78% relative to control 

treatments, while the addition of 1, 2, 3 and 4 mg L-1 of pyrene significantly decreased the 

shoot length to 34, 33, 31 and 30% respectively. At 8.6 mg L-1 fixed Cu concentration, the 

shoot length of L. perenne remained at 63 mm and decreased by over 65% with the 

addition of 1 to 4 mg L-1 of pyrene. From the present result, it is clear that increasing the 

concentration of pyrene in 4.3 and 8.6 mg L-1 fixed Cu concentrations did not significantly 

affect the shoot length of L. perenne. In contrast, when the fixed concentration of Cu 

increased to 12.9 mg L-1, increasing the pyrene concentration to 4 mg L-1 significantly 

decreased the shoot length by 14% when compared to the addition of 1, 2 or 3 mg L-1 of 

pyrene. 
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Figure 4.11: Joint effect of fixed Cu and pyrene on shoot length relative to control of seeds of 

L. perenne. Error bars are standard error. Appendix 4A.3 

With fixed pyrene concentration, notable differences occurred. It is clear from the results 

that mixed application of Cu and pyrene significantly decreased the shoot length of L. 

perenne when compared to individual application of pyrene in all treatments. Figure 4.12 

showed that for all fixed concentration of pyrene, increasing the concentration of added 
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Cu significantly reduced the shoot length of L. perenne. From the results, it was shown 

that when the concentration of pyrene was fixed at 1 mg L-1, the addition of 2.15 to 12.9 

mg L-1 of Cu significantly reduced the shoot length of L. perenne from 41.56 to 20.39% 

relative to control treatments. Similarly, at 2, 3 and 4 mg L-1 fixed concentration of 

pyrene, the addition of 2.15 to 12.9 mg L-1 of Cu significantly decreased the shoot length 

from 39.6 to19.6%, 38.8 to 18.8% and 37.25 to 14.50% respectively relative to control 

treatments. 

 

Figure 4.12: Joint effect of fixed pyrene and Cu on shoot length relative to control of seeds of 

L. perenne. Error bars are standard error. Appendix 4A.3 
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The root length inhibition of L. perenne varied with joint contamination. When the 

concentration of Cu in solution was fixed at 2.15 and 8.6 mg L-1, the inhibition to the root 

length of L. perenne significantly increased respectively from 69 to 77% and 68 to 86.9% 

relative to control treatments as the concentration of pyrene increased from 1 to 4 mg L-1. 

In contrast, when fixed Cu concentration in solution reached 4.3 and 12.9 mg L-1, the 

inhibition to the root length was only significant compared to single Cu contaminated 

solution when the pyrene concentration reached 4 mg L-1. Results showed an 85% and 

97.3% inhibition relative to control treatments for 4.3 and 12.9 mg L-1 fixed Cu 

concentration respectively (Figure 4.13). 

The root inhibition of L. perenne when the concentration of pyrene was fixed with varying 

Cu concentration is shown in Figure 4.14. When the concentration of pyrene was fixed at 

1 mg L-1 and 4 mg L-1, the inhibition to the root length of L. perenne increased from 69 to 

88% and 77.6 to 97.26% respectively relative to control treatments as the concentration of 

Cu increased from 2.15 to 12.9 mg L-1. The increased root length inhibition was 

significant (p<0.05) when compared to single pyrene contaminated solution. At 2 and 3 

mg L-1 fixed pyrene concentration, lower concentration of Cu did not seem to affect root 

length inhibition. However, when the concentration of pyrene increased to 12.9 mg L-1, 

the root length of L. perenne was significantly inhibited by 92.9 and 95.6% respectively 

relative to control treatments. 
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Figure 4.13: Joint effect of fixed Cu and pyrene on root length relative to control of seeds of 

L. perenne. Error bars are standard error. Appendix 4A.4 
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Figure 4.14: Joint effect of fixed pyrene and Cu on root length relative to control of seeds of 

L. perenne. Error bars are standard error. Appendix 4A.4 

 

 

 

        

R
o

o
t 
le

n
g

th
 (

%
 o

f 
c
o

n
tr

o
l)

10

15

20

25

30

35

Cu- 2.15 mg L-1

Cu- 4.3 mg L-1

Cu- 8.6 mg L-1

Cu- 12.9 mg L-1



112 

 

4.3 Discussion 

4.3.1 Toxicity effect of single Cu  

The incubation of seeds on filter paper soaked with metal or PAH is a common method 

that reduces the effects of other metals or PAHs that could be present in a natural soil as 

they may be synergistic or antagonistic to the effect of the metal or PAH in the present 

study (Munzuroglu and Geckil 2002). The effects of metals and PAHs on the development 

of plants can be understood by determining the germination characteristics of the seed. In 

the present study, Cu applied as CuSO4 caused a decrease/delay in the germination of L. 

perenne only when the concentration of Cu in solution increased up to 8.6 mg L-1. 

However there was no complete inhibition of germination even for the highest Cu 

concentration used (Figure 4.1). The present result is in line with previous studies on the 

effect of Cu on plants. For example, Cu was not as toxic to seed germination as it was to 

root and shoot growth (Munzuroglu and Geckil 2002, Li et al. 2005). The difference in the 

vigour between the control treatments and the increasing concentration of Cu was 

measured and shown to be significant in 2 ways. Firstly, the shoot length after 9 days of 

culture was significantly greater in control treatments than in increasing concentration of 

Cu (Figure 4.3). Secondly, the root length was also significantly lower in Cu treatments 

when compared to control treatments (Figure 4.4).  At concentrations below 8.6 mg L-1 of 

Cu, the seed germination of L. perenne was similar to control treatments and only 

decreased when the concentration of Cu ≥ 8.6 mg L-1. In low concentration, Cu acts like a 

micronutrient for the plant. Therefore when in low concentrations, it could accelerate the 
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germination of seeds while in high concentration, it can induce toxicity in a way that 

germination is inhibited.   

The inhibition of root elongation is considered as the initial effects of the toxicity of 

metals to plants. In the present study, the increasing concentration of Cu in solution 

significantly decreased the root length of L. perenne (Figure 4.4). Previous reports have 

shown that the most important mechanism of Cu toxicity include- the penetration of Cu to 

cell membrane, blocking of receptors that help during photosynthesis as well as binding to 

receptors in the chloroplast (Stauber and Florenece 1987). In this study, there were no 

observed chloritic symptoms in the shoot of L. perenne over the 9-day period. As 

suggested by Arduini et al. (1994) and Muller et al. (2001), the primary route of Cu 

uptake is through the roots and this could be responsible for the decreased root length as 

observed in the present study. When this happens, cell division and elongation are 

inhibited in the root tip as well as the extension zones. Similar results have been observed 

by other researchers. For example, Singh et al. (2007) showed that after 14 days exposure 

of Triticum aestivum to 5, 25, 50 and 100 mg L-1 of Cu stress, the seed germination, root 

and shoot elongation and number of lateral roots were inhibited. Although the 

concentration of Cu used in their study was higher than in the present study, they however 

reported toxicity of Cu at 5 mg L-1 concentration. Also, Jiang (2001) and Doncheva 

(1998) showed that Cu is toxic to the morphology of chromosomes and that nuclei 

formation at the G1/S transition points of the cell cycle is interrupted by Cu, preventing 

their entry into mitosis. When Cu affects the proliferation of the root meristem cells, root 

reduction occurs. Because this was carried out in solution culture, the reduction or 
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inhibition of root hair proliferation would not have affected the ability of L. perenne 

access to nutrients. However, if soil was the medium of growth, the root surface area is 

very important for uptake of nutrients and any significant reduction in root hair may affect 

plant growth (Sheldon and Menzies 2004). Yadav and Srivastava (1998) observed 

different types of mitotic aberration and concluded that Cd inhibits the mitotic index for 

plants such as Hordeum vulgare and Setaria italic.   

4.3.2 Effectffect of single pyrene  

According to Huang et al. (1996) and Ren et al. (1996), PAH phytotoxicity was shown to 

be a physiological toxicity. In this study, the germination rate of seeds of L. perenne was 

not inhibited by different concentrations of pyrene (Figure 4.5). This indicates that at the 

end of the germination tests (9 days), pyrene did not show any phytotoxic effect on seed 

germination. This is similar to work carried out by Henner et al. (1999) which showed that 

the presence of high molecular weight PAHs including phenanthrene and B[a]P were not 

phytotoxic (for germination) to L. perenne at the end of a 9-day germination tests. In 

contrast, the root and shoot lengths of L perenne were inhibited with increasing 

concentration of pyrene (Figures 4.7 and 4.9). This is in line with work carried out by 

Ahammed et al. (2012) which showed that pyrene exposure resulted in a dose-dependent 

increase in the inhibition of the shoot and root length of S. lycopersicum. Therefore there 

is a suggestion that the inhibition to the root and shoot length of L. perenne in the present 

study clearly indicates that L. perenne is sensitive to PAH stress. The toxicity of pyrene to 

L. perenne was dependent on the concentration of pyrene in solution. Although in the 

present study, it was more evident in the root systems of the plants. Because pyrene is a 
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hydrophobic compound and is likely to partition into lipid membrane (Edwards 1983), 

there is an expectation that it will accumulate in the membrane of the root systems first 

and only after saturation, will pyrene be moved up to the shoot. As the germination of L. 

perenne was not affected by the pyrene in solution, it could be assumed that the reduction 

in root length observed in the present study cannot be linked to delay in germination. Taiz 

and Zeiger (1991) showed that root growth is primarily due to cell expansion. Therefore it 

is possible that the cell expansion of L. perenne was affected and could be as a result of 

the inhibition of hormone action like auxin or interference with cellular metabolism. 

4.3.3 Joint toxicity effect of Cu and pyrene  

In the present study, it is clear that no matter the concentration of Cu or pyrene in the joint 

effect tests, the germination rate as well as the shoot and root length decreased when 

compared to single effect tests of Cu or pyrene. The exposure of plants to more than one 

contaminant could lead to interaction between the contaminants which affect the plants. 

This can be antagonistic, additive or synergistic. However, synergistic effects are found to 

be most common (Luo and Rimmer 1995, Wong and Chang 1991) and our results support 

this, showing synergistic effects of Cu and pyrene on the shoot and root length of L. 

perenne. When Cu concentration was fixed with increasing pyrene concentration or when 

pyrene was fixed with increasing concentration of Cu, the present results showed a 

synergistic effect for higher concentration of fixed Cu or pyrene concentration used in the 

present study. At 1 and 2 mg L-1 fixed pyrene concentration it was clear from the present 

result that only higher concentration of Cu (12.9 mg L-1) had a synergistic effect on the 

root elongation of L. perenne (Figure 4.14). The possible reason is that pyrene could affect 
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the structure of the cell wall which could increase the possibility of Cu2+ to enter the root 

systems and go up to the shoot. Kang et al. (2010) showed that pyrene is always adsorbed 

onto the root cell walls prior to cell membrane penetration. It is recalcitrant to metabolism 

in roots, therefore it exhibits a stronger affinity for plant tissues, slowing up uptake from 

roots to shoot (Kang et al. 2010). When this happens there could be damage to the 

structure of the root cell wall. Liu et al. (2009) also observed synergistic effect of 

combined contamination of cypermethrin and Cu on Brassica rapa and was linked to 

plasma membrane and cell wall damage by cypermethrin resulting in enhanced Cu uptake. 

In the natural environment, synergistic interactions are very important because pollution is 

caused by more than one kind of contaminant. When considering the toxicity effects of the 

combined effects of multiple contaminants, the synergistic effect is the most important 

effect to protect against because it can result in enhanced toxicity effects. 

Although synergistic effects were clear, the present study also showed evidence of 

antagonistic effects of Cu and pyrene on seed germination. Figures 4.9 and 4.10 showed that 

the joint contamination with Cu and pyrene had an antagonistic effect on the final germination 

rate of L. perenne at fixed Cu concentration. At low to high Cu concentration, increasing the 

concentration of pyrene increased the final germination rate, hence showing an antagonistic 

effect of pyrene under joint contamination. The germination of L. perenne could resist higher 

concentration of either pyrene or Cu than when jointly contaminated. This is obvious as the 

interactions of two groups of chemicals seem to change the mode of action of individual 

chemicals. For example, Chauhan and Gupta (2005) observed that the interactions of 

insecticides and herbicides changed the mode of action and resulted in induced ultrastructural 



117 

 

alterations whereas when the cells of Allium cepa, were exposed to individual compounds, 

there was no evidence of induced alterations. It could also be possible that the joint 

contamination of Cu and pyrene was dependent on the ratio of each compound as suggested 

by Liu et al. (2009). It was clear that varying the concentration of either Cu or pyrene 

significantly affected inhibition to shoot or root length as well as germination percentage of L. 

perenne. However, the solubility of pyrene in water is 0.14mg L-1 (Aoudia et al. 2010) which 

is less than the concentration used in this study. Due to the low solubility of pyrene, it was 

delivered in acetone to achieve concentration that allows for full scale doze response. It is 

clear that once toxicity test starts, bioaccumulation of the PAHs will begin and it becomes 

impractical to monitor PAH concentration as it is difficult to maintain stable exposure 

concentration due to evaporative losses (Ren et al. 1996). Pyrene could adsorb to the surface 

of the petri dishes used for the test or can undergo transformation during tests (Schrieber et al. 

2008), leading to inhomogenous distribution of test chemicals with differing degrees of 

bioavailability (Tanneberger et al. 2010). This could cause varying differences in pyrene and 

their co-contamination in the toxicity tests with L. perenne. There is a possibility that the 

toxicity of pyrene to the seedling growth of L. perenne could be compromised by the 

difficulty of ensuring exposure concentration at the saturation level and keeping it constant 

during the test. Method improvement for this problem will require a process like passive 

dozing for maintaining the constant exposure condition for toxicity tests. Kwon et al. (2011) 

showed in their study that the calculated value of benzyl butyl phthalate in the medium using 

passive dozing method was similar to the measured free concentration, while when solvent 

(methanol and dimethylsulfoxide) was used, there were high discrepancies between the 
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nominal concentration and the measured free concentration as the nominal concentration 

exceeded the solubility of benzyl butyl phthalate in water. 

4.4 Conclusion 

In this study, the single and joint toxicity of Cu and pyrene on the shoot and root length as 

well as seed germination were investigated. The toxicity of pyrene, Cu and their 

combinations to L. perenne could have been influenced by the concentration of individual 

compounds in solution culture. Low concentrations of Cu did not affect the final 

germination percentage of L. perenne. However, all tested Cu concentration influenced 

the shoot and root length inhibition. The single application of pyrene up to 4 mg L-1 did 

not affect the germination percentage but decreased the shoot and root length of L. 

perenne over 9 days of culture. The joint toxicity of Cu and pyrene on L. perenne varied. 

Increasing concentration of pyrene showed an antagonistic effect on the germination rate 

under joint contamination while there was a synergistic effect on the shoot and root length 

under joint contamination. The joint toxicity was more dependent on the effect of pyrene 

than that of Cu. This suggests that in early toxicity assessment of contaminants on seed 

growth, the combined contamination of pyrene and Cu negatively affected the 

germination and seedling growth more than single contamination of either Cu or pyrene 

and highlights the effect of co-contamination during phytoremediation. The mixture 

toxicities of Cu and pyrene observed in this study provides some perspective of the 

implications of both contaminants during the early stages of plant growth. Such 

perspectives are not available from studies that consider single contaminants.  
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4.5 Effect of combined pollution of chromium and B[a]P on seed 

growth of Lolium perenne- Introduction 

Part of this work has been published in chemosphere peer reviewed journal; Chigbo and 

Batty 2013. 

Chromium (Cr) is abundant in the earth crusts and is ranked fourth out of 29 elements of 

biological importance (Subrahmanyam 2008). Due to industrial activities, substantial amount 

of Cr compounds are discharged in liquid, solid and gaseous waste into the environment 

causing significant adverse biological and ecological effects (Kotas and Stasicka 2000). Cr is 

toxic to plants, does not play any role in plant metabolism and its accumulation by plants can 

reduce growth, alter enzymatic functions as well as induce chlorosis in young leaves (Panda 

2003). B[a]P on the other hand is a polycyclic aromatic hydrocarbon (PAH) that can be 

released into the environment during incomplete combustion or pyrolysis of organic materials 

(Carlo-Rojas and Lee 2009). It is a ubiquitous environmental pollutant used as a 

representative indication of total PAH level (Jagetia et al. 2003). Lower concentrations of 

B[a]P has shown to accelerate the speed of germination and photosynthesis (Diao et al. 2011). 

Increasing attention has been paid to the pollution problems associated with either Cr or 

B[a]P in recent years (Akinci and Akinci 2010, Diao et al. 2011). However, joint toxicity of 

Cr and B[a]P has been rarely studied.  

Short term phytotoxicity tests which give clear information on inhibition, respiration and 

enzyme activation have always been carried out using seed germination and root elongation 

tests. They are suitable as stand-by test methods as well as a fast tool to evaluate the 
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ecological risks of xenobiotics (Wang et al. 2002). Hence, in view of the fact that the 

simultaneous occurrence of heavy metals and PAH are becoming more frequent, single and 

joint toxicity of Cr and B[a]P acting on L. perenne was investigated and the rate of 

germination, inhibition of shoot and root elongation which reflect the toxicity of hazardous 

chemicals were assessed. 

4.6 Methods 

 4.6.1 Materials 

All reagents used in this study are analytic grade. Seeds of L. perenne were commercially 

available from Vegetable direct seeds Co. Ltd, England. B[a]P and Potassium dichromate VI 

were supplied by VWR chemicals, Lutterworth UK. Test solutions of B[a]P were prepared by 

dissolving in 0.1% acetone and making up with deionized water while potassium dichromate 

VI was prepared with deionized water only. Control treatments were also exposed to 0.1% 

acetone. Three replicates were set for each concentration. 

4.6.2 Seed germination and root and shoot elongation tests. 

Seeds of L. perenne were sterilized in 6% (v/v) hydrogen peroxide for 15 minutes and washed 

with tap water. Ten seeds of L perenne were carefully placed on each petri dish and moistened 

with 3mL of toxicants solution. The concentration of B[a]P was set at 0, 1, 2, 3 and 4 mg L-1 

and the tested concentration of Cr was 0, 2.35, 4.7, 9.4 and 14.1 mg L-1.  Petri dishes were 

sealed with Parafilm® and allowed to germinate under daylight at 24±2 °C in the glasshouse 

for 9 days. First seed emergence was monitored on daily basis and germination percentage 
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calculated on the 6th day. A 1 mm radical emergence was considered as seed germination. 

Seedling development was regarded as inhibited when the seed coat was visibly broken with 

the embryo not growing further. On the 9th day, germinated seeds were used for root and 

shoot length measurement. The Germination Rate Index (GI) was determined by the 

following formula, 

GI = 𝐺3
3

+ 𝐺6
6

+ 𝐺9
9

   (Ali 2007) 

Where G3, G6 and G9 are germination percentages at 3, 6 and 9 days after initiation of 

germination 

 4.6.3 Statistical analysis 

Statistical analysis including calculation of average values, standard error (S.E) was 

calculated by the Microsoft office Excel 2007. One-way analysis of variance was carried out 

with Minitab 15. The root length results were log transformed prior to analysis. When a 

significant (p<0.05) difference was observed between treatments, multiple comparisons were 

made by the Turkey test.  
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4.7 Results 

4.7.1 Toxic effects of Cr on seed germination 

The final germination percentage of seeds of L. perenne in medium containing different 

concentrations of Cr showed an inverse relationship. Figure 4.15 showed that the inhibition to 

final germination increased by 17 to 40% relative to control experiments as the concentration 

of Cr in the medium increased from 2.35 mg L-1 to 14.1 mg L-1. However, inhibition at only 

4.7 mg L-1, 9.4 mg L-1 and 14.1 mg L-1 concentration of Cr showed significant differences (p< 

0.05) when compared to control treatments. There was also a significant negative correlation 

(r = -0.994, p< 0.05) between the concentration of Cr and the final germination percentage.  
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Figure 4.15: Toxic effect of Cr on final germination relative to control of seeds of Lolium 

perenne. Different letters indicate a significant difference at p< 0.05 according to the Tukey 

HSD. Appendix 4B.1 
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The absence of inhibition at lower concentration when compared to control treatments at the 

end of germination tests could mean that lower concentrations of Cr are not phytotoxic for 

germination.  

Seeds in medium containing the lowest concentration of Cr showed signs of early breakage of 

seed coat that was absent in other treatments. In addition, all the concentrations of single Cr 

except at 14.1 mg L-1 were less toxic to seeds of L. perenne than all other mixed treatments 

when compared with control treatments. All other mixed treatments showed at least 2 to 4 

orders of toxicity to seeds of L. perenne compared to the lowest concentration of Cr.  

The germination rate index of seeds of L. perenne over the 9-day period reduced by 4 to 13% 

relative to control treatments as the concentration of Cr increased from 2.35 to 14.1 mg L-1. 

Results showed no significant differences (p > 0.05) in germination rate index between the 

concentrations of Cr and control except when the Cr concentration reached 14.1 mg L-1. Also 

there was only a significant difference (p < 0.05) in germination rate index between 2.35 mg 

L-1 of Cr and 14.1 mg L-1 of Cr, other increasing concentrations of Cr showed no significant 

differences (p > 0.05).  

 



125 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Toxic effect of different concentrations of Cr on germination rate index relative 

to control of seeds of Lolium perenne. Different letters indicate a significant difference at p< 

0.05 according to the Tukey HSD. Appendix 4B.2 
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4.7.2 Toxic effect of Cr on seedling growth 

Seedling establishment is the most sensitive to both physical and chemical adversities (Jeratha 

and Sahai 1982). The shoot length of seeds of L. perenne reduced for all concentration of Cr 

in media. The reduction in shoot elongation relative to control treatments increased from 19 to 

40% as the concentration of Cr increased from 2.35 to 14.1 mg L-1. Results obtained showed 

that the inhibition of shoot elongation with increased Cr (2.35 to 14.1 mg L-1) , was 

significantly lower than control treatments. There was also a significant negative correlation 

(r= -0.957, p< 0.05) between shoot length inhibition and Cr concentration.  
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Figure 4.17: Toxic effect of Cr on shoot length relative to control of seeds of L. perenne. 

Different letters indicate a significant difference at p< 0.05 according to the Tukey HSD. 

Appendix 4B.3 
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The root length of L. perenne was inhibited relative to control treatments for all 

concentrations of Cr. There was a 34 to 48% inhibition of roots relative to control treatments 

as the concentration of Cr increased from 2.35 to 14.1 mg L-1. The root length of L. perenne 

in medium containing 2.35 mg L-1 Cr decreased when compared to control treatments and as 

the concentration of Cr increased to 4.7 mg L-1, 9.4 mg L-1 and 14.1 mg L-1, the root length of 

seeds in medium was also significantly (p< 0.05) inhibited relative to control treatments.  

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Toxic effect of Cr on root length relative to control of seeds of L. perenne. 

Different letters indicate a significant difference at p< 0.05 according to the Tukey HSD. 

Appendix 4B.4 
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4.7.3 Effects of benzo [a] pyrene on seed germination 

Single concentration of B [a] P when compared to control treatments caused stimulatory 

effects on the germination of seeds of L. perenne. The final germination percentage for the 

least concentration of B[a]P in culture medium was similar to control treatments. However, as 

the concentration of B[a]P in medium increased to 4 mg L-1, germination stimulation relative 

to control increased significantly to 10%. Although one-way ANOVA showed no significant 

differences (p < 0.05) between lower B[a]P treatments and control treatments, the enhanced 

final germination as observed at 4 mg L-1 B[a]P concentration suggests that B[a]P and its 

degradation products could act as growth stimulators.  B[a]P showed no toxicity to seeds ofl 

L. perenne based on final germination percentage but over the 9-day period, the rate of 

germination of perennial ryegrass was inhibited relative to control treatments. With the 

concentration of B[a]P at 1 mg L-1, the rate of germination was reduced by 11% relative to 

control treatments and also reduced from 10 to 8% as the concentration of B[a]P increased 

from 2 mg L-1 to 4 mg L-1. One-way ANOVA showed significant differences (p < 0.05) in 

germination rate index as B[a]P concentration increased from 1 mg L-1 to 4 mg L-1 (Figure 

4.20).  
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Figure 4.19 Stimulatory effect of B[a]P on final germination relative to control of seeds of L. 

perenne. Different letters indicate a significant difference at p< 0.05 according to the Tukey 

HSD. Appendix 4B.1 
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Figure 4.20: Toxic effect of different concentrations of B[a]P on germination rate index 

relative to control of seeds of L. perenne. Different letters indicate a significant difference at 

P< 0.05 according to the Tukey HSD. Appendix 4B.2 
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4.7.4 Toxic effect of B[a]P on seedling growth 

B[a]P has an important influence on seedling growth of L. perenne. Figures 4.21 and 4.22 

describes the changes in shoot and root growth of L. perenne under different B[a]P 

concentrations. As the concentration of B[a]P in medium increases from 1 mg L-1 to 4 mg L-1, 

the shoot elongation of L. perenne increased from 1.25 to 10.41%, however this increase 

observed was non-significant when compared to control treatments. The root length 

elongation of L. perenne was inhibited by 12.5% at 1 mg L-1 of B[a]P concentration relative to 

control treatments, was similar to control treatments at 2 mg L-1 of B[a]P concentration, and 

was stimulated from 9 to 15% as the concentration of B[a]P increased from 3 mg L-1 to 4 mg 

L-1. However, the increase in shoot and root length relative to control treatments were non 

significant (p>0.05). This could mean that B[a]P had no adverse effect on root and shoot 

development of L. perenne. The stimulating effect of B[a]P on L. perenne had a close 

correlation with the concentration of added B[a]P and the coefficient of correlation reached 

0.983 and 0.984 for shoot and root length respectively.  
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Figure 4.21: Toxic effect of B[a]P on shoot length relative to control of seeds of L. perenne. 

Different letters indicate a significant difference at p< 0.05 according to the Tukey HSD. 

Appendix 4B.3 
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Figure 4.22: Effect of B[a]P on root length relative to control of seeds of L. perenne. 

Different letters indicate a significant difference at p< 0.05 according to the Tukey HSD. 

Appendix 4B.4 
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4.7.5 Joint toxic effect of chromium and B[a]P on seed germination 

When B[a]P and Cr are mixed together, the effect on germination of seeds of L. perenne 

varies. There was an increased inhibition to the rate of germination and final germination 

percentage for all mixed treatments when compared to single treatment of B[a]P and Cr. All 

mixed concentration of Cr and B[a]P showed significant (p < 0.05) differences when 

compared with control treatments as well as single treatments of Cr or B[a]P. This is an 

evidence of enhanced inhibition of germination caused by mixed contamination. Figure 4.23 

shows the effect of fixed Cr with varried B[a]P concentration on L. perenne. When Cr 

concentration remained 2.35 mg L-1 and 4.7 mg L-1, the final germination percentage 

increased as the concentration of B[a]P increased from 1 to 4 mg L-1. However, as the 

concentration of fixed Cr increased from 9.4 to 14.1 mg L-1, the final germination percentage 

reduced. With concentration of Cr fixed at 2.35 and 4.7 mg L-1, inhibition to final germination 

reduced non-significantly (p>0.05) from 53 to 37% and 50 to 33% respectively when the 

concentration of B[a]P increased from 1 to 4 mg L-1. There was a 59 to 40% and 56 to 36% 

reduction in relative toxicity respectively at this time.  When fixed Cr concentration increased 

to 9.4 and 14.1 mg L-1 and B[a]P concentration varied, inhibition to final germination 

increased from 33 to 63% and 63 to 70% respectively as the concentration of B[a]P increased 

from 1 to 4 mg L-1. The relative toxicity based on final germination also increased from 37 to 

70% and 70 to 78% respectively. 
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Figure 4.23: Joint effects of fixed Cr and B[a]P on final germination of L. perenne. Error bars 

are standard error Appendix 4B.1 

 

When B[a]P remained the same and Cr concentration varied, the final germination percentage 

of seeds in media varied, with medium treated with 2, 3 and 4 mg L-1 fixed concentration of 

B[a]P showing similar trend.  

Looking at figure 4.24, at 1 mg L-1 fixed concentration of B[a]P, inhibition to final 

germination percentage relative to control reduced from 53 to 33% as the concentration of Cr 
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increased from 2.35 to 9.4 mg L-1, and increased to 63% as the concentration of Cr reached its 

maximum (14.1 mg L-1). One-way ANOVA showed significant differences between final 

seed germination as the concentration of Cr in the mix increased from 9.4 to 14.1 mg L-1. 

When B[a]P concentration in medium remained 2 and 3 mg L-1, the inhibition to final 

germination percentage relative to control treatments increased from 46 to 63% and 37 to 

66% respectively as the concentration of Cr increased from 2.35 to 14.1 mg L-1. Relative 

toxicity to seed of L. perenne based on germination increased from 52 to 70% and 41 to 74% 

respectively at this point.  There were significant reductions in final germination percentage 

between 2.35 mg L-1 and 14.1 mg L-1 Cr concentration when B[a]P concentration remained 3 

mg L-1. With B[a]P fixed at 4 mg L-1 and Cr concentration varied, the final germination 

percentage of seeds of L. perenne increased for lower concentration of Cr. Inhibition to final 

germination relative to control treatment reduced from 37 to 33% as the concentration of Cr 

increased from 2.35 to 4.7 mg L-1, and increased to 63% and a further 7% as the concentration 

of Cr increased to 9.4 mg L-1 and 14.1 mg L-1 respectively.  
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Figure 4.24: Joint effects of fixed B[a]P and Cr on final germination of L. perenne. Error bars 

are standard error. Appendix 4B. 1 
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concentration of B[a]P as well as when B[a]P concentration is fixed with varying 

concentration of Cr. 

At 2.35 mg L-1 and 4.7 mg L-1 fixed Cr concentration, the germination rate index relative to 

control treatments reduced from 65 to 39% and 53 to 35% as the concentration of B[a]P 

increased from 1 to 4 mg L-1. When the concentration of Cr increased to 9.4 mg L-1 and 14.1 

mg L-1, there was an increased reduction in germination rate index relative to control 

treatments. Results showed a 32 to 72% and 70 to 75% reduction relative to control 

treatments respectively as the concentration of B[a]P increased from 1 to 4 mg L-1. 

Reductions in germination rates at fixed Cr concentration showed significant differences 

when compared with control treatments. Also there was significant increase (p< 0.05) in the 

rate of germination for 1 mg L-1 and 4 mg L-1 of B[a]P concentration when Cr concentration 

remained 9.4 mg L-1.  

Results varied when B[a]P concentrations were fixed. For example, When the concentration 

of B[a]P remained at 1 mg L-1, reduction in germination rate index relative to control 

treatments reduced from 65 to 32% as the concentration of Cr increased from 2.35 mg L-1 to 

9.4 mg L-1 and increased to 70% at 14.1 mg L-1 Cr concentration. However, as the 

concentration of B[a]P increased to 2, 3 and 4 mg L-1, germination rate index followed a 

similar pattern. A slight increase (49 to 51%, 58 to 60%, and 61 to 65 % respectively) as the 

concentration of Cr increased from 2.35 to 4.7 mg L-1 and reduction (38 to 30%, 34 to 27% 

and 28 to 25% respectively) as concentration of Cr increased from 9.4 to 14.1 mg L-1. The 

reductions in germination rate index compared to control treatments were statistically 



140 

 

significant (p < 0.05). When B[a]P remained at 2 mg L-1, there were significant differences in 

germination rate as Cr concentration increased from 4.7 to 9.4 mg L-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: Joint effect of fixed B[a]P and Cr on Germination rate index of seeds of L. 

perenne. Error bars are standard error. Appendix 4B.2 
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4.7.6 Joint effect of Cr and B[a]P on seedling growth 

The study on joint effect of B[a]P and Cr was performed on seedling growth and the shoot 

and root elongation was the end point of toxicity. The shoot and root of l. perenne was 

inhibited for all mixed treatments relative to control treatments as well as single treatments of 

B[a]P and Cr. Inhibition also varied with different concentration of joint contaminants. 

Results from figures 4.26 and 4.27 showed that when the fixed concentration of Cr was 2.35 

mg L-1, inhibition to the shoot and root length of L. perenne significantly decreased (p<0.05) 

from 49 to 37% and 68 to 54% respectively, relative to control treatments as the concentration 

of B[a]P increased from 1 to 4 mg L-1. Similar trends followed for 4.7, 9.4 and 14.1 mg L-1 

fixed concentration of Cr with a 53 to 45%, 62 to 50% and 70 to 59% significant reduction 

(p< 0.05) in shoot length inhibition respectively and 71 to 56%, 76 to 63% and 83 to 72% for 

root length inhibition relative to control treatments as the concentration of B[a]P increased 

from 1 to 4mg L-1. Results showed that the slight reduction in inhibition of shoot length as the 

concentration of B[a]P increased from 1 to 4 mg L-1 at 2.35 or 4.7 mg L-1 fixed Cr 

concentration was not significant. However, as the concentration of Cr increased to 9.4 and 

14.1mg L-1, there were significant differences in shoot length reduction between 1mg L-1 and 

4 mg L-1 B[a]P concentration in mix.  

. 
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Figure 4.26: Joint effect of fixed Cr and B[a]P on shoot length relative to control of seeds of 

L. perenne. Error bars are standard error. Appendix 4B.3 
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Figure 4.27: Joint effect of fixed Cr and B[a]P on root length relative to control of seeds of L. 

perenne. Error bars are standard error.. Appendix 4B.4 

With fixed concentration of B[a]P, notable differences occurred. The inhibition to the shoot 

and root length of L. perenne increased as the concentration of Cr increased.  Inhibition to the 

shoot length of L. perenne at 1 mg L-1 fixed B[a]P concentration significantly increased from 

49 to 70% relative to control treatments as the concentration of Cr increased from 2.35 to 14.1 

mg L-1.  Also there were 45 to 65%, 42 to 63% and 37 to 59% significant increases in shoot 

length inhibition relative to control treatments for 2, 3 and 4 mg L-1 fixed B[a]P concentration 

respectively, as the concentration of Cr increased from 2.35 to 14.1 mg L-1.  
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Figure 4.28: Joint effect of fixed B[a]P and Cr on shoot length relative to control of seeds of 

L. perenne. Error bars are standard error. Appendix 4B.3 
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Figure 4.29: Joint effect of fixed B[a]P and Cr on root length relative to control of seeds of L. 

perenne. Error bars are standard error. Appendix 4B.4 
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4.8 Discussion 

In toxicity assessment of higher plants, the experiment concerning seed germination, root 

elongation and shoot elongation at early stage are established methods (Cheng and Zhou 

2002). In the present study, the three parameters as mentioned were measured and calculated 

in response to Cr and B[a]P toxicities. 

From the present results, higher concentrations of Cr produced a significant reduction in the 

growth of L. perenne. The effects were mainly observed in roots and to a lesser extent, shoot 

length and seed germination as observed in Figures 4.15, 4.16 and 4.18. The reduction in 

shoot length with increasing concentration of Cr could be as a result of the binding of Cr to 

the root cell wall which will inhibit root cell division and elongation. It could also be due to 

the extension of cell cycle in roots as suggested by Woolhouse (1983). In the present study, 

the accumulation of Cr in roots of L. perenne was not studied; however some studies have 

shown that the inhibition of shoot growth with increasing concentration of Cr could be due to 

accumulation of Cr in the roots (Datta et al. 2011). The germination rate of L. perenne was 

only reduced when the concentration of Cr in medium was greater than 9.4 mg L-1. This 

suggests that only higher concentration of Cr affected the germination rate at the present 

conditions. The inhibition of germination rate that was observed at only elevated Cr 

concentration could be as a result of depression of oxygen uptake and physiological 

disturbance in mobilization of reserve food materials of seeds (Agrawal et al. 1961) The 

observed inhibition to germination rate at elevated Cr concentration in the present study is 

supported by the work carried out by Bishoni (1993) who observed that the germination rate 

of Pisum sativum was not affected by 0.5 mM concentration of hexavalent chromium and 
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Akinci and Akinci (2010) who showed that the maximum germination of seeds of Cucumuis 

melo L. was not affected in 2.5 and 5 mg L-1 of Cr but was affected as the concentration of Cr 

increased to 10 mg L-1.  

The shoot elongation of L. perenne as observed in the present study was inhibited when the 

concentration of Cr remained 14.1 mg L-1 or more (Figure 4.17). This significant reduction 

could be linked to lesser nutrient and water transport to the above plant parts as suggested by 

Datta et al. (2011). Higher concentration of Cr can cause different toxicological effects and 

because hexavalent chromium is more water soluble and possesses greater oxidizing capacity, 

it is easily translocated in plants. Also the inhibitory effects of Cr on the growth of embryonic 

axis of germinating seeds can interfere with the emergence of healthy seedlings which are 

likely to have poorly developed root system resulting in reduced capacity of seedlings to 

absorb nutrients and water from soil.  

From our results, it is clear that B[a]P was not toxic to seed germination  or seedling growth 

of L perenne. At all concentrations of single B[a]P tested, there were no adverse effects on the 

seed final germination percentage or seedling root and shoot growth. However there was 

inhibition of germination rate over the 9-day period when B[a]P concentration increased. Our 

result is in line with the work of Ren et al. (1996) which showed that the efficiency and the 

rate of germination of Brassica napus was not affected by B[a]P. The reduction in the rate of 

germination could be as a result of delayed germination during the first days of incubation. 

Henner et al. (1999) showed that germination of seeds of L. perenne was delayed by PAHs 

including fluoranthene and naphthalene, Wang et al. (2011) showed that the germination of 

wheat was not sensitive to single pollution of B[a]P  although soil was used as the medium 
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for germination and also work carried out by Sverdrup et al. (2007), showed that B[a]P did 

not affect seed emergence of Brassica alba, Trifolium pratence and L. perenne 

Lower concentration of B[a]P seemed to stimulate the shoot growth of L. perenne (Figure 

4.21). The stimulation in growth could be as a result of hormesis as explained by Calabrese 

(2005), which is an overcompensation in response to low levels of contaminants- a case where 

low dosage stimulates growth and high doses inhibits growth. Some works have reported 

stimulation of growth by low concentration of B[a]P. For example, Forrest et al. (1989) 

reported the accelerated growth of fern gametophytes under low concentration (0.1-0.32 µg 

ml-1) of B[a]P.  Soil has been used mostly as a medium for assessing the toxicity effects of 

B[a]P on seeds and seedlings. However, the results obtained with soils seem to be similar 

with the present study. For example, Sims and Overcash (1983) reported no adverse effects 

when L. perenne, Triticum spp and Z. mays were grown in soils with up to 1.2 mg kg-1of 

B[a]P. Even when toxicity to growth (measured as the rate of production of leaves) was 

recorded, B[a]P was the least toxic on the growth of Lemna gibba when compared with other 

PAHs like pyrene, phenanthrene and fluoranthene (Huang et al. 1995). 

The effects of Cr and B[a]P on higher plants have been documented (Huang et al. 1995, 

Huang et al. 1996, Peralta et al. 2001); however, and to our knowledge, no studies 

investigated the response of plants to mixed contaminant exposure. In the present study, seeds 

of L. perenne were exposed to varied concentrations B[a]P and Cr in combination and 

toxicities based on germination rate or shoot and root length were assessed. The reduction in 

the final germination percentage seemed to be significant as fixed Cr concentration increased 
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to 14.1 mg L-1, which could mean that if concentration of fixed Cr further increases, the 

differences could become clearer. At the highest (4 mg L-1) fixed concentration of B[a]P, the 

difference in final germination percentage at 9.4 and 14.1 mg L-1 Cr concentration was more 

significant than those with 2.35 and 4.7 mg L-1 Cr. From our results, it is difficult to ascertain 

which contaminant was more responsible for germination inhibition at fixed Cr concentration. 

However, with increased B[a]P concentration, Cr and B[a]P seemed to have significant 

synergistic effect on the final germination percentage of seeds of L. perenne. There is also 

suggestion from our results that at high concentration of B[a]P, the joint toxicity of Cr and 

B[a]P on final germination depends more on the toxicity of Cr. 

Figures 4.26 and 4.27 showed that at low concentration of Cr, higher concentration of B[a]P 

had an antagonistic effect on shoot and root elongation of L. perenne. This could mean that 

with Cr in medium, the addition of high concentration of B[a]P could fix some part of Cr in 

the outer environment of the root of L. perenne, inhibiting some of the Cr and B[a]P from 

going to the shoot through the root system. This will reduce the toxic effects of Cr.  Wang and 

Zhou (2005) reported antagonistic effect of chlorimuron-ethyl and cadmium at low cadmium 

concentration and suggested that when organic pollutants and metals are combined, the 

activities of heavy metals are reduced. The observed synergistic effect on root and shoot 

elongation of L. perenne at low B[a]P concentration and higher Cr concentration is in line 

with the work of Shuai et al. (2010) that reported a synergistic stimulatory effect of B[a]P and 

lead to dehydrogenase activity, which varied with time. It was suggested that it could be as a 

result of reduced bioavailability of contaminants with increase in time. The inhibitory effects 

of combined B[a]P and Cr on root and shoot length from our result further supports the work 
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of Zhou et al. (2004) that ecotoxicological effects of combined contamination were dependent 

on the concentration combination relationships of contaminants irrespective of other 

important factors like single concentration levels and natural characteristics. From our studies, 

the root length of L. perenne was more inhibited than the shoot length and germination 

percentage and could be more sensitive to the toxicity of mixed contamination of Cr and 

B[a]P. This is in line with the work of Wang and Zhou (2005) who observed that the joint 

toxicity of chlorimuron-ethyl (herbicide) with cadmium and copper on root elongation of 

Triticum aestivum were stronger than those of seed germination rate.  

4.9 Conclusion 

In this study, the single and joint effects of Cr and B[a]P on seed germination, elongation of 

root and shoot of L. perenne were investigated. It was shown in the single factor experiment 

of Cr or B[a]P and in the joint effects experiments of Cr and B[a]P that there were significant 

relationships between the concentration of pollutants and the elongation of root or shoot and 

germination rate of L. perenne. 

Results showed that higher concentration of Cr inhibited the rate of germination of L. perenne 

while lower concentrations showed less or absence of inhibition. Increased concentration of 

B[a]P could slightly accelerate the germination rate of L. perenne. The joint effect of B[a]P 

and Cr could strongly inhibit the germination rate of L. perenne. Inhibition was more when 

compared to single pollution of Cr. 

The shoot elongation of L. perenne was also inhibited for higher concentrations of Cr, 

whereas with single B[a]P contamination, the shoot elongation of L. perenne was closely 
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correlated with increasing B[a]P concentration suggesting stimulating effect of B[a]P on 

elongation of shoot of L. perenne. With mixed concentration of Cr and B[a]P, when the 

concentration of Cr is high with low concentration of B[a]P, Cr had an antagonistic effect 

with B[a]P on shoot elongation of L. perenne. While at low B[a]P concentration with high Cr 

concentration, Cr had a synergistic effect on shoot elongation of L. perenne. 

 Higher concentration of Cr inhibited the root elongation of L. perenne. There is also an 

indication that increasing concentration of B[a]P stimulated the root length of L. perenne. 

When the concentration of B[a]P is high with low Cr concentration, B[a]P had an antagonistic 

effect with Cr on root elongation of L. perenne. Also when the concentration of Cr is high 

with increasing concentration of B[a]P, Cr had a synergistic effect with B[a]P on root 

elongation of L. perenne. 

The toxicity effect of Cr and B[a]P to seed germination or root and shoot elongation are root 

elongation > shoot elongation > germination rate. In order to assess the environmental risk of 

pollutants, more attention should be paid to long-term exposure of Cr and B[a]P to crops.  
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Phytoremediation of metal-PAH co-contaminated soils 
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5.1 Growth response of Brassica juncea in Cu-pyrene co-

contaminated soil and the fate of contaminants- Introduction 

Part of this work has been published in chemosphere peer reviewed journal; Chigbo et al. 

2013. 

The toxic effects of heavy metals and PAHs have been widely researched (Perronnet et al. 

2000, Matitna et al. 2003, Kvesitadze et al. 2009) For example, the Environment Agency 

(2002) have set acceptable limits of land contamination which depends on the end use of the 

land. There are concerns of a potential negative impact of accumulated contaminants on 

human health as well as the environment; hence efforts have been stepped up in many 

countries to minimize the release of contaminants while applying remediation methods on 

already contaminated sites (Schnoor et al. 1995). In-situ remediation technology such as 

phytoremediation; the decontamination of pollutants using plants could be appealing to all 

countries (Kramer 2005). There are some promising results which show that 

phytoremediation could be an excellent alternative to chemical or mechanical methods in 

remediation of metal or PAH contamination (Lin et al. 2006). However the phytoremediation 

of co-contaminants (organics and inorganics) is poorly understood and this has become a 

problem since many soils are exposed to co-contamination (Zhang et al. 2011).  

The co-contamination of soils could affect the process of phytoremediation. Different 

contaminants could interact with plants or with themselves and could affect the 

phytoremediation potential of plants (Almeida et al. 2008). The success of phytoremediation 

of organic contaminants depends on the influence of roots on degradation of the relevant 
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contaminant. In the presence of plant roots, certain changes occur, including changes in 

chemical characteristics as well as changes in microbial numbers and activity (Pilon-Smits 

2005). Previous research has shown that the degradation of organic contaminants by plants 

could be negatively affected by heavy metals (Sandrin and Maier 2003). Heavy metals 

negatively or positively affect the root growth of plants, affecting the root enhanced 

dissipation of PAHs. It also directly affects the microbes in soil thereby affecting the 

degradation of organic contaminants (Lin et al. 2008). Compared to organic contaminants, 

heavy metals are not degradeable. However, a number of plants are able to take up and 

accumulate significant amounts of heavy metals from soil. The interaction of heavy metals 

and organic contaminants could affect metal uptake and accumulation by plants. For example, 

Lin et al. (2008) showed that in the presence of pyrene and 400 mg kg-1 Cu, the concentration 

and accumulation of Cu in Z. mays decreased when compared to the absence of pyrene. In 

contrast, the concentration of Zn in shoots of B. juncea grown in Zn-pyrene co-contaminated 

soil significantly increased relative to soil contaminated with Zn only (Batty and Anslow 

2008). This shows that the effects of organic contaminants on phytoextraction of metals are 

complex in soils and could be related to certain factors including plant species and type of 

contaminant. Hence the objective of this study is to investigate the effect of co-contamination 

of Cu and pyrene on the growth of B. juncea and the fate of contaminants in plants and soil. 

Pyrene and Cu were used in this study because pyrene represents a class of organic 

compounds that are ever present in superfund sites while Cu is one of the priority 

contaminants. B. juncea was used because of its desirable characteristics. B. juncea is known 

to both accumulate and to tolerate high levels of heavy metals from polluted soils (Alvarez et 
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al. 2009). They also have desirable characteristics such as high shoot biomass, short life cycle 

and handling ease (Ariyakanon and Winaipanich 2006). 

5.2 Methods 

5.2.1 Soil spiking 

Soil was spiked with pyrene by dissolving 250 and 500 mg of pyrene in 25 mL of acetone. 

The solution of acetone and pyrene was mixed with 250 g of soil as a portion and then mixed 

with 750 g of soil once the acetone had volatilized completely in the fume hood. 25 mL of 

acetone was also added to control and other soil treatments. 50 and 100 mg kg-1 of Cu was 

prepared by dissolving 0.126 and 0.251 g of CuSO4 and added singly in pyrene spiked soils 

and fresh soils resulting in a total of 15 treatments.  The spiked soil was thoroughly mixed by 

sieving and stored in a dark room for equilibration for 28 days before planting. 

5.2.2 Experimental set up 

The experimental layout was designed in a completely randomized design of 15 treatments 

with three replicates of each. Pots spiked with pyrene had treatments with no planting in order 

to observe non-plant facilitated dissipation of pyrene. 
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Table 5.1: Experimental layout 

Treatments Codes 

Soil (with no addition of Cu) + B. juncea  C0P0 

Soil + 250 mg kg-1 pyrene + B. juncea P1 

Soil + 250 mg kg-1 pyrene only P1(N) 

Soil + 500 mg kg-1 pyrene + B. juncea P2 

Soil + 500 mg kg-1 pyrene only P2 (N) 

Soil + 50 mg kg-1 Cu + B. juncea C1 

Soil + 100 mg kg-1 Cu + B. juncea C2 

Soil + 50 mg kg-1 Cu + 250 mg kg-1 pyrene + B. juncea C1P1 

Soil + 50 mg kg-1 Cu + 250 mg kg-1 pyrene only C1P1 (N) 

Soil + 50 mg kg-1 Cu + 500 mg kg-1 pyrene + B. juncea C1P2 

Soil + 50 mg kg-1 Cu + 500 mg kg-1 pyrene only C1P2 (N) 

Soil + 100 mg kg-1 Cu + 250 mg kg-1 pyrene + B. juncea C2P1 

Soil + 100 mg kg-1 Cu + 250 mg kg-1 pyrene only C2P1 (N) 

Soil + 100 mg kg-1 Cu + 500 mg kg-1 pyrene + B. juncea C2P2 

Soil + 100 mg kg-1 Cu + 500 mg kg-1 pyrene only C2P2 (N) 
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5.2.3 Planting 

Seeds of B. juncea were purchased from Vegetable Direct Seed Company in UK. Twenty 

seeds of B. juncea were sterilized in 6% v/v of hydrogen peroxide for 15 minutes, washed 

with tap water and soaked for 1 day. Sterilized seeds were sowed directly into 12.5 cm plastic 

pots containing prepared soils. After 10 days of germination, weaker seedlings were removed, 

leaving 5 seedlings with similar size in each pot. Pots were watered when required with tap 

water to maintain the soil moisture during plant growth and the leachates from all pots were 

collected using the tray and returned to the soil. Throughout the experiment, the pots were 

periodically repositioned to minimize edge effects. Soil was fertilized with N: K: micro 

nutrients fertilizer mixture (1 g kg-1) containing 26% N, 26% K2O, 0.013% B, 0.025% Cu, 

0.05%, 0.05% Fe and 0.025% Mn. 

After 65 days of growth, shoots were cut just above the soil surface and washed with 

deionized water. Each pot was then emptied and the roots were separated from the soil by 

washing with running tap water. The roots were then rinsed with deionized water 3 times to 

remove all soil particles. All samples were oven-dried to constant weight at 65 ºC for 72 

hours. The dried samples were weighed to enable biomass calculations and used for plant 

analysis.  

5.2.4 Analysis of plants and soil samples 

Due to decreased root growth, the replicates of each treatment were merged together for 

analysis. Oven-dried plants were ground into small pieces using a coffee grinder (Krups, 

Italy). Approximately 0.3 g (for control and Cu treatments) and 0.1 g (Cu + pyrene 
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treatments) of shoot/root dry matter were digested according to methods used in section 3.4.1. 

Soils were also analyzed for total Cu concentration. Pyrene in soil samples was also analyzed 

using the Agilent GC-MS according to method used in Chapter 3. The average percentage 

recovery for surrogate was 78.99%. 

5.2.5 Statistical analysis 

All treatments were replicated three times. The means and standard error (SE) were calculated 

using Microsoft Office Excel 2007. The comparisons of shoot dry matter, Cu concentration, 

accumulation as well as soil residual pyrene were carried out by one-way analysis of variance 

using Minitab 15.0. The residual pyrene concentration results were log normalized prior to 

analysis. When a significant difference was observed between treatments, multiple 

comparisons were made by the Tukey HSD test. 

5.3 Results 

 5.3.1 Growth response 

The shoot and root biomass of B. juncea were affected by Cu and pyrene co-contamination. B. 

juncea showed visual signs of toxicity (chlorosis) in response to mixed contaminants and to 

single pyrene contamination. There was no visual evidence of toxicity to B. juncea to single 

Cu contamination.  
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Figure 5.0: Brassica juncea after 21 days of sowing 

Relative to control treatments, both single and mixed contamination of Cu and pyrene caused 

a decrease in the root and shoot dry weight of B. juncea. 50 mg kg-1 of Cu significantly 

decreased the shoot biomass of B. juncea by 29% and by  15% for the root biomass (Figures 

5.1A and 5.2A). Shoot biomass was significantly reduced (p<0.05) in comparison to control 

treatments by 58 and 84% when exposed to 250 and 500 mg kg-1 pyrene respectively 

(Appendix 5A.1). Root biomass was also reduced by 20% and 57% upon exposure to the 

same concentration of pyrene (Appendix 5A.2). There was an 80% inhibition of shoot dry 

matter relative to control treatments when 50 mg of Cu was mixed with 250 mg of pyrene in 1 

kg of soil and a further 4% significant (p < 0.05) inhibition when 500 mg of pyrene was 

added. Similar results were observed when 100 mg of Cu was mixed with 250 mg of pyrene. 

Results showed an 86% reduction in shoot dry weight relative to control treatments but a 
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slight reduction (1%) with the addition of 500 mg of pyrene. One-way ANOVA showed 

significant differences between the shoot dry weight of plants grown in Cu and pyrene spiked 

soil and the un-spiked soil. The shoot biomass tended to decrease under joint stress of Cu and 

pyrene and the effects were statistically significant (P<0.05) when compared with single Cu 

concentrations and control treatments. The result of the root biomass for mixed concentration 

of Cu and pyrene varied. Results showed a 65% reduction in root dry weight with 50 mg of 

Cu and 250 mg of pyrene in 1 kg of soil, and the addition of 500 mg of pyrene reduced the 

decrease in root dry weight by 5% in comparison with the addition of 250 mg pyrene. Similar 

results were observed in the treatment containing 100 mg of Cu and 250 mg or 500 mg kg-1 of 

pyrene. Results showed a 71% reduction in root dry weight when 250mg of pyrene was added 

and 16% improvement with the addition of 500 mg kg-1 of pyrene.  

 

 

 

 

 

 

 



161 

 

 

Figures 5.1a and b: Shoot dry weight (means ± SE, n= 3) of B. Juncea influenced by Cu and 

pyrene treatments after 65 days of growth. Bars that do not share a letter are significantly 

different (Tukey HSD p ≤ 0.05). Treatments C0, C1and C2 represent 0, 50 and 100 mg Cu kg-

1; P1 and P2 represent 250 and 500 mg kg-1 of pyrene. Appendix 5A.1 
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Figures 5.2a and b: Root dry weight of B. Juncea influenced by Cu and Pyrene treatments 

after 65 days of growth. Treatments C0, C1and C2 represent 0, 50 and 100 mg Cu kg-1; P1 

and P2 represent 250 and 500 mg kg-1 of Pyrene Appendix 5A. 

5.3.2 Cu concentration in B. juncea 

In the absence of pyrene, the root Cu concentration in B. juncea increased with increasing 

concentration of soil Cu whereas the shoot Cu concentration decreased slightly with an increase 
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in soil Cu concentration (Figures 5.3A, 5.3B, 5.4A and 5.4B). As the concentration of Cu in soil 

increased from 50 to 100 mg kg-1, the concentration of Cu in shoot and root of B. juncea 

decreased significantly (P<0.05) from 61 to 55% and increased from 61 to 70% relative to 

control treatments respectively. The ratio of shoot to root decreased from 0.57 for control 

treatments to 0.56 and 0.38 in 50 and 100 mg Cu.kg-1 soil respectively.  

The joint contamination with Cu and pyrene had a significant effect on Cu concentration in B. 

juncea and the interaction between pyrene and Cu seemed to be related to the extent of Cu 

concentration. For example in figure 5.3A and 5.3B,  it was shown that in 50 mg kg-1 soil Cu 

concentration, the shoot Cu concentration in B. juncea in the presence of pyrene was not 

significantly different from that in the absence of pyrene. In contrast with 100 mg kg-1 soil Cu 

concentration, the concentration of Cu in shoot of B. juncea in the presence of pyrene was 

significantly (P<0.05) higher compared with the absence of pyrene. When soil Cu concentration 

remained at 50 mg Cu.kg-1 with the addition of 250 mg of pyrene, the concentration of Cu in 

shoot of B. juncea was similar to that in 50 mg Cu only (Figure 5.3A). In contrast, when the 

concentration of pyrene increased to 500 mg, the concentration of Cu in shoot of B. juncea 

increased by 46% when compared to 50 mg Cu alone. The concentration of Cu in shoots of B. 

juncea in treatment with 100 mg Cu.kg-1 with 250 and 500 mg of pyrene however increased 

significantly (p<0.05) by 68 and 70% relative to soil contaminated with 100 mg Cu only. The 

root concentration of Cu in B. juncea also varied with mixed contamination. Figure 5.4A 

showed that in 50 mg Cu.kg-1 with 250 mg of pyrene, there was a 25% reduction in root Cu 

concentration when compared to soil contaminated with 50 mg Cu.kg-1 only, and a 36% 

increase in root Cu concentration with the addition of 500 mg of pyrene. Whereas with the 
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increase in soil  Cu concentration to 100 mg kg-1, the addition of 250 and 500 mg of pyrene 

increased the root concentration of Cu by 33 and 19% respectively (Figure 5.4B). 

 

 

Figures 5.3a and b: Shoot Cu concentration (means ± SE, n= 3) of B. Juncea influenced by 

Cu and pyrene treatments after 65 days of growth. Bars that do not share a letter are 

significantly different (Tukey HSD p ≤ 0.05). Treatments C0, C1and C2 represent 0, 50 and 

100 mg Cu kg-1; P1 and P2 represent 250 and 500mg kg-1 of pyrene. Appendix 5A.3  
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Figures 5.4a and b: Root Cu concentration of B. Juncea as influenced by Cu and Pyrene 

treatments after 65 days of growth. Treatments C0, C1and C2 represent 0, 50 and 100 mg Cu 

kg-1; P1 and P2 represent 250 and 500 mg kg-1 of pyrene.  Appendix 5A.5 
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5.3.3 Total Cu accumulation in plants 

Cu uptake and translocation in B. juncea depends largely on the Cu supply levels, the growth 

conditions as well as the stage of growth (Liao 2000). The total Cu accumulation in plant 

tissues as observed in our results increased with an increase in soil Cu concentration when soil 

was spiked with Cu alone. Relative to control treatments, the total Cu accumulated by B. juncea 

increased by 22% and 41% when the soil contaminant was 50 and 100 mg Cu kg-1 alone.  

With the co-contamination of Cu and pyrene, the accumulation of Cu in tissue of B. juncea was 

drastically reduced. Result showed a 90% reduction in Cu accumulation by B. juncea in soil 

contaminated with a mix of 50 mg Cu kg-1 and 250 mg kg- 1 of pyrene and with the addition of 

500 mg kg-1 of pyrene, the total accumulation of Cu by B. juncea reduced slightly by a further 

0.4% when compared to control treatments. A similar result was obtained with soil 

contaminated with 100 mg Cu kg-1 with varying concentration of pyrene. There was an 86.5% 

reduction in the total amount of Cu accumulated by B. juncea when 250 mg kg-1 of pyrene was 

added. However with the addition of 500 mg kg-1 of pyrene there was a 3% improvement in Cu 

accumulation.  
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Figures 5.5a and b: Total accumulation of Cu by B. juncea as affected by single and mixed 

contamination of Cu and Pyrene. Treatments C0, C1and C2 represent 0, 50 and 100 mg Cu 

kg-1; P1 and P2 represent 250 and 500 mg kg-1 of Pyrene. 

5.3.4 Translocation factor (TF) of Cu  

The translocation factor (TF) which indicates the internal metal transportation is the ratio of 

shoot to root metals (Deng et al. 2004). The TF (Table 5.2) showed that relative to control 

treatments there were reductions among the treatments without added pyrene and an increase 

with the addition of pyrene. It is clear from our results, that translocation increased with co-

contamination. The rate at which Cu was translocated from the root to the shoot of B. juncea 
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when 50 mg of Cu only was added to soil reduced by 0.24% relative to control treatments. With 

the addition of 250 mg of pyrene, the TF increased by a third compared to control treatments. 

However, there was only a 2% increase in TF when 500 mg of pyrene was added. With the 

application of 100 mg of Cu only, the rate at which Cu was translocated from root to shoot of B. 

juncea was reduced by a third when compared to treatments without Cu addition and increased 

by 20 and 50% when 250 and 500 mg of pyrene was added respectively.  

 

Table 5.2: Root to shoot ratio and translocation factor of Cu as affected by single and mixed 

contamination 

Treatments Root to shoot ratio 
C0 0.5717 

C1 0.5693 

C2 0.3851 

C1P1 0.7699 

C1P2 0.5788 

C2P1 0.7965 

C2P2 1.0254 
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5.3.5 Percentage removal of Cu 

Over the period of planting, with the initial soil Cu concentration of 50 mg kg-1, the percentage 

removal of Cu by B. juncea reduced slightly by 0.007% relative to control treatments and by 

0.08% when the concentration of Cu in soil increased to 100mg kg- 1 (Figures 5.6a and 5.6b).  

However, the addition of pyrene to soil caused a more significant reduction in the removal rate 

of Cu by B. juncea when compared to when Cu was the only soil contaminant. The results 

showed that at 50 and 100 mg kg-1 soil Cu, the addition of 250 mg kg-1 of pyrene reduced the 

rate of removal of Cu by 3.8 fold and 4.8 fold respectively. While there was a 2.9 and 3.58 fold 

reduction when soil pyrene concentration increased to 500 mg kg-1. It was clear from the results 

that under Cu contamination, lower concentration of pyrene reduced the uptake of Cu by B. 

juncea which slightly increased with increased pyrene concentration. 
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                                                                     Figure 

Figures 5.6a and b: Percentage removal of Cu by B. Juncea as influenced by Cu and Pyrene 

treatments after 65 days of growth. Treatments C0, C1and C2 represent 0, 50 and 100 mg Cu 

kg-1; P1 and P2 represent 250 and 500 mg kg-1 of pyrene. 
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5.3.6 Pyrene removal from soil 

After 65 days of growth, the extractable pyrene decreased significantly (p<0.05) in soil 

planted with B. juncea as well as in the unplanted soil (Figure 5.7). This accounted for 90 to 

94% of initial extractable pyrene in planted soil and 79 to 84% in unplanted soil for soil 

contaminated with pyrene alone. The percentage of pyrene removal was also influenced by 

the interaction of Cu, pyrene and planting/non planting treatments accounting for 67 to 89% 

and 65 to 92% for planted and unplanted soils respectively. The residual pyrene in soil 

planted with B. juncea was significantly (p<0.05) lower than in the unplanted soil when soil 

was contaminated with 250 and 500 mg kg-1 of pyrene. The results showed that in the 

presence of B. juncea, the extractable pyrene remained at 12.9 and 37.05 mg kg-1 for 250 and 

500 mg kg-1 pyrene contaminated soil respectively. However in the soil without plants, the 

extractable pyrene increased to 42.59 and 59.75 mg kg-1 respectively. 

Figures 5.7A and 5.7B show the effect of Cu on pyrene dissipation in soil planted with B. 

juncea. Results show that the addition of Cu to pyrene contaminated soil seemed to increase 

the residual pyrene concentration in soil. The addition of 50 mg kg-1 of Cu to 250 mg kg-1 

pyrene contaminated soil significantly increased the residual pyrene from 12.9 to 22.11 mg 

kg-1. The dissipation of pyrene appeared unaffected by the plants in soil co-contaminated with 

250 mg kg-1 of pyrene and 100mg kg-1 of Cu. When the initial soil pyrene concentration 

increased to 500 mg kg-1, the application of 50 and 100 mg kg-1 of Cu significantly increased 

the residual pyrene concentration in soil. It was observed that pyrene concentration in the 

absence of Cu was 37.05 mg kg-1 for 500 mg kg-1 pyrene while in the presence of 50 and 100 

mg kg-1 of Cu, the residual soil pyrene concentration increased to 98.48 and 111.9 mg kg-1.  
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Figures 5.7a and b: Residual pyrene in planted soil as affected by Cu and pyrene after 65 

days of planting. Bars that do not share a letter are significantly different (Tukey HSD p ≤ 

0.05). Treatments C1and C2 represents 50 and 100 mg Cu kg-1; P1and P2 represents 250 and 

500 mg kg-1 of pyrene. Appendix A.6 
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There was an interesting result for pyrene dissipation under co-contamination in the presence 

and absence of plants (Figures 5.8A and 5.8B). For example, the residual pyrene in soil co- 

contaminated with 50 mg kg-1 of Cu and 250 mg kg-1 of pyrene was significantly higher in 

planted soil than in non-planted soil. The residual pyrene remained 22.11 mg kg-1 in planted 

soil and increased by 44% in non-planted soil. However, for a higher concentration of Cu 

(100 mg kg-1), there was no significant difference in the residual pyrene in soils between the 

planted and non- planted soil. 

 

Figures 5.8a and b: Residual pyrene in planted and non planted soil after 65 days. Bars that 

do not share a letter are significantly different (Tukey HSD p ≤ 0.05). Treatments C1and C2 

represents 50 and 100 mg Cu kg-1; P1and P2 represents 250 and 500 mg kg-1 of pyrene 

Appendix A7 
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5.4 Discussion 

5.4.1 Interaction of Cu and pyrene affecting plant biomass 

The higher shoot dry matter yield obtained under conditions of higher Cu concentration in soil 

could be due to stimulation of growth of B. juncea by Cu. This is supported by the work of 

Gardea-Toresday et al. (2004) which observed a 4.2% increase in shoot dry matter yield of 

Convolvulus arvensis as Cu concentration in medium increased from 20 mg L-1 to 40 mg L-1. 

The increased growth of B. juncea as observed in our result could also be related to the effects 

Cu has on various macronutrient contents (N, P, K, Na, Ca and Mg). For example, 

Manivasagaperumal et al. (2011) suggested that lower concentration of Cu (50 mg kg-1) 

increased the nutrient (N, P, K, Na, Ca and Mg) contents of Vigna radiata L., notably an 

increase in leaf nitrogen, however they observed a gradual decline in dry matter production in 

higher Cu concentrations (100 to 250 mg kg-1). Cu (2008) based on their result suggested that 

the threshold of Cu2+ mobilization to B. juncea might be listed at around 30 mg kg-1 and 

severe effects can be seen with the contents higher than 50 mg kg-1. This was in contrast with 

our findings which showed no serious effect of Cu to B. juncea at 100 mg kg-1 soil Cu 

concentration probably due to nitrogen applied as fertilizers to enhance growth. Wu et al. 

(2004a) showed that nitrogen supplied as urea at 200 and 400 mg kg-1 increased the shoot 

yield of B. juncea in 70 mg kg-1 total Cu contaminated soil and similar result was observed for 

Pteris vitata on arsenic (As) contaminated soil where nitrogen fertilizers increased plant 

biomass at higher As concentration (Liao et al. 2007). 
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It could be suggested that the presence of pyrene had an inhibitive effect on the growth of B. 

juncea. The shoot and root dry weight of B. juncea decreased with increasing concentration of 

pyrene. This is supported by the work of Fan et al. (2008) which showed the inhibition of root 

and shoot biomass of Medicago sativa with an increase in soil pyrene concentration up to 500  

mg kg-1 over a 60-day period. Also Gao and Zhu (2004) showed that the root and shoot dry 

weights of 12 plant species including Brassica chinensis L. were consistently lower in PAH 

treated soils when compared to un-spiked control soils. The reduction in dry matter yield of 

plants grown in PAH polluted soil could be as a result of inherent toxicity of PAHs which 

affects the plants indirectly. Reilley et al. (1996) showed that PAHs might affect the plant 

indirectly by reducing water and nutrient availability to plants in polluted soil leading to 

reduction in dry matter production. Plants are very susceptible to low molecular weight 

hydrocarbons and they have been shown to penetrate cell membranes and inhibiting plant 

growth (Jackson et al. 1997), but there are reports of uptake of higher molecular weight 

hydrocarbons like pyrene (Gao and Zhu 2004). Higher shoot biomass indicates good plant 

health but does not necessarily indicate enhanced remediation efficiency (Banks et al. 2003). 

An interactive effect of Cu and pyrene on the growth of B. juncea was observed in this 

present study, causing a reduction in plant growth at both 250 and 500 mg kg-1 pyrene 

concentration. This was in contrast to reports of alleviation of metal toxicity by PAH in other 

studies. For example Lin et al (2008) observed an increase in shoot yield of Zea mays with Cu 

and pyrene co-contamination, whereas our results showed that the yield of both root and shoot 

of B. juncea decreased with the increase of soil pyrene and Cu concentration. This suggests a 

synergistic effect of metals and PAH in co-contaminated soil and is supported by Zhang et al. 
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(2009) which showed that pyrene did not alleviate the toxicity Cd to Z. mays. Our results 

coupled with other works (Lin et al. 2008, Zhang et al. 2011) suggests that growth response 

of plants to joint toxicity of metal and organic pollutants  is dependent on certain factors 

including plant species. 

5.4.2 The ability of Cu uptake and accumulation by B. juncea 

Results presented in this study suggest that the root uptake of Cu intensified with an increase in 

soil Cu concentration whereas shoot uptake reduced. A 61 to 70% increase in root Cu 

concentration (Figure 5.4) and a 61 to 55% reduction (Figure 5.3) in shoot concentration as the 

concentration of soil Cu increased from 50 to 100 mg kg-1 was reported. The reduction in shoot 

concentration could be as a result of dilution effect of the increase in yield caused by the 

addition of N and P as fertilizers. This was supported by Wu et al. (2004a) which showed that 

added N, P and K fertilizer reduced Cu shoot concentration of B. juncea in 70 mg kg-1 Cu soil 

contamination due to increased yield. Cattani et al. (2006) also showed that there was no 

significant difference between the Cu shoot concentration of the polluted vineyard soil with 183 

mg kg-1 total Cu soil concentration and the unpolluted forest soil with 18.4 mg kg-1 total Cu soil 

concentration whereas the Cu concentration of the root in the vineyard soil was significantly 

four times greater than the forest soil. Poschenrieder et al. (2001) in their study on the 

accumulation of Cu in root and shoot of 32 plant species on soil with a wide range (30 to 18,500 

mg kg-1) of Cu suggested that plants must be able to mobilize and absorb soil Cu or to tolerate 

low plant Cu concentrations by high Cu-use efficiency in low Cu contaminated soils whereas in 

soils with higher Cu concentration, plants require either or both a strong exclusion capacity and 

a good tissue tolerance of high Cu concentration. The restriction of Cu transport to the shoot 
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seemed a common feature in most plants with Cu resistance and was reported by Baker (1981) 

for many metallophytes. Co-contamination with PAH can change the extent of Cu uptake by 

plants or change the Cu solubility. For example, Mucha et al. (2005) observed that plants can 

release organic compounds which may complex metals and therefore change the availability of 

metals. It is possible that pyrene might control the release of Cu ligands that are capable of 

forming bioavailable Cu complexes. Dissolved metals in soils are present as free ions or as 

complexes with organic or inorganic ligands. Increased metal availability, especially an 

increased uptake by plants in the presence of metal complexes has been found (Degryse et al. 

2006). Alternatively as explained by Alkio et al. (2005), PAH may passively penetrate the root 

cell membranes without any carrier which can therefore facilitate the penetration of metal or 

metal complexes into the cell. For example, Gao and Zhu (2004) observed that the root 

accumulation of pyrene by Brassica rapa increased with an increment in soil pyrene 

concentration and in lightly and heavily spiked soil with 8.01 and 489 mg kg-1 initial 

concentration respectively, pyrene concentration in roots reached 5.12 and 428 mg kg-1 

respectively. The penetration of pyrene to root cell membranes could be the reason for the 

observed increase in shoot and root concentration of Cu with the addition of pyrene in our 

results. Lin et al. (2008) observed a reduction in the concentration of Cu in Z. mays with Cu-

pyrene co-contamination. Their result contradicts our own findings probably due to differences 

in plant species. For example, Hinsinger (2001) has shown that plants have significant influence 

on the mobility of Cu as a result of the changes in the rhizosphere. These include changes in ion 

concentrations, values of redox potential as well the concentration of the root exudates and 
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results have shown that tomato plants were significantly more sensitive to toxic Cu levels in the 

soil than Brassica napus (Chaignon et al. 2002). 

It was clear from our results that whether soil Cu was present in single or mixed contamination, 

higher Cu concentrations were always observed in the root. This was supported by the work of 

Brun et al. (2001) which showed that root Cu concentration is the best indicator of Cu 

contamination as it is the most sensitive. Lwasaki et al. (1990) reported that more than 60% of 

root Cu was bound to the root cell walls and that such adsorption of Cu in the root apoplasm 

may result in some protection of the root against Cu toxicity. However, apoplasmic Cu was not 

determined in our present experiment and it is not possible to know whether the elevated root 

Cu concentration reported here concerns mostly apoplasmic Cu only or both apoplasmic and 

symplasmic Cu. In any case, B. juncea appeared capable of restricting the shoot translocation of 

Cu.  

The Cu removal efficiency by B. juncea was both relative to biomass production and tissue 

concentration. The observed increase in total Cu accumulation with increasing soil Cu 

concentration (Figures 5.5A and 5.5B) could be as a result of increased plant biomass caused by 

fertilizer application and is supported by other research. For example, Xie et al. (2011) showed 

that the total Cu accumulation in Z. mays at 100 mg kg-1 soil Cu concentration significantly 

increased with the application of either NPK or NP fertilizers. They observed that the fertilizers 

increased plant biomass which is a factor in accumulation of Cu. Our results showed that the 

increase in shoot dry matter yield compensated for the decrease in shoot Cu concentration. 
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 With Cu and pyrene co-contamination, the phytoextraction of Cu by B. juncea is limited and it 

could be that pyrene altered the way B. juncea influenced Cu sorption and solubility. This could 

be as a result of the influence on plant growth as observed in the present study where co-

contamination reduced shoot dry weight. Baek et al. (2006) observed that TNT significantly 

affected Cd uptake as a result of reduction in growth of Rumex crispus. Chen et al. (2004) 

observed a slight decrease in the accumulation of Cu by Lolium perenne in Cu-2,4-

dichlorophenol co-contaminated soil and suggested that it contributed to the  improved 

activation of Cu in planted soils. When pyrene was co-contaminated with cadmium, Zhang et 

al. (2009) suggested that the reduction in cadmium uptake with increased pyrene concentration 

could be as a result of the competition for adsorption between the co-existent pyrene and 

cadmium. In contrast, Almeida et al. (2009a) observed an increased accumulation of Cu by 

roots of Halimione portulacoides with the addition of PAHs. They suggested that PAHs could 

have altered the way the plants influenced Cu solubility and sorption. These assumptions were 

however restricted to hydroponics. It is interesting to observe similar changes from our soil 

experiment with these hydroponic experiments. While hydroponics is important for screening 

interesting properties in plants, there is evidence suggesting that plants respond in a different 

way when growth takes place in soil or hydroponics (Fitz and Wenzel 2002, Mehrag 2005). 

However, Moreno-Jimenez et al. (2010) in their work showed that the concentration of arsenic 

plants shoot and roots increased correspondingly with the arsenic dose either hydroponically or 

in soil. This suggests that soil values and hydroponics can be compared and the effects can be 

interpolated. 
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5.4.3 The potential of phytoremediation of Cu for combined contamination of Cu and 

pyrene 

The phytoremediation of heavy metals from contaminated soils could require the 

phytoextraction of metals from contaminated soils by plants and for this to be possible, high 

metal uptake and TF are very important characteristics for plants used (Sun et al. 2011). 

The rate of translocation within plants depends on the metal and plant species concerned (Deng 

et al. 2004). Our results showed that in soil contaminated with Cu only, the metal concentration 

in B. juncea was largely retained in the root while with the addition of 500 mg pyrene to 100mg 

Cu contaminated soil, the shoot of B. juncea retained more Cu than the root. It was clear that 

when soil was contaminated with Cu only, the more abundant the metal in the soil, the lower 

the TF of the metal. Deng et al. (2004) showed that the more abundant the Pb, Zn, Cu and Cd in 

sediments the less the translocation factors in plants including Leersia hexandra. The general 

trend in figures 5.3 and 5.4 showed that the concentration of Cu in root tissues is greater than in 

shoot of B. juncea although there is an exception at high concentration of Cu in combination 

with high pyrene concentration. There is a suggestion of a high plant availability of the 

substrate metal as well as its limited mobility as soon as it is inside the plant. Previous research 

(Cardwell et al. 2002, Fitzgerald et al. 2003) showed that the concentration of heavy metals in 

the root tissues of freshwater macrophytes from polluted areas usually contained higher 

concentrations of most metals relative to above ground parts. It was clear from our results that 

at higher soil Cu concentration with increased pyrene concentration (500 mg kg-1), the TF was 

over 100% suggesting an increased phytoextracting efficiency of B. juncea for Cu in highly Cu-

pyrene polluted soils. The efficient Cu transfer from root to shoot could be as a result of the 
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differences in the concentration of Cu and pyrene in the growth media. This is another 

important result in this experiment. The removal of Cu by plants in contaminated soils depends 

on the exposure time. Juang et al. (2011) showed that in short exposure time, the total Cu 

removed by Medicago sativa increased with increased Cu concentration in solution. However, 

for a longer exposure time, the maximum total Cu was removed for the lowest Cu concentration 

in solution. This could provide an explanation for our results where B. juncea was less efficient 

in removing Cu from soil contaminated with 100 mg kg-1 Cu over a 65-day period than soil 

with 50 mg kg-1 Cu. It could also be that B. juncea is capable of removing Cu at lower 

concentrations. Mokhtar et al. (2011) observed that Eichornia crassipis was capable of 

removing higher amount of Cu when the concentration of Cu was low.  

5.4.4 Interaction of Cu and pyrene on pyrene removal form soil 

The dissipation of pyrene in planted soil was greater than in non-planted soil except in co- 

contaminated soils which showed similar rates of dissipation (Figures 5.8A and 5.8B). This 

shows the benefit of vegetation in pyrene contaminated soils. This result is in agreement with 

other research. For example Lin et al. (2008) showed that the residual pyrene in soil planted 

with Z. mays was significantly lower than in non-planted soil with the initial pyrene 

concentration up to 500 mg kg-1. Zhang et al. (2009b) also observed similar results with the 

use of Z. mays. In their research, planting reduced the extractable pyrene in soil by 21 to 31% 

while non-planting reduced soil pyrene by 12 to 27%. The increased dissipation of PAHs in 

soil has been widely researched and is mostly attributed to biotic and abiotic factors including 

increased biodegradation; primarily due to increased soil microbial activity (Kaimi et al. 

2006), photodegradation, minimal plant uptake (He et al. 2005 and Nakamura et al.2004), 
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volatilization, leaching and incorporation into soil organic material (Gao et al. 2006). In the 

present study the roles of biotic and abiotic factors were not separated and the abiotic losses 

such as photodegradation, volatilization as well as leaching could have been high. It is 

important to note that leaching was reduced by collecting extra water in trays placed under the 

pots. Pyrene uptake by B. juncea was not investigated in the present study because in previous 

studies, plant uptake of PAHs has been found to be low and the uptake of pyrene could have 

occurred from air instead of the soil (Gao and Zhu 2004). The high removal rate of pyrene in 

the presence of B. juncea in pyrene only contaminated soil could also be related to the 

rhizospheric microbes that plays an important role in degradation of organics. For example 

Sun et al. (2010) showed that the dissipation of pyrene was higher in soil amended with root 

exudates than in soil with growing root of L. perenne releasing organic substances. This 

shows that the contribution of plants to the dissipation of PAH through processes such as 

degradation and immobilization highly depends on the processes that occur in the rhizosphere 

(Pilon-Smits 2005). 

A negative effect of Cu on dissipation of pyrene was observed mainly in higher (100 mg kg-1) 

concentration of Cu in the present study (Figures 5.7A and 5.7B). An interactive effect of 

heavy metals and PAHs on the degradation of PAHs can either cause a negative or positive 

effect depending on the type and concentration of both PAHs and heavy metals (Khan et al. 

2009). For example, Khan et al. (2009) showed that Pb can increase the dissipation rate of 

pyrene in Pb- pyrene co-contaminated soil and an enhanced bacterial community was detected 

in soil while Baath (1989) reported that the presence of metals including Cd inhibited a broad 

range of microbial processes. The phytoremediation of organic compounds is highly based on 
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the efficient degradation of organics by plant roots with the formation of bound residues and 

from our results the increased concentration of residual pyrene in the presence of higher 

concentration of Cu could be linked to change in microbial activity as well as the composition 

of the microbes. Roberts et al. (1998) showed that when 0.1 to 2.0 mg L-1 of total metal was 

added to TNT-contaminated soil, the degradation rates of TNT decreased as a result of an 

increase in the time it takes for microbes to acclimatize to the new environment. The presence 

of Cu could have been the most important abiotic factor that affected the dissipation of pyrene 

in the present study. It is clear that Cu-tolerant or resistant microbes are favored in Cu-

contaminated soil and they persist as long as they can withstand Cu toxicity (Sokhn et al. 

2001). 100 mg Cu kg-1 could have reduced microbial activity as a result of the direct toxicity 

effect of Cu at the cellular level or maybe the enzymes that help in degradation of pyrene 

intermediates were inhibited. However, the residual pyrene in soil decreased even at 100 mg 

Cu kg-1 when compared initial soil concentration. This implies that even at higher Cu 

concentration, highly adapted Cu-resistant microbes could have enhanced degradation of 

pyrene. 

There was also an important result observed in non-planted soils under co-contamination. The 

present study showed that in the presence of a high concentration (100 mg kg-1) of Cu, the 

residual pyrene in planted soil was similar to that in non-planted soil. This implies that the 

presence of B. juncea did not affect the dissipation of pyrene in higher Cu co-contaminated 

soil and therefore there could be a suggestion that the phytoremediation of PAH in heavy 

metal co-contaminated soil is quite different to that in single PAH contaminated soil. As 

suggested by Olsen et al. (2003), the distinction in the quality or quantity of nutrients released 
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by plants root exudates as well as dead roots could lead to differences in microbial PAH 

degradation. These differences could be either positive or negative, however in the present 

study, there seemed to be an opposing effect on PAH dissipation. Lin et al. (2008) and Zhang 

et al. (2009) further showed that the degradation rate of pyrene in high Cu or Cd co-

contamination in the presence of plants were significantly less compared to non-planted co-

contaminated soils. Although their results were not similar to the present study, our result and 

theirs showed that plants did not enhance dissipation in heavy metal and PAH co-

contaminated soil. 

5.5 Conclusion 

Phytoremediation is promising as a treatment technology for co-contaminated sites. The 

present study explored the potential of using plants for remediation of Cu and pyrene co-

contaminated soils.  

The growth of B. juncea was inhibited by the co-contamination of Cu and pyrene. Due to the 

decreased plant growth, the accumulation and removal percentage of Cu were inhibited. 

However, in the present study, the concentration of Cu in shoots of B. juncea increased with 

co- contamination which could be a positive effect of the interaction of Cu and pyrene. It was 

observed that B. juncea removed an average of 0.157 and 0.08% of total Cu for 50 and 100 

mg kg-1 soil Cu contaminations by plant uptake, but the ability of Cu phytoextraction was 

halved under co-contamination of pyrene.  

The dissipation of pyrene was enhanced by vegetation only in single pyrene contaminated 

soil. Co-contamination of pyrene and Cu inhibited the dissipation of pyrene which was clear 
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with increased Cu load. This could suggest that the changes in microbial numbers and 

activities as well as the root physiology under Cu stress were not favorable to the dissipation 

of pyrene. 

It is difficult for B. juncea to grow normally under co-contamination of Cu and pyrene, but 

from a predictive perspective, if the growth of B. juncea could be enhanced, there are great 

chances of enhancing phytoextraction in Cu and pyrene co-contaminated soils and thereby 

effectively treat sites with these types of contamination. 
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5.6 Phytoremediation of Cr-B[a]P co-contaminated soils using 

Zea mays- Introduction 

Heavy metal (HM) and polycyclic aromatic hydrocarbon (PAH) contamination have been a 

concern within the environment over recent years (Sun et al. 2011). Due to rapid urbanization 

and industrialization in developed and developing countries, these contaminants can be 

released into the environment (Watts et al. 2006).  

PAHs are formed by incomplete combustion or pyrolysis of organic matter and are deposed 

from the atmosphere into the soil (Shen et al. 2006). They are recalcitrant, carcinogenic or 

mutagenic contaminants and their bioaccumulation tendency in the food chain is a concern 

(Jian et al. 2004). The accumulation of HMs and PAHs in the soil is becoming a significant 

environmental problem due to their potential impacts on soil health and the implication for 

food safety and human health risk (Khan et al. 2008).  

Phytoremediation is a  technology that uses plants to sequester metal and organic 

contaminants (Sun et al. 2008). This occurs through extraction, degradation, assimilation, 

metabolization or detoxification. Several studies have shown that plants can help in the 

removal of organic contaminants through various mechanisms such as volatilization, re-

deposition on plant’s leaves, sorption from direct contact with soil and degradation (Wild et al 

2004, Lin et al. 2008). 

Recently, research has addressed the uptake and accumulation of HM by plants in HM 

contaminated soils (Zayed et al. 1998, Babu et al. 2013) or the plant-enhanced dissipation of 

PAH in PAH contaminated soil (Li et al. 2006, Khan et al. 2013). For example, Liu et al. 
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(2008) in their study showed that Acrasis rosea accumulated up to 100 mg kg-1 of Cd in 

shoots when soil was contaminated with Cd alone. In addition, phytoremediation trials for 

organic contaminants have resulted in increased dissipation of PAH (Watts et al 2006, Xu et 

al. 2009) and PCB (Lin et al. 2006). However this does not often reflect real world situations 

where complex industrial processes and extended histories of multiple land use create sites 

containing mixed pollutants. Few papers have analyzed the combined uptake of HM as well 

as the dissipation of PAH in co-contaminated soil during phytoremediation. Therefore the 

aims of this study were to- (1) to examine the growth response of Z. mays to single Cr or 

B[a]P and co-contaminated Cr- B[a]P soils. (2) to understand the uptake, accumulation and 

translocation of Cr by Z. mays; (3) to understand the role of Z. mays in dissipation of B[a]P. 

B[a]P was chosen as the representative PAH because it is classified as a priority contaminant 

by the US Environmental Protection Agency because of it carcinogenic potential (Juhasz and 

Naidu 2000) whereas Cr is an important environment pollutant because of its widespread 

industrial use (Shanker et al. 2005). Results obtained from this study will provide more 

knowledge on the phytoremediation potential of Z. mays in Cr- B[a]P co-contaminated soils. 
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5.7  Methods 

5.7.1 Soil spiking 

Soil was spiked with B[a]P by dissolving 1, 5 and 10 mg of B[a]P in 25 mL of acetone. The 

solution of acetone and B[a]P was transferred into 250 g of soil as a portion and then mixed 

with 750 g of soil once the acetone had volatilized completely in the fume hood. 25 mL of 

acetone was also added to control and other soil treatments. 50 and 100 mg kg-1 of Cr was 

prepared by dissolving 0.141 and 0.282 g of K2Cr2O7 and added singly in B[a]P spiked soils 

and fresh soils.  The spiked soil was thoroughly mixed by sieving and stored in a dark room 

for equilibration for 28 days before planting. 

5.7.2 Experimental set up 

The experimental layout was designed in a completely randomized design of 21 treatments 

with three replicates of each. Pots spiked with B[a]P had treatments with no planting in order 

to observe non-plant facilitated dissipation of B[a]P. 

5.7.3 Planting 

Plastic pots of 12.5 cm in height were used for the present study. One kilogram of each spiked 

soil was placed in each pot.  One seedling of Z. mays with  uniform size of about 3 to 4 cm, 3 

leaves and about 3 weeks old was transferred into each pot. Pots were watered when required 

with tap water to maintain the soil moisture during plant growth and the leachates from all 

pots were collected using the tray and returned to the soil. Throughout the experiment, the 

pots were periodically repositioned to minimize edge effects. After 60 days of growth, shoots 



189 

 

were cut just above the soil surface and washed with deionized water. Each pot was then 

emptied and the roots were separated from the soil by washing with running tap water. The 

roots were then rinsed with deionized water 3 times to remove all soil particles. All samples 

were oven-dried to constant weight at 65 ºC for 72 hours. The dried samples were weighed to 

enable biomass calculations and used for plant analysis.  

5.7.4 Analysis of plants and soil samples 

Oven-dried plants were ground into small pieces using a coffee grinder (Krups, Italy). 

Approximately 0.3 g and 0.1 g of shoot and root dry matter respectively were digested using 5 

mL of 30% HNO3 and placed on a heating block (section 3.4.1). Digested plant samples were 

then analyzed for total Cr using FAAS. B[a]P concentration in soil samples was analyzed 

using the Agilent GC-MS (sections 3.5.1, 3.5.2 and 3.5.3). The average percentage recovery 

for surrogate was 76%. 

5.7.5 Statistical analysis 

All treatments were replicated three times. The means and standard error (SE) were calculated 

using Microsoft Office Excel 2007. The comparisons of shoot dry matter, Cr concentration, 

accumulation as well as soil residual B[a]P were carried out by one-way analysis of variance 

using Minitab 15.0. The root accumulation results were log normalized. When a significant 

difference was observed between treatments, multiple comparisons were made by the Tukey 

HSD test. 
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5.8 Results 

5.8.1 Plant growth and biomass 

After 60 days of exposure to Cr, B[a]P or a combination of B[a]P and Cr, no visible toxic 

symptoms were observed for Z. mays in all treatments. Compared to control treatments, all 

concentrations of individual or combined pollutants had no significant effect on root and 

shoot biomass (p>0.05). Although results were not statistically significant, 1 and 5 mg kg-1 of 

B[a]P seemed to slightly increas the shoot dry weight of Z. mays by 4.6 and 14.4% 

respectively relative to control treatments while 10 mg kg-1 reduced the shoot biomass by 

38.6%. Increasing concentration of Cr in soil reduced the shoot dry weight of Z. mays. Under 

conditions of 50 and 100 mg Cr kg-1 soil concentration, the shoots dry weight relative to 

control treatments decreased by 13 and 25% respectively (Table 5.3).  

The presence of Cr did not seem to affect the growth of Z. mays under co-contamination of Cr 

and B[a]P. For example, when 50 mg of Cr was combined with 1 and 5 mg of B[a]P, the 11 

and 31% shoot dry weight reduction observed when compared to shoot biomass in soil 

contaminated with 1 and 5 mg of B[a]P alone was not significant. Similar results were 

observed when 100 mg Cr was combined with 1 and 5 mg of B[a]P.  

Similarly, the root biomass of Z. mays did not seem to be affected for all single and mixed 

contamination of Cr and/or B[a]P (p=0.05).The maximum root biomass was observed when 

the concentration of Cr in soil was 100mg kg-1 and root biomass was higher than when 

concentration in soil was 50 mg kg-1.  
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Table 5.3: Plant dry matter yield of Z. mays as affected by co- contamination of B[a]P and Cr 

after 60 days of growth. Values are mean ± SE. Different letters within a column indicate a 

significant difference (1-way ANOVA, Tukey HSD, P< 0.05). Appendix 5B.1 and 5B.2 

Cr added   
(mg kg-1) 

B[a]P added (mg kg-1) Shoot dry weight 
(g) 

Root dry weight (g) 

0 0 2.76 ±0.35a 0.23 ±0.03a 
50 0 2.41 ±0.06 a 0.20 ±0.06 a 
100 0 2.07 ±0.18a 0.50 ±0.00a 
0 1 2.90 ±0.10 a 0.30 ± 0.06 a 
50 1 2.57 ±1.02 a 0.33 ±0.09a 
100 1 2.27 ±0.13 a 0.30 ±0.00 a 
0 5 3.20 ±0.43 a 0.40 ±0.06 a 
50 5 2.23 ±0.26 a 0.37 ±0.09a 
100 5 2.47 ±0.09 a 0.37 ±0.03 a 
0 10 1.70 ±0.78 a 0.23 ±0.07 a 
50 10 2.23 ±0.18 a 0.33 ±0.07 a 
100 10 1.23 ±0.15a 0.27 ±0.03 a 

 

5.8.2 Cr concentration in plant tissues of Z. mays exposed to Cr and B[a]P 

The concentration of Cr in plant tissues was affected by Cr and B[a]P treatments and 

significant interactions were detected. The concentrations of Cr in different plant tissues 

increased with an increase in soil Cr and increased further with B[a]P additions except in 

roots which decreased with B[a]P addition (Figures 5.9A and 5.9B). When 50 and 100 mg Cr 

was added to soil, the shoot Cr concentrations were 0.67 and 1.58 mg kg-1. This represents a 

41 and 75% increase in shoot concentration of Cr relative to control treatments. The addition 

of 1 mg kg-1 of B[a]P to 50 and 100 mg kg-1 of Cr significantly (p<0.05) increased the 

concentration of Cr in shoot of Z. mays by 90%. The combined treatment of 10 mg B[a]P with 
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100mg Cr also significantly (p<0.05) increased the shoot concentration of Z. mays by 88% 

when compared with control treatments. Figure 5.9A shows that the addition of 5 mg kg-1 of 

B[a]P to 50 mg kg- 1 Cr caused the lowest shoot Cr concentration for mixed contaminants. 

The larger error bar observed for treatment CIBI relates to the variable growth performance in 

plants. 
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Figures 5.9a and b: Cr concentration in shoot of Z. mays as a function of various 

concentrations of Cr and B[a]P. Bars indicate (means ± SE, n= 3). Bars that do not share a 

letter are significantly different (Tukey HSD, p ≤ 0.05). Treatments C0, C1and C2 represents 

0, 50 and 100 mg Cr kg-1; B0, B1, B2 and B3 represents 0, 1, 5 and 10 mg kg-1 of B[a]P. 

Appendix 5B.3 

The amount and distribution of Cr uptake in the root of Z. mays are shown in figures 5.10A 

and B. The concentration of Cr in roots increased with an increase in soil Cr concentration. As 

the concentration of Cr in soil increased from 50 to 100 mg kg-1, the Cr in roots of Z. mays 

increased significantly from 65.8 to 70 mg kg-1. Co-contamination of Cr and B[a]P seemed to 
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reduce root Cr concentration compared to single contamination of Cr (Figures 5.10A and 

5.10B). The co- contamination of 10 mg kg-1 of B[a]P with 100 mg kg-1 of Cr significantly 

(p<0.05) reduced the root concentration of Z. mays by 60% relative to single treatment with 

100 mg kg-1 of Cr while 1 and 5 mg kg-1 of B[a]P did not have any effect statistically. Also 

the root concentration of Cu under co-contamination of 1, 5 and 10 mg kg-1 of B[a]P with 50 

mg kg-1 of Cr reduced significantly by 74, 78 and 71% respectively compared to single 

treatment with 50 mg kg-1 of Cr. 

 

 

 

 

 

 

 

 

 

 

Figures 5.10a and b: Cr concentration in root of Z. mays as a function of various 

concentrations of Cr and B[a]P. Bars indicate (means ± SE, n= 3). Bars that do not share a 

letter are significantly different (Tukey HSD, p ≤ 0.05). Treatments C0, C1and C2 represents 

0, 50 and 100 mg Cr kg-1; B0, B1, B2 and B3 represents 0, 1, 5 and 10 mg kg-1 of B[a]P. 

Appendix 5B.5 
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5.8.3    Cr accumulation in plant tissues of Z. mays under joint stress of Cr and B[a]P 

The accumulation of Cr by Z. mays is relatively low in soils contaminated by Cr (Figures 

5.11A and 5.11B). The average Cr in shoots of Z. mays was less than 4 µg pot-1 even when 

the concentration of Cr in soil reached 100 mg kg-1. Our result showed that as the initial soil 

Cr concentration increased from 50 to 100 mg kg-1 the total accumulation of Cr in shoots of Z. 

mays increased from 1.63 to 3.29 µg pot-1. 

An interactive effect of Cr and B[a]P on plant accumulation of Cr in shoot (P < 0.05) and root 

(P < 0.05) was observed. It is interesting to note that that the addition of B[a]P significantly 

(P <0.05) increased Cr accumulation in shoot of Z. mays relative to control treatments and 

significantly reduced root Cr concentrations at 100 mg kg-1 soil Cr concentration. When the 

concentration of Cr remained at 50 mg kg-1, the addition of 1, 5 and 10 mg kg-1 B[a]P 

significantly (p<0.05) increased the accumulation of Cr in shoots of Z. mays by 88, 79 and 

82% respectively relative to control treatments. Similarly when the concentration of Cr in soil 

remained at 100 mg kg-1, the addition of 1, 5 and 10 mg kg-1 B[a]P significantly increased the 

accumulation of Cr in shoots of Z. mays by 90, 86 and 79% respectively relative to control 

treatments. Lower concentrations of B[a]P in co- contaminated soil seemed to increase Cr 

accumulation more than higher B[a]P concentrations.  
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Figures 5.11a and b: Cr accumulation in shoot of Z. mays as a function of various 

concentrations of Cr and B[a]P. Bars indicate (means ± SE, n= 3). Bars that do not share a 

letter are significantly different (Tukey HSD, p ≤ 0.05). Treatments C0, C1and C2 represents 

0, 50 and 100 mg Cr kg-1; B0, B1, B2 and B3 represents 0, 1, 5 and 10 mg kg-1 of B[a]P. 

Appendix 5B.4 
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The accumulation of Cr within roots of Z. mays increased with increasing concentration of Cr 

in single Cr contaminated soil and decreased with co-contamination with B[a]P. Figures 

5.12A and B show that as the concentration of Cr in soil increased from 50 to 100 mg kg-1, the 

root accumulation of Cr increased from 11.39 to 35.18 µg.pot-1. Results were only significant 

(P <0.05) at 100 mg kg-1 soil Cr concentration. Co-contamination of 50 mg kg- 1 Cr with 1, 5 

and 10 mg kg-1 B[a]P did not seem to affect root accumulation of Cr when compared to 

control treatments. Also, co-contamination of 100 mg kg-1 soil Cr with B[a]P significantly 

(p<0.05) increased the root Cr accumulation from 14.76 to 17.98 µg.pot-1 as the concentration 

of B[a]P increased from 1 to 5 mg kg-1. In contrast, root accumulation reduced to 7.8 µg.pot-1 

at 10 mg kg-1 B[a]P soil concentration. 
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Figures 5.12a and b: Cr accumulation in root of Z. mays as a function of various 

concentrations of Cr and B[a]P. Bars indicate (means ± SE, n= 3). Bars that do not share a 

letter are significantly different (Tukey HSD, p ≤ 0.05). Treatments C0, C1and C2 represents 

0, 50 and 100 mg Cr kg-1; B0, B1, B2 and B3 represents 0, 1, 5 and 10 mg kg-1 of B[a]P. 

Appendix 5B.6 

 

5.8.4 Bioconcentration and Translocation Factors 

The shoot concentration factors (SCF) and root concentration factors (RCF), defined as the 

compartment concentration ratio of Cr in plant to that of soil, are used to evaluate the plant 
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accumulation capacity. The interactive effect of Cr and B[a]P on the SCFs and RCFs is 

shown in Table 5.4. The RCFs were much higher than the SCFs under both single Cr 

exposure as well as when B[a]P was added. With single contamination of soil at 50 mg kg-1 of 

Cr, the SCF reduced by 0.008 and increased significantly by 79% with co-contamination with 

1mg kg-1 B[a]P. As the soil Cr concentration increased to 100 mg kg-1, the SCF were similar 

to control treatment as well as with the addition of 1, 5 and 10 mg kg-1 of B[a]P. The RCF for 

plants in 50 mg kg-1 Cr contaminated soils remained at 0.77 and reduced significantly from 

0.178 to 0.167 with co- contamination of 1 and 5 mg kg-1 B[a]P. At 100 mg kg-1 soil Cr 

contamination, the RCF was lower when compared to 50 mg kg-1 and did not differ with co-

contamination with 1, 5 and 10 mg kg-1 of B[a]P. 

The TF under single contamination was less than 100% and increased with co-contamination 

(Table 5.4). With single contamination of 50 mg kg-1 Cr, the TF was 1.14% which increased 

by 1.4% as the concentration of Cr in soil increased to 100 mg kg-1. Relative to single 

contamination of 50 mg kg-1 Cr, co-contamination of 50 mg kg-1 Cr with 1, 5 and 10 mg kg-1 

of B[a]P increased the TF by 20, 13 and 11% respectively. Similarly, the TF for co-

contamination of 100 mg kg-1 Cr and 1, 5 and 10 mg kg-1 B[a]P also increased by 5.98, 2.8 

and 10.3% respectively when compared to single treatments with 100 mg kg-1 Cr. 

Table 5.4: Translocation Factors of Cr as affected by single and co- contamination of Cr and 

B[a]P Appendix 5B.7 and 5B.8 

Cr added (mg kg-1) B[a]P added (mg 
kg-1) 

TF SCF RCF 

0 0 0.02±0.008 0.008±0.005 0.477±0.094 
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50 0 0.01±0.003 0.008±0.002 0.777±0.189 
100 0 0.03±0.007 0.013±0.000 0.563±0.126 
50 1 0.21±0.043 0.041±0.013 0.178±0.306 
100 1 0.15±0.023 0.033±0.004 0.385±0.215 
50 5 0.12±0.014 0.023±0.002 0.167±0.360 
100 5 0.09±0.009 0.020±0.004 0.383±0.017 
50 10 0.05±0.012 0.027±0.003 0.218±0.012 
100 10 0.12±0.008 0.026±0.001 0.208±0.218 

 

5.8.5 B[a]P dissipation 

After 60 days of planting with Z. mays, the residual concentration of B[a]P in soil for single 

B[a]P contaminated soil ranged from 0.59 to 3.32 mg kg-1, while in co-contaminated soil 

treatments, the residual B[a]P concentration ranged from 0.61 to 5.82 mg kg-1.  

Figure 5.13 shows that the residual B[a]P concentration decreased for 1, 5 and 10 mg kg-1 

single B[a]P contaminated soil when compared to zero time concentration, with 10 mg kg-1 

having the highest concentration of B[a]P in soil after planting. 

After 60 days of planting in 1 mg kg-1 B[a]P contaminated soil, the residual B[a]P remained 

at 0.59 mg kg-1. Co-contamination with 50 or 100 mg kg-1 of Cr did not seem to affect the 

dissipation of B[a]P in soil (P ≥ 0.05).  In contrast, when the concentration of B[a]P in soil 

increased to 5 and 10 mg kg-1, the residual B[a]P concentration in soil after planting remained 

at 1.81 and 3.31 mg kg-1 respectively while co-contamination of 5 mg kg-1 of B[a]P with 50 

and 100 mg kg-1 of Cr significantly decreased the dissipation rate of B[a]P concentration by 

26 and 30% respectively. 
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When planted and non-planted soils are compared, the residual B[a]P concentration in soils 

contaminated with B[a]P alone  seemed not to be affected by planting except in 10 mg kg-1 

B[a]P contaminated soil. As shown in figure 5.13, the presence of plants only significantly 

decreased the residual B[a]P concentration from 5.49 to 3.32 mg kg-1 in 10 mg kg-1 B[a]P 

contaminated soil when compared to non-planted soil.  

 

Figure 5.13: Residual B[a]P concentration in planted and non-planted soil after 6o days. Bars 

(means ± SE, n= 3) that do not share the same letter are significantly different (Tukey HSD, p 

≤ 0.05). Treatments B1, B2and B2 represents 1, 5 and 10 mg Cu kg-1 of B[a]P Appendix 5B.9 

Under co-contamination, the effect of planting on B[a]P dissipation varied. Planting did not 

significantly affect the dissipation of B[a]P in soils co-contaminated with 1 mg kg-1 of B[a]P 

and Cr (Figure 5.14A).  In contrast there seemed to be a significant effect of planting on 

B[a]P dissipation in soil co-contaminated with 5 and 10 mg kg-1 B[a]P. It is clear from figure 

 

d
u
a

l 
B

 (
a

) 
P

 i
n
 s

o
il
 (

m
g

. 
K

g
-1

)

2

3

4

5

6
With plant
No plant

C

D

 

C

E



203 

 

5.14C that when the concentration of B[a]P remained at 10 mg kg-1, co-contamination with 50 

and 100 mg kg-1 Cr significantly decreased the residual B[a]P concentration from 6.31 to 3.87 

mg kg-1 and 7.25 to 5.82 mg kg-1 respectively in the presence of plants. Also after planting in 

50 mg kg-1 Cr + 5 mg kg-1 co-contaminated soil, the residual B[a]P significantly decreased by 

44% when compared to non-planted soil. 
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Figures 5.14 (A, B and C): comparison of residual B[a]P concentration in single and co-

contaminated soil. Means that do not share a letter are significantly different (Tukey HSD, p ≤ 

0.05).Treatments C1and C2 represents 50 and 100 mg Cr kg-1; B1, B2 and B3 represents 1, 5 

and 10 mg kg-1 of B[a]P. Appendix 5B.9 
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5.9 Discussion 

5.9.1 Interaction of Cr and B[a]P influencing plant growth 

From our results, the reduction in shoot biomass with increasing Cr concentration was not 

significantly different from the control treatments. Also the root biomass was not negatively 

affected by increasing concentrations of Cr. This is a demonstration of plant tolerance to Cr  

as suggested by (Gardea-Torresday et al. 2004). Their research showed no significant 

difference between the root elongation of Convolvulus arvensis exposed to 20, 40 and 80 mg 

L-1 of Cr. Chromium is thought to alter plant membrane systems with the primary toxic effect 

being membrane damage and chlorophyll biosynthesis reduction due to high oxidative 

potential of Cr (Vajpayee et al. 2000). However, the physiological and metabolic response is 

not understood properly. Davies et al. (2001) suggested that Cr acts principally on plant roots, 

thereby causing intense growth inhibition. There were also contrasting reports on biomass of 

plants as affected by Cr. For example, Han et al. (2004) observed an increase in biomass of 

Brassica juncea up to 100 mg kg-1 of Cr whereas the yield of Hordeum vulgare . L was 

markedly decreased by Cr in soil (Wyszkowski and Radziemska 2010). It could be suggested 

that the phytotoxicity of Cr is dependent on plant species. The phytotoxicity threshold 

concentration for B. juncea in Cr contaminated soil was 6.2 mg kg-1 (Bolan et al. 2003), 5.9 

mg kg-1 for Z. mays grown in sludge amended soil (Mortvedt and Giordano 1975) and 185 mg 

kg-1 for Pisum sativum grown in Cr (VI) sand medium (Bishnoi et al. 1993).  

B[a]P did not seem to affect the dry matter yield of Z. mays in the present study. Although 

shoot biomass was more inhibited as the concentration of B[a]P reached 10 mg kg-1, Z. mays 
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was capable of withstanding an addition of 10 mg kg-1 of B[a]P in soil and survive until the 

end of the assay.  

. Plants showed better growth in B[a]P treatment alone than when in a mixture of Cr and 

B[a]P, except for 50 mg Cr + 10 mg B[a]P treatment which showed higher biomass than 10 

mg B[a]P single contamination. The combination of Cr and B[a]P exerted an antagonistic 

effect on plant growth and performance, although results were not significant. This is similar 

to results obtained by Sun et al. (2011) where shoot mass of Tagetes patula tended to decrease 

non-significantly under joint stress of heavy metals (Pb and Cd) and B[a]P relative to single 

B[a]P treatments. Based on the non-significant results observed between, B[a]P, Cr and 

control treatments, it could be suggested that Z. mays may be considered to be species of 

greater biomass potential for phytoremediation of B[a]P and Cr co-contaminated sites. 

5.9.2 Cr concentration and accumulation as affected by co-contamination 

The observed higher concentration of Cr in Z. mays (Figures 5.9A and B, 5.10A and B) could 

be as a result of toxicity of Cr which may damage the plasmalemma (Pandev et al. 2009). 

This damage results in an increased uptake of Cr. Vazquez et al. (1987) suggested that the 

primary toxicity of Cr (VI) to Phaseolus vulgaris is membrane damage due to high oxidative 

power. They also suggested that when Cr  is taken up by roots, it interacts with the organic 

matter and is reduced to trivalent Cr which is located in the vacuoles. Precipitation of Cr in 

root cell vacuoles results in low translocation of Cr from roots into shoots with minimal 

injury. This maybe a natural toxicity response of the plant since the accumulation of Cr in the 

vacuoles of root cells renders it less toxic assumedly due to it being away from the sites of 
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photosynthesis (Shankar et al. 2005).  Zayed et al. (1998) observed that the roots of many 

vegetable plants including Brassica oleracea converted Cr (VI) to Cr (III). Our results 

confirm the observation of Zayed et al. (1998) that the translocation of Cr from roots to shoots 

was limited. Even at higher soil Cr concentration (100 mg kg-1), the uptake of Cr by Z. mays 

remained low (Figure 5.9B). This could be related to the strong binding of Cr to solid-phase 

components in the soil where Cr (VI) is reduced to Cr (III). Similar results were observed for 

B. juncea at 50, 100, 250 and 500 mg kg-1 soil Cr concentration (Han et al. 2004).  

The increased concentration of Cr in shoot of Z. mays in co-contamination of B[a]P and Cr 

compared to single contamination of Cr could be as a result of low accumulation of Cr by 

roots. When the concentration of Cr is low, Cr has higher transfer mobility from root to shoots 

and when the roots take up higher concentration of Cr from soils, the rate of transfer from root 

to shoot decreases (Han et al. 2004). Probably, the interactive effect of Cr and B[a]P reduced 

the amount of Cr taken up by the root of Z. mays leading to an increased translocation of Cr to 

the shoots. Sun et al. (2011) observed similar results with B[a]P and cadmium (Cd), where a 

high amount of Cd was translocated from root to shoot of T. patula under co-contamination of 

B[a]P and Cd. Although their results were not compared to single contamination with Cd 

alone, other research on Cd accumulation by T. patula on single Cd contamination showed 

lower translocation of Cd from root to shoot and lower amounts of Cd in shoot compared to 

roots (Bareen and Nazir 2010, Liu et al. 2011).  Organic contaminants are mainly adsorbed 

onto organic matter within the soil, and are linked to the soil surfaces by either hydrogen or 

other chemical bonds (Xing and Pignatello 1998). Co- contamination of B[a]P could 

therefore, affect the activation potential of Cr in the soil changing the extent of interaction 



208 

 

with organic matter. For example, Chen et al. (2004) showed that co- contamination of 2,4-

dichlorophenol affected the behavior of heavy metals (Zn and Cu) in soil organic matter 

resulting in a change in their activation potential. In their research, soluble plus exchangeable 

Cu and Zn increased from 2.8 to 3.1 mg kg-1 and from 13.9 to 16.2 mg kg-1 respectively with 

co-contamination of 2,4-dichlorophenol when compared to single contamination of Cu or Zn. 

Also co-contamination of 2,4-dichlorophenol  with Zn and Cu slightly decreased the water 

soluble Cu and Zn while the bound Cu and Zn increased.  

5.9.3  Phytoremediation potential of Z. mays for combined pollution of Cr and B[a]P 

As shown in Table 5.4, the shoot concentration factor of Z. mays under single contamination 

of Cr increased from 0.008 to 0.013 when the concentration of Cr in soil increased from 50 

mg kg-1 to 100 mg kg-1. This suggests that the concentration factor of Cr in Z. mays increased 

with increased loading level in Cr contaminated soil at the levels used in the present study. It 

therefore implies that the uptake efficiency of Cr in single Cr contaminated soil increases at 

higher concentrations. Similar results were obtained by Han et al. (2004) for both Cr (III) and 

Cr (VI) treated soil where SCF increased from 0.5 to 1.5 and 1.5 to 3 as soil Cr concentration 

reached 2000 and 500 mg kg-1 respectively. For hyperaccumulator plants, TF is typically 

greater than 1 (Tappero et al. 2007). Our results with single and mixed contamination of Cr 

showed that Z. mays accumulated only small amount of Cr. With single contamination of 50 

and 100 mg kg-1, it was obvious that Cr was slowly translocated within the plant from the root 

to the shoot. This was evident as the TF for Z. mays reached highest value of 0.025 for 100 

mg kg-1 single soil Cr concentration (Table 5.4).  This result is in agreement with other studies 

which also reported highest Cr accumulation in roots ( Zayed et al. 1998, Gheju et al. 2009). 
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The translocation factor under co-contamination of Cr and B[a]P showed a remarkable 

increase especially for 50 mg kg-1 soil Cr co-contaminated with B[a]P. The TF for treatment 

C1B1 reached 0.21 while treatments C1B2 and C1B3 also reached 0.15 and 0.12 respectively. 

For plants to be able to hyperaccumulate Cr from soil, the plants must be efficient in a series 

of procedures including solubilization of Cr in soil, absorption of soluble Cr as well as 

translocation and detoxification of absorbed Cr within the plant (Hossner et al. 1998). 

Although the detailed mechanism of Cr translocation varies from one plant species to another 

(Yu et al. 2008), there are reports that Fe-deficient and P-deficient plants have better Cr 

translocation rates from roots to shoot (Bonet et al. 1991). It is possible that the antagonistic 

effect of the combination of Cr and B[a]P on the growth of Z. mays could have an effect on P 

and Fe content and as such could be a reason for increased translocation of Cr from root to 

shoot under co- contamination. From our results, it does not mean that higher TF of Cr in 

mixed contamination relative to single Cr contamination demonstrated better 

phytoaccumulation of Cr from soil. The bioconcentration factor (BCF) suggests that single 

contaminants had higher BCF and Cr removal rate over the course of study. It seemed that co-

contamination of Cr and B[a]P stabilized more Cr in soil compared to single treatments and 

therefore probably allowed only lesser accumulation in roots. It could also be possible that the 

toxic and mobile hexavalent Cr was reduced to a stable Cr (III). Barnhart (1997) suggested 

that even if Cr is added to the soil in its mobile form, it tends to be converted to the trivalent 

oxide when in contact with the natural environment. The low root uptake of Cr (Figures 

5.12A and B) is perhaps related to the partial conversion of Cr (VI) to Cr (III) where in the 

presence of oxidizing Cr (VI), is hydrolyzed and immobilized instead of getting converted to 
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labile Cr (III). Mishara et al. (1994) observed similar trends with Z. mays under single Cr soil 

contamination. Co-contamination of Cr and B[a]P could have been more toxic to the root of 

Z. mays, therefore inhibiting root growth and leading to less root Cr uptake from the soil. This 

is evident as the present study showed that the root growth of Z. mays in soil treatments with a 

mix of 100 mg kg-1 Cr and 1, 5 or 10 mg kg-1 B[a]P reduced when compared to single 

treatments of 100 mg kg-1 Cr. Similar results were observed by other researchers. For 

example, Mukharji and Roy (1978) suggested that Cr (VI) acts principally on roots resulting 

in intense growth inhibitions while Wang et al. (2011) concluded in their research that the 

joint action of combined pollution of B[a]P and Pb to the root growth of Triticum spp was 

mainly antagonistic inhibitory effect. Rooting patterns could also be one of the reasons why 

dicots transported more Cr to shoots than monocots (Cary et al. 1977, Sampanapanish et al. 

2006). Z. mays is a monocot and this could be the reason why the removal rate of Cr from soil 

in the present study remained low both in single and mixed contamination. 

5.9.4 B[a]P dissipation in soil 

The interaction of HM and PAH in co-contaminated soil may cause either positive or negative 

effects on the growth of plants, the uptake of compounds as well as directly affecting the 

microbial consortium thereby inhibiting or enhancing the dissipation of PAH (Lin et al. 

2008).  In the present study, co-contamination of Cr and B[a]P did not seem to affect the root 

growth of Z. mays.  Therefore it is possible that a direct effect on B[a]P degrading indigenous 

microbes could have inhibited the dissipation of B[a]P in co-contaminated soils when 

compared to single B[a]P contaminated soil (Figure 5.13).  Knight et al. (1997a) suggested 

that co-contamination can affect a broad range of microbial processes in soil including, 
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methane metabolism, nitrogen conversion and other reductive processes and that the result is 

a direct or indirect degradation of organic contaminants.  

Also, in this study, the role of planting and non-planting was studied. It was obvious that 

cultivation with Z. mays did not affect the dissipation of lower concentration (1 mg kg-1) of 

B[a]P in single and co-contaminated soils. However, in 10 mg kg-1 B[a]P single and co-

contaminated soil, about 24% and 29% of B[a]P was dissipated with the help of plants 

respectively.  Several processes could have enhanced the dissipation of B[a]P in the present 

study even in non-planted soil. It is known that B[a]P is a semi-volatile compound and could 

evaporate partly from soil due to increased temperature (Wild and Jones 1993). Also because 

the soil used for the present study was not sterile, it could also be possible that biodegradation 

by indigenous B[a]P degrading microorganisms present in contaminated soil took place. The 

biodegradation of B[a]P by indigenous microbes is however a long-term solution to 

contaminated land treatment (Keck et al. 1989). The similar dissipation rate observed in 

planted and non-planted soil at lower B[a]P concentration could be due to the competition 

between Z. mays and microorganism for nitrogen and other nutrients in soil. When this 

happens, the dissipation of B[a]P from the rhizosphere of Z. mays could be impeded.  

In higher B[a]P co-contaminated soil (10 mg kg-1), the presence of plants most likely 

enhanced the dissipation rate of B[a]P when compared to non-planted soil. As explained by 

Wilcock et al. (1996), the half life of B[a]P in soil is in the region of 100 days to 14.6 years. 

Therefore it is important to note the observed 42 to 63% increase in single B[a]P 

contaminated soil as well as a 17 to 46% dissipation rate in co-contaminated soil over a 60 

day greenhouse study. It is important to further study the microorganisms that enhanced the 
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dissipation of B[a]P in soil as well as other processes that significantly decreased the half life 

of B[a]P. The soil used for the present study and the environmental conditions seemed to be 

favorable for biodegradation. These include lower pH and constant greenhouse temperature. 

Gao et al. (2008) suggested that the mechanisms of PAH dissipation in soil are through 

processes such as leaching, volatilization, biodegradation, incorporation of pollutant into soil 

organic matter and plant uptake. However, Reilley et al. (1996) reported no trace of 4 to 5 

ring PAHs in leachates in planted and non-planted soil, while Trapp et al. (1990) observed 

negligible or non-significant results for phytovolatilization and plant metabolism. Therefore 

the dissipation of PAHs will most likely come from plant direct accumulation and 

biodegradation (Gao et al. 2008, Lin et al. 2008). In the present study, plant direct 

accumulation was not studied, therefore the enhanced dissipation of B[a]P in 10 mg kg-1 

single B[a]P contaminated soil and 50 mg kg-1 Cr+ 10 mg kg-1 B[a]P and 100 mg kg-1 Cr+ 10 

mg kg-1 B[a]P co-contaminated soil in the presence of plants could be as a result of plant 

promoted dissipaton. 

5.10 Conclusion 

The present study explores the phytoremediation potential of Z. mays in Cr and B[a]P co-

contaminated soils. The growth of Z. mays was not significantly affected by either single or 

mixed contamination. However, under co-contamination of Cr-B[a]P treatments, the addition 

of B[a]P could affect the uptake and accumulation of Cr. Z. mays can accumulate Cr in co-

contaminated soil while there was a low efficient accumulation in single contaminated soil. 

The concentration of Cr in plant shoot was elevated in the presence of B[a]P whereas the root 



213 

 

concentration decreased. However the concentration of Cr in shoots were lower than in roots 

and the TFs were lower than 1.0 for all treatments with plants grown in co-contaminated soils 

having higher TFs than single contaminated soil. 

The dissipation of B[a]P was inhibited in the presence of Cr in co-contaminated soils.  There 

was no evidence of plant enhanced dissipation of B[a]P in lower B[a]P single or co-

contaminated soils whereas in 10 mg kg-1 B[a]P single and co-contaminated soils, Z. mays 

can enhance the dissipation of B[a]P. The evidence of plant enhanced dissipation of B[a]P 

could be due to plant promoted microbial degradation. Hence Z. mays could be used for 

phytoremediation of Cr-B[a]P co-contaminated soil but only where concentrations are higher. 
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6.0 Phytoremediation potential of B. juncea in Cu-pyrene co-

contaminated soil: Comparing freshly spiked soil with aged soil- 

Introduction 

Part of this work has been published in journal of environmental management; Chigbo and 
Batty 2013. 

Phytoremediation of contaminated soils, sediments as well as ground water have been shown 

to be economically and ecologically appropriate clean up procedures (Olsen et al. 2008, Kathi 

and Khan 2011). Plants can affect the fate of contaminants including metals and PAH in 

different ways. For example, the plant can help in volatilization with respect to PAHs, 

contaminants could be sorbed in the roots, taken up into plants or degraded (Marr et al. 2006, 

Olsen et al. 2008). 

Recently, the impact of heavy metals and PAH on soil have been a concern due to their 

persistence in soil as well as their effects on the security of food chains (Huang et al. 2004, 

Kidd et al. 2007). However, the physicochemical property of the soil such as ageing affects 

the metal fractions and PAH in soil and this largely determines their availability in the soil 

(Jelali and Khanlari 2008, Nouri et al. 2011).  

Ageing of soil will most likely have a significant influence on the mobility and the 

bioavailability of heavy metals (Chaignon and Hisinger 2003, Anxiang et al. 2009) and PAHs 

(Li et al. 2008). In natural soils, most contaminants are shown to be less toxic than in fresh 

soils used for laboratory experiments (Alexander 2000). Ageing of metals in soil has been 

identified as one of the factors that determine their availability in soil and subsequent uptake 

by plants during phytoremediation (Ma et al. 2006). The fate of metals in soils depends on the 
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retention capacity of the soil. For example metals tend to be adsorbed in soils with high 

organic matter Voegelin et al. (2003) and Whittinghall and Hobbie (2011) suggested that the 

ageing affects the rate of soil organic matter decomposition. Also, Lu et al. (2009) observed 

that the exchangeable Cu decreased with increase in ageing time whereas the residual Cu 

increased. This could subsequently influence uptake by plants and growth during 

phytoremediation. 

PAHs in soil are less toxic to plants in the short term than monoaromatics (Henner et al. 

1997) Therefore it is expected that if plant growth can be successfully established and 

maintained in contaminated soils, PAH dissipation can be increased (Binet et al. 2000). Most 

studies have shown that the translocation of PAH from root to shoot or their volatilization 

from leaves are negligible and should not be a concern during phytoremediation of fresh or 

aged soil (Qiu et al. 1997). Although it is believed that the longer the contaminants stay in 

soil, the lower the contaminant mobility and bioavailability, few studies have investigated 

whether the residence time of metals (Elhers and Luthy 2003, Martinez et al. 2003) or PAHs 

(Hamdi et al. 2012) affects their  bioavailability and subsequent removal by plants. Presently, 

no study has investigated the role of aging in co-contaminated soils. Dissipation studies have 

only tried to investigate losses from freshly spiked PAH or PAH+metal contaminated soils 

(Binet et al. 2000, Lin et al. 2008) whereas Smith et al. (2011) and Ahn et al. (2005) tried to 

investigate the dissipation of PAH in aged PAH only contaminated soil. 

Therefore the aim of this study is to compare the phytoremediation potential of B. juncea in 

freshly spiked and aged Cu, pyrene or Cu and pyrene co-contaminated soil. This study will 

investigate whether uptake of Cu by plants is affected by soil ageing, whether plants increase 
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the dissipation of PAHs and to understand the differences between dissipation in freshly 

spiked soil and in aged soil.   

6.1 Methods 

6.1.1 Soil Spiking and ageing process 

Soil was spiked as discussed is section 5.2.1. The soil used for ageing study was stored in 

sealed bags in the dark for 8 months prior to planting. 

6.1.2 Experimental set up 

The experimental layout was designed in a completely randomized design of 30 treatments 

with three replicates of each for freshly spiked soil and aged soil. Pots spiked with pyrene had 

treatments with no planting in order to observe non-plant facilitated dissipation of pyrene. 

Twenty seeds of B. juncea were sterilized in 6% v/v of hydrogen peroxide for 15 minutes, 

washed with tap water and soaked for 1 day. Sterilized seeds were sowed directly into 12.5 

cm plastic pots containing prepared soils. After 10 days of germination, weaker seedlings 

were removed, leaving 5 seedlings with similar size in each pot. Pots were watered when 

required with tap water to maintain the soil moisture during plant growth and the leachates 

from all pots were collected using the tray and returned to the soil. Throughout the 

experiment, the pots were periodically repositioned to minimize edge effects. Soil was 

fertilized with N: K: micro nutrients fertilizer mixture (1 g kg-1) containing 26% N, 26% K2O, 

0.013% B, 0.025% Cu, 0.05%, 0.05% Fe and 0.025% Mn. After 65 days of growth, shoots 

were cut just above the soil surface and washed with deionized water. Each pot was then 
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emptied and the roots were separated from the soil by washing with running tap water. The 

roots were then rinsed with deionized water 3 times to remove all soil particles. All samples 

were oven-dried to constant weight at 65 ºC for 72 hours. The dried samples were weighed to 

enable biomass calculations and used for plant analysis.  

6.1.3 Analysis of plants and soil samples 

Due to decreased root growth in freshly spiked soil, the replicates of each treatment were 

merged together for analysis. Oven-dried plants were ground into small pieces using a coffee 

grinder (Krups, Italy). Approximately 0.3 g (for control and Cu treatments) and 0.1 g (Cu + 

pyrene treatments) of shoot/root dry matter  for freshly spiked soil while 0.3 g for shoot and 

0.1 g for root in aged soil were digested using 5 mL of 30% HNO3 and placed on a heating 

block (Section 3.4.1). Digested plant samples were then analysed for total Cu using FAAS. 

The pyrene in soil samples was analysed using the Agilent GC-MS as described in sections 

3.5.1, 3.5.2 and 3.5.3. The average percentage recovery for surrogate was 78.99% and 

103.59% for freshly spiked and aged soil respectively. 

6.1.4 Statistical analysis 

All treatments were replicated three times. The means and standard error (SE) were calculated 

using Microsoft Office Excel 2007. The comparisons of shoot dry matter, Cu concentration, 

accumulation as well as soil residual pyrene were carried out by two way analysis of variance 

using SPSS 20. The results for pyrene dissipation rate was transformed with arcsin while the 

shoot accumulation was log transformed prior to analysis.When a significant difference was 

observed between treatments, multiple comparisons were made by the Tukey HSD test. 
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6.2 Results 

6.2.1 Effect of aging on vegetation growth 

The yield of B. juncea was higher in aged contaminated soil when compared to freshly 

contaminated soil in the present study (Table 6.1).  The effect of Cu, pyrene or their 

combinations on yield of B. juncea varied when compared to control treatments. The present 

result showed that in fresh soil contaminated with 250 and 500 mg kg-1 pyrene alone, the 

shoot biomass decreased by 76 and 93% respectively when compared to aged soil. The root 

biomass in fresh soil also decreased by 90.2 and 85% respectively when compared to aged 

soil. It is clear that in freshly spiked soil, the shoot biomass decreased as the concentration of 

pyrene increased from 250 to 500 mg kg-1 while it increased with increase in pyrene 

concentration in aged soil. 

In 50 and 100 mg kg-1 Cu contaminated soil, the shoot biomass in fresh soil after 60 days of 

planting was significantly lowered by 56 and 73% respectively when compared to aged soil.  

Similarly, the root biomass in freshly spiked soil decreased by 72 and 88% when compared to 

root biomass in aged soil.  

The effect of co-contamination of Cu and pyrene on shoot and root biomass of B. juncea 

varied (Table 6.1). For example when the concentration of Cu remained at 50 mg kg-1, co-

contamination with 250 mg kg-1 of pyrene in freshly spiked soil significantly lowered the 

shoot biomass of B. juncea from 1.21 to 0.33 g, while in aged soil the shoot biomass 

significantly increased from 2.78 to 3.10 g. Also in comparison to aged soil, the shoot 

biomass was significantly lowered by 83 and 51% in soil freshly co-contaminated with 100mg 
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kg-1Cu + 250 mg kg-1 pyrene and 100 mg kg-1 Cu + 500 mg kg-1 pyrene respectively. The root 

biomass was lowered by 86.4 and 52.3%. 

Table 6.1: Shoot and root biomass (mean±SE, n=3) of B. juncea influenced by Cu or pyrene 

after 65 days of planting. Different letters indicate a significant difference between fresh and 

aged soil (Tukey HSD p ≤ 0.05). Appendix 6A.1 

Cu added 
(mg kg-1) 

Pyrene 
added (mg 
kg-1) 

Shoot dry matter (g) Root dry matter (g) 
Fresh soil Aged soil Fresh soil Aged soil 

0 0 1.71±0.06a 6.11±0.1b 0.14 1.43±0.07 

0 250 0.71±0.15bc 2.98±0.05d 0.11 0.72±0.06 

0 500 0.27±0.04de 4.01±0.05f 0.06 0.76±0.09 

50 0 1.21±0.03a 2.78±0.07b 0.12 0.42±0.03 

50 250 0.33±0.01c 3.10±0.01d 0.05 0.94±0.01 

50 500 0.26±0.06e 2.21±0.03f 0.06 0.47±0.06 

100 0 1.48±0.06b 5.53±0.09c 0.14 1.13±0.04 

100 250 0.24±0.01d 1.45±0.09e 0.04 0.30±0.05 

100 500 0.26±0.04c 0.52±0.05a 0.06 0.13±0.01 

 

6.2.2 Effect of ageing on Cu concentration in B. juncea 

The shoot Cu concentration in fresh and aged soil varied significantly and is shown in figures 

6.1A and 6.1B. In aged soil, the addition of lower concentration of pyrene (250 mg kg-1) 

significantly suppressed Cu uptake whereas in freshly contaminated soil, the addition of 

pyrene significantly increased the uptake of Cu. It was shown that in freshly contaminated 
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soil, when the concentration of Cu remained at 50 mg kg-1, the shoot Cu concentration was 

54.9 mg kg-1 while the addition of 500 mg kg-1 of pyrene significantly increased the shoot Cu 

concentration to 87.9 mg kg-1. In contrast, when the concentration of Cu remained 50 mg kg-1 

in aged soil, the addition of 250 and 500 mg kg-1 pyrene significantly decreased the shoot Cu 

concentration from 8.09 to 1.77 and 1.42 mg kg-1 respectively (Figure 6.1A).  When the 

concentration of Cu in soil increased to 100 mg kg-1, the addition of 250 and 500 mg of 

pyrene in aged and fresh soil significantly increased the Cu uptake. Result showed that the 

plant Cu uptake reached 147 and 157 mg kg-1 in freshly contaminated soils with the addition 

of 250 and 500 mg kg-1 pyrene respectively and 9.36 and 24.6 mg kg-1 in aged soil. 

The Cu concentration in the roots of B. juncea varied in freshly spiked soil and aged soil. As 

the concentration of Cu increased from 50 to 100 mg kg-1, the root Cu concentration increased 

from 96 to 124 mg kg-1 in freshly spiked soil and decreased from 83.4 to 52 mg kg-1 in aged 

soil. In the present study, the root dry weight of B. juncea in freshly spiked soil was merged 

together due to poor growth hence the root Cu concentration in aged and freshly spiked soil 

could not be compared statistically. However, co-contamination with Cu and pyrene with 

freshly spiked or aged soils showed a similar trend, although the root Cu concentration was 

always higher in freshly spiked soil than in aged soil. For example, when the concentration of 

Cu remained at 50 mg kg-1, co-contamination with 250 mg kg-1 of pyrene decreased the root 

Cu concentration from 96 to 72 mg kg-1 for freshly spiked soil and from 83.4 to 67 mg kg-1 in 

aged soil, while the addition of 500mg kg-1 pyrene increased the root Cu concentration to 151 

and 115 mg kg-1 respectively (Figure 6.2A). Also, when the concentration of Cu in soil 

increased to 100 mg kg-1, co-contamination with 250 mg and 500 mg kg-1 of pyrene increased 
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the root Cu concentration from 124 to 184 and 153 mg kg-1 and 52 to 101 and 158 mg kg-1 for 

freshly contaminated soil and aged soil respectively (Figure 6.2B). 

 

Figures 6.1 A and B: Shoot Cu concentration (mean ± SE, n= 3) of B. juncea in freshly and 

aged soil after 65 days of planting. Different letters indicate a significant difference between 

fresh and aged soil for each treatment (Tukey HSD p ≤ 0.05). Treatments C0, C1and C2 

represent 0, 50 and 100 mg Cu kg-1; P1 and P2 represent 250 and 500 mg kg-1 of pyrene. 

Appendix 6A.3 
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Figures 6.2 A and B: Root Cu concentration in freshly and aged soil after 65 days of 

planting. Treatments C0, C1and C2 represent 0, 50 and 100 mg Cu kg-1; P1 and P2 represent 

250 and 500 mg kg-1 of pyrene. Appendix 6A.5 
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6.2.3 Effect of ageing on Cu accumulation 

In freshly and aged contaminated soil, the shoot Cu accumulation significantly increased with 

increased Cu concentration in soil. Although in freshly spiked soil, there was no significant 

difference in shoot accumulation as the soil Cu concentration increased from 50 to 100 mg kg-

1, in aged soil as the concentration of Cu in soil increased from 50 to 100 mg kg-1 the shoot Cu 

accumulation significantly decreased from 22.59 to 8.87 µg kg-1. The shoot Cu accumulation 

in fresh soil was about 3 times and 9 times that in aged soil for 50 and 100 mg kg-1 soil Cu 

contamination respectively. 

Co-contamination of 50 and 100 mg kg-1 of Cu with 250 and 500 mg kg-1 of pyrene in aged 

soil significantly decreased the shoot Cu accumulation from 5.48 to 3.16 µg kg-1 and 13.61 to 

12.60 µg kg-1 respectively (Figures 6.2A and B). In contrast, co-contamination of 50 and 100 

mg kg-1 Cu with 250 and 500 mg kg-1 pyrene in freshly spiked soils significantly increased the 

shoot Cu accumulation from 18.3 to 21.9 µg kg-1 and 33.9 to 38.74 µg kg-1 respectively. It 

was clear that the shoot Cu accumulation under co-contamination in fresh soil was always 

about 3 times or more when compared to that in aged soil.  
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Figures 6.3 A and B: Shoot Cu accumulation (means ± SE, n= 3) in freshly and aged soil 

after 65 days of planting. Different letters indicate a significant difference between fresh and 

aged soil for each treatment (Tukey HSD p ≤ 0.05). Treatments C0, C1and C2 represent 0, 50 

and 100 mg Cu kg-1; P1 and P2 represent 250 and 500 mg kg-1 of pyrene. Appendix 6A.4 
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6.2.4 Total Cu removal from soil and Translocation Factor 

The concentration of Cu removed by B. juncea in the present study varied when freshly 

contaminated soil was compared with aged soil (Table 6.2). In single Cu contaminated soil, 

the total concentration of Cu removed from soil was higher in freshly spiked soil than in aged 

soil. However, under co-contamination, B. juncea in aged soil seemed to remove more Cu 

from soil than from freshly contaminated soil.  The total Cu removed from freshly 

contaminated soil and aged soil increased from 58.1 to 68.3 µg kg-1 and 77.5 to 87 µg kg-1 

respectively as the concentration of Cu increased from 50 to 100 mg kg-1. This represents a 25 

and 21.5% reduction in Cu removal in aged soil when compared to freshly spiked soil. 

A contrasting result was observed under co-contamination. At 50 mg kg-1 soil Cu 

concentration, the total Cu removed from soil remained at 21.8 and 30.3 µg kg-1 when soil 

was freshly co-contaminated with 250 and 500 mg kg-1 of pyrene.  In aged soil however, B. 

juncea removed over 3 times as much Cu from 50 mg kg-1 Cu + 250 mg kg-1 of pyrene co-

contaminated soil  and about twice as much in 50 mg kg-1 Cu + 500 mg kg-1 pyrene when 

compared to freshly contaminated soil (Table 6.2). The Cu removal by B. juncea in soil co-

contaminated with 100 mg kg-1 of Cu with 250 or 500 mg kg-1 of pyrene increased from 41.5 

to 48.5 µg kg-1 in freshly spiked soil and decreased from 44 to 33.8 µg kg-1 in aged soil. 

Although the concentration of Cu removed from soil was higher in aged co-contaminated soil 

than in freshly spiked, it seemed that most of the Cu was retained in the root as suggested by 

the TF. The present result showed that the TF under freshly co-contaminated soil was always 

higher than in aged soil (Table 6.2). For example, in freshly co-contaminated soil, the highest 

shoot to root ratio reached 1.025 for 100 mg kg-1 Cu+ 500 mg kg-1 pyrene, while it was 0.15 
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for same treatment in aged soil. Similarly, in single Cu contaminated soil, the highest TF was 

0.569 for freshly contaminated soil and 0.097 when soil was aged. 

Table 6.2: Total Cu removed (mean±SE, n=3) by B.juncea and Translocation Factor (TF) 

after 65 days of planting in freshly spiked and aged soil. Appendix 6A.7 and A.8 

Cu added 
(mg kg-1) 

Pyrene 
added(mg 
kg-1) 

Total Cu removed (µg) Translocation Factor (TF) 

Fresh soil Aged soil Fresh soil Aged soil 

0 0 42.05 21.22±3.09 0.57 0.04 

50 0 77.53 58.18±2.50 0.57 0.097 

50 250 21.84 69.33±10.37 0.77 0.026 

50 500 30.37 57.78±6.97 0.58 0.012 

100 0 87.68 68.31±1.79 0.39 0.03 

100 250 41.52 44.77±7.68 0.80 0.09 

100 500 48.51 33.81±1.55 1.03 0.15 

 

6.2.5 Pyrene levels in fresh and aged soil at zero time 

Table 6.3 shows the concentration of pyrene added to soils and the levels found at zerotime. 

The concentration of pyrene decreased over the 8 months with 250 mg kg-1 and 500 mg kg-1 

pyrene dropping to 46 and 35% of its original concentration respectively. Co-contamination 

of Cu and pyrene also showed similar reductions over the period of ageing. When 50 mg kg-1 

of Cu was added to 250 and 500 mg kg-1 of pyrene contaminated soil, the concentration of 
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pyrene at zerotime in aged contaminated soil decreased by approximately 36 and 34% 

respectively, while the addition of 100 mg kg-1 of Cu to 250 and 500 mg kg-1 of pyrene 

contaminated soil reduced the pyrene concentration in aged soil by 44 and 35% respectively. 

Table 6.3: Pyrene level in freshly spiked soils and aged soils (8 months) Appendix 6A.10 

Cu added (mg kg-1) Pyrene added (mg kg-

1) 
Freshly spiked soil 
(mg kg-1) 

Aged soil (mg kg-1) 

0 250 201.82 ±5.63 108.63 ± 8.88 

50 250 194.66 ±9.31 123.22 ±11.05 

100 250 193.29 ±3.45 107.55 ±0.90 
0 500 369.48 ±25.3 219.32 ±14.43 

50 500 348.67 ±4.3 228.09 ±21.14 

100 500 339.96 ±3.11 237.87 ±9.76 

 

6.2.6 Effect of ageing on residual pyrene concentration in soil 

After 65 days of planting, the soil was quantitatively analyzed for pyrene concentration. The 

concentration of pyrene in freshly spiked and aged soil significantly decreased over the period 

of planting (Figures 6.4A and 6.4B). The dissipation of pyrene with planting seemed to vary 

between freshly spiked soils and aged soils.  The present result showed that the dissipation 

rate of pyrene in freshly contaminated soil was from 67.1 to 93.6% whereas in aged soil the 

dissipation rate varied from 54 to 87.9%.  There were significant differences between the 

removal rates of pyrene in freshly contaminated soil when compared to aged soil in the 
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presence of plants, except for 250 mg kg-1 pyrene and 50 mg kg-1 Cu + 250 mg kg-1 pyrene. 

When the concentration of pyrene remained at 250 mg kg-1, the dissipation rate in freshly 

contaminated and aged soil was similar. Co-contamination with 50 mg kg-1 Cu did not seem 

to affect the dissipation rate, while co-contamination with 100 mg kg-1 Cu significantly 

decreased the dissipation of pyrene by 39% when aged soil was compared to freshly spiked 

soils. There were contrasting results when the concentration of pyrene increased to 500 mg 

kg-1. Compared to freshly spiked soils, the dissipation rate of pyrene after planting in aged soil 

decreased by 24%. . There were similar results when soil was co-contaminated with 50 mg kg-

1 Cu. The dissipation rate decreased by 14% when aged soil was compared to freshly spiked 

soils.. However, the dissipation rate of pyrene increased in aged soil when compared to 

freshly contaminated soil in 100 mg kg-1 Cu + 500 mg kg-1 pyrene. Results showed that the 

dissipation rate of pyrene increased  by 21% when aged soil was compared to freshly 

contaminated soil (Figure 6.4B). 
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Figures 6.4 A and B: Pyrene dissipation (mean ± SE, n= 3) in freshly and aged soil after 65 

days of planting. Different letters indicate a significant difference between fresh and aged soil 

for each treatment (Tukey HSD p ≤ 0.05). Treatments, C1and C2 represent 50 and 100 mg Cu 

kg-1; P1 and P2 represent 250 and 500 mg kg-1 of pyrene. Appendix 6A.12 
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6.2.7 Residual pyrene concentration in unplanted soil 

Pyrene was highly dissipated in fresh and aged soil with or without planting. However, in 

freshly contaminated soil the presence of B. juncea significantly decreased the pyrene 

concentration after planting when compared to soils with no planting. On the other hand, there 

was no significant effect of B. juncea on pyrene dissipation in aged soil. The present study 

showed that in C1P2 and C2P1 aged soil the dissipation of pyrene in the absence of plants 

was about 17 and 28% higher than in planted soil. There seemed to be an increased 

dissipation rate of pyrene in freshly contaminated soil than when the soil was aged in the 

absence of plants (figures 6.5A and 6.5B). The present results showed that in freshly spiked 

soil, the dissipation rate ranged from 65.5 to 92.9% for single and mixed contaminated soil, 

while in aged soil, it ranged from 65.5 to 84.8%. With the exception of 250 mg kg-1 of pyrene 

and 50 mg kg-1 Cu + 250 mg kg-1 pyrene contaminated soil, all other treatments showed 

significant differences when freshly spiked soil was compared to aged soil. For example, 

when the concentration of pyrene in soil remained at 250 mg kg-1, the dissipation rate of 

pyrene in freshly spiked and aged soil in the absence of plants was similar.  Also, co-

contamination with 50 mg kg-1 of Cu did not affect the dissipation of pyrene, while the 

addition of 100 mg kg-1 of Cu significantly decreased pyrene dissipation to 92.9 and 82.1% 

for freshly contaminated and aged soil respectively. In contrast, when the concentration of 

pyrene in soil remained at 500 mg kg-1, the dissipation rate of pyrene decreased to 83.6 and 

65.6% for freshly spiked and aged soil while co-contamination with 50 mg kg-1 and 100 mg 

kg-1 of Cu significantly increased (p≤0.05) pyrene dissipation to 74.3% and 84.8% 

respectively for freshly and aged soil (Figure 6.5B). 
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Figures 6.5 A and B: Pyrene dissipation (mean ± SE, n= 3) in freshly and aged non planted 

soil. Different letters indicate a significant difference between fresh and aged soil for each 

treatment (Tukey HSD p ≤ 0.05). Treatments, C1and C2 represent 50 and 100 mg Cu kg-1; P1 

and P2 represent 250 and 500 mg kg-1 of pyrene. Appendix 6A.13 
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6.3 Discussion 

6.3.1 Ageing effect on biomass and accumulation of Cu in B. juncea 

The dry biomass of B. juncea significantly increased in aged soil for all treatments when 

compared to freshly contaminated soil (Table 6.1). This could be as a result of the prolonged 

ageing period of 8 months used in the present study. It could be possible that due to ageing, 

Cu toxicity was reduced. Other studies have reported similar results. For example Anxiang et 

al. (2009) showed that in 500 mg kg-1 Cu contaminated soil, an increase in incubation 

(ageing) period significantly increased the dry biomass of Triticum aesitivum. 

Although the dry biomass increased in aged soil relative to freshly contaminated soil, the 

concentration and accumulation of Cu in shoot was always lower (Figures 6.2A and B, 6.3A 

and B). This could be related to the availability of Cu in soil. Although this was not analyzed 

in the present study, Pederson et al. (2000) showed that Cu accumulation in a 12-week aged 

soil was always lower than those in soils that were aged for shorter periods. Although their 

result was not significant due to the short ageing period (1 to 12 weeks), the bioavailability of 

Cu was assumed to be the reason for the observed reduction in Cu accumulation. The 

differences in Cu accumulation in shoots of B. juncea could be related to the absorbed Cu in 

the root parts and was reflected in the plant biomass for freshly and aged contaminated soil 

(Table 6.1). In this study, B. juncea in freshly contaminated soil grew less than in aged soil 

while accumulating more Cu. Similar accumulation patterns have been observed in many 

other species. For example, Umebese and Motojo (2008) showed that the uptake of higher 

concentration of Cu by Ceratophyllum demersum significantly decreased the shoot biomass. 
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The translocation of Cu from the root to the shoot of B. juncea varied with freshly spiked soil 

and aged soil (Table 6.2). In freshly spiked soil, although the root Cu concentration was 

always higher than the shoot Cu concentration except for 100 mg kg-1 Cu + 500 mg kg-1 

pyrene, the fraction translocated to the shoot was high when compared to aged soil. It could 

be that in aged soil, the bioavailability of Cu was reduced and more soil Cu was bound into 

the more stable fractions (Anxiang et al. 2009). This could make B. juncea resistant to Cu co-

contamination by immobilizing Cu outside or inside the roots thereby preventing excess 

translocation to the shoots (Brun et al. 2001). 

6.3.2 Pyrene concentration in treated soil at zero time 

Table 6.3 shows the pyrene levels in freshly spiked soil and aged soil at zero time (before 

planting). It was clear from the results that pyrene concentration in aged soil decreased more 

than in freshly spiked soil for all treatments.  The observed loss of pyrene over time was not 

due to the procedure used for extraction from soil. Some reports show that the efficiency of 

extraction is affected in aged soil since compounds are bound to the soil matrix. However, 

from the present study, the recovery of pyrene was consistent in freshly spiked soil as well as 

in aged soil. It was clear from the results that the stabilization time affected the dissipation of 

pyrene prior to planting. Normally, as the molecular weight of PAHs increases, dissipation is 

less due to the reduction in the saturation vapor pressure (Smith et al. 2011). However, since 

pyrene has a lower molecular weight, dissipation could be evident as shown in the present 

study. The dissipation observed in the present study could be either through breakdown by 

microbes present in soil with possibilities of other abiotic losses like irreversible sorption unto 

soil (Smith et al. 2011) or through volatilization. However, since the spiked soil was 
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stabilized by storing spiked samples in the dark before greenhouse planting, it is less likely 

that volatilization could remain a mechanism for pyrene dissipation. Sun et al. (2010) could 

not attribute any mechanism for the loss of pyrene and phenanthrene from a freshly spiked 

barren soil. This loss was so rapid that there was no significant difference when planted and 

unplanted soils were compared. 

6.3.3 Pyrene dissipation in planted and non-planted soil 

There have been many research papers that have examined spiking agricultural soil with pure 

PAHs or with heavy metal mixtures and comparing their dissipation rate in planted and 

unplanted soils. Different plant species have been tested in pot experiments. Some of these 

pot experiments have been successful, showing a clear phytoremediation effect in freshly 

spiked soil (Wang et al. 2008, Zhang et al. 2009, Wang et al. 2012). However, there have 

been suggestions that freshly spiked soils may not behave in the same way as aged soil. The 

significant variability in physical properties between fresh soils and aged soils is a factor 

which produces different conditions resulting in varied PAH degradation (Joner et al. 2004). 

They observed in their study that in old soil that was contaminated with creosote, the 3, 4 and 

5 ringed PAHs were more available due to the disturbance of the soil  which lead to improved 

aeration of soil during preparation for planting. When this happens, the effect the plant has on 

dissipation of PAH could be affected. The present study tried to be objective by stabilizing the 

freshly spiked soil and aged soil for 4 weeks and 8 months respectively following soil spiking 

to reduce the effects of soil disturbance. The removal of pyrene in planted soil was higher in 

freshly contaminated soil when compared to aged soil in pyrene only contaminated soil 

(Figure 6.4A and B). Also when a lower concentration of pyrene was co-contaminated with 
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Cu, the residual pyrene in soil tended to increase. This could be due to the increased 

availability of pyrene in freshly spiked soil than in aged soil. Although this was not studied, 

Smith et al. (2011) suggested that the stabilization time prior to planting can affect the 

bioavailability of PAH thereby increasing degradation of PAHs for soils with lower 

stabilization time. Also, PAHs in aged soils are less bioavailable because they are sequestered 

and stored in the organic matter which makes them less assessable to microbes leading to 

slow degradation or diffusion (Alexander 2000). Under co-contamination of Cu with higher 

concentration of pyrene (500 mg kg-1), the removal rate of pyrene in freshly spiked soil 

seemed to be lower than in aged soil. This could be due to the modified root morphology of B. 

juncea in the present study. It was obvious from Table 6.1 that the root biomass of B. juncea 

in freshly spiked soil was lower than in aged soil. Also, the death of plant root in freshly 

spiked soil due to the toxicity of Cu and also the direct toxicity of Cu on microbes could have 

led to the variability in PAH degradation, thereby diminishing the effects on microbial PAH 

degradation (Sokhn et al. 2001, Olsen et al. 2003). 

When planted and non-planted soils were compared for freshly spiked and aged soil the result 

varied. In freshly contaminated soils, there was a strong evidence of phytoremediation in all 

single and co-contaminated soils except when pyrene was co-contaminated with 100 mg kg-1 

of Cu; whereas in aged soil there was no evidence of phytoremediation in all treatments. In 

aged soil treatments, the removal of pyrene in non-planted soil was either similar or was 

significantly higher than in planted soil. For effective phytoremediation of pyrene, the roots of 

B. juncea do not only need to increase the pyrene bioavailability by increasing microbial 

activity, but must increase the contact time between the microbe and pyrene (Smith et al. 
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2011). It could be that in the present study, the roots of B. juncea did not increase the 

bioavailability of pyrene in aged soil. Although significant differences existed in the root 

biomass of B. juncea in aged soil and was always significantly larger than in freshly spiked 

soil (Table 6.1), it would be expected that this would contribute highly to pyrene dissipation. 

Despite this, there was no significant difference in pyrene dissipation in aged planted soil and 

non-planted soil. This suggests that pyrene dissipation in aged soils cannot be related to the 

plant biomass which is further evidence that factors other than planting such as bioavailability 

and bulk microbial degradation (Mueller and Shann 2005) had a greater impact on pyrene 

dissipation. The absence of pyrene dissipation with planting in aged soil is not unique to this 

study. For example, L. perenne (Binet et al. 2000) and Panicum virgatum (Chen et al. 2003a) 

have shown the ability of plant to increase the dissipation of PAH in soil while other studies 

have shown no positive effect of planting on PAH dissipation including pyrene (Checkol et al. 

2002). The decreased dissipation of pyrene in aged soil in the presence of B. juncea in this 

study is in line with the work carried out by Olexa et al. (2000) which showed that L. perenne 

decreased the dissipation of pyrene when compared to soils with no planting. 

6.4 Conclusion 

 This study showed that phytoextraction of Cu and removal of pyrene was much greater in 

freshly spiked soil than in aged soil. In freshly spiked soil, although plant biomass was 

inhibited due to the toxicity of Cu, the concentration and accumulation of Cu as well as the 

translocation from root to shoot was increased when compared to aged soil. The total removal 

of Cu or the phytoextraction potential of B. juncea for Cu co-contaminated was enhanced in 

freshly spiked soil. 
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The residual pyrene concentration decreased in all treatments for planted and non- planted soil 

in freshly spiked soil as well as in aged soil. However, there was an evidence of plant 

enhanced dissipation in freshly spiked soil, while in aged soil there was no evidence of 

dissipation of pyrene in planted soil. In some aged soil treatments, pyrene dissipation in non-

planted soil was greater than in planted soil. Since most contaminants in natural soil has a 

long residence time, it could be assumed that phytoremediation of Cu and pyrene co-

contaminated soil with B. juncea may not be a feasible approach for contaminant removal in 

aged soil. This shows that although freshly spiked soils can be used in greenhouse studies to 

understand the mechanism of heavy metal and PAH removal from soils, care should be taken 

when comparing the removal rates in real life scenarios 
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6.5 Effect of ageing on the phytoremediation potential of Z. mays 

in chromium and B[a]P co-contaminated soil- Introduction 

The environmental contamination of soils by heavy metals and PAHs are practically 

inevitable due to natural and industrial activities. Heavy metal toxicity and their accumulation 

potential in soils is a major concern (Naqvi and Rizvi 2000). Metals occur from different 

sources in the environment and most occur naturally in compounds in soils (Adriano 2001). 

Anthropogenic sources, including refining, steel production, and combustion of coal and oil 

contribute greatly to the natural concentration of metals in soil (Adriano 2001) and hence 

metals are important environmental pollutant because of widespread industrial use (Shanker et 

al. 2005). They can be very toxic and cause severe phytotoxic symptoms including membrane 

damage, distortion in metabolic activity and growth inhibition (Panda and Choudhury 2005). 

For example, the role of Cr has been studied intensively and most studies reported inhibition 

to plant growth (Samantarey et al. 2001, Samantaray 2002, Panda 2007). The exact effect 

could depend on several factors including plant species, soil types and Cr concentration 

(Vernay et al. 2008). At the cellular level, Cr (VI) causes severe damage to cell membranes 

due to its strong oxidizing nature (Shahandeh and Hossner 2000, Mei et al. 2002).  

The toxicity of polycyclic aromatic hydrocarbons (PAH) has been studied extensively 

(Henner et al. 1997, Smith et al. 2006) and their major removal pathways in the soil include 

leaching, volatilization, biodegradation, accumulation by plants or irreversible sorption 

(Reilley et al. 1996). PAH with three or more rings are generally more hydrophobic in nature 

and are hardly leached or volatilized from the soil (Robinson et al. 2003). Consequently, in 

vegetated soils, PAH are adsorbed to the roots of plants while translocation to the shoot is less 
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likely. The root zone of plants provides a good environment for degradation of organic 

compounds by providing a biologically active soil region that enhances microbial activity and 

contaminant availability (Wenzel 2009). In un-vegetated soils, the dissipation of PAH occurs 

rapidly initially and reduces with time for non-volatile and recalcitrant compounds (Sims and 

Overcash 1983). With ageing, PAH sorb slowly to soil organic matter and hence their 

bioavailabilities are impacted (Hatzinger and Alexander 1995). For example Tang et al. 

(1998) showed that PAHs such as phenanthrene, anthracene, fluoranthene and pyrene were 

less available to bacteria and anthracene to wheat and barley in aged contaminated soil. The 

remediation of soil contaminated by metals or PAH is not only considered because of 

environmental problems, since the preservation of agricultural productivity is also important 

(Soleimani et al. 2010). 

The effect of ageing on the phytoremediation of PAH-contaminated soil has been studied and 

shown that ageing affects their bioavailability during remediation (Hatzinger and Alexander 

1995, Nedunuri et al. 2000, Robinson et al. 2003). Also PAH dissipation studies have mostly 

tried to investigate losses in freshly spiked soil (Robinson et al. 2003). However, little or no 

research has been carried out on aged metal and PAH co-contaminated soils. Also, in chapter 

5 there were evidence of interactions of Cr and B[a]P during phytoremediation of co-

contaminated soils. Therefore, the aim of this study is to compare the role of Z. mays during 

phytoremediation of aged and freshly spiked single Cr or B[a]P and Cr + B[a]P co-

contaminated soil. 
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6.6 Methods 

6.6.1 Soil spiking and ageing process 

Soil was spiked as discussed in section 5.7.1. The soil used for ageing study was stored in 

sealed bags in the dark for 8 months prior to planting. 

6.6.2 Experimental set up 

The experimental layout was designed in a completely randomized design of 42 treatments 

with three replicates of each for freshly spiked soil and aged soil. Pots spiked with B[a]P had 

treatments with no planting in order to observe non-plant facilitated dissipation of B[a]P. One 

seedling of Z. mays with uniform size of about 3 to 4 cm, 3 leaves and about 3 weeks old was 

transferred into each pot. Pots were watered when required, with tap water to maintain the soil 

moisture during plant growth and the leachates from all pots were collected using the tray and 

returned to the soil. Throughout the experiment, the pots were periodically repositioned to 

minimize edge effects. After 60 days of growth, shoots were cut just above the soil surface 

and washed with deionized water. Each pot was then emptied and the roots were separated 

from the soil by washing with running tap water. The roots were then rinsed with deionized 

water three times to remove all soil particles. All samples were oven-dried to constant weight 

at 65 ºC for 72 hours. The dried samples were weighed to enable biomass calculations and 

used for plant analysis.  
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6.6.3 Analysis of plants and soil samples 

Oven-dried plants were ground into small pieces using a coffee grinder (Krups, Italy). 

Approximately 0.3 g and 0.1 g of shoot and root dry matter respectively were digested using 

5ml of 30% HNO3 and placed on a heating block (Section 3.4.1). Digested plant samples were 

then analyzed for total Cr using FAAS. The translocation factor (TF) and the soil pH were 

analyzed as described in chapter 3. B[a]P concentration in soil samples was analyzed using 

the Agilent GC-MS as described in sections 3.5.1, 3.5.2 and 3.5.3. The average recovery for 

surrogate was 76% for freshly spiked soil and 73% for aged soil. 

6.6.4 Statistical analysis 

All treatments were replicated three times and the means and standard error (SE) were 

calculated. The comparisons of shoot dry matter, Cr concentration, accumulation as well as 

soil residual pyrene were carried out by two-way ANOVA using SPSS 20. When a significant 

difference was observed between treatments, multiple comparisons were made by the Tukey 

HSD test. 

6.7 Results 

6.7.1 Plant biomass 

The shoot biomass of Z. mays in aged and freshly contaminated soil varied significantly 

(Table 6.4). Under single B[a]P contamination, the shoot biomass of Z. mays seemed to 

decrease in aged soil compared with freshly spiked soil.  Table 6.4 showed that the shoot 

biomass of Z. mays decreased by more than 46% for single B[a]P contaminated soil when 
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aged soil was compared to freshly spiked soil. In contrast, aged Cr or Cr + B[a]P 

contaminated soil affected the shoot biomass in a different way. There seemed to be an 

increased shoot biomass in aged soil compared with freshly spiked soil. In soil contaminated 

with 100 mg kg-1 Cr or 100 mg kg-1 Cr + 10 mg kg-1 B[a]P, ageing significantly (P<0.05) 

increased the shoot biomass by over 50 and 100% respectively. Also in the present result, it 

was clear that co-contamination led to significantly lower shoot biomass when compared to 

single Cr contamination in aged soil but not in freshly spiked soil. The root biomass for all 

single and co-contaminated soil was significantly lower in freshly contaminated soil when 

compared to aged soil (Table 6.4). In soil freshly spiked with single Cr or B[a]P, the root 

biomass of Z. mays significantly (P<0.05) decreased by over 50% when compared to aged 

contaminated soil, whereas under co-contamination of Cr and B[a]P, the root biomass in 

freshly spiked soil was significantly (P<0.05) lower by over 40% when compared to aged soil. 

Table 6.4: Shoot and root biomass (mean±SE, n=3) of B. juncea influenced by Cu or pyrene 

after 65 days of planting. Different letters indicate a significant difference between fresh and 

aged soil (Tukey HSD p ≤ 0.05). Appendix 6B.1 and 6B.2 

Cr added 
(mg kg-1) 

B[a]P added 
(mg kg-1) 

      Shoot dry matter (g)     Root dry matter (g) 
Fresh soil Aged soil Fresh soil Aged soil 

0 0 2.77±0.35a 1.37±0.03b 0.23±0.03a 0.62±0.03b 

0 1 2.90±0.1a 1.57±0.17b 0.30±0.06a 0.69±0.06b 

0 5 3.23±0.43a 1.47±0.18b 0.40±0.06a 0.88±0.01c 

0 10 1.70±0.78b 1.90±0.06ab 0.23±0.07a 0.64±0.01b 

50 0 2.40±0.06c 2.50±0.06cd 0.20±0.06a 0.64±0.01b 

50 1 2.57±1.02c 2.53±0.15bc 0.33±0.09b 0.59±0.04a 
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50 5 2.23±0.26b 2.77±0.15b 0.37±0.09ab 0.83±0.02a 

50 10 2.23±0.18c 2.60±0.12c 0.33±0.07a 0.76±0.02ab 

100 0 2.07±0.18a 3.47±0.2b 0.50±0.00a 1.37±0.08d 

100 1 2.27±0.13c 3.10±0.17cd 0.30±0.00a 0.82±0.01b 

100 5 2.47±0.09cd 2.13±0.15c 0.37±0.03a 0.70±0.04c 

100 10 1.23±0.15e 2.80±0.1d 0.27±0.03a 0.88±0.03b 

 

6.7.2 Plant Cr concentration in freshly spiked and aged soil 

The shoot Cr concentration was affected by single contamination of Cr, co-contamination and 

ageing (Figure 6.6A). The shoot Cr concentration was always higher in Z. mays planted in 

aged soil than in freshly spiked soil for single or co-contamination experiments. The present 

result showed that in freshly spiked soils, the shoot Cr concentration was significantly lower 

by 81 and 54% for 50 and 100 mg kg-1 Cr contaminated soil respectively when compared to 

aged soil. A similar trend was observed for aged and freshly spiked co-contaminated soil. 

Figure 6.6A and B showed that in co-contaminated soils, the shoot Cr concentration in aged 

soils was higher than in freshly spiked soils. For example, in freshly spiked soils, the shoot Cr  

concentration  remained 4 and 2 mg kg-1 for soils co-contaminated  by 50 mg kg-1 Cr with 5 or 

10 mg kg-1 B[a]P whereas in aged soil it increased to 6 and 7 mg kg-1  respectively (Figure 

6.6A). Similarly, in soil freshly co-contaminated with 100 mg kg-1 Cr and 1, 5 and 10 mg kg-1 

B[a]P, the shoot Cr concentration was about 4.1, 2.6 and 3.6 mg kg-1 respectively; whereas in 

aged soil the shoot Cr concentration increased by over 50% 
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Figures 6.6A and B: Shoot Cr concentration (mean ± SE, n= 3) in freshly and aged soil after 

60 days of planting. Different letters indicate a significant difference between fresh and aged 

soil for each treatment (Tukey HSD p ≤ 0.05). Treatments C0, C1and C2 represent 0, 50 and 

100 mg Cr kg-1; B0, B1 and B2 and B3 represent 0, 1, 5 and 10 mg kg-1 of B[a]P. Appendix 

6B.3 
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The root Cr concentration over 60 days of planting varied between freshly spiked soil and 

aged soil (Figures 6.7A and B). In soils freshly spiked with Cr alone, the root Cr 

concentration was greater than in aged soil. In 50 and 100 mg kg-1 Cr contaminated soil, the 

root Cr concentration in aged soil was about 83 and 75% less than that in freshly spiked soil. 

The result was different in co-contaminated soils. For example, in soil co-contaminated with 

B[a]P and 50 mg kg-1 Cr, there seemed to be no significant difference in root Cr concentration 

between freshly spiked soil and aged soil (Figure 6.7A), whereas in 100 mg kg-1 Cr co-

contaminated soil with 1 and 5 mg kg-1 B[a]P, the root Cr concentration in aged soil was 

lower by 48 and 70% respectively when compared to freshly spiked soil (Figure 6.7B). 
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Figures 6.7A and B: Root Cr concentration (mean ± SE, n= 3) in freshly and aged soil after 

60 days of planting. Different letters indicate a significant difference between fresh and aged 

soil for each treatment (Tukey HSD p ≤ 0.05). Treatments C0, C1and C2 represent 0, 50 and 

100 mg Cr kg-1; B0, B1 and B2 and B3 represent 0, 1, 5 and 10 mg kg-1 of B[a]P Appendix 

6B.5 
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6.7.3 Cr accumulation 

In aged soil, the shoot accumulation of Cr over 60 days of planting was higher than in freshly 

spiked soil for single Cr or co-contamination (Figure 6.8A and B).  

In aged soil, when the initial spiked Cr concentration in soil remained 50 and 100 mg kg-1, the 

shoot Cr accumulation remained 8.76 and 12 µg pot-1. However in freshly spiked soil, it 

decreased to 1.63 and 3.28 µg pot-1 representing an 81 and 73% reduction respectively. 

Similarly, under co-contamination, the shoot Cr accumulation in freshly spiked soil was 

significantly lower than in aged soil. The present result shows that the shoot Cr accumulation 

in soil freshly co-contaminated with 50 mg kg-1 of Cr and B[a]P was lower by over 29%  

when compared to aged soil and over 60% for 100 mg kg-1 Cr co-contaminated with B[a]P.  

A contrasting result was observed when freshly spiked soils and aged soils were compared for 

higher initial Cr contaminated soils. As shown in figure 6.8B, at 100 mg kg-1 initial Cr 

concentration, the shoot accumulation of Cr in Z. mays remained 12 µg pot-1 and co-

contamination with 10 mg kg-1 B[a]P significantly increased the shoot Cr accumulation to 

28.5 µg pot-1 in aged soil. However, in freshly spiked soil, there was no significant difference 

between the shoot Cr accumulation in 100 mg kg-1 Cr contaminated soil and 100 mg kg-1 Cr + 

10 mg kg-1 B[a]P co-contaminated soil. 
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Figures 6.8 A and B:  Shoot Cr accumulation (mean ± SE, n= 3) in freshly and aged soil 

after 60 days of planting. Different letters indicate a significant difference between fresh and 

aged soil (Tukey HSD p ≤ 0.05). Treatments C0, C1and C2 represent 0, 50 and 100 mg Cr kg-

1; B0, B1 and B2 and B3 represent 0, 1, 5 and 10 mg kg-1 of B (a) P. Appendix 6B.4 
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6.7.4 Soil pH, total Cr removal and Translocation Factor (TF) 

From table 6.5, it can be seen that soil ageing did not significantly affect the total removal of 

Cr by Z. mays in single Cr contaminated soil.  Under co-contamination, the total Cr removed 

by the plant was significantly lower in freshly spiked soils when compared to aged soil. For 

example, in soil freshly spiked with 50 mg kg-1 Cr and 1, 5 or 10 mg kg-1 B[a]P, the total Cr 

removed by the plants was about 36, 75 and 70% lower than in aged soil. Similarly, in soil 

freshly spiked with 100 mg kg-1 Cr and 1, 5 and 10 mg kg-1 B[a]P, the total Cr removed by 

the plant was over 45% lower than in aged soil. 

The TF was always higher and the pH slightly lower in aged soil for all single or co-

contaminated treatments than in freshly spiked soil. It was also observed that in freshly spiked 

soil, when the concentration of Cr remained at 50 mg kg-1, the TF remained at 0.01 and 

increased to 0.02, 0.14 and 0.12 with 1, 5 and 10 mg kg-1 B[a]P co-contamination. However 

in aged soil, when the Cr concentration remained at 50 mg kg-1, the TF remained at 0.3 and 

decreased to ≤0.25 with B[a]P co-contamination. 
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Table 6.5: Total Cr removed (mean ±SE, n=3) by Z .mays and Translocation Factor (TF) after 

60 days of planting in freshly spiked and aged contaminated soil. Appendix 6B.8 

Cr added 
(mg kg-1) 

B (a) P 
added 
(mg kg-1) 

 Fresh soil  Aged soil 
Total Cr 
(µg) 

pH TF Total Cr 
(µg) 

pH TF 

0 0 6.29±0.54 6.2 0.02 3.98±0.20 6.2 0.37 

50 0 13.03±1.53 6.3 0.01 16.12±0.54 5.6 0.31 

50 1 12.83±1.56 6.3 0.21 20.27±0.73 5.8 0.26 

50 5 9.80±2.07 6.3 0.15 39.42±0.77 5.9 0.22 

50 10 11.74±1.58 6.2 0.12 39.80±1.43 5.8 0.26 

100 0 38.47±6.95 6.2 0.03 36.02±1.6 5.9 0.20 

100 1 24.14±0.07 6.4 0.09 44.69±1.39 5.8 0.30 

100 5 24.53±3.03 6.4 0.05 27.57±1.79 5.7 0.55 

100 10 11.65±0.80 6.4 0.13 40.74±0.94 5.6 0.73 

 

6.7.5 B[a]P concentration in soil at zero time 

Due to different incubation periods of soil prior to planting, the zero-time B[a]P concentration 

in freshly spiked and aged soil was compared. Table 6.6 shows that the zero-time B[a]P 

concentration after 8 months of ageing was always lower than in freshly spiked soil. 
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For single B[a]P contaminated soil, the present result showed a 22.5, 20.8 and 32.6% decrease 

in zero-time B[a]P concentration in aged soil compared to freshly spiked soil. Similar results 

were observed for soils co-contaminated with B[a]P and Cr. For example, in freshly spiked 

soil, the zero-time B[a]P concentration remained at 1.14, 3.46 and 8.15 mg kg-1 for soil co-

contaminated with 50 mg kg-1 Cr and 1, 5 and 10 mg kg-1 B[a]P respectively and decreased 

by over 28% in aged soil. Also in 100 mg kg-1 Cr co-contaminated soil, the zero-time B[a]P 

concentration decreased by over 46% in aged soil compared to freshly spiked soil. 

Table 6.6: Zero-time concentration (mean± SE, n=3) of B[a]P in freshly and aged soil. 

Appendix 6B.9 

Cr added (mg kg-1) B[a]P added  

(mg kg-1) 

Freshly spiked     

soil (mg kg-1) 

Aged soil 

 (mg kg-1) 
0 1 1.03±0.10 0.79±0.04 
0 5 3.43±0.14 2.72±0.08 
0 10 8.86±0.04 5.97±0.11 
50 1 1.14±0.08 0.64±0.07 
50 5 3.46±0.06 2.39±0.02 
50 10 8.15±0.07 5.85±0.08 
100 1 1.20±0.01 0.64±0.02 
100 5 3.82±0.31 2.36±0.01 
100 10 6.57±0.08 5.87±0.14 
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6.7.6 B[a]P dissipation 

The dissipation rate of B[a]P in planted soil seemed to be significantly higher in aged soil 

than in freshly spiked soil for single and co-contaminated soils (Figures 6.9A, B and C). The 

present results show that when soil was spiked with 1, 5 or 10 mg kg-1 B[a]P, the dissipation 

rate of B[a]P in planted soil was lower by over 19% when freshly spiked soil was compared 

to aged soil. Also in co-contaminated soils, similar results were obtained. The dissipation rate 

was lower by over 31% when freshly spiked soil was compared to aged soil.  

Contrasting results were observed in non-planted soil for single B[a]P and co-contaminated 

soil. In single contaminated soil, the dissipation of B[a]P in the absence of plants was 

significantly lower in aged soil than in freshly spiked soil. The present result showed over 

20% reduction in dissipation rate when aged soil was compared to freshly spiked soil for 5 

and 10 mg kg-1 B[a]P contaminated soil. In co-contaminated soil, there seemed to be no 

significant difference between the dissipation rates of B[a]P in aged or freshly spiked soil in 

the absence of plants. Only 100 mg kg Cr-1 + 10 mg kg-1 B[a]P freshly spiked soil 

significantly showed a 30% reduction in B[a]P dissipation rate when compared to aged spiked 

soil.  

There was also an important result observed in the present study. For example, in the presence 

of plants, the dissipation of B[a]P in soil freshly spiked with 1 mg kg-1 B[a]P remained 0.59 

mg kg-1, while co-contamination with Cr did not seem to affect the dissipation of B[a]P. 

However, in aged soil, co-contamination of 1 mg kg-1 B[a]P with Cr significantly lowered the 

dissipation rate of B[a]P when compared to single B[a]P contaminated soil. 
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Figures 6.9 A, B and C: B[a]P dissipation (mean ± SE, n= 3) in freshly and aged soil after 60 

days of planting. Different letters indicate a significant difference between fresh and aged soil 

(Tukey HSD p ≤ 0.05). Treatments C0, C1and C2 represent 0, 50 and 100 mg Cr kg-1; B0, B1 

and B2 and B3 represent 0, 1, 5 and 10 mg kg-1 of B[a]P Appemdix 6B.12 
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 6.8 Discussion 

6.8.1 Plant biomass and Cr accumulation 

The ageing process of spiked soil increased the Cr translocation from root to shoots of Z. 

mays (Table 6.5). During the ageing process of the soil, metal availability, and toxicity as well 

as solubilization, can be modified (Lock and Janssen 2001, Jalali and Khanlari 2008 and, 

Zapusek and Lestan 2009). Although as noted by Lin and Xing (2008), the phytotoxicity of 

metals cannot be explained only by the dissolution of metals ions, particles can aggregate and 

bind to the root surface and can cause damage to the vascular cells by penetration into the 

epidermal and cortical cells. From the present result, it was clear that co-contamination 

significantly decreased the shoot biomass when compared to single Cr contamination in aged 

soil but not in freshly spiked soil (Table 6.4). Therefore it can be assumed that the ageing 

process over 8 months combines the effect of metallic ion dissolution as well as particle 

aggregation and penetration. In solely Cr-contaminated soils, freshly spiked soils had a lower 

shoot to root ratio when compared to aged soils, but the accumulation of Cr in plant tissue 

was higher (Figures 6.8A and B). This indicates poor metal translocation efficiency from root 

to shoot which may be linked to the reduction of Cr (VI) in roots and retaining in the cell 

walls and vacuoles of Z. mays (Lytle et al. 1998). It is possible that the Cr (VI) had been 

transformed to a more stable Cr (III) and then adsorbed on soil. In co-contaminated soils, both 

the shoot to root ratio and total accumulation was higher in aged soil than in freshly spiked 

soil. This could be the influence of ageing on the translocation efficiency. Also there could be 

an effect of B[a]P on Cr release and transfer in co-contaminated soils. Some authors have 

reported the effect of organic matter on metal release transfer and toxicity in soils (Bermudez 
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et al. 2010). The presence of organic matter could modify both the metal uptake as well as 

phytotoxicity by changing the concentration of free metal through speciation (Shahid et al. 

2011). Spiking Cr in soil for several months could also have changed the solubility of Cr by 

reduction of pH as observed in the present study (Table 6.5). This is shown by the increase of 

Cr transfer in shoot of Z. mays after the ageing period. It is known that Cr availability is 

highest in soils with lower pH and as suggested by Lock and Janssen (2003), the difference in 

Cr uptake and toxicity between aged and freshly spiked soil could be related to the pH and the 

cation exchange capacity. These differences will be greater if the soil used has a low cation 

exchange capacity. If the soil cation exchange capacity is high, a greater fraction of Cr will be 

absorbed immediately after spiking which will result in smaller ageing effect. The decrease in 

soil pH after ageing could probably be due to oxidation processes that are enhanced by high 

temperature (Lacal et al. 2003) 

6.8.2 B[a]P dissipation in freshly spiked and aged soil 

The efficiency of extraction of PAH from soils is influenced by different factors including soil 

moisture content, ageing and soil texture (Fischer et al. 1994, Letellier et al. 1999). Although 

these characteristics might not be similar in aged and fresh soil, however in the present study 

the extraction efficiency for B[a]P added was similar. That is about 73 and 75% for freshly 

spiked and aged soil respectively. The dissipation of B[a]P in long-term contaminated soil has 

already been considered to be slow and a long term process (Bossat and Bertha 1986). For 

example, Wilcock et al. (1996) suggested that the half life of B[a]P in soil ranges from about 

100 days to 14 years. However, in the present study, it was clear that the dissipation rate of 

B[a]P in aged soil was always higher than in freshly spiked soil for both single and co-
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contaminated soil over the 60 days of glasshouse plant trial (Figures 6.9A, B and C). It is 

possible that the soil properties appeared to enhance the dissipation of B[a]P. The soil pH was 

slightly lower in aged soils than in freshly spiked soils after 60 days of planting (Table 6.5) 

and according to Fu et al. (2012), a relatively lower soil pH may be conducive for the 

degradation of B[a]P. It is known that B[a]P is a semi-volatile PAH and can evaporate from 

soil during glasshouse study. Although, this study did not try to ascertain the direct method of 

dissipation, it was clear that planting Z. mays played a major role in the dissipation of B[a]P 

in aged co-contaminated soils. As observed in the present study, there seemed to be no 

significant difference between the dissipation of B[a]P in aged or freshly spiked co-

contaminated soil in the absence of plants whereas when Z. mays was planted for 60 days, the 

dissipation rate of B[a]P in aged soil increased when compared to freshly spiked soils (Figure 

6.9A, B and C). Also the difference in B[a]P concentration between unplanted and planted 

soil reflects the enhanced dissipation of B[a]P by Z. mays. Soil pH is very important during 

the study of B[a]P dissipation from soil. When the soil pH is low, B[a]P dissipation could be 

favored (Fu et al. 2012). In the present study, soil ageing as well as planting with Z. mays 

influenced the soil pH (Table 6.5). Some studies have shown that planting Z. mays increased 

the soil pH slightly (Marschner and Romheld 1983) or did not affect soil pH (Ruark et al. 

2012). Therefore how planting affects the soil pH may be related to the soil types. 

The major reason for the lower concentration of B[a]P in aged soil than in freshly spiked soil 

are most likely photo-oxidation, evaporation and microbial degradation during the ageing 

period (Huang et al. 2004). Since microorganisms play an important role during the 

dissipation of PAHs (Andrew and John 2000), it is possible that due to ageing, the microbial 
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numbers and communities increased. Although ageing limits the bioavailability of PAHs in 

soil (Morrison et al. 2000, Cunliffe and Kertesz 2006,), the rapid dissipation of B[a]P in aged 

soil when compared to freshly spiked soil in the presence of Z. mays suggests that other 

factors such as microbial degradation or evaporation were more prominent. For example, 

most studies on aged contaminated soil showed that although bioavailability of PAH were 

affected, the native microbes enhanced the dissipation of the PAH due to their long stay in the 

soil and also because variety of pollutant degrader niches are filled from within, degradation 

of contaminants can even occur without inoculation (Cunliffe and Kertesz 2006). 

6.9 Conclusion 

In this study, planting of Z. mays enhanced the remediation of Cr and B[a]P in aged co-

contaminated soil than in freshly contaminated soil.  The biomass of Z. mays was lower in 

freshly contaminated soil when compared to aged soil. Similarly the Cr concentration, 

accumulation and TF were higher in aged soil when compared to freshly spiked soil. 

There was evidence of B[a]P dissipation in all treatments (planted, non-planted, freshly 

spiked and aged soils). In aged soil, planting with Z. mays for 60 days enhanced the 

dissipation of B[a]P more than in freshly spiked soil. Whereas in non-planted soils, the 

dissipation of B[a]P was either lower or not significantly different when aged soil was 

compared with freshly spiked soil. This study shows that there was evidence of enhanced 

simultaneous removal of Cr and dissipation of B[a]P by Z. mays in aged contaminated soil 

and could be proposed for phytoremediation of Cr and B[a]P aged co-contaminated soils. 

Therefore, although this study does not inform us with realistic time frames for remediation of 
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contaminants, it could be possible that some long-term Cr and B[a]P contaminated soils could 

be remedied with plants. 
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7.1 Chelate-assisted phytoremediation of Cu-pyrene 

contaminated soil using Z. mays- Introduction 

Heavy metals including Cu can affect the way land is used in the future because of their non- 

biodegradable nature. They can cause varying toxicities to plants and as such could affect 

vegetation growth (Bell et al. 1991). PAH including pyrene has also become a problem to the 

soil environment as a result of processes including wastewater irrigation and industrial 

activities (Shi et al. 2005). High concentrations of Cu in the environment pose a risk to plant 

species by reducing plant growth and photosynthesis as well as inducing oxidative stress 

(Schill et al. 2003, Gunawardana et al. 2011). Pyrene on the other hand is photomutagenic 

and since the simultaneous exposure to light and pyrene by humans is inevitable, there is a 

threat to human health (Yan et al. 2004). Therefore a robust and economical technology for 

treatment of these pollutants is required and phytoremediation may have the potential to fully 

remediate soils contaminated with Cu and pyrene. 

Various studies have shown the role plants play in uptake of metals (Ebbs and Kochian 1998, 

Chen and Cutright 2001) as well as in the remediation of soil contaminated with organic 

contaminants (Binnet et al. 2000, Wang et al. 2012). However, the ability of plants to 

remediate PAH has been low, partly due to their recalcitrant nature or low solubility in soil 

(Ke et al. 2003). On one hand, this could be beneficial as the toxicity of PAH to plants is 

decreased while on the other hand it could pose a long term problem since the PAH will 

remain in soil and not biodegrade. 
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A large number of studies have been carried out on uptake of metals with the help of chelates 

such as ethylenediaminetetraacetic acid (EDTA), citric acid, nitriliotriacetic acid (NTA) or 

their combinations (Nowack et al. 2006, Jean et al. 2008). EDTA is a synthetic chelating 

agent that is not biodegradable in soil (Wasay et al. 1998). EDTA plays an important role in 

phytoextraction of metals from soil by complexing the metals and increasing their 

concentration in shoot of plants. Citric acid on the other hand is a natural low molecular 

weight organic acid that is biodegradable (Jean et al. 2008). These chelates have high affinity 

for metals and are able to increase their bioavailability in soil. This helps to increase the 

uptake of these metals to the upper part of plants during phytoremediation. Similarly, various 

studies have shown the role of chelates including humic acid in facilitating the degradation of 

PAHs in soil directly or indirectly by stimulating microbial activity (Ke et al. 2003). 

However, very few studies have investigated the role of chelates during phytoremediation of 

PAH and heavy metal co-contaminated soils. 

The aim of the present study was  to understand the role of two chelating agents - a synthetic 

chelate (EDTA) and a naturally occurring organic acid (citric acid) and their combinations on 

the degradation of pyrene and the concurrent phytoextraction of Cu by Z. mays  in a co-

contaminated soil. Z. mays was chosen because of its high biomass production and ability to 

tolerate higher concentrations of heavy metals including Cu (Wuana and Okieimen, 2010). 
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7.2 Methods 

7.2.1 Soil spiking 

Soil was initially spiked with pyrene by dissolving 100 mg pyrene in 25 mL of acetone. The 

solution of acetone and pyrene was added to 250 g of soilas a portion and then 750 g of 

unspiked soil was added  once the acetone had volatilized completely in the fume hood to 

make up to 1 kg. 25 mL of acetone was also added to control and other soil treatments. 50 mg 

kg-1 of Cu was prepared by dissolving 0.126 g of CuSO4 and was added singly to pyrene 

spiked soils and fresh soils resulting in a total of 16 treatments.  The spiked soil was 

thoroughly mixed by sieving and was stored in a dark room for equilibration for 28 days 

before planting. 

7.2.2 Experimental set up 

The experimental layout was designed in a completerly randomized design of 16 treatments 

with three replicates of each. Experiment included pots with no plants in order to observe 

non-plant facilitated dissipation of pyrene. 

7.2.3 Planting 

Plastic pots of 12.5 cm in height were used for the present study. One kilogram of each spiked 

soil was placed in each pot.  One seedling of Z. mays with  uniform size of about 3 to 4 cm, 3 

leaves and about 3 weeks old were transferred into each pot. The chelates used in the present 

study were EDTA, citric acid and a combined addition of EDTA and citric acid. The chelates 

were applied after 15 days of transplanting the Z. mays in order to allow for acclimatization. 
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All the chelates were divided into three parts and applied each week for 3 weeks. Treatments 

included the control soil (without application of chelate), 0.146 g kg-1 of EDTA, 3 g kg-1 of 

citric acid and 0.146 g kg-1 EDTA + 3 g kg-1 citric acid applied as solutions to each soil 

surface at doses of 48.6 mg kg-1 and 1 g kg-1 for EDTA and citric acid respectively for three 

weeks to reduce the effect of the chelates on plant growth, and as suggested by Wenzel et al. 

(2003), split applications were more effective. Saucers were placed beneath the pots to collect 

potential leachates during the plant trial. After 60 days of growth, plants were harvested by 

cutting shoots just above the soil surface and washed with deionized water. Each pot was then 

emptied and the roots were separated from the soil by washing with running tap water. The 

roots were rinsed with deionized water 3 times to remove all soil particles. All samples were 

oven- dried to constant weight at 65 ºC for 72 hours. The dried samples were weighed to 

enable biomass calculations and used for plant analysis.  

7.2.4 Analysis of plants and soil samples 

Oven-dried plants were ground into small pieces using a coffee grinder (Krups, Italy). 

Approximately 0.2 g for shoot and 0.1 g for root dry matter were digested using 5 mL of 30% 

HNO3 and placed on a heating block (Section 3.4.1). Digested plant samples were then 

analyzed for total Cu using FAAS. Soluble Cu in soil was analyzed as described in section 

3.4.3. Pyrene concentration in soil samples was analyzed using the Agilent GC-MS as 

described in sections 3.5.1, 3.5.2 and 3.5.3. The average percentage recovery for surrogate 

was 86.9%. 
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7.2.5 Statistical analysis 

All treatments were replicated three times. The mean and standard error (SE) of each 

treatment was calculated using Microsoft Office Excel 2007. The comparisons of shoot dry 

matter, Cu concentration, accumulation as well as soil residual pyrene were carried out by 

one-way analysis of variance using Minitab 15.0. When a significant difference was observed 

between treatments, multiple comparisons were made by the Tukey HSD test. 

7.3 Results 

7.3.1 Effects of EDTA and citric acid on growth of Z. mays 

In the absence of chelates, Z. mays planted in Cu polluted soil showed normal development 

and no visual symptoms of toxicity to Cu. Compared to the treatments with no chelates, the 

addition of 0.146 g kg-1 soil EDTA significantly inhibited (p<0.05) plant growth in soil 

contaminated with Cu only (Figures 7.1 and 7.2). A 43% significant reduction (p<0.05) in 

shoot dry matter with the addition of EDTA was observed. 3 g.kg-1 soil citric acid or a 

combination of citric acid and EDTA did not significantly reduce shoot dry matter yield. 

Plants were slightly chlorotic and visibly stunted with EDTA application at the end of the 

experiment. They also appeared to wilt on day 1 and 2 when EDTA was added. However, the 

addition of citric acid appeared to be less toxic to Z. mays relative to EDTA or a combination 

of both.  

The growth of Z. mays in soil only spiked with pyrene was not affected by the addition of 

chelates except in the case of citric acid which significantly reduced the shoot dry matter by 
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44%. Addition of EDTA or a combination of the EDTA and citric acid slightly reduced plant 

shoot dry matter although results were not significant. Irrespective of the slight reduction in 

shoot dry matter yield, all plants survived in pots and showed no visual toxicity symptoms. 

Co-contamination with Cu and pyrene caused significant inhibitory effects on Z. mays (Figure 

7.1). Shoot dry matter yield significantly decreased by 47% relative to control treatments (no 

contamination and no chelates-appndix 7A.1). The combined application of EDTA and citric 

acid promoted the growth of Z. mays. With a 41% significant increase in the shoot dry matter 

yield when compared to polluted soil treatments with no chelates application. The single 

application of either EDTA or citric acid did not seem to have an effect on the shoot dry 

matter yield of Z. mays, with the apparent 16% increase and 6% reduction observed not 

showing any statistical significance.  

The application of chelates including EDTA, citric acid and EDTA + citric acid to pyrene and 

Cu + pyrene co-contaminated soil did not significantly (p>0.05) affect the root biomass of Z. 

mays relative to control treatments. However EDTA and EDTA + citric acid significantly 

reduced the root biomass of Z. mays from 0.433 to 0.233 g pot-1 in single Cucontaminated 

soil. The effect of citric acid on root growth in Cu contaminated soils was not significant 

(p>0.05) when compared to treatments with no chelates, nonetheless relative to EDTA or 

EDTA + citric acid, single application of citric acid significantly increased root biomass of Z. 

mays.   
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Figure 7.1: Effects of chemical amendments and pollutant combination on shoot dry weight 

of Z. mays after 60 days. Bars (means ± SE, n= 3) that do not share a letter are significantly 

different based on Tukey HSD (p ≤ 0.05). Appendix 7A.1 
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Figure 7.2: Effects of chemical amendments and pollutant combination on root dry weight of 

Z. mays after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p ≤ 0.05). Appendix 7A.2 
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7.3.2 Effects of EDTA and citric acid on shoot and root Cu concentration 

After 60 days, the average Cu concentration in the shoots of Z. mays under single Cu soil 

contamination with no amendment was 20 mg kg-1 (Figure 7.3). The application of EDTA 

significantly (p< 0.05) elevated shoot Cu concentration to 53.8 mg kg-1. Citric acid on its own 

and a combination of citric acid and EDTA did not affect shoot Cu concentration in our 

present study. Results showed that concentrations remained at 16.9 and 17.7 mg kg-1 

respectively. The application of EDTA to single Cu contaminated soil also resulted in 

enhanced root Cu concentration (Figure 7.4). The mean root concentration of Cu in 

comparison with control pots (metal with no amendment) increased significantly (p<0.05) by 

45%. Citric acid and EDTA+ citric acid caused a slight inhibitory effect on root Cu 

concentration although results were not significant. 

The application of EDTA or citric acid to soil co-contaminated with Cu and pyrene, did not 

significantly increase shoot Cu concentration. Without chelate application, the shoot 

concentration of Cu was 29.8 mg kg-1 and with the application of EDTA or citric acid, the 

shoot Cu concentration remained 26 mg kg-1 or 29.1 mg kg-1 respectively. As shown in Figure 

7.3, the control plants were more efficient in the uptake of Cu compared to plants treated with 

EDTA or citric acid. However, the combination of EDTA and citric acid was significant and 

resulted in the highest shoot Cu concentration of Z. mays in Cu + pyrene contaminated soil. 

The total shoot Cu concentration was thus significantly (p<0.05) enhanced by the exogenous 

provision of a combination of EDTA and citric acid and was about 1.7 times the concentration 

in the control (metal + PAH without amendment). The effects of chelates on the root 

concentration of Cu varied (Figure 7.4). When compared to control treatments, the differences 
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in root concentration when soil was treated with EDTA + citric acid were negligible in Cu + 

pyrene contaminated soil. However, there was a 1.77 and 1.98 fold significant reduction in 

root Cu concentration of Z. mays when single application of EDTA or citric acid was applied. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Effects of chemical amendments pollutant combination on Cu concentration in 

shoot of Z. mays after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p ≤ 0.05). Appendix 7A.3 
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Figure 7.4: Effects of chemical amendments and pollutant combination on Cu concentration 

in root of Z. mays after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p ≤ 0.05). Appendix 7A.5 
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7.3.3 Effect of EDTA and citric acid on shoot and root Cu accumulation 

For single Cu soil contamination, the mean accumulation of Cu in the shoot of Z. mays 

increased with the application of EDTA and reduced with the combined application of EDTA 

and citric acid (Figure 7.5). Without chelates (control), Z. mays accumulated 18.6 µg pot-1 of 

Cu. The increase in Cu accumulation in Z. mays shoot as compared to control pots where 

EDTA was applied was significant (P<0.05), increasing by 35%. Although EDTA was more 

effective in enhancing shoot accumulation of Cu under single soil Cu contamination, citric 

acid did not seem to affect Cu shoot accumulation. Results showed that Cu accumulation in 

the shoot of Z. mays remained at 12.4 µg pot-1. When EDTA and citric acid were combined, 

the shoot accumulation of Cu significantly reduced 1.66-fold when compared to control 

treatments (no chelates). Under co-contamination of Cu and pyrene, the combined application 

of EDTA and citric acid seemed to affect shoot accumulation of Cu. Results showed a 

significant (p<0.05) 2.77-fold increase when EDTA and citric acid were added together to co-

contaminated soils. Single application of EDTA or citric acid did not affect the shoot 

accumulation of Cu in co-contaminated soils. 
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Figure 7.5: Effects of chemical amendments and pollutant combination on Cu accumulation 

in shoot of Z. mays after 60 days. Bars (means ± SE, n= 3) that do not share the same letter 

are significantly different based on Tukey HSD (p ≤ 0.05). Appendix 7A.4 
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Under single soil Cu contamination, all applied chelates in single and combination did not 

seem to affect the accumulation of Cu in the roots of Z. mays. 

However, in co-contaminated soils, the application of chelates (EDTA or citric acid) 

significantly reduced the Cu accumulation in the roots of Z. mays (figure 7.6) The effect of 

EDTA on root accumulation of Cu was more prominent, and was significant when compared 

to combined treatment of EDTA + citric acid or treatments with no chelates. In the case of 

citric acid application, the accumulation of Cu in root reduced to 29.59 µg pot-1 while the 

combined application of EDTA and citric acid did not seem to have any effect on root Cu 

accumulation. 
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Figure 7.6: Effects of chemical amendments and pollutant combination on Cu accumulation 

in root of Z. mays after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p ≤ 0.05). Appendix 7A.6 
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7.3.4 Effect of EDTA and citric acid on Cu translocation 

Cu translocation from the root to shoot of Z. mays was affected by amendments. The addition 

of EDTA resulted in significantly (p<0.05) higher translocation ratios of Cu after 60 days of 

planting in single Cu contaminated soil (Figure 7.7). Our results showed that the translocation 

of Cu from root to shoot reached 0.495 with EDTA application and had increased by 2.36-

fold when compared to control treatments (metal with no chelates). The translocation of Cu 

with the application of citric acid was less efficient when compared to EDTA but nevertheless 

had significantly increased from 0.209 to 0.363. Combined EDTA and citric acid did not seem 

to affect the translocation of Cu under single soil Cu contamination. 

When soil was co-contaminated with Cu and pyrene, the translocation factor for Cu reached 

0.119 without chelate application. Single application of EDTA or citric acid and a 

combination of EDTA and citric acid dramatically increased Cu translocation without any 

severe toxicity symptoms being observed. Results showed a 2.15-fold significant (p<0.05) 

increase with the single application of EDTA while citric acid and the combination of EDTA 

and citric acid significantly (p<0.05) increased the translocation of Cu from root to shoot by 

up to 2.79 and 1.96-fold respectively when compared to co-contaminated soil without the 

application of chelates. 
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Figure 7.7: Effects of chemical amendments and pollutant combination on translocation of 

Cu from root to shoot of Z. mays after 60 days. Bars (means ± SE, n= 3) that do not share the 

same letter are significantly different in each contaminant group based on Tukey HSD (p ≤ 

0.05). Appendix 7A.7 
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7.3.5 Effects of EDTA and citric acid on solubility of Cu in soil 

Water extractable Cu is equivalent to the Cu ion in solution that can be taken up directly by 

plants (Schramel et al. 2000). The concentration of water soluble Cu in soil was examined to 

assess the relative efficiency of EDTA, citric acid or a combination of both in enhancing Cu 

solubilization from single Cu and Cu-pyrene co-contaminated soils. From our results, the 

addition of EDTA significantly increased the water extractable Cu in single Cu contaminated 

soil relative to contaminated soil with no chelates (Figure 7.8). This significant increase was 

not noticed in Cu-pyrene co-contaminated soils. The application of EDTA increased the water 

extractable Cu from 0.73 to 1.84 mg kg-1 in single Cu contaminated soil. Citric acid did not 

significantly (p<0.05) affect the concentration of soluble Cu in soils spiked with Cu alone or 

in Cu-pyrene co-contaminated soils. The Cu mobilized by EDTA in single Cu contaminated 

soil was to a significant (p<0.05) extent higher than citric acid or a combination of citric acid 

and EDTA.   It was observed that the combined application of EDTA and citric acid to single 

Cu contaminated soil did not significantly (p>0.05) affect Cu solubility when compared to 

single Cu contaminated soil with no chelates. However, when soil was co-contaminated with 

pyrene, the addition of combined EDTA and citric acid significantly (p<0.05) increased the 

concentration of soluble Cu from 0.396 to 2.12 mg kg-1.  
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Figure 7.8: Effects of chemical amendments and pollutant combination on H2O extractable 

Cu in soil after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significant based on Tukey HSD (p ≤ 0.05). Appendix 7A.8 
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7.3.6 Effect of EDTA and citric acid on total removal of Cu by Z. mays from 

contaminated soils 

In Table 7.2, the total amount of Cu removed from soils in each treatment as well as the 

effectiveness of each chelate is shown. EDTA removed higher amount of Cu than citric acid 

or EDTA + citric acid treatment in soil contaminated with only Cu. Our results showed that 

with the application of EDTA, the net removal of Cu from soils increased from 44.26 to 53.99 

µg .  

When soil was co-contaminated with Cu and pyrene, the efficiency of chelates applied varied. 

Single application of EDTA or citric acid were ineffective for the removal of Cu in soils, 

while EDTA + citric acid treatment significantly (p<0.05) increased the total removal of Cu 

from 69.76 to 98.9 µg .  

The effectiveness of each chelate was evaluated by the ratio of removal of Cu by each chelate 

to the removal in non-treated pots and results showed that the net removal of Cu by EDTA in 

single Cu contaminated soils increased by a factor of 0.34 and 0.56 when compared to citric 

acid and EDTA + citric acid treatments. In soils co-contaminated with Cu and pyrene, the net 

removal of Cu by EDTA + citric acid treatment increased by a factor of 0.89 and 0.87 when 

compared to single applications of EDTA and citric acid. 
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Table 7.2- Total plant removal of Cu per treatment 

Treatments 50 mg kg-1 Cu 50 mg kg-1 Cu + 100 mg kg-1 

pyrene 
Total  
Cu removal (µg 
) 

Cu removal  ratio Total  
Cu removal 
(µg ) 

Cu removal ratio 

0.146 g kg-1  
EDTA 

53.99±2.36 1.22 36.81±1.68 0.53 

3 g kg-1 citric  
acid 

38.84±2.36 0.88 38.19±6.16 0.55 

0.146 g kg-1  
EDTA+3 g kg-1 
citric acid 

29.28±3.11 0.66 98.90±1.15 1.42 

No chelates 44.26±2.29   69.00±2.31  

 

7.3.7 Effect of EDTA or citric acid on residual pyrene concentration in soil 

After 60 days of planting, the residual pyrene in soil decreased for all treatments including 

soils with no planting (Figure 7.10). However, soil without planting had lower dissipation rate 

when compared to other treatments for both single and co-contaminated soil.  When soil was 

contaminated with pyrene only, all the chelates applied significantly (p<0.05) decreased the 

residual pyrene in soil when compared to no application of chelates (Figure 7.9). The results 

showed that the application of citric acid significantly decreased the residual pyrene from 

20.09 to 7.46 mg kg-1. Correspondingly, EDTA and EDTA + citric acid also significantly 

decreased the residual pyrene concentration from 20.09 to 13.06 mg kg-1 and 12.61 mg kg-1 

respectively.  
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In Cu + pyrene co-contaminated soil, the effect of applied chelates varied. EDTA did not 

seem to enhance the dissipation of pyrene when compared to planted soil without the 

application of chelates (Figure 7.9). The soil residual pyrene concentration remained at 23.25 

mg kg-1 representing a 69% dissipation of pyrene in soil over 60 days of planting. 

Interestingly, the application of citric acid and EDTA + citric acid significantly decreased the 

residual pyrene concentration from 15.5 to 7.69 and 10.61 mg kg-1 respectively when 

compared to planted soil without the application of chelates. 

  



282 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9: Effects of chemical amendments and pollutant combination on residual pyrene 

concentration in soil after 60 days. Bars (means ± SE, n= 3) that do not share the same letter 

are not significantly different based on Tukey HSD (p ≤ 0.05). Appendix A.9 
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Figure 7.10: The dissipation rate of pyrene under different treatments after 60 days of 

planting 
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7.4 Discussion 

7.4.1 Plant growth 

From our results, without the application of chelates, Cu did not affect the growth of Z. mays 

while pyrene and a combination of pyrene and Cu significantly decreased the growth of Z. 

mays after 60 days of planting (Appendix 7A.1). This is similar to the work of Zhang et al. 

(2009a) which showed that the addition of pyrene up to 100 mg kg-1 as well as its co-

contamination with cadmium decreased the root and shoot dry matter of Z. mays when 

compared to un-spiked soils. Visual symptoms of toxicity like wilting and chlorosis were 

observed in Z. mays leaves growing in single soil Cu contaminated soil treated with chelates. 

However relative to control (Cu contamination without chelates), figure 1 showed that only 

EDTA application had an effect on dry matter. The reduction in plant growth after EDTA 

treatment is possibly due to the toxicity of EDTA itself and the metal-EDTA complexes 

(Vassil et al. 1998, Chen and Cutright 2001). Obviously, the comparatively low biomass 

reduction observed with EDTA in the present study could be due to the lower concentration of 

EDTA used (0.146 g kg-1). The application of citric acid or a combination of citric acid and 

EDTA did not affect plant growth under single Cu soil contamination. Since adequate 

concentrations of natural low molecular weight organic acids (NLMWOA) - including citric 

acid have the ability to detoxify intracellular heavy metals through binding (Lee et al. 1977), 

the concentration of citric acid applied to the contaminated soil was most probably sufficient 

to detoxify the intracellular Cu and hence limit plant growth inhibition. Similar results were 

observed by Evangelou et al. (2006) where dry matter production of Nicotiana tabacum was 

not affected by the application of citric acid up to 62.5 mmol kg-1. 
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In this study, the application of EDTA or citric acid alone or in combination did not 

significantly affect the growth of Z. mays in pyrene contaminated soil. As shown in Figure 

7.1, citric acid and EDTA caused a slight but non-significant decrease in shoot dry matter of 

Z. mays. This non- significant decrease in shoot dry matter may have been as a result of the 

toxic effect the pyrene contaminated soil already had on the growth of Z. mays. It is also 

possible that the concentrations of chelates applied may not have been enough to cause a more 

significant toxicity effect on the Z. mays than the one caused by pyrene contamination. 

On the contrary, under co-contamination of Cu and pyrene, the combination of EDTA and 

citric acid promoted the growth of Z. mays. There was a significant (p<0.05) increase in shoot 

dry matter of Z. mays, indicating that a combination of EDTA and citric acid at the present 

concentration could alleviate the growth inhibition caused by pyrene and Cu co-contamination 

and increase plant tolerance to adverse environmental conditions. Gunawardana et al. (2011) 

observed that sulfate and citric acid treatments significantly increase biomass yield of L. 

perenne although it also enhanced accumulation of Cu. It is likely that when Z. mays is 

exposed over a longer period to EDTA + citric acid, reduction in biomass of Z. mays could be 

observed. However it is also expected that the longer Z. mays absorbs Cu, the higher the 

amount of Cu is extracted. Therefore, high biomass production by plants treated with chelates 

that are less phytotoxic could be better suited for removal of Cu from soil as will be discussed 

later.  
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7.4.2 Concentration and accumulation of Cu 

Chemically enhanced phytoextraction has been proposed as an effective approach for the 

removal of heavy metal from soils using plants (Blaylock et al. 1997, Liphadzi et al. 2003). 

Several chelating agents such as EDTA, citric acid, EDDS and salicylic acid have been tested 

for their ability to mobilize and increase the accumulation of heavy metals (Luo et al. 2005, 

Turgut et al. 2004, Yang et al. 2011). The solubility of Cu in soil dramatically increases with 

the addition of some chelating agents including EDTA (Tandy et al. 2004) and although Cu 

uptake by plant shoots remained minimal, Blaylock et al. (1997) reported increased 

concentration of Cu to 1000 mg kg-1 DW in B. juncea shoots when 2.5 mmol kg-1 of EDTA 

was applied. In our study, the highest concentration and accumulation of Cu reached 53.8mg 

kg-1 DW and 28.57 µg pot-1 respectively in Z. mays shoots after the application of EDTA to 

soil contaminated with only Cu. This is about three times the concentration or twice the 

accumulation observed in plants without the application of chelates, with the application of 3 

g kg-1 of citric acid or the combination of citric acid and EDTA. The low enhancement factor 

observed could be due to the low concentration of EDTA used as well as low concentration of 

Cu. Similar results were observed by Wu et al. (2004b) where 3 mmol kg-1 of EDTA 

significantly enhanced shoot uptake of Cu. When EDTA is applied to the soil, its initial action 

is to complex soluble metals in the soil solution. This reduces the activity of the free metals 

while the dissolution of bound metal ions begins to compensate for the shift in equilibrium 

(Blaylock et al. 1997). For example, if EDTA is added in an appropriate amount, almost all 

the soluble Cu will be complexed as Cu-EDTA. In the present study, the application of 0.146g 

kg-1 of EDTA to single Cu contaminated soil increased the H2O extractable Cu from 0.73 to 
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1.84 mg kg-1. Among the chelates evaluated in this study, EDTA appeared to most effectively 

solubilize soil-bound Cu and maintain a high soluble Cu concentration in single Cu 

contaminated soil. Under co-contamination, the combined application of EDTA and citric 

acid was more effective than single application of EDTA or citric acid. Soluble metals are 

potentially bioavailable and can either be taken up by plants, leached or dissolved by the soil 

exchange sites (Kim and Li 2010). The shoot accumulation of Cu was always directly 

proportional to the amount of soluble Cu in soil and correlation reached 0.935. This could be 

an important factor in Cu uptake. It is possible that EDTA destroyed the physiological barriers 

in roots which control the uptake and translocation of metals (Luo et al. 2005). The plasma 

membrane surrounding the root plays a role in the formation of these barriers whereas zinc 

and calcium ions are involved in stabilizing the plasma membrane (Kaszuba and Hunt 1990). 

Therefore EDTA in single Cu-contaminated soil may induce Cu-EDTA uptake and 

accumulation by removal of the stabilizing zinc and calcium ions from the plasma membrane. 

When this happens, a rapid equilibrium of soil solution with the xylem sap occurs and as soon 

as the solutes are in the sap, Cu-EDTA would flow through the transportation stream and 

shoot accumulation increases (Vassil et al. 1998). As EDTA has a more negative charge than 

the Cu cation, metal complexation by EDTA is likely to reduce metal sorption to cation 

exchange sites in plants (Wenger et al. 2003). This will probably reduce Cu retention in the 

root tissues, allowing greater translocation of metals to shoots. The effectiveness of EDTA in 

enhancing the shoot accumulation of Cu in single Cu contaminated soil was significantly 

higher than that of citric acid and a combination of citric acid and EDTA (Figure 7.5). Under 

single soil Cu contamination, the addition of citric acid seemed not to enhance the uptake of 
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Cu in shoot of Z. mays. This is similar to the result of study carried out by Luo et al. (2005) 

who observed that 5.0 mmol kg-1 of citric acid did not significantly increase the concentration 

of Cu in Z. mays. Also Wu et al. (2003) observed that low molecular weight organic acids 

including citric acid had a very small effect on the concentration of Cu, Zn, Cd and Pb in 

shoot of B. juncea when compared to EDTA. The non-increase of Cu in shoot of Z. mays with 

the application of citric acid could be as a result of the lower stability of the metal complexes 

formed and also because citric acid is weak and biodegradable. Probably, due to the 

biodegradation of organic acids like citric acid, it is possible that the pH of soil will increase 

as a result of consumption of H+ from carboxylic acid and liberation of OH- and CO2 (Gramss 

et al. 2004). This results in a lack of complexing agents and as such the bioavailability of Cu 

is decreased. 

 Interestingly, it was clear that EDTA enhanced Cu uptake by Z. mays under single soil Cu 

contamination while it had no effect on Cu and pyrene co-contaminated soils (Figure 7.5). 

Our results also showed that after the application of EDTA, Z. mays suffered from more 

severe phytotoxicity under single Cu contaminated soil than in Cu-pyrene co-

contaminated soils. It is possible that the root of Z. mays in single Cu contaminated soil 

would experience heavier physiological damages which could lead to subsequent 

breakdown of the root exclusion mechanism causing indiscriminate uptake of Cu by 

plants. This assumption is consistent with the fact that enhancement of Cu concentrations 

in the shoots of Z. mays were more pronounced in single Cu contaminated soil than when 

Cu and pyrene were combined. Vassil et al. (1998) suggested that a threshold of EDTA is 

required to induce the accumulation of metals in plant shoots. For example Blaylock et al. 
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(1997) observed that the concentration of EDTA required for an increased accumulation 

of Pb in shoots of B. juncea containing 600 mg of Pb in 1 kg of soil was about 1 to 5 

mmol kg-1. At this concentration, EDTA could damage the membrane of the root cells 

which controls the translocation of solutes (Meers et al. 2009). In the present study, under 

co-contamination of Cu and pyrene, the increased accumulation of Cu in Z. mays as 

observed under single Cu soil contamination was not found in EDTA treatment up to 

0.146 g kg-1. Probably under co-contamination of Cu and pyrene, less than 0.146 g kg-1 of 

EDTA application was insufficient to break down plant uptake barriers under the 

conditions of our present study. This observation was consistent with the observation that 

EDTA was less toxic to Z. mays under Cu and pyrene mixed contaminated soil than in 

single Cu contaminated soil. 

The effects of amendment combinations on contaminated soil can be synergistic or 

antagonistic (Gunawardana et al. 2010). Under co- contamination with Cu and pyrene, the 

enhancement of Cu accumulation with EDTA + citric acid was obvious and interestingly, 

biomass yield was not decreased (Figure 7.1). Therefore a combination of EDTA and citric 

acid could be considered as viable amendments for enhancing Cu phytoextraction from metal-

PAH contaminated soil. The shoot Cu concentration as well as the water extractable Cu with 

the application of EDTA + citric acid was also the highest of any treatment under co-

contamination at the end of the experiment (Figures 7.3 and 7.8).  This increase could be 

attributed to the synergistic effect of citric acid or EDTA which increases ligand availability 

in solution through a potentially different mode of action and uptake pathway (Gunawardana 

et al. 2010). In metal mixtures, different researchers observed a reduced effect of individual 
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amendments when compared to mixed amendments. For example, Gunawardana et al. (2010) 

and Gunawardana et al. (2011) showed that the combination of rhamnolipd + EDDS or 

rhamnolipid + citric acid + EDDS was more efficient in increasing shoot Cu, Cd and Pb 

concentration as opposed to single applications. Although the present study contain a mixture 

of metal and PAH, similar results were observed.   

7.4.3 Phytoremediation potential  

The success of phytoremediation is dependent on shoot biomass as well as shoots Cu 

concentration (Jiang et al. 2004). The potential effectiveness of each plant with chelate 

application was evaluated by the total amount of Cu removed from the soil. Our results 

showed that EDTA was more efficient than citric acid or EDTA + citric acid when soil was 

contaminated with Cu alone. Sinhal et al. (2010) showed in their research that although both 

citric acid and EDTA enhanced phytoextraction of Zn, Cu, Pb and Cd, EDTA was more 

efficient during phytoextraction. In co- contaminated soils, the combined application of 

EDTA and citric acid was more efficient compared to citric acid, EDTA or control (no 

chelates) treatments and is supported by Yang et al. (2011) which suggested that combined 

treatments of EDTA, cysteine and tween-80 was more promising application to improve the 

phytoremediation of heavy metals under Cd-PAH mixed contaminated soil situations. In 

addition to total metal content, the translocation factor (Figure 7.7) needs to be considered in 

order to evaluate the ability of an accumulator to accumulate and transport heavy metals in 

plants. Metal translocation is expressed as the ratio of the metal level in the shoots to that in 

the roots (Marchiol et al. 2004, Gunawardana et al. 2010). In the present study, it indicates the 

ability of chelates to affect the transfer of Cu from root to shoot. 
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It was found that EDTA significantly enhanced the translocation of Cu in Cu contaminated 

soil but not in co-contaminated soils containing Cu and pyrene. The combination of EDTA 

and citric acid significantly reduced the translocation of Cu in single Cu contaminated soils, 

but the shoot to root efficiency increased in soils co-contaminated with Cu and pyrene. Higher 

translocation as observed with EDTA in single Cu contaminated soils could be as a result of 

reduced metal binding to root tissues (Blaylock et al. 1997). Romkens et al. (2002) suggested 

that when Cu is complexed with an amendment, Cu would be more easily reallocated to 

harvestable plant tissues than free metal ions. Relatively stable Cu complexes are readily 

absorbed by roots and transported to above ground parts due to the higher affinity of EDTA to 

Cu (Degryse et al. 2006). This complexation could decrease the binding of free metal ions to 

negatively charged carboxyl groups in the xylem cell walls (Wenger et al. 2003). In co-

contaminated soils (Figure 7.7), the enhancement of translocation with EDTA was less than in 

single Cu contaminated soil. It could be that the interactions of Cu and pyrene with EDTA 

resulted in reduced Cu transport through the plant parts. Luo et al. (2005) showed that when 

metal and metal-EDTA complexes are simultaneously present in solution, they effectively 

compete for uptake, therefore reducing Cu transport rate to shoots. Also pyrene has been 

shown to be able to accumulate in shoots of plants from direct translocation from roots (Gao 

and Zhu 2004). Therefore, increased competition for uptake in the presence of pyrene, Cu and 

Cu-EDTA complex could have caused the slight reduction observed.  

As shown in Figure 7.7, treatment with EDTA + citric acid under combined contamination of 

Cu and pyrene had a significantly higher TF than control treatments. This is possibly because 

additional chemicals sharply increased the concentration of Cu in plant shoots while there was 
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no corresponding increase in plant roots. Our results revealed that in all treatments, the plant 

roots were more affected by chemicals during the phytoextraction of Cu.  

7.4.4 Pyrene dissipation 

High molecular weight PAH including pyrene has often not been successfully dissipated in 

contaminated soil. The prospect of improving the dissipation has often been challenging.  

At the end of the plant trial, the residual pyrene concentration in single or co-contaminated 

soils was highly decreased and reached 57.8 and 67.7% respectively even without the 

application of chelates or plant growth (Figure 7.10). The dissipation of pyrene in single 

pyrene or Cu-pyrene co-contaminated soils was significantly higher in planted soils than in 

unplanted soils. This suggests that the root system of Z. mays and probably other 

physiological characteristics of Z. mays played an important role in pyrene dissipation in Cu-

pyrene contaminated soils. 

The role of chelates in the removal of pyrene in soil in the present study is shown in figure 

7.9. It could be seen that in single and co-contaminated soils, all tested chelates significantly 

increased the dissipation of pyrene except EDTA which did not enhance pyrene dissipation in 

co-contaminated soil. Also, citric acid had a more significant effect when compared to EDTA 

or combined application of EDTA and citric acid. The dissipation rate of pyrene with the 

application of citric acid reached 90% at the end of the plant trial (Figure 7.10). It could be 

that citric acid provided more nutrients for indigenous microbes to proliferate and biodegrade 

the pyrene in soil thereby increasing the biodegradation rate (Andrew et al. 2007). It could 

also be explained that when the root of Z. mays exude organic compounds, the solubility of 
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PAH may be influenced indirectly through the effects on the activity of the microbes in soil 

(Marschner et al. 1995). The concentration of the chelates including citric acid in final soil 

was not analyzed and it could be possible that co-metabolism of the citric acid with pyrene 

occurred to improve biodegradation of pyrene (Wei et al. 2009). The dissipation of pyrene 

with the application of chelates in single as well as co-contaminated soils could be associated 

with the effects of chelates on physico-chemical processes including contact between micro-

organisms and PAH. Wei et al. (2009) suggested that variations in pH values caused by low 

molecular weight organic acids (LMWOAs) hardly had any effect on PAH degradation and 

therefore concluded that contact between PAH and micro-organisms was highly related to 

PAH biodegradation. The present result of this study showed that citric acid was more 

effective in enhancing pyrene dissipation than EDTA or EDTA + citric acid in both single and 

mixed contaminated soil and this reflects the result of previous works which showed that 

organic acids influence the activities of enzymes that help in the degradation of PAH like 

laccases and manganese peroxidase (Eibes et al. 2005, Ting et al. 2011). In contrast, when 

Fentons reagent was used for treatment of PAH contaminated soil, the removal of PAH 

increased with the application of EDTA than citric acid (Venny et al. 2012). It is clear that 

EDTA-Fe3+ complex formed during the treatment was stronger than that of citric acid and 

could explain why EDTA enhanced PAH removal more than citric acid. 

7.5 Conclusion 

The present study showed that Z. mays could be very effective in phytoextraction of Cu and 

dissipation of pyrene in Cu-pyrene co-contaminated soil with the help of chelates. Of all the 

chelates used in the present study, EDTA was more effective in the removal of Cu from single 
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Cu contaminated soil at the concentration used in the trial, whereas the combined application 

of EDTA and citric acid had the most effective improvement in Cu uptake in Cu + pyrene co-

contaminated soil. 

The effectiveness of the applied chelates in the dissipation of pyrene varied in the present 

study. In single pyrene contaminated soil, all the applied chelates were effective in decreasing 

the residual pyrene in soils with the help of Z. mays. However, citric acid was more effective 

when compared to EDTA or citric acid + EDTA. When soil was co-contaminated with Cu and 

pyrene, only citric acid and EDTA + citric acid was effective in the dissipation of pyrene. 

EDTA was completely ineffective in co-contaminated soil and deserves a further study.   

It can be proposed from results of the present study that during the phytoremediation of Cu 

and pyrene co-contaminated soil, the combined treatment of EDTA + citric acid will best suit 

the phytoextraction of Cu as well as the dissipation of pyrene. Although citric acid was more 

effective than EDTA + citric acid in the dissipation of pyrene in co-contaminated soil, the 

difference in dissipation rate was only over 3%. Also, because citric acid did not enhance the 

uptake of Cu in co-contaminated soil, the combined treatment of EDTA + citric acid which 

enhanced both the uptake of Cu as well as the dissipation of pyrene will be the preferred 

alternative. 
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7.6 The effect of EDTA and citric acid on phytoremediation of 

Cr and B[a]P co-contaminated soil- Introduction 

Part of this work has been published in environmental science and pollution research peer 

reviewed journal; Chigbo and Batty 2013. 

Phytoremediation which is the ability of plants to remediate or sequester contaminants from 

the environment is an emerging technology that can be used for treatment of heavy metal and 

PAH contaminated soil (Turgut et al. 2004). For example, phytoextraction and 

rhyzodegradation are the two types of phytoremediation that can be applied to heavy metal 

and PAH contaminated soil (Zhang et al. 2011). During phytoextraction, the plant plays the 

primary role by taking up heavy metals into the root and translocating to the upper parts 

whereas in rhizodegradation, the plants play a secondary role in dissipation of PAH through 

the release of root exudates that promote the growth and activity of microbes in the 

rhizosphere.  

The efficiency of treating heavy metal and PAH contaminated soil however depends on the 

availability of these contaminants for uptake and degradation, respectively. Although some of 

these contaminants have low bioavailability in sites, there is a need to meet stringent cleanup 

targets. This has led to several studies on different chelates that increase the bioavailability of 

contaminants (Evangelou et al. 2007). EDTA is a synthetic chelating agent that is efficient in 

complexing metals and increasing their concentration in the upper parts of plants.  However, 

they are persistent in the environment (Nowack 2002) and can lead to uncontrolled leaching 

in the soil which can affect the underground water (Meers et al. 2005). Barona et al. (2001) 
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observed that Pb, Ni and Zn were more mobile after the application of EDTA because the 

metal studied became weakly adsorbed to the soil, increasing the possibilities of leaching. 

Biodegradable compounds like low molecular weight organic acids (LMWOAs) including 

citric acids are natural strong ligands that are capable of forming complexes with heavy 

metals. They are produced by plants and microbes and are less phytotoxic (Jones 1998). In 

terms of organic contaminant dissipation, they play an important role by increasing the water 

solubility and therefore enhance the bioavailability of hydrophobic compounds (Gao et al. 

2007). Several studies have shown that chelating compounds such as EDTA and citric acid 

can increase the availability of metals and therefore enhance phytoextraction (Huang et al. 

1997, Chen et al. 2003b). For example, 1.0 g kg-1 EDTA and 2 mmol kg-1 citric acid were 

reported to be effective in increasing Pb and Cd concentration respectively in Zea mays and 

Pisum sativum (Huang et al. 1997). Whereas many studies have reported the effects of 

chelating agents on the extraction of heavy metals from soil, there has been little research on 

the role of chelates during phytoremediation of heavy metal and PAH co-contaminated soil. 

The aim of this work is to determine the effect of synthetic and natural occurring chelating 

agents (EDTA and citric acid, respectively) on the phytoremediation of soils co-contaminated 

with heavy metals and PAH. Cr and B[a]P are chosen as representative of heavy metal and 

PAH contaminants that are present in multi contaminated soils which are rarely studied (Jean 

et al. 2008, Sun et al. 2011). M. sativa was chosen as the plant candidate due to its high 

biomass, extensive root system and tolerance to heavy metals and PAHs (Fan et al. 2008). 
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7.7 Methods 

7.7.1 Soil Spiking 

Soil was initially spiked with B[a]P by dissolving 10 mg B[a]P in 25mL of acetone. The 

solution of acetone and pyrene was added to 250 g of soil as a portion and    750 g of 

unspiked soil to make up to 1 kg once the acetone had volatilized completely in the fume 

hood. 25 mL of acetone was also added to control and other soil treatments. 50 mg kg-1 of Cr 

was prepared by dissolving 0.187 g of K2Cr207 and was added singly to pyrene-spiked soils 

and fresh soils resulting in a total of 16 treatments.  The spiked soil was thoroughly mixed by 

sieving and was stored in a dark room for equilibration for 28 days before planting. 

7.7.2 Experimental set up 

The experimental layout was designed in a completely randomized design of 16 treatments 

with three replicates of each. Experiment included pots with no plants in order to observe 

non-plant facilitated dissipation of pyrene. 

7.7.3 Planting 

Plastic pots of 12.5 cm in height were used for the present study. One kilogram of each spiked 

soil was placed in each pot.  Ten seedlings of M. sativa with uniform size of about 3 to 4 cm 

and about one month old were transferred into each pot. The chelates used in the present study 

were EDTA, citric acid and a combined addition of EDTA and citric acid. The chelates were 

applied after 15 days of transplanting the M. sativa in order to allow for acclimatization. All 

the chelates were divided into three parts and applied each week for 3 weeks. Treatments 
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included the control soil (without application of chelate), 0.146 g kg-1 of EDTA, 3 g kg-1 of 

citric acid and 0.146 g kg-1 EDTA + 3 g kg-1 citric acid applied as solutions to each soil 

surface at doses of 48.6 mg kg-1 and 1 g kg-1 for EDTA and citric acid respectively for three 

weeks to reduce the effect of the chelates on plant growth as explained in section 7.2.4, split 

applications were more effective. Saucers were placed beneath the pots to collect potential 

leachates during the plant trial. After 60 days of growth, plants were harvested by cutting 

shoots just above the soil surface and washed with deionized water. Each pot was then 

emptied and the roots were separated from the soil by washing with running tap water. The 

roots were then rinsed with deionized water 3 times to remove all soil particles. All samples 

were oven- dried to a constant weight at 65 ºC for 72 hours. The dried samples were weighed 

to enable biomass calculations and used for plant analysis.  
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Figure 7.10: M. sativa after 14 days of planting 

7.7.4 Analysis of plants and soil samples 

Oven-dried plants were ground into small pieces using a coffee grinder (Krups, Italy). 

Approximately 0.2 g for shoot and root dry matter were digested using 5 mL of 30% HNO3 

and placed on a heating block (Section 3.4.1). Digested plant samples were then analyzed for 

total Cr using FAAS. Soluble Cr in soil was analyzed by method described in section 3.4.2. 
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B[a]P concentration in soil samples was analyzed using the Agilent GC-MS as described in 

sections 3.5.1, 3.5.2 and 3.5.3. The average percentage recovery for surrogate was 102% 

7.7.5 Statistical analysis 

All treatments were replicated three times and the mean and standard error (SE) of each 

treatment was calculated. The comparisons of shoot dry matter, Cr concentration, 

accumulation as well as soil residual B[a]P were carried out by one-way analysis of variance 

using Minitab 15 . The shoot Cu accumulation and total Cu accumulation results were log 

normalized while soil residual B[a]P concentration was normalized using box cox. When a 

significant difference was observed between treatments, multiple comparisons were made by 

the Tukey HSD test. 

7.8 Results 

7.8.1 Effects of EDTA and citric acid on growth of M. sativa 

At harvest, all plants were in growth stage without flowering and no seeds were generated. 

Some chlorosis of leaves was found when EDTA and EDTA + citric acid were applied to 50 

mg kg-1 Cr and 50 mg kg-1 Cr + 10 mg kg-1 B[a]P contaminated soils under experimental 

conditions at day 60. Compared to the control treatments (Cr contamination with no chelates), 

the shoot dry weight of M. sativa decreased significantly (p<0.05) from 0.67 to 0.3 g pot-1 

when EDTA + citric acid was applied to soil contaminated with Cr alone (Figure 7.11). The 

combined application of EDTA and citric acid to Cr contaminated soil significantly affected 

the shoot biomass of M. sativa more than the application of citric acid only.  
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The single application of EDTA, citric acid or the combined application of EDTA and citric 

acid respectively did not seem to affect the shoot biomass of M. sativa when soil was 

contaminated with B[a]P or Cr + B[a]P. 

The effect of chelates on the root biomass of M. sativa varied and is shown in Figure 7.12. 

Compared to the dry weight of control roots, the addition of EDTA or citric acid alone, or the 

combined application of EDTA and citric acid did not significantly affect the root biomass of 

M. sativa in B[a]P or Cr + B[a]P contaminated soil. However, in Cr contaminated soil, citric 

acid and EDTA + citric acid significantly (p<0.05) reduced the root biomass of M. sativa 

from 0.39 to 0.2 and 0.12 g pot-1 respectively. 
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Figure 7.11: Effects of chemical amendments and combination on shoot dry weight of M. 

sativa after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p≤0.05). Appendix 7B.1 
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Figure 7.12: Effects of chemical amendments and combination on root dry weight of M. 

sativa after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p≤0.05). Appendix 7B.2 
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7.8.2 Effect of EDTA and citric acid on soluble Cr concentration 

For Cr phytoextraction, Cr must be available and be absorbed by the roots. Bioavailability 

depends on the solubility of Cr in soil solution. It was clear that in single or co-contamination 

of Cr and B[a]P, EDTA, citric acid or the combined application of EDTA and citric acid 

significantly increased the soluble concentration of Cr in soil (Table 7.3). Results showed that 

the application of EDTA, citric acid or EDTA + citric acid significantly (p<0.05) increased 

the soluble Cr concentration from 2.45 mg kg-1 to 4.09, 5.03 and 3.59 mg kg-1 respectively.  

Citric acid was however more efficient in increasing the soluble Cr in solution than other 

applied chelates. In Cr + B[a]P co-contaminated soils, the application of EDTA, citric acid 

and EDTA + citric acid also significantly increased the soluble Cr concentration from 1.733 

mg kg-1 to 4.64, 3.51 and 4.79 mg kg-1. The effect of EDTA and EDTA + citric acid was 

similar, but more efficient than citric acid in increasing the soluble Cr concentration in co-

contaminated soils. 

Table 7.3: Soluble Cr concentration in soils (figures are mean values ± SE). Appendix 7B.9 

Treatment 50 mg kg-1 Cr 50 mg kg-1 Cr + 10 mg kg-1 
B[a]P 

            Soluble Cr concentration (mg kg-1) 
EDTA 4.09±0.20 4.64±0.07 
Citric acid 5.03±0.04 3.51±0.06 
EDTA + citric acid 3.59±0.15 4.79±0.12 
No chelate 2.45±0.09 1.73±0.02 
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7.8.3 Effects of EDTA and citric acid on shoot and root Cr concentration 

The Cr concentration in shoot of M. sativa in soil contaminated with 50 mg kg-1 Cr was not 

significant when compared to that in uncontaminated soil. However, the co-contamination of 

soil with 50 mg kg-1 Cr and 10 mg kg-1 B[a]P significantly increased the concentration of 

shoot Cr from 15.02 to 18.91 mg kg-1 in the present study, suggesting a synergistic effect of 

Cr and B[a]P co-contamination.  

The concentration of Cr in shoot of M. sativa was markedly enhanced with the application of 

citric acid or a combination of citric acid and EDTA in Cr or Cr + B[a]P contaminated soils 

(Figure 7.13). EDTA was only effective in Cr + B[a]P co-contaminated soils. After 60 days of 

planting, the application of citric acid to soil contaminated with Cr alone significantly 

(p<0.05) increased the shoot concentration of M. sativa from 18.91 to 42.79 mg kg-1. The 

combined application of EDTA and citric acid was more effective and increased the shoot Cr 

concentration 3.41-fold relative to control treatments. The application of EDTA in the present 

study did not enhance the concentration of Cr in shoot of M. sativa when soil was 

contaminated with Cr alone. 

The effects of chelates in soil co-contaminated with Cr and B[a]P varied. EDTA seemed to be 

more effective than citric acid in enhancing the concentration of Cr in shoots of M. sativa 

(Figure 7.13). The application of EDTA significantly (p<0.05) increased the shoot Cr 

concentration from 35.44 to 53.29 mg kg-1. Citric acid was ineffective in increasing the shoot 

Cr concentration of M. sativa. However the combined application of EDTA and citric acid 

dramatically increased the shoot concentration from 35.44 to 102.81 mg kg-1. The present 
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result suggests that the combined application of EDTA and citric acid was more effective than 

single applications of either EDTA or citric acid to single Cu contaminated soil as well as Cr 

+ B[a]P co-contaminated soils. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13: Effects of chemical amendments and combination on shoot Cr concentration of 

M. sativa after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p≤0.05). Appendix 7B.3 
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The root Cr concentrations of M. sativa in soil contaminated with Cr or Cr + B[a]P were 

significantly (p<0.05) higher than in uncontaminated soils. As shown in Figure 7.14, EDTA 

did not affect the root Cr concentration of M. sativa when soil was contaminated with Cr 

alone but in Cr + B[a]P co-contaminated soils, the application of EDTA significantly reduced 

the root concentration of Cr from 42.07 to 20.37 mg kg-1. When soil was contaminated with 

Cr alone, the application of citric acid or the combined application of EDTA and citric acid 

significantly (p<0.05) increased the root Cr concentration from 26.7 to 39 and 43.77 mg kg-1 

respectively while in Cr + B[a]P co- contaminated soil, neither EDTA nor citric acid had any 

significant effect on root Cr concentration relative to control treatments. 
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Figure 7.14: Effects of chemical amendments and combination on root Cr concentration of 

M. sativa after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p≤0.05). Appendix 7B.5 
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7.8.4 Effect of EDTA and citric acid on shoot and root Cr accumulation 

The average Cr concentration in shoot of M. sativa as affected by different chelates varied. 

The shoot Cr accumulation was significantly (p<0.05) increased with contamination of Cr as 

well as co- contamination with Cr and B[a]P (Figure 7.15) 

In soils contaminated with only Cr, the application of citric acid or EDTA + citric acid 

significantly enhanced the shoot accumulation of Cr. Taking dry matter reduction and heavy 

metal absorption  into consideration, the combined application of EDTA and citric acid was 

however less effective when compared with single application of citric acid. The present 

results showed that when only citric acid was added to soil contaminated with Cr, the shoot 

accumulation of Cr increased from 12.61 to 33.2 µg pot-1. The combined application of 

EDTA and citric acid increased the shoot accumulation of Cr slightly but significantly from 

12.61 to 19.45 µg pot-1. EDTA was not effective in increasing the shoot accumulation of Cr 

and as shown in Figure 7.15  

In Cr + B[a]P co-contaminated soils, all chelates applied to soil significantly affected the 

accumulation of Cr in shoot of M. sativa. The application of EDTA and EDTA + citric acid 

significantly increased the shoot accumulation of Cr while citric acid significantly reduced the 

shoot accumulation of Cr (Figure 7.15). The present result showed that EDTA increased the 

shoot accumulation of Cr from 19.01 to 41.53 µg pot-1 and when EDTA and citric acid were 

combined, the shoot accumulation of Cr increased by 3.09 fold. The control plants were more 

effective in the uptake of Cr by M. sativa than when citric acid was added to Cr + B[a]P co-
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contaminated soils. Results showed a significant (p<0.05) reduction in shoot accumulation 

from 19.01 to 14.28 µg pot-1.  

 

 

 

 

 

 

 

 

 

 

Figure 7.15: Effects of chemical amendments and combination on the accumulation of Cr in 

shoot of M. sativa after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly different based on Tukey HSD (p≤0.05). Appendix 7B.4 
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In soils contaminated with Cr alone, the application of EDTA or citric acid did not affect the 

root Cr accumulation of M. sativa. The root accumulation remained at 10.75 and 7.82 µg pot-1 

when EDTA and citric acid were applied respectively. However, the combined application of 

EDTA and citric acid significantly reduced the root accumulation of Cr from 10.45 to 5.28 µg 

pot-1.  

In soils co-contaminated with Cr and B[a]P, the application of EDTA and citric acid 

significantly (p<0.05) reduced the root accumulation of Cr. Results showed that EDTA 

significantly reduced the root accumulation of M. sativa from 12.87 to 6.81 µg pot-1, while 

citric acid reduced the root accumulation to 6.82 µg pot-1. The effectiveness of EDTA or citric 

acid in root accumulation of Cr was similar (p≥0.05). The root accumulation of Cr when 

EDTA and citric acid were combined was statistically similar to control treatments and 

remained at 10.29 µg pot-1. 
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Figure 7.16: Effects of chemical amendments and combination on the accumulation of Cr in 

roots of M. sativa after 60 days. Bars (means ± SE, n= 3) that do not share the same letter are 

significantly based on Tukey HSD (p≤0.05). Appendix 7B.6 
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7.8.5 Effects of EDTA and citric acid on the translocation and bioconcentration factors 

of Cr 

In this study, the presence of Cr in shoot of M. sativa in all treatments suggests that 

translocation from root to shoot has taken place. The TF of Cr showed no significant 

difference with the application of EDTA in single Cr contaminated soil while citric acid and 

citric acid + EDTA significantly increased the TF in single Cr contaminated soil Table 7.4). 

After the application of citric acid or the combined application of citric acid and EDTA to 

single Cr contaminated soil, the TF of Cr increased from 0.7 to 1.09 and 1.473 respectively. 

In mixed contaminated soil, the single application of citric acid did not seem to affect the TF 

of Cr in M. sativa whereas EDTA and a combined application of EDTA and citric acid 

significantly increased the TF of Cr. Our results showed that EDTA and EDTA + citric acid 

significantly increased the TF of Cr from 0.84 to 2.71 and 2.39 respectively.  

The Bioconcentration Factor (BF) is the ratio of the metal concentration in the plant to the 

metal concentration in the soil. According to Zhou and Song (2004), hyperaccumulators have 

BCF values that are greater than one. Single factor ANOVA showed that the single 

application of EDTA did not affect the BCF of Cr in M. sativa (Table 7.4). However, similar 

to TF, citric acid significantly increased the BCF from 0.67 to 1.20 in soil contaminated with 

Cr only. The combined application of EDTA and citric acid also enhanced the BCF in single 

and mixed contaminated soil in the present study. EDTA + citric acid significantly (p<0.05) 

increased the BCF from 0.67 to 1.59 for single Cr contaminated soil and 1.13 to 2.13 for Cr + 

B[a]P co-contaminated soil.  
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Table 7.4: Translocation facor (TF) and Bioconcentration factors of Cr (values are mean ± 

SE, n=3). Appendix 7B.7 and 7B.8 

 

Treatments 50 mg kg-1 Cr 50 mg kg-1 Cr + 10 mg kg-1 B[a]P 
  TF BCF TF BCF 

EDTA 0.721±0.038 0.617±0.007 2.714±0.018 1.110±0.007 

Citric acid 1.097±0.013 1.203±0.004 0.732±0.021 1.101±0.011 

EDTA+ citric  
acid 

1..474±0.018 1.593±0.044 2.395±0.041 2.137±0.021 

No chelates 0.710±0.029 0.671±0.005 0.845±0..051 1.137±0.003 

 

7.8.6 Effect of EDTA and citric acid on total removal of Cr by M. sativa from 

contaminated soils 

The effectiveness of each chelate applied to single or mixed contaminated soil was evaluated 

by the ratio of removal of Cr by each chelate to the removal in soils with no application of 

chelates. Citric acid was the only efficient chelate that helped in the removal of Cr in single 

Cr contaminated soil. The present results showed that when citric acid was applied to single 

Cr contaminated soil, the removal of Cr increased significantly (p<0.05) from 23.07 to 41.07 

µg . The ratio of removal reached 1.78 and when compared to EDTA or EDTA + citric acid 

application, showed an increase of 0.89 and 0.71 respectively (Table 7.5). 
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In co-contaminated soils, results showed that EDTA and the combined treatment of EDTA 

and citric acid were the only effective chelates for Cr removal from soil. However the 

combined application of EDTA and citric acid was more effective than single application of 

EDTA. There was a significant increase from 31.89 to 48.34 and 69.01 µg  with the 

application of EDTA and EDTA + citric acid respectively. Similarly the ratio of removal 

reached 1.51 and 2.16 and was more than twice when compared to citric acid. 
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Table 7.5: Plant removal of Cr per treatment (values are mean ± SE, n=3). 

Treatments 50 mg kg-1 Cr 50 mg kg-1 Cr + 10 mg kg-1 B[a]P 
Total Cr removal 
(µg ) 

Cr removal Ratio Total Cr 
removal (µg) 

Cr removal ratioRatio 

EDTA 20.56±0.54   0.89 48.34±1.04      1.51 

Citric acid 41.07±0.70   1.78 21.11±0.63      0.66 

EDTA+ citric  
acid 

24.74±1.08   1.07 69.01±1.23      2.16 

No chelates 23.07±1.07  31.89±0.85  

 

7.8.7 Effect of EDTA and citric acid on B[a]P concentration in soil 

The concentration of B[a]P in soil decreased for all treatments including soils with no 

planting and no chelate application (Figure 7.18). The initial concentration of B[a]P in spiked 

soil for single and co-contaminated soils remained approximately 10 mg kg-1 (Appendix 

7B.11). The percentage removal of B[a]P reached 52% for single B[a]P contaminated soil and 

56% for Cr + B[a]P co-contaminated soils (Figure 7.18). The dissipation of B[a]P in single 

B[a]P contaminated soil was effective even without planting while in  co-contaminated soils, 

it was related to the application of either EDTA or EDTA+citric acid. The present result 

showed that the application of EDTA or citric acid in single B[a]P contaminated soil 

significantly (p≤0.05) decreased the residual concentration of B[a]P in soil from 5.86 to 4.97 

and 5.02 mg kg-1 when compared to planted soil without the application of chelates (Figure 
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7.17). Similarly, in Cr+B[a]P co-contaminated soils, the application of EDTA or 

EDTA+citric acid significantly decreased the B[a]P concentration in final soil from 5.09 to 

4.64 and 4.49 mg kg-1 respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 7.17: Effects of chemical amendments and pollutant combination on residual B[a]P 

concentration in soil after 60 days. Bars (means ± SE, n= 3) that do not share the same letter 

are significantly different based on Tukey HSD (p ≤ 0.05). Appendix 7B.10 
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Figure 7.18: B[a]P dissipation rate (%) in soils after 60 days. 
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7.9 Discussion 

7.9.1 Effect of EDTA and citric acid on plant biomass 

In the present study, only the combined amendment of EDTA and citric acid significantly 

reduced the shoot biomass of M. sativa and correspondingly the root biomass in soil 

contaminated with Cr alone, while amendments in single or combination did not affect the 

shoot biomass of M. sativa in B[a]P or Cr + B[a]P contaminated soils (Figure 7.11). The 

reduction in biomass in single Cr contaminated soil when EDTA and citric acid was added 

could be related to the enhanced metal concentration in shoot tissues of M. sativa in Cr 

contaminated soils (Figure 7.13). The observed toxicity symptoms in plants are always 

associated with an increased chemical concentration in solution, an increased metal 

accumulation as well as enhanced metal translocation (Gunawardan et al. 2010). Similar 

results were observed by Gunawardan et al. (2010) where amendment combinations of 

rhamnolipid + EDDS and rhamnolipid + sulfate significantly reduced the shoot biomass of L. 

perenne as a result of increased metal concentration. Correspondingly, poor root growth 

would be expected to reduce water and ion uptake (Lepp, 2005) resulting in deficiencies of 

essential nutrients (Boussama et al. 1999). Once chelates are introduced to soils, they tend to 

form complexes to a varying degree with metals present in solution and when the cations 

simultaneously compete for amendments, the free metal and amendments concentration in the 

solution may be affected, hence creating an imbalance of chemical components in the 

solution. This leads to various toxicities since the free metal ion and the unbound amendments 

are known to be more toxic to plants (Vassil et al. 1998). 
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7.9.2 Effect of EDTA and citric acid on concentration and accumulation of Cr 

The effect of EDTA on the shoot Cr concentration in single Cr contaminated soils was 

negligible when compared to control treatments (Figure 7.13). This could be as a result of the 

minor effect the concentration of EDTA used in the present study has on Cr carrier. Targut et 

al. (2004) found that chelates may affect the selectivity of metals by forming a chelate-metal 

complex that alters the uptake rate of the metal. It could also be that since 0.146 g kg-1 EDTA 

amendment exhibited similar shoot and root concentration with control, this dosage may not 

have been sufficient for overcoming the limited transfer of Cr through the root wall. Lombi et 

al. (2001) and Madrid et al. (2003) reported that EDTA was very effective at mobilizing 

metals through the soil but they observed that the ability to improve root to shoot 

translocation was metal specific. This was similar to our results as EDTA effectively 

enhanced the water extractable Cr concentration in soil without improving shoot accumulation 

(Table 7.3). 

Under co-contamination with Cr and B[a]P, there was a prominent increase in Cr 

concentration and accumulation with the application of EDTA. It could be that under co-

contamination, since EDTA enhanced solubility of Cr (Table 7.3), it could have also 

enhanced the absorption of the Cr- EDTA complex by M. sativa. The size and molecular 

weight of a contaminant may play a role in the ability of a plant to take up a contaminant. 

Anderson et al. (1993) observed that plant roots usually favor the uptake of small and low 

molecular weight compounds, whereas larger and higher molecular weight compounds seem 

to be excluded from the roots. Results in the present study indicate that due to the application 

of EDTA in Cr + B[a]P co-contaminated soils, the root Cr concentration of M. sativa 
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decreased remarkably when compared to control treatments (Figure 7.14). This could be 

because Cr easily reacts with EDTA before uptake and forms a Cr-EDTA complex which is 

more stable and has a higher molecular weight than Cr only. Therefore the amount available 

to the plant root will highly depend on the competition between the Cr-EDTA complex, as 

well as the cation exchange sites of the root cell wall (Yu and Gu 2008). Also the competition 

for Cr or B[a]P uptake by M. sativa could also affect the amount of Cr available to the plant 

root. 

The application of citric acid to soil contaminated with Cr alone significantly increased the 

shoot and root concentration of Cr in M. sativa. Citric acid however was more efficient 

compared to amendment with EDTA alone (Figures 7.13 and 7.14). According to Marschner 

et al. (1986) and Samet et al. (2001), the predominant theory for metal-chelate uptake is the 

split uptake or the free metal ion mechanism where only free metals are absorbed by plant 

roots. Complexing agents are divided into weak, moderate and high, depending on the metal 

complex formation and according to Schowanek et al. (1997), EDTA is rated as a high 

complexing agent. It is therefore expected that the metal complex formed with EDTA will 

yield less free metal ion than the metal–citrate complex. The resulting effect is a lower 

enhancement in metal uptake by EDTA when compared to citric acid. Although recent 

research has shown EDTA to be more effective in enhancing metal uptake than citric acid 

(Turgut et al. 2004, Sinhal et al. 2010), research by Jean et al. (2008) showed that although 2 

mmol kg-1 of EDTA and 5 mmol kg-1 of citric acid enhanced the concentration of Cr in shoot 

of Datura innoxia, citric acid alone seemed to be more efficient. The effectiveness of citric 

acid compared to EDTA in soil contaminated with Cr in this study could also be as a result of 



322 

 

differences in concentration of chelates applied. Although citric acid was effective in 

enhancing shoot Cr concentration and accumulation in Cr contaminated soil, under co-

contamination it was ineffective in increasing shoot Cr concentration and significantly 

reduced the shoot accumulation relative to control treatments. This was surprising since the 

mobile fraction of Cr increased from 1.73 to 3.53 mg kg-1 (Table 7.3). In contrast, the root Cr 

concentration was not reduced.  This reduction in shoot Cr uptake could be attributed to the 

competition with the plants’ own metal-binding agents in the presence of B[a]P which causes 

the Cr to diffuse downwards to the root system of the plant. Similar results were observed by 

Robinson et al. (1999), where the addition of nitrilotriacetic acid (NTA) significantly reduced 

the plant nickel uptake with no reduction in biomass yield. 

The enhancement of Cr concentration and accumulation with EDTA + citric acid were 

significant. The shoot Cr concentration was highest when compared to any treatment as well 

as the shoot accumulation except in single Cr contaminated soil. The remarkable increase in 

shoot concentration with EDTA + citric acid in soil contaminated with Cr alone and Cr + 

B[a]P could be attributed to the synergistic actions of EDTA and citric acid on the uptake 

pathways and in the present study, the combined treatments negatively affected plant biomass 

only in soil contaminated with Cr only. This effectively reduced the shoot accumulation in 

soil contaminated with Cr alone (Figure 7.15). The relatively small increase in Cr 

accumulation in the shoot of M. sativa when soil was amended with a combination of EDTA 

and citric acid in single Cr contaminated soil may suggest a low phytotoxic threshold of M. 

sativa for Cr under mixed amendment in soil contaminated with Cr alone. This could be 

related to the observed toxic effect EDTA + citric acid had on shoot biomass of M. sativa 
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(Figure 7.11) possibly because the roots’ physiological barriers could be damaged by the 

toxicity of high concentrations of Cr in soil solution and as suggested by Schaider et al. 

(2006), when there is a break in the root endodermis, there could be enhanced uptake of 

metals to roots and subsequent transfer to shoots through bypass flow. 

7.9.3 Phytoremediation potential  

The process of phytoextraction with chelates is based on the fact that chelate application to 

soil will significantly enhance metal accumulation as well as the translocation of heavy metals 

from soil to shoots (Grabisu and Alkorta 2001, Ruley et al. 2006). Soil to plant translocation 

ratio is also very important during phytoextraction. For an effective phytoextraction of metals 

with amendments, the amendment must in addition to mobilization of metals into soil 

solution, enhance uptake of metals by plant roots and translocation to shoots (Tsetimi and 

Okieimen 2011). In the present study, the bioaccumulation and translocation factors shown in 

Table 7.4were used to evaluate the effectiveness of M. sativa in metal accumulation and 

translocation.  EDTA has been proven to be very efficient in enhancing the uptake of metals 

in metal contaminated soil including Cr. For example, Jean et al. (2008) showed that EDTA 

was efficient in the uptake of Cr by D. innoxia. However, in the present study under single Cr 

contaminated soil, the uptake and accumulation of Cr was not enhanced with the addition of 

EDTA. The translocation of Cr from root to shoot of M. sativa as well as the BCF was also 

not enhanced with the application of EDTA. However in Cr + B[a]P co-contaminated soil, 

although EDTA increased the accumulation and TF of Cr, the BCF was not significantly 

enhanced. The high Cr contents in the root and the poor translocation to the shoots could be 

because Cr was retained in the cation exchange sites or it was immobilized in the vacuoles of 
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the root cells. This could have made Cr less toxic to plants as observed in plant biomass yield. 

It is important to note that the application of EDTA resulted in a significant increase in 

soluble Cr concentration in single Cr contaminated soil (Table 7.3). However, it did not 

significantly increase Cr removal by plants in single Cr contaminated soil. This could render a 

larger fraction of soil Cr vulnerable to loss processes which could potentially harm the 

environment.  

The effect of citric acid on the TF (Table 7.4) showed that more Cr translocated to the shoot 

of M. sativa in Cr contaminated soils. Also the BCF increased with the application of citric 

acid in single Cr contaminated soils whereas in Cr + B[a]P co-contaminated soils, the 

application of citric acid did not have any significant effect on TF as well as the BCF. The 

combined application of EDTA and citric acid seemed to be effective in enhancing TF as well 

as BCF in both single Cr and co-contaminated soils. The higher TF and BCF values when soil 

was amended with citric acid in single Cr contaminated soil or EDTA+ citric acid in single 

and co-contaminated soils indicate that with the amendments, M. sativa could move and 

distribute more Cr. It may be related to the fact that the application of chelates enhances shoot 

accumulation by reducing Cr affinity for the binding site in the cell walls of M. sativa. This is 

in contrast to the work carried out by Qu et al. (2011) which showed lower TF values of 

heavy metals including Cr in M. sativa when soil was amended with a combined application 

of sodium hydrogen phosphate and citric acid.  
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7.9.4 Residual B[a]P in soil 

The result of this study show that the dissipation of PAH compound such as B[a]P in co-

contaminated soils can be increased in the presence of chelates. Citric acid and EDTA are 

strong chelating agents of polyvalent ion such as Cr6+. They are capable of extracting some of 

the Cr in the soil into the aqueous phase and when this happens it can affect the concentration 

of B[a]P in various ways. For example, any macromolecule that is bound to the soil may be 

released with any sorbed B[a]P into the aqueous phase. Also the removal of Cr with the help 

of the present chelates can cause the soil organic matter to become less constrained thereby 

increasing the diffusion rate of B[a]P (Yang et al. 2001). This supports the present study 

which showed that the application of EDTA or EDTA + citric acid had the highest dissipation 

rate of B[a]P in co-contaminated soils reaching 54 and 56% respectively. This decrease in the 

residual B[a]P concentration after amendment with EDTA or EDTA + citric acid (Figure 

7.17) could also be as a result of the desorption of B[a]P which could enhance the 

bioavailable B[a]P in contaminated soil. When the bioavailable B[a]P is enhanced, it becomes 

easier for microorganisms to degrade them. In most cases the limited bioavailability of PAH 

can prevent the full exploitation of the degradation potential of microbes in soil. This is 

because when PAH is not available, it means that they are either less soluble in water or they 

bind strongly to the soil matrix (Harms and Bosma 1997). Therefore since the bioavailable 

fraction of the B[a]P is only available to the microorganisms, the rate of degradation will 

depend on the mass transfer of B[a]P from the soil to the aqueous phase and in the present 

result, it is likely that EDTA + citric acid could have had more ability to desorb B[a]P from 

co-contaminated soil.  This is similar to the work carried out by Bach et al. (2005) where 
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TWEEN 80 which is a biostimulant increased the bioavailable PAH in sediments for 

degradation by microorganisms. The amendment of co-contaminated soil with only EDTA 

enhanced the disspation of B[a]P with the help of M. sativa, which shows the importance of 

inorganic chelates as limiting factors of B[a]P dissipation in co-contaminated soils, whereas 

the combined application of inorganic chelates (EDTA) and organic chelates (citric acid) 

increased the rate of B[a]P dissipation more than the individual application of each chelate 

(Figure 7.17). This is similar to the work of Bach et al. (2005) showed that the combined 

application of inorganic and organic nutrients enhanced PAH degradation more than single 

application and could suggest that amending Cr + B[a]P co-contaminated soil with a 

combined application of inorganic chelate (EDTA) and organic chelate (citric acid) could 

increase the dissipation of B[a]P.  

7.10 Conclusion 

The result of this study show that aqueous solution of EDTA and citric acid can be applied in 

single Cr or B[a]P and co- contaminated soils in the presence of M. sativa, to efficiently 

remove Cr or B[a]P in single contaminated soil or simultaneously remove Cr and B[a]P in co-

contaminated soils. 

Organic acids such as citric acid have been proposed as responsible chelates for enhancing the 

translocation of metals from plant root to shoots. Chelates have limited binding capacity and 

their molecules can only carry a restricted amount of ions depending on the number of 

binding sites. For example, since citric acid enhanced Cr solubility in single Cr contaminated 

soil and increased the amount of Cr that was absorbed by roots and translocated to shoots in 
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the present study, it could be preferred to the application of EDTA or EDTA+ citric acid for 

single Cr contaminated soil. Since citric acid is biodegradable, increased leaching during plant 

trial will cause less environmental risk than EDTA amended soils. 

In co-contaminated soils, the present study show that single application of EDTA or EDTA + 

citric acid could be regarded as an efficient chelate candidate for the simultaneous 

phytoextraction of Cr and dissipation of B[a]P by M. sativa. The increase in TF as well as the 

metal extraction ratio following the application of EDTA or EDTA + citric acid provides a 

basis for further detailed study in the ability of M. sativa to simultaneously accumulate Cr and 

remove B[a]P in the presence of EDTA or EDTA + citric acid.  
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8 
General discussion, conclusions and approaches for further studies 
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8.1 Summary 

Phytoremediation is an emerging technology that uses various plants to treat contaminated 

soils in different ways. It is widely accepted for treatment of metals or PAH contaminated 

soils. However, there are still challenges for the use of plants in remediation of co-

contaminated soils (Lin et al. 2008). Commonly, the interaction of metals and PAH in co-

contaminated soils could affect the bioavailability of metals and/or PAH and thereby limiting 

the potential of remediation with plants. The growth of pants can also be affected by the 

interactions of metals or PAH in co-contaminated soils. These effects can be antagonistic or 

synergistic (Lin et al. 2006).  Successful applications of phytoremediation have been recorded 

for individual contaminants or mixes of those within the same group. There is little 

information on the ability of plants to remediate both organic and inorganic compounds 

within contaminated soils 

The overall aim of this thesis was to determine whether phytoremediation could be applied to 

co-contaminated soils. Cu, Cr, pyrene and B[a]P were used as model contaminants. The 

overall aim was achieved by understanding the effects of contaminants on germination of 

seeds, early and latter seedling growth, the role of amendments, and the effect of soil ageing 

in four distinct but complementary chapters. 

• Chapter 4 assessed the effect of Cu and pyrene, and Cr and B[a]P on the early seedling 

growth of L. perenne using growth media. 

• Chapter 5 assessed the role of B. juncea or Z. mays as model plants for the remediation 

of soils co-contaminated with Cu and pyrene, or Cr and B[a]P respectively. 
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• Chapter 6 compared freshly spiked soils and aged soils of Cu and pyrene, or Cr and 

B[a]P contaminated soils using B. juncea and Z. mays respectively as model plants. 

• Chapter 7 assessed the role of amendments (EDTA and citric acid) during the 

phytoremediation of soils contaminated with Cu and pyrene, or Cr and B[a]P using M. 

sativa and Z. mays as model plants respectively. 

 8.2 Seed germination and seedling growth in growth media 

Growth medium spiked with Cu, pyrene, Cr and B[a]P were chosen as model contaminants  

and seeds of L. perenne were used to evaluate the response of seeds during early growth stage 

to co-contamination. Single Cu or Cr contamination significantly inhibited the germination 

rate as well as the early seedling growth of L. perenne (Figures 4.1, 4.4, 4.5, 4.17, 4.20 and 

4.21). Single contamination of pyrene or B[a]P did not show any negative effect on seed 

germination, however pyrene showed significant inhibition on early seedling growth whereas 

B[a]P enhanced seedling growth.   

Co-contamination of Cu and pyrene or Cr and B[a]P significantly inhibited the germination 

rate as well as the seedling growth when compared to single contamination of Cr, Cu, pyrene 

or B[a]P. In Cu and pyrene co-contaminated growth medium, over 48% of seeds failed to 

germinate and over 58% and 68% of shoot and root length of L. perenne respectively were 

inhibited relative to single treatments. Similarly, over 35% of seeds failed to germinate in Cr 

and B[a]P co-contaminated growth medium and over 37% and 56% of shoot and root length 

respectively were inhibited. There were also significant relationships when Cu and pyrene, or 

Cr and B[a]P were co-contaminated in solution. Joint contamination of Cu and pyrene had a 
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significant synergistic effect on the shoot and root elongation of L. perenne and a significant 

antagonistic effect on final germination rate. In contrast, the joint contamination of Cr and 

B[a]P had a significant antagonistic effect on shoot and root elongation as well as the final 

germination rate of L. perenne. This suggests that different contaminants affect the early 

seedling stage of plants in different ways. In both studies, the root elongation was the most 

sensitive to the toxicity of the co-contaminants.  

8.3 Effect of co-contaminated soils  

In plant glasshouse trial study, the growth of B. juncea was inhibited by fresh Cu-pyrene co-

contamination. There was no visual evidence of toxicity of Cu to plants in soils contaminated 

with Cu alone. However, a noticeable visible toxicity effect of pyrene or Cu-pyrene 

contamination on B. juncea was observed (Figure 5.1A and B). Although the shoot Cu 

concentration and TF under co-contamination of Cu and pyrene were enhanced (Figure 5.3A 

and B, Table 5.2), but due to the reduced growth of B. juncea as seen in Figures 5.1A and 

5.1B, the amount of Cu removed under co-contamination was severely inhibited. In contrast, 

the single or co-contamination of Cr and B[a]P did not affect the plant growth of Z. mays. 

However, the removal of Cr by Z. mays in soils co-contaminated with Cr and B[a]P increased 

by over 79% (Figures 5.11A and B) and the rate of translocation of Cr from root to shoot of Z. 

mays also increased with co-contamination (Table 5.4). 

The dissipation of pyrene in single or co-contaminated fresh soils was significantly decreased 

with or without planting, but planting of B. juncea accounted for higher dissipation of pyrene 

reaching 90 to 94% of zero-time pyrene concentration. The presence of Cu in soil decreased 
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the dissipation of pyrene in planted soil to an extent that at 100 mg kg-1 Cu, there was no 

evidence of plant enhanced pyrene dissipation (Figure 5.8A and B). On the other hand, 

planting of Z. mays did not enhance the dissipation of lower (1 and 5 mg kg-1) B[a]P co-

contaminated soils but only in soils co-contaminated with 10 mg kg-1 B[a]P or more. 

8.4 Effect of soil ageing 

Soil ageing affected the plant biomass, metal accumulation and PAH dissipation in different 

ways. B. juncea and Z. mays grew better in aged Cu-pyrene and Cr-B[a]P co-contaminated 

soils respectively (Tables 6.1 and 6.4). The amount of Cr removed by Z. mays was higher 

(>29%) in aged soil than in freshly spiked Cr-B[a]P co-contaminated soils (Table 6.5) while 

the Cu accumulated by B. juncea was significantly reduced in aged soil when compared to 

freshly spiked soils for all treatments except for lower Cu-pyrene co-contaminated soils 

(Table 6.2). 

It was clear from the results (Tables 6.3 and 6.6), that ageing influenced the dissipation rates 

of pyrene and B[a]P in co-contaminated soils. However, as shown in figures 6.4A and B, and 

6.5A and B, planting B. juncea in aged Cu-pyrene co-contaminated soils did not affect the 

dissipation rate of pyrene whereas planting Z. mays in aged Cr-B[a]P co-contaminated soils 

helped in the dissipation (>31%) of B[a]P than in freshly spiked soils (Figures 6.9A, B and 

C). 
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8.5 Effect of amendments 

Organic and inorganic chelates were studied to understand the efficiency of their application 

during phytoremediation of co-contaminated soils.  

In Cu-pyrene co-contaminated soils, the application of citric acid or EDTA negatively 

affected the growth of Z. mays while the combined application of EDTA and citric acid 

improved the growth of Z. mays by over 41% (Figure 7.1). In contrast, EDTA and/or citric 

acid did not seem to affect the growth of M. sativa in Cr-B[a]P co-contaminated soils. This 

suggests that the phytoremediation of co-contaminated soils with the help of ammendments 

depended on the contaminant mix and the type of plant usedOf all the chelates used, the 

combined application of EDTA and citric acid seemed to be the most effective chelate 

application for both Cu-pyrene and Cr-B[a]P co-contaminated soils. In Cr-B[a]P or Cu-

pyrene co-contaminated soils, the application of EDTA+ citric acid in the presence of M. 

sativa and Z. mays respectively increased the shoot Cr and Cu concentration by over 100% 

(Figures 7.13 and 7.3) and also enhanced the dissipation of B[a]P or pyrene by over 11% and 

31% respectively (Figures 7.17 and 7.9). Over 69 µg of Cr and about 98.9 µg of Cu were 

removed by M. sativa and Z. mays respectively with the help of combined application of 

EDTA and citric acid over the planting period. This represented about 3 times the amount of 

Cr removed with citric acid application or about twice the amount of Cr removed with EDTA 

application (Table 7.5) and over twice the amount of Cu removed with the help of EDTA or 

citric acid (Table 7.2). 
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There was an important observation with single Cr or Cu contaminated soil. For example in 

soils contaminated with Cr alone, citric acid helped in the phytoextraction of more Cr than 

EDTA or EDTA+ citric acid. This is in contrast with Cr-B[a]P co-contaminated soil, where 

plants grown with the application of citric acid did not show any evidence of phytoextraction. 

Similarly, in soils contaminated with Cu alone, the application of EDTA enhanced the 

phytoextraction of Cu whereas in Cu-pyrene co-contaminated soils, the application of EDTA 

inhibited the phytoextraction of Cu (Table 7.2). 

8.6 Soil PAH partitioning 

The chemical activity of the PAH which includes the concentration of PAH in the aqueous 

phase (pore water) of the soil is one of the indications of PAH bioavailability (Reichenberg 

and Mayer 2006). In this study, the two PAHs used (pyrene and B[a]P) have different 

characteristics and different aqueous solubility (Wick et al 2011), hence their bioavailability 

and degradation potential will vary. The pyrene concentration in pore water fraction of soil 

was always higher than that of B[a]P. At high concentration of pyrene used in this study (500 

mg kg-1), the soil gets more saturated than at lower concentrations and closer to the solubility 

of pyrene in water (Appendix 9A). There would be some potential for pyrene to come out as 

solid phase and limit bioavailability and degradation. When this happens, pyrene may be less 

available for microbial degradation. In contrast, the B[a]P concentrations used n this study 

seemed not be saturated. Even at 10 mg kg-1, the calculated concentration of B[a]P in pore 

water was below the solubility of B[a]P in water. This could be as a result of the low 

concentration of B[a]P used in this study. It is however known that higher ring PAHs 

including B[a]P are usually adsorbed into the soil phase (Jiries et al. 2000) while lower 
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molecular weight PAHs like pyrene are removed faster from soils because of their higher 

solubility. Therefore, it is important when looking at research, to consider the organic matter 

and clay percentages of the soil used in the experiment as well as pre treatment (ie sieving 

size) prior to the treatment additions. Sorptions to organic matter and clays may occur as the 

soil age and the microbial communities will undoubtedly change as the soil shifts from 

anaerobic to aerobic (Wick et al. 2011) thereby affecting the dissipation of PAHs. 

 

8.7 Phytoremediation potential 

Although plants used in this study showed evidence of phytoremediation of co-contaminated 

soils, there are many different economic drivers that can determine whether it can be applied 

to the field. The technologies that are often preferred are those that are also cost effective and 

take less time. Conventional clean up activities for contaminated soils may be the cause of 

external effects such as green house gas emission from heavy duty machinery powered by 

diesel fuel (Suer and Anderson-skold 2011). With this in mind, the recent superfund green 

remediation strategy of USEPA stipulates that green remediation factors will be considered in 

evaluation of the economic efficiency of remediation projects (EPA 2010), and 

phytoremediation have been suggested as a cost effective approach. However, it is clear from 

our study why implementation of phytoremediation remains a problem. Tables 8.1 to 8.3 

shows the time it will take the plants used in this study to completely remove the 

contaminants in soil. The practical implementation of phytoremediation has been constrained 

by the expectation that site remediation should be achieved in time that is comparable to other 

clean up technologies. Our study seem to suggest that the phytoremediation of co-
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contaminated soils at the  concentration used for this study will take so many years for 

complete removal of metals but with less than a year for PAH treatment for fresh 

contaminated and aged soil- it is clear that natural  processes also helped in the dissipation of 

PAH in soils. It is shown in Tables 8.1 and 8.2 that B. juncea will likely help in the 

dissipation of all pyrene in freshly and aged soil in 96 days and 119 days respectively. 

However, it will require over 524 years (fresh soil) and 1308 years (aged soil) for it to 

completely remove all the Cu at the rate applied in the present study.  Similarly, Z. mays will 

take about 949 years for complete removal of Cr in co-contaminated soils (Table 8.2). The 

application of EDTA and citric acid to co-contaminated soils enhanced the removal of metals 

and PAH used in this study (Table 8.3). This is evident as the number of years it will take Z. 

mays or M. sativa to completely remove contaminants decreased. But there is a problem with 

the management of the side effects related to the addition of chelates which includes metal 

leaching. The cost of additional liners for containing the pollutants will increase the cost of 

phytoremediation. It is clear that the effect of combined chelates remained a factor in the 

reduction of Cu or Cr and as it will take Z. mays or M. sativa about 187 and 140 years 

respectively to clean up soil with the application of chelates, or longer without chelates 

application, this time would have been less of a constraint if phytoremediation could be 

combined with a profit making operation. However, the Cu or Cr biomass of plants would 

have to be deposited and cannot be used for energy production. Metals have a proven effect 

on the enzymes responsible for the breakdown of biomass particles and whether they 

stimulate or inhibit biogas production depends on the total metal concentration, the chemical 

form and the process related effect (Chen et al. 2008). Cr and Cu however have shown 
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tendencies to reduce biogas yield during digestion (Wong and Cheung 1995). This will 

greatly increase the cost of phytoremediation. In relation to this study, it is not possible to 

draw a conclusion on the economic justification of phytoremediation, say as compared with 

other conventional clean up studies because there will be so many variables which were not 

analyzed in this study (like cost, energy production and CO2 abatement), however, the length 

of time it takes for remediation deserves attention. The factors of economics cannot be ruled 

out from selection of any remedial action. There may be cost savings up front in the 

implementation of phytoremediation compared to other conventional alternatives that are 

engineering intensive. A lower initial cost may however be overshadowed by the cost 

associated with the long term needs of phytoremediation- in this case, the requirement of over 

400 years (without application of chelates) or over 100 years (with chelates) of monitoring 

and maintenance. As such, the total cost of phytoremediation may exceed the cost of 

alternative technologies. Although this study showed that phytoremediation can be applied to 

co-contaminated sites, it is clear that new technologies find it difficult to enter the market, and 

based on the long time it will take for complete treatment of co-contaminated soils with plants 

in this study, it will be difficult to see it changing.  
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Table 8.1: Biomass yield (g kg-1) and average exraction of metal and PAH by B. juncea and Z. mays in fresh co-contaminated 

soils  

 

C Calculation based on 1 kg of soil and assuming linear extrapolation 

Plants Soil Cu 
conc.(mg 
kg-1) 

Soil 
pyrene 
conc. 
(mg kg-1) 

Soil Cr 
conc. 
(mg kg-1) 

Soil 
B[a]P 
conc. 
(mg 
kg-1) 

Biomass(g) Cu 
removal(µg 
kg-1) 

Cr 
removal 
(µg kg-

1) 

Metal 
Clean up 
time (y)c 

Pyrene 
removal 
(%) 

B[a]P 
removal 
(%) 

PAH 
Clean 
up 
time 
(d)c 

B. 
juncea 

 50 250   0.33 18.3     487     88.66  73 

  50 500   0.25 21.91     406     71.7   91 

  100 250   0.24 33.96     524   93.20   70 

  100 500   0.26 38.75     460   67.06   97 

Z. 
mays 

   50 1 2.57  7.52    1093   46.70 128 

    50 5 2.23  4.4    1868  22.87  262 

    50 10 2.23    5.23    1572  37.63 159 

    100 1 2.27    9.38    1752  31.09 193 

    100 5 2.47    6.54    2514  15.84 379 

   100 10 1.23    4.37 3762  62.87 95 
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Table 8.2: Biomass yield (g kg-1) and average exraction of metal and PAH by B. juncea and Z. mays in aged soils 

 

Plants Cu 
conc. 
(mg kg-

1) 

pyrene 
conc. 
(mg kg-

1) 

Cr conc.  
(mg kg-1) 

B[a]P 
conc.  
(mg kg-1) 

Biomass(g) Cu 
removal 
(µg kg-1) 

Cr 
removal 
(µg kg-

1) 

Metal 
Clean up 
time (y) c 

Pyrene 
removal 
(%) 

B[a]P 
removal 
(%) 

PAH 
Clean up 
time (d) c 

B. 
juncea 

50 250   3.1 5.49  1622 83.91    77 

 50 500   2.21 3.16  2818 57.02    114 

 100 250   1.45 13.61  1308 54.45    119 

 100 500   0.52 12.6  1413 87.89     74 

Z. 
mays 

  50 1 2.53  10.57 778  32.86    183 

   50 5 2.77  16.56 496  18.48    325 

   50 10 2.6  18.72 439  60.08     100 

   100 1 3.1  23.58 697  44.06     136 

   100 5 2.13  17.33 949  35.83     167 

   100 10 2.8  28.45 578  44.93      134 

C Calculation based on 1 kg of soil and assuming linear extrapolation 
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Table 8.3: Biomass yield (g kg-1) and average exraction of metal and PAH by Z. mays and M. sativa with the application of 

combined chelates in co-contaminated soils 

 

Fresh 
soil 

Cu conc. 
(mg kg-1) 

pyrene 
conc. 
(mg kg-1) 

Cr 
conc
.(mg 
kg-1) 

B[a]P 
conc. 
(mg kg-1) 

Biomass(g) Cu 
removal 
(µg kg-1) 

Cr 
removal 
(µg kg-1) 

Metal 
Clean up 
time (y) c 

Pyrene 
removal 
(%) 

B[a]P 
removal 
(%) 

PAH 
Clean 
up time 
(d) c 

Z. 
mays 

50 100   0.9   44.05       187      86    70 

M. 
sativa 

   50   10   0.338  58.718      140      55   109 

C Calculation based on 1 kg of soil and assuming linear extrapolation 
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8.6 Conclusions 

The investigation on the phytoremediation potential of co-contaminated soils with different 

plant species, soils with contrasting properties, range of metal and PAH concentrations and 

presence of organic and inorganic chelates in this study represented a rigorous assessment of 

this area of research. The degree to which these tests could explain the ability of remediating 

co-contaminated soils with plants appeared to be metal-PAH specific with the metal-PAH 

interactions influencing the way different plants simultaneously removes metals and dissipates 

PAHs from soils. 

From the study, it was clear that phytoremediation could be applied to co-contaminated soils, 

but length of time it takes for soil treatment could prohibit the commercialization of this 

technology.  

8.7 Approaches to further studies 

The findings of the research presented in this thesis suggest further studies in the following 

areas 

• The root and shoot uptake of pyrene or B[a]P during remediation should be studied. 

Although it is not a direct mechanism of PAH removal, however, would it have 

influenced remediation?  

• Does root morphology impact upon metal uptake and PAH dissipation? Different plant 

species have different root systems, would this alter metal uptake and PAH dissipation 

in co-contaminated soils? 
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• Does soil microbial activity affect metal and PAH availabilities and hence there 

removal from soil? If so, are there specific communities associated with plant species 

that can be identified? 

• Does plant diversity affect metal uptake as well as PAH dissipation? Will they compete 

for growth within co-contaminated soils, or will they complement each other? 

• lower concentrations of pyrene or B[a]P at the level of their respective aqueous 

solubilities during the germination of and early seedling growth of plants should be 

studied.  
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Appendix 

Appendix 4A: Results for Cu and pyrene germination experiment 

4A. 1Final germination percentage  

4A. 2 Germination rate index 

4A. 3 Shoot length 

4A. 4 Root length 

Appendix 4B Results for Cr and B[a]P germination experiment (Chapter 4) 

4B.1 Final germination percentage 

4B.2 Germination rate index 

4B.3 Shoot length 

4B.4 Root length 

Appendix 5A: Results for Cu and pyrene co-contaminated soil experiment (Chapter 5) 

5A.1 Shoot dry weight 

5A.2 Root dry weight 

5A.3 Shoot Cu concentration 

5A.4 Shoot Cu accumulation 
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5A. 5 Root Cu concentration 

5A. 6 Residual pyrene concentration in final soil (with planting) 

5A. 7 Residual pyrene concentration in final soil (no planting) 

5A. 8 Zero time pyrene concentration in soil 

Appendix 5B: Results for Cr and co-contaminated soil experiment (Chapter 5) 

5B.1 Shoot biomass 

5B.2 Root biomass 

5B.3 Shoot Cr concentration 

5B.4 Shoot Cr accumulation 

5B.5 Root Cr concentration 

5B.6 Root Cr accumulation 

5B. 7 Shoot concentration factor 

5B. 8 Root concentration factor 

5B. 9 Residual B[a]P concentration in final soil (after planting) 

5B. 10 Residual B[a]P concentration in final soil (no planting) 
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Appendix 6A: Results for ageing experiment (Chapter 6) 

6A.1 Shoot biomass 

6A.2 Root biomass 

6A.3 Shoot Cu concentration 

6A.4 Shoot Cu accumulation 

6A.5 Root Cu concentration 

6A.6 Root Cu accumulation 

6A.7 Total Cu 

6A.8 Translocation factor 

6A.9 Final soil residual pyrene (with plant) 

6A.10 Zero time pyrene concentration 

6A.11 Final soil residual pyrene (no planting) 

6A.12 Final soil percentage dissipation of pyrene (with planting) 

6A.13 Final soil percentage dissipation of pyrene (without planting) 
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Appendix 6B:  Results for Cr + B[a]P ageing experiment (Chapter 6) 

6B.1 Shoot biomass 

6B.2 Root biomass 

6B.3 Shoot Cr concentration 

6B.4 Shoot Cr accumulation 

6B.5 Root Cr concentration 

6B.6 Root Cr accumulation 

6B. 7 Total Cr  

6B. 8 Translocation factor 

6B. 9 Zero time B[a]P concentration in soil  

6B.10 Residual B[a]P concentration in final soil (with plant) 

6B.11 Residual B[a]P concentration in final soil (No planting) 

6B.12 B[a]P dissipation (%) in planted soil 

6B.13 B[a]P dissipation (%) in non planted soil 
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Appendix 7A: Results for Cu+ Pyrene with chelate application (Chapter 7) 

7A.1 Shoot biomass 

7A.2 Root biomass 

7A.3 Shoot Cu concentration 

7A.4 Shoot Cu accumulation 

7A.5 Root Cu concentration 

7A.6 Root Cu accumulation 

7A.7 Translocation factor 

7A.8 Water extractable Cu 

7A.9 Residual pyrene in soil 

7A.10 Zero time Soil Pyrene concentration 

Appendix 7B: Results for Cr+ B[a]P with chelate application 

7B.1 Shoot Biomass 

7B.2 Root Biomass 

7B.3 Shoot Cr concentration 

7B.4 Shoot Cr  Accumulation 
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7B.5 Root Cr concentration 

7B.6 Root accumulation 

7B.7 Translocation factor 

7B.8 Bioconcentration factor 

7B.9 Soluble Cr in soil 

7B.10 Residual soil B[a]P concentration 

7B.11 Initial Soil B[a]P 

Appendix 8A: 

8A.1 Detection limits of GC-MS for 16 priority PAHs 

Appendix 9A: Soil Partitioning calculation 


