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Abstract 

Introduction 

Patients with Chronic Kidney Disease (CKD) are at increased risk of both 

cardiovascular disease and progression to end-stage kidney disease; our 

understanding of the factors that determine these poor outcomes is incomplete. 

The study reported in this thesis has been designed to address some of these 

shortfalls.  

Methods 

I established a prospective, observational cohort study of patients with high risk 

CKD as defined by i) declining kidney function and/or ii) proteinuria and/or iii) 

advanced (stage 4 and 5) CKD. Participants undergo repeated detailed bio-

clinical assessment over a follow up period of ten years and are tracked for 

clinical outcomes. The baseline data are presented in this thesis along with some 

data form the six-month visit. 

Results 

I report cross-sectional data from the first 500 participants; mean age is 65 

years, 60% were male and 72% white ethnicity. Mean eGFR was 

27mL/min/1.73m2 and median urine ACR was 26.9 mg/mmol. Detailed analyses 

demonstrated important associations between i) quality of life and 

unemployment, male gender, deprivation, co-morbidity and inflammation ii) 

arterial stiffness, inflammation and renal and cardiovascular outcomes iii) 

periodontitis and arterial stiffness iv) mortality, inflammation and arterial 

stiffness.  

Conclusions 

This thesis reports important new findings from patients with CKD and 

establishes a resource that will provide future insights that should contribute to 

improving clinical outcomes.  
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PWV; Pulse Wave Velocity 
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RCT; Randomised controlled trial 
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SWLS; Satisfaction with life scale 
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1. Chapter One: Introduction 

1.1. Chronic Kidney Disease: a historical perspective 

Historically nephrologists have focused their attention on two groups of patients, those 

with an acute decline of kidney function (now classified as Acute Kidney Injury (AKI)) 

and those requiring long-term renal replacement therapy (RRT). Most patients with 

chronic renal failure (now called chronic kidney disease (CKD)) received no specialist 

care by nephrologists until they were close to or had reached End Stage Kidney Disease 

(ESKD) that may require RRT (1).  

 

The exception to this were patients with immune or inflammatory kidney disease 

(usually glomerulonephritis) as identified by kidney biopsy (2), where there is an 

intense interest in both the pathogenesis and natural history of these disorders and 

patients were often treated with immune-modulating drugs. However this group of 

patients only represent a minority of patients with CKD; the majority of patients with 

CKD are elderly and have sustained kidney damage as a consequence of vascular disease 

or one or more of hypertension, macrovascular disease and diabetes. These patients had 

either not been identified as having CKD and/or remained under the care of general 

practitioners until they reached ESKD (3-5).  

 

There were a number of reasons for the lack of recognition of CKD as a highly important 

chronic disease, both for the individual patient and in terms of the organisation of 

clinical services and the health economic implications of the disorder, these include: (i) 
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the underlying renal disease was not felt to be amenable to direct treatment; (ii) there 

was no agreed structure to classify the severity of their renal impairment; and (iii) there 

was an under-appreciation of the impact of the complications of CKD on the patient. 

During the past 10-years these shortfalls are being systematically addressed. As a 

consequence of this there is now evidence developing from the UK and other countries 

that outcomes for people with CKD are improving (6, 7). 

 

An important requirement for improving the outcomes of people with CKD is a detailed 

understanding of the natural history of the disease. On a population basis, much 

valuable information can now be derived from very large cohorts, where known 

outcomes are linked to routinely collected clinical data (8-10). Such studies informed 

the classification of CKD and allowed more accurate stratification of risk. However, 

more detailed information than this is required to elicit the natural history of CKD in 

subgroups of people with CKD, to better define the relationship between traditional and 

non-traditional risk factors for CKD, and to identify new targets for treatment for people 

with CKD. This information can only be provided by carefully characterised, 

prospectively recruited cohorts of people with CKD. 

 

In this thesis I describe the establishment of a prospective bio-clinical cohort, the Renal 

Impairment In Secondary Care (RIISC) study. The study recruits patients with CKD from 

secondary care in Birmingham. Participants undergo six study visits over a ten-year 

period, at each visit a detailed bio-clinical assessment is carried out, outcomes relating 

to progression of renal disease, cardiovascular events and deaths are tracked. 

Participants must have at least one of, albuminuria quantified by a urinary albumin 
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creatinine ratio (ACR) of ≥70 mg/mmol, progressive stage 3 CKD or stage 4-5 CKD (non-

dialysis (ND)). In addition to exclusion of patients who require any form of RRT patients 

with kidney disease under treatment with immune modulatory agents are also 

excluded.  

 

In this introductory chapter I provide the context for the RIISC study by reviewing the 

current status of CKD as it relates to the research chapters that are presented in this 

thesis. This includes an overview of the other prospective cohorts that have been 

recruited to date and the relevant data that these cohorts have produced. 

1.2. The classification of CKD 

One of the major developments in CKD since 2002 has been the introduction of a 

classification system for CKD. This system was based on the adoption of the 

Modification of Diet in Renal Disease (MDRD) study formula to estimate the standard 

measurement of excretory kidney function, the glomerular filtration rate (GFR). The 

MDRD equation was used by the National Kidney Foundation Kidney Disease Outcomes 

Quality Initiative (NKF-K/DOQI) to frame a classification system that has become widely 

adopted in clinical practice (11). The guidelines arose from the observations that to 

improve the outcomes of patients on dialysis required a focus on the health of patients 

at risk of ESKD and that it may be possible to slow the rate of progression and reduce 

the complications of CKD (11).  

 

The formalised reporting of estimated GFR (eGFR) led to better identification of the 

prevalence of kidney disease, with estimates of CKD in the developed world of up to 
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16% of the adult population (12, 13). In the UK a recent report that utilised 

epidemiological data identified the prevalence of all CKD as 14% in men and 13% in 

women. The prevalence of CKD where there was a demonstrable reduction in excretory 

kidney function as defined by an eGFR of <60ml/min/1.73m2 (stage 3-5 CKD) was 6% 

(14). 

 

More accurate identification of CKD, including the use of a classification system, allows 

the risk stratification of patients for the purposes of patient counselling and appropriate 

targeting of interventions that may improve the outcomes of those affected; it also 

enables comparisons to be made between similar groups of patients for the purposes of 

research. The need for further clinical research in CKD was recognised by K/DOQI 

through the framing of the following research questions that were used in the 

development of the CKD classification system and which they wanted to address when 

they published the first set of guidelines for the management of patients with CKD (11, 

15).  

1. How is the disease to be defined? Is it on the basis of pathological features or 

evidence of impaired function or structure? Is there to be an element of 

chronicity included in the definition and how is this defined? 

2. If impaired function is an important defining characteristic how is it to be 

measured and how reproducible and reliable are the measures to be used and 

are they equally reproducible and reliable in all potential patients? 

3. Should any additional evidence of disease be included in the classification and if 

so what? 
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4. Are the consequences of the disease understood and is there evidence that the 

natural history can be altered by available interventions? 

I will now discuss these questions to describe the basis of their diagnostic and 

classification system. 

1.2.1. How is CKD to be defined? 

Patients with CKD are unusual in comparison to patients in other disease groups, they 

do not share a common underlying diagnosis and as a result the pathophysiology and 

natural history may differ within the group. However it was appreciated by the authors 

of the guideline that these patients did have one thing in common, a chronic disease 

process that resulted in decreased kidney function. They also acknowledged that in 

different diagnoses the markers of impaired kidney function might differ. Despite these 

observations once kidney disease is established the features that define CKD apply 

across disease states and comprise evidence of damaged renal parenchyma as 

demonstrated by active urinary sediment and/or structural abnormality (this must be 

present for stages 1 and 2) and/or evidence of decreased kidney function as 

demonstrated by a reduced GFR and chronicity to distinguish it from AKI (11).  

 

Until the development of the K/DOQI guideline, kidney function was primarily assessed 

using direct measurement of serum or plasma creatinine, formed from creatinine 

phosphate metabolism in skeletal muscle, to produce an approximation of kidney 

function. However serum creatinine levels are variably effected by other factors 

including muscle mass, dietary protein load, gender and direct renal tubular excretion. 

As a consequence (i) identical serum creatinine levels represent different levels of 
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kidney function in different individuals and (ii) the relationship between creatinine 

levels and kidney function is non-linear. 

 

Whilst not a direct measurement of GFR, creatinine can be utilised in combination with 

correction factors that are specific for the individual to produce an eGFR. The 

importance of eGFR in providing a readout of kidney function that is used in routine 

clinical practice is based on the principle that true GFR is the most accurate assessment 

that we have available for measuring the excretory function of the kidneys.  Glomerular 

filtration rate is defined as the volume of fluid filtered from the glomerular capillaries in 

a specified period of time; any substance that is freely filtered at the glomerulus, and is 

neither secreted nor absorbed by the kidney can be used to measure GFR; in routine 

clinical practice creatinine is the molecule that is utilised for this purpose. Creatinine is 

freely filtered at the glomerulus, is not protein bound and is not metabolised by the 

kidney, however as previously noted both tubular secretion  and variable production is 

dependent upon factors that are unrelated to kidney disease are important confounders 

(16). Some of these confounders can be corrected for by utilising equations into which 

they are incorporated to produce a calculated or eGFR. 

  

True or measured GFR can be obtained using inulin clearance (the gold standard 

method). The inulin clearance method requires intravenous infusion and timed urine 

collections over a number of hours and is therefore complex, costly and inconvenient. 

Furthermore inadequate urine collections can cause inaccuracy of the obtained 

measurement (17). More commonly, for assessment of measured GFR, isotopes such as 

[51Cr]EDTA and 125I-iothalamate can be used. However, these are also impractical to use 
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in routine clinical practice, as they are time consuming for the patient, expensive, 

require a specialised organisational infrastructure (special licensing and regulation of 

handing and waste disposal of the radioisotope) and exclude certain patient groups (e.g. 

pregnant women) (18). To overcome these obstacles other exogenous substances have 

also been used to measure GFR, these include the radiocontrast agents iohexol and 

iothalamate (19, 20). Both iohexol and iothalamate have been shown to correlate 

closely with gold standard measures of kidney function (inulin clearance) with excellent 

reproducibility and minimal renal toxicity (21-23). However there is evidence that 

measured GFR does not perform better than eGFR when clinically relevant outcomes 

were studied; in a sub-group of 1214 participants from an observational study a cross-

sectional analysis was performed, GFR was estimated using both creatinine and cystatin 

based equations and measured using iohexol, the authors concluded that measured GFR 

was not superior to estimated GFR in explaining the complications of CKD (24).  

 

The GFR obtained from tests that provide a measure of GFR produces normal values for 

men of around 130 ml/min/1.73m2 and for women of around 120 ml/min/1.73m2; 

with increasing age these ‘normal’ values decline (25-28). The use of measured GFR is 

currently restricted to situations where a precise measure of kidney function is 

required (for example in individuals wishing to be considered as living kidney donors) 

and eGFR is the current clinical standard in most other clinical scenarios. The current 

formula used to calculate eGFR in routine clinical practice in the UK is the four variable 

modification of diet in renal disease (MDRD) equation.  
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The MDRD equation has replaced the Cockcroft-Gault (CG) (29) formula, which was 

developed against creatinine clearance, introduced in 1976 and was subsequently used 

by many clinical services in routine practice. Indeed, the formula continues in use as it 

was used for the purposes of defining dose adjustments for many drugs which have 

significant renal clearance. However it is a complex formula, requiring anthropometric 

data that may not be routinely or readily available and it may provide an overestimation 

of GFR in some groups (30). Furthermore the CG formula is less accurate than MDRD 

and can vary from measured GFR by>30% (31, 32). 

 

Figure 1-1: The Cockcroft-Gault formula for the estimation of GFR (29) 

 

 

 

 

 

The MDRD formula was published in 1999 when Levey et al developed formulae to 

estimate GFR using serum creatinine and other readily available data as a component of 

a randomised controlled trial designed to assess the effect of protein restriction and 

blood pressure control upon the progression of CKD (33). 1628 patients with kidney 

disease were recruited and the study protocol included measurement of GFR with 125I-

iothalamate, a 24-hour urine collection and a single measurement of serum creatinine 

(34, 35). The recruited population were young, predominantly male and 88% were of 

white ethnicity, the prevalence of diabetes was low and there were no individuals with 

                              [(140-Age) x weight (in kg)]              * 

[72 x Serum creatinine (in mg/dL)] 

*Multiply by 0.85 if female 
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normal kidney function (30). A stepwise regression model was utilised to predict GFR 

utilising training and validation samples. Seven equations were assessed and these are 

listed in figure 2 

 

Figure 1-2: The equations compared in the MDRD study for the estimation of GFR 
(30) 

 

Alb, serum albumin; CCr, creatinine clearance (mL/min/1.73m2); Curea, urea clearance (mL/min/1.73m2); PCr, serum 

creatinine concentration (mg/dL); SUN, serum urea nitrogen concentration (mg/dL); UUN, urine urea nitrogen 

concentration (g/d) 

 

The equation that resulted in the maximum R2 value (91.2%) included urine 

biochemistry variables (equation 6) but is not useful for clinical practice as it requires 

24-hour urine collection. Therefore equation 7 was used to interpret the study as the 

precision of the equation was close to that of equation 6 (R2 90.3%) and it included 

routinely collected clinical data (30). The inclusion of variables associated with 

creatinine production (age, ethnicity and gender) contributed to the accuracy of the 

Equation 1: GFR = 0.69 x [100/PCr] 

Equation 2: GFR = 0.81 x [Cockcroft-Gault formula] 

Equation 3: GFR = 0.81 x [CCr]  

Equation 4: GFR = 1.11 x [(CCr + Curea)/2] 

Equation 5: GFR = 1.04 x [CCr]+0.751 x [Curea]+0.226 x [1.109 if patient 

black] 

Equation 6: GFR = 198 x [PCr]-0.858 x [age]-0.167 x [0.822 if patient is 

female] x [1.178 if patient is black] x [SUN]-0.293 x [UUN]+0.249 

Equation 7: GFR = 170 x [PCr]-0.999 x [age]-0.176 x [0.762 if patient is 

female] x [1.180 if patient is black] x [SUN]-0.170 x [Alb]+0.318 
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equation, although the equation was not validated in individuals with normal renal 

function or the elderly (patients over 70 years of age were not included in the MDRD 

study), these omissions may limit the utility of the equation as an estimation tool across 

a CKD population. 

 

The K/DOQI working group abbreviated MDRD equation 7 by removing blood urea 

nitrogen and serum albumin from the calculation. The resultant abbreviated, “4-

variable MDRD” formula although not validated by the MDRD group, performed well 

compared to 125I- iothalamate in an analysis of 1775 patients recruited to the African 

American Study of Kidney Disease and Hypertension (AASK) (36). This equation formed 

the basis for the 2002 classification system (11, 37). The stages of CKD that were 

created were based upon the eGFR; although patients with stage 1 and stage 2 CKD 

required additional evidence of kidney damage for classification. 

Figure 1-3: The four variable MDRD equation for estimating GFR from serum 
creatinine (36) 

 

 

 

sCR, serum creatinine 

In 2009, in an attempt to improve the accuracy of eGFR, the CKD-Epi formula was 

developed from a pool of ten studies which produced a total of 8254 patients (2/3 of 

whom were randomly selected for formula development and 1/3 for validation; a 

further 3896 patients from 16 studies were then used for external validation purposes) 

(38). The new formula performed better than the MDRD formula, especially at higher 

eGFR = 32788 x sCr (mmol/L)-1.154 x age-0.203 x [1.212 if black] 

x [0.742 if female] 

sCr = serum creatinine 
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GFRs, and there is also some evidence that it provides better cardiovascular disease 

(CVD) risk stratification than the MDRD formula (39). In 2013 KDIGO published an 

updated set of CKD guidelines and while they fall short of suggesting that the CKD-Epi 

formula should replace the MDRD formula its use is described as “reasonable” (40). 

 

Work is continuing in this area and includes other markers of kidney function. A recent 

large community based cohort study including individuals aged >65 years (in contrast 

to the MDRD study), calculated the prevalence of CKD using the MDRD and CKD-Epi 

equations, with CKD-Epi GFR estimated both by creatinine and by cystatin C. The data 

obtained suggested a variance in the prevalence of CKD dependant upon the equation 

used, although the cystatin C based CKD-Epi estimate appeared to be the most specific 

(41). While this was a large study it was limited by being a cross-sectional analysis and 

by the absence of a gold standard measure of GFR against which the estimating 

equations were compared. 

Figure 1-4: The CKD-Epi equation for estimating GFR from serum creatinine (38) 

 

 

 

sCr, serum creatinine; k ,0.7 for women and 0.9 for men; a, -0.329 for women and -0.411 for men 

1.2.2. What additional evidence for renal damage is required? 

The working group acknowledged that there are markers of kidney damage other than 

markers of impaired kidney function (reduced GFR), these include structural anomalies 

of the renal tract (for example polycystic kidneys or posterior urethral valves) and 

eGFR = 141 x min(sCr/k,1)a x max(sCr/k,1)-1.209 x 0.993age x (1.018 

if female) x (1.159 if black) 
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active urinary sediment (haematuria or proteinuria) (15). Individuals with structural 

kidney disease are at risk of progression and even in the absence of evidence of reduced 

GFR should be considered to have CKD. The presence of haematuria or proteinuria may 

indicate glomerular pathology and the importance of proteinuria as a risk factor for CKD 

progression and CVD has become increasing recognised with time and will be described 

later in this chapter. The final definition of CKD by the workgroup relied on (11): 

(i) The presence of kidney damage for ≥ 3 months, with kidney damage defined 

as pathological abnormalities or markers of damage, including abnormalities 

in blood or urine tests or imaging studies and/or 

(ii) GFR <60 ml/min/1.73m2 for≥ 3 months with or without kidney damage. 

1.2.3. Are the consequences of the disease understood and is there 

evidence that the natural history can be altered by available 

interventions? 

At the time of development of the guideline there was considerable concern that the 

numbers of patients with ESKD was increasing, thus placing a significant burden on the 

provision of health care. Patients with CKD were known to be at risk of progression to 

ESKD and patients with ESKD were known to be at significant cardiovascular risk (42). 

In the same year that the guideline was published, the Hoorn study reported that 

individuals with mild kidney impairment (estimated using serum creatinine, the CG 

formula and the MDRD formula) were at risk of increased cardiovascular mortality (43). 

 

The following year, in data derived from a community based observational study, 

Atherosclerosis Risk In Communities (ARIC), where the majority of participants had 

preserved kidney function; the rate of cardiovascular events over the follow up period 



36 

of around six years was higher in individuals with a reduced eGFR than those with a 

normal eGFR (44). The risk was incrementally higher for people with a lower eGFR and 

was more pronounced for individuals of African American ethnicity than White 

ethnicity and was independent of other CVD risk factors (44). 

 

In a large cohort of community dwelling Americans Go et al reinforced this observation 

and demonstrated an independent, graded increase in risk of CVD, risk of death and 

hospitalisation as eGFR fell in a study with a follow up period of just under three years 

(45). This increased risk started with an eGFR below 60mL/min/1.73m2 and increased 

with the severity of CKD. While this study did not contain information about other 

potential CVD risk factors it indicated that individuals with even minor degrees of renal 

impairment were at significant CVD risk and that a component of this risk was likely to 

be independent of other comorbidities that are associated with CKD (45). 

 

The reasons for the association between CKD and CVD are only partly understood; 

although many risk factors for CVD are also causes or complications of CKD (diabetes, 

hypertension and vascular calcification), not all of this enhanced risk is explained by 

these traditional risk factors and it has been hypothesised that non-traditional risk 

factors are implicated in CVD development (46-48). The risk factors for initiation and 

progression of CVD in patients with CKD are further discussed further in section 2. 

 

Progression of CKD to ESKD occurs in a minority of patients, and there is geographical 

variation in the incidence of progression (13). Where progression does occur there is an 

increased risk of CVD in addition to the risk associated with baseline and stable 
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impairment of kidney function (49).  An analysis of the CVD health study showed that 

patients whose eGFR declined by more than 3mL/min/1.73m2/year were at increased 

risk of all cause and cardiovascular mortality (50). In another analysis of the same 

cohort the association between cardiovascular events and rate of decline of kidney 

function was examined; the incidence of all types of cardiovascular events was higher in 

those patients with a more rapid decline of kidney function, this was independent of 

demographic factors, CVD risk factors and baseline kidney function (49). These 

observations suggest that the presence and progression of CKD are both important CVD 

risk factors, the possible mechanisms for this will be discussed in section 2. 

 

The importance of CKD as a CVD risk factor, and the hypothesis that the enhanced CVD 

risk could be mitigated by early identification of CKD with treatment of known risk 

factors such as hypertension, dyslipidaemia and diabetes, as well as an increased 

understanding of the complications of CKD, was a major drive for the development of 

the K/DOQI CKD classification system and guidelines. At the heart of the classification 

system was the division of CKD into stages based upon eGFR using the modified MDRD 

formula.  The stages of CKD defined by the group are shown in table 1.  

Table 1-1: The stages of CKD as defined by the 2002 KDOQI guideline(11)  

Stage eGFR (mL/min/1.73m2) Description 

1 ≥ 90  Normal or increased GFR, with other evidence of kidney damage  

2 60-89  Slight decrease in GFR, with other evidence of kidney damage  

3 30-59 Moderate decrease in GFR, with or without other evidence of 

kidney damage  

4 15-29  Severe decrease in GFR, with or without other evidence of 

kidney damage  

5 <15  Established renal failure  

GFR, glomerular filtration rate. 



38 

1.3. The limitations of the staging system 

The CKD staging system represented a significant step forward in the management of 

patients with CKD; however in the decade since the introduction of the staging system 

concerns have been raised that it over classifies some individuals. There are two main 

issues that may contribute to over-classification: (i) those who do not have significant 

CKD but fall into the classification system as a consequence of a GFR decline as a 

consequence of the normal aging process; (ii) those with a single eGFR reading below 

60mL/min/1.73m2 due to inaccuracies of eGFR when the serum creatinine is at or close 

to the normal range. Over-classification may lead to over-inflated estimates of CKD 

prevalence and has distracted attention from those individuals at highest risk (51, 52).   

 

The use eGFR was not validated in the normal population, and this represents a 

significant weakness in the CKD classification system; the description of CKD as a single 

pathological entity where all individuals can be expected to progress from one stage to 

another at a uniform and predictable rate is another. Whilst the natural history of 

progressive CKD remains poorly understood, the lack of linearity in progression is well 

described as is the long-term stability of CKD in many patients who are classified as 

having the disorder; these differences can in part be explained by the fact that CKD is 

not a homogenous disease process but a collection of disparate pathological entities that 

have simply resulted in loss of kidney function over a variable period of time (53, 54). 

The 2002 CKD staging system overlooked this and invited the clinician to categorise a 

patient without necessarily considering whether the patient had genuine CKD, was in a 

static or progressive state, and/or had risk factors that placed them at enhanced 
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cardiovascular or renal risk (55); in the more recent 2012 KDIGO guideline an emphasis 

is placed upon progression of CKD and proteinuria (40). 

1.4. The risks associated with progressive CKD 

It has long been understood that hypertension is both a cause and a consequence of CKD 

and that as blood pressure (BP) rises the relative risk of development of ESKD increases 

correspondingly. There is a strong evidence base to show that management of BP to 

defined targets improves long-term survival and protects against the progression of 

CKD in people with renal disease (56-58). As the treatment of hypertension has 

improved, the relative risks of CVD and progressive CKD have fallen, further confirming 

a patho-physiological relationship (56, 58). The presence of proteinuria in hypertensive 

patients is also of prognostic significance; these patients are at highest risk of 

progressive decline in kidney function as well as CVD (59). For this reason the 

guidelines included recommendations on the treatment of hypertension for patients 

with CKD and patients with proteinuria (usually measured as albuminuria) have more 

aggressive BP targets than those without proteinuria (60, 61). The principle that 

albuminuria is a known risk factor for both progressive CKD and CVD was first explored 

in patients with diabetes (62-65). 

 

The term proteinuria is usually used to refer to the presence of albuminuria; while not 

all proteinuria is albuminuria it is important to note that semi-qualitative methods to 

identify proteinuria such as dip stick testing are most specific for the identification of 

albuminuria and other proteins may not be detected by this method (66). While much of 

the risk associated with proteinuria refers to albuminuria, it is important to note that 
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the urinary excretion of other proteins could be implicated in progressive CKD and CVD 

risk.   

 

Albumin is the most common protein present in the urine in health and in disease; this 

is a function of albumin as the most prominent plasma protein, and of the molecular 

weight of the molecule (which ensures that around 1% of albumin is filtered by the 

glomerulus in health) (67). Glomerular filtered albumin is almost completely resorbed 

in health by proximal tubular epithelium. However when there is excess filtration of 

albumin by the glomerulus and/or a decrease in the re-absorptive capacity of proximal 

tubular epithelium, albuminuria (pathological levels of albumin in the urine) can 

develop (68). In addition to being a marker of risk, albuminuria may be directly 

injurious to intrinsic renal cells and so contribute to the progression of CKD (69), the 

relationship between albuminuria, GFR and CVD has been recently reviewed by a 

number of authors (8, 9, 70). 

 

Traditionally albuminuria was quantified using 24 hour urine collections, as the amount 

of albumin excreted in the urine varied during the day; a major disadvantage of this 

method was that it was inconvenient for patients and collection was frequently 

incomplete resulting in inaccuracy. It is now acceptable to quantify albuminuria using 

spot urine tests, either for ACR or protein creatinine ratio (PCR), the sample does not 

have to be a first void sample although if one is available this is preferable as it 

correlates most closely with 24-hour measurements and can exclude orthostatic 

proteinuria (71). The K/DOQI reference ranges for albuminuria using ACR and the 

equivalent in both PCR and 24-hour urine results are shown in table 2. 
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Table 1-2: Interpretation of various methods of measuring proteinuria 

 

ACR, Albumin creatinine ratio; PCR, protein creatinine ratio; AER, albumin excretion rate; PER, protein excretion rate 

 

Albuminuria has traditionally been divided into microalbuminuria and overt 

albuminuria; the term microalbuminuria being first coined in the early 1980s by Viberti 

and Svendson and was defined as albuminuria that was below the level detectable on 

urine dip-stick testing but at a level that was predictive of the development of overt 

nephropathy (72, 73). Subsequently there has been a great deal of research confirming 

that microalbuminuria (defined as 30-300mg/24 hours) is both a renal and 

cardiovascular risk factor, however in recent years there has been an understanding 

that even albuminuria below the microalbuminuria cut off and into the normal range is 

a risk factor for cardiovascular events and progression to overt nephropathy (74-76).  

This more sophisticated appreciation of albuminuria as a continuous risk factor has led 

some to call for an end to the distinction between microalbuminuria and overt 

albuminuria (77). This has led to the description of albuminuria as normal, high or very 

high as shown in table 2 (40). 

 

 Normal High Very high 

ACR (mg/mmol) <3 3-30 >30 

PCR (mg/mmol) <15 15-50 >50 

AER (mg/day) <10 10-300 >300 

PER (mg/day) <50 50-500 >500 

Urine diptest -ve to trace Trace to 1+ >1+ 
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Albuminuria can result from a primary renal pathology (such as intrinsic glomerular 

disease), from any pathology that affects the glomeruli (such as diabetic 

glomerulosclerosis) or as a result of hyperfiltration where discrete nephron loss leads 

to compensatory hyperfiltration of surrounding nephrons, these hyperfiltrating 

nephrons contribute to an increase in urinary albumin secretion. Albuminuria can be 

considered not only as contributing to the risk of progressive CKD and as an early 

marker of kidney damage but also as a CVD risk factor (78, 79). 

 

1.5. Albuminuria and cardiovascular disease 

The pathophysiology of CVD in patients with CKD is complex as so many of the risk 

factors are inter-related, albuminuria is an excellent example of this, figure 5 illustrates 

some of these inter-relationships associated with albuminuria. 
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Figure 1-5: The interaction between albuminuria and cardiovascular risk 

 

1.5.1. Endothelial dysfunction and albuminuria 

The central pathological link between albuminuria and CVD is proposed to be 

endothelial dysfunction.  The endothelium is a single layer of cells that line the vessel 

wall, and becomes activated in response to shear stress related injury, resulting in 

reduced vessel dilation and increased adhesion of leucocytes and platelets (80). A 

consequence of repeated activation of the endothelium is endothelial dysfunction 

resulting in the disruption of the homeostatic function of the endothelium (81). 

Subsequently, markers of inflammation are found in tandem with lipid accumulation in 

vessel walls (82). The location of the endothelium has traditionally made measurement 

of its function complex and invasive, however a number of recent advances have 

resulted in greater ease and accuracy of such measures, the most frequently used 

methods are summarised in table 3. 

Traditional Risk Factors*

AlbuminuriaEndothelial dysfunction
Inflammation/oxidative 

stress

CVD

*Hypertension
Smoking

Dyslipidaemia
Diabetes
Obesity
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Table 1-3: Methods of measuring endothelial function 

Technique Description Shortcomings 

Direct coronary measurement 

(83) 

Coronary angiography with pharmacological stimuli to assess vasodilation Invasive 

MRI/PET coronary imaging (84, 

85) 

Allows quantification of myocardial function and microvascular function, 

PET is the method of choice for myocardial blood flow assessment 

Expensive 

Venous occlusion 

plethysmography (86) 

Measurement of muscular blood flow by assessment of tissue volume 

change induced by the inflation of a cuff proximally 

Invasive 

Flow mediated dilation (87) Vessels are imaged after induced hyperaemia and diameter measured 

before and after removal of hyperaemia 

Significant inter and intra operator variability 

Pulse wave analysis (88) Non-invasive arterial waveform imaging to measure the augmentation 

index (the difference between the 1st and 2nd systolic peak) 

Little data available yet on relationship with 

treatment and clinical outcomes 

Peripheral artery tonometry 

(89) 

After induced hyperaemia the digital pulse wave amplitude is measured Yet to be validated in large cohorts 

Plasma concentration of Von-

Willebrand factor (vWF) (90, 

91) 

vWF has been shown in in-vitro and in-vivo studies to be released from the 

endothelium in response to damage 

Limited information that vWF is causative in 

the process of endothelial dysfunction, also 

known to be an acute phase reactant 

MRI, magnetic resonance imaging; PET, positron emission tomography 
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Albuminuria was first proposed as a marker of endothelial dysfunction by Stehouwer et 

al in 1992 in a group of patients with non-insulin dependent diabetes, at baseline 1/3 of 

the patients had microalbuminuria; after a follow up period of between 9 and 53 

months. Both the baseline level and the change of endothelial function (measured using 

vWF) predicted development of albuminuria (92). Albuminuria predicted 

cardiovascular events only in patients where vWF levels were above the median at 

baseline, these data suggesting for the first time that albuminuria and endothelial 

dysfunction may be linked in the pathogenesis of CVD (92).   

 

There have been a number of subsequent studies investigating the relationship between 

proteinuria and endothelial dysfunction, in a cohort of 328 patients with type 2 

diabetics followed up for a mean of 9 years a series of serum markers of inflammation 

and endothelial function and a 24-hour urine collection for protein excretion 

measurement were carried out (93).  Individuals with higher urinary albumin excretion, 

increased markers of inflammation and increased markers of endothelial dysfunction 

were at increased risk of death; these associations were independent of traditional risk 

factors and also of each other (93).   The authors also reported that the presence of 

traditional risk factors was correlated with markers of inflammation and endothelial 

dysfunction; these findings suggested that individuals with type 2 diabetes are at 

enhanced cardiovascular risk in part due to endothelial dysfunction, inflammation and 

albuminuria and that these risk factors are independent of one another (93). 

 

In a population based cohort of 645 patients with and without diabetes the relationship 

between microalbuminuria (based on a single ACR) and endothelial function (using flow 
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mediated dilatation) were explored (94). The authors reported that individuals with 

microalbuminuria had decreased flow mediated dilatation regardless of whether they 

had diabetes or not, they hypothesised that impaired nitric oxide synthesis might be 

responsible for this finding (94).  The cardiovascular outcomes of these individuals 

were not reported. 

 

The relationship between kidney function, albuminuria and mortality was explored in 

the HUNT II study, a community based health study with prolonged follow up (95).  

Participants were asked to provide three urine samples in which the ACR was 

measured; they also underwent estimation of GFR (by MDRD) and collection of data 

pertaining to medical history, anthropomorphics and blood pressure (95). 

Cardiovascular events and deaths were tracked and found to be strongly correlated 

with both impaired kidney function and increased urinary albumin excretion, the risk 

was additive suggesting that when both albuminuria and impaired kidney function are 

used for risk stratification more accurate estimates are achieved (95). 

  

In another community based study Astor et al reported data from the NHANES III 

cohort, urine samples were obtained for ACR measurement and GFR was estimated 

using the MDRD formula, data pertaining to cardiovascular risk factors were also 

collected (96). Lower eGFR was associated with increased cardiovascular events and all 

cause mortality, when eGFR and albuminuria were considered together the association 

with all cause mortality and cardiovascular events was significant (96). 
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1.5.2. Albuminuria and progressive kidney disease 

In 1976 Kussman et al observed that the number of patients with diabetes who were 

reaching ESKD was rising and the natural history of kidney disease in these patients 

was not clear; to investigate this a retrospective analysis of juvenile patients with 

diabetes reaching ESKD was performed (97). They reported that at the time of 

identification of proteinuria there were few complications of diabetes present but as 

time progressed the amount of proteinuria increased and kidney function fell in tandem 

with the development of multiple diabetic complications, they concluded that 

proteinuria is an early marker of diabetic nephropathy but was unlikely to be treatable 

by any means other than renal replacement therapy when the need arose (97).  

 

The relationship between proteinuria and progressive CKD was described in 1984 by 

Mogensen et al in a cohort of patients with type 2 diabetes, urinary albumin excretion 

was measured and a comparison was made between the outcomes of normal controls, 

patients with diabetes and albumin excretion of 30 -140μg/mL and patients with 

diabetes and “heavy proteinuria” (>140μg/mL urinary albumin excretion) after 9 years 

of follow-up (98). The group with 30-140μg/mL albuminuria were more likely to have 

progressed to clinically detectable proteinuria than the normal controls and were also 

at increased risk of death, the group with baseline overt proteinuria had the poorest 

outcomes (98). 

 

When Verhave et al reported data in 2004 on the association between 

microalbuminuria and CKD risk in non-diabetic subjects they were the first to do so 

(99). The PREVEND study was drawn from the general population of Groningen in the 
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Netherlands, 6022 individuals underwent estimation of GFR (using both the Cockcroft-

Gault and the MDRD formulae) and measurement of urinary albumin excretion (using 

the mean of two 24 hour urine collections) at baseline and after four years (99). At the 

follow up visit just over 4% of the cohort had a new finding of an 

eGFR<60mL/min/1.73m2 and higher baseline urinary albumin excretion was 

independently predictive of the development of impaired eGFR (99). 

 

In another large community study, carried out in Alberta Canada, nearly 1 million adults 

underwent estimation of GFR (using the MDRD equation) and urinary albumin 

excretion (using a single spot sample for ACR or urine dip stick testing with mild 

proteinuria being defined as trace or 1+ and heavy proteinuria being defined as 2+), all 

baseline measures were repeated over a six month run in period (100).  Adjusted all 

cause mortality was higher in those with a lower eGFR or proteinuria, as was 

progression to ESKD or doubling of serum creatinine (100).  

 

As albuminuria was shown to be an independent predictor of both cardiovascular 

events and progression of CKD in patients with and without diabetes, the K/DOQI 

classification system was amended in 2004 to include the suffix “p” to denote the 

presence of proteinuria (101). Despite this, there remained calls for further 

improvement of the classification system, the reasons for this were summarised in an 

editorial by Poggio et al and essentially focus on both the inaccuracy of estimation of 

GFR (especially in certain demographic groups) and the lack of focus on albuminuria as 

a risk factor for adverse renal and cardiovascular outcomes (102). 
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In response to this, in 2009, the CKD classification system was further updated to place 

more of an emphasis on risk of progression and the significance of proteinuria as a renal 

cardiovascular risk factor; the updated classification is shown in table 4. 

 

The natural conclusion of the K/DOQI classification system and the increased 

understanding of the cardiovascular implications of CKD was the development of best 

practice guidelines for the management of patients with CKD. These included 

recommendations on blood pressure targets and which anti-hypertensive agents should 

be used, and a focus on the monitoring and management of secondary complications of 

CKD (61, 103, 104).   

Table 1-4: The updated CKD classification system (105) 

 

 

 

The heat map in table 4 (reproduced with permission) illustrates how patients can be 

risk stratified, with those in the red boxes being at highest risk based on eGFR and 
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albuminuria. In 2011 the CKD consortium published data showing associations between 

eGFR, albuminuria and all-cause and cardiovascular mortality (9) and eGFR, 

albuminuria and adverse renal outcomes (8). As a consequence this new classification is 

an integral part of the 2012 KDIGO guidelines. 

 

However albuminuria is not the only non-traditional risk factor for CKD progression 

and cardiovascular disease, other proposed biomarkers of CKD progression will be 

discussed in section 9. In understanding the clinical relevance of any CVD risk factor an 

understanding of the clinical and surrogate end-points that are used in CKD studies is 

required. 

1.6. The end-points utilised in CKD studies 

1.6.1. Clinical end-points 

A clinical end point is a definitive physical event that a patient has reached; this may be 

a cardiovascular event, progression to ESKD and requiring RRT or death. While a 

clinical end point provides certainty that the pathological process in question has 

occurred and the use of categorical outcomes makes analysis less complex, patients may 

take many years to reach an end point and this can make associations difficult to assess 

and studies of intervention very expensive. It can also be argued that by the time an end 

point has occurred any opportunity to reverse the pathological process has been 

missed. Another disadvantage of a clinical end point is that patients who do not meet 

them (either because their disease has progressed slowly or they have died before they 

were able to reach them) are not considered to have “progressed”. However this might 
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not be a genuine reflection of their risk; the use of composite end points that include 

death goes some way to overcome this. 

1.6.2. Surrogate end-points 

For the reasons listed above surrogate end points are often used; a surrogate end point 

is one where a stage that is intermediate to the end point is identified and measured, 

this might include a change in kidney function (106) or the development of albuminuria. 

Biomarkers such as creatinine (used in estimating equations) and albuminuria are often 

used as surrogate end points, with a biomarker described as a substance measured in a 

biological sample that is related to a pathological process, although other physiological 

markers can also be described as biomarkers; for example, fever is a biomarker of 

infection. Finding a marker that is genuinely an intermediate step in the process, that is 

unaffected by any other process and that is reliably and reproducibly measureable is a 

challenge and may explain why surrogate end points are not as robust as clinical end 

points. Despite this the use of biomarkers can enable relatively rapid assessment of 

efficacy of a certain diagnostic technique or intervention. 

 

In studies of renal interventions or of novel biomarkers both clinical and surrogate end 

points have been utilised, these can be broadly divided into end points related to 

markers or measures of renal function or markers related to proteinuria. 

Kidney function based clinical and surrogate end points 

There are both clinical and surrogate end points that are based on changes in kidney 

function, the most commonly used clinical end point being progression to ESKD and 

commencement of RRT. Surrogate end points include rate of change of kidney function 
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through slope based analyses; the utility of this approach is limited by the fact that 

kidney function rarely declines in a linear fashion (106). 

 

Another surrogate end point is the absolute change in kidney function between two 

time points, a doubling of serum creatinine or halving of eGFR is often utilised. Whilst 

the pattern of decline of kidney function is not a limitation, the variability of the most 

commonly used marker of kidney function (a creatinine based eGFR) means that a 

difference in eGFR on two occasions may not represent a genuine change in GFR 

between those time points (35). The variability in creatinine based estimates of GFR 

may not simply be related to factors associated with creatinine production but may be a 

feature of the intra-test variability of creatinine; in the MDRD study this was quoted as 

9.4% (35).  In effect a surrogate marker of kidney function is being used to define a 

surrogate end point.  

Albuminuria based surrogate end points  

While albuminuria is known to be of pathophysiological relevance to the progression of 

CKD it is not a proven intermediate step in the path to ESKD, as not all patients with 

significant albuminuria will progress to ESKD (107). Using albuminuria as a surrogate 

end point has been popular in interventional studies of patients with diabetes where the 

disease process is known to involve the development of albuminuria. While there is a 

strong and significant association between albuminuria and progressive CKD it cannot 

be definitively stated that the effect of a certain intervention on albuminuria is the same 

as its effect on renal progression (106). Another potential limitation is the intra-test 

variability of measures of albuminuria (using the ACR) which can be as high as 60% 

(108). 
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Table 5 summarises some major randomised controlled trials of interventions to reduce 

the rate of renal progression and the various renal end points used. 
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Table 1-5: RCTs of renal progression and end points used 

Study Hypothesis/aim Renal end point(s) used 

HOPE (109) Ramipril reduces cardiovascular and microvascular 

complications of diabetes 

Development of “overt nephropathy” – total urinary albumin >300mg in a 24 

hour urine sample or ACR >36mg/mmol 

BENEDICT (110) ACEi and CCB alone and in-combination can reduce 

microalbuminuria 

Time to transition from urinary albumin < 20μg/mL to > 20μg/mL in two of 

three consecutive overnight urine samples 

MARVAL (111) Valsartan reduces microalbuminuria independent of BP 

lowering 

Percentage change in urinary ACR 

Irbesartan 

Diabetic 

nephropathy 

trial (112) 

Irbesartan slows progression of diabetic nephropathy 

compared to a CCB alone 

Composite of doubling of serum creatinine, the development of ESRD or all 

cause mortality 

DCCT (113) That intensive control of diabetes reduces the development 

and progression of long-term complications 

The development of microalbuminuria, albuminuria 

MDRD (114) That dietary protein restriction reduces the rate of renal 

progression 

Rate of GFR decline (iothalamate clearance) by analysis of slope of GFR 

AASK (115) To compare BP targets on the effect of renal progression Rate of change of eGFR and a composite of 50% reduction of eGFR, ESRD or 

death 

Breyer (116) That Captopril would reduce rate of renal progression Primary endpoint: doubling serum creatinine, secondary end points: ESKD, 

death  

REIN (117) That Ramipril is renoprotective in patients without 

proteinuria 

Rate of change of GFR, time to ESKD 

Abbreviations; ACEi, angiotensin inhibitor; CCB, calcium channel blocker 
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The purpose of the studies in table 5 has been to identify interventions that could 

reduce the rate of progression of CKD, however the natural history of CKD remains 

poorly understood and the determinants of progression are not completely understood. 

To address this a number of cohort studies have been developed to better describe the 

determinants of progression of kidney disease and cardiovascular risk in patients with 

CKD.  

1.7. CKD cohort studies 

The existing observational CKD cohorts can be broadly divided into those where the aim 

is to better describe the natural history of CKD in certain specific groups (for example 

low risk primary care or high secondary care settings) and those where the role of 

specific biomarkers in the progression of CKD is studied. There is often overlap between 

these groups. A number of the natural history cohorts were established at the time of 

the K/DOQI classification with the purpose of directing future clinical guidance or 

classification systems. I have selected prospective observational studies (with at least a 

two year follow up period and at least 250 participants, CKD cohorts that fulfilled these 

criteria are summarised in table 6. 
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Table 1-6: Observational CKD cohorts 

Cohort Population Aims Year 

recruitment 

commenced 

Number 

recruited 

Chronic Renal Impairment in 

Birmingham (CRIB) (118) 

CKD with Creatinine >1.47mg/dL 

(130mmol/L) pre-dialysis 

To explore the relationship between 

kidney fucntion and CVD 

1997 369 

Mild to Moderate Kidney Disease 

study(MMKD) (119) 

Patients who had attended secondary 

care nephrology clinics at least twice 

To investigate risk factors and risk 

markers for progressive CKD 

1997 277 

Longitudinal Chronic Kidney Disease 

Study(LCKD) (120) 

Secondary care,  GFR<50mL/min/1.73m2 

on two occaisions 

To understand the course of CKD and 

the determinants of patient 

outcomes 

2000 820 

Chronic Renal Insufficiency Standards 

Implementation Study (CRISIS) (121) 

 

Secondary care stage 3-5 CKD (pre-

dialysis) 

To investigate the determinants of 

patient coutcomes 

2002 1325  

     

Chronic Renal Insufficiency Cohort 

(CRIC) (122, 123) 

Secondary care, all CKD stages To identify risk factors for the 

progression of CKD and the 

development of CVD 

2003 3612  

Study for the evaluation of early 

kidney disease (SEEK) (124) 

Predominantly primary care (29% from 

secondary care), inclusion based upon 

single eGFR ≤60mL/min/1.73m2 

To identify risk factors for CVD in 

CKD 

2004 1814  

Chronic Kidney Disease Japan Cohort 

(CKD JAC) (125) 

Japanese (or Asian patients living in 

Japan) adults with eGFR 10-

59mL/min/1.73m2 

Identify risk factors for progression 

of CKD in Japanese subjects, identify 

the risks for CVD in CKD, to assess 

2007 2977 
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the impact of CKD on quality of life 

Renal Risk In Derby (R2ID) (126) Primary care, eGFR 30-

59mL/min/1.73m2 on more than two 

occaisions three months apart 

To determine renal and 

cardiovascular risk factors in stage 3 

CKD 

2008 1800  

German CKD study (GCKD) (127) Secondary care, eGFR 30-

60mL/min/1.73m2 or significant 

proteinuria (UAE >300mg/g) with a 

eGFR>60mL/min/1.73m2 

To identify and validate risk factors 

for progression of CKD, and 

developement of CVD, to determine 

gender based differences in risk, to 

assess impact of CKD on quality of 

life 

2010 4914 



 

Despite the existence of these cohort studies, many of which have recruited large numbers of 

patients, our knowledge of the natural history of progressive CKD remains incomplete, to 

explore how established cohorts are contributing to the evidence base in this area each of the 

cohorts outlined in table 6 will now be described in detail. 

1.7.1. Chronic Renal impairment In Birmingham (CRIB) 

The CRIB study was one of the earliest cohort studies and pre-dates the K/DOQI staging 

system, its primary aim was to establish why patients with chronic renal impairment (the 

term CKD had yet to be coined) were at enhanced cardiovascular risk. To achieve this, 

patients were recruited from a teaching hospital nephrology department in Birmingham. The 

cohort comprised patients with a serum creatinine >130μmol/L and two age and sex matched 

control groups (one comprised of healthy individuals and one of patients with 

angiographically proven coronary artery disease). At recruitment participants underwent 

detailed questioning about medical history and medications, their height, weight and blood 

pressure was recorded and a 12 lead ECG was obtained (118). Blood was collected for 

measurement of cholesterol, lipoproteins, troponin, β natiuretic peptide and homocysteine 

(128).  The follow up period was a mean of 6 years but no further clinical assessment of the 

participants took place during that period, the outcomes reported were ESKD and all cause 

mortality (128). The strengths of this cohort were the wide inclusion criteria and prolonged 

follow up period; the cohort was limited by the content of the patient assessment and the fact 

that it was not repeated during the follow up period, and the relatively small number of 

patients recruited. 

1.7.2. Mild to Moderate Kidney Disease Study (MMKD) 

In the MMKD study patients with a variety of causes of kidney disease were recruited from 

renal clinics in Austria and Germany with the purpose of identifying risk factors associated 

with the progression of CKD. Participants required stable but impaired kidney function for 
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three months prior to recruitment and individuals with a serum creatinine > 6mg/dL 

(528μmol/L) were excluded (119). At recruitment participants had GFR measured using 

iohexol, blood and urine were collected for biomarker analysis and data were collected on 

past medical history. Participants were then followed up for a median of 53 months without 

any further clinical data collection (129, 130). The outcomes studied were doubling of serum 

creatinine and/or progression to ESKD (131). The strengths of this cohort were that data 

were largely collected by a single operator, the follow up period was long and measured GFR 

was available through the inclusion of iohexol GFR measurement, however the clinical 

assessment was limited and carried out at baseline only and the inclusion of patients deemed 

to be “stable” at recruitment might have influenced the number who later progressed. 

1.7.3. Longitudinal Chronic kidney Disease Study (LCKD) 

The LCKD study was set up in the United States with the aim of prospectively following up a 

group of patients with CKD to gain an understanding of both the natural history of CKD and 

the determinants of patient outcomes (120). Patients with a GFR <50mL/min/1.73m2 on two 

separate occasions (using the MDRD formula) and who were not on dialysis were eligible to 

participate, the baseline assessment included data on past medical history and medication 

use, quality of life assessment and blood and urine collection for biomarker analysis; a sub 

group of participants also underwent cardiovascular assessment which included 

echocardiography, flow mediated vasodilation, pulse wave velocity, 24hr heart rate 

monitoring and spiral CT (these investigations were done on two occaisions one year apart) 

(120). 

 

The follow up period was planned to be at least four years (final data are yet to be published 

so the actual follow up period is unknown) and the outcomes studied were rate of change of 

GFR (defined as the absolute change in GFR from baseline to end, the change in GFR per 
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month and the slope of GFR change), progression of CVD, deaths and arrival at ESKD (120). 

The strengths of this cohort include the large numbers, the detailed baseline assessment 

(especially in the sub-group who underwent detailed cardiac assessment) and the repeated 

data collection during the follow up period, the inclusion criteria are potential limiting factors 

as the range of CKD included was extremely broad and the rate of progression could be 

expected to be low for the group as a whole. 

1.7.4. Chronic Renal Insufficiency Implementation Study (CRISIS) 

The CRISIS study commenced recruitment in Manchester in 2002; its aims were to identify 

the factors associated with vascular stiffness in patients with stage 3 -5 CKD (defined using 

the MDRD formula and K/DOQI classification) and to prospectively track patient outcomes 

(121). At recruitment participants underwent medical history questioning including 

medication history, and blood and urine collection for biomarker analysis, they also undergo 

measures of vascular stiffness (pulse wave velovicity and augmentation index) (121). The 

strengths of this cohort are that it includes a well defined cohort of patients who undergo a 

detailed assessment, including vascular measures, it is not yet clear what the follow up period 

will be for the cohort. 

1.7.5. Chronic Renal Insufficiency Cohort Study (CRIC) 

The CRIC study commenced recruitment in 2003 with the aim of improving the understanding 

of the role of both traditional and non-traditional risk markers for CKD progression and CVD 

and also understanding how the complications of CKD influence health service provision 

(123). The criteria for recruitment comprised patients were under the care of renal services 

with MDRD derived eGFRs that were age stratified: 20mL/min/1.73m2 lower limit for all 

ages; 70mL/min/1.73m2 the upper limit for those<44 years old, 60mL/min/1.73m2 upper 

limit for 45-64 year olds; 50mL/min/1.73m2 upper limit for those aged 65-74, half of the 
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participants were diabetics (123). Participants underwent a detailed assessment which 

included medical history, medication history, anthropomorphic measures, blood pressure, 

assessment of peripheral vascular health (ankle-brachial pressure index), 12 lead ECG and 

echocardiography (in one-third measurement of coronary artery calcification using spiral CT) 

and quality of life (QoL) assessment; one third of the cohort also had GFR measurement using 

125I-iothalamate (123). Participants were followed up six monthly and blood and urine 

samples were collected annually, the cardiac assessments were performed at year one and 

four; outcome data were collected regarding progression of CKD (absolute change in GFR, 

arrival at ESKD and halving of GFR), subclinical cardiac disease, overt cardiac disease and 

death (123).  

 

CRIC was a well-designed cohort study with detailed assessment (including the sub groups 

with detailed cardiovascular assessment and measured GFR); repeated assessments, 

prolonged follow up and very large numbers are also strengths. The low levels of proteinuria 

observed in participants may reduce the applicability of results obtained and the risk of CVD 

in the cohort (122). 

1.7.6. Study to Evaluate Early Kidney Disease (SEEK) 

The SEEK study commenced recruitment in 2004 with the aim of identifying the prevalence of 

renal bone mineral disorders in patients with CKD, participants had to have an eGFR (based 

on the MDRD formula) <60mL/min/1.73m2 (124). Baseline data were collected regarding 

medical history, medication history and blood and urine samples were collected (124). The 

main strength of this cohort is the large number of recruited patients, however it is limited by 

the content of the clinical assessment, the broad inclusion criteria and the lack of repeated 

clinical assessment. 
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1.7.7. Chronic Kidney Disease Japan cohort (CKD-JAC) 

The CKD-JAC study commenced recruitment in 2007 and aimed to recruit 3000 individuals 

with an eGFR (estimated using a modified MDRD equation validated in Japanese subjects) of 

10-59mL/min/1.73m2; the aims of the study are to identify the risk factors for both 

progression of CKD and development of CVD in a Japanese population (125). It is not clear 

whether the population is drawn from primary or secondary care or a combination, at 

recruitment participants undergo an assessment which included demographics, past medical 

history, family history, medication history, anthropomorphic assessment, measurement of BP, 

heart rate and ankle-brachial pressure index and assessment of quality of life (QoL) using the 

kidney disease quality of life (KDQoL) questionnaire (125).  

 

Participants are followed up until death or withdrawal and the same data are collected at 2 

year intervals and an annual ECG and echo are performed; the outcomes of interest include 

progression of CKD (defined as “reduction of eGFR”), CVD events, all-cause mortality and 

impairment of QoL (125). A strength of this cohort is the prolonged follow up, repeated 

assessment and large size, a weakness the problem of reproducibility in a western population. 

1.7.8. Renal Risk in Derby study (R2ID) 

The R2ID study commenced recruitment in 2008; it is a primary care cohort of patients with 

CKD stage 3 which aims to examine the renal and cardiovascular risks associated with CKD 

stage 3 (4, 132). At recruitment data were collected on medical history, medication history, 

diet, anthropomorphic measurements, blood pressure (BP), pulse wave velocity (PWV), 

measurement of skin advanced glycation end products (AGEs) and blood and urine collection 

(132). Follow up is on going and the outcomes studied include rate of progression of CKD and 

cardiovascular events and deaths. The strength of the cohort lies in its targeted focus on 
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patients with perceived lower risk CKD in primary care (such patients forming the majority of 

patients with CKD); the detailed and repeated assessment and the prolonged follow up. 

1.7.9. The German Chronic Kidney Disease (GCKD) study 

The GCKD study was designed to identify risk factors for progression of CKD and 

identification of CVD risk in CKD in the German CKD population, there is also a focus on QoL 

which is assessed using the KDQoL; eligible participants have stage 3 CKD (or stage 1 or 2 in 

the presence of significant proteinuria), are under secondary care follow up and are Caucasian 

(127). At baseline participants under an assessment which includes included demographics, 

past medical history, family history, medication history, anthropomorphic assessment, 

measurement of BP, heart rate, a single lead ECG and assessment of QoL; the assessment is 

repeated at two year intervals until death, withdrawal or study completion (ten years) (127). 

The strength of this cohort may lie in the large numbers of patients recruited and repeated 

assessment, a weakness in the low risk population recruited and limited bio-clinical 

assessment. To date no data have been published from this cohort. 

1.8. Biomarkers in CKD 

While most of these cohort studies have involved the collection of biological samples for the 

biomarker analysis there have been a number of other studies where the aim was to 

investigate the role of biomarkers in CKD progression. In addition to the known traditional 

risk factors found in patients with CKD it is now appreciated that much of the risk that 

patients with CKD are exposed to (both renal and cardiovascular) cannot be accounted for by 

these (48). The complex relationship between traditional and non-traditional risk factors and 

renal and cardiovascular risk is illustrated in figure 5. There are numerous biomarkers that 

are proposed as of potential clinical relevance in CKD, some as markers of the presence of 

CKD, some as risk markers of progression of CKD and some as indicators of cardiovascular 
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risk in patients with CKD. Table 7 summarises the most frequently investigated biomarkers. 

In order to merit inclusion the biomarker in questions had to have been investigated in at 

least one good quality study (usually observational) with at least 100 participants. Where I 

have indicated that there is evidence this was demonstrated in more than one such study, 

equivocal indicates that there were contradictory findings from studies and no indicates that 

there was no evidence that the biomarker was related to the outcome of interest.  

 

The characteristics of a good biomarker are summarised in figure 6, not all of the biomarkers 

described meet these criteria.  

 

Figure 1-6: The characteristics of a clinically useful biomarker (133, 134) 

 

 

  

 Reliability –acceptable levels of sensitivity and specificity 

 Reproducibility – acceptable levels of inter and intra 

patient variability 

 Physiologically plausible 

 Availability 

 Not prohibitively expensive 

 Practicality – collected from a biological specimen that is 

easy to obtain and acceptable to the patient resulting in a 

sample that is easy to handle 
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Table 1-7: Putative CKD biomarkers 

Pathophysiological 
process 

Biomarker Evidence for 
presence of 
CKD 

Evidence for 
progression of 
CKD 

Evidence for 
CVD risk 

Glomerular filtration Albumin (135) Yes Yes Yes 
Creatinine Yes No Yes 
Cystatin C (136, 137) Yes No Yes 
B trace protein (138, 
139) 

Yes No Yes 

Podocin (140) Yes Equivocal No 
Nephrin (140) Yes Yes No 
FLCs (141) Yes Equivocal Equivocal 

Tubulo-interstitial 
damage 

NGAL (142) Yes Yes Yes 
KIM-1 (143) Yes Yes No 
NAG (144, 145) No No Yes 
L-FABP (140, 146) Yes Yes Yes 

Endothelial dysfunction ADMA (147, 148) Yes Yes Yes 
Oxidised LDL No No Yes 
AGEs (126, 149) Yes Yes Yes 
Uric acid (150) Yes No Yes 

Inflammation CRP/hsCRP(151, 152) Equivocal Equivocal Yes 
Pentraxin 3(153) Yes No Yes 
IL-6(154) Yes No No 
TNFα (154) Yes Yes No 
Hcy (155) Yes Yes No 
MCP1/CCL2 (156) Equivocal Equivocal Equivocal 

Cardiac biomarkers BNP (157) No Yes Yes 
NT proBNP (157) Yes Yes Yes 
Troponin (158) Yes Yes Yes 

Metabolic dysfunction Adiponectin (159, 160)  Yes Yes Yes 
FGF23 (161) Yes Yes Yes 
Phosphate (162) Yes Yes Yes 
ApoA-IV(163) Yes Yes Yes 
Bicarbonate (164, 165) Yes Equivocal No 

Markers of vascular 
dysfunction 

PWV (166, 167) 
 

Yes Yes Yes 

FLC; free light chains, NGAL; neutrophil gelatinase-associated lipocalin, KIM-1; Kidney injury molecule 1, NAG; N-acetyl-β-Ο-
glucosaminidase, L-FABP; liver-type fatty acid binding protein, ADMA; asymmetric dimethylarginine, AGEs; advanced 
gylcation end products, CRP; C-reactive protein, IL 18; interleukin 18, Hcy; homocysteine, CCP1/CCL2; monocyte 
chemoattractant protein/chemokine ligand 2, ANP; atrial natiuretic peptide, BNP; brain natiuretic peptide, NT-proBNP; N-
terminal brain natiuretic peptide,  FGF 23; fibroblast growth factor 23, Apo A-IV; Apolipoprotein A-IV   
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1.9. The components of the RIISC bio-clinical assessment that are presented in 

this thesis 

1.9.1. Biomarkers 

Albumin 

The evidence base for the role of albuminuria in progressive CKD has already been described 

in section 1.5.2 (8-10). 

Cystatin-C 

Cystatin C is a low molecular weight protein which is freely filtered at the glomerulus (168), it 

is considered a useful marker of glomerular filtration because it can detect small 

deteriorations in kidney function that are not detectable by creatinine (169). Cystatin C was 

used by the MMKD study group in comparison with measured GFR and creatinine based 

estimates of GFR and was found to provide reliable risk prediction for the progression of CKD 

(137). In the REGARDS cohort of 26 643 adults cystatin C and creatinine based estimates of 

GFR were used to categorise patients into groups, after a median follow up of 4.6 years the 

highest risk of progression to ESKD was in those classified as having CKD by all markers, the 

second highest group was those not identified by creatinine based estimates but identified by 

both ACR and cystatin C (137).  

 

In an analysis of the MDRD cohort measured GFR was compared to creatinine and cystatin C 

as risk factors for cardiovascular mortality and progression to ESKD, after a median follow up 

of 10 years cystatin C was more strongly associated with both all cause and cardiovascular 

mortality (136). In a review of the role of cystatin C in the assessment of cardiovascular risk 

the authors concluded that an elevated cystatin C was a useful marker of increased 
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cardiovascular risk as an indicator of “pre-clinical” CKD associated with adverse outcomes 

(possible via a mechanism of involvement in the atherosclerotic process) (170). 

Free Light Chains (FLCs) 

Immunoglobulin FLCs are bi-products of immunoglobulin synthesis, they undergo clearance 

by the kidneys (though there is some reticulo-endothelial clearance) and consequently 

elevated polyclonal FLCs have been found in patients with renal impairment (171, 172). 

Because of the molecular weight of FLCs (22.5kDa in monomeric form and 45kDa when in 

dimeric form as frequently occurs) it was hypothesised by Hutchison et al that FLCs might be 

an early marker of diabetic nephropathy, preceding microalbuminuria (141). In the 

prospective UK Asian Diabetes Study (UKADS) three groups were compared; a control non-

diabetic group, a South Asian diabetic group and a Caucasian diabetic group, the majority of 

the diabetic patients did not have microalbuminuria (69%) (141). The diabetic patients had 

significantly elevated levels of both kappa and lambda light chains compared to the control 

patients, even when matched for renal function, the South Asian diabetic patients had higher 

FLCs than the Caucasian diabetics (141). Analysis of follow up data showed that patients with 

abnormal serum FLCs were more likely to go on to develop microalbuminuria than those with 

normal serum FLCs at baseline (141). 

 

Haynes et al examined the role of both polyclonal and monoclonal FLC in progression to ESKD 

and death in data collected from the CRIB cohort described previously. They hypothesised 

that as markers of the adaptive immune system, FLC are potential markers of sub-clinical 

inflammation and that they may also have an immunomodulatory effect that had not been 

previously studied on clinical outcomes in CKD (173, 174). In a cohort of 364 patients, serum 
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FLCs were measured and serum immunofixation and electrophoresis was also undertaken; 

the outcomes of interest were arrival at ESKD and all cause mortality (173).   

 

Just under 10% of the cohort had evidence of monoclonal gammopathy of undetermined 

significance (MGUS), this was higher that previous prevalence studies (though this was the 

first time that the prevalence of MGUS in a CKD cohort had been published) (173, 175). While 

the presence of MGUS was associated with arrival at ESKD this effect disappeared when 

adjustment was made for renal function, and there was no association between MGUS and 

risk of death (173). 

 

Neither polyclonal excess of kappa or lambda FLCs were associated with an increased risk of 

progression to ESKD after correction for eGFR, however a relationship between lambda FLC 

and mortality was found (173). As a result of these findings it is unclear if FLCs have a role in 

the risk stratification of CKD beyond being a marker of impaired renal clearance and further 

studies are in process. 

C-reactive protein (CRP) 

C-reactive protein is a systemic marker of inflammation, there is some evidence that systemic 

inflammation may be a non-traditional risk factor for both CVD and CKD progression; in the 

MDRD study the acute phase reactant ferritin was associated with eGFR decline and 

inflammation has been shown to propagate glomerulosclerosis in animal models (176, 177). 

 

In an analysis from the MDRD study Sarnak et al hypothesised that markers of inflammation 

and nutritional status were associated with CKD progression; to address this they measured 
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CRP and leptin (which is known to be elevated in obesity and patients who are obese have 

been shown to be at risk of glomerulosclerosis) in 804 patients (151, 178). The MDRD cohort 

was divided into study A and study B, study A was comprised of patients with a baseline GFR 

of 25-55mL/min/1.73m2, study B of patients with a GFR of 13-24mL/min (in all patients GFR 

was measured using 125 I-iothalamate), at baseline the mean CRP in study A was 0.48 and in 

study B was 0.46 (151). The groups were followed up for a mean of 2.2 years and the end 

point of rate of change of GFR was used, in neither study groups was baseline CRP associated 

with rate of GFR decline (151). 

 

These results are interesting because they were unexpected, as CRP had been previously 

shown to be associated with both CVD and CKD and there is a plausible patho-physiological 

process by which this might be the case. However it is important to note that CRP is a 

surrogate marker of inflammation and the MDRD cohort while large and well characterised 

(with measures of GFR rather than estimates) is not a wholly representative CKD population 

(176). 

 

CRP was found to be a predictor of CVD in a dialysis population. In a cohort of 163 Japanese 

haemodialysis patients (who were divided into two groups dependent upon their baseline 

CRP level, where CRP was analysed as a categorical variable with patients whose CRP was 

<10mg/L were described as having low levels and those with levels >10mg/L as high levels) 

the five year survival was significantly worse in the group with higher CRPs than lower CRPs 

(44% versus 82%) (152). The dialysis population differs from the CKD population and the 

reasons for the presence of inflammation may also differ, however these results suggest that 

in this context inflammation is related to cardiovascular outcomes (152). In a cohort of 
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patients on peritoneal dialysis similar findings have been reported, Noh et al described a 

cohort of 106 stable peritoneal dialysis patients with two years of follow up, those with higher 

CRP levels at baseline had significantly poorer survival (179). 

Pro-inflammatory cytokines 

There are a number of pro-inflammatory cytokines that have been associated with endothelial 

dysfunction, the most frequently studied are tumour necrosis factor α (TNFα) and interleukin-

6 (IL-6) (180). In a small, cross-sectional analysis of patients with stage 3-5 CKD compared to 

healthy subjects all markers of inflammation were significantly higher in the patients with 

CKD, IL-6 was significantly higher in those with pre-existing CKD (181). 

 

In a cross-sectional analysis of patients with CKD (some on dialysis, some pre-dialysis), 

patients with normal kidney function but CVD and healthy controls, pro-inflammatory 

cytokines were measured along with markers of lipoprotein oxidation; in patients with CKD 

IL-6, TNF α and CRP were all significantly higher than in the CVD and healthy controls (154). 

 

In a post hoc analysis of an RCT of a statin, baseline CRP and TNF receptor ii (TNFrii) levels 

were measured and the rate of decline of kidney function used as the outcome measure; after 

a median duration of follow up of 58 months both CRP and TNFrii levels were independently 

associated with faster rate of decline of kidney function (182). 

Uric acid 

Uric acid has been shown to be associated with CVD, in a rat model hyperuricaemia caused 

hypertension and renal vascular changes in the absence of crystal deposition (183-185). It has 

been hypothesised that this effect is mediated via inflammation, endothelial dysfunction and 
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oxidative stress (186, 187). In an epidemiological study Cain et al demonstrated that 

hyperuricaemia was associated with prevalent CKD and concluded that the role of uric acid in 

CVD may be via CKD, they were unable to draw conclusions about whether uric acid had a role 

in the initiation of progression of CKD (150). However in the atherosclerosis risk in 

communities (ARIC) study the relationship between uric acid and mortality was shown to be 

significant only in individuals without CKD and not in those with CKD (188). 

 

In an interventional study of allopurinol versus control with outcomes of hospitalisation, 

cardiovascular events, ESKD and mortality a cohort of 113 patients with an eGFR <60mL/min 

were recruited (189). The baseline uric acid levels were higher in the group allocated to 

allopurinol treatment than the control group, and after the follow up period were significantly 

lower than the control group. In the allopurinol group the rate of decline of renal function was 

largely unchanged but the control group had evidence of progression; there was no difference 

in BP or albuminuria between the groups (189). As the groups were small the rate of 

cardiovascular events was low as was progression to ESKD, however there was a reduction in 

both hospitalisations and cardiovascular events in the allopurinol group, these data suggest 

that hyperuricaemia may be implicated in progressive CKD and that treatment with 

allopurinol is well tolerated and can mitigate that risk (189). 

Phosphate 

Disturbance of calcium and phosphate metabolism is related to cardiovascular disease in 

patients with CKD, whether or not there is also a relationship with progression of CKD is as 

yet unknown (190).  
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In a rat model hyperphosphataemia was found to be associated with progression of renal 

failure and the development of fibrosis; to address whether this observation would be 

replicated in humans Voormolen at al conducted an observational study of 448 patients with 

CKD (191, 192). The PREPARE study included incident CKD stage 4 and 5 patients (pre-

dialysis) and followed them up for a mean of just 337 days, the aim of the study was to 

examine the relationship between plasma phosphate and progression of CKD (defined as rate 

of change of MDRD eGFR) (192). They found that as plasma phosphate increased the rate of 

renal progression also increase (for each mg/dl higher plasma phosphate the decline in eGFR 

increased by 0.154mL/min/1.73m2/month, this was independent of other traditional risk 

factors (192). 

 

In a slightly smaller study of 225 patients with less advanced CKD (stages II-V pre-dialysis), 

Chue et al measured a variety of bone biomarkers and measures of arterial stiffness, they 

followed up the patients for a mean of 924 days and the main outcome was rate of change of 

GFR (MDRD based estimates) using a linear regression method (162). As with the PREPARE 

cohort serum phosphate independently predicted rate of decline of GFR, a 1mmol/L increase 

in phosphate being associated with a 0.34mL/min/1.73m2/month faster rate of decline (162). 

 

Bicarbonate 

Metabolic acidosis is a common complication of CKD and is especially prevalent when the 

eGFR falls below 30mL/min; the effects of metabolic acidosis include increased protein 

catabolism and amino acid oxidation and potentially progressive CKD (193-195).  However 

the experimental evidence for treatment of metabolic acidosis with bicarbonate is mixed with 

some authors demonstrating a positive effect (196, 197) and other showing no benefit (198). 
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In an animal based study the influence of dietary bicarbonate supplementation upon decrease 

in eGFR was studied; rats fed on soy protein with dietary acid supplementation developed  

metabolic acidosis and decline in eGFR compared to rats fed on a diet supplement with 

sodium bicarbonate (though this effect was only seen after the sodium bicarbonate induced 

increase in blood pressure was treated) (199). 

 

Shah et al carried out an epidemiological study of over 5000 adults from primary care, renal 

function and acidosis (measured using estimated GFR and serum bicarbonate respectively) 

were considered in relation to progressive renal impairment which was defined as a greater 

than 50% fall in eGFR or progression to an eGFR<15mL/min/1.73m2 (164). Participants with 

lower bicarbonate levels were more likely to progress than those with higher bicarbonate 

levels, when the bicarbonate levels were divided into groups the hazard ratio for progression 

with a bicarbonate level <22mEq/L was 1.54 compared to a hazard ratio of 1.14 if the 

bicarbonate level was >27mEq/L (164). 

 

To address the hypothesis that treatment of acidosis would reduce the rate of progressive 

CKD Brito-Ashurst et al carried out a randomised controlled trial; 134 adults with CKD (where 

the creatinine clearance, as measured using 24 hour urine samples, was between 15-

30mL/min/1.73m2) and a serum bicarbonate level of 16-20mmol/L were randomised to 

either receive supplementation with sodium bicarbonate or standard therapy (165). The 

primary end point was rate of change of GFR and the proportion of patients who sustained a 

rapid decline (3mL/min/1.73m2/year) and progression to ESKD; the rate of decline was 

significantly slower in patients receiving bicarbonate supplementation than the control group 
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(1.73 versus 5.93mL/min/1.73m2/year), fewer patients receiving bicarbonate 

supplementation experienced an accelerated decline and fewer progressed to ESKD (165). 

 

These data suggest that bicarbonate may be a biomarker of progressive CKD and that 

treatment with bicarbonate supplementation may reduce the risk of progression but this has 

yet to be studied in large prospective CKD cohorts. 

1.9.2. Markers of arterial stiffness and microvascular disease 

A characteristic feature of arterial disease in CKD is thickening and calcification of the medial 

arterial layer, known as arteriosclerosis (166). In its purest form, media calcification is 

concentric and does not extend into the arterial lumen. Increased collagen content, 

calcification, hyperplasia and hypertrophy of the vascular smooth muscle cells results in wall 

thickening and increased arterial stiffness. Although associations have also been established 

between the degree of arterial stiffness and atheromatous plaque burden (200), recent 

studies have failed to demonstrate a significant influence of traditional atherosclerotic risk 

factors on the development of arteriosclerosis (201), suggesting that alternative ‘non-

atherogenic’ factors drive this process. There is certainly some overlap, however, as 

endothelial dysfunction and reduced Nitric Oxide bioavailability have been shown to 

contribute to arterial stiffening (202). There is a strong association between arterial stiffening 

and mortality in CKD (166). 

 

The pathophysiological effects of arteriosclerosis and arterial stiffening are best understood 

by an appreciation of the normal physiology of the aorta and large arteries. Their major 

functions are not only to deliver blood around the body but also to buffer the oscillatory 

changes in BP that result from intermittent ventricular ejection. The highly distensible arterial 
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system ensures that most tissues receive near steady flow with no exposure to peak systolic 

pressures; this mechanism is so efficient that there is almost no drop in peripheral mean 

arterial pressure compared to the ascending aorta (203). Loss of arterial distensibility results 

in a more rigid aorta that is less able to accommodate the volume of blood ejected by the left 

ventricle, resulting in greater pressure augmentation in systole and higher pulse pressures 

(204). As arterial stiffness increases the loss of arterial distensibility exposes the myocardium, 

brain and kidneys to higher systolic pressures and greater pressure fluctuations arising from 

increased pulse pressures, resulting in myocardial and cerebral microvascular damage and an 

increased risk of heart failure, arrhythmia and stroke (205). While the high systolic pressure 

increases left ventricular afterload, lower diastolic pressure reduces diastolic coronary 

perfusion promoting ischaemia and placing greater reliance on systolic coronary perfusion 

(206, 207). 

Pulse wave velocity (PWV) 

Arterial stiffness is increased in patients with early stage CKD (166). Aortic PWV is currently 

considered to be the “gold-standard” measurement of arterial stiffness (208). Measures 

derived from central pulse wave analysis (PWA) (central systolic pressure, pulse pressure and 

augmentation index [AIx]) are considered indirect, surrogate markers of arterial stiffness and 

provide additional information on arterial wave reflections (208). Increasingly, these markers 

are recognised as powerful predictors of cardiovascular mortality and morbidity in patients 

with CKD (166, 208). 

 

Theoretically, arterial stiffness should also lead to renal vascular damage and progressive 

renal impairment by similar mechanisms to those described above (166). Three small studies 

have found an association; Taal et al in 2007 used radial-dorsalis pedis PWV as a measure of 
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arterial stiffness in 35 patients with advanced stage IV and V CKD and found PWV and AIx, 

predicted progression to ESKD (209). In a Japanese study of 41 subjects with non-diabetic 

CKD AIx predicted a greater decline in renal function (210). Interestingly, a subsequent study 

by this group in 42 patients failed to replicate this finding and did not demonstrate any 

relationship between PWV or AIx and progression of renal dysfunction (211). A third study of 

133 patients with stage III-IV CKD showed PWV to be a predictor of decline in renal function 

(212). However, a larger study of 235 patients with CKD and longer follow-up failed to show 

any association between PWV and progression of CKD (213). This latter study is in keeping 

with a prospective longitudinal analysis of the Framingham Offspring Study which did not find 

an association between baseline aortic PWV and incident CKD or microalbuminuria (214). 

The differences between all of these studies serve to highlight that very little is actually 

known about the natural history of arterial stiffness and kidney disease and in particular the 

complex interactions between age, uraemia, blood pressure and medication in CKD patients 

(166). Clearly larger longitudinal studies are needed to resolve this and interventional studies 

targeting arterial stiffness as a means of lowering cardiovascular events may then be 

warranted. 

Advanced glycation end products (AGEs) 

Advanced glycation end products are the result of the non-enzymatic glycation and oxidation 

of proteins, lipids and amino acids in a process known as the Maillard reaction; increased 

formation of AGEs are found in hyperglycaemic states, chronic inflammatory states, as part of 

the aging process and in renal impairment (215-217). Upon binding to the cell surface 

receptor they are able to modulate a number of intracellular processes and it is via this 

mechanism that they are thought to enhance cardiovascular risk (218, 219). The 

accumulation of AGEs has been shown to correlate well with renal function and death in 

patients with CKD, dialysis patients and renal transplant recipients (220-223).  
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In a prospective cohort of 1700 patients with CKD stage 3, skin AGE accumulation (measured 

by skin autofluorescence) were independently associated with a number of traditional and 

non-traditional risk factors for CVD (126). In a cohort of 386 haemodialysis patients, 

Nishizawa et al measured plasma pentosidine and found that patients in the upper tertile of 

pentosidine levels had more cardiovascular events during the follow up period (149).  

 

In a sub-group analysis of an RCT designed to explored the efficacy of the ACEi captopril at 

preventing renal progression in patients with diabetes, 67 patients who sustained a doubling 

of creatinine levels during follow up were matched with 67 patients who had progressed but 

had not doubled their creatinine (they were matched for intervention, baseline creatinine and 

proteinuria) (224, 225). Patients who had doubled their creatinine had higher levels of both 

pentosidine and neopterin at baseline (there were no differences in the levels of the 

inflammatory markers IL-6 and CRP), from this observation it is possible that AGEs could be 

implicated in the progression of diabetic CKD (225). 

 

1.9.3. Genetics and CKD 

The influence of genetic factors on CKD progression has yet to be elucidated, in one study no 

relationship was found between several single nucleotide polymorphisms (SNPs) and 

progressive CKD (226) . When a genome wide association study (GWAS) was performed a 

gene related to uromodulin was shown to be associated with renal function, although its 

relationship to renal progression has yet to be studied (227). In a study of dialysis patients, 

patients with “mild” CKD and a group of healthy controls, polymorphisms of genes that 

influence endothelial function were explored; the authors reported that some genotypes were 



78 

  

found more frequently in some diagnostic groups than others; this is an interesting area for 

future work (228).  

 

In an analysis of nine cohort studies, containing over 23 000 participants, a GWAS was 

performed; serum creatinine, eGFR and cystatin C were used as measures of renal function 

(229). There were 109 SNPs associated with serum creatinine, these were distributed over 

five loci, only one of these had previously been described as having an association with kidney 

function; when potential associations between the loci and eGFR or cystatin C were 

investigated two of the four loci were associated with eGFR but not cystatin or CKD, none of 

the four novel loci were associated with weight, hypertension or diabetes (229). 

 

In another large GWAS study over 130 000 individuals were included; the aim of the study 

was to stratify participants by four key risk factors, hypertension, age, gender and diabetes to 

identify novel loci (230). Six new loci were identified that were associated with eGFR, there 

was variability with some loci being more pronounced in younger patients and some being 

more frequent in certain ethnic groups (230). 

1.9.4. The anthropomorphic phenotype and CKD 

Globally increasing cardiovascular mortality (231) together with the recognition of kidney 

disease as a cardiovascular risk factor (45, 70) has led to greater interest in the relationship 

between obesity and kidney disease. A growing number of studies have concluded that 

adulthood obesity increases the risk for development of kidney disease (232).  
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Obesity is associated with a number of conditions known to increase the risk of CKD including 

hypertension, diabetes mellitus and heart failure (233). Several studies have shown an 

association between adult obesity and CKD with approximately 25% of CKD in Western 

populations being attributable to obesity (232). A recent study has also confirmed that a large 

proportion of the association between low socio-economic status (SES) and CKD can also be 

explained by obesity (234). Studies looking at the relationship between fat distribution and 

CKD have produced conflicting results (232). Furthermore, very few studies have examined 

longitudinally the relationship between obesity and progression of CKD (232). Intriguingly, 

small studies in patients after bariatric surgery show improvements in blood pressure 

control, proteinuria and inflammatory markers as well as in GFR although this last parameter 

needs to be interpreted with caution and confirmed in larger studies with harder end-points 

(235).  

 

The current understanding of the biological mechanisms for the effects of obesity on CKD 

remains limited. Obesity may promote kidney damage directly through haemodynamic and 

hormonal effects or indirectly by favouring the development of diabetes and hypertension, 

disorders with strong kidney involvement (232). 

 

It has been postulated by Heitmann et al that thigh circumference may be a cardiovascular 

risk factor in a prospective community based study of 2987 individuals. Decreased thigh 

circumference was related to increased risk of cardiovascular death and morbidity, this 

difference was independent of body mass index (BMI), percentage of body fat and waist 

circumference (236). To date there is no published evidence that thigh circumference 

influences the progression of CKD or the CVD risk experienced by individuals with CKD.  
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1.9.5. The periodontal phenotype and CKD 

There is emerging interest in the potential association between chronic periodontal 

inflammation and endothelial dysfunction (237), this is based upon the hypothesis that 

atherosclerosis is an inflammatory disease and that chronic periodontitis contributes to the 

systemic inflammatory burden and thus potentiates atherosclerosis (238-240). 

1.9.6. The socio-economic phenotype and quality of life measures in CKD 

Socioeconomic factors are known to influence both the prevalence and severity of chronic 

disease (241, 242). Population studies conducted in both the United States and Europe have 

demonstrated an increased risk of CKD in individuals of lower socioeconomic status (SES) 

(243-250).  

 

The influence of race and SES has been explored in North American studies where African-

American subjects were more likely to be of lower SES and have a corresponding increased 

risk of prevalence and severity of CKD (243-249).  

 

In a retrospective cross-sectional analysis of 1657 patients with CKD who were referred to a 

secondary care renal service in Sheffield, Bello et al studied the association between area-

level SES and severity of established CKD at presentation and whether any association was 

independent of other established risk factors (251). They included all referred patients with a 

known eGFR <60mL/min/1.73m2 for at least six-months who were not on any form of RRT 

(i.e. non dialysis stage 3-5 CKD (ND CKD)); the socio-demographic parameters analysed were 

age, gender, ethnicity (Caucasian versus non-Caucasian) and full postal code (251).  They 

described an association between poor SES and severity of CKD at presentation that was 

independent of a number of socio-demographic, lifestyle and clinical variables (251). 
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However the relationship between SES and CKD is complicated by the influence of other 

established risk factors for CKD, which are known to be related to both CKD and reduced SES 

(252-255).   

 

1.10. The development of renal risk scores 

The disparity in clinical outcomes of individuals with CKD makes accurate risk stratification a 

holy grail of CKD management; being able to accurately predict which patients will remain 

stable, which will experience a slow linear or stepwise decline and which are at risk of an 

inexorable, accelerated decline towards ESKD would allow clinicians to focus treatment on 

those at highest risk.   

 

It is clear that there are many factors that influence risk of progression (a likely combination 

of nephron loss, inflammation and endothelial dysfunction caused by both traditional and 

non-traditional risk factors); the observation that a single insult (e.g. unilateral nephrectomy) 

is usually associated with good renal outcomes supports this (256, 257).  Any risk scoring 

system would necessarily include clinical and laboratory variables in combination with 

sophisticated mathematical modelling similar to that used to construct the Framingham 

cardiovascular risk scoring system (258).  

 

In an analysis of data from the RENAAL study (reduction of renal end points in patients with 

diabetic nephropathy using the angiotensin blocker Losartan), a proposed risk stratification 

system for arrival at ESKD included urinary ACR, serum albumin, creatinine and haemoglobin. 
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The formulae for risk of progression to ESKD and death are shown in figure 7 (259). The 

authors concluded that the use of the formulae improved the prediction of arrival at ESKD 

from 50% when only albuminuria was included, to >80% when all four clinical variables were 

included (259). It is important to note that this formula was developed from a diabetic cohort 

and may not be applicable to the non-diabetic population.  

Figure 1-7: Equations for the prediction of progression to ESKD and death from the 
RENAAL study (259)  

ESKD, End stage kidney disease; ACR, Albumin creatinine ratio; Alb, Albumin; sCr, Serum creatinine; Hb, 
Haemoglobin; HbA1C, glycated haemoglobin 

 

In another attempt to devise a renal risk stratification tool Tangri et al used a variety of 

routinely collected demographic, clinical and laboratory data in two independent cohort 

studies where there was a variety of distribution of renal impairment and causes of renal 

impairment (260). The total population was large (n=8391) and the end point used was 

progression to ESKD (identified from national registry data); the development cohort 

consisted of 3449 individuals and the validation cohort of 4942 individuals, the two cohorts 

did not materially differ from one another at baseline (260). They used seven different 

equations (the composition of which are shown in figure 8) and compared them to determine 

which provided the most accurate prediction of risk of progression.  

 

  

ESKD = (1.96 x log[ACR])-(0.78 x sAlb[g/dL])+(1.28 x sCr[mg/dL])-(0.11 x 

Hb[g/dL]) 

Death = (1.14 x log[ACR])-(.061 x sAlb[g/dL])+(0.97 x sCr[mg/dL])-(0.07 x 

Hb[g/dL])+(0.08 x HbA1C[%]) 
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Figure 1-8: The components of the risk equations devised by Tangri et al (260) 

 

eGFR, estimated GFR; ACR, Albumin creatinine ratio; BP, Blood pressure 

The C statistic was higher for model 6 compared with models 2 and 3 and no further in 

sensitivity or specificity was observed by the additional of extra clinical variables (model 7), 

the C statistics for model 7 and model 6 were 0.835 (95% CI 0.819-0.851) and 0.851 (95% CI 

0.825-0.857) respectively (260). An equation based on model 6 is consequently the one used 

in a smart phone risk stratification tool developed by the authors (261). While this is a very 

promising risk stratification tool it has yet to be validated in other cohorts and may be limited 

by its lack of ethnic diversity and inclusion of referred patients only. 

 

It is clear that there are many unknowns in the field of CKD; what is true CKD and how much 

of what we currently classify as CKD is simply part of the normal aging process, what are the 

risks posed to individuals as a result of CKD (both renal and cardiovascular) and by what 

Model 1: Age and Gender 

Model 2: Baseline eGFR, age and gender 

Model 3: Baseline eGFR, age, gender and log urine ACR 

Model 4: Baseline eGFR, age, gender, log urine ACR, diabetes and hypertension 

diagnoses 

Model 5: Baseline eGFR, age, gender, log urine ACR, systolic BP (per 10mmgHg), 

diastolic BP (per 10mmgHg) and body weight (per 10kg) 

Model 6: Baseline eGFR, age, gender, log urine ACR, serum albumin (per 0.5g/dL), 

serum phosphate (per 1.0mg/dl), serum bicarbonate (per 1.0mEq/L) and serum 

calcium (per mg/dL) 

Model 7: Baseline eGFR, age, gender, log urine ACR, systolic BP (per 10mmgHg), 

diastolic BP (per 10mmgHg) and body weight (per 10kg), serum albumin (per 

0.5g/dL), serum phosphate (per 1.0mg/dl), serum bicarbonate (per 1.0mEq/L) and 

serum calcium (per mg/dL) 
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mechanisms these act, what are the determinants of progression and CVD risk and what 

interventions can mitigate these risks and how can patients with CKD be accurately risk 

stratified to allow attention to be focused on those at highest risk? 

1.11. Introductory Conclusions 

In this thesis I present data derived from an index cohort that I established to address 

shortfalls in evidence in CKD. This is a long-term project that aims to address the hypothesis 

that there are non-traditional determinants of clinical outcome in progressive CKD and that 

these may be amenable to therapeutic approaches; the early data derived from this project 

provides the basis of the work that I present in this thesis. 

 

The research questions will be addressed in the results chapters that follow are; 

 

1. What is the baseline demographic, vascular, inflammatory and periodontal phenotype 

of patients with high risk CKD managed in secondary care? 

2. What is the socio-economic phenotype of the cohort and what are the determinants of 

quality of life, functional status and symptom burden in a high risk CKD cohort? 

3. What are the associations between the established cardiovascular and renal phenotype 

and the vascular and periodontal phenotype? 

4. What are the early determinants of progression to ESKD and death in the cohort? 

 

Chapter one contains a detailed description of the methodology used in the RIISC study, and 

its evidence base. Chapter two contains the descriptive baseline demographic characteristics 

of the RIISC cohort and chapter three contains the descriptive socio-economic and quality of 
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life characteristics of the cohort. Chapter four describes the vascular characteristics of the 

cohort, chapter 5 describes the periodontal characteristics of the cohort and chapter 6 

describes the early outcomes data. The results presented are then discussed in the final 

chapter.  
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2. Chapter two: Methods 

The study protocol was approved by the South Birmingham Local Research Ethics committee 

(reference 10/H1207/6) and University Hospitals Birmingham Research and Development 

department (reference RRK3917). The inclusion and exclusion criteria are shown in table 1. 

Table 2-1: The inclusion and exclusion criteria of the RIISC study 

Inclusion criteria (at least one required) Exclusion criteria 

Stage 3 CKD with either/or; i) decline of eGFR of 

≥5mls/min/year or ≥10mls/min/5years  

Renal Replacement therapy 

ii) ACR ≥70 mg/mmol on three occasions Immunosuppression for renal disease 

CKD 4 or 5 (pre-dialysis) (these patients may also 

have progression or proteinuria inclusion 

criteria) 

 

 

Patients with progressive CKD are identified from secondary care renal clinics, where they 

have been under follow-up for at least one year, by an automated IT system that reports ACR 

data and generates an automated assessment of the rate of decline of kidney function (see 

below). Written information is sent to patients in advance of their attendance at the study 

clinic; for those patients who do not speak English, translated information is sent in audio 

format (as it is known that patients who do not speak English may not be able to read in their 

own language) (262).  

 

Participants undergo a detailed bio-clinical assessment an overview of which is shown in 

figure 1. The study reviews are integrated into the routine clinical follow up process and 

participants are followed up for 10 years or until they reach a defined clinical end-point 

(ESKD or death). The timepoints of the study visits and the data collected at each timepoint is 

shown in figure 2. 
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Figure 2-1: The composition of the bio-clinical assessment 

 

 

BP; Blood pressure, PWV; Pulse wave velocity, PWA; pulse wave analysis, AGEs; Advanced glycation end products, CV; 

Cardiovascular, BOP; bleeding on probing, PPD; probing pocket depth, CAL; clinical attachment loss.
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Figure 2-2: Timeline of study visits and assessments performed 
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Each study visit is arranged around routine clinic visits, so patients are not required to 

attend the clinic more frequently than their clinical condition and current guidelines 

dictate (61).  Outcomes and endpoints embedded in RIISC are shown in table 2.  Patients 

who reach ESKD are withdrawn from further follow-up, although ethical permission to 

continue to collect cardiovascular events and mortality data on these patients has been 

obtained. 

Table 2-2: Clinical outcomes and endpoints 

Clinical outcomes Clinical Endpoints 

Cardiovascular events 

 

Death 

Hospitalisations (and days hospitalised) 

 

Progression of CKD as measured by decline in eGFR 

calculated by linear regression 

ESKD (as defined a requirement for renal 

replacement therapy) 

The study specific assessments and the evidence base for these are described below. 

2.1. Assessment of rate of renal decline 

An assessment of the rate of decline of renal function is important for both the 

identification of potential participants and to measure the outcomes of those 

participants. However measuring rate of change of kidney function is complex (because 

renal decline is rarely a linear phenomenon) (263) and there is no gold standard 

methodology. A linear regression method is used to measure renal decline, utilising 

eGFR as calculated by the 4-variable MDRD formula with serum creatinine that is IDMS 

traceable. For screening rate of decline, each potential participant must have at least 6 

eGFR results (obtained between a 12 and 60 month period), to allow an accurate 

assessment of the rate of change of eGFR with time (162).   
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In the MDRD study the intra-test variability of the creatinine based eGFR was 9.4%, the 

variability being greatest at the extremes of GFR (30). In a study examining the accuracy 

of creatinine based eGFR equations in clinical studies in comparison to iothalamate 

based GFR measurements, Levey at al in 1993 recommended that to reduce the intra-

test variability at least four measures should be used (35). This approach has now been 

validated by a number of studies and there is consensus that using between four and six 

eGFRs collected over a period of at least one year is a more accurate way of assessing 

decline than percentage change in creatinine based on two results (54, 162, 248).    

 

The presence of significant albuminuria is also part of the inclusion criteria, early work 

on urinary albumin creatinine ratio measurement found that there was significant intra-

test variability associated with this method (around 60%) (108). To reduce the impact 

of this variability potential participants are required to have three ACR measurements 

greater than 70mg/mmol (the cut off limit defined by NICE as “higher level proteinuria” 

(61). 

2.2. Assessment of socioeconomic status, quality of life (QoL) and 

demographics 

2.2.1. Assessment of socioeconomic status (SES) 

Participants are asked a series of questions that related to SES, these include full postal 

code, educational attainment, current employment and current or last job type (the 

questions asked of participants are included in appendix 8). In previous analyses 

household income was used to assess SES (254) however to avoid alienating 
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participants (and because the evidence to suggest that this was an essential component 

of the assessment of SES was lacking (264)) this was not included in the RIISC protocol. 

 

The UK Index of Multiple Deprivation (IMD) score is a measure of SES; using a number 

of indicators (covering economic, social and housing metrics) to produce a deprivation 

score for each electoral ward in England (265). In this thesis the rank rather than the 

score obtained is described. 

2.2.2. Assessment of functional status 

The most frequently used measure of functional status is the Karnofski performance 

index, which is comprised of 11 statements ranging from 100 (representing normal 

functioning) to 0 (representing death) (266). In a study evaluating the prevalence of 

depression in individuals on dialysis compared to individuals being managed 

conservatively, depressed individuals had poorer functional status by the Karnofsky 

index; there was no significant difference in the prevalence of depression between the 

dialysis patients and the conservatively managed patients (267).  

 

The Karnofsky index has not been included in the RIISC protocol as functional status is 

not a stated outcome measure, limited information on functional status can be achieved 

with other tools. 

2.2.3. Assessment of quality of life 

There are numerous instruments for the measurement of QoL (268), all have their 

strengths and limitations, as QoL is a highly subjective concept. The instruments may be 

symptom based, satisfaction based or organ system specific.  
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2.2.4. The satisfaction with life scale 

The satisfaction with life scale (SWLS) (269) is a measure of general well being and 

consists of a five-item scale with a 1-7 satisfaction rating for each item, poor scores on 

this scale have been described in individuals with CKD (270). A commonly used generic 

measure of health related QoL is the RAND 36-item questionnaire (also known as the 

short form-36 or SF-36) (271). It consists of 36 questions covering well-being, 

functional status and perceptions of health status; higher scores representing better 

perception of health. In a study of patients with a variety of stages of CKD, impaired QoL 

defined by SF-36 scores was observed even in the early stages of CKD (272). 

The short form-36/KDQOL 

The SF-36 consists of 36 questions covering well-being, functional status and 

perceptions of health status and it has been adapted for use in patients with renal 

disease (primarily aimed at those on maintenance dialysis) as the Kidney Disease 

Questionnaire (KDQOL) (273). The Kidney Disease Questionnaire (KDQOL) is a 

derivation of the SF-36 tailored to patients with kidney disease (primarily aimed at 

those on dialysis), it is comprised of five domains covering physical symptoms, fatigue, 

depression, relationships with others and frustration (273). 

 

In a study of 205 patients with pre-dialysis CKD (stages 4 and 5) the KDQOL was 

administered; the mean scores obtained suggested that there was considerably 

impaired functional status compared to population norms (274). 
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However, while the SF-36 and KDQOL are detailed assessment tools they are time-

consuming to administer, to overcome this abbreviated tools have been devised. An 

example of this is the EQ5D(275). 

The EQ5D 

The most credible assessment tool which combines accuracy with brevity is the EQ5D 

(275) which has been evaluated in a number of chronic disease groups and was found to 

perform well (276). A recent report commissioned by the department of Health  to 

review patient reported outcomes for adults with CKD recommended the EQ5D among 

the preference-based measures with more supporting evidence, with the caveat that 

there was a lack of evidence of responsiveness and use in quality and outcome (277). 

This level of recommendation, together with the brevity of the tool and it’s utility in 

assessing quality adjusted life years (QALYs), led to the choice of the three level EQ5D 

for assessment of QoL in RIISC participants (278, 279).  

 

The EQ5D is comprised of two sections; a structured five-domain section which focuses 

on functional status and symptom burden where participants are asked whether they 

have no, moderate or severe problems or symptoms and a visual analogue scale (VAS) 

where participants are asked to rate how good or bad they perceive their health to be 

on that day on a scale of 1-100 (where 1 represents the poorest possible health and 100 

the best possible). A research nurse administers the EQ5D at the time of consent (and 

re-affirmation of consent at follow-up visits) in a private room. 
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Participants are asked to describe their ethnicity according to the categories used in the 

United Kingdom census of 2011; in the analyses described in this thesis the categories 

were grouped into White, Asian, Black or Other.   

2.3. Clinical assessment 

Participants undergo a detailed clinical assessment at each time-point; data are 

collected regarding renal diagnosis, all co-morbidity and lifestyle factors. Co-morbidity 

data were obtained by clarifying that already held medical records are correct and any 

additional co-morbidities were identified by asking “have you ever been told by a doctor 

that you have...?” and “have you ever taken any treatment for….?”. The questions asked 

are included in appendix 10.  

 

Cardiovascular diseases were strictly defined as follows; ischaemic heart disease was 

defined as previous angiographically demonstrated atherosclerosis, coronary artery 

bypass grafting, echocardiogram evidence of regional wall dyskinesia or a diagnosis of 

angina based upon exercise testing; cerebrovascular disease was defined as 

radiologically proven ischaemic or haemorrhagic stroke, known carotid occlusive 

disease or clinical evidence of transient ischaemic attacks; peripheral vascular disease 

was defined as vascular insufficiency requiring limb amputation or re-vascularisation, 

abdominal aortic aneurysm or clinical evidence of vascular insufficiency. 

 

Co-morbidity was scored using the Charlson co-morbidity index, this was devised in 

1987 as a tool for the prediction of 10 year mortality in individuals with a range of 

chronic conditions; the case definitions quoted in the original paper were used and are 
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shown in table 3 (280). This has been updated by Hall et al to include an age-adjusted 

score using an excel based calculator; this tool was used to classify co-morbidity in 

RIISC participants (281). All data required for co-morbidity scoring were collected 

though only cardiovascular co-morbidity data are presented in this thesis. 
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Table 2-3: The Charlson co-morbidity score and case definitions (280) 

Condition Definition 

Myocardial infarction One or more probable or definite myocardial infarctions in patients 
who have been hospitalised or had enzyme or electrocardiographic 
changes 

Biventricular heart failure Exertional or paroxysmal nocturnal dyspnoea and who have 
responded symptomatically (or on physical examination) to 
digitalis, diuretics or afterload reducing agents 

Peripheral vascular disease Intermittent claudication or intervention for arterial insufficiency, 
gangrene or acute arterial insufficiency or a thoracic or abdominal 
aortic aneurysm of >6cm 

Cerebrovascular disease History of cerebrovascular accident with minor or no residual 
deficit or transient ischaemic attacks 

Dementia Chronic cognitive deficit 

Chronic pulmonary disease Dyspnoea on slight activity with or without treatment and those 
who are dyspnoeic on moderate activity despite treatment. Severe 
pulmonary disease includes those who are dyspnoeic at rest, who 
require constant supplemental oxygen or who have CO2 retention 

Peptic ulcer disease Requirement for treatment of a peptic ulcer including those who 
have bled from ulcers 

Mild liver disease Cirrhosis without portal hypertension or chronic hepatitis 

Diabetes with no end organ 
damage 

As described 

Hemiplegia from any cause As described 

Moderate/severe renal disease Moderate renal disease; serum creatinine >3mg/dL 
(>265.2μmol/L) 

Severe renal disease; patients on dialysis, those who have had a 
transplant or those with uraemia 

Diabetes with end organ damage As described 

Any tumour Solid tumours without documented metastases but treated within 
the last five years, examples include breast, colon, ling and a variety 
of other tumours 

Leukaemia Acute and chronic myeloid leukaemia, acute and chronic 
lymphocytic leukaemia and polycythaemia vera 

Lymphoma Hodgkin’s, lymphosarcoma, Waldenstrom’s macroglobulinaemia, 
myeloma and other lymphomas 

Moderate or severe liver disease Moderate liver disease; cirrhosis with portal hypertension without 
bleeding 

Severe liver disease; cirrhosis, portal hypertension and variceal 



97 

  

bleeding 

Metastatic solid tumour As described 

AIDS As described 

 

2.4. Cardiovascular assessment 

All cardiovascular measurements are conducted in a room maintained at a constant 

temperature (22-24°C), using standardised operating procedures by trained personnel, 

at the same time of day (for each patient and at each time-point) and prior to 

phlebotomy and periodontal probing. 

2.4.1. Peripheral blood pressure measurement 

Participants have their BP measured using the BpTRU method after a five-minute rest.  

This is an oscillometric method that takes six consecutive readings and averages the last 

five measurements. This method has been shown to produce readings that are 

comparable to the daytime averages obtained by 24 hour ambulatory BP monitoring 

(282-286). Routine clinic blood pressure readings may be inaccurate because of the 

absence of a prior rest, the single reading obtained or the environment in which the 

readings are taken. In a cohort of patients with CKD, BpTRU readings were significantly 

lower than routinely obtained clinic readings and correlated closely with 24-hour 

ambulatory BP daytime average readings (and 24-hour readings per se) (287). The SOP 

for the measurement of BP using the BpTRU™ device is included in appendix 1. 

2.4.2. Measurement of Arterial stiffness and central blood pressure 

There are many commercially available systems for measuring PWV (288, 289). In this 

study the Vicorder™ system was chosen. The Vicorder™ device has been developed to 
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measure aortic PWV with little operator training and in a non-intrusive manner. It has 

been found to have very good intra- and inter-observer repeatabilities in a number of 

conditions and produces comparable results to those obtained using the widely used 

method of applanation tonometry (290-292). 

 

Participants are asked to lie flat on a couch; a cuff is placed around the neck with the 

inflating balloon over the carotid artery (the patient is reassured that when inflated this 

is no tighter than a fitted shirt collar) and another cuff around the top of the leg. The 

distance between the two is measured and data are recorded using the Vicorder™ 

system. There is no requirement for a period of relaxation prior to the recording of data. 

Three PWV readings are taken (if the reading is more than 10% from the expected 

normal reading of 7m/s then another three readings are taken until two readings within 

10% of one another are obtained. 

 

The Vicorder™ system also generates the AIx and central BP of participants. The SOP for 

measurement of PWV and central BP is included in appendix 2. 

 

2.4.3. Advanced glycation end products 

Advanced glycation end product levels are to be measured by two complementary 

methods in RIISC. Firstly, AGE accumulation in the skin will be measured by skin 

autofluorescence (AGEreader™ (293)), secondly, serum concentrations of the AGE 

marker pentosidine will also be measured, however only data pertaining to skin 

autofluorescence are presented in this thesis. In 2004 Meerwaldt et al described a close 
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correlation between skin autofluorescence an AGEs measured in skin biopsy samples in 

studies with both prevalent dialysis patients and those with persevered renal function 

(diabetic and non-diabetic subjects) (294), in 2005 they described a close correlation 

between AGEs and measures of inflammation (CRP) in a study of haemodialysis patients 

(221). However, as several studies conducted in patients following kidney 

transplantation and in dialysis patients have not shown close correlations between 

AGEs measured in the skin (by skin biopsy rather than autofluorescence) and serum 

markers, in due course I will explore the relationship between AGEs measured using 

both skin autofluorescence and the serum marker pentosidine (295-297).  The detailed 

SOP for AGE measurement in included in appendix 3. 

2.5. Anthropomorphic assessment 

RIISC participants have their height, weight, hip, waist and thigh circumference 

measurements taken using a standardised method (following the standard operating 

procedures included in appendices 4 and 5); BMI, hip/thigh ratio (HTR) and waist/hip 

ratio (WHR) are then calculated. 

2.6. Periodontal assessment 

RIISC participants undergo a full mouth periodontal assessment which comprises 

measurement of pocket probing depth (PPD), a measure of current disease status; 

recording of bleeding on probing (BOP), a measure of periodontal inflammation; clinical 

attachment loss (CAL), a measure of lifetime disease experience (carried out by a 

trained dental hygienist supported by a trained dental surgeon). Saliva samples are 

collected for non-presumptive proteomic analysis and plaque samples are being 

collected for molecular microbiome analysis to address the hypothesis that the nature 
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of the subgingival biofilm may correlate with renal status, however these data are not 

presented in this thesis (298, 299). The SOP for the periodontal assessment is included 

in appendix 7. 

2.7. Biomarkers 

There are a number of biomarkers that have been associated with CKD. These include: 

(i) markers of renal impairment; (ii) risk factors for CVD; and (iii) risk factors for 

progressive CKD. To date some studies of renal biomarkers have been limited by 

methodological shortfalls (the methods used for measuring renal progression, the large 

number of biomarkers studied and the exclusion of certain groups of patients). Table 3 

describes the index biomarkers selected in the RIISC study and the current evidence of 

their possible role in the progression of CKD.   

 

The biomarkers listed in table 3 have all been identified as being associated with 

progressive CKD in human studies of at least 50 patients, there are a number of other 

putative biomarkers (such as pro-inflammatory cytokines and vitamin D isotypes) 

where such evidence does not currently exist but where early experimental work 

suggests a plausible link with renal progression, RIISC aims to clarify the role that these 

biomarkers have (alone or in combination with each other) in the progression of CKD. 

 

The appropriate collection and sample handling method of samples for biomarker 

analysis is important as many putative biomarkers are unstable and degrade rapidly 

from biological samples, it is accepted that this may limit their wider clinical application 

and to address this concern a sub-study investigating the reproducibility and stability of 
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certain biomarkers is to be carried out. As part of the RIISC protocol all samples are 

handled as described in appendix 6 (300-302).  
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Table 2-4: Biomarkers measured as part of the RIISC protocol and presented in 
this thesis 

Biomarker Patho-
physiological 
basis 

Number of 
patients 

Definition 
progression 

Evidence to date 

Cystatin C Marker of 
kidney 
function (136)  

117 Doubling serum 
creatinine or ESKD  

Cystatin C predicted renal 
decline (doubling of 
Creatinine or arrival at 
ESKD) in the MMKD study 
(303)  

C-reactive 
protein (CRP) 

Marker of 
inflammation 

804 Rate of change of 
eGFR 

Neither serum CRP or leptin 
predicted renal progression 
(151)  

Free light 
chains (FLCs) 

Marker of 
renal function 
and possible 
inflammation 
(141) 

282 healthy 
controls, 772 
South Asian 
diabetics, 91 
Caucasian 
diabetics 

Development of 
microalbuminuria 

Elevated serum FLCs were a 
risk factor for the 
development of 
microalbuminuria (141)  

IL-6 Pro-
inflammatory 
cytokine 

  Small studies have suggested 
that polymorphisms in genes 
that encode inflammatory 
markers may influence 
progression of 
atherosclerosis and 
progressive CKD (304) 
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2.8. Genetic analysis 

Samples are collected for genetic analysis using the PAXgene™ system; this is 

described in detail in the standard operating procedure included in appendix 6. 

2.9. Clinical outcome data 

The outcome measures reported in this thesis relate to arrival at ESKD and 

death, data pertaining to ESKD (defined as requirement for dialysis for more 

than 90 days or a pre-emptive renal transplant) were collected from renal 

registry data sources and data pertaining to death were collected from both trust 

IT and health authority data sources. 

2.10. Data collection and analysis 

The aim of RIISC is to recruit a minimum of 1000 participants; this thesis reports 

the cross-sectional analysis of the baseline data obtained from the first 500 

recruits. This will allow robust interpretation of the relationship between the 

variables that will be under study in the cohort and their relationship to clinical 

outcomes. Data collected is stored in a specially designed database that allows 

detailed recording of the demographic and phenotypic characteristics of the 

cohort across multiple sites; data can be rapidly retrieved and analysed. 

2.10.1. Statistical analysis 

With an assumed event rate (death or progression to end stage kidney disease) 

of 10% per year (based upon epidemiological data) a cohort of 1000 patients 

followed up for a ten year period would give a minimal detectable hazard ratio of 

1.238. 
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The data were analysed using SPSS v19, where data were parametrically 

distributed mean and standard deviation are shown, where non-parametrically 

distributed median and interquartile range are shown. 

 

The statistical test used and the justification for it is described prior to each 

analysis in the results chapters. Binary logistic regression is used where 

categorical dependent variables are present, goodness of fit being assessed by 

the R2 value.  
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3. Results 1: Descriptive characteristics of the RIISC cohort 

The methodologies described in chapter 2 were carefully designed to provide 

accurate information on the cohort at inception and during follow-up. The cohort 

studies that have previously been set up and report bio-clinical data have been 

reviewed in chapter 1. As anticipated there are major similarities between the 

data collected in RIISC with other prospective cohorts, however there are also 

fundamental differences; these relate to both the characteristics of the 

participants recruited and the data set acquired. 

 

In this chapter I have: (i) described the baseline demographic and clinical 

characteristics of the cohort; (ii) compared the characteristics of those patients 

who were recruited into the study with those who were eligible for recruitment 

and approached for inclusion in the study but did not wish to participate; (iii) 

explored the difference in key clinical variables between the baseline and six-

month visits of the recruited cohort and iv) compared the demographics of RIISC 

participants to those of other CKD cohort studies. Haemodynamic data including 

BP are reported in the cardiovascular phenotype chapter  

 

All clinical and demographic data presented relates to the first 500 participants 

recruited to the RIISC study between October 2010 and February 2013, of these 

305 (61%) had reached the six-month time-point at the time of analysis and data 

from that visit is also shown. 
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3.1. The baseline demographic, clinical and anthropomorphic 

characteristics of the cohort 

The eGFR was derived from the IDMS traceable serum creatinine level 

incorporated into the MDRD formula; Black ethnicity was corrected for.  The 

urinary ACR was also measured at the baseline visit, for 57 individuals these 

data were incomplete.  

 

Participants were recruited based on the eligibility criteria stated in the 

methodology chapter. Participants could have one or more of the eligibility 

criteria, so for example some individuals with stage 3 could have been recruited 

as consequence of both progression of CKD and proteinuria. Some individuals 

with stage 4 or stage 5 (pre-dialysis) CKD may have fulfilled three criteria for 

recruitment. 

 

At the time of screening potential participants required an eGFR 

<60mL/min/1.73m2 in addition to one or more additional criteria for 

recruitment; however in 10 patients the eGFR at the time of the baseline visit 

had increased to ≥60mL/min/1.73m2. As these individuals had the necessary 

stipulated prior decline in eGFR at the time of screening and/or significant 

proteinuria they entered the study. 

 

Participants were divided by stage of CKD for the purposes of the analysis shown 

in tables 1-5; the cohort was comprised predominantly of patients with stage 3B 

CKD and stage 4 CKD (n=122 and n=293 respectively), the remainder had stage 1 
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and stage 2 CKD (n=11), stage 3A CKD (n=28) and stage 5 CKD (n= 40).  It was 

not possible to determine the CKD stage for 6 participants because there were 

insufficient creatinine data available. 

 

Table 1 contains the baseline demographic and clinical characteristics of the 

recruited cohort and Table 2 the baseline laboratory data of the cohort. 

 

These data show that age increase with severity of CKD, there is a higher 

prevalence of glomerulonephritis in individuals with less severe stages of CKD (a 

finding almost certainly explicable by the inclusion criteria; those individuals 

without stage 4 or 5 CKD were required to have significant proteinuria or 

progressive CKD). The ACR appears to demonstrate a bi-modal distribution with 

individuals with stage 1 and 2 and stage 5 CKD having the greatest ACRs. 

Individuals with stage 1 and 2 CKD have a significantly higher cholesterol than 

those with other stages (a likely reflection of the high prevalence of the 

glomerulonephritides in this stage) and individuals with stage 5 CKD have higher 

levels of uric acid. 
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Table 3-1: The baseline demographic characteristics of the RIISC cohort stratified by CKD stage 

 All 

n=500 

 1&2 

n=11 

 3A 

n=28 

 3B 

n=122 

4 

n=293 

5 

n=40 

p-value 

Males (%) 60 73 84 60 59 55 0.423 

Age* (years) 65 (16) 41 (12) 53 (17) 61 (15) 66 (16) 65 (16) <0.001 

Ethnicity (%):                

White 

Asian 

Black 

Other 

 

72 

16 

10 

2 

 

55 

27 

9 

9 

 

64 

21 

11 

4 

 

74 

13 

12 

1 

 

74 

14 

10 

2 

 

66 

26 

8 

0 

 

0.441 

0.291 

0.986 

0.291 

Renal diagnosis (%):  

Hypertensive/ischaemic 

Diabetic nephropathy 

APKD 

Glomerulonephritis 

Reflux/pyelonephritis/obstruction 

Unknown 

Other 

 

30 

12 

7 

18 

7 

16 

10 

 

37 

27 

0 

9 

0 

0 

27 

 

21 

21 

11 

32 

4 

4 

7 

 

28 

15 

12 

19 

2 

17 

7 

 

30 

10 

5 

17 

10 

19 

9 

 

32 

10 

8 

15 

5 

15 

15 

 

0.370 

0.915 

0.086 

0.003 

0.071 

0.087 

0.990 

Current smokers (%) 14 18 7 14 14 10 0.794 

Previous smokers (%) 42 45 50 34 42 58 0.091 

* Values expressed as mean (SD), ANOVA performed; APKD, autosomal dominant polycystic kidney disease, for categorical variables Chi squared test performed
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Table 3-2: The baseline laboratory characteristics of the cohort 

 All 1&2 3A 3B 4 5 p-value 

Creatinine (μmol/L) 221 (89) 87 (21) 128 (37) 159 (25) 236 (49) 405 (134) <0.001 

eGFR (mL/min/1.73m2) 27 (12) 70 (25) 49 (4) 35 (4) 23 (4) 12 (2) <0.001 

Cystatin C (mg/L) 2.6 (0.8) 1.2 (0.3) 1.6 (0.3) 2.2 (0.5) 2.8 (0.6) 3.7 (0.7) <0.001 

ACR* (mg/mmol) 26.9 (5.4-107.8) 117.9 (64.5-

345.5) 

93.6 (8.9-150.7) 17.9 (3.9-109) 22.9 (4.4-86.4) 70.7 (11.7-

200.4) 

<0.001 

Haemoglobin (g/dL) 12.4 (4.5) 14.0 (1.5) 13.2 (3.1) 12.6 (2.4) 12.3 (5.5) 11.5 (2.4) 0.290 

Corrected Calcium (mmol/L) 2.24 (0.14) 2.25 (0.09) 2.31 (1.28) 2.24 (0.12) 2.23 (0.14) 2.26 (0.21) 0.082 

Phosphate (mmol/L) 1.38 (5.49) 1.03 (0.16) 1.05 (0.18) 1.07 (0.25) 1.57 (7.13) 1.39 (0.32) 0.932 

Serum albumin (g/L) 44 (19) 41 (1) 43 (6) 44 (3) 43 (4) 53 (6) 0.048 

Bicarbonate (mmol/L) 25.7 (16.5) 25.6 (2.5) 25.7 (3.3) 26.1 (2.9) 25.9 (21.2) 22.7 (3.3) 0.838 

HbA1C (mmol/mol) 43.2 (38.8-55.2) 48 (26) 47 (21) 47 (14) 50 (16) 50 (17) 0.529 

Cholesterol (mmol/L) 4.7 (1.3) 5.5 (0.8) 5.6 (1.4) 4.8 (1.4) 4.6 (1.2) 4.5 (1.1) <0.001 

Uric acid  462 (134) 364 (165) 386 (124) 437 (129) 484 (122) 486 (137) <0.001 

Values shown as mean (SD), ANOVA performed in all except for ACR* data shown as median and interquartile ranges (Kruskall-Wallis test performed)
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In line with recent changes to the classification of CKD, albumin creatinine ratios 

were grouped into “no proteinuria” (ACR<2.9mg/mmol), “high proteinuria” 

(ACR 3-29mg/mmol) and “very high proteinuria” (ACR >30mg/mmol). In table 3 

the distribution of ACR groups by CKD stage is shown as percentages. 

 

Table 3-3: Proteinuria and CKD stage 

 All 1&2 3A 3B 4 5 p-value 

No proteinuria (A1) 18 0 8 20 19 11 0.214 

High proteinuria (A2) 34 9 32 37 35 28 0.370 

Very high proteinuria (A3) 48 91 60 43 46 61 0.017 

Chi squared tests performed 

These data confirm the findings presented in table 2, that there are two peaks in 

very high proteinuria. 

3.2. The baseline co-morbidity of the RIISC population 

 

For the purpose of this analysis co-morbidities were divided into the presence or 

absence of diabetes, cardiovascular diseases, chronic obstructive pulmonary 

disease and malignancy (past or current).  The Charlson Co-morbidity Index was 

calculated for each participant, the age-adjusted score is shown in this analysis, 

higher scores represent greater co-morbidity. Co-morbidity data are shown in 

table 4.  

 

Just under 40% of the cohort had diabetes, however the prevalence of diabetic 

nephropathy was 12% (29% of diabetic patients in the cohort having diabetic 

nephropathy). This is consistent with previous work indicating that fewer than 

40% of diabetics have diabetic nephropathy (305).  In this cohort the diagnosis 
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of diabetic nephropathy was only made in the presence of proliferative 

retinopathy requiring laser treatment, or based upon renal histology.  

 

There were no significant differences in established CVD burden by CKD stage, 

however those with the most severe CKD had the highest co-morbidity.
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Table 3-4: The baseline co-morbidity of RIISC participants by CKD stage 

 All patients 

 

Stage 1&2 

 

Stage 3A 

 

Stage 3B 

 

Stage 4 

 

Stage 5 

 

 

p-value 

Diabetes (%) 39 27 21 35 44 40 0.104 

Ischaemic Heart Disease (%) 24 18 18 23 23 35 0.464 

Cerebrovascular Disease (%) 12 9 14 14 13 13 0.507 

Peripheral Vascular Disease (%) 12 9 4 13 13 8 0.526 

Any cardiovascular disease (%) 34 18 32 39 33 38 0.526 

Chronic Obstructive Pulmonary 

Disease (%) 

13 27 7 13 13 8 0.415 

Malignancy (%) 16 9 7 15 17 18 0.626 

Median age adjusted Charlson Co-

morbidity Index* 

5 (2-7) 1  (0-2) 2 (2-4) 4 (1-6.75) 5 (3-8) 7 (4.25-8.75) <0.01 

*Data shown as median and inter-quartile range, Kruskall-Wallis test performed, for categorical variables Chi squared test performed. 
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The use of agents to block the renin-angiotensin system was common with 66% 

of the cohort prescribed an ACEi or angiotensin receptor blocker (ARB) at 

inception, of these 69% were diabetic (there was no significant difference 

between the percentage of diabetics and non-diabetics prescribed an ACEi or an 

ARB, p=0.300). At recruitment 5% were prescribed both an ACEi and an ARB, of 

these 39% were diabetic, the small percentage of participants prescribed dual 

blockade may represent the increasing understanding of the potential harms of 

such regimes (306).  For those patients prescribed dual blockade the majority 

(87%) had very high albuminuria (ACR≥30mg/mmol).   

3.3. The anthropomorphic phenotype of the cohort 

Participants underwent detailed anthropomorphic assessment as described in 

chapter 2 section 1.5.  All the anthropomorphic data were parametrically 

distributed. Anthropomorphic data are shown in table 5. The data show that 

there were no significant anthropomorphic differences between the stages of 

CKD.
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Table 3-5: Anthropomorphic phenotype of RIISC participants 

 All 

 

Stage 1&2 

 

Stage 3A 

 

Stage 3B 

 

Stage 4 

 

Stage 5 

 

 

p-value 

Body Mass Index (kg/m2) 

 

29.7 (6.7) 32.3 (4.9) 

 

27.8 (5.8) 29.9 (6.4) 29.8 (6.8) 29.6 (7.4) 0.383 

Waist circumference  (cm) 102.8 (17.2) 104.7 (16.9) 100.1 (15.3) 103.5 (16.2) 102.9 (17.5) 102.6 (19.7) 0.911 

Hip circumference (cm)  106.6 (14.6) 108.2 (11.0) 102.9 (10.7) 107.2 (14.2) 107.1 (15.2) 106.0 (15.2) 0.682 

Thigh circumference (cm)  53.8 (9.5) 57.3 (9.9) 51.6 (7.3) 54.5 (7.5) 53.8 (10.0) 53.4 (12.2) 0.455 

Hip Waist Ratio  1.13 (3.72) 0.96 (0.11) 0.98 (0.09) 0.96 (0.12) 1.24 (4.85) 0.96 (0.12) 0.960 

Hip Thigh Ratio  2.74 (11.7) 1.94 (0.37) 2.01 (0.23) 1.97 (0.26) 3.26 (15.23) 2.03 (0.15) 0.845 

All variables parametrically distributed so ANOVA performed 
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Diabetes has been shown to be associated with negative anthropomorphic 

characteristics (elevated BMI (307) and increased waist circumference (308)) 

while other anthropomorphic characteristics (increased hip and thigh 

circumference) may be protective (308). An association between diabetes, 

obesity and chronic kidney disease was described in the NHANES survey (12). 

 

To ascertain the association between diabetes and the anthropomorphic 

characteristics of the cohort, the group was divided into diabetics and non-

diabetics and anthropormophic data compared between these two groups, the 

results are shown in figures 1-3. I then assessed whether diabetes was 

independently associated with adverse anthropomorphic features by utilizing a 

multivariable analysis incorporating all variables with a significant univariate 

association with anthropomorphic characteristics. 

 

Figure 3-1: BMI in diabetics and non-diabetics 
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Figure 3-2: Waist and hip circumference in diabetics and non-diabetics 

 

 

Figure 3-3: Waist hip ratio and hip thigh ratio in diabetics and non-
diabetics 

 

These data show that diabetic participants had significantly higher BMI, 

significantly larger waist and hip circumference and significantly lower HTR. 

There was no significant difference in WHR. 
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To identify variables associated with increased body mass index a univariate 

analysis was performed (the dependent variable being the presence of a body 

mass index in the upper quartile). 

 

Figure 4 shows the variables included into in the analysis; those with a 

significance <0.1 (indicated by *) were then included in a multi-variate analysis, 

the results of which are shown in table 6.
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Figure 3-4: Variables a priori considered to be a priori associated with 

elevated BMI 

 

*reached significance in the univariate analysis 

 

 

 

 

Demographic:  Age 

      Gender* 

    Ethnicity* 

Clinical:   Diabetes* 

    Cardiovascular disease 

    Charlson co-morbidity Index 

Socio-economic:  Current smoking 

    Previous smoking 

    Deprivation score* 

Laboratory:   eGFR 

    ACR 

    CRP* 

    Polyclonal free light chains 

    HbA1C* 
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Table 3-6: Binary logistic regression of variables associated with increased 
BMI 

 p-value Odds ratio 95% confidence intervals 

HbA1C 0.000 1.034 1.018, 1.050 

Male gender 0.145 NA NA 

Black ethnicity 0.180 NA NA 

Presence of diabetes 0.863 NA NA 

hsCRP 0.086 NA NA 

Deprivation score 0.505 NA NA 

These results show that increased glycated haemoglobin (the odd ratios quoted 

refer to each 1% increase in HbA1C) was the only variable independently 

associated with elevated BMI in this cohort; the reasons for this require further 

study. 

 

3.4. The representativeness of the cohort of the population from 

which it was recruited 

Interpreting the results of a cohort study requires an understanding of whether 

those that consent to participate are representative of the population from which 

they are recruited. To assess the representativeness of the cohort a cross-

sectional analysis of the first 533 eligible patients who were approached about 

inclusion in the study was performed. 309 patients from this group participated 

in the study and 224 patients who met criteria for recruitment did not consent to 

participate. Advice was sought from the R&D department who felt that as this 
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included routinely collected, anonymised data no separate ethics application was 

required. 

 

Potential participants indicated that they did not wish to participate at one of 

two time-points in the study recruitment period: (i) when they were sent the 

patient information sheet in advance of the study clinic (18% declined at this 

stage): (ii) on attendance at the clinic (77% declined at this stage). In addition 

5% failed to attend for an initial study clinic visit on more than three occasions, 

and this was taken as evidence of declining to participate.  

 

The reasons for non-consent provided by those who attended the clinic are 

shown in figure 5. The commonest reason given (in 56%) for not participating 

was resistance to participation in medical research. Other reasons included self-

perceived frailty and logistical issues.  
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Figure 3-5: Reasons for non-recruitment (% shown) 

 

Language barrier refers to the consenter’s inability to communicate with a potential participant 

with sufficient clarity to obtain informed consent despite translation. 

To determine the representativeness of the recruited cohort, routinely collected 

clinical data from both the participants and the eligible but non-consenting 

patients were compared, this is shown in table 7. Advice was sought from the 

trust R&D department who felt that a separate ethics amendment was not 

required for this work. The comparison includes, ethnicity, gender, eGFR and 

deprivation rank (using the IMD), co-morbidity could not be compared, as those 

who did not consent did not undergo the same detailed clinical questioning as 

those who did. The majority of the data were parametrically distributed. Data 

that were non-parametrically distributed were analysed using non-parametric 

tests. 
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Table 3-7: Characteristics of eligible patients, recruited and not recruited 

 Recruited Not recruited p-value 

Age 62 (17) 71 (13) 0.000 

% Males 42% 53% 0.011 

Ethnicity (%) 

White 

Asian 

Black 

Other 

 

71 

16 

11 

2 

 

63 

18 

17 

2 

 

0.039 

0.531 

0.036 

0.886 

ACR (mg/mmol)*  33.0 (5.5-132.5) 21.6 (3.4-94.8) 0.150 

eGFR (mL/min) 26 (11) 25 (9) 0.064 

IMD score* 7855 (3209-17747) 7683 (3556-16381) 0.860 

* data shown as median and interquartile range, Mann-Whitney tests performed, for parametric variables unpaired T-tests performed, for categorical variables Chi 
squared tests performed 

ACR; albumin creatinine ratio, eGFR; estimated glomerular filtration rate, IMD; index of multiple deprivation score 
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These data illustrate that the patients who declined to participate were 

significantly older, were more likely to be male and of non-white ethnicity. There 

was no significant difference in the eGFR, ACR or in the IMD rank.  

 

A multivariate analysis into the variables associated with recruitment was 

performed, increasing age (p<0.001), non-white ethnicity (p<0.001) and male 

gender (p=0.009) were all independently associated with non-recruitment into 

the study. 

3.5. Laboratory variables at baseline and six-month visits 

The laboratory parameters included in this analysis were haemoglobin, calcium 

and phosphate, bicarbonate, glycated haemoglobin and uric acid (185, 309); 

these were selected as they have all been shown to be independently associated 

with patient outcomes in CKD (162, 165, 192, 310-312).  

 

However the only variable independently associated with outcomes where there 

is an evidence base that intervention improves outcomes is glycaemic control 

(313), for the other parameters (with the exception of bicarbonate) there are 

treatment recommendations, although this is not based on level 1 evidence (40). 

There are two potential sources of improvement in laboratory variables between 

baseline, regression to the mean and the recruitment effect.  

 

Recruitment into clinical studies has previously been shown to influence clinical 

outcomes (314), the only way to determine whether this was a factor in the 
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RIISC study a control group would need to be studied as there was no control 

group available it is not possible to exclude this as a source of variability.  

 

To determine the effect of regression to mean I explored changes in variables of 

interest between visit 1 and visit 2 (6-month), the data are shown in table 8.
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Table 3-8: Change in key laboratory parameters between baseline and six-months 

 Baseline Six-months p-value 

Haemoglobin  (g/dL) 12.6 (2.2) 12.0 (2.5) 0.091 

Corrected calcium (mmol/L) 2.19 (0.31) 2.16 (0.47) 0.192 

Phosphate (mmol/L) 1.13 (0.28) 1.15 (0.29) 0.496 

Bicarbonate (mmol/L) 24.7 (4.9) 25.5 (14.8) 0.337 

Cholesterol (mmol/L) 4.6 (1.2) 4.6 (1.3) 0.689 

HbA1C (mol/mmol) 49.3 (19.9) 48.9 (16.6) 0.614 

eGFR (mL/min) 27 (10) 26 (10) 0.012 

ACR (mg/mmol)* 27.9 (4.8-120.0) 30.3 (5.1-129.0) 0.296 

*median (IQR), Mann-Whitney test performed, for parametric variables unpaired T-tests performed 
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This analysis showed no significant inter-individual changes in any of the variables 

shown except for eGFR.  At a population level unpaired T-tests (as all variables were 

parametrically distributed) were performed and again there were no significant 

differences between the time-points.  

 

The difference between the eGFR at baseline and six-months was examined, though it 

must be appreciated that true progression cannot be accurately identified using just two 

estimates of GFR or over such a short period of time.  The mean difference in eGFR was -

0.69(4.7) mL/min. Paired T-tests revealed that the eGFR at 6 months was significantly 

lower than baseline eGFRs, p=0.012. 

 

3.6. The demographics of the RIISC cohort compared to other established 

CKD cohorts 

As described in chapter 1 and chapter 2 there are a number of other established CKD 

cohorts, these cohorts have been drawn from different populations with different aims 

and objectives. Where data are available the baseline demographic characteristics of 

these other cohorts have been compared to the RIISC cohort in table 9. To convert ACR 

data from mg/g to mg/mmol multiply by 0.113. 
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Table 3-9: Comparison of baseline characteristics of other prospective observational CKD cohorts 

 Number Mean age % males  %white  Mean eGFR Urinary protein excretion Co-morbidity 

CRIB (128) 382 61.5 

(10.7) 

64.9 88 21.8 

(10.7)mL/min/1.73m2 

460 (88.1-257)mg/g 44.8% CVD 

17.3% DM 

MMKD (119) 227 45.7 

(12.6) 

68 100 70 (42)mL/min/1.73m2 0.9 (0.9)g/24hr NA 

LCKD (120) 622 60.4 56 75 23.2mL/min/1.73m2 NA 27% CVD 

38% DM 

CRISIS (121, 

315) 

1325 65.1 63.7 NA 30.9mL/min/1.73m2 0.8g/24hr 47% CAD 

32% DM 

CRIC (122) 3612 58.2 (11) 54 45 43.3 

(13.5)mL/min/1.73m2 

0.17 (0.07-0.81)g/24hr 22% CAD 

47% DM 

SEEK (124) 1814 71.1 47.7 87.9 47 

(17.7)mL/min/1.73m2 

NA 33% CAD 

48% DM 

R2ID (132) 1741 72.9 (9) 40 97.5 52.5 

(10.4)mL/min/1.73m2 

0.33 (0-0.15)mg/mmol 22% CVD 

17% DM 

CKD-JAC 

(316) 

2977 60.8 

(11.6) 

62.1 0 28.6 

(11.8)mL/min/1.73m2 

976 (1340) mg/g 15% IHD 

38% DM 

RIISC 500 65 (16) 60 72 27 (12) mL/min 26.9 (5.4-107.8) mg/mmol 24% IHD  

39% DM 

Abbreviations: CRIB, Chronic Renal Impairment In Birmingham; MMKD, Mild to Moderate Kidney Disease; LCKD, Longitudinal Chronic Kidney Disease; CRISIS, 

Chronic Renal Insufficiency In Salford; CRIC, Chronic Renal Insufficiency Cohort; SEEK, Study to Evaluate Early Kidney Disease; RRID, Renal Risk In Derby; CVD, 

Cardiovascular disease; DM, Diabetes Mellitus; CAD, Coronary Artery Disease; IHD, Ischaemic Heart Disease.
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3.7. Discussion and conclusions 

This is a cohort of individuals who met criteria for secondary care follow up as 

directed by national guidance (61), the cohort is drawn from the Birmingham 

area where the local population is ethnically diverse (in the 2011 census 5.5% of 

the population were of South Asian origin (317)) . Consistent with this RIISC 

cohort was comprised of a substantial proportion of non-white participants, 

mainly of South Asian ethnicity (who are known to be at enhanced risk of both 

CKD and CVD, largely as a consequence of increased prevalence of diabetes 

within this population (318)).  

 

The analysis of the eligible versus recruited population illustrated that South 

Asian patients were appropriately represented in the recruited population, 

however Black individuals (who have been shown to be over-represented in 

renal replacement programs in the United States (319)) are under-represented 

in the cohort. It is not clear what the barriers to research participation were in 

this group, detailed data on reasons for non-consent by ethnic group were not 

collected. 

  

Population based work from the UK has shown that the prevalence of CKD 

increases with increasing age; in a large, primary care based dataset more than 

70% of patients with an eGFR <30mL/min/1.73m2 were older than 70 years of 

age (320). Indeed, much of the CKD found in older individuals is at the less 

severe end of the spectrum and may be managed solely in primary care (a 



129 

  

finding supported by the older age of the participants in the R2ID cohort (132)). 

The finding that the mean age of the cohort is 65 years of age is consistent with a 

secondary care, high-risk cohort.  

 

Recent published data from the CKD prognosis consortium has confirmed that 

the risk of ESKD and death is higher in individuals with lower eGFRs and higher 

levels of proteinuria (70); for RIISC the level of proteinuria is higher than all 

other cohorts reported to date except for CRIB; proteinuria levels are maintained 

across all age ranges and stages of CKD by eGFR, confirming that this is a high 

risk cohort. In a separate analysis from the same cohort males were found to 

have an increased all-cause and cardiovascular mortality at all levels of eGFR and 

proteinuria compared to women but that decreased eGFR and increased 

albuminuria placed both genders at increased risk of progression to ESKD (135).  

 

There is a well described association between cardiovascular disease and CKD 

(45), the presence of established cardiovascular disease at recruitment in a 

significant proportion of the cohort is in keeping with the observations of other 

researchers (118, 124, 315). The finding that overall co-morbidity increases with 

increasing severity of CKD in this cohort can be explained by increasing age with 

severity of CKD, however the Charlson index used provides an age adjusted score 

to account for this and this is not an observation that has been previously 

published. An explanation for this observation might be that CKD progression 

shares risk factors with other co-morbidities (in addition to the well described 
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overlap in risk factors for CKD and CVD) such as malignancy and chronic 

respiratory disease. 

 

The co-existence of diabetes and CKD is well known; the prevalence of diabetes 

in this cohort is consistent with other secondary care CKD cohorts and with the 

findings of the CKD prognosis consortium’s recent meta-analysis (135).  In this 

cohort diabetic individuals have significantly higher body mass indexes and 

waist and hip circumference, although there was no significant increase in waist 

to hip ratio, in contrast with previous work that has suggested that central 

obesity is prevalent in individuals with diabetes and CKD (321).   

 

The baseline demographic and descriptive characteristics of the cohort indicate 

that the recruited population is broadly representative of the eligible population 

and that there are consistencies between this and other prospective CKD 

cohorts; the high prevalence of established vascular disease, diabetes, 

proteinuria and reduced eGFR at inception suggest that this is a cohort of 

individuals at substantial cardiovascular and renal risk. In the next chapter I 

describe the baseline socioeconomic status and quality of life characteristics of 

RIISC.
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4. Results 2: What are the lifestyle and socio-economic characteristics 

of RIISC participants and what impact does CKD have on self-

reported quality of life? 

The data presented here relates to the first 500 participants recruited to the RIISC 

study, and the 305 who had undergone a six-month follow up visit at the time of the 

analysis.  Data are presented as means with standard deviation or medians with 

interquartile ranges.  The data has been used to analyse how QoL relates to other 

variables of importance collected as part of the study. 

4.1. The socio-economic phenotype of the cohort 

Participants were asked questions relating to socio-economic status including 

educational attainment and employment (both whether they were employed or not and 

what their current or last job was); the questions that were asked are included in 

appendix 8. Data relating to the baseline socioeconomic status are shown in table 1. 

 

The IMD rank was used to stratify levels of deprivation, this utilises the full postal code.  

A rank of 1 represents the most deprived area and a score of 32482 the least deprived 

area it is also possible to use the IMD score (which is used to compare areas, a limitation 

of using the rank rather than score data is that differences in deprivation may be more 

difficult to detect). The median IMD rank was 7576 (2874-15140).  There was no 

significant difference in IMD rank when analysed by CKD stage (p=0.768).
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Table 4-1: The socio-economic status of the RIISC cohort by CKD stage 

 All  

n=494 

1&2  

n=11 

3A  

n=28 

3B  

n=121 

4  

n=294 

 5  

n=40 

p-value 

Highest qualification: 

None 

GCSE/O’ level 

NVQ 

A’level 

Undergraduate degree 

Higher degree 

 

49 

21 

8 

8 

10 

4 

 

27 

37 

0 

9 

9 

18 

 

14 

21 

7 

22 

25 

11 

 

43 

24 

5 

9 

16 

3 

 

56 

19 

10 

5 

7 

3 

 

45 

25 

5 

10 

5 

10 

 

<0.002 

0.428 

0.300 

0.037 

0.010 

0.010 

Current employment status: 

Unemployed 

Employed 

Retired 

 

19 

28 

53 

 

9 

73 

18 

 

18 

54 

28 

 

18 

36 

46 

 

21 

20 

59 

 

23 

55 

22 

 

<0.002 

<0.002 

<0.001 

Current or last job type: 

Unskilled manual 

Skilled manual 

Clerical 

Managerial 

Professional 

 

23 

38 

14 

8 

17 

 

20 

20 

10 

20 

30 

 

8 

27 

15 

15 

35 

 

16 

42 

15 

9 

18 

 

27 

37 

15 

7 

14 

 

22 

42 

11 

3 

22 

 

0.086 

0.464 

0.969 

0.237 

0.048 

Results shown as %, Chi squared tests performed 
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These data show a significant difference in both formal qualifications and being 

of working age but unemployed between stages of CKD. 

 

Data were also collected regarding smoking habits (past and current) and 

alcohol consumption.  Thirteen per-cent of the cohort were current smokers 

(n=67); 41% had previously been smokers (n=207).  Of those who were either 

current or past smokers the smoking exposure was calculated using pack years 

(number of cigarettes smoked a day multiplied by the number of years of 

smoking divided by 20); the mean number of pack years was 25 (22).   

 

With regard to alcohol consumption, just under 50% regularly drank alcohol 

(n=229) and 5% (n=23) reported regularly consuming more than the 

recommended limits of alcohol (more than 14 units a week for women and more 

than 21 units a week for men). 

4.2. Functional status and symptom burden in RIISC participants: 

the baseline phenotype and the determinants of impaired 

functional status and symptom burden 

The EQ5D instrument is comprised of two sections; a five domain structured 

questionnaire where participants are given three options for each domain and a 

VAS where participants are asked to rate their health from 0-100 (where a score 

of 0 represents the worst perceived health and a score of 100 the best perceived 

health).   The instrument was administered by a research nurse at the time of 

initial consent and at each study visit (the EQ5D is included in appendix 9).  Here 
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I report the results of the structured section, which deals with physical 

functioning and symptom burden. 

 

The five domain questionnaire contains the following sections; mobility, self-

care, usual activities (work, study, housework or seeing family or friends), 

pain/discomfort and anxiety/depression.  In each section participants could 

indicate that they either had no problems, some problems or severe problems 

(each domain is worded for clarity, for example in the mobility domain severe 

problems are described as ‘being immobile’).  The scores in each domain are 

presented in figure 1. 

Figure 4-1: The baseline five domain EQ5D scores 

 

 

These data show that the prevalence of reported “severe” problems in each 

domain was very low. 
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Responses in this section where then dichotomised to whether the individual 

had indicated that they had either no problems/symptoms in each domain or 

moderate or severe problems in each domain. Using this method 54% reported 

moderate or severe impairment of mobility, 13% reported some or severe 

difficulties performing self-care, 46% reported some or severe difficulties 

performing usual activities, 49% reported moderate or severe pain or discomfort 

and 27% reported moderate or severe anxiety or depression.  

 

To identify variables that might be associated with these outcomes, univariate 

and then multi-variate analyses were performed of a series of established and 

dynamic phenotypic characteristics (these are shown in figure 2) the dynamic 

phenotype refers to those variables that can be considered to be modifiable and 

the established phenotype refer to those that are fixed; variables that reached a 

significance of <0.1, as indicated by symbols, were included in the multi-variate 

analyses shown in tables 2-6. 
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Figure 4-2: Variables from the established and dynamic phenotype that may 
influence functional status and symptom burden 

 

 

 

 

 

 

 

 

 

 

 

 

 

* moderate or severe impairment: mobility 

 moderate or severe impairment: self-care

§ moderate or severe impairment: usual activities

 moderate or severe impairment: pain/discomfort 

 ¥moderate or severe impairment: anxiety/depression 

Abbreviations: CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease; IMD, index of 
deprivation; BMI, body mass index; WHR, waist hip ratio; Hb, haemoglobin; eGFR, estimated glomerular 
filtration rate; HbA1C, glycated haemoglobin; hsCRP, highly sensitive CRP.
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Table 4-2: Multivariate analysis of variables associated with impaired mobility 

 p-value Odds ratio 95% confidence 

intervals 

Age 0.001 1.055 1.022, 1.089 

Unemployment <0.002 6.437 2.771, 14.954 

Diabetes 0.791   

Cardiovascular 

disease 

0.714   

Malignancy 0.373   

Co-morbidity 0.838   

Previous smoking 0.713   

Rank of deprivation 0.966   

eGFR 0.828   

HbA1C 0.986   

hsCRP 0.883   

 

Table 4-3: Multivariate analysis of variables associated with impaired self-care 

 p-value Odds ratio 95% confidence intervals 

Unemployment 0.007 8.882 1.836, 42.961 

BMI 0.021 1.089 1.013, 1.172 

Age 0.489   

Co-morbidity 0.507   

HbA1C 0.689   

hsCRP 0.197   
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Table 4-4: Multivariate analysis of variables associated with impaired usual 
activities 

 p-value Odds ratio 95% confidence 

intervals 

HbA1C 0.011 1.032 1.007, 1.057 

Unemployment 0.000 6.732 2.836, 13.878 

Age 0.195   

Male gender 0.089   

Diabetes 0.913   

Cardiovascular disease 0.366   

Malignancy 0.900   

Co-morbidity 0.974   

Rank of deprivation 0.998   

BMI 0.850   

eGFR 0.432   

hsCRP 0.273   

 

Table 4-5: Multivariate analysis of variables associated with increased 
pain/discomfort 

 p-value Odds ratio 95% confidence 

intervals 

Unemployment <0.002 5.896 2.796, 12.554 

Age 0.100   

White ethnicity 0.984   

Black ethnicity 0.256   

Diabetes 0.545   

Malignancy 0.616   

Co-morbidity 0.202   

Index of deprivation 0.683   

Regular alcohol intake 0.761   

BMI 0.499   

HbA1C 0.776   

hsCRP 0.554   
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Table 4-6: Multivariate analysis of variables associated with increased 
anxiety/depression 

 p-value Odds ratio 95% confidence 

intervals 

Male gender 0.028 2.118 1.083, 4.143 

Rank of deprivation 0.025 1.000 1.000, 1.000 

Unemployment 0.022 2.179 1.117, 4.249 

eGFR 0.877   

WHR 0.718   

HbA1C 0.667   

These data show that unemployment was independently associated with moderate or 

severe problems in each domain. 

4.3. Self reported health perception in RIISC participants: the baseline 

phenotype and the determinants of poor perception of health 

The scores obtained from the VAS were parametrically distributed with a mean score of 

62 (21). To identity correlations between the VAS and other continuous variables a 

series of linear regressions was performed.  The results are shown in table 7.
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Table 4-7: Linear regression between VAS and other continuous variables 

 
 Age Charlson co-

morbidity 

BMI eGFR Hb ACR* HbA1C* hsCRP* IMD rank* 

VAS Pearson’s -0.157 -0.204 -0.172 0.119 0.044 0.021 -0.178 -0.218 0.132 

 significance <0.002 <0.002 <0.002 0.008 0.334 0.641 <0.002 <0.002 0.003 

VAS, visual analogue scale; BMI, body mass index; eGFR, estimated glomerular filtration rate; ACR, albumin creatinine ratio; HbA1C, glycated haemoglobin; hsCRP, 

highly sensitive C-reactive protein; IMD, index of deprivation. *data log transformed to achieve normal distribution 
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These data show that there are significant correlations between increasing age, 

increasing co-morbidity, increasing BMI, decreasing eGFR, increasing HbA1C, 

increasing hsCRP and lower VAS scores. 

 

To further explore the potential determinants of impaired self perceived health 

status the VAS score were dichotomised into whether or not an individual had a 

VAS score in the bottom quartile of scores or not. A univariate analysis of 

variables associated with bottom quartile VAS scores was performed; the 

variables included are shown in figure 3. Those variables that reached 

significance (<0.1) in the univariate analysis are indicated with an asterix and 

were included in the multivariate analysis; the results of which are shown in 

table 8.  
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Figure 4-3: Variables from the established, dynamic and functional phenotypes included in the univariate analysis 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease; IMD, index of deprivation; BMI, body mass index; WHR, waist hip ratio; Hb, haemoglobin; eGFR, estimated 

glomerular filtration rate; HbA1C, glycated haemoglobin; hsCRP, highly sensitive CRP 
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Co-morbidity index*     hsCRP* 

Previous smoking     Unemployment* 
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Table 4-8: Multivariate analysis of variables associated with poor perception of health state 

 p-value Odds ratio 95% confidence intervals 

HbA1C 0.045 1.025 1.001, 1.050 

hsCRP 0.028 1.041 1.004, 1.080 

The presence of moderate or severe anxiety or depression 0.001 5.024 1.967, 12.828 

White ethnicity 0.581   

Black ethnicity 0.265   

Co-morbidity 0.227   

BMI 0.268   

Unemployment 0.463   

Presence of moderate or severely impaired mobility 0.501   

Presence of moderate or severely impaired self care 0.195   

Presence of moderate or severely impaired usual activities 0.205   

Presence of moderate or severe pain or discomfort 0.215   
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These data show that poor glycaemic control, increased systemic inflammation 

and moderate or severe depression were all independently associated with low 

VAS scores. 

4.4. Variability in self-reported functional status and symptom 

burden between baseline and six-months 

The results obtained form the five-domain section of the EQ5D were compared 

for those individuals who had undergone both baseline and six month visits, the 

data were again dichotomised to those who indicated that they had moderate or 

severe problems in each category compared to those who indicated they had no 

problems in each category. The results are shown graphically in figure 4(a-e).
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Figure 4-4: The five domain section of the EQ5D at baseline and six-months 

Figure 4a: The percentage of patients with moderate or severely 

impaired mobility at baseline and six-months 

 

 

 

 

Figure 4b: The percentage of patients with moderate or severely 

impaired self-care at baseline and six-months 
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Figure 4c: The percentage of patients with moderate or severely 

impaired usual activities at baseline and six-months 

 

 

 

 

 

Figure 4d: The percentage of patients with moderate or severe pain or 

discomfort at baseline and six-months 
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Figure 4e: The percentage of patients with moderate or severe anxiety 

or depression at baseline and six-months  
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These data show that there is no significant difference in the prevalence of 

moderate or severe mobility problems, moderate or severe pain or discomfort or 

anxiety or depression between baseline and six-months; however more 

participants reported moderate or severe impairment of self-care at six-months 

than baseline and fewer reported moderate or severely impaired performance of 

usual activities at six-months than baseline. 

4.5. Variability in health perception between baseline and six-

months 

To examine the correlation between the VAS scores (on a population level) at 

each time-point for those participants who had attended both visits a linear 

regression was performed. The results are shown graphically in figure 5. 

Figure 4-5: The correlation between baseline and six-month VAS scores 

 



149 

  

This illustrates a positive correlation between baseline and six-month VAS 

scores. 

 

To examine the intra-individual variation between the time-points a paired T-

test was performed, this showed that the six-month scores were significantly 

higher than the baseline scores (p<0.002). It is not clear why this was, an 

explanation may be that by the six-month visit participants knew what to expect 

from the questionnaire and might have given more considered responses at this 

stage. 

4.6. Influence of key clinical variables on self reported health state 

In the first results chapter I demonstrated that there was a significant drop in 

eGFR between baseline and six-month visits. I hypothesised that this might 

influence self-perception of health state. Correlations between changes in eGFR 

and changes in VAS scores are shown in figure 6  
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Figure 4-6: Correlation between changes in eGFR and changes in perception of 
health state 

 

 

It can be seen that there is no correlation between declining kidney function and 

changes in VAS scores. 

4.7. Conclusions 

This analysis focused on the first 500 patients recruited to the RIISC study. The large 

majority of the data that I have presented in this chapter are from the baseline visit and 

describe cross-sectional relationships. As the study matures a dynamic picture of the 

relationship between QoL and key bio-clinical characteristics will develop and this will 

produce a strong resource for assessing which variables are the major determinants of 

changing QoL with time.  
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There is an increasing focus on QoL and patient reported outcomes in chronic disease. 

This is of great relevance for patients with CKD, where there is a lack of high quality 

RCTs of intervention, particularly for patients with stages 4 and 5 CKD.  As shown in the 

data presented in this chapter, a large proportion of patients with CKD have significant 

impairment of QoL. Focusing on interventions that can improve QoL could lead to real 

improvements for patients with CKD. 

 

Where other CKD cohorts have reported the socio-economic status of the participants 

some of the findings are consistent with this study. For example, 33% of the CRIC cohort 

had less than a high school education and 48% were unemployed, findings which are 

consistent with RIISC (322). Factors associated with poverty and socio-economic status 

have been shown to influence rate of progression to ESKD and future work will identify 

if this association is also present in the RIISC cohort (323). 

  

The analysis that I have performed identified associations between both potentially 

modifiable (or dynamic) and non-modifiable (established) risk factors. The rationale for 

taking this approach to the analysis was that better identification of the impact of 

modifiable risk factors on QoL would direct future studies of intervention, although this 

distinction requires care as some potentially modifiable risk factors may be difficult to 

change.  
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For policy makers, one important observation from RIISC is the association between 

unemployment and functional status and symptom burden. In one other study that has 

utilized EQ5D to measure health related QoL in patients with CKD progressive CKD, 

anaemia, malnutrition, diabetes and cardiovascular disease associated with worse QoL; 

unemployment was not considered (324).  

 

A further interesting observation in this analysis is the independent association 

between both glycaemic control and inflammation and QoL. This requires further 

assessment, as both glycaemic control and inflammatory status may be important areas 

for intervention. 

 

The primary limitation of the data described in this chapter is that the study is not 

designed principally a study of the impact of CKD upon QoL and functional status and 

therefore comprehensive assessments of functional status and QoL were not used.  The 

EQ5D is a validated measure but provides only limited information, other instruments 

that provide more detailed information were not used because while they provide more 

detailed (and often disease specific) information they are often time-consuming and 

difficult to administer. A further limitation may be the method used to assess socio-

economic status, in a detailed review of this area Braveman et al described the many 

methods available for assessing socio-economic status and recognized the limitations of 

any given system (264).   
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5. Results 3: The cardiovascular phenotype of the RIISC cohort 

The major association between CKD and poor clinical outcomes is with increased 

morbidity and mortality from CVD. Therefore ascertaining the cardiovascular 

phenotype of a high risk CKD population is of great importance both in measuring the 

pre-existing burden of CVD and assessing those factors that are likely determinants of 

long-term clinical outcomes. I have divided the cardiovascular phenotype into 

established (variables that are irreversible) and dynamic (those where there is potential 

for reversal with a putative impact on outcomes). 

 

In this chapter I have analysed data from the first 500 participants recruited to the 

RIISC study and focused on defining the cardiovascular phenotype of the cohort and the 

relationship of this to other bio-clinical features of interest. In addition to confirming 

associations that have been demonstrated in other cohort studies, the analysis shows 

novel associations that may be important as non-traditional risk factors for CVD in 

people with CKD. 

 

The overall demographics of the cohort were presented in chapter 3. In this chapter 

baseline data are presented on both established CVD and dynamic markers of 

cardiovascular risk such as BP (utilizing the BpTru™ system), vascular phenotype (by 

the Vicorder™ system) and AGE (by skin autofluorescence). The methods used to 

measure these data are described in chapter 2 and detailed SOPs are included in the 

appendices 2 and 3.  
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The mean age of patients with any established CVD was 68 (14), significantly older than 

those without established CVD (p<0.001), 78% of participants with CVD were of White 

ethnicity (37% of White participants had CVD compared to 29% of Asian participants 

and 21% of Black participants), 62% of participants with CVD were male (35% of male 

participants and 33% of female participants had CVD). 

 

Table 1 shows the established CVD burden of the cohort by CKD stage and table 2 the 

dynamic variables contributing to CVD risk by CKD stage; all continuous variables 

shown in the table were parametrically distributed so mean and standard deviation 

data are shown. For 13% of the cohort skin autofluorescence could not be performed 

because skin pigmentation precluded successful measurement. 
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Table 5-1: The baseline established cardiovascular phenotype of RIISC 
participants 

 All  1&2 3A 3B 4 5  p-value 

Ischaemic Heart Disease (%) 24 18 18 23 23 35 0.464 

Cerebrovascular Disease (%) 12 9 14 14 13 13 0.507 

Peripheral Vascular Disease (%) 12 9 4 13 13 8 0.526 

Any Cardiovascular Disease (%) 34 18 32 39 33 38 0.526 

Chi-squared tests performed 

Table 5-2: The baseline dynamic cardiovascular phenotype of RIISC participants 

 All  1&2 3A 3B 4 5 p-value 

Systolic BP  

(mmHg) 

129 (23) 125 (17) 123 (16) 129 (22) 129 (24) 133 

(22) 

0.423 

Diastolic BP  

(mmHg) 

75 (14) 81 (9) 77 (11) 77 (12) 75 (14) 74 (17) 0.440 

Peripheral MAP  

(mmHg) 

94 (16) 95 (11) 92 (11) 95 (13) 93 (15) 94 (15) 0.906 

Peripheral PP  

(mmHg) 

53 (20) 45 (13) 46 (16) 51 (20) 54 (19) 59 (22) 0.027 

Central MAP  

(mmHg) 

105 (16) 100 (10) 103 (10) 105 (17) 105 (15) 106 

(15) 

0.775 

Central PP  

(mmHg) 

65 (19) 55 (9) 57 (20) 65 (18) 66 (20) 69 (18) 0.039 

AIx  

(%) 

21 (10) 18 (6) 20 (8) 22 (10) 20 (10) 24 (9) 0.192 

PWV  

(m/s) 

10.2 (2.3) 9.2 (2.6) 9.3 (1.8) 10.0 (2.6) 10.3 (2.3) 10.3 

(1.9) 

0.100 

AGEs  

(AU) 

3.0 (0.8) 2.2 (0.7) 2.7 (0.7) 2.9 (0.8) 3.1 (0.8) 3.4 (0.8) <0.01 

Data shown as mean (standard deviation (SD)), ANOVA performed; BP, blood pressure; MAP, mean 

arterial pressure; PP, pulse pressure; AIx, augmentation index; PWV, pulse wave velocity; AGEs, advanced 

glycation end products; AU, arbitrary units 
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These data show that there is no significant difference in the established CV phenotype 

by stage of CKD. There was a significant increase in AGEs and peripheral pulse pressure 

(PP) and central PP between the stages of CKD. The presence of established CVD was 

significantly associated with AGE accumulation and higher peripheral PP (p<0.02 and 

p=0.051 respectively) but not other measures of peripheral or central BP or PWV. 

 

The cohort was comprised of 39% diabetic participants and as diabetes is associated 

with CVD risk I hypothesised that both the presence of established CVD and the 

dynamic cardiovascular risk burden would be significantly higher in diabetics 

compared to non-diabetics.  To address this hypothesis I performed a comparative 

analysis between diabetic patients and non-diabetic patients, the results of this are 

shown in tables 3 and 4. 
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Table 5-3: The established cardiovascular phenotype based on the presence or 
absence of diabetes 

 Non-Diabetics Diabetics p-value 

Ischaemic Heart Disease (%) 16 37 <0.01 

Cerebrovascular Disease (%) 10 16 0.026 

Peripheral Vascular Disease (%) 7 20 <0.01 

Any Prior Cardiovascular Disease (%) 23 51 <0.001 

Chi-squared tests performed 

Table 5-4: The dynamic cardiovascular phenotype by the presence or absence of 
diabetes 

 Non-Diabetics Diabetics p-value 

Systolic BP (mmHg) 127 (23) 132 (22) 0.005 

Diastolic BP (mmHg) 76 (14) 75 (12) 0.428 

Peripheral MAP (mmHg) 93 (15) 94 (13) 0.337 

Peripheral PP (mmHg) 51 (19) 56 (20) 0.002 

Central MAP (mmHg) 105 (16) 106 (17) 0.266 

Central PP (mmHg) 63 (18) 68 (20) 0.001 

AIx (%) 21 (10) 20 (10) 0.545 

PWV (m/s) 9.9 (2.4) 10.6 (2.3) 0.002 

AGEs (AU) 2.9 (0.8) 3.1 (0.8) 0.004 

Data shown as mean (standard deviation (SD)), unpaired T-tests performed; BP, blood pressure; MAP, 

mean arterial pressure; PP, pulse pressure; AIx, augmentation index; PWV, pulse wave velocity; AGEs, 

advanced glycation end products; AU, arbitrary units 
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Patients with diabetes had a greater burden of pre-existing CVD, higher systolic 

BP, peripheral and central PP, PWV, and AGEs; this indicated more established 

macrovascular and microvascular disease well as more dynamic risk in patients 

with diabetes than patients without diabetes. 

 

A possible explanation for this observation is that patients with diabetes have 

worse kidney function and higher levels of proteinuria than those without 

diabetes and that the difference in kidney function and proteinuria might be 

responsible for the difference in vascular measures. To assess this an analysis 

was performed to look for differences in kidney function and proteinuria 

between diabetic and non-diabetic patients; an important limitation of this 

analysis is that as this is a referred cohort it may not be representative of 

patients managed in primary care. 

 

The percentage of patients with diabetes in stage 5 CKD was 42% compared to 

30% in stage 1 and stage 2 CKD, therefore to assess if there was an association 

between kidney function and arterial stiffness in patients with and without 

diabetes, I compared kidney function between the groups. This analysis 

demonstrated no significant difference in eGFR between patients with diabetes 

and those without (26 (10) and 28 (13) mL/min/1.73m2 respectively, p=0.109). 

There was also no significant difference in ACR between patients with and 

without diabetes (22.7 (5.1-92.5) and 33.0 (6.9-128.3) mg/mmol respectively, 

p=0.117 (Mann-Whitney test)). 
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A further analysis of macro and microvascular status in participants with and 

without diabetes will be described in section 4. 

5.1. Socio-economic status and the established and dynamic 

cardiovascular phenotype 

The impact of socio-economic factors such as educational attainment (325), 

employment type (326) (though the role of unemployment is controversial and 

while increased CVD risk has been described in unemployed individuals this may 

be due to the co-existence of other risk factors) (327, 328) deprivation are 

known to influence cardiovascular health (329). To explore the baseline 

associations between the established and dynamic cardiovascular phenotype in 

RIISC participants by variables associated with SES a series of analyses were 

undertaken, continuous data were parametrically distributed and so T-tests 

were performed, the results are shown in tables 5-8. 

Table 5-5: The established cardiovascular phenotype and SES 

 No CVD Prior CVD p-value 

No formal qualifications (%) 46 54 0.129 

Unemployment (%) 39 48 0.239 

Unskilled employment (%) 23 22 0.880 

IMD rank* 8049 (2778-16081) 6916 (2894-13870) 0.388 

Current smoking (%) 14 12 0.622 

Previous smoking (%) 39 46 0.098 

For categorical variables Chi-squared tests performed, *non-parametric Mann-Whitney test 

performed 
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Table 5-6: The dynamic cardiovascular phenotype by the presence of 
unemployment 

 Working age and 

unemployed 

Working age and 

employed 

p-value 

Peripheral MAP (mmHg) 97 (14) 96 (13) 0.608 

Peripheral PP (mmHg) 51 (20) 44 (14) 0.001 

Central MAP (mmHg) 107 (19) 105 (14) 0.422 

Central PP (mmHg) 63 (18) 55 (13) <0.001 

AIx (%) 20 (13) 18 (10) 0.314 

PWV (m/s) 9.4 (2.0) 8.8 (1.8) 0.031 

AGEs (AU) 2.9 (0.9) 2.5 (0.6) 0.002 

Data shown as mean (standard deviation (SD)) unpaired T tests performed; BP, blood pressure; 

MAP, mean arterial pressure; PP, pulse pressure; AIx, augmentation index; PWV, pulse wave 

velocity; AGEs, advanced glycation end products; AU, arbitrary units 
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Table 5-7: The dynamic cardiovascular phenotype by educational 
attainment 

 No formal 

qualifications 

Formal 

qualifications 

p-value 

Peripheral MAP (mmHg) 93 (16) 94 (13) 0.493 

Peripheral PP (mmHg) 59 (20) 47 (17) <0.001 

Central MAP (mmHg) 106 (17) 105 (15) 0.367 

Central PP (mmHg) 70 (10) 60 (17) <0.001 

AIx (%) 22 (9) 20 (11) 0.117 

PWV (m/s) 10.8 (2.3) 9.5 (2.1) <0.001 

AGEs (AU) 3.2 (0.8) 2.8 (0.8) <0.001 

Data shown as mean (standard deviation (SD)) unpaired T tests performed; BP, blood pressure; 

MAP, mean arterial pressure; PP, pulse pressure; AIx, augmentation index; PWV, pulse wave 

velocity; AGEs, advanced glycation end products; AU, arbitrary units 

Table 5-8: The dynamic cardiovascular phenotype by employment type 

 Unskilled manual 

labour 

Other employment 

type 

p-value 

Peripheral MAP (mmHg) 95 (14) 93 (15) 0.337 

Peripheral PP (mmHg) 58 (21) 51 (19) 0.004 

Central MAP (mmHg) 106 (22) 104 (14) 0.470 

Central PP (mmHg) 67 (22) 64 (18) 0.100 

AIx (%) 20 (12) 21 (10) 0.496 

PWV (m/s) 10.4 (2.4) 10.1 (2.3) 0.167 

AGEs (AU) 2.9 (0.9) 2.9 (0.8) 0.983 

Data shown as mean (standard deviation (SD)) unpaired T tests performed; BP, blood pressure; 

MAP, mean arterial pressure; PP, pulse pressure; AIx, augmentation index; PWV, pulse wave 

velocity; AGEs, advanced glycation end products; AU = arbitrary units 

These data suggest that in this cohort SES has little impact upon the established 

cardiovascular phenotype but the dynamic phenotype appears to be influenced 

by working age unemployment and educational attainment but less by 

employment type. The lack of relationship with employment type may reflect the 

subjective nature of the way that employment data were collected (in contrast 
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there was little subjectivity in the interpretation of whether an individual had 

certain qualifications or not and whether they were currently employed or not). 

It is not clear from these analyses whether the relationship between SES and the 

dynamic cardiovascular phenotype is confounded by the presence of other risk 

factors. 

5.2. Kidney function and dynamic macrovascular health 

To assess the relationship between markers of kidney function, Pearson’s 

correlations were performed; the results are shown in table 9. The variables 

hypothesised to be markers of dynamic macrovascular health included 

peripheral and central systolic BP and diastolic BP, peripheral and central PP, 

peripheral and central MAP, PWV and AIx.  There is evidence that measures of 

BP that include PP and MAP are associated with increased cardiovascular risk 

(330, 331). The results of the analysis of these relationships are shown in table 

10. 
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Table 5-9: Correlations between measures of kidney function 

 

§Non-parametric data so log transformed to achieve parametric distribution, the remaining data 

were parametric data so Pearson’s correlations shown, **significant at 0.01 level, *significant at 

0.05 level; eGFR, estimated glomerular filtration rate; ACR, albumin creatinine ratio 

 

Table 5-10: Correlations between measures of dynamic macrovascular 
status 

 Peripheral 

DBP 

Peripheral 

PP 

PWV Central PP AIx 

Peripheral 

SBP 

0.548** 0.802** 0.346** 0.613** 0.215** 

Peripheral 

DBP 

 -0.060 -0.068 -0.087 -0.040 

Peripheral 

PP 

  0.402** 0.747** 0.295** 

PWV    0.440** 0.056 

Central PP     0.229** 

 

Parametric data so Pearson’s correlations shown, **significant at 0.01 level, *significant at 0.05 

level; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; PWV, pulse 

wave velocity; AGEs, advanced glycation end products; AIx, augmentation index 

 

 

 eGFR Log ACR§ Cystatin C 

Creatinine -0.717** -0.062 0.660** 

eGFR  0.003 -0.675** 

Log ACR§   -0.004 
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The variables associated with dynamic vascular health were peripheral and 

central PP and MAP, PWV, AIx and AGEs. Linear regression analysis was 

performed with eGFR as a marker of kidney function.  

 

Figure 1(a-f) shows the scatter plots of the relationships between the variables; 

the correlation coefficients between the variables (including other markers of 

kidney function, not shown in the scatter plots, cystatin C, creatinine and ACR) is 

shown in table 11. 
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Figure 5-1: Correlation between markers of kidney function and arterial 
stiffness 

Figure 1a: eGFR and peripheral PP 

 

Figure 1c: eGFR and peripheral MAP 

 

Figure 1e: eGFR and PWV 

 

Figure 1b: eGFR and central PP 

 

Figure 1d: eGFR and central MAP 

 

Figure 1f: eGFR and AIx 
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Table 5-11: Correlation between markers of kidney function and markers of dynamic vascular status 

  Measures of macrovascular health 

  Peripheral PP  Central PP Peripheral MAP Central MAP PWV AIx 

eGFR Pearson’s -0.137 -0.141 0.022 -0.066 -0.140 -0.038 

Significance 0.002 0.002 0.627 0.151 0.002 0.408 

Cystatin C Pearson’s 0.091 0.075 -0.104 -0.078 0.022 0.065 

Significance 0.090 0.173 0.053 0.159 0.691 0.230 

Creatinine Pearson’s 0.004 -0.004 -0.007 0.031 0.009 -0.066 

Significance 0.930 0.924 0.876 0.495 0.847 0.150 

ACR Pearson’s 0.003 -0.017 -0.011 -0.061 -0.004 0.032 

Significance 0.223 0.718 0.803 0.183 0.362 0.478 

Non-parametric data log transformed to achieve parametric distribution; PP, Pulse pressure; MAP, Mean arterial pressure; PWV, pulse wave velocity; AIx, 

Augmentation index; AGEs, advanced glycation end products. Statistically significant results are shown in bold type. 
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These data show that as eGFR falls, peripheral and central PP and PWV rise. 

However there were no correlations between ACR and markers of arterial 

stiffness, an observation in contrast to that of Smith et al who conducted a cross-

sectional analysis of patients with type 2 diabetes and found that both reduced 

eGFR and raised ACR were associated with higher PWV (332). The discrepancy 

between their findings and those presented here may be explained by the 

presence of two distinct sub-groups of patients; those with less advanced CKD 

and heavy proteinuria and those with advanced pre-dialysis CKD and minimal 

proteinuria by virtue of decreased glomerular filtration. 

5.3. Macro-vascular status (pulse wave velocity and blood 

pressure) and measures of AGEs  

Pulse wave velocity and BP based measures are indicators of vascular 

compliance and as such are indicators of macrovascular health; the accumulation 

of tissue AGEs have been proposed as a marker of cumulative metabolic stress 

with a potential role in the development of micro and macrovascular 

complications of diabetes (221, 333).  In table 10 the measures of macrovascular 

health correlate closely, this finding is not unexpected.  

 

As some of the variables used are derived from the same base variables (for 

example both PP and MAP are dependent upon systolic and diastolic blood 

pressure) tests for co-linearity were performed on the macrovascular data; these 

confirmed that the data were not co-linear. 
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In a cohort of healthy Chinese adults there was a correlation between AGEs and 

PWV (334); however there is no published data on the relationship between 

AGEs and arterial stiffness in patients with CKD. To explore associations between 

the macrovascular phenotype and AGE accumulation (measured as skin AF), 

linear regression was performed. Scatter plots are shown in figure 2 (a-f)
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Figure 5-1: Correlation between measures of AGE accumulation and 
macrovascular status 

Figure 2a: AGEs and peripheral PP 

 

Figure 2c: AGEs and peripheral MAP 

 

Figure 2e: AGEs and PWV 

 

Figure 2b: AGEs and central PP 

 

Figure 2d: AGEs and central MAP 

 

Figure 2f: AGEs and AIx 
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These data suggest that peripheral and central PP are associated with AGE 

accumulation in this cohort (both peripheral and central PP also correlated strongly 

with PWV); this is in keeping with the findings of Schram et al who described a 

correlation between plasma AGEs and increased pulse pressure in type 1 diabetic 

subjects (335). There was a weak (but statistically significant) positive correlation 

between AGEs and PWV. The negative correlation between peripheral MAP and AGEs is 

unexpected and has not been previously described; it remains to be seen whether this is 

a genuine finding or an artefact, a possible explanation may be the effect of medications 

(for example β-blockers, spironolactone or allopurinol). 

5.4.  Macrovascular status and microvascular status in diabetic and non-

diabetic participants 

Exposure to prolonged hyperglycaemia has a number of metabolic effects, one of which 

is the irreversible accumulation of advanced glycation end products which have been 

postulated as playing a key role in the development and progression of diabetic 

complications (336). Table 12 shows the correlations between measures of 

macrovascular health and microvascular health in patients with and without diabetes. 
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Table 5-1: Correlations between measures of micro- and macro vascular status in all participants, diabetics and non-diabetics 

 

  Measures of macrovascular status 

  Peripheral PP  Central PP Peripheral MAP Central MAP PWV AIx 

AGEs: All patients Pearson’s 0.284 0.253 -0.145 -0.022 0.284 0.080 

Significance <0.002 <0.002 0.003 0.645 <0.002 0.103 

AGEs: Non-diabetics Pearson’s 0.265 0.280 -0.180 -0.034 0.286 0.146 

Significance <0.002 <0.002 0.003 0.589 <0.002 0.018 

AGEs: Diabetics Pearson’s 0.278 0.174 -0.108 -0.029 0.187 -0.041 

Significance <0.002 0.030 0.175 0.717 0.020 0.605 

PP, Pulse pressure; MAP, Mean arterial pressure; PWV, pulse wave velocity; AIx, Augmentation index; AGEs, advanced glycation end products, significant results are 

shown in bold type 
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There were significant correlations between accepted markers of macrovascular 

disease and the presence of markers of microvascular disease in both diabetic 

and non-diabetic patients. 

 

To explore the relationship between glycaemic control on both macrovascular 

and microvascular health, correlations between glycated haemoglobin (HbA1C) 

and measures of vascular status in were performed, as HbA1C data were non-

parametrically distributed log transformation was performed to achieve 

parametric distribution. Scatter plots are shown in figure 3 (a-g).
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Figure 5-2: Correlations between glycated haemoglobin and measures of 
micro-and macrovascular status 

Figure 3a: HbA1C and peripheral PP 

 

Figure 3c: HbA1C and peripheral MAP 

 

Figure 3e: HbA1C and PWV 

 

Figure 3b: HbA1C and central PP 

 

Figure 3d: HbA1C and central MAP 

 

Figure 3f: HbA1C and AIx 
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Figure 3g: HbA1C and AGEs 

 

 

These data show a positive correlation between measures of arterial stiffness 

and microvascular status and increasing HbA1C.  



175 

  

 

5.5. The relationship between the anthropomorphic phenotype and the 

cardiovascular phenotype 

The anthropomorphic phenotype occupies an interesting place in the nexus between 

established and dynamic cardiovascular risk factors; it has been shown that significant 

weight loss (achieved either by low calorie diet, bariatric surgery or both) was 

associated with reduced markers of arterial stiffness (337, 338). Furthermore in a study 

of otherwise healthy overweight Japanese adults, weight loss was associated with 

reduction in tissue AGEs (339); this suggests that AGE accumulation may be part of the 

dynamic rather than established cardiovascular phenotype.  

 

In RIISC there was no significant difference in either BMI or WHR in those patients with 

established CVD compared to those without CVD. To explore the associations between 

the anthropomorphic phenotype and the dynamic cardiovascular phenotype linear 

regression was performed; the anthropomorphic measure used in this analysis was BMI 

as this correlated strongly with all other anthropomorphic measures in this cohort, 

scatter plots are shown in figure 4 (a-g). 
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Figure 5-4: Correlations between anthropomorphics and arterial stiffness 

Figure 4a: BMI and peripheral PP 

 

Figure 4c: BMI and peripheral MAP 

 

Figure 4e: BMI and PWV 

 

 

Figure 4b: BMI and central PP 

 

Figure 4d: BMI and central MAP 

 

Figure 4f: BMI and AIx 
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Figure 4g: BMI and AGEs 

 

These data suggest that in this cohort the anthropomorphic phenotype is not 

closely related to the cardiovascular phenotype; while there were no significant 

associations there appears to be a paradoxical relationship between BMI and 

PWV, in the paediatric literature the relationship between obesity and decreased 

PWV has been described and has been attributed to vasodilation (340), McIntyre 

et al described similar findings in the R2ID cohort (341).  

 

The absence of any significant associations between established CVD and the 

anthropomorphic phenotype is an interesting observation that may be explained 

by the cross-sectional nature of the data; it is possible that participants who have 

had CV events have subsequently achieved weight loss. The lack of any 

correlation between the dynamic CV phenotype and the anthropomorphic 

phenotype is not entirely unexpected as the data relating to arterial stiffness and 

obesity has been contradictory with some authors reporting associations 

between obesity and arterial stiffness (200, 342, 343) and others finding no 

association (344-346). 
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5.6. Systemic inflammation and arterial stiffness  

A correlation between systemic inflammation and arterial stiffness in 100 

healthy individuals was demonstrated by Vlachopoulos et al in 2005 (347); 

recently Chue et al hypothesised that systemic inflammation may be an 

important factor in arterial stiffness in patients with CKD (166). In the CRIC 

cohort a cross-sectional analysis of pulse wave velocity was performed, the 

authors concluded that reduced renal function may contribute to arterial 

stiffness and that arterial stiffness may contribute to the increased 

cardiovascular risk experienced by individuals with CKD, however in their 

analysis the role of inflammation was not considered (348). To address this 

shortfall I utilised the RIISC cohort to assess the relationship between 

inflammation and cardiovascular parameters in patients with CKD. 

 

I utilized three markers of inflammation in this analysis. 

1. Highly sensitive C-reactive protein (hsCRP), a widely used biomarker of 

inflammation and measured in 330 participants in the cohort to date. 

 

2. IL-6 is a pro-inflammatory cytokine and marker of systemic inflammation that 

has been associated with malnutrition and CVD in patients with ESKD (349). In a 

cohort of individuals without pre-existing CVD or CKD, elevated inflammatory 

markers (including IL-6 and hsCRP) were associated with decreasing kidney 
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function (350). IL-6 was measured using a commercially available Luminex kit 

and data were available for 320 of the 500 participants recruited. 

3. Elevated combined polyclonal free lights chains (cFLC) have been associated 

with increased mortality in the Olmsted county cohort (351). In addition there is 

a increasing evidence that there is an independent association between mortality 

in chronic disease cohorts, including CKD. Polyclonal FLCs are biomarkers of 

chronic inflammation, kidney function and reticulo-endothelial health (352, 

353). Serum FLC measurements were available for 350 of the 500 participants 

recruited to the RIISC study. 

 

To assess correlation between these non-parametrically distributed markers 

Spearman’s Correlations were performed, the results are shown in table 13. 

Table 5-2: Correlation between markers of systemic inflammation 

 

 cFLC IL-6 

hsCRP 0.219** 0.247** 

cFLC  0.081 

 

Non-parametric data so Spearman’s correlations shown, **significant at 0.01 level; hsCRP, highly 

sensitive CRP; FLC, free lights chains; IL, interleukin 

These data show that there are correlations between hsCRP and polyclonal FLCs 

and IL-6. 

 

To explore the prevalence of inflammation in individuals with and without 

established cardiovascular disease non-parametric tests were performed, the 

results are shown in table 14. 
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Table 5-3: Established CVD and systemic inflammation 

 No CVD Prior CVD p-value 

hsCRP 2.7 (1.1-8.9) 3.2 (1.2-9.6) 0.570 

Polyclonal FLC 73.8 (50.4-102.9) 71.4 (48.9-108.4) 0.767 

IL-6 7.0 (5.0-9.0) 7.0 (6.0-10.0) 0.671 

hsCRP, highly sensitive CRP; FLC, free lights chains; IL, interleukin, non-parametric unpaired T 

tests performed 

These data show that there is no difference in markers of inflammation between 

participants with CVD and those without CVD. 

 

Highly sensitive CRP, polyclonal FLCs and IL-6 were analysed as continuous 

variables; all were non-parametrically distributed and were therefore log-

transformed before analysis to achieve parametric distribution. Linear 

regression analysis was performed; scatter plots are shown in figures 5-7 (a-g) 

and Pearson’s correlations are shown in table 15.
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Figure 5-5: Correlations between hsCRP and measures of arterial stiffness 

Figure 5a: hsCRP and peripheral PP 

 

Figure 5c: hsCRP and peripheral MAP 

 

Figure 5e: hsCRP and PWV 

 

 

Figure 5b: hsCRP and central PP 

 

Figure 5d: hsCRP and central MAP 

 

Figure 5f: hsCRP and AIx 
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Figure 5g: hsCRP and AGEs 
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Figure 5-6: Correlations between polyclonal FLC and measures of arterial 
stiffness 

Figure 6a: cFLC and peripheral PP 

 

Figure 6c: cFLC and Peripheral MAP 

 

Figure 6e: cFLC and PWV 

 

Figure 6b: polyclonal FLC and central PP 

 

Figure 6d: cFLC and central MAP 

 

Figure 6f:  cFLC and AIx 
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Figure 6g: cFLC and AGEs 
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Figure 5-7: Correlations between IL-6 and measures of arterial stiffness 

Figure 7a: IL-6 and peripheral PP 

 

Figure 7c: IL-6 and Peripheral MAP 

 

Figure 7e: IL-6 and PWV 

 

 

Figure 7b: IL-6 and central PP 

 

Figure 7d: IL-6 and central MAP 

 

Figure 7f: IL-6 and AIx 
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Figure 7g: IL-6 and AGEs 
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Table 5-4: Correlations between systemic inflammation and measures of vascular status 

 

  Measures of vascular health 

  Peripheral PP  Central PP Peripheral MAP Central MAP PWV AIx AGEs 

hsCRP Pearson’s 0.041 0.021 -0.089 -0.026 0.061 -0.014 0.149 

Significance 0.454 0.709 0.109 0.646 0.274 0.808 0.013 

Polyclonal FLCs Pearson’s 0.084 0.072 -0.018 0.046 0.096 0.035 0.090 

Significance 0.214 0.304 0.795 0.506 0.161 0.613 0.227 

IL-6 Pearson’s -0.016 -0.031 -0.063 0.023 0.036 -0.147 0.115 

Significance 0.773 0.590 0.271 0.694 0.531 0.010 0.062 

PP, Pulse pressure; MAP, Mean arterial pressure; PWV, pulse wave velocity; AIx, Augmentation index; AGEs, advanced glycation end products; hsCRP, highly 

sensitive CRP; FLCs, free light chains; IL-6, interleukin 6; significant correlations are shown in bold type 
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The data suggest a significant correlation between IL-6 and hsCRP, this is 

expected as IL-6 is produced in response to inflammation or infection from 

macrophages and adipocytes, stimulating the production of CRP from the liver 

(which occurs within six hours of the original insult) (354). IL-6 has been 

implicated in the transition from acute to chronic inflammation via a mechanism 

of monocyte recruitment (355). 

 

There was a correlation between hsCRP and AGEs, the correlation between IL-6 

and AGEs, approached but did not achieve significance; in a review of the 

literature Schwedler et al, observing a correlation between IL-6/CRP and AGEs 

hypothesised that CRP might stimulate AGE production in uraemia (356).   

 

To explore the data further the IL-6 and hsCRP data were divided into quartiles 

and ANOVA performed; for the IL-6 data there were no significant differences 

between quartiles of IL-6 and peripheral and central PP and MAP, PWV and 

AGEs, however there was a significant difference in AIx between the quartiles. 

For hsCRP the only significant difference was in PWV. The plots of the significant 

variables are shown in figure 8 (a-b). 
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Figure 5-8: Quartiles of hsCRP and IL-6 and measures of arterial stiffness 

Figure 8a: Quartiles of hsCRP and PWV 

 

 

 

Figure 8b: Quartiles of IL-6 and AIx 

 

 

The presence of previously described correlations between IL-6/CRP and AGEs 

suggests that these findings are genuine rather than artifactual; it is an 

interesting observation that the relationship between AIx and IL-6 appears to be 

inverse, there have been no previously published data on the relationship 

between these variables. There is equivocal data on the relationship between 

hsCRP and arterial stiffness with some investigators reporting a positive 

association between CRP and PWV (357-359) and others reporting no 

relationship (360). 

 

The absence of clear correlations between inflammatory markers and 

macrovascular status may be explained by the cross-sectional nature of the data 

collected and the limited number of individuals for whom inflammatory markers 

were available. 
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5.7. The determinants of vascular stiffness in the RIISC cohort 

For the purposes of this analysis PWV was used as the measure of vascular 

stiffness, to transform it from a continuous to a categorical variable patients 

were described as having a PWV in the highest quartile or not. To reduce the 

influence of co-linearity, the measure of blood pressure that correlated most 

closely with eGFR (peripheral PP) was included. The variables included in the 

univariate analysis are shown in figure 9. 
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Figure 5-9: Variables included in the univariate analysis of variables potentially 
associated with arterial stiffness 

 

CVD, cardiovascular disease; hsCRP, highly sensitive CRP; FLC, free light chains; IL-6, interleukin 6; BMI, 

body mass index; WHR, waist hip ratio; HTR, hip thigh ratio; PPP, peripheral pulse pressure; CPP, central 

pulse pressure; AIx, augmentation index; AGEs, advanced glycation end products 

 

The significant variables (those that achieved a significance of <0.1 in the univariate 

analysis) are indicated with an asterix and were then included in the multivariate 

analysis (a binary logistic regression method was used).  The results of the multivariate 

analysis are shown in table 16. 
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Table 5-5: Multivariate analysis of factors significantly associated with arterial 
stiffness 

 Significance Odds ratio 95% confidence 

intervals 

Age 0.000 1.081 1.056, 1.107 

Peripheral PP 0.002 1.023 1.008, 1.037 

Weight 0.253   

BMI 0.068   

eGFR 0.457   

Phosphate 0.074   

AGEs 0.167   

All the relationships were associated with a higher level of the variable concerned apart from eGFR and 

BMI, which were associated with a lower level 

The Pearson’s correlation between age and PWV was 0.546 and the Pearson’s 

correlation between peripheral pulse pressure and PWV was 0.402. 

5.8. Conclusions 

In these cross-sectional analyses, where there are significant associations causality 

cannot be assumed, nor is it possible to establish temporality of any of the associations 

described. Despite these limitations this analysis assesses complex interaction between 

both established injury, where there may not be a major reversible component and 

potentially reversible risk factors. I will now discuss the findings of this chapter by 

asking a number of key questions. 

5.8.1. How should cardiovascular phenotype in CKD be defined? 

The cardiovascular phenotype is influenced by both dynamic and established risk 

factors and can be described in terms of macrovascular and microvascular disease. In 

the Framingham cohort pulse pressure was shown to correlate more strongly with 

cardiovascular events than either systolic pressure or diastolic pressure alone (361), 
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suggesting that pulse pressure is a marker of arterial stiffness. However the relationship 

between arterial stiffness (defined by PWV) did not correlate well with traditional 

cardiovascular risk factors (apart from age and blood pressure) in a recent systematic 

review (362). While PP may be a close marker of arterial stiffness the observation that 

central PP can vary independently of PWV (363) suggests a more complex relationship 

between the two that is not fully understood; the gold standard marker of arterial 

stiffness is PWV(364). 

 

In this cohort, measures of peripheral and central BP, PWV and AIx are used as markers 

of large vessel arterial stiffness and tissue AGE accumulation is used as a measure of 

microvascular disease.  

5.8.2. How does the established cardio-vascular co-morbidity 

burden influence the cardiovascular phenotype? 

There is a substantial burden of established CVD in this cohort and as expected diabetic 

patients have a higher prevalence of established CVD, which was correlated to markers 

of both macrovascular disease and microvascular disease. Interestingly the presence of 

CVD in the whole cohort is less strongly associated with markers of macrovascular and 

microvascular disease. An explanation for this might be the time lag between the 

cardiovascular event and the index study date on which the cardiovascular measures 

were taken. 
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5.8.3. What is the influence of the dynamic, anthropomorphic 

phenotype? 

The anthropomorphic phenotype could be considered as both an established and a 

dynamic risk factor. In this cohort there was no association between the presence of 

established cardiovascular disease and elevated body mass index or other adverse 

anthropomorphic features, while the presence of adverse anthropomorphic features 

have been shown to be risk factors for the development of CKD (365), the role of 

anthropomorphic features in the progression of CKD is controversial (366-368). 

 

There were no significant associations between BMI and measures of either 

macrovascular or microvascular disease, this is consistent with results of the 

Framingham observational study of healthy adults (369) but not with the findings of the 

R2ID cohort where a negative correlation between BMI and pulse wave velocity was 

described (370). The findings of the univariate analysis of determinants of PWV are in 

keeping with those of the R2ID cohort; they identified many of the same variables as 

being associated with increased PWV, however in the multivariate analysis the only 

variable of significance in common with that cohort was age (370). 

5.8.4. What is the influence of the dynamic, inflammatory 

phenotype? 

There was no clear correlation between the dynamic inflammatory phenotype and the 

established cardiovascular phenotype in this cross-sectional analysis, in previous 

longitudinal studies in both healthy individuals (371) and individuals with CKD (181) 

systemic inflammation was associated with subsequent cardiovascular events and 
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incident cardiovascular events. This may also be explained in part by the time lag 

between the cardiovascular event and the measurement of inflammation. As the cohort 

matures further analyses will better assess the relationship between systemic 

inflammation and cardiovascular disease. 

 

5.8.5. What are the limitations of this analysis? 

While this is a well-described cohort of high-risk CKD patients there are limitations to 

the analysis presented here. The cross-sectional nature of the analysis presented in this 

chapter means that no conclusions can be drawn regarding the temporal nature of any 

associations described; markers of inflammation and vascular stiffness represent the 

current cardiovascular and inflammatory phenotype while the presence of established 

cardiovascular disease represents past damage.  Anthropomorphic characteristics may 

occupy a space between the established and the dynamic phenotype but this cannot be 

confirmed on the basis of the data presented here. 

  

There are no measures of oxidative stress and limited measures of inflammation 

described in this analysis. More comprehensive analysis of markers of inflammation and 

oxidative stress in the cohort with time may influence the findings of the analyses, 

particularly as the cohort matures and the data can analysed in the context of hard 

clinical end-points. 
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6. Results 4: The periodontal phenotype of the RIISC cohort; the 

vascular and inflammatory implications of periodontitis. 

There is a potential association between chronic periodontal inflammation 

(periodontitis) and accelerated CVD (237); the proposed mechanism is through local 

oral inflammation producing systemic inflammation that acts to potentiate endothelial 

dysfunction and atherosclerosis (238-240). There is also a potential role for oxidative 

stress, an association has been described between periodontitis and oxidative stress 

(372), although there is less evidence for this to date. Individuals with CKD (non-

dialysis) and those receiving both chronic haemodialysis and peritoneal dialysis have 

been shown to have a higher prevalence of severe periodontitis than healthy individuals 

(373-375). Therefore I hypothesised that in patients recruited into RIISC the prevalence 

of periodontitis would be high and there would be an association between periodontitis, 

inflammation and vascular dysfunction.  

 

The data presented in this chapter relate to the 469 RIISC participants (94% of the 

cohort) who underwent a detailed periodontal assessment. Not all RIISC participants 

underwent a periodontal assessment either because they did not give consent for this 

component of the assessment or for logistical reasons.  

 

The periodontal assessment was conducted by a research hygienist and a dentist and 

comprised of measures of PPD, CAL, loss of teeth and a clinical assessment of 

periodontal health (which included documentation of BOP and number of loose teeth) 

with measurements taken on all teeth present. A description of the periodontal 
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assessment can be found in chapter two.  There was no significant difference in the 

proportion of patients within each stage of CKD who underwent assessment.  

 

Participants were classified according to a recognized classification system by whether 

they were dentate or edentulous, had a healthy mouth, had gingivitis (which is not a 

pre-cursor state to periodontitis), or had mild, moderate or severe periodontitis (376). 

While periodontal disease is known to be a significant cause of edentulousness (377) it 

is not the only cause of edentulousness so these participants were treated as a separate 

group in the analysis. 

 

The assessed RIISC cohort was comprised of 83% dentate participants; table 1 

represents the breakdown of those with healthy mouths, the presence of gingivitis and 

the presence of periodontitis in the cohort. 

Table 6-1: The periodontal characteristics of the RIISC participants 

  Percentage  

Healthy  5 

Gingivitis  13 

 

Periodontitis 

Mild periodontitis 

Moderate periodontitis 

Severe periodontitis 

42 

18 

6 

Edentulous  17 

 The baseline demographic characteristics of patients according to their periodontal 

status are shown in table 2. 
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Table 6-2: The baseline demographic characteristics of patients according to 
periodontal status 

 Healthy Gingivitis Periodontitis Edentulous p-value 

Males (%) 46 53 65 57 0.084 

Age* (years) 65 (16) 58 (18) 61 (16) 77 (9) <0.001 

Ethnicity (%):                

White 

Asian 

Black 

Other 

 

77 

5 

14 

4 

 

74 

10 

13 

3 

 

67 

20 

13 

3 

 

81 

13 

3 

3 

 

0.227 

0.005 

0.856 

0.782 

For categorical variables Chi-squared tests performed, continuous variables ANOVA performed 

These data show that edentulous participants are significantly older than dentate 

participants (when edentulous participants are removed from the analysis there is no 

significant difference in age between participants with healthy mouths, gingivitis or 

periodontitis, p=0.245). There is a significantly higher prevalence of periodontitis in 

Asian participants. 

 

Edentulous participants have been excluded from all further analyses presented in this 

chapter for the reasons outlined previously. 

6.1.  Periodontitis and socio-economic status 

In a community based cohort study measures of social deprivation were associated with 

poor dental health (378), I therefore explored the impact of socio-economic status upon 

periodontal health in RIISC; the results of this analysis are shown in table 2. The IMD 

rank is a measure of social deprivation based upon postal code, the lower the rank the 

greater the deprivation in that area. 
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Cigarette smoking has been shown to be associated with both socioeconomic status and 

the presence of periodontal disease (379), the prevalence of current and former 

smoking is also shown in table 3. 

 

The data show that patients with periodontitis had a higher prevalence of current 

smoking and less social deprivation. 

Table 6-3: Markers of socio-economic status and periodontal health 

 All patients Healthy Gingivitis Periodontitis p-value 

No formal 

qualifications (%) 

49 41 35 44 0.091 

Unemployment (%) 20 14 21 21 0.058 

Unskilled 

employment (%) 

71 32 2 19 0.229 

Current smoking 

(%) 

14 9 16 15 0.038 

Previous smoking 

(%) 

42 45 29 39 0.401 

IMD rank* 7576 (2838-

15140) 

6264 (2744-

18038) 

8596 (2937-

15563) 

8786 (2962-

15930) 

0.011 

* data shown  as median and interquartile range, Kruskall-Wallis test performed, for categorical variables 

Chi-squared tests performed 

6.2. The periodontal phenotype and kidney function 

The periodontal phenotype by CKD stage is shown in table 4. The difference between 

markers of kidney function in dentate participants with and without, periodontitis is 

shown in table 5. The data presented illustrate that there is no significant difference in 

the prevalence of periodontitis by CKD stage, though individuals with periodontitis had 

a significantly higher serum creatinine than those with healthy mouths or gingivitis
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Table 6-4: The distribution of periodontal status by CKD stage (%) 

 All patients CKD 1&2 CKD 3A CKD 3B CKD 4 CKD 5 p-value 

Healthy 5 0 0 5 5 5 0.754 

Gingivitis 13 30 20 19 10 10 0.045 

Periodontitis 65 70 76 72 81 82 0.298 

Moderate or 

severe 

periodontitis 

36 29 38 32 36 39 0.955 

Chi-squared tests performed 

Table 6-5: Measures of kidney function in dentate participants with and without  

periodontitis 

 Healthy/Gingivitis Periodontitis p-value 

eGFR 29 (12) 27 (13) 0.193 

Cystatin C 2.6 (0.7) 2.6 (0.9) 0.562 

Creatinine 202 (72) 232 (99) 0.009 

ACR* 30.4 (7.4-92.2) 34.6 (8.9-131.8) 0.270 

*non-parametric data, median and IQR shown, Mann-Whitney test performed, parametric data unpaired  

T tests performed; Abbreviations; eGFR, estimated GFR; ACR, albumin creatinine ratio 
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The relationship between markers of kidney function and severity of 

periodontitis in dentate patients with periodontitis is shown in figure 1 (a-d). 

 

 There was no difference in any of the markers of kidney function when patients 

with moderate or severe periodontitis were compared to all other dentate 

patients who were assessed. 
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Figure 6-1: Measures of kidney function and severity of periodontitis 

Figure 1a: eGFR and periodontitis 

 

Figure 1c: Cystatin C and periodontitis 

 

 

 

 

 

 

 

 

 

Figure 1b: Creatinine and periodontitis 

 

Figure 1d: ACR and periodontitis* 

 

*Mann-Whitney test 
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6.3. Periodontitis and the established cardiovascular phenotype 

The presence of periodontitis has been associated with a number of co-morbidities in 

cross-sectional studies, these include CVD and diabetes (380). A recent systematic 

review has confirmed the presence of a relationship between periodontal disease and 

CKD, and also the potential impact of treatment of periodontal disease on kidney 

function (381).  

 

The cardiovascular phenotype (and other significant co-morbidities) and periodontal 

health in the RIISC cohort is shown in table 6. 

 

The data presented show no significant differences in the prevalence of any of the co-

morbidities studied, when patients were divided into those with moderate and severe 

periodontitis and those with mild periodontitis there was still no significant difference 

in prevalence of cardiovascular disease or any of the other co-morbidities studied.
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Table 6-6: Co-morbidity and periodontal disease in the dentate participants of the RIISC cohort 

 

 

 

 

 

Chi-squared tests performed 

 

 All patients Healthy Gingivitis Periodontitis p-value 

Diabetes (%) 39 27 53 40 0.923 

Ischaemic heart disease (%) 23 27 23 20 0.312 

Cerebrovascular Disease (%) 12 5 10 12 0.174 

Peripheral Vascular Disease (%) 12 18 16 9 0.493 

Cardiovascular disease (%) 33 36 34 30 0.653 

COPD (%) 13 23  11 14 0.212 

Malignancy (%) 16 9 11 14 0.500 

Charlson co-morbidity index 5 (2-7) 5.5 (1-8) 4 (0.75-7) 4 (2-6) 0.646 



205 

  

6.4. Periodontitis and arterial stiffness 

Periodontitis has been proposed as a cause of arterial stiffness via increased 

systemic inflammation (237); in a case control study of individuals with 

periodontitis who either had hypertension or no cardiovascular risk factors, 

periodontitis was associated with endothelial dysfunction in both groups (382). 

In a study of renal transplant recipients the presence of advanced periodontal 

disease was associated with the presence of left ventricular hypertrophy (383); 

however the relationship between the periodontal phenotype and the vascular 

phenotype in a CKD cohort has not yet been described. 

 

The difference in markers of arterial stiffness between those dentate individuals 

with and without any degree of periodontitis is shown in table 7. 

 

Table 6-7: Markers of arterial stiffness in dentate participants with and 
without periodontitis 

 Healthy/Gingivitis Periodontitis p-value 

Peripheral pulse pressure (mmHg) 53 (19) 51 (19) 0.551  

Central pulse pressure (mmHg) 64 (20) 63 (18) 0.817  

Peripheral mean arterial pressure 

(mmHg) 

94 (17) 94 (15) 0.892  

Central mean arterial pressure (mmHg) 103 (21) 106 (16) 0.242  

Pulse wave velocity (m/s) 9.7 (10.1) 9.9 (2.3) 0.377  

AIx (%) 21.1 (10.1) 19.8 (10.5) 0.318  

Advanced glycation end products (AU) 2.9 (0.9) 2.9 (0.7) 0.547  

Parametric data so mean (SD) shown, unpaired T tests performed 
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These data show no significant difference in measures of arterial stiffness when 

patients without periodontitis were compared with those with all severities of 

periodontitis. 

 

In the next analysis dentate individuals with periodontitis were considered with 

regard to arterial stiffness and severity of periodontitis, unpaired T tests were 

performed and the results are shown in the box and whisker plots in figure 2 (a-

g).
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Figure 6-2: Measures of arterial stiffness and severity of periodontitis 

Figure 2a: Peripheral PP and severity of 

periodontitis 

 

Figure 2c: Peripheral MAP and severity 

of periodontitis 

 

Figure 2e: PWV and periodontitis 

 

Figure 2b: Central PP and severity of 

periodontitis 

 

Figure 2d: Central MAP and severity of 

periodontitis 

 

Figure 2f: AIx and periodontitis 
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Figure 2g: AGEs and periodontitis 

 

 

These data show that when participants with periodontitis are divided in 

moderate or severe versus mild, those with the most severe periodontitis have 

significantly higher PWV and AGEs. 

6.5. The relationship between the anthropomorphic 

phenotype and the periodontal phenotype 

In a prospective observational study of healthy adults the relationship between 

baseline weight and subsequent progression of periodontitis was explored; 

higher baseline weight and weight gain were risk factors for the progression of 

periodontitis (384). However, Shultis et al described a contrasting finding in a 

prospective observational study of American Indian subjects with type 2 

diabetes, reporting that body mass index was negatively associated with the 

severity of periodontitis (385).  

 

The difference between anthropomorphic markers in dentate participants with, 

and without, periodontitis is shown in table 8 and indicates that there is no 
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relationship between anthropomorphic status and periodontal health in patients 

with CKD. 

Table 6-8: Anthropomorphic characteristics of dentate participants, with 
and without, periodontitis 

 Healthy/Gingivitis Periodontitis p-value 

BMI 30.6 (6.2) 29.5 (6.9) 0.181 

Waist/Hip ratio 0.96 (0.09) 0.96 (0.13) 0.771 

Hip/Thigh ratio 2.03 (0.26) 3.19 (14.9) 0.480 

Parametric data so mean (SD) shown and unpaired T tests performed 

These data show no significant difference in anthropomorphic measures by 

presence of periodontitis. 

 

The relationship between anthropomorphic status and severity of periodontitis 

in dentate patients with periodontitis was explored using unpaired T tests, the 

results are shown in figure 3 (a-c). 
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Figure 6-3: Anthropomorphics and severity of periodontitis 

Figure 3a: BMI and severity of 

periodontitis 

 

Figure 3c: WHR and severity of 

periodontitis 

 

 

 

 

 

 

 

 

Figure 3b: HTR and severity of 

periodontitis 
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 These data show no difference in anthropomorphic measures by severity of 

periodontitis. 

6.6. Periodontitis and systemic inflammation  

Periodontitis is the most prevalent inflammatory disease in humans (386) and 

has been associated with systemic inflammation and as a non-traditional risk 

factor for CVD (237, 387). I assessed the association between periodontitis and 

the following markers of inflammation, highly sensitive C-reactive protein, 

polyclonal FLC and IL-6.  

 

The difference in inflammatory markers between dentate individuals with and 

without any degree of periodontitis is shown in table 9, as the inflammatory 

markers were all non-parametrically distributed, median and interquartile 

ranges are shown and Mann-Whitney tests were performed.  

Table 6-9: Inflammatory markers in dentate participants with and without 
periodontitis 

 Healthy/Gingivitis Periodontitis p-value 

hsCRP (mg/L) 2.1 (1.0-8.4) 3.0 (1.2-9.3) 0.524 

Polyclonal FLC (mg/L) 71.4 (47.7-101.9) 72.5 (51.6-114.7) 0.360 

IL-6 (mg/L) 6.0 (5.0-8.5) 7.0 (5.0-10.0) 0.120 

Non-parametric data so median (IQR) shown, Mann Whitney tests performed 

These data show no significant difference in inflammatory markers in 

participants with and without periodontitis. 
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In the next analysis dentate individuals with periodontitis were assessed for the 

relationship between systemic inflammation and severity of periodontitis; the 

results are shown in the box and whisker plots in figure 4 (a-d), the Mann 

Whitney test was used to determine significance as the data were non-

parametric. 
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Figure 6-4: Inflammatory markers and severity of periodontitis 

Figure 4a: hsCRP and severity of 

periodontitis 

 

Figure 4c: IL-6 and severity of 

periodontitis  

 

 

 

 

 

 

 

 

Figure 4b: polyclonal FLC and severity of 

periodontitis 
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These data show that IL-6 increases as severity of periodontitis increases. This is 

an interesting observation and one that is not consistent with previous findings 

that both pro-inflammatory cytokines and CRP are elevated in patients with 

periodontitis compared to healthy controls (388), in a small study of 

haemodialysis patients the presence of periodontitis was associated with both 

increased CRP concentrations and measures of atherosclerosis (389).  

 

It is not clear what the mechanism between the increased IL-6 concentrations 

observed in this cohort and the severity of periodontitis might be, a limitation of 

the analysis is that the data are cross-sectional (this is a significant weakness if 

the hypothesis that periodontitis causes systemic inflammation by repeated 

exposure of the circulation to bursts of inflammation caused by tooth brushing, 

eating or dental probing is correct (390)) another weakness is the limited 

number of inflammatory markers measures and the absence of any markers of 

oxidative stress; these will be overcome in more detailed analyses of the cohort 

in the future. 

6.7. The determinants of periodontal status in the RIISC 

cohort 

For the purposes of this analysis dentate participants were dichotomised into 

whether they had either moderate or severe periodontitis or not. A univariate 

analysis was performed, a multivariate analysis (binary logistic regression) 

including those variables that reached a significance of <0.1 (indicated by an *) 

was then performed, the results are shown in table 10. The variables included in 

the univariate analysis are shown in figure 5. 
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Figure 6-5: The variables included in the univariate analysis of factors 
potentially associated with moderate or severe periodontitis 

 

CVD, cardiovascular disease; hsCRP, highly sensitive CRP; FLC, free light chains; IL-6, interleukin 

6; BMI, body mass index; WHR, waist hip ratio; HTR, hip thigh ratio; PPP, peripheral pulse 

pressure; CPP, central pulse pressure; PMAP, peripheral mean arterial pressure; CMAP, central 

mean arterial pressure; AIx, augmentation index; AGEs, advanced glycation end products; eGFR, 

estimated glomerular filtration rate; ACR, albumin creatinine ratio 
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Table 6-10: Multivariate analysis of variables associated with moderate or 
severe periodontitis 

 Significance Odds ratio 95% confidence 

intervals 

Pulse wave velocity 0.005 1.568 1.147, 2.144 

White ethnicity 0.548   

IL-6 0.548   

Body mass index 0.438   

Pulse pressure 0.440   

Advanced glycation end products 0.118   

Unemployment 0.081   

Deprivation 0.852   

HbA1C 0.634   

For all the continuous variables any associations were positive 

These data show that only increased pulse wave velocity was independently 

associated with the presence of moderate or severe periodontitis. 

6.8. Discussion 

6.8.1. The prevalence of periodontitis 

Previous work has focused on the potential utility of a diagnosis of periodontitis 

as a risk factor for either incident CKD or future CKD risk (391-393). In one of 

the largest population based studies (comprising more than 12 000 North 

American adults selected to be representative of the general population) Fisher 

et al reported a periodontitis prevalence of 6%; in the same cohort the 

prevalence of CKD (defined as an estimated GFR 15-59mL/min using the four 

variable MDRD equation) was 3.6% (391). 

 

In a Polish study investigators examined the periodontal health of 106 

individuals with kidney disease (35 haemodialysis patients, 33 peritoneal 
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dialysis patients and 38 pre-dialysis CKD patients) and compared them to 

healthy volunteers with and without CKD (374). They reported that the 

prevalence of periodontitis was greater in the cohort with kidney disease 

(though they do not quote an exact periodontitis prevalence) and that within this 

group the haemodialysis patients had the most severe disease (374). In a small 

cohort of haemodialysis patients (n=51) Buhlin et al reported a prevalence of 

severe periodontitis of 35% (394). 

 

In a subgroup analysis of the NHANES III cohort only patients with CKD were 

included, the prevalence of periodontitis was just under 15%, though the 

prevalence reached 39% in non-Hispanic black patients (395), in a further 

analysis the authors described that there was a significant dose response with 

individuals with the most advanced CKD having the most severe periodontitis in 

a Mexican sub-group (396). 

 

We report a prevalence of periodontitis of 65%, with 36% of these individuals 

having moderate or severe periodontitis (a total of 23% of the cohort who 

underwent a periodontal examination), with 17% of the cohort being 

edentulous.  This suggests that periodontitis is more prevalent in the RIISC 

population than in previously published populations, as these other cohorts 

were comprised of primarily American or Scandinavian participants it is possible 

that they were not comparable to the RIISC population.  A further point of 

comparison is with the Adult Dental Health Survey (ADHS), an epidemiological 

study of adults from the West Midlands area (the same geographical area from 
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which the RIISC cohort is drawn). In the ADHS the prevalence of periodontitis 

was 55% with 45% being healthy and 10% being edentulous (397). The two 

cohorts do have demographic differences, the ADHS population is significantly 

younger with a greater percentage of females and is composed of predominantly 

white individuals (397).  This observation suggests that the prevalence of 

periodontitis might be higher in the British population compared to other 

countries, though the prevalence of periodontitis and edentulousness in the 

RIISC population appears slightly higher than in the general population of the 

same geographical area. 

 

A potential explanation for the disparity in prevalence of periodontitis between 

different populations is that the method of defining periodontitis was not 

comparable; in RIISC validated case definitions were used and each participant 

underwent a detailed calibrated periodontal assessment (299). It is possible that 

in other populations less rigorous methods were used and this led to an under-

diagnosis of periodontitis. 

 

The increased prevalence of periodontitis in the RIISC cohort is in keeping with 

previous observations that CKD and periodontitis are associated, however as this 

is a cross-sectional analysis no temporal relationship can be established. 
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6.8.2. The relationship between periodontal disease and arterial 

stiffness 

Previous authors have explored the relationship between CVD and periodontitis, 

(398-401). In a review of atherosclerosis and periodontitis Friedewald et al 

concluded that there was evidence to support an association between 

periodontitis and atherosclerotic CVD but that it was unclear if this was an 

independent relationship or not and what the pathophysiological basis for the 

relationship might be (402).   

 

Increased pulse wave velocity PWV has been found to be associated with 

progressive CKD and cardiovascular events (167, 403, 404). To my knowledge, to 

date, there have been no studies which have reported detailed cardiovascular 

and periodontal assessments and their inter-relationship in patients with CKD 

from a prospective observational study, therefore it was not possible to compare 

the results of this study with those of any other cohort. 

 

The finding that both PWV and AGEs increase with severity of periodontitis 

suggests that periodontitis is associated with an increased risk for the initiation 

or accelerated development of macrovascular and microvascular disease in CKD. 

However there was only an association between two of the seven markers of 

vascular health used and periodontitis.  
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The finding that increased arterial stiffness (as defined by increasing pulse wave 

velocity) was independently associated with the severity of periodontitis also 

supports this hypothesis. However none of the components of either the 

established or dynamic cardiovascular phenotype were associated with the 

presence of periodontitis (or the severity of periodontitis).    

 

The strengths of this work are that it explores a novel area, includes a large 

group of patients who are very well characterized from a vascular, clinical and 

periodontal perspective and will provide follow up data.  The weakness of this 

analysis is that the relationship between dynamic risk factors and established 

phenotypes is difficult to explore in a cross-sectional analysis. 

6.9.  Conclusions  

This is the first time that the relationship between periodontitis and CVD in 

patients with CKD has been explored.   This cross-sectional analysis suggests that 

periodontitis is associated with arterial stiffness in patients with CKD, however 

maturation of the cohort is required to define the clinical implications of this 

relationship.   
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7. Results 5: Early outcomes of RIISC study participants 

At the time of writing 500 participants have been recruited to the RIISC study, of 

these 305 have reached the six-month visit and 104 have reached the 18-month 

visit.  In this chapter I present the early outcomes of participants; including 

withdrawals from the study, commencement of RRT and deaths. 

7.1. Withdrawal from the study 

There have been 27 withdrawals from the study. The median time to withdrawal 

from consent was 185 (149-548) days. Participants were under no obligation to 

identify the reason for withdrawal and 37% did not do so; where reasons were 

provided these are shown in Table 1. 

Table 7-1: Reasons for withdrawal 

 Percentage 

No reason given 37 

Unable to attend morning clinics 22 

Increased frailty/co-morbidity 19 

Perception of increased number of appointments 13 

Unable to tolerate study assessments 6 

Psychiatric problems 3 

 

The baseline characteristics of those who withdraw from the study compared to 

those who did not are shown in table 2. There was no significant difference 

between the two groups 
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Table 7-2: The demographic characteristics of those who withdrew from the study compared to those who did not 

 Remained in study (n=473) Withdrawn from study (n=27) p-value 

Males (%) 61 48 0.181 

Age 63 (16) 66 (19) 0.396 

Ethnicity (%): 

White 

Asian 

Black 

Other 

 

71 

16 

11 

2 

 

74 

4 

11 

7 

 

0.764 

0.218 

0.932 

0.039 

eGFR 28 (12) 23 (7) 0.218 

ACR* 26.9 (5.5-107.8) 43.5 (2.5-124.5) 0.989 

Age adjusted Charlson Co-morbidity Index* 5 (2-7) 6 (0-8) 0.723 

IMD rank* 7484 (2794-15139) 8667 (3199-16607) 0.796 

*data shown as median (IQR), Mann-Whitney U tests performed, for categorical variables Chi-squared tests performed 
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7.2. Renal replacement therapy 

7.2.1. The baseline characteristics of participants who required RRT 

Twenty seven participants progressed to RRT (as defined by requirement for 

haemodialysis or peritoneal dialysis for more than 90 days or receiving a pre-

emptive renal transplant); 70% (n=19) commenced haemodialysis, 19% 

peritoneal (n=5) dialysis and 11% (n=3) received a pre-emptive transplant. 

Renal replacement therapy was commenced at a median of 333 (146-575) days 

from recruitment. The baseline characteristics of participants who required RRT 

compared to those who remained independent of dialysis are shown in table 3. 

The renal diagnoses and baseline cardiovascular co-morbidity of the two groups 

are shown in table 4. 

 

The data show that patients who progressed to ESKD were significantly younger, 

were more likely to be of Asian ethnicity, had lower baseline eGFRs and higher 

baseline ACRs. 

 

There was no significant difference between the renal diagnostic groups in 

progression to ESKD, the only significant difference in co-morbidity was a 

significantly lower prevalence of PVD in those who progressed to ESKD but with 

a low event rate and a small sample this may be a spurious finding.
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Table 7-3: The demographic characteristics of participants remaining RRT independent compared to those who commenced 
RRT 

 RRT independent (n=473) Commenced RRT (n=27) p-value 

Males (%) 61 44 0.597 

Age 64 (16) 54 (18) 0.001 

Ethnicity (%): 

White 

Asian 

Black 

Other 

 

73 

15 

10 

2 

 

48 

37 

15 

0 

 

0.006 

0.002 

0.467 

0.445 

eGFR 28 (12) 17 (6) 0.001 

ACR* 23.0 (4.8-93.4) 239.2 (128.3-342.1) <0.001 

Age adjusted Charlson Co-morbidity Index* 5 (2-7) 3 (2-7) 0.162 

IMD Rank* 7668 (2874-15219) 7070 (1815-11296) 0.302 

*data shown as median (IQR), Mann-Whitney U tests performed, for categorical variables Chi-squared tests performed 
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Table 7-4: The baseline established cardiovascular diagnoses of 
participants who required RRT compared to those who did not 

 RRT 

independent 

Commenced 

RRT 

p-value 

Diabetes (%) 40 44 0.581 

Ischaemic heart disease (%) 25 15 0.251 

Cerebrovascular disease (%) 12 15 0.670 

Peripheral vascular disease 13 0 0.049 

Chronic Obstructive Pulmonary Disease (%) 12 15 0.670 

Malignancy (%) 16 15 0.863 

Chi-squared tests performed 

7.2.2. The dynamic cardiovascular phenotype and progression to 

RRT 

The previous table illustrated that in this cohort there was no increased 

prevalence of established cardiovascular disease in participants who progressed 

to RRT compared to those who did not; Taal et al demonstrated that PWV and 

AIx were independent predictors of progression to ESKD in patients with stage 4 

and 5 CKD (167). To explore the early associations between the dynamic 

cardiovascular phenotype and progression to RRT a series of analyses was 

performed using unpaired T tests, the results are shown in figure 1 (a-g). 

 

The data show that the peripheral MAP is significantly higher in participants 

who progress to ESKD and the AIx is significantly lower in those who progress to 

ESKD. 
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Figure 7-1: The dynamic cardiovascular phenotype and progression to RRT 

Figure 1a: Peripheral PP 

 

Figure 1c: Peripheral MAP 

 

Figure 1e: PWV 

 

 

Figure 1b: Central PP 

 

Figure 1d: Central MAP 

 

Figure 1f: Augmentation Index 
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Figure 1g: AGEs 

 

 

7.2.3. The dynamic inflammatory and anthropomorphic phenotype 

and progression to RRT 

The association between systemic inflammation and the progression of CKD has 

been previously demonstrated; Tonelli et al demonstrated that higher levels of 

CRP and TNFα were independently associated with progression of CKD (182). To 

explore the early potential associations between inflammation and progression 

to RRT in this cohort a series of analyses were carried out using Mann-Whitney 

tests, the results are shown in figure 2 (a-c). 

 

The association between BMI and other anthropomorphic measures in the 

progression of CKD is controversial with a number of studies suggesting no 

association between BMI and progression of CKD (366, 367, 405); however other 

authors describe an association between central obesity and risk factors for CKD 

progression (341) and Othman et al described BMI as an independent risk factor 

for progression of CKD in a cohort of non-diabetic subjects (406). To explore the 
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early associations between anthropomorphic measures and progression to RRT 

a series of analyses were carried out using unpaired T tests, the results are 

shown in figure 2 (d-f). 

These data show that participants who progressed to RRT had significantly 

higher baseline polyclonal FLCs, this is likely to be a representation of kidney 

function. 
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Figure 7-2: Inflammation and anthropomorphics and progression to RRT 

Figure 2a: hsCRP 

 

Figure 2b: IL-6 

 

Figure 2c: cFLC 

 

 

Figure 2d: BMI 

 

Figure 2e: WHR 

 

Figure 2f: HTR 
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7.2.4. The determinants of progression to RRT 

To identify the associations of progression to RRT a univariate analysis was 

performed. The variables included comprise aspects of the established and 

dynamic phenotype and are shown in figure 3; those variables that reached a 

significance of <0.1 (indicated with an asterix) were included in a multivariate 

analysis (a binary logistic regression), the results of which are shown in table 5.
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Figure 7-3: Variables included in the univariate analysis of determinants of progression to RRT  
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Table 7-5: Multivariate analysis of variables associated with progression to 
RRT 

 Significance Odds ratio  95% confidence intervals 

eGFR <0.001 0.826 0.742, 0.920 

ACR>30mg/mmol 0.009 58.797 2.881, 1229.868 

AIx 0.032 0.893 0.805, 0.990 

White ethnicity 0.862   

Asian ethnicity 0.654   

Decreasing age 0.139   

Creatinine 0.409   

IL-6 0.933   

Bicarbonate 0.863   

MAP 0.170   

Unemployment 0.121   

For creatinine, IL-6 and MAP a higher level of the variable was associated with the outcome, for 

eGFR, AIx, age and bicarbonate a low level of the variable was associated with the outcome 

7.3. Survival in the RIISC cohort 

There were 21 deaths in the cohort, deaths occurred at a median of 237 (160-

395) days following recruitment, only one death occurred in a patient who had 

progressed to RRT (the death occurred 67 days after the commencement of 

dialysis).  

 

The characteristics of participants who died compared to those who survived are 

shown in table 6; the data show that participants who died were significantly 

older and more co-morbid than those who survived. 
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Table 7-6: The Demographic characteristics of participants who died compared to those who survived 

 Survived (n=479) Died (n=21) p-value 

Males (%) 60 66 0.549 

Age 63 (16) 78 (9) <0.001 

Ethnicity (%): 

White 

Asian 

Black 

Other 

 

71 

16 

10 

2 

 

76 

10 

14 

0 

 

0.630 

0.418 

0.578 

0.503 

eGFR 28 (12) 22 (9) 0.067 

ACR* 27.5 (5.4-110.0) 18.7 (6.7-82.5) 0.526 

Age adjusted Charlson Co-morbidity Index* 5 (2-7) 8 (6.5-9) <0.001 

IMD rank* 8009 (2808-15180) 6093 (3767-10490) 0.614 

*data shown as median (IQR), Mann-Whitney U tests performed, for categorical variables Chi-squared tests performed 
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7.3.1. The established cardiovascular phenotype and survival in the 

RIISC cohort 

To examine the prevalence of established cardiovascular disease in RIISC 

participants who both died and survived a comparative analysis was performed, 

the results are shown in table 7. 

Table 7-7: The established cardiovascular and co-morbid phenotype in 
participants who died and those who survived 

 Survived Died p-value 

Diabetes (%) 40 24 0.135 

Ischaemic heart disease (%) 24 35 0.306 

Cerebrovascular disease (%) 13 5 0.287 

Peripheral vascular disease 13 0 0.084 

Chronic Obstructive Pulmonary Disease (%) 13 5 0.278 

Malignancy (%) 24 35 0.306 

Chi-squared tests performed 

These data show that there are no significant differences between the groups. 

7.3.2. The dynamic cardiovascular phenotype and survival in the 

RIISC cohort 

In a recent meta-analysis Vlachopoulos et al found that aortic stiffness (defined 

as aortic pulse wave velocity) was a strong predictor of future cardiovascular 

events and all cause mortality; the predictive ability being higher in those 

individuals with higher baseline cardiovascular risk (407). As this is a cohort at 

substantial cardiovascular risk (by virtue of renal impairment and the high 

prevalence of established cardiovascular disease and diabetes) I hypothesised 

that participants who died would have a greater burden of micro and macro-
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vascular disease than those who survived. To test this hypothesis a number of 

analyses were performed, the results are shown in figure 4 (a-g). 
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Figure 7-4: The dynamic vascular phenotype and survival 

Figure 4a: Peripheral PP 

 

Figure 4c: Peripheral MAP 

 

Figure 4e: PWV 

 

 

Figure 4b: Central PP 

 

Figure 4d: Central MAP 

 

Figure 4f: Augmentation Index 
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Figure 4g: AGEs 

 

These data show that patients who died had a significantly higher peripheral PP 

and AGEs than those who survived. 

7.3.3. The dynamic inflammatory and anthropomorphic phenotype 

and survival in the RIISC cohort 

Malnutrition and inflammation have been proposed as possible causes of poor 

survival in patients with CKD (408). To explore the associations in this cohort a 

number of analyses were performed using Mann-Whitney tests for the non-

parametrically distributed inflammatory markers and unpaired T tests for the 

anthropomorphic data, the results are shown in figure 5 (a-f).  

 

The data show that both hsCRP and polyclonal FLC concentrations are increased 

in patients who did not survive; there are no anthropomorphic differences 

between survivors and non-survivors. 
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Figure 7-5: Inflammation and anthropomorphics and survival 

Figure 5a: hsCRP 

 

Figure 5b: IL-6 

 

Figure 5c: cFLC 

 

Figure 5d: BMI 

 

Figure 5e: WHR 

 

Figure 5f: HTR 
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7.3.4. The determinants of all-cause mortality in the RIISC cohort 

To identify the determinants of survival a univariate analysis was performed; the 

variables included were components of both the established and dynamic 

phenotype. The results are shown in figure 6; those variables that reached a 

significance of <0.1 (indicted in figure 6 with an asterix) were included in a 

multivariate analysis (a binary logistic regression), the results of which are 

shown in table 8. 
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Figure 7-6: The variables included in the univariate analysis of determinants of survival 
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Table 7-8: Multivariate analysis of variables associated with all-cause 
mortality 

 Significance Odds ratio 95% confidence intervals 

Co-morbidity 0.001 1.476 1.180, 1.845 

AGEs 0.043 1.941 1.021, 3.691 

Age 0.278   

Creatinine 0.143   

eGFR 0.369   

hsCRP 0.239   

Pulse pressure 0.161   

Pulse wave velocity 0.811   

For the continuous variables an increase in the variable was associated with the outcome of 

interest, except for eGFR where a decrease in level was associated with the outcome of interest 

These data show that increased co-morbidity and AGE accumulation are 

independently associated with all cause mortality. 

7.4. Composite of death and renal replacement therapy 

47 participants reached the composite end point of death or renal replacement 

therapy (one participant died following commencement of renal replacement 

therapy, this was counted as a single event). The baseline characteristics of 

participants who reached the composite end-point compared to those who did 

not are shown in table 9. The data show that participants who reached the 

composite end point had significantly lower baseline eGFRs and significantly 

higher baseline ACRs than those who did not. 
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Table 7-9: The baseline characteristics in relationship to composite end-point 

 No composite outcome 

(n=453) 

Reached composite outcome 

(n=47) 

p-value 

Males (%) 60 60 0.903 

Age 64 (16) 64 (18) 0.923 

Ethnicity (%): 

White 

Asian 

Black 

Other 

 

73 

15 

10 

2 

 

60 

25 

15 

0 

 

0.056 

0.056 

0.318 

0.303 

eGFR 28 (12) 19 (8) <0.001 

ACR* 23.3 (4.7-95.3) 128.3 (17.0-295.4) <0.001 

Age adjusted Charlson Co-morbidity Index* 5 (2-7) 6 (3-8) 0.079 

Index of deprivation* 8199 (2848-15397) 6394 (2260-11058) 0.259 

*data shown as median (IQR), Mann-Whitney tests performed; for categorical variables Chi-squared tests performed 
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7.4.1. The established cardiovascular and co-morbid phenotype and 

the composite end-point 

The baseline cardiovascular and co-morbid phenotype is shown in table 10. 

Table 7-10: The baseline cardiovascular and co-morbid phenotype and the 
composite end-point  

 Composite not 

reached 

Composite 

reached 

p-value 

Diabetes (%) 40 36 0.634 

Ischaemic heart disease (%) 24 23 0.920 

Cerebrovascular disease (%) 12 11 0.731 

Peripheral vascular disease (%) 13 0 0.008 

Chronic Obstructive Pulmonary Disease (%) 13 6 0.189 

Malignancy (%) 16 17 0.847 

Chi-squared tests performed 

These data show that there was a significantly lower prevalence of PVD in 

patients who reached the composite end-point. 

7.4.2. The dynamic cardiovascular phenotype and the composite 

end point  

When renal replacement therapy and survival were considered separately 

aspects of the dynamic cardiovascular phenotype were associated with adverse 

outcomes, to explore the relationship a series of analyses were undertaken using 

paired T tests, the results are shown in figure 8 (a-g). These data show that the 

baseline AIx was significantly lower in patients who reached the composite end-

point than those who did not. 
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Figure 7-7: The dynamic vascular phenotype and the composite end-point 

Figure 7a: Peripheral PP 

 

Figure 7c: Peripheral MAP 

 

Figure 7e: PWV 

 

 

Figure 7b: Central PP 

 

Figure 7d: Central MAP 

 

Figure 7f: AIx 
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Figure 7g: AGEs 

 

 

7.4.3. The dynamic inflammatory and anthropomorphic phenotype 

of participants who reached the composite outcome 

Inflammatory markers were elevated in patients who reached RRT and also in 

patients who died, I hypothesised that inflammation would be associated with 

the composite outcomes. No anthropomorphic measures were associated with 

either arrival at RRT or survival; I hypothesised that there would be no 

difference in anthropomorphic measures in those participants who reached the 

composite end-point compared to those who did not. 

 

Figure 9 (a-f) illustrates the results of the analyses performed (Mann-Whitney U 

tests for non-parametric inflammatory data and unpaired T-tests for 

anthropomorphic data). The data show that both hsCRP and polyclonal FLCs 

concentrations were higher in those who reached the composite end-point than 
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those who did not, as hypothesised there were no differences in 

anthropomorphic features between the groups. 
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Figure 7-8: Inflammation and anthropomorphics and the composite end-
point 

Figure 8a: hsCRP 

 

Figure 8b: IL-6 

 

Figure 8c: cFLC 

 

 

Figure 8d: BMI 

 

Figure 8e: WHR 

 

Figure 8f: HTR 
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7.4.4. The determinants of reaching the composite outcomes 

The same univariate analysis was performed for the composite outcome as for 

each individual outcome, those variables that reached a significance of <0.1 

(indicated in figure 10 with an asterix) were then included in a multivariate 

analysis, the results of which are shown in table 11.
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Figure 7-9: Variables included in the univariate analysis of determinants of the composite end-point 
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Table 7-11: Multivariate analysis of variables associated with reaching the 
composite end-point 

 Significance Odds ratio 95% confidence intervals 

Current smoking 0.026 8.491 1.294, 55.705 

Creatinine 0.006 1.010 1.003, 1.016 

ACR 0.001 1.007 1.003, 1.011 

White ethnicity 0.946   

Asian ethnicity 0.710   

Unemployment 0.237   

eGFR 0.241   

hsCRP 0.490   

IL-6 0.556   

Bicarbonate 0.420   

Haemoglobin 0.745   

AIx 0.708   

AGEs 0.876   

For creatinine, ACR, hsCRP, IL-6 and AGEs a higher level of the variable was associated with the 

outcome, for eGFR, bicarbonate, haemoglobin and augmentation index a lower level of the 

variable was associated with the outcomes 

These data show that smoking, increased serum creatinine (but not eGFR) and 

increased ACR were independently associated with arrival at the composite end-

point. 

7.4.5. Kaplan-Meier Survival curves for categorical outcomes 

The only categorical variables that were independently associated with either 

renal replacement therapy, survival or the composite outcome were the 

presence of an ACR>30mg/mmol (RRT outcome) and current smoking 

(composite outcome). 

Kaplan-Meier survival plots for these categorical variables are shown in figures 

11 and 12. 
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Figure 7-10: Kaplan Meier survival curve of proteinuria and 
RRT 

 

 

 

Figure 7-11: Kaplan-Meier survival curve of current smoking 
and composite end-point 
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7.5. Discussion and conclusions 

7.5.1. The influence of established cardiovascular co-morbidity 

upon outcomes in the RIISC cohort 

In this cohort, with the low event rate, there was no influence of established 

cardiovascular co-morbidity on subsequent arrival at RRT or all cause mortality.  

An explanation for this might be that the time scale studied was too short and 

that with time the influence of cardiovascular co-morbidity will become clearer. 

The low event rate might also explain this finding. I have not examined the 

influence of prior cardiovascular co-morbidity upon subsequent cardiovascular 

events for reasons that will be discussed when I consider the limitations of the 

data and outcomes analysis. 

7.5.2. The influence of the dynamic cardiovascular phenotype upon 

outcomes in the RIISC cohort 

In this cohort there were associations between both RRT and all-cause mortality 

and two measures of the dynamic vascular phenotype; decreased augmentation 

index was independently associated with arrival at RRT and increased AGEs 

were independently associated with all cause mortality. The association between 

reduced AIx and progression to RRT is an interesting one; increased AIx has 

previously been described as associated with increased cardiovascular risk in a 

healthy population (409) and coronary obstruction in a CKD population (410).  

 

In the MMKD study there was a modest association between lower AIx and CKD, 

the authors hypothesised that this might be related to reduced arterial 
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compliance in central compared to peripheral arteries (411); this is the first 

cohort where an association between reduced augmentation index and 

progression of CKD has been shown, as the cohort matures and the event rate 

rises it will become clear if this is a genuine finding or an artefact. 

 

The accumulation of AGEs has been shown to be independently associated with 

mortality in patients on haemodialysis (221), AGE accumulation has also been 

associated with both cardiovascular and renal risk factors in patients with CKD 

(126). The association between increased AGE accumulation and all cause 

mortality in this cohort is plausible. 

7.5.3. The dynamic inflammatory and anthropomorphic phenotype 

and outcomes in the RIISC cohort 

In this cohort there were associations between markers of inflammation and 

both all-cause mortality and the composite outcome; this is not an unexpected 

observation and supports the hypothesis that inflammation plays a pathogenic 

role in cardiovascular disease propagation, systemic inflammation can also lead 

to all-cause mortality through other, non-cardiovascular, pathways such as 

infection and malignancy.  Interestingly none of the inflammatory markers were 

independently associated with the outcomes studied. As the cohort matures the 

role of inflammation in progression of CKD, cardiovascular risk and all-cause 

mortality may become clearer. 

 



255 

  

In this cohort there were no associations between any of the anthropomorphic 

measures studied (a strength of the analysis was that markers of central obesity 

as well as body mass index were included) and any of the outcomes of interest.  

This supports previous observations that obesity may not influence progression 

of CKD (366, 367). 

7.5.4. The limitations of this analysis 

There are a number of limitations and I will discuss them in turn; 

The event rate 

This is an early analysis that took place after a relatively short period of follow 

up, the median duration of follow up at the time of the analysis was 366 (191-

612) days.  Because the outcomes studied might be expected to take place over a 

prolonged time-scale the rate of events was low, this suggests that the significant 

associations are likely to be observed in further analysis of the cohort after more 

prolonged follow up. 

The renal outcome measure 

The use of progression to RRT or ESKD is a blunt instrument to ascertain renal 

progression, as significant declines in kidney function will not included. However 

there was insufficient follow-up renal data to accurately assess a decline in eGFR 

using a linear regression method. As the cohort matures it will be possible to 

assess renal progression using this method.  
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8. Discussion and conclusions 

As the results are discussed in some detail at the end of each chapter here I will 

focus upon the following areas; the strengths and limitations of both the study 

and the data presented and how the cohort can be utilised in further research. I 

finish by providing an executive summary of the results obtained to date. 

8.1. Strengths and limitations 

8.1.1. The strengths of the RIISC protocol 

While there have been a number of other CKD cohort studies, some which are 

on-going, the RIISC study is unusual for the following reasons; 

i. It is comprised of a high-risk secondary care cohort recruited from a 

patient group that are consistent with the NICE CKD guideline for 

secondary care referral and follow-up. Therefore participants in RIISC are 

at both enhanced cardiovascular and renal risk. As a result of this the 

event rate will be high and the data obtained could provide essential 

clinical information to identify those individuals at greatest risk of poor 

outcome. It is recognised by kidney specialists that there is marked 

heterogeneity in the natural history of CKD. 

ii. The cohort undergo a detailed and highly reproducible bio-clinical 

assessment based upon rigorously applied SOPs, this provides confidence 

that the data obtained are robust and variability in any measurements 

will be limited to the biological variability of the individuals under study 

and the variability of the measurement approach used for any individual 

bio-clinical variable measured under standard operating conditions. 
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iii. The cohort undergo repeated bio-clinical assessment in addition to 

outcomes tracking, this will provide an opportunity to identify the impact 

of the relationship between changing bio-clinical parameters and clinical 

outcomes. Of studies that are currently in their active phase only the R2ID 

and CRIC cohort participants undergo repeated clinical assessment 

during the follow up period (122, 132), though in the case of the R2ID 

cohort the participants are drawn from a different CKD population. 

iv. It is now a multi-centre study with patients being currently recruited 

form both University Hospital Birmingham and Heartlands Hospital 

Birmingham (although the data presented here are from a single centre); 

this allows recruitment of a diverse population to ensure that the cohort 

is representative of a high-risk CKD population. 

v. There is an emphasis on broadening participation to ensure that the 

recruited cohort is representative; an example of this is the provision of 

study information in multiple languages and audio format and the use of 

translators to increase participation from ethnic minority patients. The 

high ethnic minority participation in RIISC is a particularly strong aspect 

of the study. 

8.1.2. Weaknesses and areas of controversy in the RIISC protocol 

When designing an observational study it is important to prioritise certain 

aspects of the bio-clinical assessment, while the RIISC assessment is very 

detailed there were a number of omissions from the protocol which could be 

considered as weaknesses and which could limit the clinical utility of the data 
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obtained. These omissions, and the reason for the omission, are summarised in 

table 1. 
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Table 8-1: RIISC protocol; areas of controversy 

Omission Rationale 

No gold standard measure of kidney function 
used for either screening or renal 
progression 

While inulin and iohexol clearance are the gold standard measures of kidney function, radioisotope 
methods are accepted as they are easier and less expensive (21).  However these are still invasive and 
costly and would increase the burden on potential and actual participants. The MDRD equation with IDMS 
traceable creatinine results was chosen because it is part of routine clinical practice (thus making our 
cohort representative of the CKD population).  The application of other creatinine-based equations (e.g. 
CKD EPI) will also be explored. 

No dietary restrictions placed upon patients 
prior to clinic attendance 

Serum creatinine is affected by diet and meat consumption prior to testing can influence the result 
obtained (35). In some studies participants are asked to refrain from eating meat in the 24 hours preceding 
testing (126), however we decided that this placed an additional burden on patients and would make 
results obtained not generalisable to routine clinical practice.   

No cardiac imaging (CT or 
echocardiography) 

While coronary calcification has been described in CKD and detailed cardiac imaging has been conducted 
as baseline in some cohort studies; this is invasive and adds complexity to the protocol.  The non-invasive 
measures of arterial stiffness have been shown to correlate well with more invasive methods (120, 123, 
364). 

No use of Dexa scanning to measure bone 
health 

Patients with CKD are known to be at risk of bone loss and fractures, renal bone disease is also a risk factor 
progression and cardiovascular events (412). Dexa scanning is the gold standard measurement of bone 
density but novel biomarkers of bone turnover, such as FGF 23, have been shown to be associated with 
progressive CKD and cardiovascular risk, without radiation exposure and at lower cost and inconvenience 
to the participant (413). 

The use of a short quality of life 
questionnaire that is non-renal specific 

There are a number of renal specific quality of life measures available, they vary in detail but tend to focus 
on symptom burden specific to the renal population.  The SF 36 is a generic questionnaire that has been 
validated in CKD, though there is no evidence that using it in combination with the KDQOL questionnaire is 
additive (414-416).  There is evidence that the EQ5D in combination with the KDQOL provide 
complementary information on patient perception of disease; however even the abbreviated the KDQOL 
contains 36 questions (some being very detailed) and would be difficult to complete for patients who do 
not speak English as a 1st language (as many of the eligible population may not) (414, 416). 

No data on income collected While many authors report that income is an important measure of SES (254), such questions can alienate 
participants and it has been described as non-essential for the assessment of SES (264) 

The recruitment of patients from secondary 
care only 

The majority of CKD is managed in the community (primary care) (417) the data obtained from this, higher 
risk, cohort may not be applicable to primary care patients. However the focus on RIISC is specifically on 
those patients at highest risk of progression to ESKD and under secondary care follow-up; that is those 
patients who have the highest disease burden. 
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A potential area of concern for recruitment of the cohort is that as clinical 

practice changes it is feasible that referral patterns from primary care will 

change (with fewer patients being referred) and larger numbers of patients will 

be discharged from secondary to primary care for on-going management; this 

could reduce the pool of eligible patients for recruitment.  

8.1.3. The strengths of the data presented 

As already described the data were collected in a robust and reproducible way, 

the following are specific examples of this; 

i. Care was taken to assess the representativeness of the cohort, to this end 

data were presented on those who declined to consent and those who 

consented and then withdrew. By understanding the barriers to 

participation it may be possible to increase access to research by 

addressing these. 

ii. The baseline demographics were compared to the other CKD cohorts and 

this confirmed RIISC as a high risk cohort compared to other cohorts (as 

defined by kidney function and proteinuria) except for the CRIB cohort 

which was similar but smaller than RIISC and without the detailed bio-

clinical assessment or repeated assessment and the CRISIS cohort where 

the baseline eGFR of participants was similar to that of RIISC participants. 

iii. Blood and urine samples were collected in a structured manner and were 

immediately processed as outlined by standard operating procedures. 

Routinely measured variables were all measured in a single hospital 

laboratory; those measured specifically for the study were stored and 

batch analysed at a single laboratory to minimise inter-assay variability 
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iv. The impact of clinical variables on QoL was considered 

v. Data (clinical and QoL related) were compared between the baseline and 

six-month visits to examine the variability of the measures. 

vi. The periodontal assessment was carried out by a calibrated research 

dentist and hygienist to minimise inter-operator variability 

8.1.4. The weaknesses of the data presented 

Despite the strengths described above there are a number of flaws in the data 

presented which are described below; 

i. There was no use of GP records for the compiling of co-morbidity data so 

it is possible that the data could be incomplete. This will be addressed 

over the next 12 months of follow-up. 

ii. All eGFR data presented were creatinine based MDRD estimations, as this 

is the current clinical standard for estimating GFR and is the basis of the 

CKD classification system. However there is the potential to analyse the 

data in respect of other CKD equations including equations that 

incorporate cystatin C as a variable. 

iii. Very few renal diagnoses were based upon renal histology; the large 

majority were clinical diagnoses. 

iv. It was not possible to compare the baseline co-morbidity of those who 

consented and those who did not as detailed co-morbidity data was not 

collected for those who did not consent. This could mean that the non-

consenting group could have significantly more co-morbidity than the 

recruited group which in turn would make the cohort less representative 

of the eligible population. 
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v. Even though attempts were made to ensure that the recruited population 

was representative of the eligible population, analysis showed that the 

recruited population were younger than the non-recruited population 

and were more likely to be of white ethnicity. This discrepancy may 

reduce the clinical applicability of the data obtained 

vi. The question on job type in the SES assessment was subjective and as a 

result the data obtained may be inaccurate, the demographics section of 

the assessment was carried out by trained research personnel but no 

example of job types were provided to calibrate the data. 

vii. The EQ5D was occasionally translated verbally into other languages, 

event though print versions of the instrument are available in a number of 

languages. The EQ5D was administered by a member of the research team 

rather than allowing the patient to complete it alone. 

viii. Inflammation data were not available for the whole cohort, when the data 

are obtained for the whole cohort the results may differ, a very limited 

number of inflammatory markers were analysed for the purpose of this 

analysis, it is the intention that many more inflammatory markers will be 

measured in the complete cohort when recruitment has completed 

8.2. The RIISC cohort and future areas of research 

In addition to completing recruitment, follow up and re-exploring the 

associations presented in this thesis there are a number of other potential areas 

of clinical research that RIISC could be utilised for: I will discuss four of these. 
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8.2.1. The use of RIISC as a validation cohort for biomarker studies 

While there have been many biomarker studies in CKD, they have been limited 

by the often small numbers of patients recruited and the variety of end-points 

studied. Such studies may involve a limited phenotyping exercise of participants, 

which may be limited to the degree of renal impairment or a specific diagnostic 

group such as diabetes. Furthermore most studies involve measurement of a 

specific biomarker and then a variable duration of follow up, after which the 

outcome of interest (often a surrogate outcome such as doubling of creatinine) is 

recorded (141, 142, 147, 148, 155, 157, 161, 192, 418).  

 

This methodology fails to take into account the potential confounding factors of 

the differing phenotype of individuals with CKD and the effect of changing 

management of CKD over time upon outcomes. The use and limitations of 

surrogate outcomes was described in the introduction, the presence of a robust 

and repeated bio-clinical assessment with gold standard sample handling and 

the ability to assess progression using a linear regression method makes the 

RIISC cohort a strong resource for validation of biomarkers. 

 

Another potential weakness of previous biomarker studies that limits their 

wider clinical utility is that many of the markers studied may be unstable, 

requiring sample handling that may not be possible in routine practice (419, 

420). The impact of different sample handling methods on biomarker 

measurement is another area where the RIISC cohort could be utilised with a 

sub-study designed to address this important area. 
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8.2.2. The use of RIISC in the development of studies of intervention 

An area of particular interest for intervention is periodontal disease; it has been 

hypothesised that by treating periodontal disease endothelial function could be 

improved via reduction of systemic inflammation (237). As periodontitis has 

been associated with CKD in cross-sectional analyses (392, 421) there is interest 

in the potential impact of periodontal treatment on kidney function. In a recent 

systematic review Chambrone et al concluded that while there is sufficient 

evidence to link periodontitis to CKD, there are insufficient trials of intervention 

to determine the role of periodontal treatment upon progression of CKD (422).  

 

It is not known what the long-term implications of periodontal treatment are 

upon CKD, whether any treatment effects persist and what the mechanism of any 

effect might be. To address these shortfalls in knowledge the RIISC methodology 

could be reproduced and the RIISC cohort utilised as a matched control group for 

such an intervention.  

8.2.3. Validation of renal risk scores 

In chapter one I described a number of renal risk scoring systems, despite the 

potential for significant clinical benefit from such risk scores none are currently 

in general use. The scoring system of interest is the one devised by Tangri et al 

(260) which is available as a smartphone application; however despite the large 

development and validation cohorts used in the creation of the risk equation it is 

not clear how it will apply to a high risk UK based population with a different 

ethnic composition.  
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As all the data required for this risk equation is routinely collected as part of the 

RIISC study (and indeed in usual clinical practice) and the equation is freely 

available it would be possible to combine the data obtained from RIISC with 

other contemporary UK based cohorts to validate the equation. Other risk 

scoring systems could be validated in the same way. 

8.2.4. The use of RIISC to understand the dynamic vascular 

phenotype 

Throughout this thesis I have referred to the dynamic and established vascular 

phenotype to differentiate potentially modifiable risk factors from those that are 

fixed; there is limited understanding of the natural history of the dynamic 

vascular phenotype in patients with CKD. There are a number of unanswered 

questions with regard to the vascular phenotype; 

i. How does the contemporary management of CKD influence the dynamic 

vascular phenotype? 

ii. How reproducible are measures of vascular health such as PWV, 

peripheral and central BP based measures and measures of AGEs? 

iii. How well does the AGEreader™ perform compared to other measures of 

tissue AGE accumulation in patients with CKD? 

iv. Do assessments like pulse wave velocity (which require specialist 

equipment) add to risk prediction over and above routinely collected 

measures of arterial stiffness like pulse pressure?  
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The RIISC methodology will provide answers to these and as a result should 

provide data that guide the assessment and management of high risk CKD in the 

future. 

8.3. Executive conclusions 

I will divide this into two groups; the first relates to the QoL and SES status 

section of the results chapters and the second to the vascular, periodontal and 

outcomes sections of the results chapters 

8.3.1. Quality of life and socioeconomic status in RIISC participants 

The data presented suggest that this is a cohort of variable SES; the prevalence of 

working age unemployment was high, interestingly the index of deprivation was 

not associated with severity of CKD as has been described in other studies (251). 

No participants refused to answer questions pertaining to SES suggesting that 

the methodology was acceptable, however further information might have been 

obtained from household income data. 

 

Quality of life was impaired in the cohort; in the five-domain section of EQ5D less 

than half of participants reported no mobility problems, just under half reported 

some impairment of usual activities and just under half reported regular pain or 

discomfort. Interestingly the prevalence of impairment of self-care was low. As a 

cohort of older adults with at least one chronic disease it is not unexpected that 

functional status is impaired in this group. 

 



267 

  

The importance of unemployment as a determinant of functional status is 

interesting and has not been previously reported; however unemployment was 

not independently associated with poor health perception, an interesting finding 

given the apparent influence of unemployment in the five-domain section of the 

EQ5D. The influence of potentially modifiable factors, such as employment, 

inflammation and glycaemic control, offers an interesting insight into potential 

future studies of intervention. 

8.3.2. The vascular, inflammatory and periodontal phenotype and 

participant outcomes 

There are many potentially inter-related variables described in these results 

chapters, to illustrate what the data presented tells us about this I have 

combined the findings in figure 1. 
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Figure 8-1: Correlations between the dynamic and established phenotype 

 

Abbreviations; CV, cardiovascular; PD, periodontal disease; PWV, pulse wave velocity; AGEs, 

advanced glycation end products; RRT, renal replacement therapy; MAP, mean arterial pressure; 

AIx, augmentation index; PPP, peripheral pulse pressure; hsCRP, highly sensitive CRP, IL-6, 

interleukin-6; eGFR, estimated glomerular filtration rate; cFLC, polyclonal free light chains; ACR, 

albumin creatinine ratio; Cr, creatinine; CVD, cardiovascular disease; PVD, peripheral vascular 

disease 
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An interesting observation from the data presented is that the established CV 

phenotype was not associated with either CKD stage, systemic inflammation or 

the presence or severity of periodontitis. There was also no association with 

measures of SES and the presence of established CVD appeared to have no 

influence on either functional status or perception of health state. In contrast 

aspects of the dynamic CV phenotype were associated with kidney function, 

systemic inflammation and severity of periodontitis. There were also 

associations between measures of SES and the dynamic CV phenotype 

 

As this is cross-sectional data, and the date of previous CV events was not 

recorded it is possible that the discrepancy described above is related to the time 

lag between the index CV event and the measurement of dynamic characteristics. 

It is not understood at what stage dynamic CV risk factors become established 

CV events, the detailed and repeated bio-clinical assessment of RIISC 

participants, the prolonged follow up period and the high expected event rate 

should help to illuminate this most important of unknowns. 

8.4. Conclusions 

The RIISC study is a prospective, observational cohort study, embedded in a 

secondary care setting with the aim of recruiting patients with CKD who are at 

enhanced CV and renal risk. Participants undergo repeated, detailed (and 

evidence based) bio-clinical assessment and are followed up for ten years, 

though the data presented in this thesis relates to baseline and six-month follow 

data only. The study was designed to recruit a high risk but real life cohort of 
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secondary care CKD patients, providing data that are clinically relevant and 

widely applicable.  

 

The overall purpose of the study is to answer the following research questions; 

i. What is the baseline demographic, vascular, inflammatory and 

periodontal phenotype of patients with high risk CKD managed in 

secondary care? 

ii. What are the implications of SES on high risk CKD and how is QoL 

affected by it? 

iii. How does the phenotype change with time and how is this related to 

clinical management driven by contemporary guidelines? 

iv. What are the determinants of CKD progression, adverse cardiovascular 

outcomes and death and what links these risk factors? 

In this thesis I have presented index, cross-sectional data relating to the 1st half 

of the cohort to be recruited. The data I have presented attempts to address 

points i and ii; as the cohort reaches its target recruitment of 1000 patients and 

follow up progresses it should be possible to address points iii and iv. 

 

It is my view that research can be said to be useful if a clinician can answer the 

following questions in the affirmative; is the population studied representative 

of my patients? Is any intervention or assessment carried out reproducible in 

clinical practice or is it prohibitively complex, expensive or invasive? Are the 

outcomes used of relevance to my patients?  
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I have previously described the emphasis placed on ensuring representativeness 

of the cohort and I believe that the data presented illustrate that this has largely 

been achieved. While the RIISC assessment is detailed, time consuming, involves 

a large multi-professional team and specialist and expensive equipment it is not 

envisaged that this assessment will become part of the routine management of 

patients with CKD, more that the assessment will provide data that allow a better 

understanding of the natural history of CKD. The outcomes used include both 

surrogate and hard end-points, all of which are of clinical significance at both an 

individual and health economic level. 

 

I submit that the RIISC methodology is such that the data obtained could guide 

the management and influence the outcomes of many thousands of patients with 

progressive or high risk CKD managed in the secondary care setting.  
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9. Appendix 1: Measurement of blood pressure using the BpTRU™ 

device (SOP) 

Purpose 

To obtain blood pressure readings on patients in the RIISC study which are consistent with the study 
protocol. 
 
All participants will have their blood pressure recorded at all time-points 
 

Preparation and Method  

Patients will have rested in a quiet room for 5 minutes prior to taking a measurement. 
Patients will have the monitor sited at the same level as their heart with their back and arm supported in 
a relaxed position. Both feet should be flat on the floor. 
They will be asked not to talk while the recording is taking place. 
Align the artery indicator on the cuff with the patient’s brachial artery. Wrap the cuff around the arm and 
check that the white index marking on the edge of the cuff falls within the white range markings on the 
inside surface of the cuff.  
If the index does not fall within the range markers, replace the cuff with a smaller or larger size. 
Ensure the cuff is tight but allow two fingers to be inserted between cuff and arm. 
 

Taking a BP measurement.  

Turn on machine or press the Clear button to clear memory between patients. 
Attach cuff to upper arm of patient 
Use the cycle button to select an automatic series of measurements (indicated by a character from 1-5 in 
the Cycle display.) 
Press the BP start button to begin the measurement. (Wait 5 seconds after turning on the BpTRU™ before 
pressing the start button.) 
Press the Stop button at any time to stop the measurement and deflate the cuff or to pause between 
measurements. 
 

Results 

A tone will sound at the completion of six measurements. 
After 5 seconds the reading display will show “A” and the average readings of the last 5 measurements is 
displayed.  
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10. Appendix 2: Measurement of arterial stiffness using the 

Vicorder™ device (423) 

Purpose 

This SOP describes procedures to ensure the correct use of the Vicorder™ Equipment for the RIISC study 
to obtain measurements that are consistent with the study protocol. 
 
All participants will have their pulse wave velocity and pulse wave analysis measured at all time-points 
 

Method  

Vicorder™ readings will be recorded at all study time points: baseline, 6 months, 18 months, 3 years, 5 
years and 10 years. 
 
Take 3 readings; if there is a more than 10% deviance from expected normal of 7m/s; continue to take 
readings until there are two within 10% of one another. If the first three readings are above 12m/s then 
take another three readings.  
 
Note which leg and arm used for readings and enter data. Use same arm and leg throughout study at all 
time points. If at any time point this is different, record reason for change. 
 
Ensure room temperature kept between 22 and 24 degree Celsius: use temperature log sheet to record. 
 
Ensure that all data collected is stored in spreadsheet.  
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11. Appendix 3: Measurement of advanced glycation end products 

using the AGEreader™ device (293) 

Purpose 

The purpose of this SOP is to ensure the correct use of the AGEreader™ Equipment for the RIISC study. 
The AGEreader™ is a proprietary device that can non-invasively assess the tissue accumulation of 
Advanced Glycation End products (AGEs) and obtain measurements that are consistent with the study 
protocol. 
 
All participants will have their AGEs measured at all time-points 
 

Intended Use 

Measurements should be done on the dominant arm on healthy undamaged skin 
without birthmarks or excessive hair growth, tattoos or scars. Self tanning agents must not be used for at 
least 2 days. If patient has used self tanning agents document and inform the patient not to use next time 
2 days before the appointment. Sun-blockers and other skin care products should be removed before 
measurement. 
 

Pigmented skin 

The device and its software have been validated in patients with Fitzpatrick class 1-4 skin colour. For 
measurements on patients with Fitzpatrick class 5-6 (dark brown or black), users should check with the 
manufacturer or distributor for the correct software version in order to avoid unreliable results. If a 
measurement is performed on a skin type that is too dark to give a reliable result, the AGEreader™ will 
give a warning. 
 

UV-Radiation 

Using the guidelines of the ICNIRP it is concluded that during AGEreader™ measurements, as intended, 
even when repeated up to a 100 times on the same skin site within an 8-hour period, the local radiation 
exposure on the skin of the patients, and to the eyes of patients and operators remain considerably below 
the maximum allowed values for that period. Radiation exposure to the eyes normally does not occur. 
Exposure of the eyes longer than 60 seconds per 8-hour period should be avoided (ie do not look directly 
into the UV light) 
 

Procedure and method  

Follow the instructions as set out in AGEreader™ operator manual 2010 to be found with equipment 
(293). 
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12. Appendix 4: Measurement of height and weight (424) 

12.1. Measurement of height 

Purpose 

The purpose of this SOP is to ensure that all height readings obtained for the purposes of the RIISC study 
are accurate, reproducible and consistent with protocol requirements. 
 
The height of all participants is recorded at all time-points 
 

Preparation and method 

Participant to remove shoes and to stand with feet together, flat on the base plate and with heels against 
the back of the plate, and to stand as tall as possible. Arms should be held loosely at the side. Tilt the head 
to the Frankfort plane position, so that an imaginary line passing through the external ear canal and 
across the top of the lower bone of the eye socket immediately under the eye would be parallel to the 
floor (i.e. horizontal). Check the position by holding the Frankfort plane card beside the participant’s face. 
Ask the participant to take a deep breath in, re-check the Frankfort plane position and bring the 
headpiece down on the centre of the participant's head and check the level using the spirit level. Take the 
reading to the nearest 1 cm and record 

12.2. Measurement of weight 

Purpose 

The purpose of this SOP is to ensure that all weights recorded are accurate, reproducible and consistent 
with protocol requirements.  
 
All participants will be weighed at all time points 
 

Preparation and Method  

Place a clean paper towel on footplate of scales. 
Measure weight with the participant wearing skirt or trousers and shirt, but no jacket or jersey and no 
shoes.  
Place the scales on a hard floor. If there is no hard surface available, place the scales onto the wooden 
board, on the floor. Reset the zero button, be sure the scales measure in kilograms. When the zero shows 
ask the participant to step on, without hesitation, and then read off the flashing answer, and record value. 
 
Sitting weight will be recorded on patients who cannot stand but on mechanical scales and only if safe to 
transfer patient with assistance.  
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13. Appendix 5: Measurement of waist, hip and thigh circumference 

(424, 425) 

Purpose 

To obtain measurement of waist, hip and thigh circumference measurements for the purpose of the RISC 
study that are accurate, reproducible and consistent with protocol requirements. 
 
All participants will have their waist, hip & thigh circumference recorded at all time-points 
 

Preparation and method 

Ask the participant to face you and to stand straight with feet together and looking straight ahead. Stand 
to the right of the participant. Hold the tape in your right hand with the side of the tape where the scale 
begins facing you. Pass the other end of the tape round the back flank with your left hand and ask the 
participant to hold it whilst you retrieve the end of the tape from his/her left hand.  
This should leave you standing slightly to the participant's left when you draw the tape taut.  
 

Waist circumference 

Make two marks with a waterproof pen at the costal margin (lower rib) and the iliac crest. Apply tape at a 
point midway between these two points, in line with the mid axilla. Measure on the skin if possible.  
Ensure that the tape is horizontal.  
 
Ask the participant to breathe out gently and to look straight ahead (to prevent them from contracting 
their muscles or holding their breath). Pull tape taut and measure to the nearest cm at the end of a normal 
expiration and record value. If participant is tense, repeat the measurement and take the new reading if it 
is higher.  
 

Hip circumference 

Locate the greater trochanter (this will be at the widest part of the hips, at the level of the buttock line). 
To check the levels you have to position the tape on the right flank and peer round the participant's back 
from their left flank to check that it is level.  
While measuring ask participant to breathe out gently, to let arms hang loosely by their sides and to look 
straight ahead (to prevent them from contracting their muscles or holding their breath). Pull tape taut 
and measure to the nearest cm and record value on the questionnaire. Try to take the measurement (to 
the nearest cm) in mid-expiration when the abdominal muscles are maximally relaxed. If participant is 
tense, repeat the measurement and take the new reading if it is higher.  
Waist and hip circumference should all be measured on the skin if participant consents and it should be 
recorded if this does not happen. 
 

Thigh Circumference 

Pass a measure immediately below the gluteal fold of the right thigh. Measure to the nearest cm. Ensure 
that the same leg is used for all measurements in the study. Note left or right on the database.  
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14. Appendix 6: Plasma, serum and urine sample 

handling/processing (301, 302) 

Purpose 

The purpose of this SOP is to ensure standardised operating procedures, when collecting blood and urine 
samples for the purpose of this study. 
 
Blood, urine and saliva samples will be collected from all participants at all time-points 
    

Introduction/Method 

1. Collect blood samples using the vacutainer™ system (order of draw: 2 x red, 1 x EDTA, 1 x Paxgene™) 
2. Tubes should be completely filled by the vacuum in order to obtain the correct ratio of blood to 
additive. Over and under filing alters the ration and changes results.  
3. Thoroughly mix by inverting the tube 8-10 times 
4. Leave serum (2 x red top) to clot for 1 hour at room temperature 
5. Spin at 2500rpm for 10 minutes at 4°C 
6. Spin the EDTA samples immediately at 2500rpm for 10 minutes at 4°C 
7. Urine collected as midstream clean catch. Where possible ask the patient to provide a fresh sample. 
Urine samples collected more than 2 hours ago should be discarded. 
8. Spin at 3000rpm for 15 minutes at 4°C 
 
After spinning of all samples aliquot and transfer to a -80°C freezer 

14.1. Processing and storing samples for genetic analysis 

Sample collection  

Ensure that the PAXgene™ Blood DNA Tube is at room temperature (18-25°C) prior to use. The PAXgene™ 
Blood DNA Tube should be the last tube drawn and fill to the line, backflow from the tube during draw 
should be avoided. 
Transfer by a syringe is not recommended. Following draw, gently invert the PAXgene™ Blood DNA Tube 
8-10 times. 
 

Sample storage 

Store the PAXgene™ Blood DNA Tube upright at room temperature until freezing at -20°C. To freeze 
PAXgene™ Blood DNA Tubes, stand them upright in a wire rack. If wire rack is not available, freeze 
horizontally in a plastic bag. Do not freeze tubes upright in a Styrofoam tray as this may cause the tubes to 
crack. Blood samples collected using PAXgene™ Blood DNA Tubes can be stored at 15-25°C for up to 14 
days, at 2-8°C for up to 28 days, or at -20°C for up to 3 months. For long-term storage, freezing the 
samples at -70°C is recommended. If tubes are to be stored for no longer than 10 weeks, freeze the tubes 
in the wire rack at -20°C. For longer storage periods, freeze the tubes first at -20°C for 24hrs, and then 
transfer them to -70°C or -80°C. 
Thaw PAXgene™ Blood DNA Tubes in a wire rack at ambient temperature (18-25°C) for approximately 2 
hours or at 37°C in a water bath for approximately 15 minutes. After thawing, carefully invert the tube 10 
times. Store the tubes on ice until you are ready to begin the PAXgene™ DNA purification procedure.  
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15. Appendix 7: Periodontal assessment (299) 

Purpose 

The purpose of this SOP is to ensure reproducible and accurate diagnosis of the severity and extent (both 
current and historic) of periodontal disease. 
 
Participants will undergo a periodontal assessment at baseline, 36, 60 and 120 months. 
 

Method 

 
1. Explain the procedure to the patient. 
2. Enquire about any medical conditions (such as a history of infective endocarditis) and medications 
(such as warfarin) that may render a detailed periodontal examination unsafe. 
3. A trained dental professional conducts a general oral examination and notes any missing teeth. 
4. Periodontal measurements are carried out on all teeth present using the UB-WHO-CF15 constant-force 
periodontal probe (Implantium.co.uk).  
5. For each tooth, record both probing depth and recession on the mesial and distal aspects of the buccal 
and palatal/lingual surfaces. So for each tooth, record 4 sets of periodontal measurements (proximal 
sites). 
6. The Probing Depth is measured to the nearest millimetre from the base of the periodontal pocket to the 
gingival margin. 
7. The Recession is measured to the nearest millimetre from the cement-enamel junction (CEJ) to the 
gingival level. If the gingival level is at the CEJ, the recession is recorded as 0mm, if the gingival level is 
apical to the CEJ, the recession is recorded as a positive integer and if the gingival level is coronal to the 
CEJ, the recession is recorded as a negative integer. 
8. The total Clinical Attachment Loss (CAL) is recorded as the sum of the probing depths and recession 
(either 0 or positive or negative) 
Clinical Attachment Loss = Probing Depth + Recession 
9. On completion of these measurements for a dental quadrant, a dichotomous record of Bleeding on 
Probing (BoP) is recorded (either present or absent) for each site probed. This represents bleeding from 
the base of the pocket.  
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16. Appendix 8: Demographic data questionnaire 

DOB  

Study Number  

Country of Birth  

Ethnicity  

Post Code  

Year at Address  

Highest qualification: 

 
None 

 GCSE/ O’ level 

 NVQ 

 A’ level 

 Undergraduate 

 Post graduate 

Currently Employed Yes 

 No 

 Retired/early retirement/incapacity 

Job None 

 Unskilled/manual 

 Skilled/manual 

 Clerical 

 Managerial 

 Professional 
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18. Appendix 10: The RIISC clinical assessment 

DOB  
Study number  
Medical history IHD 

PVD 
CVD 
DM (type 1 / type 2) 
COPD 
Malignancy 

Other medical history (including renal history)  
 
 
 
 
 
 
 
 

Current medications  
 
 
 
 
 
 
 

Family History IHD 
PVD 
CVD 
DM (type 1 / type 2) 
COPD 
Malignancy 
Renal disease 

Current smoker Yes 
No 

If yes amount  
Former smoker Yes 

No 
If yes amount  
Year stopped  
Current alcohol consumption Yes 

no 
If yes amount (units/week)  
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