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Abstract 

 

This thesis investigates the impact of precipitation on the UK motorway network, with 

the aim of determining how speed, flow and accidents are affected. Climate change 

impact assessments require detailed information regarding the impact of weather in the 

current (baseline) climate and so this thesis seeks to address gaps in knowledge of 

current precipitation impacts to better inform future climate impact assessments. This 

thesis demonstrates that whilst precipitation does impact on traffic speeds, there is no 

universal significant single factor relationship. Indeed, a key threshold is identified at 0 

mm hr
-1

 – the fastest speeds occur when there is no precipitation and speeds 

immediately decrease at the onset of precipitation. More detailed findings indicate the 

impact can be detected in both speed and maximum flow across much of the network as 

well as a downward reduction in the overall speed – flow relationship. In addition to 

speed flow, the impact of precipitation on road traffic accidents was also investigated. 

Fifteen percent of accidents in the UK occur in wet weather. Precipitation related 

accidents are shown to have a prolonged impact on the road network and can continue 

to cause a decrease in traffic speed and flow for up to three hours afterwards. With 

increased instances of heavy precipitation predicted as a result of climate change, these 

findings highlight the subsequent impact on journey speeds, travel times, traffic flows 

and the associated economic costs. 
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Chapter 1 – Introduction 

 

1.1 Introduction 

“To date, the consequences of climate change and weather conditions have received 

relatively little attention. Still, it is widely known that transport systems on the whole 

perform worse under adverse and extreme weather conditions.” 

(Koetse & Rietveld, 2009, p. 217) 

 

It is widely accepted that weather impacts on transport, often in a negative manner 

(Koetse & Rietveld, 2009). Whilst previous research has sought to quantify the effects 

of various weather conditions on several transport modes, there are relatively few 

studies where impacts are considered at a local junction to junction scale. The road 

network is particularly susceptible to adverse weather (Andreescu & Frost, 1998; 

Edwards, 1998; Eisenberg, 2004; Perry & Symons, 2004) with a range of impacts when 

different weather conditions are experienced. Adverse weather on the road network 

often leads to decreases in traffic speed and flow and subsequently an increase in traffic 

congestion (El Faouzi et al., 2010).  

 

Precipitation is a particular hazard for the road network in the UK, due to its year round 

occurrence. When precipitation occurs, road surface friction, visibility and speeds are 

reduced and spray on the carriageway often increases. Whilst previous studies have 
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identified how the network may be affected by precipitation, there are few which 

explicitly investigate the impact of precipitation at a local scale and this thesis seeks to 

address this gap in knowledge. Developing a detailed knowledge of how precipitation 

affects the road network at a local scale is essential to keep the network fully 

operational throughout the year. The understanding gained from studying effects at this 

scale will in turn allow for improved modelling of potential future impacts, especially 

when considered alongside socio-economic factors which will help to shape the road 

network in the forthcoming decades.  

 

1.2 FUTURENET 

With some degree of climate change now inevitable (Krebs et al., 2010), there is a 

pressing need to determine how resilient the UK’s transport network is not only in its 

current state, but also how future resilience will be compromised or improved, taking 

into account changes in technology, infrastructure, demographics and climate. To assess 

how the transport network may be affected in future, the FUTURENET (Future 

Resilient Transport Networks) project aims to provide tools to assess and plan for the 

resilience of transport systems in future, developing understanding of how the transport 

network will be affected by climate. To fulfil this aim, two main questions are 

addressed: 

 What will be the nature of the UK transport system in 2050, both in terms of its 

physical characteristics and its usage?  
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 What will be the shape of the transport network in 2050 that will be most 

resilient to climate change?  

To answer these questions, the project considers a number of factors including 

meteorological and climatological studies, the effects of weather on infrastructure, 

possible future social scenarios, travel behaviour, and also transport modelling.  

 

Central to the FUTURENET project is the definition of resilience. The definition used 

is: 

“Resilience is the ability to provide and maintain an acceptable level of service 

in the face of challenges to normal operation.” 

(Baker, 2013) 

Such an approach is user-centric as the definition of an acceptable level of service 

differs depending on who the user is. For example, an acceptable journey delay for a 

business traveller is likely to be less than for a leisure traveller. Similarly, road and rail 

users may have different perceptions of what is an acceptable delay on each of the 

modes.  

 

Whilst FUTURENET is very much focused on climate change impacts, in order to 

determine the future impacts of weather and climate change on transport, it is important 

first to understand how transport is currently affected by existing weather. Whilst the 
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impact of weather conditions on transport has been studied extensively, few studies 

investigate the impacts of weather at a local scale, particularly in the UK.  

 

FUTURENET focuses on the transport corridor from London to Glasgow. This corridor 

was chosen to allow the modes of road, rail and air to be studied. The length of the 

corridor and the area it spans will allow for analysis of differences in climate – the 

warmer, drier South East and the wetter, cooler North West. Urban and rural differences 

along the route can also be investigated. This corridor is also of great economic 

importance for the UK, linking the economic heartland in London with the rest of the 

country. The corridor also has a number of significant sub routes which could also be 

studied (e.g. Birmingham to Glasgow; London to Manchester). The work detailed in 

this thesis seeks further to develop existing knowledge of how the motorway network 

within this transport corridor is currently affected by precipitation. Linkages with this 

wider research agenda are presented in Chapter 6. 

 

1.3 Aim and Objectives 

1.3.1 Aim  

The aim of this thesis is to investigate how precipitation currently affects speed, flow 

and accidents on the UK motorway network. This work has been made possible by the 

recent availability of Highways Agency Traffic Information System (HATRIS) data. 

This is a new data set, of a high spatial and temporal resolution which will allow for the 

identification of precipitation impacts at a local scale. It permits the impacts of 
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precipitation to be identified at an unprecedented scale, allowing for baseline 

relationships to be derived which will enable the long term implications of climate 

change for the road network also to be considered. 

 

1.3.2 Objectives 

The objectives of this thesis are: 

 To determine how precipitation currently affects speed on the UK motorway 

network along the M1 – M6 corridor.  

Does one or more key thresholds of failure exist? 

 To identify the impact of precipitation on both speed and flow at a local 

(junction to junction) scale.  

Can traffic on the UK motorway network be approximated to the speed – 

flow diagram? 

 To identify how accidents occurring during wet weather impact on traffic speed 

and flow at a local scale.  

What is the impact on journey travel times? How long does the traffic 

stream take to recover following precipitation related accidents? 
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Chapter 2 - Literature Review 

 

2.1 Introduction 

Transport networks are highly valuable assets – the UK road network alone was valued 

as the government’s single most valuable asset in 2005 with major trunk roads and 

motorways having an approximate value of £62 billion (Department for Transport, 

2005). Understanding the impacts of precipitation on the road network both at present 

and in the future is of importance not only because of its regular occurrence in the UK, 

but also due to the extent to which it can impact on the road network, causing delays for 

motorists and extensive damage to infrastructure. Increased travel times caused by 

precipitation are not only disruptive to personal journeys but also to business journeys 

and the transport of freight. Disruption to journeys can have additional implications, 

where travellers or goods may have to reach a destination by a certain time for delivery 

or where further transportation is required by another mode such as sea or air.  

Evidently, any delays have economic repercussions and hence it is important to better 

understand how road transport can be affected by precipitation to better manage traffic 

flow and minimise delays in future. 

 

Whilst thresholds for other weather variables and their impact on transport tend to be 

well defined (e.g. temperature – Chapman (2007), Dobney et al. (2009); wind – Baker, 

2007), thresholds for precipitation, particularly on the road network, are less clear and 

further research is needed to identify the nature of the relationship. This chapter 
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examines existing literature which considers how the road network may be affected by 

precipitation and climate change and looks in detail at how the road network in the UK 

is currently affected by precipitation.  

 

2.2 Impacts of Precipitation on the Road Network 

Precipitation has been identified as the most important weather variable for road 

networks due to its impacts on congestion and safety (Koetse & Rietveld, 2009) and is a 

particular problem for the UK road network due to its year round occurrence (Edwards, 

2002). Precipitation totals (and impacts) vary greatly across the UK. The driest region is 

the South East with annual precipitation totals of less than 600mm. In comparison, the 

North West has annual precipitation totals of more than 3000mm (Figure 2.1). With 

such large variations in precipitation it is expected that there will also be significant 

variation in the impacts of precipitation on the road network, reinforcing the need to 

determine how the network is affected at a local scale. The impact on speed and flow 

will vary according not only to the usage of the network but as a result of the frequency 

of precipitation occurring and also the intensity of the precipitation event.  

 



8 

 

 

Figure 2.1 Average annual UK precipitation (Met Office, 2012) 

 

Precipitation has several impacts on the road network, including reduced visibility and 

friction, as well as increasing flooding where drainage is an issue (Walsh et al., 2007; 

Committee on Climate Change and US Transportation, 2008). Each impact will have its 

own relationship and associated thresholds of failure. Existing research identifies 

present thresholds and often highlights that these are country or even city specific. 

Where these thresholds are exceeded, disruption occurs and the network fails to operate 
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fully, with drivers often being delayed as speeds are reduced and travel times increased. 

Changes in precipitation patterns and intensities are likely to affect the frequency at 

which thresholds are exceeded and therefore affect the response of the network to 

precipitation in future.   

 

Reduced visibility and friction are the most common impacts and are known to cause 

reductions in traffic speed. For example, Maze et al. (2006) discovered that when 

visibility was less than 0.25 miles, a 12% reduction in speed occurred in the 

Minneapolis / St. Paul area over a four year study period. During heavy precipitation 

events, visibility on the roads is severely restricted both as a result of the view through 

the windscreen being obscured and due to increased spray and splash from other 

vehicles on the road (Edwards, 2002). There are also implications for road safety with 

precipitation increasing the likelihood of accidents (Koetse & Rietveld, 2009).  

 

Flooding is the most problematic and visible impact of precipitation, significantly 

reducing traffic speed and flows potentially to a level of total failure (closure) of some 

sections of the network. Recovery can be slow from such events due to damage to road 

surfaces and other infrastructure. Thankfully, flooding is rare and is mostly caused by 

prolonged rainfall which allows for some preparedness. However, flash flooding caused 

by extreme events is considerably more problematic. Where flooding does occur and 

causes sections of road to be closed, journey times are significantly increased where 

diversions are implemented. This can be particularly problematic where traffic has to be 

diverted away from high capacity roads (such as motorways or A roads) and onto lower 
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capacity roads which are not designed to deal with high traffic volumes, further 

increasing congestion and delaying journeys even more.  

 

2.3 Extreme Precipitation Events 

Past extreme weather events provide a useful starting point when investigating adverse 

effects and costs incurred. It is important to learn from past occurrences to be able to 

improve knowledge of how to deal with the occurrence of extreme weather events in the 

future. Extreme rainfall events quickly affect the road network with flash flooding 

causing a number of problems for drivers. Visibility is significantly reduced, flooding 

can close roads and diversions may be implemented increasing congestion and journey 

times. The usual impacts of precipitation for the road network are exacerbated during 

extreme events making driving conditions much more difficult for road users and 

causing much greater reductions in traffic speeds as drivers adjust their driving to cope 

with the adverse conditions.  

 

On the 28
th
 June 2012, precipitation across the UK caused chaos on the road network 

with many sections of road submerged by flash flooding due to the high intensity of the 

rainfall. There was widespread disruption with many roads grinding to a halt until the 

rainfall stopped, due both to water on the surface and also to the reduction in visibility 

making it incredibly difficult for drivers to continue their journeys (BBC News, 2012a; 

BBC News 2012b). With a likely increase in the number of heavy precipitation events 

occurring in future due to climate change, events such as this are likely to happen more 
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often. Without addressing the issues which arise during such events, there will continue 

to be adverse impacts on the network and traffic operations will be affected in a similar 

way in future. To reduce the impact that heavy precipitation events are likely to have, 

the network must adapt and infrastructure, particularly drainage, must be improved to 

allow the network to continue to operate effectively during such events. Lessons must 

be learnt from past events, using them to identify what improvements need to be made 

for the network to cope with similar events in future. 

 

During particularly extreme events, motorists can be trapped where flood waters 

separate sections of road from the rest of the network. The Pitt Review (2008) examines 

the responses to the summer floods of 2007 where 10,000 motorists were trapped 

overnight on the M5 motorway due to flooding. Failure of the network resulting from 

events such as these incurs huge costs, not only in delays and repairs following the 

event but also in investing in adaptation measures to enable the network to be able to 

cope better with similar events in future. In July 2007, flooding in and around London 

caused lengthy delays as traffic jams built up around roads blocked by flooding 

(Standley et al., 2009). Events such as these are widely reported because of the impact 

on traffic flows – indeed, the disruption to transport was the main reason that the July 

2007 floods received such widespread media coverage (BBC News, 2007). 

 

Road transport experiences extensive disruption during extreme precipitation events and 

this disruption will continue to occur in future as a result of extreme weather incidents 

(West & Gawith, 2005). Indeed, transport infrastructure is more sensitive to the effects 
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of changes in local climatic extremes than changes in the mean (Wilbanks et al., 2007) 

so improved understanding of how the transport infrastructure in the United Kingdom is 

likely to respond to an increase in the frequency of extreme weather events is required. 

With the predicted increase in the number of extreme precipitation events occurring in 

future (Murphy et al., 2009), the road network is likely to continue to be affected and in 

turn the ways in which authorities need to prepare for and deal with such events will 

also be significantly affected. 

 

Problems on the road network during extreme precipitation clearly highlight how 

vulnerable the network is to the weather. Whilst lessons can be learnt from impacts 

during extreme precipitation events, understanding of how day to day precipitation 

affects the road network has to be the starting point to better manage the network during 

precipitation events both at present and in future.  

 

2.4 Possible Future Impacts of Precipitation on the Road Network 

The UK transport sector has already been identified as one of six key sectors which will 

be most affected by climate change, along with the energy; business; domestic 

(housing); public services; and agriculture, forestry and fisheries sectors (McKenzie 

Hedger et al., 2000). However, there has been little attention as to how transportation 

may be affected by climate change and the associated extreme weather events (Ryghaug 

& Solli, 2012). With this in mind, it is clear that the impacts of climate change on 
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transport networks need careful consideration to allow the networks to continue to 

operate effectively in the future.  

  

The need to mitigate the impacts of climate change is highlighted in several reports (e.g. 

Garnaut, 2008; The Royal Academy of Engineering, 2011) as a result of the wide range 

of effects that may be endured by the various transport modes. Impacts on the road 

network are not limited to pavements but also extend to long–term assets on the 

network (e.g. bridges), so it is important that adaptation strategies can be incorporated 

into upgrade and future development works to prevent more extensive costs in a few 

decades’ time (Arkell & Darch, 2006). The need for flexibility in infrastructure designs 

to cope with the uncertainty of climate change and prevent increasing adaptation costs is 

identified by the UK’s Adaptation Sub Committee in the ‘How well prepared is the UK 

for climate change?’ report (Krebs et al., 2010). It is unlikely that any single aspect of 

climate change will have a single impact on each mode. As a result, an understanding of 

the factors which impact on each transport mode and the corresponding infrastructure 

needs to be developed to allow strategies to be developed to help mitigate for and also 

to adapt to the potential effects. 

 

Table 2.1 provides an overview of the predicted changes in climate, as defined by the 

UK Climate Projections (UKCP09), and the potential impacts of these changes on the 

UK road and rail transport networks. Each predicted change in climate impacts upon the 

transport network in several ways, and there are many consequences which need to be 

considered and incorporated into adaptation strategies. The issue of climate change has 
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been identified as ‘...the critical over-arching issue for any transport research agenda’ 

(Hall, 2010, p. 9). In order to understand and prepare fully for the effects of climate 

change on the UK road network, an integrated approach needs to be taken to further 

research looking at impacts across the whole of the UK. To understand how climate 

change may affect transport in future, it is essential to understand how current and past 

weather conditions impact on transport networks and infrastructure.  

 

2.4.1 Flooding 

The greatest threat of increased heavy precipitation to the road network is flooding, a 

problem which is likely to worsen as heavy rainfall events become more frequent and 

intense due to climate change (Clarke et al., 2002; London Climate Change Partnership, 

2005). Areas which are susceptible to flooding at present may experience more frequent 

flooding in future as the number of heavy precipitation events increases. It is also 

possible that flooding may become more extensive and as a result, larger areas may be 

affected in future than are currently affected unless adaptive measures are implemented. 

Costs to the UK transport network are likely to be substantial with the estimated cost of 

flood related traffic disruption on roads being at least £100,000 per hour delay on each 

main road affected during peak periods (Arkell & Darch, 2006). If increased heavy 

precipitation in the future results in more flooding events, then it is likely that these 

costs will increase significantly.  
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Table 2.1 The effects of climate change on transport 

Increased numbers of hot days 1. Increased thermal loading on road pavements: 

a. Melting tarmac 

b. Roadway buckling 

c. Expansion / buckling of bridges 

d. Increased numbers of tyre blowouts 

2. Increased rail track buckling 

3. Expansion / buckling of railway bridges 

4. Increased heat exhaustion of maintenance and operations staff 

5. Effects of lower density air on aviation: 

a. Reduced engine combustion efficiency 

b. Increased runway lengths required 

Decreased numbers of cold days 1. Reduced winter maintenance costs for road and rail 

2. Improved working conditions for personnel in cold environments 

3. Permafrost problems: 

a. Unable to rely on ‘frozen roads’ (essential for winter transport in 

polar regions) 

b. Infrastructure problems caused due to settlement when permafrost 

thaws 

c. Increased subsidence and landslides on slopes and embankments 

4. Positive effects on marine transportation: 

a. Less de-icing required and less freezing fog 

b. Less ice breaking required 

c. Potential opening of new sea passages in polar regions 

5. Reduction in icing problems for electric rail systems 

Increased heavy precipitation 1. Road and rail submersion and underpass flooding 

2. Increased landslides and undercutting 

3. Poor visibility 

4. Exceedance of existing 100 year flood 

Seasonal changes 1. Longer summers / shorter winters will mean changes in timing of: 

a. Leaf fall for railways 

b. Winter maintenance regimes 

c. Shift in ice / snow belts 

2. Reduction in frozen precipitation – significant improvements in road 

safety 

Drought 1. Navigation problems on inland waterways 

2. May lead to increased failure of earthworks due to changes in the water 

table 

Sea level change 1. Locations of ports may be inappropriate 

2. Other infrastructure – many airports are built 10m above sea level 

3. Localised problems e.g. storm surges 

4. Possible increases in coastal erosion causing problems for coastal 

transport routes (e.g. Dawlish railway, A55 along the north Wales 

coast) 

Extreme events 1. Increased number of tropical storms? 

2. Increased lightning effects on aviation 

Wind No clear projections are available for wind 

Based on Jaroszweski et al. (2010) and Peterson et al. (2008) 
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2.4.2 Journey Times 

Current thresholds indicate that both speed and flow are reduced during precipitation, 

resulting in an increase in journey time. These impacts are likely to be exacerbated in 

future, particularly as instances of heavy precipitation increase. Traffic jams building 

due to obstructions on roads from flood waters will also cause journey times to increase. 

Efforts need to be made to improve drainage and adapt the ability of the road network to 

cope with increased heavy precipitation. Unless the issues with drainage and 

maintenance of infrastructure are addressed, the number of instances where road 

networks are flooded and disruption occurs will only increase. Flooding in London, for 

example would affect major transport interchanges (London Climate Change 

Partnership, 2005) with consequences not just for travellers within London but from 

further afield as well – both nationally and internationally. The UKCP09 projected 

changes in precipitation on the wettest day of the season for both winter and summer 

shown in Figure 2.2 indicate that, at the central estimate, there is likely to be an increase 

in precipitation on the wettest day during both seasons. There is extensive variability 

across the UK during the summer with precipitation likely to decrease more in the 

South than in the North, and also a greater decrease in the East than the West. 
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Figure 2.2 Changes to precipitation on the wettest day of the winter (top) and summer 

(bottom) at the 10, 50 and 90% probability levels for the 2080s under the medium 

emissions scenario (Murphy et al., 2009) 
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2.4.3 Maintenance 

With increased instances of heavy precipitation, it is likely that road surfaces will need 

to undergo increased amounts of maintenance work to repair flood damage. Flooding of 

road surfaces causes road scouring and road washout (Peterson et al., 2008) and if these 

effects increase in future, then more money will have to be invested either in repairing 

road surfaces after flooding events have occurred, or in preventing damage – by means 

of improving road specifications or implementing infrastructure which will help to 

prevent flooding of the roads. Where roads are particularly susceptible to flooding, long 

term flood prevention investment may be more effective than continually repairing 

sections of road after each flood event. 

 

2.4.4 Road Safety 

Flooding of the road network has an adverse impact on road safety for all road users 

(Keay & Simmonds, 2006). Precipitation has been identified as the weather variable 

which has the greatest impact on road safety. Whilst higher temperatures, stronger wind 

speeds and occurrences of fog will all also have an adverse impact on road safety, 

precipitation greatly increases the likelihood of a road accident occurring (Koetse & 

Rietveld, 2009). As a result, an increase in the number of heavy precipitation events due 

to climate change prompts the need for careful consideration of the safety of the road 

network and measures to improve safety for road users in an attempt to reduce the 

number of accidents occurring when there is precipitation. There is little explicit 

research into what is likely to happen to congestion and road safety under climate 
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change and as this is an issue of great importance, it is an area which will need further 

research (Metroeconomica Limited, 2005 – 2006). 

 

2.4.5 Visibility 

An increase in the number of heavy precipitation events will lead to an increase in the 

number of instances where visibility is significantly reduced and hence will have an 

adverse impact on road safety. However, it is presently uncertain as to what the impact 

of climate change will be on fog, mist and hence visibility (Koetse & Rietveld, 2009) 

and so it is difficult to predict exactly how visibility will be affected and the impact this 

will have on road users and safety.  

 

2.4.6 Embankment Stability 

Changes in precipitation patterns and intensities will have implications for the stability 

of embankments on road networks. The arising problems have to be addressed to ensure 

that network operability is not compromised. Events such as landslips require extensive 

recovery work, often over prolonged time periods (Lindgren et al., 2009). Previous 

studies have already identified that there is likely to be an increase in the failure of 

slopes along the motorway if no preventative measures are taken to cope with changes 

in slope stability as a result of climate change (Perry, 1999, in Clarke et al., 2006). The 

risk of embankment subsidence and heave will increase due to wetter winters and drier 

summers (Department for Transport, 2005). Dry summer periods followed by intense 

precipitation events will cause significant problems and lead to landslips as 
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embankment materials become desiccated. This causes an alteration in structure giving 

the potential for landslides to occur more frequently during intense precipitation events 

following the drier periods (Eddowes et al., 2003; Manning et al., 2008). Further 

research is needed along specific sections of the road network where there is high usage 

to understand fully the implications of changes in precipitation in future for 

embankment stability. Findings from future research, along with improved 

understanding of processes affecting slope stability, will enable improved forecasting of 

slope stability as a result of climate change (Dijkstra & Nixon, 2010).  

 

2.5 Existing Studies 

Much of the current literature on the topic of climate change and its impacts on 

transport focuses on studies in the United States – for example the Committee on 

Climate Change and US Transportation special report into the potential impacts of 

climate change on US Transportation (2008). There are a handful of studies which focus 

on the effects of weather on transport in the United Kingdom and there are more reports 

emerging which examine what the potential effects of climate change may be on 

transport networks in the United Kingdom. However, the majority of these reports are 

focused on London (e.g. Arkell & Darch, 2006; Clarke et al., 2002; London Climate 

Change Partnership, 2005). 

 

London needs extensive consideration in any research investigating the possible impacts 

of climate change on UK transport as effects are likely to be exacerbated in London in 
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comparison to other UK cities (Clarke et al., 2002). Pressure on resources in London is 

already high and therefore it is essential to ensure that such resources can adapt to and 

deal with new demands as a result of climate change. There are already several reports 

emerging which consider the potential impacts of climate change on London as a city, 

with some attention given to transport systems – for example the London Climate 

Change Partnership reports ‘Climate change and London’s transport systems’ (2005) 

and ‘Wild weather warning: a London climate impacts profile’ (2009). Reports such as 

these are of great value as they give a detailed insight into how transport in the capital 

city may be affected in future. Whilst understanding of how individual cities will be 

impacted is highly beneficial, it is crucial to understand how transport networks across 

the whole country will be affected in order to determine the resilience of the networks. 

 

Different emission scenarios which may occur in the future as a result of changes in 

social responsibility, government policies and both government and individual actions 

produce a range of predicted changes in climate. As such, there are a range of impacts 

on transport which have to be assessed. It is widely recognised that weather patterns 

will change as a result of climate change and it is these changes which will potentially 

have a big impact on transport. Road networks need to be resilient to changing weather 

patterns to keep traffic and the economy flowing. Transport is negatively affected by 

heavy rain, snowfall, strong winds, extreme heat and cold, and reduced visibility, which 

can cause injury, damage and economic loss (Jaroszweski et al., 2010; Vajda et al., 

2011). Hence, it is crucial to understand the potential impacts of future climate change 

on each transport mode in order to be able to prepare for these effects through 

adaptation and to provide additional adaptive capacity (Walsh et al., 2007). Flooding 
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appears to be the most pressing issue for the road network in terms of precipitation and 

increased flooding instances due to increasing extreme rainfall events (Alcamo et al., 

2007) are a problem which require adaptation across the road network, and indeed other 

transport modes (McKenzie Hedger et al., 2000). In order to minimise the damage to 

road infrastructure, adaptation measures, such as improved drainage, will have to be 

implemented to reduce the impacts of flooding in future. However, in order to project 

and model impacts via a climate change impact assessment, a clear understanding of 

impacts in the baseline climate is required (Jaroszweski et al., 2010).  

 

2.6 Summary  

The impacts of weather and climate on all transport infrastructure have to be taken into 

account at the beginning of the planning stage for new transport infrastructure, and these 

effects need continued consideration throughout the planning process as well as during 

design, construction, operation and maintenance (Mills & Andrey, 2003). With this in 

mind, understanding the potential impacts of future climate change on the UK transport 

network is essential to ensure that future developments are built with sufficient 

resilience to the changing climate and also that existing transport networks can be 

adapted and modified to cope with the predicted changes. For the UK transport network 

to adapt to climate change, adaptation and mitigation strategies need to be built into the 

planning stages of new developments and incorporated into upgrades and maintenance 

of existing infrastructure to minimise future costs and maximise the resilience of the UK 

transport network over the coming years (Arkell & Darch, 2006). The response to 

climate change needs to be coherent across the UK to ensure that transport networks are 
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able to continue operating effectively across the entire country. It is not just transport 

infrastructure which will experience the impacts of climate change in future, there will 

also be changes in demand for each of the transport modes (Metroeconomica Limited, 

2005 – 2006), and transport systems will have to adapt to both of these impacts to 

ensure their capability to continue to run as efficiently and effectively as possible. 

 

Before future impacts of precipitation can be considered, there is a need to build on the 

knowledge of existing impacts particularly for those events which happen infrequently 

at present but may become more common in future, for example heavy precipitation 

events. There are a range of impacts of precipitation on the road network at present with 

the variation between studies highlighting the need for further research at a local level to 

develop a full understanding of how the network is affected. The impacts of climate 

change are at the forefront of research at present and there is a range of further research 

which is needed to develop understanding of how climate change may impact on all 

elements of society in future. It is only recently that the impacts of climate change on 

transport have begun to receive more attention, and as a result, future research in this 

area is of paramount importance to inform decision making, design and planning for 

future transport networks and infrastructure to ensure that the UK’s transport networks 

are well equipped to cope with a changing climate. 
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Chapter 3 - Investigating the Impact of Precipitation on 

Vehicle Speeds on UK Motorways 

 

3.1 Introduction  

This chapter focuses on the impact of precipitation on the UK road network, examining 

how precipitation events affect traffic speeds on the motorway network, both at a route 

and local level. The aim is to acquire an appreciation of current impacts with a view to 

understanding how the UK motorway network may respond to future precipitation 

events within a changing climate, as well as identifying if a failure threshold for 

precipitation on the UK motorway exists.  

 

3.2 Background 

The key starting point in effectively assessing how precipitation affects the road 

network is the derivation of relationships or identification of thresholds in the current 

(baseline) climate. Thresholds for precipitation vary greatly between and within 

countries meaning a comprehensive knowledge of current impacts must be constructed 

to understand fully how precipitation affects the road network and its operations. Road 

transport has been researched in detail with studies focusing on weather impacts in a 

number of countries (Al-Hassan & Barker, 1999; Andrey et al., 2003; Edwards, 1998; 

Golob & Recker, 2003). It is these existing studies which provide the background 

knowledge which can then be applied to develop understanding of how transport may 
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be affected as the climate changes. In the UK, the year round occurrence of precipitation 

means that it is a constant issue for the network and must be adapted to on a regular 

basis. A wide range of literature examining the impacts of precipitation on the road 

network in a number of countries can be used to inform and develop understanding of 

how the road network is affected. Table 3.1 provides an overview of the precipitation 

thresholds and relationships detected in previous studies. The variation in these 

thresholds is evident with a large range in reductions in both speed and capacity across 

countries and also within countries with a number of studies identifying that effects vary 

from city to city and hence there is a need for local studies to determine exactly how 

precipitation affects the road network at each location.  
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Table 3.1 Precipitation thresholds and relationships detected in the existing literature 

 Author Location Thresholds and relationships detected 

E
u

r
o

p
e
 

Al-Hassan & Barker 

(1999) 

Edinburgh, 

Scotland 

On days with rainfall – reductions in traffic 

activity of less than 3% on weekdays, and 

more than 4% on weekends  

Edwards (1998) UK Accidents are more frequent in wet 

weather than in dry weather, but are less 

severe 

Edwards (1999a) Wales Speeds are reduced slightly but 

significantly in wet weather 

El-Faouzi et al. 

(2010) 

Europe Speed, acceleration and traffic flow all 

decrease by varying levels 

Congestion severity increases 

Cools et al. (2010) Belgium Traffic intensity is diminished by rainfall 

Effects vary at each location 

U
S

 a
n

d
 C

a
n

a
d

a
 

Agarwal et al.(2005) Twin Cities, 

US 

Capacity reductions vary from 10 – 17%; 

speed reductions vary from 4 – 7% (on 

days with more than 0.25 inches of rain) 

Andrey et al. (2003) Canada Precipitation is associated, on average, 

with a 75% increase in traffic collisions  

Sensitivity to weather hazards varies from 

city to city but cannot easily be explained 

Hranac et al. (2006) Baltimore, 

Seattle, 

Minneapolis, 

St. Paul, US 

Speed at capacity reduced by between 8% 

and 14% 

Free flow speed reduced by between 3% 

and 9% 

Ibrahim & Hall 

(1994) 

Mississauga, 

Canada 

Free flow speeds reduced by 5 – 10 km h
-1

 

Martin et al. (2000) Utah, US Speeds reduced by 10% in wet weather 

Maze et al. (2006) Minneapolis 

St. Paul, US 

Speeds reduced by up to 10% in wet 

weather 

Smith et al. (2004) Virginia, US Capacity and speed both affected: 

reduction in speed of 5 – 6% during 

precipitation 

Journey times and traffic congestion 

increase significantly during precipitation 
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3.3 Method 

3.3.1 Study Area 

This chapter analyses the route corridor from Staples Corner in north London to 10 km 

south of the England – Scotland border. The corridor starts at Junction 1 of the M1 and 

follows the M1 to Junction 19 (Catthorpe Interchange at Rugby) then the M6 to 

Junction 44, as shown in Figure 3.1. Such an extensive cross country route is important 

to allow for future analysis of differences between climates and between urban (e.g. 

Birmingham – M6 junctions 4 to 11) and rural (e.g. The Lake District – M6 junctions 

36 – 40) sections of motorway and the impacts that may occur in these locations. 
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Figure 3.1 Study corridor – London to Carlisle (via M1 and M6) 
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3.3.2 HATRIS Data 

The Highways Agency Traffic Information System (HATRIS) systematically monitors 

traffic flow and vehicle speeds across the road network. Information is collected from a 

number of sources including cameras installed on the motorway network, loops 

installed in the road surface and vehicles fitted with tracking devices. The main sources 

of data along the route corridor are MIDAS (Motorway Incident Detection and 

Automatic Signalling), Trafficmaster, NTCC (National Traffic Control Centre), and 

ITIS (data from ITIS Holdings plc). Each system records traffic flow and travel time 

across the motorway links using a different methodology and all are incorporated into 

the HATRIS database to provide as much information as possible about the network. 

Therefore HATRIS is a rich, high resolution dataset containing speed and flow 

information for all motorway links across England and Wales. Links are defined as 

junction to junction sections of the motorway and there are approximately 2500 which 

make up the entire motorway network. The route corridor in this thesis comprises 146 

operational junction to junction links. Included in the database are details of speed, 

journey times and traffic flows which can be used for analysis. Significant alterations in 

the data which correlate with the occurrence of different weather events, in particular 

extreme weather events will be identified in this study. The variables available for 

analysis are detailed in Table 3.2.  
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Table 3.2 Variables available for analysis in the HATRIS data set (based on Hardman, 

Dickinson & Frith, 2007) 

Variable Name Variable Description 

Rref Unique link ID 

travelDate Date of travel 

dayTypeID Day type that the day belongs to, defined by whether the day is a weekday, weekend, 

bank holiday, school holiday etc 

timePeriodID One of 96 fifteen minute time periods throughout the day 

MADJ_avgJT ‘Best of 3 sources’ Merged All Data Journeys estimate of average journey time 

(seconds) to travel across the link during the 15 minute time period 

MADJ_avgSpeed ‘Best of 3 sources’ MADJ estimate of average speed (km h
-1

) across the link during the 

15 minute time period (Calculated using (length / MADJ_avgJT) 

MADJ_qualityIndex ‘Best of 3 sources’ MADJ quality index – High, Medium or Low (taken from source 

used) 

MADJ_JTdataType ‘Best of 3 sources’ MADJ data type – indicates whether data is observed or has been 

infilled from another source 

MADJ_avgrowsV ‘Best of 3 sources’ MADJ vertical row values – average number of records used for 

vertical infilling (0 indicates that observed data is used) 

MADJ_avgRowsH ‘Best of 3 sources’ MADJ horizontal row values – average number of records used for 

horizontal infilling (0 indicates that observed data is used) 

MADJ_dataSource Source of the travel time data: 

MD = MIDAS; TM = Trafficmaster; IT = ITIS; FF = freeflow (Indicates that there is 

no observed or infilled data from any of the 3 sources) 

MD_avgJT MIDAS estimate of average journey time (seconds) to travel across the link during the 

15 minute time period, calculated from loops on the network 

MD_avgSpeed MIDAS estimate of average speed (km h
-1

) across the link during the 15 minute time 

period (Calculated using (length / MD_avgJT) 

MD_qualityIndex MIDAS quality index – High (no data infilling, more than 1 loop per 1000m),, Medium 

(more than 1 loop per 1000m)  or Low (criteria for medium quality not met) 

MD_JTdataType MIDAS data type – indicates whether data is observed or has been infilled from 

another source 

MD_avgRowsV MIDAS vertical row values – average number of records used for vertical infilling (0 

indicates that observed data is used) 

MD_avgRowsH MIDAS horizontal row values – average number of records used for horizontal 

infilling (0 indicates that observed data is used) 

TM_avgJT Trafficmaster estimate of average journey time (seconds) to travel across the link 

during the 15 minute time period 

TM_avgSpeed Trafficmaster estimate of average speed (km h
-1

) across the link during the 15 minute 

time period (Calculated using (length / MADJ_avgJT) 

TM_qualityIndex Trafficmaster quality index – High (average sample size > 5, minimum sample size > 

0, no infilling of data), Medium (average sample size > 5, minimum sample size > 0)  

or Low (criteria for medium quality not met) 

TM_JTdataType Trafficmaster data type – indicates whether data is observed or has been infilled from 

another source 

TM_avgRowsV Trafficmaster vertical row values – average number of records used for vertical 

infilling (0 indicates that observed data is used) 

TM_avgRowsH Trafficmaster horizontal row values – average number of records used for horizontal 

infilling (0 indicates that observed data is used) 
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IT_avgJT ITIS estimate of average journey time (seconds) to travel across the link during the 15 

minute time period 

IT_avgSpeed ITIS estimate of average speed (km h
-1

) across the link during the 15 minute time 

period (Calculated using (length / IT_avgJT) 

IT_qualityIndex ITIS quality index – Medium (no infilling of data, average car sample >2, average 

HGV sample > 2, minimum sample > 0) or Low (criteria for medium quality not met) 

IT_JTdataType ITIS data type – indicates whether data is observed or has been infilled from another 

source 

IT_avdRowsV ITIS vertical row values – average number of records used for vertical infilling (0 

indicates that observed data is used) 

IT_avgRowsH ITIS horizontal row values – average number of records used for horizontal infilling (0 

indicates that observed data is used) 

TG_avgJT Estimate of average journey time (seconds) to travel across the link during the 15 

minute time period 

TG_avgSpeed Estimate of average speed (km h
-1

) across the link during the 15 minute time period 

(Calculated using (length / MADJ_avgJT) 

TG_qualityIndex Quality index – High, Medium or Low  

TG_JTdataType Data type – indicates whether data is observed or has been infilled from another source 

TG_avgRowsV Vertical row values – average number of records used for vertical infilling (0 indicates 

that observed data is used) 

TG_avgRowsH Horizontal row values – average number of records used for horizontal infilling (0 

indicates that observed data is used) 

NT_avgJT NTCC estimate of average journey time (seconds) to travel across the link during the 

15 minute time period 

NT_avgSpeed NTCC estimate of average speed (km h
-1

) across the link during the 15 minute time 

period (Calculated using (length / NT_avgJT) 

NT_qualityIndex NTCC quality index – based on ratio of distance between cameras and link length: 

High (ratio at least 0.75 and no infilling of data), Medium (not High or Low quality) or 

Low (ratio less than 0.25 and over 50% of data infilled) 

NT_JTdatType NTCC data type – indicates whether data is observed or has been infilled from another 

source 

NT_avgRowsV NTCC vertical row values – average number of records used for vertical infilling (0 

indicates that observed data is used) 

NT_avgRowsH NTCC horizontal row values – average number of records used for horizontal infilling 

(0 indicates that observed data is used) 

FF_avgJT Free flow journey time (seconds) 

FF_avgSpeed Free flow speed (km h
-1

) calculated using length / FF_avgJT 

FF_qualityIndex Low 

Length Link length (km) 

freeflowSpeed Free flow speed (km h
-1

), value defined by Highways Agency 

rawFlow Flow for the link – number of vehicles over the 15 minute time period 

flowDataType Values indicate whether data is observed or infilled 

flowDataNumberPoints Number of records used for infilling, 0 indicates observed data is used 

Incident Flag indicating whether travel time for the link has been unusually high 

Roadworks Field not used at present – set to 0 

adjFlow Adjusted flow (average for count of vehicles (rawflow), time period and day ID) for 

use when calculating delays 

totalDelay ‘Best 3 source MADJ’ estimate of total delay (seconds) calculated using the formula: 
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totalDelay = (MADJ_avgJT – (length / freeflowspeed)) x (adjflow) 

recDelay Recurrent portion of total delay – delay which is caused by congestion (determined by 

time of day and day of the week) 

incDelay Non-recurrent portion of total delay – delay caused by an incident other than usual 

congestion (e.g. accidents) 

rwkDelay Not used 

Source Source data has been obtained from 

 

 

Due to the extensive amount of information available, a data reduction exercise was 

initially required. Firstly, a single year of data was selected for further investigation: 1 

January 2008 to 31 December 2008 for the 146 links (i.e. junction to junction sections 

of road) along the route. A single year was selected to enable a preliminary analysis to 

be performed at the start of the project. Secondly, a series of time slices for each day 

were chosen for further investigation. The HATRIS data have a high temporal 

resolution with measurements of journey time and traffic flows taken every 15 minutes 

throughout each 24 hour period. Journey time is the measured variable across each of 

the links and from this the average speed across each link is calculated using: 

Average speed (km h
-1

) = Link length / Journey time 

The speed data are then included in the database for each link and it is these data that 

will be extracted and used for the analysis. Four 15 minute time intervals were selected 

for daily analysis, at 0000h, 0800h, 1200h and 1800h, to allow for analysis of the 

morning and evening rush hours, plus a daytime and a night time timeslot. The four 

time slices relate to the 15 minute period from the given time, i.e. 0000h applies to the 

time period 0000h to 0014h; 0800h to the period 0800h to 0814h; 1200h to the period 

1200h to 1214h; and 1800h to the period 1800h to 1814h. 
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For this study, the Merged All Data for Journeys (MADJ) speed was selected for 

particular investigation. The MADJ data (covering both journey time and speed) was 

chosen for its reliability as it is generated using a ‘best of three sources’ approach using 

Trafficmaster, MIDAS and ITIS data. The recorded value in the database is taken from 

the source which is considered to be the best available and is used to provide the MADJ 

journey time. For the motorway network, these data are usually obtained from the 

MIDAS (although where there are instances of missing data then the ITIS source will be 

used). Journey time was not selected as the variable to be used in the analysis as each 

link differs in length and so the average time taken to cross each link would not be 

directly comparable between links. 

 

3.3.3 NIMROD Precipitation Radar 

NIMROD precipitation radar data were obtained from the Met Office archives via the 

British Atmospheric Data Centre. Around the UK, there are a number of precipitation 

radars which collect data that are subsequently processed by the NIMROD system at the 

Met Office. At each site, radar scans are carried out at different elevations to give the 

best possible estimate of precipitation at the ground surface. NIMROD data have a 

spatial resolution of 1 km and are available at 5 minute intervals, and the units of 

measurement for precipitation rate are mm h
-1

 x 32. To correspond with the HATRIS 

data, NIMROD data for the corresponding time are used to investigate the effects of 

precipitation both along the entire route and at more local scales where convective 

precipitation storms are likely to impact significantly on local traffic speeds. 
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3.3.4 GIS Analysis 

GIS was used to overlay the HATRIS and NIMROD datasets to identify any initial 

relationships between precipitation events and traffic speed. The centre point of each of 

the 146 operational links (halfway between the start and end junctions) along the route 

corridor was calculated to provide a point where the precipitation rates from the 

NIMROD data could be extracted for each time slice. GIS maps were then created using 

the HATRIS and NIMROD data and precipitation values extracted for each of the 

motorway links (Figure 3.2). 
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Figure 3.2 Maps for 11 January 2008 – (a) 0000h, (b) 0800h, (c) 1200h and (d) 1800h 
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3.4 Results and Discussion 

3.4.1 Route Level Analysis 

Linear regression was initially carried out on the data to identify the relationship 

between traffic speeds and instantaneous precipitation along the entire route. Although 

some of the fundamental statistical assumptions of linear regression have been violated 

(primarily the normality assumption, as the data is skewed), it is used purely as an 

exploratory tool and enables a feel of the data to be obtained. Although there is an 

identifiable but weak relationship on some days, as shown in Figure 3.3a, on others the 

relationship is almost absent (Figure 3.3b). However, in all cases a clear overall 

negative trend is present. Based on this preliminary analysis, it is reasonable to assume 

that a relationship exists, yet it is complex and not clearly defined. Other variables such 

as traffic volume, road capacity, antecedent rainfall and precipitation duration will also 

need to be taken into account in future research. 
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 (a)  

(b)  

Figure 3.3 (a) Linear regression for the entire route, 11 January 2008, 1800h (b) Linear 

regression for the entire route, 3 June 2008, 1200h 
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To test the significance of the relationship between speed and precipitation, the 

Spearman correlation coefficient was calculated. As a non-parametric test, using the 

Spearman correlation coefficient allows for identification of both the strength and the 

significance of the relationship between the variables despite the data being skewed and 

not normally distributed. As shown in Table 3.3, the Spearman correlation coefficient 

corroborates the linear regression results (Figure 3.3) with a negative relationship 

between the variables in both instances, significant at the 99% level. The correlation 

coefficients between the two variables for both examples shown in Table 3.3 are not 

particularly high, again suggesting that there may be other factors influencing the 

relationship between the two variables. The Spearman correlation coefficient for both 

examples shown here is much stronger than the Pearson correlation, reinforcing that a 

non-parametric test is the most suitable to use for this particular data set.  

 

Table 3.3 Spearman correlation coefficient results for speed and precipitation 

 Spearman correlation 

coefficient 

Significance 

11 January 2008, 1800h -0.514 99% 

03 June 2008, 1200h -0.340 99% 

 

 

At the start of this investigation, it was hypothesised that there were potentially two 

thresholds of failure on the road network with respect to precipitation:  
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1. Low to moderate rain – sufficient enough to impact upon visibility and therefore 

slightly reducing vehicle speeds, 

2. Heavy rain – inducing flooding on the carriageway and impacting significantly 

on vehicle speeds. 

From the analysis, neither of these thresholds appears to exist in the dataset. However, 

there is a threshold evident at 0 mm h
-1

, i.e. between precipitation / no precipitation, 

with the greatest speeds occurring when there is no precipitation and speeds decreasing 

when there is precipitation. Previous studies have identified that drivers on UK 

motorways are aware that there is a need to reduce their speed in wet weather conditions 

(Edwards, 1999b), although most only make a marginal reduction (Edwards, 2002). 

This awareness of the need to reduce speed may be one factor which contributes to the 

observed slower speeds during precipitation events over the course of the study period.  

 

In order to test the existence of the no precipitation / precipitation threshold, Welch’s t-

test (assuming unequal variance) was used to determine if there is a significant 

difference between vehicle speeds with / without precipitation. The assumptions of 

Welch’s t-test are:  

1. The samples have unequal variances;  

2. The populations have different standard deviations;  

3. The populations are normally distributed.  

The first two assumptions are satisfied by the speed data obtained from HATRIS. The 

third, that the data is normally distributed, is not met. However, Welch’s t-test is still 

appropriate to use when data is not normally distributed if the sample sizes are large 
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enough and as the samples used here are large (between 654 and 1273 when there is no 

precipitation, and between 56 and 440 when there is precipitation), then it is appropriate 

to continue using Welch’s t-test.  

 

The results were variable, with some instances showing a significant difference at the ≥ 

90% significance level. However, there are also many instances where there is no 

significant difference between the two data sets. This further reinforces the conclusions 

drawn from the linear regression analysis that the relationship between precipitation and 

traffic speeds is complex and requires more investigation to be understood fully. Indeed, 

over the year of analysis there is little consistency or marked seasonal differences 

between months (Figure 3.4). The months with the highest percentage of analyses (all 

time slices) which are significant at the ≥ 90% level are January (11.34% of analyses 

significant), May (11.11%) and November (10.78%). In contrast, the months with the 

lowest percentage of analyses which were significant at the same level were February 

(1.67%), August (6.6%) and September (6.45%). February 2008 was a dry month, with 

England receiving 63% of the average rainfall for the month, based on the 1971 – 2000 

average (Met Office, 2008a, 2008b). December was another drier than average month in 

2008 with England again having less than average rainfall at just 65% of the 1971 – 

2000 average (Met Office, 2008c).  
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Figure 3.4 Percentage of Welch’s t-test analyses significant at the 90% level, for all 

time slices (mean speed in wet weather is significantly lower than mean speed in dry 

weather) 

 

Although in the majority of cases speeds are reduced when precipitation occurs, there 

are a number of instances which are an exception to the rule. In these cases, speed in 

wet weather is higher than the mean speed in dry weather although these analyses tend 

not to be significant. The magnitude by which the average speed in wet weather is 

greater than in dry weather varies considerably with some occasions where wet weather 

speeds are faster by as little as 0.1 km h
-1

 and others where the difference is far larger, 

as much as 20 km h
-1

.  
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Having identified the existence of the no precipitation / precipitation threshold, the 

average speed reduction between dry and wet weather was calculated for all time slices 

during each month of 2008. The results vary greatly from month to month, as shown in 

Figure 3.5. The largest reduction in speed in wet weather occurs in November with 

speeds reduced by almost 4 km h
-1

 on average when precipitation occurs. Although the 

overall trend is that speeds decrease when precipitation occurs, there are two months 

(February and October) when the data suggests that an increase in speed occurs under 

wet weather conditions, i.e. speeds are slower in dry weather. These increases, although 

small, are unexpected and this reinforces the need for further analysis. February was a 

particularly dry month in 2008 and there are also some data missing (both from the 

HATRIS and NIMROD data sets) which may have affected the results in this month.  
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Figure 3.5 Average speed reduction during precipitation along the entire route for each 

month during 2008 

 

The volume of traffic should be an additional significant contributory factor in this 

relationship. Therefore, to determine whether there is a stronger impact of precipitation 

on traffic speeds at a certain time of day, analyses at 0000h, 0800h, 1200h and 1800h 

were investigated to determine the percentage of instances where the mean speed 

differed significantly when there was precipitation compared to when there was no 

precipitation at these time intervals.   
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level or better. Taking January 2008 as an example, precipitation had a significant 

impact (at the 90% level or above) on 11.11% of journeys along the route at 0000h, 

11.54% of journeys at 0800h, 4.00% of journeys at 1200h and 15.38% of journeys at 

1800h. Similarly, the Welch’s t-test results for June 2008 show that precipitation had a 

significant impact on 13.79% of journeys at 0000h, 3.70% of journeys at 0800h, and 

10.34% of journeys at 1800h. No journeys at 1200h in June were significantly impacted 

by precipitation. 

 

It was hypothesised that precipitation would have a greater impact on traffic speeds 

during the busiest times of use on the motorway, where the greatest traffic flows occur 

(i.e. 0800h and 1800h). However, from the analysis, there is no clear pattern to suggest 

that precipitation has a greater impact on traffic speeds at one time of day compared to 

others. Indeed, taking June as an example, precipitation has the greatest impact at 0000h 

with 13.79% of analyses showing that speeds when there was precipitation were 

significantly slower at the ≥ 90% level (Figure 3.6).  
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Figure 3.6 Welch’s t-test analyses significant at or above the 90% level at (a) 0000h, (b) 0800h, (c) 1200h and (d) 1800h 
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Speeds tend to decrease along the route at all time slices when precipitation occurs and 

the average reduction ranges in magnitude from 0.18 km h
-1

 (March, 0800h) to 10.53 

km h
-1 

(November, 1800h). As with the monthly analysis which incorporated all time 

slices, there are a number of instances where the average speed in wet weather is greater 

than the average speed in dry weather. This occurs during six months at 0000h, five 

months at 0800h, and during 3 months at 1200h and 1800h. It is possible that this 

occurs often at 0000h as there is much less traffic on the road than during the daytime 

and so there are fewer vehicles which are affected. Where there are fewer vehicles on 

the road, drivers may be able to maintain their speed and precipitation is likely to have 

less of an impact than at 0800h or 1800h for example when roads are at or near the 

physical capacity. However, the increase in speeds in wet weather observed at times of 

peak traffic is unexpected. As a result of these findings, it is clear that further 

investigation is needed incorporating traffic flows to develop understanding of this 

complex relationship between precipitation and traffic speeds further. 

 

3.4.2 Link Level Analysis 

Analysis at the route level highlighted the need for further analysis at a local level. 

Welch’s t-test was performed on each individual link along the route, comparing speeds 

when there is no precipitation to those when precipitation does occur. The analysis for 

each link incorporates all time slices studied to gain an overall insight into the impact of 

precipitation on the links. The results vary along the route with 38% of links exhibiting 

a significant reduction in the average speed in wet weather (at the 95% level). On the 

majority of the remaining links whilst there is a reduction in average speed, it is not 
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significant. On a very small number of links, there is a slight increase in average speed 

in wet weather (M1 junction 10 to 11 and M6 junction 4 to 4A). Link speed reductions 

along the northbound route are shown in Figure 3.7. Although speed reductions are 

observed on most of the links, the magnitude of the reduction is often fairly small – on 

the northbound carriageway, only 12% of links have a speed reduction greater than 4%. 

The links where precipitation causes the greatest reductions in speed are between 

junctions 8 and 10 of M6, through Birmingham.  
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Figure 3.7 Average speed reductions due to precipitation on the northbound carriageway (London to Carlisle) 
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It is evident from examining speed reductions along the entire route that the greatest 

reductions in wet weather occur in urban areas. In Figure 3.7, there are clearly defined 

peaks on links near to major cities, in particular Birmingham and Manchester. The 

likely explanation for this is that these links have much higher volumes of traffic and 

when precipitation occurs, the speed reduction is larger as a direct result of the greater 

number of vehicles on the link. The variation in speed reductions may be as a result of 

the differing flows on the links – for example links with smaller speed reductions may 

be those where flows are lower and those with greater speed reductions are likely to be 

links with greater flows operating at or near the physical capacity of the road.  

 

The influx of vehicles from neighbouring motorways may also contribute to greater 

speed reductions on some links – where another motorway joins the M1 or M6, then 

traffic flows are much higher and a greater number of vehicles are impacted by 

precipitation leading to a greater reduction in speed during wet weather events. Junction 

6A of the M1 is the M25 interchange and the M1 gains a high volume of additional 

traffic at this point which may explain why the speed reduction is much higher on this 

link than on those surrounding it. Junction 7 of the M1 has a particularly high speed 

reduction in wet weather and this is likely to be as a direct result of the increase in 

traffic volume at this location. Junction 8 of the M6 where the motorway meets the M5 

is another key interchange and again, a large reduction in traffic speeds is observed at 

this link. Likewise where the M6 Toll rejoins the M6 (at junction 11A), traffic volumes 

increase greatly and as a result, the impact of precipitation is exacerbated at this location 

and along the next few links.  
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Widening of the carriageway helps to increase the physical capacity of the motorway 

and may in turn reduce the impact that precipitation has on these links. One such 

example is junctions 29 to 32 of the M6. The reductions in speed during precipitation 

are much less on the links between these junctions than on the links either side and this 

may be a direct result of the increased capacity added by the fourth lane, reducing 

delays during precipitation. The variation in speed reductions along the route and the 

individual nature of the relationship between speed and precipitation on each link 

highlights the need for further in depth research at the link scale to identify what the 

relationship is between speed and flow on each link and to determine how it is affected 

by precipitation. 

 

3.5 Summary  

The analysis detailed in this chapter was carried out initially to determine the impact of 

precipitation on traffic speeds at the route level, with a view to determining existing 

thresholds. It is clear that there is no single factor relationship between precipitation rate 

and speeds across the motorway links. However, there is a threshold which often exists 

between speeds when there is no precipitation and when there is precipitation – the 

greatest speeds occur when there is no precipitation and speeds immediately decrease 

when there is precipitation. The relationship between precipitation and traffic speeds is 

shown to be a complex, non-linear and temporally variable one which requires further 

investigation. From the results obtained in this study, it is clear that no universal 

relationship exists that can be applied at a national level. Further analysis at the local 

level examining the difference in speeds when there is no precipitation and when 



51 

 

precipitation occurs (using a Welch’s t-test) indicates that whilst there is a reduction in 

speed in wet weather on much of the route, the magnitude of reduction varies greatly. 

The most vulnerable links tend to be in urban areas with average speeds being reduced 

by up to 7%. Detailed data from analysis at a local scale is then sufficient as a starting 

point for a national climate change impact assessment of the impact of precipitation on 

the road network, but other traffic parameters must now be investigated, particularly 

traffic flow, to further develop understanding of how precipitation impacts on the UK 

motorway network.  
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Chapter 4 - The Impact of Precipitation on Speed – Flow 

Relationships along a UK Motorway Corridor 

 

4.1 Introduction 

Whilst the impacts of weather conditions on the individual traffic parameters of speed 

and flow have previously been studied (Edwards, 1999a; Martin et al., 2000; Smith et 

al., 2004), there is little work looking at how weather affects the actual relationships 

between traffic variables. This chapter begins to address this research gap, investigating 

how precipitation affects speed – flow relationships along a major transport corridor 

which is of great economic importance to the UK. Speed (km h
-1

) and flow (number of 

vehicles per 15 minutes) data collected from state of the art traffic monitoring 

technologies are utilised to investigate for the first time location specific impacts of 

precipitation on the UK road network.  

 

4.2 Impact on Traffic Parameters – Speed and Flow 

Previous studies examining how precipitation affects the traffic parameters of speed and 

flow are summarised in Table 4.1. The majority focus on the variable of speed, with the 

overall trend that there is a reduction in speed and flow as precipitation increases. 

However, as Chapter 3 has shown the reduction in speed is often the same regardless of 

precipitation amount or intensity (Agarwal et al., 2005).  
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The majority of work investigating how speed or flow are affected by weather has been 

undertaken in the US and Canada (Agarwal et al., 2005; Kyte et al., 2006; Smith et al., 

2004; Stern et al., 2004). Whilst research in countries outside of the US has been 

undertaken (e.g. Cools et al., 2010; El Faouzi et al., 2010), there are far fewer UK 

studies which closely investigate how speed and flow are affected by precipitation (Al-

Hassan & Barker, 1999; Edwards, 1999a; Edwards, 2002; Hooper et al., 2012). 

Research into the impacts of precipitation across the UK is far less recent with most 

studies now being at least ten years old and so it is timely to use new data sets to further 

establish more recent impacts of precipitation on speed and flow across the country.  
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Table 4.1 Summary of previous studies investigating the impacts of precipitation on 

road traffic parameters 

Authors Location Variable Impact 

Agarwal et al. (2005) Twin Cities, US Capacity 

Speed 

More than 0.25 inches of rain: 

Capacity reduction of 10 – 17% 

Speed reduction of 4 – 7% 

Al-Hassan & Barker 

(1999) 

Edinburgh, 

Scotland 

Traffic activity Significant reduction in traffic activity during 

rainfall events: 

4% at the weekend; less than 3% during the week 

Andrey et al. (2013) Canada Speed Results do not provide strong evidence that 

drivers become acclimatised to local weather 

patterns  

Cools et al. (2010) Belgium Traffic intensity Rainfall diminishes traffic intensity 

The impact of weather is different at each location 

studied 

Edwards (1999a) Wales Speed Traffic speed slightly (and significantly) reduced 

when precipitation occurs 
Highlights the need for studies over a greater area 

Edwards (2002) Wales Speed Whilst a reduction in speed occurs during wet 

weather, the reduction does not compensate for 

the increased hazards during inclement weather 

El Faouzi et al. (2010) Europe Speed 

Flow 

During precipitation speed, acceleration, traffic 

flow and capacity all decrease 

Speed variation and congestion severity increase 

Hooper et al. (2012) England Speed No clear relationship between speed and 

precipitation amount 

Key threshold of 0 mm h
-1

 identified – fastest 

speeds occur when there is no precipitation and 

speeds immediately decrease when precipitation 

occurs 

Hranac et al. (2006) Baltimore, 

Seattle, 

Minneapolis, St. 

Paul, US 

Speed Reductions increase with intensity 

Light rain: 

Free flow speed reduced by 3% 

Speed at capacity reduced by 9% 

Maximum reductions: 

Free flow speed 6 – 9% 

Speed at capacity 8 – 14% 

Ibrahim & Hall (1994) Mississauga, 

Canada 

Speed Reduction in free flow speed of 5 – 10 km h
-1

 

Lamm et al. (1990) New York, US Speed No effect of wet road surface on traffic speed 

Martin et al. (2000) Utah, US Speed 10% speed reduction in wet weather 

Maze et al. (2006) Minneapolis, St. 

Paul, US 

Speed Up to 10% reduction in wet weather 

Smith et al. (2004) Virginia, US Speed 

Flow 

Light rain decreases capacity by 4 – 10% 

Heavy rain decreases capacity by 25 – 30% 

The presence of rain decreases speed by 5 – 6.5% 

Stern et al. (2004) Washington, US Travel time 11% increase in travel time at peak periods during 

a precipitation event 

13% increase in travel time at off peak periods 

Tsapakis et al. (2012) London, UK Travel time Travel times increase when rain occurs 

Weather effects vary considerably depending on a 

number of factors 

Unrau & Andrey 

(2006) 

Canada Flow Rain had a small impact at low flows and a larger 

impact at high flows 
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A negative relationship between precipitation and the traffic parameters of speed and 

flow is often observed, i.e. as precipitation increases, speed and flow decrease (Agarwal 

et al., 2005; Cools et al., 2007; Hranac et al., 2006; Smith et al., 2004). The magnitude 

of the impact of precipitation varies between locations, highlighting the importance of 

understanding how road networks are affected at a local scale. Reductions in speed vary 

from just 3% to 14%. There is a far greater range in the magnitude of flow reduction 

with the greatest impacts observed when traffic flows are high (Unrau & Andrey, 2006). 

Reductions in flow can be as little 4% and as great as 30%. Smith et al. (2004) 

investigated the impacts of precipitation on highway traffic flows in Virginia, US and 

discovered that both capacity and speed on the highway were affected during a 

precipitation event, with the possibility of a 5% to 6.5% speed reduction. It is also likely 

that journey times and delays would increase significantly and traffic congestion would 

increase along the affected section of road. A similar study by Hranac et al. (2006), also 

on US roads, identified that free flow speed, capacity and speeds at capacity are all 

affected during precipitation events of varying intensities. 

 

Whilst the majority of studies use data from the United States, the reduction in speed 

and flow has also been observed in the UK. Traffic volumes in Scotland were reduced 

on days when precipitation occurred, with a reduction of up to 4% (Al-Hassan & 

Barker, 1999). Similarly, Edwards (1999a) observed a small but significant reduction in 

traffic speeds during a rainfall event on the M4 motorway in Wales. UK studies tend to 

consider a small area of the road network and as a result there is a need to research 

further how precipitation impacts across a greater area of the road network, both at a 

national and local scale.  
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4.3 Speed – Flow Relationships and the Speed – Flow Diagram 

Investigations into relationships between the traffic parameters of speed, flow and 

density began with the work of Greenshields (1935), culminating in the fundamental 

traffic diagram (Figure 4.1a). The fundamental traffic diagram conveys the parameters 

of flow (vehicles per hour) and density (vehicles per km) and from these, speed can be 

inferred using the equation:  

flow = speed x density 

The diagram allows the relationship between the three variables to be explored and 

defines critical thresholds for congested and free flowing traffic. 

 

Since the initial development of the fundamental traffic diagram, many studies have 

revisited this work seeking to improve the models of relationships between the traffic 

parameters of speed, flow and density. Greenberg (1959) followed the work of 

Greenshields with research based on highways in Connecticut highlighting the 

increasing need to understand traffic dynamics as the number of vehicles using the road 

network increased and exceeded road capacities. A single regime model developed by 

Underwood (1961) built on the work of both Greenshields and Greenberg and assumed 

an exponential function between speed and density (Thankappan et al., 2010). From 

investigating speed and flow, Drew (1965) concluded that there are three parameters 

which control congestion – optimum speed, optimum density and possible capacity. 

Later, Drake et al. (1967) identified that in all previous traffic flow modelling work, the 

speed – flow curve was categorised by a bell shaped curve (Quek et al., 2009) and 
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evaluated the ability of the relationships between the traffic variables to predict flow 

values. The form of the speed – flow diagram commonly used in traffic management is 

shown in Figure 4.1b.  

 

 

Figure 4.1 (a) Greenshields’ fundamental traffic diagram (1935); (b) Speed - flow 

diagram used in traffic management (based on Gordon & Tighe, 2005) 

 

Although the speed – flow diagram was created based on data from the United States, it 

can be assumed that UK traffic follows a similar pattern, although there is actually little 

research looking specifically at the relationship between the two variables in the UK. 

Existing studies (e.g. Smith et al., 1996; Taylor et al., 2008) have attempted to do so at 

a very general scale. These studies provide a good starting point for the investigation of 

speed – flow relationships in the UK but there is more research which still needs to be 

done.  
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Whilst the speed - flow diagram is useful in indicating the overall relationship between 

the two variables for a stretch of road, existing relationships do not consider the impacts 

of inclement weather on the relationship (Mahmassani et al., 2009). Indeed, any 

relationships observed between speed and flow are based on the assumption of good 

weather, good visibility and dry surfaces (Kyte et al., 2006). As Table 4.1 shows, few 

studies exist which have investigated how adverse weather, particularly precipitation, 

may impact on speed – flow relationships and those that do are small scale and largely 

based in North America. For example, Ibrahim & Hall (1994) examined the impacts of 

adverse weather on speed – flow relationships in Mississauga, Canada and concluded 

that under adverse weather, a downward shift in the speed – flow function was observed 

with adverse weather reducing the maximum observed traffic flows. Similarly, a study 

in Virginia found that when rain occurred, there was a free flow speed reduction of 

between 2% and 3.6%; a vehicle capacity reduction of between 10% and 11%; and a 

speed at capacity reduction of between 8% and 10% (Rakha et al., 2007). It also 

identified that reductions in free flow speed and speed at capacity increased as rainfall 

intensity increased. The analysis in this chapter goes significantly beyond the scope of 

previous investigations by investigating local impacts of precipitation on speed – flow 

relationships at a local junction to junction scale.  

 

4.4 Method 

This chapter also uses the M1 – M6 motorway corridor from London to Carlisle (Figure 

3.1). Speed and flow data are available for 138 links on the route via the state of the art 

HATRIS technology. This study is undertaken on a macroscopic scale, investigating the 
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properties of the traffic stream as a whole along individual road sections as opposed to a 

microscopic scale where the behaviour of individual vehicles would be investigated. It 

is common practice for a single speed – flow curve to be calibrated for a location across 

the year and hence, in this study, the 12 month period from 1 January 2008 to 31 

December 2008 was used. To incorporate a range of speed and flow values into the 

analysis, four 15 minute time slices throughout the day were analysed – 0000h, 0800h, 

1200h and 1800h. This includes the morning and evening rush hours when higher traffic 

flows would be expected. The purpose of this chapter is to investigate the overall speed 

– flow relationship on the motorway network and as a result all data for the entire year 

is included in the analysis. Data were not filtered by day of week as the intention was to 

create an overall picture of the relationship between the variables. The relationship 

between all weather speed and flow was investigated by polynomial regression with 

flow as the independent variable. The curves obtained from the analysis are then 

compared to the curve of the speed – flow diagram (i.e. Figure 4.1).  

 

Once the initial speed – flow relationships had been investigated, the data were filtered 

to permit analysis for instances with / without precipitation. The presence of 

precipitation was again determined using Met Office NIMROD precipitation radar data. 

Data were also separated into congested and uncongested categories due to the differing 

characteristics of the traffic stream when it is either free flowing or congested, using the 

variable of speed to identify when traffic becomes congested. Using these categories 

allows for modelling of the traffic stream under each of these conditions and 

identification of the impact of rainfall based on the nature of the traffic regime (Unrau 
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& Andrey, 2006). Polynomial regression was then once again performed on these data 

sets to ascertain the impact of precipitation on the speed – flow relationship. 

 

The speed at which traffic becomes congested was identified on inspection of the speed 

– flow diagrams created. The speed used was identified at the point of inflexion on the 

curve fitted to the data and in the majority of cases this speed was around 80 km h
-1

 and 

so this is the value used to separate the data into free flow and congested categories. To 

determine whether traffic speeds were affected by precipitation, the 85
th

 percentile of 

speed was used for each data set (no precipitation / precipitation). The 85
th
 percentile 

represents the speed at which most drivers will drive at and is characteristic of 

reasonable driver behaviour (Donnell et al., 2009) and is considered as the “...speed at 

or below which 85 percent of people drive at any given location under good weather 

and visibility conditions that may be considered as the maximum safe speed for that 

location” (page 3.4, Texas Department of Transportation, 2012). Therefore it is the 

value of speed most commonly used in traffic studies worldwide (Aljanahi et al., 1999; 

Abbas et al., 2011; Cottrell et al., 2006).  

 

4.5 Results and Discussion 

The all weather analysis shows that a number of links on the route exhibit a relationship 

between speed and flow similar to that shown in the speed – flow diagram (e.g. Figure 

4.2). However, this is not the case on all links. Despite the results being statistically 

significant at the 99% level or above on 88% of the links studied, the regression 
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analysis yielded a wide range of R
2
 values. There are no R

2
 values above 0.5 and 67% 

of the links have an R
2
 value of less than 0.1. These low values of R

2
 show that speed 

on the links is partially explained by flow but not entirely; there are clearly other factors 

which also impact on speed. This suggests that there are very different speed – flow 

relationships on the links, not all of which can be approximated by a quadratic curve as 

indicated by the speed – flow diagram. For example, Figure 4.3 shows one such link 

where there is no distinctive relationship between the two variables. Inspection of the 

location of such links indicates no common geographical factors as to why this would 

be the case, although there are other causes such as lane closures due to road works 

which would have an impact over a prolonged period of time. Unfortunately, HATRIS 

does not allow for identification of such issues and so care must be taken when 

considering why the results do not match the expected outcome. 
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Figure 4.2 Polynomial regression for link LM1021 - M6 J9 to J10  

(No precipitation, congested – y = 0.00007x2
 – 0.1x + 70.149; No precipitation, uncongested – y = -0.00002x2

 + 0.0214x + 100.29; 

Precipitation, congested – y = 0.00002x2
 – 0.0276x +67.321; Precipitation, uncongested – y = -0.00002x2

 + 0.0221x + 98.515) 
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Figure 4.3 Data for link LM204 – M1 Junction 4 to Junction 2 (there is no junction 3 on 

the M1)  

 

The speed – flow diagram, although based on observations, is a theoretical concept of 

the relationship between the two variables. In reality, the relationship may be different 

to the theoretical concept, especially at a local scale. As a result, polynomial regression 

may not be the most appropriate regression method to use on all the links studied, 

particularly when analysing the congested data. Where this seemed to be the case, a 

comparison was made between using polynomial regression for both uncongested and 

congested conditions, and using polynomial regression for the uncongested conditions 

and linear regression for the congested conditions. However, the use of linear regression 
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does not appear to improve the model and so the decision was made to continue to use 

polynomial regression for both congested and uncongested conditions where the link 

speed – flow relationship bears resemblance to the speed – flow diagram. Further 

research is needed in this area to identify fully the characteristics and improve 

modelling of speed – flow relationships on the UK motorway network at a local scale. 

 

With respect to the precipitation / no precipitation analysis, a difference between the 

regression results is observed on the links where the speed – flow diagram holds. In 

each case, the precipitation curve is consistently below the no precipitation curve, 

indicating that speed and flow are reduced in wet weather conditions compared to in dry 

conditions (Figure 4.4). Although R
2
 values are still low in both sets of analyses, a 

stronger relationship is apparent during precipitation. In dry weather, R
2
 values are 

greater than 0.1 on 33% of the links, yet when there is precipitation R
2
 values are 

greater than 0.1 on 46% of the links. The increase in the number of links with a greater 

R
2
 value in wet weather may be a result of driver behaviour – during wet weather, 

drivers tend to reduce their speed, although the reduction may be marginal (Edwards, 

2002), leading to more homogeneous driver behaviour than in dry weather where there 

may be a far greater divergence in speeds with some driving at excessive speeds. It 

appears that when speeds during precipitation are compared to speeds when there is no 

precipitation, there is a decrease in maximum speed but a slight increase in the lowest 

speeds. This may be a result of drivers adjusting their driving to compensate for the 

impacts of precipitation – it has been observed that drivers reduce their speed in wet 

weather (Edwards, 1999a; Edwards, 2002) and may also increase the distance between 

them and other vehicles. In doing so, the sudden need to brake is limited and may result 
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in a smoothing of congestion and therefore a slight increase in low speeds when 

precipitation occurs.  

 

Table 4.2 shows the significance of the regression results for each category of analyses 

undertaken. The decrease in the number of links on which the regression analysis is 

significant when comparing the wet weather to dry weather may be as a result of a much 

greater spread of data in wet weather. Drivers tend to reduce their speeds in wet weather 

yet the reduction made is individual to each driver and their assessment of the weather 

and its impacts. As a result, the range of the data is likely to be much greater than in dry 

weather when most drivers will travel at or close to the speed limit of the road, unless 

there are other hazards present.  

 

Table 4.2 The number of polynomial regression results that are significant for overall, 

no rain and rain polynomial regression analyses 

 

Overall No rain Rain 

Significance ≥ 99% 122 119 84 

95% ≤ significance < 99% 5 5 18 

90% ≤ significance < 95% 1 3 7 

Significance < 90% 10 11 29 
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Figure 4.4 Polynomial regression for link LM959 - M6 J24 to J23  

(No precipitation, congested – y = 0.00009x2
 – 0.123x + 80.728; No precipitation, uncongested – y = -0.00003x2

 + 0.0399x + 102.14; 

Precipitation, congested – y = 0.0001x2
 – 0.169x + 102.4; Precipitation, uncongested – y = -0.00004x2

 + 0.0427x + 100.23)
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The findings of this study concur with those of Rakha et al. (2007), where a reduction in 

speed, maximum flow and free flow speed were observed in wet weather conditions. 

These results are also in broad agreement with other previous research investigating 

how precipitation impacts on traffic flow (Akin et al., 2011; Hooper et al., 2012; 

Mahmassani et al., 2009; Smith et al., 2004). A reduction in speed (at the 85
th

 

percentile) is observed on 93% of the links (129 links) indicating that precipitation does 

indeed adversely affect traffic speeds along the route. The magnitudes of reduction vary 

as shown in Figure 4.5 – some links exhibit only a minimal reduction and the greatest 

reduction on any one link is 6.9% (LM249 – M1 J6 to J6A). This concurs with the 

finding of earlier studies that whilst speeds tend to be reduced during wet weather, the 

reduction is often minimal (Edwards, 2002). Where an increase in speed is observed in 

wet weather, the increase tends to be minimal and often less than 1%, and as such it can 

be concluded that the difference between speeds in dry and wet weather on these links is 

almost nonexistent.  

 

However, the reduction in speed and maximum flow in wet weather conditions is not 

observed on all links. Indeed, 58 links have a greater peak flow in wet weather than in 

dry weather, and two links show no change in peak flow between wet and dry 

conditions (Table 4.3). The links where an increase in flow is observed tend to be those 

on which the speed – flow diagram does not hold. There may be a number of reasons 

why there is an observed increase in peak flow on some links during precipitation 

events. It may be that on these links, peak flows are nowhere near the maximum 

physical capacity of the links and therefore the link does not reach capacity at any point. 

For example, a link with a peak flow of less than 1000 vehicles per hour is unlikely to 
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reach the maximum physical capacity of around 6000 vehicles per hour. The links 

where peak flow increases during precipitation tend to be rural links especially those on 

the northern stretch of the M6 between junctions 34 and 43. Another explanation may 

be that some links are simply too short in length to exhibit all the characteristics of the 

speed – flow diagram and as a result, the speed – flow diagrams for shorter links exhibit 

very different relationships to the speed – flow diagram. This further reinforces the 

importance of developing the understanding of how speed – flow relationships vary at a 

local scale. As such, it appears impossible to apply a generalised model to local sections 

of the UK road network due to the varying characteristics of each individual link. 
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(a) 

(b)  

Figure 4.5 Reductions in speed at the 85
th

 percentile on (a) the northbound carriageway, 

and (b) the southbound carriageway 
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Table 4.3 Changes in peak flow between dry and wet weather regression results 

Total number of links 138 

Links with flow increase in wet weather 58 

Links with no change in flow in wet weather 2 

Links with flow reduction in wet weather 78 

 

Links with 0% < flow reduction ≤ 10% 46 

 

Links with 10% < flow reduction ≤ 20% 19 

 

Links with 20% < flow reduction ≤ 30% 3 

 

Links with 30% < flow reduction ≤ 40% 4 

 

Links with 40% < flow reduction ≤ 50% 5 

 

Links with flow reduction > 50% 1 

 

 

4.6 Future Changes 

Although the data are non-conclusive for all links, in the vast majority of cases, it is 

clear that precipitation has an adverse effect on both speed and flow across the UK road 

network. With future climate projections suggesting there are likely to be changes to 

precipitation patterns and in particular more instances of heavy precipitation, 

precipitation will continue to impact adversely on the road network. In addition to this, 

the number of vehicles on the road is likely to increase in future (Committee on Climate 

Change and US Transportation, 2008) and subsequently precipitation will affect a 
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greater number of road users. Previous studies investigating how climate change may 

impact on mode choices in future suggest that cars are used as a ‘rain coat’ during heavy 

precipitation events where people prefer to use their cars for door to door transport 

instead of using public transport. As such if there are increased instances of heavy 

precipitation in future, there are also likely to be increased numbers of vehicles on the 

road during these events (Bocker et al., 2013). Although the use of cars in place of 

public transport during heavy precipitation events may be most applicable in urban 

areas, it is likely that this may also apply to the motorway network where, for example, 

train journeys are of a comparable duration and the use of a car facilitates door to door 

travel whereas a train journey may require additional modes of transport at one or both 

ends to and from the station. 

 

With more vehicles on the road during precipitation events, the impacts on the road 

network are likely to be increased with more vehicles being affected. Where speed and 

flow are reduced, journey times and delays are increased not only causing 

inconvenience for travellers but also affecting the transport of goods both nationally and 

globally which the economy is so heavily reliant on. To minimise the effects that heavy 

precipitation may have on the road network in the future, there is a need to consider 

mitigation strategies when new infrastructure is planned or existing road infrastructure 

is upgraded. This may include altering road specifications to withstand greater traffic 

volume or improving drainage on road sections which are already vulnerable to 

instances of surface flooding.  
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Utilising managed motorways may also help to minimise the impacts of precipitation. 

Initially implemented on the M42 and then the M6, the system allows speed limits to be 

lowered to keep the traffic stream moving and the hard shoulder can also be opened as 

an additional lane. Using the hard shoulder is an advantage in inclement weather as it 

can increase the capacity of the road during busy periods where overall traffic speeds 

have been reduced, or it can be used as a replacement lane if one or more lanes have to 

be closed due to flooding. The system has recently been implemented on the M62 too 

and is a system which is likely to be employed on an increasing number of motorways 

in future as an effective means of managing traffic.  

 

With the majority of economic activity being concentrated in the South of England, and 

the M1 – M6 corridor being vital for transport of people, goods and business from the 

South to the North, any changes in precipitation which affect transport along this 

corridor will subsequently have an adverse impact on the economy. With differing 

amounts of annual precipitation already experienced in different regions across the UK, 

regions will experience differing degrees of change in precipitation in future and 

therefore impacts and their severity will also differ. There is likely to be an increased 

number of intense precipitation events across the UK as a result of climate change, and 

also a change in precipitation patterns with less rainfall in summer and more in winter. 

Figure 4.6 shows the central estimate of predicted annual, summer and winter 

percentage changes in precipitation by the 2080s under the medium emissions scenario, 

highlighting the potential regional differences.  
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Figure 4.6 Changes to annual, winter and summer seasonal mean precipitation (%) at 

the 50% probability level by the 2080s under the Medium emissions scenario (Murphy 

et al., 2009) 

 

Links which are particularly vulnerable to precipitation and experience a large reduction 

in flow under current weather conditions are likely to endure more severe impacts if 

there are changes to precipitation in future, particularly an increased number of heavy 

precipitation events. At the two ends of the route corridor, winter precipitation in 

London is expected to increase by 19%, but only by 16% in North West England, 

relative to the baseline climate shown in Figure 2.1. Summer precipitation is less 

problematic, with a predicted decrease of 22% in both regions (Figure 4.6). Using link 

LM201 (M1 J1 to J2) at the start of the route in London as an example, this section of 

motorway has a 40% reduction in traffic flow accompanied by a speed reduction of 
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2.6% during wet weather. Based on the UKCP09 projections, with an increase in winter 

precipitation of 19%, the impacts of precipitation during the winter months will be 

intensified with traffic being affected by precipitation more frequently. Changes in 

precipitation are likely to cause particular problems on this and subsequent northbound 

links as it is one of the main routes out of London with high traffic volumes, and 

likewise there will be similar problems for southbound links into London.  

 

This increase in journey times will in turn increase delay related costs (Hooper & 

Chapman, 2012). Costs for businesses due to adverse weather are already high. For 

example, traffic disruption during flood events at peak times is estimated to cost at least 

£100,000 per hour on any main road affected in the UK (Arkell & Darch, 2006). The 

projected increase in winter precipitation, and indeed intense summer storms, will mean 

an increased frequency of precipitation impacts and associated costs. Based on the 

speed reductions calculated on the corridor (Chapter 3) and the peak flow during a 

precipitation event from the polynomial regression results in this study, it is possible to 

calculate an estimate of the cost of a precipitation event on any of the links along the 

corridor. Delays for an individual vehicle can be calculated by comparing the journey 

time in wet weather to the journey time in dry weather and this can then be scaled for all 

vehicles using the peak precipitation flow determined. The delay cost for each link is 

then calculated using the figure of £100,000 per hour as a basis (Arkell & Darch, 2006).  

 

Table 4.4 provides the results for a selected number of links including the links with 

smallest (LM1000 – M6 J40 to J41) and greatest delay costs (LM99A – M6 J3A to J3). 
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There is a clear contrast between rural and urban links. Links with low flows tend to be 

non-urban and therefore the impacts of precipitation and associated costs are nearly 

always small (e.g. link LM1000 – M6 J40 to J41). Conversely, links with large delay 

costs, often in excess of £250,000 per precipitation event, tend to be in more urban 

locations and consequently have much larger traffic flows to be affected in the event of 

precipitation occurring e.g. LM999A – M6 J3A to J3. At Junction 3A of the M6, the M6 

Toll rejoins the M6 and traffic flows along this section are much higher as a result of the 

influx of vehicles from the M6 Toll. These costs apply to a single precipitation event on 

a given link at any time under present precipitation conditions and if there is to be an 

increase in precipitation during winter then there will be a subsequent increase in costs 

as the hazard is encountered more frequently by road users.  

 

Currently, London has around 39 days with precipitation each winter (World 

Meteorological Organisation, 2012). Link LM201 (M1 J1 to J2) has a delay cost of 

£47,315 per precipitation event (Table 4.4) and assuming it rains at least once on each 

of these days, the total winter delay cost will be at least £1,845,285. To create an 

estimate of how cost may be affected in future, the predicted 19% increase in 

precipitation during winter (2080s, medium emissions scenario) was applied to the 

current number of days with precipitation, suggesting that there will be 46 days with 

precipitation and an associated delay cost of £2,176,490. This demonstrates that costs of 

precipitation events are likely to increase due to climate change and as a result will 

present further challenges for the economy unless mitigation and adaptation strategies 

are applied to enable the road network to cope with future changes in precipitation. 
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Table 4.4 Calculated delay costs for selected links on the route 

Link 
Start 

Junction 

End 

Junction 

Avg speed 

(km h
-1

, no 

precip) 

Avg speed 

(km h
-1

, 

precip) 

Link 

Length 

(km) 

Peak flow 

during 

precipitation 

(no. of 

vehicles) 

Dry time 

to cross 

link 

(hours) 

Precip 

time to 

cross link 

(hours) 

Delay 

time 

(hours) 

Total delay 

(hours, for 

all 

vehicles) 

Delay cost 

LM1000 M6 J40 M6 J41 114.57 114.23 5.16 349 0.0450 0.0452 0.0001 0.05  £      4,637.06  

LM1005 M6 J43 M6 J42 111.39 109.04 4.35 242 0.0391 0.0399 0.0008 0.20  £    20,298.64  

LM1007 M6 J44 M6 J43 111.09 109.22 6.49 302 0.0584 0.0594 0.0010 0.30  £    30,222.92  

LM1021 M6 J9 M6 J10 92.74 86.23 2.42 1289 0.0261 0.0281 0.0020 2.54  £  254,215.96  

LM173 M1 J19 M1 J20 110.89 108.60 5.78 647 0.0521 0.0532 0.0011 0.71  £    71,047.70  

LM201 M1 J1 M1 J2 95.59 93.11 3.72 456 0.0389 0.0400 0.0010 0.47  £    47,315.17  

LM957 M6 J23 M6 J22 100.22 93.09 4.91 1118 0.0490 0.0527 0.0038 4.20  £  419,669.08  

LM998A M6 J3 M6 J3A 109.63 104.89 13.4 1038 0.1222 0.1278 0.0055 5.74  £  573,819.88  

LM999A M6 J3A M6 J3 109.48 103.47 13.28 1054 0.1213 0.1284 0.0071 7.43  £  743,474.68  
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4.7 Summary 

Whilst the speed – flow diagram is a long established means to model speed and flow 

on road networks, this study has shown that the approach is perhaps too simplistic with 

only a third of the links on the corridor conforming to the curve. A number of factors 

may contribute to the variation in speed – flow relationships on the links studied 

including lane closures, road works, weather, exceptionally high traffic volumes and 

driver behaviour. Light conditions may be another impacting factor;  the relationship 

observed in daylight may be different to that observed during darkness and this could be 

an area for further investigation. In most cases, it is the relationship at low flows (i.e. 

congestion) which causes the largest deviations from the diagram. This effect was also 

observed by Van Aerde & Rakha (1995) who attributed the problem with low flows to 

an insufficient number of events in the analysis to constrain the curve. Indeed, this is a 

known issue with the HATRIS data as both low and stationary flows are often treated as 

errors in the algorithm and subsequently are automatically corrected without record. For 

links where the speed – flow diagram holds, the impact of precipitation is evident and 

particularly acute in urban areas. In the majority of cases, speed and maximum flow are 

reduced when precipitation occurs. However, these impacts are very much specific to 

the individual links, with all links having slightly different relationships characterised 

by individual maximum flows and critical speeds. This reinforces the need to improve 

understanding of how weather conditions affect traffic operations at a local scale.  

 

Current UK climate change projections indicate increased winter precipitation as well as 

a greater frequency of intense summer events. The impacts on speed and flow observed 
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in this study are central to building knowledge of how the road network may be affected 

in the future. This will provide the information required as to how networks could be 

adapted to cope, as well as starting to understand what the knock on effects may be for 

the economy. However, whilst the results of a study such as this may be used to 

determine how road transport may be affected by similar precipitation in future, it is 

important to remember that climate is not the sole variable needing consideration, but 

also society and the economy. Transport’s vulnerability to weather and climate has 

already changed during the past 50 years and the associated costs have risen 

(Jaroszweski et al., 2010), so it is expected that future impacts of weather and climate 

will differ from those observed currently. To address this, it is important also to 

consider future scenarios which indicate what society may be like based on values and 

governance (e.g. Connor, 2001). After all, in another 50 years, the economy is likely to 

need a surface transportation network unrecognisable to the one in place today.  
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Chapter 5 - Quantifying the Operational Impact of Traffic 

Accidents during Precipitation on a Motorway Corridor 

 

5.1 Introduction 

Weather is a significant factor contributing to the occurrence of road traffic accidents. 

Whilst weather alone is unlikely to be solely responsible for an accident, it remains a 

significant risk factor. Indeed, the overall impact of weather conditions depends on a 

number of factors including not only the time and duration of the event but also how 

recently the weather has previously been experienced by road users (Eisenberg, 2004). 

Precipitation is consistently a hazard for the road network and its users (Keay & 

Simmonds, 2006), and consequently precipitation poses a frequent hazard for road 

safety. Indeed, around 15% of road accidents in the UK occur during precipitation 

events (where accident records indicate that rain occurred at the time of the collision; 

Edwards, 1998) and it is assumed that any change in precipitation will alter overall 

accident risk.  

 

Whilst 15% of accidents occur during rainfall, rainfall occurs less than 15% of the time 

in the UK. Therefore, the number of accidents occurring in wet weather is 

disproportionate to the amount of time that it rains. As accidents pose a serious problem 

for the safety of road users, there is a need to better understand how weather impacts 

upon accident risk to enable more effective road management and driver education 

using the knowledge gained from investigating current weather impacts on road traffic 
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accidents. The objective of this chapter is to investigate road traffic accidents along a 

UK motorway corridor, investigating how traffic is affected by accidents occurring in 

wet weather. The results obtained are used to determine the resilience of the corridor in 

terms of impacts on traffic speed, flow and recovery times. This work then continues by 

predicting how road traffic accident numbers may be affected in future as a result of 

changes in precipitation due to climate change.  

 

5.2 Background  

5.2.1 Precipitation and Road Traffic Accidents 

Table 5.1 provides a summary of studies which have investigated the relationship 

between precipitation and road traffic accidents, highlighting the variation in accident 

numbers and risk across a number of countries. As with research into the impacts of 

precipitation on traffic parameters in the UK, there are few studies which examine how 

accidents are affected by precipitation. Those which have identify that around 15% of 

all traffic accidents occur during rainfall and wet days are associated with higher 

accident numbers than dry days (Smith et al., 1982). One interesting finding is that 

accident severity decreases during rainfall, when compared with dry weather, i.e. a 

greater proportion of accidents are recorded as slight severity as opposed to fatal or 

serious severity (Edwards, 1998). Overall, there is a general consensus that accidents in 

wet weather are more frequent yet less severe than in fine, dry weather which could 

reflect lower traffic speeds (Edwards, 1998), but the full impact of precipitation on road 
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safety needs further investigation and the relationship needs to be quantified for use in 

climate change risk assessments.  

 

As with many areas of road transport research, the majority of studies are focused on 

North America, with just a handful examining the impacts in Europe, and in particular 

the relatively benign climate of the UK. Across the literature, it is acknowledged that 

the number of accidents is elevated when precipitation occurs (Andreescu & Frost, 

1998; Andrey et al., 2003; Golob & Recker, 2003). However, due to the varying nature 

of precipitation, accident characteristics vary with precipitation type (Andrey et al., 

2003) with accidents in snow generally being more severe than in rain. Hence, there is a 

need to interpret existing studies carefully. While precipitation causes the number of 

accidents to increase, the severity tends to be less than those occurring in dry weather. 

This could be interpreted as a change in driver behaviour in line with the conditions,  

resulting in lower speeds during wet weather (Koetse & Rietveld, 2009). Indeed, such a 

reduction in speed during precipitation events has previously been observed (Chapters 3 

and 4), although there is presently little research to suggest that this is actually a direct 

result of drivers taking more care during precipitation events (Edwards, 1998).  
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Table 5.1 Summary of results from previous studies investigating the impact of 

precipitation on traffic accidents 

Authors Location Findings 

Andreescu & Frost 

(1998) 

Montreal, Canada Positive correlation between accidents and rainfall 

Andrey et al. (2003) Canada Precipitation associated with 75% increase in collisions; 45% 

increase in related injuries 

Risk levels vary depending on characteristics of the weather 

event 

Andrey (2010) Canada Positive association between precipitation intensity and 

casualty risk 

Combinations of conditions are problematic – for example 

heavy traffic coupled with precipitation 

Brijs et al. (2008) Netherlands Higher rainfall intensities lead to a higher number of crashes 

Positive relationship between number of hours of rainfall per 

day and number of crashes 

Weekdays are more dangerous than weekends 

Brodsky & Hakkert 

(1988) 

Israel and US Added risk of injury in rainy conditions can be substantial – 2 

to 3 times greater than in dry weather 

Hazard is greater when rain follows a dry spell 

Edwards (1998) UK Accident severity decreases significantly in rain, compared 

with fine weather 

In both fine and wet weather there seems to be a distinction 

between accidents in urban and rural areas 

Edwards (1999b) UK Cyclic nature of accidents recorded in adverse conditions 

shows remarkable similarity to the occurrence of the hazards 

demonstrating the close association between weather related 

monthly accident totals and weather hazards 

Eisenberg (2004) US Significant negative relationship found between monthly 

precipitation and fatal crashes i.e. fewer fatal accidents in 

wetter months 

At a daily level, strong positive relationship found 

Risk imposed by precipitation decreases dramatically as the 

time since last precipitation increases 

Golob & Recker 

(2003) 

US / Canada Crash rates are elevated by precipitation, accident 

characteristics vary by weather type 

Evidence that accident severity is influenced more by volume 

than speed  

Hermans et al. (2006) Netherlands Precipitation has the most impact of all the weather indicators 

Impact of precipitation duration seems greater than 

precipitation amount 

Keay & Simmonds 

(2006) 

Australia The presence of rainfall consistently presents a hazard for 

driving 

Impact after a dry spell is greater as both the dry spell duration 

and the rainfall amount increase 

Mills et al. (2011) Canada Rainfall is associated with large increases in collisions and 

injuries 

Smith (1982) Glasgow, Scotland Rain is the most common hazard affecting the UK, around 

15% of all accidents occur in this weather 

Wet days are associated with higher number of accidents, 

especially in summer 
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Both precipitation intensity and precipitation duration have an effect on the number of 

accidents, particularly duration – the longer the rain event, the greater the number of 

accidents that occur (Brijs et al., 2008; Hermans et al., 2006).  Indeed, Hermans et al. 

(2006) concluded that precipitation duration seemed to have a greater impact on the 

number of accidents occurring than precipitation intensity, with ten extra minutes of 

precipitation increasing accident numbers by an average of 6.5%. Water depth on the 

road surface also needs to be considered, as effects such as ‘aquaplaning’ are a cause of 

increased accident numbers in wet weather (Veith, 1983, in Andreescu & Frost, 1998). 

Drainage problems are frequently evident during heavy precipitation events, particularly 

convective summer storms (Andreescu & Frost, 1998), and will have implications for 

the amount of surface water on roads as well as visibility. Finally, the frequency with 

which precipitation occurs also impacts on the risk of an accident occurring – the longer 

it is since precipitation last occurred, the greater the risk posed when precipitation does 

occur, often due to the build up of oil on the road surface during the dry period which 

causes the surface to become slippery when mixed with precipitation (Eisenberg, 2004; 

Keay & Simmonds, 2006).  

 

The exact timing of accidents needs careful consideration due to inherent variations in 

traffic volumes at a range of temporal scales. Andreescu & Frost (1998) observed that 

whilst there was a clear positive relationship between rainfall and accident numbers in 

the summer months, the relationship varied in winter with larger numbers of accidents 

on days with low rainfall totals whereas fewer accidents occurred on days with larger 

rainfall totals. Again, this may be related to driver behaviour and in particular the 

impact of weather on driver choices as drivers may shift mode or postpone a trip during 
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heavier precipitation events (Koetse & Rietveld, 2009). Urban / rural distinctions are 

also clear with rural areas having more severe accidents in both wet and dry conditions 

than urban areas which may be due to lower traffic densities on rural roads allowing 

drivers to travel at greater speeds than in urban areas (Edwards, 1998). Accident 

numbers are also affected by the presence of bends in the road (Taylor et al., 2002) and 

as urban roads tend to be straighter than rural roads, this may be a factor in the 

distinction between accident numbers. There are large geographical differences in 

casualty numbers and severities across England and Wales (Jones et al., 2008), and so 

accidents are likely to be affected by local weather conditions.  

 

Driver behaviour during adverse weather conditions will also impact on accident risk 

and frequency. Lower speeds observed in wet weather conditions (Koetse & Rietveld, 

2009; Hooper et al., 2012) suggest that drivers are aware of the need to adapt their 

driving accordingly and many do indeed reduce their speed in wet weather when 

friction with the road surface is reduced and stopping distances are increased. Although 

drivers may be aware of the impact of wet weather, drivers need encouragement to 

adapt their driving conditions based on the weather conditions at the time (Edwards, 

1998). This could be carried out by imposing lower speed limits along sections of 

carriageway which use variable speed limits. Another approach may be to impose lower 

speed limits which must be adhered to when it rains, similar to France where the 

maximum speed limit is lowered by 10 km h
-1

 when it rains.  
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Better utilisation of variable message signs which are already in place on the motorway 

network to advise drivers of adverse weather conditions and the action they should take 

would be highly beneficial (Edwards, 1998). Several types of variable message signs 

are used in the UK (Variable Message Signs, 2013). Matrix signs are the simplest, 

displaying numbers or indicating if a lane is closed and can be used to advise drivers of 

a lower speed in inclement weather. Electronic variable message signs can display 

messages consisting of both text and numbers including ‘Incident – slow down’ or 

‘Spray – slow down’. Advanced Motorway Indicators are the most recent type of 

variable message signs installed and are often used on stretches of managed motorways. 

These can display more detailed information including speed limits, lane closures and 

longer messages about incidents and weather conditions. All can be used in inclement 

weather and should be used more proactively to advise drivers of action to take. Where 

drivers adapt their behaviour by reducing their speed accordingly and driving with more 

caution, then some of the risk associated with adverse weather conditions is eliminated 

(Andrey et al., 2003). Using variable message signs to try and enforce these reductions 

may help to reduce the risks associated with wet weather. 

 

5.2.2 Climate Change and Road Traffic Accidents 

Whilst there is an extensive body of literature into the impacts of current weather 

conditions on accident frequencies and severity, research into the potential impacts of 

climate change is limited. However, in light of the projected changes in precipitation, it 

is important to consider how road traffic accidents may be affected in order to prepare 

for any future changes to accident severity and number. All accidents impact the traffic 
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stream as a whole causing delays, prolonging journey times and in the most severe cases 

resulting in road closures (i.e. a total failure of part of the network). It is assumed that 

any current impacts of precipitation on road traffic will continue into the future under 

similar weather conditions, and will rise or fall in line with changes in precipitation 

patterns (e.g. more heavy precipitation events).  

 

Hambly et al. (2013) is one of the few studies to actually consider how road safety and 

traffic accidents may be affected in future as a result of a changing climate. The findings 

are that precipitation is envisaged to have the greatest adverse impact, particularly on 

days with moderate to heavy rainfall (≥ 10mm). In particular, any changes in intensity 

and frequency of extreme precipitation events will need attention as collision risks will 

change and most likely increase, unless there are alterations to safety measures for the 

road network. Although the study focuses on the effects of climate change in Greater 

Vancouver, it raises some important points about the implications of changing 

precipitation patterns for road safety acknowledging that the impacts will be specific to 

individual locations. The importance of detailed micro level analysis is highlighted due 

to its ability to consider local weather conditions and how they impact on local collision 

risks. Areas which are projected to experience more frequent or heavier rainfall are also 

likely to be the areas where more rainfall crashes occur (Hambly et al., 2013). In 

contrast, climate change may have some advantages for road safety with a reduction in 

the number of UK frost days during winter likely to reduce accidents caused by 

slipperiness by around 50% (Andersson & Chapman, 2011).  
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However, the projection of accident numbers decades into the future can be 

problematic. There has been a downward trend in total accident numbers (in all weather 

conditions) during the past 20 years which can mostly be attributed to improvements in 

vehicle safety and technology (Edwards, 1996; Andrey, 2010). It is therefore likely that 

continued improvements to technology will help to reduce both accident numbers and 

risk further into the future. However, vehicle safety improvements alone are unlikely to 

eliminate totally the risk of accidents and so weather will still play an important role in 

the occurrence of accidents in future.  

 

5.3 Speed and Flow 

5.3.1 Method 

Although motorways are considered to be among the safest roads across the UK due to 

the elimination of oncoming traffic, junctions and roundabouts (Edwards, 1999a), a 

number of severe accidents still occur across the network. Motorway accidents 

occurring can be particularly severe and in some cases there are multiple fatalities, one 

such example being the accident on the M5 at Taunton on 4
th

 November 2011. Factors 

external to the motorway were deemed to be the influencing factor in this case, with 

smoke from a bonfire party at a nearby rugby club drifting across the carriageway and 

seriously reducing visibility. Jack knifing of lorries is a motorway specific hazard which 

can lead to severe accidents and is often a problem specific to individual sections of the 

motorway network (e.g. the M6 between junctions 15 and 16.) 

 



88 

 

To investigate how accidents during precipitation events impact on traffic speed and 

flow, accidents along the route corridor are investigated utilising two data sets. 

STATS19 is the national database containing information about accidents severe 

enough to be reported to the police (i.e. where an injury has been sustained). A wealth 

of information is contained in the database about each individual accident including the 

location, time, date, weather conditions and road surface conditions amongst others. 

Due to the severity of traffic accidents on the motorway, it is likely that every accident 

will be reported to the police and therefore STATS19 is a comprehensive data set 

suitable for use in this study. The STATS19 database has been used in a number of 

previous studies (Andersson & Chapman, 2011; Edwards, 1996; Edwards, 1999b; Jones 

et al., 2008; Wang et al., 2009) and so is appropriate to use in this study. Accidents for 

analysis were identified using the STATS19 weather indicator. Any accidents where the 

prevailing weather condition at the time was classified as ‘rain, no high winds’ or ‘rain, 

high winds’ were selected for analysis. As the surface condition can also be a 

contributing factor, accidents where the surface condition was classified as ‘wet or 

damp’ were also selected.  

 

Traffic speed and flow data from the Highways Agency Traffic Information System 

(HATRIS) were also used allowing for identification of any changes to traffic 

parameters throughout the day. This study utilises the data to identify the local impacts 

of accidents at a high temporal resolution giving a detailed picture of the impacts of wet 

weather traffic accidents on the road network. Accidents occurring during 2008 were 

investigated due to this being the first full year for which HATRIS data are available. 

Once the location, date and time of an accident was identified, speed and flow data from 
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HATRIS were plotted, allowing for identification of the reductions in speed and flow 

following the occurrence of the accident.  

 

5.3.2 Results and Discussion 

Whilst the majority of accidents along the route corridor occur in dry weather, 15% of 

the accidents in 2008 occur when it is raining and 30% occur when the road surface is 

wet or damp (concurring with the findings of Edwards, 1998). There is a relatively even 

distribution of accidents along the route throughout the year. Figure 5.1 and 5.2 show 

the number of accidents per link along the route occurring during precipitation events 

on the north and south bound carriageways respectively. The number of accidents on 

wet / damp road surfaces of the north and south bound carriageways are shown in 

Figures 5.3 and 5.4.  
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Figure 5.1 Accidents along the northbound M1 and M6 route where the prevailing 

weather condition at the time of the accident was rain (total number of accidents = 103) 
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Figure 5.2 Accidents along the southbound M1 and M6 route where the prevailing 

weather condition was rain (total number of accidents = 74) 
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Figure 5.3 Accidents along the northbound M1 and M6 route where the road surface 

was wet or damp (total number of accidents = 213) 
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Figure 5.4 Accidents along the southbound M1 and M6 route where the road surface 

was wet or damp (total number of accidents = 144) 



94 

 

It was hypothesised that the links which are the wettest, i.e. have the greatest annual 

rainfall totals, would have the greatest number of accidents in wet weather. However, on 

examination of the locations of the links with the greatest number of accidents in wet 

weather, it appears that this is not the case and these links are spread out across the 

route. The northern section of the M6 through Cumbria has some of the greatest rainfall 

totals (Figure 2.1) and is one section where greater accident totals would be expected. 

However, from the data, the number of accidents occurring along this section in wet 

weather is far less than along many drier sections of the route, a consequence of the 

lower volume of traffic on this link. Peak traffic flow and average annual rainfall for 

each link on the northbound route are shown in Figure 5.5, where it is evident that 

traffic flows on the M6 throughout Cumbria are lower than on the majority of the other 

route links.  
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Figure 5.5 Average annual rainfall and peak flow values for northbound links on the route 
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It appears that traffic flow volumes have a strong influence on the number of traffic 

accidents occurring. Links which have higher traffic volumes tend to have a greater 

number of accidents in wet weather. One such example is at junction 4 of the M6. Here 

there is an increase in traffic volume due to the influx of vehicles from the M42 with the 

peak flow on this link being around 400 vehicles greater than on the previous link 

(Figure 5.5). The number of wet weather accidents at this point on the northbound 

carriageway is consistently higher than on surrounding links as shown in the accident 

maps (Figures 5.1 and 5.3).  

 

For the majority of accidents which occurred during wet weather or when the surface 

was wet / damp, there is a reduction in speed and a subsequent reduction in traffic flow 

across the link. Figure 5.6 shows one such accident and the reductions in speed and flow 

just after the accident occurs, as well as the recovery of the traffic stream to the average 

speed for the link. There are, however, some instances where traffic speeds appear to be 

unaffected following an accident and the recorded speeds stay well above the average 

free flow speed for the link.  
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Figure 5.6 Speed and flow on 18
th

 December 2008, M6 junction 17 to junction 18 – 

accident occurring at 15:55 (raining, high winds) 
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links tend to be in more rural locations where traffic flows are lower than on links 

which have high numbers of wet weather accidents. 

 

Where accidents occur in wet weather or on a road surface that is wet / damp, a 

reduction in both speed and flow is evident in the majority of cases. The magnitudes of 

reductions vary greatly with a greater reduction in speed being associated with more 

severe accidents. The number of vehicles involved in the accident also impacts on the 

severity of the reduction in both speed and flow – the more vehicles involved, the more 

likely it is that a larger portion of the carriageway will be blocked and therefore, fewer 

lanes will be available for vehicles. Whilst it appears that the most severe accidents 

have the greatest reduction in speed, there are some instances where the reduction in 

both speed and flow is far less than expected. Unfortunately, where the motorway is 

stationary or has to be closed, the HATRIS data is infilled with historical data and this 

may be the cause of less than expected reductions in both speed and flow. For example, 

an accident occurred between junctions 8 and 9 of the M1 on 31
st
 August 2008 at 

12:12pm and the speed does not fall below 50 km h
-1

 despite the accident involving 

eleven vehicles and having eleven reported casualties – a much greater impact would be 

expected. As such, the impact of some more severe accidents is omitted from the 

analysis due to the nature of the data.  

 

The severity of accidents occurring in dry and wet weather was also compared. With 

previous studies identifying that the number of slight severity accidents tends to 

increase slightly in wet weather (Koetse & Rietveld, 2009), it would be justified to 
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expect the same to apply along the M1 – M6 route corridor. However, on inspection of 

the distribution of accidents across the three severity classes of fatal, serious and slight, 

it is apparent that there is no marked difference in the distribution of accident severity 

between dry and wet weather, as shown in Table 5.2. There is a very minimal increase 

in the percentage of accidents which have a slight severity on wet road surfaces 

compared to on dry surfaces and a small decrease in accidents of fatal and serious 

severities was observed. This suggests that along the M1 – M6 route, there is little 

difference in accident severity between dry and wet weather.  

 

Table 5.2 Percentages of accidents classed as fatal, serious or slight in each of the dry 

and wet weather and road surface categories 

 

Fatal Serious Slight 

Fine weather 2.41% 11.26% 86.32% 

Wet weather 2.41% 10.84% 86.75% 

Dry surface 2.59% 11.04% 86.38% 

Wet surface 2.45% 9.48% 88.07% 
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5.4 Recovery Times 

5.4.1 Method 

Where speed and flow values are reduced following an accident in wet weather, a 

recovery time was calculated to identify when speed returned to the average link speed. 

In each case, the average accident recovery time was calculated and compared to the 

average recovery time for fine weather and dry road surfaces to determine how rainfall 

affects the recovery time.  

 

5.4.2 Results and Discussion 

The calculated recovery times for wet weather accidents vary greatly. Some accidents 

have a significant impact (e.g. the M6 southbound between junctions 10 and 9 on 27
th

 

November 2008, recovery time = 15 hours 15 minutes) whereas some have very little 

impact with the traffic stream continuing at free flow speed. Table 5.3 shows the 

average recovery times for each accident category studied. When compared to the 

corresponding fine weather category, it is evident that there is an increase in average 

recovery time following an accident occurring in wet weather conditions. Likewise, the 

average recovery time increases for accidents occurring on wet or damp road surfaces 

compared to the average recovery time when the road surface is dry. This may be due to 

increased stopping distances on wet road surfaces as a result of reduced friction between 

tyres and the road surface. Another possible cause may be drivers failing to adapt their 

driving appropriately to respond to the adverse weather conditions. However, the 

standard deviation for each of the categories investigated is very large and indicates the 
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range of other factors that play a part in the severity of an accident (i.e. location on the 

highway, number of vehicles etc).  

 

Table 5.3 Average accident recovery times 

 

Average Accident 

Recovery Time 

Standard 

Deviation 

(minutes) 

Number of 

Accidents 

Weather Conditions    

Fine 1 hour 42 minutes 100 416 

Rain 2 hours 36 minutes 164 93 

Surface Conditions    

Dry 1 hour 37 minutes 88 349 

Wet / damp 2 hours 22 minutes 148 174 

 

To test whether the difference between the accident recovery times in dry and wet 

weather is statistically significant, a Wilcoxon test was used. The data are not normally 

distributed and so the non parametric Wilcoxon test is more suitable for use here than a 

parametric t-test. The results of the test for the weather categories are shown in Table 

5.4 and the results for the surface categories are shown in Table 5.5. In both instances, 

the mean rank is higher in wet weather and on wet / damp surfaces than in dry 

conditions and so recovery times in wet weather are greater than in dry weather, 

reinforcing the results in Table 5.3. Both tests are significant at the 99% level and so it 

can be concluded that the differences between the average recovery times are 

significant.  
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Table 5.4 Wilcoxon test results for accident recovery times in the weather categories 

Ranks 

 Number Mean Rank Sum of Ranks 

Dry 416 244.72 101804.00 

Raining 93 300.98 27991.00 

Test Statistics 

Wilcoxon 101804.000 

Asymp. Sig. (2 tailed) 0.001 

 

 

Table 5.5 Wilcoxon test results for accident recovery times in the surface condition 

categories 

Ranks 

 Number Mean Rank Sum of Ranks 

Dry surface 349 245.17 85566.00 

Wet/damp surface 174 295.75 51460.00 

Test Statistics 

Wilcoxon 85566.000 

Asymp. Sig. (2 tailed) 0.000 

 

 



103 

 

There is a clear distinction between the distribution of recovery times in dry and wet 

weather (Figure 5.7). In both dry weather conditions and on dry road surfaces, the 

recovery times are bi-modal. There are a large number of accidents with short recovery 

times (less than 60 minutes) and these are likely to represent the more common, and less 

severe, ‘shunt’ type accidents. However, there are also a large number with extensive 

recovery times of more than four hours. These accidents are likely to be the most 

severe, causing lane or even entire road closures. The recovery times for accidents 

occurring in wet weather and on wet road surfaces have a far more erratic distribution 

with no clearly defined peaks in any one recovery time category. The standard 

deviations for each category are very large due to the huge range of recovery times 

which occur. This is particularly true of both the wet weather and wet surface categories 

where there is a far greater spread of data which is likely to be due to the individual 

nature of each accident occurring in wet weather – there is no uniform rule which can be 

applied to accidents occurring under these conditions.  
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Figure 5.7 Histograms showing distribution of accident recovery times for each weather and surface conditions category studied 
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5.5 Climate Change  

5.5.1 Method 

To approximate how accident numbers may change in future as a result of climate 

change, projected future numbers of wet weather accidents were calculated using the 

predicted percentage change in precipitation from UKCP09. Ten years of accident 

numbers (2000 – 2009) are used to provide a representation of the potential number of 

accidents over a similar time period in future. There has been a decrease in accident 

numbers in recent years due to improvements in both vehicle and road safety. It is 

difficult to forecast exactly how accident numbers may be affected by such 

improvements in future and therefore the accident numbers for 2000 – 20009 are used 

as a starting point and it must be acknowledged that the forecasts created here do not 

take into account the effect that safety improvements may have. For each accident 

category (rain; wet / damp surface conditions), the corresponding percentage increase or 

decrease in precipitation is applied to the accident categories. With a likely increase in 

precipitation in winter and a decrease in summer, accident numbers are expected also to 

follow this pattern with the increase in accidents in winter being offset by a decrease in 

accidents during the summer.  

 

Whilst this method provides a simple projection of future wet weather accident 

numbers, it does not account for the potential for increases in accident numbers due to 

extreme, unexpected weather events which may occur as a result of climate change. 

Long term trends indicate that road traffic is increasing and is likely to continue to 
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increase in future (Committee on Climate Change and US Transportation, 2008). Traffic 

on UK motorways has increased steadily in recent years and in 2012 traffic volumes 

increased by 1% (Department for Transport, 2013a). The accident forecasts presented 

here do not consider growth in traffic volumes as they are only very simple forecasts 

using present day accident statistics and future predictions of changes in precipitation. 

Predicting exactly how traffic volumes will increase in future relies on a range of factors 

including fuel prices, changes in the economy and changes to the cost of public 

transport and as a result cannot easily be included in the simple forecasts created here. 

The approach used here offers a simple forecast in an attempt to begin to illustrate what 

the consequences of a changing climate may be for accidents occurring in wet weather 

conditions.  

 

5.5.2 Results and Discussion 

There is a clear relationship between rainfall and the number of traffic accidents – the 

greater the rainfall total, the larger the number of accidents is. At present, the largest 

number of accidents in wet weather occurs during the autumn months and on wet / 

damp surfaces during the winter months (Figure 5.8). As climate projections suggest 

that winter is the season most likely to experience an increase in precipitation, it is 

reasonable to assume that there will be a far greater number of accidents due to wet 

weather in these months. Conversely, summer has the least wet / damp surface accidents 

of all the seasons and this value is likely to decrease further as a result of decreased 

summer precipitation in future. The seasonal accident numbers determined from the 

analysis for 2000 to 2009 were used to create simple projections of changes in accident 
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numbers in wet weather using the UKCP09 projections for the 2080s, as shown in 

Figure 5.9. The results show that a much greater number of accidents are likely to occur 

in winter as precipitation increases, yet in summer the reduction in precipitation is likely 

to be accompanied by a decline in accident numbers. 
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Figure 5.8 Seasonal distribution of traffic accidents and average seasonal rainfall totals 

(Met Office, 2013) occurring (a) in wet weather conditions, and (b) on wet / damp road 

surfaces along the M1 and M6 corridor 
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From the data obtained for accidents during 2008 along this route corridor, it is evident 

that there is a significant impact on traffic operations in wet weather. This impact is 

likely to change in future as precipitation patterns and intensities change due to climate 

change. With the predicted changes in climate, it is expected that there will be more wet 

weather traffic accidents in winter due to the increase in precipitation during winter 

months. The predicted increase in accident numbers during winter months, as shown in 

Figure 5.9, will lead to an increase in the number of journeys which are affected and 

most likely delayed. It has already been identified that traffic speeds are reduced during 

precipitation events, and this coupled with increasing numbers of accidents due to wet 

weather will cause further reductions in both speed and flow especially where accidents 

cause lane closures or even closures of entire sections of the motorway. These 

reductions in speed and flow will in turn cause increased congestion not only on the 

affected motorway but also on roads in the surrounding area. With road use likely to 

increase in future (Committee on Climate Change and US Transportation, 2008), it is 

also possible that the number of vehicles and hence journeys affected by road traffic 

accidents will also increase. The winter increase may be partially offset by a decrease in 

the number of wet weather accidents occurring during summer months as summer 

precipitation decreases.  
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Figure 5.9 Current and potential future accident numbers during wet weather in (a) 

summer and (b) winter, based on the UKCP09 predicted changes in seasonal 

precipitation – maximum increase of 33% in winter; maximum decrease of 40% in 

summer (2000 – 2009 seasonal precipitation totals taken from 1981 – 2010 averages 

from Met Office, 2013) 
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These are only simple projections of potential changes in accident numbers due to 

climate change and of course other factors, such as technology, will affect accident 

numbers in future. Improvements in driver education may also help in reducing accident 

numbers and risks as the hazards posed by weather are often misjudged by road users. 

In 2011, ‘travelling too fast for conditions’ was a contributory factor for around 40% of 

vehicles involved in reported accidents when the accident reports highlighted that there 

was bad weather (Department for Transport, 2011). This is a large percentage and could 

be reduced by raising awareness when driving in adverse weather conditions as well as 

taking further action to inform drivers of changing weather conditions on their journeys.  

 

5.6 Summary 

Road traffic accidents occurring during precipitation events have a significant impact on 

road network operations causing a reduction in both speed and flow in the majority of 

cases. These reductions cause delays to journeys and dependent on the severity of the 

accident, delays can lead to significant failure with some instances where speeds on the 

motorway do not recover for many hours afterwards. Reductions in speed can occur for 

up to three hours following an accident in wet weather. This has a sustained effect on 

road capacity and hence the effective operation of the road network.  

 

In the future, delays will worsen in winter as a result of increasing precipitation, 

particularly heavy precipitation events, with more accidents leading to more instances of 

congestion, speed and flow reductions, and road closures. However, summer months are 
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likely to see a decrease in the number of precipitation related road accidents and in turn 

less congestion due to decreasing precipitation during these months. Changes to the 

distribution of traffic throughout the year may also affect accident numbers. At present, 

traffic volumes peak in August and are lowest in January (Department for Transport, 

2013b). Any shift in this distribution will affect accident numbers: for example, an 

increase in traffic volume in January may lead to a further increase in accident numbers 

in addition to the increase in accidents occurring due to wet weather, causing further 

delays and operational problems for the motorway network. The accident predictions 

presented here are based on seasonal precipitation totals and whilst it is difficult to infer 

directly what the changes in precipitation may be from seasonal totals, these predictions 

provide a starting point for understanding how precipitation changes may impact on 

future accident numbers. 

 

Given the future predictions for precipitation, a number of adaptation measures are 

required to ensure the increased resistance of the road network in wet weather. Firstly, 

drainage on the road network is likely to need particular attention. There are already 

issues with inadequate drainage in a number of locations during convective summer 

storms (Andreescu & Frost, 1998) and an increase in convective storms due to climate 

change could see an increase in instances with water lying on the road surface. Water on 

the road surface is a known cause of traffic accidents (Veith, 1983 in Andreescu & 

Frost, 1998) and could potentially lead to more accidents in future unless problems with 

road drainage are addressed. Drainage infrastructure may be able to cope with present 

precipitation events but with the likely increase in numbers and intensity of future heavy 

precipitation events due to climate change, drainage will need to be adapted to cope and 
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ensure the resistance of the road network to such events. Without adaptation to changes 

in precipitation in future, it is likely that there may be increased instances of surface 

water on the carriageway where drainage infrastructure fails to cope and with this an 

associated increase in the risk of accidents due to surface water. It is vital that any 

problems with drainage are assessed and adaptations made, not only to ensure the 

network continues to operate effectively but also to ensure the safety of its users.  

 

Weather alone cannot be held responsible for the occurrence of road traffic accidents 

and so improving driver education, vehicle safety and infrastructure will also play a part 

in helping to reduce accident numbers. Better utilisation of variable message signs 

already in place on the motorway network to advise drivers of the adverse weather 

conditions and action they should take would be highly beneficial (Edwards, 1998). As 

precipitation is a year round hazard encountered by UK road users, it has a distinctive 

relationship with traffic accidents. Predicted changes in climate are likely to induce a 

change in the pattern of accidents occurring during precipitation events. The projected 

increases in precipitation during winter months are likely to lead to an increase in the 

number of wet weather traffic accidents and likewise the decrease in summer 

precipitation may result in a decrease in summer wet weather accidents. Further 

understanding of the potential impacts of changes in precipitation in future is needed to 

begin to plan how traffic streams may be managed in future following accidents caused 

by precipitation and also to allow for mitigation and adaptation procedures to be 

implemented to try and reduce the impact of a changing climate on road safety.  
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Chapter 6 – Conclusion 

 

To be able to model the possible impacts of weather on transport in the future, it  is 

important firstly to develop an understanding of how transport is currently affected by 

weather. Whilst the impacts of a number of weather conditions on all transport modes 

have been studied to date, previous studies often look at a wide study area or focus on a 

very small area. Precipitation is a particular hazard for UK drivers. With precipitation 

regimes across the country varying greatly, there is a pressing need to develop a better 

understanding of how the road network is affected at a detailed 'junction to junction' 

scale. This thesis has studied the impact of precipitation on traffic speed, flow, the 

relationship between speed and flow, and also on traffic accidents and shows that there 

are vast differences in the magnitude of impacts along a motorway corridor, reinforcing 

the need for detailed studies to better understand how the network is affected.  

 

6.1 Objective 1  

To determine how precipitation currently affects speed on the UK motorway network 

along the M1 – M6 corridor.  

Does one or more key thresholds of failure exist? 

The impact of precipitation on speeds on the UK motorway network is not as clear as 

first hypothesised. A clear negative relationship between the two variables was 

expected, i.e. as precipitation increases, speed decreases. Having analysed the HATRIS 
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data available, the key finding is that there is no clearly defined relationship between the 

two variables for any impact. However, a binary threshold clearly exists at 0 mm h
-1

 – 

the fastest speeds occur when there is no precipitation and speeds decrease once 

precipitation occurs. As there is no clear relationship between the two variables at the 

route level, it is evident that further analysis is needed at a local, junction to junction 

scale to identify local impacts of precipitation on speed and other traffic parameters. 

This analysis of the relationship between precipitation and speed at the link level 

reinforced findings at the route level that there is no clear single factor relationship. 

However, the finding that speeds decrease during precipitation is reinforced with a 

reduction in average speeds during precipitation being observed on the majority of 

links. The magnitude of reduction varies greatly from link to link with the greatest 

reductions observed in urban areas. 

 

6.2 Objective 2  

To identify the impact of precipitation on both speed and flow at a local (junction to 

junction) scale.  

Can traffic on the UK motorway network be approximated to the speed – flow 

diagram? 

Having investigated the impact of precipitation at a local scale, in the majority of cases, 

speed and flow are reduced when precipitation occurs. The magnitude of reduction for 

each variable varies from link to link. On creating speed – flow diagrams for each link 

and comparing these to the speed – flow diagram, it is clear that the relationship 



116 

 

between the two variables is individual to each link. A number of links strongly 

resemble the speed – flow diagram but there are also cases where there is no 

resemblance, especially where there is lack of low flow, low speed data. The need for 

traffic studies at a local scale is reinforced by these findings as the results vary greatly 

from link to link. As the corridor studied is vital to the economy, an attempt is made to 

quantify the potential costs of delays due to precipitation due to climate change. With a 

likely increase in precipitation during winter months, the cost of delays is also likely to 

increase presenting further challenges in a changing climate unless mitigation and 

adaptation strategies are applied to the road network such as improved drainage across 

the network to minimise flooding instances and better utilisation of variable message 

signs and managed motorways.  

 

6.3 Objective 3  

To identify how accidents occurring during wet weather impact on traffic speed and 

flow at a local scale.  

What is the impact on journey travel times? How long does the traffic stream 

take to recover following precipitation related accidents? 

Precipitation is a year round hazard for drivers in the UK and around 15% of all traffic 

accidents occur in wet weather. The majority have a significant impact on traffic speed 

and flow with reductions in both parameters following an accident. Speed reductions 

can last for up to three hours after an accident. The time taken for the network to return 

to normal after an accident increases significantly in wet weather compared to in dry 
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weather. The average recovery time for accidents occurring in wet weather or on wet 

road surfaces is around 50 minutes greater than in dry weather, causing prolonged 

reductions in traffic flow and increasing the amount of time for which network 

operations are restricted. Future changes in precipitation patterns due to climate change 

are likely to lead to changes in wet weather accident numbers. With a predicted 

decrease in precipitation during summer months, it is likely that the number of wet 

weather accidents will also decrease. However, this reduction is likely to be offset by an 

increase in precipitation during winter months and hence an increase in winter wet 

weather accident numbers.  

 

6.4 FUTURENET 

As the FUTURENET project aimed to provide a tool to assess and plan for the 

resilience of the transport network in future, a modelling framework was created to 

bring together all aspects of the project. Figure 6.1 shows the modelling concept 

developed. All aspects of the project were combined to produce a comprehensive model 

which considered the future shape of the transport network, behaviour of travellers and 

the relationships between weather and the network. The work presented here forms a 

small part of the project and its combination with other areas of the project allowed for 

the development of a comprehensive model to determine the resilience of the transport 

network in future. This thesis informed the resilience assessment and facilitated the 

calculation of link travel times, highlighted in Figure 6.1. The calculations of link travel 

time were based on the speed – flow relationships identified using the HATRIS data. 

Calculating the travel times at a local scale allowed for identification of any particularly 
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vulnerable points on the route where precipitation has a strong impact on traffic speeds 

and hence travel time.  

 

The work undertaken for this thesis does not consider social and technical aspects which 

will shape the future of the transport network. By the 2050s, there are likely to have 

been significant developments and improvements to the transport network across the 

UK. For example changes in the rail network will be evident with the completion of 

High Speed 2. Whilst FUTURENET has focused on the corridor between London and 

Glasgow, and in the case of the road network between London and Carlisle, the 

methodology applied here can be transferred and applied to any transport corridor.  
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Figure 6.1 FUTURENET modelling concept 

 

The work carried out to complete this thesis has already been used to develop a 

numerical model to begin quantifying the potential impacts of changes in precipitation 

on the road network. The model uses the relationships determined in this work, 

especially the work investigating speed reductions caused by precipitation and the 

impact on the speed – flow relationship. These findings and weather from the UKCP09 

Weather Generator for the 2050s and 2080s are used to calculate potential journey delay 

times. Calculation of journey times is based primarily on the speed – flow relationships 
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derived from the HATRIS data (Chapter 5 - Quantifying the Operational Impact of 

Traffic Accidents during Precipitation on a Motorway Corridor). Using a version of the 

speed – flow curve for the route takes into account the impact of precipitation on both of 

these traffic parameters and a corresponding journey time can be calculated depending 

on the flow on the link and the amount of precipitation. The link journey times are 

combined for the entire route to provide a total journey delay. Based on the findings of 

Chapter 3, where there is no precipitation on the route, then there is little or no delay. 

When precipitation occurs on part of or the entire route then delays occur, ranging from 

just a few minutes to over an hour. An example southbound journey output from the 

model is shown in Figure 6.2. There is a steady increase in delay as the journey 

progresses from Carlisle to London due to the presence of precipitation along the entire 

route, resulting in an overall journey delay of almost 70 minutes. A further model 

output is shown in Figure 6.3, for a journey from London to Carlisle where there is 

initially no precipitation on the route and therefore no delay. Around 100 km into the 

journey precipitation occurs and as a result, delays are incurred with an overall delay of 

just under 24 minutes.  
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Figure 6.2 Example journey delay output from the FUTURENET resilience model 

where precipitation occurs along the length of the route 

 

 

Figure 6.3 Example journey delay output from the FUTURENET resilience model 

where precipitation starts around 100 km after the start of the journey 
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6.4.1 FUTURENET Resilience Model Results 

The FUTURENET resilience model can produce detailed link by link outputs of delays 

for a single journey as well as producing overall delays for multiple journeys. To 

determine how the road network may be affected by climate change in future, the 

resilience model was run for the summer and winter seasons for the baseline climate, 

the 2050s (2040 – 2069) and the 2080s (2070 – 2099) using data obtained from the 

UKCP Weather Generator. The Weather Generator provides 100 runs of the 30 year 

data and the model was run for one journey per day over the 30 years of all 100 runs. 

Both medium and high emission scenarios were used to determine how the resilience of 

the network may vary between the scenarios. A delay threshold of 30 minutes was set 

and the percentage of journeys exceeding this threshold calculated for each of the model 

runs completed. The results obtained for the 2050s and 2080s climate change scenarios 

were compared with those for the baseline climate to identify the impact of precipitation 

on journey delays in future.  

 

The results showing percentage change in rain related failed journeys can be seen in 

Figure 6.4. In this instance, the resilience model was run for journeys from Carlisle to 

London and the failure threshold is 30 minutes. The 10
th
 and 90

th
 percentiles are also 

shown, indicating the potential range in results obtained from the weather generator 

data. In winter, there is an increase in failed journeys by the 2050s and a further increase 

by the 2080s, due to the predicted increase in precipitation in winter months. Although 

the model predicts that the magnitude of the increase in journeys affected in winter is 

much greater than the magnitude of reduction in summer, the reduction in summer will 
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partially offset the increased numbers of failed journeys experienced during the winter 

months. There is little differentiation between the high and medium emission scenarios 

in the 2050s. However, by the 2080s there is a considerable difference between the high 

and medium emissions in winter with the high emissions scenario having a much 

greater proportion of failed journeys.  

 

 

Figure 6.4 FUTURENET resilience model results showing the predicted percentage 

change of rain – related journey failures in 2050s and 2080s relative to the baseline 

climate 
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The results shown here use a failure threshold of 30 minutes’ delay for each journey. 

However, the failure threshold can be altered depending on the requirements of the user, 

ensuring that the user centric definition of resilience used by the FUTURENET project 

can be employed in the outputs it produces. For example, a leisure traveller may be 

satisfied that their journey has not failed until the journey is delayed by more than 45 

minutes and the model can be adapted to produce the results for the appropriate end 

user. The model can also be adapted to use a shorter journey distance within the London 

to Carlisle corridor and as a result determine the resilience of different sections of the 

route (e.g. London to Birmingham; Birmingham to Manchester; Manchester to 

Carlisle).  

 

6.5 Limitations  

Over the duration of the FUTURENET project, it became apparent that there are issues 

with the available data for such studies. There are many instances where data required 

to determine how transport is affected by climate change do not exist. Where data do 

exist, it is often inadequate as there tends to be less detail than is required to build a 

comprehensive picture of the effects of weather on transport. The limitations identified 

by the FUTURENET project are evident in the data used for this thesis.  

 

There is a notable absence of data which indicates that the motorway is either stationary 

or operating at a very low speed. When performing speed – flow analysis, there was 

little data which represented congested traffic, i.e. low speed, low flow. On further 
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investigation, it was identified that the data set is modified when motorway traffic is at a 

standstill or when speeds fall below a certain threshold for particular data sources. 

When the motorway is stationary and as a result there is no speed or flow data for that 

time, data are infilled using historic data for the link. The consequence of this is that 

where traffic may have been stationary or moving at a very low speed, it appears that 

the traffic stream is actually moving at or near to the free flow speed. This issue was 

particularly apparent when performing accident analysis – often accidents involving 

multiple vehicles with multiple casualties appeared to have little or no effect on traffic 

speed and flow. However, the likelihood is that the traffic was stationary or the 

carriageway was closed and the infilling of historic data caused the true effects of such 

accidents to be masked.  

 

There is an indicator within the data set which highlights when the data has been 

infilled. Having examined the data for 2008, it is apparent that 17.62% of speed data 

and 9.82% of flow data have been infilled. The infilling of data may, as a result, have 

caused the true relationships between precipitation and the various traffic parameters to 

have been concealed. For example, extremely low traffic speeds at times of high 

precipitation may have been omitted and hence the relationship detected between the 

two variables is not entirely representative. There may in fact be a stronger or more 

clearly defined relationship if the low speed data were available. Likewise, accident 

analysis has been impacted with some severe accidents having low recovery times due 

to data infilling despite multiple vehicles being involved. In reality, it is likely that the 

recovery time was much higher than the recovery time identified from the HATRIS 

data. Whilst it is possible to find out where data have been infilled, without knowing 
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exactly how the infilling has been performed, it is impossible to identify where the low 

speed, low flow data have been omitted.  

 

Whilst extreme precipitation events are known to have an adverse impact on the road 

network, the extent of the impact cannot be identified from the data used. During 

instances of flooding following particularly heavy rainfall, it is expected that sections of 

road would be closed. However, as there is no way of identifying road closures in the 

data set, such events cannot be pinpointed. The issue of data being infilled where traffic 

is stationary is also an issue with respect to extreme precipitation events. If traffic has 

slowed to a crawl or even come to a standstill during an extreme event (as was the case 

on motorways around the Midlands in June 2012), the data infilling masks these effects 

and unfortunately makes it impossible to quantify the extent to which the network was 

affected.  

 

6.6 Future Research 

The analysis completed focuses on a single traffic corridor across England. With data 

available for the motorway network across England and Wales, further research could 

apply the methods used here to other corridors to further the understanding of local 

impacts of precipitation on traffic speed, flow and accidents. Having investigated the 

relationships between speed and flow at a local scale, it is clear that there is no universal 

relationship between the two variables which can be applied to links along the route 

corridor. Future research is needed to characterise the relationships between the 
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variables and devise improved models to enable better traffic management in future. 

More HATRIS data are now available, to as recently as February 2013, and using the 

additional data now available would help to further develop understanding of the 

impacts of precipitation on traffic parameters across the road network in the UK.  

 

The lack of suitable data sets for use in climate change impact assessment has been 

identified as a particular limitation at present. The FUTURENET project has already 

begun to identify the types and quality of data which is needed to carry out 

comprehensive climate change impact assessments. Future work needs to focus not only 

on collecting the appropriate data for such assessments but also on utilising the data 

once collected to develop as complete an assessment as possible to enable the relevant 

adaptation and mitigation measures to be implemented not only on the road network, 

but also on other transport modes. Improving the data available in future would also 

allow for better identification of the impacts of extreme events which is crucial for 

climate change impact assessment as extreme events are likely to become more frequent 

in future and hence will need preparing for.  

 

Darkness may be another contributory factor to reductions in both speed and flow 

during precipitation events. The work presented in this thesis has not distinguished 

between light and darkness as the aim was to gain an overall picture of the impact of 

precipitation and so a number of time slices throughout the day were incorporated into 

the analysis. Future work should investigate how light and dark may also contribute to 

the relationships derived here, as light conditions are likely to be a contributory factor. 
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The relationship may extend beyond a simple distinction between day and night lighting 

conditions, with dusk and dawn also having a potential impact. Previous studies have 

identified that drivers are more confident in daylight conditions (Wanvik, 2009) and so 

darkness is likely to affect both speed and flow. In addition, accidents occurring in 

darkness are consistently more severe than those occurring during daylight hours 

(Edwards, 1998; Wanvik, 2009) and this in turn is likely to affect traffic operations, 

though the extent to which they are affected has yet to be quantified. 

 

6.7 Summary 

The analysis and results presented in this thesis show that precipitation has a significant 

impact on the operation of the UK motorway network through reducing speed and flow, 

and also increasing congestion on the network when accidents occur in wet weather. 

The varying magnitude of impact on links along the route corridor studied reinforces the 

need to consider how the road network is affected by weather conditions at a local scale. 

With some degree of climate change now inevitable, it is important that the relationship 

between weather and transport is better understood to enable adaptation measures to be 

implemented to combat the impacts of climate change on all transport modes. The 

relationships identified here are used to inform a resilience model which takes the first 

steps towards identifying how the road network may be affected as a result of climate 

change in future, in particular how journey times will be affected when precipitation 

occurs. This resilience modelling is essential to enable the network to continue to 

operate and meet the demands of users in future under all weather conditions, adapting 
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to a changing climate. Such models will help secure the functioning of what is arguably 

the economy’s most critical asset – whatever the weather. 
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Appendix A  

 

Hooper E. & Chapman L. (2012) The Impacts of Climate Change on National Road and 

Rail Networks, in Ryley T. & Chapman L. (Eds) Transport and Sustainability, Volume 

2, Transport and Climate Change, Emerald, Bingley, pp 105 – 136 

 

I am the primary author of this book chapter which was written in collaboration with 

Lee Chapman.   
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Erratum Notice 

The errors found in this book chapter should be amended as follows: 

Page 105, Methodology/approach 

Should read ‘The climate change impacts of increasing summer 

temperatures, increasing winter temperatures...’ 

Page 122, line 19 

  Should read ‘London led to the...’ 

Page 131, line 19 

  Should read ‘able to feed our knowledge...’ 

Page 131, line 29 

  Should read ‘...Sweden in particular has identified...’  
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Appendix B  

 

Hooper E., Chapman L. & Quinn A (2012) Investigating the impact of precipitation on 

vehicle speeds on UK motorways, Meteorological Applications, DOI: 

10.1002/met.1348 

 

This paper was written to report the results of initial data analysis carried out for this 

thesis (Chapter 3). I am the primary author. Comments and suggestions were provided 

by Lee Chapman and Andrew Quinn as my PhD supervisors.  
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Appendix C 

 

Hooper E., Chapman L. & Quinn A. (2013) The impact of precipitation on speed – flow 

relationships along a UK motorway corridor, Theoretical and Applied Climatology, 

DOI: 10.1007/s00704-013-0999-5 

 

This paper was written to report the results of speed – flow analysis performed in 

Chapter 4. I am the primary author. Comments and suggestions were provided by Lee 

Chapman and Andrew Quinn as my PhD supervisors.  
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