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ABSTRACT 

 

Spatial and temporal trends of dissolved organic matter (DOM) were investigated 

in the Lower Kinabatangan River, Sabah, Malaysia over the period 2008-2012. 

The objectives were to: i. quantify DOM in areas of the catchment dominated by 

oil palm plantations; ii. characterise DOM quantity and quality in waters draining 

three contrasting land use types (oil palm plantations, secondary forests and 

coastal swamps); iii. characterise and interpret DOM quantity and quality in the 

main stem of the Kinabatangan river according to depth; and iv. infer differences 

in water movement through the catchment. Optical parameters, including 

fluorescence excitation-emission matrices (EEMs) and ultraviolet absorbance 

spectroscopy (UV-vis); and Parallel Factor Analysis were used throughout the 

investigation. The research comprised a preliminary catchment-wide study (225 

samples) and concentrated fieldwork campaigns (510 samples). The results 

indicated the dominance of peaks C and M in waters from the oil palm plantations 

and coastal swamps respectively. The relative loss of terrestrial derived peaks 

could indicate progressive DOM degradation from the upper reaches towards the 

estuary. Results also showed DOM was transported back to the main river, as 

dominated by fluorescence index peak A/peak C, particularly in the coastal 

swamps. DOM characterisation with depth in the river, showed the dominance of 

peaks C and M (relative to terrestrial and microbial and/or photo-degradation 

processes) in waters near the riverbed.  
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1. INTRODUCTION 

 

1.1 BACKGROUND  

Dissolved organic matter (DOM) exists almost in all aquatic ecosystems, and 

represents an important source of carbon and other nutrients for aquatic 

microorganisms (Docherty et al., 2006). DOM can be derived from a diverse 

mixture of terrestrial inputs; it can be the product of leaching from terrestrially 

derived particulate organic matter (POM) or produced in situ by the instream 

biota (Bernhardt and McDowell, 2008). Organic matter (OM) is an analogue to 

organic carbon and is characterised as total, dissolved or particulate organic 

carbon – TOC, DOC or POC. It also refers to the entire organic molecule and 

other elements such as oxygen and hydrogen (Thurman, 1985). DOC is defined 

as organic matter that is smaller than 0.45 µm in size, while POC is larger than 

0.45 µm (Fiedler et al., 2008).  

Many studies have examined the sources, transport and transformation of 

DOM, given its significance for aquatic biochemical processes, in controlling the 

availability of nutrients for living organisms and its importance within the carbon 

cycle (Alvarez-Cobelas et al, 2010; Klavins et al., 2012; Schelker et al., 2012; 

Westhorpe et al., 2012; Yang et al., 2012). These studies have found that 

wetlands act as an important source of DOM to aquatic ecosystems. Some 

wetlands have the highest concentration of organic carbon observed, and may 

potentially represent both a carbon sink and/or a carbon source (Junk, 2002; 

Paola et al., 2011; Yamashita et al., 2010b). However, the environmental 
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dynamics of DOM within wetlands, particularly in tropical regions, are still poorly 

understood and have yet to be fully documented.  

Wetlands have been defined by the Ramsar Convention as “areas of marsh, 

fen, peatland or water, whether natural or artificial, permanent or temporary, with 

water that is static or flowing, fresh, brackish or salt including areas of marine 

water the depth of which at low tide does not exceed six metres” (Hollis and 

Thompson, 1998). Large wetlands represent a complex of permanent aquatic, 

palustrine, and terrestrial habitats, and in the case of river floodplains and the 

tidal zone, of large aquatic/terrestrial transition zones that periodically dry out 

(Junk et al., 2006). Approximately 7 to 10 million km2, or ~5–8% of the global land 

surface, is covered by wetlands (Acreman et al., 2007; Esteves, 1998; Mitsch et 

al., 2010) and of this total, about 30% of the world’s wetlands are found in the 

tropics (Mitsch et al., 2010; Mitsch et al., 2011). For example, Brazilian wetlands 

are estimated to cover ~680,000 km2, and those of Argentina 60,000 km2 (Junk, 

2002). In 1989, the total wetland area in some countries in Southeast Asia were 

estimated: Indonesia has the largest wetland area (~258,000 km2); Malaysia 

(~49,000 km2); Philippines (~13,800 km2); Brunei (~1,400 km2); Vietnam 

(~58,100 km2) (Beazley, 1993); Thailand (~25,120 km2); Myanmar (~58,680 km2); 

Singapore (2.2 km2); Laos (537 km2) and Cambodia (54,300 km2) (Scott, 1989). 

At present the total area of Ramsar wetlands for these countries are: Indonesia 

(~9647 km2); Malaysia (~1342 km2); Philippines (~1320 km2); Vietnam (~431 

km2); Thailand (~3728 km2); Myanmar (~3 km2); Laos (~148 km2) and Cambodia 

(~546 km2) (Ramsar, 2012). 
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Wetlands in the tropics are characterised by higher rates of primary 

production and decomposition, given high temperatures and solar insulation, in 

common with tropical rain forests (Bartlett and Harriss, 1993; Mitsch et al., 2011). 

Extensive seasonal wetlands are found along the floodplains of large rivers (Junk 

et al., 2006) including the Amazon and Orinoco (Bartlett and Harriss, 1993). 

Currently, tropical wetlands are seriously threatened by environmental 

deterioration which is particularly evident in S and SE Asia where many 

catchments have experienced rapid land conversion recently: i.e. primary 

forests and peat swamp forests have been converted to agriculture and 

especially to oil palm plantations (Atapattu and Kodituwakku, 2008; Junk, 2002; 

Sidle et. al., 2006) with a considerable reduction in wetland extent. These land 

use changes have been found to contribute to changes in DOM character by 

varying rates of microbial carbon uptake, retention and outgassing (Wilson and 

Xenopoulous, 2008).  

Optical parameters have been used extensively to characterise and 

determine DOM dynamics, and provide additional insight into the biogeochemical 

dynamics of DOM in tropical rivers. This builds upon the wide use of fluorescence 

spectroscopy generally over the past 50 years in water research (Fellman et al., 

2010; Hudson et al., 2007; Stedmon et al., 2011). It has been used in studies of 

the composition, concentration, distribution and the dynamics of organic matter 

derived from different sources. Recent advances in optical technology permit 

rapid and automated assessment of fluorescence intensity data across vast 

ranges of excitation and emission wavelengths (Naden et al., 2010).  
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This thesis presents a comparison of DOM characterisation at the Lower 

Kinabatangan River catchment, Sabah, Malaysia both spatially and seasonally, 

with a re-interpretation of theories including the River Continuum Concept (RCC), 

nutrient spiralling or the flood pulse concept (FPC) (Chapter 2). It is hypothesised 

that DOM quality will vary spatially, from the catchment headwaters towards the 

coast. It is also expected that DOM quality will vary according to the different 

types of land use, where deforestation has caused secondary forests to 

regenerate, while agricultural activities especially oil palm plantations are 

permanently cultivated. Sunlight is abundant in the study area throughout the 

year and therefore it is hypothesised that DOM quality will also vary by season 

(wet and dry), as affected by factors such as photolysis/photochemical and 

microbial degradation.  

  

1.2 SIGNIFICANCE OF STUDY 

In general, carbon in the biosphere is unequally dispersed across three major 

reservoirs: terrestrial, ocean and atmosphere (Cole et al., 2007). The 

conventional carbon cycle illustrates that carbon enters the biological part of the 

system via photosynthetic assimilation of atmospheric CO2 (750 Gt C year-1), 

following fluxes from terrestrial ecosystem respiration (Grace, 2004) together with 

abiotic oxidation to CO2 in fire and photo-oxidation, as well as outgassing from 

the inland waters (Cole et al., 2007; Battin et al., 2009). Carbon sequestration in 

the ocean is mainly controlled by abiotic drivers including organisms, climate, 

parent material, time and topography (Townsend et al., 2011), compared to biotic 

pathways (Cole et al., 2007). Since the industrial era, anthropogenic activities 
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have altered the global carbon cycle significantly (Amon and Benner, 1996; 

Falkowski et al., 2000; Stanley et al., 2012; Yool et al., 2013). Deforestation has 

been identified as causing substantial carbon (1.6 Gt C year-1) export from the 

terrestrial sources to the atmosphere (Grace, 2004). Deforestation in the SE Asia 

from 1990 to 1997 marked a total annual loss of 2.5 million ha (0.8%) (Grace, 

2004) and deforestation rate of 1.0% per year between 2000 and 2010 (Miettinen 

et al., 2011). A detailed study in Borneo by Langner et al. (2007) found 

deforestation rates of 1.7% per year from 2000 to 2005. However recently, a 

reduction in rates of deforestation in the tropics as well as forest regrowth have 

been identified contributed to a decline in CO2 emissions from deforestation and 

other land-use changes (LUCs) (Friedlingstein et al., 2010).  

 The conventional global carbon cycle has led to the recognition of major 

knowledge gaps, for example apparent imbalances in the global budget (Cole et 

al., 2007). A characteristic of this generation of models is that the role of inland 

aquatic environments is seldom explicitly integrated. Inland waters particularly 

streams and rivers were considered as conduits, rather than sources of DOC 

(Moody et al., 2013). This gap is more prominent in the tropical regions, where 

the carbon cycle is characterised by abundant sunlight (Luizao et al., 2004; 

Stevens, 2012), greater precipitations (Kumagai and Kume, 2012), high rates of 

CO2 uptake and loss as well as small variations in temperature and precipitations 

(Townsend et al., 2011). In regions with high erosion rates, whole watershed 

carbon sequestration rates may be underestimated, as research has focused 

more on carbon accumulation rates in soils and terrestrial biomass (Battin et al., 

2009). 
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Apparent imbalance in the global carbon budget (Cole et al., 2007), poor 

understanding of DOM dynamics and the uncertainty of biogeochemical fluxes 

(Grace, 2004), particularly the carbon cycle within wetland ecosystems (Cawley 

et al., 2012) have led to the introduction of the concept of the ‘boundless carbon 

cycle’ (Fig. 1.1) (Battin et al., 2009). This assigns the most recent vertical and 

lateral carbon fluxes specifically to and from inland aquatic systems (Regnier et 

al., 2013). Inland waters have been recognised to significantly transport carbon 

from land to the ocean (Regnier et al., 2013), mainly in dissolved organic carbon 

(DOC), particulate organic matter and dissolved carbonates (Hope et al., 1994; 

Mayorga et al., 2005; Schlesinger and Bernhardt, 2013). The role of rivers in the 

global carbon cycle is typically expressed as the fluvial export of total organic and 

dissolved inorganic carbon from land to the ocean, while continental 

sedimentation may sequester large amounts of carbon in wetlands (Richey, 

2010). Both natural and anthropogenic activities were linked to carbon export into 

the inland waters, while the latter has been associated with increased riverine 

carbon (Hossler and Bauer, 2013). Consequently, urban land use, agricultural 

activities, building and road construction (Baker et al., 2008) were also found to 

correlate positively with greater carbon export into the aquatic ecosystems. 

Hydrological factors such as discharge and runoff have been identified as one of 

the main drivers of riverine carbon and organic matter fluxes, with increasing 

exports of POC, DOC and DIC under significantly high hydrologic flow (Alvarez-

Cobelas et al., 2010). Other studies have reported different relationships between 

riverine carbon flux dynamics and discharge: positive (Hossler and Bauer, 2013), 
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inverse (Wilson and Xenopoulos, 2008) as well as insignificant (Raymond and 

Hopkinson, 2003).  

 

 

Fig. 1.1 Boundless carbon cycle. Values are net fluxes between reservoirs 

(black) or rates of change within reservoirs (red); units are Pg C yr-1; negative 

signs indicate a sink from the atmosphere. Gross fluxes from the atmosphere to 

land and oceans, and the natural (Nat) and anthropogenic (Ant) components of 

net primary production are shown for land and oceans (Battin et al., 2009). 

 

Within streams, a variety of processes can alter the export, decomposition 

or removal of DOC (Stanley et al., 2011). These processes such as photo-

degradation and microbial activities are often cited in the literature as research 

ramifications, although poorly quantified (Moody et al., 2013). The River 
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Continuum Concept (RCC), nutrient spiralling, Flood Pulse Concept (FPC) and 

Riverine Productivity Model (RPM) focus on the processes and fate of the 

nutrients within a river system, however they fail to tackle the fate of individual 

components of the total carbon fluxes (Moody et al., 2013). In addition, the 

applicability of the RCC in the tropical forested rivers is uncertain (Greathouse 

and Pringle, 2006). In the context of this study, which is characterised by high 

amount of sunlight, precipitation and seasonal variations, the wetland carbon 

cycle is highly influential in determining the global carbon budgets (Lu et al., 

2013). Studies in the Amazon have indicated that surface water and wetlands 

play important roles in carbon balance (Zhou et al., 2013). Present-day situation 

of threatened tropical wetlands, affected by rapid land conversion, has 

aggravated this matter, and recent studies have shown that LUCs affect the 

amount of, the quality, sources and residence time of DOC in streams and rivers 

(Lu et al., 2013). Thus, further understanding of environmental controls on 

riverine carbon fluxes in the tropics such as climate, microbial activities, photo-

degradation processes is crucial as anthropogenic impacts substantially affect 

the total export flux, allochthonous carbon composition and aged carbon 

composition of riverine POC, DOC and DIC (Hossler and Bauer, 2013).  

 

1.3 SCOPE OF STUDY 

This study has been carried out in the catchment of the Lower Kinabatangan 

River, Sabah, Malaysia. The river has a total catchment of 16,800 km2 and is 560 

km in length. The Kinabatangan is the largest river in Malaysia and covers ~23% 
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of Sabah. Commercial logging at the Lower Kinabatangan floodplain commenced 

in the 1960s with development of permanent cultivation, particularly oil palm 

plantations, from the 1980s to the present. The Lower Kinabatangan floodplain 

also provides habitat for a unique and endangered flora and fauna. For example, 

the Proboscis monkey (Nasalis larvatus) and Bornean orangutan (Pongo 

pygmaeus) have been listed in the IUCN Red List of Threatened Species 

(Ancrenaz et al., 2013).  

These species have been surveyed periodically and especially during the 

Lower Kinabatangan Scientific Expedition 2002 (Harun and Mohamed, 2008). A 

number of studies have been undertaken in the catchment: Harun and Mohamed 

(2008) identified three categories of research investigation: i. flora; ii. fauna; iii. 

socio-economic and human dimension and iv. physical science. They include 

studies of mosses and vascular plants (Suleiman et al., 2003; Gisil et al., 2003) 

butterflies (Jalil et al., 2003), fireflies (Dawood et al., 2003), primates (Ancrenaz 

et al., 2003; Boonratana, 2000; Jalil et al., 2003; Matsuda et al., 2009) and pygmy 

elephants (Alfred et al., 2012). Physical science investigations include studies of 

water quality (Harun, 2006; Jawan, 2008), land use change (Josephine et al., 

2004; Mansourian et al., 2003; Morel et al., 2011) and a geological survey 

(Tongkul, 1991). The latter study reported that this area has undergone the third 

episode of rock deformation (from five episodes of the whole area of Sabah), 

which was associated with the imbrication of the Eocene-Lower Miocene 

sediments and underlying sediments during the Late Oligocene-Middle Miocene 

age (Tongkul, 1991).  
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This area has been chosen for the current investigation due to the 

significance of the Kinabatangan catchment as one of the most significant 

habitats for many unique and threatened species that are still found despite the 

extent of environmental deterioration experienced in the region. In 2008, the 

Lower Kinabatangan-Segama Wetlands were gazetted as a Ramsar site (Fig. 

1.1). This site covers ~78,800 ha of wetlands and intertidal forests: Trusan 

Kinabatangan Mangrove Forest Reserve, Kulamba Wildlife Forest Reserve and 

Kuala Maruap and Kuala Segama Mangrove Forest Reserve (Sabah Biodiversity 

Centre, 2011). Sabah Biodiversity Centre (2011) has identified a number of 

problems that could potentially affect its integrity as one of the Ramsar sites: 

logging, soil erosion and loss of wildlife (at the upper area); agricultural impacts 

include water quality deterioration, habitat loss, soil erosion, oil palm plantations 

and oil palm mills (in the lower part of the catchment). Here mangrove areas and 

peatlands are known to be very important due to their ability to retain high 

quantities of carbon in their soils (Alkhatib et al., 2007). The Kulamba River Basin 

also potentially plays a significant role in supplying subsurface water storage to 

preserve the wetland ecosystems (Sabah Biodiversity Centre, 2011).  
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Fig. 1.2 Satellite image of Lower Kinabatangan-Segama Wetlands (Google Earth, 2012). 

 

 

11 
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The general aims of the study presented in this thesis are:  

i) to develop an understanding of fluorescence spectroscopy 

and isotopic data in order to characterise the DOM of a 

degraded tropical river and its spatial and seasonal variation;  

ii) to develop techniques for the use of fluorescence 

spectroscopy as a tool to determine the main factors 

affecting DOM quality in tropical regions;  

iii) to evaluate data mining techniques for fluorescence data 

analysis and information extraction;  

iv) to compare the use of fluorescence spectroscopy with the 

standard DOM characterisation tools (e.g. DOC and UV-vis). 

Specifically, this study intends to achieve following 

objectives:  

Objective 1: To quantify DOM in areas of land where the land use is 

predominately oil palm plantations using optical parameters as a tool.   

Objective 2: To characterise and interpret the DOM quantity and quality in 

waters draining three different land use types (oil palm plantations, secondary 

forests and coastal swamps) and examine the effects of seasonal variability 

(wet and dry seasons). 

Objective 3: To characterise and interpret both DOM quantity and quality of 

the Kinabatangan main river according to depth and seasonal variability (wet 

and dry season). 
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Objective 4: To infer differences in the pattern of water movement through 

the catchment using fluorescence as a tool, from three different types of land 

use (oil palm plantations, secondary forests and coastal swamps) and two 

types of seasonal variability (wet and dry). 

 

1.4 THESIS STRUCTURE 

The thesis comprises eight chapters. Following this introductory chapter (Chapter 

1), a literature review is presented in Chapter 2, which summarises a selection of 

the literature on the processes associated with DOM source and uptake 

specifically within tropical river systems. The following topics are elaborated from 

the literature findings: the sources, uptake and loss of DOM within stream 

systems (section 2.2), DOM in aquatic ecosystems (section 2.3), spatial and 

temporal trends: DOM quality (section 2.4), DOM biogeochemistry in large 

tropical rivers (section 2.5), and finally the effect of land use changes on DOM in 

tropical regions (section 2.6).  

 Chapter 3 presents a detailed background to the study area (section 3.1), 

the application of fluorescence spectroscopy (section 3.2) and analytical 

procedures in the laboratory (section 3.3). Pre-processing of fluorescence data is 

described in section 3.4 and section 3.5 presents post-processing data by 

applying Parallel Factor Analysis (PARAFAC) and discriminant analysis (DA) in 

this study. 

 Results from the study are covered in three chapters. Chapter 4 presents 

the results from a preliminary survey that was conducted from August to 

September 2008. Chapter 5 gives the results from a more detailed sampling 
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programme, which was undertaken from October 2009 to May 2010. It also 

presents the DOM composition in terms of spatial and temporal variations. 

Chapter 6 examines DOM spatial and temporal variations in the main stem of the 

Kinabatangan River with depth. Chapter 7 summarises the main findings of this 

research, before the concluding chapter (8). Appendix A presents the comparison 

between the PARAFAC analysis with excitation wavelength at 250-nm and 290-

nm as clarified in section 3.5, while some of the isotopic data in Chapter 4 was 

presented in Appendix B. 
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2. ORGANIC MATTER IN TROPICAL FRESHWATER ECOSYSTEMS 

 

2.1 INTRODUCTION 

Organic matter (OM) is a dynamic and heterogeneous mixture of chemical 

compounds that is widely present in terrestrial and aquatic environments: in soil-

water, groundwater, lakes, wetlands, estuarine and marine systems, and has an 

important role in biogeochemical processes (Richey, 2005). Aquatic OM is 

generally classified according to size fractions (Mayorga and Aufdenkampe, 

2002): coarse particulate organic matter (CPOM) (63 µm to ~2 mm), fine 

particulate organic matter (FPOM) (~0.5 to 63 µm), and dissolved organic matter 

(DOM) (<0.5 µm) (Richey, 2005). CPOM is commonly derived from riparian 

vegetation in headwater streams (Johnson et al., 2006; McDonald et al., 2004; 

MacDonald and Coe, 2007) and can alter the sources of food available within 

streams (Mendoza-Lera et al., 2012), while FPOM and/or other sources is 

produced from invertebrate grazing in aquatic ecosystems. DOM is the dissolved 

fraction of organic matter (McDonald et al., 2004), and makes an important 

contribution to aquatic food webs, mediating the availability of metals as well as 

dissolved nutrients (Cawley et al., 2012), and altering light attenuation through 

water bodies (Findlay and Sinsabaugh, 1999; Pisani et al., 2011). DOM also 

represents the major type of OM in nearly all aquatic ecosytems (Cawley et al., 

2012; Findlay and Sinsabaugh, 1999; Jorgensen et al., 2011). It results from the 

breakdown of bacterial, algal and higher plant organic material (Cory and 

McKnight, 2005), while DOM bioavailability depends upon its chemical 
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composition as reflected by molecular weight and the fraction of protein-like 

substances (Yang et al., 2012). 

Riverine DOM and particulate organic matter (POM) play important roles 

as heterotrophic substrates (Vannote et al., 1980). In natural water bodies, DOM 

alters surface water acidity and affects metal speciation as well as ion-exchange 

between water and sediment phases (Hope et al., 1994; Hudson et al., 2007). 

DOM also represents a major source of reduced carbon to oceans globally 

(Richey, 2005). The transfer of OM from terrestrial to marine environments has 

been identified as the most important pathway responsible for retaining 

terrigenous production, and hence a main component in the global carbon cycle 

(Richey, 2005). As OM is transferred from terrestrial to marine environments, it is 

affected by nutrient spiraling within water bodies particularly in rivers and 

streams. Here streams can be visualised as the interface between aquatic 

systems and terrestrial as well as the channel that exports OM and associated 

constituents to the ocean (Findlay and Sinsabaugh, 1999).  

The critical importance of DOM in environmental processes of many 

regions has been widely discussed in the literature, although studies in the 

tropics are scarce (Al-Shami et al., 2011; Yule et al., 2010). DOM represents a 

significant source of energy particularly in stream ecosystems (Hood et al., 2003; 

Hope et al., 1994), affecting organic pollutant transport, chemistry of surface and 

colloid particles, and hence nutrient availability and the photochemistry of natural 

waters in freshwater aquatic systems (Fellman et al., 2008; Hope et al., 1994). 

DOC has also been found to provide an important link in the microbial loop; it 
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limits ultraviolet (UV) light penetration and thus affects oxygen concentration 

(Gondar et al., 2008; Thomas, 1997). This is particularly important in the tropical 

regions where high amount of sunlight are received throughout the year, thus 

increasing microbial activities in water bodies (elaborated further in section 2.4). 

The significance of DOM in this area is highlighted by its role as a carbon sink 

especially in tropical wetlands. However, degradation of environmental quality in 

tropical freshwater ecosystems is becoming crucial having been aggravated in 

recent years by the conversion of tropical forest to areas of cultivation. For 

example, in Asia, successful economic growth and industrialisation, as well as 

catchment degradation, has led to environmental problems including land, air and 

river pollution (Al-Shami et al., 2011; Yule et al., 2010).  

Fluvial channel and networks have been recognised as optimising their 

state to transport water and sediments most efficiently (Battin et al., 2009; 

Spencer et al., 2012). Richey (2010) suggested that fluvial systems incorporate 

both hydrological and biogeochemical cycles at different scales from small 

streams, to regional, and to major basins in the world. Fluxes mobilisation from 

land to ocean have been interpreted using a number of theoretical concepts from 

different perspectives. These provide a context for improving our understanding 

of carbon transportation as described below:  

The River Continuum Concept (RCC) provides a framework for 

understanding these processes. The RCC was introduced by Vannote et al. 

(1980) and hypothesises that a continuous gradient in physical conditions exists 

from the catchment headwaters to mouth. The RCC views the river network as 
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the product of a constantly incorporated series of physical modifications and 

resource gradients to which the biota and ecosystem processes adjust. 

Importantly, however, a hypothetical river system in a temperate forest basin was 

used to illustrate the RCC (Sedell et al., 1989), and the applicability of the RCC to 

tropical forested rivers is at present uncertain (Greathouse and Pringle, 2006; 

Winterbourn et al., 1981). For example, Greathouse and Pringle (2006) studied a 

tropical stream in Puerto Rico and found that the source of allochthonous DOM 

from macroinvertebrate grazing followed a trend opposite to that predicted by the 

RCC, although basal resources suggest that its patterns is compatible with the 

RCC.  

Another theory, related to nutrient spiralling and outlined by Newbold et al. 

(1981), has been used as a tool for investigating solute biogeochemistry in 

streams (Lutz et al., 2012) especially during the most biologically active periods 

(Fisher et al., 2004). The nutrient spiralling concept develops the RCC concept by 

describing the cycling of nutrients as they are removed from water, rapidly 

integrated and then released back to water bodies by mineralisation, and the 

resulting material cycle takes the shape of a spiral, oriented parallel to stream 

flow. The length of the spiral correlates to the average distance an atom travels 

downstream in one cycle and depends on cycling rapidity, as well as the 

retentiveness of the ecosystem (Battin et al., 2008; Fisher et al., 2004). Bernhardt 

and McDowell (2008) are among a number of studies that have applied spiralling 

theory in their work in comparing DOM uptake during litter leachates releases in 

Hubbard Brook Valley streams in New Hampshire in 1979 and 2000. 
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The Flood Pulse Concept (FPC), was presented subsequently in 1994 

(McDonald et al., 2004; Junk et al., 1989), and focuses on the flood pulse that 

links the river channel to the floodplain, which has been recognised as the main 

driving force for river-floodplain ecosystems. Flood pulses may differ in length, 

depth, frequency and formation (Junk, 2012). The FPC predicts that the OM 

derived either directly or indirectly, from floodplain production, and not from 

upstream sources, can also be described by the nutrient spiralling concept (Battin 

et al., 2008). Junk (2012) suggests that most tropical South American wetlands 

are mainly flood-pulsing systems, which fluctuate between a terrestrial and an 

aquatic phase. FPC modifies primary and secondary production, and affects 

decomposition and nutrient cycles in water as well as soils. It helps the 

organisms to make an adjustment in the switch between the aquatic and 

terrestrial phases, enhancing their ability to effectively make use of periodically 

available resources. In terms of an estuarine delta, this concept showed that 

sediment deposits in Mississippi Delta, which have been transited at the leeves 

ranged from older wood-peat deposits to younger riverine fluvial deposits (Day et 

al., 2007; Twilley and Rivera-Monroy, 2009). Coarser sediments accumulate at 

the river mouth and as the delta advances, sand is shifted horizontally to create 

beach ridges (Day et al., 2007), suggesting riverine deposits were controlled by 

the tidal effect, exporting sediments back to the river. 

 Recently, both the RCC and FPC have been challenged by the Riverine 

Productivity Model (RPM), which was introduced by Thorp and Delong (1994). 

The RPM proposes that large amount of autochthonous sources, particularly 

phytoplankton which is produced in the upper river reaches, is recalcitrant, and 
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that consequently represent less significant sources of energy, compared with 

allochthonous inputs and labile material that are produced in-stream (Tank et al., 

2010; Thorp and Delong, 1994). Even though this model was originally proposed 

to fit highly regulated river systems that are completely sequestered from their 

floodplains (Bunn et al., 2003; Tank et al., 2010), Thorp and Delong (2002) later 

suggested that RPM could also be applied to floodplain and unregulated rivers.  

 

2.2 SOURCE, UPTAKE AND LOSS OF DOM WITHIN STREAM SYSTEMS 

Streams in general integrate between terrestrial and aquatic systems and a 

channel that in time transports organic matter as well as associated elements to 

the ocean (Findlay and Sinsabaugh, 1999). Terrestrial substances in river 

systems are mainly derived from small streams, due to the integration of land-

water. At this spatial scale, processes can change quickly, which contribute to 

dynamic chemical conditions in the stream (Ward et al., 2012). Inputs from soils 

and terrestrial leaf litter are normally the primary source of stream DOM to the 

streams (Findlay and Sinsabaugh, 1999). Terrestrial leaf litter includes a 

combination of varied DOM that reflects plant composition and microbes as well 

as animal products in assorted stages of decomposition (Wetzel, 2001).  

DOM is derived from a variety of sources: both allochthonous and 

autochthonous (Cawley et al., 2012; Lutz et al., 2012) as well as from 

anthropogenic activities (Hudson et al., 2007). Allochthonous sources of DOM 

include plant decomposition, dead POM and soil leaching (Cawley et al., 2012; 

Findlay and Sinsabaugh, 1999; Thurman, 1985), while DOM can also be 
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generated in situ i.e. autochthonous DOM by living aquatic organisms (bacteria, 

phytoplankton, microalgae). DOM in soils is mainly derived from organic-rich 

mineral horizons and litter layers and the upper (Kalbitz and Kaiser, 2007); 

whereby organic-rich horizons are normally dominated by extractable humic 

acids and decrease with depth soil profile (Fellman et al., 2009). Anthropogenic 

DOM sources include wastewater effluents, agricultural runoff (Hudson et al., 

2007; Johnson et al., 1995) and industrial discharges (Baker et al., 2008).  

Autochthonous DOM inputs, including algal productivity and macrophyte 

shredding and grazing by invertebrates (Pollard and Ducklow, 2011; Tank et al., 

2010) are important contributors to the total pool of OM in the majority of aquatic 

ecosystems (Bertilsson and Jones, 2003) (Fig. 2.1). Autochthonous DOM in 

general consists of amino acids, with different amount of carbohydrates, 

carboxylic acids, alcohols, sterols, hydrocarbons, ketones, pigments, and ethers. 

These, in conjunction with anthropogenic organic pollutants, form the remaining 

DOM pool (Thurman, 1985). Carbon loss is an inevitable result of carbon fixation 

in the course of primary production, and hence diurnal fluctuations in DOM 

concentration are common (Findlay and Sinsabaugh, 1999; Johnson et al., 

1995). Autochthonous pathways to the freshwater ecosystems are affected by 

light intensity and nutrient deficiency when under nutrient limitation and sufficient 

light, phytoplankton will release high amount of DOM (Parker, 2005; Solomon et 

al., 2008). 

 



! 22!

 

Fig. 2.1 Relationship between biological availability of autochthonously produced 

DOM (labile/recalcitrant) and: (i) concentration in situ; (ii) uptake by heterotrophic 

microorganisms. Box sizes indicate concentrations volume, whereas arrow 

thickness show transformation rates (Bertilsson and Jones, 2003).  

Allochthonous inputs of DOM to stream systems have a significant impact 

on aquatic chemistry and biology (Aitkenhead-Peterson et al., 2009). For 

example, many studies have considered terrestrial leaves to be the main 

allochthonous source of DOM (Wetzel, 2001). Leaf litter supplies an important 

energy source, which is colonised by bacteria, and fungi as well as invertebrates 

(McDowell, 1985; Findlay and Sinsabaugh, 1999). Other sources of 

allochthonous DOM include soil leaching, seepage from wetlands (Bradley et al., 

2007), microbial reworking of adsorbed organic carbon and degradation of 

terrestrial vegetation (Tank et al., 2010). Allochthonous sources have been 

recognised as one of the largest contributors to riverine OM (Riggsbee et al., 

2008). The quality and quantity of allochthonous DOM can be broadly related to 

landscape, vegetation, hydrology, and climate (Bradley et al., 2007; Evans et al., 

2005). In most cases, allochthonous DOM inputs are associated with advective 

water transport through the catchment (Aitkenhead-Peterson et al., 2003). Input 
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from these sources thus makes allochthonous DOM refractory and humified, with 

a high molecular weight and aromatic fraction (McKnight et al., 2001). The 

increased presence of lignin from terrestrial OM can be related to ‘fresh’ OM 

which has high hydrophobicity (Klavins et al., 2012). Although allochthonous 

inputs in forested areas (litter inputs) have received less attention in tropical 

regions (Findlay and Sinsabaugh, 1999; McDowell, 1998), DOC biogeochemistry 

in tropical forested ecosystems has been found to be similar in many respects to 

that observed in temperate forests (Greathouse and Pringle, 2006; Johnson et 

al., 2006; Wantzen et al., 2008). 

Terrigenous DOM, which is one DOM anthropogenic input, is constantly 

discharged by rivers to marine environments (Gueguen et al., 2005; Opsahl and 

Benner, 1997). In terms of terrigenous DOM transportation, globally rivers 

transport an estimated 0.25 Pg C (1 Pg = 1015 g = 1 gigaton) DOC to the ocean 

annually (Baker and Spencer, 2004; Bianchi et al., 2004; Stubbins et al., 2010). 

However, it has been suggested that little of this carbon subsequently 

accumulates in the ocean (Cole and Caraco, 2001; Opsahl and Benner, 1997). It 

has been speculated that some of the carbon is decomposed in the river itself 

(Cole and Caraco, 2001). From a catchment perspective, up-stream sites that 

receive inputs of more terrestrially derived DOM generally have higher DOC 

concentrations (Dalzell et al., 2009; De La Cruz, 1986; Mayorga et al., 2005). 

DOM transport through the catchment is mainly controlled by factors including 

water pathways and flux (Klavins et al., 2012; Schelker et al., 2012; Stanley et al., 

2011), salinity (Hansell et al., 2004; Huguet et al., 2010), temperature, (Tremblay 

et al., 2005; Xu and Saiers, 2010), phytoplankton biomass, light penetration and 
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depth of mixing (Findlay et al., 1991; Romera-Castillo et al., 2010; Westhorpe et 

al., 2012). DOM in downstream sites will frequently be hydrologically controlled 

by rapid transport especially in large rivers (Findlay and Sinsabaugh, 1999). 

These factors, however, are complicated by the complex nature of riverine 

systems, varying with climate, geology, hydrology and anthropogenic impacts, 

including dams and changes in land-use (Warnken and Santcshi, 2004). Riverine 

transport of DOM from land to sea modifies the biosphere and represent a key 

link in the global cycles of bioactive elements (Pérez et al., 2011).  

Increased DOC concentration has been correlated positively with 

increased water fluxes (Schelker et al., 2012). For example, in the UK DOM has 

been found to increase for varying hydrological pathways (Worrall and Burt, 

2004). It has been demonstrated that increased flow can intensify DOC 

concentration and flux by modifying water flowpath, with increasing runoff 

throughout shallow and organic-rich soil horizons (Wiegner et al. 2009), 

corresponding to extensive mineral horizons in relation to high DOC adsorption 

(Cronan and Aiken, 1985; McDowell and Likens, 1988). Worrall and Burt (2004), 

however, concluded that DOC trends could not readily be explained by trends in 

various factors such as pH, alkalinity, turbidity, conductivity as well as water flow. 

 Temperature and salinity are known to affect the solubility of hydrophobic 

compounds in water and to alter OM structure (Tremblay et al., 2005). Dai et al. 

(2012) found that a trend of increasing riverine DOC is likely to be caused by an 

increase in temperature. Thus, the observed trend of DOC in the UK suggests 

that DOC might increase as a result of rising temperatures as well as a decrease 
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in acid deposition (Evans et al., 2005). However, an inverse correlation between 

DOC and salinity has been observed by several studies. For example, Moore et 

al. (2011) reported that DOC concentrations in Kalimantan, Indonesia are 

correlated negatively with salinity. A similar type of DOC-salinity relationship has 

been reported by Baum et al. (2007) for Sumatra. Significant negative 

correlations between DOC concentration and salinity were reported by Guo et al. 

(2004) suggesting that water mixing is significant in controlling the total DOC 

transport in the water column, even though biological processes also important in 

DOC production and decomposition.  

Phytoplankton biomass, light penetration and depth of mixing have been 

found to correlate closely in aquatic ecosystems (Westhorpe et al., 2010). 

Phytoplankton is one of the main sources of DOM and is released to the water 

column by cell break down (Romera-Castillo et al., 2010). Light penetration is 

greatly decreased in situations of high turbidity, which may be potentially derived 

from an increase in humic acids and too much light penetration may reduce 

phytoplankton biomass, as well as DOM (Romera-Castillo et al., 2010; 

Westhorpe et al., 2012).  An increase in bacterial growth has also been identified 

as positively correlated with a decrease in phytoplankton productivity. This 

suggests that a variation in DOM supply can lead to compositional shifts in 

plankton communities within relatively short periods (Westhorpe et al., 2010; 

Westhorpe et al., 2012). Degradation of phytoplankton has been shown to cause 

an increase in terrestrial DOM, suggesting this type of DOM could be resistant to 

biodegradation (Ishii and Boyer, 2012). In terms of depth, phytoplankton 

production tends to decline with increasing depth. However, accumulation of 



! 26!

phytoplankton also may increase as a result of reduced water turbulence 

(Solomon et al., 2008). Fig. 2.2 summarises the composition, processes and the 

interactions that affect the DOM transport. 

 

 

 

Fig. 2.2 Conceptual diagram highlighting the stream ecosystem structure and 

function emphasising the supply, composition, metabolism, and transport of DOM 

(after Cummins et al., 1972). 
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2.3 DOM IN AQUATIC ECOSYSTEMS 

Humic substances has been identified as the main fraction of DOM in aquatic 

ecosystems and generally constitute between 40 to 75% of total dissolved 

organic carbon (DOC) (Findlay and Sinsabaugh, 1999; McKnight et al., 2001; 

Moore et al., 2011; Rocker et al., 2012). Humic acids are non-volatile, and range 

in molecular weight from 500-5000 Da with elemental composition of ~50% 

carbon, 4-5% hydrogen, 35-40% oxygen, 1-2% nitrogen and <1% sulfur plus 

phosphorus (Thurman, 1985). Colloidal organic matter is the other main fraction 

(0.45 to 0.1 nm) comprising approximately 20% of the bulk DOM pool (Chow et 

al., 2005; Moore et al., 2011). This DOM is composed of particles that are not 

significantly affected by gravity (Dodds, 2002). Colloids in general consist of 

organic and inorganic materials, and biological cells (Lead et al., 2005) with 

relatively high molecular weight (>1000 Da) (Guo and Santschi, 1997). The 

colloidal organic matter pool as a whole is still poorly understood and their 

characteristics largely remain unknown (Guo and Santschi, 1997; Lead et al., 

2005). 

Humic acids are responsible for the dark colour of tropical blackwater 

rivers (Moore et al., 2011), and humic substances have been found to serve as 

electron acceptors, and thus influence DOM degradation (Sinsabaugh and 

Findlay, 2003). Humic substances are mainly formed as a result of microbial 

activity on plant material (Wetzel, 2001) in the process termed humification 

(McDonald et al., 2004). Although a large proportion of the reactions responsible 

for the formation of humic substances remain unknown (van Geluwe et al., 2011), 
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it has been suggested that they form directly either from i). lignin tissues of plant 

material (can also occurs in plants without lignin); or ii). the polymerization of 

noncomplex low molecular weight (LMW) products composed in the degradation 

of macromolecules degradation processes (McDonald et al., 2004). It has been 

proposed that the degradation of lignin tissues in plants occurs via two 

mechanisms: i) lignin is incompletely degraded into smaller compounds such as 

phenols, methoxyl groups and carboxyl groups (Garcia-Perez et al., 2010); ii) 

lignin is degraded to generate polyphenols which then undertake enzymatic 

oxidation to quinones, and polymerise to form humic substances (Li et al., 2012). 

Polymerization of monomers may occur from degradation of macromolecules that 

are more resistant to microbial degradation. For example, one of the main 

components of monomers, polyphenols, are synthesised by microbes and 

released in lignin degradation. Polymerization is increased in situations of high 

availability of clays, metal oxides and transition metals in the aqueous solution 

(McDonald et al., 2004). 

Humic substances can be further subdivided into three categories, 

according to their solubility at different pHs: humic acids are insoluble at pH <2, 

nevertheless soluble at higher pH; fulvic acids are soluble at all pH conditions; 

whilst humins are insoluble at any pH (Hope et al., 1994; Hudson et al., 2007; 

Mobed et al., 1996). Fulvic acids are typically the major fraction, accounting for 

approximately 45-65% of DOC (McKnight et al., 2001, Roe et al., 2008) and 

including a greater extent of aromatic groups, such as methoxyls and phenolics 

(Aitkenhead-Peterson et al., 2003). Fulvic acids can be subdivided into 

hydrophobic (HPO) and hydrophilic (HPI) acids (Aitkenhead-Peterson et al., 
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2003; Roe et al., 2008). It has been found that humic acids are more hydrophobic 

acids than fulvic acids, which is related to their higher molecular weights (2000-

5000 Da), which contain the majority of the carboxyl groups and sequentially 

have longer chain fatty acid products (Mobed et al., 1996; Thurman, 1985).  

The different structures of individual humic substances are a result of the 

interactions between a range of small organic compounds released in the course 

of the metabolism of natural macromolecules (Dolgonosov and Gubernatorova, 

2010). Humic substances are characterised by structures, which may exist either 

in microorganisms and plants or in their decay products (McDonald et al., 2004). 

The main chemical components of plant litter are phenolic compounds (e.g. 

lignins and tannins) (Klotzbucher et al., 2011), water-soluble compounds (e.g. 

ether-, amino and aliphatic acids, sugars) (Badri et al., 2009), alcohol-soluble 

compounds (e.g. proteins, oils, fats, waxes, pigments and resins) (McDonald et 

al., 2004), hemicellulose (non-cellulosic polysaccharides) and cellulose (Papa et 

al., 2008). Other chemical classes of plant litter that were initially thought to be 

recalcitrant and hence, could potential form part of humic substances include: 

suberins, carbon black, cutans, algaenans, and sporopollenins which have been 

found in the outer walls (cuticles) of plants (Shechter et al., 2010) and a number 

of microalgae (McDonald et al., 2004). Consequently, microbial processes may 

produce compounds such as carbohydrates, lipids, melanins, other polyketides 

and proteins (Burdige, 2007; McDonald et al., 2004). A summary of the chemical 

structure of humic and fulvic acids, which includes the relative amounts of 

aromatic and saturated moieties, is provided in Fig. 2.3. 
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Fig. 2.3 Theoretical structures of humic and fulvic acids (after Hudson et al., 

2007). 

 

Due to the complex nature of humic substances, their chemical structure is 

difficult to determine (McDonald et al., 2004). Chemical structure of humic 

substances are generally characterised according to chemical properties in terms 

of macromolecular size and weight (Abbt-Braun et al., 2004; Thurman, 1985), 

spectroscopic techniques (Chen et al., 2003), hydrophobic characteristics and 

acidic functionality: hydrophobic acids, bases and neutrals; hydrophilic acids, 

bases and neutrals; and transphilic OM (Leenheer and Croue, 2003; McKnight et 

al., 2003; Ravichandran, 2004). However, the characterisation of humic 

substances in terms of their average structure and functionality is important and 
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thus, the importance of functional groups present in the humics must not be 

overlooked (McDonald et al., 2004). Humic substances from different 

environments may also exhibit many similar characteristics although the relative 

abundance of functional groups may vary. Table 2.1 lists the important functional 

groups of DOC with their structure and the environment where they are most 

likely to be found. 
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Table 2.1 Important functional groups of DOC. R is aliphatic backbone and Ar is aromatic ring (after McDonald et al., 2004, 

Sperling et al., 2007 and Thurman, 1985). 

Functional group Structure Environment Remarks 
Acidic groups    
   Carboxylic acid (Ar–)R–CO2H  90% of all DOC Responsible for the majority of the DOC ionic 

character. 
   Phenolic OH Ar–OH Aquatic humic substances, phenols Major functional group on humic substances. 
   Enolic hydrogen (Ar–)R–CH=CH–OH Aquatic humic substances Found in both soil and aquatic humic substances. 
   Quinone Ar=O Aquatic humic substances, quinones Present at trace levels. 
 
Basic groups 

   

   Amine (Ar–)R–CH2–NH2 Amino acids 
   Amide (Ar–)R–C=O(–NH–R) Peptides 

Make up about 2-3% of the DOM. An approximate of 
20 amino acids is important in the natural waters and 
combined in proteinaceous matter. Common in the 
colloidal fraction. 

   Imines CH2=NH (Unstable, forming polymeric 
derivatives) humic substances 

Non-peptidic nitrogen. 

 
Neutral groups 

   

   Alcoholic OH (Ar–)R–CH2–OH Aquatic humic substances, sugars Also occurs on carbohydrates, simple alcohols and 
hydrophilic acids. Greatly enhances the aqueous 
solubility of OM. 

   Ether (Ar–)R–CH2–O–CH2–R Aquatic humic substances Can occur on aromatic or aliphatic molecules. 
   Ketone (Ar–)R–C=O(–R) Aquatic humic substances, volatiles, 

keto-acids 
Adds aqueous solubility and available in hydrophilic 
and humic substances. 

   Aldehyde (Ar–)R–C=O(–H) Sugars Interacts with hydroxyl group to form ring structure 
(common form of monosaccharides in natural waters). 

   Ester, lactone (Ar–)R–C=O(–OR) Aquatic humic substances, hydroxy 
acids, tannins 

A labile functional group that will hydrolyse to a 
carboxyl group. Present at low levels (~1Meq/mg). 

   Cyclic imides (R–)O=C–NH–C=O(–R) Aquatic humic substances Polymers with this structure are possibly resistance to 
hydrolysis. 

32 
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A number of techniques have been developed to study the separation of 

biomolecules such as amino acids, peptides, proteins, nucleic acids and DNA 

and hence allow the characterisation of humic substances (Sulzberger and 

Durisch-Kaiser, 2009). For example, chromatographic analysis by using XAD-8 

resin has been widely accepted to isolate humic substances into humic and fulvic 

acids (Findlay and Sinsabaugh, 1999). Freshwater DOM is commonly sampled 

by adsorption onto XAD resins (fulvic and humic substances) and is isotopically 

light (!13C " –27 per mil), with high C/N (40 to 50) and abundant in aliphatic, 

aromatic, and carboxyl carbon (Hedges et al., 1992). At a molecular level, 

spectroscopic applications such as nuclear magnetic resonance (NMR), Fourier-

transform infrared (FTIR), electron paramagnetic resonance (EPR), ultraviolet-

visible (UV-vis) and fluorescence measurements have been found to be 

invaluable for both quantitative and qualitative DOM characterisation (Chen et al., 

2002; Leenheer and Croue, 2003). However, it has been estimated that more 

than 75% of the DOM pool remains chemically uncharacterised at the molecular 

level (Seitzinger et al., 2005).  

 Fluorescence spectroscopy has been used to trace and characterise DOM 

dynamics given that a fraction of DOM fluoresces (Stedmon et al., 2003). 

Fluorescence techniques have demonstrated that humic substances always 

display spectra characteristics that have been ascribed to the presence of 

aromatic fluorophores with electron-donating functional groups (Chen et al., 

2003). It has been found that condensed aromatic molecules and a few highly 

unsaturated aliphatics chains are the only organic molecules that fluoresce with 

reasonable efficiency (McDonald et al., 2004; Senesi, 1990). Aromatic organic 



! 34!

compounds are good subjects for fluorescence studies due to their 

characteristics: the unpaired electron structure of the carbon ring, and energy 

sharing. When studying OM fluorescence, compounds that absorb light are called 

chromophores, and those that absorb and re-emit light energy is called 

fluorophores (Mobed et al., 1996). The technical details of the application of 

fluorescence spectroscopy are elaborated in section 3.2. 

 An example of fluorescence technique in OM characterisation is to detect 

the quinones redox state and presence. Quinones are flexible biomolecules 

found in detrital organic matter, extracellular material as well as living cells, they 

are also a product of lignin oxidation (Cory and McKnight, 2005). Quinones 

exhibit shifts in fluorescence spectra by reduction reaction, and are converted 

into fluorescent hydroquinones (Ahmed et al., 2006). The reduction is often 

accompanied by increased intensity of the energy transitions from ground state to 

the higher level, and exhibited by darker colour of reduced quinones (Cory and 

McKnight, 2005). Another example is the fluorescence of the three fluorescent 

amino acids (tryptophan, tyrosine and phenylalanine), which indicate peptides 

and protein (Hudson et al., 2007). The protonated state of these amino acids is 

due to the presence of an indole group (an aromatic heterocyclic compound with 

a bicyclic structure: a benzene ring and a heterocyclic aromatic ring with a 

nitrogen atom being part of a ring). It is also could be due to the existence of 

aromatic ring structure whereby the electrons are “shared”, rather than being a 

loosely held opposite spin pairs, and available to excite to the higher energy state 

(Hudson, 2010). Fig. 2.4 (a) and (b) illustrates the redox states of quinones and 
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chemical structures of the amino acids (tryptophan, tyrosine and phenylalanine) 

respectively. 

 

Fig. 2.4 Chemical structures of the: (a) redox state of quinones: one-electron 

reduction of oxidized quinone to the semiquinone radicals, and then reduced to 

the hydroquinone. A-C: reduction of benzoquinone, D-F: reduction of 

naphthoquinone (after Cory and McKnight, 2005); (b) amino acids (tryptophan, 

tyrosine and phenylalanine) (after Hudson et al., 2007). 
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2.4 SPATIAL AND TEMPORAL TRENDS: DOM QUALITY 

DOM dynamics have been found to be characterised by significant spatial and 

temporal changes (Findlay and Sinsabaugh, 1999; Ishii and Boyer, 2012; Jaffe et 

al., 2008). According to Findlay and Sinsabaugh (1999), the main inputs of DOM 

in stream headwaters are episodic in nature, reflecting soil ‘hot spots’ and 

transport is event-dependent resulting in infrequent but sharp rises in DOM 

concentration. Headwater streams are likely to receive significant freshwater 

DOM inputs as whilst quantities of water exchange are low, water residence time 

is high (Maie et al., 2012). Although relatively few studies have been completed, 

DOM transport from catchment headwaters has been found to control 

downstream DOM quality (Jaffe et al., 2008; Maie et al., 2012). Due to quick 

reactions between rivers and precipitation events, rapid and large modifications in 

loadings from the drainage basins could occur frequently, which results in 

physical and chemical conditions (Wetzel, 2001). 

Findlay and Sinsabaugh (1999) consider that DOM derived from litter and 

soil is amenable to physical adsorption and is bioavailable to some degree, 

however, these processes are probably insufficient to counterbalance rapid 

downstream transport (Fig. 2.5). Relatively low amounts of DOM will be lost from 

a water mass as it is transported downstream unless it is introduced to new 

inputs of DOM or affected by dilution. Further downstream, it may be 

characterised by the more open canopy, litter inputs will decrease and it will 

receive more sunlight, thus, increasing the irradiation of the bed sediments and 

stream water. Greater light intensities will result in higher DOM with 
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autochthonous origins in relative importance (Wetzel, 2001). High water volumes 

could indicate that localised ‘hot spots’ of DOM generation will slightly influence 

the DOM concentrations. The river downstream is most complex to generalise, as 

significant anthropogenic alteration has taken place (Findlay and Sinsabaugh, 

1999). Thus Massicotte and Frenette (2011) showed that terrestrial DOM in St. 

Lawrence River, North America is produced very rapidly and is recalcitrant, while 

protein-like DOM is produced at slower rate but has a rapid turnover. This river 

constantly receives DOM from inflowing tributaries, which results in DOC 

accumulation on the longitudinal axis. Hydrological differences between years will 

also lead to variations in DOM concentrations in the long term (Salisbury et al., 

2011). The temporal pattern will reflect seasonal increases in DOM, but there are 

also likely be interannual variations in DOM concentration, driven by floodplain 

inundation (Massicote and Frenette, 2011).  
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Fig. 2.5 Conceptual model of DOM inputs from headwaters to the estuary 

(Findlay and Sinsabaugh, 1999). 

Seasonal variations in DOM concentration may be considerable. Wantzen 

et al., (2008) found significant differences in leaf decomposition rates between 

phases when the floodplain is inundated (back-flooded) and when the flood-

waters are rising (flashy-discharge) in the Arenosa stream in Columbia. In 

seasonal tropical streams, the wet season flushes out much of the litter that has 

accumulated during the dry season. Frequent flood events may also ‘reset’ the 

system and leaves before degradation can occur (Wantzen et al., 2008). In a 

large pristine tropical river, the Congo, Spencer et al. (2010) showed that the 

highest concentrations of DOC and lignin carbon-normalised occurred in the 

inundated period, due to leaching from organic rich horizons and high surface 

runoff, while the lowest values occurred during the dry season. Similarly a study 
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in Florida Bay showed that the fluorescence index (FI) (section 3.2) varied 

seasonally, ranging from terrestrially influenced DOM (at low values) to strongly 

microbial influenced DOM (at high values), and found that there is less intense 

microbial influence during the dry season (Jaffe et al., 2008). Maie et al. (2012) 

reported that spatial patterns of DOC in the early and late wet season were 

similar, but higher in the dry season (July). However, the fluorescence peaks A 

and M clearly differed seasonally, suggesting that the distribution is driven 

hydrologically, by which the largest discharge from the freshwater and 

terrigenous DOM input happens during the subsequent phase of wet season 

(September-December).  

While DOM quality varies seasonally, it has been reported that DOM 

quality can also change hourly (Hood et al., 2006). This is supported by Pollard 

and Ducklow (2011), who found that the water column in a subtropical river 

(Bremer River, Australia) turned over every two days. This is due to DOC 

consumption by bacteria with bacterial specific growth rates that were ~20 times 

higher than that previously observed in marine ecosystem. OM biodegradation 

has been found to significantly increase in tandem with high river discharge in 

temperate and high-latitude regions, indicating that storm events are important in 

the transportation of potentially labile terrestrial carbon (Ward et al., 2012). Ward 

et al. (2012) showed that dissolved and particulate organic matter and carbon 

concentrations as well as river discharge were correlated significantly during 

autumn and winter storms in the Pacific Northwest. During these storm events, a 

distinctive phenolic composition for dissolved lignin was found, which was rapidly 

transported from surface soils in proportion to the dissolved lignin base flow. This 
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result showed the degradation rate of rapidly transported dissolved lignin is 

higher than the dissolved lignin base flow. Looking from a spectrometric 

perspective, the specific UV absorbance (SUVA, at 254 nm) of DOC has been 

found to increase by 9 to 36% during storm events, suggesting that aromaticity of 

DOC transferred from catchment soils is higher during storms than during 

baseflow (Hood et al., 2006).  

 

2.5 DOM BIOGEOCHEMISTRY IN LARGE TROPICAL RIVERS  

The carbon cycle concept is normally viewed as a system with components such 

as terrestrial (soil and vegetation), atmospheric and oceanic pools of carbon 

(Dawson and Smith, 2007). Carbon and nutrient fluxes in large floodplain rivers 

are a reflection of both catchment and floodplain, and an extension of the 

properties of smaller tributary rivers. Carbon sources may potentially be 

thousands of kilometres away in upland regions, and are supplemented by 

carbon introduced continuously from the adjacent floodplain (Aufdenkampe et al., 

2011; Richey et al., 1990). Fluvial biogeochemical dynamics demonstrate the 

interaction of biological, terrestrial and geochemical weathering reactions, which 

as a result produce dissolved and particulate inorganic and organic compounds 

(Aufdenkampe et al., 2011; Richey, 2005). Thus it reflects the natural variability in 

compositions, process rates and concentrations, as well as their main 

environmental controls and sources (Mounier et al., 2002). Generally, transported 

riverine carbon is a mixture of materials ranging from those introduced 
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continuously from the adjacent floodplain to those originating in catchment 

headwaters.  

Organic carbon is commonly flushed into rivers, and then transported to 

oceans in dissolved (DOC) and particulate (POC) forms (Moore et al., 2011; 

Stanley et al., 2011). The amount of organic carbon in water (both dissolved and 

particulate) depends on the time of year and the amount of decaying organic 

matter available. Allochthonous OM input from fresh leaf litter is an important 

source of DOC in forested catchments (Hongve, 1999) but the role is diminished 

in non-forested areas (Stanley et al., 2011). Once terrestrial DOC is transported 

to water bodies, its quantity and quality can be altered (Stanley et al., 2011). 

Anthropogenic activities (i.e. nutrient enrichment from agricultural runoff, sewage 

effluent, atmospheric deposition) have been found to enhance the decomposition 

rate (Benstead et al., 2009; Gessner and Chauvet, 2002; Stanley et al., 2011). 

The alteration of OM within rivers and streams is mainly affected by factors such 

as microbial activities (Cory et al., 2007), high sediment loads (Thurman, 1985), 

water discharges, photochemical reactions (Stanley et al., 2011; Zepp et al., 

1998), water residence time and salinity (Aminot et al., 1990). It has been 

suggested earlier (in section 2.2) that humic acids especially those that are 

terrestrial-derived are mainly refractory (Wetzel, 2001), however recent studies 

(Benner and Kaieser, 2011; Hur et al., 2011; Rocker et al., 2012; Traversa et al., 

2011) have found that biologically and chemically refractory DOM especially UV-

absorbing compounds such as humic substances, are readily susceptible to 

photo- (Kohler et al., 2003) and bacterial degradation (Findlay and Sinsabaugh, 

1999; Winter et al., 2007). As bacteria are largely responsible for the OM 
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transformation (Cole et al., 1988), bacterial production is significant as a key 

process in DOM flux (Lee and Bong, 2006).  

Photoreactions and microbial activities are both responsible for the 

efficient removal of terrigenous DOM from the oceans and sequential microbial 

and photochemical degradation by which photoproducts (i.e. dissolved inorganic 

carbon) stimulate bacterial growth (Pisani et al., 2011; Scully et al., 2003; 

Spencer et al., 2009). DOM can be converted into photoproducts such as 

inorganic forms, low molecular weight organic compounds, trace gases, 

phosphorous-and nitrogen-rich compounds, as well as bacterial substrates to 

increase turnover rates of DOM especially in surface waters (Cory et al., 2007; 

Kowalczuk et al., 2009; Moran et al., 2000; Winter et al., 2007). Another potential 

source of bacterial substrates from photoreactions is modified DOM, which 

comprises of higher molecular weight compounds and uncharacterised fractions 

of DOM (Miller and Moran, 1997).  

DOM degrades to smaller photoproducts from exposure to sunlight via two 

mechanisms: i. direct volatilization of carbon gases; and ii. rapid microbial 

consumption (Miller and Moran, 1997). Volatile photoproducts are normally 

dominated by carbon monoxide (CO) and dissolved inorganic carbon (DIC), while 

compounds that are readily assimilated by bacteria are generally termed 

biologically labile photoproducts (Zepp, 2005). Interestingly, most of the labile 

photoproducts were found only in freshwater environments (Moran and Covert, 

2003). At least nineteen different compounds have been identified as being 

readily incorporated by bacterioplankton and nine have been reported from 
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freshwater systems: butyrate, acetate, citrate, levulinate, formate, succinate, 

oxalate, dissolved carbohydrates and malonate (Moran and Covert, 2003). These 

compounds enter the microbial food web, which consist of microbial communities 

such as heterotrophic bacteria, viruses, flagellates and ciliates (Moran and 

Covert, 2003). Heterotrophic bacteria convert autochthonous and allochthonous 

DOM into POC which is subsequently grazed by small ciliates and heterotrophic 

flagellates (Basu and Pick, 1997). Microbes especially have a larger role in OM 

decomposition in large rivers or lotic systems, which are unable to support a vast 

community of shredding macroinvertebrates (Tank et al., 2010). Given that DOM 

decomposition rates tend to increase with temperature, decomposition also 

parallels microbial metabolism (Wantzen et al., 2008). 

DOM is the key sunlight absorbing element of natural waters (Brinkmann 

et al., 2003), and terrestrial DOM is normally subject to intensified UV exposure 

(Kohler et al., 2003). Both DOM and POM have been recognised for their ability 

to absorb light at similar wavelengths to allow large molecules to break down 

(Pisani et al., 2011). Photolysis and photochemical processes, that induce 

changes in natural DOM, can influence many aspects of carbon cycling. 

Photochemical degradation of DOM has been found to result in a decrease in 

aromaticity (Cory et al., 2007). Winter et al. (2007) suggested that this decrease 

is due to the binding of metals to the more aromatic groups especially in the 

darker organic matter. However, photochemical processes are not expected to be 

as dominant as temperature-dependant processes that occur in surface waters 

(Cory et al., 2007). It has been found that photochemically mediated transfer of 

carbon into microbial food web is more pronounced for deep-water marine DOM 
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than for the surface (Moran and Covert, 2003). Consequently, comparison 

between surface and deep water samples showed that biological lability of deep-

water DOM was consistently high even after exposure to sunlight, while the 

surface-water DOM was greatly depleted due to irradiation (Benner and 

Biddanda, 1998).  

Tropical regions experience high levels of incident solar radiation (Graneli 

et al., 1998; Hader et al., 1998; Latrubesse et al., 2005; Saigusa et al., 2008) and 

it has been shown that microbes in the tropics are also more important in terms of 

OM processes, than in temperate areas (Wantzen et al., 2008). There is a 

relationship between sunlight availability and bacterial growth, although, the 

availability of UV-B has been found to affect bacterial growth and abundance 

(Alonso-Saez et al., 2006; Bertilsson and Tranvik, 2000; Hader et al., 1998; 

Wantzen et al., 2008; Zepp et al., 1998), especially in highly polluted areas (Lee 

and Bong, 2006). For example, a bacterial growth rate study on the carbon flux in 

Port Klang, Selangor, Malaysia showed that bacterial growth rates in both a 

highly eutrophic and deteriorating site and in an estuarine mangrove ecosystem 

in Matang, Perak, Malaysia were high and fell within the same range (Lee and 

Bong, 2006). This suggests that photolysis and microbial activities are likely to 

have more effect on processes affecting both labile and recalcitrant DOM in 

tropical regions, compared to temperate environments.  

Wantzen et al. (2008) compared ecological and biogeochemical processes 

between the tropics and temperate zones and concluded that rates of faunal and 

biogeochemical recovery in these regions appear to be similar and rather swift 
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respectively. A further study, by Pollard and Ducklow (2011), found that bacterial 

specific growth rates were about 20 times higher than that previously observed in 

marine ecosystems. Rapid removal of terrigenous DOC in the Arctic shelf sea 

indicated a high correlation with microbial-loop activities (Letscher et al., 2011) 

and Jiao et al. (2010) found identical observations in the Antarctic. Table 2.2 

summarises the differences of biogeochemical processes in these regions.  
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Table 2.2 Summary of biogeochemical processes reported by some recent 

literatures in different regions. 

Zone Recent literature source Remarks 
Antarctic Dai et al. (2012) 

 
DOC tends to increase with rising 
temperature and atmospheric CO2.  
 

 Jiao et al. (2010) 
 

Marine primary production has been 
highly associated with microbial-
loop activities, which varies over 
time. 
 

Arctic and subarctic Letscher et al. (2011) Terrigenous DOC from rivers in 
Arctic Ocean were removed very 
rapidly (about 2.5-4 times higher 
than previously observed, and 
correlated with microbial-loop 
activities). 
 

 Olefeldt et al. (2012) DOC composition in a subarctic 
river in northern Sweden is 
associated with absorption with 
mineral soils, microbial degradation, 
and photodegradation. 
 

Temperate Ward et al. (2012) A shallow nutrient-rich pool of POM 
and DOM were accumulated in 
watersheds during summer period 
and has been mobilised by autumn 
and winter storms.  
 

 Xu and Saiers (2010) 
 

DOM mobilisation in response to 
storms correlated positively with 
temperature and negatively with 
rainfall intensity and frequency. 
 

Tropical and 
subtropical 

Spencer et al. (2010) Temporally, DOM quality in Epulu 
River, Congo is associated with the 
increased residence time during wet 
period, thus, greater microbial 
mineralisation. 
 

 Yamashita et al. (2010b) DOM concentrations mainly 
associated by microbial activities 
and light penetration. Spatial 
variations were probably associated 
to vegetation cover. 
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2.6 EFFECTS OF LAND USE CHANGE ON DOM IN TROPICAL REGIONS 

Anthropogenic modifications to headwater streams and catchments influence 

stream metabolism in a number of ways. Land use changes may modify proximal 

factors controlling stream metabolism by altering flow regimes. This may include 

changes in the intensity or timing of flow; and increased nutrient, sediment, and 

pollutant runoff from agricultural and urban sources, such as from the use of 

fertilisers (Bernot et al., 2010). DOM concentrations and properties may also be 

affected by land use changes in wetlands (Glatzel et al., 2003). However, 

deforestation and forest degradation are primarily responsible for changes in 

tropical land cover that affect DOM concentrations (Miettinen et al., 2011). 

Deforestation has been generally defined as ‘the conversion of forested 

areas to non-forest land through cutting, clearing and removal of rainforest or 

related ecosystems into less biodiverse ecosystems such as pasture, cropland, 

plantation, urban use, logged area or wasteland’ (Sehgal, 2010). Deforestation of 

tropical rainforests has been approximated to contribute ~6 to 17% of total 

anthropogenic CO2 emissions to the atmosphere (Baccini et al., 2012; Saner et 

al, 2012). Importantly, Southeast Asia currently has the highest rate of 

deforestation in the world (Dudgeon, 2003; Miettinen et al., 2011), and Malaysia 

has been identified as one of 14 countries where annual rates of deforestation 

exceed 250,000 ha (McMorrow and Talip, 2001). In Malaysia, deforestation has 

led to a ~20% reduction in forest land (Wicke et al., 2011), to the point at which in 

2010, ~42% of the forest cover has been lost across the country (Miettinen et al., 

2011). 
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Deforestation for agricultural activities such as the establishment of 

permanent crops, shifting cultivation and cattle farming, is generally associated 

with increased soil erosion and land degradation (Atapattu and Kodituwakku, 

2009). Globally, agricultural activities and cattle farming are thought to account 

for at least 50% of rainforest deforestation (Cansier, 2011). Deforestation 

normally leads to a lower biomass even after a period of recovery (Henson, 

1999). For example, forests in Peninsular Malaysia were extensively evaluated in 

1970-72 and at that time were estimated to contain between 212-533 tonnes dry 

matter per hectare (100-260 tonnes carbon per ha.) and this has declined 

substantially then, due to deforestation (Henson, 1999). In Borneo, the current 

aboveground biomass is approximately 60% (457 Mg C/ha) (Saner et al., 2011). 

Large-scale deforestation for mechanised agriculture e.g. oil palm and rubber 

plantations typically results in an ecological imbalance that affects the 

hydrological cycle, nutrient recycling, microclimatic, and biotic environments (Lal, 

1981). There is a clear contrast, for example, between forested and deforested 

areas in mesoscale atmospheric circulation that is responsible for the diurnal 

rainfall cycle especially during the dry season, consequently influencing the 

rainfall spatial distribution (Silva et al., 2012). Riparian vegetation removal along 

streams has also been found to lead to an increase in water temperatures, light 

levels and nutrient concentrations (Doyle and Shields, 2012; Kiffney et al., 2003; 

MacKenzie, 2008). This increases filamentous algal and microbial production, 

thus altering the food webs of stream fauna as well as community structures 

(MacKenzie, 2008).  
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As a result of deforestation, rapid growth of ‘secondary’ or ‘regenerating’ 

forests are increasing, thus, becoming a common land cover type in the tropics 

(Chokkalingam and Jong, 2001; Fortini et al., 2010; Jong et al., 2001; 

Schedlbauer and Kavanagh, 2008), however, there have been few studies on 

secondary forests (Fonseca et al., 2011). Brown and Lugo (1990) defined 

secondary forests as those ‘resulting from abandonment of cleared forest lands 

generally from agriculture. It also results from continuous human uses of forests, 

such as grazing, fuelwood collection and burning’. Chokkalingam and Jong 

(2001) and Jong et al. (2001) provide a more concise definition: i.e. ‘forests that 

are regenerating largely through natural processes after significant human and/or 

natural disturbance of the original forest vegetation at a single point in time or 

over an extended period, and displaying a major difference in forest structure 

and/or canopy species composition with respect to nearby primary forests on 

similar sites’.  

Secondary forests may vary in age, and it is generally agreed that forests 

beyond age 60-80 years old are categorised as undisturbed or primary forest 

(Brown and Lugo, 1990). They have became a major concern, particularly in 

situations when secondary forests act as host to non-native species, due to 

anthropogenic activities. Non-native species are considered ecological villains as 

some have competitive advantages as well as the lack of natural rivals 

(predators, pests, competitors) and/or the ability to fix nutrients such as nitrogen, 

therefore booming in the new environment and outnumbering certain native 

species (Hashim et al., 2010). 
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It has been estimated that secondary forests account for 35-40% of 

tropical forests globally (Hughes et al., 1999; Fonseca et al., 2011; Fortini et al., 

2010), and ~63% in Southeast Asia (Kenzo et al., 2010). Secondary forests, 

however, have the potential to absorb and store a reasonably large amount of the 

carbon and nutrients lost throughout land use changes and deforestation 

(Hughes et al., 1999; Schedlbauer and Kavanagh, 2008; van Breugel et al., 

2011). Secondary forests act as nutrient sinks and thus accumulate nutrients 

rapidly with time (Brown and Lugo, 1990; Silva et al., 2011). Proportional to its 

role as a carbon sink, secondary forest vegetation intensified its nutrient sink 

function during the early stages of forest growth, as young trees incline to store 

more nutrients compared to mature vegetation. In terms of organic matter 

production, secondary forests store less nutrients in their litter, however, they 

return high amounts in litter fall (Brown and Lugo, 1990; Silva et al., 2011). This 

results in high nutrient cycling rates in litter, especially on nutrient recycling or, 

alternatively, nutrient loss (Brown and Lugo, 1990).  

Various studies have been conducted to determine the quantity of carbon 

lost to the atmosphere from deforestation. Secondary succession has been found 

to release carbon in the atmosphere more rapidly than in any other biome 

(Wright, 2010). Two tropical countries (Brazil and Indonesia) have been 

estimated to account for ~60% of total carbon emissions (Houghton, 2010). 

Moreover, Baccini et al. (2012) estimated that the total carbon emissions from 

land use and tropical deforestation to be 1.0 Pg C/year. In Brazil, it has been 

estimated that the losses of carbon from deforestation from 2006 and 2050 would 

be 0.2 to 0.4 Pg CO2 (Galford et al., 2010). Deforestation generally leads to a 
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loss of terrestrial carbon but it can also encourage new forest development 

(Dawson and Smith, 2007), while in the wider catchment it leads to sedimentation 

and degradation of lakes and rivers (Dudgeon, 2003). Deforestation has also 

been associated with immediate changes in seasonal and annual stream flow 

(Mustafa et al., 2005) as well as in organic sources of riverine heterotrophic 

energy (Mayorga et al., 2005). However, it has been argued this is consistent 

with monitored interval times in vast organic composition (Mayorga et al., 2005). 

It has also increased rates of soil erosion, which has caused increased 

sedimentation of coastal ecosystems (Jakobsen et al., 2007).  

Agricultural activities are one of the main processes responsible for the 

reduction in extent of tropical rainforest, which is 70% in Africa, 50% in Asia and 

35% in Latin America (Kobayashi, 1994). In South Asia, about 94% of the land 

area suitable for agriculture has been cultivated, providing few opportunities for 

agriculture to expand (Atapattu and Kodituwakku, 2009). In Malaysia large-scale 

agriculture has long been dominated by cultivation of perennial tree crops such 

as rubber, oil palm, coconuts and cocoa. Such crops are considered to partially 

emulate the rainforest as they provide a continuous canopy cover, which should 

favour long-term soil stability (Henson, 1999). However, agricultural and related 

industrial developments such as oil palm plantations and oil palm mills and saw-

mills, have been found to contribute to pollution in coastal environments through 

inputs from fertilisers, pesticides, organic matter and bacteria, as they are 

transferred through the catchment (Jakobsen et al., 2007). The conversion of 

floodplains and riparian zones conversion to agriculture is harmful to the biota of 

riverine wetlands (Dudgeon, 2003). Agricultural land use increases the nutrients 
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export, for example phosphorus and nitrogen to fluvial ecosystems, and 

significantly influenced DOM characteristics in both streams and rivers (Wilson 

and Xenopoulous, 2008).  

Oil palm (Elaies guineensis) plantations are increasing in extent 

throughout the tropics, most notably in SE Asia (Wilcove and Koh, 2010). The 

first stage of oil palm plantations in Malaysia and Indonesia (the largest 

producers countries of palm oil globally) (Koh and Wilcove, 2008) was in 1900-

1950s (Abdullah and Hezri, 2008). In 2008, Malaysia’s Federal Land 

Development Authority (FELDA) envisaged the establishment of oil-palm 

plantations in Kalimantan (20,000 ha), Aceh (45,000 ha), Brazil (100,000 ha) and 

Papua New Guinea (105,000 ha), while in June 2009, oil palm developers in 

Malaysia announced plans to establish a 100,000 ha oil palm plantation including 

an extraction facility in Mindanao, Philippines (Wilcove and Koh, 2010). The 

annual carbon storage for oil palm plantations is potentially high: before harvest 

its capability is 1340 g C m–2 yr–1 (i.e. 13.4 tC ha–1) in optimal ecological 

conditions, which is significantly greater than forest ecosystems (150 g C m-2 yr-1 

on average) (Lamade and Bouillet, 2005). In terms of biomass, oil palm can 

potentially store four times more carbon per hectare compared to a forest 

ecosystem, however, rates of litter production and decomposition are low: 130-

180 g C m–2 yr–1 in Sumatra compared to 390-500 g C m–2 yr–1 for natural forests 

(Lamade and Bouillet, 2005). Lamade et al. (1996) studied on carbon allocation 

of oil palm from soil respiration to the roots and showed that the total amount of 

CO2 released throug a year was around 1610 g C m–2 yr–1.  
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Estuarine areas in tropical and subtropical regions, which are dominated 

by wetland ecosystems comprising peat swamp, mangrove forest and mudflats 

(Jakobsen et al., 2007; Polidoro et al., 2010) are known to be one of the largest 

terrestrial carbon stores (Alkhatib et al., 2007). Peatlands are normally 

characterised by black-water rivers with low pH, low concentrations of dissolved 

inorganic nutrients and suspended sediments and high concentrations of DOC 

(Alkhatib et al., 2007). Mangrove forests are important for their socio-economic 

values and provide habitat for a wide range of flora and fauna (Ashton and 

Macintosh, 2002). Despite their importance, land development such as 

conversion to agricultural activities, coastal industralisation and urbanisation 

currently are putting mangroves, particularly along the coastline of SE Asia, in 

danger (Ashton and Macintosh, 2002; Polidoro et al., 2010). Various vegetation 

types e.g. Avicienna, Nypa, and Rhizophora are common in mangrove forests 

(Ashton and Macintosh, 2002) and provide rich polyphenols and tannins, 

although their concentrations may vary seasonally (Kathiresan and Bingham, 

2001). Decomposition of mangrove litter commences as leaves fall from 

mangroves and are exposed to microbial degradation as well as leaching 

processes (Sahoo and Dhal, 2009), where leaching alone is able to produce high 

levels of DOM (Benner et al., 1990; Kristensen et al., 2008). Potassium and 

carbohydrate has been found to leach very quickly during early vegetation 

growth, compared to tannins (Kathiresan and Bingham, 2001). High tannin 

concentrations, however, are likely to be associated with decreasing bacterial 

counts (Sahoo and Dhal, 2009).  
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The ability of land use changes to modify the water quality of aquatic 

ecosystems is generally known. In terms of global DOM dynamics, Wilson and 

Xenopoulos (2008) found that DOM quality in Ontario, Canada could be affected 

by agricultural land use. Schelker et al. (2012) showed that riverine carbon fluxes 

in four boreal headwater streams in northern Sweden increased significantly after 

forest clear-cutting. In addition, Chari et al. (2012) found differences in DOM 

concentrations between estuary and the ocean. However, slight differences can 

be seen in the tropical regions. While DOM in oil palm plantations seems to have 

a significant signature (Alkhatib et al., 2007; Limpens et al., 2008), Yamashita et 

al. (2010b) indicated that DOC concentrations in subtropical Everglades, USA 

appeared to be distributed conservatively. Nevertheless, DOM dynamics still 

could be characterised throughout the wetlands. Guo et al. (2011) showed that 

autochthonous DOM from headwater and mangrove wetlands in subtropical 

Jiulong Estuary decreased rapidly in coastal regions, suggesting the riverine 

DOM experienced significant modifications in estuarine environments.  

 

2.7 CONCLUSION 

DOM represents the major type of organic matter in almost all water bodies and 

is the product of the breakdown of bacterial, algal, phytoplankton and higher plant 

organic material, and includes material that may be of allochthonous or 

autochthonous origin. Riverine export from land to the ocean is mainly 

determined by factors including hydrological pathways and flux, salinity, light 

penetration, temperature, phytoplankton biomass, light penetration and depth of 

mixing. Specifically in tropical regions, DOM biogeochemistry is driven more by 
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photoreaction and microbial activities, whereby photoproducts tend to stimulate 

bacterial growth.  

DOM quality is also typically characterised by spatial and seasonal 

changes. In terms of temporal changes, the quality of DOM in tropical catchments 

may vary seasonally between the wet and dry season and in some cases hourly. 

Land use conversion of tropical forests to agriculture in the tropics has become a 

topical issue, especially when environmental deterioration, particularly in aquatic 

ecosystems, is becoming crucial. Land use changes and regeneration of 

secondary forests have been found to modify the river flow system and DOM 

export rates, thus, altering DOM dynamics.  

Various studies on land use changes and their effects on DOM quality 

have been documented, although there has been relatively little work on tropical 

regions. While different types of land use seem to have significant signature on 

the DOM quality, this is not the case in the tropics. It could be driven by several 

factors, especially hydrology and primary production. However, since this area 

receives abundant sunlight throughout the year, it could also be primarily 

controlled by processes of photoreaction and microbial degradation. Therefore, 

more research is urgently needed which is directed towards a better 

understanding of DOM characteristics and dynamics in tropical catchments in 

particular those that are affected by on-going deforestation and agricultural 

development.  



! 56!

3. MATERIALS, METHODS AND ANALYTICAL PROCEDURES  

 

3.1 INTRODUCTION 

DOM characteristics were determined in waters sampled from selected sites in 

the Lower Kinabatangan River catchment, Sabah, Malaysia. The Kinabatangan 

River (560 km in length) has a total catchment area of 16,800 km2 (23% of 

Sabah) and is the second longest river in Malaysia (Fig. 3.1). The area has a 

humid tropical climate: daily temperature ranges between 22°C to 32°C, and 

mean annual rainfall is between 2,500 and 3,000 mm (Boonratana, 2000; 

Josephine et al., 2004). There is considerable inter-annual variability in 

precipitation: heaviest precipitation occurs during the northeast monsoon 

between October and March, at which time the floodplain and coastal plain are 

widely flooded. Widespread areas of floodplain were inundated in 1963, 1967, 

1986, 1996 and 2000 (Fletcher, 2009). It has been estimated that the flood-prone 

area in the Kinabatangan catchment is ~17.0 km2 (Town and Regional Planning 

Department Sabah, 1998). Transition periods, defined as the inter-monsoonal 

period, normally occur in April and October. Dambul and Jones (2008) observed 

the lowest rainfall during this period, but there is the possibility of significant 

precipitation events (Gazzaz et al., 2012; Suhaila et al., 2010). Over the rainy 

season, the floodplain and coastal plain are widely inundated but there is 

considerable inter-annual variability in rainfall (both total and inter-annual 

distribution). 
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Fig. 3.1  Sampling stations during the preliminary survey in 2008. 
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The Lower Kinabatangan floodplain extends over >280,000 ha, and 

comprises the largest wetland in Sabah. There are three primary categories of 

land cover in the catchment: (i). forest (mangroves and peat swamps); (ii). 

agriculture (primarily oil palm plantations which covered ~4,100 km2, 25% of the 

basin, in 2009); and (iii). other land cover including built-up areas and water 

bodies (Department of Environment Malaysia, 2009). The natural floodplain 

vegetation, which is the dominant land cover (about 74% of the basin) is riverine 

and freshwater swamp forest (at elevations <70 m asl) characterised by open 

reed swamp, and pristine lowland dipterocarp forest in areas that are inundated 

infrequently (Boonratana, 2000; Department of Environment Malaysia, 2009). 

Nipah palm (Nypa fruticans) covers extensive areas of low level tidal swamps 

(Kathiresan and Bingham, 2001) and generally occurs inland from mangrove 

swamps extending inland as a narrow border along the river margins, can also 

occur close to the sea suggesting higher tolerance of salinity compared to 

mangrove (Acres and Folland, 1975). 

In terms of physiographic regions, the eastern lowlands are defined as land 

below 300 m (1,000 ft), and comprise five main areas: Lokan Peneplain, 

Kinabatangan Lowlands, Sandakan Peninsula, Dent Hills and Eastern Deltas 

(Acres and Folland, 1975). The Lokan Peneplain is situated to the north of the 

Kinabatangan; the Kinabatangan Lowlands consist of the major valleys of the 

Kinabatangan and Segama Rivers and are largely hilly terrain draining to the 

north-east; the Sandakan Peninsula (largely low hills) is bounded by Sandakan 

Harbour to the south and by the sea to the north and east. The Dent Hills, located 

to the north, and the Eastern Deltas comprise swamps, formed by the deposits of 
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the main stem of the Kinabatangan flowing into the Sulu Sea (Acres and Folland, 

1975). In a more recent publication, the physiographic subdistricts of eastern 

Sabah have been classified as follows: Northern Islands, Kaindangan and Lokan 

Plains, the Deltas of Kinabatangan, Segama, Sugut and Labuk Rivers, the 

Bongaya Hills, Sandakan Peninsula, Kinabatangan Lowlands, Segama Valley, 

Dent Hills, and the Semporna Lowlands (Hutchinson, 2005).  

Due to the scarcity of studies in this region, references to the geology and 

soils are largely drawn from a series of unpublished reports ‘The Soils of Sabah’ 

(Acres and Folland, 1975) and ‘Sabah Coastal Zone Profile’ (Town and Regional 

Planning Department Sabah, 1998). Geologically eastern Sabah (including the 

Kinabatangan) is predominantly covered by sandstone and shales, with minor 

occurrence of cherts and limestones, while the igneous rocks are mainly basalts, 

serpentinites, gabbros, volcanic breccias and tuffs (Tongkul, 1991). Four broad 

groups of soil parent material were identified by geological surveys conducted in 

the early 1950s: undifferentiated alluvium, peat, sandstone and mudstone and 

limestone (Acres and Folland, 1975; Town and Regional Planning Department 

Sabah, 1998). Undifferentiated alluvium comprises both terrace and recent 

alluvium. Recent alluvium, originating mainly from sedimentary rocks, can be 

found widely on floodplains and in freshwater swamps. The texture is mostly fine 

and rich in magnesium. Adjoining sandstone hills, on levees and in the upper 

reaches of valleys, the texture of the surficial deposits are predominantly medium 

or coarse with low nutrients, while coarse-textured with ~90% silica minerals 

(mainly quartz) are found on beaches (Acres and Folland, 1975). The dipterocarp 

forests are situated along the banks of the main stem and tributaries are mainly 
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found on raised alluvial terraces and plains, which range in width from 10m to 

>1km. The low-lying swamps have mainly alluvial soils, rich in minerals such as 

magnesium in contrast to the lowland forests, which have a permanently high 

water table (Payne, 1989).  

Peat soils occur in swamps from Batu Putih towards the estuary. They are 

derived from the remnants of swamp forests and are composed of woods and 

sedges with various levels of decomposition; their depth normally exceeds 6 m 

(Acres and Folland, 1975; Town and Regional Planning Department Sabah, 

1998). Mudstone and sandstone in this area are extensive, occurring from the 

upper part of the Lower Kinabatangan towards Sandakan Harbour across the 

Kinabatangan valley to the Segama. The mudstone is generally dark grey, while 

greenish or bluish-grey are less common (Acres and Folland, 1975). Limestone 

outcrops in the catchment; dominating the Gomantong Formation (Gomantong 

caves and a number of small outcrops near Sukau), which is of late Miocene age, 

consists of compressed, debris, grayish-orange limestone, algae and corals, 

mostly crystalline, composed of foraminifers, as well as rare quartz sand. Thick 

limestone lenses are also present at the Lower Kinabatangan valleys. The 

limestones in general are impure and weathered, and as a result, fine-textured 

deposits are produced on gentle slopes. These deposits normally lack coarse 

clasts, and are decalcified with limestone fragments (Acres and Folland, 1975). 

The Kinabatangan River is the main domestic water source for local 

communities (Boonratana, 2000). Mean daily river flow recorded by the 

Department of Irrigation and Drainage Malaysia in the upper catchment (Fig. 3.2) 
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is within the range 2.5-60 m3/s (Department of Environment Malaysia, 2009). The 

highest monthly average of daily mean discharge recorded in 1997 was in 

February (~667 m3/s), while the lowest in June (109 m3/s) (Town and Regional 

Planning Department Sabah, 1998).  

During the course of the research presented here, waters were sampled 

according to two sampling designs: i. a preliminary survey; and ii. a concentrated 

field-work programme. Widths and depths of the main stem of the Kinabatangan 

were recorded throughout the survey and range from 90 to 160 m (width) and 

from 5 to >20 m in depth. First, a preliminary survey was completed, focusing 

upon the spatial variability of selected water quality determinants and, secondly, 

more detailed sampling programmes were undertaken that sought to determine 

trends in water quality i. seasonally; and ii. related to different land uses. 

Sampling seasons covered both the dry and wet seasons, while three types of 

land use comprised of oil palm plantations, secondary forests and coastal 

swamps.  

 

3.1.1  Preliminary Survey 

Water samples were collected during summer baseflow conditions at selected 

locations in the Kinabatangan catchment between August and September 2008, 

including sites that were closely associated with oil palm plantations and mills 

(Fig. 3.1) (Chapter 4). Sample sites were selected on the basis of their 

accessibility and included: i. the main stem of the Kinabatangan River and 
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tributary streams; ii irrigation ditches associated with selected oil palm 

plantations; and iii. groundwater springs. Water samples from tributary streams 

were collected from points ~2-3km above their confluence with the Kinabatangan. 

These samples were collected from Batu Putih (BP), Sukau (SK), Bilit (BT) and 

Abai (AB).  

In total, 225 water samples were collected in 2 ml glass vials (in most 

cases from a boat) at three points across the channel: adjacent to both 

riverbanks and in the channel mid-point. Small sample sizes were chosen to 

permit rapid shipment of the water samples (unfrozen) to Birmingham, UK, for 

laboratory analysis. Other physicochemical parameters including pH and water 

temperature were measured in-situ using a Hanna multi-parameter water quality 

meter (Model HI9828). Sample vials were stored in cool, dark conditions before 

shipment to the UK. In the laboratory, all samples for organic matter fluorescence 

analysis were filtered through Whatman GF/F syringe filters (nominal pore size 

0.7 !m), and stored in the dark at 4ºC until analysis, which occurred within 1 

month of sampling. Due to relatively small sample size, 0.7 !m filters were 

employed to avoid losing too much DOM and hence information related to DOM 

characteristics. It also enables the inclusion of large DOM size fractions, which 

are normally found in colloidal and dissolved forms (Fellman et al., 2008). 

Fellman et al. (2008) found insignificant differences between two sizes of filters 

(0.2 and 0.7 !m) used in their study in Juneau, Alaska. 

In addition, a total of 6 precipitation and 83 surface water samples for 

stable isotopes analysis were collected in 2 ml glass vials. Rainfall samples were 

collected manually using a small container to intercept precipitation, which was 
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immediately transferred to a sample vial. Samples were filtered and stored in an 

identical manner to the samples collected for DOM determination. 

 

 

3.1.2 Concentrated Sampling Programme 

Subsequently, a total of 510 water samples were collected manually during five 

field sampling campaigns in 2009-2010, one of which corresponded with inter-

monsoonal period (October 2009), three corresponded with the wet season 

(November, December 2009 and February 2010); and one the dry season (May 

2010). Sampling stations were located in the same locations as for the 

preliminary survey with the exception of Bilit (BT). Thus samples were collected 

from Batu Putih (BP), Sukau (SK) and Abai (AB). Samples from Bilit, collected in 

the preliminary survey, were found not to differ significantly from the other 

sampling areas, and no further samples were collected in this area. Water 

samples were collected from streams or creeks situated entirely within: i. oil palm 

(Elaies guineensis) plantations: BPA, BPB, SKA and SKB (220 samples); ii. 

secondary forests: BPC, SKC and SKD (139 samples) and iii. coastal swamps 

where the nipah palm, Nypa fruticans, is widespread: ABA and ABB (151 

samples) (Fig. 3.2). At each point, 200 ml water samples were collected from the 

middle of the river / stream from a boat at three points in the water profile: from 

the surface, the mid-point and near the base of the water profile using a 

WaterMark Horizontal Polycarbonate water sampler. This sampler is designed to 

collect water samples from a specific depth of up to 30 m. The sampler was 

lowered to the depth required, at which point a mechanism is triggered closing 
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the chamber, and water samples were then collected via a rubber tube. Fig. 3.3 

shows the WaterMark water sampler in use. Samples were stored in high-density 

polyethylene (HDPE) bottles pre-washed with 10% hydrochloric acid and 

deionised water. pH and salinity were determined using a Hanna Water Quality 

Multiparameter (Model HI 9828) immediately before the water samples were 

filtered using pre-combusted 0.45 µm Whatman glassfiber GF/C filter. Filtered 

water samples were kept in the dark and stored at 4 ºC until shipment to the UK 

for laboratory analysis at the University of Birmingham, which occurred within 

seven days of sampling.  
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Fig. 3.2 Sampling stations during sampling period from 2009-2010. 

Upper catchment 
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Fig. 3.3 Water sample collection at pre-determined depth by using WaterMark 

Horizontal Polycarbonate water sampler. 

With respect to possible fluorescence degradation between the point of 

sampling and analysis, relatively minimal DOM degradation is possible. By 

calculating fluorescence intensities of peaks A and C, as indicated during the 

preliminary study (section 3.1.1), it was found that there was no fluorescence loss 

between filtered and post-filtered samples, although microbial activities had 

occurred within the post-collected samples. Furthermore, this is supported by 

various studies which showed that fluorescence signals for peaks A and C were 

unchanged after three months of storage at 4°C in the dark (Hudson, 2010; 

Ghervase et al., 2012). In order to maintain the natural character of DOM, 

samples were analysed at their natural pH and were not freezed or thawed, as 

described by Spencer et al. (2007) and Fellman et al. (2008). Spencer et al. 

(2007) found that pH is highly sensitive with thawing or freezing procedures, and 
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consequently will change the spectrophotometric properties of DOM. 

Furthermore, it has been found that within the typical pH observed in freshwaters, 

the response of spectrophotometric applications were restricted. 

 

Main Stem Samples 

DOM characteristics were determined for waters sampled from nine sampling 

points along the main stem of the Lower Kinabatangan River, Sabah, Malaysia 

(Fig. 3.2). A total of 128 water samples were collected manually at nine sampling 

points during five fieldwork campaigns in 2009-2010, one of which corresponded 

with the inter-monsoonal period (October 2009), three correspond to the wet 

season (November 2009, December 2009 and February 2010); and one the dry 

season (May 2010). Water samples were collected in three areas of the 

catchment: i. Batu Putih (BPA, BPB and BPC: 42 samples); ii. Sukau (SKA, SKB, 

SKC and SKD: 59 samples) and iii. Abai (ABA and ABB: 27 samples). At each 

sample point, waters were sampled from the centre of the river at three points in 

the water profile: near the water-surface, the mid-point and near the base of the 

water profile using a WaterMark Horizontal Polycarbonate water sampler (Fig. 

3.3). The total depth of the main river was first measured and then divided by 

two, to obtain the mid-point depth. The mean depth for each sampling point is 

presented in Table 3.1. The depth of the main river increases from Batu Putih 

downstream: from an average depth of ~7.9 m at Batu Putih to 14.9 m at Sukau; 

and 14.3 m at Abai; with widths varying between 100 – 120 m.  
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Table 3.1 Information on sampling area with number of samples and average 

depths according to each sampling point. 

Sampling area No. of samples Average depths (m) 
Batu Putih   
Sg. Pin (BPA) 15 7.8 
Sg. Koyah (BPB) 12 7.6 
Danau Kaboi (BPC) 
 

15 8.4 

Sukau   
Malbumi Plantation (SKA) 15 15.2 
Sg. Resang (SKB) 14 14.7 
Danau Kalinanap (SKC) 15 14.8 
Sg. Menanggol (SKD) 
 

15 14.5 

Abai   
Balat Damit (ABA) 12 12.3 
Sg. Merah (ABB) 15 16.2 

 

3.1.3 Sampling Locations 

Initial site selection largely reflected logistical constraints and ease of access. 

There are approximately 104 villages located in the Kinabatangan District with 13 

in the floodplain (Josephine et al., 2004). Of these, the villages of Batu Putih, Bilit, 

Sukau and Abai are experiencing an increase in tourism, and are readily 

accessible either by road or main river (Fletcher, 2009). Batu Putih, Bilit and 

Sukau have road access, while Abai is only accessible by the river. However, 

certain sampling stations such as the Danau Girang Field Centre (DGFC) in Batu 

Putih can only be accessed by river. Details of each sampling location are as 

follows. Both sampling designs are summarised in Table 3.2. Consequently, Fig. 

3.4 shows the satellite images for each sampling area, while type of land use is 

summarised in Table 3.3:  
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Batu Putih (BP): (a) Batu Putih (BP) area; (b) Sg. Koyah (BPA); (c) Sg. Pin 

(BPB); (d) Danau Kaboi (BPC). This area situated ~95 km from the nearest 

major town, Lahad Datu, and has a population of 1200-1400 inhabitants 

(mainly ethnic Orang Sungai), with a number of small settlements.  

Sukau (SK): (e) Sukau (SK) area; (f) Malbumi Plantation (SKA); (g) Sg. 

Resang (SKB); (h) Danau Kalinanap (SKC); (i) Sg. Menanggol (SKD). Lies on 

the Kinabatangan River, Sukau is located about 134 km upstream of the city 

of Sandakan (Payne, 1989). The population is ~2,000 with small settlements 

scattered along the riverbank. Many villagers are self-sufficient farmers, but 

there are still areas of riparian forest. In places, untreated sewage from 

individual settlements discharges to the river. Situated ~26 km from Sukau 

Village, Gomantong Caves are protected as a swiftlet nesting area, and the 

immediate surrounding area remains relatively pristine.  

Abai (AB): (j) Abai (AB) area; (k) Balat Damit (ABA); (l) Sg. Merah (ABB). 

Relatively close to the estuary of the Sulu Sea, this area is near the newly 

designated (2008) Ramsar wetland of Kinabatangan - Lower Segama. 

Although there are small settlements in this area, the population in 1996 was 

only 290 (Payne, 1996). Freshwater swamp vegetation, such as Nypa 

fruticans, is widespread along the estuary. 
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(a) Batu Putih (BP) area 

Sahana Harun
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(b) Sg. Koyah (BPA) (Imagery date: 24/06/2013) (c) Sg. Pin (BPB) (Imagery date: 24/06/2013) 

 

 

(d) Danau Kaboi (BPC) (Imagery date: 24/06/2013)  

Sahana Harun
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(e) Sukau (SK) area 

Sahana Harun
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(f) Malbumi Plantation (SKA) (Imagery date: 24/06/2013) (g) Sg. Resang (SKB) (Imagery date: 24/06/2013) 

  
(h) Danau Kalinanap (SKC) (Imagery date: 21/06/2005) (i) Sg. Menanggol (SKD) (Imagery date: 24/06/2013) 

!

Sahana Harun
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(j) Abai (AB) area 

Sahana Harun
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(k) Balat Damit (ABA) (Imagery date: 24/06/2013) (l) Sg. Merah (ABB) (Imagery date: 24/06/2013) 

 

Fig. 3.4 (a)–(l) Satellite images for each sampling location with specific imagery dates. (Source: Google Earth software, 2012). 

Sahana Harun
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Table 3.2 Summary of sampling sites during the two sampling programmes, 

together with indications of sample type (main-stem, tributary, oil palm plantation 

ditch and oxbow lake) and distance from the Sulu Sea. The number of samples 

collected are indicated by a = October 2009, b = November 2009, c = December 

2009, d = February 2010 and e = May 2010. Sample site locations are given in 

Fig. 3.1 and Fig. 3.2. 

 

Sampling 
programme 

Sampling site  Sample type Distance 
from sea 

(km) 

No. of samples 

Preliminary 
survey 

Batu Putih (BP) 
• Sg. Pin (BP1) 
• Sg. Koyah (BP2) 
• BS Mill (BP3) 
• PS Plantation (BP4) 
• DGFC (BP5) 
• Canal 1 (BP6) 
• Canal 2 (BP7) 
• Canal 3 (BP8) 

 
Tributary stream 
Tributary stream 
Plantation mill 
Plantation mill 
Ox-bow lake 
Ditch 
Ditch 
Ditch 

 
81.8 
66.9 
87.7 
62.2 
71.1 
70.8 
70.9 
71.4 

 
20 
17 
3 

13 
1 
1 
1 
1 

 Sukau (SK)    
 • Sg. Resang (SK1) 

• Sg. Resik (SK2) 
• Kuala Sukau (SK3) 
• Malbumi Plantation (SK4) 
• Sg. Menanggol (SK5) 
• Gomantong Caves (SK6) 
• Rainfall 1 (27/08/2008) 
• Rainfall 2 (28/08/2008) 
• Rainfall 3 (29/08/2008) 
• Rainfall 4 (30/08/2008) 

Tributary stream, main stem 
Tributary stream, main stem 
Tributary stream, main stem 
Tributary stream, main stem 
Tributary stream, main stem 
Groundwater spring 
Precipitation 
Precipitation 
Precipitation 
Precipitation 

34.6 
40.1 
40.8 
34.0 
43.0 
62.6 

- 
- 
- 
- 

27 
11 
18 
12 
18 
1 
2 
1 
1 
1 

 Bilit (BT)    
 • Sg. Tenagang Besar (BT1) 

• Sg. Tenagang Kecil (BT2) 
Tributary stream, main stem 
Tributary stream, main stem 

47.1 
43.5 

21 
12 

 Abai (AB)    
 • Balat Damit (AB1) 

• Sg. Merah (AB2) 
 

Tributary stream, main stem 
Tributary stream, main stem 

19.8 
29.5 

33 
15 

Concentrated 
sampling 
programme 

Batu Putih (BP) 
• Sg. Pin (BPA) 
• Sg. Koyah (BPB) 
• Danau Kaboi (BPC) 

 
Tributary stream, main stem 
Tributary stream, main stem 
Ox-bow lake 

 
81.8 
66.9 
77.0 

 
15a, 12b, 12c, 9d, 12e 

21a, 9b, 9c, 9d, 9e 
9a, 9b, 9c, 6d, 6e 

 Sukau (SK)    
 • Malbumi Plantation (SKA) 

• Sg. Resang (SKB) 
• Danau Kalinanap (SKC) 
• Sg. Menanggol (SKD) 

Tributary stream, main stem 
Tributary stream, main stem 
Ox-bow lake 
Tributary stream, main stem 

34.0 
34.6 
45.1 
42.7 

6a, 9b, 9c, 6d, 5e 
12a, 12b, 14c, 15d, 15e 

8a, 12b, 12c, 6d, 12e 
11a, 9b, 9c, 9d, 12e 

 Abai (AB)    
 • Balat Damit (ABA) 

• Sg. Merah (ABB) 
Tributary stream, main stem 
Tributary stream, main stem 

19.8 
29.5 

15a, 14b, 15c, 15d, 18e 
15a, 18b, 6c, 17d, 18e 
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Table 3.3 Approximate land-use distribution in the Lower Kinabatangan 

floodplain, Sabah, Malaysia. 

Area Population Land-Use Source 

Batu Putih (BP) 

 

 

1200-1400 Oil palm: 96,000 ha (79%); alienated 
forest1: 11,500 ha (10%); Protected 
forest: 11,130 ha (9%); state land forest: 
1,300 ha (1%); water bodies: 1,280 ha 
(1%) 

Department. of 
Environment 
Malaysia (2009) 

Sukau (SK) 2,000 Oil palm: 71,190 ha (42%); alienated 
forest: 11,070 ha (7%); protected forest: 
57,550 ha (34%); state land forest: 
24,600 ha (15%); water bodies: 4,700 ha 
(28%); built-up area: 440 ha (0.3%) 

Department. of 
Environment 
Malaysia (2009) 

Bilit (BT) ~300 Oil palm: 16,600 ha (56%); alienated 
forest: 3,200 ha (19%); protected forest: 
8,100 (27%); water bodies: 915 ha (3%); 
built-up area: 130 ha (0.4%) 

Department. of 
Environment 
Malaysia (2009) 

Abai (AB) ~300 Oil palm: 71,189 ha (42%); nypa swamp: 
39,400 ha (50%); mangrove swamp: 
15,590 ha (20%); peat forest: 17,200 ha 
(22%); seasonally flooded forest: 3,100 
ha (4%); marshes: 2,250 ha (3%) 

Department. of 
Environment 
Malaysia (2009); 
Sabah Forestry 
Department 
(2009) 

 

3.2 FLUORESCENCE SPECTROSCOPY 

Fluorescence is an invaluable technique for studying and monitoring the 

concentration and nature of aquatic DOM. For example, studies conducted by 

Spencer et al. (2010) in a pristine tropical river in the Congo and Yamashita et al. 

(2010) in the subtropical Everglades (Florida) showed that fluorescence is a 

useful tool to provide information on the chemical composition of DOM. Organic 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Alienated forest - forest that alienated under leases and provisional leases, native titles and on 
field registers, settlement schemes, village reserves and areas proposed for alienation. 



! 78!

matter fluorescence occurs when organic matter (OM) is exposed to an external 

light source, leading to the absorption of a photon by the molecule (Lakowicz, 

2006). This leads to a change in the electron configuration whereby an electron 

from the ground state is excited to a higher energy level. The absorption 

spectrum is defined by the position of the maximum (!max) and the molar 

extinction coefficient calculated at the maximum ("). The relation between sample 

concentration (c), " and the thickness (concentration) of the absorbing medium 

(fluorophore) through the cuvette or also known as optical path length (d) can be 

characterised by the Beer-Lambert Law: A = "cd (Lakowicz, 2006; Reynolds, 

2002). Absorption and excitation occur when a photon is emitted during the 

transition of an electron from an excited energy level to the ground state, hence, 

stimulating fluorescence to occur (Hudson et al., 2007; Lakowicz, 2006). The 

absorption (excitation) and emission of the wavelengths are characteristic of a 

specific molecular conformation – the fluorophore (Henderson et al., 2009; 

Hudson et al., 2007; Lakowicz, 2006).  

Inner-filter effects (IFE) normally occur due to high concentrations of 

absorbing molecules including fluorophores particularly in turbid samples due 

given the presence of larger aggregates or macromolecules that scatter light 

(Lakowicz, 2006). As incident light passes through the sample it is partly 

absorbed, as described by the extinction coefficient. Therefore, the light intensity 

is quenched and reduced whilst going through the solution (Albani, 2007). 

Consequently, scattering and quenching within the samples disturbs the 

trilinearity of the data (Andersen and Bro, 2003). The IFE correction applied in 

this study is explained further in section 3.3.1. 
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Energy transfers, which involve processes that occur between absorption 

and emission of light, can be illustrated by using Jablonski energy diagram (Fig. 

3.5). The singlet ground, first and second states are represented by S0, S1 and S2 

accordingly. An electron is normally excited to some higher vibrational level of 

either S1 or S2 within 10-15 s. However, there are times where molecules in 

condensed phases relaxing in rapid to S1, which has the lowest vibrational level. 

This is called internal conversion and normally occurs within 10-14 to 10-11 s. 

Fluorescence occurs within 10-9 to 10-7 s, when relaxation from internal 

conversion is accompanied with by emission of a photon (Lakowicz, 2006).  
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Fig. 3.5 Jablonski diagram illustrates excitation of a molecule by absorption and 

possible path of energy loss (internal conversion and vibrational relaxation) when 

returning to the ground state. Collisional quenching occurs when the excited-state 

molecule is deactivated upon interaction with a second molecule in solution 

(quencher). Consequently, the fluorescence intensity will be decreased (Hudson 

et al., 2007; Lakowicz, 2006). 

When excitation, emission and fluorescence intensity scanned over a 

range of wavelengths synchronously and plotted on a single chart, constructing 

an optical space map, known as excitation-emission matrix (EEM). Fluorescence 

characteristics of DOM are characterised by two broad peaks. These are 
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commonly described as peaks A and C, and peaks T and B at shorter emission 

wavelengths, which are associated with microbially derived organic matter (i.e. 

tryptophan- and tyrosine-like) (Coble, 1996; Parlanti, 2000). Fig. 3.6 

demonstrates fluorescence EEM with common fluorescence features (peak A, C, 

T and Raleigh-Tyndall effect) and Table 3.4 represents the description for each 

peak. Advancements in fluorescence spectroscopy have allowed rapid and 

automated collection of fluorescence intensity data (of shorter wavelengths), 

thus, enabled more detailed investigation of OM and its water reactivity (Baker 

2002b; Hudson et al., 2007; Naden et al., 2010). In addition, fluorescence 

spectrometry has become increasingly available, with the scanning of a range of 

emission wavelengths for a fixed excitation. This increases the range of aromatic 

organic compounds that can be detected (Hudson et al., 2007).  

 

 

Fig. 3.6 Fluorescence EEM from a stream within an oil palm plantation, with 

common fluorescence features (peak A, C, M, T and Rayleigh-Tyndall effect) 

(after Coble, 1996; Parlanti, 2000). 
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Table 3.4 Description for each common peak in fluorescence EEM as 

identified by Coble, 1996 and Parlanti, 2000 (in bracket). 

Peak Excitationmax / Emissionmax Description and probable source 

A (!’) 230-260 / 380-480 Terrestrial humic-like substances. 

C (!) 330-360 / 420-480 Terrestrial humic-like substances. 

M (") 310-320 / 380-420 Marine humic-like substances. 

T (#) 270-280 / 320-350 Protein-like; autochthonous; biologically labile. 

 

Various environmental factors have been found to affect DOM 

fluorescence including pH, temperature, salinity, metal ions and 

photodegradation. It has been found, for example, that photodegradation is 

related closely to water level and DOM source (Westhorpe et al., 2012). In 

natural waters photodegradation impacts DOM structure and character with 

changes to smaller molecules, and an associated effect on bioavailability. Thus, it 

is likely to alter fluorescence character as indicated by the presence or absence 

of peaks or modifications in relative fluorescence intensities on an EEM (Hudson 

et al., 2007).  

A variety of fluorescence indices (FI) are commonly used to synthesise the 

significant quantities of data that are present in a fluorescence EEM. FIs are 

defined as the ratio of fluorescence intensity measured at two different points or 

regions in optical space. Various FIs have been developed since the late 1990s. 

Indices developed by McKnight et al. (2001), Perrette et al. (2005), Proctor et al. 

(2000) and Kalbitz et al. (1999) can be correlated with the aromaticity, 

hydrophobicity and humification of the peak C fluorescence fraction. However, 

this is only valid for terrestrial waters, which are dominated by natural OM, and 

many of the correlations used resin extracted samples. A Humification Index 
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(HIX) developed by Zsolnay et al. (1999) used the ratio of emitted fluorescence 

330-345 nm to 435-480 nm with excitation at 245 nm. However, this excitation 

wavelength (245 nm) is not the maximum excitation wavelength for any 

fluorescence peak. In this thesis, one of the fluorescence intensity ratios (peak 

T/peak C) has been used which is considered indicative of the BOD/DOC ratio in 

terrestrial waters, thus providing a measure of water quality (Hudson et al., 2007; 

Hudson et al., 2008), as well as enabling comparisons with other studies. The 

Ratio !/" (BIX) of Parlanti et al. (2000), which captures the peak M and peak 

T/peak C intensity, is a transferable index of marine and freshwater mixing in 

marine and estuarine samples. This index appears to be straightforward to 

interpret and is potentially more transferable in surface waters, with various 

studies demonstrating a microbial source for peak T fluorescence (Elliott et al., 

2006; Hudson et al., 2008).  

Filter artefacts in this study have been found to be insignificant when the 

syringe filters were tested and both poly-vinyl-idine-difluoride (PVDF) and poly-

sulfone (PSU) media displayed minor fluorescent peaks, compared to poly-tetra-

fluoro-ethylene (PTFE) and poly-propylene (PP) (Urquhart, 2008). A replicate 

sample survey was completed in October 2009 and a comparison of the effects 

of filtering in the field vs. filtering post-collection was made between the two data 

sets. The triplicate samples collected in 2008 had both peak A and C intensities 

that varied with a coefficient of variance less than 11% (over the range of 130-

318 mean intensity units), whilst peak T280 intensity had the highest coefficient of 

variance (41%). Both peak A and C emissions were consistent (coefficient of 

variance 3% and 2% respectively) and replicate samples had an identical 
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uncertainty for peaks A and C intensity and peaks A and C emission (coefficient 

of variance less than 6% over the range 211-349 units, and less than 3% in 

emission). There was much less variability in peak T280 (coefficient of variance 

less than 17%) indicating that some microbial activity had occurred within the 

samples post-collection. However, there was no correlation between peak T280 

intensity and peak C emission for both sampling periods (Fig. 3.7), suggesting 

the storage and transport prior to filtering did not change the fluorescence 

characteristics. 

 

Fig. 3.7 Peak C emission wavelength against peak T280 intensity for filtered and 

unfiltered samples, collected during the preliminary survey and in October 2009. 
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3.3 LABORATORY METHODS 

3.3.1 Excitation-Emission Matrices (EEMs) Spectroscopy  

Fluorescence intensities were determined using a Varian Cary Eclipse 

fluorescence spectrophotometer equipped with a Peltier temperature controller. 

Emission scans were performed over the wavelengths from 280 to 500 nm, with 

data collected at 2 nm intervals, and excitation wavelengths from 250 to 400 nm, 

at 5 nm intervals. Instrument filtration has been applied to remove excitation 

wavelengths <250 nm. Excitation and emission bandpass were set to 5 nm and 

photomultiplier tube voltage to 725v. Spectrophotometer output was monitored by 

regular determination of the Raman calibration of ultra pure water in a sealed 10 

x 10 mm cuvette at 348 nm excitation and 5 nm bandpass. This enables a 

quantitative comparison between different fluorescence measurements. The 

Raman value during the study period varied within the range 26.0 to 28.2 units 

with a mean intensity of 27.3 units (st. dev. of 0.7). All fluorescence intensities 

were corrected and calibrated to a Raman peak intensity of 20 units at 396 (392-

400) nm emission wavelength.  

EEMs were obtained for each water sample indicating the wavelength at 

which individual fluorophores emit light. Fluorescence regions can be attributed to 

both natural fluorescence i.e. humic- and fulvic-like. Normally when analyzing 

fluorescence EEM data, the position of maximum fluorescence intensity for each 

peak is recorded, together with its specific spectral location described by the 

excitation and emission wavelengths. In this study, fluorescence peaks C 

(excitation 300-340 nm; emission 400-480 nm), peak T (excitation 270-280 nm; 

emission 340-360 nm) and peak A (the maximum fluorescence at 250 nm 
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excitation; emission 400-480 nm) were identified. Peak B was not observed in 

any of the samples. 

Absorption coefficients at 254 and 340 nm (a254 and a340) and spectral slope 

for the interval of 275-295 nm (S275-295) (Helms et al., 2008) were determined 

using a Lightwave (WPA) spectrophotometer and 2 ml (10 x 5 mm; 5 mm path 

length) cuvettes. Absorption coefficients at 254 and 340 nm were calculated as 

follow (Helms, et al., 2008): 

a = 2.303A/l               (1) 

where A is the absorbance provided by the spectrophotometer; l is path length of 

the cuvette (m). 

Consequently, S275-295 was calculated by linear regression of the log-

transformed a spectra. It is derived from DOM absorption spectra by fitting the 

absorption data to following equation (Helms et al., 2008): 

a! = a!refe-S(!-!ref)               (2) 

where a is Napierian absorption coefficient (m-1), ! is wavelength (nm) and !ref is 

reference wavelength (nm). 

Distilled deionised water was used as a reference, and absorbance 

readings were corrected, where necessary, for long-term baseline drift. In this 

study, an IFE correction was applied to the entire data set using the following 

calculations (Ohno, 2002):  

I = I0 (10-b(Aex+Aem))              (3) 
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where I is detected fluorescence intensity; I0 is fluorescence in the absence 

of self-absorption; b is the path length for both the excitation and emission beam; 

Aex is absorbance at wavelength ex; and Aem is the absorbance at wavelength 

em. 

 

3.3.2 Dissolved Organic Carbon (DOC) 

Dissolved organic carbon (DOC) concentrations were determined using a 

Shimadzu TOC-V-SCH analyser with auto-sampler TOC-ASI-V. Samples were 

acidified to pH ~2 with HCl and analysed within one month of sample collection. 

The acidified samples (pH~2) were sparged for 8 minutes at 75 or 100 ml/min-1 

with either ultra-pure oxygen to remove all inorganic carbon from samples prior to 

measurement.  

 

3.3.3 Stable Isotopes 

Stable isotope analyses were undertaken at the University of Birmingham using 

a GV Instruments Isoprime isotope-ratio mass spectrometer connected to a 

Eurovector elemental analyser. Stable isotope values are expressed using the ! 

convention, where !18O = (18O/16Osample) / (18O/16Ostandard) – 1, and similarly for 

hydrogen isotopes (!2H) expressed as ‰ (per mil) where the standard is Vienna 

standard mean ocean water (V-SMOW). For hydrogen isotope analysis, 

approximately 0.3 "l of water was injected from sample vials on an autosampler 

into a column where reduction to hydrogen took place at 1050 ºC over a 

chromium metal catalyst. At least two successive analyses were made by repeat 

injections from the same vial. Internal (within-run) precision is 0.4 per mil for !D 
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and overall (external) precision is greater than 1 per mil. 

Oxygen isotope analyses were undertaken using an equilibration 

technique. 200 !l water samples were left to equilibrate (CO2) in a sealed 

container for a period of 7 hours allowing the headspace CO2 to take on the 

"18O composition of the water. The equilibrated CO2 was then analysed on the 

Isoprime mass-spectrometer. The internal precision for "18O is typically 0.08 

per mil, external precision is better than 0.15 per mil. !

!

!

3.4 DATA PRE-PROCESSING 

Prior to data analysis, areas that were identified as having redundant and noisy 

signals during processing of the fluorescence data were removed. Fluorescence 

spectra were normalised to the Raman scatter peak at an excitation wavelength 

of 348 nm of deionised water by subtracting the Raman signal from the raw data 

(Stedmon et al., 2003). IFE correction has also been applied as described in 

section 3.3.1.  

 

3.5 DATA POST-PROCESSING 

3.5.1 Parallel Factor Analysis (PARAFAC) 

Data generated by fluorescence spectroscopy in general have caused difficulties 

in analysing given the quantities of data generated. One approach developed to 

overcome this problem is PARAFAC which was introduced by Stedmon et al. 

(2003). PARAFAC is a novel statistical modeling approach which decomposes 

EEMs into their individual fluorescent components. This technique has been 
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widely used and recently, the combination of EEM-PARAFAC has been found 

useful to detect small but significant impairs in DOM composition in subtropical 

wetlands (Yamashita et al., 2010). In this study, PARAFAC modeling was first 

completed on samples from the preliminary survey and then on data from the 

entire sampling programme. It was conducted following Bro (1997) and Stedmon 

et al. (2003). Fluorescence EEMs from each data set were combined into a 3-

dimensional data array separately, and the data were decomposed to a set of 

trilinear model and a residual array (after Kowalczuk et al., 2010; Stedmon et al., 

2003): 

 xijk = ! aifbjfckf + eijk   i = 1,… ,I  j = 1,…,J  k = 1,…,K            (4) 

where xijk is the fluorescence intensity for sample i at emission wavelength j and 

excitation wavelength k; aif, bif and ckf are the loading matrices. F is the number of 

components in the model, and eijk is the residual noise (variability not explained 

by the model). In this analysis, scatters in the high turbid EEMs samples (results 

of suspended sediments presented in Chapter 6), which occurred within 250 to 

280 nm excitation and 280 to 290 nm emission wavelengths also have been 

removed. Filtration and instrument filtration in this study do not allow acceptable 

signal/noise for excitation <290 nm. Consequently, microbial peak, which located 

at 280 nm excitation has been removed in the PARAFAC results/components. 

Nevertheless, the peak picking approach managed to provide the information 

within this missing region. Appendix A presents PARAFAC components with 

excitation started at 250 nm and 290 nm.  

F 

f =1 
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 The model was derived by minimising the sum of squared residuals using 

a least squares algorithm. Signals from fluorescent DOM can be separated using 

this technique, without assumptions on the spectral shape or number. The only 

assumptions in the PARAFAC algorithm are that the spectra from each 

component differs and that there are no negative concentrations or spectra. A 

PARAFAC model with a non-negativity constraint on all modes (samples, 

emission and excitation) was implemented in Matlab (Bro, 1997; Andersson and 

Bro, 2000; Kowalczuk et al., 2010). 

The model also returns relative intensities of derived components (scores) 

as the specific absorption and quantum yield of fluorescence of individual 

components is unknown. In (intensity of the nth component in a given sample) 

was calculated as the fluorescence intensity at the peak excitation and emission 

maximum of the nth component using the following equation (after Kowalczuk et 

al, 2009):  

In = Scoren*Exn(!max)*Emn(!max)            (5) 

where Scoren is the relative intensity of the nth component, Exn (!max) is the 

maximum excitation loading of the nth component, Emn (!max) is the maximum 

emission loading of the nth component derived from the model. The total 

fluorescence intensity of a given sample was calculated as the sum of the 

components present in the samples: 

 ITOT = "  In                         (6) 
n 

1 
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 The percentage contribution of a given component to total fluorescence 

intensity was calculated as the ratio of the nth component intensity to a total 

fluorescence intensity of a given sample.  

 The data were then split into two random halves, representing a calibration 

data array and a validation array. The appropriate number of components (the 

model rank) was determined by comparing the excitation and emission spectra of 

the components between the calibration and validation data arrays. Using this 

technique (split-half analysis), a number of components were validated from the 

data-set. If the correct number of components has been chosen, then the 

loadings from both models would be the same, which reflects the uniqueness of 

the PARAFAC model (Stedmon et al., 2003).  

 The number of studies that have used PARAFAC to characterise the DOM 

has steadily increased over the last few years. However, several limitations 

involving PARAFAC components with respect to the interpretations as well as the 

uncertainties in the robustness have been addressed by several publications. For 

example, Murphy et al. (2011) and Fellman et al. (2009) considered the limited 

chemical interpretation of PARAFAC components, representing the fluorophores. 

PARAFAC components also tend to overlap as the model relatively relies on the 

each component concentrations as well as their unique behaviour (Fellman et al., 

2009; Stedmon et al., 2003). Fellman et al. (2009) also highlighted that 

PARAFAC approach potentially has component selection problem.   

Two categories of independent data sets from the sampling campaign 

were successfully validated using the split-half validation procedure to ensure the 
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correctness of the modeled DOM components. The first category data-set is 

based on an inter-seasonal comparison between samples collected in the wet 

and dry season, whilst the second category is based on the type of land use 

predominant in the area where a sample was collected: oil palm plantations (OP), 

secondary forests (SF) and coastal swamps (CS). 

In order to gain more insight on DOM characterisation, FI were also used. 

Ratios derived from peak picking were generated: peak C/a340, peak A/peak C 

intensity; as well as from the PARAFAC components that were equivalent to the 

peak picking parameters. FI has been applied extensively given its strong 

correlation with many functional assays (Baker et al., 2008). UV absorbance at 

340 nm (a340) and spectral slope for the interval of 275-295 nm (S275-295) have 

been found to approximate DOM molecular weight, and the ratio of (component 

that equivalent to peak C e.g. IC1 in Chapter 5) to a340 has been interpreted as 

the ratio of DOM concentration to molecular weight (Baker et al., 2008; Helms et 

al., 2008). 

 

3.5.2  Discriminant Analysis (DA) 

Discriminant analysis is a multivariate statistical modeling technique, which can 

be used as a tool for pattern recognition. Objects can be classified into mutually-

exclusive groups according to a set of independent variables (Gazzaz et al., 

2012). Discriminant analysis has been applied to both the peak picking and 

PARAFAC data sets to characterise the DOM in this study. Values of peak C 

emission, UV absorbance at 340 nm, spectral slope and different type of 
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fluorescence indices (as explained in sections 3.2 and 3.5.1) have been used to 

determine the pre-dominance of each parameter in the objectives of this study. 

For the main stem samples, the predominance of each parameter was 

determined firstly at different depths, secondly with distance downstream; and 

thirdly at sampling periods (to identify DOM variation between wet and dry 

seasons). 

 

3.6 CONCLUSION 

The Lower Kinabatangan River catchment, Sabah, Malaysia is very important not 

just as a water source for local communities but is also associated with a wide 

and diverse flora and fauna, including many unique and endangered species. 

Land use changes and progressive environmental deterioration from commercial 

logging activities and development of the oil palm plantations since the 1980s 

represent on-going threats to this area. A water quality study conducted in 2005 

to 2006 indicated the waters in this area was Class IIB (equals to maximum total 

suspended sediment concentrations of 50 mg/l).  

 Water and precipitation samples have been collected according to two 

sampling designs: i. preliminary survey in August-September 2008 and ii. 

sampling programme in 2009 to 2010. A total of five data sets have been 

obtained during the more detailed sampling campaign. It was consisted of two 

seasons (wet and dry) and three types of land uses (oil palm plantations, 

secondary forests and coastal swamps). Sampling locations were chosen based 

on their ease of access and logistical limitations. Samples from Batu Putih, Bilit, 
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Sukau and Abai have been collected during the preliminary survey, while Bilit has 

been omitted during the sampling campaign. 

 Characterisation of DOM has been determined by using fluorescence 

spectroscopy, dissolved organic carbon (DOC) and stable isotopes. Excitation-

emission matrices (EEM) were obtained and mapped when excitation, emission 

and fluorescence intensity were synchronously scanned over a range of 

wavelengths. Parallel Factor Analysis (PARAFAC) was used to decompose the 

EEMs into their individual fluorescent component, which is related to DOM origin 

material. The results are presented in the following chapters. 
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4. CHARACTERISATION OF DISSOLVED ORGANIC MATTER IN THE 

LOWER KINABATANGAN RIVER, SABAH, MALAYSIA  

 

Scope of Chapter 

Spatial trends in dissolved organic matter (DOM) were investigated in the Lower 

Kinabatangan River catchment, Borneo. Water samples were collected during 

summer baseflow in August and September 2008 (preliminary survey) from areas 

with oil palm plantations (Batu Putih, Sukau, Bilit and Abai). Sample 

fluorescence, absorbance and, for a sub-set 18O and 2H isotopic compositions, 

were determined. The isotopic ratios clarified catchment water dynamics, 

indicating that surface waters in oil palm areas were characterised by a strong 

evaporative effect, indicating long residence times compared to other surface 

water samples. DOM is best characterised by variations in fluorescence peak C 

intensity, UV absorbance and spectral slope, while the presence of a DOM 

fraction with high peak C fluorescence intensity – UV absorbance ratios in 

samples from tributary rivers indicate the relatively unprocessed end-member of 

fresh DOM. Parallel Factor Analysis (PARAFAC) was used to decompose the 

fluorescence excitation-emission matrices (EEMs). Three PARAFAC components 

were extracted (C1, C2 and C3), of which the peak M component could be 

derived from microbial sources and/or photo-degradation processes. Strong 

positive correlations were found between PARAFAC components and peak C, 

peak A and peak T280 intensities. Both peak picking and PARAFAC were found to 

follow the same trend in DOM degradation from upstream to downstream. It is 
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hypothesised that the upstream DOM is rapidly photo- and microbially- degraded 

to less fluorescent DOM, and is probably stabilised as fine colloidal complexes. In 

contrast, downstream DOM concentration and character is controlled by 

hydrological processes: specifically by variable rates of water movement 

downstream. 

 

4.1 INTRODUCTION 

Tropical wetlands perform a number of globally significant ecosystem functions. 

They are characterised by marked annual cycles in precipitation, high solar 

radiation (Graneli et al., 1998; Hader et al., 1998; Saigusa et al., 2008) and 

diverse biological communities (Dudgeon, 2003; Junk, 2002) with rapid rates of 

nutrient recycling and processing (Hader et al., 1998). Wetlands act as a universal 

store and possible sink for carbon (Alkhatib et al., 2007; Limpens et al., 2008; 

Richey et al., 2002) and where closely integrated with fluvial systems, they form 

an important part of the pathway connecting sources of carbon from continental to 

marine environments (Stephens and Rose, 2005). Tropical wetlands, for example, 

have been estimated to contribute ~60% of the total water, sediment and organic 

carbon input to the ocean globally (Alkhatib et al., 2007).  

Dissolved organic matter (DOM) is ubiquitous in aquatic systems (Baker 

and Spencer, 2004; Evans et al., 2005; Oliveira et al., 2006) but many types of 

wetland are notable by the high quantities of DOM that are frequently present 

(Mladenov et al., 2007; Stern et al., 2007). DOM fluxes from wetlands represent 

an important carbon input to river systems, as they represent the largest and most 

bioavailable pool (Wilson and Xenopoulos, 2008). The presence of organic matter 
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affects the transport of organic pollutants, particle surface and colloid chemistry, 

photochemistry of natural waters and nutrient availability in freshwater aquatic 

systems (Fellman et al., 2008; Hope et al., 1994), whilst DOM also contributes to 

chemical processes in natural water bodies by altering the acidity of surface 

waters, affecting metal speciation and ion-exchange between water and sediment 

phases. Both dissolved and particulate forms of organic matter are also an 

important source of energy in stream ecosystems (Hope et al., 1994). 

DOM characteristics may change significantly as a result of photochemical 

degradation in shallow waters as a result of greater penetration of UV-B radiation, 

mixing within the water body and input of terrestrial material (Findlay and 

Sinsabaugh, 1999; Spencer et al. 2009). Moreover, DOM may be degraded 

directly (by alteration of the DOM structure) or indirectly (by reactions with free 

radicals created by the application of light). From a catchment perspective, up-

stream sites are generally dominated by inputs of more terrestrially derived DOM 

and have higher concentrations of dissolved organic carbon (DOC) (Dalzell et al., 

2009), whilst downstream DOM will often be hydrologically controlled by rapid 

transport especially in large rivers (Findlay and Sinsabaugh, 1999). Light 

penetration at downstream sites may also be less and mixing depths greater, 

decreasing the effects of photolysis. The photoproducts from photochemical 

reactions including low molecular weight organic compounds, trace gases, 

inorganic carbon, phosphorous- and nitrogen-rich compounds (Cory et al., 2007; 

Kowalczuk et al., 2009; Winter et al., 2007). 

In natural water bodies DOC provides an important primary food source for 

aquatic food webs (Pace et al., 2004) and ecosystem metabolism (Bradley et al., 



! 98!

2007). High DOC concentrations are common particularly in organic soil pore-

waters, and in surface and sub- surface water flows from wetlands (Evans et al., 

2005). However, the magnitude and nature of these carbon fluxes are likely to be 

affected by catchment management, including wetland drainage, river 

channelisation and/or regulation. This is particularly evident in South and 

Southeast Asia where many catchments have experienced rapid conversion of 

land to agriculture (Atapattu and Kodituwakku, 2009; Mattsson et al., 2000; Sidle 

et al., 2006) with a considerable reduction in wetland extent. In Indonesia, for 

example, ~45% of the original peat swamp forest has been lost (Rixen et al., 

2008) and a substantial proportion has been converted into rubber (Hevea 

brasiliensis) and oil palm plantations (Elaeis guineensis) (Hooijer et al., 2006). In 

Malaysia land use has changed primarily as a result of government development 

policies (Abdullah and Nakagoshi, 2006), which in Sabah (Malaysian Borneo) has 

encouraged the development of oil palm plantations. Land conversion has been 

extensive and rapid especially in east Sabah (in Sandakan, Lahad Datu and 

Tawau), however, many of the environmental implications of the developing agro-

forestry industry have not been fully quantified. 

The ability to determine the impacts of environmental degradation on 

freshwater systems has been significantly enhanced by a number of new 

techniques to characterise the nature of DOM, including fluorescence excitation-

emission matrices spectroscopy (EEMs) (Coble et al., 1990; Baker et al., 2008; 

Hudson et al., 2007; Mariot et al., 2007; Parlanti et al., 2000). EEMs provide a 

summary of the total luminescence spectra which are exhibited as contour maps 

of the fluorescence landscape with iso-intensity levels portraying various peaks. 
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Advances in bench top spectrofluorometers enable EEMs that extend into the 

shortwave UV (>200 nm) to be generated rapidly, permitting DOM to be 

characterised by individual fluorescence centres using shortwave excitation and 

emission maxima (Spencer et al., 2007).  

The nature of DOM reflects the influence of many factors including 

landscape, vegetation / land use, hydrology and climate, and it is important to 

understand the way in which water moves through a catchment when interpreting 

EEMs. Here, determination of environmental isotopes (2H and 18O) can provide 

invaluable information on the relative contributions of recent rainfall events and 

stored waters to river systems from which it may be possible to quantify the 

mixing between meteoric and groundwater end-members (Darling, 2004; Kendall 

and Coplen, 2001). 

This chapter presents the results from a summer base-flow sampling 

programme in the Lower Kinabatangan River, Sabah, Malaysia. This work sought 

to characterise DOM composition, and its relationship to recent meteoric and 

stored groundwater sources as inferred by stable isotopes, in a tropical 

catchment which is undergoing rapid agricultural change from logging and 

development of oil palm plantations. Specifically, the objective is to characterise 

and interpret spatial patterns and trends in DOM (concentration and quality) 

across a tropical agricultural catchment using UV-visible absorbance, 

fluorescence spectroscopy and isotope ratio mass spectrometry and inferring 

differences in the pattern of water movement through the catchment from 

environmental isotopes (18O and 2H). 
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4.2 RESULTS 
 

4.2.1 Stable Isotope Analyses  

The results of stable isotope analyses (!18O and !2H) are shown in Table 4.1 

and plotted on Fig. 4.1. The isotopic composition of rainfall varies on a global 

scale and defines the global meteoric water line (GMWL, defined as !2H = 8 " 

!18O + 10), local or regional meteoric water lines that have slightly different 

slopes and intercepts can be determined from annual precipitation records. 

Araguás-Araguás et al. (1998) established a RMWL for neighbouring Sarawak 

which provides a useful reference for the present study. Most meteoric water 

will lie along the RMWL, surface waters that subsequently evaporate from an 

RMWL source will progress at a lower slope away from that line, as they 

become isotopically heavier. Since the initial water vapour from oceanic 

sources does not form completely in equilibrium, there is a slight surplus of !2H, 

known as the d-excess of about +10 per mil !2H (see GMWL equation above). 

The deuterium excess is established at the time of vapour formation, usually 

from an oceanic source, and can be used to identify different water vapour 

sources. There are few studies on the stable isotopes of surface waters and 

rainfall in this part of SE Asia but Stephens and Rose (2005) provide some data 

from a study in neighbouring Sarawak which is included in the table below 

(Table 4.1). 
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Fig. 4.1 Plot of !18O versus !2H for sampling sites at the Lower Kinabatangan 

River Catchment, and comparison with the regional meteoric water line (RMWL) 

and the meteoric water line for local precipitation. 

 

Opportunistic spot sampling of meteoric events was undertaken in the 

Kinabatangan catchment in August and September 2008. The !18O of meteoric 

water in Sukau ranged from -9.7‰ to -2.5 ‰ while !2H values ranged from -61 

‰ to -7.6 ‰, all lying parallel to, but slightly above, the RMWL. The recent 

precipitation has a d-excess of +11.9 compared to the RMWL published value of 

9.2, indicating a slightly heavier vapour source for these short-term events 

compared to the longer-term mean. The large absolute range of values 

observed can be explained by the fact that the rainfall samples were not 

representative of complete events, but only a small part of them. Deuterium 

isotope values within single rainfall events can vary by as much as 30‰ in a 

period of 15 minutes within a single rainfall event at temperate latitudes.  
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Isotopic variability within single rainfall events in tropical regions will also be 

strongly controlled by the ‘amount effect’ (Dansgaard, 1964). 

The environmental isotopes provide useful background information on the 

dynamics of water movement through the Lower Kinabatangan catchment. The 

isotopic composition of precipitation samples varies significantly in !18O and !2H 

during the period of sampling, becoming isotopically lighter over time. The 

groundwater samples from Gomantong Caves are indicative of the mean annual 

isotopic composition of precipitation in the catchment: approximately -40 ‰ for 

!2H and -8 ‰ for !18O. The isotopic composition of the main stem of the 

Kinabatangan River and tributaries are lighter than the annual mean composition 

of precipitation, intersecting the regional (and recent) meteoric water lines at 

approximately -50 ‰ (!2H) and -8 ‰ (!18O). These waters evolve away from the 

meteoric water lines at a lower slope as a result of evaporation. Some of the 

tributaries respond more strongly (i.e. with a reduced slope) indicating greater 

evaporation across these sub-catchments. This might reflect a slower rate of 

water movement to the channel and/or higher evaporation from intercepted 

precipitation. Significantly, samples collected from canals associated with oil palm 

plantations are amongst the most evolved waters, which suggests a different 

pattern of water movement through the oil palm plantations sampled. This may 

be a result of the canals intercepting the regional water-table and thus have a 

higher groundwater component of total flow. 
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4.2.2 DOM Characteristics 

This chapter reports the results of a single, summer base-flow survey in the form 

of the mean and standard deviation of fluorescence and UV-visible absorption of 

multiple samples analysed within each study site across the four study regions. 

In-situ measurements at the time of sampling indicated that water temperatures 

(pH) in Batu Putih ranged from 25.6 - 31.7 ºC (4.8 – 8.5); 26.7-30.2 ºC (5.5 – 

7.6) at Sukau; 25.0-28.8 ºC (6.4 – 6.6) at Bilit and 27.8-29.9 ºC (5.0-6.6) at Abai. 

Table 4.2 and Fig. 4.2 summarise the results of the DOM absorbance and 

fluorescence analyses across all sampling sites within the Lower Kinabatangan 

catchment, while three contrasting sample EEMs are given in Fig. 4.3. The DOM 

peak A and C intensities (Fig. 4.2d & 4.2f) indicate that across all sites, mean 

peak A intensity ranged from 140 to 1031 units, and mean peak C intensity from 

114 units to 886 units. The two peaks are also strongly correlated (r=0.9, n=225), 

as observed in other DOM studies (e.g. Baker and Spencer, 2004) indicating that 

both fluorescence peaks are likely to have no significant contribution from other 

fluorescent molecules such as optical brighteners, which would generate 

additional fluorescence in the peak C region (Baker, 2002a). Lowest peak A and 

C fluorescence intensities are observed in the groundwater springs (SK6). 
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Table 4.2 Summary mean of absorbance, spectral slope, fluorescence emissions and intensities and PARAFAC data for the Lower 

Kinabatangan River Catchment (standard deviation in parentheses).  

Sample 
number 

Fluorescence PARAFAC Components 

Peak A Peak C Peak T280 Itot IC1 IC2 IC3 

Sampling 
Station 

 From 
main 
river 

Absorption 
coefficient  
a254 (/m) 

Absorption 
coefficient  
a340 (/m) 

Spectral 
Slope 
(/nm) 

Emission 
! (nm) 

Intensity 
(units) 

Emission ! 
(nm) 

Intensity 
(units) 

Intensity 
(units) 

    

Batu Putih 
(BP) 

                     

Sg. Pin (BP1) 21 ** 97.6 (3.5) 33.6 (1.8) 0.013 428 (7) 898 (68) 422 (7) 612 (57) 161 (30) 62.5 
(9.1) 

20.4 
(3.9) 

28.1 
(5.6) 

14 (5) 

Sg. Koyah 
(BP2) 

18 ** 82.1 (3.4) 28.7 (1.4) 0.013 430 (6) 655 (60) 424 (7) 424 (42) 112 (28) 40.7 
(4.8) 

13.6 
(1.7) 

18.7 
(2.3) 

8.4 
(1.8) 

BS Mill  (BP3) 3 ** 89.2 (2.2) 34.2 (2.0) 0.012 421 (6) 635 (18) 423 (5) 401 (13) 120 (10) 41.3 
(0.5) 

13.6 
(0.5) 

18.3 
(0.3) 

9.5 
(1.0) 

PS Plantation 
(BP4) 

13 ** 81.6 (5.2) 30.9 (2.0) 0.013 428 (11) 499 (163) 426 (11) 256 (116) 109 (49) 26.5 
(11) 

8.7 
(4.2) 

10.8 
(5.2) 

7.1 
(1.8) 

DGFC (BP5) 1 ** 62.2 ** 20.3 ** 0.019 408 ** 409 ** 430 ** 194 ** 255 ** 27.0 
(**) 

5.9 
(**) 

9.1 
(**) 

12.0 
(**) 

Canals  
(BP 6-8) 

3 ** 142.5 (39.8) 47.9 (15.0) 0.013 436 (3) 822 (295) 441 (14) 671 (274) 105 (33) 57.4 
(20.1) 

24.4 
(11.9) 

24.4 
(8.4) 

8.6 
(2.7) 

Sukau (SK)                      
Sg. Resang 
(SK1) 

27 3 81.9 (3.8) 34.8 (1.8) 0.011 428 (9) 351 (90) 431 (12) 185 (62) 70 (32) 17.4 
(5.4) 

6.3 
(2.5) 

7.1 
(2.2) 

4.0 
(1) 

Sg. Resik 
(SK2) 

12 3 90.0 (1.7) 40.1 (1.1) 0.010 424 (4) 297 (16) 430 (7) 154 (7) 58 (11) 14.6 
(0.8) 

5.1 
(0.3) 

6.1 
(0.5) 

3.5 
(0.3) 

Kuala Sukau 
(SK3) 

18 3 86.8 (2.2) 40.6 (1.2) 0.009 428 (9) 303 (17) 428 (10) 162 (13) 52 (8) 15.1 
(0.8) 

5.3 
(0.5) 

6.4 
(0.4) 

3.4 
(0.3) 

Malbumi 
Plantation 
(SK4) 

12 3 123.7 (14.5) 59.8 (9.0) 0.008 431 (9) 325 (87) 429 (15) 209 (63) 59 (15) 17.3 
(4.1) 

6.3 
(1.8) 

7.1 
(1.8) 

4.0 
(0.5) 

Sg. 
Menanggol 
(SK5) 

18 3 106.8 (8.4) 47.6 (6.9) 0.010 432 (6) 443 (129) 437 (14) 282 (64) 57 (12) 23.9 
(6.6) 

9.6 
(3.1) 

10.1 
(2.9) 

4.2 
(0.7) 

Gomantong 
Caves (SK6) 

1 ** 24.4 ** 10.1 ** 0.007 436 ** 254 ** 430 ** 101 ** 49 ** ** ** ** ** 
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Sample 
number 

Fluorescence PARAFAC Components 

Peak A Peak C Peak T280 Itot IC1 IC2 IC3 

Sampling 
Station 

 From 
main 
river 

Absorption 
coefficient  
a254 (/m) 

Absorption 
coefficient  
a340 (/m) 

Spectral 
Slope 
(/nm) 

Emission 
! (nm) 

Intensity 
(units) 

Emission ! 
(nm) 

Intensity 
(units) 

Intensity 
(units) 

    

Bilit (BT)                      
Sg. Tenagang 
Besar (BT1) 

21 3 101.0 (5.1) 39.1 (3.9) 0.013 431 (10) 605 (173) 427 (5) 379 (118) 121 (41) 36.7 
(11.8) 

11.7 
(3.7) 

17.0 
(5.7) 

8.0 
(3) 

Sg. Tenagang 
Kecil (BT2) 

12 3 73.9 (11.0) 30.3 (6.5) 0.011 429 (9) 461 (115) 433 (12) 257 (50) 72 (15) 23.1 
(5.3) 

8.2 
(2) 

10.3 
(2.7) 

4.6 
(0.8) 

Abai (AB)                      
Balat Damit 
(AB1) 

36 3 92.3 (10.5) 39.5 (3.7) 0.010 436 (14) 435 (168) 441 (11) 251 (121) 61 (26) 21.8 
(8.8) 

9.0 
(4.9) 

8.9 
(3.7) 

3.9 
(0.7) 

Sg. Merah 
(AB2) 

21 3 82.1 (6.3) 34.0 (2.7) 0.012 422 (12) 317 (26) 429 (7) 150 (5) 64 (20) 14.2 
(1.8) 

4.9 
(0.2) 

5.8 
(0.7) 

3.5 
(1.7) 

 

** - Data are unavailable. 
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Fig. 4.2 Trends in absorbance and FDOM for each sampling site in the Lower 

Kinabatangan River: (a) a254; (b) a340; (c) Peak A emission; (d) Peak A intensity; 

(e) Peak C emission; (f) Peak C intensity; (g) Peak T280 intensity.  
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Fig. 4.3 Illustrative fluorescence EEMs for selected sampling sites: (a) Ditch 3 

(BP8); (b) Balat Damit 3 (AB1); (c) Gomantong Caves (SK6).  
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Fluorescence intensities were unusually high at some sites. Particularly 

high fluorescence peak A and C intensities were found in Batu Putih (Table 4.2) 

and a greater range in peak A and C intensities was found within this sample 

area than elsewhere in the catchment (i.e. site mean peak A intensity ranged 

from 409 to 898 units; site mean peak C from 194 to 671 units). Very high 

fluorescence intensities were found at the Plantation Ditches (highest peak C 

intensity: 1031 units) and Sg. Pin (highest peak A intensity: 1013 units). 

Comparable data (analyzed using the same instrumentation and Raman 

calibration) from a UK study of a lowland catchment yielded a mean and 

standard deviation for peak A and peak C of 309±88 and 172±69 units 

respectively (Cumberland and Baker, 2007) and 192±76 and 93±79 units 

respectively for a range of SW England rivers (Hudson et al., 2008). 

The maximum emission wavelengths of peak A and peak C fluorescence 

(Table 4.2; Fig 4.2c & 4.2e) are similar across all samples sites except for Sg. 

Tenagang Besar (BT1). The difference between sites in mean peak C and peak 

A emission wavelengths were relatively small for peak A: 422-436 nm at Abai; 

408-436 nm at Batu Putih; 424-432 nm at Sukau and 429-431 nm at Bilit. 

Fluorescence peak C emission wavelengths have been correlated with the 

hydrophobicity of DOM (Baker et al., 2008; Spencer et al., 2009) and 

conceptually this parameter is related to fluorescence indices associated with 

peak C intensity (McKnight et al., 2001; Parlanti et al., 2000). Assuming that the 

fluorescence – hydrophobicity relationship is transferable, then the emission 

wavelengths of the maximum peak C fluorescence observed (420-440 nm; 

Table 4.2), indicated a DOM percentage hydrophobicity within the range of ~40-
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70%. This highlights the high molecular weight and aromatic nature of the 

samples collected from the Lower Kinabatangan River. 

Peak T280 intensities across all sampling sites varied from 32 to 255 units. 

This fluorescence peak is related to microbial activity and the length of time 

between sampling and analysis could account for the increased variability in this 

parameter and the results should therefore be interpreted with caution. 

Fluorescence peak T280 intensities at the upstream Batu Putih sites were high 

compared to other sampling sites, ranging from 60 to 255 units. Sg. Pin (BP1), 

Sg. Koyah (BP2), PS Plantations (BP4), Sg. Resang (SK1), Balat Damit (AB1) 

and Sg. Merah (AB2) had statistically significant for fluorescence peak T280 

intensities. Particularly high peak T280 intensities were found in an oxbow lake 

(Danau Girang Field Centre; DGFC) in Batu Putih (255 units). Peak T280 

fluorescence has been shown to be positively correlated with high biological 

activity and to be strongly related to biochemical oxygen demand (BOD) 

(Hudson et al., 2008). These high intensities probably reflect, in part, the 

presence of the Field Centre and a tourist lodge adjacent to the ox-bow lake. 

This study observed the discharge of untreated sewage directly into the lake, 

and the peak T280 intensity could provide a suitable anthropogenic signal in this 

area. 

UV-visible absorption coefficients at 254 and 340 nm (Table 4.2; Fig 4.2a 

& 4.2b) exhibited considerable variability between sample sites. UV absorption 

has been widely observed to correlate with DOC (Baker and Spencer, 2004), 

and given an absence of direct DOC analyses (as a result of sample size) the 

results can be interpreted as indicating relative variations in DOC. The 
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groundwater springs had the lowest absorption coefficients, demonstrating the 

low DOC in groundwater. The greatest variability in absorption coefficients at 254 

(340) nm were found at sites associated with oil palm plantations: BP6-8: 142.5 

(47.9) m-1 and SK4: 123.7 (59.8) m-1.  

Several parameters can be derived from the UV-visible absorbance and 

fluorescence results, including ratios of fluorescence intensity and the linearised 

gradient of absorbance or spectral slope. Following Helms et al., (2008) the latter 

has been calculated at between 275 and 295 nm. Principal components analysis 

(PCA) of the fluorescence and absorption coefficient data has been conducted to 

investigate the variability of fluorescence and absorbance properties in the 

dataset (Baker, 2002b; Spencer et al., 2007). This revealed three parameter 

clusters: fluorescence intensities of peaks A, C and T280 and S275-295 comprised 

one cluster (strongly correlating with PC1; 39% of the variance), absorption 

coefficients at 254 and 340 nm the second cluster (strongly correlating with PC2; 

26% of the variance) and fluorescence emissions of peaks A and C the third 

cluster (strongly correlating with PC3; 14% of the variance). Fig. 4.4 exhibited the 

PCA loading components for intensities of peaks A, C and T280; emissions of 

peaks A and C; and UV absorbance at 254 and 340 nm. 
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Fig. 4.4 PCA loading components for intensities of peaks A, C and T280; 

emissions of peaks A and C; and UV absorbance at 254 and 340 nm. 

 

Selected parameters from each cluster group were then plotted against 

each other. Fluorescence peak C intensity plotted against a340 is shown in Fig. 

4.5. Fluorescence peak C intensity, when normalized to absorbance at 340 nm, 

has been found to correlate positively with DOM hydrophilicity and inversely with 

metal and organic binding capacity (Baker et al., 2008). Particularly high 

fluorescence per unit absorbance was found in Batu Putih at Sg. Pin site (BP1), 

the Plantation Ditches (BP6-8), Sg. Koyah (BP2) and BS Mill (BP3) which may 

reflect the output of fresh DOM derived from the oil palm plantations and mill. 

Fluorescence intensities per unit absorbance decrease both within individual 

sample regions, as well as between regions, as the sampling points approach 
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the coast. Theoretical lines of constant fluorescence per unit absorbance are 

also shown in Fig. 4.5; water samples would be expected to lie on one of these 

lines if there were no change in DOM character between sites, and if the 

intensity of both parameters was determined by dilution. Fig. 4.5 suggests that 

one subset of samples, those from the main stem of the Kinabatangan and the 

groundwater sites, fall along a dilution line. This also corresponds to the lowest 

fluorescence per unit absorbance of all the samples, with a gradient of 49. This is 

similar to observations by Baker and Spencer (2004) (gradient range 2-6) in the 

UK. The results suggest that there is a loss of fluorescent DOM (within the peak 

C region) between the catchment tributaries and the main stem of the river, 

leading to DOM in the main stem that is relatively less fluorescent per unit 

absorbance.  

 

 

Fig. 4.5 Trends of absorbance against fluorescence peak C intensity for the 

Lower Kinabatangan River catchment. 
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Spectral slope also yields useful information about DOM character and 

has been found to correlate strongly with the molecular weight (MW) of fulvic 

acid isolates (Helms, et al., 2008). Results for the sites, plotted against a340 as 

an indicator of DOM concentration, are presented in Fig. 4.6. The spectral slope 

is lowest in Sukau (SK1-6), indicating DOM of a higher molecular weight, whilst 

samples from Batu Putih have the highest spectral slope (lowest molecular 

weight). An indicative four times difference in molecular weight can be seen 

between the results and the spectral slope of Suwannee River natural organic 

matter (SRNOM) (Helms et al., 2008). Other studies have reported S275-295 to be 

~13-17 x 10-3 nm-1 in freshwater samples from Chesapeake Bay, USA (Helms et 

al., 2008), 12.2-19.9 x 10-3 nm-1 in Yukon River, Alaska (Spencer et al., 2009) 

and ~18-19 x 10-3 nm-1 from eutrophic Lake Taihu, China (Zhang et al., 2009b). 

Spectral slope was found to increase with irradiation (Helms et al., 2008; Zhang 

et al., 2009a; Zhang et al., 2009b). However, the main stem river-water samples 

were characterised by a lower spectral slope (7-19 x 10-3 nm-1), especially in the 

main river compared to tributaries, suggesting that the former are relatively 

higher molecular weight. This relatively non-fluorescent and high molecular 

weight DOM might occur due to the formation of relatively stable organic 

complexes given the high concentration of fine sediment within the fine colloidal 

(<0.7 !m) size range, rather than as a result of photo-degradation processes. 
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Fig. 4.6 UV absorbance at 340 nm against Spectral Slope (S275-295) for each 

sampling site.  

 

4.2.3 Parallel Factor Analysis (PARAFAC) Modelling  

Three fluorescent components were identified by PARAFAC using EEMs of all 

samples collected from the study area (Fig. 3.1), with the exception of the 

groundwater samples. The ratio of the PARAFAC component intensity to the 

total fluorescence intensity for each sampling site is summarised in Table 4.2. 

The excitation and emission pairs of the main peak positions for each 

component are presented in Fig. 4.7, while Table 4.3 summarises the results 

together with details of PARAFAC components identified by selected previous 
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studies. The PARAFAC model identified three terrestrial (ubiquitous) peaks as 

characteristic fluorescent components in the Lower Kinabatangan River 

catchment. The average DOM composition pattern of samples collected is: C1 > 

C2 > C3. 

 

Fig. 4.7 Fluorescence signatures of three identified PARAFAC model 

components. Contour plots present spectral shapes of excitation and emission of 

derived components. Line plots adjacent to each contour plot present split-half 

validation results for each identified component. Excitation (dotted line) and 

emission (solid line) loadings for each component, obtained from two independent 

PARAFAC models on random halves of the data array. 
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Table 4.3 Spectral characteristics of excitation and emission maxima of three 

components identified by PARAFAC modeling for the whole EEMs data set 

collected in the Lower Kinabatangan River catchment compared to previously 

identified sources. 

Component 
no. 

Excitation 
maximum 
(nm) 

Emission 
maximum 
(nm) 

Coble et 
al. (1996); 
Parlanti 
et al. 
(1998) 

Description and probable source 

1 290 (345) 
 

458 
 

Peak A  
< 260 / 
448-480 
 
 
 
 
 
 
 
 
 
 
Peak C 
320-360 / 
420-460 

Terrestrial humic-like substances, 
widespread 
Hydrophobic acid fraction (HPOA), 
suggested as photo-refractory 
Component 1: 270 (365) / 453 
(Zhang et al., 2009b) 
Component 2: 255 / 380-460 
(Luciani et al., 2008) 
Component 3: 270 (360) / 478 
(Stedmon et al., 2003) 
Component 3: 250 (355) / 461 (Yao 
et al., 2011) 
 
Ubiquitous humic-like substances, 
widespread 
Hydrophobic acid fraction (HPOA)  
Component 1: 350 / 400-450 
(Luciani et al., 2008) 
Component 1: 345 / 462 
(Yamashita et al., 2010b) 
Component 4: 350 / 420-480 
(Kowalczuk et al., 2009) 

2 315 
 

398 
 

3 290 
 

360 
 

Peak M 
290-325 / 
370-430 
 

Terrestrial humic-like substances 
Hydrophobic acid fraction (HPOA) 
Component 3: 260(370) / 490 
(Murphy et al., 2008) 
Component 1: <250(335)/428 (Guo 
et al., 2011) 

Secondary excitation band is given in brackets. 

 

The excitation maximum for C2 occurred below 315 nm at 398 nm 

emission and the per cent contribution of modelled fluorescence is 43%. The 

characterisation of C2 has been previously described by Coble (1996) and 
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Parlanti et al., (2000) as peak M and marine in origin. Stedmon et al., (2003) has 

suggested that this component was observed in ‘terrestrially dominated end-

member samples’ while more recently, Fellman et al., (2010) identified this peak 

as ultraviolet A (UVA); a component with low molecular weight, which they 

attributed to microbial processing. This component is common in marine 

environments associated with biological activity but is also found in wastewater, 

wetland and agricultural environments. For example, Pollard and Ducklow 

(2011) found that the water column in a subtropical river (Bremer River, 

Australia) was turned over every two days, due to DOC consumption by bacteria 

with bacterial specific growth rates were found to be ~20 times greater than that 

previously observed in marine ecosystems. Thus, peak M in the samples is 

probably derived from microbial and/or photo-degradation processes. 

Component C1 contributed 35% of modelled fluorescence for the 

samples, and is a combination of two non-separated peaks of different 

excitation. It shows a double excitation maxima at 345 and 290 nm, which 

correspond to the type A and C; and a single emission peak at 458 nm. The 

spectral characteristics of C1 are also reported by previous studies: Kowalczuk 

et al., (2008), Luciani et al., (2008), Stedmon and Markager (2005a) and 

Yamashita et al., (2008) as ubiquitous, terrestrially derived, which occurs 

commonly in diverse aquatic environments. Peak A fluorescence has been 

observed in both marine and terrestrial DOM (Coble 1996). Component C3 

occurred at a maximum excitation wavelength of 290 nm and emission 

wavelength of 360 nm, corresponding to peak M and contributes 22% of 

modelled fluorescence.  
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PARAFAC component C2 was observed to be present at the same sites 

where there is high peak C fluorescence intensity per unit absorbance, while 

component C1 was present with low spectral slope results. Therefore high peak 

C intensities are probably due to two overlapping fluorophores, which PARAFAC 

splits into components C1 and C2, whereas at the other sites, there is just a 

single component, C1.  

Fig. 4.8 (a) to (c) presents the correlation and comparison graphs 

between the PARAFAC components C1, C2 and C3 against the peak C and A 

intensities (r2 = 0.95; r2 = 0.93; r2 = 0.64 respectively), which both  show a strong 

positive correlation. Fig. 4.8 (d) to (g) plot the PARAFAC components C1, C2 

and C3 against UV absorbance at 340 nm respectively for both PARAFAC and 

peak picking results. The PARAFAC results show both components C1 and C2 

are in agreement with Fig. 4.7. DOM hydrophilicity was found to decrease as 

DOM travels from Batu Putih (BP) to Abai (AB), and may also reflect 

degradation of the DOM from peak C (PARAFAC component C1) to peak A 

(PARAFAC component C2). This dilution trend can also be seen in Fig. 4.8 (h) 

to (k) when the PARAFAC components C1, C2 and C3 were plotted against the 

spectral slope for both PARAFAC and peak picking results. It also showed that 

the same sampling sites are visible at the same area in each graph (Fig. 4.8 (d) 

to (k)). 
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(a) (b) 

 

 

(c)  
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Peak picking PARAFAC 

  
(d) (e) 

  
(f) (g) 
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Peak picking PARAFAC 

  
(h) (i) 

  
(j) (k) 
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(l) 
 

Fig. 4.8 Correlation and comparison graphs between: (a)-(c) PARAFAC 

component C1, C2 and C3 vs peak C intensity and peak A intensity respectively; 

(d)-(g) Comparison between PARAFAC components and peak picking results for 

a340 (/m); (h)-(k) Comparison between PARAFAC components and peak picking 

results for Spectral Slope (/nm); (l) Ratio of PARAFAC component C2/C1 vs peak 

C emission. 

 

4.4 DISCUSSION AND CONCLUSIONS  

These results provide important baseline data on the variation in DOM quantity 

and quality in a degraded tropical catchment. In particular, by characterising 

DOM using absorbance and fluorescence, it is possible to differentiate DOM 

characteristics between individual sub-catchments. The strong correlation 

between peak C and peak A fluorescence indicates that the majority of DOM in 

the Kinabatangan catchment comprises terrestrially derived substances, and 
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that the relative loss of peak C fluorescence relative to absorbance is due to a 

change in DOM character. Upstream sites at Batu Putih, including several sites 

closely associated with oil palm plantations (BP3, BP4, BP6-8) have a high 

fluorescence intensity per unit absorbance and high spectral slope, which is 

indicative of relatively low molecular weight organic matter. Downstream sites 

(e.g. at Sukau) have a high UV-visible absorption coefficient, peak C intensity 

fluorescence and low spectral slope, which is indicative of a higher molecular 

weight DOM. 

The application of PARAFAC in this study provides further information on 

the origin and biogeochemical role of the DOM from each sampling site. 

PARAFAC modelling also helps interpret progressive changes in DOM character 

in the Lower Kinabatangan River catchment from upstream to downstream. For 

example, Fig. 4.8 (h) to (k) show that the PARAFAC model is consistent with the 

dilution trends showed in Fig. 4.8 (d) to (g) determined by peak-picking. In 

contrast, Fig. 4.8 (l) demonstrates that the ratio of PARAFAC C2 over C1 does 

not correlate with peak C emission wavelength determined by peak-picking, 

which is an indicator of the hydrophobicity of DOM (Baker et al., 2008). Peak M 

could be indicative of microbial (e.g. Pollard and Ducklow, 2011) and/or 

photodegradation processes, as high amount of sunlight received in the tropical 

regions.  

 Significantly, the variation in fluorescence relative to UV-visible 

absorbance between tributary sites and the main stem of the Kinabatangan, 

reveals a loss of highly fluorescent DOM within the catchment. This loss, and the 

general spatial variability of DOM character, reflects the interaction between at 
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least three sources of variability of DOM within the catchment: i. spatial variation 

in DOM source; ii. effects of transport  (e.g. degradation over  time  from  photo-

degradation); and iii. differences among DOM in the propensity for biological and 

photochemical removal. 

 It is hypothesised that in the Kinabatangan Catchment, rapid oxidation by 

photochemical and especially microbial processes to produce carbon dioxide 

(Cory et al., 2007) preferentially breaks down the aromatic carbon containing 

molecules which account for the fluorescent properties of DOM. Samples from 

low-order tributaries would be expected to be dominated by the input of 

terrestrially derived DOM, which would include in the catchment DOM that 

reflects activities associated with oil palm plantations. This DOM is regarded as 

rapidly photo and biodegraded to less fluorescent, stable DOM, probably present 

as fine colloidal complexes, and where downstream DOM concentration and 

character will often be hydrologically controlled by rapid transport (Findlay and 

Sinsabaugh, 1999). 
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5. SEASONAL VARIATIONS IN THE COMPOSITION OF DISSOLVED 

ORGANIC MATTER IN A TROPICAL CATCHMENT: THE LOWER 

KINABATANGAN RIVER, SABAH, MALAYSIA 

 

Scope of Chapter 

Dissolved organic matter (DOM) was characterised in waters sampled in the 

Lower Kinabatangan River Catchment, Sabah, Malaysia between October 2009 

and May 2010 (concentrated sampling programmes). This chapter analyses the 

data collected, seeking: i. to distinguish between the quality of DOM in waters 

draining palm oil plantations (OP), secondary forests (SF) and coastal swamps 

(CS) and, ii. to identify the seasonal variability of DOM quantity and quality. 

Surface waters were sampled during fieldwork campaigns that spanned the wet 

and dry seasons. DOM was characterised optically by fluorescence Excitation 

Emission Matrix (EEM), the absorption coefficient at 340 nm and the spectral 

slope coefficient (S). Parallel Factor Analysis (PARAFAC) was undertaken to 

assess DOM composition from EEM spectra and five terrestrial derived 

components were identified: (C1, C2, C3, C4 and C5). Components (C1 and C4) 

contributed most to DOM fluorescence in all study areas during both the wet and 

dry seasons. The results suggest that component C1 could be a significant (and 

common) PARAFAC signal that is found widely in tropical regions. Both wet and 

dry seasons were dominated by peak M (C2 and C3), which appear to be 

anthropogenic in origin due to active land use changes in the study area. 
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5.1 INTRODUCTION 

In a recent synthesis and re-evaluation of the global carbon cycle, Cole et al. 

(2007) suggested that of the 1.9 Pg C per year delivered from land to river, 

approximately half of the carbon was consumed within river systems before 

reaching the ocean. This highlights the importance of in-stream processing and 

corroborates research in South America by Richey et al. (2002) who found that 

Amazonian rivers outgassed more than ten times the quantity of carbon exported 

to the ocean in the form of total organic carbon or dissolved organic carbon 

(DOC). Significantly, determination of the carbon isotopic composition of DOC 

has suggested that contemporary organic carbon (i.e. that < 5 years in age) was 

the dominant source of excess carbon dioxide that drives outgassing in 

Amazonian rivers (Mayorga et al., 2005). Together, these results emphasise the 

importance of land-derived, biologically available carbon, for heterotrophic 

microbial processes in river systems. 

Tropical wetlands have been estimated to contribute ~60% of total (global) 

water, sediment and organic carbon input to the ocean (Alkhatib et al., 2007), 

however, these wetlands are seriously threatened by environmental deterioration 

as currently evident in S and SE Asia where many catchments have experienced 

rapid conversion of land to agriculture (Atapattu and Kodituwakku, 2009; 

Mattsson et al., 2000; Sidle et. al., 2006) and a concomitant reduction in wetland 

extent. Particularly significant has been the increasing extent of palm oil 

plantations which have been estimated to cover >13.5 million ha across the 

Tropics (Fitzherbert et al., 2008). Malaysia and Indonesia produce > 80% of the 
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world palm oil and increases in oil palm production are associated with the 

drainage of floodplain wetlands, and loss of primary and secondary forest (Koh 

and Wilcove, 2008). At present, the majority of oil palm development is confined 

to SE Asia, however, Fitzherbert et al. (2008) highlight the suitability of areas of 

Africa (Congo Basin) and S. America (Amazon) for oil palm plantation, and 

further developments are likely in these areas.  

The full implications of these recent and in some places accelerating 

changes, for carbon export have yet to be considered in detail. However, recent 

advances in fluorescence spectroscopy have significantly enhanced the ability to 

quantify organic matter composition in water (e.g. reviews by Blough and Del 

Vecchio, 2002; Fellman et al., 2010) enabling study of the molecular chemistry of 

fulvic acid and its interaction with metal ions and organic chemicals (Senesi, 

1990). DOM fractions possess fluorescent properties enabling monitoring of DOM 

in soils (Fuentes et al., 2006), rivers (Ahmad et al., 2002; Williams et al., 2010), 

lakes (Miller et al., 2009), estuaries and coastal environments (Stedmon and 

Markager, 2005a; Yamashita et al., 2008). Specifically in a tropical catchment, 

Spencer et al. (2010) demonstrated the utility of optical determination of DOM 

composition in a pristine tributary of the Congo where they found significant 

temporal variations in DOM quantity and quality. Spencer et al. (2010) found 

DOM export to be greater during the April flush, and they suggest tropical rivers 

are likely to export more labile DOM during wet periods. These results have 

implications for downstream and marine ecosystems that receive DOM from 

these sources, but these ideas have still to be tested in other catchments.  
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In this study, fluorescence excitation emission matrix (EEM) spectra were 

reassessed using Parallel Factor Analysis (PARAFAC). PARAFAC enables the 

decomposition of an EEM dataset into the least squares sum of several 

mathematically independent components parameterized by concentrations 

(loadings) and excitation and emission spectra and corresponding, ideally, to a 

chemical analyte or a group of strongly covarying analytes (Kowalczuk et al., 

2009). This modelling technique has been found to be invaluable in 

characterising and quantifying changes in DOM fluorescence permitting different 

DOM fractions to be traced through the natural environment (Cory and McKnight, 

2005). 

Given this context, this paper seeks to characterise DOM quality in a 

tropical catchment in SE Asia that has experienced recent deforestation and 

rapid agricultural development. The floodplain of the Lower Kinabatangan River 

in East Sabah, Malaysia typifies many catchments in this region with an increase 

in the extent of oil palm plantations. Moreover, conservation of riparian secondary 

forest and coastal wetlands provides an opportunity to determine the degree to 

which DOM quantity and quality may firstly be affected by land-use, and secondly 

vary over time as a result of the seasonal flood pulse (Junk, 2002). Accordingly, 

the objectives of this study were twofold:   

• to characterise the quality of the DOM drained from palm oil plantations, 

secondary forests and coastal wetlands (the three main land covers in 

Sabah, Malaysia) using fluorescence spectroscopy and PARAFAC (Bro, 

1997; Stedmon et al., 2003);  
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• to determine the seasonal variability of DOM quantity and quality, and its 

relationship to land use. 

 

5.2 RESULTS AND DISCUSSION  

5.2.1 Characterisation of PARAFAC Components 

Five fluorescent components were identified by PARAFAC from the 510 EEMs of 

samples collected from the study area (Fig. 3.2). The excitation and emission 

pairs of the main peak positions for each of the components are summarised in 

Tables 5.1 and 5.2, and individual components are plotted in Fig. 5.1. The Tables 

also compare the results with components identified by selected studies that 

have modeled DOM in marine, oceanic and estuarine environments.  
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Table 5.1 Spectral characteristics of excitation and emission maxima of five 

components identified by PARAFAC modelling for the whole EEMs data set 

collected in the Lower Kinabatangan River catchment compared to previously 

identified sources. 

Component 
in this 
study 

Excitation 
maximum 
(nm) 

Emission 
maximum 
(nm) 

Coble et 
al.,(1996);  
Coble et 
al. (1998) 

Description and probable source 

C1 345 
 

466 
 

Peak C 
320-360 / 
420-480 

Ubiquitous humic-like substances, 
widespread 
Hydrophobic acid fraction (HPOA)  
Component 1: 350 / 400-450 (Luciani 
et al., 2008) 
Component 1: 345 / 462 (Yamashita 
et al., 2010b) 
Component 4: 350 / 420-480 
(Kowalczuk et al., 2009) 

C2 305 
 

426 
 

C3 325 
 

408 
 

Peak M 
290-312 / 
370-420 
 

Terrestrial humic-like substances, 
widespread 
Hydrophobic acid fraction (HPOA), 
suggested as photo-refractory 
Component 2: 255 / 380-460 (Luciani 
et al., 2008) 
Component 3: 255 (330) / 412 
(Zhang et al., 2009b) 
Component 3: 270 (360) / 478 
(Stedmon et al., 2003) 
Component 3: 250 (355) / 461 (Yao 
et al., 2011) 

C4 290 464 Peak A 
260 / 380-
460 

Terrestrial humic-like substances, 
widespread 
Hydrophobic acid fraction (HPOA), 
suggested as photo-refractory 
Component 1: 270 (365) / 453 
(Zhang et al., 2009b) 
Component 2: 255 / 380-460 (Luciani 
et al., 2008) 
Component 3: 270 (360) / 478 
(Stedmon et al., 2003) 
Component 3: 250 (355) / 461 (Yao 
et al., 2011) 

C5 290 338 Peak M 
290-312 / 
370-420 

Ditto with description for C2. 
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Table 5.2 Descriptive statistics of environmental conditions and PARAFAC model of selected sampling stations in the Lower 

Kinabatangan River Catchment. 

      pH Salinity DOC (mg/l) a340 (/m) S275-295 (/nm) IC1 IC2 IC3 IC4 IC5 I total 
Inter-monsoonal Mean 6.94 0.07 15.30 42.14 0.0128 8.17 10.93 13.95 8.92 5.72 47.69 
 Std. dev. 0.52 0.03 9.50 23.25 0.0018 3.68 3.83 5.75 3.10 2.96 15.88 
 Variance 0.27 0.00 90.24 540.63 0.0000 13.53 14.66 33.05 9.59 8.76 252.27 

Mean 6.77 0.06 11.59 62.37 0.0104 10.46 14.94 11.70 25.63 3.39 66.11 
Std. dev. 0.66 0.02 3.58 35.46 0.0016 5.03 6.18 4.96 10.70 0.87 26.85 

Wet Season 

Variance 0.44 0.00 12.82 1257.48 0.0000 25.28 38.24 24.64 114.55 0.75 721.17 
Mean 6.90 0.09 7.26 20.28 0.0125 7.13 11.21 9.11 17.61 6.27 51.33 
Std. dev. 0.75 0.03 1.61 5.80 0.0015 1.92 3.44 2.87 5.13 3.26 13.96 

OP 

Dry Season 

Variance 0.56 0.00 2.58 33.59 0.0000 3.68 11.85 8.23 26.27 10.61 194.99 
Inter-monsoonal Mean 6.89 0.04 10.20 55.75 0.0113 8.06 9.44 13.29 7.62 3.23 41.63 
 Std. dev. 0.25 0.01 7.64 13.17 0.0012 3.31 3.64 5.07 2.93 1.66 15.86 
 Variance 0.06 0.00 58.35 173.43 0.0000 10.97 13.26 25.75 8.59 2.75 251.64 

Mean 6.93 0.04 11.17 75.88 0.0100 9.90 13.28 10.08 23.59 2.89 59.75 
Std. dev. 0.30 0.02 5.46 65.67 0.0019 6.55 7.69 5.95 13.77 0.75 33.96 

Wet Season 

Variance 0.09 0.00 29.79 4312.30 0.0000 42.85 59.07 35.37 189.74 0.57 1153.60 
Mean 6.87 0.07 7.42 28.04 0.0113 7.74 11.48 8.84 18.45 4.51 51.03 
Std. dev. 0.24 0.04 2.40 6.40 0.0012 3.54 5.17 4.09 8.36 3.18 22.99 

SF 

Dry Season 

Variance 0.06 0.00 5.77 40.93 0.0000 12.52 26.71 16.70 69.90 10.13 528.59 
Inter-monsoonal Mean 6.20 1.33 10.36 45.49 0.0125 8.48 10.34 14.23 8.14 2.83 44.03 
 Std. dev. 0.76 2.15 5.03 17.49 0.0018 3.07 3.32 4.88 2.52 0.95 14.16 
 Variance 0.57 4.62 25.27 305.76 0.0000 9.41 11.02 23.84 6.35 0.91 200.60 

Mean 5.95 0.08 14.70 100.49 0.0112 14.34 18.16 14.14 33.12 2.71 82.70 
Std. dev. 0.76 0.04 4.14 62.52 0.0023 6.15 6.50 5.45 12.16 0.85 29.65 

Wet Season 

Variance 0.57 0.00 17.15 3908.20 0.0000 37.88 42.27 29.74 147.76 0.73 879.15 
Mean 7.11 2.39 6.21 14.03 0.0135 6.16 10.23 7.58 16.66 5.92 46.55 
Std. dev. 0.30 2.09 0.95 4.59 0.0019 1.47 2.57 1.84 4.65 2.58 10.66 

CS 

Dry Season 

Variance 0.09 4.38 0.91 21.02 0.0000 2.15 6.62 3.40 21.64 6.68 113.55 

Sahana Harun
133



! 134!

    

    

  

  

Fig. 5.1 PARAFAC model output showing fluorescence signatures of five components identified. Contour plots present 

spectral shapes of excitation and emission of derived components. Line plots at right side of each contour plot present split-

half validation results for each identified component. 
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The PARAFAC model identified 5 terrestrial derived substances: component 

1 (C1), component 2 (C2), component 3 (C3), component 4 (C4) and component 

5 (C5). Components C1 and C4 are common in estuarine, marine and oceanic 

environments and represent fluorophores that have the longest excitation 

wavelength and broadest excitation band as well as the longest emission 

wavelength associated with a broad emission band. Components C2, C3 and C5 

with shorter emission wavelengths has been interpreted as representing marine 

humic substances and also as dissolved organic matter that are microbially-

derived.  

Terrestrially-derived components C1 (peak C) and C4 (peak A) excitation 

maximums occurred below 345 nm and 290 nm, at 466 nm and 464 nm emission 

respectively (Fig. 5.1). The characteristics of C1 and C4 are similar to the 

previously reported ubiquitous, fulvic acid-like, component which commonly 

occurs in diverse aquatic environments. This has been observed in tropical and 

sub-tropical regions: Component 1 of Luciani et al. (2008), Stedmon and 

Markager (2005b) and Yamashita et al. (2010); Component 2 of Fellman et al. 

(2009), Component 3 of Yao et al. (2011) and Component 4 of Kowalczuk et al. 

(2009). The C1 was similar to the humic-like fluorophore in the visible region as 

defined by Coble (1996).  

The excitation maxima for components C2, C3 and C5 occurred below 

305 nm, 325 nm and 290 nm at 426 nm, 406 nm and 338 nm emission 

respectively. The C2 resembles Component 3 of Murphy et al. (2008), and 

Components 4 and 6 of Stedmon et al., (2003) and Yamashita et al., (2010b) 
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respectively. Others have also reported this component: Zhang et al. (2011): 

their Component 1; Luciani et al. (2008): their Component 2; Stedmon et al. 

(2003): their Component 3; Yao et al. (2011): their Component 3; and Stedmon 

et al. (2003): their Component 5.  

Components C2, C3 and C5 have been reported as peak M and may 

have a marine source (Coble, 1996; Parlanti et al., 2000). Subsequent study by 

Stedmon et al. (2003) indicated that this component was found in ‘terrestrially 

dominated end-member samples’, and more recently this peak was observed 

as ultraviolet A (UVA); a low molecular weight component, which associated to 

microbial activities (Fellman et al., 2010). Peak M is common in marine 

environments and has been related to biological activity. However, it is also 

found in wastewater, and in wetland and agricultural environments. For 

example, Castillo et al. (2004) found that the DOC concentrations from the 

subtropical lowland rivers of the Orinoco basin, Venezuela was greater in 

blackwater than clearwater rivers, while inverse results were found for the 

average bacterial production in respective type of land use. Nedwell et al. 

(1994) found that the carbon mineralisation in the subtropical Jamaican 

mangrove swamp was higher compared to other transect area, indicated 

abundant availability of OM. Consequently, decomposition processes of 

mangrove leaf litter in Matang, Malaysia was mainly driven by microbes (Sahoo 

and Dhal, 2009), fungi and small invertebrates, depending on the mangrove 

species (Ashton et al., 1999). Thus, it is hypothesised that the peak M in the 

Lower Kinabatangan River catchment with seasonal variations and different 

type of land use (oil palm plantations, secondary forests and coastal swamps) 
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could be derived from microbial and/or photo-degradation processes.  

In which is defined as ‘intensity of the nth component in sample’ has been 

calculated (Section 3.5.1) and showed that the mean DOM compositional pattern 

of all samples is as follows: IC4 > IC2 > IC3 > IC1 > IC5, where terrestrial derived 

peak IC4 has the most abundant spectral characteristics, followed by peak M 

(IC2, IC3 and IC5) and peak C (IC1). The terrestrial derived peak component has 

been described as ubiquitous, photo-labile and derived from agricultural activities 

(Yamashita et al. 2010b). Given the relative land covers in the catchment of the 

Kinabatangan where forests extend across ~74% of the catchment and ~ 26% of 

the catchment is permanently cultivated, largely with oil palm plantations 

(Josephine et al., 2004), this could explain the spectral characteristics and 

abundance of component IC4. 

The PARAFAC components described here, and in other studies of tropical 

catchments (e.g. Luciani et al., 2008; Yamashita et al., 2010) are similar, 

suggesting it is possible to identify common attributes in tropical areas. However, 

DOM characteristics described in most studies to-date, are of DOM with a very 

different origin to that in NE Sabah. Consequently their results and the 

implications for both the Kinabatangan catchment, and tropical regions generally, 

need to be interpreted with caution (Ahmad et al. 2002). 
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5.2.2 DOM Characterisation  

In order to gain more insight on the DOM characterisation, fluorescence indices 

(FI) were used in this study. Discriminant analysis also has been applied to both 

the peak picking and PARAFAC data sets to characterise DOM. Values of peak 

C emission, UV absorbance at 340 nm, spectral slope and different type of ratios 

have been used to determine the pre-dominance of each parameter in each land 

use type: peak C/a340, peak A/peak C intensity, IC1/a340 (peak C/a340), IC2/IC1 

(peak M/peak C), IC3/IC1 (peak M/peak C) and IC5/IC1 (peak M/peak C).  

Following a series of discriminant analyses, a total of two discriminant 

functions were obtained throughout the analysis. Both peak picking and 

PARAFAC data sets show consistent and equivalent trends (Table 5.3, Fig. 5.2). 

 

Table 5.3 Factor structure coefficients from discriminant analysis for both peak 

picking and PARAFAC data sets. 

Fluorescence indices Function 
Peak picking: 1 2 
Peak C/a340 .764* .474 
Peak C Emission -.762* .491 
Spectral Slope .456* .112 
Peak A/Peak C -.031 .568* 
47.1% of original group cases correctly classified. 
   
PARAFAC: 1 2 
IC3/IC1 (Peak M/Peak C) .796* .334 
IC2/IC1 (Peak M/Peak C) .569* .247 
IC5/IC1 (Peak M/Peak C) .400* .203 
IC4/IC1 (Peak A/Peak C) .267* .180 
IC1/a340 (Peak C/a340) -.084 .931* 
Spectral slope .077 .514* 
47.2% of original group cases correctly classified 
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(a) 

 

 
(b) 

Fig. 5.2 Group separation of discriminant analysis for each (a) peak picking and 

(b) PARAFAC data sets. 
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 This analysis suggests that ratio of peak C to a340 and spectral slope was 

negatively correlated with peak C emission in discriminant function 1 (63.9% of 

variance explained) (Table 5.3). The PARAFAC analysis demonstrates that the 

ratios of i. IC2 to IC1 and ii. IC3 to IC1 always correlated positively with IC5/IC1 

and were classified in discriminant function 1 with 69.1% of variance explained. 

Both peak picking and PARAFAC data sets indicate that samples associated with 

oil palm plantations (OP) were mainly contributing to fresh DOM, while those 

collected from coastal swamps (CS) largely comprise terrestrial derived DOM. 

This could also result from DOM degradation (bio- and photo-) in the river 

reaches downstream near the estuary.  

In the case of the PARAFAC data set, the fluorescence indices IC2/IC1, 

IC3/IC1 and IC5/IC1 were positively correlated and dominated by samples 

collected from oil palm plantations (OP) (Fig. 5.2). Coastal swamps (CS) were 

dominated by ratio of IC1/a340 and spectral slope. UV absorbance a340 and 

spectral slope approximate DOM molecular weight (Baker et al., 2008; Helms et 

al., 2008), and thus the ratio of IC1 to a340 could be interpreted as the ratio of 

DOM concentration to molecular weight.  
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5.2.3 Seasonal and Land Use Variations 

DOC concentrations are presented in Table 5.2 with mean concentrations that 

range from 9.88 to 12.85 mg/l. Consistent high values of DOC concentrations 

could indicate high humic materials in the water bodies. Other studies show that 

DOC concentrations in Jiulong River, a subtropical watershed in China varied 

from 0.4 to 13.1 mg/l (Hong et al., 2011); while Yamashita et al (2011) found 

DOC concentrations in three tropical watersheds to vary within the range 142 to 

891 µMC (1.71 to 10.7 mg/l).  

As an example of the seasonal and land use variations of DOM, Fig. 5.3 

plots DOC against PARAFAC component IC1 for each type of land use. Samples 

from oil palm plantations (OP) showed DOC was strongly and positively 

correlated with C1 during the dry season (r2 = 0.8), and this is consistent with the 

discriminant analysis (Table 5.3), which suggests that microbial and/or photo-

degradation processes as well as humic substances are abundant in the OP 

samples. Dry season water samples from downstream Sg. Langat in Selangor, 

Malaysia, located also within oil palm plantations, have mean Biochemical 

Oxygen Demand (BOD) values ranging from 2.1 to 2.6 mg/l (Azrina et al., 2006) 

while a study conducted by Peduzzi and Schiemer (2004) showed high 

abundance of virus particles and elevated bacteria counts in tropical freshwater 

reservoirs in Sri Lanka, during the dry season. DOC concentrations from 

secondary forests (SF) and coastal swamps (CS) were correlated positively with 

C1 during both seasons. This is also consistent with the discriminant analysis 

(Fig. 5.2) where the factor structure coefficients, which indicate peak C, showed 
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that samples from CS were higher than SF. Mangrove forests tend to have rich 

tannins, which is likely to be associated with decreasing bacterial counts (Sahoo 

and Dhal, 2009) and have been identified as hydrophobic acids (Aitkenhead-

Peterson et al., 2003). Both peak picking and PARAFAC results also suggest that 

the inter-monsoonal samples from this study exhibited a correlation between 

spectral slope and fluorescence ratio of peak A/peak C and IC1/a340. This 

suggests there are abundant humic materials within this period. It has also been 

suggested that substantial precipitation might occur during inter-monsoonal 

period, which is normally in October and April (Desa and Niemczynomicz, 1996; 

Suhaila et al., 2010), and this would be associated with fresher DOM inputs to the 

catchment. 
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(a) Oil palm plantations (OP) (b) Secondary forests (SF) 

 

 

(c) Coastal swamps (CS)  
  

Fig. 5.3 DOC against PARAFAC component C1 for each type of land use. 
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6. SPATIAL AND TEMPORAL VARIATIONS IN THE COMPOSITION OF 

DISSOLVED ORGANIC MATTER IN A TROPICAL RIVER: THE LOWER 

KINABATANGAN RIVER, SABAH, MALAYSIA 

 

Scope of Chapter 

Dissolved organic matter (DOM) was characterised along the main stem of the 

Lower Kinabatangan River, Sabah, Malaysia. The objectives of the study were to 

determine DOM quality along a medium sized tropical river affected by recent 

deforestation and specifically to determine the seasonal of DOM quantity and 

quality trends in DOM of waters sampled from different depths, along the main 

stem of the river. A total of 128 water samples were collected in the 

Kinabatangan River at three depths (surface, mid-point and riverbed) at nine 

points in five fieldwork campaigns (between October 2009 and May 2010), three 

of which corresponded with the wet season, one the dry season, and one the 

inter-monsoonal period. DOM was characterised optically by fluorescence 

spectroscopy and parallel factor analysis. Individual Excitation Emission Matrices 

(EEMs) were generated for each sample, together with the absorption coefficient 

at 340 nm; and spectral slope coefficient (S). A PARAFAC model of the data-set 

identified three terrestrially derived components (C1, C2 and C3). DOM variations 

with river depth showed that suspended sediment concentrations were highest at 

the riverbed (1165.2 mg/l) and correlated positively with all the PARAFAC 

components. These components were found to contribute most to DOM 

fluorescence in all study areas, particularly in the wet season. The results imply 
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that C1 could be a significant PARAFAC signal that can be found in tropical 

regions. Both seasons (wet and dry) were dominated by peak M (C2), which 

could be derived from microbial sources and/or photo-degradation processes.  

 

6.1 INTRODUCTION 

The riverine transport of dissolved organic matter (DOM) plays a significant role 

in the global carbon cycle, as it provides a source of atmospheric CO2 and links 

terrestrial and marine ecosystems (Baum et al., 2007; Cole et al. 2007). Cole et 

al. (2007) has suggested that 1.9 Pg C per year is delivered from terrestrial to 

fluvial systems globally and approximately of half of the carbon was consumed 

within rivers before reaching the ocean. Evidently, large rivers are contributing 

actively to the composition, transformation, and processing of DOM and influence 

its subsequent lability as well as reactivity (Massicotte and Frenette, 2011; 

Yamashita et al., 2010a). The composition of riverine DOM is highly dependent 

on various inputs; it could derive from allochthonous and autochthonous sources; 

as well as biogeochemical processes (Massicotte and Frenette, 2011). Organic 

carbon and nutrient export from catchments are controlled by a range of 

environmental factors including hydrology, geomorphology, land use/land cover 

patterns, aquatic light intensity, microbial activities, vegetation types and soils 

within individual catchments (McGroddy et al. 2008; Yamashita et al., 2010b; 

Yang et al., 2012).  

DOM dynamics are also known to be characterised by significant spatial 

and seasonal changes (Findlay and Sinsabaugh, 1999; Ishii and Boyer, 2012; 
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Jaffe et al., 2008). Normally, DOM will be transformed during transport from the 

catchment headwaters (Massicotte and Frenette, 2011); thus influencing its 

quality (Jaffe et al., 2008; Maie et al., 2012). DOM modifications can also be 

influenced by catchment hydrodynamics, such as flow velocity as well as stream 

size (Kaplan and Newbold, 2003). From an ecosystem perspective, further 

downstream the canopy opens, litter inputs decline and higher exposure to 

sunlight results in greater irradiation of stream water and bed sediments (Battin et 

al., 2008; Findlay and Sinsabaugh, 1999; Tank et al., 2010). Spatially, Yamashita 

et al. (2010b) also found that DOC concentrations in the subtropical Everglades 

decreased as a function of distance travelled and were heavily influenced by the 

agricultural activities in the area.  

In terms of seasonal variations in the tropics, the wet season flushes out 

much of the litter that has accumulated during the preceding dry season. 

Frequent inundations may also ‘reset’ the system and remove DOM before 

degradation can occur (Wantzen et al., 2008). Coynel et al. (2005) found that 

highest concentrations of dissolved organic carbon (DOC) and particulate organic 

carbon (POC) in the Congo Basin were observed during high water periods, 

whereas the lowest concentrations occurred during the low water periods. 

Significant temporal variations of DOM export in pristine tributaries of the Congo 

River observed by Spencer et al. (2010) further suggest that tropical rivers are 

likely to export more labile DOM during wet periods. Furthermore, a study in 

Florida Bay showed that the fluorescence index (FI) varied seasonally, ranging 

from terrestrially influenced DOM (at low values) to strongly microbial influenced 

DOM (at high values) (Jaffe et al., 2008). The same study also showed that 
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limited tidal exchange with the Florida Shelf led to less microbial influence 

particularly during the dry season. 

 Vertical variations in DOM quantity and quality through the water column 

are also likely to influence the total carbon content to the oceans globally 

(Mulholland and Watts, 1982). For example, the concentration of POC from a 

depth-integrated sample in the Amazon River was found to be twice that of the 

surface suspended sediment (Thurman, 1985). Both lateral and depth-integrated 

samples have been shown to be important and a major factor for the carbon 

fluxes estimations (Lu et al., 2011). Lu et al. (2011) also reviewed a data set 

which combined surface and bottom samples (in the range of 3.2 to 8.5 mg/l) 

from the subtropical Yellow River (collected by Zhang et al. (1992)) resulted in 

much higher organic carbon transport compared to estimates derived using only 

surface water (in the range of 2.0 to 4.0 mg/l) by Cauwet and Mackenzie (1993). 

In a well-mixed water column, DOM near the surface will be replenished due to 

turbulent mixing and will cause limited transport to the deeper regions, and thus, 

DOM near the riverbed will become depleted (Kaplan and Newbold, 2003).  

This chapter seeks to characterise the DOM quality in a tropical river in SE 

Asia, which has been exposed to various environmental pressures including 

deforestation and agricultural development. Since the 1980s, the Lower 

Kinabatangan River has been characterised by extensive development of oil 

palm plantations within the catchment. The aims of this study were threefold:  

• to determine DOM variations between samples collected from the 

surface, middle and riverbed of the main river;  
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• to identify any trends in DOM along the axis of the river downstream 

and; 

• to determine the seasonal variability of DOM quantity and quality.  

 

6.2 RESULTS  

6.2.1 Water Quality Characteristics and PARAFAC Components 

The results of the fieldwork campaigns are summarised in Fig. 6.1, Fig. 6.2 and 

Fig. 6.3 and Table 6.2 which give descriptive statistics for each parameter and 

their variation with depth and downstream. During the period of study, suspended 

sediment concentrations ranged from 33.6 to 9814.0 mg/l, with greatest 

concentrations in waters sampled from the lowest points in the river profile. 

Suspended sediment concentrations increased downstream, with maximum 

values observed in Abai in December 2009. 
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(a) Suspended sediment (mg/l)   
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(b) Dissolved organic carbon (DOC) (mg/l)  
    
BPB (66.9 km) BPC (42.7 km) BPA (32.1 km)  

   

 

    
SKC (45.1 km) SKD (42.7 km) SKB (34.3 km) SKA (32.1 km) 

    
    
ABB (29.1 km) ABA (19.6 km)   

  

  

    
 
Fig. 6.1 (a)-(b) Descriptive trends of suspended sediment and DOC for each 

sampling point. Indicators: Blue = surface; Red = middle; Green = near the base. 

Distances from the sea are given in brackets. 
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(a) Peak A/Peak C   
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(b) Peak C/a340   
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SKC (45.1 km) SKD (42.7 km) SKB (34.3 km) SKA (32.1 km) 

    
    
ABB (29.1 km) ABA (19.6 km)   

  

  

 
Fig. 6.2 (a)-(b) Descriptive trends of fluorescence ratio for peak picking data at 

each sampling point. Indicators: Blue = surface; Red = middle; Green = near the 

base. Distances from the sea are given in brackets. 

 

(a) IC1/IC3   
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ABB (29.1 km) ABA (19.6 km)   

  

  

    
    
(b) IC3/a340   
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(c) IC2/IC3   
   
BPB (66.9 km) BPC (42.7 km) BPA (32.1 km)  

   

 

    
SKC (45.1 km) SKD (42.7 km) SKB (34.3 km) SKA (32.1 km) 

    
    
ABB (29.1 km) ABA (19.6 km)   

  

  

    
 
Fig. 6.3 (a)-(c) Descriptive trends of fluorescence ratio for PARAFAC data set at 

each sampling point. Indicators: Blue = surface; Red = middle; Green = near the 

base. Distances from the sea are given in brackets.  

DOM concentrations varied with depth, and generally greatest values were 

found in waters sampled from near the river surface, which ranged from 7.4 to 9.5 

mg/l. DOC concentrations were consistently low in May 2010 (dry season), and 

high during the wet season (November 2009), although in December 2009, DOC 
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concentrations were high in the upper reaches Batu Putih, and lower in Sukau 

before increasing dramatically at Abai downstream.  

As Figs. 6.1-6.3 indicate, there was little variation in the ratio peak C/peak 

A with sample depth. However, the fluorescence index IC1/IC3, which is 

equivalent to peak C/peak A, was typically high in waters sampled at the river 

surface and near the riverbed especially in November 2009 (Fig. 6.3). The ratios 

peak C/a340 and IC3/a340 were both consistently dominated by samples collected 

from near the riverbed. Moreover in December 2009 and May 2010, both ratios 

gradually increased with distance downstream.  

Similarly, IC2/IC3 was also dominated by samples from the river surface 

and bed (Fig. 6.2 and Fig. 6.3). The ratio IC2/ IC3 did not vary significantly 

between wet and dry seasons, nor was there a significant variation in samples 

collected during the inter-monsoonal period (October 2009). Looking at trends 

downstream, however, in May 2010 the ratio peak C/a340 was high at upstream 

sampling points (i.e. at Batu Putih) and gradually increased downstream to 

Sukau (with the exception of sample from SKC) and Abai. 

Three fluorescent components were identified by PARAFAC from the 128 

individual EEMs derived from the data set. The excitation and emission pairs of 

the main peak positions for each components are summarised in Tables 6.1 and 

6.2 which compare the results with components identified by selected studies that 

have modelled DOM in marine, oceanic and estuarine environments in different 

environments globally.  
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Table 6.1 Spectral characteristics of excitation and emission maxima of three 

components identified by PARAFAC modeling for the whole EEMs data set 

collected from main stem of the Lower Kinabatangan River catchment compared 

to previously identified sources. 

Component 
no. 

Excitation 
maximum 
(nm) 

Emission 
maximum 
(nm) 

Coble 
(1996);  
Parlanti 
(2000) 

Description and probable source 

1 290 464 Peak A 
230-260 / 
380-460 

Terrestrial humic-like substances, 
widespread 
Hydrophobic acid fraction (HPOA), 
suggested as photo-refractory 
Component 2: 255 / 380-460 
(Luciani et al., 2008) 
Component 3: 270 (360) / 478 
(Stedmon et al., 2003) 
Component 3: 250 (355) / 461 (Yao 
et al., 2011)  
Component 1: 270 (365) / 453 
(Zhang et al., 2009b) 

2 290 398 Peak M 
230-260 / 
380-460 

Terrestrial humic-like substances, 
widespread 
Hydrophobic acid fraction (HPOA), 
suggested as photo-refractory 
Component 2: 255 / 380-460 
(Luciani et al., 2008) 
Component 3: 270 (360) / 478 
(Stedmon et al., 2003) 
Component 3: 250 (355) / 461 (Yao 
et al., 2011)  
Component 4: <260 (305) / 376 
(Yamashita et al., 2010b) 
Component 1: 270 (365) / 453 
(Zhang et al., 2009b) 

3 340 
 

418 
 

Peak C 
350-360 / 
420-480 

Ubiquitous humic-like substances, 
suggested as photo-labile and 
agricultural land use derived 
Hydrophobic acid fraction (HPOA) 
Component 3: 320 / 380-420 
(Luciani et al., 2008) 
Component 4: 325 / 416 (Stedmon 
et al., 2003) 
Component 6: 325 / 406 
(Yamashita et al., 2010b) 
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Table 6.2 Descriptive statistics of environmental conditions and PARAFAC model of selected sampling stations in the main stem of 

the Lower Kinabatangan River catchment. 

!
      pH Salinity DOC 

(mg/l) 
Suspended 
sediment (mg/l) 

a340 (m-1) S275-295 
(nm-1) 

Itot IC1 IC2 IC3 

Mean 6.87 0.03 9.78 249.6 41.5 0.0123 20.45 6.52 
(32%)  

6.82 
(34%) 

7.11 
(35%) 

Std. dev. 0.55 0.01 3.39 172.0 16.4 0.0178 6.44 2.25 1.90 2.38 

Wet 
Season 

Variance 0.30 0.00 11.52 29592.1 269.0 0.0003 41.46 5.07 3.62 5.68 
Mean 7.11 0.11 5.88 85.3 22.4 0.0110 21.34 5.97 

(28%) 
7.97 
(37%) 

7.40 
(35%) 

Std. dev. 0.38 0.14 0.55 72.6 4.87 0.0007 1.03 0.32 0.72 0.66 

S
ur

fa
ce

 

Dry 
Season 

Variance 0.14 0.02 0.31 5272.9 23.8 0.0000 1.07 0.11 0.52 0.44 
Mean 6.84 0.03 9.26 324.3 42.6 0.0089 20.81 6.66 

(32%) 
6.81 
(33%) 

7.33 
(35%) 

Std. dev. 0.29 0.01 3.38 226.9 16.4 0.0019 6.49 2.15 2.05 2.42 

Wet 
Season 

Variance 0.08 0.00 11.45 51489.0 267.7 0.0000 42.14 4.64 4.20 5.84 
Mean 7.05 0.35 5.69 88.2 23.5 0.0109 21.62 6.01 

(28%) 
7.33 
(34%) 

8.28 
(38%) 

Std. dev. 0.20 0.82 0.35 74.7 6.1 0.0009 1.10 0.43 0.68 0.53 

M
id

-p
oi

nt
 

Dry 
Season 

Variance 0.04 0.67 0.12 5576.6 37.2 0.0000 1.21 0.19 0.47 0.28 
Mean 6.85 0.03 9.98 1165.2 36.8 0.0091 20.79 6.80 

(33%) 
6.95 
(34%) 

7.04 
(34%) 

Std. dev. 0.33 0.01 3.49 1950.6 15.9 0.0018 7.97 2.72 2.92 2.52 

Wet 
Season 

Variance 0.11 0.00 12.18 3804972.5 254.1 0.0000 63.50 7.40 8.55 6.34 
Mean 7.04 0.53 5.82 210.5 22.9 0.0114 21.56 6.06 

(28%) 
7.60 
(35%) 

7.90 
(37%) 

Std. dev. 0.25 1.33 0.52 320.4 7.1 0.0017 1.40 0.37 0.52 0.82 

R
iv

er
be

d 

Dry 
Season 

Variance 0.06 1.76 0.27 102629.8 50.2 0.0000 1.96 0.14 0.27 0.68 

Sahana Harun
159
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The PARAFAC model presented here identified three components: 

component 1 (C1), component 2 (C2) and component 3 (C3). Components C1 

and C2 have been commonly reported in estuarine, marine and oceanic 

environments while C3 represents fluorophores that have the longest excitation 

wavelength and broadest excitation band as well as the longest emission 

wavelength associated with a broad emission band. Individual components are 

summarised in Fig. 6.4 as contour plots. The intense excitation maxima were: 

290-nm at 464-nm emission (C1); 305-nm at 464-nm emission (C2); and 340-nm 

at 418-nm emission (C3). 
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Fig. 6.4 PARAFAC model output representing fluorescence signatures of three 

components identified. Contour plots present spectral shapes of excitation and 

emission of derived components. Line plots at right side of each contour plot 

present split-half validation results for each identified component. Excitation 

(dotted line) and emission (solid line) loadings for each component, obtained from 

two independent PARAFAC models on random halves of the data array.  
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The mean DOM composition of all samples varies considerably: peak M 

(C2) is the most abundant, followed by peak C (C3) and peak A (C1). Samples 

from the surface in the wet season and mid-point in both seasons exhibited a 

similar pattern: C3 > C2 > C1, while different patterns were evident in waters 

sampled from the surface during the dry season: C2 > C3 > C1. Samples 

collected from the lowest point of the water column (near the riverbed) in the 

main stem showed patterns of: C2 = C3 > C1 in the wet season and C3 > C2 > 

C1 in the wet season. Finally, water samples collected in the inter-monsoonal 

period exhibited a similar pattern throughout the water column: C2 = C3 > C1. 

 

6.2.2 Discriminant Analysis  

Looking first at DOM characteristics with depth, there were only slight 

differences between the DOM composition of waters sampled from the surface, 

middle and bottom of the river (Table 6.2). Fig. 6.5 plots the first and second 

discriminant function of each parameter from both data-sets. A series of 

discriminant analyses identified two discriminant functions, with identical results 

for the sets derived from peak picking and PARAFAC analysis. Discriminant 

function 1 from the PARAFAC and peak picking explains 81.1% and 91.4% of 

the variance in the data respectively. The results confirmed a positive correlation 

between suspended sediment and the two fluorescence indices IC1/IC3 and 

IC3/a340 with results that were dominated by samples from the riverbed, followed 

by the middle and then the river surface. The only exception was for discriminant 

function 1, where the ratio peak A/peak C (from peak picking) and peak C 
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emission were negatively correlated. PARAFAC data set also showed that the 

ratio IC2/IC3 was positively correlated and classified under discriminant function 

2. This ratio was mainly dominated by samples collected from the surface of the 

river profile, followed by bottom and middle samples.  
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Peak picking PARAFAC 

  
(a) Depth 

  

  
(b) Distance downstream 

  

  
(c) Sampling season 

 
Fig. 6.5 Plots for the first and second discriminant functions of each parameter 

from peak picking and PARAFAC data-sets according to: (a) Depth; (b) Distance 

downstream; and (c) Sampling season. 
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Looking secondly at trends in DOM composition downstream, 

discriminant functions 1 and 2 for PARAFAC data set explained 70.6% and 

29.4% of the variance respectively; revealing that samples from Abai were 

dominated by the ratio IC3/a340 (which is comparable to the fluorescence 

intensity ratio peak C/a340). They were followed by samples from Sukau and 

finally Batu Putih. The ratio IC1/IC3 and IC2/IC3 were classified under 

discriminant function 2 and negatively correlated with the spectral slope. These 

ratios were dominated by samples collected from Abai, followed by Batu Putih 

and finally Sukau.  

For the peak picking data set, the factor structure coefficients showed that 

suspended sediment and spectral slope were positively correlated. Discriminant 

functions 1 and 2 explained 52.8% and 47.2% of the variance respectively. 

These ratios were also dominated by samples collected from Batu Putih 

(upstream), followed by Sukau and Abai (i.e. progressively downstream). The 

analysis also showed that the ratio peak A/peak C was dominated by samples 

from Abai, followed by Batu Putih and Sukau, which is identical to the PARAFAC 

data-set.  

Discriminant analyses on both the peak picking and PARAFAC showed 

very similar results to DOM variations during the dry and rainy seasons. The 

results also consistently indicated a positive correlation between the ratios of 

IC3/a340, peak C/a340, IC2/IC3, peak A/peak C, peak C/a340 and suspended 

sediment which were all classed under discriminant function 2, and dominated 

by samples in the wet season. 
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6.3 DISCUSSION 

6.3.1 Characterisation of PARAFAC Components   

Table 6.1 compares the characterisation of C1, C2 and C3 components in this 

study with studies in the literature. The component C1 is similar to the peak A as 

defined by Coble (1996) and previously reported to be a ubiquitous, component 

commonly found in various aquatic environments including tropical and sub-

tropical waters (Kowalczuk et al., 2009; Luciani et al., 2008; Stedmon and 

Markager, 2005b; Yamashita et al., 2010b; Yao et al., 2011). Ishii and Boyer 

(2012) considered this component to be ultraviolet C (UVC) and commonly 

abundant in terrestrial-derived DOM such as thermokarst, forested streams, 

wetlands and tree leaves particularly during the dry months or after storm events. 

Several studies also found that C1 correlated negatively with salinity and hence 

could indicate aquatic systems transitions from freshwater to seawater (Ishii and 

Boyer, 2012). Yamashita et al. (2008) suggested that this component was 

dominant from surface samples of Ise Bay in Japan and that is decreased with 

depth. 

Coble (1996) and Parlanti et al. (2000) have previously interpreted 

component C2 as peak M and marine in origin. However, Stedmon et al., (2003) 

indicated that this component was observed in ‘terrestrially dominated end-

member samples’. More recently, Fellman et al., (2010) and Yamashita et al. 

(2010b) identified this peak as ultraviolet A (UVA); a component with low 

molecular weight, which they attributed to microbial processing. Furthermore, C2 

has also been observed as being resistant to photo-degradation (component C3 
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in Ishii and Boyer, 2012). This component is widespread and common in marine 

environments; it is associated with biological activity but it also found in 

wastewater, wetlands and agricultural environments. Thus, the dominance of 

component C2 (peak M) in the main stem samples (and particularly those 

collected from the river surface) strengthens the hypothesis that the peak M in 

samples from the Kinabatangan catchment is DOM which derived from microbial 

and/or photo-degradation processes.  

Pollard and Ducklow (2011) showed that the water column in a subtropical 

river (Bremer River, Australia) was turned over every two days, as a result of 

DOC consumption by bacteria. This is supported by bacterial specific growth 

rates, which were found to be ~20 times greater than that previously observed in 

marine ecosystems. Abundant sunlight in general has been found to increase 

microbial activities within water bodies (Alonso-Saez et al., 2006; Wantzen et al., 

2008) in particular cyanobacteria (Mortillaro et al., 2012). For example, average 

bacterial production in was found higher in clearwater rivers than blackwaters, 

thus, suggesting light penetration play an important role in DOM decomposition 

(Castillo et al., 2004). Component C3 has been identified in various types of 

water body including those dominated by DOM from terrestrial and microbial 

sources (component C2 in Ishii and Boyer, 2012). Similar to C2, this component 

has been found subject to photo-degradation.  

Components C1, C2 and C3 were positively correlated with each other 

and are possibly to be associated with terrestrially derived organic matter. Peak 

C has been described as ubiquitous, photo-labile and associated with agricultural 
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land use (Yamashita et al., 2010b). Given that ~74% of the total catchment of the 

Lower Kinabatangan River comprises forests (primary and secondary), and the 

remainder of the catchment (~26%) has been developed for oil palm plantations 

and is permanently cultivated (Josephine et al., 2004), this could explain the 

abundance of terrestrial derived peaks in all the main stem samples. 

Even though scatter removal has been applied (Section 3.5.1), thus, 

limited to 290-nm excitation wavelength, PARAFAC components identified in this 

and other studies (including Hong et al. (2011), Luciani et al. (2008) and 

Yamashita et al. (2010b) could reflect specific PARAFAC components found in 

tropical areas. Although given the variation between DOM characteristics 

described in many studies, comparisons with other regions might not apply locally 

(Ahmad et al., 2002).  

 

6.3.2 Depth-profiles of DOM Quality  

DOC concentrations observed in this study were found to vary with depth with 

highest values from the river surface and Fig. 6.6 exhibits the conceptual diagram 

of DOM dynamics within a water column. These are comparable to those 

reported elsewhere in the literature for tropical watersheds: DOC concentrations 

in the Jiulong River, China, were found to vary from 0.4 to 13.1 mg/l (Hong et al., 

2011), while Yamashita et al (2010a) found DOC concentrations in three 

Venezuelan rivers to vary between 1.71 to 10.7 mg/l. Suspended sediment 

concentrations, peak C/a340 and IC3/a340 were high in samples from near the 
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riverbed, followed by mid-point and surface of river. This is supported by the 

discriminant analysis, which revealed that suspended sediment and IC1/IC3 were 

positively correlated. This could be a result of on-going land clearance in the 

catchment (Josephine et al., 2004) as agricultural activities are associated with 

elevated nutrient concentrations and increased suspended sediment (Tank et al., 

2010). Interestingly, lower peak C/a340 and IC3/a340 were observed in samples 

collected from the mid-point of river (as explained in Methods section). Microbial 

activities and abundant sunlight in the tropical regions would be expected to 

accelerate DOM decomposition, thus suggesting decomposition of surface DOM 

which accounts for the lower peak C/a340 and IC3/a340 of samples from the mid-

points of river. Photochemical reactions have been found to generate low 

molecular weight organic compounds, trace gases, and also phosphorous and 

nitrogen rich compounds (Cory et al., 2007; Kowalzuk et al., 2009; Winter et al., 

2007). However, light penetration through the water column (~20 m) may be 

limited for much of the time given the generally high suspended sediment 

concentrations, and waters sampled close to the riverbed are unlikely to have 

experienced as much decomposition from photochemical reactions (Pisani et al., 

2011).  
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Fig. 6.6 Conceptual model of DOM dynamics in a water column of a tropical river 

(after Moran and Covert, 2003).  

 

Samples collected from the river surface and immediately above the 

riverbed were found to dominate the fluorescence ratio IC2/IC3. Peak M has 

been attributed to microbial processing, and thus, could be associated with high 

microbial activities at these depths, compared to samples at the river mid-point. 

Consequently, DOM at the river surface is probably more likely to be degraded by 

both photochemical reaction, and microbial processes. High suspended sediment 

concentrations can also contribute to lower photochemical reactions. For 

example, Yamashita et al. (2010a) suggested that limited light penetration in 

main river channels reduced photo-degradation of DOM. Although light has been 
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found to enhance microbial activities within water bodies, Lindell et al. (1996) 

observed that direct sunlight could negatively affect aquatic bacteria metabolic 

activity (Westhorpe et al., 2012).  

High suspended sediment concentrations might also be a factor explaining 

high microbial and/or photo-degradation processes at the river surface and bed, 

as indicated by the fluorescence ratio IC2/IC3. Sediment in the aquatic 

ecosystems has been suggested as one of the main sources of DOM (Riggsbee 

et al., 2008), which serves as benthic substrate (Wetzel, 2001), a DOM 

adsorption sink (Guo et al., 2011; Mortillaro et al., 2012), and also provide 

nutrient subsidies for bacterioplankton (Lennon and Pfaff, 2005). The chemical 

composition of DOM, significantly affects microbial processes, and could be an 

important factor explaining the dominance of IC2/IC3 in samples from near the 

river surface and bed. Lennon and Pfaff (2005), for example, highlighted that 

phosphorus content of DOM is a significant determinant of bacterial productivity, 

and there was no relationship between bacterial growth and bacterial productivity 

along the DOC gradient. In Rio de Janeiro tropical coastal lagoons, Farjalla et al. 

(2002) found that bacterial productivity was unaffected by DOC concentrations. 

The findings in the Kinabatangan River samples showed that both DOC 

concentration and the fluorescence ratio IC1/IC3 were high in samples from the 

river surface, which could indicate the dominance of humic materials that could 

comprise of various chemical components. 
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6.3.3 DOM Variations Downstream   

Fig. 6.7 summarises DOM dynamics in a downstream direction observed in this 

study. An interesting variation in optical parameters downstream has been 

revealed, whereby a340, the spectral slope, and ratios peak C/a340, and IC3/a340 

were low in Batu Putih and gradually increased downstream to Sukau and Abai. 

However, DOC and suspended sediment concentrations were high in Batu Putih, 

decreased in Sukau and increased again in Abai. The discriminant analysis of the 

PARAFAC data, set presented here, also confirms that samples from Abai were 

dominated by fluorescence ratios of IC1/IC3 and peak A/peak C, thus suggesting 

that this area was rich in terrestrial derived organic matter, followed by Batu Putih 

and Sukau. The inference in that DOM was degraded from Batu Putih to Sukau, 

due to both longer residence time as well as the tidal effect, and DOM was re-

exported in Abai. Restoration works in the estuarine Mississippi Delta post-

Katrina and Rita hurricanes found out that sediment deposits in leeves ranged 

from older wood-peat deposits to younger riverine fluvial deposits (Day et al., 

2007; Twilley and Rivera-Monroy, 2009). New delta formed, and coarser 

sediments accumulated at river mouth and as the delta advanced, sand is shifted 

horizontally to create beach ridges (Day et al., 2007), thus suggesting that 

riverine deposits were controlled by the tidal effect, exporting the sediments back 

to the river.  
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Fig. 6.7 Conceptual diagram of DOM dynamics following the axis downstream of 

a tropical river.  

 

Highest IC1/IC3 and peak A/peak C were identified in samples from Abai 

where the highest salinity was observed. This could be associated with high 

suspended sediment concentrations in this area, although salinity has generally 

been found to be inversely correlated with DOC (Baum et al., 2007; Moore et al., 

2011) and coloured DOM (CDOM) (Murphy et al., 2006). The increasing density 

of the nypa palm, Nypa fruticans in the floodplain downstream could also be a 

factor. In similar mangrove environments, decomposition of litter falls has been 

found to occur through a combination of leaching and microbial degradation 

(Sahoo and Dhal, 2009), and leaching alone is able to generate high levels of 

DOM (Benner, 1990; Kristensen et al., 2008). Nypa vegetation is known to 

provide rich polyphenols and tannins (Kathiresan and Bingham, 2001) and is 
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likely to be associated with decreasing bacterial counts (Sahoo and Dhal, 2009). 

Thus would be supported by the dominance of fluorescence intensity ratio of 

IC2/IC3 observed in Abai. 

 

6.3.4 Temporal Variations of DOM  

The summary of data from the study presented in Table 6.2 highlights how the 

total fluorescence intensity Itot as well as the intensity of components C2 and C3 

were consistently higher in the dry season, when DOC concentrations were at 

minimum levels. Fig. 6.8 represents the DOM dynamics from temporal variations 

perspectives. Discriminant analysis from both PARAFAC and peak picking data-

sets also agreed that fluorescence ratios IC1/IC3 and IC2/IC3 were highest 

during the wet season. As FI IC2/IC3 is equivalent to peak M/peak C, its 

abundance could indicate the microbial and/or photo-degradation processes in 

the main stem as well as most active microbial activity (in combination with high 

amount of sunlight) within this period. In the subtropical North Jiulong River, 

China, Yang et al. (2013) observed significant increased in the flux of DOC and 

PARAFAC components that equivalent to peaks A and C (components C1 and 

C3) during the storm events, which could indicate substantial impact of the storm 

event on the export of DOM as well as its fluorescent constituents. 
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Fig. 6.8 Diagram of DOM dynamics in terms of temporal variations. 

 

In contrast, suspended sediment concentrations were higher in samples 

collected during the wet season. During storms, the water flowpaths were 

probably through organic-rich soil horizons (Wiegner et al., 2009), thus, 

abundant terrestrial-derived DOM. DOC concentrations were also greatest 

during the wet season, and has been found elsewhere to increase during the 

rainy season (Hood et al., 2006). Similar results have been found for the spectral 
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slope S275-295, which Helms et al., (2008) suggest can characterise DOM better 

than absorption values alone (Helms et al., 2008). The spectral slope also 

correlates strongly with molecular weight (MW) and aromaticity (Helms et al., 

2008); thus, low S275-295 values for samples collected during the wet season 

could indicate fresher DOM within this period.  

 

6.4 CONCLUSIONS 

It can be concluded that the DOM characteristics in the study area are influenced 

to a considerable degree by microbial activities and/or photo-degradation 

processes. This has been reflected by the results, which demonstrates that 

PARAFAC components peak M were abundant in the upper river reaches (Batu 

Putih). Interestingly, the discriminant analysis indicated that DOM degradation 

was higher at river mid-point and near the bed, whilst samples from near the 

riverbed were characterised by higher molecular weight organic molecules. In 

terms of temporal variations, the findings showed that fresher DOM in the wet 

season was subjected to degradation to less fluorescent and stable compounds, 

in particular by photochemical and microbial activities.  
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7. DOM DYNAMICS IN THE LOWER KINABATANGAN RIVER CATCHMENT 

 

Scope of Chapter 

This chapter draws together the results presented in detail in the preceding 

Chapters 4, 5 and 6. Three conceptual diagrams were presented in Chapter 6 

and used to characterise the DOM in the main stem of the Lower Kinabatangan 

River and its transformations from the upper catchment (Batu Putih) to reaches 

downstream (Abai). This chapter aims to present two new conceptual models 

describing DOM transformations: firstly, with regard to spatial and temporal 

variations in DOM with differing land use (oil palm plantations, secondary forests 

and coastal swamps); and secondly, examining the degree to which existing 

widely used conceptual models (integrating hydrological and biogeochemical 

processes), can be applied in a degraded tropical catchment. The chapter also 

highlights the contribution of this study to our understanding of the DOM 

transformations and fluxes, specifically the effects of recent land degradation in 

the tropical catchment, by placing the study within the context of recent research. 

It also identifies some of the limitations of the study and concludes with a 

summary of current or urgent gaps in the research area. 
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7.1 SPATIAL AND TEMPORAL VARIATIONS  

Tropical floodplains are recognized as sites of intense biogeochemical 

transformation and fluvial networks in tropical regions are potentially a very 

important source of global carbon (Yamashita et al., 2010a) with the highest rate 

of production that normally occur during the regular inundation events (Davies et 

al., 2008). However, available data are sparse and thus, this thesis draws upon a 

wide data set to characterise the DOM in a tropical river catchment (the lower 

Kinabatangan), and a summary of the main conclusions of the research 

presented in this thesis are shown schematically in Fig 7.1. 

 

 

Fig. 7.1 Conceptual diagram of DOM transformations in three different types of 

land use (oil palm plantations, secondary forests, coastal swamps) in a tropical 

river catchment.  
Surface 
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In the upper reaches (Batu Putih), the land use was pre-dominantly oil 

palm plantations (~79%) and secondary forests (~10%), in an area that is ~82 km 

from the coast (Department of Environment Malaysia, 2009). Further 

downstream, in the mid-reaches of the Kinabatangan (Sukau), the main type of 

land use was again oil palm plantations (~42%), but also protected and state 

forests (49%) (Department of Environment Malaysia, 2009). It was hypothesised 

that oil palm plantations would contribute the majority of the DOM (with respect to 

the different land use types), and thus, that this land use would constitute the 

main source of DOM in the Lower Kinabatangan River catchment.  

Samples from the preliminary study (Chapter 4), which were collected from 

areas of the catchment where the land use was predominantly oil palm 

plantations, showed evidence of significant microbial activities and fluorescence 

terrestrial-origin characteristics. Other optical parameters, such as UV 

absorbance at 275 and 340nm and the spectral slope coefficient at 275-295 nm, 

also indicated that DOM in surface water samples from the upper area (Batu 

Putih) were fresher (site mean peak A intensity ranged from 499 to 898 units; site 

mean peak C from 256 to 671 units), compared to samples collected from coastal 

swamps. These trends were confirmed by PARAFAC modelling where peak M 

was found to predominate, thus, implying that DOM from the oil palm plantations 

dominated area was microbial and terrestrial in origin (Fellman et al., 2010). Loss 

of fluorescence in the peak C intensity region (Fig. 4.5) suggests that DOM in 

samples collected from the main stem of the Kinabatangan River were degraded 

compared to those in samples collected from the tributary streams. 
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DOM degradation, indicated by fluorescence indices peak T/peak C and 

peak M/peak C from peak picking and PARAFAC analyses respectively, showed 

high microbial activity in samples from the oil palm plantations (Chapter 5). It has 

been estimated that every tonne of crude palm oil can produce 2.5 tonnes of 

palm oil mill effluent (POME) with 10,000 to 25, 000 mg/l BOD (WWF Malaysia, 

2000). Untreated POME may severely affect the aquatic system if discharged 

directly (Abdul Rani, 1995). Palm oil mills also have been identified to become 

the main pollution load into the rivers in Malaysia (Wu et al., 2009). A total of ~20 

palm oil mills and ~292 licensed oil palm plantations are located in the Lower 

Kinabatangan River catchment (Department of Environment Malaysia, 2009; Hai 

et al., 2001; WWF Malaysia, 2000). A water quality sampling exercise carried out 

in early 1999 showed that a number of palm oil mills in this area have failed to 

conform with the regulatory requirements for effluents discharge into the 

streams/river (WWF Malaysia, 2000). 

The subsequent results presented in Chapters 5 and 6, however, indicate 

a contradiction whereby DOM abundance was found to be greatest in waters 

sampled from the coastal swamps (demonstrated by fluorescence indices peak 

A/peak C from both the peak picking and PARAFAC data sets). DOM abundance 

was second highest in waters sampled from areas of oil palm plantation, but 

lower in waters collected in areas of secondary forest. Significantly, the 

discriminant analysis demonstrated that the fluorescence ratio of peak C to UV 

absorbance at 340 nm did not correlate with peak C emission (Table 5.3) which 

could be indicative of DOM hydrophilicity in water samples from the oil palm 
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plantations. This provides a possible basis for identifying the relative contribution 

of oil palm to the total carbon budget in tropical catchments.  

DOM degradation processes in tropical regions are enhanced by the high 

temperatures and abundant sunlight received in this area. Photoreactions, in 

combination with high temperature, modify DOM and produce labile 

photoproducts which are then taken up by the microbes. The dominance of 

fluorescence ratio peak A to peak C in the coastal swamps could indicate that the 

coastal swamps, as normally characterised by acid waters, low dissolved oxygen 

and leaves resistant to degradation are high in tannins and lignin, thus, restrain 

the litter decomposition. Furthermore, litter from secondary forests in a Malaysian 

peat swamp as indicated by Yule and Gomez (2008) rapidly broke down, 

compared to leaves of peat-swamp trees (Wantzen et al., 2008).  

These interpretations are supported by a number of studies in the 

literature as presented in the Chapter 2. For example, DOM concentration and 

fluxes have been found to be affected more by climate and land use changes in 

comparison to internal properties and aquatic ecosystems processes 

(Mulholland, 2003). Identification of peak M is significant as interactions between 

the DOM and microbial community are intense in both directions (Findlay and 

Sinsabaugh, 2003). DOM characteristics influence microbial metabolism and 

composition, and consequently affect DOM production, characteristics and fate. 

Peak M initially has been identified as marine in origin (Coble, 1996; Parlanti et 

al., 2000) and Stedmon et al. (2003) later suggested it was observed in 

‘terrestrially dominated end-member samples’ (Fellman et al., 2010), and it 
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predominates in all the PARAFAC components (as summarised in Chapters 4, 5 

and 6). Microbial processes in tropical rivers are recognised as more important in 

this region compared to the temperate zone (Wantzen et al., 2008), which mainly 

comprise shallow rivers, and thus, shredding invertebrates play an important role 

in the DOM decomposition processes (Boulton et al., 2008). Furthermore, the 

absence of Ephemeroptera, Plecoptera and Trichoptera (EPT) groups of aquatic 

macroinvertebrates in study area (Harun, 2006) also indicate that the DOM 

dynamics is very highly dependent upon photoreactions and microbial processes. 

DOM transformation was also found to vary significantly seasonally. 

Chapters 5 and 6 demonstrated that post-flood DOM in the study area was rich in 

terrestrial derived substances, which were most probably of low molecular weight 

(as found in other studies in tropical and sub-tropical regions: Spencer et al. 

2010; Yamashita et al., 2010b). The DOM of water samples collected in the inter-

monsoonal period exhibited a similar pattern to those from the wet season. 

Results from the preliminary survey (Chapter 4), undertaken during the summer, 

were comparable with the DOM quality of samples from areas of oil palm 

plantations during the wet season (Chapter 5). However, presuming that peak M 

has a uniquely microbial source, microbial activity and/or photo-degradation 

processes is likely to have been greater during this period, as peak M pre-

dominated in the water column during the wet season.  

The results presented in this study demonstrate that anthropogenic 

disturbances to the aquatic system can regulate DOM biochemical cycling. 

Previous studies have showed that the highest rate of production normally occurs 
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during the regular inundation events (Davies et al., 2008). Frequent flooding 

events in the Lower Kinabatangan River catchment also more likely to modify the 

ecosystem by disrupting the DOM degradation processes (Wantzen et al., 2008). 

In tandem, annual pulsing events have also been identified as increasing riverine 

sediment deposition, enhanced nutrient inputs and increased primary and 

secondary production (Day et al., 2007; Junk et al., 1989). 

 

7.2 CHARACTERISING THE DOM FLUXES OF THE KINABATANGAN 

MAIN RIVER  

Fluvial systems integrate both hydrological and biogeochemical cycles, and large 

conceptual frameworks for rivers such as River Continuum Concept (RCC), the 

Flood Pulse Concept (FPC) and the Nutrient Spiralling concept were identified in 

Chapter 2 as providing further insight into carbon transport. Both the RCC and 

FPC have been challenged by the Riverine Productivity Model (RPM), which 

considers that autochthonous production in the river itself provides a large 

amount of organic carbon, and that consequently the upper area of the 

catchment (the headwaters) and the floodplain downstream contribute smaller 

amounts (Thorp and Delong, 1994). The data collected in this study provide the 

opportunity to consider the degree to which these concepts can be applied in a 

degraded tropical catchment.  

Fig. 7.2 presents a conceptual diagram of DOM fluxes in the Lower 

Kinabatangan River catchment, by taking the DOM variations with depth into 
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consideration. At the estuary, which is dominated by coastal swamps (Nypa 

fruticans), the measuring stations are located ~20 km from the coast. Although it 

was suggested in Chapter 6 that the DOM downstream had been degraded and 

transformed, the presence of coastal swamps could possibly restrain the 

decomposition of riverine DOM, as reflected by the dominance of fluorescence 

index peak A/peak C. The loss of fluorescence peak C intensity to indicate DOM 

degradation from the main stem of the Kinabatangan River is showed in Fig. 7.3. 

Longer residence time, coupled with abundant of sunlight and microbial activities 

could lead to riverine DOM degradation which became less fluorescent. In 

combination with hydrological factors such as the tidal effect this has caused the 

DOM transported (re-export) back to the estuary area. 
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Fig. 7.2 Conceptual figure of the DOM dynamics in the Lower Kinabatangan River catchment. 
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Fig. 7.3 DOC against fluorescence peak C intensity for main stem samples. 

It was initially hypothesised in this study that the Lower Kinabatangan 

River catchment would follow the RCC, the FPC and the nutrient spiralling 

concepts. Some elements of these concepts were found to be relevant and 

helped to explain DOM transport in the study area. For example, the results 

presented in Chapters 4, 5 and 6 indicated DOM degradation from the upper 

reaches downstream, particularly during the wet season when river water levels 

were highest; thus, both RCC and FPC are relevant in this context. The nutrient 

spiralling concept, which supports the RCC by translating the in-stream dynamics 

in particular to retain and transform OM, has also been supported in this study: 

Chapter 6 demonstrated that the depth of the river is very important and should 

be taken into account in future studies.  
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The results presented in both Chapters 5 and 6 showed that quantities of 

degraded DOM in coastal swamps were higher compared to the other land use 

types (oil palm plantations and secondary forests). This suggests that the coastal 

swamps produced fresh DOM, and the main DOM inputs were not limited to the 

catchment headwaters. Consequently, the relative loss of fluorescence peak C 

relative to absorbance is indeed indicative of changes in DOM characteristics 

with transport from the upper reaches of the river towards the estuary. DOM 

sources in this area were also not limited to autochthonous sources, and could be 

mainly derived from allochthonous and specifically anthropogenic sources. Thus, 

the FPC, which considers that DOM inputs predominantly occur in the upper part 

of catchment, does not fully apply in this area.  

This is supported by several other studies. For example, Greathouse and 

Pringle (2006) have identified uncertainties in applications of the RCC to tropical 

rivers, due to their unique characteristics. In the tropical regions, RCC 

applications by using longitudinal patterns could be curtailed, as in other regions 

which are dominated by small streams that flowed directly into the sea. 

Furthermore, tropical river systems have been found generally to have poor 

retention of organic matter due to unpredictable and frequent flash floods 

(Greathouse and Pringle, 2006). Thus, these three concepts were found to be not 

fully applicable in this study area, which is known to experienced annual floods 

particularly during the northeast monsoon (between October and March). 

In order to structure a DOM fluxes model in the Lower Kinabatangan River 

catchment, the study took a careful look and consideration at the prominent 
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Mississippi Delta case study. Restoration works post-Katrina and Rita hurricanes 

showed that this area had been significantly altered where new delta had been 

formed (Day et al., 2007; Twilley and Rivera-Monroy, 2009). This resulted in the 

inundation of land, which caused sediment accumulation at the river mouth. 

Consequently, as the delta advanced, sand was vertically shifted and beach 

ridges were created, showing evidence of significant tidal effects, which regulated 

the riverine deposits by exporting the sediments back to the river. By applying 

information from the Mississippi Delta restoration works, DOM dynamics in the 

Lower Kinabatangan river catchment may also possibly be controlled by tidal 

effects, thus, the DOM was transported back into the river.   

This study is one of the first to have looked at the DOM trends with depth, 

and the results provide invaluable baseline data to characterise DOM 

transformations. Due to the depth of the Lower Kinabatangan River which is 

relatively deeper, peak M discoveries in this study are very significant in providing 

a baseline hydrological study particularly for tropical rivers with equivalent depth. 

Whereas shallow rivers provide a suitable habitat for macroinvertebrates, which 

therefore play a significant role in the biogeochemical cycle; they are relatively 

absent in the study area. Therefore, the DOM decomposition of the Lower 

Kinabatangan River catchment is thought to be almost fully dependant on the 

microbial activities and/or photochemical processes. 

In terms of DOM at different depth levels, there is a positive relationship 

between DOC in the main stem of the river with runoff. The latter is characterized 

by extremely high suspended sediment concentrations at the riverbed, compared 
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to the surface and mid-point of the depth profile. Due to active and on-going land 

development in Kinabatangan in particular in the upper areas, runoff is 

speculated to become the main control on organic matter export (sedimentation), 

as well as hydrological processes.  

!

7.3 SIGNIFICANCE OF FINDINGS 

Although various ecological and socio-economic researches have been 

undertaken in this region of Sabah, mainly in Sukau (reviewed by Harun and 

Mohamed, 2008), the region still lacks hydrological and biogeochemical data. 

This is the first study seeking to investigate DOM dynamics in one of the 

most poorly understood tropical regions globally. The significance of this 

study lies in: i. DOM characterisation in a hitherto poorly studied environment; ii. 

developing our understanding of DOM dynamics; iii. identifying the limitations of 

current conceptual models when applied to smaller or degraded catchments. In 

tandem, similar issue also exists whether the models are transferable to tropical 

pristine areas. 

There have been a number of studies in tropical regions, for example, in 

the Amazon which showed the dominance of heterotrophic respiration over 

photosynthesis particularly in turbid waters and canopy-covered streams with 

variations over wet and dry seasons (Mayorga and Aufdenkampe, 2002; 

Saunders et al., 2006). However, these studies were limited and have not taken 

new technologies approach into account. Nevertheless, it has been showed that 

river metabolism in the tropical regions generally is greatly influenced by 
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photochemical reactions and the activity of microorganisms, although restricted 

by light penetration in highly turbid waters (Mayorga and Aufdenkampe, 2002).  

It is also important to consider the extent to which the conclusions of 

studies specifically conducted in temperate environments can be applied to 

tropical regions. For example, Sobczak and Findlay (2002) found that DOC 

concentrations in 82 streams in New York state, USA declined, due to a 

combination of decreased activity of heterotrophic bacteria and low levels of 

dissolved oxygen. The predominance of peak M in this study evidently 

supersedes earlier conceptions that DOM generally is refractory, and related to 

retention by the hydrological and microbial dynamics (Findlay and Sinsabaugh, 

2003). Furthermore, Pollard and Ducklow (2011) indicated that the water column 

of subtropical Bremer River in Australia was turned over every two days.  

As much as studies on the lateral variability of DOM are important, it is 

equally important to look at vertical variations in DOM. The results of this study 

suggested that DOM in the water column (at depths of ~20m below the surface) 

were dominated by peak C at the riverbed, compared to waters sampled from 

near the surface and at mid-points (i.e. intermediate points of the water column) 

of the Kinabatangan River. Consequently, extremely high suspended sediment 

concentrations at points close to the riverbed, specifically during the wet season, 

suggest a significant contribution from on-going land development in the 

Kinabatangan catchment. Interestingly, the results also indicate that DOM 

decomposition in the main stem of the Lower Kinabatangan predominantly 

occurred near the surface, followed by mid-point and finally at the riverbed.  
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Large tropical rivers are often characterised by variable water level, high 

concentrations of suspended sediments loads and turbidity, high current 

velocities and mobile bed materials (Davies et al., 2008). Positive relationships 

between annual runoff and watershed export of DOC have been identified by 

various studies as demonstrated in Fig. 7.4. Suspended sediment concentrations 

in the lowland Amazon were consistently high throughout the year and depended 

on the precipitation events. Thus they may indicate the significant effect of local 

climate on OM fluxes in the Amazon River (Townsend-Small et al., 2008). A 

study on pollution prevention found low level of phytoplankton density (16.96 to 

169.54 cells/ml), which could be attributed to high suspended sediment 

concentrations (108 to 1,630 mg/l). Suspended sediment also has been identified 

as one of the main pollutants of the river with an approximate load of 6 million 

tonnes per year (Department of Environment Malaysia, 2009).  
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Fig. 7.4 Positive correlations between annual runoff and watershed export of 

DOC in streams as reported in the literature. Slopes of each line is corresponding 

to the mean annual DOC concentration for that particular group (in parentheses) 

(Mulholland, 2003). 

 

7.4 RESEARCH LIMITATIONS  

Despite the significance of the results outlined above, there several limitations in 

the study, which hindered the conduct of research. Logistics were a major 

limitation, as some of the stations were not accessible by road e.g. in Abai area, 
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thus, prolonging the period before which samples could be analysed in the UK. 

Unfortunately also the international courier company lost one entire set of 

samples, collected in March 2010. This presented a number of problems as it 

included test samples for data comparison (preliminary survey in 2008). 

Therefore, in-situ fluorescence would improve the time consuming of sample 

processes and analyses, which has been successfully carried out in West Florida 

(Del Castillo et al., 2001). Moreover the lack of temperature, rainfall and river 

discharge data in each sampling station has constrained the research areas. 

Permanent installations of meteorological instruments in the study area would 

certainly improve the rigour of research in future with the ability to monitor the 

local precipitation and temperature patterns. 

 

7.5 FUTURE RESEARCH QUESTIONS 

Future plans particularly in the upper part of this catchment indicate that oil palm 

plantations conversion and rehabilitation works are going to continue to 

strengthen the connectivity in the Lower Kinabatangan Wildlife Sanctuary 

(Department of Environment Malaysia, 2009). However, the major challenges are 

that the oil palm industry continues to demand land resources in the area. 

Nevertheless, wider overview on the DOM fluxes and dynamics are important to 

gain further understanding. Future research potentials should concentrate on: 

1. Characterisation of DOM from the upper reaches which consisting of 

primary forests / pristine areas and make comparison with data from this 

study. 
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2. Determination of the flood magnitude and its correlation with the DOM 

dynamics. 

3. Application of the conceptual models in other degraded tropical catchment. 

The study presented in this thesis has showed significant results to 

determine and model the DOM sources as well as fluxes in the Lower 

Kinabatangan River catchment. However, local sample analysis would certainly 

enhance the research with more precise real-time monitoring. Furthermore, rapid 

sample analysis after collection is significant, since OM in the tropical regions 

may be degraded more quickly. 
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8. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

Scope of Chapter 

This concluding chapter summaries the principal results of the research that has 

been described in the thesis. The principal findings of the research are 

discussed, before reviewing the initial objectives as outlined in Chapter 1, and, 

then presenting recommendations for future work in this area. 

 

8.1 PRINCIPAL FINDINGS 

The research undertaken at the Lower Kinabatangan River catchment, Sabah, 

Malaysia, presented in this thesis provides relevant, significant and essential 

additional knowledge by which the complexity of DOM dynamics particularly in 

the tropical regions can be further understood. The combined application of 

fluorescence spectroscopy and PARAFAC modelling were found very useful 

providing valuable information on the characterisation of DOM, according to the 

specific objectives as described in sections 1.3 and 8.1 of the thesis. 

Preliminary sampling conducted over the period from August to September 

2008 in areas of the catchment where the land use was predominately oil palm 

plantations demonstrated that EEMs peaks A, C and T280 were dominant in 

surface water samples collected from rivers, streams and ditches in the area. 

Decomposition of EEMs by PARAFAC modelling indicated that the peak M 
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component was predominant in these samples. Significant positive correlations 

were found between PARAFAC components and peaks A, C and T280 intensities. 

Peak T280 has been shown to be characteristic of labile OM and to correlate 

positively with BOD a measure of biodegradable organic matter (Hudson et al., 

2007). Significantly in this area, the Department of Environment Malaysia (2009) 

has reported that a total of 29 palm oil mills discharge effluent into the river and 

they also report that 9 mills out of 15 surveyed separately (i.e. >50% of those 

surveyed) failed to meet approved effluent discharge limits. POME produced by 

palm oil mills in this area has been recognised as a significant point sources and 

contributed BOD of 3,459 kg/day. Untreated POME could affect the aquatic 

system severely if discharged directly (Abdul Rani, 1995). Thus, the 

predominance of the peak M component and peak T280 intensity could reflect the 

dominance of microbial activities and/or photo-degradation. These baseline data 

also indicated continuous DOM degradation in samples collected from Batu Putih 

downstream, as demonstrated by the loss of fluorescence peak C intensity 

relative to UV absorbance at 340 nm. 

The intensive sampling programme which was undertaken from October 

2009 to May 2010 showed significant variations in DOM that reflected: i. seasonal 

trends; and, ii. differences according to the predominant type of land use. DOM 

was found to be dominant in the coastal swamps, followed by secondary forests 

and oil palm plantations. Fresh DOM was evident in waters sampled from (or in 

the vicinity) of oil palm plantations, while DOM in waters sampled from the 

coastal swamps predominantly comprised terrestrial derived DOM, as indicated 

by discriminant analysis whereby the fluorescence indices IC2/IC1 and IC3/IC1 
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(both were peak M/peak C) were found to be dominant in samples from oil palm 

plantations and coastal swamps. Lower peak M in waters sampled from the 

coastal swamps could reflect high concentrations of tannic acids. Tannic acids 

have been found to reduce bacterial counts (Sahoo and Dhal, 2009), and 

although their concentrations may vary seasonally (Kathiresan and Bingham, 

2001), this could possibly decrease the microbial activities in this area. In terms 

of seasonal variations, DOM was significantly higher in samples collected during 

the wet season. This has been observed in previous studies (Coynel et al., 2005; 

Spencer et al., 2010), although a few studies have reported the reverse. For 

example, Guo et al. (2011) reported high DOC concentrations in the freshwater 

subtropical River Jiulong in February, May and June (dry season) compared to 

the wet season. DOC concentrations in mangrove wetlands along Shark River, 

Florida were also found to be higher during the dry season (Romigh et al., 2006). 

The findings in this study, of the use of peak M to characterise DOM at 

different depths of the river, provide important baseline data to further understand 

the DOM transformations particularly for tropical rivers of equivalent depth (i.e. 

~20 m). DOM concentrations were highest in waters sampled from close to the 

riverbed, followed by near the surface and at mid-depths. Photochemical 

degradation of DOM has been previously demonstrated to result in decrease in 

aromaticity, although it is not as significant as temperature-dependant 

degradation processes in surface waters (Cory et al., 2007). For rivers of 

corresponding depth to the Lower Kinabatangan River, limited light penetration 

could play a significant role in DOM degradation. A comparison of surface and 

deep-water samples demonstrated that biological lability of surface-water DOM 



! 198!

was significantly depleted as result of irradiation, while the deep-water DOM 

remained consistently high even after exposure to sunlight (Benner and 

Biddanda, 1998). This may be related to the presence of organic-rich waters at 

(or near) the riverbed, where DOM accumulates as suggested in a number of 

studies. For example, a pooled reach in the Tualatin River in Oregon was found 

to be an area of DOM deposition that accumulates abundant organic-rich 

sediments (Bonn and Rounds, 2010). It also has been demonstrated that DOC 

concentrations in the Green Lakes Valley, Colorado, were mainly derived from 

organic-rich sediments and benthic algal mats after flushing of DOC from near-

surface soil layers and snowmelt runoff (McKnight et al., 2003). For freshwater 

rivers, particularly in the tropics that are characterised by depths of ~20 m, the 

availability of labile DOM in terms of different level of depths could produce 

comparable results.   

Suspended sediments concentrations display a similar trend to DOM with 

the highest concentrations at the riverbed during the wet season. Large tropical 

river systems are known to transport the majority of the world’s runoff and 

sediment (Hudson, 2003) and consequently, Mulholland (2003) suggested that 

there will be a positive correlation between annual runoff and DOC export, and 

evidently river discharge also plays important role in DOC export (Restrepo and 

Kjerfve, 2000). For example, strong positive correlations between water 

discharge and sediment load were observed in the Magdalena River, in the 

Caribbean particularly during the El Niño and La Niña cycle (Restrepo and 

Kjerfve, 2000).  
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The patterns of water movement through the Lower Kinabatangan River 

catchment suggest that tidal effects are a significant factor in DOM 

transformations and processes within the catchment. It was initially hypothesised 

that the study catchment would conform to existing conceptual models such as 

RCC, FPC and nutrient spiralling concept, although the applicability of RCC in 

tropical forested rivers is uncertain (Greathouse and Pringle, 2006; Winterbourn 

et al., 1981) and the concept is limited in the degree to which it takes into account 

the spatial variability in processes related to drainage networks (Lohse et al., 

2009). A study of a tropical stream in Puerto Rico showed that allochthonous 

DOM from macroinvertebrate grazing followed an opposite trend to that 

anticipated by the RCC (Greathouse and Pringle, 2006). Other issues related to 

existing conceptual models showed that both the RCC and nutrient spiralling 

concept initially disregarded the floodplain dynamics, such as temporal variations 

in hydrologic drivers, and concentrated on baseflow conditions (Bouwman et al., 

2013), although subsequent revisions to the concept have resolved this to some 

degree (Tockner et al., 2000). The RCC and FPC also over-emphasised the 

contribution of refractory DOM from headwaters (Roach, 2013; Thorp and 

Delong, 1994). Results from the current study showed that DOM in coastal 

swamps were abundant in comparison to oil palm plantations and secondary 

forests; suggesting that DOM inputs were not restricted from the catchment 

headwaters. Consequently, the relative loss of fluorescence peak C intensity 

relative to absorbance could be an indication of DOM characteristics as it is 

modified by transported through the catchment. The RCC, FPC and nutrient 

spiralling concept were found not to be fully applicable in the study area in 
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Sabah, which is: i. experiencing progressive development (with ongoing land 

clearance for oil palm plantations); ii. receiving abundant sunlight throughout the 

year; and iii. experiences annual floods during the northeast monsoon 

(Boonratana, 2000). A comparison of the results presented herewith those of a 

case study from the Mississippi Delta restoration works (post-Katrina and Rita 

hurricanes) suggests that the Lower Kinabatangan River catchment could be 

controlled by tidal effects as degraded DOM is transported from the upper 

reaches towards the estuary, and then re-exported back to the river; as indicated 

by salinity, which was consistently high in both wet and dry seasons. 

 

8.2 CONCLUSIONS 

Rivers in the tropical regions are well known to play a significant role in the global 

carbon cycle. However, knowledge of carbon export rates from catchments in this 

area is still inadequately understood, due in part, to the complex ecosystem, but 

also reflecting the significance of DOM pathways, fate and transformation. DOM 

dynamics are complex and this is crucially important particularly in tropical 

wetlands such as those in the Lower Kinabatangan River catchment studied 

here. These wetlands experience annual flooding and are characterised by 

intense precipitation, rapid weathering of inorganic and organic substances and 

rapid flowing of large volumes of water and sediment (cf. Wohl et al., 2012). The 

situation is further complicated by recent anthropogenic changes, including 

continuous and active land development throughout the catchment which has 

many environmental implications.  
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Fluorescence excitation-emission spectroscopy and PARAFAC modeling 

have been found to be very useful in characterising DOM in a number of recent 

studies. In particular, advances in spectroscopy allow the rapid assessment of 

bulk OM properties. This thesis presents, for the first time, the results of work that 

utilised fluorescence spectroscopy to characterise the DOM of the Lower 

Kinabatangan River catchment.  This study had four initial objectives and the 

conclusions are as follows: 

 

Objective 1: To quantify DOM in areas of land where the land use is 

predominately oil palm plantations using optical parameters as a tool.  

 DOM quantities in waters sampled from areas of the catchment where the 

land use is mainly oil palm plantations have been successfully determined using 

fluorescence spectroscopy and ultraviolet-visible absorbance spectroscopy (UV-

vis). Both peak picking and PARAFAC techniques have been applied and 

revealed the dominance of terrestrial-origin substances which could be affected 

by microbial and/or photo-degradation processes. Loss of fluorescence peak C 

relative to UV absorbance showed progressive DOM degradation from lower 

order tributaries towards the estuary.  
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Objective 2: To characterise and interpret the DOM quantity and quality in 

waters draining three different land use types (oil palm plantations, 

secondary forests and coastal swamps) and examine the effects of 

seasonal variability (wet and dry seasons). 

 Significant DOM transformation was exhibited in waters sampled 

throughout the catchment: from the upper headwater reaches to the coastal 

swamps near the Sulu Sea. With respect to land use variation, the results also 

showed that DOM in the coastal swamps was dominant, although there was a 

lower peak M, which could reflect high concentrations of tannic acids. The latter 

are known to be produced in high quantities in swamp and coastal areas 

although concentrations may vary seasonally (Kathiresan and Bingham, 2001). 

Seasonally, DOM was significantly higher in samples which were collected in the 

wet season. At this time, Peak M was found to be dominant, as indicated by both 

peak picking and PARAFAC techniques.  

 

Objective 3: To characterise and interpret both DOM quantity and quality of 

the Kinabatangan main river according to depth and seasonal variability 

(wet and dry seasons). 

 With respect to waters sampled from the main stem of the river; DOM 

dynamics showed a clear trend with depth. Samples collected from near the 

riverbed had higher DOM concentrations, with a decrease in waters sampled 

from near the surface and at mid-depths. There was also a clear difference in 

DOM between the wet and dry seasons: with higher DOM concentrations in 

waters collected in the wet season. Both peak picking and PARAFAC techniques 
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confirmed the dominance of terrestrial derived peaks, which could be derived 

from terrestrial and affected by microbial and/or photo-degradation processes. 

 

Objective 4: To infer differences in the pattern of water movement through 

the catchment using fluorescence as a tool, from three different types of 

land use (oil palm plantations, secondary forests and coastal swamps) and 

two types of seasonal variability (wet and dry). 

Information from the Mississippi Delta restoration works post-Katrina and 

Rita hurricanes has demonstrated the possibility of applying this technique in the 

Lower Kinabatangan River catchment. Lower reaches of the Kinabatangan are 

heavily influenced by tidal effects as demonstrated by its salinity, which is 

continuously present even during the wet season, when water levels were high. 

Degraded DOM was transported from the upper reaches of the catchment 

towards the estuary and then transported (re-exported) back into the river. 

 

8.3 RECOMMENDATIONS FOR FUTURE WORK 

Realistically, the research presented in this thesis represents only the first step in 

understanding DOM dynamics in catchments such as the Kinabatangan in N. 

Borneo. Chapter 7 identified a number of outstanding research questions which 

represent a logical development of the work described here. In particular: 

1. It is important to determine and monitor the DOM fluxes within the 

catchment, to quantify their spatial and temporal variability and determine 
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the importance to the global carbon budget of carbon fluxes from partially 

degraded tropical catchments, such as the Kinabatangan. 

2. Develop a local sampling programme, sub-sampling within the catchment, 

as to establish a clearer link between land use and DOM (recognising that 

there is unlikely to be a clear association between oil palm plantations and 

DOM characteristics). 

3. Examine and quantify the age of DOM, for example, using carbon 

isotopes. 

4. Develop a more rigorous method/protocols to analyse samples more 

quickly in areas where access to power / laboratory facilities is 

problematic. 

5. Identify the most meaningful parameters (i.e. from EEMs) to provide more 

concise information on the DOM characteristics. 

6. Investigate DOM characteristics in areas of pristine rainforest. 

7. Examine in more detail, the transferability of the results of the 

Kinabatangan to other degraded/pristine catchments (in SE Asia). 
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APPENDIX A 

 

Fluorescence maxima of three components identified by PARAFAC models (from 

samples presented in Chapter 4) before and after removal of excitations <280 

nm:  

Before removal: 
 C1 C2 C3 

Excitation 250 250 250 
Emission 454 500 374 
    
After removal: C1 C2 C3 
Excitation 290 (345) 315 290 
Emission 458 398 360 
 

 

Examples of PARAFAC components before and after removal of excitations <280 

nm:  

 

Before removal: 
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After removal: 
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APPENDIX B 

Isotope !D and !O results of the Lower Kinabatangan River catchment for sampling stations dominated by oil palm plantations. 

Station ID #1 #2 !D STDEV  !O expected O residual O expected D residual D total residuals 
BP1 -46.89 -46.25 -46.57 0.45 MAL001 -6.72 -7.686282027 0.96 -39.48442227 7.09 5.010944369 
 -46.12 -46.66 -46.39 0.38 MAL002 -6.66 -7.661935743 1.00 -38.99882951 7.39 5.227602713 
 -46.43 -46.19 -46.31 0.17 MAL003 -6.74 -7.650824098 0.91 -39.59732273 6.71 4.746580315 
 -45.56 -46.85 -46.20 0.92 MAL004 -6.80 -7.636463131 0.83 -40.07362489 6.13 4.335048908 
 -46.52 -46.71 -46.61 0.14 MAL005 -6.71 -7.692103712 0.98 -39.38356237 7.23 5.112559948 
 -46.35 -46.48 -46.42 0.09 MAL006 -6.73 -7.665473657 0.93 -39.55246414 6.87 4.854539879 
 -47.36 -47.67 -47.52 0.22 MAL007 -7.00 -7.814774202 0.82 -41.48436026 6.03 4.265494389 
BP2 -49.30 -48.63 -48.96 0.47 MAL008 -7.24 -8.011089949 0.77 -43.31745796 5.64 3.99098841 
 -49.57 -49.00 -49.28 0.41 MAL009 -7.39 -8.054842619 0.67 -44.37825106 4.91 3.468601704 
 -49.19 -49.15 -49.17 0.03 MAL010 -7.39 -8.039293133 0.65 -44.41479013 4.75 3.361841426 
 -49.00 -49.70 -49.35 0.50 MAL011 -7.27 -8.063388891 0.79 -43.52563599 5.82 4.115962812 
 -48.78 -49.35 -49.06 0.40 MAL012 -7.19 -8.024602125 0.83 -42.94855662 6.11 4.322159369 
 -49.50 -49.82 -49.66 0.23 MAL013 -7.43 -8.105823753 0.68 -44.67719719 4.98 3.522535765 
BP3 -43.96 -43.82 -43.89 0.10 MAL015 -6.65 -7.321700334 0.67 -38.97136026 4.92 3.476354055 
BP4 -43.96 -43.82 -43.89 0.10 MAL015 -6.65 -7.321700334 0.67 -38.97136026 4.92 3.476354055 
 -47.32 -47.71 -47.52 0.28 MAL016 -7.38 -7.814740566 0.43 -44.35256806 3.16 2.237209606 
 -44.12 -43.51 -43.82 0.43 MAL017 -6.55 -7.31210708 0.77 -38.17753229 5.64 3.987744061 
 -50.43 -50.61 -50.52 0.12 MAL018 -7.81 -8.223151989 0.41 -47.47870031 3.04 2.152199092 
 -50.64 -50.06 -50.35 0.40 MAL019 -7.82 -8.199859782 0.38 -47.54907952 2.80 1.981215344 
 -25.10 -25.76 -25.43 0.46 MAL014 -3.98 -4.813982936 0.83 -19.28566889 6.15 4.345303107 
BP5 -44.20 -43.50 -43.85 0.50 MAL024 -6.28 -7.316423019 1.04 -36.1850804 7.66 5.419068044 
BP6 -39.22 -40.17 -39.69 0.67 MAL021 -5.05 -6.75202023 1.70 -27.17488988 12.52 8.852877161 
BP7 -43.55 -44.01 -43.78 0.33 MAL022 -6.65 -7.306946604 0.65 -38.96224458 4.82 3.406017559 
BP8 -44.55 -44.22 -44.39 0.23 MAL023 -6.98 -7.389683839 0.41 -41.39535003 2.99 2.116154452 
 -7.32 -7.97 -7.64 0.45 MAL025 -2.43 -2.397404962 -0.04 -7.905872178 -0.26 -0.184533057 
 -8.09 -8.36 -8.23 0.20 MAL026 -2.64 -2.476263841 -0.16 -9.405227142 -1.18 -0.83432516 
 -7.56 -8.07 -7.81 0.36 MAL045 -2.86 -2.420167878 -0.44 -11.02575967 -3.21 -2.272141465 
 -36.52 -36.41 -36.47 0.07 MAL064 -6.49 -6.31320241 -0.18 -37.78735895 -1.32 -0.934919994 
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Station ID #1 #2 !D STDEV  !O expected O residual O expected D residual D total residuals 
 -60.77 -60.88 -60.82 0.08 MAL067 -9.68 -9.622575681 -0.06 -61.24407527 -0.42 -0.298338403 
SK1 -48.22 -47.75 -47.98 0.33 MAL027 -7.60 -7.878362046 0.27 -45.96298638 2.02 1.429585277 
 -49.64 -48.85 -49.25 0.56 MAL028 -7.98 -8.05009778 0.07 -48.70339824 0.55 0.385596775 
 -50.79 -50.06 -50.42 0.51 MAL029 -7.86 -8.20969833 0.35 -47.8427231 2.58 1.824782291 
 -50.17 -50.15 -50.16 0.01 MAL030 -7.98 -8.17335123 0.20 -48.71983732 1.44 1.015415211 

 -49.65 -50.66 -50.15 0.71 MAL031 -7.92 -8.173151552 0.25 -48.27906399 1.88 1.326046854 
 -50.84 -50.42 -50.63 0.29 MAL032 -8.02 -8.237884204 0.21 -49.05405117 1.58 1.114938714 
 -50.50 -50.40 -50.45 0.07 MAL033 -8.00 -8.2136812 0.22 -48.85469052 1.60 1.129948002 
 -50.77 -50.29 -50.53 0.34 MAL034 -8.03 -8.223937103 0.19 -49.12869644 1.40 0.989572757 
 -50.23 -50.59 -50.41 0.26 MAL035 -8.05 -8.20760988 0.15 -49.27356528 1.13 0.802164956 
SK2 -51.01 -50.96 -50.99 0.04 MAL042 -7.98 -8.286422265 0.30 -48.75694556 2.23 1.577626588 
 -51.30 -51.27 -51.28 0.02 MAL043 -7.97 -8.326633991 0.36 -48.64201562 2.64 1.868165661 
 -50.57 -51.29 -50.93 0.51 MAL044 -7.85 -8.278281707 0.43 -47.76818992 3.16 2.234410154 
 -51.21 -50.73 -50.97 0.34 MAL036 -7.85 -8.283684381 0.43 -47.79475632 3.17 2.243741952 
SK3 -50.13 -49.31 -49.72 0.58 MAL038 -7.89 -8.114041122 0.22 -48.07675849 1.64 1.161471266 
 -50.99 -50.93 -50.96 0.04 MAL039 -7.92 -8.282329137 0.36 -48.32684611 2.63 1.860448225 
 -52.18 -53.18 -52.68 0.71 MAL091 -7.90 -8.51676154 0.62 -48.13787776 4.55 3.214113983 
 -50.03 -50.69 -50.36 0.47 MAL040 -8.05 -8.201297002 0.15 -49.226204 1.14 0.802800282 
 -50.73 -50.97 -50.85 0.17 MAL041 -7.80 -8.267631875 0.47 -47.41833152 3.43 2.426370572 
 -50.61 -50.57 -50.59 0.03 MAL037 -8.05 -8.232109785 0.18 -49.23928733 1.35 0.953906671 
SK4 -47.57 -48.42 -48.00 0.60 MAL068 -7.27 -7.879763304 0.61 -43.50366431 4.49 3.175864421 
 -49.40 -49.24 -49.32 0.12 MAL069 -7.41 -8.05972147 0.65 -44.55031531 4.77 3.372325859 
 -49.55 -49.17 -49.36 0.27 MAL070 -7.41 -8.065691036 0.66 -44.52974787 4.83 3.417936248 
 -48.89 -49.64 -49.27 0.53 MAL087 -7.56 -8.052689161 0.50 -45.61840091 3.65 2.5804846 
SK5 -46.56 -47.11 -46.84 0.39 MAL071 -6.98 -7.722267804 0.74 -41.40129953 5.43 3.842799652 
 -46.92 -46.92 -46.92 0.00 MAL072 -7.03 -7.73348991 0.71 -41.72828118 5.19 3.66999364 
 -47.43 -47.47 -47.45 0.03 MAL073 -6.94 -7.805889122 0.87 -41.07754141 6.37 4.506915769 
 -47.65 -47.64 -47.64 0.01 MAL074 -7.16 -7.832160687 0.67 -42.70452447 4.94 3.493199998 
 -49.51 -49.46 -49.49 0.04 MAL075 -7.42 -8.082330585 0.67 -44.59155306 4.89 3.460830276 
 -49.77 -49.31 -49.54 0.33 MAL086 -7.33 -8.090120137 0.76 -43.9270754 5.62 3.97122125 
SK6 -40.95 -39.46 -40.20 1.05 MAL089 -6.29 -6.821299846 0.53 -36.31696599 3.89 2.749064004 
 -40.65 -40.45 -40.55 0.14 MAL090 -6.34 -6.867961982 0.53 -36.63008969 3.92 2.770495936 
BT1 -37.56 -36.95 -37.25 0.43 MAL079 -5.64 -6.420358955 0.78 -31.50441197 5.75 4.06542191 
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Station ID #1 #2 !D STDEV  !O expected O residual O expected D residual D total residuals 
 -38.62 -38.69 -38.66 0.05 MAL080 -5.87 -6.610761922 0.75 -33.17033792 5.48 3.878351452 
 -40.94 -40.78 -40.86 0.11 MAL081 -5.84 -6.910233441 1.07 -33.01250966 7.85 5.548478268 
 -43.90 -43.99 -43.95 0.06 MAL082 -5.94 -7.329811941 1.39 -33.69792135 10.25 7.247417589 
 -46.97 -48.32 -47.64 0.95 MAL083 -6.59 -7.832179657 1.24 -38.53211761 9.11 6.443607611 
 -47.12 -48.80 -47.96 1.19 MAL084 -6.90 -7.875304984 0.98 -40.75374967 7.21 5.097126824 
 -47.12 -48.80 -47.96 1.19 MAL084 -6.90 -7.875304984 0.98 -40.75374967 7.21 5.097126824 
BT2 -42.23 -40.97 -41.60 0.89 MAL076 -6.05 -7.011145125 0.96 -34.55133426 7.05 4.985545624 
 -41.33 -40.99 -41.16 0.24 MAL077 -6.05 -6.95157929 0.90 -34.50714675 6.66 4.706794765 
 -41.14 -41.08 -41.11 0.04 MAL078 -6.01 -6.94489861 0.93 -34.25200022 6.86 4.852440905 
 -50.29 -50.61 -50.45 0.23 MAL085 -7.54 -8.213199038 0.68 -45.47211777 4.98 3.519255894 
AB1 -45.50 -45.16 -45.33 0.25 MAL046 -7.13 -7.517564956 0.39 -42.48353111 2.85 2.012227685 
 -45.02 -45.63 -45.33 0.43 MAL047 -6.87 -7.517018882 0.65 -40.57391741 4.75 3.359673617 
 -45.72 -45.94 -45.83 0.16 MAL048 -7.11 -7.585503412 0.48 -42.3178723 3.51 2.482934136 
 -50.02 -50.72 -50.37 0.50 MAL049 -7.85 -8.202746585 0.35 -47.78601357 2.59 1.828702937 
 -50.47 -50.61 -50.54 0.10 MAL050 -7.90 -8.225264445 0.32 -48.16036107 2.38 1.681190528 
 -51.00 -50.93 -50.96 0.05 MAL051 -7.85 -8.282785662 0.43 -47.79913386 3.16 2.235969423 
 -50.82 -50.79 -50.80 0.02 MAL052 -7.72 -8.261249468 0.54 -46.79510364 4.01 2.833839324 
 -51.22 -51.03 -51.12 0.14 MAL053 -8.03 -8.304911056 0.28 -49.08998267 2.03 1.438356447 
 -51.54 -52.45 -52.00 0.65 MAL054 -7.88 -8.423715305 0.55 -47.96509301 4.03 2.852053656 
 -51.64 -50.98 -51.31 0.46 MAL055 -7.98 -8.330027973 0.35 -48.76057665 2.55 1.801994308 
 -51.92 -52.21 -52.07 0.21 MAL057 -8.06 -8.433045262 0.38 -49.28991873 2.78 1.963824865 
 -50.03 -51.40 -50.71 0.97 MAL065 -7.82 -8.249108138 0.43 -47.57672929 3.14 2.217965238 
AB2 -50.21 -49.99 -50.10 0.15 MAL058 -7.82 -8.166004067 0.35 -47.53734821 2.56 1.813316748 
 -50.92 -50.42 -50.67 0.36 MAL059 -7.72 -8.242907712 0.52 -46.84162832 3.83 2.705486535 
 -50.92 -50.62 -50.77 0.21 MAL060 -7.70 -8.256167528 0.56 -46.67652212 4.09 2.891240605 
 -51.31 -50.20 -50.75 0.79 MAL061 -7.89 -8.254669905 0.37 -48.05998503 2.69 1.905199965 
 -50.85 -51.30 -51.08 0.32 MAL062 -7.76 -8.298303492 0.54 -47.08896596 3.99 2.818887908 
 -50.80 -50.94 -50.87 0.10 MAL063 -7.77 -8.269821301 0.50 -47.17464771 3.69 2.61007373 
 -51.04 -50.13 -50.58 0.65 MAL066 -7.71 -8.23153782 0.52 -46.77482679 3.81 2.693550061 
!

!
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Regression for Rainfall      
      

Sample #1 #2 !D STDEV !O 
DGFC Rainfall -25.10 -25.76 -25.43 0.46 -3.98 
Rainfall1 27/8/08 -7.32 -7.97 -7.64 0.45 -2.43 
Rainfall2 27/8/08 -8.09 -8.36 -8.23 0.20 -2.64 
Rainfall 28/8/08 -7.56 -8.07 -7.81 0.36 -2.86 
Rainfall 29/8/08 -36.52 -36.41 -36.47 0.07 -6.49 
Rainfall 30/8/08 -60.77 -60.88 -60.82 0.08 -9.68 
!

SUMMARY OUTPUT       
       

Regression Statistics     
Multiple R  0.988702683     
R Square  0.977532995     
Adjusted R Square  0.971916244     
Standard Error  3.586966182     
Observations   6     
       
ANOVA       

    df SS MS F Significance F 
Regression  1 2239.240833 2239.240833 174.0388643 0.000190723 
Residual  4 51.46530557 12.86632639   
Total   5 2290.706138       
       
!

!

!
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!

Plot of !18O versus !2H for sampling sites at the Lower Kinabatangan River 

catchment, and comparison with the estimated local meteoric water line (LMWL) 

and the global meteoric water line (GMWL) for local precipitation. 

 

!

Plot of local meteoric water line (LMWL) for local precipitation. 



! 212!

LIST OF REFERENCES 

 

Abbt-Braun, G., Lankes, U., and Frimmel, F. H. (2004) Structural characterization 

of aquatic humic substances ? The need for a multiple method approach. 

Aquatic Sciences - Research Across Boundaries, 66(2): 151–170. 

doi:10.1007/s00027-004-0711-z 

Abdullah, S. A and Nakagoshi, N. (2006) Changes in landscape spatial pattern in 

the highly developing state of Selangor, Peninsular Malaysia. Landscape 

and Urban Planning, 77: 263-275. 

Abdullah, S. A. and Hezri, A. A. (2008) From forest landscape to agricultural 

landscape in the developing tropical country of Malaysia: pattern, process, 

and their significance on policy. Environmental Management, 42(5): 907–

917. doi:10.1007/s00267-008-9178-3 

Abdul Rani, A. (1995) Environmental pollution in Malaysia: trends and prospects. 

Trends in Analytical Chemistry. 14(5): 191-198. 

Acreman, M. C., Fisher, J., Stratford, C. J., Mould, D. J. and Mountfold, J. O. 

(2007) Hydrological science and wetland restoration: some case studies 

from Europe. Hydrol. Earth Syst. Sci, 11: 158–169. 

Acres, B. D. and Folland, C. J. (1975) The Soils of Sabah. Vol. 2: Sandakan 

and Kinabatangan Districts. Land Resources Division, Ministry of 

Overseas Development, England. 

Ahmad, U. K., Ujang, Z., Yusop, Z. and Fong, T. L. (2002) Fluorescence 

technique for the characterization of natural organic matter in river water. 

Water Science and Technology, 46: 117-125. 



! 213!

Ahmed, S., Fujii, S., Kishikawa, N., Ohba, Y., Nakashima, K. and Kuroda, N. 

(2006) Selective determination of quinones by high-performance liquid 

chromatography with on-line post column ultraviolet irradiation and 

peroxyoxalate chemiluminescence detection. Journal of Chromatography 

A, 1133(1-2): 76–82. doi:10.1016/j.chroma.2006.07.078 

Aitkenhead-Peterson, J. A., McDowell, W. H. and Neff, J. C. (2003) Sources, 

production, and regulation of allochthonous DOM inputs to surface waters. 

In: Findlay S. E. G., Sinsabaugh, R. L. (Eds.), Aquatic Ecosystems: 

Interactivity of Dissolved Organic Matter. Elsevier, New York, pp 25–70. 

Alfred, R., Ahmad, A. H., Payne, J., Williams, C., Ambu, L. N., How, P. M. and 

Goossens, B. (2012) Home Range and Ranging Behaviour of Bornean 

Elephant (Elephas maximus borneensis) Females. (M. Hayward, Ed.) PloS 

One, 7(2): e31400. 

Alkhatib, M., Jennerjahn, T. C. and Samiaji, J. (2007) Biogeochemistry of the 

Dumai River estuary, Sumatra, Indonesia, a tropical black-water river. 

Limnology and Oceanography, 2410-2417. 

Alonso-Saez, L., Gasol, J. M., Lefort, T., Hofer, J. and Sommaruga, R. (2006) 

Effect of natural sunlight on bacterial activity and differential sensitivity of 

natural bacterioplankton groups in Northwestern Mediterranean Coastal 

Waters. Applied and Environmental Microbiology, 72(9): 5806–5813.  

Al-Shami, S. A., Md Rawi, C. S., Ahmad, A. H., Abdul Hamid, S. and Mohd Nor, 

S. A. (2011). Influence of agricultural, industrial, and anthropogenic stresses 

on the distribution and diversity of macroinvertebrates in Juru River Basin, 



! 214!

Penang, Malaysia. Ecotoxicology and Environmental Safety, 74(5), 

1195–1202. doi:10.1016/j.ecoenv.2011.02.022 

Alvarez-Cobelas, M., Angeler, D. G., Sánchez-Carrillo, S. and Almendros, G. 

(2010) A worldwide view of organic carbon export from catchments. 

Biogeochemistry, 107(1-3): 275–293. 

Aminot, A., El-Sayed, M. A. and Kerouel, R. (1990) Fate of natural and 

athropogenic dissolved organic carbon in the macrotidal Elorn Estuary 

(France). Marine Chemistry, 29: 255–275. 

Amon, R. M. W. and Benner, R. (1996) Bacterial utilization of different size 

classes of dissolved organic matter. Limnology and Oceanography, 41: 

41–51. 

Ancrenaz, M., Marshall, A., Goossens, B., van Schaik, C., Sugardjito, J., Gumal, 

M. and Wich, S. (2008) Pongo pygmaeus. In: IUCN 2013. IUCN Red List of 

Threatened Species. Version 2013.1. 

Ancrenaz, M., Setchell, J. M., James, S. S., Sinyor, J., Dakog, K., Seventri, A. D. 

and Goossens, B. (2003) Preliminary results concerning the status of the 

Kinabatangan gibbon population. In Mohamed, M., Takano, A., Goossens, 

B. and Rajah Indran (eds.). Lower Kinabatangan Scientific Expedition 

2002, pp. 47-53. Universiti Malaysia Sabah, Kota Kinabalu, Malaysia. 

Andersen, C. M. and Bro, R. (2003) Practical aspects of PARAFAC modeling of 

fluorescence excitation-emission data. Journal of Chemometrics, 17(4): 

200–215. doi:10.1002/cem.790 

Andersson, C. A. and Bro, R. (2000) The N-way toolbox for MATLAB. 

Chemometrics and Intelligent Laboratory Systems, 52: 1-4. 



! 215!

Araguás-Araguás, L., Froehlich, K. and Rozanski, K. (1998) Stable isotope 

composition of precipitation over Southeast Asia, Journal of Geophysical 

Research, 103(D22): 28,721–28,742. 

Ashton, E. C. and Macintosh, D. J. (2002) Preliminary assessment of the plant 

diversity and community ecology of the Sematan mangrove forest, 

Sarawak, Malaysia. Forest Ecology and Management, 166: 111–129. 

Atapattu, S. and Kodituwakku, D. (2009) Agriculture in South Asia and its 

implications on downstream health and sustainability: A review. 

Agricultural Water Management, 96(3): 361-373. 

Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., 

Alin, S. R., Aalto, R. E. and Yoo, K. (2011) Riverine coupling of 

biogeochemical cycles between land, oceans, and atmosphere. Frontiers 

in Ecology and the Environment, 9(1): 53–60. doi:10.1890/100014.s01 

Azrina, M. Z., Yap, C. K., Rahim Ismail, A., Ismail, A. and Tan, S. G. (2006) 

Anthropogenic impacts on the distribution and biodiversity of benthic 

macroinvertebrates and water quality of the Langat River, Peninsular 

Malaysia. Ecotoxicology and Environmental Safety, 64(3): 337-347.  

Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, 

D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S. and 

Houghton, R. A. (2012) Estimated carbon dioxide emissions from tropical 

deforestation improved by carbon-density maps. Nature Climate Change, 

2(1): 182–185. doi:10.1038/nclimate1354 



! 216!

Badri, D. V., Weir, T. L., van der Lelie, D. and Vivanco, J. M. (2009) Rhizosphere 

chemical dialogues: plant–microbe interactions. Current Opinion in 

Biotechnology, 20(6): 642–650. doi:10.1016/j.copbio.2009.09.014 

Baker A. (2002a) Fluorescence excitation-emission matrix characterisation of 

river waters impacted by a tissue mill effluent. Environmental Science and 

Technology, 36: 1377-1382. 

Baker A. (2002b) Spectrophotometric discrimination of river dissolved organic 

matter. Hydrological Processes, 16: 3203-3213. 

Baker, A. and Spencer, R. G. M. (2004) Characterization of dissolved organic 

matter from source to sea using fluorescence and absorbance 

spectroscopy. Science of the Total Environment, 333: 217-232. 

Baker, A., Tipping, E., Thacker, S. and Gondar, D. (2008) Relating dissolved 

organic matter fluorescence and functional properties. Chemosphere, 

73(11): 1765–1772.  

Bartlett, K. B. and Harriss, R. C. (1993) Review and assessment of methane 

emissions from wetlands. Chemosphere, 26: 261–320. 

Basu, B. K. and Pick, F. R. (1997) Factors related to heterotrophic bacterial and 

flagellate abundance in temperate rivers. Aquatic Microbial Ecology, 12: 

123–129. 

Battin, T., Luyssaert, S., Kaplan, L., Aufdenkampe, A., Richter, A. and Tranvik, L. 

(2009) The boundless carbon cycle. Nature Geoscience, 2(9): 598–600. 

doi:10.1038/ngeo618 



! 217!

Baum, A., Rixen, T. and Samiaji, J. (2007) Relevance of peat draining rivers in 

central Sumatra for the riverine input of dissolved organic carbon into the 

ocean. Estuarine, Coastal and Shelf Science, 73(3-4): 563–570.  

Benner, R. and Biddanda, B. (1998) Photochemical transformations of surface 

and deep marine dissolved organic matter: effects on bacterial growth. 

Limnology and Oceanography, 43: 1373–1378. 

Benner, R., Hatcher, P. and Hedges, J. (1990) Early diagenesis of mangrove 

leaves in a tropical estuary: bulk chemical characterization using solid-state 

13C NMR and elemental analyses. Geochimica et Cosmochimica Acta, 

54: 2003-2013. 

Benner, R. and Kaiser, K. (2011) Biological and photochemical transformations of 

amino acids and lignin phenols in riverine dissolved organic matter. 

Biogeochemistry, 102(1-3): 209–222. doi:10.1007/s10533-010-9435-4 

Benstead, J. P., Rosemond, A. D., Cross, W. F., Wallace, J. B., Eggert, S. L., 

Suberkropp, K., Gulis, V., Greenwood, J. L. and Tant, C. J. (2009) Nutrient 

enrichment alters storage and fluxes of detritus in a headwater stream 

ecosystem. Ecology, 90: 2556–2566. 

Bernhardt, E. S. and Mcdowell, W. H. (2008) Twenty years apart: Comparisons of 

DOM uptake during leaf leachate releases to Hubbard Brook Valley streams 

in 1979 versus 2000. Journal of Geophysical Research, 113(G3).  

Bernot, M. J., Sobota, D. J., Hall, J. R. O., Mulholland, P. J., Dodds, W. K., 

Webster, J. R., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., 

Gregory, S. V., Grimm, N. B., Hamilton, S. K., Johnson, S. L., McDowell, W. 

H., Meyer, J. L., Peterson, B., Poole, G. C., Valett, H. M., Arango, C., 



! 218!

Beaulieu, J. J., Burgin, A. J., Crenshaw, C., Helton, A. M., Johnson, L., 

Merriam, J., Niederlehner, B. R., O’brien, J. M., Potter, J. D., Sheibley, R. 

W., Thomas, S. M. and Wilson, K. (2010) Inter-regional comparison of land-

use effects on stream metabolism. Freshwater Biology, 55(9): 1874–1890. 

doi:10.1111/j.1365-2427.2010.02422.x 

Bertilsson, S. and Tranvik, L. J. (2000) Photochemical transformation of dissolved 

organic matter in lakes. Limnology and Oceanography, 45, 753–762. 

Bertilsson, S. and Jones, Jr. J. B. (2003) Supply of dissolved organic matter to 

aquatic ecosystems: autochthonous sources. In Findlay, S. E. G. and 

Sinsabaugh, R. L. (Eds.), Aquatic Ecosystems: Interactivity of Dissolved 

Organic Matter, Elsevier, pp 3-24. 

Bianchi, T. S., Filley, T., Dria, K. and Hatcher, P. G. (2004) Temporal variability in 

sources of dissolved organic carbon in the lower Mississippi river. 

Geochimica et Cosmochimica Acta, 68(5): 959–967. 

doi:10.1016/j.gca.2003.07.011 

Blough, N. E. and Del Vecchio, R. (2002) Chromophoric DOM in the coastal 

environment. In Hansell D. & Carlson (Eds.), Biogeochemistry of Marine 

Dissolved Organic Matter. Academic Press, New York, pp. 509-546. 

Boonratana, R. (2000) Ranging behavior of Proboscis Monkeys (Nasalis larvatus) 

in the Lower Kinabatangan, Northern Borneo. International Journal of 

Primatology, 21: 497-517. 

Boulton, A. J., Boyero, L., Covich, A. P., Dobson, M., Lake, S. and Pearson, R. 

(2008) Are tropical streams ecologically different from temperate streams? 



! 219!

In Dudgeon, D. (Ed.), Tropical Stream Ecology. Academic Press, New 

York, pp. 257-284. 

Bradley, C., Baker, A., Cumberland, S., Boomer, I and Morrissey, I. P. (2007) 

Dynamics of water movement and trends in dissolved carbon in a 

headwater wetland in a permeable catchment. Wetlands, 27(4): 1066-1080. 

Brinkmann, T., Sartorius, D. and Frimmel, F. H. (2003) Photobleaching of humic 

rich dissolved organic matter. Aquatic Sciences - Research Across 

Boundaries, 65(4): 415–424. doi:10.1007/s00027-003-0670-9 

Bro, R. (1997) PARAFAC. Tutorial and applications. Chemometrics and 

Intelligent Laboratory System, 38: 149-171.  

Brown, S. and Lugo, A. E. (1990) Tropical secondary forests. Journal of 

Tropical Ecology, 6: 1–32. 

Bunn, S. E., Davies, P. M. and Winning, M. (2003) Sources of organic carbon 

supporting the food web of an arid zone floodplain river. Freshwater 

Biology, 48: 619–635. 

Burdige, D. J. (2007) Preservation of Organic Matter in Marine Sediments:  

Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon 

Budgets? Chemical Reviews, 107(2): 467–485. doi:10.1021/cr050347q 

Cansier, D. (2011) Rainforest conservation as a strategy of climate policy. 

Poiesis & Praxis : International Journal of Ethics of Science and 

Technology Assessment, 8(1): 45–56. doi:10.1007/s10202-011-0095-9 

Carstea, E. M., Baker, A., Pavelescu, G. and Boomer, I. (2009) Continuous 

fluorescence assessment of organic matter variability on the Bournbrook 

River, Birmingham, UK. Hydrological Processes, 23(13): 1937-1946.  



! 220!

Cauwet, G. and Mackenzie, F. T. (1993) Carbon inputs and distribution in 

estuaries of turbid rivers: the Yang Tze and Yellow rivers (China). Marine 

Chemistry, 43: 235–246. 

Cawley, K. M., Wolski, P., Mladenov, N. and Jaffé, R. (2012) Dissolved organic 

matter biogeochemistry along a transect of the Okavango Delta, Botswana. 

Wetlands. doi:10.1007/s13157-012-0281-0 

Chari, N. V. H. K., Sarma, N. S., Pandi, S. R. and Murthy, K. N. (2012) Seasonal 

and spatial constraints of fluorophores in the midwestern Bay of Bengal by 

PARAFAC analysis of excitation emission matrix spectra. Estuarine, 

Coastal and Shelf Science, 1–10. doi:10.1016/j.ecss.2012.01.012 

Chen, J., Gu, B., LeBoeuf, E. J., Pan, H. and Dai, S. (2002) Spectroscopic 

characterization of the structural and functional properties of natural organic 

matter fractions. Chemosphere, 48: 59–68. 

Chen, W., Westerhoff, P., Leenheer, J. A. and Booksh, K. (2003) Fluorescence 

Excitation!Emission Matrix Regional Integration to Quantify Spectra for 

Dissolved Organic Matter. Environmental Science & Technology, 37(24): 

5701–5710. doi:10.1021/es034354c 

Chokkalingam, U. and de Jong, W. (2001). Secondary forest: a working definition 

and typology. International Forestry Review, 3: 19–26.  

Chow, A.T., Guo, F., Gao, S., Breuer, R. and Dahlgren, R. A. (2005) Filter pore 

size selection for characterizing dissolved organic carbon and 

thihalomethane precursors from soils. Water Research 39(7): 1255-1264. 



! 221!

Coble, P. G., Green, S. A., Blough, N. V. and Gagosian, R. B. (1990) 

Characterization of dissolved organic matter in the Black Sea by 

fluorescence spectroscopy. Nature, 348: 432-435. 

Coble, P. G. (1996) Characterization of marine and terrestrial DOM in seawater 

using excitation–emission matrix spectroscopy. Marine Chemistry, 51: 

325–346. 

Cole, J. J., Findlay, S. and Pace, M. L. (1988) Bacterial production in fresh and 

saltwater ecosystems: a cross-system overview. Marine Ecology Progress 

Series, 43: 1–10. 

Cole, J. J. and Caraco, N. F. (2001) Carbon in catchments: connecting terrestrial 

carbon losses with aquatic metabolism. Marine and Freshwater Research, 

52(1): 101–110. doi:10.1071/MF00084 

Cole, J. J., Prairie, Y. T., Caraco, N. F., Mcdowell, W. H., Tranvik, L. J., Striegl, R. 

G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J. and 

Melack, J. (2007) Plumbing the global carbon cycle: integrating inland 

waters into the terrestrial carbon budget. Ecosystems, 10: 171-84. 

Cory, R. M. and McKnight, D. M. (2005) Fluorescence Spectroscopy Reveals 

Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved 

Organic Matter. Environmental Science & Technology, 39(21): 8142-

8149.  

Cory, R. M., Mcknight, D. M., Chin, Y. P., Miller, P. and Jaros, C. L. (2007) 

Chemical characteristics of fulvic acids from Arctic surface waters: Microbial 

contributions and photochemical transformations. Journal of Geophysical 

Research, 112: 1-14. 



! 222!

Coynel, A., Seyler, P., Etcheber, H., Meybeck, M. and Orange, D. (2005) Spatial 

and seasonal dynamics of total suspended sediment and organic carbon 

species in the Congo River. Global Biogeochemical Cycles, 19, 1–17.  

Crisman, T. L., Chapman, L. J. and Chapman, C. A. (1996) Conserving tropical 

wetlands through sustainable use. Geotimes, 41: 23-25. 

Cronan, C. S. and Aiken, G. R. (1985) Chemistry and transport of soluble humic 

substances on forested watersheds of the Adirondack Park, New York. 

Geochimica Et Cosmochimica Acta, 49: 1697–1705. 

Cumberland, S. A. and Baker, A. (2007) The freshwater dissolved organic matter 

fluorescence – total organic carbon relationship. Hydrological Processes, 

21: 2093-2099. 

Cummins, K. W., Klug, J. J., Wetzel, R. G., Petersen, R. C., Suberkropp, K. F., 

Manny, B. A., Wuycheck, J. C. and Howard, F. O. (1972) Organic 

enrichment with leaf leachate in experimental lotic ecosystems. 

BioScience, 22: 1–4. 

Dai, M., Yin, Z., Meng, F., Liu, Q. and Cai, W.-J. (2012) Spatial distribution of 

riverine DOC inputs to the ocean: an updated global synthesis. Current 

Opinion in Environmental Sustainability, 4(2): 170–178. 

doi:10.1016/j.cosust.2012.03.003 

Dalzell, B. J., Minor, E. C. and Mopper, K. M. (2009) Photodegradation of 

estuarine dissolved organic matter: a multi-method assessment of DOM 

transformation. Organic Geochemistry, 40: 243-257. 

Dambul, R. and Jones, P. (2008) Regional and temporal climatic classification for 

Borneo. Geografia, 5(1): 1–25. 



! 223!

Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, 16: 436-468. 

Darling, W. G. (2004) Hydrological factors in the precipitation of stable isotopic 

proxy data present and past: a European perspective. Quaternary Science 

Reviews, 23: 743-770. 

Davies, P. M., Bunn, S. E. and Hamilton, S. K. (2008) Primary production in 

tropical streams and rivers. In Dudgeon, D. (Ed.), Tropical Stream 

Ecology. Academic Press, New York, pp. 24-42.   

Dawood, M. M., Schilthuizen, M. and Hamzah, Z. (2003) Preliminary survey of 

fireflies (Coleoptera: Lampyridae) in Lower Kinabatangan, Sabah. In 

Mohamed, M., Takano, A., Goossens, B. and Rajah Indran (eds.). Lower 

Kinabatangan Scientific Expedition 2002, pp. 27-35. Universiti Malaysia 

Sabah, Kota Kinabalu, Malaysia. 

Dawson, J. J. C. and Smith, P. (2007) Carbon losses from soil and its 

consequences for land-use management. Science of the Total 

Environment, 382(2-3): 165–190. doi:10.1016/j.scitotenv.2007.03.023 

Day, J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. 

J., Orth, K., Mashriqui, H., Reed, D. J., Shabman, L., Simenstad, C. A., 

Streever, B. J., Twilley, R. R., Watson, C. C., Wells, J. T. and Whigham, D. 

F. (2007) Restoration of the Mississippi Delta: Lessons from Hurricanes 

Katrina and Rita. Science, 315(5819), 1679–1684.  

De La Cruz, A. A. (1986) Tropical wetlands as a carbon source. Aquatic Botany, 

25: 109-115. 

Del Castillo, C. E., Coble, P. G., Conmy, R. N., Muller-Karger, F. E., 

Vanderbloomen, L., Vargo, G. A. (2001) Multispectral in situ measurements 

of organic matter and chlorophyll fluorescence in seawater: documenting 



! 224!

the intrusion of the Mississippi River plume in the West Florida Shelf. 

Limnology and Oceanography, 46(7): 1836-1843. 

Department of Environment Malaysia. (2009) Study on pollution and water 

quality improvement for Sg. Kinabatangan Basin. Final Report Volume 

II: Main Report (Part I). Unpublished Report, Ministry of Natural Resources 

and Environment Malaysia. 

Desa, M. N. and Niemczynowicz, J. (1996) Temporal and spatial characteristics 

of rainfall in Kuala Lumpur, Malaysia. Atmospheric Research, 42: 263-

277. 

Docherty, K. M., Young, K. C., Maurice, P. A. and Bridgham, S. D. (2006) 

Dissolved Organic Matter Concentration and Quality Influences upon 

Structure and Function of Freshwater Microbial Communities. Microbial 

Ecology, 52(3): 378–388.  

Dodds, W. K. (2002) Freshwater Ecology: Concepts and Environmental 

Applications. Thorp, J. H. (Ed.) Academic Press. 

Dolgonosov, B. M. and Gubernatorova, T. N. (2010) Modeling the biodegradation 

of multicomponent organic matter in an aquatic environment: 1. 

Methodology. Water Resources, 37(3): 311–319. 

doi:10.1134/S0097807810030061 

Donald, P. (2004) Biodiversity impacts of some agricultural commodity production 

systems. Conservation Biology, 18: 17-37. 

Doyle, M. W. and Shields, F. D. (2012) Compensatory Mitigation for Streams 

Under the Clean Water Act: Reassessing Science and Redirecting Policy1. 



! 225!

JAWRA Journal of the American Water Resources Association, 1–16. 

doi:10.1111/j.1752-1688.2011.00631.x 

Dudgeon D. (2003) The contribution of scientific information to the conservation 

and management of freshwater biodiversity in tropical Asia. Hydrobiologia, 

500: 295-314. 

Elliott, S., Lead, J. R. and Baker, A. (2006) Characterisation of the fluorescence 

from freshwater, planktonic bacteria. Water Research, 40(10): 2075-2083.  

Esteves, F. (1998) Considerations on the ecology of wetlands, with emphasis on 

Brazilian floodplain ecosystems. In Scarano, F. R. and Franco, A. C., (Eds.) 

Oecologia Brasiliensis, pp. 111–135. 

Evans, C. D., Monteith, D. T., Cooper, D. M. (2005) Long-term increases in 

surface water dissolved organic carbon: observations, possible causes and 

environmental impacts. Environmental Pollution, 137: 55-71. 

Evans, C. D., Freeman, C., Billett, M. F., Garnett, M. H. and Norris, D. (2007) 

Evidence against recent climate-induced destabilization of soil carbon from 

14C analysis of riverine dissolved organic matter. Geophysical Research 

Letter, 34: L07407. 

Falkowski, P. (2000) The Global Carbon Cycle: A Test of Our Knowledge of Earth 

as a System. Science, 290(5490): 291–296.  

Farjalla, V. F., Faria, B. M. and Esteves, F. A. (2002) The relationship between 

DOC and planktonic bacteria in tropical coastal lagoons. Arch. Hydrobiol., 

156(1): 97–119.  

Fellman, J. B., D’amore, D. V., Hood, E. and Boone, R. D. (2008) Fluorescence 

characteristics and biodegradability of dissolved organic matter in forest and 



! 226!

wetland soils from coastal temperate watersheds in southeast Alaska. 

Biogeochemistry, 88(2): 169-184.  

Fellman, J. B., Miller, M. P., Cory, R. M., D’amore, D. V. and White, D. (2009) 

Characterizing Dissolved Organic Matter Using PARAFAC Modeling of 

Fluorescence Spectroscopy: A Comparison of Two Models. Environmental 

Science & Technology, 43(16): 6228-6234.  

Fellman, J. B., Hood, E. and Spencer, R. G. M. (2010) Fluorescence 

spectroscopy opens new windows into dissolved organic matter dynamics in 

freshwater ecosystems: a review. Limnology and Oceanography, 55(6): 

2452–2462. doi:10.4319/lo.2010.55.6.2452 

Fiedler, S., Holl, B., Freibauer, A., Stahr, K., Drosler, M., Schloter, M. and 

Jungkunst, H. (2008) The relevance of particulate organic carbon (POC) for 

carbon composition in the pore water of drained and rewetted fens of the 

“Donauried” (South-Germany). Biogeosciences Discussions, 5: 2049–

2073. 

Findlay, S., Pace, M. and Lints, D. (1991) Variability and transport of suspended 

sediment, particulate and dissolved organic carbon in the tidal freshwater 

Hudson River. Biogeochemistry, 12, 149–169. 

Findlay, S. and Sinsabaugh, R. (1999) Unravelling the sources and bioavailability 

of dissolved organic matter in lotic aquatic ecosystems. Marine Freshwater 

Res., 50: 781–790. 

Fisher, S. G., Sponseller, R. A. and Heffernan, J. B. (2004) Horizons in stream 

biogeochemistry: flowpaths to progress. Ecology, 85: 2369–2379. 



! 227!

Fitzherbert, E. B., Stuebig, M. J., Morel, A., Danielsen, F., Bruhl, C. A., Donald, P. 

F. and Phalan, B. (2008) How will oil palm expansion affect biodiversity? 

Trends in Ecology and Evolution, 23(10): 538- 545. 

Fletcher, C. J. (2009) Conservation, livelihoods and the role of tourism: a 

case study of Sukau village in the Lower Kinabatangan District, Sabah, 

Malaysia. Master of Natural Resources Management and Ecological 

Engineering, Lincoln University. 

Fonseca, W., Benayas, J. M. R. and Alice, F. E. (2011) Carbon accumulation in 

the biomass and soil of different aged secondary forests in the humid tropics 

of Costa Rica. Forest Ecology and Management, 262(8): 1400–1408. 

doi:10.1016/j.foreco.2011.06.036 

Fortini, L. B., Bruna, E. M., Zarin, D. J., Vasconcelos, S. S. and Miranda, I. S. 

(2010) Altered resource availability and the population dynamics of tree 

species in Amazonian secondary forests. Oecologia, 162(4): 923–934. 

doi:10.1007/s00442-009-1524-5 

Friedlingstein, P., Houghton, R. A., Marland, G., Hackler, J., Boden, T. A., 

Conway, T. J., et al. (2010) Update on CO2 emissions. Nature 

Geoscience, 3(12): 811–812. doi:10.1038/ngeo1022 

Fuentes, M., Gonzalezgaitano, G. and Garciamina, J. (2006) The usefulness of 

UV–visible and fluorescence spectroscopies to study the chemical nature of 

humic substances from soils and composts. Organic Geochemistry, 

37(12): 1949-1959.  

Galford, G. L., Melillo, J. M., Kicklighter, D. W., Cronin, T. W., Cerri, C. E. P., 

Mustard, J. F. and Cerri, C. C. (2010) Greenhouse gas emissions from 



! 228!

alternative futures of deforestation and agricultural management in the 

southern Amazon. Pnas, 107: 19649–19654. 

doi:10.1073/pnas.1000780107/-/DCSupplemental/pnas.201000780SI.pdf 

Garcia-Perez, M., Shen, J., Wang, X. S. and Li, C.-Z. (2010) Production and fuel 

properties of fast pyrolysis oil/bio-diesel blends. Fuel Processing 

Technology, 91(3): 296–305. doi:10.1016/j.fuproc.2009.10.012 

Gazzaz, N. M., Yusoff, M. K., Ramli, M. F., Aris, A. Z. and Juahir, H. (2012) 

Characterization of spatial patterns in river water quality using chemometric 

pattern recognition techniques. Marine Pollution Bulletin, 64(4): 688-698.  

Gessner, M. O. and Chauvet, E. (2002) A case for using litter breakdown to 

assess functional stream integrity. Ecological Applications, 2: 498–510. 

Ghervase, L., Cordier, M., Ibalot, F. and Parlanti, E. (2012) Storage effect on 

fluorescence signal of dissolved organic matter components. Romanian 

Reports in Physics, 64: 754–760. 

Gisil, J., Suleiman, M., Maripa, R. D. and Jalil, M. F. (2003) Additions to the list of 

vascular plants from Lower Kinabatangan. In Mohamed, M., Takano, A., 

Goossens, B. and Rajah Indran (eds.). Lower Kinabatangan Scientific 

Expedition 2002, pp. 77-81. Universiti Malaysia Sabah, Kota Kinabalu, 

Malaysia. 

Glatzel, S., Kalbitz, K., Dalva, M. and Moore, T. (2003) Dissolved organic matter 

properties and their relationship to carbon dioxide efflux from restored peat 

bogs. Geoderma, 113(3-4), 397–411. doi:10.1016/S0016-7061(02)00372-5 



! 229!

Gondar, D., Thacker, S. A., Tipping, E. and Baker, A. (2008) Functional variability 

of dissolved organic matter from the surface water of a productive lake. 

Water Research, 42(1-2): 81–90. doi:10.1016/j.watres.2007.07.006 

Grace, J. (2004) Understanding and managing the global carbon cycle. Journal 

of Ecology, 92: 189–202. 

Graneli, W., Lindell, M., De Faria, B. M. and De Assis Esteves, F. (1998) 

Photodegradation of dissolved organic carbon in temperate and tropical 

lakes–dependence on wavelength band and dissolved organic carbon 

concentration. Biogeochemistry, 43: 175-195. 

Greathouse, E. A. and Pringle, C. M. (2006) Does the river continuum concept 

apply on a tropical island? Longitudinal variation in a Puerto Rican stream. 

Canadian Journal of Fisheries and Aquatic Sciences, 63(1): 134–152. 

doi:10.1139/f05-201 

Gueguen, C., Guo, L. and Tanaka, N. (2005) Distributions and characteristics of 

colored dissolved organic matter in the Western Arctic Ocean. Continental 

Shelf Research, 25(10): 1195–1207. doi:10.1016/j.csr.2005.01.005 

Guo, L. and Santschi, P. H. (1997) Isotopic and elemental characterization of 

colloidal organic matter from the Chesapeake Bay and Galveston Bay. 

Marine Chemistry, 59: 1–15. 

Guo, L., Tanaka, T., Wang, D., Tanaka, N. and Murata, A. (2004) Distributions, 

speciation and stable isotope composition of organic matter in the 

southeastern Bering Sea. Marine Chemistry, 91(1-4): 211–226. 

doi:10.1016/j.marchem.2004.07.002 



! 230!

Guo, L. and Macdonald, R. W. (2006) Source and transport of terrigenous 

organic matter in the upper Yukon River: evidence from isotope (!13C, !14C, 

and !15N) composition of dissolved, colloidal and particulate phases. Global 

Biogeochemical Cycles, 20: GB2011. 

Guo, W., Yang, L., Hong, H., Stedmon, C. A., Wang, F., Xu, J. and Xie, Y. (2011) 

Assessing the dynamics of chromophoric dissolved organic matter in a 

subtropical estuary using parallel factor analysis. Marine Chemistry, 124(1-

4): 125-133.  

Hader, D. P., Kumar, H. D., Smith, R. C. and Worrest, R. C. (1998) Effects on 

aquatic ecosystems. Journal of Photochemistry and Photobiology B: 

Biology, 46: 53-68.  

Hai, T. C., Ng, A., Prudente, C., Pang, C. and Yee, J. T. C. (2001) Balancing the 

need for sustainable oil palm development and conservation: the 

Lower Kinabatangan floodplains experience. In Proceeding of ISP 

National Seminar 2001: Strategic Directions for the Sustainability of the Oil 

Palm Industry, pp. 1–53. 

Hansell, D., Kadko, D. and Bates, N. (2004) Degradation of terrigenous dissolved 

organic carbon in the Western Arctic Ocean. Science, 304(5672): 858-861. 

doi:10.1126/science.1096175 

Harun, S. (2006) Aquatic insects and water quality of the Lower 

Kinabatangan River. Unpublished MSc Thesis, Universiti Malaysia Sabah. 

Harun, S. and Mohamed, M. (2008) Researches in wetland: Lower 

Kinabatangan floodplain, Sabah, Malaysia. In Proceeding of Asian 

Wetland Symposium 2008, Hanoi, Vietnam, pp 1-8.  



! 231!

Hashim, N. R., Hughes, F. and Bayliss-Smith, T. (2010) Non-native species in 

floodplain secondary forests in Peninsular Malaysia. Environment Asia, 3: 

43–49. 

Hedges, J. I. (1992) Global biogeochemical cycles: progress and problems. 

Marine Chemistry, 39: 67–93. 

Helms, J., Stubbins, A., Ritchie, J., Minor, E., Kieber, D. and Mopper, K. (2008) 

Absorption spectral slopes and slope ratios as indicators of molecular 

weight, source, and photobleaching of chromophoric dissolved organic 

matter. Limnology and Oceanography, 3: 955–969. 

Henson, I. E. (1999) Comparative Ecophysiology of Oil Palm and Tropical 

Rainforest. In Gurmit Singh (Ed.), Oil Palm and the Environment: A 

Malaysian Perspective, MOPGC, Kuala Lumpur, pp. 9–39. 

Hollis, G. E. and Thompson, J. R. (1998) Hydrological Data for Wetland 

Management. J Ciwem, 12: 1-9. 

Hong, H., Yang, L., Guo, W., Wang, F. and Yu, X. (2011) Characterization of 

dissolved organic matter under contrasting hydrologic regimes in a 

subtropical watershed using PARAFAC model. Biogeochemistry,  

Hongve, D. (1999) Production of dissolved organic carbon in forested 

catchments. Journal of Hydrology, 224: 91–99. 

Hood, E., McKnight, D. M. and Williams, M. W. (2003). Sources and chemical 

character of dissolved organic carbon across an alpine/subalpine ecotone, 

Green Lakes Valley, Colorado Front Range, United States. Water 

Resources Research, 39(7).  



! 232!

Hood, E., Gooseff, M. N. and Johnson, S. L. (2006) Changes in the character of 

stream water dissolved organic carbon during flushing in three small 

watersheds, Oregon. Journal of Geophysical Research, 111(G1). 

doi:10.1029/2005JG000082 

Hooijer, A., Silvius, M., Wösten, H. and Page, S. (2006) Peat-CO2, assessment 

of CO2 emissions from drained peat lands in SE Asia. Delft Hydraulics 

Report Q3943. 41pp. 

Hope, D., Billett, M. D. and Cresser, M. S. (1994) A review of the export of 

Carbon in river water: fluxes and processes. Environmental Pollution, 84: 

301-324. 

Hossler, K. and Bauer, J. E. (2013) Amounts, isotopic character, and ages of 

organic and inorganic carbon exported from rivers to ocean margins: 1. 

Estimates of terrestrial losses and inputs to the Middle Atlantic Bight. Global 

Biogeochemical Cycles, 27, 1–16. doi:10.1002/gbc.20033 

Houghton, R. (2010) Development and climate change: emissions of carbon from 

land management. World Development Report 2010, pp. 1–17. 

Hudson, N. (2010) Organic matter fluorescence properties of some U.K. fresh 

and waste waters. Unpublished PhD Thesis, University of Birmingham, U.K. 

Hudson, N., Baker, A. and Reynolds, D. (2007) Fluorescence analysis of 

dissolved organic matter in natural, waste and polluted waters – a review. 

River Research and Application, 23: 631-649. 

Hudson, N., Baker, A., Ward, D., Reynolds, D. M., Brunsdon, C., Carliell-

Marquet, C. and Browning, S. (2008) Can fluorescence spectrometry be 

used as a surrogate for the Biochemical Oxygen Demand (BOD) test in 



! 233!

water quality assessment? An example from South West England. Science 

of The Total Environment, 391(1): 149–158.  

Hudson, N., Baker, A., Reynolds, D. M., Carliell-Marquet, C. and Ward, D. (2009) 

Changes in freshwater organic matter fluorescence intensity with 

freezing/thawing and dehydration/rehydration. Journal of Geophysical 

Research, 114: G00F08.  

Hughes, R. F., Kauffman, J. B. and Jaramillo, V. J. (1999) Biomass, Carbon, and 

nutrient dynamics of secondary forests in a humid tropical region of Mexico. 

Ecology, 80: 1892–1907. 

Huguet, A., Vacher, L., Saubusse, S., Etcheber, H., Abril, G., Relexans, S., 

Ibalot, F. and Parlanti, E. (2010) New insights into the size distribution of 

fluorescent dissolved organic matter in estuarine waters. Organic 

Geochemistry, 41(6): 595-610. doi:10.1016/j.orggeochem.2010.02.006 

Hur, J., Lee, B.-M. and Shin, H.-S. (2011) Microbial degradation of dissolved 

organic matter (DOM) and its influence on phenanthrene DOM interactions. 

Chemosphere, 85(8): 1360–1367. doi:10.1016/j.chemosphere.2011.08.001 

Hutchinson, C. S. (2005) Chapter XI: Geomorphology. Geology of North-West 

Borneo: Sarawak, Brunei and Sabah. Elsevier, Britain, pp. 179-182. 

Ishii, S. K. L. and Boyer, T. H. (2012) Behavior of Reoccurring PARAFAC 

Components in Fluorescent Dissolved Organic Matter in Natural and 

Engineered Systems: A Critical Review. Environmental Science & 

Technology, 46(4): 2006–2017.  

Jaffe, R., McKnight, D., Maie, N., Cory, R., McDowell, W. H. and Campbell, J. L. 

(2008) Spatial and temporal variations in DOM composition in ecosystems: 



! 234!

The importance of long-term monitoring of optical properties. Journal of 

Geophysical Research, 113(G4). doi:10.1029/2008JG000683 

Jakobsen, F., Hartstein, N., Frachisse, J. and Golingi, T. (2007) Sabah shoreline 

management plan (Borneo, Malaysia): Ecosystems and pollution. Ocean & 

Coastal Management, 50(1-2): 84–102. 

doi:10.1016/j.ocecoaman.2006.03.013 

Jalil, M. F., King,  J. P., Dawood, M. M., Wahid, N., Harith, H. and Mohamed, M. 

(2003) Butterfly (Lepidoptera: Rhopalocera) fauna of Kinabatangan Wildlife 

Sanctuary. In Mohamed, M., Takano, A., Goossens, B. and Rajah Indran 

(eds.). Lower Kinabatangan Scientific Expedition 2002, pp. 19-25. 

Universiti Malaysia Sabah, Kota Kinabalu, Malaysia. 

Jawan, A. (2008) Kualiti air tasik ladam di Sungai Sugut, Sungai 

Kinabatangan dan Sungai Padas. Unpublished MSc. Thesis, Universiti 

Malaysia Sabah.  

Jiao, N., Herndl, G., Hansell, D., Benner, R., Kattner, G., Wilhelm, S., Kirchman, 

D. L., Weinbaur, M. G., Luo, T., Chen, F. and Azam, F. (2010) Microbial 

production of recalcitrant dissolved organic matter: long-term carbon 

storage in the global ocean. Nature Publishing Group, 8(8): 593–599. 

doi:10.1038/nrmicro2386 

Johnson, B. L., Richardson, W. B. and Naimo, T. J. (1995) Past, present, and 

future concepts in large river ecology. BioScience, 45: 134–141. 

Johnson, M. S., Lehmann, J., Selva, E. C., Abdo, M., Riha, S. and Couto, E. G. 

(2006) Organic carbon fluxes within and streamwater exports from 



! 235!

headwater catchments in the southern Amazon. Hydrological Processes, 

20(12): 2599–2614. doi:10.1002/hyp.6218 

Jong, W., Chokkalingam, U., Smith, J. and Sabogal, C. (2001) Tropical 

secondary forests in Asia: introduction and synthesis. Journal of Tropical 

Forest Science, 13: 563–576. 

Josephine, R., Alfred, R. J. and Rajah, I. (2004) Integrated River Basin 

Management Planning for the Kinabatangan Catchment, Sabah: Approach 

and strategy. Proceedings for World Water Day 2004, 1-10.  

Junk, W. J., Bayley, P. B. and Sparks, R. E. (1989) The flood pulse concept in 

river-floodplain systems. Spec. Publ. Can. J. Fish. Aquat. Sci., 106: 110-

127. 

Junk, W. J. (2002) Long-term environmental trends and the future of tropical 

wetlands. Environmental Conservation, 29(4): 414-435. 

Junk, W. J., Brown, M., Campbell, I. C., Finlayson, M., Gopal, B., Ramberg, L. 

and Warner, B. G. (2006) The comparative biodiversity of seven globally 

important wetlands: a synthesis. Aquatic Sciences - Research Across 

Boundaries, 68(3): 400–414. doi:10.1007/s00027-006-0856-z 

Kalbitz, K., & Kaiser, K. (2007). Contribution of dissolved organic matter to 

carbon storage in forest mineral soils. Journal of Plant Nutrition and Soil 

Science, 171(1): 52–60. doi:10.1002/jpln.200700043  

Kalbitz, K., Geyer, W. and Geyer, S. (1999) Spectroscopic properties of dissolved 

humic substances - a reflection of land use history in a fen area. 

Biogeochemistry, 47: 219-238. 



! 236!

Kaplan, L. A. and Newbold, J. D. (2003) The role of monomers in stream 

ecosystem metabolism. In Findlay, S. E. G. and Sinsabaugh, R. L. (Eds.), 

Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, 

Academic Press, pp. 97-119. 

Kathiresan, K. and Bingham, B. (2001) Biology mangroves and mangrove 

ecosystems. Advances in Marine Biology, 40: 81–251. 

Kendall, C. and Coplen, T. B. (2001) Distribution of oxygen-18 and deuterium in 

river waters across the United States. Hydrological Processes, 15: 1363-

1393. 

Kenzo, T., Ichie, T., Hattori, D., Kendawang, J. J., Sakurai, K. and Ninomiya, I. 

(2010) Changes in above- and belowground biomass in early successional 

tropical secondary forests after shifting cultivation in Sarawak, Malaysia. 

Forest Ecology and Management, 260(5): 875–882. 

doi:10.1016/j.foreco.2010.06.006 

Kiffney, P. M., Richardson, J. S. and Bull, J. P. (2003) Responses of periphyton 

and insects to experimental manipulation of riparian buffer width along 

forest streams. Journal of Applied Ecology, 40: 1060–1076. 

Klavins, M., Kokorite, I., K., Ansone, L., Rodinov, V. and Springe, G. (2012) 

Spectrofluorimetric study of dissolved organic matter in River Salaca 

(Latvia) basin waters. Knowledge and Management of Aquatic 

Ecosystems, 404: 1-14.  

Klotzbucher, T., Kaiser, K., Guggenberger, G., Gatzek, C. and Kalbitz, K. (2011) 

A new conceptual model for the fate of lignin in decomposing plant litter. 

Ecology, 92: 1052–1062. 



! 237!

Kobayashi, S. (1994) Effects of harvesting impacts and rehabilitation of tropical 

rain forest. J. Plant. Res., 107: 99–106. 

Koh, L. P. and Wilcove, D. S. (2008) Oil palm: disinformation enables 

deforestation. Trends in Ecology and Evolution, 24(2): 67-68. 

Kohler, H., Meon, B., Gordeev, V., Spitzy, A. and Amon, R. (2003) Dissolved 

organic matter (DOM) in the estuaries of Ob and Yenisei and the adjacent 

Kara Sea, Russia. In Stein, R., Fahl. K., Futterer, D., Galimov, E. and 

Stepanets, O. (Eds.) Siberian River Run-Off in the Kara Sea, pp. 1–28. 

Kowalczuk, P., Cooper, W. J., Whitehead, R. F., Durako, M. J. and Sheldon, W. 

(2003) Characterization of CDOM in organic rich river and surrounding 

coastal ocean in the South Atlantic Bight. Aquatic Sciences, 65: 384-401. 

Kowalczuk, P., Durako, M. J., Young, H., Kahn, A. E., Cooper, W. J. and Gonsior, 

M. (2009) Characterization of dissolved organic matter fluorescence in the 

South Atlantic Bight with use of PARAFAC model: Interannual variability. 

Marine Chemistry, 113(3-4): 182-196. Elsevier B.V.  

Kowalczuk, P., Cooper, W. J., Durako, M. J., Kahn, A. E., Gonsior, M. and Young, 

H. (2010) Characterization of dissolved organic matter fluorescence in the 

South Atlantic Bight with use of PARAFAC model: Relationships between 

fluorescence and its components, absorption coefficients and organic 

carbon concentrations. Marine Chemistry, 118(1-2): 22-36.  

Kristensen, E., Bouillon, S., Dittmar, T. and Marchand, C. (2008) Organic carbon 

dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2): 201–

219.  



! 238!

Kumagai, T. and Kume, T. (2012) Influences of diurnal rainfall cycle on CO2 

exchange over Bornean tropical rainforests. Ecological Modelling, 246: 

91–98. doi:10.1016/j.ecolmodel.2012.07.014 

Lakowicz, J. R. (2006) Principles of Fluorescence Spectroscopy. 3rd Edition, 

Springer. 

Lal, R. (1981) Clearing a tropical forest: II. Effects on crop performance. Field 

Crop Research, 4: 345–354. 

Lamade, E., Djegui, N. and Leterme, P. (1996) Estimation of carbon allocation to 

the roots from soil respiration measurements of oil palm. Plant and Soil, 

181: 329–339. 

Lamade, E. and Bouillet, J.-P. (2005) Carbon storage and global change: the role 

of oil palm. Dossier, 154–160. 

Langner, A., Miettinen, J. and Siegert, F. (2007) Land cover change 2002–2005 

in Borneo and the role of fire derived from MODIS imagery. Global Change 

Biology, 13(11), 2329–2340. doi:10.1111/j.1365-2486.2007.01442.x 

Lasco, R. and Pulhin, F. (2003) Philippine Forest Ecosystems and Climate 

Change: Carbon stocks, Rate of Sequestration and the Kyoto Protocol. 

Annals of Tropical Research, 25: 37-51. 

Latrubesse, E., Stevaux, J. and Sinha, R. (2005) Tropical rivers. 

Geomorphology, 70(3-4): 187–206. doi:10.1016/j.geomorph.2005.02.005 

Lead, J. R., Muirhead, D. and Gibson, C. T. (2005) Characterization of freshwater 

natural aquatic colloids by atomic force microscopy (AFM). Environmental 

Science & Technology, 39: 6930–6936. 

Lee, C-W., & Bong, C. W. (2006). Carbon flux through bacteria in a eutrophic 



! 239!

tropical environment: Port Klang waters. The Environment in Asia Pacific 

Harbours, 329–345. 

Leenheer, J. A. and Croue, J. P. (2003) Characterizing dissolved aquatic organic 

matter. Environmental Science & Technology, 37: 18–26. 

Lennon, J. T. and Pfaff, L. E. (2005) Source and supply of terrestrial organic 

matter affects aquatic microbial metabolism. Aquatic Microbial Ecology, 

39: 107-119. 

Letscher, R. T., Hansell, D. A. and Kadko, D. (2011) Rapid removal of 

terrigenous dissolved organic carbon over the Eurasian shelves of the Arctic 

Ocean. Marine Chemistry, 123(1-4): 78–87. 

doi:10.1016/j.marchem.2010.10.002 

Li, C., Zhang, B., Ertunc, T., Schaeffer, A. and Ji, R. (2012) Birnessite-induced 

binding of phenolic monomers to soil humic substances and nature of the 

bound residues. Environmental Science & Technology, 46(16), 8843–

8850. doi:10.1021/es3018732 

Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., 

Roulet, N., Rydin, H. and Schaepman-Strub, G. (2008) Peatlands and the 

carbon cycle: from local processes to global implications – a synthesis. 

Biogeosciences, 5: 1475-1491. 

Lindell, M. J., Graneli, H. W. and Tranvik, L. J. (1996) Effects of sunlight on 

bacterial growth in lakes of different humic content. Aquatic Microbial 

Ecology, 11: 135–141. 

Lu, X. X., Li, S., He, M., Zhou, Y., Li, L. and Ziegler, A. D. (2011) Organic carbon 

fluxes from the upper Yangtze basin: an example of the Longchuanjiang 



! 240!

River, China. Hydrological Processes, 26(11): 1604-1616.  

Lu, Y., Bauer, J. E., Canuel, E. A., Yamashita, Y., Chambers, R. M. and Jaffé, R. 

(2013) Photochemical and microbial alteration of dissolved organic matter in 

temperate headwater streams associated with different land use. Journal of 

Geophysical Research: Biogeosciences, 118: 1-15.   

Luciani, X., Mounier, S., Paraquetti, H., Redon, R., Lucas, Y., Bois, A., Lacerda, 

L., Raynaud, M. and Ripert, M. (2008) Tracing of dissolved organic matter 

from the SEPETIBA Bay (Brazil) by PARAFAC analysis of total 

luminescence matrices. Marine Environmental Research, 65(2): 148-157.  

Luizao, R. C. C., Luizao, F. J., Paiva, R. Q., Monteiro, T. F., Sousa, L. S. and 

Kruijts, B. (2004) Variation of carbon and nitrogen cycling processes along a 

topographic gradient in a central Amazonian forest. Global Change 

Biology, 10: 592-600. 

Lutz, B. D., Bernhardt, E. S., Roberts, B. J., Cory, R. M. and Mulholland, P. J. 

(2012) Distinguishing dynamics of dissolved organic matter components in a 

forested stream using kinetic enrichments. Limnology and Oceanography, 

57(1): 76–89. doi:10.4319/lo.2012.57.1.0076 

MacDonald, L. H. and Coe, D. (2007) Influence of headwater streams on 

downstream reaches in forested areas. Forest Science, 53: 148–168. 

MacKenzie, R. A. (2008) Impacts of riparian forest removal on Palauan streams. 

Biotropica, 40(6), 666–675. doi:10.1111/j.1744-7429.2008.00433.x 

Maie, N., Jaffé, R., Miyoshi, T. and Childers, D., (2006) Quantitative and 

qualitative aspects of dissolved organic carbon leached from senescent 

plants in an oligotrophic wetland. Biogeochemistry, 78: 285–314. 



! 241!

Maie, N., Yamashita, Y., Cory, R. M., Boyer, J. N. and Jaffé, R. (2012) 

Application of excitation emission matrix fluorescence monitoring in the 

assessment of spatial and seasonal drivers of dissolved organic matter 

composition: sources and physical disturbance controls. Applied 

Geochemistry, 1–13. doi:10.1016/j.apgeochem.2011.12.021 

Mansourian, S., Davison, G. and Sayer, J. (2003) Bringing back the forests: by 

whom and for whom? In Proceedings of an International Conference on 

Bringing Back the Forests: Policies and Practices for Degraded Lands and 

Forests, Kuala Lumpur, 7-10 October 2002’, pp. 27-140. 

Mariot, M., Yudal, D., Furian, S., Sakamoto, A., Valles, V., Fort, M. and Barbiero, 

L. (2007) Dissolved organic matter fluorescence as a water-flow tracer in 

the tropical wetland of Pantanal of Nhecolandia, Brazil. Science of The 

Total Environment, 388: 184-193. 

Massicotte, P. and Frenette, J. J. (2011) Spatial connectivity in a large river 

system: resolving the sources and fate of dissolved organic matter. 

Ecological Applications, 21: 2600–2617. 

Matsuda, I., Tuuga, A. and Higashi, S. (2009) Ranging Behavior of Proboscis 

Monkeys in a Riverine Forest with Special Reference to Ranging in Inland 

Forest. International Journal of Primatology, 30(2): 313-325.  

Mattsson, B., Cederberg, C. and Blix, L. (2000) Agricultural land use in life cycle 

assessment (LCA): case studies of three vegetable oil crops. Journal of 

Cleaner Production, 8: 283-292. 



! 242!

Mayorga, E. and Aufdenkampe, A. (2002) Processing of bioactive elements in the 

Amazon River system. In McClain, M. E. (Ed.), The Ecohydrology of 

South American Rivers and Wetlands, IAHS Press, Oxford, pp. 1-24. 

Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., Hedges, J. I., 

Quay, P. D., Richey, J. E. and Brown, T. A. (2005) Young organic matter as 

a source of carbon dioxide outgassing from Amazonian rivers. Nature, 436: 

538-541.  

Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., John, I., 

Hedges, J. I., McGroddy, M. E., Baisden, W. T. and Hedin, L. O. (2008) 

Stochiometry of hydrological C, N and P losses across climate and geology: 

an environmental matrix approach across New Zealand primary forests. 

Global Biogeochem Cycles, 22: GB3005. 

McDonald, S., Bishop, A., Prenzler, P. and Robards, K. (2004) Analytical 

chemistry of freshwater humic substances. Analytica Chimica Acta, 

527(2): 105–124. doi:10.1016/j.aca.2004.10.011 

McDowell, W. H. (1985) Kinetics and mechanisms of dissolved organic carbon 

retention in a headwater stream. Biogeochemistry, 1: 329–352. 

McDowell, W. H. and Likens, G. E. (1988) Origin, composition, and flux of 

dissolved organic carbon in the Hubbard Brook Valley. Ecological 

Monographs, 58: 177–195. 

McDowell, W. H. (1998) Internal nutrient fluxes in a Puerto Rican rainforest. 

Journal of Tropical Ecology, 14: 521–536. 

McGroddy, M. E., Baisden, W. T. and Hedin, L. O. (2008) Stoichiometry of 

hydrological C, N, and P losses across climate and geology: An 



! 243!

environmental matrix approach across New Zealand primary forests. Global 

Biogeochemical Cycles, 22(1): GB1026.  

McKnight, D. M., Hood, E. and Klapper, L. (2003) Trace organic moieties of 

dissolved organic matter in natural waters. In Findlay, S. E. G. and 

Sinsabaugh, R. L. (Eds.), Aquatic Ecosystems: Interactivity of Dissolved 

Organic Matter, Academic Press, pp. 71-96. 

McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T. and 

Andersen, D. T. (2001) Spectrofluorometric characterization of aquatic fulvic 

acid for determination of precursor organic material and general structural 

properties. Limnology and Oceanography, 46: 38-48. 

McMorrow, J. and Talip, M. (2001) Decline of forest area in Sabah, Malaysia: 

Relationship to state policies, land code and land capability. Global 

Environmental Change, 11: 217–230. 

Mendoza-Lera, C., Larrañaga, A., Pérez, J., Descals, E., Martínez, A., Moya, O., 

Arostegui, I. and Pozo, J. (2012) Headwater reservoirs weaken terrestrial-

aquatic linkage by slowing leaf-litter processing in downstream regulated 

reaches. River Research and Applications, 28(1): 13–22. 

doi:10.1002/rra.1434 

Miettinen, J., Shi, C. and Liew, S. C. (2011) Deforestation rates in insular 

Southeast Asia between 2000 and 2010. Global Change Biology, 17(7), 

2261–2270. doi:10.1111/j.1365-2486.2011.02398.x 

Miller, W. L. and Moran, M. A. (1997) Interaction of photochemical and microbial 

processes in the degradation in the degradation of refractory dissolved 



! 244!

organic matter from a coastal marine environment. Limnology and 

Oceanography, 42: 1317–1324. 

Miller, M., Mcknight, D., Chapra, S. and Williams, M. (2009) A model of 

degradation and production of three pools of dissolved organic matter in an 

alpine lake. Limnology and Oceanography, 54: 2213-2227. 

Mitsch, W. J., Nahlik, A., Wolski, P., Bernal, B., Zhang, L. and Ramberg, L. 

(2010) Tropical wetlands: seasonal hydrologic pulsing, carbon 

sequestration, and methane emissions. Wetlands Ecology and 

Management, 18(5): 573–586. doi:10.1007/s11273-009-9164-4 

Mitsch, W. J., Nahlik, A., Wolski, P., Bernal, B., Zhang, L. and Ramberg, L. 

(2011) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration 

and methane emissions, pp. 1–14. 

Mladenov, N., McKnight, D. M., Macko, S. A., Norris, M., Cory, R. M. and 

Ramberg, L. (2007) Chemical characterization of DOM in channels of a 

seasonal wetland. Aquatic Sciences, 69: 456-471.  

Mobed, J., Hemmingsen, S., Autry, J. and McGown, L. (1996) Fluorescence 

characterization of IHSS humic substances: total luminescence spectra with 

absorbance correction. Environmental Science & Technology, 30, 3061–

3065. 

Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit Ha, Forsius, M., Hogasen, 

T., Wilander, A., Skjelkvale, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., 

Kopacek, J. and Vesely, J. (2007) Dissolved organic carbon trends resulting 

from changes in atmospheric deposition chemistry. Nature, 450: 537-40. 



! 245!

Moody, C. S., Worrall, F., Evans, C. D. and Jones, T. G. (2013) The rate of loss 

of dissolved organic carbon (DOC) through a catchment. Journal of 

Hydrology, 492(C): 139–150. doi:10.1016/j.jhydrol.2013.03.016 

Moore, S., Gauci, V., Evans, C. D. and Page, S. E. (2011) Fluvial organic carbon 

losses from a Bornean blackwater river. Biogeosciences, 8(4): 901-909.  

Moran, M. A. and Covert, J. S. (2003) Photochemically mediated linkages 

between dissolved organic matter and bacteriplankton. In Findlay, S. E. G. 

and Sinsabaugh, R. L. (Eds.), Aquatic Ecosystems: Interactivity of 

Dissolved Organic Matter, Academic Press, pp. 244-262. 

Moran, M. A. and Sheldon, W. M. Jr. (2000) Carbon loss and optical property 

changes during long-term photochemical and biological degradation of 

estuarine dissolved organic matter. Limnol. Oceanogr., 45: 1254–1264. 

Morel, A. C., Saatchi, S. S., Malhi, Y., Berry, N. J., Banin, L., Burslem, D., Nilus, 

R. and Ong, R. C. (2011) Estimating aboveground biomass in forest and oil 

palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data. 

Forest Ecology and Management, 262(9): 1786–1798. 

doi:10.1016/j.foreco.2011.07.008 

Mortillaro, J. M., Rigal, F., Rybarczyk, H., Bernardes, M., Abril, G. and Meziane, 

T. (2012) Particulate organic matter distribution along the Lower Amazon 

River: addressing aquatic ecology concepts using fatty acids. PloS one, 

7(9): 1-10.  

Mounier, S., Benedetti, M., Benaim, J. Y. and Boulegue, J. (2002) Organic matter 

size dynamics in the Amazon River. The Ecohydrology of South 

American Rivers and Wetlands, 25–35. 



! 246!

Mulholland, P. J. and Watts, J. A. (1982) Transport of organic carbon to the 

oceans by rivers of North America: a synthesis of existing data. Tellus, 34: 

176-186. 

Mulholland, P. J. (2003) Large-scale patterns in dissolved organic carbon 

concentration, flux and sources. In Findlay, S. E. G. and Sinsabaugh, R. L. 

(Eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, 

Academic Press, pp. 139-159. 

Murphy, K. R., Ruiz, G. M., Dunsmuir, W. T. M. and Waite, T. D. (2006) 

Optimized parameters for fluorescence-based verification of ballast water 

exchange by ships. Environmental Science & Technology, 40(7): 2357–

2362. doi:10.1021/es0519381 

Murphy, K. R., Stedmon, C. A., Waite, T. D. and Ruiz, G. M. (2008) 

Distinguishing between terrestrial and autochthonous organic matter 

sources in marine environments using fluorescence spectroscopy. Marine 

Chemistry, 108(1-2): 40-58.  

Murphy, K. R., Hambly, A., Singh, S., Henderson, R. K., Baker, A., Stuetz, R. and 

Khan, S. J. (2011) Organic Matter Fluorescence in Municipal Water 

Recycling Schemes: Toward a Unified PARAFAC Model. Environmental 

Science & Technology, 45(7): 2909-2916.  

Mustafa, Y. M., Amin, M. S. M., Lee, T. S. and Shariff, A. R. M. (2005) Evaluation 

of land development impact on a tropical watershed hydrology using remote 

sensing and GIS. Journal of Spatial Hydrology, 5: 16–30. 

Naden, P. S., Old, G. H., Eliot-Laize, C., Granger, S. J., Hawkins, J. M. B., Bol, R. 

and Haygarth, P. (2010). Assessment of natural fluorescence as a tracer of 



! 247!

diffuse agricultural pollution from slurry spreading on intensely-farmed 

grasslands. Water Research, 44(6): 1701-1712. 

doi:10.1016/j.watres.2009.11.038 

Neue, H. U., L, G. J., Wang, Z. P., Becker-Heidmann, P. and Quijano, C. (1997) 

Carbon in tropical wetlands. Geoderma, 79: 163-185. 

Newbold, J. D., Elwood, J. W., O’Neill, R. V. and Winkle, W. V. (1981) Measuring 

nutrient spiralling in streams. Canadian Journal of Fisheries and Aquatic 

Sciences, 38(7): 860-863. 

Ohno, T. (2002). Fluorescence Inner-Filtering Correction for Determining the 

Humification Index of Dissolved Organic Matter. Environmental Science & 

Technology, 36(4): 742-746.  

Olefeldt, D., Roulet, N., Giesler, R. and Persson, A. (2012) Total waterborne 

carbon export and DOC composition from ten nested subarctic peatland 

catchments-importance of peatland cover, groundwater influence, and inter-

annual variability of precipitation patterns. Hydrological Processes. 

doi:10.1002/hyp.9358 

Oliveira, J. L,. Boroski, M., Azevedo, J. C. R. and Nozaki, J. (2006) Spectroscopic 

investigation of humic substances in a tropical lake during a complete 

hydrological cycle. Acta hydrochimica et hydrobiologica, 34: 608-617. 

Opsahl, S. and Benner, R. (1997) Distribution and cycling of terrigenous 

dissolved organic matter in the ocean. Nature, 386: 480–482. 

Pace, M. L., Cole, J. J., Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Van de 

Bogert, M. C., Bade, D. L., Kritzberg, E. S. and Bastviken, D. (2004) Whole-



! 248!

lake carbon-13 additions reveal terrestrial support of aquatic food webs. 

Nature, 427: 240-243. 

Paola, C., Twilley, R. R., Edmonds, D. A., Kim, W., Mohrig, D., Parker, G., 

Viparelli, E. and Voller, V. R. (2011) Natural Processes in Delta Restoration: 

Application to the Mississippi Delta. Annual Review of Marine Science, 

3(1): 67-91.  

Papa, S., Pellegrino, A. and Fioretto, A. (2008) Microbial activity and quality 

changes during decomposition of Quercus ilex leaf litter in three 

Mediterranean woods. Applied Soil Ecology, 40(3): 401–410. 

doi:10.1016/j.apsoil.2008.06.013 

Parker, A. E. (2005) Differential supply of autochthonous organic carbon and 

nitrogen to the microbial loop in the Delaware Estuary. Estuaries, 28: 856–

867. 

Parlanti, E., Worz, K., Geoffroy, L. and Lamotte, M. (2000) Dissolved organic 

matter fluorescence spectroscopy as a tool to estimate biological activity in 

a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 

31: 1765–1781. 

Payne, J. (1989) A tourism feasibility study for the proposed Kinabatangan 

Wildlife Sanctuary. Unpublished Report for Ministry of Tourism and 

Environmental Development, Sabah, WWF Malaysia, pp. 1–67. 

Payne, J. (1996) Sabah Biodiversity Conservation Project, Malaysia: 

Kinabatangan Multi Disciplinary Study. Ministry of Tourism and 

Environmental Development, Sabah & Danish Co-operation for 

Environment and Development (DANCED). 



! 249!

Peduzzi, P. and Schiemer, F. (2004) Bacteria and viruses in the water column of 

tropical freshwater reservoirs. Environmental Microbiology, 6(7): 707-715.  

Pérez, M. A. P., Moreira-Turcq, P., Gallard, H., Allard, T. and Benedetti, M. F. 

(2011) Dissolved organic matter dynamic in the Amazon basin: Sorption by 

mineral surfaces. Chemical Geology, 286(3-4): 158-168.  

Perrette, Y., Delannoy, J. J., Desmet, M., Lignier, V. and Destombes, J. L. (2005) 

Speleothem organic matter content imaging: the use of a Fluorescence 

Index to characterise the maximum emission wavelength. Chemical 

Geology, 214: 193-208. 

Pisani, O., Yamashita, Y. and Jaffé, R. (2011) Photo-dissolution of flocculent, 

detrital material in aquatic environments: Contributions to the dissolved 

organic matter pool. Water Research, 45(13): 3836-3844.  

Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. 

C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K.,  Koedam, N. E., 

Livingstone, S. R., Miyagi, T., Moore, G. E., Nam, V. N., Ong, J. E., 

Primavera, J. H., Salmo, S. G., Sanciangco, J. C., Sukardjo, S., Wang, Y. 

and Yong, J. W. H. (2010) The loss of species: mangrove extinction risk and 

geographic areas of global concern. PloS One, 5(4), e10095.  

Pollard, P. and Ducklow, H. (2011) Ultrahigh bacterial production in a eutrophic 

subtropical Australian River: Does viral lysis short-circuit the microbial loop? 

Limnology and Oceanography, 3: 1115-1129. 

Proctor, C. J., Baker, A., Barnes, W. L. and Gilmour, M. A. (2000) A thousand 

year speleothem proxy record of North Atlantic climate from Scotland. 

Climate Dynamics, 16: 815- 820. 



! 250!

Ramsar, 2012. Ramsar Sites Information Service. Available at 

http://ramsar.wetlands.org/Database/SearchforRamsarsites/tabid/765/Defau

lt.aspx [accessed 9th May 2012] 

Ravichandran, M. (2004) Interactions between mercury and dissolved organic 

matter – a review. Chemosphere, 55(3): 319–331.  

Raymond, P. A. and Hopkinson, C. S. (2003) Ecosystem modulation of dissolved 

organic carbon age in a temperate marsh-dominated estuary. Ecosystems, 

6(7): 694–705, doi:10.1007/s10021-002-0213-6 

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, 

I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, 

S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., 

Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., 

Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., 

Suntharalingam, P. and Thullner, M. (2013) Anthropogenic perturbation of 

the carbon fluxes from land to ocean. Nature Geoscience: 1–11. 

doi:10.1038/ngeo1830 

Reynolds, D. M. (2002) The differentiation of biodegradable and non-

biodegradable dissolved organic matter in wastewaters using fluorescence 

spectroscopy. Journal of Chemical Technology & Biotechnology, 77(8): 

965–972. doi:10.1002/jctb.664 

Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. and Hess, L. L. 

(2002) Outgassing from Amazonian rivers and wetlands as a large tropical 

source of atmospheric CO2. Nature, 416: 617-620. 



! 251!

Richey, J. E. (2005) Global River Carbon Biogeochemistry. In Anderson, M. 

(Ed.), pp. 1–16. 

Richey, J. E. (2010). Pathways of atmospheric CO2 through fluvial systems. 

In Fields, C (Ed.), (pp. 329–340). Island Press. 

Riggsbee, J. A., Orr, C. H., Leech, D. M., Doyle, M. W. and Wetzel, R. G. (2008) 

Suspended sediments in river ecosystems: Photochemical sources of 

dissolved organic carbon, dissolved organic nitrogen, and adsorptive 

removal of dissolved iron. Journal of Geophysical Research, 113(G3).  

Rixen, T., Baum, A., Pohlmann, T., Balzer, W., Samiaji, J. and Jose, C. (2008) 

The Siak, a tropical black water river in central Sumatra on the verge of 

anoxia. Biogeochemistry, 90: 129-140. 

Rocker, D., Brinkhoff, T., Grüner, N., Dogs, M. and Simon, M. (2012) 

Composition of humic acid-degrading estuarine and marine bacterial 

communities. FEMS Microbiology Ecology, 80(1): 45–63. 

doi:10.1111/j.1574-6941.2011.01269.x 

Roe, J., Baker, A. and Bridgeman, J. (2008) Relating organic matter character to 

trihalomethanes formation potential: a data mining approach. Water 

Science & Technology: Water Supply, 8(6): 717. 

doi:10.2166/ws.2008.150 

Romera-Castillo, C., Sarmento, H., Alvarez-Salgado, X., Gasol, J. and Marrase, 

C. (2010) Production of chromophoric dissolved organic matter by marine 

phytoplankton. Limnology and Oceanography, 55: 446-454. 

Romigh, M. M., Davis, S. E., III, Rivera-Monroy, V. H. and Twilley, R. R. (2006) 

Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal 



! 252!

Everglades. Hydrobiologia, 569(1): 505–516. doi:10.1007/s10750-006-

0152-x 

Sabah Biodiversity Centre (2011) Lower Kinabatangan-Segama Wetlands 

Ramsar Site Management Plan 2011-2020. Vol. I: Management Plan, 

Unpublished Report, Sabah State Government, Malaysia. 

Sabah Forestry Department (2001) ‘Conservation Areas, Information and 

Monitoring System (CAIMS).’ Available at 

http://www.forest.sabah.gov.my/caims/Class%20VI/A_FR6/Bodtai.htm 

[accessed 26th June 2009]. 

Sahoo, K. and Dhal, N. K. (2009) Potential microbial diversity in mangrove 

ecosystems: a review. Indian Journal of Marine Sciences, 38: 249–256. 

Saigusa, N., Yamamoto, S., Hirata, R., Ohtani, Y., Ide, R., Asanuma, J., Gamo, 

M., Hirano, T., Kondo, H. and Kosugi, Y. (2008) Temporal and spatial 

variations in the seasonal patterns of CO2 flux in boreal, temperate, and 

tropical forests in East Asia. Agricultural and Forest Meteorology, 148: 

700-713. 

Salisbury, J., Vandemark, D., Campbell, J., Hunt, C., Wisser, D., Reul, N. and 

Chapron, B. (2011) Spatial and temporal coherence between Amazon River 

discharge, salinity, and light absorption by colored organic carbon in 

western tropical Atlantic surface waters. Journal of Geophysical 

Research, 116. doi:10.1029/2011JC006989 

Saner, P., Loh, Y. Y., Ong, R. C. and Hector, A. (2012) Carbon stocks and fluxes 

in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. 

PloS One, 7(1), e29642. doi:10.1371/journal.pone.0029642 



! 253!

Silva, C. E. M., Gonçalves, J. F. C. and Alves, E. G. (2011) Photosynthetic traits 

and water use of tree species growing on abandoned pasture in different 

periods of precipitation in Amazonia. Photosynthetica, 49(2): 246–252. 

doi:10.1007/s11099-011-0033-z 

Silva, C. M. S., Freitas, S. R. and Gielow, R. (2012) Numerical simulation of the 

diurnal cycle of rainfall in SW Amazon basin during the 1999 rainy season: 

the role of convective trigger function. Theoretical and Applied 

Climatology. doi:10.1007/s00704-011-0571-0 

Saunders, T. J., McClain, M. E. and Llerena, C. A. (2006). The biogeochemistry 

of dissolved nitrogen, phosphorus, and organic carbon along terrestrial-

aquatic flowpaths of a montane headwater catchment in the Peruvian 

Amazon. Hydrological Processes, 20(12): 2549-2562.  

Schedlbauer, J. L. and Kavanagh, K. L. (2008) Soil carbon dynamics in a 

chronosequence of secondary forests in northeastern Costa Rica. Forest 

Ecology and Management, 255(3-4): 1326–1335. 

doi:10.1016/j.foreco.2007.10.039 

Schelker, J., Eklöf, K., Bishop, K. and Laudon, H. (2012) Effects of forestry 

operations on dissolved organic carbon concentrations and export in boreal 

first-order streams. Journal of Geophysical Research, 117(G1).  

Schlesinger, W. H. and Bernhardt, E. S. (2013) The inland waters. 

Biogeochemistry: An Analysis of Global Change. 3rd Edition, Academic 

Press.   

Scott, D. A. (1989) A Directory of Asian Wetlands, IUCN The World 

Conservation Union, Gland, Switzerland and Cambridge, UK. 



! 254!

Scully, N. M., Cooper, W. J. and Tranvik, L. J. (2003) Photochemical effects on 

microbial activity in natural waters: the interaction of reactive oxygen 

species and dissolved organic matter. FEMS Microbiology Ecology, 46(3): 

353–357. doi:10.1016/S0168-6496(03)00198-3 

Sedell, J. R., Richey, J. E. and Swanson, F. J. (1989) The river continuum 

concept: a basis for the expected ecosystem behavior of very large rivers. 

Can. Spec. Publ. Fish. Aquat. Sci., 106: 49–55. 

Sehgal, R. N. M. (2010) Deforestation and avian infectious diseases. Journal of 

Experimental Biology, 213(6): 955–960. doi:10.1242/jeb.037663 

Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W. and Bouwman, A. 

F. (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the 

coastal zone: An overview of Global Nutrient Export from Watersheds 

(NEWS) models and their application. Global Biogeochemical Cycles, 

19(4): 1-11. doi:10.1029/2005GB002606 

Senesi, N. (1990) Molecular and quantitative aspects of the chemistry of fulvic 

acid and its interactions with metal ions and organic chemicals. Part I. The 

electron spin resonance approach. Analytica Chimica Acta, 232: 51-75. 

Shechter, M., Xing, B. and Chefetz, B. (2010) Cutin and Cutan Biopolymers: 

Their Role as Natural Sorbents. Soil Science Society of America Journal, 

74(4): 1139-1146. doi:10.2136/sssaj2009.0313 

Sidle, C. S., Ziegler, A. D., Negishi, J. N., Abdul Rahim Nik, Siew, R. and 

Turkelboom, F. (2006) Erosion processes in steep terrain—Truths, myths, 

and uncertainties related to forest management in Southeast Asia. Forest 

Ecology and Management, 224: 199-225. 



! 255!

Sidle, R., Tani, M. and Ziegler, A. (2006) Catchment processes in Southeast 

Asia: Atmospheric, hydrologic, erosion, nutrient cycling, and management 

effects. Forest Ecology and Management, 224(1-2): 1-4.  

Sinsabaugh, R. L. and Findlay, S. (2003) Dissolved organic matter: out of the 

black box into the mainstream. In: Findlay S. E. G., Sinsabaugh, R. L. 

(Eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. 

Elsevier, New York, pp 479-498. 

Sobczak, W. V. and Findlay, S. (2002) Variation in bioavailability of dissolved 

organic carbon among stream hyporheic flowpaths. Ecology, 83: 3194–

3209. 

Solomon, C. T., Carpenter, S. R., Cole, J. J. and Pace, M. L. (2008) Support of 

benthic invertebrates by detrital resources and current autochthonous 

primary production: results from a whole-lake 13C addition. Freshwater 

Biology, 53, 42–54. doi:10.1111/j.1365-2427.2007.01866.x 

Spencer, R. G. M., Baker, A., Ahad, J. M. E., Cowie, G. L., Ganeshram, R., 

Upstill-Goddard, R. C. and Uher, G. (2007) Discriminatory classification of 

natural and anthropogenic waters in two U.K. estuaries. Science of the 

Total Environment, 373: 305-323. 

Spencer, R. G. M., Aiken, G. R., Butler, K. D., Dornblaser, M. M., Striegl, R. G. 

and Hernes, P. J. (2009) Utilizing chromophoric dissolved organic matter 

measurements to derive export and reactivity of dissolved organic carbon 

exported to the Arctic Ocean: A case study of the Yukon River, Alaska. 

Geophysical Research Letters, 36: 1-6. 



! 256!

Spencer, R., Hernes, P., Ruf, R., Baker, A., Dyda, R., Stubbins, A. and Six, J. 

(2010) Temporal controls on dissolved organic matter and lignin 

biogeochemistry in a pristine tropical river, Democratic Republic of Congo. 

Journal of Geophysical Research, 115(G3).  

Spencer, R. G. M., Hernes, P. J., Aufdenkampe, A. K., Baker, A., Gulliver, P., 

Stubbins, A., Aiken, G. R., Dyda, R. Y., Butler, K. D., Mwamba, V. L., 

Mangangu, A. M., Wabakanghanzi, J. N. and Six, J. (2012) An initial 

investigation into the organic matter biogeochemistry of the Congo River. 

Geochimica Et Cosmochimica Acta, 84: 614–627. 

doi:10.1016/j.gca.2012.01.013 

Sperling, C., Maitz, M. F., Talkenberger, S., Gouzy, M.-F., Groth, T. and Werner, 

C. (2007) In vitro blood reactivity to hydroxylated and non-hydroxylated 

polymer surfaces. Biomaterials, 28(25): 3617–3625. 

doi:10.1016/j.biomaterials.2007.04.041 

Stanley, E. H., Powers, S. M., Lottig, N. R., Buffam, I. and Crawford, J. T. (2011) 

Contemporary changes in dissolved organic carbon in human-dominated 

rivers: is there a role for DOC management? Freshwater Biology, 1–19. 

doi:10.1111/j.1365-2427.2011.02613.x 

Stanley, E. H., Powers, S. M., Lottig, N. R., Buffam, I. and Crawford, J. T. (2012) 

Contemporary changes in dissolved organic carbon (DOC) in human-

dominated rivers: is there a role for DOC management? Freshwater 

Biology, 57: 26–42. doi:10.1111/j.1365-2427.2011.02613.x 



! 257!

Stedmon, C. A. and Markager, S. (2003) Behaviour of the optical properties of 

coloured dissolved organic matter under conservative mixing. Estuarine, 

Coastal and Shelf Science, 57(5-6): 973-979. 

Stedmon, C. A., Markager, S. and Bro, R. (2003) Tracing dissolved organic 

matter in aquatic environments using a new approach to fluorescence 

spectroscopy. Marine Chemistry, 82(239-254): 239–254. 

doi:10.1016/S0304-4203(03)00072-0 

Stedmon, C. and Markager, S. (2005a) Resolving the variability in dissolved 

organic matter fluorescence in a temperate estuary and its catchment using 

PARAFAC analysis. Limnology and Oceanography, 50(2): 686-697. 

Stedmon, C. and Markager, S. (2005b) Tracing the production and degradation of 

autochthonous fractions of dissolved organic matter by fluorescence 

analysis. Limnology and Oceanography, 50: 1415–1426. 

Stedmon, C. A. and Bro, R. (2008) Characterizing dissolved organic matter 

fluorescence with parallel factor analysis: a tutorial. Limnology and 

Oceanography: Methods, 6: 572-579. 

Stedmon, C. A., Seredy!ska-Sobecka, B., Boe-Hansen, R., Le Tallec, N., Waul, 

C. K. and Arvin, E. (2011) A potential approach for monitoring drinking 

water quality from groundwater systems using organic matter fluorescence 

as an early warning for contamination events. Water Research, 45(18): 

6030–6038. doi:10.1016/j.watres.2011.08.066 

Stephens, M. and Rose, J. (2005) Modern stable isotopic ("18O, "2H, "13C) 

variation in terrestrial, fluvial, estuarine and marine waters from north-



! 258!

central Sarawak, Malaysian Borneo. Earth Surface Processes and 

Landforms, 30: 901-912. 

Stern, J., Wang, Y., Gu, B. and Newman, J. (2007) Distribution and turnover of 

carbon in natural and constructed wetlands in the Florida Everglades. 

Applied Geochemistry, 22: 1936-1948. 

Stevens, A. N. P. (2012) Factors Affecting Global Climate. Nature Education 

Knowledge, 3(10): 18. 

Stubbins, A., Spencer, R. G. M., Chen, H., Hatcher, P. G., Mopper, K., Hernes, P. 

J., Mwamba, V. L., Mangangu, A. M., Wabakanghanzi, J. N. and Six, J. 

(2010) Illuminated darkness: Molecular signatures of Congo River dissolved 

organic matter and its photochemical alteration as revealed by ultrahigh 

precision mass spectrometry. Limnology and Oceanography, 55(4): 

1467–1477. doi:10.4319/lo.2010.55.4.1467a 

Suhaila, J., Deni, S. M., Wan Zin, W. W. and Jemain, A. A. (2010) Trends in 

Peninsular Malaysia rainfall data during the Southwest Monsoon and 

Northeast Monsoon seasons: 1975-2004. Sains Malaysiana, 39: 533-542. 

Suleiman, M., Mustapeng, A. M. and Makladin, N. (2003) Preliminary list of 

mosses from Lower Kinabatangan. In Mohamed, M., Takano, A., Goossens, 

B. and Rajah Indran (eds.). Lower Kinabatangan Scientific Expedition 

2002: pp. 73-76. Universiti Malaysia Sabah, Kota Kinabalu, Malaysia. 

Sulzberger, B. and Durisch-Kaiser, E. (2009) Chemical characterization of 

dissolved organic matter (DOM): A prerequisite for understanding UV-

induced changes of DOM absorption properties and bioavailability. Aquatic 



! 259!

Sciences - Research Across Boundaries, 71(2): 104–126. 

doi:10.1007/s00027-008-8082-5 

Tank, J., Rosi-Marshall, E., Griffiths, N., Entrekin, S. and Stephen, M. (2010) A 

review of allochthonous organic matter dynamics and metabolism in 

streams. J. N. Am. Benthol. Soc., 29: 118-146.  

Thomas, P., Lo, F. K. C. and Hepburn, A. J. (1976) The Land Capability 

Classification of Sabah, Vol. 2: The Sandakan Residency. Land 

Resources Division, Ministry of Overseas Development. 

Thomas, J. D. (1997) The role of dissolved organic matter, particularly free amino 

acids and humic substances, in freshwater ecosystems. Freshwater 

Biology, 38: 1–36. 

Thorp, J. H. and Delong, M. D. (1994) The riverine productivity model: an 

heuristic view of carbon sources and organic processing in large river 

ecosystem. Nordic Society Oikos, 70: 305–308. 

Thurman, E. M. (1985) Organic geochemistry of natural waters. Martinus 

Nijhoff/Dr. W Junk Publishers, Netherlands.  

Tongkul, F. (1991) Tectonic evolution of Sabah, Malaysia. Journal of Southeast 

Asian Earth Sciences, 6, 395-405. 

Town and Regional Planning Department Sabah (1998) Sabah Coastal Zone 

Profile. In The Integrated Coastal Zone Management Unit (Ed.), Kota 

Kinabalu, Sabah.  

Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B. and White, J. W. 

(2011) Multi-element regulation of the tropical forest carbon cycle. Frontiers 

in Ecology and the Environment, 9(1): 9–17. doi:10.1890/100047 



! 260!

Townsend-Small, A., McClain, M., Hall, B., Noguera, J., Llerena, C. and Brandes, 

J. (2008). Suspended sediments and organic matter in mountain 

headwaters of the Amazon River: results from a 1-year time series study in 

the central Peruvian Andes. Geochimica Et Cosmochimica Acta, 72(3): 

732-740.  

Traversa, A., Said-Pullicino, D., D’Orazio, V., Gigliotti, G. and Senesi, N. (2011) 

Properties of humic acids in Mediterranean forest soils (Southern Italy): 

influence of different plant covering. European Journal of Forest 

Research, 130(6): 1045–1054. doi:10.1007/s10342-011-0491-7 

Tremblay, L., Kohl, S. D., Rice, J. A. and Gagné, J.-P. (2005) Effects of 

temperature, salinity, and dissolved humic substances on the sorption of 

polycyclic aromatic hydrocarbons to estuarine particles. Marine Chemistry, 

96(1-2): 21-34. doi:10.1016/j.marchem.2004.10.004  

Twilley, R. R. and Rivera-Monroy, V. (2009) Sediment and nutrient tradeoffs in 

restoring Mississippi River Delta: restoration vs eutrophication. Journal of 

Contemporary Water Research & Education, 141: 39–44. 

Urquhart, G. (2009) An investigation into the use of flurescence 

spectroscopy when applied to the characterisation of organics in 

wastewater treatment. Unpublished MSc. Dissertation, 1–107. 

van Breugel, M., Ransijn, J., Craven, D., Bongers, F. and Hall, J. S. (2011) 

Estimating carbon stock in secondary forests: Decisions and uncertainties 

associated with allometric biomass models. Forest Ecology and 

Management, 262(8): 1648–1657. doi:10.1016/j.foreco.2011.07.018 



! 261!

van Geluwe, S., Braeken, L. and van der Bruggen, B. (2011) Ozone oxidation for 

the alleviation of membrane fouling by natural organic matter: A review. 

Water Research, 45(12): 3551–3570. doi:10.1016/j.watres.2011.04.016 

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. and Cushing, C. 

E. (1980) The river continuum concept. Canadian Journal of Fisheries 

and Aquatic Sciences, 37, 130–137. 

Wantzen, K., Yule, C., Mathooko, J. and Pringle, C. (2008) In Dudgeon, D. (Ed.), 

Organic Matter Processing in Tropical Streams. Tropical Stream Ecology, 

Academic Press, New York, pp. 43-64. 

Ward, N. D., Richey, J. E. and Keil, R. G. (2012) Temporal variation in river 

nutrient and dissolved lignin phenol concentrations and the impact of storm 

events on nutrient loading to Hood Canal, Washington, USA. 

Biogeochemistry. doi:10.1007/s10533-012-9700-9 

Warnken, K. W. and Santschi, P. H. (2004) Biogeochemical behavior of organic 

carbon in the Trinity River downstream of a large reservoir lake in Texas, 

USA. Science of the Total Environment,  329(1-3): 131–144. 

doi:10.1016/j.scitotenv.2004.02.017 

Westhorpe, D. P., Mitrovic, S. M., Ryan, D. and Kobayashi, T. (2010) Limitation 

of lowland riverine bacterioplankton by dissolved organic carbon and 

inorganic nutrients. Hydrobiologia, 652(1): 101–117. doi:10.1007/s10750-

010-0322-8 

Westhorpe, D. P., Mitrovic, S. M. and Woodward, K. B. (2012) Diel variation of 

dissolved organic carbon during large flow events in a lowland river. 

Limnologica, 42: 220-226.  



! 262!

Wetzel, R. G. (2001) Limnology: Lake and River Ecosystems, 3rd ed., 1006 

pp., Elsevier, San Diego, California. 

Wicke, B., Sikkema, R., Dornburg, V. and Faaij, A. (2011) Exploring land use 

changes and the role of palm oil production in Indonesia and Malaysia. 

Land Use Policy, 28: 193–206. 

Wiegner, T. N., Tubal, R. L. and MacKenzie, R. A. (2009) Bioavailability and 

export of dissolved organic matter from a tropical river during base- and 

stormflow conditions. Limnology and Oceanography, 54: 1233–1242. 

Wilcove, D. S. and Koh, L. P. (2010) Addressing the threats to biodiversity from 

oil-palm agriculture. Biodiversity and Conservation, 19(4): 999–1007. 

doi:10.1007/s10531-009-9760-x 

Williams, C. J., Yamashita, Y., Wilson, H. F., Jaffé, R. and Xenopoulos, M. A. 

(2010) Unraveling the role of land use and microbial activity in shaping 

dissolved organic matter characteristics in stream ecosystems. Limnology 

and Oceanography, 55(3): 1159-1171.  

Wilson, H. F. and Xenopoulos, M. A. (2008) Effects of agricultural land use on the 

composition of fluvial dissolved organic matter. Nature Geoscience, 2(1): 

37-41. 

Winter, A., Fish, T., Playle, R., Smith, D. and Curtis, P. (2007) Photodegradation 

of natural organic matter from diverse freshwater sources. Aquatic 

Toxicology, 84(2): 215-222.  

Winterbourn, M. J., Rounick, J. S. and Cowie, B. (1981) Are New Zealand stream 

ecosystems really different? New Zealand Journal of Marine and 



! 263!

Freshwater Research, 15(3): 321–328. 

doi:10.1080/00288330.1981.9515927 

Wohl, E., Barros, A., Brunsell, N., Chappell, N. A., Coe, M., Giambelluca, T.,  

(2012). The hydrology of the humid tropics. Nature Climate Change, 2(9): 

655–662. doi:10.1038/nclimate1556 

Worrall, F. and Burt, T. (2004) Time series analysis of long-term river dissolved 

organic carbon records. Hydrological Processes, 18(5): 893–911. 

doi:10.1002/hyp.1321 

Wright, S. J. (2010) The future of tropical forests. Annals of the New York 

Academy of Sciences, 1195: 1–27. doi:10.1111/j.1749-6632.2010.05455.x 

Wu, T. Y., Mohammad, A. W., Jahim, J. M. and Anuar, N. (2009) A holistic 

approach to managing palm oil mill effluent (POME): Biotechnological 

advances in the sustainable reuse of POME. Biotechnology Advances, 

27(1): 40–52. doi:10.1016/j.biotechadv.2008.08.005 

WWF Malaysia (2000) Land use and the oil palm industry in Malaysia. 

Unpublished abridged report produced for the WWF Forest Information 

System Database, Kuala Lumpur. 

Xu, N. and Saiers, J. E. (2010) Temperature and Hydrologic Controls on 

Dissolved Organic Matter Mobilization and Transport within a Forest 

Topsoil. Environmental Science & Technology, 44(14): 5423-5429.  

Yamashita, Y. and Jaffé, R. (2008) Characterizing the interactions between trace 

metals and dissolved organic matter using Excitation – Emission Matrix and 

Parallel Factor Analysis. Environmental Science and Technology, 42: 

7374-7379. 



! 264!

Yamashita, Y., Jaffé, R., Maie, R. and Tanoue, E. (2008) Assessing the dynamics 

of dissolved organic matter (DOM) in coastal environments by excitation 

emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). 

Limnology and Oceanography, 53: 1900-1908. 

Yamashita, Y., Maie, N., Briceño, H. and Jaffé, R. (2010a) Optical 

characterization of dissolved organic matter in tropical rivers of the Guayana 

Shield, Venezuela. Journal of Geophysical Research, 115.  

Yamashita, Y., Scinto, L., Maie, N. and Jaffé, R. (2010b) Dissolved organic 

matter characteristics across a subtropical wetland's landscape: application 

of optical properties in the assessment of environmental dynamics. 

Ecosystems, 13: 1006-1019. 

Yamashita, Y., Panton, A., Mahaffey, C. and Jaffé, R. (2011) Assessing the 

spatial and temporal variability of dissolved organic matter in Liverpool Bay 

using excitation–emission matrix fluorescence and parallel factor analysis. 

Ocean Dynamics, 61(5): 569-579. 

Yang, L., Hong, H., Guo, W., Huang, J., Li, Q. and Yu, X. (2012) Effects of 

changing land use on dissolved organic matter in a subtropical river 

watershed, southeast China. Regional Environmental Change, 12(1): 

145-151.  

Yao, X., Zhang, Y., Zhu, G., Qin, B., Feng, L., Cai, L. and Gao, G. (2011) 

Resolving the variability of CDOM fluorescence to differentiate the sources 

and fate of DOM in Lake Taihu and its tributaries. Chemosphere, 82(2): 

145-155.  



! 265!

Yool, A., Popova, E. E. and Anderson, T. R. (2013) MEDUSA-2.0: an 

intermediate complexity biogeochemical model of the marine carbon cycle 

for climate change and ocean acidification studies. Geoscientific Model 

Development Discussions, 6(1): 1259–1365. doi:10.5194/gmdd-6-1259-

2013 

Yule, C. M. and Gomez, L. N. (2008) Leaf litter decomposition in a tropical peat 

swamp forest in Peninsular Malaysia. Wetlands Ecology and 

Management, 17(3): 231–241. doi:10.1007/s11273-008-9103-9 

Yule, C. M., Boyero, L. and Marchant, R. (2010) Effects of sediment pollution on 

food webs in a tropical river (Borneo, Indonesia). Marine and Freshwater 

Research, 61(2): 1–10. doi:10.1071/MF09065 

Zepp, R. G. (2005) Light and environmental chemistry: influence of changing 

solar UV radiation on aquatic photoreactions. IUVA News 7.1: 9–14. 

Zepp, R. G., Callaghan, T. V. and Erickson, D. J. (1998) Effects of enhanced 

solar ultraviolet radiation on biogeochemical cycles. Journal of 

Photochemistry & Photobiology, B: Biology, 46, 69–82. 

Zhang, S., Gan, W. and Ittekkot, V. (1992) Organic matter in large turbid rivers: 

the Huanghe and its estuary. Marine Chemistry, 38: 53-68. 

Zhang, Y., Liu, M., Qin, B. and Feng, S. (2009a) Photochemical degradation of 

chromophoric-dissolved organic matter exposed to simulated UV-B and 

natural solar radiation. Hydrobiologia, 627: 159-168. 

Zhang, Y., Van Dijk, M. A., Liu, M., Zhu, G. and Qin, B. (2009b) The contribution 

of phytoplankton degradation to chromophoric dissolved organic matter 



! 266!

(CDOM) in eutrophic shallow lakes: Field and experimental evidence. Water 

Research, 43(18): 4685-4697. 

Zhou, W.-J., Zhang, Y.-P., Schaefer, D. A., Sha, L.-Q., Deng, Y., Deng, X.-B. and 

Dai, K.-J. (2013) The role of stream water carbon dynamics and export in 

the carbon balance of a tropical seasonal rainforest, Southwest China. PloS 

one, 8(2): e56646. doi:10.1371/journal.pone.0056646 

Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B. and Saccomandi, F. (1999) 

Differentiating with fluorescence spectroscopy the sources of dissolved 

organic matter in soils subjected to drying. Chemosphere, 38: 45-50. 




