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Abstract.
!

PTPN22!encodes!the!protein!tyrosine!phosphatase!Lyp.!Lyp!is!a!known!negative!regulator!of!TCR!

signalling!where!it!has!been!shown!to!dephosphorylate!Src!family!kinases.!Certain!mutations!in!

PTPN22!are!associated!with!increased!risk!of!autoimmune!disease!such!as!rheumatoid!arthritis.!This!

includes!the!well!documented!C1858T!substitution.!Previous!studies!into!understanding!the!role!of!

PTPN22!in!health!and!disease!have!focused!on!lymphocytes,!primarily!T!cells.!Despite!this,!myeloid!

cells!have!a!higher!expression!of!Lyp.!Lyp!can!also!interact!with!other!signalling!proteins,!including!

the!Rho!GTPase,!Vav,!which!has!multiple!roles!in!cell!signalling!pathways.!This!project!therefore!

looked!at!the!role!of!Lyp!in!primary!human!macrophages!by!using!a!competitive!reversible!inhibitor!

of!Lyp!protein!activity.!It!was!shown!that!Lyp!is!a!negative!regulator!of!reactive!oxygen!species!(ROS)!

production!in!unstimulated!cells!and!in!response!to!PMA.!We!also!show!that!primary!macrophages!

heterozygous!for!the!autoimmuneRassociated!C1858T!variant!produce!high!levels!of!proR

inflammatory!cytokines!in!apparently!unstimulated!conditions.!These!novel!findings!provide!insight!

into!how!C1858T!is!associated!with!inflammatory!disease!such!as!rheumatoid!arthritis.!!
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Abbreviations 
 

 

 

BCR B cell receptor 
DAG Diamino glycerol 
ERK Extracellular-signal-regulated kinases 
GDP Guanosine diphosphate 
GTP Guanosine triphosphate 
IP3 Inositol triphosphate 
ITAM Immunoreceptor tyrosine-based activation motiff 
LAT Linker for activation of T cells 
MAPK Mitogen activated protein kinase 
MHC Major histocompatibility complex 
NADPH Nicotinamide adenine dinucleotide phosphate 
PI3K phosphoinositide 3-kinase 
PKC protein kinase C 
PLCγ phospholipase  C  γ 
SH2 Src homology 2 
SH3 Src homology 3 
SNP single nucleotide polymorphism 
TCR T cell receptor 
WASP Wiskott-Aldrich syndrome protein 
ZAP-70 zeta chain associated protein kinase 70 
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Introduction 
 

Many autoimmune diseases, including rheumatoid arthritis are thought to have genetic 

predispositions and many genome-wide association studies have identified genetic loci which 

correlate with autoimmunity. A large number of genes may be involved in susceptibility to particular 

diseases with, for example, at least 46 contributing to the population risk of developing rheumatoid 

arthritis 1. 

Many of the strongest associations are among the MHC loci 2 but the strongest susceptibility loci 

outside the MHC 3-7 is a single-nucleotide-polymorphism (SNP) within PTPN22. PTPN22 encodes Lyp 

phosphatase, which is a known negative regulator of TCR signalling and so studies into Lyp and 

autoimmunity have concentrated on lymphocytes. This is despite reports that Lyp expression is 

actually relatively low within T cells and high within myeloid cells 8. Myeloid cells, particularly 

macrophages are the predominant cell type within the inflamed synovium in rheumatoid arthritis 

(RA) 9.  

For this reason it would be of interest to investigate the possible roles of Lyp in macrophages. In 

order to do this, we must first understand the role of Lyp in T cells, as discussed below. 

Lyp phosphatase 

Lyp, encoded by PTPN22, is a protein tyrosine kinase which is a member of the PEST non-receptor 

classical class I protein tyrosine phosphatase (PTP) family 10. Structurally, Lyp contains an N-terminal 

PTP domain and a non-catalytic C-terminal domain. Within the C-terminal are four proline-rich 

motifs followed by a C-terminal homology domain. PEP, the murine homolog shares 89% amino acid 

identity within the PTP domain and 61% within the non-catalytic regions 10. Lyp and PEP are 

expressed in cells of the haematopoietic system 10,11 with  both  of  these  PTP’s  having been implicated 

in negative regulation of TCR signalling 10,12,13. Lyp phosphatase came to prominence after an SNP 
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variant was found be linked to the autoimmune disease type-1 diabetes 3. This variant arises from a 

C1858T base substitution, resulting in an R620W amino acid change. The same R620W variant has 

since been identified as a risk factor in RA 4,5 and systemic lupus erythematous 6,7. 

The pathways involved in TCR signalling have been reviewed elsewhere 14 and are summarised in 

figure 1. In brief, upon TCR ligation, Src family kinases such as Lck and Fyn are recruited to the TCR 

complex. Src family kinases are capable of intracellular phosphorylation of ITAMs found on CD3 and 

the  ζ chains within the TCR complex. Zap-70, a Syk kinases family member, is recruited to double 

phosphorylated ITAMs via its two SH2 domains. Lck can then phosphorylate Zap70 within its 

activation tyrosines Y319 and Y343.  

Adaptor proteins are essential in linking the early signalling events with downstream molecules. LAT 

is a membrane bound adaptor recruited to the TCR complex. Zap-70 can phosphorylate LAT at 

several tyrosines. LAT can then recruit multiple further molecules via their SH2 domains including 

PLCγ,  PI3K,  SLP76  and  Grb2. This allows formation of signalling microclusters where localised 

protein-protein interactions occur. These molecules are important in the downstream signalling 

pathways typical of T cell activation. Lck associates with CD8 and CD4 co-receptors. Under steady 

state, Lck is phosphorylated at the negative regulatory tyrosine Y505 by Csk, keeping it inactive 15,16. 

Phosphorylated Y505 causes the inhibitory ‘tail  bite’  effect  where  Lck’s  internal  SH2  domain  binds  to 

Y505 16. Under steady state, Csk associates through its SH2 domain with phosphorylated PAG at the 

plasma membrane, where it can negatively regulate Lck 17. Lck is also a substrate of Lyp 12. It is 

believed Lyp keeps the activation tyrosine Y394 dephosphorylated, thereby contributing to Lck 

inactivation 17.  
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Figure 1: Summary of CD4 T cell TCR signalling and Lyp interaction. After antigen stimulation of the TCR, the CD4 co-
receptor comes into proximity, bringing with it Lck. Lck phosphorylates the ITAMs of the CD3 chains and zeta chains 
associated with the TCR. Zap70 is recruited to the ITAMs and phosphorylated and activated by Lck. Zap70 can then 
phosphorylate LAT and the several molecules that it recruits, forming a signalling complex. PLCγ can cleave membrane 
bound phosphoinositol biphsophate (not showing), generating IP3 and DAG. IP3 acts as a secondary messenger 
facilitating calcium flux. DAG can activate isoforms of PKC without calcium, and isoforms with calcium. The MAPK’s  ERK,  
JNK and P38 are important in many cell signalling cascades and processes. TCR, T cell receptor; PLCγ, phospholipase C 
gamma; DAG, diacylglycerol; LAT, linker for activation of T cells; SOS, son of sevenless; P13K, phosphoinositide 3 kinase; 
IP3, inositol triphosphate; PKC, phosphokinase C; ZAP-70, zeta chain associated protein kinase 70; NFκB, nuclear factor 
Κb. 

 

Furthermore, Lyp/PEP can interact with Csk 13,18,19. This interaction is mediated through the Csk SH3 

domain and the Proline-rich 1 (P1) domain of Lyp. One model proposes this interaction to be 

essential for Lyp function 17. While Csk is bound to PAG, its recruitment of Lyp to the lipid raft would 

bring it into the proximity of its substrates, allowing a synergistic inhibition of Lck under steady-state 

conditions. Upon TCR stimulation, Lck can be activated and PAG is dephosphorylated by an unknown 

phosphatase. Csk can then no longer bind and is released 20. Lck is then dephosphorylated at Y505 by 

an unknown phosphatase. This is followed by Lck autophosphorylation at Y394 and its full activation.  
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The R620W mutation and the role of Lyp in T cells  

The R620W mutation occurs within the P1 domain motif, the site of the Csk interaction. It is 

proposed this mutation prevents Lyp from binding Csk 3. A cell line transfection study with the W620 

variant suggested it to cause a loss of phosphatase function 21. The variant could also be a less stable 

protein 22. The PEP variant R619W compares to the Lyp R620W mutation. When knocked into mice, 

PEP protein levels were largely reduced. The authors argue that a reduced Lyp protein availability 

results in a reduced TCR negative regulation causing increased T cell activation.  Supporting this, 

knock-in mice had increased activated/memory lymphocytes. Yet mice did not exhibit signs of 

autoimmunity despite the well identified correlation between Lyp and autoimmunity. It should also 

be noted PEP and Lyp are much less conserved within the catalytic domain, so it is possible that 

protein interactions and any mechanisms of degradation could differ. 

Multiple other studies have found the variant to have a gain of phosphatase function. Primary T cells 

homozygous and heterozygous for W620 or transfection of primary human T cells with the variant 

have been found to have greater inhibition of TCR signalling. This includes reductions in calcium flux; 

phosphorylation of ITAMS, ERK and LAT; IL2 and IL10 production; activation markers; and 

proliferation 23 24 25.  

The general consensus from these results is that the R620W mutation results in a gain of function; 

i.e. increased inhibition of TCR signalling. There is some difficulty in understanding how this concept 

fits into the model of Lyp and TCR signalling. It may be that the poor interaction with Csk actually 

impedes Lyp negative regulation. Lck is capable of phosphorylating Lyp at inhibitory tyrosine Y536 26. 

Phosphorylation here is important in TCR negative regulation. The W620 variant shows less 

phosphorylation here and it’s proposed a Csk interaction is required to allow Lck to act on Lyp. Lyp 

can also be negatively phosphorylated by PKCδ at serine 35 27. It is possible that failure to interact 

with Csk could also impede this negative regulation. 
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Evidence has accumulated against the requirement for Lyp/Csk interaction at the plasma membrane 

for Lyp function. When Csk is bound to PAG, it was found not to co-immunoprecipitate with Lyp or 

PEP 25,28. Vang and colleagues provide evidence for a model where Lyp and Csk are in a cytosolic 

complex within resting T cells, with Lyp in an inhibited state. Upon TCR ligation, the complex 

dissociates and Lyp can be recruited to the lipid raft. Here Lyp can function as a phosphatase and 

negatively regulate T cell signalling.25. So Lyp could function in negative feedback of TCR stimulation. 

No matter which model is correct, it is still not fully understood how a gain in Lyp phosphatase 

function could relate to an increased risk in autoimmunity. One theory arose from the SKG mouse 

strain 22. These mice spontaneously develop a chronic arthritis similar to RA. This is due to a ZAP-70 

mutation causing poor association with ITAMs, therefore reducing its phosphorylative capacity. This 

results in poor signal transduction upon TCR ligation. An altered thymocyte selection was found in 

SKG mice, due to the lowered TCR signalling threshold in autoreactive thymocytes that would 

otherwise have been deleted. The concept of an increased positive selection of autoreactive 

thymocytes due to an increased negative regulation by Lyp variants is therefore possible.  

As mentioned above Lyp has a number of target substrates among proteins involved in TCR 

signalling, but it has a broader range of substrates than these, as observed from substrate trapping 

experiments with a Lyp variant without phosphatase activity. In these experiments Lyp has also been 

found to associate with Vav proteins 12. These have a wide range of functions in activation and 

adhesion of leukocytes and the roles of Vav are discussed below. 

Vav 

The Vav family of proteins are a conserved group found from nematodes to humans where they act 

as guanine exchange factors (GEFs) for Rho GTPases 29.  Rho GTPases are molecular switches which 

are either in the  ‘active’  GTP-bound or  ‘inactive’  GDP-bound form. Vav proteins catalyse the 

activation of the Rho GTPase via exchange of GDP to GTP. In this active state, Rho GTPases can 
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interact with effectors, playing essential roles in the regulation of actin polymerisation; cell cycle; 

gene expression; and cell adhesion 30. Vav1, Vav2 and Vav3 are all found in mammals, where Vav1 is 

restricted mainly to haematopoietic cells while Vav2 and Vav3 have a much broader expression 29.   

Vav Structure 

Vav protiens are highly conserved with the same basic structure. The central Dbl homology (DH) 

domain exhibits GEF activity to Rho GTPases. To the carboxyl side lie the pleckstrin homology (PH) 

and C1 domains which have been implicated with the regulation of GEF activity. Amino to DH is the 

calponin homology (CH) and the acidic domains which can inhibit GEF activity. Also found at the 

carboxyl terminus are the two SH3 and single SH2 domains. SH3 and SH2 domains function in 

protein-protein interactions and therefore it is believed that Vav can also function as an adaptor 

during signalling, a function not found in other GEFs 31.  

Vav Activation 

Vav GEF activity depends on Tyrosine phosphorylation 32. Upon TCR and BCR stimulation, Vav is 

rapidly phosphorylated 33,34 by Src family kinases 31.  Phosphorylation of the three Tyrosine residues 

within the acidic domain allows binding of GTPase substrates 35. Phosphorylation within the carboxyl 

terminal can also regulate GEF activity 36. Phosphoinisitols which bind the PH domain can also 

regulate GEF activity and assist in Vav membrane recruitment 37. Vav1 has been shown to favour its 

GEF activity towards Rac1, Rac2 and RhoG 32,38. Vav2 and Vav3 favour RhoA, RhoB and RhoG 39,40.  

Vav functions 

Since Vav is activated following surface receptor stimulation, Vav proteins may act as links between 

the cell surface receptor and signal transduction, particularly cytoskeletal rearrangements. For 

example, in TCR signalling and the immunological synapses 41; macrophage adhesion 42; neutrophil 

activation after integrin 43; and neutrophil and macrophage chemotaxis to receptor ligands  44 45.  
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Interestingly, Vav also plays an important role in other cellular activities as best exemplified in TCR 

signalling. T cells lacking Vav1 show defects in proliferation, reduced activation marker expression, 

reduced calcium flux and cytokine release after TCR stimulation 31.  Furthermore, Vav1 deficient 

mice have defects in positive and negative selection of thymocytes 31. The functions of Vav1 in T cell 

signalling are discussed below.  

Vav1 GEF activity is required in some T cell signalling pathways involving Rac, Akt and integrins. 

However GEF activity is not required in calcium flux, ERK MAP kinase activation, cell polarisation and 

NFAT activation 36,46. The SH3-SH2-SH3 cassette and acidic domain tyrosines can interact with several 

proteins involved in TCR signalling such as Shc, Csk, Sap, NCK, SLP76, ZAP-70 Grb2 31,36 and Lck, PI3K 

and  PLCγ1  47. Together, this indicates Vav to have adaptor functions. 

Vav complex formation can lead to many downstream effector functions, including PLCγ1 activation 

48. A Vav1/SLP76 complex can recruit and activate PLCγ1  48,49, essential in several downstream 

functions, including calcium flux, proliferation, NFAT activation, and ERK activation 50-52. Vav can lead 

to Ras GEF activation through several mechanisms, including cytoskeletal rearrangements 53 and 

Grb2 recruitment, which recruits the Ras GEF SOS 54. The same SH3 domain allows a 

Vav1/NCK/SLP76 complex, which controls actin rearrangement at the immunological synapse 

through WASP  55,56. 

Therefore, Vav has several roles in T cell signalling and activation and Lyp could potentially regulate 

these activities through Vav by directly dephosphorylating essential Tyrosine residues. Since Lyp is 

expressed highest within myeloid cells such as macrophages it’s important to understand these 

pathways. 

Macrophage FcγR  signalling 

Fcγ  receptors (FcγR)  bind to the Fc portion of IgG antibodies. There are three FcγR  classes  in  humans:  

RI (CD64) which binds with high affinity to IgG; RII (CD32) and RIII (CD16) which bind with low affinity 
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to IgG 57. Each of these receptors express or are associated with an intracellular signalling domain. 

The  inhibitory  receptor,  (only  FcγRIIb)  contains  an  ITIM  and  can  have  negative  effects  on  cell  

activation. The activating receptors contain/associate with an ITAM and can facilitate cell activation 

signals and phagocytosis. FcγRs  belong  to  the  same  immunoglobulin  superfamily as the TCR. 

Therefore, both signalling pathways have considerable overlap.   

FcγR	
  Initiation of signalling 

ITAM phosphorylation is carried out by the Src family kinases Lyn, Hck and Fgr and Syk kinase is 

recruited and phosphorylated  58-60 61,62. Syk and Lyn can phosphorylate LAT, allowing downstream 

signalisomes 63,64. Despite SLP76 being highly expressed in macrophages, it appears not to be 

required in signal transduction 65-67.  

The downstream pathways 

Just like TCR signalling, there is downstream activation of PLCγ, PI3K, MAPKs and transcription 

factors 60. Details of some of these pathways are described below. 

As  seen  in  TCR  signalling,  PLCγ  can  be  recruited  to  LAT  and  activated  by  Syk  kinase  activity,  resulting  

in IP3 generation and subsequent calcium release  68 69. This calcium flux may not be required for 

FcγR-mediated phagocytosis 70,71 but is required for phagosomal maturation 72. During  FcγR-

mediated  phagocytosis,  PLCγ  is  recruited  to  the  phagocytic  cup. Its inhibition results in poor 

phagocytosis in murine macrophages 73. Since calcium may not be required initially,  the  PLCγ  

generation of DAG may be important here. DAG is capable of activating the novel and classic PKC 

isoforms which have a role in ERK activation in macrophage phagocytosis 

After FcγR stimulation, PKC can activate Raf-1 which can initiate the ERK MAPK pathway. Inhibition 

of ERK can also impair phagocytosis in macrophages 74,75. 76.  ERK’s  role  here  could  possibly  be  the  

activation of PLA2 which mediates production of Arachidonic acid which facilitates FcγR-mediated 

phagocytosis 77. PI3K is recruited to LAT where it is activated by Syk 57. Inhibition of PI3K can prevent 
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FcγR-mediated phagocytosis due to a failure of phagosome closure in murine macrophages 78,79 80. 

PI3K can also initiate ERK activation after FcγR  ligation  in  monocytes  and  macrophages  81,82.  

In macrophages, the rho family GTPases Rac and cdc42 are essential in actin polymerisation and 

ingestion of IgG opsonised substrates 83,84. Vav is required in FcγR-mediated phagocytosis in murine 

macrophage-like cell lines85 but not in murine primary macrophages 86. Similarly, FcγR-mediated Rac 

activation did not require Vav in these primary macrophages 86  

Macrophage ROS production 

ROS production requires the NADPH oxidase modular enzyme. The classical model of NADPH oxidase 

activation involves a calcium-dependent activation of PKC 87. PKC then phosphorylates NADPH 

subunits within the cytosol. A complex of p47phox/p67phox/p40phox with Rac1 or Rac2 then forms. 

Vav is required for Rac activation. This complex translocates to the plasma membrane where it 

assembles with the flavocytochromes gp91phox and p22phox forming the full enzyme. The oxidase 

is then active within the membrane of phagosomes. NADPH is utilised as a substrate to reduce O2 to 

O2-, initiating ROS production.  

ROS production accompanies many macrophage downstream signalling events. For example, FcγR-

mediated phagocytosis and production of ROS are mediated by related pathways in macrophages. 

Here, the Syk, PI3K, PKC activation pathway leads to both phagocytosis and ROS production after 

FcγR  ligation 76.  

Macrophage Cytokine signalling 

Macrophages are major producers of pro-inflammatory cytokines during inflammation, including 

macrophages in the synovium during RA. The regulation of these cytokines depends on transcription 

factors that are typically activated in several receptor signal transduction pathways. NFκB is an 

obvious example 88 and this has been shown in macrophage TNFα  regulation 89,90. MAPKs are also 

implicated in the regulation of TNFα. P38 MAPK can regulate  TNFα  mRNA stability 91 and regulate 



12 
 

several transcription  factors,  including  NFκB  92-94. In primary human macrophages, p38 MAPK has 

been  shown  to  regulate  TNFα  transcription  via  NFκB  91. Another study described p38 MAPK 

regulation of NFκB  in  conjunction with ERK 95. 

NFAT is another important transcription factor in cytokine regulation, including TNFα 96. Most of the 

NFAT family are activated through calcium signalling. NFAT acts synergistically with AP-1. AP-1 

activation depends on heavily on MAPK pathways 97. Therefore, multiple points where Lyp and Vav 

could influence cytokine production exist. 

This project 

The aim of this project is to investigate whether Lyp is involved in the three major macrophage 

signalling pathways discussed: FcγR; ROS production; and cytokine production. We believe that 

based the molecules involved in these pathways, Lyp is likely to be involved, either directly, or 

through Vav regulation. The use of a Lyp inhibitor will be used to investigate the effect found within 

these pathways. We hypothesized that Lyp inhibition will cause decreased negative regulation of 

these pathways, in other words, these pathways will be more active. By using a gold-based 

compound capable of competitive reversible inhibition of PTP activity, with a 10-fold selectivity for 

Lyp  over  other  PTP’s 98 we showed that Lyp is involved in Macrophage signalling. This was most 

evident In ROS production. We also show that Lyp might regulate Vav phosphorylation. 
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Materials and Methods 

Primary macrophage generation from human blood  

From healthy donor from the lab 

300μl of EDTA (Sigma) per 10ml of blood was added to a 50ml tube. 30 to 40mls of blood was then 

drawn and poured into the tube. Blood was made up to 50ml with RPMI (Sigma). 15ml of ficoll (GE 

healthcare) was added each to two 50ml tubes. 25ml of blood were then pipetted on top of the ficoll 

layers. These tubes were centrifuged for 30mins at 1500RPM with no brake. The PBMC layer was 

removed and added to separate tubes. These tubes were topped up to 50ml with RPMI then 

centrifuged for 10mins at 1500RPM. Supernatant was aspirated, cells resuspended in RPMI and 

counted. 

Cells were then centrifuged at 300g for 10mins. Supernatant was aspirated then cells resuspended in 

80μl of macs buffer (PBS (Oxoid); 0.5% BSA (Sigma); 2mM EDTA) per 10x107 cells. CD14 microbeads 

(Militenyl Biotech) were then used to positively select CD14 expressing PBMCs using a MACs 

separator according to manufacturer’s instructions. Selected cells were resuspended in RPMI and 

counted. Cells were then washed in RPMI. 

From blood apheresis cone 

Blood  was  made  up  to  50ml  with  RPMI.  PBMCs  were  purified  as  above.  PBMC’s  were  washed  with  

HBSS media (Sigma) at 1400RPM for 5 minutes at 20°C three times. Cells resuspended in 40ml of 

RPMI with 10% fetal calf serum (fcs) (Sigma). 20mls of cell suspension was layered on top of a 15ml 

Percoll solution (GE healthcare). This was then centrifuged at 500g with acceleration and 

deceleration set low at 1 for 30minutes at 20°C. The middle monolayer of cells was extracted and 

made up to 50ml with RPMI, then centrifuged at 1800RPM for 5 minutes.  

Cells were resuspended to 4x106 per ml in RPMI. 5mls of cells were plated onto petri dishes and 

incubated for 1 hour at 37°C to allow monocytes to adhere. RPMI was thrown off, 5mls of media 
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(RPMI; 10% fcs; Glutamine, streptavidin, penicillin (Sigma)) was then added and cells were scraped 

off the plate. Media with scraped cells was transferred to a fresh tube and centrifuged for 10 

minutes at 1500RPM.  

Macrophage differentiation  

Cells were resuspended to 1x10
6
/ml in media. GM-CSF (Invitrogen) was added at 1μl/ml of 

suspension. Cells were plated in 6 well plates at 2x10
6
/well. Plates were incubated at 37°C for six 

days. 

Macrophage removal  

Adherent macrophages had to be removed from the bottom of plate wells. Medium was taken off 

and added to a 15ml tube. 0.5ml of Hanks enzyme-free cell dissociation buffer (Gibco) was added to 

each well. Plates were incubated for 15minutes at 37°C. Plates were then vigorously tapped to help 

removal. A cell scraper was then used to scrape of remaining cells. Solution was then added to the 

falcan tube. The tube was centrifuged for 10minutes at 15000RPM. Cells were washed in fresh 

media twice. 

Western blot 

Preparation of samples: 

5x10
6
 cells per treatment were removed from media. Cells were washed in media and then 

resuspended to 5x10
6
 cells per ml of media. 5x10

6 
cells were then incubated with PTP Lyp inhibitor 

98
 

(Calbiochem) at a final concentration of 0.6 or 1.25μM  and  5x10
6 

 control cells incubated without Lyp 

inhibitor for 40 minutes at 37°C. Cells were then washed in PBS before resuspension in 500ml of PBS 

and transferring to eppendorfs. Cells were washed twice in PBS at 3000RPM for 5 minutes before 

resuspension  in  40μl  of  PBS.  10μl  of  5x  SDS  loading  buffer  was  then  added  to  cells 
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Sample running and membrane transfer: 

SDS containing samples were heated on a 100°C heating block for 10 minutes. 10ul of sample was 

then pipetted into the appropriate well. 10ul of prestained marker loading control (Invitrogen) was 

then added. The gel was then run until proteins reached the bottom of the gel. Proteins on gel were 

transferred onto membrane using the turbo where the membrane is soaked in methanol for one 

minute; gel placed on the membrane, with seven pieces of filter paper on top and bottom. 

Sample development: 

For antibodies used, see tables 1 and 2. Membrane was blocked in 5% BSA in PBSTT (PBS; 0.1% 

Tween (Fischer Scientific) for one hour on a shaker at room temperature (RT). 10ml of primary 

antibody solution in 5% BSA in PBSTT was added then membrane was left overnight at 4°C on a 

shaker. Membrane was washed for 10 minutes on a shaker at RT in PBSTT three times. 10ml of 

secondary antibody solution in PBSTT was added. Membrane was left on a shaker for one hour at RT.  

Membrane was washed for 10 minutes on as shaker at RT in PBSTT three times. Membrane was 

developed in ECL solution A and B (GE healthcare) for 3 minutes. Membrane was then run on a 

chemidoc. 

Table 1: western blot primary antibody  

Antibody  Dilution Company 
Rabbit anti-human Vav   1/1000 Milipore 
Rabbit anti-human Phospho-
Vav  

1/1000 Santa Cruz Biotech 
 

Mouse anti-phospho-Tyrosine  1/1000 Milipore 
 

Table 2: western blot secondary antibody 

Antibody  Conjugation Dilution Company 
Goat anti-mouse  HRP 1/10000 GE healthcare 
Donkey anti-rabbit  HRP 1/10000 GE healthcare 
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FACs DHR 

Cells were resuspended in fresh media at 1x106 cells per ml. Cells were treated with and without Lyp 

inhibitor at 1x106 cells per treatment group. 200μl of cells from each Lyp inhibitor concentration and 

control cells were added to FACS tubes. For each concentration, one tube is left without dye. For the 

rest of tubes, 4μl of Dihydrorhodamine 1,2,3 (DHR) solution (invitrogen) was added to give a final 

concentration of 10μM. Each tube is then incubated for 5 minutes at 37°C. One tube from each 

concentration then has the appropriate agonist added: LPS at 10ng/ml or PMA at 200nM (both 

Sigma). One tube from each concentration is left untreated. 200μl of PBS was then added to each 

tube. Tubes were run and fluorescence measured using FL1 of a Dako Cyan ADP flow cytometer. 

Summit v4.3 was used to analyse the data.  

Calcium signalling 

Cells were resuspended in fresh media at 1x106 cells per ml. 1.5x106 cells were required for each 

treatment group, Lyp inhibitor was added to give desired concentrations. To prepare the dye, 110μl 

of DMSO (Sigma) was added to a fresh tube of Indo-1 AM (Invitrogen). Dye was added to cells at 7μl 

per ml of cell suspension. Cells were then incubated at 37°C for 40 minutes. Indo-1 AM passively 

diffuses into cells. Cellular esterases cleave this leaving the cell impermeant calcium indicator Indo-

1. The binding of Indo-1 to calcium causes a shift in fluorescence emission. The ratio of bound to 

unbound fluorescence is then used to indicate intracellular free calcium levels. 

Cells were then centrifuged for 10minutes at 15000RPM at 20°C and supernatant flicked off. Cells 

then washed twice in HBSS. Cells were then resuspended in HBSS (Gibco) to 1x106 cells per ml with 

1.5ml of cell suspension added to the appropriate cuvette.  

Each cuvette was placed in a 37°C water bath for 5 minutes before running in the fluorometer 

machine with a magnetic stirrer. Agonists were added at appropriate times. Agonists added were 8μl 

of primary mouse anti-human CD64 (Serotec) followed by 16 μl goat anti-mouse (Sigma) to cause 
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crosslinkage. 5μl Ionomycin (Sigma) was added once calcium levels were basal as a positive loading 

control. 

Cytokine ELISA 

For each donor, macrophages were differentiated as before, but in a 96 well plate, with 2.5x104 cells 

per well. After 6 days differentiation, lipopolysaccharide (LPS) was added added to appropriate wells 

at a concentration of 10ng/ml. Lyp inhibitor was also added to appropriate wells to give a final 

concentration of 1μM.  Each  plate  was  then  incubated  overnight  at  37°C.    

All  ELISA’s  were  performed  using  respective  eBioscinces  Ready  Set  Go  kits.  ELISA plates were coated 

with 100μl per well of capture antibody diluted in coating buffer. Plate was incubated overnight at 

4°C then washed 4 times in wash buffer. Plate was blocked with 200μl per well of assay diluent (1:5 

in distilled water) for 1 hour at RT. Plate was washed 4 times in wash buffer. 100μl of standard was 

added to the top of appropriate wells, which was then serially diluted 2-fold in assay diluent (1:5 in 

distilled water) with the last well at a concentration of zero. Macrophage culture plates were 

centrifuged at 1400RPM for 10 minutes at 20°C.  50μl of macrophage supernatant from each donor 

was then added neat into wells in replicates of four for each condition. Plate was then incubated at 

RT for 2 hours, then washed four times in wash buffer. 

100μl of detection antibody diluted in assay diluent (1:5 in distilled water) was added to each well 

and the plate was incubated for one hour at room temperature before washing four times in wash 

buffer. 100μL of Avidin-HRP diluted in assay diluent (1:5 in distilled water) to the same concentration 

as respective detection antibody was added and plate was incubated for 30 minutes at room 

temperature. Plate was then washed six times in wash buffer. 100μl of Substrate solution was added 

to each well, plates were incubated at room temperature for 15 minutes before 50μl of Stop 

solution was added. Plates were then read at 450nm in a plate reader. 
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Results 

Peripheral blood was obtained from healthy donors either from volunteers from the lab or from a 

blood cone obtained from the national blood bank. After purification, GM-CSF was added to media 

to induce differentiation of M1 macrophages for 6 days. After this, differentiated macrophages had 

to be scraped off plates for use in the various experiments, with the exception of the cytokine ELISA, 

which used the supernatants. 

Lyp negatively regulates ROS production  

Both Lyp and Vav could potentially regulate the molecules involved in the ROS production. In order 

to study this, we looked at the effect of Lyp inhibition on ROS production. We hypothesised that if 

Lyp does regulate pathways involved in ROS production, its inhibition should result in an increased 

ROS production. To investigate ROS production, we used Dihydrorhodamine 1,2,3, (DHR). DHR 

diffuses into cells where it can be oxidised to fluorescent Rhodamine 1,2,3. This fluorescence is 

therefore a marker of superoxide presence. First, cells were incubated with increasing 

concentrations of Lyp inhibitor for 40 minutes at 37°C. Control cells were incubated without Lyp 

inhibitor. Cells were next incubated with DHR for five minutes before PMA or LPS was added. 15 

minutes later, cells were then analysed for fluorescence by flow cytometry. This experiment was 

repeated three times and the results are plotted below (figure 2). 
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Figure 2: Lyp inhibition and ROS production. Macrophage were pre incubated with various concentrations of Lyp 
inhibitor  (Lyp inh conc µM) were loaded with DHR, then left unstimulated or stimulated with either LPS or PMA. Cells 
were then run on the flow cytometer, with the mean fluorescence of ROS sensitive DHR measured for each sample. The 
experiment was repeated two more times with different donor cells. The baseline fluorescence was noted as the 
fluorescence for unstimulated cells without Lyp inhibitor. The fluorescence for each sample was then compared to the 
baseline fluorescence from the respective experiment and plotted as a ratio. Error bars show standard deviation. 
Statistical analysis performed using graphpad prism 5. A Two-Way ANOVA was performed between the PMA treated 
cells and unstimulated cells. p< 0.001 = ***. 

The level of ROS was found to increase with increasing concentration of Lyp inhibitor. Surprisingly, 

LPS addition did not increase ROS compared to unstimulated cells. PMA addition did significantly 

increase ROS compared to unstimulated cells. These results suggest that Lyp can function to reduce 

basal ROS in resting cells and induced ROS after cell activation by PMA. 

Lyp and calcium flux after FcγR crosslinkage 

We wanted to investigate the role of Lyp in signal transduction after FcγR crosslinkage. For this we 

decided to use calcium flux as an indicator of signalling, since an intracellular calcium increase is 

associated with FcγR ligation. We hypothesised that Lyp inhibition will cause a decreased negative 

regulation of FcγR signal transduction, and therefore greater calcium flux. Cells were incubated with 

Lyp inhibitor at a low concentration of 0.6μm	
  and	
  the	
  higher	
  concentration	
  of	
  1.25μm.  

Control cells were incubated without any Lyp inhibition. At the same time cells were incubated 

with indo-1 dye, an indicator of free calcium for 40 minutes. While in the fluorometer machine, 

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5
unstim
lps
pma

lyp inh conc

Ra
tio

 o
f f

lu
or

es
en

ce
 to

 
ba

se
lin

e 
flu

or
es

ce
nc

e
*** 

(µM) 



20 
 

anti-CD64 was first added, followed by a secondary antibody to crosslink and induce signalling. 

This experiment was repeated three times, with calcium flux presented as a ratio of calcium 

before crosslinkage compared to peak calcium after crosslinkage (figure 3). The results from 

each experiment were non consistent and on the whole no significant difference in calcium flux 

after CD64 crosslinking at either Lyp inhibitor concentration compared to control cells. 

 

 

 

Figure 3: Lyp inhibitor and calcium flux after CD64 ligation. Macrophages were pre-incubated with Lyp inhibitor at 
concentrations of 0.6μM or 1.25μM, with control cells incubated without Lyp inhibitor. Cells were incubated with the 
calcium sensitive dye Indo-1 then run in a fluorometer machine in a cuvette, which measures fluorescent output. Anti-
CD64 antibody was added to coat CD64, 100 seconds later the secondary goat anti-mouse antibody was added to 
crosslink the CD64 receptor and induce signalling. After the calcium flux reached basal levels again, ionomycin was 
added as a positive loading control. B) The experiment was repeated two more times with different donor cells. Samples 
have been plotted as a ratio of the peak fluorescence during calcium flux compared to the baseline calcium level before 
antibody addition. 
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Lyp and cytokine production 

 

Primary human T cells expressing the W620 variant of Lyp have altered cytokine production 25. Based 

on this, and the multiple points where Lyp could affect cytokine signalling pathways, we decided to 

investigate the effect of Lyp inhibition on pro-inflammatory cytokine production. We hypothesised 

that Lyp inhibition will result in a decreased negative regulation of pro-inflammatory cytokine 

production. Macrophages where obtained from three separate donors and cells were incubated in 

four conditions: with or without Lyp inhibitor,  and  with  or  without  LPS.  ELISA’s  were  set  up  for 

detection of TNFα, IL1β and IL6 release into supernatant. Each cytokine ELISA was performed in 

replicates of four for each condition for each donor.  

 

 

 

Figure 4: Cytokine productions by macrophages. The three donor macrophages are labelled from D1, D2 and D3. 
Macrophages were incubated overnight in one of four conditions: no LPS, with Lyp inhibitor (red/L-Ly+); no LPS, no Lyp 
inhibitor (blue/L-Ly-); with LPS, with Lyp inhibitor (orange/L+Ly+); with LPS, no Lyp inhibitor (pink/L+Ly-). The following 
day, supernatants were analysed by ELISA for IL1β, TNFα and IL6. Statistical analysis was performed for the no LPS, no 
Lyp inhibitor groups. A repeated measurements one-way ANOVA was performed where p < 0.05 = * and p < 0.001 = ***. 

Surprisingly, the presence of Lyp inhibitor and/or LPS did not seem to stimulate cytokine release, 

with LPS actually decreasing TNFα production (figure 4). One donor was found to have a significantly 

greater cytokine release than the other two donors figure 4. We later learned that this donor is 

heterozygous for the W620 variant (data not shown). This result would suggest that expression of 
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the W620 variant correlates with a decreased negative regulation of cytokine production. Donor 1 

also responded particularly poorly in terms of cytokine production. 

 

 

Regulation of Vav by Lyp 

Since Vav is a substrate of Lyp and since Vav could have a role in the investigated pathways, we 

wanted to see whether Lyp could regulate Vav activity. In order to investigate the role of Lyp in Vav 

regulation, we performed a western blot for phosphorylated Vav in the presence of Lyp inhibition. 

Macrophages were initially incubated with 0.6μm  and  1.25μm  of  Lyp  inhibitor.  Control  cells  were  

incubated without Lyp inhibitor. SDS loading buffer was added directly to whole cells to allow lysis, 

before cells were run. After running and transferring, the blot was initially probed for 

phosphotyrosine (data not shown). However, after getting hold of anti-phosphorylated Vav 

antibody, the blot was stripped and re-probed for this. Thus antibody binds specifically to the 

Tyrosine 174 residue of Vav proteins, phosphorylation here is required for Vav activation and GEF 

activity 35. As a loading control, the blot was re-stripped and re-probed for anti-Vav to allow a 

comparison of Vav protein levels between samples.  

From figure  5,  we  can  see  that  the  sample  of  macrophages  with  a  higher  Lyp  inhibition  (1.25μm)  has  

a less intense stain for phosphorylated Vav than control and the low Lyp inhibitor concentration 

(0.6μm)  cell  samples.  This  is  suggestive  that  a  higher  inhibition  of Lyp activity results in less 

phosphorylation of Vav at Tyr 174. However, the sample of macrophages with the high inhibitor 

concentration has a less intense stain for Vav, suggesting that there was less Vav protein present in 

this sample anyway. It is therefore difficult to interpret whether the higher inhibition results in less 

phosphorylation of Vav. There is no other obvious difference in band intensities between samples. 

There is clear shift in molecular weight between the Vav bands at around 95kDA and phosphorylated 
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Vav bands at around 60kDA. This is surprising giving that both antibodies are supposed to detect Vav 

at its known molecular weight of 95kDA and this further reflects the non-conclusiveness of this 

result.  

 

 

 

 

Figure 5: Lyp inhibition and Vav phosphorylation. Macrophages were incubated with Lyp inhibitor at 0.6μM and 1.25μM 

with control cells (0μM) incubated without Lyp inhibitor. Cells were lysed directly in SDS buffer, then western blot was 

performed. Cells were probed first with anti-phosphorylated Tyr-174 Vav antibody as shown in the upper blot (Phospho-

Vav). The blot was the stripped and re-probed with anti-Vav antibody as shown in the lower blot (Vav). 
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Discussion 
 

Variants of Lyp phosphatase are linked to autoimmune diseases such as rheumatoid arthritis. Studies 

of Lyp have previously only focused on lymphocytes; this is despite the fact that myeloid cells have a 

higher Lyp expression. The purpose of this study was to investigate the role of Lyp in primary human 

macrophages. We used an established Lyp inhibitor and looked at the effects of Lyp inhibition on 

macrophage signalling pathways.  

We found that Lyp inhibition increased the level of ROS in unstimulated and PMA stimulated cells. 

An important cellular source of ROS after PMA treatment is from NADPH oxidase enzymes . Primary 

human macrophages have previously been shown to produce ROS in response to PMA 99. PMA can 

activate conventional and novel PKC isoforms which can phosphorylate and induce translocation of 

p47phox.  In neutrophils,  after  PMA  treatment,  the  conventional  PKCβ  isoform  is  required  for 

NADPH activation 100. The isoform(s) activated after PMA treatment in macrophages is unknown. 

However, primary human monocytes activated by opsonised zymosan use PKCδ to phosphorylate 

p47phox 87. PMA treatment of these  cells  also  caused  PKCδ activation, which could then 

phosphorylate p47phox when  purified  from  cells.  PKCα is also activated and can then positively 

regulate NADPH function by cPLA2 generation in these cells. Further experiments could utilise 

various PKC inhibitors to deduce which isoforms are important in human macrophages. 

The results suggest that Lyp negatively regulates ROS production. Lyp may negatively regulate DAG-

mediated activation of PKC, and thereby ROS production. There are several non-exclusive pathways 

where this could happen. Lyp can dephosphorylate Src family kinases 12,13 and may be capable of 

negatively regulating Vav. Src family kinases can lead to DAG generation. Vav can activate PLCγ  48 

thereby also linking Vav to DAG-mediated PKC activation. Both of these pathways could facilitate an 

increased  basal  ROS  production.  PKCδ  can  negatively  phosphorylate  Lyp,  inhibiting  its activity in T 

cells 27. PKC can also negatively regulate PYPN22 expression in human chronic lymphoid leukemic B 

cells 101 Whether  Lyp  can  interact  with  PKCδ,  or  other  isoforms,  directly  inhibiting  them,  is  unknown.  
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A direct PKC inhibition by Lyp could explain the large increase in ROS with Lyp inhibition of PMA 

treated cells.   

Vav is also involved later in the ROS pathway. Vav has been implicated with roles on ROS production 

through Rac activation 102-105. Vav deficient murine primary macrophages fail to produce ROS after 

LPS induction 102. It was shown Vav GEF activity is required here to activate Rac2. In primary murine 

neutrophils, Vav1 and 3 are required in ROS production  after  FcγR  ligation  103. Again, Vav was 

required for Rac activation here. In human neutrophils, Vav1 can directly interact with the NDAPH 

subunit P67phox where it activates Rac2 after fLMP stimulation106. Rac activation is essential in 

allowing Rac binding to P67phox as well as membrane-bound cytochrome b, which is required in 

NADPH oxidase activation 37.  

Vav is not required for PMA induced ROS production by murine macrophages 102, suggesting Lyp 

function through Vav activation is not responsible for the increased ROS with Lyp inhibited PMA 

treated  cells  in  this  study.  Interestingly,  FcγR  signalling  in  DC’s  activates  NADPH  oxidase,  allowing  

ROS production important in cross presentation 105. This pathway also requires Vav. With the 

requirement of Src family  kinases  in  FcγR  signalling,  it  is  possible  Lyp  could  regulate  Vav  in  DC’s.  It  

would  have  been  interesting  to  investigate  the  FcγR  pathway  and  ROS  in  this  study.  This  area  can  be  

addressed in future studies. 

We found LPS to have no effect on ROS production compared to unstimulated cells. This is despite 

previous studies reporting rapid and detectable ROS levels for hours after LPS stimulation at similar 

concentrations in murine macrophages 107-109 as well as primary human monocytes 110 and 

macrophages 104. These reports used different methods of detecting ROS, including different dyes 

and using plate readers to measure fluorescence. These different methods could account for the 

different results.  
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We also found that the addition of LPS failed to effect pro-inflammatory cytokine production by 

macrophages. Again this was surprising, especially since LPS has been shown numerous times to 

induce  cytokine  production,  including  TNFα,  in  primary  human macrophages 111. Together, this 

indicates that macrophages may have been previously been activated by LPS, possibly during the 

differentiation incubation, and therefore no longer responsive to this signalling pathway. This 

pathway may even have begun to downregulate itself, which could explain the decreased  TNFα  we  

found with LPS stimulation. The use of antibiotics in the culture medium during macrophage 

differentiation could have resulted in release of LPS from any present gram-negative bacteria.  

Antibiotics could be avoided during the incubation, but it is likely any present gram-negative bacteria 

will multiply and shed LPS into the media anyway. Future experiments involving LPS could utilise 

monocytes that can be used right after purification, avoiding the differentiation incubation. 

We were surprised to find no significant difference in calcium flux after CD64 ligation with Lyp 

inhibition. Experiments using another Lyp inhibitor in Jurkat T cells have found an increased calcium 

flux with increased Lyp inhibition after TCR ligation 112. Our lab using the same inhibitor in this study 

has also found an increased calcium flux with increased Lyp inhibition in jurkat T cells (unpublished 

data, R. Bayley). We therefore expected an inhibition of Lyp activity to cause a decreased negative 

regulation of Src family kinases, thereby allowing a stronger CD64 signal transduction, as indicated 

by calcium flux.  

Due to variation between experiments, results are inconclusive. In one experiment, a high Lyp 

inhibitor concentration did result in a greater calcium flux than control cells. In another experiment, 

the high Lyp inhibitor concentration gave a lower calcium flux than control cells. This may have been 

caused by differences in genetic polymorphisms between donor cells. This experiment needs to be 

repeated to investigate if any of these trends are continued.  A greater concentration range would 

also allow a more in depth analysis. 
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This is the first report of macrophages expressing the W620 variant. These macrophages displayed a 

much greater production of the pro-inflammatory  cytokines  TNFα,  IL1β  and  IL6. This lab has also 

seen  that  CD4  T  cells  from  W620  carriers  have  an  increased  TNFα  and  IFNγ  production  (unpublished 

data, R. Bayley). It has previously been reported that primary CD4 T cells expressing the W620 

variant have decreases in IL2 23,24 and IL10 24 production after TCR stimulation, other cytokines 

tested,  including  TNFα  showed  no  difference  between PTPN22 genotypes 24, A decreased IL10 

expression has also been described in unstimulated, un-purified peripheral leukocytes from donors 

with the W620 variant with Anti-neutrophil cytoplasmic antibody disease 113. This decrease 

correlated with an increased basal W620 Lyp phosphatase activity and decreased ERK 

phosphorylation. In contrast another study found stimulated or unstimulated  PBMC’s  from  W620  

homozygotes and carriers showed no difference in cytokine production, including IL10, compared to 

healthy controls 25.  

Our results from primary macrophages expressing the W620 variant differ from these previous 

published reports of primary cells.  The unpurified leukocytes and the PBMC’s  from  the  previous 

reports 25,113 would have lacked macrophages since peripheral blood was used, with no macrophage 

differentiation stage. It is interesting that from the unpurified leukocyte report, the increased basal 

W620 activity also correlated with an increased P38 MAPK phosphorylation 113. 

As  mentioned  earlier,  P38  MAPK  is  important  at  least  in  TNFα regulation in macrophages. If P38 

MAPK is also increased in variant expressing macrophages, this could explain our unique results and 

would highlight the importance of macrophages in driving the inflammatory response seen in the 

synovium of RA patients. Interestingly, the knockdown of Lyp expression in the human monocytic 

cell line THP1 resulted in a greater MAPK phosphorylation with increased IL6 and IL17 22. Our 

experiment needs to be repeated with more W620 variant donors and controls and to compare the 

phosphorylation levels of different MAPKs and also look into regulatory cytokine production such as 

IL10.  
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It should be noted that our donor was healthy, despite Lyp W620 expression, demonstrating that 

other factors can contribute to autoimmune risk with Lyp W620. It would be interesting to find out 

what differs between healthy and autoimmune prevalent carriers of Lyp W620, be it environmental 

or further genetic predispositions. Donor 1 from this experiment did not appear to produce a 

detectable amount of cytokine with the exception of small amounts of  Ilβ  in  some  of  the  replicates.  

This may only have been an experimental artefact and I would suggest donor 1 cells to have been 

dead.  

There are several possible reasons why Lyp inhibitor had no effect on cytokine production. Firstly, 

Lyp may not be a negative regulator of pro-inflammatory cytokines. Though the exceedingly high 

cytokine production seen with the W620 variant expression would argue against this, other genetic 

polymorphisms from this donor could be responsible for the higher cytokine production. Yet the 

report of increased IL6 and IL17 from THP1 cells after Lyp knockdown would dispute this 22. The Lyp 

inhibitor is a reversible competitive inhibitor 98. Hence a more likely explanation would be that the 

inhibitor could have been out-competed and possibly degraded during the overnight incubation.  

We hypothesised that Lyp can regulate Vav activity by directly dephosphorylating it. We therefore 

expected Lyp inhibition to result in an increased Vav phosphorylation at Tyr-174, but this was not 

seen. Although it looked like a higher inhibitor concentration resulted in less Vav phosphorylation, it 

is possible there was less Vav protein present in the sample as suggested by the subtle difference 

Vav in band intensities.  A decreased phosphorylation could indicate Lyp to be a positive regulator of 

Vav activity, where it can directly dephosphorylate inhibitory Tyrosine residues, thereby allowing 

Vav phosphorylation on activation tyrosines such as Tyr-174.  

On top of the many technical issues with the blot as discussed below, the reliability of this 

experiment is further questioned giving that the phosphorylated Vav antibody gave a bands at 

around 50kDA instead of the expected 95kDA. It is unlikely due to Vav degradation since the Vav 
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antibody  only  gave  bands  at  Vav’s  full  molecular  weight  of  around  95kDA.  I  have  no  reasonable  

explanation for this phenomenon. 

Despite the stripping process, the original phosphotyrosine stain is still visible within the lanes, thus 

questioning the efficiency of the stripping. Poor stripping could have resulted in the different band 

intensities between samples. Ideally, an immune-precipitation for Vav should be performed after cell 

lysis. In order to further investigate Lyp regulation of Vav, the western blot process will need to be 

optimised and repeated. Again, a greater range of Lyp inhibitor concentrations could give more in 

depth results. 

The Lyp inhibitor used is a competitive reversible inhibitor of PTPs with a ten-fold selectivity for Lyp. 

The problem with such an inhibitor is therefore the specificity, especially at higher concentrations. 

Ideally, the lab would like to specifically knockdown expression of PTPN22 mRNA in macrophages. If 

this technique can be mastered then experiments could be repeated with PTPN22 knock-down cells. 

This would be a more effective way of showing that Lyp does have a role in macrophage signalling 

pathways.  

In conclusion, this is the first report that Lyp does have a role in primary human macrophage 

signalling pathways. By using a Lyp inhibitor, we have shown that Lyp is a negative regulator of ROS 

production in unstimulated and PMA stimulated cells. The role of Lyp in calcium signalling after CD64 

ligation and in Vav activation remains unknown. We also provide evidence that the Lyp W620 variant 

expression in macrophages allows a greater production of pro-inflammatory cytokines. This has 

implications in understanding how the W620 risk allele can function in autoimmune diseases such as 

RA. 
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Abstract 
 

During the B cell immune response, extrafollicular foci form after an initial proliferative burst which 

become a site of early plasma cell production. The NP-Ficoll immune response is a T-independent 

reaction, which results in significant extrafollicular foci formation. The NFκB member, cRel, is 

important in activated B-cell  proliferation  and  survival.  It’s  also  been shown in vitro to be important 

in class switch recombination (CSR) and induction of IRF4. IRF4 is essential in plasma cell 

differentiation as well as CSR. 

We showed that after NP-Ficoll immunisation, cRel -/- (KO) B cells produce far less plasma cells. And 

this coincided with low NP-specific antibody production, particularly IgG isotypes. Despite this low 

plasma cell production, WT mice receiving KO or WT B-cells had similar splenic Irf4 levels.  Splenic 

levels of immunoglobulin switch and Aid transcripts, both essential in CSR, were similar. Fluorescent 

staining also showed a similar frequency of WT and KO plasma cells had switched to IgG expression. 

Together, this project shows that despite the defect in plasma cell production with the B-cell 

intrinsic loss of cRel, the few plasma cells which are produced are still capable of CSR. However, the 

low numbers mean actual antibody production is low. 
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Introduction 
 
B cells are an essential component of the adaptive immune system. Antigen 

recognition through the B cell receptor (BCR) can facilitate B cell activation and 

differentiation into short or long-lived antibody-secreting plasma cells or into 

memory B cells. The B cell immune response may be thymus dependant (TD) 

and require cognate T cell help or be thymus independent (TI), not requiring T 

cells. TI type 1 (TI-1) reactions involve B cell activation through mitogenic 

signals such as TLR signalling. TI type 2 (TI-2) involves extensive BCR 

crosslinking through repetitive epitopes, typical of polysaccharides.  

 

The mature naïve B cell pool is heterogenic in phenotype as well as function 1. 

The majority are recirculating follicular B2 B cells (FO B cells), which circulate 

the secondary lymphoid organs (SLO), homing into primary B cell follicles. Here, 

networks of follicular dendritic cells (FDCs) can present antigen. FDC production 

of the chemokine CXCL13 attracts the CXCR5hiCCR7lo FO B cells into the follicles 

2. T cells, in contrast are CXCR5loCCR7hi, allowing accumulation into CCL19 and 

CCL21 rich T cell zones.  

 

T zones are found next to follicles and this arrangement of lymphocyte rich zones 

make up the white pulp in the spleen, the cortex and paracortex of lymph nodes 

and appear in organized mucosal associated tissues. FO B cells typically respond 

in a TD manner. A marginal zone (MZ) consisting of B cells and macrophages 

surrounds the white pulp edge between the marginal sinus and the red pulp 3. 

The red pulp is a red blood cell, reticular cell, and macrophage rich zone 

important in blood filtration. 
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MZ B cells are another B2 cell subset 3. These cells show a pre-activated 

phenotype, can self renew and do not recirculate. They can however capture 

immune complex via CD21 and transport it into follicles transferring it to FDC. 

Positioned next to the marginal sinus, these cells are important in rapid TI 

responses to blood-borne antigen. B cells of a similar phenotype have been 

described in lymph nodes,	
  Peyer’s	
  patches	
  and	
  tonsils 4. B1 B cells as described 

in mice include the CD5+ B1a cells and the CD5- B1b cells 5. These cells are the 

main B cell population in the peritoneal and pleural cavities while rare in the 

spleen and lymph nodes. They are the major producers of natural antibody, an 

important first line of defence to infection. They may be activated with or 

without BCR stimulation to form plasma cells that produce IgM or IgA. 

The B cell immune response 

 

FO B cells enter the follicles where they reside for around 24 hours before 

recirculating to another secondary lymphoid organ. Should they encounter 

specific antigen within the follicle, or even free antigen in the blood or lymph, FO 

B cells will migrate to the follicular-T cell border. Likewise, should MZ B cells 

recognise antigen, they will also migrate to the T cell border 4 6. An upregulation 

of CCR7 by antigen activated B cells allows this migration 2.  Likewise, during a 

TD response, dendritic cell (DC) primed CD4 T cells upregulate CXCR5 to meet 

cognate B cells.  
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At this border, the B cells receive proliferation and differentiation signals. During 

a TD response, B cells present processed antigen via MHC class II molecules to 

cognate CD4 T cells by 12 hours 4. This cognate interaction initiates reciprocal 

survival signals, including B cell CD40 engagement 7. CD11hi DCs are also present 

at the border and can provide BAFF or APRIL survival signals 8. This could be 

particularly important in TI B cell survival. Innate helper cells including 

neutrophils 9, NK cells 10 and iNKT cells 11 can also provide help in TI and TD 

responses as can microbial TLR signals. 

 

After 1 to 2 days here, B cells begin proliferation at the border 8,4. Clones may 

undergo as little as two cell cycles 4 although reports include at least three 

divisions two days into a TD response 12. Class switch recombination (CSR) from 

IgM to other Ig heavy chain classes can also occur during this proliferation 

between days 2 and 3, but is restricted to B blasts 12 46. After this short 

proliferative burst, B cells move into the splenic red pulp or lymph node 

subcapsular interfollicular areas then form extrafollicular foci, or move into 

follicles and initiate germinal centres 12,4.   

 

The extrafollicular foci is a site of early and rapid plasma cell differentiation. This 

starts with B blasts differentiation into proliferating and low antibody producing 

plasmablasts, followed by terminal differentiation into plasma cells 4. Early 

recirculating memory cells can also form from these foci 12. Plasma cells 

produced here are typically short lived. The germinal centre (GC) is a dedicated 

site for cycles of further B cell proliferation, affinity maturation and CSR of the 

BCR with selection of high affinity clones. These clones can then contribute to 
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plasma cell and memory cell differentiation 4 13. GC’s	
  are	
  classically thought of as 

TD, but TI non-productive	
  GC’s	
  can	
  occur	
  under	
  certain	
  circumstance	
  14. 

Plasma cell differentiation  

 

Differentiation of plasma cells requires a complex transcriptional network 

including Blimp1, XBP1 and IRF4. Blimp1 has been described as the master 

regulator of plasma cell differentiation. Transfection of this zinc-finger 

transcriptional repressor into B cell lines can induce differentiation into a 

plasma cell phenotype 15. Blimp1 was further clarified as a master regulator 

when mice whose B cells lacked Blimp1 failed to produce plasma cells or 

produce antibody sufficiently 16.  

 

Blimp1 inhibition of c-myc 17 halts the cell cycle allowing terminal 

differentiation. Blimp1 can inhibit genes involved in B cell function and GC 

differentiation including Pax5 and Bcl6 18. Pax5 is expressed throughout B cell 

subsets but not in plasma cells 18. It can activate genes involved in B cell function, 

including BCR signalling, while repressing genes associated with plasma cell 

differentiation, including XBP1 18. 

  

XBP1 activates genes involved in the secretory apparatus, essential in antibody 

secretion 18.  Inhibition of Blimp119 therefore allows XBP1 activation and 

function 20 while helping shut down B cell function. Therefore downregulation of 

Pax5 is necessary for plasma cell differentiation. However one paper describes 

how	
  the	
  initial	
  downregulation	
  of	
  Pax5	
  is	
  independent	
  of	
  Blimp1	
  with	
  B	
  cell’s	
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lacking Blimp1 capable of differentiating into a low antibody secreting pre-

plasmablast stage 21.  

 

Bcl6 is highly expressed in GC B cells. Here it acts as a master regulator allowing 

high levels of proliferation and repressing DNA damage response to allow BCR 

affinity maturation, while repressing Blimp1 expression and preventing plasma 

cell differentiation 18. Blimp1 can reciprocally repress Bcl6 22 to prevent GC B cell 

state. It also represses genes involved in CSR, which are	
  highly	
  expressed	
  in	
  GC’s 

22. The repression of Bcl6 is important in preventing GC B cell differentiation and 

a downregulation of Bcl6 is particularly important in exiting the GC state. IRF4 is 

another transcription factor now appreciated to be essential in plasma cell 

development as discussed in the next section. 

IRF4 in B cells 

 

IFR4 is a transcription factor capable of interacting with a variety of co-factors 23. 

The best described cofactor interaction is that of PU.1 and also the closely 

related SPI-B. Dimer interactions with these co-factors are important in the 

transcription of IgH and IgL-κ loci. The role in immunoglobulin production is 

further exemplified in Irf4 KO mice 24. Despite a normal B cell development, 

these mice exhibit extremely reduced serum immunoglobulin levels and fail to 

produce a detectable antibody response to immunisation.  

 

Human and mouse lymphoid tissue histology later showed how IRF4 expression 

was high in plasma cells but largely absent from GC B cells 25,26. The IRF4 
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expressing GC B cells appear to be centrocytes in the light zone and most co-

express Blimp1 27. This is suggestive that these cells are precursors of plasma 

cells. There is now good evidence to show IRF4 is required in plasma cell 

differentiation. It was shown in vivo that plasma cell differentiation	
  from	
  GC’s	
  

required IRF4 expression 28. Despite lack of IRF4, Blimp1 was still upregulated, 

but not sufficient for plasma cell development, suggesting IRF4 to work in 

parallel to Blimp1. Another study found that B cells lacking IRF4 activated in 

vitro also failed to differentiate into plasma cells 29. These cells failed to 

upregulate Blimp1 suggesting IRF4 is upstream of Blimp1. 

 

This difference in where IRF4 functions with Blimp1 is likely due to the different 

experimental systems used. There is also evidence that Blimp1 can activate IRF4 

expression 30. Negative regulation of IRF4 by MITF occurs in naïve B cells 31 and 

can be upregulated during B cell activation via NFκB 3233. Both studies also 

described how CSR was inhibited, due to a failure to upregulate AID, which as 

described next, is essential in CSR.  

AID, CSR and IRF4 

 

CSR, as reviewed elsewhere 34, is the process of switching to another heavy chain 

constant region, thereby producing antibody of different effector functions. This 

process occurs through a recombination event between switch regions, located 

upstream of each heavy chain constant gene loci, with deletion of the intervening 

DNA. AID is responsible for de-aminating cytosines to uracil bases in each switch 

region. Uracils are subsequently removed and nicks are incorporated into the 
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DNA by further proteins. Mismatch repair proteins then facilitate end join 

recombination.  

 

Transcription is required through the switch region, beginning at the I exon 

upstream of the switch region and continuing through the CH locus. This 

transcript, known as the switch or germline transcript must then be spliced to 

bring the I exon to the first CH exon to allow productive CSR 35,36. The transcript 

is not thought to code a protein and its functional role is not known, but may 

form DNA-RNA hybrids to open the switch region and allow CSR. 34. 

 

AID is positively regulated by Pax5 37 and negatively regulated by Blimp1 22. IRF4 

is also required for AID expression during CSR 28,29. AID is expressed in GC 

founder cells and GC B cells. AID is also expressed in some B blasts of the 

extrafollicular response, allowing CSR before it is repressed in plasmablasts and 

plasma cells 6. Based on IRF4 transduction rescue experiments with IRF4 KO B 

cells, its been proposed a low/intermediate IRF4 level allows CSR but not plasma 

cell differentiation 29. As Blimp1 and IRF4 levels increase, plasma cell 

differentiation is initiated with AID and CSR is inhibited. 

cRel 

 

The NFκB transcription factor family consists of five proteins: p65-RelA; RelB; 

cRel; p105/p50; and p100/p52 38. These proteins form various dimers capable 

of regulating the transcription if genes involved in an array of processes such as 

cell proliferation, differentiation and survival. Dimers are usually found in the 
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inactive state bound to inhibitory κ B (IκB) within the cytosol. Cell signalling 

events can result in phosphorylation of IκB’s	
  by	
  IκB kinase (IKK) followed by IκB 

degradation, allowing NFκB translocation and target gene regulation. 

 

One interesting NFκB family member is cRel, which commonly forms 

homodimers and dimers with p50 and less often with p65-RelA and p52 39. cRel 

has a more promiscuous DNA target sequence recognition and can bind different 

residues than the other NFκB members 40. In immature B cells, cRel is low but 

becomes the main dimer, in the p50-cRel form in mature B cells. cRel knock out 

mice have revealed much about cRels requirement for T and B cell immune 

functions. In particular, KO mice have reduced B cell proliferation and survival to 

stimulation with LPS, anti-IgM, anti-CD40 and antigen. Antibody production is 

also	
  reduced,	
  and	
  GC’s	
  are	
  found	
  to	
  be	
  small/irregular	
  39.  

 

cRel allows proliferations through cMyc activation in the G1 phase and allows 

movement to the S phase. cRel also prevents apoptosis through activation of the 

Bcl-2 anti-apoptotic gene family. There is also evidence cRel allows B cell isotype 

switching by initiating and enhancing transcription through S regions 4142,43. 

Intriguingly, in cRel KO mice, B and T cells fail to upregulate IRF4 in response to 

various mitogens 33. Thus cRel regulation of IRF4 could represent another way it 

might facilitate CSR. 
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This project 

 

The Toellner lab is interested in the early events of the B cell immune response. 

In this project, we are investigating the B cell immune response to the TI antigen 

NP-Ficoll. By using cRel -/- mice and adoptive transfer of cRel -/- B cells, we 

hypothesised that the absence of cRel  will result in defects in the production of 

NP-specific plasma cells. We also hypothesised that the absence of cRel will result 

in poor induction of Irf4 and Aid transcripts as well poor induction of CSR.  
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Materials and methods 
 

Mice and immunisations 

 
All mice used were males aged 6 to 8 weeks old and maintained in specific 

pathogen-free conditions at the Biomedical Services Unit at the University of 

Birmingham, UK and treated according to The Home Office guidelines.  

 

In the first experiment, C57/BL6 mice were used. c-Rel+/+ wild type and c-Rel-/- 

knock out mice were immunised via intraperatoneal (i.p) injection of NP-Ficoll 

(Bioscearch Technologies, CA) dissolved in PBS at 30μg/200μl	
  per	
  mouse. NP-

Ficoll gives a T-independent response useful for specifically studying a B cell 

response. Cohorts of mice were then sacrificed at day 0 (before immunisation) 

and day 5 and 7 after immunisation. 

 

QM (quasi-monoclonal) mice have the NP-specific rearranged 17.2.25 VHDJH 

segment on one allele, with a JH deletion on the other allele and deletion of the Jk 

loci 44.  This results in around 95% of the B cells expressing NP-specific B cell 

receptors. QM mice used here also express enhanced yellow fluorescent protein 

(eYFP) in every cell 45. These mice were crossed onto the wild type (c-Rel+/+) or 

knock-out (KO) (c-Rel-/-) C57/BL6 background. Naïve mice were then used to 

provide naïve B cells for the cell transfer experiment.  

 

Wild type C57/BL6 mice received cell transfer by intravenous (i.v) injection. The 

2 hour and day 2 cohort received 1x106 cells, with the day 5 cohort receiving 

4x105 cells from the wild type or knock-out QM donors. KO C57/BL6 recipient 
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mice also received 4x105 wild type QM donor cells. 24 hours later, all mice 

received an NP-Ficoll immunisation by i.p injection at 30μg/200μl per mouse.  

The respective cohorts were then sacrificed at 2 hours, 2 days and 5 days after 

immunisation. The KO recipient mice were also sacrificed at day 5. 

Cell transfer 

 

Spleens were removed from four wild type and four knock out QM mice. Spleens 

were mashed in media (RPMI 1640, penicillian streptomycin and 10% fetal calf 

serum (all sigma)) then centrifuged at 1200RPM for 5 minutes at 24°C. 

Supernatant was removed and cells were pooled together into wild type and 

knock out splenocytes. Red blood cells were lysed by addition of 1ml of ACK 

lysing buffer (Invitrogen) per spleen for one minute before topping up to 5mls 

with media then centrifuging as before. Splenocytes were then resuspended in 

MACs buffer then counted in 10% Trypan Blue to differentiate live and dead 

cells. Splenocytes were then sorted using CD43 beads (Miltenyi Biotech) 

according to manufacturers instructions. CD43 is expressed on non-B cells and 

activated B cells, allowing a negative selection of naïve B cells that pass through 

the MACs column.  

 

Flow cytometry 

 

For antibodies, see appendix table 1. 

Mice were sacrificed at the indicated times. All steps performed on ice or at 4°C. 

Sections of spleen were mashed in media into a single cell suspension, then 
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filtered through a 70μl cell strainer then washed twice in media by 

centrifugation at 1200RPM for 5 minutes. 1x106 cells from each splenic sample 

as well as some to represent single colour/unstained controls were resuspended 

in 200μl of FACS buffer (sterile PBS with 0.5% FCS and 0.2mg EDTA). Cells were 

first stained with Hoechst nuclear dye (1/3000) in FACs buffer which stains high 

in dead/dying cells. After quickly washing in FACS buffer, cells were stained with 

FC receptor II/III block at 1/200 in FACS buffer for 20 minutes. After washing, 

fluorescently conjugated antibodies were added to samples and appropriate 

antibody added to single stain controls, diluted in FACS buffer to the cells for 30 

minutes. After washing in FACS buffer twice, cells were resuspended in FACS 

buffer, transferred to FACS tubes then run in a Dako Cyan analyser and FlowJo 

software (FlowJo, Ashland, OR). Around 5x105 events were collected for each 

sample 

Immunohistochemistry 

 

For all antibodies, buffers and substrates see appendix tables 2, 3 and 4. 

 

6μm spleen sections were cut onto glass slides then fixed in acetone for 20 

minutes at 4°C.  Slides were washed in Tris pH 7.6 for 10 minutes. Slides were 

then stained with unconjugated primary antibodies diluted in Tris pH 7.6 for one 

hour then washed in Tris pH 7.8 for 5 minutes. Secondary antibodies were 

incubated	
  with	
  10μl	
  normal	
  mouse	
  serum	
  (Dako,	
  UK)	
  in	
  90μl	
  Tris	
  pH	
  7.6	
  for	
  30	
  

minutes at RT before adding more Tris pH 7.6 to make final dilution. Secondary 

antibodies were added to slides for 45 minutes before washing again for 5 
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minutes. The tertiary Vectastain ABC-AP kit (Vector Laboratories, USA), with 

solution A and B added to Tris pH 7.6 (1/100) was added to the slides for 30 

minutes before another 5 minute wash. Slides were then stained with peroxidase 

substrate until colour was present. Slides were washed for 5 minutes again then 

stained with Alkaline-phosphate substrate until colour was present. Slides were 

then washed one final time before rinsing twice in distilled water. Slides were air 

dried then cover slips were secured on top with gelatine (Sigma). Pictures were 

taking with a Leica CTR6000 microscope with micropublisher 5.ORTV camera 

using Q Capture software. 

 

Quantification 

 

Slides were viewed under a light microscope. NP positive cells present within the 

red pulp were classified as NP-specific plasma cells for quantification. At early 

time points, single cells were counted. At later time points, a point counting 

technique was used where plasma cell foci that crossed the bottom right corner 

of each square were counted. The number of these intersects were then 

multiplied by the average number of plasma cells present within three typical 

foci. For each mouse, half the spleen area was used for quantification. 

Fluorescent staining for immunoglobulin switching 

 

For antibodies, see appendix table 5 
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Slides were cut and fixed as above. All wash steps were performed in PBS and all 

staining/blocking was performed with reagent diluted in a 10%BSA in PBS 

buffer. First slides were washed for 5 minutes then slides were blocked in 10% 

normal horse serum. The primary Rat anti-mouse IgG was then added at 1/200, 

with a control section receiving buffer only for 1 hour. After washing for 5 

minutes, slides were stained with the secondary donkey anti-rat-Cy3 for 45 

minutes. Slides were then washed for 30 minutes in PBS then blocked for 20 

minutes in normal rat serum. Then slides were stained with anti-IgD-PB; rat 

idiotype-Cy5 and goat anti mouse IgM-FITC  for 45 minutes (antibodies were 

first incubated with 10% normal rat serum for 30 minutes). Slides were then 

washed for 5 minutes before coverslips were attached using ProLong Gold 

antifade reagent (Invitrogen). Slides were stored at -20°C until required. 

 

Pictures were taking with a Leica CTR6000 microscope. For quantification, ten 

plasma cell foci were photographed at x20. For each foci, 10 to 15 idiotype 

plasma cells were counted. It was then determined whether or not these cells co-

stained for IgG. 

Taqman real time PCR 

 

For reverse transcription mix and for primers and probes, and primer array 

details, see appendix tables 6 and 7. 

 

8μm spleen sections were cut on the cryostat. Sections were disrupted and 

homogenised using the QIAshredder columns and mRNA was prepared using 
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RNeasy mini kits according to manufactures instructions (both Qiagen). RNA was 

stored at -80°C if not used straight away. To generate cDNA, 3μl of random 

primer (Promega) was added to 30μl of the mRNA. Sample was then denatured 

at 70°C for 10 minutes before cooling on ice. 27μl of a reverse transcription mix 

was then added to each sample before a one hour incubation at 41°C followed by 

10 minutes at 90°C.  

 

cDNA was stored at -20°C if not used straight away. 0.5μl of each cDNA sample 

was added into a 384 well plate with 5μl of the appropriate probes and primers 

specific to the target gene or the housekeeping gene (β2-microglobulin) and 

Taqman PCR master mix. The plate was run in an ABI 7900 real-time PCR 

machine (Applied Biosystems). The PCR cycle was 50°C for 2 minutes, 95°C for 

10 minutes followed by 40 cycles at 95°C for 15 seconds and 60°C for 1 minute. 

 

Data was analysed using the SDS 2.2.2 software (Applied Biosystems) to set the 

thresholds. The quantification cycle (Cq) for each samples target and 

housekeeping gene was noted, then the target gene was quantified by removing 

the housekeeping Cq from the target Cq then taking the square root of this value. 

ELISA 

 

For all antibodies and serum dilutions, see appendix tables 8 and 9. 

 

Blood was removed from mice at the respective times by cardiac puncture. After 

centrifuging at 13000RPM for 10 minutes at 24°C, serum was removed then 
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stored at -20°C until required. Coating buffer (15mM Na2CO3; NaHCO 35mM) 

with NP2BSA or NP15BSA (both made in house) at a concentration of 5μg per ml 

was added to 96 welled plates (Nunc, Thermo Scientific) at 100μl per well. Plates 

were incubated at 4°C overnight before washing three times in wash buffer (PBS 

100mM; 0.05% Tween 20). Plates were then blocked in blocking buffer (PBS 

with 1% BSA), at 200μl per well for one and a half hours at 37°C before washing 

again three times. For detection, mouse serum, a negative control serum and a 

positive control serum were diluted in diluting buffer (blocking buffer plus 

0.05% Tween 20). The negative control was an unimmunised Cγ1 CRE mouse 

aged 2-6 weeks. The positive control was day 5 of a CGG primed NPCGG boosted 

BALB/C mouse. 

 

Serum was serially diluted in blocking buffer down the plate. The plate was 

incubated for one hour at 37°C before washing three times. Isotype specific 

detection antibody diluting buffer was added at 100μl per well for one hour at 

37°C.  For non-AP conjugated detection antibody, after washing three times, 

Alkaline-phosphatase streptavidin (Vector) in dilution buffer was added (1/500) 

for one hour at 37°C. After washing three times, 100μl of p-nitrophenyl 

phosphate (N2770, Sigma) was added to wells for 30 minutes at 37°C. Plates 

were then read at 405nm using Synergy HT Microplate Reader (Bio-Tek, USA. 

Statistics 

 

The Mann-Whitney test was performed using graphpad prism 5 where 

appropriate. 
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Results 

cRel knock-out mice produce less NP specific plasma cells 

 

In the first experiment, wild type (WT) and cRel knock out (KO) mice of the 

C57/BL6 background were immunised with NP-Ficoll with the exception of the 

day 0 cohort as an unimmunised control. The respective cohorts were then 

sacrificed at day 0, day 5 and day 7 for analysis. 

 

Immunohistology of the spleen was performed. NP positive cells that were 

present in the red pulp were classified as red pulp plasma cells/plasmablasts. By 

day 5, foci of large numbers of NP-specific plasma cells were prevalent in WT 

spleens and were of similar size by day 7 (figure 1). In contrast, day 5 KO spleens 

had fewer foci containing less cells. By day 7, foci were still rare, but more cells 

were present in the clusters, suggesting a low level of proliferation has occurred.  

 

NP-specific red pulp plasma cells were quantified from labelled tissue sections 

(figure 2). Plasma cells were significantly higher than background and KO mice 

by day 5 in WT mice with a median around 50-fold greater than in KO mice. NP-

specific plasma cells were not above unimmunised background level until day 7, 

although the difference is non-significant. However in KO mice the median is 

now only about 5-fold lower than the WT day 7 mice. There is some variation at 

day 7 in the KO group, with one mouse still at background levels and one mouse 

at a similar level to the WT day 7 group. 
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Figure 1: NP-specific plasma cells of the splenic red pup. WT and cRel -/- (KO) mice immunised with 
NP-Ficoll then sacrificed at the indicated time points. Spleens were sectioned and Immunohistology 
was performed. Sections on the left were stained for CD3 (blue) and IgD (brown); sections on the 
right were stained for NP binding (blue) and IgD (brown). Arrows indicate clusters of NP-specific 
plasmablasts/plasma cells.  Also indicated is the red pulp (RP), follicle (F) and the T cells zone (TZ). 
All images taking at x20 and the scale is representative for all images. 
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Figure 2: splenic red pulp NP specific plasma cells/blasts. WT (blue) and cRel -/- (KO) (red) mice 
immunised with NP-Ficoll, with the exception of the day 0 cohort, left as an unimmunised control. 
Immunohistology was performed on splenic sections at the indicated time points. Red pulp NP 
specific plasma cells/blasts were quantified from half the spleen area. Data shows the individual 
mouse values for NP plasma cells per mm2. The black lines within each group represent the group 
median. Statistical analysis involved the Mann-Whitney test between the two indicated groups as 
shown by the bar, where p<0.05 = * and ns = non significant. 

 

cRel knock-out mice produce a lower NP-specific antibody response 

 
Serum was taken from sacrificed mice and ELISA was performed for NP-specific 

antibody as shown in figure 3. NP-specific antibody is present in the 

unimmunised control, for WT and some KO mice. This is likely to be low affinity 

natural antibody and not specific to an NP immune response. In WT mice high 

IgM levels are seen by day 5, which increase to day 7. Low but significant titres of 

IgG are detectable by day 5 in WT mice, with a large increase seen at day 7. WT 

mice also produced detectable IgG1 from day 5. IgG2a is only detectable at low 

levels, in two WT mice and one KO at day 7. 

 

In contrast, KO mice show a consistently lower NP-specific antibody level. KO 
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although levels have increased in some KO mice at day 7. KO Total IgG levels are 

also significantly reduced compared to WT and similar to background levels at 

day 5. Again, some KO mice have increased levels by day 7. KO IgG3 is actually 

similar to WT at day 5, except from one mouse with non-detectable levels. By day 

7, levels have increased although the group is still below WT. IgG1 is also 

undetectable in KO mice at day 5. Only one KO mouse gave IgG1 by day 7.  

 

Although antibody levels do seem to increase a little from day 5 to day 7 in the 

KO groups, it is still lower than WT. The exception to this is one KO mouse from 

day 7, which was consistently high in antibody titre and NP-specific red pulp 

plasma cells (figure 2). This genotype of this mouse was confirmed to be cRel-/- 

(personal communication, Laura George). 
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Figure 3: NP-specific antibody ELISA. WT and cRel -/- (KO) mice immunised with NP-Ficoll, with the 
exception of the day 0 cohort, left as an unimmunised control. Mice were sacrificed at the indicated 
time points. Serum was taking at the indicated time points and ELISA performed for various 
antibody isotypes. Each data point represents a single individual mouse value. The black lines 
within each group represent the group median. Statistical analysis involved the Mann-Whitney test 
between the two indicated groups as shown by the bar, where p<0.05 = * and ns = non significant. 

 
This experiment shows that in the absence of cRel, there are defects in 

extrafollicular plasma cell production and defects in specific antibody production 

in response to NP-Ficoll. However, it is unknown whether this is due to defects in 

the B cells themselves (B cell intrinsic) or of the supporting stromal 

environment. In order to investigate this, an adoptive transfer experiment was 

performed. QM mice have a B cell repertoire with around 95% BCR specific to NP 

44. Naïve splenic B cells (CD43 negative) from WT QM mice and cRel KO QM mice 

were adoptively transferred into WT C57/BL6 mice. Mice were immunised with 

NP-Ficoll then sacrificed for analysis at 2 hours, 2 days and 5 days after 

immunisation. As a control, WT QM cells were also transferred to cRel KO 

C57/BL6 mice, before immunisation as above then analysis at day 5 only. 
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cRel KO transferred B cells form less extrafollicular foci of plasma cells  

Immunohistology of the spleens was performed as before. Anti-idiotype was 

used to specifically identify transferred cells. Extrafollicular foci of idiotype 

plasma cells was not evident until day 5, at which point, mice that received WT 

cells had a greater number of splenic red pulp plasma cells, with the median 

around 6 fold greater than in KO>WT mice (figure 4 and 5). WT cells gave the 

same number of plasma cells whether in a WT or KO environment (figure 5), 

suggesting that the main role of cRel is B cell intrinsic. 

 

 

 
Figure 4: idiotype specific plasma cells of the splenic red pup. Naïve B cells from WT QM and cRel-/- 
(KO) QM mice were transferred into WT (WT.QM>WT), (KO.QM>WT) or KO hosts (WT.QM>KO). Mice 
were then immunised with NP-Ficoll. Immunohistology was performed on splenic sections 5 days 
later. Sections on the left were stained for CD3 (blue) and IgD (brown); sections on the right were 
stained for transferred cell idiotype (blue) and IgD (brown). Arrows indicate clusters of NP-specific 
plasmablasts/plasma cells.  Also indicated is the red pulp (RP), follicle (F) and the T cells zone (TZ). 
All images taking at x20 and the scale is representative for all images. 
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Figure 5: idiotype NP-specific plasma cells. Naïve B cells from WT QM and cRel-/- (KO) QM mice were 
transferred into WT or KO hosts. Mice were then immunised with NP-Ficoll. Immunohistology was 
performed on splenic sections at the indicated time points. Red pulp NP specific plasma cells/blasts 
were quantified from half the spleen area. Data shows the individual mouse values for NP plasma 
cells per mm2. The black lines within each group represent the group median. Statistical analysis 
involved the Mann-Whitney test between the two indicated groups as shown by the bar, where 
p<0.05 = *  

 

There are less KO transferred B cells present at day five compared to WT 

transferred B cells 

 
Flow cytometry was performed on splenocytes. This was not performed on the 

WT>KO group. Gating analysis is summarised in figure 6A, and results in 6B. 

Transferred cells were identifiable from the eYFP, detectable in the FITC channel. 

WT transferred cells have increased significantly by day 5, where they are also 

significantly greater in frequency than KO transferred cells. Of these transferred 

cells at day 5, a greater frequency express the plasmablast/plasma cell marker 

CD138, although this was not significant. A similar frequency of the CD138- 

transferred cells were found to express the GC marker Fas. The greater number 

of WT transferred cells agrees with the quantification data above. 
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Figure 6: flow cytometry of splenocytes. eYFP +Naïve B cells from WT QM and cRel-/- (KO) QM mice 
were transferred into WT or KO hosts. Mice were then immunised with NP-Ficoll and spleens 
analysed at the indicated time points. Flow cytometry was performed on splenocytes and 
representative gating analysis is showing in A, where arrows to the right indicate gate analysis in the 
next FACS plot. Splenocytes were gated for lymphocytes, single cells then live cells (not shown). Live 
cells were then gated for transferred cells, which stained positive for eYFP. Transferred cells were 
gated for ability to bind NP (NP+) and from day 5, whether they were plasmablasts/plasma cells 
(CD138+) or not (CD138-). The non-plasmablast/plasma cell gate was then gated for GC B cells (Fas+). 
In B, data from flow cytometry is shown. Downwards arrows indicate quantification data from the 
gating analysis of part A. Data shows the individual mouse values. The black lines within each group 
represent the group median. Statistical analysis involved the Mann-Whitney test between the two 
indicated groups as shown by the bar, where p<0.05 = * and ns = non-significant. 

 

B cells that lack cRel have poor antibody production 

 
Serum was obtained from sacrificed mice and analysed for NP-specific antibody 

as seen in figure 7. WT>WT NP-specific IgM levels are still low by day 2, but by 

day 5 high levels are seen. When ELISA is performed for detection of only NP 

specific IgMa, which allows detection of only the antibody produced by 

transferred cells, we again see high levels in WT>WT. NP-specific IgG is 

undetectable until day 5, at which point transferred WT cells are capable of 

producing some IgG1 in WT>WT. Small levels of high affinity IgG are also 

detectable in WT>WT mice by day 5.  

 

A 
 
 
 
 
 
 
 
B 
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KO>WT mice also produce similar levels IgM by day 2. NP-specific IgM is slightly, 

but significantly lower in KO>WT mice by day 7. However, when we look at IgMa 

its apparent that the KO transferred cells give only barely detectable levels by 

day 5. This suggests the KO transferred cells give minimal contribution to the 

IgM response. KO>WT mice did not give a detectable NP-specific IgG response. 

 

WT>KO mice gave similar antibody levels at day 5 to WT>WT mice. This 

included IgMa and IgGa produced only by the transferred cells. This suggests NP-

specific WT cells in the KO environment are differentiating in absence of 

competition from the cRel deficient host cells. 

 

 
Figure 7: NP-specific antibody ELISA. Naïve B cells from WT QM and cRel-/- (KO) QM mice were 
transferred into WT or KO hosts. Mice were then immunised with NP-Ficoll. Mice were sacrificed and 
serum was taking at the indicated time points and ELISA performed for various antibody isotypes. 
Each data point represents a single individual mouse value. The black lines within each group 
represent the group median. Statistical analysis involved the Mann-Whitney test between the two 
indicated groups as shown by the bar, where p<0.05 = * and ns = non significant. 
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The absence of cRel from B cell or from environment does not effect IRF4 

transcription 

 
IRF4 is upregulated in activated B cells and a high expression is required for 

plasma cell differentiation 29. Since cRel is implicated in IRF4 induction 33 and 

since IRF4 is high in plasma cells we expected that, giving the reduction in 

plasma cells in the KO>WT mouse groups, IRF4 will be reduced, by day 5 

compared to WT.QM groups. For this experiment, an unimmunised control group 

was required to compare background IRF4 levels. For this, the day 0 WT cohort 

from the first experiment was used. Spleen sections were cut and cDNA prepared 

from whole sections. PCR was then performed for IRF4 transcripts as shown in 

figure 8. 

 

In both groups Irf4 expression from the whole spleen has increased compared to 

our background control by 2 hours, as seen in figure. Neither the WT>WT or 

KO>WT groups at 2 hours were significantly greater than background (not 

shown). However, taking both groups into a single 2 hour group did give a 

significant increase compared to background. Irf4 transcripts then decrease to 

background levels at day 2 in both groups. This agrees with previous data from 

the Toellner lab (Laura George, unpublished data). Surprisingly, Irf4 did not 

increase to day 5 in any group, despite the high numbers of plasma cells in the 

WT>WT and WT>KO groups. 
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Figure 8: splenic irf4 transcripts levels compared to housekeeping gene transcripts (β2m). Naïve B 
cells from WT QM and cRel-/- (KO) QM mice were transferred into WT or KO hosts. Mice were then 
immunised with NP-Ficoll and sacrificed at the indicated time points. A non-immunised WT group 
was also included as a background control. cDNA was prepared from spleen sections. PCR was 
performed for detection of irf4 and β2m transcripts. Each data point shows individual values from 
single mice. The black lines within each group represent the group median. Statistical analysis 
involved the Mann-Whitney test between the non immunised group, and the two 2 hour groups as a 
whole, as shown by the bar, where p<0.05 = *  

Mice receiving WT or KO B cells have a similar ability to initiate CSR 

 
The appearance of immunoglobulin heavy chain germline transcripts (IgH switch 

transcripts) correlates with induction of CSR. The low titres of IgG seen in 

KO>WT mice could be due to lack of transcription through the Ig heavy chain 

switch regions. PCR of whole spleen sections was performed as before, with 

detection of the IgG1 switch transcript; IgG3 switch transcript; and Recombined 

IgM – IgG3 heavy chain transcript which indicates successful class switch 

recombination to IgG3 as shown in figure 9. 

 

The IgG1 switch transcript is required for switching to IgG1. By day 2, the 

WT>WT group produce high levels of this transcript, significantly higher than 
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background, yet this does not increase to day 5. The KO>WT group is still at 

background by day 2, although one mouse gave a high level. By day 5, the 

KO>WT group has largely caught up to the WT>WT, although the median is 

slightly lower.  

 

The IgG3 switch transcript is required for switching to IgG3. Surprisingly, the 

non-immunised control group has a very high transcript level. All immunised 

groups at each time point show great variation, but in terms of the median, they 

increase from the 2 hour time point and are all similar levels by day 2 and 5. 

 

The recombined IgG3 heavy chain transcript shows the level of IgG3 that is being 

transcribed. Similarly, the non-immunised control is higher than expected. At 2 

hours and 2 days, the WT>WT groups are slightly higher than the KO>WT 

groups.  Both groups have increased by day 5 above background level and to a 

similar level. The same mouse that had low day 5 IgG3 switch transcripts from 

the KO>WT group was well below background IgG3 heavy chain transcripts at 

day 5. The WT>KO control group is also slightly lower. Together, results suggest 

the lack of IgG detection by day 5 in KO>WT mice is not due to an inability 

produce switch transcripts across the whole spleen.  
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Figure 9: splenic switch and recombined heavy chain transcript levels compared to housekeeping 
gene transcripts (β2m). Naïve B cells from WT QM and cRel-/- (KO) QM mice were transferred into 
WT or KO hosts. Mice were then immunised with NP-Ficoll and sacrificed at the indicated time 
points. A non-immunised WT group was also included as a background control. cDNA was prepared 
from spleen sections. PCR was performed for detection of igg1 switch transcript; igg3 switch 
transcript; recombined igg3 heavy chain transcript; and β2m transcripts. Each data point shows 
individual values from single mice. The black lines within each group represent the group median. 
Statistical analysis involved the Mann-Whitney test between the two indicated groups as shown by 
the bar, where p<0.05 = * and ns = non significant. 

Splenic AID transcript levels are similar between WT and KO groups 

 
AID is a key factor of CSR and is regulated by IRF4, we therefore investigated its 

induction throughout the immune response. PCR was performed as before with 

detection of aid transcripts. Previous studies have found aid transcript 

expression in B blasts from the follicle-T zone border from 2 days after NP-Ficoll 

immunisation (Marshall 2011). Coinciding with the induction of CSR, Aid 

transcripts are above background 2 days after immunisation in both the WT>WT 

and KO>WT groups as shown in figure 10. Although KO>WT level is slightly 

lower than WT>WT, this difference was not significant. Similar levels of 
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transcript are also found at day 5. Since AID is not expressed in plasmablasts or 

plasma cells 6,	
  this	
  probably	
  reflects	
  AID	
  expressed	
  in	
  GC’s. 

 

 
 

 
Figure 10: splenic aid transcript levels compared to housekeeping gene transcripts (β2m). Naïve B 
cells from WT QM and cRel-/- (KO) QM mice were transferred into WT or KO hosts. Mice were then 
immunised with NP-Ficoll and sacrificed at the indicated time points. A non-immunised WT group 
was also included as a background control. cDNA was prepared from spleen sections. PCR was 
performed for detection of aid and B2m transcripts. Each data point shows individual values from 
single mice. The black lines within each group represent the group median. Statistical analysis 
involved the Mann-Whitney test between the two indicated groups as shown by the bar, where 
p<0.05 = * and ns = non significant. 

The absence of cRel does not affect the ability of plasma cells to switch to IgG 

 
The previous PCR experiments show there is little defect at a global level in Irf4 

transcripts, switch transcripts and Aid transcripts. Since ELISA data showed 

transferred cells were poor producers of IgG, these cells may not have actually 

switched to IgG. In order to investigate the ability the specific transferred cells to 

switch from IgM to IgG at a cellular level, splenic sections from day 5 only were 

placed onto slides as before. Slides were then fluorescently stained for the QM 

IgH idiotype, IgD to indicate follicular areas, and IgM and IgG to analyse class 

switching. The percentage of transferred plasma cells that costained for IgG were 
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then quantified and presented in figure 11. Typical images of foci are shown in 

figure 12.  

 

Despite the variation in the WT.QM>WT group, there is no difference in the 

ability of Idiotype cells to switch to IgG. Of course, there are much less 

transferred cells/plasma cells present at day 5 in the KO.QM group (figure 6B 

and 13). Only small numbers of idiotype cells are involved in foci of KO>WT 

spleens compared to the majority seen in WT>WT and WT>KO (figures 12 and 

13). 

 

 
 
 
 

 
Figure 11: percentage of  IgG+ transferred cells. Naïve B cells from WT QM and cRel-/- (KO) QM mice 
were transferred into WT or KO hosts. Mice were then immunised with NP-Ficoll and at day 5 
spleens were removed for analysis. Splenic sections were cut onto slides, which were fluorescently 
stained for transferred cells, IgM and IgG. The percentage of transferred cells which costained for 
IgG were quantified. 

 

 

IgG switching in Idiotpye cells at day 5

pe
rc

en
ta

ge
 

of
 Ig

G
+ 

id
io

ty
pe

 c
el

ls

qm
.w

t>
wt

qm
.ko

>wt

qm
.w

t>
ko

0

20

40

60

80
qm.wt>wt
qm.ko>wt
qm.wt>ko



 33 

 
 
 
 
 
 
 
 

 

 
Figure 12: Fluorescent images and merges from spleen sections.  Naïve B cells from WT QM and cRel-
/- (KO) QM mice were transferred into WT hosts  (WT>WT), (KO>WT). Mice were then immunised 
with NP-Ficoll and 5 days later, spleens were sectioned and fluorescent staining was performed. 
Each column shows a representative section from a WT>WT (left), KO>WT (middle) mouse and a 
negative control section (right). The negative control received no primary antibody. Staining used 
was anti-idiotype (blue) to show transferred cells; anti-IgG (red); anti-IgM (green) and anti-IgD 
(grey). Each column shows a single colour stain for idiotype, IgG and IgM as indicated. The last row 
shows the merge of these single stains all together, with IgD. Arrows indicate a particular idiotype 
plasma cells that also expresses IgG as well as IgM. These cells show up as white staining in the 
merge.
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Figure 13: Tilescans of typical whole spleen sections. Naïve B cells from WT QM and cRel-/- (KO) QM mice were transferred into WT or KO hosts. 
Mice were then immunised with NP-Ficoll and at day 5 spleens were removed for analysis. Splenic sections were cut onto slides, which were 
fluorescently stained for transferred cells with idiotype (blue), IgG (red) and IgD (grey). WT>WT spleen is on the left; KO>WT in middle; WT>KO on 
right.  Costaining of idiotype and IgG is seen as purple staining. Tilescans were made from individual images at 10x and pieced together. Scale is 
representative for all figures 
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Discussion 
 
 
Immunisation of both WT C57/BL6 mice and C57/BL6 mice transferred with 

WT.QM B cells resulted in a strong extrafollicular immune response with high 

numbers of splenic red pulp NP-specific plasma cells. These plasma cells peaked 

at day 5 after immunisation. From the first experiment, we see the numbers stay 

constant to day 7. This is consistent with previous studies which found NP-Ficoll 

immunisation of C57BL6 mice resulted in foci first appearing at day 3 and 

peaking at day 5 before decreasing in week two after immunisation 46.  

 

We found that in cRel KO mice, NP-specific plasma cells do not increase above 

background until after day 5. This defect was found to be B cell intrinsic, since 

cRel absence in only B cells still resulted in small plasma cell numbers compared 

to WT>WT mice, whereas a B cell extrinsic absence had no effect, at least at day 

5. Flow cytometry data also showed significantly less transferred cells by day 5 

in KO>WT mice. This difference is transferred cell/plasma cell numbers likely 

reflects a decreased proliferation and increased apoptosis in the absence of 

intrinsic cRel.  

 

cRel KO B cells also show increased apoptosis to mitogenic stimuli, including 

BCR ligation 474849. Members of the Bcl2 pro-survival gene family, BclXL and A1 

have been found to be cRel target genes in B cells 50. Transgenic expression of 

either of these in cRel KO B cells can provide partial protection from apoptosis 

upon BCR ligation 50,51. It is therefore likely that the strong BCR crosslinkage 
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caused by NP results in a high level of apoptosis in cRel KO B cells. Hence, many 

of the responding NP-specific cells do not survive, so never contribute to plasma 

cell and antibody production.  

 

Previous studies describe how cRel KO B Cells show poor proliferation 4847 49 and 

its been shown these B cells fail to progress from the G1 to S phase of the cell 

cycle 52. The cRel target gene E2F3a is important in transition to the S phase 53. 

E2F3a activity allows induction of cyclin-E. Cyclin-CDK complexes are formed 

upon BCR ligation and allow hyperphosphorylation and inactivation of Rb. Rb 

can then no longer bind and repress E2F proteins, allowing them to facilitate cell 

cycle progression. Therefore, any responding cRel KO B cells that do survive are 

likely to be unable to proliferate and contribute to high plasma cell numbers. 

Future study could confirm in vivo proliferation defects through CFSE labelling 

with flow cytometry, or BrdU staining with immunohistology. 

 

Despite this, NP-specific plasma cells increased between day 5 and 7 in some 

cRel KO mice, with a group median increase of around 6 fold. cRel mRNA has 

been found to be downregulated in plasma cells compared to mature B cells 54,55. 

It is therefore possible that responding NP-specific cells that do survive and 

make it to the plasmablast stage, will be less affected by the cRel deficiency and 

capable of some clonal proliferation before terminal differentiation to plasma 

cells. 

 

Even before immunisation, NP-specific IgM was detectable at low titres, in some 

mice from both the WT and KO groups. This will most likely be natural antibody, 
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produced by B1 B cells and MZ B cells. The higher titres detected from day 5 will 

reflect antibody produced during the NP-specific immune response.  NP-specific 

IgM peaks at day 7, which is similar to previous studies which found significant 

titres of NP-specific IgM by day 5, peaking at day 7 and remaining high thereafter 

46.  

 

IgG3 was reported to be the major switched antibody produced, along with high 

some IgG1 during an NP-Ficoll response 46. Likewise, during the WT response, 

we found IgG3 to give the highest IgG titre and significant titres of IgG1 were also 

detected. The absence of cRel results in poor NP-specific antibody detection. 

From the first experiment, we see that KO mice have reduced antibody 

production of IgM and IgG. KO antibody production does increase however at 

day 7, and this correlates with the increase in NP-specific plasma cells. 

 

The adoptive transfer experiment shows that, despite high IgM titres, KO B cells 

do not contribute much to IgM production. Again, this likely reflects the very low 

numbers of KO transferred cells/plasma cells by day 5. Endogenous cells must 

then be responsible for this IgM, but surprisingly, even endogenous cells fail to 

produce much detectable IgG. The high levels of antibody of QM idiotype from 

the QM cRel WT cells suggest endogenous cells may not be the major antibody 

producers in these mice. The high frequency of NP-specific transferred cells may 

be able to outcompete endogenous cells for an accessory cell, such as CD11+ DC’s,	
  

for class switching signals. Thus, low frequencies of NP-specific endogenous cells 

in KO>WT mice may be initially outcompeted and possibly miss out on switching 

signals. However the KO>WT tilescan did show endogenous cells have switched 
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to IgG. A lot of these foci lacked idiotype	
  cells,	
  so	
  it’s possible that they were not 

NP-specific.   

 

Previous studies have described serum levels of IgM, IgG1, IgG2a, IgG2b and IgG3 

to be reduced in cRel KO mice 48. IgG3 was shown to be marginally reduced at 

day 7 post NP-LPS immunisation in cRel knock out mice, though other isotypes 

were not tested, IgG1 was largely reduced after TD NP-KLH immunisation 48. 

However, this study did not attribute whether this was due to an actual defect in 

antibody production/switching or simply reduced plasma cell numbers. 

 

It has been described in vitro that cRel KO B cells fail to switch to IgG3, IgG1 or 

IgE in response to the appropriate stimuli 5643. This correlated with lack of 

induction of IgG1 and IgG3 switch transcripts. A cRel binding site has been 

described in the I promoter of the IgG1 switch transcript 57. cRel has also been 

proposed	
  to	
  bind	
  to	
  the	
  3’IgH	
  enhancer	
  downstream	
  of	
  the	
  CH locus, another way 

cRel could regulate CSR 42. On top of this, cRel KO B cells fail to switch to IgE in 

vitro despite normal induction of the E switch transcript 56, suggesting other 

roles for cRel in CSR and antibody production. 

 

We investigated the ability for CSR at a global level from the spleens from the 

second experiment. During the NP-Ficoll response, IgG3 switch transcripts 

increase above background within 24 hours 46. Likewise, we found in WT>WT 

mice, IgG1 and IgG3 switch transcripts are expressed to high levels by day 2. The 

median level of these transcripts did not increase by day 5, despite the high 

numbers of plasma cells within the extrafollicular foci at day 5.  
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It was also noted that the non-immunised mouse group did have rather high 

levels of the IgG3 switch transcript especially. We think its unlikely this group 

represent the background Cγ3 switch transcripts which would have been found 

in the immunised mouse groups before immunisation, since IgG3 is the dominant 

antibody response yet switch transcripts were never above background and 

have apparently decreased significantly within two hours. These mice may have 

had a background immune response resulting in high IgG3 (not specific to NP). 

This control group was not part of the original experimental set up, and 

therefore there may have been a higher background response in this cohort due 

to a non-related infection.  

 

IgG1 switch transcripts were reduced at day 2 in most KO>WT mice compared to 

WT>WT mice, but by day 5, transcripts were equivalent, as were IgG3 switch 

transcripts. The ability to complete CSR and transcribe a recombined IgG3 

antibody was also equivalent in the KO>WT and WT>WT groups by day 5. A 

similar relationship was found with Aid transcription. Although this did not show 

that our cRel KO B cells are capable of CSR, it shows that at a global level, B cells 

in the spleen should be capable of switching and producing a detectable IgG 

response.  

 

We did however investigate the ability of the transferred cells to switch to IgG 

expression at day 5 by fluorescent staining with costaining for idiotype and IgG. 

Perhaps surprisingly, there was no difference in the proportion of transferred 

cells that were now expressing IgG.  Although there were a lot less transferred 
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cells that became plasma cells, similar proportions of transferred cells had 

switched to IgG in both the WT>WT and KO>WT as well as the WT>KO mice. 

This would also agree with the earlier possibility that transferred cells may 

outcompete endogenous cells for switching signals. While the subclass of IgG was 

not determined, this result taking together with the PCR data does suggest that 

the absence of cRel does not affect CSR and IgG expression during an NP-Ficoll 

response. 

 

Splenic Irf4 transcripts increased within the first 2 hours. It has been shown that 

MITF negatively regulates IRF4 in naïve B cells 31. After in vitro B cell activation, 

Mitf transcripts decrease while Irf4 increases. This lab has previously found Irf4 

transcripts to increase in the first 4 hours after immunisation before falling to 

low levels again (Laura George, personal communication).  

 

Giving that high IRF4 levels are thought to be required for plasma cell 

differentiation 29, we expected to find high irf4 levels by day 5. The lack of this 

may be due to Irf4 transcripts being transiently expressed at high levels before 

day 5, and this phase of initiation of plasma cell differentiation may have been 

missed. It is also possible that PCR of the whole spleen is not sensitive enough to 

pick up small changes in B cell Irf4 expression, particularly if IRF4- GC cells are 

present by day 5. The data is compatible with the absence of cRel allowing low 

level IRF4 expression required for AID induction and CSR, but not the high levels 

of IRF4 required for plasma cell differentiation 29.  
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Ideally, PCR should be performed on sorted cells, such as the transferred cells. 

This would allow an accurate and sensitive analysis of transcription in the 

transferred B cells without the influence of other cells. For example, Aid 

transcripts should not be seen by day 5 in transferred cells that have become 

plasma cells, but Aid is also expressed in GC B cells, and is under different 

regulation. This could explain why we still see Aid transcripts at this time point. 

Antigen-specific B cell populations have been FACS sorted during this study, and 

future analysis should focus on gene expression in isolated cells. 

 

Despite what was found in previous studies, we found cRel KO to have no effect 

on IRF4 induction or CSR. Since these previous studies involved in vitro work, it 

is possible that different signals and the local environment can overcome 

potential defects in IRF4 and CSR.  However, cRel deficiency leads to a reduction 

in the amount of NP-specific plasma cells found, and subsequently, the level of 

antibody detected was much lower. As discussed above, it is likely that the RT-

PCR from whole tissue sections is not sensitive enough and future studies on 

isolated cells may be more accurate. We also hypothesise that a high level 

expression of IRF4 (present in WT cells, and possibly absent in cRel KO cells), 

was missed because an earlier time point should have be chosen for the analysis 

of high level IRF4 expression triggering plasma cell differentiation, and future 

studies could address this. 
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Appendix 
 
 
Table 1: Antibody for flow cytometry 
Antibody 
specificity 

Conjugation Dilution Company 

B220 PE-Cy5.5 1/300 BD pharmingen 
NP PE 1/30,000 Gift from Prof Peter 

Lane  
Fas PE-Cy7 1/100 BD pharmingen 
CD138 APC 1/100 BD pharmingen 
 
 
Table 2: Unconjugated immunohistochemistry antibody 
Specificity Dilution Company 
Rat anti-mouse CD3 1/1000 AbD serotec 
Sheep anti-mouse IgD 1/1000 Abcam 
Sheep anti-NP 1/3000 In house 
Rat anti-mouse IgD 1/1000 BD pharm 
Rat anti-idiotype 1/100 Gift from Dr 

Imanish-Kari 
 
Table 3: Conjugated immunohistochemistry secondary antibody 
Specificity  Conjugation Dilution Company 
Rabbit anti-rat biotin 1/600 Dako 
Donkey anti-sheep peroxide 1/100 The Binding Site 
Donkey anti-sheep biotin 1/100 The Binding Site 
Rabbit anti-rat peroxide 1/80 Dako 
 
 
 
Table 4: Buffers and substrates for immunohistology 
Tris pH 7.6 1.5L Physiological NaCl 

1.5L 0.1M Hcl 
1.0L 0.2M Tris 

Tris pH 9.2 As for pH 7.6 but made to pH 9.2 
Peroxidase substrate One DAB  tablet (sigma) dissolved in 

15ml of Tris pH 7.6. 10ml was then 
filtered with the addition of one drop 
of hydrogen peroxide 

Alkaline phosphate substrate 8mg of Levamisole (Sigma) is dissolved 
in 10ml of Tris pH 9.2. Naphtol AS-MX 
phosphate was dissolved in 370μl of 
dimethyl formamide (sigma). This was 
added to the Levamisole solution, 
before 10mg of fast blue BB salt 
(Sigma) was added and the final 
solution was filtered. 
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Table 5: Fluorescent antibody staining 
Specificity conjugation Dilution Company 
Rat anti-mouse 
IgG 

- 1/200 AbD serotec 

Donkey anti-rat Cy3 1/200 Milipore 
Anti-IgD PB 1/50 eBiosciences  
Rat anti-idiotype Cy5 1/100 Gift from Dr 

Imanish-Kari 
Goat anti-mouse 
IgM 

FITC 1/100 Southern Biotech 

 
 
 
Table 6: PCR reverse transcription mix 
Reverse transcription 
mix 

Volumes required per 
sample 

Company 
 

5x first strand buffer 12μl Invitrogen 
0.1M DTT 6μl Invitrogen 
10mM	
  dNTP’s 3μl Invitrogen 
MMLV reverse 
transcriptase 

3μl Invitrogen 

RNasin RNase inhibitor 1.5μl Promega 
RNase free water 1.5μl Quigon 
 
 
Table 8: Primers and probes required for real time PCR 
Name of target sequence Nucleotide sequence 
β2-Microglulin  Forward primer CATACGCCTGCAGAGTTAAGCA 

Reverse primer ATCACATGTCTCGATCCCAGTAGA 
TaqMan probe CAGTATGGCCGAGCCCAAGACCG 

IRF4 Forward primer GGAGGACGCTGCCCTCTT 
Reverse primer TCTGGCTTGTCGATCCCTTCT  
TaqMan probe AGGCTTGGGCATTGTTTAAAGGCAAGTTC  

IgG1 switch 
transcript  

Forward primer CGAGAAGCCTGAGGAATGTGT 
Reverse primer GGAGTTAGTTTGGGCAGCAGAT 
TaqMan probe TGGTTCTCTCAACCTGTAGTCCATGCCA 

recombined IgG3 
heavy chain 
transcript  

Forward primer TCTGGACCTCTCCGAAACCA 
Reverse primer ACCGAGGATCCAGATGTGTCA 
TaqMan probe CTGTCTATCCCTTGGTCCCTGGCTGC 

IgG3 heavy chain 
germline transcript 

Forward primer GACCAAATTCGCTGAGTCATCA 
Reverse primer ACCGAGGATCCAGATGTGTCA 
TaqMan probe CTGTCTATCCCTTGGTCCCTGGCTGC 

AID Forward primer GTCCGGCTAACCAGACAACTTC 
Reverse primer GCTTTCAAAATCCCAACATACGA 
TaqMan probe TGCATCTCGCAAGTCATCGACTTCGT 
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Table 8: Experiment 2 ELISA serum dilutions and antibodies 
ELISA 
type 

Antibody 
detection 

Conjugation Antibody 
company 

Serum and 
negative 
standard 
dilution 

Positive 
standard 
serum 
dilution 

NP15 IgM AP Southern 
Biotech 

1/30 1/50 

NP15 Total IgG AP Southern 
Biotech 

1/10 1/100 

NP15 IgG1 AP Southern 
Biotech 

1/10 1/100 

NP15 IgG2a AP Southern 
Biotech 

1/10 1/20 

NP15 IgG3 AP Southern 
Biotech 

1/10 1/20 

 
 
Table 9: Experiment 2 ELISA serum dilutions and antibodies 
ELISA 
type 

Antibody 
detection 

Conjugation Antibody 
company 

Serum and 
negative 
standard 
dilution 

Positive 
standard 
serum 
dilution 

NP15 IgM AP Southern 
Biotech 

1/20 1/30 

NP15 Total IgG AP Southern 
Biotech 

1/10 1/200 

NP15 IgG1a - Biolegend 1/10 1/10 
NP15 IgMa - Biolegend 1/10 1/10 
NP2 IgG AP Southern 

Biotech 
1/10 1/50 

 


