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The first research project investigated the initial interactions between embryonic stem cell-

derived hepatocyte-like cells (ES-HLCs) with the extracellular matrix and hepatic sinusoidal 

endothelial cells. Liver disease is a major cause of mortality worldwide; present treatments 

aim to slow down the progression to prevent further damage however this is only effective if 

the disease is controlled before irreversible damage has occurred. Developments in the 

understanding of hepatocyte proliferation have led to cell transplantation as a promising 

alternative. Current research aims to identify an alternative sustainable source, ES-HLCs 

offer a great potential for a renewable source of functional hepatocytes; however transplanted 

cells express low engraftment levels. The project investigated the interactions between ES-

HLCs with the extracellular matrix and hepatic sinusoidal endothelial cells (HSEC). 

Fluorescence activated cell sorting (FACS) was carried out on various types of HSEC to 

quantify the level of the integrins being expressed. Static adhesion assays with ES-HLCs 

were performed on a range of extra cellular matrix (ECM) proteins to give a measure of cell 

interaction and adhesion. FACS analysis showed integrin-β1 and basal cell adhesion 

molecule (BCAM), were highly expressed. ES-HLCs showed preferential binding to the 

ECM protein Laminin, this adherence was significantly reduced when the cells were treated 

with β1 and BCAM blocking antibodies; furthermore ES-HLC adherence was reduced when 

laminin was pre-treated with a recombinant Human BCAM/Fs. Both BCAM and integrin- β1 

are crucial in regulating adhesion in hepatocyte-like cells; suggesting potential targets to 

manipulate to improve ES-HLC engraftment in vivo. 

The second research project investigated the role of leukocyte common antigen-related 

receptor like PTP (LAR-RPTP), in the regulation of the platelet derived growth factor 

receptor (PDGFR).The PDGFR is a cell surface tyrosine kinase receptor specific for 

members of the platelet derived growth factor (PDGF). PDGFs have been associated to have 

a pivotal role in a range of cellular processes; from cell growth, motility, differentiation and 

survival in connective tissues. PDGF is also associated with diseases such as tumour 

formation. The aim of the project was to further investigate the role of LAR in the regulation 

of the PDGF receptor and its effect upon downstream signal transduction molecules. The 

project aims to further examine the hypothesis that the PDGFR is regulated though LAR, 

which helps to promote ligand induced activation of the PDGF β-receptor through its 

mechanism of down regulating c-Abl activity.  

The effects of Protein kinase C delta (PKC δ) were examined; PKC δ is an enzyme protein 

that is linked to abelson murine leukemia viral oncogene homolog 1 (c-Abl) and is linked 

with the regulation of the PDGF receptor; through inhibiting the phosphorylation of the 

tyrosine residues. The structural proteins Na+/H+ Exchanger Regulatory Factor (NHERF1) 

and sodium-hydrogen exchange regulatory cofactor NHE-RF2 (NHERF2) were also 

investigated; these proteins are known to bind to the C-terminal of the PDGF receptor, crucial 

for the receptor to become dimerized. siRNA knockdown of PKC δ, NHERF1 and NHERF2 

proteins was performed in the absence of LAR (LAR ∆ P mouse embryonic fibroblasts 

(MEF) cells), the knockdown samples were then analysed through western blot technique. 

The data obtained showed that in the absence of PKC δ and NHERF-2, PDGFR 

phosphorylation and activity increased; and in the absence of NHERF1 the activity was 

inhibited. The important regulatory role of these proteins was further determined when the 

down signalling molecule extracellular signal-regulated kinases (ERK) was investigated. The 

results facilitate a novel mechanism that LAR regulates PDGFR signalling through ligand 

induced activation of the PDGF β-receptor, through its mechanism of down regulating c-Abl 

activity; reducing the activation of PKC δ which inhibits the PDGF β- receptor activation and 

as well as dissociating NHERF1 while promoting NHERF2 binding affinity to the PDGFR 

diminishing receptor dimerization.  
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Abstract 

 

Liver disease is a major cause of mortality worldwide; in the UK it is the only major cause of 

death that is still increasing on a yearly basis. Present treatments for liver diseases aim to 

slow down the progression to prevent further damage, this is only effective if the disease is 

controlled before irreversible damage has occurred; in many cases a liver transplant is the 

only option. Developments in the understanding of hepatocyte proliferation have led to cell 

transplantation as a promising alternative. Research aims to identify an alternative sustainable 

source, embryonic stem cell-derived hepatocyte-like cells (ES-HLCs) are a great potential 

renewable source of functional hepatocytes; however transplanted cells express low 

engraftment levels. The research project investigated the initial interactions between ES-

HLCs with the extracellular matrix and hepatic sinusoidal endothelial cells. FACS was 

carried out on various types of HSEC to quantify the level of the integrins being expressed. 

Static adhesion assays with HLCs were performed on a range of ECM proteins to give a 

measure of cell interaction and adhesion. FACS analysis showed integrin-β1 and basal cell 

adhesion molecule (BCAM), were highly expressed. HLCs showed preferential binding to 

the ECM protein Laminin. HLC adherence to laminin was significantly reduced when the 

cells were treated with β1 and BCAM blocking antibodies; furthermore HLC adherence was 

reduced when laminin was pre-treated with a recombinant Human BCAM/Fs. Both BCAM 

and integrin- β1 are crucial in regulating adhesion in hepatocyte-like cells; suggesting 

potential targets to manipulate to improve HLC engraftment in vivo. 
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1. Introduction 

1.1. Background 

Liver disease is a major cause of mortality worldwide; in the UK it is the only major cause of 

death that is still increasing on a yearly basis and is now the fifth biggest ‘killer’ (after heart, 

cancer, respiratory disease and strokes) (Office for National Statistics, 2008). Statistics show 

that there has been a progressive rise in liver-disease related deaths in the UK since 1997, 

with an increase of 12% from 2005 to 2008 (British Liver Trust, 2009); where a total of 

46,244 lives were lost. Figures show that in 2008 twice as many people died from liver 

disease compared to that in 1991 (Office for National Statistics, 2008).   

Although these figures show an accurate representation of the increase in deaths related to 

liver disease; the British Liver Trust state that the actual numbers are higher than those being 

represented. The reasons for this are believed to be due to the stigma associated to liver 

disease and the attribution of liver-related deaths to other causes (patients can survive with up 

to 70% liver damage, which often leads to multiple organ dysfunction or failure) (British 

Liver Trust, 2009). 

There are many types of liver disease which can be categorised into different groups. Liver 

disease can be caused by infection, for example hepatitis A, B, C, D and E virus.  

Hepatitis B (HBV) is one of the most common infectious diseases in the world; and the most 

prevalent serious liver infection; affecting two billion people worldwide, of which 350 

million suffer from chronic HBV infections (World Health Organization, 2008). Figures 

show that between 500,000 and 700,000 people die each year from liver cancer or cirrhosis 

caused by HBV infections. In the UK alone there was an estimated 326,000 people suffering 

from HBV infections (Hepatitis B Foundation UK, 2007). HBV can cause both an acute and 

a chronic illness. Generally the acute illness causes short term liver inflammation, jaundice 

and can rarely develop into acute liver failure. Chronic HBV illness is caused by long term 

infection (greater than six months), constant inflammation and scarring leads to cirrhosis and 

in some cases the development of liver cancer known as hepatocellular carcinoma (Chang, 

M. (2007).).   

Another major-occurring form of liver disease is caused by chemical damage due to 

poisoning and/or substance abuse of drugs or alcohol. In the UK over the last 30 years there 

has been a massive increase in deaths related to alcoholic liver disease (ALD), figures show 



7 
 

that mortality rates have risen to over 450% (BMA, 2009). The drastic increase in ALD has 

meant that hospital admissions have more than doubled from 1995 to 2007, with a 71% 

increase (800,000 a year) (LAPE, 2012); it has also caused a financial impact; figures show 

that alcohol misuse costs the NHS roughly £2.7 billion each year (Department of Health, 

2012). Early stages of ALD may not seem to serious, and in most cases the process is silent 

until later stages of liver disease have developed; and has become an acute illness with a high 

risk of immediate mortality (25-50%) (Department of Health, 2012). Early stages of ALD 

result in a fatty liver which is due to storage of fat broken down from excessive alcohol 

intake. This can be reversed with a reduced alcohol intake however continuation of excessive 

abuse can lead to inflammation and scarring of the liver leading to fibrosis and eventually 

cirrhosis; leading to liver failure and/or increased risks of liver cancer. Alcohol abuse with a 

fatty liver can also lead to alcoholic hepatitis, where the liver becomes swollen; this can 

happen suddenly and can result in liver failure (British Liver Trust 2007). 

Liver disease can also be caused by genetic, autoimmune, vascular, congenital and metabolic 

damage (non-alcoholic fatty liver) (British Liver Trust 2007). 

Haemochromatosis (HFE) is an example of a genetic disorder which can lead to liver disease. 

People suffering with this disorder absorb at least twice the amount of iron as normal; when 

the iron intake reaches a certain level (around 5 grams) it is then deposited in the body, often 

affecting the liver and heart. The extra iron is toxic and can be potentially lethal (Andrews et 

al., 1999).  

Primary biliary cirrhosis (PBC) is a chronic autoimmune disease that leads to the progressive 

destruction of the small bile ducts (Henryk, 2010). When these ducts are damaged the bile 

can no longer flow through, instead the bile builds up in the liver causing organ dysfunction 

and inflammation which leads to cholestasis (British Liver Trust 2007). Over time this leads 

to scarring of the liver, known as fibrosis; the liver then becomes less efficient at repairing 

itself and eventually leads to liver cirrhosis (Henryk, 2010). 
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1.2. Clinical approaches and treatments   

The majority of present treatments for liver diseases aim to slow down the progression of the 

disease in order to prevent further damage. For instance anti-viral medications can be used to 

treat infections, for example with hepatitis B and C, to control or clear the virus. This type of 

treatment however is still undergoing active research and drug development.    

 In the case of ALD, and non-fatty liver disease the most effective treatments include cutting 

out alcohol, exercise and improving diet; in order to reverse the amount of fatty deposits 

leading to inflammation and fibrosis. This can however only be achieved in earlier stages of 

liver disease, before excessive fibrosis and cirrhosis has occurred. In later stages of liver 

disease cirrhosis can cause the development of hepatocellular carcinoma (HCC), if detected 

early the cancer can be removed or targeted with chemicals or radiation; however a liver 

transplant may be the only effective treatment option.  

Other drug treatments include steroid-based drugs to help alleviate symptoms in autoimmune 

diseases; and for cholestatic liver diseases, ursodeoxycholic acid (naturally occurring bile 

acid) can be administered to help protect the liver from a build up of chemicals from the bile.   

In Haemochromatosis (HFE) patients can attempt to keep iron levels under control, by the 

process of venesection; whereby a quantity of blood is regularly removed in order to prevent 

iron levels becoming excessive.  

As stated above, present treatments are focused on slowing down the progression of liver 

disease in a hope to prevent further damage or complications occurring. Treatments are only 

effective if the disease is controlled from an early stage, and in most cases long term illness is 

caused due to irreversible damage, such as scarring and cirrhosis. When treatments stop being 

effective, in later stages of a disease, a liver transplant is the only option. Although usually 

successful, a transplant is a major operation with risks; the donor liver is also seen as a 

foreign object so immunosuppressant medication is crucial for the rest of the patient’s life, 

which in itself can lead to further complications (Cleveland Clinic, 2009).  The number of 

liver transplants that can be implemented is restricted by the number of donors available; 

figures show that in 2007-2008 a total of 1,121 patients were registered for a liver transplant 

and only 58% of these actually received the operation (NHS, 2012). Figures also show that 

the ALD, hepatitis C and PBC related cirrhosis were the main causes for liver 

transplantations (NHS, 2012). 
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1.3. Hepatocyte Transplantation and clinical developments  

Recent developments in the understanding of hepatocyte proliferation potential have led to 

liver cell transplantation as a promising alternative to orthotopic liver transplantation (OLT).  

Hepatocyte transplantation (HT) offers many advantages in comparison, most notably that the 

procedure is less intrusive and that the patient’s liver ‘architecture’ remains intact after the 

engrafted hepatocytes are transplanted (Fox et al., 1997).  This means that the transplantation 

is less stressful (metabolically) reducing the risks to the patient. Hepatocyte transplantation 

can also be repeated meaning that the consequence of potential graft loss or rejection is less 

severe compared to organ rejection (Fox et al., 1997). Hepatocytes have been shown to 

survive and function once transplanted in the liver through widespread animal models; they 

have also been seen to participate in a regenerative process (Fabrega et al., 1995). 

Hepatocyte transplantation has been performed in clinical trials with patients suffering from 

both acute liver failure and liver-based metabolic diseases; where the aim was to replace 

deficient cells with fully functioning hepatocytes (Fox et al., 2004). The results so far for the 

clinical trials that have been conducted involving liver-based metabolic diseases have been 

promising; there was a clear improvement in the disease phenotype, however cell 

functionality often declines after 9 months possibly due to immunosuppression (Puppi et al., 

2008).  Clinical trials involving acute liver failure have shown improvements in hepatic 

activity and a reduction in ammonia and bilirubin levels (Strom et al., 1999); however at 

present no significant clinical outcome. Hepatocyte transplantation has also been used with 

patients suffering with chronic liver disease, however further trials need to confirm the 

efficiency of cell engraftment; variable results are seen, which may be in relation to fibrosis 

impairing cell engraftment (Hughes et al., 2005). 

 

At present human hepatocytes are obtained from donor liver tissue that is unused in 

orthotopic liver transplantations. Hepatocytes are isolated using a collagenase perfusion 

technique, which digests the donor tissue; the cells are then purified through centrifugation 

(Fabrega et al., 1995). Protocol procedures follow strict conditions (good manufacturing 

practice) for clinical use, ensuring the final cell product is free from contamination of 

microorganisms (Mitry et al., 2003). Primary human hepatocytes are therefore limited by the 
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availability of unused donor liver-tissue; there have been reports that good quality 

hepatocytes could be isolated from diseased livers (removed at transplantation). These 

hepatocytes would be an additional source; however the safety aspect of using these cells for 

transplantation has yet to be confirmed (Lehec et al., 2009). There are also storage issues 

with primary human hepatocytes, cells are ideally transplanted immediately after isolation, 

where possible however this can be hard to achieve in most cases and is impractical. 

Hepatocytes can also be cryopreserved for future use or in case of emergency treatment 

(Bhogal et al., 2011). At present however cryopreservation of hepatocytes seems to have 

detrimental effects on the cell viability and function; and often thawed cells are not suitable 

for transplantation (Terry et al., 2006). A study investigating the mechanism of 

cryopreservation –induced nonattachment in primary hepatocytes (Terryet al., 2007), showed 

a loss in hepatocyte attachment. The study focused on beta1-integrin, which is a cell matrix 

adhesion molecule. The results showed conclusively that cryopreserved hepatocytes had 

significant lower levels of beta-1 expression compared to fresh hepatocytes and that there 

was a correlation between the amount of beta-1 expressed and hepatocyte engraftment 

(Terryet al., 2007). Current research aims to optimize a freeze/thaw protocol carried out in 

good manufacturing practice conditions in order to obtain a significant improvement in 

hepatocyte quality for clinical use.  

 

1.4. Stem cell isolation and transplantation   

As stated above primary hepatocytes are isolated from donor livers, this is a major limitation 

for the clinical application of hepatocyte transplantation as a primary therapy for liver 

disease, due to a lack of availability. A big emphasis in current research is to find and identify 

an alternative sustainable source of hepatocyte-like cells and to develop cell-based hepatocyte 

treatments as novel therapies for liver disease. Recent studies have demonstrated that there 

has been an advancement in the isolation of stem cells; and a progression in the 

characterisation of the cells potential ability to differentiate into hepatic cell types (Sancho-

Bru1 et al., 2009). Completed studies have shown, in a preclinical application, the potential 

regeneration that can be achieved using stem cell therapy, although at an early stage the 

results obtained from stem cell-hepatocyte transplantation suggest an increase in liver 

function and improved hepatic activity in chronic liver disease (Stutchfield et al., 2010).       

It has been suggested that hepatocyte-like cells can be obtained from multiple sources; these 

http://gut.bmj.com/search?author1=P+Sancho-Bru&sortspec=date&submit=Submit
http://gut.bmj.com/search?author1=P+Sancho-Bru&sortspec=date&submit=Submit
http://gut.bmj.com/search?author1=P+Sancho-Bru&sortspec=date&submit=Submit
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include adult stem cells, human embryonic stem cells and induced pluripotent cells. Isolated 

mesenchymal- like stem cells have been shown to engraft and differentiate into HLC’s once 

transplanted in vivo (Najimi et al., 2007). 

Human embryonic stem cell-derived hepatocyte-like cells (ES-HLCs) are a great potential 

renewable source of functional hepatocytes, they have the potential to differentiate towards 

cells of a hepatic lineage with many characteristics of primary human hepatocytes. Studies 

completed (Yamamoto et al., 2003) have confirmed that ES-HLCs are able to grow and 

exhibit a morphology similar to native mature hepatocytes and also have ability to express 

hepatocyte –specific genes. Yamamoto et al., 2003 also state that transplanted ES-HLCs 

showed both engraftment and regenerative capabilities in carbon tetrachloride – injured 

mouse liver models (Yamamoto et al., 2003). 

There are fundamental issues at present with successful transplantation of hepatocyte- like 

cells; research completed by (Gupta et at., 1998) state that transplanted cells express low 

engraftment levels into host liver parenchyma. The research shows that the majority of 

transplanted cells are lost early; after 24 hours post transplantation only a 30% survival of 

transplanted hepatocytes. Further research into understanding the mechanisms regulating cell 

adherence and engraftment within the liver is therefore crucial for hepatocyte-like cell 

transplantation, as a therapeutic application. Refining routes of transplant delivery to increase 

engraft efficiency is also critical (Basma, et al., 2009). 

 

 

As stated above human embryonic stem cell-derived hepatocyte-like cells (ES-HLCs) are a 

great potential renewable source of functional hepatocytes, they have the potential to 

differentiate towards cells of a hepatic lineage with many characteristics of primary human 

hepatocytes; however at present transplanted cells have low engraftment levels within host 

livers.  Increasing engraftment efficiency and sustained survival of transplanted ES-HLCs 

need to be addressed before this source of derived hepatocyte-like cells can be confirmed as a 

potential therapy. Mechanisms in which ES-HLCs interact with host liver upon 

transplantation are still unclear; this is therefore a major research area to investigate.  

http://www.sciencedirect.com/science/article/pii/S0016508508018854
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The research project aims to investigate the initial molecular interactions between 

hepatocyte- like cells with the extracellular matrix and hepatic sinusoidal endothelial cells 

(HSEC).  

 

 1.5. Hepatocyte transplantation and initial interactions 

It has been shown in previous studies that once transplanted hepatocyte-like cells initially 

interact with HSEC; the cells then disrupt the endothelium and adhere to the underlying ECM 

before crossing into the liver parenchyma (Basma, et al., 2009). Gupta et at,. established that 

transplanted cells had a greater success of engraftment if deposited within hepatic sinusoids; 

it was found that hepatocytes transplanted into portal areas were cleared. It was also stated 

that for transplanted hepatocytes to enter into the liver parenchyma the cells must first 

integrate through the HSEC barrier and through the underlying extracellular matrix (Gupta et 

at.,1998). The increased survival of transplanted hepatocytes in sinusoids was further shown 

in studies, MacFee et al., state superior hepatocyte survival in sinusoids in the spleen and 

liver is seen; when hepatocytes are transplanted into a rat, cells have a higher engraftment 

compared to those seen in a mouse, where the spleen lacks sinusoids (MacFee et al.,1988). 

Studies have suggested that hepatocytes disrupt and integrate through the hepatic sinusoidal 

endothelium through many possible ways. Cytokines may be one such example; it is known 

that they are capable of having an effect on the endothelium; examples such as tumour 

necrosis factor and interleukins which may be released by macrophages as a direct immune 

response to the transplanted hepatocytes, which may cause disruption to the HSEC (Lindner 

et al., 1997).  

It has also been suggested that cytokines could be released by Kupffer cells and or by the 

endothelial cells (Nakagawa et al., 1996).  

Studies state that upon hepatocyte transplantation into sinusoids there is an over expression of 

hepatocyte growth factor, these growth factors have been shown to target endothelial cells in 

the proximate areas to the transplanted cells; the factors are released during cell adherence 

and engraftment and could be responsible for changes in HSEC morphology (Yazigi et al., 

1995).  

http://www.sciencedirect.com/science/article/pii/S0016508508018854
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The research project will investigate the initial interactions between hepatic sinusoidal 

endothelium cells and hepatocyte like cells; these interactions are crucial to further 

understanding the mechanism of cellular adherence.  

Studies have shown that hepatic sinusoids have a unique structural organisation in that they 

lack basement membranes. It has also been shown that once adhered to HSEC, hepatocyte 

engraftment is most probably due to association with the extracellular matrix and its 

components (Darby et al., 1986).  

The research project will also investigate the interaction of hepatocyte- like cells with a range 

of extracellular matrix components; to determine the importance of the of the ECM 

components with binding to hepatocytes and to give a quantitative idea of the levels of 

adherence.  

Research completed (Gupta et at., 1998) suggest that hepatocyte-like cell engraftment is 

increased when ECM-like components are present; the study shows more efficient 

engraftment levels when ECM-like components were initially injected into the host liver 

before cell transplantation. The role integrins contribute in the adhesion of hepatocyte- like 

cells to both HSEC and ECM components will therefore also be investigated. Integrin- β1 

and basal cell adhesion molecule (BCAM) in particular will be explored.  

Integrin- β1 has been shown in previous studies to play an important role in regulating 

adhesion; it is a well established adhesion molecule. Integrin- β1 has been shown to be a 

receptor for the extra cellular matrix protein laminin (Carloni et al., 1998). 

Studies investigating the effects of integrin- β1 have shown that it is crucial for survival of 

transplanted hepatocytes in the host liver paranchyma. (Pinkse et al., 2004) studied the effect 

of the presence and absence of the ECM component integrin- β1 upon hepatocyte function 

and survival; they state that hepatocytes in the presence of integrin- β1 (in native ECM 

conditions) survive and maintain function. In the absence of integrin- β1 hepatocytes go into 

apoptosis (Pinkse et al., 2004). Other studies also show a loss in cell adhesion to ECM 

components and to endothelial cells when integrin- β1 is blocked (Pinkse et al., 2004; 

Potocnik et al., 2000).  

Basal cell adhesion molecule (BCAM) (CD239) is a cell surface glycoprotein, studies have 

shown that it interacts and functions as a receptor for laminin (Udani et al., 1998). BCAM is 

also believed to be involved with cell-cell adhesion and migration; and is highly expressed in 
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carcinomas (Schon et al., 2001).  The interactions with BCAM and hepatocytes-like cells are 

at present unclear, as stated it is known that BCAM is a receptor for laminin; an important 

ECM protein which regulates attachment, migration and organisation of cells. BCAM is 

therefore a potential target to manipulate to increase hepatocyte adherence to laminin/ 

extracellular matrix.   

The investigation will use two types of cells, embryonic stem cell – hepatocyte like cells (ES-

HLC’s) and HUH 7.5 cells.  

HUH 7.5 cells are a liver carcinoma cell line. These cells express high levels of BCAM and 

alpha-1-fetoprotein (AFP); AFP is produced in the liver during foetal development, a 

precursor to serum albumin. These cells will be used as a surrogate hepatocyte, presenting 

similar characteristics seen with foetal hepatocytes.  

 

Figure 1: Diagram showing the liver cellular structure; including the flow of blood through a sinusoid into a 

central hepatic vein (Tissupath, 2011). 

 

Figure 2: Diagram showing the structure of an integrin. A schematic showing the structure of the head region 

(both the α and β subunits of the propeller and thigh domains; with support from the leg region. Ligand binding 

takes place between the βA domain and the propeller domain (Janet et al., 2009)   
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1.6. Aims of research project  

 To investigate the initial molecular interactions between hepatocyte- like cells with 

the extracellular matrix and hepatic sinusoidal endothelial cells (HSEC). The 

investigation will involve finding the integrins being expressed in both HSEC and 

hepatocyte –like cells, and to understand the role they expressed in cell adhesion. 

 To investigate the initial interactions between hepatic sinusoidal endothelium cells 

and hepatocyte like cells; these interactions are crucial to further understanding the 

mechanism of cellular adherence. If the regulating factors involved can be discovered 

then the potential to increase cellular adherence to HSEC would be an essential first 

step in increasing the overall engraftment of transplanted ES-HLCs (or other 

hepatocyte like cells). Investigating the interactions of hepatocyte like cells with 

components of the extra cellular matrix is also critical in understanding the 

mechanism of cell adherence and engraftment. 

 The research project will also investigate the interaction of hepatocyte- like cells with 

a range of extracellular matrix components; to determine the importance of the of the 

ECM components with binding to hepatocytes and to give a quantitative idea of the 

levels of adherence.   

 

2. Materials and Methods 

 

2.1. Cell Culture and Preparation 

 

Cell culture of HUH 7.5 cells 

Under sterile conditions: 
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HUH 7.5 cells (human hepatoma cell line) frozen in 10% Dimethyl sulfoxide (DMSO), for 

cell membrane stability and survival, were resurrected at 37
 o

C in a water bath (rapidly 

thawed). 

The cells were grown in culture under sterile conditions in Dulbecco’s Modified Eagle Media 

(DMEM) + 10% foetal calf serum (FCS). The DMEM also contained 1% Glutamine-

Penicillin-Streptomycin (GPS), a one-step supplementation to help reduce the risk of 

contamination. 

After several days of growth the cells were passaged using the cell dissociation reagent 

TrypLE™ Express. The cells were grown in 5mls of DMEM + 10% FCS to confluence in 

25cm
2
 flasks; roughly 2-3 x10

6
 cells per flask. The HUH 7.5 cells were used in ECM static 

adhesion and flow cytometry assays. 

 

 

2.2. Isolation of Binary Epithelial and Hepatic Sinusoidal Cells 

Under sterile conditions: 

A slice of human liver was placed in a sterile Petri dish, under aseptic conditions within a 

laminar flow cabinet. Using two sterile scalpels the liver was finely chopped, and the diced 

tissue was placed into a sterile 200ml beaker. Sterile PBS (20ml) was added to the beaker 

along with a 5ml aliquot of collagenase. The beaker was then swirled to mix, before being 

incubated at 37
 o

C for 25-45 minutes; depending on the texture of the tissue. The tissue 

‘digest’ was then strained through a sterile fine mesh into a fresh beaker (sterile); and washed 

through several times with PBS.  The volume was made up to a total of 200ml with PBS and 

the digest was separated into 8 aliquots into universal containers; and centrifuged at 2000xg 

for 5minutes. The 8 pellets were then resuspended into 4 universal containers; the spare tubes 

were washed to ensure no loss of cells before being centrifuged again at 2000xg. This was 

repeated until the pellets were combined into one universal container; the total volume was 

made up to 24ml with PBS.  
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Preparation of percoll gradients were done according to protocol: 

Stock percoll – 99ml percoll +11ml 10x PBS 

33% percoll – 33ml of stock + 67ml 1x PBS 

77% percoll – 77ml of stock + 23ml 1x PBS 

Percoll consists of polyvinylpyrrolidone (PVP) coated colloidal silica particles; it possesses 

low osmolarity and viscosity and is non toxic. (Pertoft, et al., 1978) 

It is an efficient tool in density separation; used in the isolation of cells and organelles by 

density centrifugation.   

Percoll-33% (3 ml) was added to 8 15 ml conical bottomed tubes. Percoll -77% (3 ml) was 

then allotted underneath the 33% percoll gradient. Finally 3 ml of cell suspension was layered 

onto the percoll gradient; the 8 tubes where then centrifuged for 20 minutes at 2000 xg (note 

the break speed set to 0). The top layer was then discarded and the band of cells at the percoll 

gradient was removed; 2 aliquots were put into 1 universal (a total of 4 universals). PBS (25 

ml) was added and mixed to prevent a further gradient formation, before being centrifuged 

again at 2000 xg. This was repeated until all the cell pellets had been combined into one tube; 

the pellet was then resuspended with 500 µl of PBS, 50 µl of HEA 125 and + 10 µl FCS was 

also added. The cells were left to incubate for 30 minutes at 37 
o
C. HEA 125 is an 

epithelium- specific glycoprotein (Ep-CAM). 

The pellet was then washed (14ml PBS) and centrifuged at 2000xg for 5minutes, before 

being resuspended in 1ml of ice cold PBS. 12 µl of cold Dynabeads (+ 10 µl FCS) was then 

added and left to incubate at 4
 o

C for 30 minutes; with constant agitation. Dynabeads are 

super-paramagnetic spherical polymer particles (mono sized). They have a defined surface 

for the coupling of specific cells (Axl, et al., 2007). 

After incubation 5 ml of ice cold PBS was added to the tube, which was then placed in a 

magnet for 5 minutes. Whilst in the magnet the supernatant was removed carefully with a 

pipette and transferred to a second 15 ml conical bottom tube – Tube 2.  

BEC isolation: 5 ml of cold PBS was added to the first tube, it was mixed well before being 

left for 5 minutes in the magnet. As above, the supernatant was removed and added to tube 2. 

Finally the beads (tube 1) were resuspended in cold PBS for a further minute in the magnet; 
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the PBS was then discarded and the beads were suspended in 5 ml of BEC medium and 

transferred into a 25 cm collagen coated flask and incubated at 37
 o
C. 

HSEC isolation: Tube 2 was placed in the magnet for 2 minutes; to remove any residual 

beads. While in the magnet the supernatant was removed and placed into a fresh tube; the 

volume was made up to 14 ml with PBS and centrifuged at 2000 xg for 5 minutes. The pellet 

was resuspended in 1ml of PBS + 10 µl FCS and 10 µl of CD31 coated magnetic beads; and 

was incubated for 30 minutes at 4
 o
C with continual agitation.  

CD31, also known as platelet endothelial cell adhesion molecule (PECAM-1) is a protein that 

is responsible for a large portion of endothelial cell intercellular junctions (NCBI et al., 

2012). 

Cold PBS (5 ml) was added and mixed, and the tube was placed back into the magnet (approx 

2minutes). Whilst in the magnet the supernatant was removed and discarded; this step was 

repeated three times. The beads were then resuspended in 5 ml of HSEC media and 

transferred to a 25 cm² collagen coated flask and incubated at 37
 o
C.  

 

2.3. Flow cytometry: Fluorescence-activated cell sorting (FACS) 

Under sterile conditions: 

FACS was carried out on various types of HSEC cells (normal or diseased) and HUH 7.5 

cells. 

The cells to be used were taken out of the incubator, the media was removed (the media was 

kept in a 15ml universal tube) from the flask and the cells were washed in 5 ml of PBS. 

TrypLE™ Express (GIBCO®) (5 ml) was then added to the flask, and left to incubate at 37
 

o
C for 5 minutes. Once the cells had become dissociated (checked under a microscope), the 

media was re-added to deactivate the TrypLE™ Express and the cell solution was transferred 

into a 15 ml universal tube. The solution was then filtered using 50 µm membrane filters, and 

washed through with PBS before being centrifuged at 2000xg for 5 minutes. The supernatant 

was removed and the pellet was resuspended in 2 ml of PBS. The cells were counted by 

adding 10 µl of Trypan Blue mixed with 10 µl of the cell solution (1:2 ratio) on a 

haemocytometer glass slip. Sterile FCS (1/500) (2 µl) was added to the cell solution; from 
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which a 100 µl of cells was then distributed into 18 FACS tubes. A specific antibody (2 µl) 

was then added to each of the FACS tubes; as follows:  

 

 

Tube Antibody Tube Antibody 

1 Cells only 10 β3 (IgG2a) 

2 IgG1 isotype control (PE) 11 IgG2b isotype control (PE) 

3 α1 (IgG1) 12 β4 (IgG2b)* 

4 α3 (IgG1) 13 αvβ3 (IgG2b)* 

5 α4 (IgG1) 14 αvβ5 (IgG2b)* 

6 β1 (IgG1) 15 αvβ6 (IgG2b)* 

7 β2 (IgG1)  16 BCAM (IgG2b) 

8 IgG2a isotype control (PE) 17 IgG1 (FITC) 

9 α2 (IgG2a) 18 α5 (FITC) 

Table 1: The antibodies used for FACS analysis. * denotes unconjugated antibodies.        

Note: BCAM antibody was only used with HUH 7.5 cells 

 

The 4 unconjugated antibodies were added first to the respective FACS tubes, and left on a 

plate mover at 4
 o
C for 30 minutes. PBS (1 ml) was then added to the 4 tubes, and centrifuged 

at 2000xg for 5minutes. The excess liquid was poured off and secondary antibody (IgG2b) 

was added to the tubes; the primary antibodies (see table above) were also added to the 

respective tubes and again left at 4
 o
C for 20 minutes. PBS (1 ml) was added to each of the 

FACS tubes and centrifuged again for 5 minutes at 2000xg. The samples were then run on a 

FACS machine. 

 

 

2.4. ECM Static Adhesion Assay 

Reagents  

Cells 
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24- Well plate 

PBS  

DMEM containing 0.1% BSA 

ECM proteins- Laminin, Fibronectin, Collagen, Osteopontin,   

Methanol 

Hematoxylin  

Recombinant ECM proteins – rhBCAM (B-CAM/Fc chimeric molecule), vascular cell 

adhesion molecule (VCAM) 

Blocking antibodies – β1, IgG1, αVβ5, BCAM, IgG2b (goat), αV 

ECM Protein Concentration (1mg/ml) Dilution with PBS   

(200 µl per well) 

Laminin 4 µl 196 µl 

Fibronectin 10 µl 190 µl 

OPN 20 µl 180 µl  

rhVCAM 2 µl 198 µl 

rhBCAM 50 µl 450 µl 

 

Plate Preparation 

Under sterile conditions: 

The wells of the 24-well plate were washed with sterile PBS, before 200 µl of the 

recombinant ECM proteins were added (to the specific wells) at the desired concentration 

(see table 2 below). The plate was then sealed with Parafilm and left for 30 minutes at 37
 o
C.  

The wells were then washed twice with sterile PBS; 200 µl of 0.1% BSA in PBS was then 

added to the wells and left for 10 minutes at room temperature. The wells were again washed 

twice with PBS before 200 µl of the recombinant ECM proteins (e.g. rBCAM, rVCAM) were 

added to the specific wells. The plate was left to incubate for 30 minutes at room temperature, 

and the wells were washed twice with PBS; and also kept in 1 ml of PBS until ready to use. 

 

Assay 

Table 2: Shows relevant ECM protein concentration. 
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Under sterile conditions: 

Static adhesion assays were completed with both embryonic stem cells and HUH 7.5 cells. 

Depending on the assay the cells were dissociated from the flask using either Trypsin EDTA 

(1x) (Sigma) for ES cells; or TrypLE™ Express for HUH 7.5 cells. For both cases the media 

was firstly removed from a 25 cm² flask, and the cells were washed with PBS before 2.5 ml 

of the dissociation solution was added. The flask was left to incubate at 37
 o
C until the cells 

had become dissociated (checked under a microscope). The media was then re-added (5 ml) 

to the flask to neutralize the dissociation solution; L-15 media containing 10% FCS was used 

for the ES cells while DMEM containing 10% FCS was used for the HUH 7.5 cells. The cell 

solution was then transferred to a 15 ml universal tube and any remaining cells were washed 

with sterile PBS and scraped using a cell scraper before being added to the universal tube. 

The cell solution was then filtered through a 100 µ sterile filter, and washed through with 

PBS. The cell solution was then centrifuged at 2000xg for 5 minutes, the supernatant was 

poured off and the pellet was resuspended in 2 ml of PBS; the cells were then counted (as 

above) and re-centrifuged. The pellet was resuspended in 3 ml of the appropriate media and 

left to rest for an hour at 37
 o
C.   

In the assays where the cells were treated with blocking antibodies (e.g. β1 and BCAM 

blocking assays) the cells were left to rest for 30 minutes before being treated with the 

antibody. For these assays 5 µl of a specific antibody was added to 500 µl of the cell solution 

and left for a further 30 minutes.  

After the cells had been rested, they were then washed with PBS and centrifuged at 2000xg 

for 5 minutes and resuspended in DMEM media containing 0.1% BSA to give a cell 

concentration/ density of 1x10⁶ cells per ml. The cells were then added to the pre-treated well 

plate; the PBS was removed from the wells and 200 µl of cells (in DMEM + 0.1% BSA) were 

added per well. The plate was left undisturbed for one hour at room temperature to allow for 

the cell adhesion. The wells were then washed twice in PBS, and the remaining adhered cells 

were fixed using 200 µl of MeOH for 5 minutes. The wells were then washed twice more 

with PBS.  

In non-sterile conditions: 

The adhered cells were stained using Leica Mayers 30 second Hematoxylin. Hematoxylin is a 

long lasting stable nuclear stain. The cells/wells were then washed with 3 times with water 
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and left in 1ml PBS until ready for cell counting. Cells were counted on 20 x magnification 

with 10 fields of view per well.  

 

 

2.5. HUH Static Adhesion on HSEC 

Cells 

24- Well plate 

PBS  

DMEM containing 10% FCS  

HSEC media  

Methanol 

Recombinant ECM proteins – rhBCAM (B-CAM/Fc chimeric molecule), vascular cell 

adhesion molecule (VCAM) 

Blocking antibodies – β1, IgG1, BCAM, IgG2b (goat)  

 

 

HSEC Monolayer Preparation 

Under sterile conditions  

HSEC cells were isolated and grown on collagen (Rat Tail) coated 6-well plates to a 

confluent monolayer. The HSEC cells were seeded into 7 wells in total, at a density of 2 x10⁶ 

cells/ml. Once confluent the HSEC cells (monolayer) were then stimulated with Interferon – 

γ; this causes up-regulation of DNA mimicking conditions seen in-vivo in the liver. The 

HSEC cells were then left to rest for 24 hours.  

 

Static Adhesion Assay 

Under sterile conditions  
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HUH 7.5 cells were dissociated from a 25 cm² flask(s) using 2.5 ml of TrypLE™ Express 

(see above). The cells were washed with sterile PBS and centrifuged at 2000xg for 5 minutes; 

and the pellet was resuspended in 1 ml of PBS + 0.1% BSA. Carboxyfluorescein 

succinimidyl ester (CFSE) fluorescent dye (5mM) (1 µl) added to the cell solution and left to 

incubate in the dark at 37
 o

C for 10 minutes; the cell solution was agitated at 5 minutes.  

Cold FCS (3 ml) was added to the cell solution, which was then washed and centrifuged at 

2000xg for 5 minutes. The supernatant was removed and the pellet was washed resuspended 

in PBS and re-centrifuged. The cell pellet was then resuspended in DMEM + 10% FCS; the 

HUH cells were then split into universal tubes and treated with the antibodies – β1, IgG1, 

BCAM, IgG2b (see above). The cells were rested for 30 minutes at 37
 o
C; then centrifuged 

for 5 minutes at 2000xg and resuspended in PBS + 0.1% BSA at a density of 1 x10⁶ cells/ml 

(e.g. 1 ml per well). 

The HSEC media was removed from the well plate; 2 wells of the HSEC mono-layer were 

treated with 200 µl of rhBCAM and rhVCAM and left to incubate for 30 minutes at 37
 o
C. 

The wells were then washed twice in sterile PBS.   

HUH 7.5 (2 ml) cell suspension was then gently added to each specific well and left at room 

temperature for 1 hour in the dark (covered with foil). The cell solution was then removed 

and 1 ml of cold methanol was added to fix the adhered cells. The methanol was aspirated off 

and the wells were washed twice in sterile PBS.  

The adhered HUH 7.5 cells were then counted under an inverted fluorescence microscope 

under a FITC laser. 20 fields of view at x20 magnification per well covering the total areas 

were counted. The quality of HSEC was also checked, making sure it was still present. 

 

3. Results 

 

3.1. Integrin expression profile for HSEC and HUH 7.5 cells  

Fluorescence-activated cell sorting (FACS) analysis was performed on both HSEC and HUH 

7.5 cells. Both HSEC and HUH 7.5 cells were treated with specific antibodies that were 

tagged with a relevant fluorophore. The fluorophore R-phycoerythrin (PE) was used; it has an 
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absorbance wavelength of 480 nm and an emission wavelength of 578 nm, its visible colour 

is yellow. The fluorophore Fluorescein FITC was also used; it has an absorbance wavelength 

of 495 nm and an emission wavelength of 518 nm, visible colour is green. FACS analysis is 

an accurate quantitative technique, it was used to show the amount of integrins that was being 

expressed in both cell types.  

A range of HSEC liver cells were tested, these included normal and diseased samples. 

Various types of diseased samples were tested, comprising of: Primary Biliary cirrhosis 

(PBC), Haemochromatosis (HFE), Alcoholic Liver disease (ALD), Porphyria and Sero-

negative.  

 

 

 

 

 

Figure 3: Shows integrin expression in both normal and diseased HSEC liver 

cells, obtained by  fluorescence-activated cell sorting flow cytometry. Diseased 

HSEC samples include: primary biliary cirrhosis (PBC),  hemochromatosis 

(HFE), alcohol liver disease (ALD), sero-negative and porphyria. 
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Figure 4: Shows integrin expression in diseased HSEC liver cells, obtained by  fluorescence-activated cell 

sorting flow cytometry. Diseased HSEC samples include: primary biliary cirrhosis (PBC),  hemochromatosis 

(HFE), alcohol liver disease (ALD), sero-negative and porphyria. 

 

 

                                  Figure 5: Shows integrin expression in normal HSEC liver cells, obtained by  fluorescence-                    

 activated cell sorting flow cytometry. 
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In normal HSEC both β1 and α5 integrins were expressed in high quantities (Fig.3) (Fig.5). 

In normal HSEC β1 integrin was at 99.76% positive cell expression; and α5 was at 97.4% 

positive cell expression. In comparison β1 integrin was also highly expressed in all the HSEC 

disease types (Fig.3) (Fig.4); (positive cell expression: PBC: 99.95%, ALD: 99.96%, 

Porphyria: 99.88%, Sero-negative: 99.68%, HFE: 99.2%). α5 integrin had variable 

expression between the several disease types; a high expression in PBC, Sero-negative and 

HFE disease however very little expression in ALD (0.6%) and Porphyria (0.68%). In most 

HSEC disease types (excluding HFE) α3 and α2 integrins are highly expressed. α2 integrin in 

particular is expressed in excessive levels (positive cell expression: PBC: 95.48%, ALD: 

98.89%, Porphyria: 99.75%, Sero-negative: 97.04%) in comparison to that seen in normal 

HSEC expression (positive cell expression 34.25%).  

In both normal and diseased HSEC β1 integrin is highly expressed with little variation, 

likewise α5 integrin is highly expressed in normal HSEC but is variable between different 

types of diseased HSEC. In the majority of the diseased HSEC that was analysed (with the 

exception on HFE) α3 and α2 integrins were also highly expressed; the ‘over-expression’ of 

these integrins is not present in normal HSEC.   
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                                        Figure 6: Shows integrin expression in HUH 7.5 cells, obtained by  fluorescence-                    

 activated cell sorting flow cytometry. 

  

 

HUH 7.5 FACS analyses showed that the integrin β1 was expressed in high quantities 

(Fig.4); its positive cell expression was 96.25%. This closely resembles the figures seen with 

HSEC analysis. The basal cell adhesion molecule (BCAM) is also highly expressed in HUH 

7.5 cells, its positive cell expression 86.07%; α1 also showed significant expression 

(81.62%). The high expression of both integrin-β1 and BCAM suggests their relative 

importance in HUH 7.5 cell (hepatocyte-like cell) adherence.  

 

 

Cell Adhesion expression 

Static adhesion assays were performed using both ES and HUH 7.5 cells. A range of extra 

cellular matrix (ECM) proteins were used and various types of blocking antibodies. The static 

assays gave a quantitative measure of cell adhesion to the ECM.  
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3.2. The interaction between embryonic stem cells and the extracellular matrix 

The interactions and adherence of embryonic stem cell hepatocyte-like cells were tested with 

the ECM components laminin, fibronectin, osteopontin, collagen and vascular cell adhesion 

molecule (VCAM).  ES cell binding to the ECM components was compared to the control – 

BSA; cell binding to BSA represented non-specific binding.  

 

 

 

Figure 7: Static adhesion assay showing ES-HLCs bound to 

ECM proteins. + denotes statistically significant relative to 

untreated control (P < 0.05). 
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ES cell static adherence to laminin, osteopontin, collagen and fibronectin was statistically 

significant (P<0.05) compared to the non-specific binding seen with BSA; however there was 

no significant change in cell adherence to VCAM (Fig.7). ES cells bound preferably to both 

laminin and osteopontin; figures show that twice the amount of cells bound to laminin in 

comparison to values seen with non-specific binding (Fig.7).  

ES cell adherence to laminin was further analysed; laminin was pre-treated with recombinant 

Human BCAM/Fs (rhBCAM), and also with VCAM. Cell binding to laminin was greatly 

reduced when the laminin had been treated with rhBCAM, in comparison to the binding seen 

with the control (Fig.8); the cell adherence was statistically significant (P<0.05). There was 

no significant change in cell adherence when the laminin was treated with VCAM.  

This suggests the rhBCAM is competitively binding to the BCAM binding site on laminin; 

this further confirms the molecular interactions between laminin and BCAM.   

 

 

Figure 8: Static adhesion assay showing ES-HLCs bound to laminin; 

pre-treated with rhBCAM and VCAM. + denotes statistically 

significant relative to untreated control (P < 0.05). 
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ES cell static adherence with the ECM components was further analysed when the cells were 

treated with a blocking antibody. ES cells were treated with αV blocking antibody and IgG1 

isotype. There was an overall reduction in adherence with ES cells that had been treated with 

αV antibody; and a statistically significant (P<0.05) reduction in laminin binding (Fig.9). 

 

 

 

 

 

 

 

Figure 9: Static adhesion assay showing ES cells bound to ECM components. Cells 

have been treated with αV blocking antibody. + denotes statistically significant 

relative to untreated control (P < 0.05). 
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3.3. The interaction between HUH 7.5 cells and the extracellular matrix 

 

The interactions and adherence of HUH 7.5 cells were tested with the ECM components 

laminin, fibronectin, osteopontin, collagen and vascular cell adhesion molecule (VCAM).  

HUH 7.5 cell binding to the ECM components was compared to the control – BSA; cell 

binding to BSA represented non-specific binding.  

 

 

 

 

 

Figure 10: Static adhesion assay showing HUH 7.5 cells bound to ECM 

components. + - denotes statistically significant relative to untreated control (P 

< 0.05). 
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HUH 7.5 cells bound preferably to laminin, fibronectin and collagen in comparison to the 

control BSA (non-specific binding) (Fig.10) (Fig.11). There was also very little cell binding 

to VCAM and osteopontin. HUH 7.5 cell adherence to laminin, collagen and fibronectin was 

statistically significant (P<0.05) compared to the non-specific binding seen with BSA; 

however there was no significant change in VCAM or OPN (Fig.10) (Fig.11).  

The HUH 7.5 cell binding to laminin, fibronectin and collagen was significantly high. The 

assay was repeated with a reduced amount of cells (1/10) (Fig.11).  HUH 7.5 cell binding to 

laminin, fibronectin and collagen was again shown to be statistically significant (P<0.05) in 

comparison to BSA.  

 

 

 

Figure 11: Static adhesion assay showing HUH 7.5 cells bound to ECM 

components. Reduced amount of cells used (1/10).  +  denotes statistically 

significant relative to untreated control (P < 0.05). 

 



33 
 

 

 

 

 

 

Figure 12: Static adhesion assay showing HUH 7.5 cells bound to ECM 

components. Cells treated with IgG 1, β1 and αVβ6 blocking antibodies. + - denotes 

statistically significant relative to untreated control (P < 0.05). 

 

Figure 13: Static adhesion assay showing HUH 7.5 cells bound to ECM components. Cells 

were treated with BCAM and IgG2b blocking antibodies. ECM components were also treated 

with rhBCAM.  + - denotes statistically significant relative to untreated control (P < 0.05). 
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HUH 7.5 cell adherence to the ECM components: laminin, fibronectin and collagen was 

further analysed; the cells were treated with a blocking antibody. HUH 7.5 cells were treated 

with IgG1-isotype, β1 and αVβ6 blocking antibodies. Cells that were treated with β1 

blocking antibody showed a decrease in adherence to fibronectin, and a substantial decrease 

in adherence to laminin compared to that of the control isotype (Fig.12); the reduction was 

statistically significant (P<0.05).  HUH 7.5 cells treated with αVβ6 antibody showed a small 

reduction in adherence to laminin, but not significant change.  

In a separate static assay HUH 7.5 cells were treated with BCAM and IgG2b blocking 

antibodies; ECM components were also treated with rhBCAM. Cells that were treated with 

BCAM blocking antibody show a massive reduction in cell adherence to laminin; the large 

reduction in cell binding was also seen when the laminin had been pre-treated with rhBCAM 

(Fig.13). Both decreases in HUH 7.5 cell binding was statistically significant (P<0.05) in 

comparison to the cells bound to the control. Adherence of cells to fibronectin and collagen 

were not significantly affected by BCAM blocking antibody; also cell binding was not 

affected by the treatment of these ECM components with rhBCAM (Fig.13).   

 

 

3.4. The interaction between HUH 7.5 cells and a hepatic sinusoidal endothelial cell 

monolayer  

The interactions and adherence of embryonic HUH 7.5 cells were tested with HSEC static 

adhesion assay. A HSEC monolayer was grown, to which a range of treated HUH 7.5 cells 

were then added. The interactions between the HSEC monolayer and the HUH 7.5 cells gave 

a quantitative measure of adherence; between hepatocyte-like cells and liver endothelium.  
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Figure 14: Static adhesion assay showing HUH 7.5 cells bound to HSEC monolayer. 

Cells were treated with β1, IgG1, IgG2b and BCAM blocking antibodies. HSEC was 

also treated with rhBCAM and VCAM.  + - denotes statistically significant relative 

to untreated control (P < 0.05). 

Figure 15: Fluorescent microscopy showing HUH 7.5 cells bound to a HSEC 

monolayer. A – shows Control cells. B – shows HUH 7.5 treated with BCAM 

blocking antibody. 
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HUH 7.5 cell adherence to the HSEC monolayer varied depending on what blocking antibody 

the cells were treated with. HUH 7.5 cells that were treated with β1 blocking antibody 

showed a reduction in cell binding to the HSEC. This trend was also seen when the cells were 

treated with BCAM blocking antibody (Fig.12) (Fig.15). In both cases the reduction in cell 

adherence was statistically significant (P<0.05) in comparison to the cells bound to the 

control. Both antibody control isotypes – IgG1 and IgG2b showed little change in cell 

adherence. HSEC that had been treated with rhBCAM and VCAM also showed little 

reduction in cell adherence; rhBCAM although a reduction in cell binding showed no 

statistical significance (P>0.05). 

 

 

4. Discussion 

 

Fluorescence-activated cell sorting (FACS) analysis was performed on both HSEC and HUH 

7.5 cells. FACS analysis was performed to show the level of integrins being expressed in 

both hepatic sinusoidal endothelial cells and HUH 7.5 cells, which were used as a surrogate 

hepatocyte. Integrins with high expression may have a potential role with hepatocyte-like cell 

adhesion both initially to HSEC and to the underlying ECM components.  

To gain an accurate insight into the specific integrins that were being expressed, a range of 

primary HSEC liver cells were tested. The HSEC that was tested included normal and 

diseased samples. An array of disesed liver type were tested to show the significant 

difference, if any in the integrins being expression between the disease types and also if the 

integrin expression varied in comparison to the values seen in a normal liver.  

 

The types of diseased samples that were tested, comprised of: Primary Biliary cirrhosis 

(PBC), Haemochromatosis (HFE), Alcoholic Liver disease (ALD), Porphyria and Sero-

negative.  
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The results obtained from FACS analysis clearly show that in all samples of normal HSEC 

(n=6) there is high expression of both β1 and α5 integrins (Fig.2) (Fig.5). Integrin - β1 had an 

average of 99.76% positive cell expression in NRL HSEC and integrin- α5 had an average 

positive cell expression at 97.4%. The high expression of Integrin - β1 was also seen in all 

variants of the diseased HSEC, with average positive cell expression all greater than 99% 

(positive cell expression: PBC: 99.95%, ALD: 99.96%, Porphyria: 99.88%, Sero-negative: 

99.68%, HFE: 99.2%). Integrin - β1 is a well establish adhesion molecule, studies have 

shown its role with the regulation of cell adherence (Carloni et al., 1998); whilst other studies 

have demonstrated its importance for hepatocyte survival (Pinkse et al., 2004). The FACS 

analysis performed has further confirmed these suggestions; the high expression of integrin - 

β1 across all the types of HSEC illustrates its importance. Integrin - β1 could well be a 

potential target for manipulation to increase cell adherence. 

All other integrin expression was very variable, with the exception of integrin- α2, across the 

different types of diseased HSEC samples. Integrin- α2 was highly expressed in all disease 

types (excluding HFE) (positive cell expression: PBC: 95.48%, ALD: 98.89%, Porphyria: 

99.75%, Sero-negative: 97.04%); although this specific integrin was only expressed in low 

levels of NRL HSEC (34.25%). The results suggest that integrin- α2 is therefore being 

expressed by HSEC cells in relation to disease. Studies have shown that integrin- α2 mediates 

binding to collagen type IV, which is seen in high quantities in liver sinusoids; it has also 

been shown to be involved with cancer metastasis and cell migration within the liver 

(Yoshimura et al., 2009). Further research would need to be carried out to investigate the 

differences in integrin- α2 expression (NRL compared to diseased), and its potential as a 

target to increase hepatocyte cell adherence in diseased livers. Furthermore the unique 

differences in integrin expression with the varied types of diseased HSEC could help identify 

certain characteristics of each disease; and possibly help with future research to find a more 

effective therapeutic treatment.  

 

 

The results obtained from FACS analysis on HUH 7.5 cells also showed integrin β1 to be 

highly expressed (Fig.6). The average (n=3) positive cell expression was 96.25%; which 

closely resembles the FACS data seen with HSEC analysis. As stated above HUH 7.5 cells 

were used as a surrogate hepatocyte as they have similar characteristics to those seen with 
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foetal hepatocytes. HUH 7.5 cells express high levels of BCAM; this was confirmed with the 

FACS data. BCAM was positively expressed at an average of 86.07%. Integrin α1 was also 

highly expressed (positive cell expression 81.62%) this could be a potential adhesion 

molecule of interest.   

The high expression of integrin-β1 in both HSEC and HUH 7.5 FACS data suggests the 

important role this molecule has with hepatocyte adhesion. High levels of BCAM expression 

in HUH 7.5 cells also suggest the relative importance in cell adhesion.  

Both integrin-β1 and BCAM were further studied through static adhesion assays with a range 

of extra cellular matrix (ECM) components and HSEC. Static adhesion assays were 

performed using both ES (ES-HLCs) and HUH 7.5 cells.  

 

The interactions and adherence of embryonic stem cell hepatocyte-like cells were tested with 

the ECM components laminin, fibronectin, osteopontin, collagen and vascular cell adhesion 

molecule (VCAM). Static adhesion data showed that ES-HLCs had a high binding affinity to 

laminin, osteopontin, collagen and fibronectin (Fig.7). In all cases binding was statistically 

significantly higher (P<0.05). ES-HLCs adherence to laminin in particular was almost double 

that in comparison to non-specific binding seen with BSA (control). ES-HLCs however had a 

low level of attachment to VCAM molecule. The preferential binding of ES-HLCs to laminin 

is significant; laminin is an important ECM protein which regulates attachment, migration 

and organisation of cells. The interactions between ES-HLCs with osteopontin and 

fibronectin should be further researched to gain a better insight into the mechanisms of 

hepatocyte-ECM adherence.   

ES-HLCs adherence with laminin was further investigated. Laminin was pre-treated with a 

recombinant Human BCAM/Fs (chimeric molecule) (rhBCAM), and also with VCAM.  

Static adhesion data showed that the pre-treatment of laminin with recombinant Human 

BCAM/Fs (rhBCAM) significantly reduced ES-HLCs adherence in comparison to binding 

seen with the control (Fig.8).  Cell adherence was statistically significant (P<0.05) with a 

total loss in adherence of 56% ±2.5. The data (Fig.8) also showed that there was little change 

with cell adherence when laminin was treated with VCAM (22.8% ±1.4). 
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The static adhesion data suggests that recombinant Human BCAM/Fs (chimeric molecule), is 

competitively bound to the BCAM binding site on laminin, resulting in a saturation of the 

binding site. This in turn is blocking the BCAM (being expressed by the ES-HLCs) 

interaction with the laminin; therefore a loss in cell adherence. This also further confirms the 

molecular interactions between laminin and BCAM.   

Further analysis of ES-HLCs static adherence to the ECM components: laminin, osteopontin, 

collagen and fibronectin was completed. As determined from previous results ES-HLCs 

preferentially bound to these ECM proteins. The effects of a blocking antibody on cell 

adhesion were tested. ES-HLCs were treated with IgG1 isotype along and αV blocking 

antibody. The data shows that ES-HLCs that were treated with αV antibody showed an 

overall reduction in adherence to each of the ECM components, (laminin 49%±1.8, 

fibronectin 22% ±2.6, osteopontin 20% ±0.8 and collagen 21% ±2.8) however only the 

reduction in laminin was statistically significant (P<0.05) (Fig.9).  

The data suggests that the αV antibody is blocking integrin expression on the ES-HLCs. αV 

integrins are well known receptors that recognise a wide array of ligands; αV integrins are 

receptors for laminin, osteopontin, and fibronectin. The significant reduction in cell 

adherence to laminin binding is very interesting, further research in this area is needed to 

confirm these findings. 

 

The interactions and adherence of HUH 7.5 cells were tested with the ECM components 

laminin, fibronectin, osteopontin, collagen and vascular cell adhesion molecule (VCAM). 

The data shows that HUH 7.5 cells bound preferably to laminin, fibronectin and collagen; 

there was a considerable difference in cell adherence with all three of these ECM proteins in 

comparison to the control BSA (non-specific binding) (Fig.9) (Fig.11). HUH 7.5 cell binding 

to laminin, fibronectin and collagen was statistically significant (P<0.05). 

 

HUH 7.5 cell binding to laminin, fibronectin and collagen was extremely high; because of 

this as an accurate representation of the amount of cells bound was immeasurable (human 

error).  



40 
 

The assay was repeated with a reduced amount of cells (1/10) to gain a more precise 

measurement of cell adhesion. (Fig.11)  HUH 7.5 cell binding to laminin, fibronectin and 

collagen was again shown to be statistically significant (P<0.05); data shows that almost 10 

times the amount of cells adhered to laminin in comparison to BSA (non-specific binding). 

The data obtained compliments that seen with ES-HLC interaction with ECM components; in 

both cases significant binding to laminin, fibronectin and collagen with very little binding to 

VCAM. Both sets of data show the importance of these ECM proteins, in the regulation of 

cell adherence.  

Further analysis of HUH 7.5 static adherence to the ECM components: laminin, collagen and 

fibronectin was completed. As determined from previous results HUH 7.5 preferentially 

bound to these ECM proteins. The effects of a blocking antibody on cell adhesion were 

tested. HUH 7.5 cells were treated with IgG1-isotype, β1 and αVβ6 blocking antibodies. The 

data showed that HUH 7.5 cells treated with β1 blocking antibody showed a substantially 

significant decrease in adherence to laminin; a 79.6% (±3.1, P<0.05) reduction of cells bound 

to laminin when compared to the cells treated with IgG1. Data shows that β1 blocking 

antibody also affected cellular adhesion with fibronectin (26.2% ±2.4).  

 

The effect of β1 blocking antibody on cell adherence shows the importance of the integrin-β1 

in the regulation of hepatocyte- like cell adherence. When the integrin-β1 is blocked there is a 

loss of hepatocyte-like cell adhesion in the extracellular matrix; the loss of cell adherence 

when integrin-β1 is blocked is also seen in endothelial cells. This is shown in the data 

obtained from HUH 7.5 cell static adhesion assay with HSEC (Fig.14). The data showed that 

HUH 7.5 cells that had been treated with β1 blocking antibody had a significantly lower 

binding affinity to the HSEC monolayer in comparison to the control (P<0.05). The results 

obtained are conclusive and compliment studies previously completed (Pinkse et al., 2004; 

Potocnik et al., 2000).  

 

 

In a separate static assay HUH 7.5 cells were treated with BCAM and IgG2b blocking 

antibodies; the ECM components: laminin, collagen and fibronectin were also treated with 

recombinant Human BCAM/Fs (rhBCAM). The data showed that cells treated with BCAM 
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blocking antibody had a significant reduction in cell adherence to laminin (68.7% ±2.6, 

P<0.05) (Fig.13). A significant reduction was also seen in cell adherence when laminin had 

been pre-treated with rhBCAM (77.4% ±1.0, P<0.05) (Fig.13). HUH 7.5 cell adherence to the 

other ECM proteins was not significantly affected by either the BCAM blocking antibody or 

by recombinant Human BCAM/Fs (rhBCAM).  

The results further conclude the interactions and functions of BCAM as a receptor for laminin 

(Udani et al., 1998). The effect of BCAM blocking antibody on cell adherence shows the 

importance of the BCAM in the regulation of hepatocyte- like cell adherence. A significant 

loss in hepatocyte-like cell adhesion to laminin occurs when BCAM is blocked; furthermore 

a loss of cell adherence is also seen in endothelial cells when hepatocyte-like cells are treated 

with BCAM blocking antibody. Data obtained from HUH 7.5 static adhesion assay with 

HSEC (Fig.14) (Fig.15), showed a significantly lower binding affinity of HUH 7.5 cells 

treated with BCAM antibody to the HSEC monolayer (P<0.05). Recombinant Human 

BCAM/Fs however did not seem to have any significant effect on HUH 7.5 – HSEC 

adherence.  

The data suggests the involvement of BCAM with cell-cell adhesion and migration as 

previously suggested (Schon et al.,2001).  

  

4.1. Conclusion 

Data obtained from the research completed suggests that integrin-β1 and BCAM both play 

critical roles in the regulation of hepatocyte-like cell adhesion. The data suggest that both 

adhesion molecules play a crucial role in the interactions of hepatocyte-like cells between 

both the extracellular matrix and the hepatic sinusoidal endothelium cells. In conclusion both 

integrin-β1 and basal cell adhesion molecule are potential targets in which to manipulate to 

improve the engraftment efficiency of transplanted ES-HLCs and hepatocytes. Future 

research studying the interactions of ES-HLCs and hepatocytes with ECM components and 

HSEC may be useful in identifying molecular interactions to manipulate to improve 

engraftment in vivo.  
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Abstract  

The platelet derived growth factor receptor (PDGFR) is a cell surface tyrosine kinase receptor 

specific for members of the platelet derived growth factor (PDGF). PDGFs have been 

associated to have a pivotal role in a range of cellular processes; from cell growth, motility, 

differentiation and survival in connective tissues. PDGF is also associated with diseases such 

as cancer. The aim of the research project was to investigate the role of leukocyte common 

antigen-related receptor like PTP (LAR-RPTP), in the regulation of the PDGF receptor. 

siRNA optimisation for the knockdown of PKC δ, NHERF1 and NHERF2 proteins was 

performed in the absence of LAR (LAR ∆ P MEF cells), was utilized and analysed through 

western blot technique. The data obtained showed that in the absence of PKC δ and NHERF-

2, PDGFR phosphorylation and activity increased; and in the absence of NHERF1 the 

activity was inhibited. The important regulatory role of these proteins was further determined 

when the downstream signalling molecule ERK was investigated; an increase in ERK activity 

ensued with successful knockdowns of PKC δ and NHERF2. The results obtained facilitate a 

novel mechanism that LAR regulates PDGFR signalling through ligand induced activation of 

the PDGF β-receptor, through its mechanism of down regulating c-Abl activity. Thus 

reducing the activation of PKC δ and in turn GRK2, which desensitises and inhibits PDGF β- 

receptor activation and downstream signalling pathways; as well as dissociating NHERF1 

while promoting NHERF2 binding affinity to the PDGFR, further diminishing receptor 

dimerization.  
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1.0. Introduction 

 

 

1.1. PDGF receptor   

 

Platelet derived growth factor receptors (PDGFR) are cell surface tyrosine kinase receptors 

specific for members of the platelet derived growth factor (PDGF) (Williams, et.al, 1989). 

Members of the Platelet derived growth factor (PDGF) have been associated to have a pivotal 

role in a range of cellular processes; the subunits A and B of the PDGF in particular have 

been shown to have an important function with cell growth, motility, differentiation and 

survival in connective tissues (Heldin, et al, 1996). PDGF is also associated with diseases 

such as tumour formation and growth (Williams, et.al, 1989). There are two structurally 

different forms of the PDGFR, known as α and β; which are separately encoded by different 

genes. Upon binding of the PDGF to the PDGFR it causes the receptor to undergo change 

leading to the autophosphorylation between the two receptors, α and β. There are two types of 

dimerization that can take place, PDGF-R homo- or heterodimerization, which is dependent 

upon the growth factor that is bound (Heldin, et al, 1992). 

The PDGF molecule is dimeric and consists of a variety of disulfide bonded homodimers, 

these are known as A, B, C and D, which are polypeptide chains. There is also the 

heterodimer polypeptide chain know as AB. Examples include PDGF –AA, AB, BB, CC and 

DD (Heldin, et al, 1992). The PDGF molecule, in all its isoforms binds to and activates the 

two structurally different PDGF protein tyrosine kinase receptors; PDGF α and PDGF β; 

which in turn leads to an effect with their target cells. As stated the PDGF molecule is 

dimeric, in this case each of its isoforms have two different receptor binding epitopes and can 

therefore bind to both the α and β receptor at the same time which leads to PDGF receptor 

dimerization. (Chen, et al., 2011). 

These isoforms are native in their monomeric forms, but once bound to the PDGFR-α and 

PDGFR-β it leads to receptor dimerization causing conformational change which can result 

in three possible receptor combinations, αα, ββ and αβ.  

The PDGF subunits bind specifically to the ligand binding sites on the receptor; for example 

PDGF-AA only bind to PDGFR-αα, PDGF-AB and CC bind to αα and αβ, whereas PDGF-
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DD binds with high affinity to ββ and partly to αβ. PDGF-BB however is unique and is able 

to bind with a high affinity to all three types of the receptor combinations (Heldin, et al, 

1992). 

 

1.2. Autophosphorylation and Dimerization of PDGF receptor  

 

PDGF receptor dimerization causes the juxtaposition of the intracellular domains which in 

turn leads to the activation of the kinase through the autophosphorylation of the tyrosine 

residues between the two receptors, α and β; the receptor molecules also undergo a 

conformational change allowing for full enzymatic activity to be obtained (Kelly et al., 

1991). The majority of the phosphorylation sites have been shown to be localised outside the 

kinase domain on both the α and β receptors. Studies have shown that both receptors are 

significantly auto phosphorylated when they have under gone dimerization, (Claesson-Welsh 

et al., 1994) have shown that 11 of the 15 tyrosine residues of the β receptor are 

autophosphorylation sites (in the intracellular non-catalytic areas). 

The phosphorylated tyrosine residue along with C-terminal amino acid residues together form 

a specific binding site which is designed for the binding of signal transduction molecules; the 

autophosphorylation of the receptor permits for the recruitment of the site specific molecules 

enabling for the signal to be propagated downstream (Chen, et al., 2011). 

Studies have shown (Pawson et al., 1997) that the large majority of the transduction 

molecules that bind to the phosphorylated PDGF receptors when there is an increased activity 

and a conformational change have Src homology 2 (SH2) cytoplasmic domains present; these 

domains are able to specifically recognise phosphorylated tyrosine residues on the PDGF 

(any many other) receptors (Heldin et al.,1996). The binding in these domains have been 

shown to have a high specificity, the signal transduction molecules themselves vary; some are 

equipped with adaptor molecules which have been shown can contain sub units which can 

possess catalytic ability while other signal transduction molecules have a range of different 

enzymatic activities. Once bound to the activated PDGF receptor, the interaction results in 

the catalytic action becoming up regulated by the receptor through tyrosine phosphorylation 

which in turn generates a signal that is unique for each type of transduction molecule.  
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This leads to the initiation of different signalling pathways which can lead to an array of 

effects such as the modulation of gene transcription and cytoskeletal rearrangement along 

with other physiological effects (Zheng, et al., 2011). 

There are numerous signalling pathways that can be activated which are dependent upon the 

enzyme activity of the SH2 domain containing the signal transduction molecule; there are 

several binding sites to the phosphorylated PDGF receptor that have been identified for the 

transduction molecules. These include the Src family of protein tyrosine kinases, 

phosphatidylinositol 3’ kinase (PI3 kinase), protein tyrosine phosphatase SHP-2, GTPase 

activating protein (GAP), phospholipase C-γ (PLCγ) and also certain adaptor molecules such 

as GRB2 and 7, Shc, Crk (Songyang et al., 1993). 

After binding of the PDGF ligand, the active PDGF receptor will eventually become 

internalised and degraded, as part of a negative feedback system. The rate at which this 

internalisation and degradation of the PDGF receptor takes place is dependent on the activity 

of the kinase and the autophosphorylation of the receptor (Sorkin et al., 1991),(Huang, et al., 

2011); the degradation leading to PDGF receptor inactivation usually takes place between 30 

to 60 minutes after the receptor has begun to be internalised. The ligand receptor complex is 

internalised through endosomes which then fuse with lysosomes which lead to the 

degradation of the receptor complex causing the inactivation of the receptor (Sorkin et al., 

1991). 

 

 

1.3. PI3-kinase pathway + PLC-γ pathway 

 

The phospholipid kinase PI-3 kinase has been shown to bind to the phosphorylated sites on 

the PDGF receptor (Kaslauskas et al., 1989); the binding of the PI-3 kinase to the PDGF 

receptor causes a conformational change of the kinase which leads to an increased enzymatic 

activity (Backer et al., 1992). The PI-3 kinase is activated by a large range of receptor 

tyrosine kinases (RTKs); RTKs are high affinity cell surface receptors which are seen in 

polypeptide growth factors, hormones and cytokines (Robinson, et al., 2000). RTK’s are key 

regulators in cellular processes and have also been associated with the development of an 

array of cancers (Moonhee, et al., 2009). 
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 The activation of PI-3 kinase is the major contributing factor in the activation of 

Phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) or 

Phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P2). This occurs by the recruitment of PLCγ, 

due to the activation of a RTK; PLCγ once activated hydrolysis’s its substrate PtdIns(4,5)P2. 

This action leads to the formation of two secondary messengers, inositol trisphosphate (IP3) 

and diacylglycerol (aka PIP2). IP3 governs the release of calcium (Ca 2+) from intracellular 

supplies, which in turn bind to calmodulin leading to the activation of protein kinases 

(Walter, et al., 2003; Zheng, et al., 2011). 

The phosphorylation of PIP2 by the PI-3 kinase leads to the generation of PIP3; PIP3 

functions as a secondary messenger which in turn activates downstream signal transduction 

molecules. These include tyrosine kinases Btk and Itk and serine/threonine kinase Akt 

(Burgering et al., 1995).  

Akt activation plays a critical role in major biological functions including the survival, 

proliferation and cell growth; and is associated with many cancers (Williams, et.al, 1989). 

The generation of PIP3 also leads to the activation of the protein kinase C family (Toker et 

al.,1994; Akimoto et al., 1996), along with p70 S6 kinase (Cheatham et al., 1994), the c-Jun 

Nterminal kinase and GTPases (Lopez-Ilasaca et al., 1997).  

For example PIP3 has been shown to bind to the PH domain of the Akt kinase which leads to 

conformation change in the kinase; in turn this allows for Akt phosphorylation to occur 

resulting in the activation of the Akt kinase (Klippel et al., 1997). The resultant activation of 

Akt leads to many cellular processes occurring, as stated Akt kinase effects cell survival, 

cycle, metabolism and angiogenesis; Akt has been shown to inhibit the Bcl-2-associated 

death promoter (BAD) molecule, BAD is a pro apoptotic protein which is involved in 

initiating apoptosis (Heldin et al., 1998).  

 

 
 

1.4. The mitogen activated protein kinase (MAP kinase) pathway 

 

The adaptor protein known as growth factor receptor bound protein 2 (Grb2) bind to the 

PDGF receptor in its phosphorylated state. When the PDGF receptor is stimulated the Grb2 

protein forms a complex with the son of sevenless homolog 1 (Sos1); the complex is 

recruited by the SH3 domain on the Grb2 protein. The complex that is formed functions as a 
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nucleotide exchange factor, the complex is recruited to the membrane by the SH2 domain on 

the Grb2 protein; which is bound to the activated PDGF receptor (Keshet, et al., 2010). 

This allows for the interaction with Ras, which leads to the conversion exchange of the GDP 

inactive form to the GTP bound active form (Schlessinger, 1994). The active GTP-bound Ras 

interacts with and activates a range of signalling proteins; in particular the downstream Raf-1 

molecule. Raf-1 molecule has a stimulatory effect, activating the mitogen activated protein 

kinase kinase (MAPKK, MEK); Raf-1 is the first kinase within the MAP kinase cascade, it 

activates MAPKK, MEK through the phosphorylation of a Ser residue (Heldin et al.,1996).  

 

The activation of MAPKK, MEK in turn leads to the phosphorylation and activation of the 

MAP kinases Erk 1 and Erk 2; once active these kinases are translocated into the nucleus 

leading to the phosphorylation of a range of cytoplasmic substrates (Keshet, et al., 2010).  

Erk 1 and Erk 2 are also responsible for the activity of many transcription factors contributing 

to the regulation of a variety of cellular processes including cell growth, proliferation, 

differentiation, migration and apoptosis (Satoh et al., 1993). MAP kinases have also been 

found to be involved with cellular immunoresponses (Nanberg et al., 1993).  

 

 

1.5. Src kinase pathway 

 

Src is a proto-oncogene encoding a tyrosine kinase; members of this family are associated 

with having a SH2 domain, SH3 domain and a kinase domain which have been characterised 

(Erpel et al., 1995). The kinase activity of the Src molecule is controlled by a tyrosine residue 

known as T 527, which resides within the C-terminal of the molecule. The tyrosine 527 

residue plays a crucial role when the Src molecule is phosphorylated; the tyrosine residue 

controls molecular interactions within the SH2 domain keeping the Src kinase in its in-active 

state (Kypta et al., 1990). However the mechanism involved in the binding to the PDGF 

receptor causes the displacement of the tyrosine 527 residue; this results in other tyrosine 

residues that are present in both the SH2 and SH3 domain becoming phosphorylated which 

induces the activation of the Src kinase. Studies have shown the Src kinase has a positive 

effect on the induction on stimulating cellular growth.  (Alonso et al., 1995; Stover et 

al.,1996). 

 

http://link.springer.com/search?facet-author=%22Yonat+Keshet%22
http://link.springer.com/search?facet-author=%22Yonat+Keshet%22
http://en.wikipedia.org/wiki/Proto-oncogene
http://en.wikipedia.org/wiki/Tyrosine_kinase
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1.6. Protein tyrosine phosphatases 

 

Protein tyrosine phosphatases are a type of diverse but highly specific enzymes that remove 

phosphate groups from tyrosine residues on phosphorylated proteins. The action of PTPs are 

crucial for regulating signalling pathways by reversing tyrosine phosphorylation, which is a 

common mechanism used for the activation of protein kinases to interact and alter 

transcription factors leading to cell proliferation, migration and adhesion. (Ostman et 

al.,2006). The maintenance of an appropriate level of protein tyrosine phosphorylation is 

therefore critical for the function of many cellular activities. PTP enzymes are tyrosine 

specific protein phosphatases (PTPase) that catalyse and remove the phosphate group which 

is bound to the tyrosine residue, achieved through the use of a cysteinyl-phosphate enzyme 

intermediate. 

PTPase are crucial in regulating many signal transduction pathways including the MAP 

kinase cascade; and in turn are key in determining the activity of cell growth, proliferation 

and cycle. 

PTPs can be categorised into 2 types, including receptor like forms and non-receptor forms. 

Receptor like PTPs (RPTP) comprise of a transmembrane domain and various variable 

extracellular domains; along with intracellular components which in most cases contain two 

PTP domains that are the active catalytic section of the protein.  

There is a large diversity in the structure of non-receptor PTPs; studies have shown that they 

exhibit many sequences which allow them to bind to specific proteins with high affinity 

(Mauro et al., 1994).  

 

There are many examples of such PTPs that regulate the critical signalling pathways, such as 

SHP-2 and TC-PTP which have been shown to interact and dephosphorylate the PDGF 

receptor tyrosine residues which are phosphorylated during ligand binding (Persson et al., 

2003). Studies have also shown that the activity of these phosphatases could potentially 

adjust specific signalling pathways that are connected to the active form of the PDGF 

receptor; by altering the protein tyrosine phosphatases downstream signalling could be 

adjusted in accordance of a cellular response to an external stimulus (Persson et al., 2003).   
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1.7. LAR-RPTP and its role in PDGF receptor signalling 

 

The leukocyte common antigen-related (LAR) are a subfamily of PTPs that belong to the 

group of receptor like protein tyrosine phosphatases. Studies have shown that the leukocyte 

common antigen-related subfamily is generally comprised of three homologs known as 

RPTP-σ, RPTP-δ and LAR-RPTP (Chagnon et al., 2004).  

LAR-RPTP has a receptor like structure which has the ability to monitor the extraceullular 

environment, and in turn has the ability to modulate signals through cytosolic PTP domains 

into the cell.  

LAR-RPTP has two intracellular domains, it also contains a membrane distal domain which 

has weak catalytic activity; the intracellular domain also comprises of a membrane proximal 

domain (D1) which possess high catalytic activity. The intracellular domains are bound to a 

hydrophobic transmembrane (stretch) which in turn connects to the extracellular domains of 

the LAR-RPTP. The extracellular domains comprise of eight fibronectin type III domains and 

three immunoglobulin-like domains (Pulido et al., 1995). 

 

LAR is known to be expressed in many various cell types; LAR-RPTP has been documented 

to be present in fibroblast, cardiac, epithelial and neuronal cells (Streuli et al., 1992). Studies 

(Chagnon et al., 2004) have shown that LAR-RPTP plays an important role in signal 

transduction; LAR had previously been known to be involved with nervous system 

development, studies investigating the role LAR exhibits have now shown that it is involved 

with the regulating of nerve regeneration as well as with axonal growth and development 

(Zheng, et al., 2011).LAR has also been shown to have a role with integrin focal adhesions 

and also it has been suggested that LAR dephosphorylates beta-catenin therefore playing a 

regulatory role with cadherin adhesions (Mooney, et al., 2003). 

 

More recently LAR has been determined to play important roles in the regulation of tyrosine 

kinase signal transduction; in that LAR exhibits a dual function with the regulation of these 

kinases. Studies have shown that LAR can directly dephosphorylate receptor tyrosine kinases 

which lead to receptor inactivation and the modulation of downstream signalling. A recent 

study (Niu et al., 2007) involving LAR was shown to interact with the insulin like growth 

factor 1 receptor (IGF-1R); which lead to the  inhibition of  IGF-1 signalling in smooth 

muscle cells. The inhibition of IGF-1 was then associated with loss of cell proliferation and 

migration due to down regulation. It has also been suggested that LAR regulates the activity 
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of the cytoplasmic tyrosine kinase c-Abl, keeping the kinase in its inactive form (Zheng, et 

al., 2011). 

 

LAR has also been seen to enhance signal transduction through the act of dephosphorylating 

tyrosine residues that have a negative regulatory effect upon tyrosine kinases. It has know 

been shown that certain protein tyrosine kinases are linked with the substrate of LAR-RPTP, 

examples of such kinases are the Src, Fyn and Lck kinases; LAR has also been shown to 

activate these kinases (Tsujikawa et al., 2002). 

 

Another study (Zheng, et al., 2011) previously carried out by the Hellberg research group 

demonstrated that LAR positively regulated PDGF β receptor with respect to receptor 

activation and signal transduction. The study showed that in the absence of LAR (in cells 

where phosphatase domains of LAR had been deleted) PDGF β receptor activation was 

impaired. As a knock on effect there was also a decrease in phosphorylation of crucial 

downstream signalling molecules connected to the PDGF β receptor. The study also showed 

that with the inhibition of c-Abl, PDGF β receptor phosphorylation was reverted, in LARΔP 

MEF cells; indicating that LAR is critical for maintain the inactive form of c-Abl, which in 

turn allows for PDGF β receptor phosphorylation (Zheng, et al., 2011). 

 

The studies that have been conducted give evidence to suggest that LAR-RPTP has the ability 

to either up regulate or down regulate cell functions dependent upon the cell type and 

signalling pathway (Zheng, et al., 2011). 

 

 

1.8.1 c-ABL and G protein-coupled receptor kinases (GRKs) 

c-Abl is a proto-oncogene which encodes a cytoplasmic protein tyrosine kinase which has 

been shown to lead to cellular processes including differentiation, division and adhesion 

(Szczylik, et al., 1991). The activity of c-Abl is regulated negatively by its SH3 domain; and 

CDC2 mediates the DNA-binding activity of the c-Abl tyrosine kinase through 

phosphorylation, potentially showing that it has a cell cycle function (Szczylik, et al., 1991).  
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GRKs are a type of protein kinases which regulate G protein- coupled receptors through the 

phosphorylation of their intracellular domains, after the association of G-proteins have been 

activated. 

The phosphorylation of the serine and threonine residues prevents reactivation of the 

signalling pathway; due to the recruitment of arrestin proteins to the phosphorylated residues 

preventing the reassociation of G proteins (Evron et al., 2012).  

 

1.8.2 Protein Kinase C, NHERF-1 and NHERF-2 

Protein Kinase C (PKC) is part of the serine and threonine-specific protein kinase family; it is 

activated by calcium and diacylglycerol (Huppi, et al., 1999). They are responsible for a 

range of cellular signalling pathways and are known to phosphorylate many proteins 

depending on their expression. Studies have shown that PKC is involved in a range of cellular 

processes including B cell signalling as well as the regulation of growth, differentiation and 

apoptosis (Blake, et al., 1999). 

Sodium-hydrogen exchange regulatory cofactor (NHERF-2) is a scaffold protein connecting 

membrane proteins linking them to the actin cytoskeleton, they also help in the regulation of 

the surface expression of these proteins; NHERF-2 has been shown to be vital for cAMP 

phosphorylation (Hall, et al., 1998).   

Sodium-hydrogen antiporter 3 regulator 1 (NHERF-1) is a scaffold protein which has been 

shown to regulate the sodium-hydrogen antiporter 3; current studies have also shown that 

NHERF-1 plays an important role in both enzyme and protein regulation through the binding 

of an effector molecule to the target allosteric site (Farago, et al., 2010). 

 

 

1.9. Aim of the research project 

 To investigate the role of LAR in the regulation of the PDGF receptor and its effect 

upon downstream signal transduction molecules, in particular the ERK1/2 pathway. 

As previously stated the Hellberg research group have determined a mechanism for 

PDGF signalling whereby the receptor is regulated though LAR, which helps to 

promote ligand induced activation of the PDGF β-receptor through its mechanism of 

down regulating c-Abl activity.  

 To investigate the effects of c-Abl and the kinases associated with respects to the 

activation of the PDGF β-receptor. The serine/threonine-specific protein kinase PKC 

δ and its effect will be examined; PKC δ is an enzyme protein that is linked to c-Abl 

and the PDGF receptor, situated in-between. The hypothesis, that PKC δ regulates 

http://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinase
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PDGF receptor activation by inhibiting phosphorylation of the tyrosine residues will 

be tested. PKC δ will be knocked down using specific small interfering RNA to 

determine the effect it has upon the PDGF receptor; this will be conducted in LARΔP 

mouse embryonic fibroblast (MEF) cells, in which the phosphatase domains of LAR 

have been deleted, thus c-Abl will not be suppressed.  

 The structural proteins NHERF1 and NHERF2 will also be investigated; these 

proteins are known to bind to the C-terminal of the PDGF receptor which is crucial 

for the receptor to become dimerized. As with PKC δ, both NHERF1 and 2 will be 

knockdown using siRNA in order to determine the effect upon the PDGF receptor in 

the absence of LAR.  

 The effects of the knockdown of PKC δ, NHERF1 and NHERF2 will also be further 

assessed by examining the downstream signal transduction molecules, the ERK1/2 

and the Akt pathways; to determine if the effect upon the PDGF receptor is reflected 

further down the signalling pathway.  

 

Figure 1: The mechanism of PDGF β receptor signalling, showing the Ras/mitogen-activated protein kinase 

cascade. The direct interaction from Ras activates Raf causing the phosphorylation and activation of MEK 

which in turn activates ERK 1 and 2 leading to the activation of transcription factors (Ligaya, et al., 1999) 

(Villari, 2009) 
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Figure 2: Schematic illustration showing the structure of protein-tyrosine phosphotases (PTPs) (e.g. the 

leukocyte common antigen-related (LAR)). PTPs have the ability to antagonize receptor-tyrosine kinase (RTK) 

signalling by either direct dephosphorylation or through density-enhanced Phosphatase-1 (DEP-1) mediated 

dephosphorylation as seen with platelet-derived growth factor (PDGF) receptors. PTPs have also been shown to 

promote RTK signalling through the dephosphorylation and inactivation of inhibitory components (Östman et 

al., 2006).   

 

2.0. Materials and Methods 

 

2.1. Cell Culture and Preparation 

Cell culture of MEF LAR WT and MEF LAR ΔP cells 

Under sterile conditions: 

Mouse embryonic fibroblast (MEF) cells frozen in 10% Dimethyl sulfoxide (DMSO), for cell 

membrane stability and survival, were resurrected at 37
 o

C in a water bath (rapidly thawed). 

Two cells types were used to investigate the effect of the receptor tyrosine phosphatase 

(RPTP) LAR upon the platelet-derived growth factor (PDGF) receptor signalling. The MEF 
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cells that were used were isolated from mice which had had the LAR phosphatase domains 

deleted; wild type MEF cells were also isolated.  

The cells were grown in culture under sterile conditions in Dulbecco’s Modified Eagle Media 

(DMEM) + 10% foetal bovine serum (FBS). The DMEM also contained 1% Glutamine-

Penicillin-Streptomycin (GPS), a one-step supplementation to help reduce the risk of 

contamination. 

After several days of growth the cells were passaged using the cell dissociation reagent 

Trypsin (0.25% Trypsin-EDTA 1x). The cells were grown in 15ml of DMEM + 10% FBS to 

confluence in 162cm
2
 flasks; roughly 6 x10

6
 cells per flask.  

  

 

2.2. Western Blot and Immunoprecipitation  

Testing for phosphorylation of PDGF receptor 

Under sterile conditions confluent cells in 25cm² flasks were starved in DMEM (starvation 

media, containing no FBS or growth factors) for 16 hours. The cells were starved in order for 

them to up-regulate and express the PDGF receptor. The cells were then stimulated using a 

recombinant human PDGF ligand (homodimer PDGF- BB); this was used to stimulate the 

PDGF receptor for a set time. 2µl of the PDGF ligand was added to 5ml of starvation media 

to give an overall concentration of 20ng/ml (The stock concentration of the ligand was 

500µg/ml, and was diluted by 1/10 using PDGF-BB buffer (NaCl)). This concentration was 

determined to be optimal for receptor stimulation, for a set time of 10 minutes at 37
 o

C. After 

10 minutes of stimulation the flask of cells were put on ice, and the cells were washed 3 times 

with cold PBS, to remove the stimulation media. Note the cells were washed gently as to not 

disrupt adherence. Lysis buffer (0.5% TX-100, 0.5% Deoxycholic acid, 150mM NaCl, 20mM 

Tris pH 7.5, 10 mM EDTA) at pH7.5 was then added to the cells. 10 µl of aprotinin and 10 µl 

sodium orthovanadate was added to 10 ml of lysis buffer. Aprotinin is a protease inhibitor; 

when the cells are lysed proteases are released which lead to protein degradation, Aprotinin 

was therefore used to inhibit this process from occurring. Sodium orthovanadate, the 

chemical compound Na3VO4, acts as protein tyrosine phosphatase inhibitor; it binds to the 

active sites on the protein tyrosine phosphatase. The inhibition of protein tyrosine 
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phosphatase’s helps preserve the phosphorylation of the protein under investigation as 

phosphatases that are present within the cell lysate are inhibited. 300µl of lysis buffer was 

then added to each 25 cm² flask of cells, and was left for 15 minutes in order for the cells to 

be completed lysed. The cells were scraped from the flask and then placed into eppendorfs, 

and left on ice for a further 15 minutes. The eppendorf’s were then centrifuged at 1300xg for 

15 minutes, the supernatant was then removed and aliquoted into a new eppendorf. The 

supernatant contained the proteins of interest and was removed with care not to disrupt the 

pellet which contained non-soluble membrane proteins.  

The protein concentration of each sample was then tested using UV spectroscopy; using 

absorbance set at 595nm. 5µl of each sample was added to a well (96 –well plate), including 

a control using lysis buffer. 200µl of Coomassie brilliant blue was then added to each of the 

sample wells, and left for 10 minutes for the changes to take place, the plate was then read 

using a spectrophotometer to calculate the protein concentration.  

The data obtained from the UV spectroscopy was then used to determine how much lysate 

buffer to add to each protein sample in order to make the concentrations the same, to be used 

in the Immunoprecipitation assay. 10µl of protein sample was also removed and aliquoted 

into new eppendorfs to test for total cell lysate, to compare to the IP. 10µl of 2X sample 

buffer (125mM Tris HCl pH 6.8, 20 % glycerol, 4% sodium dodecyl sulphate (SDS), 0.02% 

bromphenol blue) was added to each of the 10µl of total cell lysate samples, which were then 

boiled for 5 minutes at 95 
o
C.  

A selected antibody was added to the immunoprecipitation samples; CTβ antibody, CTβ 

serum were used. Both CT β antibody and serum detect and bind specifically to the PDGF 

receptor, using these antibodies with a high binding affinity and specificity resulted in a 

efficient precipitation of unwanted proteins from the sample. 

2µl of CTβ antibody (rabbit antibody concentration 1.89µg/ml) was added to each sample 

and was left overnight to mix (at 5
 o

C). CTβ serum was also tested for the use in IP, 20µl was 

added to each sample, and was also left over night to mix (at 5
 o

C).  After leaving overnight 

30µl of magnetic protease beads was added to each sample and left to mix for one hour at 5
 

o
C. The tubes were then placed in a magnet and left for 20 seconds before the supernatant 

was removed. The pellet was then washed with 1ml of lysis buffer and was resuspended 

before being placed back into the magnet. This was repeated for a total of 3 washes.  
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Alternatively WGA beads were used; Wheat germ agarose beads have a high binding affinity 

to glycosylated proteins; it is well known that the PDGF receptor is highly glycosylated, 

WGA beads therefore offered a good alternative for precipitation of sample proteins. 

30µl was added to each sample and left to mix for one hour at 5
 o

C. The beads were then 

centrifuged at 1300xg for 1 minute; the supernatant was removed and the pellet was washed 

with 1ml of lysis buffer. The pellet was resuspended and centrifuged again at 1300xg for 1 

minute. This was repeated for a total of 3 washes.  

In both cases 2X sample buffer was added after the third wash in the same ratio as with the 

total cell lysate (30µl was added to the 30µl sample).  The samples were then briefly 

centrifuged and boiled for 5 minutes at 95 
o
C.  

The samples were then run on either 7% or 10% gels (separation gel containing 

17.4% of 40% acrylamide, 19.8% of 2 M Tris-Cl pH6.8, 0,5% of 20% SDS, 61.8% distilled 

water, 0,1% of TEMED (N, N, N’,N’-tetramethylethylenediamine, MERCK) and 0,4% APS 

and with the staking gel containing 10% of the 40% acrylamide, 13.8% of 0,5 M 

Tris-Cl pH6.8, 5% of 20% SDS solution, 13.1% of glycerol, 62.2% distilled water, 0.1% 

TEMED and 5% of 10% APS) 

IP samples were loaded in equal amounts (15µl per well), and the volume of the total cell 

lysate samples loaded depended upon the concentration (taken from UV spectroscopy data). 

Also 5µl of pageruler pre-stained protein ladder marker was also loaded in the gel. The gels 

were run at 175volts for roughly 55 minutes, after which the gel were transferred to 

nitrocellulose membranes by electrical transferring machine in a Trans blot turbo machine 

and blotted for 7 minutes.  

The membrane was then taken out and the gel discarded; the membrane was washed in PBS-

T and then left for 1 hour in antibody blocking buffer. After 1 hour the membrane was 

washed in PBS-T and PY99 antibody was added to the membrane, which was left over night 

at 5
 o

C (excluding SiRNA optimisation see below). PY99, also known as p-Tyr is a mouse 

monoclonal IgG₂ antibody that specifically detects and binds to phosphotyrosine containing 

proteins; it was used to show the amount of phosphorylated PDGF receptor present in each 

sample (in this case the antibody will only bind to the PDGF receptor as other protein kinases 

have been precipitated from the sample).  
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After leaving over night the membrane was then washed for 5 minutes in PBS-T (0.05% 

Tween-20) 6 times. A secondary antibody linked to a peroxide marker (IgG – HRP goat-anti 

mouse) was then added to the membrane (2µl of antibody in 20ml of PBS-T, 1/1000 

dilution). The membrane was incubated for one hour with the antibody at room temperature, 

after which the membrane was washed for another 6 times with PBS-T.  

The membrane was then subjected to a developing solution, a pro-chemiluminescent reagent 

(600µl of both developing solution A and B) (ECL western blotting detection reagents from 

GE healthcare) for 1 minute before being analysed using Gene Snap software (CCD camera 

detects the light signal produced from the reaction between the pro-chemiluminescent reagent 

and the peroxide marker; shows the amount of protein of interest present in sample. Gene 

Snap setting that were used included a photo set at 5 micro-seconds with upper white light 

and no filter, the membranes were also exposed for 10 minutes with no light or filter. After 

exposure the membrane was then stripped using sodium hydroxide (NaOH) for 10minutes, 

before being rewashed in PBS-T 6 times for 5 minutes. The membrane was re-blocked using 

antibody blocking buffer and washed once with PBS-T before CTβ antibody was added 

(excluding SiRNA optimisation see below). CTβ is an anti PDGF receptor antibody; it was 

used to show the amount of PDGF receptor present within the sample. The antibody was 

again left over night at 5
 o

C, and the protocol was repeated as with the PY99 antibody; 

however the secondary antibody used was a IgG – HRP goat-anti rabbit.  

 

 

 

 

2.3. Phorbol 12-myristate 13-acetate (PMA)  

PMA is a diester of phorbol which is regularly used in the activation of the signal 

transduction enzyme protein kinase C (PKC). PMA has an effect on PKC due to its parallel 

resemblance of diacylglycerol which is a natural activator of classic PKC isoforms (Castagna 

et al, 1982). PKC would be activated in cells that had been treated with PMA; left incubated 

over night would lead to the degradation and eventual depletion of PKC within the cells. The 

depletion of PKC would in turn show the effect that the ‘knock out’ of the PKC signalling 
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pathway has upon the PDGF receptor; with respect to receptor phosphorylation and 

expression.  

As above, cells were seeded and grown to confluence in 25cm² flasks with DMEM complete 

media until confluent. 8 flasks in total were used as follows: 

 PMA DMSO 

LAR Wild type Un-stimulated Un-stimulated 

 10min-20ng/ml PDGF ligand 10min-20ng/ml PDGF ligand 

LAR ΔP Un-stimulated Un-stimulated 

 10min-20ng/ml PDGF ligand 10min-20ng/ml PDGF ligand 

 

The cells were starved overnight in media containing either 1µM of PMA or DMSO, in order 

for them to up-regulate and express the PDGF receptor. DMSO was used as a control, as 

PMA is dissolved in DMSO; therefore any change in PDGF receptor phosphorylation could 

be noted. 4 flasks (as seen above) were then stimulated using a recombinant human PDGF 

ligand (homodimer PDGF- BB). 2µl of the PDGF ligand was added to 5ml of starvation 

media to give an overall concentration of 20ng/ml.  

After 10 minutes of stimulation all 8 flasks were put on ice and lysis buffer was added as 

above. Protein concentration was analysed using UV spectroscopy; the data was then used to 

determine equally concentrations of the samples for the use in IP. CTβ antibody (2 µl) was 

used and all samples including total cell lysate was run on 7% gels for 55 minutes at 175 

volts. Membranes containing IP samples were then blotted initially with PY99 antibody and 

then re-blotted with CTβ; and membranes containing the total cell lysate samples were 

initially blotted using PKC Δ (IgG mouse antibody) antibody and re-blotted with CTβ 

 

2.4. siRNA Knockdown optimisation 

 

Knockdown optimisation of PKC delta, NHERF-1 and NHERF-2.  

siRNA optimisation for the knockdown of PKC δ, NHERF-1 and NHERF-2 in LAR ∆ P 

MEF cells was analysed in order to find the optimal concentration or siRNA and length of 



65 
 

time of transfection to be used in order to achieve a successful knockdown with respect to the 

PDGF receptor for the MEF cell line. siRNA stock amount of PKC δ, NHERF-1 and 

NHERF-2 was 10 nmol; the tubes were briefly centrifuged and the siRNA was resuspended 

with 500 µl of sterile distilled water (dH₂O) making the final concentration of siRNA to 20 

µM. The solution in each tube was gently mixed to avoid the introduction of bubbles; the 

solution was then further mixed for 30 minutes using an orbital mixer/shaker at room 

temperature. This additional mixing step allows for a more reliable resuspension (shown by 

UV spectroscopy).  The tubes were then briefly centrifuged before the siRNA was aliquoted 

into small volumes (50 µl into 7 eppenedorfs, and 30 µl into 5 eppendorfs) and stored at -20 

degrees C. This was to ensure that the freeze- thaw events were limited to no more than 5 per 

tube.  

Cells were seeded in 12 well plates, at 6x10⁴ per well; roughly 30% confluent per well. Cells 

were counted using a cell counter; where 5 µl of trypan blue was mixed with 5 µl of cell 

sample.  Each siRNA knockdown optimisation used 4 plates (hours), in which 5 wells 

(concentrations) were used on each plate; as follows. 

Hours Conc’ nM Conc’ nM Conc’ nM Conc’ nM Conc’ nM 

24 0 1 10 50 100 

48 0 1 10 50 100 

72 0 1 10 50 100 

96 0 1 10 50 100 

   siRNA concentrations for PKC ∆, NHERF-1 and NHERF-2 were made up as follows  

 

 

Concentration (nM) Starvation media 

(DMEM) (µl) 

siRNA duplex (µl) Interferon (µl) 

0 200 0 0 

1 200 1.2 4 

10 200 12  8 

50 200 3 from stock 8 

100 200 6 from stock 8 
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Note: At 1 and 10 nM concentrations siRNA duplexes were first diluted using sterile dH₂O; 

whereby 1 µl of siRNA duplex from stock was diluted with 19 µl of dH₂O. 

The transfected cells were left for the set amount of time (as above); after which they were 

lysed and their protein concentrations calculated using UV spectroscopy as previously stated 

above (follow protocol). The total cell lysate samples were run on a 10% gel for 50 minutes 

at 175 Volts. The membrane was then blotted initially with either PKC ∆, NHERF-1 or 

NHERF-2 to show the amount of protein present and to measure the effect of the siRNA 

knockdown present for at concentration at the different time points. The membrane was 

stripped and re-blotted with Alix antibody which was used to show the volume of siRNA 

sample that had been loaded into each well.     

 

2.5. Knockdown of PKC δ, NHERF-1 and NHERF-2 

Data obtained from the siRNA optimisation assays for PKC δ, NHERF-1 and NHERF-2 was 

analysed; the conditions which favoured the optimum knockdown for each was then further 

tested. The data showed that 100nM concentration of siRNA duplex at 48 hours had the 

biggest knockdown effect for all three siRNA’s.  

These optimisation conditions were then used in further knockdown experiments to show the 

effects of siRNA knockdown of PKC δ, NHERF-1 and NHERF-2 on the phosphorylation of 

the PDGF receptor.  

As above LAR ∆ P MEF cells were seeded in 6 well plates, at 6x10⁴ per well; roughly 40% 

confluent per well. Cells were counted using a cell counter; where 5 µl of trypan blue was 

mixed with 5 µl of cell sample. For each siRNA knockdown 4 samples were tested: 

1  LAR ∆ P cells + ctrl siRNA  un-stimulated by PDGF-BB ligand 

2 LAR ∆ P cells + ctrl siRNA stimulated by PDGF –BB ligand (20ng/ml) - 10 minutes 

3 LAR ∆ P cells + siRNA un-stimulated by PDGF-BB ligand 

4 LAR ∆ P cells + siRNA stimulated by PDGF –BB ligand (20ng/ml) - 10 minutes 

   

The transfected cells were left for 48 hours; after which they were lysed and their protein 

concentrations calculated using UV spectroscopy as previously stated above (follow 
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protocol). 30 µl of WGA beads were used for each sample for the siRNA 

immunoprecipitates.  The samples were run on a 5% gel for 55 minutes at 175 Volts. The 

membrane was then blotted initially with PY99 to show the amount of phosphorylated PDGF 

receptor present in each sample. The membrane was stripped and re-blotted with CTβ to 

measure the amount of PDGF receptor present in each sample (not phosphorylation).  

 

 

2.6. Down signalling pathway: ERK  

Successful siRNA knockdowns of PKC δ, NHERF-1 and NHERF-2 were further analysed; 

ERK a downstream signalling protein was analysed to see if the siRNA knockdown on the 

PDGF receptor contributed to further changes. Successful knockdowns in theory should lead 

to a difference in downstream signalling; by knocking out PKC δ, NHERF-1 and NHERF-2 

the ERK pathways could potentially be affected. To investigate this total cell lysate from 

samples that had had a successful knockdown were loaded into a 10% gel and run at 175 

Volts for 55 minutes. The membrane was initially blotted with anti- phosphatase ERK ½ (p-

ERK) antibody (rabbit ab). This antibody detects phosphorylated ERK molecules present 

within the sample. The membrane was stripped and re-blotted with anti ERK ½ protein 

(rabbit) which detects any form of ERK proteins present.  

 

3.0. Results  

3.1. Protein Immunoprecipitate profile 

Immunoprecipitates and western blot analysis was performed on both MEF wild type and 

LAR ΔP cells. As stated above, CTβ antibody, CTβ serum and WGA beads were tested in 

order to determine which method gave the best results for showing the amount of protein of 

interest (PDGF receptor) that was present within the sample. 2µl of CTβ antibody and 20µl 

CTβ serum was added to each sample which was also left over night to mix (at 5
 o
C).  After 

leaving overnight 30µl of magnetic protease beads was added to each sample and left to mix 

for one hour at 5
 o
C. 30µl of WGA beads was added to each sample and left to mix for one 

hour at 5
 o
C. The beads were then centrifuged at 1300 rpm for 1 minute (3 times, as above).  
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All samples (CTβ antibody, CTβ serum and WGA beads) were run on 7% gels for 55 minutes 

at 175 volts; the membranes were then initially treated with PY99 antibody to test for the 

amount of PDGF receptor phosphorylation present per sample. The samples were also treated 

with CTβ antibody to test for the amount of PDGF receptor present per sample.  

      

Figure 3. PY99 antibody western blot showing PDGF phosphorylation in MEF LAR WT and LAR ΔP cells. 

Lanes 1-4 CTβ antibody IP where lane 1 is WT, lane 2 is WT + PDGF-BB stimulated, lane 3 is LAR ΔP and 

lane 4 LAR ΔP + PDGF-BB stimulated. Lanes 5-8 show the total cell lysate  respectively.  

 

Figure 4. CTβ antibody western blot showing PDGF receptor present in MEF LAR WT and LAR ΔP cells. 

Lanes 1-4 CTβ antibody IP where lane 1 is WT, lane 2 is WT + PDGF-BB stimulated, lane 3 is LAR ΔP and 

lane 4 LAR ΔP + PDGF-BB stimulated. Lanes 5-8 show the total cell lysate respectively. 
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Figure 5. PY99 antibody western blot showing the phosphorylation of PDGF receptor in LAR ΔP cells for a 

range of Immunoprecipitates; including CTβ ab, CTβ serum and WGA beads (from lanes 1-3 respectively). 

Lanes 4-6 show the corresponding results for total cell lysate.   

 

Western blot analysis showed that CTβ antibody and the WGA beads gave a stronger 

immunoprecipitate signal then that obtain using CTβ serum. This result can be clearly seen in 

figure 3, when the signal from the 3 different IP’s are compared. From this further analysis of 

CTβ antibody and WGA beads were carried out as can be seen in figures 3 and 4. The use of 

CTβ antibody gave a more precise IP, as the antibody detects and binds to the PDGF 

receptor, meaning the separation or precipitation from other proteins is highly specific; 

however a great signal was found to be achieved using WGA beads which bind to highly 

glycosylated proteins. It was therefore decided that for future experiments that either CTβ 

antibody or WGA beads should be used with regards to Immunoprecipitation, depending 

upon the resulting signal intensity.   

 

3.2. The effects of PMA upon PKC 

Both MEF wild type and LAR ΔP cells were treated either with PMA or DMSO (control). As 

stated above PMA activates PKC, leading to its degradation. Western blot analysis was 

performed on the samples to determine the effect that an effectively depleted ‘knockdown’ 

PKC pathway had upon the PDGF receptor expression in both cell types. Immunoprecipitates 

were attained using CTβ antibody, samples were then run on 7% gels; membranes were 

blotted initially with PY99 antibody to give a measurement of the amount of PDGF receptor 
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phosphorylation per sample to measure the effect of PKC. The membrane was stripped and 

re-blotted with CTβ antibody to give a measurement of the amount of PDGF receptor present.  

 

 

Figure 6. PY99 antibody western blot showing PDGF receptor phosphorylation in PMA/DMSO treated samples. 

Lanes 1-4 PMA treated samples including: LAR ∆P stimulation (PDGF-BB ligand) and un-stimulated, WT 

stimulation (PDGF-BB ligand) and un-stimulated. Lanes 5-8 show corresponding DMSO treated samples.  

 

Figure 7. CTβ antibody western blot showing the amount of PDGF receptor present in PMA/DMSO treated 

samples. Lanes 1-4 PMA treated samples including: wild type cells un-stimulated and 10 min stimulation 

(PDGF-BB ligand) and LAR ∆P cells unstimulated and 10 min stimulation (PDGF-BB ligand). Lanes 5-8 show 

corresponding DMSO treated samples. 
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Figure 8. Western blot data showing the amount of PDGF receptor expression in PMA and DMSO IP samples; 

from left to right: wild type MEF un-stimulated and PDGF-BB stimulated; and LAR ∆P un-stimulated and 

PDGF-BB stimulated. Error bars: standard deviation 

The data obtained from western blot analysis clearly shows that PMA has a significant effect 

upon the PDGF receptor. The result suggests that with prolonged exposure to PMA, which 

leads to the degradation of PKC, that it has a positive effect on PDGF receptor expression 

and phosphorylation in LAR ∆P cells; thus suggesting PKC has an inhibitory role in 

regulating PDGFR activity.  

This result can be further determined with band quantification, figure 8 clearly shows the 

effect that PMA has upon the PDGF receptor; whereby the PDGF receptor expression is 

almost doubled (roughly 47%) in PMA samples when stimulated in comparison to those 

treated with DMSO control.  

 

 

3.3. siRNA Knockdown Optimisation  

siRNA optimisation was performed on LAR ∆P MEF cells in order to analyse optimal 

conditions for the knockdown of PKC δ, NHERF-1 and NHERF-2 proteins. A range of 

conditions were tested, these included a variety of siRNA concentrations set over a range of 

transfection times (as mentioned above). All samples were run on 10% gels; membranes were 

then blotted initially with either PKC δ, NHERF-1 or NHERF-2 to show the amount of 
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protein present and to measure the effect of the siRNA knockdown. The membrane was 

stripped and re-blotted with Alix antibody which was used to show the volume of siRNA 

sample that had been loaded into each well. 

Figure 9. NHERF-2 antibody western blot showing the amount of  NHERF-2 phosphorylated within the 

samples. From left to right: Protein marker, lane 1-5 24 hours – control, 1nM, 10nM, 50nM and 100nM siRNA 

concentrations. Lanes 6-10 show siRNA concentrations at 48 hours.  

Figure 10. ALIX antibody western blot showing the amount of  NHERF-2 present within the samples. From left 

to right: Protein marker, lane 1-5 24 hours – control, 1nM, 10nM, 50nM and 100nM siRNA concentrations. 

Lanes 6-10 show siRNA concentrations at 48 hours.  

 

        

Figure 11. Graph of western blot data showing PKC δ optimisation at 24, 48, 72 and 96 hours for a range of 

siRNA concentrations.  
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Figure 12. Graph of western blot data showing NHERF-2 optimisation at 24, 48, 72 and 96 hours for a range of 

siRNA concentrations.  

 

              

Figure 13. Graph of western blot data showing NHERF-1 optimisation at 24, 48, 72 and 96 hours for a range of 

siRNA concentrations. 

Western blot analysis showed that the optimal knockdown condition for PKC δ was at the 

concentration of 100nM (siRNA) at 48 hours. This was further shown through the use of 

band quantification (phosphorylated data/ amount of protein present); figure 10 shows the 

amount of knockdown per sample. The data clearly shows that at 100nM at 48 hours there is 

roughly a 60% reduction in PKC δ, in comparison to the control siRNA. At this concentration 
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the reduction of PKC δ is at its greatest, the large reduction indicates there is a successful 

siRNA knockdown taking place. The siRNA knockdown is most effective at this condition; 

the data also shows that the other siRNA knockdowns (at different conditions) are not as 

effective, this can be clearly seen in figure 10 where there are no other significant reduction 

in protein amounts (greater than 40%). This trend can also be seen with both NHERF2 and 

NHERF1 siRNA knockdowns; in both cases the greatest reduction in protein amount per 

sample occurs at 100nM siRNA concentration at 48 hours. This is shown in figure 11 and 12 

where the reduction in NHERF2 and NHERF1 is again significantly different, 61% and 47% 

reduction respectively. As with PKC ∆ there are no other significant protein reductions; 

which indicates less effective siRNA knockdowns.  

 

 

 

 

3.4. siRNA expression profile  

Data obtained from the siRNA optimisation assays for PKC δ, NHERF-1 and NHERF-2 was 

employed for the siRNA knockdown experiments; the conditions which gave the most 

significant knockdown were used (100nM concentration of siRNA at 48 hours). 

siRNA knockdown was performed on LAR ∆P MEF cells, the knockdown of PKC δ, 

NHERF-1 and NHERF-2 proteins were all analysed to investigate and measure any effect 

upon the PDGF receptor amount and phosphorylation. Immunoprecipitates were attained 

using WGA beads and samples were then run on 7% gels; membranes were blotted initially 

with PY99 antibody to give a measurement of the amount of PDGF receptor phosphorylation 

per sample, to measure the effect of the siRNA knockdown. The membrane was stripped and 

re-blotted with CTβ antibody to give a measurement of the amount of PDGF receptor present.  
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PKC δ 

 

 Figure 14. PY99 antibody western blot , showing the amount of PDGF phosphorylation in the samples after 

PKC δ siRNA knockdown. Where lane 1 and 2 are control siRNA, un-stimulated and PDGF-BB ligand 

stimulation (10 minutes) respectively. Lane 3 and 4 are PKC δ siRNA un-stimulated and PDGF-BB ligand 

stimulation (10 minutes) respectively. Lanes 5-8 contain the total cell lysate equivalent. 

 

Figure 15. CTβ antibody western blot, showing the amount of PDGF present in the samples after PKC δ siRNA 

knockdown. Where lane 1 and 2 are control siRNA, un-stimulated and PDGF-BB ligand stimulation (10 

minutes) respectively. Lane 3 and 4 are PKC δ siRNA un-stimulated and PDGF-BB ligand stimulation (10 

minutes) respectively. Lanes 5-8 contain the total cell lysate equivalent. 

 

←205kDa 
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Figure 16. Western blot data showing the amount of PDGF receptor expression; from left to right, IP samples: 

control siRNA and PKC δ siRNA and total cell lysate sample of the control and PKC δ knockdown. Error bars: 

standard deviation.   

                              

 

 

 

 

NHERF-2 

 

Figure 17. PY99 antibody western blot, showing the amount of PDGF phosphorylation in the samples after 

NHERF-2 siRNA knockdown. Where lane 1 and 2 are control siRNA, un-stimulated and PDGF-BB ligand 

stimulation (10 minutes) respectively. Lane 3 and 4 are NHERF-2 siRNA un-stimulated and PDGF-BB ligand 

stimulation (10 minutes) respectively. Lanes 5-8 contain the total cell lysate equivalent. 
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Figure 18. CTβ antibody western blot, showing the amount of PDGF present in the samples after NHERF-2 

siRNA knockdown. Where lane 1 and 2 are control siRNA, un-stimulated and PDGF-BB ligand stimulation (10 

minutes) respectively. Lane 3 and 4 are NHERF-2 siRNA un-stimulated and PDGF-BB ligand stimulation (10 

minutes) respectively. Lanes 5-8 contain the total cell lysate equivalent. 

 

 

                 
Figure 19. Western blot data showing the amount of PDGF receptor expression; from left to right, IP samples: 

control siRNA and NHERF-2 siRNA and total cell lysate sample of the control and NHERF-2 knockdown. 

Error bars: standard deviation   
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NHERF-1 

Figure 20. PY99 antibody western blot, showing the amount of PDGF phosphorylation in the samples after 

NHERF-1 siRNA knockdown. Where lane 1 and 2 are control siRNA, un-stimulated and PDGF-BB ligand 

stimulation (10 minutes) respectively. Lane 3 and 4 are NHERF-1 siRNA un-stimulated and PDGF-BB ligand 

stimulation (10 minutes) respectively. Lanes 5-8 contain the total cell lysate equivalent 

 

Figure 21. CTβ antibody western blot, showing the amount of PDGF present in the samples after NHERF-1 

siRNA knockdown. Where lane 1 and 2 are control siRNA, un-stimulated and PDGF-BB ligand stimulation (10 

minutes) respectively. Lane 3 and 4 are NHERF-1 siRNA un-stimulated and PDGF-BB ligand stimulation (10 

minutes) respectively. Lanes 5-8 contain the total cell lysate equivalent. 

                     
Figure 22.Western blot data showing the amount of PDGF receptor expression; from left to right, IP samples: 

control siRNA and NHERF-1 siRNA and total cell lysate sample of the control and NHERF-1 knockdown. 

Error bars: standard deviation.   
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The data obtained from western blot analysis clearly shows that the siRNA knockdown of 

PKC δ has a significant effect upon the PDGF receptor. The results suggest that when PKC δ 

is inhibited (a successful knockdown) it has a positive effect on PDGF receptor expression 

and  phosphorylation in LAR ∆P cells; figure 14 clearly shows a higher amount of PDGF 

receptor phosphorylation in the PDGF-BB stimulated sample (lane 4) in comparison to the 

stimulated control siRNA sample (lane 2). This result can be further determined with band 

quantification (whereby phosphorylated PDGF receptor (PY99) data is divided by the amount 

of receptor present (CTβ)). Figure 16 clearly shows the effect that the knockdown of PKC δ 

has upon the PDGF receptor; whereby the PDGF receptor expression is more than doubled 

(roughly 52%) in IP samples where PKC δ (stimulated) has been inhibited; in comparison to 

the control siRNA (stimulated). This pattern is also closely resembled in the total cell lysate 

samples where there is a 20% increase, as seen in figure 16.  

Western blot analysis also showed that the siRNA knockdown of NHERF-2 equally had a 

significant effect upon the PDGF receptor. As with the PKC δ knockdown, results suggest 

that when the NHERF-2 structural protein is inhibited it leads to a positive effect on PDGF 

receptor phosphorylation and expression in LAR ∆P cells. This is shown in figure 17 where 

there is a distinctive increase in PDGF phosphorylation in stimulated samples treated with 

NHERF-2 knockdown siRNA (lane 4), in comparison to that seen in the control samples 

(lane 2). This result can be further determined with band quantification (whereby 

phosphorylated PDGF receptor (PY99) data is divided by the amount of receptor present 

(CTβ)). Figure 19 clearly shows the effect that the knockdown of NHERF-2 has upon the 

PDGF receptor; whereby the expression of the PDGF is more than doubled (roughly 62%) in 

IP samples where NHERF-2 (stimulated) has been inhibited; in comparison to the control 

siRNA (stimulated). This can also be seen with the total cell lysate samples where there is a 

20% increase, as seen in figure 19. 

Western blot analysis for NHERF-1 siRNA knockdown also shows that the protein plays a 

major role relating to PDGF receptor expression in LAR ∆P cells. The data suggests that 

when NHERF-1 is inhibited it leads to a negative effect upon PDGF receptor phosphorylation 

and expression. Figure 20 shows that difference in PDGF receptor phosphorylation in control 

and NHERF-1 knockdown samples; the amount of phosphorylation in NHERF-1 siRNA 
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samples is visibly lower in comparison to that of the control (lanes 4 and 2 respectively). This 

result can be further determined with band quantification (whereby phosphorylated PDGF 

receptor (PY99) data is divided by the amount of receptor present (CTβ)). Figure 22 shows 

conclusively the effect of the inhibition of NHERF-1 has upon the PDGF receptor 

expression; whereby the expression is significantly reduced, roughly 77% in IP samples 

where NHERF-1 is in inhibited compared to control siRNA. This pattern is repeated with 

total cell lysate samples where there is a reduction of 71% as seen in figure 22.   

 

 

 

3.5. Downstream protein signalling pathway expression 

Successful siRNA knockdowns of PKC δ, NHERF-1 and NHERF-2 were further analysed; 

ERK a downstream signalling protein was analysed to see if the siRNA knockdown on the 

PDGF receptor contributed to further changes.  

Total cell lysate from samples that had achieved a successful knockdown were loaded into a 

10% gel. The membrane was initially blotted with anti- phosphatase ERK ½ (p-ERK) 

antibody (rabbit ab). This antibody detects phosphorylated ERK molecules present within the 

sample. The membrane was stripped and re-blotted with anti ERK ½ Protein (rabbit) which 

detects the total amount of ERK proteins present. 

 pERK 

Figure 23. pERK antibody western blot shows the amount of downstream receptor present within the total cell 

lysate samples (double band). Lanes 1-4 show PKC δ, 5-8 NHERF-1 and 9-12 NHERF-2. For each set of total 

cell lysates from left to right: 1-control siRNA, 2- control siRNA + stimulation, 3- active siRNA, 4- active 

siRNA + stimulation. 
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ERK 

 
Figure 24. ERK antibody western blot shows the amount of downstream receptor present within the total cell 

lysate samples (double band). Lanes 1-4 show PKC δ, 5-8 NHERF-1 and 9-12 NHERF-2. For each set of total 

cell lysates from left to right: 1-control siRNA, 2- control siRNA + stimulation, 3- active siRNA, 4- active 

siRNA + stimulation. 

 

                      
Figure 25. Western blot data showing the amount of ERK protein expression in successful siRNA knockdowns 

of PKCδ NHERF-2 and NHERF-1. From left to right, total cell lysate samples: control –(un-stimulated and 

stimulated), and siRNA (un-stimulated and stimulated).  

 

 

Western blot analysis confirms there are differences with ERK expression when PKC δ, 

NHERF-2 and NHERF-1 proteins are inhibited. Figure 23 and 24 show the amount of ERK 

phosphorylation and the total amount of ERK present in each sample; further analysis 

through band quantification clearly shows that there is a significant difference when PKC δ 

and NHERF-2 are knocked down. This can be seen in figure 25, which shows the amount of 
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ERK being expressed in each sample; when PKC δ is inhibited there is a significant increase 

in ERK expression; data shows a 70% increase in the stimulated sample when compared to 

that of the control siRNA stimulated sample. The same pattern is seen too with NHERF-2 

knockdown, whereby there is an increase of roughly 42%, figure 25 shows this data; however 

the change in ERK expression is not as significant as with PKC δ. NHERF-1 knockdown 

however follows the same pattern as seen with PDGF expression; after a successful 

knockdown of NHERF-1 there is a decrease in ERK expression. Data shows that there is a 

28% decrease in ERK expression when compared to the stimulated control siRNA sample; 

this can be clearly seen in figure 25. 

 

 

 

4.0. Discussion 

 

Immunoprecipitates were obtained from both mouse embryonic fibroblast (MEF) wild type 

cells and LAR ∆P cells; the PDGF protein was isolated while other proteins present were 

precipitated from the sample. The samples were subjected to western blot analysis to 

determine which IP method gave the best PDGF receptor signal. CTβ antibody, CTβ serum 

and WGA beads were investigated according to a set protocol (as stated above).  

The results obtained from western blot analysis show that CTβ antibody and WGA beads 

gave the highest PDGF receptor signal; figure 5 shows PDGF receptor phosphorylation in IP 

samples that have been treated with PY99 antibody, an anti-phosphotyrosine antibody. It can 

be clearly seen that PDGF receptor phosphorylation is greater in both CTβ antibody and 

WGA IP samples in comparison to the CTβ serum IP. This pattern was further repeated when 

IP samples were treated again with CTβ antibody (an anti PDGFR antibody), whereby there 

was a greater amount of PDGF receptor present in CTβ antibody and WGA IP samples. 

These two methods of collecting IPs were then utilized in later assays.  
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The effect of PMA upon the PDGF receptor was investigated to determine the outcome of the 

signal transduction enzyme protein kinase C (PKC), has upon the expression of the PDGF 

receptor. PMA is a diester of phorbol which is regularly used in the activation of PKC.      

It is hypothesised that PKC (δ) regulates PDGF receptor activation through inhibiting 

phosphorylation of the tyrosine residues. 

MEF wild type and LAR ΔP cells were treated with PMA (and DMSO as a control); samples 

treated with PMA overnight resulted in degraded PKC thus no active kinases. Western blot 

analysis was performed on the samples to determine the effect that the active PKC signalling 

pathway had upon the PDGF receptor expression in both cell types.  

The results obtained from western blot analysis show that PDGF receptor phosphorylation is 

increased in both MEF WT and LAR ΔP cells when treated with PMA, in comparison to 

samples treated with DMSO. Figure 6 shows PDGF receptor phosphorylation, it can be 

clearly seen that there is a increase in receptor phosphorylation in WT cells when treated with 

PMA; more significant however is the increase in the receptor phosphorylation in LAR ΔP 

cells when treated with PMA compared to that of DMSO treated samples. This pattern is 

repeated when samples are stimulated with PDGF-BB ligand; an increase in PDGF 

phosphorylation is still present in both cell types. Figure 7 shows samples treated with CTβ 

antibody; the amount of PDGF receptor present in samples treated with PMA appears less 

affected when compared to the DMSO samples. This suggests that the PMA does not have an 

effect upon amount of receptor expressed in each sample; however PMA is seen to activate 

the phosphorylation and thus activation of the PDGF receptor.  

This somewhat suggests that active PKC, regulates the PDGF β-receptor through inhibiting 

phosphorylation of the tyrosine residues due to serine phosphorylation thus inhibiting full β-

receptor activation. Moreover the significant difference seen with LAR ΔP cells in 

comparison to wild type cells (when treated with PMA) suggests that LAR plays an 

inhibitory role with blocking PKC activation; possibly through the mechanism of down 

regulating c-Abl activity which has a ‘knock on’ effect with PKC activation, thus allowing 

for PDGF β-receptor activation. The PMA experiment should be repeated to determine the 

results obtained.  
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siRNA optimisation was performed on LAR ∆P MEF cells in order to analyse optimal 

conditions for the knockdown of PKC δ, NHERF-1 and NHERF-2 proteins. 

Once optimal conditions had been determined (stated above) siRNA knockdown was 

performed on LAR ∆P MEF cells, the knockdown of PKC δ, NHERF-1 and NHERF-2 

proteins were all analysed to investigate and measure any effect upon the PDGF receptor with 

respects to expression and phosphorylation. Immunoprecipitates from samples were collected 

and subjected to western blot analysis.  

The results obtain from the analysis showed that PDGF receptor phosphorylation is increased 

with the knockdown of PKC δ; this can be seen in figure 14; which shows the knockdown of 

samples treated with PCK δ, compared to samples treated with control siRNA. Western blot 

analysis illustrated that when samples were stimulated with PDGF –BB ligand that PDGF 

receptor phosphorylation was greater when PCK δ had been knocked down (figure 14). This 

pattern was not seen however when the total amount of PDGF receptor was investigated, 

using CTβ antibody. Figure 15 shows samples from both PCK δ and control siRNA, it can be 

clearly seen that in both IP and total cell lysate samples that the amount of PDGF receptor 

present has no significant differences between PCK δ and control siRNA samples.  

Figure 16 additionally highlights this concept whereby the result of the knockdown of PKC δ 

upon the PDGF receptor can be clearly seen. The PDGF receptor expression is more than 

doubled (roughly 52%) in IP samples when PKC δ (stimulated) has been inhibited; in 

comparison to the control siRNA. This pattern is also closely resembled in the total cell lysate 

samples where there is a 20% increase (figure 16). 

The results further suggest that inhibiting the activation of PKC δ increase the 

phosphorylation of the PDGF β-receptor; and that once active, PKC regulates the PDGF β-

receptor through inhibiting phosphorylation of the receptor which inhibits full activation.  

It has been proposed (Yuan et al., 1998; Krasel et al., 2001; Wu et al., 2005) that c-Abl 

activates the signal transduction enzyme protein kinase C (PKC), once active PKC then 

activates the G protein-coupled receptor kinase-2 (GRK2), which has been shown to be a 

substrate for PKC (Krasel et al., 2001). PKC phosphorylation of the serine residues of GRK2 

increases its activity; which has been suggested due to the relief of tonic inhibition by 

calmodulin (Krasel et al., 2001). GRK2 has been shown to phosphorylate the serine residues 
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on the PDGF β-receptor which in turn diminishes the signalling by the receptor (Wu et al., 

2005). 

The results obtain from the PKC δ knockdown further conclude that shown with the PMA 

assays, in that the inhibition of PKC δ in turn leads to an increase in PDGF β- receptor 

phospohrylation in LAR ΔP cells; this suggests LAR plays an inhibitory role blocking PKC 

activation through the mechanism of down regulating c-Abl activity allowing for PDGF β-

receptor activation. siRNA knockdown of PKC δ should therefore be further tested on wild 

type MEF cells to confirm this hypothesised mechanism.   

The results attained from the analysis also showed that the PDGF receptor phosphorylation is 

increased with the knockdown of NERF2; this can be seen in figure 17; which shows the 

knockdown of samples treated with NHERF2, compared to those treated with control siRNA. 

Western blot analysis illustrated that when samples were stimulated with PDGF –BB ligand 

the PDGF receptor phosphorylation was significantly greater when NHERF2 had been 

knocked down (figure 17). This pattern was not seen however when the total amount of 

PDGF receptor was investigated. Figure 18 shows samples from both NHERF2 and control 

siRNA, it can be clearly seen that in both IP and total cell lysate samples that the amount of 

PDGF receptor present has no significant differences between samples treated with NHERF2 

siRNA and control siRNA.  

PDGF receptor phosphorylation was more than doubled (roughly 62%) in IP samples that had 

been stimulated by PDGF-BB ligand where NHERF2 had been knocked down (figure 19); 

compared to that of the control. A 20% increase in PDGF expression was also seen in total 

cell lysate samples. The data suggests that NHERF2 has an inhibitory effect upon PDGF 

receptor activation when expressed in cells. It has been suggested that NHERF2 binds 

directly to the PDGF receptor via the carboxyl terminus (Maudsley et al., 2000). 

The results obtained from Western blot analysis for NHERF-1 siRNA knockdown also show 

that the protein plays a major role relating to PDGF receptor expression in LAR ∆P cells. The 

data shows that samples treated with NHERF-1 knockdown siRNA had less PDGF β-receptor 

phosphorylation compared to control siRNA (figure 20). Again there is little difference in the 

total amount of PDGF receptor present, as seen with CTβ antibody (figure 21). The results 

obtained are illustrated in figure 20, where the effect of the inhibition of NHERF-1 upon the 

PDGF receptor is further determined; roughly a 77% reduction in PDGF receptor expression 
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in IP samples with the knockdown of NHERF1 in comparison to control siRNA. A reduction 

of 71% is also seen in total cell lysate samples.  

This data suggests that NHERF1 has a crucial role in PDGF receptor activation. The results 

obtained can be further be determined as it has been previously suggested (Maudsley et al., 

2000) that the Na
+
/H

+
 exchanger regulatory factor (NHERF1) protein interacts with the 

PDGF receptor through the binding via the carboxyl terminus; it has been shown to have a 

high binding affinity with the PDZ domain (Lau et al., 2001). The binding of NHERF1 to the 

PDGF receptor poteniates the autophosphorylation of the PDGF receptor which leads to the 

dimerization and full activation of the receptor; which in turn leads to the activation of 

downstream signal regulated kinase’s such as the MAPK pathway. It has been suggest that 

the potenial ability for NHERF1 to increase PDGF receptor activity and signalling is 

dependant upon the ability for NHERF1 to oligomerize; this has been shown to occur when 

NHERF1 is bound via the carboxyl terminus (PDGF-CT) (Maudsley et al., 2000).  It has also 

been suggested that NHERF2 also actively binds to the PDGF-CT; this results in no 

stimulatory signal for the autophosphorylation of the PDGF receptor thus reducing receptor 

tyrosine kinase activity, when NHERF2 is over expressed in cells.        

The findings reveal that NHERF1 and NHERF2 have the ability to bind directly to the PDGF 

receptor, thus leading to the increase or decrease respectively in receptor autophosphorylation 

and activity; presenting a novel mechanism in which the activity of the PDGF receptor is 

regulated.  

As stated above the G protein-coupled receptor kinase-2 (GRK2) has the ability to 

phosphorylate serine residues on the PDGF β-receptor leading to the desensitisation of the 

receptor. It has been stated (Hildreth et al., 2004) that GRK 2 over expression can also 

significantly reduce the binding association between PDGF β-receptor and NHERF1 due to 

the serine residue phosphorylation. This suggests that GRK2 not only desensitises the PDGF 

β-receptor it also plays a crucial role in dissociating NHERF1 from the receptor thus 

diminishing autophosphorylation and receptor activation. GRK2 could also be associated 

with increased NHERF2 expression which further inhibits PDGF receptor dimerization and 

activation (Zheng., et al., 2011).  

siRNA knockdown of both NHERF1 and NHERF2 should be carried on in wild type cells to 

determine the effect LAR has upon the signalling mechanism.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Zheng%20W%5BAuthor%5D&cauthor=true&cauthor_uid=21300149
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Successful siRNA knockdown of PKC δ, NHERF1 and NHERF 2 was further investigated by 

analysing the downstream signalling protein ERK. Western blot analysis shows that there are 

differences with ERK expression when PKC δ, NHERF-2 and NHERF-1 proteins are 

inhibited. When PKC δ is inhibited there is a significant increase in ERK expression; data 

shows a 70% increase in the stimulated sample when compared to that of the control siRNA 

stimulated sample (figure 25). An increase in ERK expression is also seen with successful 

NHERF-2 knockdown, whereby there is an increase of roughly 42% (figure 25); however the 

change in ERK expression is not as significant as with PKC δ. NHERF-1 knockdown showed 

there is a decrease in ERK expression. Data shows that there is a 28% decrease in ERK 

expression when compared to the stimulated control siRNA sample (figure 25); suggesting 

the potenial ability for NHERF1 to increase PDGF receptor activity is also crucial for 

downstream signalling.  

By inhibiting PKC δ through siRNA knockdown it in turn leads to the diminishing of GRK2 

activation. The data suggests that a loss of GRK2 activity, by which the PDGF β-receptor 

becomes desensitised due to serine phosphorylation, results in an increase in MAP kinase 

pathway. The results therefore show that GRK2 plays a critical regulatory role not only in 

reducing the activity of the PDGF β-receptor but also in key downstream signalling 

pathways, including the MAP kinase pathway. As expected NHERF2 also regulates 

downstream signalling by inhibiting PDGF receptor dimerization reducing its full activation; 

however the due to the significant effect seen by the reduction in GRK 2, could suggest that 

GRK2 also regulate down downstream molecules through the inhibition of other signals. It 

has been suggested (Carmen, et al., 2006) that GRK2 regulates the activity of ERK through 

either a direct or coordinate interaction with the mitogen-activated protein kinase kinase 

(MEK). Therefore GRK2 also has a crucial role in controlling ERK activation as well as 

regulating the PDGF β-receptor.  

 

 

 

 

 



88 
 

4.1. Conclusion 

 

The data obtained from the research study has shown that the knockdown of PKC δ, NHERF 

1 and NHERF2 affects the phosphorylation and activity of the PDGF receptor in cells where 

the LAR phosphatase domains have been deleted. The knockdown of PKC δ and NHERF2 

was shown to increase PDGF receptor phosphorylation, suggesting that PKC δ plays an 

inhibitory role in the activation of the receptor; whereas the knockdown of NHERF1 had a 

detrimental effect upon receptor activation suggesting NHERF1 is crucial for PDGF receptor 

dimerization. 

The results further determine the hypothesis that LAR regulates the cytoplasmic tyrosine 

kinase c-Abl; with the deletion of LAR there is no down regulation of c-Abl, which can 

therefore lead to activation of the signal transduction enzyme protein kinase C (PKC). PKC 

activates the G protein-coupled receptor kinase-2 (GRK2), a substrate for PKC; which then 

phosphorylates the serine residues on the PDGF β-receptor, in turn desensitises the receptor 

and diminishes signalling. GRK 2 over expression has also been assosciated with the 

significant reduction in the binding association between PDGF β-receptor and NHERFl; 

dissociating NHERF1 from the receptor thus diminishing autophosphorylation and receptor 

activation. The results also show that when PKC δ is knocked down there is a significant 

increase in activity in the downstream signalling protein ERK; a greater increase seen then in 

NHERF2 knockdown. This further gives evidence to the suggestion that GRK2 regulates the 

activity of ERK through either a direct or coordinate interaction with the mitogen-activated 

protein kinase kinase (MEK). Therefore GRK2 also has a crucial role in controlling ERK 

activation as well as negatively regulating the PDGF β-receptor. 

The data obtained facilitates the novel mechanism that LAR helps to regulate PDGF receptor 

signalling by ligand induced activation of the PDGF β-receptor, through its mechanism of 

down regulating c-Abl activity. This inhibits the activation of PKC δ and in turn GRK2, 

which desensitises PDGF β receptor activation and downstream signalling pathways; as well 

as dissociating NHERF1 and promoting NHERF2 binding to the PDGF receptor further 

diminishing receptor dimerization.  
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Figure 26: The mechanism of LAR upon PDGF receptor signalling  

 

 

 

Figure 27: The mechanism of PKC-δ and GRK2 upon PDGF-β receptor activation and signalling  
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