
1

PARAMETRIC SWEEP SEARCH

FOR PARALLEL ROBOT

WORKSPACE DETERMINATION

by

CHE ZULKHAIRI ABDULLAH

A thesis submitted to

The University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

School of Mechanical Engineering

Collage of Engineering and Physical Sciences

The University of Birmingham

September 2013

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

2

SYNOPSIS

The research presented in this thesis aims to augment the conventional kinematic-based

parallel robot workspace determination into an interactive 3D visual system by

highlighting the design issue clearly and providing important design information to the

user in real-time. The conventional iteration involves heavy computation, high resolution

data processing and multiple technical skills set which usually reduce the design option

into amending an existing design most related to the requirement. The thesis presents a 3D

simulation system that is open and modular and allows for algorithm and technical

functional extensions.

Following an extensive literature survey on key aspects relating to parallel design

development, parallel robot singularity, and search for workspace, five main phases of

experimental works were undertaken to develop a strategic search and analysis of parallel

robot’s workspace.

Phase 1 involves the development of a 3-dimensional simulation system based on Python

in order to search for workspace and singularity. The 3-dimensional motions are based on

Kinematic, and should integrate easily with various algorithms. The simulation system

produces a draft quality result, which is scalable to higher resolutions. Phase 2 involves the

development of geometric singularity and Grassmann singularity real-time test. The code

should work effortlessly when user redefines the architecture or geometry of the robot.

Phase 3 involves the development of Boolean Parametric sweep search strategy that

3

provides an analysis and validation method for the system. The system has to consider

various factors such as limit, edge, resolution, and travel direction. This phase involves the

integration of 3D and 4D interpolation and extrapolation strategies including Trilinear, L-

system fractal, Simplex, adjacency tree and Marching Cube. Phase 4 involves the

development of a dynamic grid that is easily integrated into 2D and 3D databases. The

haptic engine finds position and orientation information based on this dynamic grid. The

grid is tested for a number of concepts such as Simplex, Binary tree and L-system fractal.

It was found that the parametric sweep based on Boolean control is applicable in real-time

dynamic grid system, where the direction, region and constraint are configurable by either

the user or automatically by the system. Phase 5 involves the development of a controller

for the Python simulation. This is a multiple Degree-of-Freedom device with two-way

motor control for all axes, which is fitted with sensors to provide pre-processed value for

distance and orientation on all axes. The controller is a haptic device that provides the user

with force-feedback sensation while user operates and manipulates the device. The haptic

device provides (i) control for the Python simulation, (ii) processed data to a Matlab and

Solid Works system, and (iii) singularity-free control of an associated physical robot. The

proposed system is finally verified against a number of applications.

4

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my supervisor Dr Mozafar

Saadat, in the School of Mechanical Engineering, University of Birmingham for his

academic supervision, guidance and encouragement over the course of the research.

I would like to acknowledge the support from Yayasan Telekom Malaysia and Multimedia

University Cyberjaya, Malaysia for providing the opportunity, time and scholarship which

enabled this research to be carried out.

I would also like to express my heartfelt gratitude to my family (Rodiah Khalid, Aisya

Imya and Aileen Fatima Imya) for their understanding and support in providing endless

encouragement and motivation.

Lastly, I would like to thank my friend Mr Hamid Rakhodaie, Mr Ali Tayebisadrabadi and

Mr Nik Farid Che Zainal and colleagues for all their assistance and support, and Mr

Hisham bin Jabar for reading through my thesis.

5

TABLE OF CONTENTS

SYNOPSIS .. 2

ACKNOWLEDGMENTS ... 4

LIST OF FIGURES ... 9

LIST OF TABLES ... 11

Chapter 1 : INTRODUCTION ... 12

1.1 Background to the project .. 12

1.2 Aims and objectives ... 16

1.3 Thesis layout .. 17

Chapter 2 : LITERATURE REVIEW .. 18

2.1 Challenges in Parallel Robot simulation design .. 18

2.2 Parallel Robot’s Singularity ... 19

2.3 Parallel Robot’s workspace .. 21

2.4 Haptic Controller .. 22

2.5 Limb rehabilitation strategy ... 25

2.6 Cutting path strategy based on Bezier .. 29

Chapter 3 : KINEMATIC MODEL .. 30

3.1 Introduction .. 30

3.2 Kinematic model .. 30

3.3 Workspace calculations based on inverse kinematic ... 34

3.4 Conclusion ... 35

Chapter 4 : GRASSMANN ALGEBRA .. 36

4.1 Introduction .. 36

4.2 Grassmann theory... 36

4.3 Weighted value ranking based on Grassmann algebra .. 40

4.4 Results for Grassmann probability experiment .. 44

4.5 Conclusion ... 45

Chapter 5 : PARAMETRIC SWEEP SEARCH .. 46

5.1 Introduction .. 46

5.2 Introduction to parametric sweep ... 46

5.3 Condition test theory .. 47

5.4 Parametric Sweep theory.. 50

6

5.5 Parametric sweep modelling .. 54

5.6 Basic Sweep theory .. 56

5.7 Advanced Parametric Sweep search based on L-system 57

5.8 Boolean control for Parametric Sweep search ... 60

5.9 Test point population theory .. 61

5.10 Test point population based on fractal theory .. 63

5.11 Parametric Sweep methodology ... 64

5.12 Parametric sweep random fractal generator ... 65

5.13 Parametric sweep type Hilbert 3D ... 66

5.14 Parametric sweep grid extrapolation .. 67

5.15 Parametric sweep Euler-convention ... 68

5.16 Parametric sweep spiral grid .. 69

5.17 Parametric sweep 2D based on turtle-cursor method ... 72

5.18 Parametric sweep grid strategic distribution .. 74

5.19 Parametric sweep grid based large quaternion ... 74

5.20 Conclusion ... 76

Chapter 6 : BOOLEAN CONTROL FOR PARAMETRIC SWEEP SEARCH 78

6.1 Introduction .. 78

6.2 The Boolean algebra for fractal parametric sweep .. 78

6.3 Boolean Logic for search control and validation strategy 81

6.4 Case studies .. 83

6.4.1 Case 1: Boolean search for platform A’s path when platform E’s path is
known. ... 83

6.4.2 Case 2: Boolean method for data slicing analysis 85

6.4.3 Case 3: Boolean method for search whilst avoiding obstacle 87

6.4.4 Case 4: Boolean method for search on a surface mesh 88

6.4.5 Case 5: Boolean method for interval analysis ... 90

6.4.6 Case 6: Boolean method for quadratic interpolation edge determination 92

6.4.7 Case 7: Boolean method for L-system fractal random growth pattern
determination ... 92

6.4.8 Case 8: Boolean method for determining Grassmann search behaviour . 94

6.4.9 Case 9: Boolean method for finding singularity loci 94

6.5 Conclusion ... 95

7

Chapter 7 : PATH PLANNING ... 97

7.1 Introduction .. 97

7.2 Definition for search region ... 97

7.3 Path planning strategy for parametric sweep search .. 99

7.4 Experiment setup for two different scenario .. 101

7.4.1 Setup 1: Path strategy between two Constant Orientation Workspace.. 101

7.4.2 Setup 2: Path strategy for platform A when platform E is moving and
following a path ... 102

7.5 Path planning with slice analysis for trajectory control 103

7.6 Experiment with various path planning methodologies 105

7.6.1 Method (1) k-means clustering .. 106

7.6.2 Method (2) following a given target .. 107

7.6.3 Method (3) A* D* 3d path planning.. 108

7.6.4 Method (4) Voxel-planner based on Binary tree 108

7.6.5 Method (5) Connecting two constant orientation workspace dataset 112

7.6.6 Method (6) 3D Ternary Interpolation .. 113

7.6.7 Method (7) 3D sweeping ... 115

7.7 Conclusion ... 121

Chapter 8 : HAPTIC CONTROLLER DEVELOPMENT ... 123

8.1 Introduction .. 123

8.2 The haptic controller kinematics .. 124

8.3 Kinematic formulation for the haptic controller .. 125

8.4 The Haptic structure design ... 126

8.5 Control and Validation ... 128

8.6 Haptic interaction method using Simplex .. 131

8.7 Haptic interaction method using Voxel.. 132

8.8 Haptic interaction method using ternary and binary tree 133

8.9 Sensors for detecting position and orientation ... 134

8.10 The experimental setup .. 135

8.11 The IMU sensor for detecting orientation .. 136

8.12 Yaw North Compass noisy output ... 138

8.13 RGB camera for detecting linear translation .. 141

8.14 Haptic structure calibration .. 146

8.15 Case studies for validating the Haptic interaction ... 148

8

8.15.1 Case 1: Two spherical shape in the workspace 148

8.15.2 Case 2: Simplex mesh in the workspace ... 149

8.16 Conclusion ... 150

Chapter 9 : APPLICATION OF PARALLEL ROBOT .. 152

9.1 Introduction .. 152

9.2 Application 1: Control strategy based on Bezier method 153

9.2.1 Bezier method for producing a ternary extrusion 153

9.2.2 Simulation result .. 156

9.3 Application 2: Path planning based on dynamic force and velocity 157

9.4 Application 3: Path’s slicing analysis as a therapist’s intervention tool in ankle
robotic rehabilitation ... 157

9.4.1 Experiment setup for the limb rehabilitation project 158

9.4.2 Theory for therapist intervention ... 160

9.4.3 Geometric Brownian motion ... 165

9.4.4 Adjacency graph .. 171

9.4.5 Optimizing the Hybrid robot effort to follow the given PATH 171

9.4.6 Optimizing the given path ... 172

9.4.7 The adjacency graph variations ... 172

9.4.8 Experiment results ... 174

9.5 Conclusion ... 175

Chapter 10 : CONCLUSIONS ... 177

10.1 Project aims and objectives .. 177

10.2 Summary .. 178

10.2.1 Phase 1 ... 179

10.2.2 Phase 2 ... 180

10.2.3 Phase 3 ... 181

10.2.4 Phase 4 ... 182

10.2.5 Phase 5 ... 183

10.3 Contributions of the research ... 185

REFERENCES .. 188

Appendices ... 197

9

LIST OF FIGURES

Figure 3-1 Schematic of hybrid parallel robot... 33
Figure 4-1 An example of Python rendering of the Grassmann coplanar indicator based on
vector bracket .. 44
Figure 4-2 Grassmann condition found within workspace region 45
Figure 5-1 Parametric sweep type Hilbert’s 3D. ... 67
Fi 5gure-2 Example Python rendering of a 2D-fractal pattern .. 73
Figure 5-3 Quadratic 3D Mandelbulb Set ... 76
Figure 5-4 Large quaternion .. 76
Figure 5-5 4D fractal grid .. 76
Figure 6-1 Example of 3D-fractal parametric sweep development history......................... 79
Figure 6-2 Example of 3D 3D-fractal parametric sweep development history 79
Figure 6-3 Example of 3D 3D-fractal parametric sweep development history 80
Figure 6-4(a) Middle Travelling Plate’s list of possible path when Top Travelling Plate
moves along the defined path and 12(b) Spline interpolation ... 84
Figure 6-5(a) Adjacency graph strategy to solve the 3D problem and 6-5(b) 1D array
network (A 2D solution) .. 85
Figure 6-6(a) Interpolation between slices and 6-6(b) 1D path between the 3 data slices. . 86
Figure 6-7 Example Python rendering of a work volume outside the two obstacles
volumetric region ... 88
Figure 6-8(a) Boolean method search avoiding obstacles and 6-8(b) red dots represent the
non-singularity points on the surface mesh ... 89
Figure 6-9 A univariate interpolations to find path on the mesh surface 90
Figure 6-10 An ‘interval analysis’ system for the mesh surface workspace 91
Figure 6-11 Example Python rendering of L-system fractal in automatic search mode 93
Figure 7-1 Path between [0][45] to [1][1] ... 101
Figure 7-2 Collection of datasets representing Platform A’s workspace 102
Figure 7-3 Adjacency graph network .. 106
Figure 7-4 K-means clustering example (point A, B and C) for 3 datasets representing
workspace for platform A .. 107
Figure 7-5 A marching cube 10-variations with trajectory indicator for seeding new branch
 ... 109
Figure 7-6 Seed for binary tree production placed within the workspace 110
Figure 7-7 Calibration parameters for binary tree ... 111
Figure 7-8 Example Python simulation rendering of a 3D binary tree 111
Figure 7-9 A constant orientation pose from start point [0,0] to end point [1,23] 112
Figure 7-10 Ternary interpolation ... 114
Figure 7-11 An example Ternary interpolation for a collection of planar slices. 115
Figure 7-12(a) Cubic parametric sweep and (b) patch grid ... 116
Figure 7-13 Test result for 3D sweeping method based on Adjacency complete graph ... 117
Figure 7-14 Pair-wise adjacency graph ... 118
Figure 8-1 Model of the Haptic Controller (PPPRRR) ... 126

10

Figure 8-2(a) the physical robot(left) and (b) the haptic controller(right) 128
Figure 8-3 Modality guide (3D Python simulation) .. 128
Figure 8-4 Matlab as a numerical system that validates the haptic engine experiment 129
Figure 8-5 Numerical workspace based on cubic parametric sweep................................. 130
Figure 8-6 End effectors tracking position .. 131
Figure 8-7(a) Example Python rendering of simplex data sampling where search direction
is moving towards a minima .. 132
Figure 8-8 Example Python rendering of 3D Voxel-based planner 133
Figure 8-9 Example Python rendering of ternary tree ... 134
Figure 8-10 Drift errors at Normal position .. 137
Figure 8-11 The Gyro (Y) delays .. 138
Figure 8-12 Quaternion elements result for Pitch angle between 20 to 160 degrees 139
Figure 8-13 A studies on combination effects for a Yaw Value test 140
Figure 8-14(a) Yaw Value for a fixed Pitch value, and (b) Yaw value for a fixed Pitch at
160’ and Roll at 130’ ... 141
Figure 8-15 Colour distribution and peak value .. 142
Figure 8-16 Dominant colour Centroids within each Cluster ... 142
Figure 8-17(a) Background noise in the RGB data acquisition, and (b) Noise due to
marker colour range is within the background colour range ... 145
Figure 8-18 Test plate for marker colour Yellow, Red, Green and Blue 145
Figure 8-19 Test result for linear X-axis error .. 147
Figure 8-20 Test result for linear Z-axis error ... 147
Figure 8-21 Example Python rendering of an obstacle region .. 149
Figure 8-22 Example Python rendering of haptic sensation simulation 150
Figure 9-1 Bezier patch with simulated end-effectors path segment is shown as yellow
node. .. 155
Figure 9-2 A demonstration of the cutting action following the Bezier path line 155
Figure 9-3 The Bezier patch data .. 156
Figure 9-4 3D topography plot of surface in (a) Test 7 vs (b) Test 8 [145] 157
Figure 9-5 Example dataset for series 50 to 80 ... 163
Figure 9-6 Polynomial result (order 2 and 4) .. 164
Figure 9-7 Cubic parametric sweep ... 164
Figure 9-8 Spherical parametric sweep ... 164
Figure 9-9 Brownian .. 166
Figure 9-10 Ulam spiral or Voxel ... 166
Figure 9-11 3D sweeping .. 166
Figure 9-12 Simple spiral .. 167
Figure 9-13 Sack spiral .. 167
Figure 9-14 Vogel spiral .. 167
Figure 9-15 Small diameter interpolation .. 173
Figure 9-16 Large diameter interpolation .. 173
Figure 9-17 Varied diameter interpolation .. 173
Figure 9-18 Plot for Bezier approximation for data series between data 50 to 80. 174
Figure 9-19 Plot for Bezier approximation for z-axis ... 174
Figure 9-20 Plot for Bezier approximation on x-axis .. 175

11

LIST OF TABLES

Table 1 3D grid system comparison (Low Resolution) ... 62
Table 2 L-system 2D to 3D Hamilton’s Quaternion comparison .. 63
Table 3 Mandelbrot 3D random generated test points. ... 65
Table 4 3D grid formation strategy based on 2D plane ... 69
Table 5 Comparison between Quaternion sweep systems .. 76
Table 6 Parametric sweep performance for Case 1 ... 82
Table 7 A random-generated 3D grids for case 2 .. 83
Table 8 Path comparison ... 119
Table 9 Python controller and the robot simulator .. 128
Table 10 Comparison between different settings for the objective function 132
Table 11 the approach for finding and estimating the given path 163
Table 12 Information regarding various extrusion methods for path optimization 166
Table 13 Comparison for ternary algorithm variations ... 167
Table 14 Comparison for ternary interpolation ... 173

12

Chapter 1: INTRODUCTION

1.1 Background to the project

Parallel robot contribution in industry can be seen, amongst others, in medical,

rehabilitation, machining, and assembly fields. It is also used to provide motion for

platform simulators. The characteristics of parallel robot is identified as being rigid,

accurate and high speed, where Song explains that due to manufacturing and assembly

issues, the robot’s error has to be reduced and compensated to achieve those qualities of

being highly accurate [1-3].

Parallel robot commonly has a small workspace, and since it allows for parametric scaling

to increase the workspace, it would require the increment of the robot’s size too.

Therefore, cost and work cell’s size and obstruction within the workspace have to be

considered early during the design stage.

Parallel robots are much stiffer, have more position accuracy and are capable of higher

speeds compared to serial robots. It is demonstrated that the geometrical errors of a parallel

robots are averaged out while those of serial robots accumulate [1,2]. Although parallel

robots exhibit higher Force/Torque loads with high accuracy and less errors, their errors

due to manufacturing and assembly have to be reduced and compensated to achieve those

qualities [2,3].

The traditional methods for calibration require mobility restraining and dependency on

error compensation or reduction algorithms, which limit the capabilities of parallel robot.

13

On the other hand, integrating sensors or redundant measurement devices into a parallel

robot system is not a straightforward task and has to be considered during the design stage.

An example of a developed parallel robot measuring device is described as being consisted

of linear variable differential transformer, a biaxial inclinometer, and a rotary sensor that

improves the measurement quality which is capable of performing simultaneous

measurements of position and orientation data in one cycle [4,5].

There are various singularities within a general non-singular workspace or path. These

include the issue with consistent acceleration, and the number of actuators which may

operate at the limit and the optimization or interpolation problem with numerical

approximation of the path, edge and position [6,7]. Poor convergence of numerical

methods for solving 4n-dimensional two point boundary value problem (TPBVP) for an n-

degree-of-freedom DOF manipulator has been demonstrated. It is also shown that

numerical systems cannot quickly solve and produce results for such a computation [4].

Monte Carlo method has been used to estimate the scatter plot of a workspace, while a

switching function has been used in situations where path parameters change has difficulty

finding an optimum solution. Numerical methods fail with the existences of arcs in the

path, where there are also control problems with non-constrained paths [6-8]. Furthermore,

there are problems with the limitation of using different dimensional data and algorithm in

solving time-optimal paths. The 3D solutions found using numerical method has to be

mapped onto 2D methods for detail analysis like obstacle avoidance. This is also true for

path planning, velocity and position planning, and other formulations which are not

generally available in 3D [5].

14

Parallel robot path planning has to consider various other factors. This path planning is

different to game design or CAD 3D path planning, where a parallel robot as a closed-loop

system has to consider kinematic, geometric constraint, Grassmann error, force, velocity

and speed error as its feature [9]. Qin explains that parallel robot path planning has to

consider geometric constraint, the Cspace and Cobstacle which are the space occupied by the

obstacle [8]. Even when a Bezier spline formulation can be performed in 3D to validate

parallel robot’s path, it has to consider all those other elements for a closed-loop structure

to move safely and perform its tasks [10].

Parallel robot’s 3D problem is usually remapped into 2D so that traditional and proven

methods can be used to solve this problem, and then remapped again into 3D. Roy

demonstrates 2D slicing methods which utilizes the 2D mapped formulation to get a 3D

representation of the solution. The method is referred to as Cspace mapping algorithms for

2D sliced workspace [11]. A 4 Cspace transformation for determining the 3D

representation is also suggested which is based on point, line, circle and the finite

dimensions of the robot [12].

The issue with parallel robot analysis is the amount of information, design complexity, and

closed-loop structure where relationship between each component has to be acknowledged.

Here a primary objective is to reduce the problem into a small and simple 2D problem,

where the focus is on the issue itself rather than the whole 3D space. Methods such as

slide-step have been introduced in order to rapidly establish the maximum reach or the

edge, and to rapidly find the end pose or the target. In order to improve trust in a

questionable region, a random generated test data has been suggested as a sub goal [6].

15

The force-feasible C-space for a path, where the best path on a mesh is found, has been

suggested through avoiding singularity loci space as the travel is done based on constant

orientation method. The other problems related to interpolation are listed as certain factor

may not be considered by the system such as the orientation compliance or the gradient

angle changes between the two poses from start to finish position [7].

There is a significant difference when the parametric sweep search for non-singularity path

is done using serial or parallel search method. An example of experimentation with

parallel search in a C-space consists of a seed generator placed at any node with certain

criteria for branching out to form the parallel search [8]. In parallel robot design activity

the literature shows the ambiguity of having singularity within a workspace, where there is

an issue of data complexity and multiple solutions with varied result.

In this thesis a simulation system is developed to help visualize the parallel robot design

problems with a focus on the workspace search problem. The system is also capable of

providing a quick and draft solution before the designer proceeds with the final design

validation using kinematic based numerical methods. The system extends the traditional

parametric sweep method by exploring into various aspects of grid type and technical

parameters.

The parallel robot configuration is constrained by the parameters that define its geometry

including coordinates of the joint on the base, coordinates of the joint on the travelling

plate, and the actuators’ length. In the research presented in this thesis the chosen

geometry follows an existing similar physical robot at the laboratory. A similar geometry

has been developed for the numerical system based on Solid Work and Matlab.

16

Investigation has included development of multiple systems of Python simulation,

numerical system using Solid Work and Matlab software tools, a physical robot, and the

control between all three systems. The combinatorial classes for the chosen structure is one

class of 6-6 (|6) and two classes of 6-3 (/\3) and (/|\/\|) [13].

1.2 Aims and objectives

The overall aim of the project is to develop an assistive tool for the design of parallel robot

with a specific focus on rapid identification of workspace boundaries and singularities

through a 3D simulation system. The result is achieved through real-time control and

manipulation of proposed haptic controller devices.

The specific objectives necessary to achieve the project aim were;

1. To develop a 3D simulation system that display parallel robot’s CAD model

that conforms to a kinematic model.

2. To develop parametric sweep search methods that search for parallel robot’s

workspace

3. To develop a Grassmann validation system that checks for Grassmann-related

errors within the workspace region.

4. To develop a haptic controller that provides force-feedback to user that helps

identify singularity errors within a 3D space.

17

1.3 Thesis layout

The thesis is organised into 10 main Chapters. Chapter 1 gives a brief introduction to the

project including background to the work, research aims and objectives. Chapter 2

provides a detailed literature review focussing on parallel robot’s design issue, challenges

in parallel robot design, singularity, workspace, haptic controller and example

applications.

Chapter 3 details the simulation system development, kinematic model and workspace

numerical calculations. Chapter 4 discusses the Grassmann algebra and a weighted ranking

system to identify Grassmann problem. Chapter 5 is a detailed review and experimental

methods on parametric sweep, which includes condition test theory, various parametric

sweep methods and data population concepts. Chapter 6 investigates Boolean control for

parametric sweep, and includes many case studies. Chapter 7 discusses robot path planning

issue and includes definition of search region, path planning methods and numerical

validation. Chapter 8 discusses Haptic controller development, which includes controller

kinematics, controller structure design and validation, sensor development and two case

studies. Comprehensive results and discussion of the example applications are presented in

Chapter 9. This includes applications on rehabilitation and machining. Chapter 10 provides

conclusions, summary, contributions of the thesis and a suggested future work.

18

Chapter 2: LITERATURE REVIEW

2.1 Challenges in Parallel Robot simulation design

There are several challenges in the development of parallel robot simulation system,

namely the large variations of parallel robot architecture. The closed loop structure has

different linkages type, therefore simulation strategy has to consider a new kinematic

system when the architecture is changed.

Ben-Horin has developed a parallel robot visualization system based on Grassmann-

Cayley algebra (GCA), which is simplified into GCA brackets. A bracket is a vector, and

the two basic operations used in the GCA are the join and meet operators. Join operator is

the union of two vector spaces and the meet operator is the intersection of two vector

spaces. Ben-Horin only considers a limited number of different Gough-Stewart Platform

(GSP) for the software development [14].

Ben-Horin system is the foundation idea for the development of the 3D Python simulation

system, called PyPKM. Ben-Horin has simplified the concept for designing a parallel

robot into bracket and vector space. The visualization allows user to construct visual image

of the parallel robot limit and ability while it is being developed early during the design

stage. Previously, the design stage begins with analysis and review of the project brief,

which leads to literature study and review of similar previous design regarding the robot’s

task. Then, highly accurate yet costly and timely production of Solid Works model begins,

and leads to various Solid Works analysis and simulation. The control method is then

19

developed by using Matlab. The initial design stage stops prematurely, thereby leading

into unexpected results or wrong design. Therefore, helper software like Singulab is an

important contribution for parallel robot development. However, these systems are

demanding on programming skill and complex techniques [14].

Dash highlights the many researches on finding and optimizing the different geometry

configuration available for parallel robot design. According to Dash, the main issue is to

get the most suitable topology for the given task. Dash developed SEMORS-PKM

simulation software which optimizes the topology [15].

Xi developed a Design for Reconfigurability (DfR) system which is based on Axiomatic

Design theory. Xi’s system consists of modular configurations of 6-DOF, 5-DOF, 4-DOF

and 3-DOF parallel robots which are planned for an attached, detached and partial

condition. The simulation is focusing on emergency behaviour when any part breaks down

and become partially detached as in space applications [16].

2.2 Parallel Robot’s Singularity

Stewart Platform may reach singularity when the platform is within the same plane of one

of the leg and when the platform rotates 90O about an axis perpendicular to it. Lazarevic

mentions that singularity is a position where the mechanism loses controls. Some of the

known methods for identifying singularity condition includes a) by monitoring the

condition number of the Jacobian matrix, b) when all six lines associated to links

intersected one line and c) singular configuration is obtained by rotating the mobile

20

platform around the vertical axis by an angle of +-pi/2. The three methods mentioned here

describe the Pencil line method which is explained as Grassmann ranking system or

Grassmann-Cayley method in Chapter 4 [17].

The ranking for singularity is generally classified as a) check for collision point, where an

axis can be formed, by checking the plane orientation, b) check for planar orientation,

where a plane may become coplanar with a pencil line, side vector or another planar vector

and c) check for infinity condition, where a coplanar condition may develop an axis which

may promote instantaneous rotation axis (IRA) condition.

Rojas distance-based formulation shall be examined to understand the integration with the

Python system to have a quick reverse-engineer solution when a task has singularity by

assisting user in improving the currently investigated structure. The distance-based

adjustment allow for new joints position (new architecture), which create new problem

with configuration singularity [18]. Chablat devise a distance formulation for solving

structure with different joint configuration or specifically different joint types [19]. The

Python 3D simulation system is highly reconfigurable, where user can change the

geometry, linkage relationship type, constraint and platform’s shape. However, to get the

best geometry for a given task would require extensive research on geometry optimisation

and its relationship to path, workspace and singularity. Due to the complexity of the task,

this part of the research shall be regarded as future works.

21

2.3 Parallel Robot’s workspace

The parallel robots are closed loop mechanisms that exhibit higher accuracy and stiffness

compared to their serial counterparts. A critical problem with parallel robots is the

existence of singularity points in the workspace due to the limitation of joints motion and

orientation of the moving platform. Typically, square, spherical or hemispherical grid

systems are used to determine the workspace for parallel robots [1,2]. Merlet presented

various workspaces such as constant orientation or translation workspace, which are

application specific search methods and require low-to-medium computational time

Merlet’s other workspace types includes maximal, inclusive, total orientation, dextrous and

reduced total orientation which requires orientation check for a specific task or region, or

other advanced searches. These are generally computationally complex processes and

require additional attribute or constraints such as Grassmann vector, stiffness, and cost

factor [20]. The traditional geometrical grid search is not suitable for extendible and

complex search [21]. Bandyopadhyay claims that the search for orientation and constant

position workspaces is difficult to perform but is important in terms of their application

[22]. The search strategy is a method of moving the end-effectors along a path following a

strategy like cubic grid inside an envelope, then for the system to perform data analysis at

the test positions placed along the path. This is a test to validate singularity and kinematic

value. Yu explains that the common method of using kinematics to relate unknown

kinematic parameters P to the known information of the manipulator M is prone to error,

due to the difficulty in getting a closed loop form for the kinematic solutions [23].

Parametric sweep is a square grid systems which are used to determine the workspace for

parallel robots [1].

22

2.4 Haptic Controller

There are many numerical researches on Parallel mechanism, which leads to investigations

on kinematic, singularity, optimization, path and many more. Zefran wrote that numerical

system failed at certain condition like detection of at least one actuator that can still move

within a singularity condition [5]. Not much visualization work has been developed to aid

designer to design and verify their Parallel mechanism design. Horin develop a Parallel

mechanism simulation system called Singulab based on Grassmann-Cayley algebra [14].

The Grassmann-Cayley method is based on linear and planar element position and

orientation check for coplanar condition Typically, Parallel mechanism simulation is done

using commercial software like Matlab, Solid Work and ADAM [21]. The simulation is

either specific to a problem or reconfigurable for various geometries.

The interactive singularity analysis is based on visualization alone, which brings the issue

of human sensory limit. Barnett-Cowan research shows that human perception ability is

limited for orientation and position data in 3 dimensional spaces, and additional

information such as touch, light and sound improves the probability for motion cueing and

human sensory ability [24]. A Parallel mechanism is a complex structure with multiple

moving components like joint’s position, stroke changes and travelling plate and

visualization of this structure in 3 dimensions has other issues like culling and hidden

faces.

Uchiyama develop a 6DOF haptic controller, where the topology is a delta mechanism at

the base, and serially connected gimbals is placed on the next layer, and the end effectors

is a 1DOF rotary joint. Delta mechanism has high speed and compact footprint, however,

23

the kinematic is complex and it is a low stiffness structure [21]. Kim lists the requirement

for haptic controller as a low inertia, high stiffness, large force, simple kinematic, dual-

drive system, low-friction and low weight. The Delta mechanism can be improved as a

haptic controller when the travelling plate’s diameter is reduced, where the kinematic

performance is now improved [25]. Okamura explains that Da Vincci and Phantom haptic

system require complex control structure in order to get the haptic force works properly in

a surgical task. The problem is also related to the workspace type related to compliance

(end-effectors orientation) and stiffness (due to Grassmann error and sudden changes to

DOF) [26].

Zhang use 6D Roydomm system to calibrate a Stewart platform, where the problem is with

the detection and tracking of the travelling plate’s position and orientation that needs to be

free from any measuring device attachment, weight and collision with the components

[27]. Colton highlights the drift and data combination problem with orientation sensor,

where low-pass and high-pass filter should be able to produce accurate result [28]. Perl

describe the development of 6DOF tracking system which demonstrate the Madgwick

algorithm for IMU [29]. Streng explains that the primary element in 3D haptic API

development is the collision detection, since this detection is an iterative process and

creates delay in haptic rendering [30]. H3D API does not provide collision detection,

which is handled by Python. H3D provide the function for force, spring effect, and timer

and viscosity effects. Paneels discuss about the development of rapid prototyping toolkit

for haptic visualization, since the product cost has been lowered when Novint Falcon

becomes publicly available. Paneels mentions that the main focus of those rapid

prototyping kit is the definition for surface or collision, where the parameters will create

virtual sensation that describe smooth, bump, hard surfaces, etc. [31]. Ruffaldi and Ayache

24

advices on standard test for haptic [29,30] which Ayache describe the key factor for haptic

engine which are gradient forces and edge extractions. Two primary haptic renderer which

are god-object and Ruspini renderer address the relationship between end-effectors (user)

and the contact surface. H3D renderer surface parameters are stiffness and damping.

Korobeynikov literature shows that Stewart Platform design begin with CAD/CAE

software, and later evaluated using existing library system for the CAD/CAE system or

done by hand [34]. Brezina use linear block-by-block State Space in Lab view to minimize

computation cost for control of Stewart Platform [35]. Dongsu describe that 6DOF flight

simulator uncertain parameters can be divided into two groups, namely the constant and

the time-varying. The constant is known and being part of the architecture. The time-

varying is a form of System Dynamics (SD), and need to be simplified as State Machine.

Supervisory control is required when the system runs as Discrete Event System (DES)

with prepared path. Dongsu further adds that adaptive control for non-linear system can be

used to identify constant uncertain parameters. Adaptive control with feedback should

address the dynamic changes to the search for operating region according the search state

[36]. Zhu develop fuzzy support vector machine control to remove the nonlinear,

uncertainty characteristics and external disturbance of parallel robot. According to Zhu,

sliding mode can adapt to system disturbance, while fuzzy logic is sensitive to disturbance

and neural network has congenital effect of getting into local minimum easily. Zhu

Support Vector Machine (SVM) intends to reduce the dependence on user experience in

finding dynamic solution. This would help the Master-slave relationship quickly find an

optimum state for the sliding mode [37].

25

The research has developed an experimental haptic engine that performs in 3D space. The

experimental haptic engine considers factors like parallel robot geometric singularity and

Grassmann singularity in real-time. And, it use fast pre-processed weighted value for cost-

factor when dealing with path and trajectory optimization. The iteration process which

seems to slow down haptic has been replaced with a faster 3D directional and region-

scoping method. The uses of 9 Degree-of-Freedom (DOF) Inertial Moment Unit (IMU)

and RGB camera for tracking orientation and position has helped to improve the haptic

interaction for a large dimension device, that allows for obstructive view, higher

dimension of linear and angular travel for a haptic controller.

There are various researches done on robotic rehabilitation and their aim is to reproduce

accurate motion for a variety of condition and constraint, reduce the workload and man-

hour for a therapist intervention and the ability to access recovery performances by

measuring force and motion patterns. However, robotic element is prompt to various

singularity conditions even within the geometric-safe region. Therefore, path planner has

to consider other singularity factor like Grassmann error, specific workspace error and

stiffness error during a motion.

2.5 Limb rehabilitation strategy

Therapist intervention should be minimized by introducing elements like motion recording

and optimization mode, haptic force-feedback and reduction of the workload and function.

Where usually, a few therapist is required to handle a patient, a robotic system should

perform with only one therapist that focus on training the robot to perform the

26

rehabilitation accurately, rather than performing the actual rehabilitation himself. The

robotic system should be able to track and record patient and therapist’s performance.

With optimization and certain improvement algorithm, the robotic system should be able

to propose a new motion scheme. Therapist’s workload shall be reduced, for the next

sessions. Current system like GaitMaster5 (GM5) is a specific-task robot system which

focuses on walking and stair-climbing activities. GM5 moves patient’s foot involuntary

which might not be within his comfort or even allowable motion region, therefore patient

expectedly exert forces on the footpad to discourage the robot from continuing with the

selected trajectory. And, according to Yano, the robotic system reduces the therapist

workload and improves the rehabilitation quality, by removing some heavy workload with

the robotic system capabilities and repeatability [38]. Marchal reports that certain

rehabilitation motion is not within the robotic capacity, therefore Marchal use Virtual

Reality environment to substitute for certain motion sensation, like reproducing effect via

height, orientation and velocity variations [39].

Rutger ankle with haptic interface provides a force-feedback to motivate, encourage or

force the limb to follow a certain routine. Furthermore, Cioi concludes that visualization

with rehabilitation games activities for the Rutger system help improve the process by

providing something for patient to focus and engage themselves and remove the anxiety of

having an ankle strapped to a robotic device. Rutger ankle provides resistive force to

encourage patient to try harder to achieve the objective of the games, which is a strength

exercise. While a flexibility exercise, focus on repetitive motion near their limits of

motion[40]. IIT High Performance Ankle Rehabilitation robot requires actuation

redundancy to reduce the possibility of getting into singularity region. A condition where

27

an error within a non-singularity region which is detected by Grassmann could be

catastrophic is being identified especially when in an instantaneous-rotation-axis (IRA), a

condition where the system suddenly loss its stiffness and introduce an unwanted degree-

of-freedom (DOF). This may result with the system itself collapsing.

The Gwangju Institute of Science and Technology (GIST)’s rehabilitation robot provide

therapist with the ability of reconfiguring the robot to satisfy certain desired position,

orientation and path. Lum’s comparative study between conventional and robotic

movement therapy shows the improvement in the areas of strength and reach exercise. The

strength component is attributed to the constrained mode, where patient is expected to

exert force to achieve the given goals. The strength component is directly related to

improved reach gains and, robotic system does not have fatigue condition for durability

during repetitive procedures [41].

The requirement for human intervention has been mentioned by various researchers for

various stages in the rehabilitation procedures. Robotic elements has been successful in

reproducing stereotyped movement and repetitive movement with sensor-recorded

performance data [7]. Syrseloudisa mentions that Stewart Platform is not suitable for ankle

rehabilitation due to its rotation characteristic around the vertical pivot strut which

contradict with ankle movement [42]. Sui also identified a few ankle rehabilitation

system[43]. Belda-Lois research on the subject of a patient interaction with Lokomat,

which is based on impedance-control due to the possibility of combined contact-free

position and contact-force control, shows that patient will eventually produce active torque

that is exerted into the system. This extra interaction will cause a change in the position

28

deviation, or shall be restrained by the robot’s closed-loop system. Either way, the system

or patient will be having disadvantages and may cause discomfort. Belda-Lois develop a

patient-Lokomat-patient interaction algorithm based on studies done by Hogan regarding

the interaction of manipulator and its environment, and the result shows that patient

intention and the robot motivation is not always synchronizes and similar, therefore an

adaptation between the two is necessary [44]. Patton discusses the differences between two

adaptive-training strategy of whether patient benefits more from a force that enhance the

errors or forces that reduce the errors, which Kahn suggested that error-reduction does not

add any benefit[45], [46]. Reikensmeyer acknowledge that a condition known as after-

effects which is caused by the removal of force that redirect or direct a movement from the

robot system cause movement deviation, and the patient correction behaviour includes the

increment of impedance to reduce trajectory error. Patient normally improves their ability

to estimate and reduce the after-effects sensation after each new session. [47]. Kahn and

Reikensmeyer explain the fundamental concept to assistive robotic rehabilitation which is

primarily based on ARM or MIME. Patient initiates the movement, while ARM guide help

complete the movement along a smooth trajectory. MIME guide copies mirror image of

the movement of patient’s unimpaired limb [46, 47]. Oldewurtel studies on impedance

control include visual inspection of the path lines, which include the calculation of

supportive force for arbitrary ADL inside a force-field, adaptive distance and the allowable

freedom of motion and movement ahead of the goal [45]. Having access to the 3-

dimensional path lines curvature and its attribute help the therapist to evaluate patient’s

performance and the goal. The Python simulation system provides various analysis

facilities for assisting this path lines related task. It allows adjustment, placement of planar

29

slice analysis tool, path planning activities, path optimization activities and integration

with haptic engine.

2.6 Cutting path strategy based on Bezier

Bezier provide robust control point curve construction and control system which is useful

in 2D or 3D design. Bezier has simple visual representation and the control points are

related directly to its function. Bezier provide adequate rule for complex curve formation

and subdivision [49].

Amato used divide and conquer approach to produce curve segments with optimal running

time of0(𝑛𝑙𝑜𝑔𝑛 + 𝑘). This combined with Bezier should help parallel robot’s to manage

obstacle and surface mesh interaction [50]. Simas use Bezier patch representing a convex

shape that help guide the end-effectors in a scallop height algorithm while ensuring that

the end-effectors is parallel and equally spaced for each passes. In this research it is

planned to demonstrate the numerical and the simulation capability by replicating the

method. This include the definition of a surface patch using Bezier, then reproduce the

end-effectors and surface patch interaction, and validate the path using numerical system,

by checking its performance in terms of velocity and force. Simas’s method of using

Bezier produce parallel and equally spaced potential path for the end-effectors.

30

Chapter 3: KINEMATIC MODEL

3.1 Introduction

This chapter discusses the development of CAD models that follows the motion defined by

kinematic rules. The CAD model is developed using Python and it can have various

geometries and configurations. For the purpose of this research, a hybrid and a hexapod

configuration is chosen to allow for numerical validation using existing physical robot and

numerical system developed within the research group.

The haptic system has been proven to work with the Python simulation as a standalone

system, with the Numerical system as connected system, and with the physical robot as a

direct controller or control-validation by the Numerical system.

3.2 Kinematic model

Inverse kinematic and dynamic in control strategy is an important aspect of PKM

development, and studies have been done based on various configurations [84-87]. The

experiment is based on physical robot which is controlled via Solid Work CAD model and

Matlab numerical simulation. The numerical result and the Python simulation is then

compared for accuracy. The kinematic presented here is based on a robot structure that is

defined as a 6-UPU-3-UPR structure [51]. The motions can be described by a

transformation matrix that consists of six independent variables which are linear and

rotational motions in XYZ.

31

Figure 3-1 explains the kinematics of the structure. Equation 1 gives the centre points

𝐸𝑥𝑦𝑧and 𝑜𝑥𝑦𝑧 based on homogeneous linear and rotational transformation matrix:

[𝑇] �

𝑐ø𝑐𝜓 −𝑐ø𝑠𝜓 𝑠ø 0
𝑐Ө𝑠𝜓 + 𝑐𝜓𝑠Ө𝑠ø 𝑐Ө𝑐𝜓 − 𝑠ø𝑠𝜓 −𝑐ø𝑠Ө 0
𝑠Ө𝑠𝜓 − 𝑐Ө𝑐𝜓𝑠ø

𝐿
𝑐𝜓𝑠Ө + 𝑐Ө𝑠ø𝑠𝜓

𝑀
𝑐Ө𝑐ø
 𝑁

 0
 1

� (1.a)

𝐿 = 𝑠𝜓((𝑚𝑐Ө𝜃 + 𝑛𝑠𝜃Ө) + 𝑐𝜓(𝑙𝑐ø− 𝑠ø(𝑛𝑐𝜃Ө −𝑚𝑠𝜃Ө) (1.b)

𝑀 = 𝑐𝜓(𝑚𝑐𝜃Ө + 𝑛𝑠𝜃Ө) − 𝑠𝜓(𝑙𝑐ø− 𝑠ø(𝑛𝑐𝜃Ө −𝑚𝑠𝜃Ө) (1.c)

𝑁 = 𝑙𝑠ø + 𝑐ø(𝑛𝑐øӨ −𝑚𝑠Өø) (1.d)

Where,𝜃,∅,ψ represent the rotational components and l, m and n are linear motions in X,

Y, Z.

Equation 2 gives the second position after the platform completed its motion.

𝐴𝑖1 × 𝑇𝐻 = 𝐴𝑖2 For i=1...6 (2)

Where, 𝑇𝐻 is transformation matrix for platform A and 𝐴𝑖2 is second position of joints

after the actuator’s motion.

Equation 3 gives Platform E’s joint position.

𝐸𝑗1 × 𝑇𝑂𝐸
−1 × 𝑇𝑇 × 𝑇𝐻 × 𝑇𝑂𝐸 = 𝐸𝑗2 For j=1...3 (3)

Where,𝐸𝑗1 and 𝐸𝑗2 are the initial and second positions of the joints on the platform E.

𝑇𝑂𝐸 is the transformation matrix.

32

Equation 4 and 5 gives the actuator’s length.

𝑙𝐻𝑖 = 𝐴𝑖2 − 𝐵𝑖 For i=1...6 (4)

𝑙𝑇𝑗 = 𝐸𝑗2 − 𝐴𝑗2For j=1...3 (5)

Where,𝑙𝐻𝑖 and 𝑙𝑇𝑗 are the position vector of the actuators.

The degrees of freedom for each joint can be identified by 𝑈𝑋 = (1 0 0 1) and

𝑈𝑌 = (0 1 0 1) for their initial positions.

𝑢𝑋 = 𝑈𝑋 × 𝑇𝐻 (6.a)

𝑢𝑌 = 𝑈𝑌 × 𝑇𝐻 (6.b)

𝑢2𝑋 = 𝑈𝑋 × 𝑇𝑇 × 𝑇𝐻 (6.c)

𝑢2𝑌 = 𝑈𝑌 × 𝑇𝑇 × 𝑇𝐻 (6.d)

Where, 𝑢𝑋 and 𝑢𝑌 are joints coordinates for platform A, and 𝑢2𝑋,𝑢2𝑌 are joint coordinates

for platform E:

𝛼𝐴𝑖 = 𝑐𝑜𝑠−1 �𝑢𝑋.𝐿𝐻𝑖
|𝐿𝐻𝑖|

� For i=1...6 (7)

𝛽𝐴𝑖 = 𝑐𝑜𝑠−1 �𝑢𝑦.𝐿𝐻𝑖
|𝐿𝐻𝑖|

� For i= 1...6 (8)

𝛼𝐸𝑗 = 𝑐𝑜𝑠−1 �𝑢2𝑋.𝐿𝑇𝑗
|𝐿𝑇𝑖|

� For j=1...3 (9)

𝛽𝐸𝑗 = 𝑐𝑜𝑠−1 �𝑢2𝑦.𝐿𝑇𝑗
�𝐿𝑇𝑗�

� For j=1...3 (10)

33

Where 𝛼𝐴𝑖 and 𝛽𝐴𝑖 are angles between the actuators of the hexapod and the platform A in

X and Y directions respectively.

Where 𝛼𝐸𝑖 and 𝛽𝐸𝑖 are the angles between the tripod actuators and platform E.

Z
aiL

X
Y

Platform B

Platform A

Ai

Bi

Ei

Z
y

Platform E

Figure 3-1 Schematic of hybrid parallel robot

34

3.3 Workspace calculations based on inverse kinematic

Workspace calculations are based on a development of inverse kinematic formulation [51].

Equation 11 gives the end effectors’ position and size.

𝐿𝐻𝑖 = 𝐴𝑖 × 𝑇𝐵𝐴 − 𝐵𝑖 𝑖 ∈ {1 … 6} (11)

Where, 𝐿𝐻𝑖 is position vector of actuators connecting platform B to A, 𝐴𝑖 is the initial

position of joint on platform A and 𝐵𝑖 is the position of joints on the platform B.

Equation 12.a and 12.b gives the platform E’s transformation matrix.

𝑇𝐵𝐸 = 𝑇𝐴𝐸 × 𝑇𝐵𝐴 (12.a)

𝑇𝐴𝐸 = 𝑇𝑛 × 𝑅𝜃𝑇 × 𝑅∅𝑇 (12.b)

Where, 𝑇𝐵𝐸 is transformation matrix of platform E related to platform B, 𝑇𝐵𝐸 is

transformation matrix of platform E to B and 𝑇𝐵𝐴 is transformation matrix of platform A to

B.

Equation 13 gives the length of the actuators.

𝐿𝑇𝑗 = 𝐸𝑗 × 𝑇𝐵𝐸 − 𝐴𝑗 × 𝑇𝐵𝐴 𝑗 ∈ {1 … 3} (13)

Where, 𝐿𝑇𝑖 is position vector of the each actuator connecting platform A and E, 𝐸𝑗 is initial

joint position on platform E and 𝐴𝑗 is joint positions on top of platform A. The work

volume search is done and programmed using Solid Work and Matlab.

35

3.4 Conclusion

Kinematic analysis provides position and orientation for a single point in 3D space.

Kinematic for parallel robot development considers the transformation matrices which

consider angle and stroke changes. Kinematic modelling does not do any singularity

validation, and will not highlight any issues regarding geometric constraint limitations. It

is known that kinematic methods have difficulty in getting a closed loop form for

kinematic solutions. The Python simulation motion is based on kinematics, with large

buffer for probable errors. Some example or case study shown in this research does not

elaborate the kinematic aspect of it, since transformation matrices varied and many.

Chapter 3 gives an overall overview about kinematic and how it is being used in this

research.

36

Chapter 4: GRASSMANN ALGEBRA

4.1 Introduction

This chapter discusses the probable existences of Grassmann error inside a safe workspace

region due to a specific condition or pose. Grassmann has the advantage of checking for

co-planar position or orientation, while the geometric check does not. Grassmann algebra

is a method that checks for angle differences between large set of vector lines, where the

vector lines represent parallel robot’s legs or edges. A co-planar condition and

instantaneous-rotation-axis (IRA) condition is detrimental to the robot structure. Therefore,

Grassmann singularity test is an essential element in workspace search. Previous chapter

discuss about kinematic, which provide probable position and orientation for the end-

effectors centre-point position in 3D space.

4.2 Grassmann theory

A Python 3D simulation system has been developed based on Grassmann pencil-line

terminology, where it’s kinematic has been validated using numerical system, and the

basic singularity check is based on structural geometric and Grassmann validation. The full

3D system is based on Grassmann algebra. Previously, Ben-Horin has developed Parallel

robot simulation and analysis system based on Grassmann-Cayley bracket concept [47,

48]. This research extends the concept further by integrating the Grassmann singularity

test-condition within a safe region as the base system. Then, the research moves forward

37

into complex problems like parametric sweep search, extended geometric and fractal

sweep search and path planning [51].

Grassmann error rule includes – a) lines for any elements meet at infinity, b) lines for any

elements has a difference angles equals to 0 or 180 degrees and c) a virtual axis is formed

where opposing force may produce instantaneous rotation that produces unwanted degree-

of-freedom. If total weighted, ω T for all pairs is found, then use weighted sum to find

non-singularity or singularity position inside or outside the workspace during application.

Interpolation test for the Python path, by using scatter distribution of test position for

example by doing 3 units of 1D-interpolation or ‘Trilinear’ and distribute the scatter plot

by using 3D random generator.

The condition test theory is based on identifying the geometrical constraint, then checking

the quality of the non-singular pose by checking for Grassmann error and various

workspace requirement errors like compliance and trajectory. First, it checks the geometry

error, since design issue for parallel robot particularly Stewart Platform is identified as

joint angle, leg stroke, leg location, kinematic complexity, limited workspace and

singularity, and then the system check for Grassmann condition, where line geometry is

used to analyze, validates and displays the Grassmann singularity condition [54].

The parallel robot geometry definition is based on a circle divided into variable six point’s

position following Charters method which allows for reconfigurable geometry automatic

creation and easy numerical validation [55].

38

Kinematic calculation provide the end-effectors position which need to confirmed by

checking the geometric limit, which is calculated by checking the leg’s stroke limit and

angle limit (Eq.14).

Where angle 1, 2 = Vector angle for leg between 2 poses,

𝑎𝑛𝑔𝑙𝑒𝑛 = 𝑥𝑛𝑖 + 𝑦𝑛𝑗 + 𝑧𝑛𝑘𝑛 ∈ {1,2} (14.a)

𝑝 = 𝑥1𝑖 + 𝑥2𝑖 (14.b)

𝑞 = 𝑦1𝑗 + 𝑦2𝑗 (14.c)

𝑟 = 𝑧1𝑘 + 𝑧2𝑘 (14.d)

�𝑆𝑗� = �𝑝2 + 𝑞2 + 𝑟2𝑗 ∈ {1 … 3} (14.e)

Where, 𝑝𝑜𝑠𝑒1 = (𝑥1,𝑦1, 𝑧1) and𝑝𝑜𝑠𝑒2 = (𝑥2,𝑦2, 𝑧2) . Moreover 𝑆𝑖 is stroke size of the

actuators connecting platform A and E (Tripod).

The Boolean condition for Grassmann (Eq.15) which check for coplanar, line-line join,

line-line meet, plane-line meet and point-line join is presented here.

𝐺𝐺𝑁 = ∑ �𝑓(𝑝𝑜𝑠, 𝑙𝑖𝑚𝑖𝑡, 𝑒𝑟𝑟𝑜𝑟)⋀𝑙𝑖𝑚𝑖𝑡 → 𝑒𝑟𝑟𝑜𝑟𝑎,𝑏,𝑐,𝑑,𝑒�𝑛
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=0 (15.a)

Where 𝐸𝑟𝑟𝑜𝑟a,b,c,d,e represent the Grassmann error condition described in Equation 6.d.

And, GGN is a set of Grassmann error for a given set of iteration [4]. The iteration is

created by drawing pencil line using the structure’s line and edge. The limit is the

threshold value for error state.

39

The formulation is adapted from a Wikipedia website entitled ‘Plucker coordinates’ [56].

For a case where x =(x1, x2, x3) and y=(y1, y2, y3)for line L, therefore displacement along L

is found as scalar multiple of d=y-x. The point being displaced, known as moment,

𝑚 = 𝑥.𝑦.

x =(x1, x2, x3) , y= (y1, y2, y3) for line L. (15.b)

Where m is the moment for this point displaced from its origin.

𝑚′ = �
𝑥𝑖′ 𝑦𝑖′

𝑥𝑗′ 𝑦𝑗′
� = �

𝑥𝑖 𝑦𝑖
𝑥𝑗 𝑦𝑗� �

𝜆00 𝜆01
𝜆10 𝜆11

� (15.c)

Where m’ are the linear combinations of the columns of m, for some 2x2 non-singular

matrix ∧. Grassmann error, 𝑒𝑟𝑟𝑜𝑟𝑎,𝑏,𝑐,𝑑 condition is described here as

a) coplanar condition, when d.m’+m.d’=0,

b) line-line join condition, when(𝑚. 𝑑′)𝑥0 + (𝑑𝑥𝑑′) = 0,

c) line-line meets condition,

When(𝑥0: 𝑥) = (𝑑.𝑚′:𝑚 × 𝑚),

d) plane-line meets when given a plane with equation 0 = 𝑎0𝑥0 + 𝑎. 𝑥 . The point of

intersection is given as(𝑥0: 𝑥) = (𝑎.𝑑:𝑎 × 𝑚− 𝑎0𝑑),

e) point-line join condition, when 0 = (𝑦.𝑚)𝑥0 + (𝑦 × 𝑑 − 𝑦0𝑚). 𝑥

Where displacement, d=(y-x) and Plucker coordinates= (d: m) [56].

Therefore, the total weighted value found here is the evaluation of end-effectors position

for Grassmann error and geometry error.

40

Singularities of the hexapod need to be considered to overcome platform position for

desired one.

𝐻 = � 𝑆1 … 𝑆6
𝑆1 × 𝑞1 … 𝑆6 × 𝑞6

� (16)

Where, 𝐻 is kinematic relation of the hexapod structure.

𝑞𝑖 = 𝑂𝐵𝐴𝑖 − 𝑂𝐵𝑂𝐴𝑖 ∈ {1 … 6} (17)

Where, 𝑆𝑖 is unit vector of each actuator attaching platform A and B. moreover, 𝑂𝐵 is

centre of platform B , 𝑂𝐴 is centre of platform A and 𝐴𝑖 is position of joints on platform A,

that value could be calculated for each motion.

The singularities can be identified while value of determination of the matrix H is zero.

4.3 Weighted value ranking based on Grassmann algebra

The weighted value is a collection of process starting with the establishment of a grid, then

populating the grid with a strategy, then check for singularities. The result is then

processed for Grassmann and other ranking criteria, for example nearest distance to centre-

point or pre-defined path. This ranking criteria, grid and grid population method is

extendible. The concept is presented here in Equation 18, 19 and 20.

𝑎𝑛𝑔𝑙𝑒1 = �𝑥𝑖1 + 𝑦𝑗1 + 𝑧𝑘1� (18.a)

𝑎𝑛𝑔𝑙𝑒2 = �𝑥𝑖2 + 𝑦𝑗2 + 𝑧𝑘2� (18.b)

41

Where angle 1, 2 = Vector angle for leg between 2 poses

𝑝 = 𝑥𝑖1 + 𝑥𝑖2 (18.c)

𝑞 = 𝑦𝑗1 + 𝑦𝑗2 (18.d)

𝑟 = 𝑧𝑘1 + 𝑧𝑘2(18.e)

|𝑎, 𝑏, 𝑐, 𝑑| = �𝑝2 + 𝑞2 + 𝑟2 (18.f)

Where |a, b, c| = legs stroke or vector magnitude, |d| = distance to the plate’s centre.

𝑎𝑛𝑔𝑇[0 − 3, 𝑐𝑒𝑛𝑡𝑒𝑟] = cos−1�𝑎�. 𝑏��/(|𝑎|. |𝑏|) (18.g)

𝑎𝑛𝑔𝐻[0 − 6, 𝑐𝑒𝑛𝑡𝑒𝑟] = cos−1�𝑎�. 𝑏��/(|𝑎|. |𝑏|) (18.h)

Where AngT represent tripod angle and AngH represent hexapod angle,

𝑓(𝑝𝑜𝑠, 𝑙𝑖𝑚𝑖𝑡, 𝑒𝑟𝑟𝑜𝑟) = 𝑝𝑜𝑠⋀𝑙𝑖𝑚𝑖𝑡 → 𝑒𝑟𝑟𝑜𝑟 (18.i)

Where pos = end-effectors position x, y and z, limit is the search limit, and error is the

stroke, angle and collision error.

ωa = ∑ (angT[n] − d) > 03,center
n=0 (19.a)

ωb = ∑ (angH[n]− d)6,center
n=0 > 0 (19.b)

ωc = ∑ (|a[n], b[n], c[n]| − e)3,center
n=0 > 0 (19.c)

ωd = ∑ (|a[n], b[n], c[n]| − e) > 06,center
n=0 (19.d)

42

ωe = ∑ (|d[Gn]| ∩ |d[Gn+1]| ≠ 0)x
n=0 (19.e)

Where ωa = weighted value for tripod angle if f (ωa)>0, ωb = weighted value for hexapod

angle if f (ωb)>0,

ωc = weighted value for Tripod Stroke if f (ωc)>0, ωd = weighted value for Hexapod

Stroke if f (ωd)>0,

ωe = weighted value for distance to the plate’s centre and at least one data for each group,

Gn must be selected and d is the threshold value.

𝑎𝑛𝑔𝐺[𝑜1, 𝑜2] = cos−1�𝑎�. 𝑏��/(|𝑎|. |𝑏|) (20)

Where angG [o1, o2] = angle differences between various pair-wise comparison of planar

sides, planar plane and line vector set n, σn for any pair of o1 and o2. Weighted f, ωf for σn

= angG [o1, o2] if Coplanar OR meets at infinity, given by the Grassmann rules. The large

sets of comparison-wise check for non-coplanar condition has to consider non-redundant

loop and Boolean validation method for all pairs σn. Boolean validation where σ0 ∩σ1 ≠0

and σn ∈ (comparable pair-wise set σc), and σc must produce Grassmann errors. Figure 4-1

displays an example of Python rendering of a Grassmann coplanar indicator, which is

based on the Grassmann rules.

Grassmann checking for error is based on the vector line that represents a bracket. This is a

representation of angle, distance and collision between any vector line and bracket [57].

Referring to Figure 4-1, a bracket can be defined by the pencil line between ‘w1v6v1w1’.

The pencil line for this bracket is those that go across the plane created between ‘w1v6w1’

43

and ‘w1w6v6’. Pencil line ‘w1v1’ and ‘w6v6’ represent the vector line for the actuator.

Pencil line ‘w1w6’ and ‘v1v6’ represent the vector line for the platform edge. There are

various other combinations which have been designed for the probability ranking

evaluation [54, 55]. This Grassmann check is structured in a few levels of detail. The level

of detail performs different set of Grassmann pair-wise comparison check [60]. Each level

will increase the checking complexity and the amount of members that is being compared

and checked. When a region has been inspected for level 1(lowest probability level), and

qualify as Grassmann error, the Boolean algebra will validate this for next level checks. As

the checking become more complex and the result demonstrate higher probability for

Grassmann to occur, then this pose shall be considered as higher probability Grassmann.

Probability here is used to describe the condition factor for Grassmann errors to fully

execute it. Grassmann error is a condition where the vector line for any pair of bracket

suggests that an error may happens if the criteria are fully met. The Grassmann error pose

is a platform’s pose that may produce an instantaneous rotation axis (IRA) which either

add or remove a degree-of-freedom (DOF) from the system [61]. When the IRA angle is

within an angle where an external force or the structural weight could collapse the system,

then the Grassmann error is concluded as the highest rank. Grassmann error is a “guessing

value” for the probability of IRA to form and produce the collapse condition [20].

44

Figure 4-1 An example of Python rendering of the Grassmann coplanar indicator based on

vector bracket

4.4 Results for Grassmann probability experiment

Figure 4-2 demonstrates an example Grassmann condition. The probability percentages for

Grassmann to occur are recorded as between 27-31%. Grassmann condition may become

detrimental to the structure if there is any external forces acting on the opposite side of the

weak region or when the co-planar conditions allow for instant development of a new

degree-of-freedom (DOF) which is also known as instantaneous rotational axis (IRA)

condition. The Grassmann ranking or probability system examines and proposes the

probability for a singularity error to occur at that particular pose. If certain condition is

met, than the pose can become fully singular.

45

Figure 4-2 Grassmann condition found within workspace region

4.5 Conclusion

Grassmann algebra or Grassmann-Cayley method is a bracket collection of vector sets. A

comparison for angle differences between selected vector sets signal the probability for

Grassmann singularity, which may result with system collapse, loss of stiffness, and the

IRA issue (instantaneous rotation axis). A weighted ranking system provides visual

information for user. Grassmann condition may lead to a problem when external forces, or

the loads exceed certain limit, therefore the research propose a probability system rather

than a confirmed error for a Grassmann singular pose.

46

Chapter 5: PARAMETRIC SWEEP SEARCH

5.1 Introduction

This chapter discusses the parametric sweep search, which is a parallel robot’s end-

effectors path which checks for singularities. The search path for a parametric sweep is

usually a geometric shape like cube, rectangle and spherical. This chapter explores and

experiment with various data population strategy and rules for the sweeping motion. The

Python simulation allows for any type of data population, control and validation. The

previous chapter on Grassmann algebra solved the singularity errors found within an

established workspace [52].

5.2 Introduction to parametric sweep

This chapter addresses the issue of the establishment of test positions for verification of

non-singularity position for the end-effectors, where the result is shown as its workspace.

This research is based on a successful development of a 3d-Python visualization system.

The system can perform parametric search based on general test such as cubic and

spherical sweep, and also advanced test such as strategic sweep with configurable

dimension and direction in the form of controllable test planes. This plane is indeed a slice

of information within the workspace. We examine various types of L-System random

generators for populating the plane with test positions. The 2D L-System is positioned and

orientated to cover the assumed space covered by the workspace based on rotation around

centre-point, parallel arrangement to form a cubic grid or interpolation done between

47

various slices. Interpolation method creates relationship between random generated

positions to produce 3-Dimensional parametric sweep positions [62]. Other 2D to 3D

method studied for this research includes loft, extrusion and quaternion methods [63].

Other advanced methods mentioned in this research includes spiral 3D, Hilbert 3D and

Marching Cube 3D [55, 56]. The workspace validation is done using weighted ranking

based on Grassmann and is further extrapolated by using Simplex and Trilinear to verify

the condition for ‘going into’ and’ leaving’ of a position condition. Finally, we showcase

an early experimental result to demonstrate automated 3D fractal search for workspace

methods. This 3D fractal system shall be further examined to develop a fine control of its

trajectory, dimension and dynamic region.

5.3 Condition test theory

The condition test theory is based on identifying the geometrical constraint, then checking

the quality of the non-singular pose by checking for Grassmann error and various

workspace requirement errors like compliance and trajectory. The Parallel robot geometry

definition is based on a circle divided into variable six point’s position following Charters

method which allows for reconfigurable geometry automatic creation and easy numerical

validation [55].

Grassmann error is defined for any given set of lattices that are formed by pencil line

created using the structure’s line and edge. The limit is the threshold value for error state

[66].

48

Based on the extensor definition for Grassmann-Cayley algebra (GCA) [49, 54, 55] which

is given here as

𝑃 = 𝑉(𝑢1,𝑢2, …𝑢𝑘) = 𝑢1𝑉𝑢2𝑉…𝑉𝑢𝑘 (21)

Where the vector subspace U or 𝑃� , in a 4-dimensional vector space V has the extensor of

step 1,2 and 3 that correspond to points, lines and planes [53].

The Trilinear interpolation formula produces a series of reference plane which is shifted

away from the test points in x, y and z-axis [69]. Then, the system performs 2D linear or

polynomial interpolation, and merges or interpolates all results from all axes to get the 3D

result. The grid test position is the data populated on a slice of plane, or a 3D grid system.

The populated test position presented is an example of L-system fractal generated data.

𝑝𝑜𝑠[0] = �(𝑥 − 𝑔), (𝑦 − 𝑔), (𝑧 − 𝑔)� (22.a)

𝑝𝑜𝑠[1] = �𝑥, (𝑦 − 𝑔), (𝑧 − 𝑔)� (22.b)

𝑝𝑜𝑠[2] = �(𝑥 − 𝑔),𝑦, (𝑧 − 𝑔)� (22.c)

𝑝𝑜𝑠[3] = �(𝑥 − 𝑔), (𝑦 − 𝑔), 𝑧� (22.d)

𝑝𝑜𝑠[4] = (𝑥, (𝑦 − 𝑔), 𝑧) (22.e)

𝑝𝑜𝑠[5] = �(𝑥 − 𝑔),𝑦, 𝑧� (22.f)

𝑝𝑜𝑠[6] = �𝑥,𝑦, (𝑧 − 𝑔)� (22.g)

𝑝𝑜𝑠[7] = (𝑥,𝑦, 𝑧) (22.h)

𝐺𝑇 = ∑ (𝑥,𝑦, 𝑧)7
𝑝𝑜𝑠=0,𝑝𝑜𝑠+1 (22.i)

49

GT represent Trilinear extrapolation around a coordinate (x, y, and z) [70]. Where the end-

effectors position= (x, y, z)

𝐺𝑀𝐶 = ∑ (𝑥,𝑦, 𝑧,𝛼,𝛽, 𝛾) ∈ [𝑀𝐶1 𝑡𝑜 8]8
𝑝𝑜𝑠=0,𝑝𝑜𝑠+1 (23)

Where GMC represent Marching Cube extrapolation orientation check for 8 different

configurations, MC 1 to 8 and the end-effectors position and orientation is given by x, y, z,

α, β and γ

The grid test position is presented by the data populated on a slice of plane, or a 3D grid

system. The populated test position presented is an L-system fractal generated data.

𝐺𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑒𝑔ℎ𝑡𝑒𝑑 = ∑ 𝑓(𝑝𝑜𝑠, 𝑙𝑖𝑚𝑖𝑡, 𝑒𝑟𝑟𝑜𝑟)⋀𝐺𝐺𝑁max𝑣𝑎𝑙𝑢𝑒
𝑔𝑟𝑖𝑑′𝑠 𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑙𝑖𝑐𝑒 𝑛 ∨ 𝐺𝑇⎢𝐺𝑀𝐶(24)

The Gtotal weighted provide an overall evaluation for any test point or point on a parametric

grid [51]. This is a general test to assist the algorithm for path planning and workspace

definition. A detail inspection of each test point, collection of test points or path is

available using slice and interval analysis. The next step is to define the parametric sweep.

50

5.4 Parametric Sweep theory

The parametric sweep activity is a step by step method to establish collections of test

positions, where the end-effectors shall be directed to travel through these positions and

tested for singularity. To optimize this operation, we need to consider the travel path, the

test point’s position effectiveness and method for controlling the search activity.

Typically, this grid is based on geometrical shape like cube, sphere and cone, which is then

populated with test position to form a rigid grid. This section demonstrate a few method

such as Hilbert as an efficient grid system, Marching cube for orientation check,

extrapolation by using Simplex and Marching Cube, and Ulam Spiral and L-system fractal

random generator with few arrangement and data population method [54-58]. Cohen

develop a Voxel sweep method that uses a union-find data structure which keep the

connection as one mesh, while Marching cube works like a Trilinear interpolation of the

grid surrounding a point in space [75].

Boolean algebra control the path traversal for a rigid geometrical grid based on method A,

for a cubic parametric sweep.

Method A (Cubic), VA = �∑ ∑ ∑ z + y +max
x=0 xmax

y=0
max
z=0 � (25.a)

Boolean algebra typical method for various sweep method for a rigid geometric envelope

is given below, in method B to method F.

51

Method B (Prime Factor or LS (Serial sweep)), VB = ∑ ([f(ax2 + bx +n
i,i+1 for slice n(n+1)

c) ∧ 𝑓(𝑝𝑜𝑠, 𝑙𝑖𝑚𝑖𝑡, 𝑒𝑟𝑟𝑜𝑟)] = 1). (25.b)

Method C(Prime Factor or LS (Parallel sweep)), VC = ∑ ([f(ax2 + bx +element in slice i
i,slice i+1

c) ∧ 𝑓(𝑝𝑜𝑠, 𝑙𝑖𝑚𝑖𝑡, 𝑒𝑟𝑟𝑜𝑟)] = 1) (25.c)

Method D(Prime Factor or LS (Radial sweep)), VC = ∑ ([f(ax2 + bx +element in slice i
i in radial element

c) ∧ 𝑓(𝑝𝑜𝑠, 𝑙𝑖𝑚𝑖𝑡, 𝑒𝑟𝑟𝑜𝑟)] = 1) (25.d)

Method E (Prime Factor or LS (Optimized serial sweep)), VD =

∑ ([f(ax2 + bx + c) ∧ 𝐺𝑇] = 1)n∧𝑓(𝑝𝑜𝑠,𝑙𝑖𝑚𝑖𝑡,𝑒𝑟𝑟𝑜𝑟)
i,i+1 for slice n(n+1) .

 (25.e)

Method F(Prime Factor or LS (Optimized parallel sweep),)), VE = ∑_(i, slice i +

1)^(element in slice i ∧ 𝑓(𝑝𝑜𝑠, 𝑙𝑖𝑚𝑖𝑡, 𝑒𝑟𝑟𝑜𝑟)) ∈ ([f(ax^2 + bx + c) ∧ 𝐺_𝑇] = 1) (25.f)

There are variety of arrangement possible to improve the effectiveness of each fractal L-

system, namely vase lathe method where a 2-D planes is rotated around an axis to form 3D

mesh, extrusion (ternary numbers [66]) to form another dimension by using weighted

ranking value and other attributes, interpolation between points placed on a given set of

planes from any axis, and quaternion method.

Equations 25.f, 25.g, 25.h, 25.i and 25.j are based on quaternion, where 𝑞 = 𝑥 + 𝑦𝑖 + 𝑧𝑗 +

𝜔𝑘 which is a four tuples for values x, y, z and 𝝎[66]. For two quaternion numbers q1 and

q2, then 𝑞1 + 𝑞2 = (𝑥1 + 𝑥2) + (𝑦1 + 𝑦2) × 𝑖 + (𝑧1 + 𝑧2) × 𝑗 + (𝜔1 + 𝜔2) × 𝑘

There are various Quaternion or Quad algebra methods, and the published example

formulation is given below.

52

𝑀𝑒𝑡ℎ𝑜𝑑 𝐺�𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛𝐽𝑖𝑎𝑛𝑔 �,𝑉𝐺 = 𝑞1. 𝑞2 = (𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 + 𝜔1𝜔2) +

(𝑥1𝑦2 + 𝑦1𝑥2 + 𝑧1𝜔2 + 𝜔1𝑧2) × 𝑖 + (𝑥1𝑧2 + 𝑧1𝑥2 + 𝑦1𝜔2 + 𝜔1𝑦2) × 𝑗 + (𝑥1𝜔2 +

𝜔1𝑥2 + 𝑦1𝑧2 + 𝑧1𝑦2) × 𝑘 (25.g)

𝑞2 = (𝑥2 + 𝑦2 + 𝑧2 + 𝜔2) + 2 × (𝑥𝑦 + 𝑧𝜔) + 2 × (𝑥𝑧 + 𝑦𝜔) × 𝑗 + 2 × (𝑥𝜔 + 𝑦𝑧) × 𝑘

(25.h)

Where VG = Jiang’s Quaternion method to create the 3D grid system.

𝑀𝑒𝑡ℎ𝑜𝑑 𝐻�𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛𝑄𝑢 �,𝑉𝐻 = 𝑞1. 𝑞2 = (𝑥1𝑥2 − 𝑦1𝜔2 − 𝑧1𝑧2 + 𝜔1𝑦2) +

(𝑥1𝑦2 + 𝑦1𝑥2 − 𝑧1𝜔2 − 𝜔1𝑧2) + (𝑥1𝑧2 + 𝑦1𝑦2 + 𝑧1𝑥2 − 𝜔1𝜔2) + (𝑥1𝜔2 + 𝑦1𝑧2 +

𝑧1𝑦2 + 𝜔1𝑥2)(25.i)

𝑞2 = (𝑥2 − 2𝑦𝜔2 − 𝑧2) + 2 × (𝑥𝑦 − 𝑧𝜔) + 2 × (𝑥𝑧 + 𝜔2) × 𝑗 + 2 × (𝑥𝜔 + 𝑦𝑧) ×

𝑘(5.j)

𝑀𝑒𝑡ℎ𝑜𝑑 𝐻(𝐸𝑥𝑡𝑟𝑢𝑠𝑖𝑜𝑛),𝑉𝐻 = 𝑧𝑥,𝑦 = 𝑐𝑥,𝑦 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘(25.k)

Where VH refers to the extrusion method where a parameter like weighted ranking provide

the extrusion z-value for any x and y – coordinate [76]. At x and y coordinate, we can

derive z coordinate based on parameter c. The extrusion method is also known as ternary

algebra (Eq. 25.1, 25.m, 25.n and 25.o).

This ternary algebra equation is following Cheng’s definition [66].

𝑡 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 (25.l)

Where x, y and z are real numbers, while i, j and k are imaginary units. Based on two

ternary numbers t1 and t2 [77],

𝑡1 + 𝑡2 = (𝑥1 + 𝑥2)𝑖 + (𝑦1 + 𝑦2)𝑗 + (𝑧1 + 𝑧2)𝑘, (25.m)

𝑡1. 𝑡2 = (𝑥1𝑥2 − 𝑦1𝑧2 − 𝑧1𝑦2)𝑖 + (𝑥1𝑦2 + 𝑦1𝑥2 − 𝑧1𝑧2)𝑗 + (𝑥1𝑧2 + 𝑦1𝑦2 + 𝑧1𝑥2)𝑘(25.n)

53

Get ternary number t

𝑡2 = (𝑥2 − 2𝑦𝑧)𝑖 + (2𝑥𝑦 − 𝑧2)𝑗 + (2𝑥𝑧 + 𝑦2)𝑘 (25.o)

Method I (Random Generator) generates random 3D Mandelbrot test points [78].

𝑥𝑦 = 𝑥𝑧 = 𝑦𝑧 = 𝑟𝑎𝑛𝑑𝑜𝑚 × 𝑝𝑖2 (25.p)

𝑠𝑥𝑦 = sin(𝑥𝑦); 𝑠𝑥𝑧 = sin(𝑥𝑧); 𝑠𝑦𝑧 = sin(𝑦𝑧) (25.q)

𝑐𝑥𝑦 = cos(𝑥𝑦) ; 𝑐𝑥𝑧 = cos(𝑥𝑧) ; 𝑐𝑦𝑧 = cos(𝑦𝑧)(25.r)

Where pi2= math.pi X 2

The 3D rotation around centre of the plane is given in Equation 25.s, 25.t and 25.u

𝑥0 = 𝑥 × 𝑐𝑥𝑦 − 𝑦 × 𝑠𝑥𝑦;𝑦 = 𝑥 × 𝑠𝑥𝑦 + 𝑦 × 𝑐𝑥𝑦 (25.s)

𝑥0 = 𝑥 × 𝑐𝑥𝑧 − 𝑧 × 𝑠𝑥𝑧; 𝑧 = 𝑥 × 𝑠𝑥𝑧 + 𝑧 × 𝑐𝑥𝑧 (25.t)

𝑦0 = 𝑦 × 𝑐𝑦𝑧 − 𝑧 × 𝑠𝑦𝑧; 𝑧 = 𝑦 × 𝑠𝑦𝑧 + 𝑧 × 𝑐𝑦𝑧 (25.u)

Method J (3D graph)

Now, that we have the strategy for placing, orientating and building the 3D shape, we need

a way to populate the collection of planes or slices with test points. The end-effectors will

travel through this test points to determine workspace, path etc. This is achieved by using

3D adjacency graph [79, 80, 81].

54

Method K (3D branching tree)

This method is based on the original finding by Verhoeff, where a comparison between

ternary mitre joint and binary tree mitre joint is compared for randomness effects that copy

the natural form of a real tree. Verhoeff continues with other variants by differentiating the

cross-section profile, bevel angle, and reduction scale factor. The fractal dimension is

based on = log𝑁
log𝑓

 , where N=parity, and f=scale-down factor. When D>3, the system may

have self-intersection [82].

5.5 Parametric sweep modelling

The search for workspace, validation of path etc. are usually associated with the motion of

the end-effectors or platform E and the secondary motion by platform A for a hybrid

system. This motion design criteria is measurable, covers the required space, can be

analysed, and is repeatable. This motion has been given a specific term known as

parametric sweep modelling or discretization, which is a search for workspace following a

grid structure shaped as primitive geometric objects such as square or hemisphere.

Standard parametric sweep for workspace search can be categorized into constant

orientation, orientation workspace, constant position, maximal workspace, inclusive

workspace and total orientation workspace. Constant orientation workspace is a condition

where the platform E (end-effectors) and platform ‘A’ (middle travelling plate) is

positioned towards a fixed orientation, and parametric sweep process the region to find the

non-singular positions. Bonev demonstrate constant orientation strategy for finding

55

singularity loci, where a platform is expected to have singularity with a fixed orientation

and the orientation itself is a singularity, such as reaching a coplanar state [83]. Constant

position workspace for finding singularity loci is a strategy associated with coplanar

condition, where the platform can develop a stiffness problem. The singularity loci

describe the workspace where this coplanar happens for any unit of test parameters. Each

test parameters represent a collection of pencil line, edge and plane which is comparable to

form the coplanar condition. Orientation workspace is defined as all possible orientation

for any fixed position, as an offset from which a spherical shape is formed and the sphere

aids user in defining the best path and motion gradient’s trajectory. The orientation

workspace is then compared with Marching cube method where similar strategy is

implemented, but the orientation check is done using marching cube’s orientation face.

This method allows for building spatial relationship and neighbourhood analysis. The

cubic parametric sweep system is comparable to Troyanov’s growing algorithm

formulation [84]. The seed distribution towards a region follows fractal random generator

concept.

Maximal workspace or reachable workspace is described as all reachable position for end-

effectors with one fixed orientation. The maximal workspace will benefit pose-to-pose

planning where user can plan the gradient changes between two different set of maximal

workspace to generate the optimum path based on adjacency graph. Inclusive workspace is

a form of maximal workspace; however the orientations angles are set within a range.

The Python system can be used to solve all 6 types of workspace strategy by modifying the

Boolean rule which has the attributes like envelope, edge, travel strategy, travel limit

strategy, interpolation between different datasets and redundancy check. For example, in

56

case 2, a constant orientation workspace generates few datasets, and the system generate

optimum path between the datasets via an interpolation process.

5.6 Basic Sweep theory

Chablat suggested a method whereby, geometrical shapes such as a cube are used to

envelop the robot with adequate edges for maximum stroke. The geometrical shape is

subdivided into paths with nodes for recursive checks for, angle, stroke length, and

collision errors of the robot’s end-effecter [85]. This raw search method is also called

‘parametric sweep’ by Shah [62]. Standard parametric sweep for workspace search can be

categorized into different variants depending on the search method, sweep method and

result filtering. Breadth-first search is a systematic search, of brute-type, that perform

exhaustive search of all space without first knowing the possible result. This search

assumed the maximum possible plane or leg extension, then defines the outer edge border,

and start searching through all search space within this border. This method is applied in

basic search using the inverted cone search, cubic grid search space and the spherical /

hemispherical search space. A minimum search space is defined by the Platform’s A

centre-to Base Plate’s centreline only, while an optimized search is defined by all leg.

Depth-first search with back-tracking is an exhaustive search of one region (shape), when

found solution, or not, then increase the depth limit without going into infinite search.

However, this method should continue the search from its last position when new depth is

established. Binary search has two branch trees, where the first branch represents a valid

region, while the other represents a non-valid (error) region within an established

parametric sweep search region. Binary value for left branch=0, and for the right

57

branch=1. It is recommended to use a balanced tree, like AVL for the search strategy. A

heuristic rule adds guides for where to search within a known region or an established

workspace grid. This knowledge improves decision-making process about a specific search

problem, suitable for path planning purposes. Best first search is an improvement to depth-

first searches, by validating which node to search first, and keep the other node and do

search on them when no solution is found. This could be a slice along any axis in the

parametric sweep region.

The search method has to follow a strategy which is related to user requirement. This

strategy aspect is discussed here as workspace type, which are general, constant

orientation, singularity loci, constant position, orientation workspace and maximal

workspace. Generally a search method is related to 2 dimensional searches of databases for

example a tree search. A visual method like Voxel or spiral system provides 2D or 3D

visual representation of a database, where the path between nodes is defined as the lattice

patterns.

5.7 Advanced Parametric Sweep search based on L-system

This section discussed the various strategies for parametric sweep discretization or

iteration method to find workspace for parallel robot. Parametric sweep is an iteration

process, where the subject is arranged to move along a given path which is usually in a

form of grid, and Hrishi extended this to include recursive nearest neighbour to improve

the search performance [86]. Typical parametric sweep method is based on the

establishment of a cubic, spherical or conical grid system with regular spacing between

58

each unit, and this would require additional control to reduce redundancy and to limit the

travel outside a useful range. Lara-Molina research on search optimization discuss about

the issue of common method of performing local search based on gradients and Hessian

which examine subsequent value and compare with the relative optima, will eventually

converge into a local optima [87].

This study extends the concept of primitive shape envelope by introducing L-system

fractal, Spiral, Hilbert 3D and Marching Cube 3D method. Marching Cube’s Lorenson

method which is a box triangulation method is optimized to produce a minimal pattern

producing 8 different configurations check for the end-effectors [87]. Marching Cube is a

method where position and orientation check is done effectively as an extrapolation

strategy for any one point. Si develops variation to Hilbert using quadratic Hamiltonian to

produce helix lattices by performing spin-coupling that rotate the angle to form the helix

shape [88].

L-system is a formal grammar based plant growth system proposed by Lindenmayer. L-

system is parallel system that accommodates interaction with the environment. Some

variations to L-system are Stochastic grammars which gives probability for the

occurrences, Context sensitive grammar which is a combination of context-free and

sensitive checks for the occurrences before and after it and Parametric grammars allows

for definition for dimension[88]. L-system fractal is a random generated fractal or natural

grid system which is either 2D or 3D, and if in 2D forms, and then it would require a

strategy for generating the 3D grid system. Cheng demonstrated few methods for fractal

generator 3d transformation by using Jiang’s quaternion, Qu’s quaternion, Hamilton’s

quaternion and bi-complex numbers. Cheng concludes that ternary algebra produce better

59

result compared to Quad algebra method. Ternary algebra method is described as

providing more intuitive control of spacing, region definition and direction, and it is faster.

Mandelbrot’s sets using Jiang’s quaternion a flat 3D visual and Mandelbrot’s sets using

Qu’s quaternion produce a square sweep-lathe effect with noises. Mandelbrot’s sets using

Hamilton quaternion produce a cylindrical sweep-lathe effect with some noises which

could be the fractal tree branching out, while Mandelbrot’s sets using bi-complex numbers

produce a clean cylindrical sweep-lathe visual. The value of 𝝎=0.022 give better shape

for all experiments. The method is also known as Ternary algebra [66, 90]. Other method

includes sweep loft on all 3-axes, extrusion on any axes and interpolation between

collections of strategically placed planes. Rosa describe the quaternion method for

transforming Julia fractals into 3D system [90]. Séquin has extended the 3D Hamiltonian

grid concept into 2D manifold, which enable the 3D system to be presented as 2D database

which can be integrated with common 2D methods for database search, path planner and

data optimization [91].

Fractal has this attributes of having similar basic shape and recursive definition which is a

form of grid, with an added advantage of being non-rigid in its shape. The advantage is for

the cost of finding a solution, where L-system methods allow for fractal neighbourhood

growth with directional and dimensional factors. A geometrical parametric sweep would

be costly and difficult to determine the correct dimension size for each expansion or

branching out as the system grows. An L-system method is looking at the problem from a

graph point of view which is practical and efficient when dealing with sweep approach.

Interpolation for additional test of any single point is done using Trilinear 3D and Simplex

3D. The weighted ranking for any non-singular position is given by Grassmann factor,

60

which checks for Grassmann-related errors like instantaneous rotational axis, plane or

edge’s vector meets at infinity or any pair of edge or plane’s vectors is coplanar.

Ulam Spiral is a prime factor spiral generator, and its polar pattern is useful for the

parametric sweep activity. There are few variants to this prime factor spiral like Vogel

spiral, Fibonacci sums and direct rasterization. Ulam Spiral and its variant is generated and

strategically positioned to compare with the other various parametric sweep methods.

5.8 Boolean control for Parametric Sweep search

Boolean Logic concept is based on the input from leg stroke limits, joint angles and

ranking value that feed into a deductive logic system to find singular and non-singular

positions. Vector operations like direction, cross, dot product and closest distance provide

input for checking a pose for singularity. The system checks for performance comparison

between AND, NAND and NOR logics for mixed logic condition. The condition helps

define the parametric search parameters and is specific to particular applications [92].

Boolean optimization or simplification has the capability of removing redundancies and

simplifying combinational circuits. However, this method assumes that any point away

from the central points that is not connected to the existing network is singular for that

particular condition. The search for special workspace on a surface mesh is based on

minimum distance, and checks for duplicate results between the robot workspace and the

mesh coordinates. Interval analysis algorithm adjusts the parameter for the search range

and resolution, and improves performance speed [93]. Slicing operation allows the study

of any slices which would improve system performance. For example, a slice analysis of a

61

selected subset of constant orientation workspace helps to understand the effect of

orientation as a predefined path that passes along these slices [94]. A Boolean algorithm

provides the search strategy with controls for search behaviour, search limit, search

direction and redundant search reduction. Jeroen developed a Boolean simplification

system by deploying graph system, where the graph relationship greatly reduces the

requirement for additional description to some elements, due to Boolean effective terms

[93]. Boolean system is flexible and universal in addressing many algorithm functions

integration with other methods. Boolean make use of simple notation in providing iteration

and flow control for much strategy used in the Python simulation.

Boolean algebra has been used extensively and successfully in controlling the system

behaviour. A low resolution and small region investigation can be performed in real-time,

while a higher resolution and larger region is still a lot faster than numerical system.

5.9 Test point population theory

The parametric sweep next strategy is to populate the search region with test points and

direct the end-effectors to cycle through the test points, where search validation is done on

each point. A typical method is to populate in a rigid grid manners such as rectangle or

circular grid. This method is essential in estimating the maximum search region, but it is

not economical to perform high resolution search based on this method.

62

Table 1 3D grid system comparison (Low Resolution)

Type Test 1: Found workspace / Test

Points

Average Time

1

Cubic 3D 323 / 3179 (10%) 1.1e+03s

Cubic 3D (at large stroke, more than

20cm.)

22 / 1156 (2%) 3e+02s

Spherical 3D 819 / 1200 (68%) 9.2e+02s

Hilbert 3D 267/ 2000(13%) 9.7e+02s

Marching cube 3D (Cubic Grid) 1196/ 1440 (12 %) 5.7e+03s

Marching cube 3D (Hilbert Grid) 748 / 2178 (34%) 2.9e+03s

Table 1 shows that parametric sweep type cubic and Hilbert 3D (which is a form of L-

system) is less effective compared to spherical method. The Hilbert 3D grid formation is

harder to control in terms of direction and edge limit, therefore its effectiveness is low. The

cubic sweep has similar problem and not effective especially at the large stroke (where its

efficiency is only 2%). Marching Cube is an orientation check which is repeated 7 times at

each test point; therefore the efficiency is far less than the found valid points. Hilbert 3D

combine with Marching Cube yield an efficiency of 34% compared to cubic efficiency

which is only 12%.The next step is to find alternative ways for populating the assumed

workspace region, by looking into fractal random generator system.

63

5.10 Test point population based on fractal theory

This section intends to explore other ways of populating the grid or region effectively,

while considering the region growth, direction, multiple scales and resolution and its

effectiveness. Various L-system fractals are tested, and some is presented here to

demonstrate the result. There exist various types of L-system fractal system, each with its

own advantage, practical uses and advantages. Integrating the L-system in this workspace

analysis is rather strange if compared to the regular standard dimension and rigid grid

usually found in parallel robot workspace search based on cubic, spherical and conical.

Spiral system with search range and sub-search using L-system tree can benefit from the

search scope. All L-system random generators help interpolate and extrapolate between

known workspace positions. Random fractal generator based on various L-system

algorithm produce a variety of 2D shape. However, it is difficult to direct the region

growth, the region shape and sub-region resolution.

Table 2 L-system 2D to 3D Hamilton’s Quaternion comparison

Type 1D planar Test 1: Found

workspace / Test

Points (Percentage

%)

Test 2: Found

workspace / Test

Points (Percentage

%)

Average Time

Snowflake 305/6096 (5%) 498/6096 (8%) 7.4e+02s

Hexaflake 294/8192 (3.5 %) 362/8192 (4.4%) 9e+02s

Spiral fractal 459/6144 (7.4%) 428 /6144 (7%) 8.8e+02s

Vicsek fractal 436/6145 (7%) 485/6145 (8%) 8.6e+02s

64

Table 1 show that the 2D fractal parametric search is less efficient by 10% compared to

other methods. Comparing Table 1 and Table 2, it shows that fractal and cubic is far less

efficient compared to spherical parametric sweep. Hilbert grid has no redundant visit for

any test point, however due to lack of control for direction and growth, it become less

suitable for workspace search task.

This experiment demonstrate that the L-system as a random generator can be implemented

as 2D or 3D parametric grid, however it is difficult to control its direction, interval analysis

aspect like variable resolution, region definition and scale, and the growth of this grid

when the search grow. Spiral system like Ulam spiral proves to be more controllable and

provide various opportunities for improving the cubic and spherical parametric sweep

method. The next step is to define the test plane or slice analysis planes. The test point is

populated and arranged based on the parametric sweep method.

5.11 Parametric Sweep methodology

This section discusses the strategy for defining the test plane or the slice analysis plane.

This shall define how the 2D or 3D test points are effectively placed for variety of task,

such as search for workspace, path planning and optimization.

65

5.12 Parametric sweep random fractal generator

This section shall focus on Mandelbrot 3D shape, which is being randomly generated.

Basic optimization including maximum distance from fixed origin point, and points below

the fixed bottom plate is removed from the search set.

Table 3 demonstrates the special attributes for using fractal as test point’s generator, which

produce random data.

Table 3 Mandelbrot 3D random generated test points.

Test Test 1: Found workspace

/ Test Points /Average

Time

Image

Low- resolution 1 419 / 2973(14%)

8.5e+02s

Medium – resolution 2 1765 / 11708 (15 %)

3.7e+03s

66

High – resolution 3 No data

5.13 Parametric sweep type Hilbert 3D

Parametric sweep Hilbert 3d is a cubic-based grid with the exceptions that no repeat visit is

allowed during the iteration process. Parametric sweep should produce efficient grid, and a

grid that can be structured as 2D-databse data system. Hilbert is a form of a quad tree. 3d

space-filling curve quad tree system forms an advanced visual search concept. The system

utilizes Hilbert curve to optimize the search strategy. 3-bit Gray - 3d Hilbert curve Order is

presented below (Refer Figure 5-1)[95].

[0,0,0] [0,0,1] [0,1,1] [0,1,0]
[1,1,0] [1,1,1] [1,0,1] [1,0,0] , Developing a control for Hilbert, by introducing

learning mode where the change of direction is now based on weighted value. However,

due to the characteristic of Hilbert angle flips that should remain the same to maintain the

overall shape, the control is only limited to distance away from origin. Si has proved that

Hilbert can be transformed into a helix shape which is an advantage in defining the

workspace compared to a cubic-pattern lattice [96]. Helix and cubic Hilbert 3D has great

potential, however due to the complexity of developing this into a manifold system, this

part of the research is planned for future works. For this research, special focus is given on

67

Hamiltonian path, which works with similar rule that allows a single visit per node.

Hamiltonian path can be developed using various L-system fractal, and extrusion strategy.

This shall be discussed in the next section.

Figure 5-1 Parametric sweep type Hilbert’s 3D.

5.14 Parametric sweep grid extrapolation

Parametric sweep’s grid extrapolation means the strategy for improving the grid quality,

by effectively introduce additional points close to the found workspace points. The

extrapolation method experimented here includes Trilinear and Simplex. Simplex,

Marching cube, and the L-system Fractal 2d-to-3D loft generator need Euler rotation

matrices to correctly positioned them in the manner that user specified.

68

5.15 Parametric sweep Euler-convention

Parametric sweep’s strategic grid involves the act of defining the plane, position the plane

and distribute random test point on the plane, and interpolate test points between planes to

form a volumetric test points. Bonev mentions that Euler rotation matrices can be in any of

this 12 different conventions [83] . Where p is a vector coordinate in fixed frame and p’ is

the same vector in the rotated body frame based on orthogonal rotation matrix R, and

p=Rp’. (XYZ, XZY, YXZ, YZX, ZXY, ZYX, XYX, XZX, YXY, YZY, ZXZ, and ZYZ.)

Therefore, variety of result is obtainable when different conventions are used. This is an

important aspect when building 3D quadratic fractal.

𝑅𝑥(𝜃) = �
1 0 0
0 sin 𝜃 sin𝜃
0 − sin𝜃 cos 𝜃

� (26.a)

𝑅𝑦(𝜃) = �
cos 𝜃 0 − sin𝜃

0 1 0
sin𝜃 0 cos 𝜃

� (26.b)

𝑅𝑧(𝜃) = �
cos 𝜃 sin𝜃 0
− sin𝜃 cos 𝜃 0

0 0 1
� (26.c)

𝑅 = 𝑅𝑧(𝜔)𝑅𝑦(𝜃)𝑅𝑥(𝜑) =

 �
cos 𝜃 cos𝜔 sin𝜑 sin𝜃 cos𝜔 − cos𝜑 sin𝜔 sin𝜑 sin𝜔 + cos𝜑 sin𝜃 cos𝜔
cos 𝜃 sin𝜔 cos𝜑 cos𝜔 + sin𝜑 sin𝜃 sin𝜔 cos𝜑 sin𝜃 sin𝜔 − sin𝜃 cos𝜔
− sin𝜃 sin𝜑 cos 𝜃 cos𝜑 cos 𝜃

� (26.d)

69

5.16 Parametric sweep spiral grid

Parametric sweep’s spiral grid method includes Helix and Spiral format. The fractal

system examined in this section is the Alum Spiral, following the better performance

provided by helix based search. Different arrangement strategy for L-system type

Snowflake to form 3D grid based on various strategy is presented in Table 4. The test is

based on Ulam spiral grid with various strategies to explore its potential.

The strategy for optimization is based on radius shrinkage and expansion for each slice.

Therefore along the slices, the Ulam spiral search grid’s radius will try to fit into smallest

searchable radius while considering all possible test points outside the range. Herschel

graph is the smallest possible polyhedral that does not have a Hamiltonian cycle.

Table 4 3D grid formation strategy based on 2D plane

Arrangement type Test 1 : Found

workspace / Points

(Average Time)

(Percentage %)

Image

Serial (Horizontal) 175 / 834 (6e+02s)

70

Serial (Vertical) No data

Parallel (Horizontal) 175 / 828 (6e+02s)

Parallel (Vertical) No data

Radial Grid No data

71

(B-Complex)

Extrusion

(Horizontal)

309 / 834 (7.8e+02s)

(B-Complex)

Extrusion (Vertical)

349 / 834 (8.1e+02s)

Hamilton’s

quaternion (24

slices)

No data (2.4e+03s)

72

5.17 Parametric sweep 2D based on turtle-cursor method

Turtle-cursor method is also known as Lindenmayer system which is a recursive systems

that leads to self-similarity [88]. A parametric L-system is defined as 𝐺 = (𝑉,𝜔,𝑃), where

V (the alphabet) is a set of variable of symbols, ω = (start, axiom) which is a string of

symbols from V defining the initial condition, and P is a set of production rules which

define the method for replacing the initial conditions with combinations of constants and

other variables. A context-free L-system’s production rule does not consider its neighbors.

A context-sensitive system considers its neighbors. A deterministic context-free L-system

which has only one production-rule for each symbol is called a DOL-system, while if each

variations of production rule are chosen due to probability per iteration; this is called

stochastic L-system [97].

𝐶𝑢𝑟𝑠𝑜𝑟𝑝𝑜𝑠 = ∑ (𝐹𝑟𝑎𝑐𝑡𝑎𝑙(𝑡𝑦𝑝𝑒))⋀�(𝑤𝑠 > 𝑙𝑖𝑚𝑖𝑡) → 𝐶𝑢𝑟𝑠𝑜𝑟𝑝𝑜𝑠=𝑤𝑠(𝑐)�𝑤𝑠(𝑚𝑎𝑥)
𝑐=0,𝑤𝑠(𝑐+1) (27)

Where Cursorpos= Fractal generator’s cursor position, ws=workspace pre-generated based

on cubic parametric sweep Fractal (type) is either type Levy Dragon, Koch Snowflake,

Levy C and Hilbert. Fi 5gure-2 demonstrate a planar slice fractal grid based on this

parameter 'FX', 'X', 'X-YF-', 'Y', '-YF-X', where F = Forward motion, + = turn Right, - =

turn Left and X,Y represent the 2D axis of X and Y.

Example production rules used in the Python simulation is given here, for example to draw

a Levy Dragon pattern, the rule is = (1, 4, 16, 'FX', 'X', 'X+YF+', 'Y', '-FX-Y'). To draw a

Koch snowflake, the production rule is = (1, 6, 6, 'F++F++F', 'F', 'F-F++F-F', '', '').

73

Fi 5gure-2 Example Python rendering of a 2D-fractal pattern

The running time for 2D fractal growth search is n sec, and the 3D mode is still being

developed to remove redundant or repeat visit of any test point, and to improve the 3-

dimensional growth or branching out algorithm. Extending this concept by performing

slicing at n-interval along an axis produces a 3D representation of the fractal 2D growth.

The relationship between populated test points can be regarded as adjacency graph

elements.

74

5.18 Parametric sweep grid strategic distribution

The strategic distribution has to be formula-based, configurable and can be made random.

This way, the operation can cater for different task, and adjust its growth and region based

on the task requirement. Usually, the formulation produces high density small-region

distribution of test points within a certain organic shape as its outline.

White and Nylander's formula for the "nth power" of the 3D vector to build a 3D fractal is

based on Hamilton quaternion of complex numbers [98]. White method for Mandelbrot 3D

is defined in Eq. 28a And NY lander method for Mandelbulb 3D is shown in Eq. 28b

(𝑥,𝑦, 𝑧)𝑛 = 𝜌2(cos(2𝜃) cos(2𝜑) , sin(2𝜑) cos(2𝜑),− sin(2𝜑)) (28.a)

Where 𝜌 = �(𝑥2 + 𝑦2 + 𝑧2), 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦/𝑥) ,𝜑 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑧/𝜌)

(𝑥,𝑦, 𝑧)𝑛 = 𝜌𝑛(cos(𝑛𝜃) cos(𝑛𝜑) , sin(𝑛𝜑) cos(𝑛𝜑),− sin(𝑛𝜑)) (28.b)

Where (𝜌,𝜑,𝜃)𝑛 = (𝜌𝑛,𝑛𝜑,𝑛𝜃)

5.19 Parametric sweep grid based large quaternion

Polyhedra grid formulation for n=-3, -2, -1, 0, 1, 2 and 3 is given in Eq.10. Polyhedra grid
based on either rhombic triacontahedron (RT) or rhombic dodecahedron (RD) [99].
Figure 5-3 demonstrate a range between -2 to 2 for n, which can be further extended to

build large branches.

(𝑥,𝑦, 𝑧)−2 = �𝑎 × (𝑥2 − 𝑦2), (−2 × 𝑥 × 𝑦 × 𝑎), �−2𝑧 × 𝑟𝑥𝑦�� /𝑟2 (29.a)

75

(𝑥,𝑦, 𝑧)−1 = �(𝑥), (−𝑦), (−𝑧)�/𝑟2 (29.b)

(𝑥,𝑦, 𝑧)0 = �(1), (0), (0)� (29.c)

(𝑥,𝑦, 𝑧)1 = �(𝑥), (𝑦), (𝑧)� (29.d)

(𝑥,𝑦, 𝑧)2 = �𝑎 × (𝑥2 − 𝑦2), (2 × 𝑥 × 𝑦 × 𝑎), �2 × 𝑧 × 𝑟𝑥𝑦�� (29.e)

Where𝑎 = 1 − 𝑧2/𝑟𝑥𝑦2

Where𝑎 = 1 − 3 × 𝑧2/𝑟𝑥𝑦2 , after which we must use Monte Carlo to solve the rendering

equation.

This is formulated using the pseudo-code in Eq.30 to demonstrate an example for large
quaternion. Example Python rendering of the large quaternion based on Eq.30 is given in
Figure 5-4

a = 1 + (z8 − 28 × z6 × rxy2 + 70 × z4 × rxy4 − 28 × z2 × rxy6) (30.a)

𝑑𝑥 = 𝑎 × (𝑥8 − 28 × 𝑥6 × 𝑦2 + 70 × 𝑥4 × 𝑦4 × −28 × 𝑥2 × 𝑦6) (30.b)

𝑑𝑦 = −8 × 𝑎 × 𝑥 × 𝑦 × (𝑥6 − 7 × 𝑥4 × 𝑦2 + 7 × 𝑥2 × 𝑦4 − 𝑦6) (30.c)

𝑑𝑧 = 8 × 𝑧 × 𝑟𝑥𝑦 × (𝑧2 − 𝑟𝑥𝑦2) × (𝑧4 − 6 × 𝑥2 × 𝑟𝑥𝑦2 + 𝑟𝑥𝑦4) , where rxy =

 �(x ∗ x + y ∗ y) (30.d)

Z-axis in 3d or 4d fractal can be defined as level definition, which produces branching out.

The outcome produces an organic shape that follows a given direction, with a tendency to

branch out to test for out of scope’s data distribution. The system appears flatten and all

axis will eventually force test points’ distribution towards the given direction. Example 4D

rendering is shown in Figure 5-5

76

Table 5 Comparison between Quaternion sweep systems

Figure 5-3 Quadratic

3D Mandelbulb Set

Figure 5-4 Large quaternion

Figure 5-5 4D fractal grid

5.20 Conclusion

Various sweep theories are presented in this chapter, with a basic geometrical square shape

and complex methods like L-system fractal generator and quadric algebra. The sweep

theory integrated in the 3d Python simulation manages to solve various types of workspace

search methods. The sweep method presented is based on geometric constraint and

Grassmann check, and has been validated for kinematic accuracy. The Python simulation

is able to solve many workspace types which include constant orientation workspace,

constant position workspace and the blending between collections of workspace datasets.

Fractal distance away from the start point can be estimated, and the spawn direction can be

controlled, however, in a 3D environment, this proves to be complex and computational

intensive process. While propagating and distributing test points in 3D space, the fractal

set has the tendency of distributing away from the learning data. Therefore, redundant test

77

has to be controlled which require an additional process. Generally escape time algorithm

is utilized to control the iteration process; however, it is common to see large amount of

non-useful iteration has been performed before the process catch the exception.

The developed research demonstrates the advancement in parametric sweep search which

is useful in determining workspace, analysis of workspace, path planning, singularity

determination and interaction with external elements like contact surface and obstacle. The

traditional geometric sweep based on cubic and spherical can solve the search problem,

and some has been examined for various workspace typologies. Then, the research

advances into L-system fractals to examine the possibility of using fractal random

generator for similar purposes. This is further improved to become 3D and 4D fractal

system based on various interpolation method like extrusion, axial rotation and algebraic.

The development of full 3D random fractal generator is based on Verhoeff works, where

the concept is related to parallel robot.

The modified pattern for L-System has successfully identified the workspace region based

on a robust training data and produce adjacency graph. The adjacency graph provides the

opportunity for various relationship establishments between the test data. This extrusion,

quaternion and sweeping method to build a 3D data population can be easily optimized,

prepare for path planning and surface mesh interaction.

78

Chapter 6: BOOLEAN CONTROL FOR

PARAMETRIC SWEEP SEARCH

6.1 Introduction

This chapter discusses Boolean algebra and its application in solving parallel robot’s

design problem. The Boolean algebra provides control for the parametric sweep strategy

mentioned in the previous chapter. This control strategy is necessary since the parametric

sweep search method is lacking in control. Without control, the sweep search have to

assume a larger than necessary search region, and has to sweep through all region.

6.2 The Boolean algebra for fractal parametric sweep

Learning from Alum spiral path it can be seen that the spiral effectively increases the

search area without having to search outside the workspace region in each search cycle.

Boolean gate is required here to control the search expansion, and instruct the L-system

fractal generator to explore the space. The experiment is performed on a slice of data,

where y-axis is fixed at position=0. Boolean algorithm shall decide either to move the

cursor forward, to the left or to the right and render a test point at that position. Upon,

which the weighted ranking for distance to a known workspace position is used to evaluate

this directional changes. The random generated fractal is then directed towards this

favourable direction. Growing a fractal cluster while removing the chaotic factor needs

Monte Carlo method [100]. Topology straightening formula restrict the boundary for the

79

fractal growth and branching [101]. Key objective here is to straighten and direct the

fractal growth axis towards a given trajectory. And, to limit the growth within a given

boundary that satisfy the task’s objective. Examples Python rendering are given in Figure

6-1, Figure 6-2 and Figure 6-3

Figure 6-1 Example of 3D-fractal parametric sweep development history

Figure 6-2 Example of 3D 3D-fractal parametric sweep development history

80

Figure 6-3 Example of 3D 3D-fractal parametric sweep development history

Verhoeff successfully produced an easy to reproduce and quite natural-like 3D tree-

structure based on simple rule. Firstly, Verhoeff start with a rectangular polygon as the

seed. Then, generate the first pair of branch (left and right direction, where angle is

between 60O to 120O), by performing a cut (using functions like square, parallelogram,

rhombus and rectangle to produce the basic seed shape), ridge (using functions like

horizontal and slanted to perform the ridge cutting through the seed volume, usually at the

top end), and roof (using functions like asymmetric, symmetric and congruent for the

cutting action itself to produce random effects). The 3D binary tree development shall be

based on Verhoeff findings and experimental results [82].

In this section, a methodology for real time identification of various singularities for

various types of workspace for parallel robots is proposed. Python 3D simulation software

has been developed to position the moving platform of the robot’s CAD model through

pre-defined rules in order to solve specific problems including singularity identification,

81

obstacle avoidance, and path planning. The system is designed to identify the moving

platform’s best possible pose. Boolean logic is used to identify valid path trajectory

through parametric sweep search method. Joint constraints are checked to validate the

platforms’ positions using the actuators’ stroke length, their angles, and any possible

collisions. Solutions for the desired pose are then obtained, based on line collision and

mesh model algorithms,. The path, position and workspace data are verified against a

kinematic model of the robot, developed in Solid works and Matlab software tools. The

Python system offers fast solution in designing new parallel robot configurations and

geometries through local and global optimization of the search area

6.3 Boolean Logic for search control and validation strategy

Boolean method is based on the logic controls of the search and validation strategy to

determine singular and non-singular position and orientation workspace. Boolean logic is

the control structure that defines the search parameters; search criteria and analysis. Search

parameters include upper and lower bound and parametric sweep shape. Search criteria

include search technique and filter.

Table 6 is based on ‘case 1’ to demonstrate the Python system capabilities, where the end-

effectors are directed to follow a path, while the system performs workspace analysis for

the Platform A to determine its best path. The process completion time is resolution-

dependent, and interval and slicing allows detail analysis of interesting region. The

computation time shown here is faster than numerical method for finding a workspace.

Case 1, 2, 3 and 4 is not replicated in numerical method due to few constraints.

82

Table 6 Parametric sweep performance for Case 1

Type Travel limit (x, y

axis)

Resolution Time (seconds)

Python Test 1 40 cm 1 unit 34000

Python Test 2 40 cm 5 unit 1100

Python Test 3 40 cm + z – axis(2

slices)

5 unit 2000

Python Test 3 40 cm (x, y & z –

axis)

5 unit 17000

Numerical Test Not implemented Not implemented Not implemented

Analysis is performed on the dataset based on a general structure, constrained structure (by

obstacle type and shape), interval analysis and data slicing analysis. The case studies

presented here is based on literature search results for various typical and specific

workspaces. Reference is made to Figure 3-1in the following descriptions: Case 1 is a

special-case for a hybrid robot system, where the search is for platform E’s workspace

when platform A is following a pre-defined 3D path. Case 1 optimizes platform E’s travel

while ensuring minimum trajectory changes during travel. Case 2 is a search for obstacle-

free workspace when a set of primitive objects are placed within a known workspace. This

obstacle is user-defined, where the dimension, position and accuracy can be configurable

83

and can be used for obstacle-free path planning. Case 3 is an end effectors’ search for

position on a 3D mesh surface. Interval analysis can add a higher resolution search on a

specific path on the 3D mesh surface. Case 4 are optimized search strategies, where

Boolean analysis is performed on selected information only, which is either a slice or a set.

6.4 Case studies

6.4.1 Case 1: Boolean search for platform A’s path when platform E’s path is known.

Weighted f, ωf for σn = angG [o1, o2] if Coplanar OR meets at infinity, given by the

Grassmann rules. The large sets of comparison-wise check for non-coplanar condition has

to consider non-redundant loop and Boolean validation method for all pairs σn. Boolean

validation where σ0 ∩σ1 ≠0 and σn ∈ (comparable pair-wise set σc), and σc must produce

Grassmann errors.

Table 7 A random-generated 3D grids for case 2

Random generator Types Time (seconds) Grassmann weighted value

ωf

3-axis x 1-plane

arrangement (case 2)

880 17280

3-axis x 4-plane

arrangement (case 2)

4400 83008

Trilinear arrangement

(eq.3) (case 2)

700 12684

84

The criteria for selecting each set’s representation is based on weighted rank, where the

rank itself is based on either a) K-Means cluster centroid or b) combination weighted rank

for distance between each set’s representation, distance to center and Grassmann error

value. 2D slice features allow for 2D check and interpolation to optimize Platform A’s

path when Platform E’s path is known and fixed. Python rendering of the case study is

presented in Figure 6-4(a), and the Spline interpolation is shown in Figure 6-4(b).

Figure 6-4(a) Middle Travelling Plate’s list of possible path when Top Travelling Plate

moves along the defined path and 12(b) Spline interpolation

Spline interpolation cannot solve the problem with weighted rank value. The interpolation

may derive best fit curve but this unlikely to be the best solution. A weighted system need

to consider factors like distance to base’s center-point, gradient angle between travel and

distance between sets of node in the path segment, where the objective is to reduce

platform A motion to a minimum or to pose the structure in the best stiffness orientation,

by aligning both platform E and A together.

85

Adjacency graph strategy to solve the 2D problem slice in Figure 6-5(b) for platform A is

shown in Figure 6-5(a). Adjacency graph can be adopted to work with various methods

like k-means clustering, path algorithm, search algorithm and weighted rank system. The

adjacency graph also work with different slices or dataset of information, by creating

linkage as an interpolation between the sets.

Figure 6-5(a) Adjacency graph strategy to solve the 3D problem and 6-5(b) 1D array

network (A 2D solution)

6.4.2 Case 2: Boolean method for data slicing analysis

Slicing analysis operation is a data interpolation between points. Here, a ‘constant

orientation slice’ checks a path that goes past each slice of information. The interpolation

between points along the path and the slices give extra information regarding the path

trajectory. There is a collections of possible points that connect the two data slices at the

given ‘constant orientation workspace’, as shown in Figure 6-6(a). This is a 2D curve

spline interpolation working on 1D-array data. Figure 6-6(a) is provided as an example of

Python rendering for 3D interpolation between slices of datasets. Figure 6-6(b)

86

demonstrates the problem with data interpolation, where other algorithm like Trilinear is

required to add extra dimension to the interpolation.

Figure 6-6(a) Interpolation between slices and 6-6(b) 1D path between the 3 data slices.

The 2D path interpolation based on 1D linear interpolation does not produce relevant result

following similar argument of not being able to utilize the weighted value which is related

to gradient changes between path’s node, distance of path’s node to the given path and

distance between each node itself. The example for this 1D linear interpolation is given in

Figure 6-4 and Figure 6-5. L-system random generator strategy for 3D interpolation is

another method for extending the data slicing analysis. In this method quadratic algebra or

ternary algorithm is used to form the adjacency graph between the random populated test

points distributed on the collection of test planes. Gill use connected planar graph, and

check for intersection between connected links to form the interpolation between slices.

Then consider the slice orientation and rotation direction to ensure proper linkages is

formed. Boolean logic is used here to control the 3D graph formation [102]

87

6.4.3 Case 3: Boolean method for search whilst avoiding obstacle

This case study demonstrates a method of using Boolean operation to find non-singular

positions outside the obstacles placed within the non-singular workspace of the robot

system. Two spherical obstacles placed at two different coordinates. The formulation for

the collection of detectors shaped to form the spherical-shaped obstacles is based on

standard sphere formula. Figure 6-7 shows an example case for obstacle avoidances or

collision detections, where the case demonstrates the avoidances of two obstacles placed

within the Work volume region. The obstacle (developed using equation 1) can be

described as pick and place object, obstacle or working plane. Haptic interaction shall

include force feedback interaction with the obstacle while user navigate or collide with the

obstacle. This haptic interaction shall be based on Boolean logic operating on n-D Simplex

algorithm. 2D optimization by using D* and A* for obstacle avoidance and path planning

within a workspace is a useful to validate the various condition. Liu develop a Boolean

method for collision avoidance inside Configuration space (Cspace), which is simplified

here to demonstrate the idea 𝐵𝑗(𝑋) = {𝑋|ℎ(𝑋) > 0}𝑓𝑜𝑟 𝑗 = 1,2. .𝑛 , where X is a point in

space (x,y,z), h(X)= 0 denote boundary, Bj represent Boolean method for dataset avoiding

obstacle j, for a multiple obstacles scene [103]

88

Figure 6-7 Example Python rendering of a work volume outside the two obstacles

volumetric region

6.4.4 Case 4: Boolean method for search on a surface mesh

This is a study of platform E’s path for non-singular condition following a surface mesh

placed within the robot workspace. The search objective is to find points on the mesh that

have non-singular positions. The search for non-singular points on the mesh surface is

generalized. Figure 6-8(a) and 6-8(b) shows the plot for non-singular points on the mesh.

There is no limit to the number of meshes, locations and the shape variations placed within

the workspace. A 1D array of the results of regression analysis produces lists of paths. The

simulation then continues to perform a parametric sweep to find the best possible path on

the mesh surface based on the slicing of sets of planes. Python example result for 2D

univariate interpolation is shown in Figure 6-9. Adapting Liu’s Boolean algorithm, to

ensure the distance between end-effectors and mesh(target) is always equal to 0, therefore

the equation now become 𝐵𝑗(𝑋) = {𝑋|ℎ(𝑋) = 0}𝑓𝑜𝑟 𝑗 = 1,2. . 𝑛 , where X is a point in

space (x,y,z), h(X)= 0 denote boundary, Bj represent Boolean method for dataset avoiding

89

obstacle j, for a multiple obstacles scene. Liu’s method does not require the analysis of the

Cspace[103]. Pavic’s research on continuous Boolean operation on surface mesh use both

polygonal and volumetric data. The method requires extraction of the geometric mesh,

which can be done by executing algorithm like Marching cube, simplex, dual-contouring

and manifold topology. Pavic introduce cuboids to provide blocking and simplify the

volumetric problem, then define the inside and outside mesh surface criteria based on

Boolean logic. However, when using this method, there exists a problem with clipping

during sharp corner and hole [104].

Figure 6-8(a) Boolean method search avoiding obstacles and 6-8(b) red dots represent the

non-singularity points on the surface mesh

90

Figure 6-9 A univariate interpolations to find path on the mesh surface

6.4.5 Case 5: Boolean method for interval analysis

Interval analysis is a method for detail inspection of a set of data. The objective of this

experiment is to demonstrate the detail analysis by subdivision of the path, and performing

analysis for a given range along the path. Line segment is an operation done on a set of

points to solve problems like analyzing the path accuracy. Interval analysis defines a

suitable lower and upper bound during a parametric sweep search. The objective here is to

reduce redundancy, unnecessary search outside the bound. Interpolation produces a

relationship between sets of grid for a specific node. Figure 6-10 demonstrate an example

for interval analysis operation on collections of points along a path, where interval analysis

allows detail inspection of a union of points on that path.

91

Figure 6-10 An ‘interval analysis’ system for the mesh surface workspace

Interval analysis is planned to be used as local and global search size definition and real-

time path planning tool. The upper-bound and lower-bound search range defines the start

and end node for a subset of a path, and new local parametric sweep grid is prepared.

Gallego demonstrate the positive advantages of using adjacency graph or adjacency matrix

in solving complex data [105]. Pigot uses n-simplicial topology which can be described as

adjacency graph that allows for remapping between types of simplexes. Here, the

migration between 1-simplex (an interval) to 2-simplex (a face) and 3-simplex (a volume)

is allowable. Boolean provide useful and compact algebra to control the seeding and

branching control of the simplex tree [106]. Following this idea, an interval analysis

method has been developed, which quickly migrates between simplexes when either the

system or the user needs it.

92

6.4.6 Case 6: Boolean method for quadratic interpolation edge determination

Quadratic or quaternion interpolation builds an instance of a parametric sweep grid

between any set of slices or planes. The final pattern depends on formulation and the

extrusion method. Table 4 displays an example Python rendering based on horizontal

ternary interpolation using a given L-system pattern. The result is an adjacency graph

which is a sweep travelling path for the end-effectors.

The difficulty in handling complex adjacency graph produced by the quadratic

interpolation includes large number of linkages and large number of nodes. The Boolean

algebra has to estimate each slice’s parameters, thus reducing the number of network. This

could lead to a combination of search methods in a single run [107]. Based on Bezier

interpolation, the system can reduce the slice size and arrange its position and orientation

effectively. Figure 9-15,Figure 9-16 and Figure 9-17 illustrate this concept, where a path

is given, and the system is expected to conduct an efficient parametric sweep following

this path.

6.4.7 Case 7: Boolean method for L-system fractal random growth pattern

determination

L-system is a formal grammar system with dynamic interaction with its environment

(Refer Figure 6-11). Boolean logic is implemented to drive the fractal growth position,

direction and limit. Boolean control the growth rule by directing the fractal towards the

training set data. This training set data is a collection of test points generated by draft

workspace cubic parametric sweep search. For generating the fractal, we use context

93

sensitive grammars. Therefore Boolean logic can provide the ‘if-else’ scenario controls.

Ikbal produced the development of scaling factor into L-System grammar to follow

Iterated Function System (IFS) [108]. Merell discussed the requirement for constraints in

fractal or procedural rendering, where we chose to implement the geometric constraints

type algebraic in the L-System [88]. Boolean has to control few methods in L-System

which are – a) ‘F’ move forwards d steps and draw a line, b) ‘f’ move forwards without

drawing a line, c) ‘+’ turn right, d) ‘-‘ turn left and e) ‘|’ which means turn away from the

current trajectory [109]. Dubois developed anticipatory algorithms that help control the L-

System chaotic behavior, by introducing saturation factor by having incursion over the

solutions. Dubois use Boolean table as a recursive flip-flop memory table that helps reduce

the system complexity especially for a one-to-many relationship [110].

Figure 6-11 Example Python rendering of L-system fractal in automatic search mode

94

6.4.8 Case 8: Boolean method for determining Grassmann search behaviour

Boolean simple logic is used here to provide control for Grassmann error condition which

includes coplanar condition, line-line join condition, and line-line meets condition, plane-

line meets when given a plane and point-line join condition. Details regarding this

operation can be found in section 5.4. Boolean logic controls various conditions and

parameters namely the type of search, the parametric sweep method, the Cspace size and the

analysis method.

6.4.9 Case 9: Boolean method for finding singularity loci

Tatsuya develop a graph-based control based on Boolean Network (BN), which pose a

problem with the control method [111]. The parametric sweep search has been constraints

with quick edge detection and stop travelling along a singular region. This is a difficult

control method to solve, since this region is not known or there exists some non-singular

position or orientation in the singularity region. And, then, there is also a large variation of

workspace type to be considered. The application to control the sweep search is limited to

a combinations of AND and OR which check for geometry singularity and all 5

Grassmann constraints. The Python simulation reduces the complexity by focusing on a

smaller Cspace and performing coarse-resolution parametric sweep before the fine-

resolution operation. There is various search methods, which can be employed by the user

to optimize the loci search. The loci condition is equivalent to Grassmann singularity [53],

which has been implemented as a real-time operation. The loci search optimization has to

95

consider other factors including the parametric sweep type, data population method, and

the interpolation between the test nodes. The singularity loci conditions need the moving

platform to be rotated at an angle, where the Grassmann singularity becomes a risk. The

search parameter would set the moving platform angle, perform the parametric sweep and

follow the Boolean rules. This iteration continues with different rotation angles for the

moving platform until the iteration reaches the rotation limit. The discussion on two fixed

constant orientation blending is given in section 7.4.

6.5 Conclusion

Boolean provides logic controls of the search and validation strategy to determine singular

and non-singular position and orientation workspace. Boolean logic is the control structure

that defines the search parameters; search criteria and analysis. Search parameters include

upper and lower bound and parametric sweep shape. Boolean produces criteria for search

technique and filter. Boolean can limit the region, direction of search and the search

behaviour. The system is scalable and modifiable; therefore a region can be extended or

reduced. The research follows the concept demonstrated by Merlet, which is then extended

by many other researchers.

96

Boolean algebra controls the 3D binary tree method by directing the growth and new

seeding where appropriate. This way, Boolean provide limit for growth, direction of

growth and scale the growth to satisfy the 3D sweeping parameters.

Various Boolean methods are presented in this chapter as case studies to demonstrate the

concept. Boolean provide the necessary control for path planning, surface mesh

interaction, slicing and interval analysis. Boolean has successfully limits the search space

and control the search direction.

97

Chapter 7: PATH PLANNING

7.1 Introduction

Parallel robot is a closed-loop system with translation (x, y and z) and Euler angles (α, β,

γ). The amount of Degree-of-Freedom and its workspace is not limited to any combination.

However, there is a risk of existence of singularity in the final design. This section

discusses the path planning aspect of the parallel robot design. Path planning requires the

parametric sweep result, whose validation using was explained in the previous chapters.

7.2 Definition for search region

C space is a configuration space where the robot can move without going into a singularity

condition. C space for Hexapod Robot is basically a hemispherical shape and can be

represented as special Euclidean group𝑆𝐸(3) = 𝑅3𝑆𝑂(3). A Cfreespace is a space where

the robot can move while avoiding obstacle. Qin explains the uses of Cfree and Cobstacle to

reduce the requirement for C-space search, since C-space search is computationally

intensive. Qin describes the potential of using any representation that would help improve

the robot’s motion-related task when C-space is replaced by another method. Glavina first

explain the concept in 1994, where it is hoped that a new method would solve the problem

by focusing on the problem at lower Degree-of-Freedom, reduced number of nodes in

graph and to help improve A* search by reducing the system complexity. Qin highlights

the issue of identifying the maximum reachable pose, which may not be within the Cunique

98

workspace. Qin uses discretization heuristic to control the resolution, which is also known

as interval analysis. Heuristic rule ensure that critical region is being given higher

resolution, in order to improve overall system accuracy, while not losing speed [8,79].

Glavina suggested that C space depends on the number of actuators, however neighbouring

node search grid is limited to 3D or 4D space. The graph nodes have to be limited in order

to generate enough test data within the acceptable resolution for a wide range of 3D space.

A* which is based on Euclidean distance to an end pose is not sufficient in this type of C

space. Glavina primary objective is to divide the problems into a small and simple 2D

problem, where the focus is on the issue itself rather than the whole 3D space. Glavina

uses method like slide-step in order to quickly establish the maximum reach or the edge,

and to quickly find the end pose or the target. To improve trust in a questionable region,

Glavina introduces a sub goal which is a form of random generated test data [112].

Bohigas explore the force-feasible C-space for a path, where A* is then used to find best

path on a mesh generated by first avoiding singularity loci space, since the travel is done

based on constant orientation method. Some of the issue addressed by Bohigas includes

the problem with interpolation, where certain factor may not be considered by the system

like the orientation compliance or the gradient angle changes between the two poses from

start to finish position [7].

99

7.3 Path planning strategy for parametric sweep search

There is a significant difference when the parametric sweep search for non-singularity path

is done using serial or parallel search method. Qin experiments with parallel search in a C-

space, where a seed generator can be placed at any node, with certain criteria for branching

out to form the parallel search [8]. This section shall explore the serial, parallel and spiral

sweep method while adapting ideas from ‘Gift wrapping algorithm’ and ‘Jarvis march’ to

quickly identify workspace’s edge, Cfree and Cobstacle. Those method and few others are well

known in convex-hull quick search method, such as Graham Scan. The methods are

adapted for 3D sweeping strategy to quickly find path, workspace and singularity for

parallel robot application.

Adjacency graph could be categorized into unbalanced, AVL balanced tree, serial and

parallel, ternary and binary tree. An AVL tree (developed by Brad Appleton) is a binary

tree, and as a balanced tree, the difference between the height of the left and right tree is

never more than one. To balance an AVL tree, every time there is a new insertion into the

graph, a rotation function is required. The rotation can be either single or double rotations,

with corresponding ‘left’ and ‘right’ versions. An AVL criterion has to keep track of the

AVL state by checking the height difference and rotate the graph when necessary. The

advantage of using AVL is described as being fast 0(log n) time in both the average and

worst cases for data lookup, insertion and deletion [113].

100

The Python simulation integrates various form of adjacency graph in simplifying the order

of chaos in the result, especially in making senses of the relationship with other weighted

value like cost-factor.

Parallel robot path planning is an essential factor in ensuring that the robot can perform the

given task safely, accurately, timely and cost effectively. As an example to illustrate the

concept, a robot is given a task of performing a soldering work on a block. The robot must

be able to position its end-effectors and move along the given cutting path. The robot must

be able to follow the given path while its based is fixed to a given position or mobile,

moving along another path. Therefore, path planning has to consider many general and

specific factors that relate to these tasks. A Python 3D simulation system has been

developed based on Grassmann pencil-line terminology, where it’s kinematic has been

validated using numerical system, and the basic singularity check is based on structural

geometric and Grassmann validation. The full 3D system allows for 3D experiment,

analysis and data visualization. Various 3D path planning and analysis method is shown in

this research to demonstrate the system ability. The experimental result is an ad hoc study

of the problem, which produces result quickly at low resolution. User is expected to

perform highly accurate and numerical analysis following the result in order to improve its

accuracy and validity.

Bhattacharya mentions the requirement for estimation algorithm in solving path planning,

which leads to heavy computation time [81,82]. Ur-Rehman explains that one import

aspect of path planner is the placement of the work piece inside the robot’s workspace. For

a mobile or reposition-enabled robot, the path placement has to consider the optimization

of the robot’s base, too [116].

101

7.4 Experiment setup for two different scenario

7.4.1 Setup 1: Path strategy between two Constant Orientation Workspace

The first experiment setup is shown in Figure 7-1, which is based on constant orientation

workspace data for two different pose, where start pose =coordinate (-20, 16.1763, -

18.2472) and end pose = coordinate (10, 18.2663, 21.8673), where their orientation axis

are + and – degrees along x-axis. The red cubic sets represent the constant orientation

workspace for start node, and the yellow cubic represent the end node. Two extreme

positions have been selected as the start and end point, where a direct straightforward path

between them is not possible, when any of the two orientation angle is applied to the end-

effectors.

Figure 7-1 Path between [0][45] to [1][1]

102

7.4.2 Setup 2: Path strategy for platform A when platform E is moving and following

a path

The second experiment, shown in Figure 7-2, is based on a hybrid robot, where platform A

is a hexapod with 6 legs structure and platform E is a tripod with 3 legs structure. This

setup is a search for best path for platform A when platform E needs to follow a specific

path. The criteria shall consider these parameters like gradient changes towards the target,

gradient changes between nodes, distance from each node, distance from the centre

position and singularity rank value. Figure 7-3 demonstrates the nearest distance to centre-

point result for platform A’s workspace data.

Figure 7-2 Collection of datasets representing Platform A’s workspace

103

7.5 Path planning with slice analysis for trajectory control

Path planning is related to allowable end-effectors’ motion when there is no singularity in

the path, where the path could be fixed or modifiable. Path planning has to consider

various factors like distance between node, cost to move and reach the next node, sub-

singularity elements like stiffness factor, Grassmann, vibration, trajectory changes and

velocity. Bonnemains found that elastic deformations have higher influence on the x-axis

for his experiment on cutting a block of an aluminium block. Bonnemains added that

Matlab ODE15’s solver is noisy [117]. Rossi propose that no robot can move with

discontinuous movement and velocity, and irregular curve should be avoided in

performing path planning. Rossi explains that polynomial planner has the disadvantage of

many issues, for example when the polynomial increases, the trajectory becomes not

natural for the manipulator and the polynomial depends on the given points, when any

points is changed, the polynomial has to be recomputed. According to Rossi, to solve the

single high order polynomial disadvantage, the path is broken into segment of low order

polynomials. Rossi comments that a trajectory planning method has been developed at the

Di.M.E. at the University of Naples ‘‘Federico II’’, where the planner considers another

constraints that is the trajectory tangent [118]. There are various paths planning strategy in

2 dimensional applications, but not many in 3 dimensional spaces. Path planning is also

associated with task, therefore the path strategy has to consider new factors like constant

position, constant orientation, continuous surface contour, obstacle within the path space,

cutting and machining theory, force required to perform cutting and many more.

104

Ata use the term trajectory planning, and describe the constraints for planning as system

constraints which is imposed by the robot’s geometry and task constraints given by the

task. Ata define the planning problem as the difficulty in calculating feasible trajectories

from a given task (could also be a ‘pose-to-pose’ problem) while maximising the robot’s

capabilities. A time-trajectory planning is either in joint space or Cartesian space. At joint

space, this is specified to each joint and actuator. A Cartesian space is not generated at

joint space; therefore there exist possibilities for geometric singularity at joint space.

Trajectory planning has to consider reasonable time for the manipulator to increase and

decrease its stroke length [119].

Ata explains that the common trajectory planning methods are a) polynomials in time,

cubic polynomial and splines in time, b) linear interpolation with smoothing and linear

interpolation with parabolic blends, and c) optimal controls like shooting method

[119].Lou mentions that motion planning can be a kinematic-based or dynamic based.

Kinematic based planning is limited to kinematic constraints only. Dynamic based

consider both kinematic and dynamic constraints, which has the objectives of maximizing

structure stiffness and to minimizes actuation forces while working within the limit of

workspace and singularity [120]. Chen discuss the problem with Stewart Platform

reaching a singularity manifold, that leads to the leg forces sudden increment moving

towards the allowable limits. Chen develops a cost functions and constraints which

consider minimum actuating forces, optimum time and energy efficiency. And, Chen

added that a weighting coefficient is required in order to validate the singularity possible

condition. The parameters are leg length constraint, leg linear velocity, leg linear

acceleration, actuating force constraint and it should also consider leg’s collision. Chen

105

mapped pseudo cost function based on the weighted penalty functions , which is then

mapped into the function of the spline parameters [9]. Bhattacharya mentions the

requirement for estimation algorithm in solving path planning, which leads to heavy

computation time [81,82].

Ur-Rehman explains that one import aspect of path planner is the placement of the work

piece inside the robot’s workspace. For a mobile or reposition-enabled robot, the path

placement has to consider the optimization of the robot’s base, too [116].

Various paths planning method is demonstrated with examples of the 3D Python

simulation capabilities for flexible integration with various methods to solve design

problems. The research addresses the issues of using 2D interpolation in solving the 3D

problem in Parallel robot design. Such problem includes the issue with 3D path planning

and 3D obstacle position. The methods demonstrated are experimental ideas, and many of

the condition or case study presented is not validated using other method, since it is

difficult to implement such method in Solid Work or Matlab environment.

7.6 Experiment with various path planning methodologies

Various paths planning method is demonstrated to provide reader with examples of the 3D

Python simulation capabilities for easy integration with various method to solve design

problems.

106

7.6.1 Method (1) k-means clustering

K-means cluster is a strategy which partition the n datasets into k sets (𝑘𝑛 ≤ 𝑛)𝑆 =

{𝑆1,𝑆2, . . , 𝑆𝐾} to minimize the within-cluster sum of squares

𝑚𝑖𝑛 = ∑ ∑ �𝑥𝑗 − 𝜇𝑖�
2

𝑥𝑗∈𝑆𝑖
𝑘
𝑖=1 , for a given set of data(x1, x2... xn), [32]

Where each dataset is a form of d-dimensional real vector.

Figure 7-3 and Figure 7-4 demonstrate an example where k-means cluster path planning

optimizes platform A path when platform E is following a fixed path. To demonstrate and

clearly visualize the effect, data slicing is used to parametric sweep and plot only a list of

layers along an axis. This way, the k-means path planning and the dataset relationship are

clearly shown.

Figure 7-3 Adjacency graph network

107

Figure 7-4 K-means clustering example (point A, B and C) for 3 datasets representing

workspace for platform A

7.6.2 Method (2) following a given target

Assuming that similar trajectories for both platforms A and E produce stiffer pose, this

experiment looks into path planning based on following a target, where both platforms A

and E attempt to maintain heading or trajectory direction towards the given target. This

given target can be a moving object, static or a series of points representing a path. This is

similar to a compliance workspace search, where the end-effectors try to maintain its

trajectory following a given path or mesh. The trajectory can also be maintained at a

minimal gradient changes [20]. This method is seen be similar with visual servoing

method if it is integrated with a minimal gradient changes, where the lowest angle

differences is maintained [121].

108

7.6.3 Method (3) A* D* 3d path planning

Carsten describe the D* 3D path planning method which is based on interpolation-based

cost approximation. This method allows for optimal straight line path via interpolation of

its current pose, and validating its trajectory towards the target[122].

D* path planning for obstacle avoidance within a known workspace is given here as

𝑔�𝑠𝑓� = [𝑔(𝑠1) + 𝑔(𝑠0) − 𝑔(𝑠1). 𝑡]. (1 − 𝑢) + [𝑔(𝑠2) + 𝑔(𝑠3) − 𝑔(𝑠2). 𝑡].𝑢

𝑟ℎ𝑠𝑠𝑓(𝑠) = 𝐶.√1 + 𝑡2 + 𝑢2 + [𝑔(𝑠1) + 𝑔(𝑠0) − 𝑔(𝑠1). 𝑡]. (1 − 𝑢) + [𝑔(𝑠2) + 𝑔(𝑠3) −

𝑔(𝑠2). 𝑡].𝑢

(33)

Where g(s0),g(s1), g(s2), and g(s3) is the path cost of any point on the face of the cubic 3d

grid unit, C is the traversal cost of the Voxel on both f and s, and the cost of a path from s

through sfsis given as rhssf(s).

7.6.4 Method (4) Voxel-planner based on Binary tree

3D Voxel-based planner is based on nearest neighbourhood interpolation, which we

attempt to replicate and extend the concept for parallel robot path optimization, by using

Marching cube model. The methodology for seeding the 3D marching cube path is based

on Verhoeff 3D binary tree development, which replaces the basic geometry seed

generator object with marching cube, and the ridge functions is replaced by the 10-

variations of marching cube orientation seeding element [123]. Figure 7-5 displays the 10-

109

variations trajectory indicator and seeding element where new object is to be generated to

build a path tree.

Figure 7-5 A marching cube 10-variations with trajectory indicator for seeding new branch

Figure 7-6 displays the seed which generate binary tree throughout the workspace. The

seed branching out towards the low-resolution cubic parametric sweep search result. The

sweep search travels between the low-resolution and the high resolution workspace. The

cubic parametric sweep is parallel, regular-spacing between lines and rigid.

110

Figure 7-6 Seed for binary tree production placed within the workspace

Figure 7-7 displays the calibration for fabricating the binary tree result or workspace

shape. Changes to the binary tree sensitivity parameters which comprised of distance and

angle between low-resolution and high-resolution test data will result with different final

shape. Figure 7-8 displays the result of a 3D binary tree workspace. This 3D tree generator

is based on Verhoeff solutions.

111

Figure 7-7 Calibration parameters for binary tree

Figure 7-8 Example Python simulation rendering of a 3D binary tree

112

7.6.5 Method (5) Connecting two constant orientation workspace dataset

For a known start and end pose, where the pose’s orientation is known, two sets of

parametric sweep to find the constant orientation workspace for both start and end nodes

were developed. Then, both adjacency graphs were connected to build the final path,

connecting the optimum points on both dataset and interpolate when there is no data

available. Li researched on connecting two graphs in 3D which is for narrow passage

planning method combining Randomized Star Builder (RSB) and uniform sampling to

extend the local tree and build the connection between two datasets [124]. Nieuwenhuisen

extended the Rapidly-exploring Random Trees (RRT) with Boolean algebra to reduce the

graph complexity thereby improving system performance [125]. Figure 7-1 demonstrates

an example of connecting two sets of constant orientation workspace graph, and further

discussion regarding the method is given in the 3D sweeping section. Figure 7-9 display

the sequential orientation changes between start and end position.

Figure 7-9 A constant orientation pose from start point [0,0] to end point [1,23]

113

7.6.6 Method (6) 3D Ternary Interpolation

Interpolation-based path planner by using L-system random generator, with specific Voxel

referred to as Ulam spiral is populated onto a collections of slice planes. The ternary or

quadratic relationship between the slices produce 3D interpolation data, which can be

ranked, based on nearest to straight-line path, gradient changes and singularity value is

shown in Figure 7-10.

Ternary algorithm for interpolation between random populations of dataset on collections

of plane’s slices is given below following Jin’s method. According to Qu, a ternary

number, 𝑡 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 , where x, y and z are real numbers while I,j and k are

imaginary units. And, a ternary maps is described as, 𝑡 → 𝑡𝑚 + 𝑐 (𝑡, 𝑐 ∈ 𝑇), where T=

ternary number, C=complex number system, m = exponential number [49].

Ulam Spiral or prime spiral formulation is in 2D, and the extrusion or ternary method

produce the 3D effects for Ulam Spiral. This is then used for path planning, distribution of

test points, dataset interpolation or extrapolation and producing adjacency graph network.

General Ulam or prime spiral formula is given here as𝑓(𝑛) = 4𝑛2 + 𝑏𝑛 + 𝑐, where b and

c is an integer constant, and n is a set of numbers [73].

114

Figure 7-10 Ternary interpolation

Ternary interpolation along a path is done by using slice analysis. Each slice is a planar

element with user-defined or automatically builds position and orientation to satisfy the

path criteria [126]. The criteria for placement along a path includes divide and conquer to

build a 3D Bezier curve, where a midpoint calculation is performed between each node to

build a new node to be further subdivided, using 3D general midpoint formula

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 = �(𝑥 + 𝑥) ÷ 2, (𝑦 + 𝑦) ÷ 2, (𝑧 + 𝑧) ÷ 2�. This Bezier curve construction can

be done after the system has optimized and run the selection process based on criteria for

best possible path. Use de Casteljau Subdivision Algorithm which is an ordering system

for subdividing the best possible path’s dataset into an AVL tree graph [127]. This best

possible path is derived from a set of ternary graph network data. The criteria for

selections include nearest distance to the path, gradient angle between nodes and target,

and singularity rank value. Amato use clustering method to prioritize or seclude the

important region away from the whole dataset. The objective here is to populate the space

with reasonable amount of test data, and use effective way to measure and define

parameters to seclude the important region for the final processing which are the best

possible path and then the Bezier curve construction [50].

115

The ternary slices shall then be placed along the generated 3D Bezier curve with the

control point perpendicular to the Bezier curve is proposed as the best candidate for

placing the slices. The trajectory is derived from the Bezier curve forward angle toward the

next node. However, each slice is user reconfigurable and ternary interpolation can be

generated to satisfy user requirement.

Figure 7-11 demonstrates an example for a collection of 2D planar slices placed along a

given path. The planar slices shown as dotted green can be placed using various algorithm

to optimizes and satisfy user requirements. Interpolation of various methods can be

performed here to create graphs between the planar slices.

Figure 7-11 An example Ternary interpolation for a collection of planar slices.

7.6.7 Method (7) 3D sweeping

The typical sweep is also known as parametric sweep based on geometrical and rigid grid

like cubic, conical or spherical. Shah commented that the parametric sweep is lacking the

initial condition estimation, and the problem with the definition for sweeping range since

the region may change depending on the workspace search typology [86].

116

3D sweeping based on mesh surface grid or patch in the form of Bezier or Coons patch is a

special case for dynamic grid system. This grid patch is driven by de Boors control points

which is a generalized form of de Casteljau's algorithm which help find C(u) on segment u,

where C is a subdivision of a segment between point A and point B. The control point

parameters like scale, position and orientation, and subdivision method can generate

various shapes with parallel path line and equally spaced and arranged test points. The

resulting shape serves as the grid system for the parametric sweep search [49]. A basic

cubic parametric sweep is demonstrated in Figure 7-12(a), and the cutting block is shown

in Figure 7-12(b).

Figure 7-12(a) Cubic parametric sweep and (b) patch grid

This method is a modification from Jarvis march which looks for edges of a set of data.

The 3D sweep shall consider these parameters including gradient changes towards the

target, gradient changes between nodes, distance from each node, distance from the centre

position and singularity rank value.

The characteristic for the graph plot in Figure 7-12 demonstrate the parametric cubic

sweeping pattern, therefore the plot resemble the layer-by-layer and end-to-end sweeping

117

effects. The criteria are plotted against the first stage’s result. First stage is the initiation

method where two sets of workspace are found by using constant orientation workspace

search. Figure 7-13 demonstrates a complete graph method where each node is linked by

an edge. Figure 7-14 display the second approach to handling adjacency graph. There are

various other methods for handling the graph network, which is related to the search

strategy. Table 8 describe some of the search strategy which could be employed in solving

the path problem.

Figure 7-13 Test result for 3D sweeping method based on Adjacency complete graph

118

Figure 7-14 Pair-wise adjacency graph

Figure 7-5 displays another way of analysing the adjacency graph. This method put

emphasizes on the minimum angle differences between start (q1) to node (u or v) and

towards the endpoint (q2). The optimum condition is when the node’s angle is a minimum

and it is near to the straight line path.

Table 8 gives the general differences between the paths methods presented in this chapter.

The 3D sweep and Voxel-based planner shows a lot of potential and possibilities in

solving 3D Parallel and Hybrid robot workspace, path and singularity problem. Further

investigation into the various search algorithms should be able to improve and optimize the

adjacency graph network used extensively in majority of the listed path methodologies

presented here.

119

Table 8 Path comparison

Method Time Characteristic Advantage Disadvantage

(1)

K-means

clustering

20s Simple and quick

way of solving path

definition for a

collection of

datasets.

Fast 2D and 3D

system.

Does not consider

other factors like

weighted ranking.

(2)

Following a

given path

1e+04s

(1511

Test

points)

Interpolate within

the given region,

while considering

Beziers’s path

profile to estimate

the intervention

node.

Known region Robot’s base position

and orientation,

geometry may restrict

the robot from

following the given

path.

(3)

A* D*

No data Best for solving 2D

obstacle problem.

Fast and flexible

method for solving

2D obstacle.

3D integration is

difficult

(4)

Voxel-based

planner

77s (291

Test

points)

Similar strategy to

no. (7) However

this is a more

balanced and stable

approach.

A simple tree with

balanced distribution.

An open system that

allow various

formulation for graph

network, search

strategy and search

The calibration for

threshold value plays

important role, which

has direct effect on

the resulting grid’s

shape.

120

dimension.

(5)

Connecting

two constant

orientation

workspace

dataset

2.3e+03s

(296 Test

points)

Connecting separate

workspaces

Interpolation or

network graph to

predicts the transition

or the missing links.

Assumption has to

consider various

factors like constant

target orientation.

(6)

3D ternary

interpolation

5.5e+02s

(57 Test

points)

Various data

population and data

slices’ position and

orientation

opportunity.

The L-system has

wide variety of

patterns, and it is

scalable.

The random

generator produce

less effective test

position and it is hard

to control its

direction and

distribution.

(7)

3D sweeping

49s (296

Test

points)

True 3D random

generator and

learning mode for

building 3D

parametric sweep

network grid. Based

on convex-hull

quick search

method.

The system should be

able to build grid

coverage of similar

workspace region

faster and it is a

scalable and

manageable system.

Complex to develop

and integrate with the

system

121

7.7 Conclusion

In this chapter path planning, which starts with the definition for smaller test region or

Cspace, was presented. Then, the significant of having a different envelope shapes for the

allowable region for the parametric sweep search was discussed. The experimental setup

consider two difficult aspect which are constant orientation workspace blending and the

test for estimating the middle plate or platform A’s position and path when platform E has

to follow a pre-defined path. The simulation result provides optimization method which

reduces noisy data which is apparent in Matlab ODE15’s solver.

The chapter highlights the problem with the usages of 2D path planner for parallel robot

problem solving. The system is proven to perform the path planning in 3 dimensions and

most analysis is done in 3 dimensions, too.

AVL Binary graph approach has been tested for adjacency graph and 3D binary tree

development. The AVL binary tree which is a balanced tree simplifies the data processing

and post-processing analysis. The geometric parametric sweep is a rigid system and this is

limited to invalid initial estimation and unknown search limit. The non-geometric

parametric sweep systems like ternary L-system and Bezier patch has the advantage of

being specific and focus. The 3D binary search tree concept is based on Glavina approach

which reduces a complex workspace problem into smaller and manageable region. The 3D

binary tree sweep method is open-system, and the example search is based on breadth-first

search algorithm. The adjacency graph construction display the flexibility of the system,

where any search algorithm can be integrated while the fundamental concept remains

122

similar. The search algorithm produces different interpolation and data population strategy,

which use different focus and priority.

The 3D Python simulation has demonstrated a few paths planning strategies in 3-

dimensional space. The Python simulation can be integrated with other path algorithm

which utilizes any of the data population and test strategy. Boolean provide control for the

system flow and help reduce the problem’s complexity.

123

Chapter 8: HAPTIC CONTROLLER DEVELOPMENT

8.1 Introduction

This chapter addresses the development of a haptic controller system, which consists of a

structure, control system and a haptic engine. The structure has to be universal for various

types of parallel robot typologies and topologies. Therefore, the structure itself needs to be

optimized to cater for the different constraint and number of degree-of-freedom specific

for a design. On the other hand, user prefers a single contact point to represent the

travelling plate. This control should be transferrable to other element in the geometry like

joint’s position and other travelling plate. The haptic controller is PPP and RRR structure

where the RRR is placed on the z-axis vertical travel of the PPP base. The haptic control

system is integrated into a 3D Python simulation system. User move or manipulate the

haptic controller end-effectors and orientation and position sensor check this pose and

check for its kinematic and singular state, where the servo-motor would control the motion

when singularity is found in that path. The Python simulation checked for non-singular

condition and passed the coordinate and orientation value to the Matlab and Solid Work

system. Matlab validates and then control a physical Hybrid Robot. The haptic controller

can have a direct control of the Hybrid Robot, or it can confirm the pose by checking this

against the Matlab verification. The control features include the interpolation and

extrapolation strategy to determine the optimize path. The interpolation strategy uses L-

system triangle system like Sierpsinki. The extrapolation strategy use Trilinear and

Simplex 3D to solve the problem.

124

8.2 The haptic controller kinematics

The haptic controller is a simple kinematic device with 3-axis Cartesian at the first layer

and 3-axis Spherical RRR unit at the second layer. Bonev explains that Cartesian structure

has similar accuracy with different position and stroke, therefore there is no optimal design

parameters for Cartesian design [128]. The Rotary unit is coupled to the Cartesian axis at

one axis. The design objective is the development of a 6 degree-of-freedom structure that

would allow two-way motor feedback, and provides the sensation or feeling of operating a

single plane in space, where the intuition of moving the linear and rotary axis is coupled

properly.

Dash wrote that leg symmetry is an advantage, due to uniform force distributions. Less

number of legs reduces the risk for interferences. It is recommended that the actuators are

arranged symmetrically among the limbs. Actuator’s gearing and servo motor contributes

towards weight, leg interference and bulkier size [15].

Gregorio developed an algorithm that determines all assembly classes for a SP-PS-RS

architecture [129].According to Herve, there are many design variations; however the

design objective is to reduce the moving of masses or limbs, to place majority of loads

(including servo motor and bracket) at the bottommost layer and the range of motions. The

structure for two-ways servo control should also consider gravity effects and the servo

motor ability to provide braking [19]. Following Gosselin design, the RRR rotary unit

design has 2 coplanar condition and the axis for all plane should intersect at the centre of

the end-effectors’ rotation axis [131].

125

Being a haptic device, the actuator must allow for user-exerted force to move it, and it

should be able to move by itself. The linear motion links the joint at the base and the

travelling plate. The linear motion has to be gear-driven, and the gearing should allow for

external exerted forces to have effect on its motion. The motor should have adequate

braking power to stop the external forces from having any effect on the system, when the

system reaches singularity point. In this case, it is concluded that the best method is the

rack and pinion gearing, which allows two way feedbacks.

8.3 Kinematic formulation for the haptic controller

Kinematic describes the rotation and linear transformation that create robot’s motion.

Equation 34 gives the desired motion.

[𝑇] = [𝑇𝑟] × �[𝑅𝜃] × [𝑅∅] × �𝑅𝜑�� (34)

Where,𝑇𝑟,𝑅𝜃,𝑅∅ and 𝑅𝜑 are the translation and rotational matrices around X,Y and Z. The

coordinate is fixed to the fixed robot’s base.

[𝑅𝜃] = �
1 0 0 0
0 𝑐𝑜𝑠Ө 𝑠𝑖𝑛Ө 0
0
0

−𝑠𝑖𝑛Ө
0

𝑐𝑜𝑠Ө
 0

 0
 1

� (35.a)

[𝑅∅] = �
𝑐𝑜𝑠ø 0 −𝑠𝑖𝑛ø 0

0 1 0 0
𝑠ø
0

0
0

𝑐𝑜𝑠ø
 0

 0
 1

� (35.b)

126

�𝑅𝜑� = �

𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0 0

0
0

0
0

1
 0

 0
 1

� (35.c)

Equation 36 gives the whole transformation matrices.

[𝑇] = �

𝑐ø𝑐𝜓 −𝑐ø𝑠𝜓 𝑠ø 0
𝑐Ө𝑠𝜓 + 𝑐𝜓𝑠Ө𝑠ø 𝑐Ө𝑐𝜓 − 𝑠ø𝑠𝜓 −𝑐ø𝑠Ө 0
𝑠Ө𝑠𝜓 − 𝑐Ө𝑐𝜓𝑠ø

𝑙
𝑐𝜓𝑠Ө + 𝑐Ө𝑠ø𝑠𝜓

𝑚
𝑐Ө𝑐ø
 𝑛

 0
 1

� (36)

Where,𝜃,∅,ψ are defined rotational components and l, m and n are linear motions in X, Y,

Z direction. And, s and c represents sine and cosine function.

Since, the haptic structure is based on simple rotation and linear transformation matrices; it

works with various parallel robots’ geometry and configuration.

8.4 The Haptic structure design

The experimental 6 degree-of-freedom haptic controller is shown in Figure 8-1.

Figure 8-1 Model of the Haptic Controller (PPPRRR)

127

This PPPRRR configuration is chosen due to the intention of controlling a single point in

3D space. Similar method to this arrangement is the

Agile-Eye , however the construction is complex and involves curvy extrusion [132]. The

rotary joints are placed in the centre of the linear translation axis. The rotary axis is similar

for all axes. Both the rotary and linear axes are extendible and can be limited by software

or physical constraint.

The haptic controller is composed of extrusion beams, rack and pinion gear, and servo

motor, IMU sensor for orientation sensing and RGB camera for position sensing. The

haptic Controller is linked to the 3D Python simulation via the orientation and position

sensor. The 3D Python simulation can control the haptic controller’s end-effectors. The

haptic controller shown in Figure 8-2can either link to the Matlab Solid Work numerical

system, or control the physical robot (shown Figure 8-2) directly with singularity check

performed by the 3D Python system.

128

Table 9 Python controller and the robot simulator

Figure 8-2(a) the physical robot(left) and (b)

the haptic controller(right)

Figure 8-3 Modality guide (3D Python

simulation)

8.5 Control and Validation

Haptic data is sent to the control program (MATLAB program) to calculate the size of the

actuators for parallel robot. An associated CAD model simulates the given motions. A

snapshot of the Solid Work system is shown in Figure 8-4. The result shows that the

position of the numerical ends effectors matches the haptic data (refer Figure 8-6).

129

Figure 8-4 Matlab as a numerical system that validates the haptic engine experiment

The PPP RRR topology fulfils the geometry selection criteria because it provides natural

feedback that user experiences when controlling the travelling plate, the topology provide

simple kinematic for solving the end-effectors position and orientation and the structure

allow for reconfiguration of each parts without the need for major modifications.

Furthermore, identification and tracking of position and orientation of end effectors, and

many components is achievable by using camera based sensor. The design objective is to

develop a structure that allows for large linear travel and large rotational angles for all

axes. The linear and rotary travel can be limited later by adjusting the limiting component

or by software control. The structure should be easily extendible to reduce or enlarge the

workspace depending on user requirements or the robot workspace dimension or shape.

130

User interference or blocking of sensor’s view should be compensated by software. The

research attempt to develop a plane-based control rather than single-point based interaction

of haptic control.

Here, the position provided for the end-effectors by Python simulation is 𝑃 =

(36 70 955 5 0) . The MATLAB program, which is based on the developed

kinematic map of the mechanism, reproduces the motion. Figure 8-5 shows a close match

in X, Y, and Z directions between the results obtained by the proposed methodology and

those obtained using the theoretically-based numerical method. Numerical method verified

that the Python kinematic position is accurate and valid.Figure 8-6 displays the position’s

validation result, when compared with a Numerical system.

Figure 8-5 Numerical workspace based on cubic parametric sweep

131

Figure 8-6 End effectors tracking position

8.6 Haptic interaction method using Simplex

Downhill simplex or Nelder-Mead method places an active moving simplex inside a

design space, where it expands contracts and reflects (flip) around a point (optimal point).

This process continues until it reaches a specified error tolerance value. This method

requires the establishment of a guide or initial path, for the system start its data sampling

distribution. First, produce Simplex seed at starting point, and it will grow to estimate the

next best pose. The best pose criteria are based on weighted ranking of geometric

singularity and Grassmann error. Additional criteria is cost-factor, gradient trajectory

changes and time. Additional criteria from outside sources (Numerical methods) include

stiffness and force. Figure 8-7(a, b) demonstrates Simplex result for different setting.

(Refer Table 10)

132

Table 10 Comparison between different settings for the objective function

Figure 8-7(a) Example Python rendering

of simplex data sampling where search

direction is moving towards a minima

Based on objective functions(abs(args[0]

* args[0] * args[0] * 5 –args[1] * args[1]

* 7 + math.sqrt(abs(args[0])) – 118))

Figure 8-7(b) Contracted simplex

(concentrated towards the center)

Based on objective functions (abs(args[0] *

args[0] * args[0] * 9 + args[1] * args[1] * 9 +

args[2] * args[2] * 9 + math.sqrt(abs(args[0]))

– 118))

8.7 Haptic interaction method using Voxel

3D Voxel-based planner is based on nearest neighbourhood interpolation, which is used to

replicate and extend the concept for parallel robot path optimization by using Marching

cube model (Refer Figure 8-8). The methodology for seeding the 3D marching cube path is

based on Verhoeff 3D binary tree development, which replaces the basic geometry seed

generator object with marching cube, and the ridge functions is replaced by the 10-

variations of marching cube orientation seeding element.

133

Figure 8-8 Example Python rendering of 3D Voxel-based planner

8.8 Haptic interaction method using ternary and binary tree

The two major types of fractal tree are, namely, binary tree and ternary tree. Binary tree

produces more natural-like shape and distribution of test points over a wider range of

region, with some opportunity for directing the tree back towards the seed. The turn angle

is between 60° to 120°.While ternary generator produce a forward distribution only (Refer

Figure 8-9). The experiment on ternary and binary tree is a huge concept; therefore the

works done on this subject is just to demonstrate the idea. The Python demonstration has

produce reasonable result, which provide opportunity for various new research on this

subject in the area of parallel robot workspace research.

134

Figure 8-9 Example Python rendering of ternary tree

8.9 Sensors for detecting position and orientation

Sensors are required for measuring the orientation and position of the haptic controller’s

end-effectors. The sensor must not obscure the existing structure, and is best placed away

from the structure. Phidget 3-axis Accelerometer and X-IO 9DOF IMU is used to measure,

calibrate the orientation data. RGB Camera is used to detect and track 4 dominant colour

markers. Detail discussion on measuring, calibration and integration is given in the next

section.

The calibration for structure is essential in ensuring that the position and orientation data is

not being affected by structural bending or alignment error on any axis. The servo motor

position, the pinion position on the linear axis, and the joint or contact position for ball-

bearing units or structural joints has effect on the structure deformation or bending,

especially when the upper-structure load distribution is focusing on a region. The motor

force has effect on structural deformation during dynamic motion. The PPPRRR structure

has its own problem, where the RRR rotary units and the vertical linear axis unit is the

load to be distributed along the x and y-linear axis.

135

The sensor for position and orientation has to consider many factors like user interaction

with the device, itself. User approach towards controlling the haptic device would

introduce interference (blocking the camera view) or produce shadow-cast on the structure

and marker. The vision tracking sensor (RGB camera) can track four markers at one time,

however, the camera sensitivity towards certain colour marker together with the effect of

shadow, environmental light changes has dire effect on the sensor readings. The X-IMU 9

Degree-of-Freedom (9 DOF) sensor has its own problem, where without the embedded

Madgwick special calibration code hidden inside the microprocessor, there is problem with

the Pitch, Roll and Yaw value, where the value is only useful within a range, and not

within the gimbals lock position when the system suddenly flips direction.

8.10 The experimental setup

Human has the ability to sense in other ways than visual alone. The haptic sensation

highlights the singularity position in 3D space. The experiment with object collision with

user is a common evaluation for haptic system. Two spherical shapes are placed inside the

workspace, and user is given the task of finding the usefulness of the workspace minus the

occupied area by these two objects. This task is not suitable for a 2-dimensional input

device, and difficult for vision to memorize the state and the 3d visual properties like

direction, curvature and location in space. Spring theory is included to provide the linkage

condition between the end-effectors and the two spherical shapes. Three methods have

been implemented for the Python system, which are Downhill Simplex, Voxel planner and

L-system slicing method [69, 75, 134].

136

8.11 The IMU sensor for detecting orientation

Accelerometer and IMU are known to exhibit drift, which is a noise factor where the

sensor data accumulates over time, even at stationary state. This drift can be reduced to a

minimum by continuous check for sensor value changes of a defined threshold. The

Python system records 3 datasets, then check for value changes, if exist, and then use the

final set for controlling the simulation. Figure 8-10 display the range errors for each

quaternion matrices value represented by a2[0,0], b2[0,1], c2[0,2], d2[1,0], e2[1,1],

f2[1,2], g2[2,0], h2[2,1] and i2[2,2]. The range of error is acceptable therefore this is not

compensated when calibrating the haptic structure. The drift value has been effectively

reduced by active checks for value changes during data acquisition.

Each yaw, pitch and roll value needs to be combined to provide the final orientation to the

travelling plate. Kinematic use the value individually, therefore there 2 ways of producing

the 3-dimensional plate orientation. The transformation matrices or kinematic produces 3

by 3 matrices which is then multiplied to the current vector coordinate to get the next pose

vector coordinate. This method would require kinematic validation for all sensor inputs,

which is an extra process. The kinematic validation can be part of the calibration process,

this way; the real-time 3D simulation can skip the kinematic validation for continuous

position and orientation data acquisition. This method requires complimentary Filter,

which are parts of the drift error correction filter (Refer Figure 8-10). The Complimentary

filter performs two different functions here, first by reducing drift error, and secondly it

provides orientation data by using accelerometer and gyroscope data to get the orientation

data. Complimentary filter is a combination of high pass (and low pass filter and is

137

described in this formulation, where low-pass filter use accelerometer data, high pass filter

use the gyroscope data (Refer [10]).

𝑦[𝑛] = (1−∝) × 𝑦[𝑛 − 1] + (1−∝) × (𝑥[𝑛] − 𝑥[𝑛 − 1]) (37)

𝑦[𝑛] = (1−∝) × 𝑥[𝑛]+∝× 𝑦[𝑛 − 1] (38)

Where∝= 𝜏 × (𝜏 + 𝑑𝑡),𝑑𝑡 = 1/𝑠𝑒𝑛𝑠𝑜𝑟_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (39)

𝑎𝑛𝑔𝑙𝑒 = (1−∝) × (𝑎𝑛𝑔𝑙𝑒 + 𝑔𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 × 𝑑𝑡)+∝× 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 (40)

Where x[n] is the raw gyroscope value, Y[n] is the processed value, n is the dataset index

value,∝ is a time-constant, and τ is the desired time-constant and sensor frequency is the

sampling frequency. Figure 8-11(where Yaw (angle) and Gyro (y) represent the IMU data

output) demonstrate the data delay during acquisition. Therefore, timing for collection of

dataset is required to synchronise the output and use these again for Complimentary filter

to derive the Roll and Pitch value [28].

Figure 8-10 Drift errors at Normal position

138

Figure 8-11 The Gyro (Y) delays

8.12 Yaw North Compass noisy output

The accelerometer and IMU provide raw data, which requires computation to derive the

yaw, pitch and yaw value. Where pitch is the North compass forward direction tilt, Roll is

the side roll of the plane’s body, and Yaw is the North compass direction. Complimentary

filter provide pitch and roll, and combination of filter like Kalman or Complimentary

reduce the drift errors [134]. The Yaw north Compass is a difficult value to derive. The

research follows Madgwick algorithm to derive all Yaw, Pitch and Roll [29]. However,

some of the computation is not disclosed for public uses, therefore the derivatives does not

provide a reliable values. Figure 8-12 demonstrate the output from the 9DOF IMU based

on Madgwick algorithm (where the values represent their place inside the matrices, where

m00[0,0], m01[0,1], m02[0,2], m10[1,0], m11[1,1], m12[1,2], m20[2,0], m21[2,1] and

m22[2,2]), where the pitch angles varied from -20 to 160 degrees, and the yaw and roll

value is fixed. The Figure 8-12 displays the data consistencies and moo, m10 and m20 is a

structure error instead. The values for m00, m10 and m20 should remain fixed for this test.

139

The errors could come from the servo stepping intervals, where each stop and new motion

produces a structure jitter.

Figure 8-12 Quaternion elements result for Pitch angle between 20 to 160 degrees

Figure 8-12 (where the values represent their place inside the matrices i.e. m00[0,0],

m01[0,1], m02[0,2], m10[1,0], m11[1,1], m12[1,2], m20[2,0], m21[2,1] and m22[2,2]),

displays the problem with the IMU, where although each Roll, Pitch and Yaw produce

accurate values, but when combined, one change will affect other values. In Figure 8-13, a

Yaw changes produce different range for Pitch value 0 degrees and 170 degrees. The

sudden changes seen at index 81 and 231 are Gimbals Lock, a condition where the system

flips side due to the uses of positive and negative angles in the mathematics.

140

Figure 8-13 A studies on combination effects for a Yaw Value test

Figure 8-14(a, b) (where α, β and γ represent rotation axis) demonstrates the problem when

the 9DOF IMU is posed at a certain orientation, where the orientation has Pitch and Roll

value. Therefore, the outcome from the post-processed data from the 9DOF IMU is not

useful for sensing the end-effectors orientation. The IMU data is coming from a C# pipe

which is timed to push a set of data to Python. The Quaternion Yaw and distance

calculation is done on C# therefore reducing the burden on Python. Python perform

complimentary filter processing on the Accelerometer, Gyroscope data. The data set

consists of Accelerometer, Gyroscope, Magnetometer, and Quaternion Yaw angle (Eq.41)

and distance data.

Quaternion Yaw =

− atan�2 × (𝑞1 × 𝑞3 + 𝑞0 × 𝑞2)�/�1 − (2 × 𝑞1 × 𝑞3 + 2 × 𝑞0 × 𝑞2)2 (41)

Where Quaternion Yaw is the north Compass direction, q0, q1, q2 and q3 is Madgwick

Quaternion output.

141

Figure 8-14(a) Yaw Value for a fixed Pitch value, and (b) Yaw value for a fixed Pitch at

160’ and Roll at 130’

8.13 RGB camera for detecting linear translation

The haptic structure is a free-motion structure. A physical attachment of distance sensor

would limit the motion, or would provide further complication to the structural design.

Kinect is first investigated. However, due to its embedded filter algorithm which prefers

detection of limb or large blobs, but not small diameter colour marker, is not used to detect

and track the marker or blob. RGB camera detection and tracking has no marker limit, and

satisfy the objective of having a flexible sensing system that works in changing lighting

condition where the hue, saturation and object brightness will change over time. Figure

8-15(where peak1,2 and 3 represent the dominant colour, and rr, gg and bb represent Red,

142

Green and Blue RGB Colour, and polynomial represent the average for each colour)

display the colour peak (dominant colour) change its value during the platform motion and

user interactions, when casted shadow and structural blocking of camera view. Also,

marker sensing should be based on colour cluster. K-means histogram definition and

primary colour identifications.

Figure 8-15 Colour distribution and peak value

Figure 8-16 Dominant colour Centroids within each Cluster

143

RGB camera’s detection and tracking can be implemented in Python simply by using

ready-to-use package like OpenCv and SimpleCV [136, 137]. However, this would require

import of various packages with limited availability to a certain platform. And, Python

package may contradict valid version useful for other components required to run the

whole 3D simulation. The primary Python Visual package has problems loading both

openCV and SimpleCV for a real-time runs. The simulation make use simple Python

Video Capture package which is low memory and very limited in function, but adequate

for Python PIL package to provide image processing. The calculation for detection and

tracking is done using Python NumPy package.

The strategy is to load low resolution image captured at slow intervals, where the image is

given convolution filter. Bicubic convolution produces good contrast and faster

processing. Counts for dominant colour cluster for Antialias is 362 and 361, bilinear

counts are 351 and 408, and Bicubic counts are 161 and 405. The next step is to define the

histogram or cluster for the primary colour which is not in the dark colour region or clear

colour region. The low and high threshold for removing the background is defined as low

value in the range of 10, 35 and 60 RGB value, and high range as 200, 230 and 250 RGB

value. The system then seeks for peak or cluster colour regions centroid positions (Refer

Figure 8-16 where Series 2 and 3 represent Colour cluster and series 1 represent the

centroid position). This centroid position defines the linear vector distance value for the 4

markers position in space. The checks for centroids need to be optimised to reduce

unnecessary check for non-related distance. The comparison strategy control makes use of

Boolean gate to keep the range of centroids to a minimum 4. The Boolean gate run check

for the centroid belongs to the required range and then check if the cluster represent

horizontal or vertical axis.

144

Based on K-means algorithm we can find the centroid, and placed related data into its

centroid class ci, then repeat for the predefined threshold to eliminate background from the

targeted markers. (Refer Figure 8-16)

𝑀𝑎𝑟𝑘𝑒𝑟(𝑖) = ∑ ∑ �𝑥𝑗 − �𝜇𝑖�
2

𝑥𝑗 𝜖𝑐𝑖
𝑘
𝑖=1 (42)

Figure 8-17(a) (where the left image represents the post-processed acquired image with

background noise, and on the right is the test platform with colour markers) displays the

background problem. This can be seen in Figure 8-17(b) (where Red, Green and Blue

represent RGB Colour value) as index number 1, 4,5,6,7 and 8. While a mix problems is

identified in Figure 8-17(b) at index number 2, 10 and 11. The dominant colour cluster is

found in Figure 8-17(b) which is index number 3 and 9. The Boolean gate reduces the

background problem by scoping the histogram range differences (where Red-Green-Blue

RGB value is more than a X threshold) and the Unit found inside each dominant colour

cluster should be lower than a Y threshold to qualify itself as a marker.

The distance between centroids is calculated based on the vector elements representing

each horizontal x and y-axis and vertical elements representing z-axis1 and z-axis2. The

Python PIL system is slower than SimpleCV and OpenCV, but it has the advantage of

reducing the requirement for various Python packages. The strategy for improving the

processing speed is by acquiring low resolution image and reducing the bit size as

thumbnail.

145

Figure 8-17(a) Background noise in the RGB data acquisition, and (b) Noise due to

marker colour range is within the background colour range

Red peak data shows that markers yellow, red and green can accommodate the peak range,

however for blue marker, the peak value rarely within range (refer Figure 8-18).

Figure 8-18 Test plate for marker colour Yellow, Red, Green and Blue

146

8.14 Haptic structure calibration

The haptic orientation sensing is based on IMU sensor, and the sensor is measures the

structure error included into the orientation result. The objective is to reduce this structure

error and compensate for the errors, or put forward a strategy to reduce its impact.

The haptic structure is based on both horizontal planar x and y axes. This forms the base

platform and should remain flat while the y-axis plane which is placed on top of the x-axis

travels along the rail. The servo motor should provide smooth travel and the start and stop

should not collide with other structure. The control should provide a buffer space of 1 mm

before the system reach its limit or hit a structure. The vertical linear z-axis should provide

vertical travel with no structural collision and ability to sustain consistent contact with the

supporting column. The structure should be able to support the 3RRR weigh when it

change orientation. The vertical structure should remain fixed to its rail along its travel

axis. The top 3RRR components should remain flat when it’s rotate on the z-axis vertical

part. The Pitch component is placed inside a bracket that allows Roll. And the bracket is

placed on Yaw North compass component that is attached to the vertical z-axis

component.

Figure 8-19 (where X1, Y1 and X2, Y2 represent the displacement error detected at slow

and fast servo-motor speed for x-axis test) demonstrates linear x-axis translation error,

which range between -1.8 to 0.8 degrees. X and Y represent high motor speed, and X2 and

Y2 is slow motor speed.

Figure 8-20 (where X1, Y1 and X2, Y2 represent the displacement error detected at slow

and fast servo-motor speed for z-axis test) displays the effort required for the servo motor

147

to push and bring down the 3RRR components, and having to move within the allowed

frame. In order for the servo motor and the vertical rail to work, it is required for a

minimum buffer where the structure can change its position and orientation on the

constrained axis in order for it to work properly as a force-feedback structure. This

component is the hardest to design, and to find the optimum condition where user can

exert force to it, and it can drive itself upward s and downwards consistently.

Figure 8-19 Test result for linear X-axis error

Figure 8-20 Test result for linear Z-axis error

148

8.15 Case studies for validating the Haptic interaction

This section discusses the procedure for validations of the haptic interaction. The

objectives are to reduce the risk of errors like unstable probe, vector direction and fake

state. The case studies demonstrate the concept for the implementation of the Python

methods of using Boolean control for complex algorithm.

8.15.1 Case 1: Two spherical shape in the workspace

This haptic experiment demonstrates the haptic simulation where two spherical objects is

placed inside the Robot’s workspace. The end-effectors should not travel inside the

objects, but may slide through its surface contacts (Refer Figure 8-21, where two yellow

spherical shapes are shown, and the Red dots represent the effective workspace outside the

obstacle region). The mesh definition is based on Simplex, parametric grid or Grassmann.

Simplex builds a dynamic grid that contracts and expands when attempting to detect the

nearest distance points between the end-effectors and the mesh. Parametric grid is based

on any grid structure that is placed strategically on the mesh surface, where closest

distance calculations determine the object and obstacle relationship. The Grassmann

concept is based on the calculations of coplanar; line meet and line join operation.

149

Figure 8-21 Example Python rendering of an obstacle region

8.15.2 Case 2: Simplex mesh in the workspace

This haptic experiment demonstrates the haptic simulation where a mesh surface is placed

in the workspace, where three surface-haptic algorithms shall be tested here. The key issue

is identified as gradient force and edge extractions. The next issue is both side of the

interaction, which are the probe and the object, where range, detection and sensitivity

could produce false sensation (Refer Figure 8-22). The mesh is user-defined, and can be

strategically placed in the 3D space. There is no limit to the amount of mesh within the

work area. Relationship between meshes can be defined by using 3D interpolation, which

produces adjacency graph. This setup can be used for determining compliance workspace,

which ensures that the end-effector is always facing the mesh surface as it travels across

the mesh. Compliance map can be defined with different resolution, and different

algorithm for checking the nearest distance between the subject and the target.

150

Figure 8-22 Example Python rendering of haptic sensation simulation

8.16 Conclusion

This chapter discusses the development of a haptic controller, which is a force-feedback

device that helps the user to identify singularity regions in 3D space. The haptic structure

is selected based on simple kinematic, shared three rotational axes centre-points and

simple three translational axes. The structure has been tested for the control of an existing

physical hybrid robot in the laboratory, and with an existing numerical system developed

using Solid Work and Matlab. The haptic structure is proven successful in performing the

above-mentioned task.

Next, the development of 3D haptic engine, which allows for force-feedback correction of

3D poses of the end-effectors, was presented. The haptic engine is planned for static pose

and dynamic pose which produces 3D path. A few 3D haptic engines have been tested, for

example the Downhill Simplex, 3D Voxel and ternary tree [138, 139, 140, 77, 141]. The

ternary and binary tree method is easier to control and command. The result shows

151

satisfactory confirmation of the concept, where the region, direction and search pattern can

be defined by user. The engine which produces adjacency tree can then be integrated with

3D path planner to drive the haptic controller.

The IMU sensor proves useful in the development of the haptic controller, by providing

the angle data. However, IMU is also complex and produces too much noise which

increases over time. The RGB camera data with clustering technique produce fast and

reliable multiple tracked point data.

Haptic interaction case study has been presented and discussed in this chapter, where

simplex mesh drives the mesh surface interaction with the end-effectors. The simulation

shows a good confirmation of mesh detection. The force-feedback interaction is limited to

braking, acceleration and completely.

152

Chapter 9: APPLICATION OF PARALLEL ROBOT

9.1 Introduction

This chapter presents and discusses three different application scenarios, including control

strategy based on Bezier method, path planning based on dynamic force and velocity, and

Path’s slicing analysis as a therapist’s intervention tool in robotic ankle rehabilitation. The

applications demonstrate the Python simulation system capabilities. The applications have

been developed for validation purposes, where a numerical system checks and validates

the results. They also demonstrate some features from the Python simulation such as

smaller Cspace, Grassmann algebra, Boolean control and fractal data population methods.

Bezier curve has features for approximation, fine control and parameterisation, which let

user modify the path to achieve an objective. The search for control points to approximate

the given path, also produce control points and error-correction scheme for that particular

formulated path. A few concepts integrated for the Python simulation has been tested and

validated using numerical system. The method like Bezier, ternary and 3D iteration like

parametric sweep reduce the complex problem into smaller and focus region, where lower

resolution test is applicable.

153

9.2 Application 1: Control strategy based on Bezier method

This section deals with the investigation of the end effectors’ tracking position for a 9-

DOF hybrid parallel robot. The structure contains 6-DOF and 3-DOF parallel robots

connecting serially to each other. In the proposed method, the best configuration of the

robot to reach a desired position in the workspace has been found to match accordingly to

the developed stiffness and inverse dynamic of the system. The proposed developed

network allows the robot to consider all the possibilities and takes into account the velocity

and stiffness of motion profile.

9.2.1 Bezier method for producing a ternary extrusion

The Beziers’s control points produce predictable curve, which is aligned to form a ternary

extrusion of 3D space, and the n-order is dependent on the final shape and design

complexity. A typical formulation for a Bezier segment with 4 control points is shown here

as:

𝑃(𝑢, 𝑣) = �𝑥(𝑢, 𝑣),𝑦(𝑢, 𝑣)� = ∑ 𝐵𝑖(𝑢)3
𝑖,𝑗=0 𝐵𝑗(𝑣)𝑃𝑖𝑗 (54)

Where, 𝐵𝑖(𝑢) = �3𝑖�𝑢
𝑖(1 − 𝑢)3−𝑖 is the ith cubic Bernstein polynomial [141].

Furthermore, the control points can be arranged and orientated to produce various surface

meshes, and the concept is suitable for parallel robot’s parametric sweep method for

exploring workspace [142][86].

De Casteljau's algorithm define the control point and subdivide the segment to formulate

point C(u) which is situated between a segment which is a line from A to B. Farin discuss

154

another method for creating a curve mesh surface by using Coons patch, and an example

formulation to generate a bilinear blended Coons patch is given here as:

𝑥(𝑢, 𝑣) =

(1 − 𝑢) × (0, 𝑣) + 𝑢𝑥(1, 𝑣) + (1 − 𝑣) × (𝑢, 0) + 𝑣𝑥(𝑢, 1) −

[1 − 𝑢 𝑢] �𝑥(0,0) 𝑥(0,1)
𝑥(1,0) 𝑥(1,1)� �

1 − 𝑣
𝑣 � (55)

where the boundary curves is arbitrary and can be listed as x(u,0),x(u,1),x(0,v) and x(1,v)

[143].

Shardt explained the method for subdividing or splitting a connected region to ensure the

bezulation algorithm rejected line segments can be partitioned to form a smaller region.

Bezulation is a process similar to triangulation, except that cubic Bezier patches is used to

produce a region, where self-intersecting condition can be handled by splitting at the

intersection points. This extraction method can produce control points, when only a cloud

data of the final mesh is available for the simulation processing [144].

Figure 9-1 demonstrate the end-effectors path characteristic which is parallel and equally

spaced and aligned. The cubic parametric sweep can then follow the path to simulate the

search for workspace, singularity and end-effectors action.

155

Figure 9-1 Bezier patch with simulated end-effectors path segment is shown as yellow

node.

Figure 9-2 demonstrates a case study, where a block of material is placed as a target, and

then a Bezier patch is placed inside the material. This Bezier patch is then used as marker

for the end-effecter’s motion. The Bezier parallel line becomes the cubic parametric sweep

path for the end-effecter. Figure 9-2 shows the end-effecter’s action and the resulting

shape.

Figure 9-2 A demonstration of the cutting action following the Bezier path line

156

Figure 9-3 displays the Bezier patch data processed using numerical system, which

validates the Python simulation path.

Figure 9-3 The Bezier patch data

9.2.2 Simulation result

Juri shows the potential of applying the path planning method for a machining task.

However, no experiment has been conducted due to various scale, operating system and

data format issues. Experimental result from a similar cutting task is shown in Figure

9-4[145].

157

Figure 9-4 3D topography plot of surface in (a) Test 7 vs (b) Test 8 [145]

9.3 Application 2: Path planning based on dynamic force and velocity

This section presents the optimized path planning of hybrid parallel robot for ankle

rehabilitation based on force vector which is described in the previous section. The focus

of this experiment is on replicating the motion path provided by lower-limb rehabilitation

program. Force vectors driven path is then compared with Python simulation result for

validation purposes [51].

9.4 Application 3: Path’s slicing analysis as a therapist’s intervention

tool in ankle robotic rehabilitation

The assisted limb rehabilitation process is commonly associated with advanced control of

the affected limb which is in the form of robotic assistance and human interference.

Robotic element is only expected to be able to reproduce the motion suitable for large

variations of patient’s condition within a reasonable accuracy and stiffness. Therapist

Sa= 3.05µm Sa= 1.81µm

(a) Test 7 (b) Test 8

158

interferences or fine-control is in the format of planar elements (like pelvis linkage) or

joints (like knee), which relates to trajectory or orientation adjustments. The rehabilitation

process has to consider the patient’s ability, limit and motion constraint which form those

two factors. The parameters for controlling all this is associated with kinematic, that

defines the behaviour and characteristic of the lower limb. The 3D Python simulation

system allows for this fine-tuning in the form of slice analysis and interval analysis. The

Hybrid and Hexapod robot design which is a stationary foot Orthoses system is linked to a

haptic controller that runs on Python’s haptic engine. This haptic controller provides

therapist with force-feedback sensation to aid the motion correction and adjustment

process to allow for a balanced operational consideration mainly for these two factors,

which are robot’s stiffness factor and patient’s motion constraints.

9.4.1 Experiment setup for the limb rehabilitation project

The experimental setup for this research is based on a motion signature of healthy

participants, which were recorded as a skeletal model with joint characteristics and ranges

including links’ displacement information and kinematics with force distribution by the

Vicon cameras in the gait laboratory of the West Midland Rehabilitation Centre,

Birmingham, United Kingdom. Identification and measurement of leg segmental motion

characteristics performed by 30 participants which were selected by an advertisement in

the University Of Birmingham, including 15 males and 15 females, with the mean age of

27.05±7.32 years old, mean height of 168.16±14.32 cm and mean body mass of 68± 7.43

kg. The recorded path is the source data to the whole experimental setup. This data is post-

processed using Python 3D simulation system.

159

Firstly, the system needs to perform research for non-singular position which leads to a

general workspace. Cubic parametric sweep and spherical parametric sweep produce the

base data, that contribute to the Learning mode system. In a learning mode, the 3D or 4D

fractal (an L-system with random generated test point) populates the strategic slices (plane

placed at strategic position on or near the target, which is the Vicon path for the purpose of

this experiment) to form an interpolation or extrapolation for a range of nodes. The node

could be test point, a limb or a joint, which should remain within the robot’s workspace.

The ‘data slicing analysis’ allow therapist to perform local analysis while inspecting option

for trajectory, plane (axis) changes to where the ankle is acting upon. A ‘slice’ is a plane or

collection of planes, with strategy for placing, orientating and spacing them. The spacing,

orientation and placing of slice’s strategy is based on 3D- curve algorithm which allows

fine-control of each segment curvature parameters. The slice or the plane in the most basic

form is a simple 2D cubic parametric sweep, and the advanced format is L-system fractal

in 3D and 4D shape. The spacing, orientation and placing of slices is therapist-

configurable, therefore this allow for typical operation and handling of limb usually found

in limb rehabilitation exercise. Jim mentions that lower limb rotation is dependent on

angle, and EMG activity demonstrates that patient has angle limitation which is specific

due to some muscle activity, mechanical properties or motion constraint [146]. Belda-Lois

explain the rehabilitation model known as Carr and Shepherd motor relearning method

which focus on movement components which is not achievable and functional tasks that

try to correct the problem. This correction is specific to a problem, therefore machine

learning or automation for robotic rehabilitation has limited scope, which otherwise would

require therapist intervention [44].

160

9.4.2 Theory for therapist intervention

The focus is about therapist intervention related to path lines, which means that a therapist

can redefine the path, adjust the patient’s trajectory and ensure that both couple system

synchronize following the rehabilitation task objectives. The therapist is expected to focus

on non-achievable movement which is related to a functional task, where the system or

patient may have difficulty in achieving the goals. Therefore, the main aspect of this

research is about the path lines, and how the system can assist therapist by giving them the

facility to monitor, adjust and optimizes the path lines.

The first issue to be considered here is the subdivision aspect of the given path. The

control point used in this simulation is an approximation by reducing noise and drift

especially during dynamic motion recording [147]. This control point is critical to both the

system (for interpolation, curvature control and optimization purposes) and therapist,

where therapist need to be able to control the slicing plane, therefore allowing therapist’s

intervention to fine-tune and control the curve.

The intervention point can be derived from the Bezier control point, where a Bezier curve

is generated based on the result from the best possible interpolated point to form a

comparative path against the given path. Bezier curve construction is based on 3D

midpoint segmentation, and the order is based on de Casteljau Subdivision Algorithm that

follows a balanced AVL tree [114, 149]. Simas studies on Bezier curve construction forms

a matrix arrangement which correspond to an end-effectors position for welding task.

Simas claims that Bezier curve or surface is suitable for planning an end-effectors parallel

161

positioning which reduce the erosion while doing welding task [142]. Furthermore,

Shardta explains the advantage of using Bezier compared to Nurbs, where Bezier

piecewise cubic polynomial segments and tensor product patches conform well. When

Bezier segment passes through its two end control points, a Bezier patch must have passes

through its four corners [144].

Bezier curve construction based on de Casteljau plans to find C (u), where u is within the

range of [0, 1]. Therefore the subdivision ratio is given as u: 1-u and a typical ratio are

0.4. Bezier curve can be written in Bernstein form as 𝐵(𝑡) = ∑ 𝛽𝑖𝑏𝑖,𝑛𝑛(𝑡)𝑛
𝑖=0 . Where b is a

Bernstein basis polynomial, and can be written as 𝑏𝑖,𝑛(𝑡) = �𝑛𝑖 �(1 − 𝑡)𝑛−𝑖𝑡𝑖. Then, use

recurrence to find the curve at to which is described here as 𝛽𝑖0 = 𝛽𝑖 , where I =0,..,n

𝛽𝑖
𝑗=𝛽𝑖

𝑗−1(1− 𝑡0) + 𝛽𝑖+1
𝑗−1(𝑡0), where i=0, .. , n-j and j=1, .., n (56.a)

𝐵(𝑡0) = 𝛽0
(𝑛), which is the evaluation of B at point t0 in n steps.

For a 3D Bezier curve with n+1 control points Pi

𝐵(𝑡) = ∑ 𝑃𝑖𝑏𝑖,𝑛(𝑡), 𝑡 ∈ [0,1]𝑛
𝑖=0 , where 𝑃𝑖 = �𝑥𝑖𝑦𝑖

𝑧𝑖
� 56.b)

Then, the Bezier is split into components, which are

𝐵1(𝑡) = ∑ 𝑥𝑖𝑏𝑖,𝑛(𝑡), 𝑡 ∈ [0,1]𝑛
𝑖=0 (56.c)

𝐵2(𝑡) = ∑ 𝑦𝑖𝑏𝑖,𝑛(𝑡), 𝑡 ∈ [0,1]𝑛
𝑖=0 (56.d)

𝐵3(𝑡) = ∑ 𝑧𝑖𝑏𝑖,𝑛(𝑡), 𝑡 ∈ [0,1]𝑛
𝑖=0 (56.e)

162

Then, use De Casteljau's algorithm to evaluate B1(t),B2(t) and B3(t)[149].The De

Casteljau's subdivision is an iterative process; therefore a control is required to stop the

subdivision, which is based on distance error between the control point and the lines.

Bezier curve and Bezier path is suitable for parametric sweep search, due to its

characteristic such equal spacing between line, linear path arrangement and rigid format.

5-n should be able to solve for a continuous and complex curve construction where axis

changes is dominant. Typical error for Bezier construction includes cusp and collinear.

Sohel described a combination of chain code (CC) and run length code (RLC) to derive

Bezier control points from a target, which is an image. This iteration process stops when

the distance has reached an approximated boundary edge threshold value [150].Ahmad

wrote approximation method such as recursive subdivision (RS) and parabolic

approximation (PA) when the Bezier curve is flattened. The error factor includes curve

flatness and wrong approximation of control points where each control points has direct

effect on the final shape. However, parabolic approximation produces smooth curve

outcome compared to RS method which produces a small deviation to the trajectory while

the iteration process move around the approximated points[151].

Bhuiyan developed an approximate and learning strategy to find the control points for a

Bezier curve. Out of the 4 standard control points, where one is associated with the start

point, and the other with the end, the strategy for robust approximation has to consider the

location for the two other control points. Bhuiyan strategy can be adapted following the 3d

sweep or parametric sweep search with selection criteria for the curvature’s accuracy

compared to the given curve [152].

163

Table 11gives approaches of finding and estimating a given path, and formulate a way to

control and manipulate the path. Considering Bhuiyan method, a parametric sweep method

test for an estimated 3d region was conducted, where the control points may fall inside.

Due to the infinite possibility for cubic grid orientation and size, a spherical parametric

sweep is the best geometric grid for this task. Using this method, we can perform analysis

for a collection of segment that makes a complete path. Therefore, providing therapist with

the ability to control and modify the path.

Table 11 the approach for finding and estimating the given path

Description Image

2D interpolation test.

Using the given path,

conduct tests to find

ways for re-generating

the given curve. The test

is performed on a subset

of the given path, at data

series number 50 to 80.

Figure 9-5 Example dataset for series 50 to 80

A) Result from

Microsoft Excel using

Polynomial

interpolation order

164

number 2 and 4.

Figure 9-6 Polynomial result (order 2 and 4)

B) Result from cubic

parametric sweep search

for 4 Bezier control

points.

Figure 9-7 Cubic parametric sweep

C) Result from spherical

parametric sweep search

for 4 Bezier control

points.

Figure 9-8 Spherical parametric sweep

165

9.4.3 Geometric Brownian motion

Geometric Brownian motion is used to approximate the Bezier control point and

interpolate the path in order to optimize its performance. Geometric Brownian motion is

also used to generate the adjacency graph. Geometric Brownian motion is a continuous-

time Gaussian process, with a covariance function like this

𝐸[𝐵𝐻(𝑡)𝑇𝐵𝐻(𝑠)] = 1
2

(|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻) (57)

Where h is a real number in (0,1), which is also called the Hurst index. This process BH (f)

is for [0, 7], t is time. Dieker explains that there is a few method for simulating the

Brownian motion namely Hosking method (which generates Xn+1 given Xn,…, X0

recursively) , Cholesky method (which is based on the decomposition of the covariance

matrix), Davies and Harte method (which rely on finding a `square root' of the covariance

matrix), approximate method like stochastic, and numerous other methods. [153]

Table 12 illustrates the differences between the Brownian motion, Ternary algebra and 3D

sweeping method which are extrusion or interpolation method to distribute test points and

build adjacency graph. With the graph available, we can proceed with path planning and

optimization effort. Table 13 demonstrates the flexibility with the ternary system, where

various L-system algorithms can be integrated therefore providing different adjacency

graph result.

166

Table 12 Information regarding various extrusion methods for path optimization

Extrusion type Characteristics Image

A) Geometric

Brownian

motion.

A flexible fractal system with no

clear definition for edge and

direction. This method is more

natural compared to the pre-

defined space for L-system.

Figure 9-9 Brownian

b) Ternary

algebra.

Quadric algebra ternary based on

various L-system fractal

algorithms, and spiral produces

more relevant result.

Figure 9-10 Ulam spiral or Voxel

c) 3D sweeping. Serial or multi-parallel process

based on the established method

for hull edge, where a seed branch

out towards a learning data.

Figure 9-11 3D sweeping

167

Table 13 Comparison for ternary algorithm variations

Ternary variation Result Image

A) Simple spiral.

𝑡ℎ𝑒𝑡𝑎 = 𝑟 × 2 × 𝑝𝑖

𝑥 = cos(𝑡ℎ𝑒𝑡𝑎) × 𝑟

𝑦 = − sin(𝑡ℎ𝑒𝑡𝑎)

× 𝑟

Accuracy=43% (427

/ 973).

Time = 22s.

Figure 9-12 Simple spiral

B)Sack Spiral.

𝑥 = cos�√𝑖 × 2

× 𝑝𝑖�

× √𝑖

𝑦 = sin�√𝑖 × 2

× 𝑝𝑖�

× √𝑖

Accuracy= 57%

(555/ 973).

Time = 22s .

Figure 9-13 Sack spiral

C) Vogel spiral.

𝑡ℎ𝑒𝑡𝑎 = 𝑖 × 2 × 𝑝𝑖

÷ (𝑝𝑖

× 𝑝𝑖)

𝑥 = cos(𝑡ℎ𝑒𝑡𝑎) × 𝑟

sin(𝑡ℎ𝑒𝑡𝑎) × 𝑟

Accuracy= 62%

(604 / 973).

Time = 22s.

Figure 9-14 Vogel spiral

168

With Bezier curve carefully selected, important control points are then selected and slices

are placed. Each slice is populated using L-system fractal generator. In this case Ulam

Spiral is used to effectively populate and create Graph network as a 3D extrapolation to

test the path, and then interpolate between the slices to form a path for the travelling plates.

Ulam Spiral is a prime factor spiral generator, and its polar pattern is useful for the

parametric sweep activity. There are few variants to this prime factor spiral like Vogel

spiral, Fibonacci sums and direct rasterization. Ulam Spiral and its variant is generated and

strategically positioned to demonstrate the system capability and its integration with

numerical system. The formulation for Ulam Spiral’s Vogel 2D is given here in (58), the

circular or spherical sweep is more effective and relevance to parallel robot design.

(𝑥,𝑦) = ∑ �(cos 𝑡ℎ𝑒𝑡𝑎) × 𝑟, (−sin 𝑡ℎ𝑒𝑡𝑎) × 𝑟�𝑛
𝑖=0,𝑖+1 (58)

Where theta=r x pi, and 𝑟 = √𝑖

Then, a strategy to generate a Graph network for the travelling plate to sweep through or

search the region is used. This is done using the ternary algebra. This ternary algebra

equation follows Cheng’s definition [66]. Ternary algebra produces the 3D L-system

pattern. Spiral or Voxel parametric sweep is more efficient compared to cubic sweep, due

to the characteristics of the parallel robot’s structure, where if the structure is simplified

into a serial connection between base to center point or actuator, then a translation or

rotation of the end-effectors will produce a spherical or hemispherical matrix. Cheng’s

formulation is given below in (Eq.59).

𝑡 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 (59.a)

169

Where x,y and z are real numbers, while i,j and k are imaginary units. Based on two

ternary numbers t1 and t2,

𝑡1 + 𝑡2 = (𝑥1 + 𝑥2)𝑖 + (𝑦1 + 𝑦2)𝑗 + (𝑧1 + 𝑧2)𝑘, (59.b)

𝑡1. 𝑡2 = (𝑥1𝑥2 − 𝑦1𝑧2 − 𝑧1𝑦2)𝑖 + (𝑥1𝑦2 + 𝑦1𝑥2 − 𝑧1𝑧2)𝑗 + (𝑥1𝑧2 + 𝑦1𝑦2 + 𝑧1𝑥2)𝑘 (59.c)

Get ternary number t

𝑡2 = (𝑥2 − 2𝑦𝑧)𝑖 + (2𝑥𝑦 − 𝑧2)𝑗 + (2𝑥𝑧 + 𝑦2)𝑘 (59.d)

𝑥0 = 𝑥 × 𝑐𝑥𝑦 − 𝑦 × 𝑠𝑥𝑦;𝑦 = 𝑥 × 𝑠𝑥𝑦 + 𝑦 × 𝑐𝑥𝑦 (59.e)

𝑥0 = 𝑥 × 𝑐𝑥𝑧 − 𝑧 × 𝑠𝑥𝑧; 𝑧 = 𝑥 × 𝑠𝑥𝑧 + 𝑧 × 𝑐𝑥𝑧 (59.f)

𝑦0 = 𝑦 × 𝑐𝑦𝑧 − 𝑧 × 𝑠𝑦𝑧; 𝑧 = 𝑦 × 𝑠𝑦𝑧 + 𝑧 × 𝑐𝑦𝑧 (59.g)

Nylander's formula for the "nth power" of the 3D vector to build a 3D fractal is based on

Hamilton quaternion of complex numbers [98].Nylander method for Mandelbulb 3D is

shown in Eq.60. This method is also used in generating 3D L-system shape as shown in

Table 12.

(𝑥,𝑦, 𝑧)𝑛 = 𝜌𝑛(cos(𝑛𝜃) cos(𝑛𝜑) , sin(𝑛𝜑) cos(𝑛𝜑),− sin(𝑛𝜑)) (60)

Where (𝜌,𝜑,𝜃)𝑛 = (𝜌𝑛,𝑛𝜑,𝑛𝜃)

There are various ways of connecting the test points populated on a plane to be linked to

form an adjacency graph network. The adjacency graph has additional parameters such as

cost, Grassmann and path-distance data. The generated lines represent a list of possible

170

path connection between the start and end planar slices. Ulam Spiral produce the rotating

Voxel effect which make it compact and efficient graph.

The adjacency graph is modifiable based on therapist chosen criteria. The criteria are

related to preferences for trajectory, target-following criteria, gradient changes, local or

global slicing analysis for any node or range of segments along the path.

The first step is to identify the various methods to 3D interpolation to develop the

adjacency graph. This interpolation is performed on one type of L-system which is known

as Ulam Spiral. The advantage of using spiral or helix shape or pattern allows for optimum

end-effectors travel, path conformation and reduce unnecessary travel outside the potential

region.

Table 13 demonstrates the method used to extrapolate and interpolate the region that forms

within the given path. This way we can provide therapist with interaction ability, and the

system has knowledge over the given path’s variation.

The end-effectors shall follow the interpolated test points, and shall be checked against the

geometry error, kinematic transformation and Grassmann error. The strategy for

Grassmann is explained here in the format of weighted ranking for any non-singular

position. This is given by the Grassmann factor, which checks for Grassmann-related

errors like instantaneous rotational axis, plane or edge’s vector meets at infinity or any pair

of edge or plane’s vectors is coplanar. The method for finding the non-singular position is

171

based on parametric sweep to find the workspace allowable by the geometry limit and

Grassmann check to reduce stiffness error.

The Ulam Spiral or Helix method provide optimum opportunity for end-effectors travel

without having to go into irrelevant region, like when using cubic parametric sweep.

Another advantage of using helix or spiral path is the path’s ability to grow radials as the

search expands.

9.4.4 Adjacency graph

Carsten used D* to solve 3D path planning based on interpolation on faces within a given

region of a test point[122]. The Python simulation make use of Jarvis March 3D, where the

algorithm use GGN, distance to End-effectors’ centre point and angle between selected

nodes as the attribute to find the best path. Robert demonstrate the effective uses of Jarvis

March in 2D to find convex hull [154]. Adjacency graph is an efficient ways of handling

tree-like structure, which is useful in handling the workspace and path data.

9.4.5 Optimizing the Hybrid robot effort to follow the given PATH

The collection of possible paths is interpolated to optimize the results. The simulation uses

shortest distance to platform A’s centre-point, whose coordinates must be identical to those

of the next node in the queue to form platform A’s path. The 1D-array interpolation cannot

solve the problem without additional values, whereas a 2D-array would help find the

172

optimized path. The additional attribute to make the 2D-array is obtained from stiffness

factor, Grassmann vector factor, and minimum distance to the centre-point of each

corresponding node.

9.4.6 Optimizing the given path

Iterative processes such as recursive subdivision (RS) suffer from flatness distributed

throughout the path approximation process. Parabolic reduces the error, while losing some

detail. If this temporal problem is transferred to the robot’s motion or the limb

rehabilitation system, then the RS system’s flatness characteristics may produce negative

effects.

9.4.7 The adjacency graph variations

The variation depends on the complexity of the adjacency graph, which connects the test

points found on each planes (slices). The adjacency graph has direct effect on the travel

path or parametric sweep behaviour. Table 12 demonstrates the interval analysis action

performed at selected region, where an increased number of network graph is plotted for

that interesting region. Table 13 demonstrates scale and dimension changes achievable

with the system.

Table 14 demonstrates examples from possible ternary variations, and how they affect the

system performance. Similar and large diameter system has the advantage of being within

range of the given path, and produces less Grassmann error condition, while the accuracy

remains similar for the three designs.

173

Table 14 Comparison for ternary interpolation

Interpolation

variation

Result Image

Similar small

diameter.

Accuracy= 77.8% (324 / 416).

Time = 8.7e+03s.

GGN ranking = 1141

Figure 9-15 Small diameter

interpolation

Similar large

diameter.

Accuracy= 77.8% (162 / 208).

Time = 4e+03s .

GGN ranking = 572

Figure 9-16 Large diameter

interpolation

Varied diameter. Accuracy= 76.6% (478 / 624).

Time = 2.6e+04s.

GGN ranking = 1556

Figure 9-17 Varied diameter

interpolation

174

9.4.8 Experiment results

Figure 9-18 illustrates the Python simulation iteration based on cubic parametric sweep to

estimate the de Boors 4 control points’ position. The de Boors control point is a stable

numerical ways to find a point on a B-spline curve given a u in the domain. The de Boor

control point is generalized as 𝑝(𝑢) = 𝑁𝑖,𝑝(𝑢)𝑝𝑖 = 𝑝𝑖 . Figure 9-19 and75 display the

approximation for the control points found using the cubic parametric sweep search.

Figure 9-18 Plot for Bezier approximation for data series between data 50 to 80.

Figure 9-19 Plot for Bezier approximation for z-axis

175

Figure 9-20 Plot for Bezier approximation on x-axis

The accuracy for iteration and parabolic approach has an effect on the usability in

rehabilitation. The parametric search for control points provide therapist with the options

for optimizing the path and explore new possibilities especially when the path is

experiencing structural or motion dynamic problems. The quadric algebra ternary approach

is given to illustrate another approach in interpolating the path, and this approach is

directly related to the Bezier curve method, which provides the intervention position along

the path.

9.5 Conclusion

The objective of this chapter is to demonstrate two lower limb rehabilitation applications

and one machining application which has been tested and validated by a numerical system.

The 3D Beziers’s line and surface patch method integrate a cubic parametric sweep search

which produces a cutting profile for the parallel robot’s end-effectors Boolean control

176

produce quick test result. The system is highly configurable and flexible, where user can

define the parallel robot’s base and workspace compliance strategy.

The next application is the dynamic force and velocity control which utilizes Grassmann

singularity check and geometric constraint check. The result shows that the Python

simulation, numerical system and the acquired training data confirm each other well.

The last application is the curve fine-control which is useful in lower limb rehabilitation

which allows therapist with the ability of teaching the parallel robot to perform the

rehabilitations process correctly. The strategy is based on various 3D test-data population

method which plans to improve the identification of smaller test region. The adjacency

graph is user-configurable and have many different optimization methods suited for

different task. The spiral data population strategy with various data relationship strategy

produces best adjacency graph suited for this therapist intervention concept. The advantage

of using this ternary interpolation method is that, it allows for data slicing at any position

and axis, and the adjacency graph can be rebuilt to network back the whole system. This

way therapist can manipulate each node by performing orientation and position adjustment

as though therapist is holding a patient’s limb. GGN, Grassmann weighted rank and non-

geometric singularity condition data is positioned accordingly, and adjacency graph

optimizes the path in 2D axes. The numerical result demonstrates a similar trend in Python

simulation, therefore validating its result.

177

Chapter 10: CONCLUSIONS

10.1 Project aims and objectives

The overall aim of the research presented in this thesis is to develop an assistive tool for

the design of parallel robot with a specific focus on rapid identification of workspace

boundaries and singularities through a 3D simulation system. The output is a draft quality

result to achieve real-time control and manipulation effects.

A detailed breakdown of the objectives necessary to achieve the project aim is as follows:

1. Perform a comprehensive literature review to determine the current design and

development method for parallel robot.

2. Analyse previous parallel robot simulation system which considers the search for

workspace as one of its function.

3. Investigate parallel robot’s workspace search method.

4. Develop a 3D simulation system that performs a parallel robot’s workspace

search with considerations for kinematic, geometric constraint and Grassmann

singularity.

5. Develop Boolean algebra for flow control and optimization.

6. Explore the potential of extending the geometric grid related to the search

envelope parameter.

178

7. Extends the 3D simulation system ability, by investigating into workspace

analysis and path planning.

8. Develop a haptic controller.

9. Determine the haptic functions by integrating with the 3D simulation system.

10. Evaluate and calibrate the system by linking the 3D simulation, haptic controller

and a Numerical system developed using Solid Work and Matlab.

11. Evaluate the system for two different applications which are cutting path and limb

rehabilitation’s motion planning.

10.2 Summary

Highly accurate approach to designing parallel robot is the best method in solving any

design issue. However, this approach limits the designer’s ability to explore and try

different design parameters, performing test scenario and being creative in developing the

robot. The heavy computation and resources required to validate a design usually force

user to copy existing design, and try to improve an existing design by introducing some

changes. Even then, it is difficult to perform comparison studies, after changes have been

done to the existing design. It is costly to build many models and test them in highly

accurate system. The Python simulation system fills in this gap, where it allows creative

work in finding the best design for a series of task. The simulation system allows

integration of various algorithms, employ basic geometric and Grassmann check for

singularity suitable for real-time operation and it has variety of methods in defining the

179

search for workspace. Since, many of the previously uncontrollable factors is now user-

configurable, therefore user has the flexibility of operating at multiple resolution and test

complexity. This allows rapid prototyping of parallel robot with ranges of task definition.

A summary of the five major phases of the research are as follows:

10.2.1 Phase 1

Development of a 3-dimensional simulation system that is able to demonstrate parallel

robot’s motion, singularity, workspace and path planning.

• Parallel robot design process is an iteration process involving the determination of

topology, required motion (path), available or useful workspace, robot’s dimension

and its stiffness.

• Parallel robot design activity is prone to mistake, and a redesign activity is heavy

computation, timely and costly.

• There are only a few choices for parallel robot rapid development software, for

example work done Singulab and SEMORS-PKM. Other than that, there is a

variety of specific problem-solver simulation which is very restrictive and limited.

• Parallel robot design produces high number of data, or large matrices which is

difficult for user to trace, track and monitor the dynamic changes. Visualization

software should be able to assist this effort.

• The 3D Python visualization system provides 3-dimensional view of the dynamic

motion, and allow for modification to various simulation and robot’s parameters.

180

The result is usually real-time for low-quality and draft simulation, but require less

than Numerical simulation running time when completing parametric search and

optimization tasks.

10.2.2 Phase 2

Development of a 3-dimensional system that is able to detect singularity for a real-time

application. The system should be able to cater for changes to the geometry and

configuration. IT should be object-oriented, modular and open for integration with various

algorithms.

• Parallel robot workspace is not entirely safe from error.

• Typical errors which are specific to a requirement or applications which is found

inside the workspace are Grassmann, stiffness, velocity and trajectory’s

compliance.

• The Python simulation uses the Grassmann to demonstrate few example of

singularity search where co-planar and instantaneous rotation axis (IRA) is found

inside a known workspace. The issue is not limited to workspace, but also in path

planning, dataset blending and analysis process.

• The probability percentages for Grassmann to occur are recorded as between 27-

31%. Grassmann condition may become detrimental to the structure if there is any

external forces acting on the opposite side of the weak region or when the co-planar

conditions allow for instant development of a new degree-of-freedom (DOF) which

is also known as instantaneous rotational axis (IRA) condition.

181

• The Python simulation system manage to complete Merlett’s collection of

workspace which are constant orientation workspace, orientation workspace,

maximal workspace, inclusive orientation workspace, total orientation workspace,

dextrous workspace, reduced total orientation workspace, and singularity loci.

• The Python simulation can perform various strategic operations on the workspace

data like cross-section analysis by doing slice analysis, multi-resolution operation

by using interval analysis, small Cspace operation by doing local operation and data

blending between different datasets.

10.2.3 Phase 3

Development of a Boolean Parametric sweep search strategy to be employed in solving

various issues regarding parallel robot design activity

• Traditional parametric sweep search does not limit the search space, and usually

does not have optimization features. Common geometrical shape boundary like

cube and sphere limits the scope of workspace research.

• Boolean algebra provides simple operation for controlling the search operation, and

the flow-control operation. Boolean algebra also provides simple operation for

assessing the database in 2-dimensional and 3-dimensional ways.

• The Python simulation provides weighted ranking system which utilizes

parameters like cost, efficiency and error. The Grassmann probability studies

highlight the co-planar and IRA problem. Numerical system and most traditional

work usually process the Parallel workspace and path using 2-dimensional

182

interpolation and extrapolation algorithm. The Trilinear interpolation which, is

performed at later stage is computationally costly.

10.2.4 Phase 4

Development of a 3-dimensional parametric sweep search strategy that is based on search

algorithm. Boolean algebra provides the control strategy to optimize the operation.

• Traditional parametric sweep is limited to geometrical shape envelope like cube,

sphere, cylinder and collections of previous-mentioned shapes.

• The search space Cspace for traditional method is not optimized, not suitable for path

planning, not suitable for real-time operation and the search path is redundant.

• The Python simulation provides Boolean algebra control for limiting the search

scope, region and direction. Therefore, the fractal growth method can be directed

towards an economical search.

• Boolean control for the search resolution has improved the parametric sweep,

where the test for a 40cm wide region has reduced the test completion time from

3400 seconds down to 1100 seconds.

• The Python simulation system was experimented with various 2-dimensional and

3-dimensional methods including Trilinear, L-system fractal, Simplex, Adjacency

tree, Voxel, Brownian motion and Marching cube. The experimental test and result

does not claim the method is better than the traditional approach. However, it

proposes various new approaches in handling Parallel robot data.

183

• The experimental method demonstrated that the method is transferable for

performing other tasks like definition for surface mesh, obstacle avoidance and

haptic algorithm.

• The experiments show that the key features, which are not found in traditional

cubic sweep, are the expansion, contraction, seeding, direction and pattern

generation found in tree, L-system and n-D interpolation methods. These features

allow for optimized and small work region (Cspace) and ready integration with

algorithm integration. The fundamental object-oriented and modular engine allows

for various database systems to be integrated within.

• The Parametric cubic sweep was able to find 10% valid workspace from the overall

test data population. In contrast the polar coordinate system can find 68% valid

workspace. Cubic-like parametric sweep based on Hilbert and Marching Cube

integration with cube and Hilbert produce between 12 to 34% valid non-singular

points.

• Type 1D L-System planar grid system is not efficient, where the search can only

find between 3.5 to 7.4% valid non-singular points.

• However, when the L-System is interpolated and arranged strategically, total valid

non-singular counts have improved and fallen into the range of 20.9% to 41.8%.

10.2.5 Phase 5

Development of a haptic controller that links with the 3D Python simulation, the 3D

Numerical system (Solid Works and Matlab), and provides singularity-free control for a

physical parallel robot.

184

• Typical simulator software does not link to numerical validation software.

• Typical simulator software does not provide control of a physical robot, where the

design and control is combined in one unit.

• The PPPRRR configurations serve the purpose of having an easy reconfigurable

structure and a single centre-point for all rotary and linear axes, providing

capability to cater for various geometries and configurations.

• The designer has difficulty in visualizing a large dataset and matrices for parallel

robot system, where a typical hexapod would have 6 linear actuators, 12 joints and

end-effectors in a 3-dimensional spatio-temporal system.

• The development of the physical robot is an experimental work in validating the

control strategy for a physical robot. The concept has been proven valid and

practical, and has been validated by the numerical system.

• The haptic engine is an experiment with restricted search space or Cspace that

extends the Boolean algebra and grid method in Phases 3 and 4 into a restricted

search region with weighted ranking system. The probability ranking system is

linked to the force-feedback systems which provide braking, acceleration or change

of motor direction to the haptic controller.

• The haptic controller can control the 3D Python simulation directly, where it can

validate geometric constraint and Grassmann error in real-time. The graphical user

interface provides control for end-effectors’ motion, any joint’s motion, and

geometric reconfiguration. It also selects the analysis and algorithm type and places

slicing planes in 3D space.

• The haptic controller can control an existing experimental physical robot directly or

via Matlab programming, where the system can validate the position and

185

orientation. The haptic controller has the options of using Simplex, parametric

sweep or Grassmann as its haptic engine.

10.3 Contributions of the research

1. Development of a new highly configurable and customizable parallel robot

design assistive system. The system has collections of useful fundamental core

objects, which are modular and extendible. This object-oriented approach

allows for various algorithms for varied tasks to be integrated in the system.

The database system is open and controlled by simple Boolean algebra.

2. Development of a series of extended parametric sweep methods including L-

system, quadric algebra and binary tree. Boolean algebra provides control to

constraint the search region, search direction and logical response to a user-

defined or system-defined pattern. Slicing and interval analysis together with

2D, 3D and 4D interpolations allow for complex operations such as dataset

blending.

3. Development of a weighted ranking Grassmann validation system that checks

for Grassmann-related errors within the workspace region. This weighted

ranking system gives probability percentage for co-planar and IRA conditions,

which may contribute to structural singularities.

186

4. Development of a haptic controller that helps identifies singularity errors within

a 3D space. The haptic controller is a simple kinematic structure that works

with various parallel robot’s geometries and configurations. The device adds a

new modality and guides the robot the designer in identifying problems

involving structures with high-degrees of freedom with large matrices. The

integration of nD interpolation method based on Simplex, binary tree, L-system

and quadric algebra has been developed into an open and modular haptic

engine.

10.4 Future Work

Parallel robot development activity involves high resolution, high computation time, and

high skilled workers in various simulation and modelling fields. The best approach for

robot development is to conduct all computation at highest resolution, however this

approach leads to slow result generation and a mistake at any design iteration will require

user to restart the expensive process. This approach limit user ability in exploring and

designing different design parameters, performing test scenario and being creative in

developing the robot. The heavy computation and resources required to validate a design

usually force user to use prior design, and try to improve an existing design by introducing

some changes. It is costly to build many different models and test them in a highly

accurate system. The Python simulation system fills in this gap, where it allows creative

work for various design tasks. The simulation system allows integration of various

algorithms suited for various task. It employs geometric constraint and Grassmann check

187

for singularity which is suitable for real-time operation. It has variety of methods in

defining the search for workspace. Boolean algebra allows for many of the previously

uncontrollable factors to become user-configurable. This allows for rapid prototyping of

parallel robot with varied ranges of task definition. A number of further extensions of the

system as future work are suggested below:

• There are various research opportunities in expanding the weighted ranking

parameters by adding elements like stiffness, force, velocity and voltage.

• The system can be expanded to be able to import CAD model, scale and position

the CAD model in the robot’s environment. Then, the employ surface meshing

algorithm to enable collision, path planning on surface mesh and surface mesh

interaction.

• Following Faugire’s GSP classification and Ben-Horin’s vector-space method,

further study on this aspect could lead to auto-reconfigurable geometry per allowed

assembly positions per classes, where the system could predict best geometric

changes solution when the system reach singularity [14,15].

188

REFERENCES

[1] J. P. Conti, C. M. Clinton, G. Zhang, and A. J. Wavering, “Workspace variation of a
hexapod machine tool,” 1998.

[2] P. Merlet and P. Prisme, “Designing a Parallel. Manipulator for a Specific
Workspace,” 1995.

[3] Song, J.Mou, J.-I King, C., “Error Modeling and Compensation for Parallel
Kinematic Machines,” Springer, 1999, pp. 171–187.

[4] Z. Shiller and S. Dubowsky, “On computing the global time-optimal motions of
robotic manipulators in the presence of obstacles,” Robot. Autom. IEEE Trans., vol.
7, no. 6, pp. 785–797, 1991.

[5] M. Zefran, “Review of the literature on time-optimal control of robotic
manipulators,” Tech. Reports CIS Univ. Pa., 1994.

[6] Glavina, B., "Solving findpath by combination of goal-directed and randomized
search," Robotics and Automation, 1990. Proceedings., 1990 IEEE International
Conference on , vol., no., pp.1718,1723 vol.3, 13-18 May 1990

 [7] O. Bohigas, M. Manubens, and L. Ros, “Planning singularity-free force-feasible
paths on the Stewart platform,” in Latest Advances in Robot Kinematics, Springer,
2012, pp. 245–252.

[8] C. Qin and D. Henrich, “Path planning for industrial robot arms-A parallel
randomized approach “,” in Proc. of the Int. Symp. on Intelligent Robotic Systems
(SIRS 96), Lissabon, Portugal, 1996, pp. 65–72.

[9] Chun-Ta Chen and Te-Tan Liao (2010). On the Optimal Singularity-Free Trajectory
Planning of Parallel Robot Manipulators, Advances in Robot Manipulators, Ernest
Hall (Ed.), ISBN: 978-953-307-070-4

[10] N. Zoso and C. Gosselin, “Point-to-point motion planning of a parallel 3-DOF
underactuated cable-suspended robot,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on, 2012, pp. 2325–2330.

[11] Debanik Roy (2012). Spatial Path Planning of Static Robots Using Configuration
Space Metrics, Serial and Parallel Robot Manipulators - Kinematics, Dynamics,
Control and Optimization, Dr. Serdar Kucuk (Ed.), ISBN: 978-953-51-0437-7.

[12] D. Roy, “Study on the Configuration Space Based Algorithmic Path Planning of
Industrial Robots in an Unstructured Congested Three-Dimensional Space: An
Approach Using Visibility Map,” J. Intell. Robot. Syst., vol. 43, no. 2–4, pp. 111–
145, Sep. 2005.

[13] J. C. Faugire and D. Lazard, “Combinatorial Classes of Parallel Manipulators,” in
Mech. Mach. Theory, vol. 30, pp. 765–776.

[14] P. Ben-Horin, M. Shoham, S. Caro, D. Chablat, and P. Wenger, “SinguLab–A
Graphical User Interface for the Singularity Analysis of Parallel Robots Based on
Grassmann–Cayley Algebra,” Adv. Robot Kinemat. Anal. Des., pp. 49–58, 2008.

[15] Anjan Kumar Dash, I-Ming Chen, Song Huat Yeo, and Guilin Yang. Int. J. Computer
Integrated Manufacturing 18(7):615-634 (2005), Nanyang Technological University.

[16] F. Xi, A. Ross, and S. Lang, “Exploring a re-configurable parallel robot for space
applications,” in Proceedings of the 6thInternational Symposium on Artificial
Intelligence and Robotics & Automation in Space: I-SAIRAS, Canadian Space
Agency, St-Hubert, Quebec, Canada, 2001.

189

[17] Z. Lazarevic, 1997, “Feasibility of a Stewart platform with fixed actuators as a
platform for CABG surgery device,” Master’s Thesis, Columbia University,
Department of Bioengineering.

[18] N. Rojas, J. Borràs Sol, and F. Thomas Arroyo, “A Distance-Based Formulation of
the Octahedral Manipulator Kinematics,” 2010.

[19] D. Chablat, “Joint space and workspace analysis of a two-DOF closed-chain
manipulator,” Romansy 18 Robot Des. Dyn. Control, pp. 81–90, 2010.

[20] J. -P. Merlet, Parallel Robots, vol. Volume 128. 2006.
[21] M. Uchiyama, Y. Tsumaki, and W.-K. Yoon, “Design of a compact 6-dof haptic

device to use parallel mechanisms,” in Robotics Research, Springer, 2007, pp. 145–
162.

[22] S. Bandyopadhyay and A. Ghosal, “Geometric characterization and parametric
representation of the singularity manifold of a 6–6 Stewart platform manipulator,”
Mech. Mach. Theory, vol. 41, no. 11, pp. 1377–1400, 2006.

[23] D. Yu and J. Han, “Kinematic calibration of parallel robots,” in Mechatronics and
Automation, 2005, vol. 11, pp. 521–525.

[24] M. F. Barnett-Cowan, “Multisensory spatial perception: sex and neurological
differences,” York Universtity Toronto, Ontario, PhD Thesis, 2009.

[25] H. S. Kim, “Mechanism Design of Haptic Devices,” Adv. Haptics InTech, pp. 283–
297, 2010.

[26] A. M. Okamura, “Haptic feedback in robot-assisted minimally invasive surgery:,”
Curr. Opin. Urol., vol. 19, no. 1, pp. 102–107, Jan. 2009.

[27] Yong Zhang and Feng Gao, “A calibration test of Stewart platform,” UK, 2007, pp.
15–17.

[28] S. Colton and F. R. C. Mentor, “The balance filter,” Present. Mass. Inst. Technol.,
2007.

[29] S. O. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic
sensor arrays,” Report x-io and University of Bristol (UK), 2010.

[30] B. T. Streng, “Mechanical linkage design for haptic rehabilitation and development
of fine motor skills,” 2009.

[31] S. A. Panëels, J. C. Roberts, and P. J. Rodgers, “HITPROTO: a tool for the rapid
prototyping of haptic interactions for haptic data visualization,” in Haptics
Symposium, 2010 IEEE, 2010, pp. 261–268.

[32] E. Ruffaldi, D. Morris, T. Edmunds, F. Barbagli, and D. K. Pai, “Standardized
evaluation of haptic rendering systems,” Haptic Interfaces Virtual Environ.
Teleoperator Syst., vol. 2006 14th Symposium, pp. 225–232.

[33] J. M.-H. D. Scapel and N. Ayache, “Representation, shape, topology and evolution of
deformable surfaces. Application to 3D medical image segmentation,” 2000.

[34] Alexander V. Korobeynikov, Vadim E. Turlapov, “Modeling and Evaluating of the
Stewart Platform.,” in International Conference Graphicon 2005, Department of
Computational Mathematics and Cybernetics, Nizhny Novgorod State University
after N.I.Lobachevski, 2005.

[35] L. Brezina, O. Andrs, T. Brezina, “NI LabView — Matlab SimMechanics Stewart
platform design,” in Applied and Computational Mechanics 2, 2008, pp. 235–242.

[36] Wu Dongsu, Gu Hongbin, “Adaptive Sliding Control of Six-DOF Flight Simulator
Motion Platform,” Chin. J. Aeronaut., vol. 20, no. 5, pp. 425–433, 2007.

[37] Dequan Zhu, Tao Mei, Lei Sun, “Fuzzy Support Vector Machines Controlfor 6-DOF
Parallel Robot,” J. Comput., vol. 6, no. 9, 2011.

190

[38] H. Yano, S. Tamefusa, N. Tanaka, H. Saito, and H. Iwata, “Interactive gait
rehabilitation system with a locomotion interface for training patients to climb stairs,”
Presence Teleoperators Virtual Environ., vol. 21, no. 1, pp. 16–30, 2012.

[39] M. Marchal, A. Lécuyer, G. Cirio, L. Bonnet, and M. Emily, “Walking up and down
in immersive virtual worlds: Novel interactive techniques based on visual feedback,”
in 3D User Interfaces (3DUI), 2010 IEEE Symposium on, 2010, pp. 19–26.

[40] D. Cioi, A. Kale, G. Burdea, J. Engsberg, W. Janes, and S. Ross, “Ankle control and
strength training for children with cerebral palsy using the Rutgers Ankle CP,” 2011,
pp. 1–6.

[41] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. Van der Loos, “Robot-
assisted movement training compared with conventional therapy techniques for the
rehabilitation of upper-limb motor function after stroke,” Arch. Phys. Med. Rehabil.,
vol. 83, no. 7, pp. 952–959, Jul. 2002.

[42] C. E. Syrseloudis, I. Z. Emiris, T. Lilas, and A. Maglara, “Design of a simple and
modular 2-DOF ankle physiotherapy device relying on a hybrid serial-parallel robotic
architecture,” Appl. Bionics Biomech., vol. 8, no. 1, pp. 101–114, 2011.

[43] P. Sui, L. Yao, J. S. Dai, and H. Wang, “Development and Key Issues of the Ankle
Rehabilitation Robots.” 13th World Congress in Mechanism and Machine Science,
Guanajuato, México, 19-25 June, 2011

[44] J.-M. Belda-Lois, S. Mena-del Horno, I. Bermejo-Bosch, J. C. Moreno, J. L. Pons, D.
Farina, M. Iosa, M. Molinari, F. Tamburella, and A. Ramos, “Rehabilitation of gait
after stroke: a review towards a top-down approach,” J. Neuroengineering Rehabil.,
vol. 8, no. 1, p. 66, 2011.

[45] J. L. Patton, M. E. Stoykov, M. Kovic, and F. A. Mussa-Ivaldi, “Evaluation of robotic
training forces that either enhance or reduce error in chronic hemiparetic stroke
survivors,” Exp. Brain Res., vol. 168, no. 3, pp. 368–383, Oct. 2005.

[46] L. E. Kahn, P. S. Lum, and D. J. Reinkensmeyer, “Selection of robotic therapy
algorithms for the upper extremity in chronic stroke: Insights from MIME and ARM
Guide results,” Kaist Daejeon Repub. Korea, pp. 208–210, 2003.

[47] D. J. Reinkensmeyer, J. L. Emken, and S. C. Cramer, “Robotics, motor learning, and
neurologic recovery,” Annu. Rev. Biomed. Eng., vol. 6, no. 1, pp. 497–525, Aug.
2004.

[48] F. Oldewurtel, M. Mihelj, T. Nef, and R. Riener, “Patient-cooperative control
strategies for coordinated functional arm movements,” 2007, pp. 2527–2534.

[49] C. Kaspar, “Using Bezier Curves for Geometric Transformations,” Fall 2009.
[50] N. M. Amato, M. T. Goodrich, and E. A. Ramos, “Computing the arrangement of

curve segments: Divide-and-conquer algorithms via sampling,” in Proceedings of the
eleventh annual ACM-SIAM symposium on Discrete algorithms, 2000, pp. 705–706.

[51] Che Zulkhairi Abdullah, M. Saadat, and H. Rakhodaei, “A methodology for
Workspace Identification of Parallel Robots Using Parametric Sweep Search
Method,” in Proceedings of the ASME 2013 37th DETC2013 Conference on
Mechanisms and Robotics, Oregon, USA, 2013.

[52] P. Ben-Horin and M. Shoham, “Application of Grassmann - Cayley Algebra to
Geometrical Interpretation of Parallel Robot Singularities,” J Robot. Res, pp. 127–
141, 2009.

[53] S. Amine, M. T. Masouleh, S. Caro, P. Wenger, and C. M. Gosselin, “Singularity
Analysis of the 4-RUU Parallel Manipulator using Grassmann-Cayley Algebra,”
Trans. Can. Soc. Mech. Eng., vol. 35, no. 5, pp. 515–528, 2011.

191

[54] Ay, S, Vatandas, O.E, Hacioglu, A., “The effect of radius of joint location on
workspace analysis of the 6-6 Stewart Platform Mechanism,” presented at the RAST
’09. 4th International, 2009, pp. 728 – 731.

[55] Charters, “how to find the geometry 3-118-1-PB.pdf,” Math.--Ind. Case Stud. J., vol.
1, 2009.

[56] Creative Commons Attribution-ShareAlike License, “Plücker coordinates,”
Wikipedia, 28-Feb-2013. .

[57] N. Karcanias and J. Leventides, “Grassmann invariants, matrix pencils, and linear
system properties,” Linear Algebra Its Appl., vol. 241, pp. 705–731, 1996.

[58] C. Geiss and S. Geiss, “An introduction to probability theory,” Lect. Notes, vol. 60,
2004.

[59] R. B. Ash, Basic probability theory. Mineola, N.Y.: Dover Publications, 2008.
[60] J.-M. Chang, Classification on the Grassmannians: Theory and Applications.

ProQuest, 2008.
[61] E. Staffetti and F. Thomas, “Analysis of rigid body interactions for compliant motion

tasks using the Grassmann-Cayley algebra,” in Intelligent Robots and Systems,
2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on, 2000,
vol. 3, pp. 2325–2332.

[62] H. Shah, M. S. Narayanan, and V. N. Krovi, “CAD-enhanced workspace
optimization for parallel manipulators: A case study,” in Automation Science and
Engineering (CASE), 2010 IEEE Conference on, 2010, pp. 21–24.

[63] A. Rockwood and P. Chambers, Interactive curves and surfaces: a multimedia
tutorial on CAGD. San Francisco, Calif.: Morgan Kaufmann Publishers, 1996.

[64] “Hilbert Curves in More (or fewer) than Two Dimensions.” [Online]. Available:
http://www.tiac.net/~sw/2008/10/Hilbert/. [Accessed: 30-May-2013].

[65] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,” Comput.
Graph., vol. 30, no. 5, pp. 854–879, Oct. 2006.

[66] J. Cheng and J. Tan, “Generalization of 3D Mandelbrot and Julia sets,” J. Zhejiang
Univ. Sci., vol. 8, no. 1, pp. 134–141, Jan. 2007.

[67] O. Faugeras and T. Papadopoulo, “Grassmann–Cayley algebra for modelling systems
of cameras and the algebraic equations of the manifold of trifocal tensors,” Philos.
Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci., vol. 356, no. 1740, pp. 1123–1152,
1998.

[68] F. Jourdan, “Quadric modeling in a Grassmann-Cayley algebra setting,” in
Information Visualisation, 2005. Proceedings. Ninth International Conference on,
2005, pp. 860–865.

[69] P. Hemingway, “n-Simplex interpolation,” Technical Report HPL-2002-320, 2002.
[70] B. Domonkos and B. Csébfalvi, “DC-splines: Revisiting the trilinear interpolation on

the body-centered cubic lattice,” 2010.
[71] F. Gao and L. Han, “Implementing the Nelder-Mead simplex algorithm with adaptive

parameters,” Comput. Optim. Appl., vol. 51, no. 1, pp. 259–277, May 2010.
[72] A. Lopes and K. Brodlie, “Improving the robustness and accuracy of the marching

cubes algorithm for isosurfacing,” Vis. Comput. Graph. IEEE Trans., vol. 9, no. 1,
pp. 16–29, 2003.

[73] C. Gribble, “Primes in Spirals,” THE UNIVERSITY OF ARIZONA, 2010.
[74] P. Prusinkiewicz and A. Lindenmayer, Graphical modeling using L-systems.

Springer, 1990.

192

[75] I. Cohen and D. Gordon, “The Voxel-Sweep: A Boundary-based Algorithm for
Object Segmentation and Connected-Components Detection.,” in VMV, 2004, pp.
405–411.

[76] N. Srebro and T. Jaakkola, “Weighted low-rank approximations,” in ICML, 2003,
vol. 3, pp. 720–727.

[77] A. A. Obiniyi, E. E. Absalom, and K. Adako, “Arithmetic Logic Design with Color-
Coded Ternary for Ternary Computing,” Int. J. Comput. Appl. 0975 – 8887, vol. 26,
no. 11, Jul. 2011.

[78] A. Douady and J. H. Hubbard, Exploring the Mandelbrot set. The Orsay notes.
Citeseer. Université Paris Sud, Orsay, France; Cornell University, Ithaca, NY, USA.
1981-82

[79] J. Orchard and T. Möller, “Accelerated splatting using a 3d adjacency data structure,”
in Graphics Interface, 2001, vol. 1, pp. 191–200.

[80] D. Holten, “Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data,” Vis. Comput. Graph. IEEE Trans., vol. 12, no. 5, pp. 741–748,
2006.

[81] P. V. Sander, D. Nehab, E. Chlamtac, and H. Hoppe, “Efficient traversal of mesh
edges using adjacency primitives,” in ACM Transactions on Graphics (TOG), 2008,
vol. 27, p. 144.

[82] Verhoeff, T (Tom); Verhoeff, K, “Mitered fractal trees: constructions and
properties,” in Proceedings of Bridges Towson: Mathematics, Music, Art,
Architecture, Culture, 2012.

[83] I. A. Bonev and C. M. Gosselin, “Singularity loci of planar parallel manipulators with
revolute joints,” in Proc. 2nd Workshop on Computational Kinematics, 2001, pp.
291–299.

[84] Troyanov,M. Note sur le probleme de prolegomenes. Prolegomenes. April 1995
[85] D. Chablat, “Joint space and workspace analysis of a two-DOF closed-chain

manipulator,” Romansy 18 Robot Des. Dyn. Control, pp. 81–90, 2010.
[86] H. Shah, M. S. Narayanan, and V. N. Krovi, “CAD-enhanced workspace

optimization for parallel manipulators: A case study,” in Automation Science and
Engineering (CASE), 2010 IEEE Conference on, 2010, pp. 816–821.

[87] F. A. Lara-Molina, J. M. Rosário, and D. Dumur, “Multi-Objective Design of Parallel
Manipulator Using Global Indices,” Open Mech. Eng. J., vol. 4, no. 1, pp. 37–47,
2010.

[88] P. Merrell and D. Manocha, “Model synthesis: A general procedural modeling
algorithm,” Vis. Comput. Graph. IEEE Trans., vol. 17, no. 6, pp. 715–728, 2011.

[89] L. Jiang, Image processing and computing in structural biology. S.l.: s.n., 2009.
[90] A. Rosa, “Methods and applications to display quaternion Julia sets,” Electron. J.

Differ. Equations Control Process. St Petersburg, vol. 4, pp. 1–22, 2005.
[91] C. H. Séquin, “Symmetrical Hamiltonian manifolds on regular 3D and 4D

polytopes,” Coxeter Day Banff Can., pp. 463–472, 2005.
[92] M. Tannous, S. Caro, and A. Goldsztejn, “Sensitivity Analysis of Parallel

Manipulators Using a Fixed Point Interval Iteration Method”, 13th World Congress
in Mechanism and Machine Science, Guanajuato, M´exico, 19-25 June, 2011.

[93] J. J. Keiren, M. A. Reniers, and T. A. Willemse, “Structural Analysis of Boolean
Equation Systems,” ACM Trans Comput Log TOCL, vol. 13, no. 1, p. 8, 2012.

193

[94] H. Shah, M. S. Narayanan, and V. N. Krovi, “CAD-enhanced workspace
optimization for parallel manipulators: A case study,” in Automation Science and
Engineering (CASE), pp. 21–24.

[95] cortesi, “Portrait of the Hilbert curve,” Portrait of the Hilbert curve, 03-Aug-2012.
[Online]. Available: http://corte.si/posts/code/hilbert/portrait/index.html.

[96] T. Si and Y. Yu, “Anyonic loops in three-dimensional spin liquid and chiral spin
liquid,” Nucl. Phys. B, vol. 803, no. 3, pp. 428–449, Nov. 2008.

[97] “L-system - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/L-system. [Accessed: 24-Aug-2013].

[98] J. Barrallo, “Expanding the Mandelbrot Set into Higher Dimensions,” presented at
the Bridges 2010: Mathematics, Music, Art, Architecture, Culture, Pécs, Hungary,
2010.

[99] S. Kabai, “Investigation of Polyhedral Rings and Clusters with the Help of Physical
Models and Wolfram Mathematica,” presented at the Bridges 2010: Mathematics,
Music, Art, Architecture, Culture, Pécs, Hungary, 2010.

[100] G. Paul and H. E. Stanley, “Fractal Dimension of 3-Blocks in 4d, 5d, and 6d
Percolation Systems,” ArXiv Prepr. Cond-Mat0210345, 2002.

[101] W. Jung, “Homeomorphisms on Edges of the Mandelbrot Set,”
Universitätsbibliothek, 2002.

[102] G. Barequet and A. Vaxman, “Nonlinear interpolation between slices,” in
Proceedings of the 2007 ACM symposium on Solid and physical modeling, 2007, pp.
97–107.

[103] H. Liu, Y. Wang, and Q. Tao, “A realistic method for real-time obstacle avoidance
without the Calculation of Cspace Obstacles.”.J.Comput.Sci & Technol. Vol.20,
No.6, page 774-787. Nov. 2005.

[104] D. Pavić, M. Campen, and L. Kobbelt, Comput. Graph. Forum, vol. 29, pp. 75–87,
2010.

[105] M. A. Gallego, J. D. Fernández, M. A. Martínez-Prieto, and P. de la Fuente, Rdf
visualization using a three-dimensional adjacency matrix. 4th International Semantic
Search Workshop (SemSearch 2011), 2011.

[106] S. Pigot, “Topological models for 3d spatial information systems,” in
AUTOCARTO-CONFERENCE-, 1991, vol. 6, pp. 368–368.

[107] Y. Choi and C. S. Rim, “Circuit partitioning by quadratic Boolean programming
for reconfigurable circuit boards,” in Custom Integrated Circuits, 1999. Proceedings
of the IEEE 1999, 1999, pp. 571–574.

[108] I. Zammouri and B. Ayeb, “Fractal shapes description with parametric L-systems
and turtle algebra,” World Acad. Sci. Eng. Technol., vol. 34, 2007.

[109] P. Prusinkiewicz, “Graphical applications of L-systems,” in Proceedings of
graphics interface, 1986, vol. 86, pp. 247–253.

[110] D. M. Dubois, “Incursive and hyperincursive systems, fractal machine and
anticipatory logic,” 2001, vol. 573, pp. 437–451.

[111] T. Akutsu, M. Hayashida, W.-K. Ching, and M. K. Ng, “Control of Boolean
networks: hardness results and algorithms for tree structured networks,” J. Theor.
Biol., vol. 244, no. 4, pp. 670–679, 2007.

[112] B. Glavina, “Solving findpath by combination of goal-directed and randomized
search,” in Robotics and Automation, 1990. Proceedings., 1990 IEEE International
Conference on, 1990, pp. 1718–1723.

194

[113] “OOPWeb.com - AVL Trees: Tutorial and C++ Implementation by Brad
Appleton.” [Online]. Available:
http://oopweb.com/Algorithms/Documents/AvlTrees/VolumeFrames.html.
[Accessed: 03-Jul-2013].

[114] S. Bhattacharya, H. Hatwal, and A. Ghosh, “An on-line parameter estimation
scheme for generalized stewart platform type parallel manipulators,” Mech. Mach.
Theory, vol. 32, no. 1, pp. 79–89, 1997.

[115] S. Bhattacharya, H. Hatwal, and A. Ghosh, “Comparison of an exact and an
approximate method of singularity avoidance in platform type parallel manipulators,”
Mech. Mach. Theory, vol. 33, no. 7, pp. 965–974, 1998.

[116] R. Ur-Rehman, S. Caro, D. Chablat, and P. Wenger, “Multi-objective path
placement optimization of parallel kinematics machines based on energy
consumption, shaking forces and maximum actuator torques: Application to the
Orthoglide,” Mech. Mach. Theory, vol. 45, no. 8, pp. 1125–1141, 2010.

[117] T. Bonnemains, H. Chanal, B. C. Bouzgarrou, and P. Ray, “Dynamic model of an
overconstrained PKM with compliances: The Tripteor X7,” Robot. Comput.-Integr.
Manuf., vol. 29, no. 1, pp. 180–191, Feb. 2013.

[118] C. Rossi and S. Savino, “Robot trajectory planning by assigning positions and
tangential velocities,” Robot. Comput.-Integr. Manuf., vol. 29, no. 1, pp. 139–156,
Feb. 2013.

[119] A. A. Ata, “Optimal trajectory planning of manipulators: a review,” J. Eng. Sci.
Technol., vol. 2, no. 1, pp. 32–54, 2007.

[120] Y. Lou, F. Feng, and M. Y. Wang, “Trajectory planning and control of parallel
manipulators,” in Control and Automation, 2009. ICCA 2009. IEEE International
Conference on, 2009, pp. 1013–1018.

[121] M. Callegari, G. Palmieri, M.-C. Palpacelli: "Cartesian space visual control of a
translating parallel manipulator", Proc. 19th AIMeTA Congress of Theoretical and
Applied Mechanics, Ancona, Italy, September 14 -17, 2009.

[122] J. Carsten, D. Ferguson, and A. Stentz, “3d field d: Improved path planning and
replanning in three dimensions,” in Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, 2006, pp. 3381–3386.

[123] “Mitered fractal trees: constructions and properties.” .
[124] D. Li, Q. Li, N. Cheng, and J. Song, “Extended RRT-based path planning for flying

robots in complex 3D environments with narrow passages,” in Automation Science
and Engineering (CASE), 2012 IEEE International Conference on, 2012, pp. 1173–
1178.

[125] D. Nieuwenhuisen, J. van den Berg, and M. Overmars, “Efficient path planning in
changing environments,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, 2007, pp. 3295–3301.

[126] P. Bouboulis, V. Drakopoulos, S. Theodoridis, Image Compression Using Affine
Fractal Interpolation Surfaces on Rectangular Lattices, Fractals, Vol. 14, No. 4
(2006)

[127] G. Rote, “Extension of Geometric Filtering Techniques to Higher-Degree
Parametric Curves: Curve Intersection by the Subdivision-Supercomposition
Method,” Technical report, Freie Universität Berlin, Institute of Computer Science,
2008. ACS Technical Report No.: ACS-TR-361503-01, 2008.

[128] S. Briot and I. Bonev, “Are parallel robots more accurate than serial robots?,”
CSME Trans., vol. 31, no. 4, pp. 445–456, 2007.

195

[129] R. Di Gregorio, “Forward position analysis of the SP-PS-RS architectures,” Int. J.
Robot. Autom., vol. 21, no. 4, p. 295, 2006.

[130] J. M. Herve, “Uncoupled actuation of pan-tilt wrists,” IEEE Trans. Robot., vol. 22,
no. 1, pp. 56–64, Feb. 2006.

[131] X. Kong and C. M. Gosselin, “Type Synthesis of Three-Degree-of-Freedom
Spherical Parallel Manipulators,” Int. J. Robot. Res., vol. 23, no. 3, pp. 237–245,
Mar. 2004.

[132] C. M. Gosselin, E. St Pierre, and M. Gagne, “On the development of the agile eye,”
Robot. Autom. Mag. IEEE, vol. 3, no. 4, pp. 29–37, 1996.

[133] “Lsystems in Python,” 18-May-2013. [Online]. Available:
http://www.4dsolutions.net/ocn/lsystems.html. [Accessed: 18-May-2013].

[134] R. Faragher, “Understanding the Basis of the Kalman Filter Via a Simple and
Intuitive Derivation [Lecture Notes],” IEEE Signal Process. Mag., vol. 29, no. 5, pp.
128–132, Sep. 2012.

[135] G. R. Bradski and A. Kaehler, Learning OpenCV [computer vision with the
OpenCV library]. Farnham: O’Reilly, 2008.

[136] K. Demaagd, A. Oliver, and N. Oostendorp, Practical computer vision with
SimpleVC / Kurt Demaagd, ... [et al.]. Sebastopol, Calif.: O’Reilly, 2012.

[137] W. T. Vetterling, Numerical recipes example book (C). Cambridge; New York:
Cambridge University Press, 1992.

[138] I. Cohen and D. Gordon, “The Voxel-Sweep: A Boundary-based Algorithm for
Object Segmentation and Connected-Components Detection.,” 2004, pp. 405–411.

[139] P.-Y. Chiang and C.-C. J. Kuo, “Voxel-based shape decomposition for feature-
preserving 3D thumbnail creation,” J. Vis. Commun. Image Represent., vol. 23, no. 1,
pp. 1–11, Jan. 2012.

[140] J. P. Arpasi, “A brief introduction to ternary logic,” 7th Novemb., 2003.
[141] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-spline techniques.

Springer, 2002.
[142] H. Simas, A. Dias, and R. Guenther, “A scallop-height based algorithm to compute

parallel paths on parametric surfaces,” ABCM Symp. Ser. Mechatronics, vol. 3, pp.
326–335, 2008.

[143] G. Farin and D. Hansford, “Discrete coons patches,” Comput. Aided Geom. Des.,
vol. 16, no. 7, pp. 691–700, 1999.

[144] O. Shardt and J. C. Bowman, “Surface parameterization of nonsimply connected
planar Bézier regions,” Comput.-Aided Des., vol. 44, no. 5, pp. 484.e1–484.e10, May
2012.

[145] Saedon, Juri Bin, “Micromilling of hardened (62 HRC) AISI D2 cold work tool
steel,” Ph.D, University of Birmingham, 2012.

[146] R. Jim, T. Dominic, S. Selfe, and A. Cunningham, “A Biomechanical Investigation
of a Single-Limb Squat: Implications for Lower Extremity Rehabilitation Exercise,”
J. Athl. Train., vol. 2008;43(5):477–482, pp. 477–482, 2008.

[147] C. Granata, P. BIDAUD, R. Ady, and J. Salini, “A personal robot integrating a
physically-based human motion tracking and analysis,” in Proc. 16th International
Conference on Climbing and Walking Robots and the Support Technologies for
Mobile Machines, University of Technology, Sydney, Australi, pp. 1–12.

[148] “Finding a Point on a Bézier Curve: De Casteljau’s Algorithm,” 09-Jul-2013.
[Online]. Available:

196

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/de-
casteljau.html. [Accessed: 09-Jul-2013].

[149] G. E. Farin and D. Hansford, The Essentials of Cagd. Taylor & Francis, 2000.
[150] F. A. Sohel, G. C. Karmakar, and L. S. Dooley, “A generic shape descriptor using

Bezier curves,” 2005, pp. 95–100 Vol. 2.
[151] A. L. Ahmad, “Approximation of a Bézier Curve with a Minimal Number of Line

Segments,” University of South Alabama, 2001.
[152] M. A.-A. Bhuiyan and H. Hama, “An Accurate Method for Finding the Control

Points of Bezier Curves,” MEMOIRS-Fac. Eng. OSAKA CITY Univ., vol. 38, pp.
175–182, 1997.

[153] T. Dieker, “Simulation of fractional Brownian motion,” MSc Theses Univ. Twente
Amst. Neth., 2004.

[154] R. Sedgewick and K. Wayne, “Geometric Algorithms.” Princeton University,
Algorithms and Data Structures Fall-2007.

[155] P. Ben-Horin and M. Shoham, “Singularity of Gough-Stewart platforms with
collinear joints,” in 12th IFToMM World Congress, 2007, pp. 743–748.

197

APPENDICES

Software flowchart

3D functions

Numerical system

Many 3D functions

Less 3D functions in
other necessary Parallel

robot analysis

Error

Difficult 3D functions

3D interpolation

3D slicing

Interval analysis

Basic Parametric sweep
control features

3D Python

1D, 2D, 3D and some
4D functions

Various 3D
interpolation

Controllable 3D slicing
and interpolation

between slices

3D adjacency graph for
interpolation

3D Interval analysis

Complex Parametric
sweep control feature

Limitation in numerical
system

198

Parametric
sweep

Shape

Geometric
(fixed shape)

Dynamic Cshape

Voxel grid

Ulam Spiral

Data population

Parametric
sweep

Search method

Breadth first
search

Depth first
search

Binary search

Heuristic search

Recursive check
for stroke and

angle constraint

Dynamic
generator

Adjacency
graph

L-system
relationship &
interpolation

199

Geometric parametric
sweep

Define search limit for
all axis

Use any search method eg: cubic parametric
sweep

Move end-effectors to
a test position (and

orientate)

Check for geometric
constraint and

Grassmann singularity
probability value

Continue to cycle
through the test points

layer by layer

Boolean control

Data population
method

Test point relationship

Optimization by
limiting the Cspace,

search region

200

Dynamic
generator

L-system

1D planar

3D interpolation

Control logic

generate a seed

Check nearest
distance to the

learning dataset

Branching out, if
possible

Continue until
reach limit

Continue until too
far away from any
learning dataset

201

Dynamic grid

L-System

Stochastics
grammar 1D Planar

Snowflake

Hexaflake

Spiral fractal

Vicsek fractal

Levy Dragon

Levy C

Hilbert Type

Context-free

context-
sensitive

deterministic
DOL

Stochastic L

Quaternion

Quad
algebra

quaternion

Ternary
algebra

Bi-complex
number

2D manifold

Voxel

Ulam Spiral

Specific
interpolation

Trilinear 3D

Simplex

large
Quaternion

Require
Monte Carlo

202

Path between 2
dataset

Parametric cubic
sweep

Constant orientation
workspace 'A'

Constant orientation
workspace 'B'

Blending between
workspace 'A' and 'B'

Path planning
between the

workspace 'A' and 'B'

K-means clustering

A* D* 3D

Voxel planner

3D Ternary

3D sweep

203

Path planning

Given path

Find optimized path
(if hybrid system with
2 mobile platforms)

Limb rehabilitation

3D Bezier
Interpolation for the

path line

Add planar slices at
specific intervals at

Bezier control points

Interpolate and
Generate Adjacency

graph

Run Parametric
Sweep

Cutting a block of
material

Generate 3D Bezier
mesh surface

Generate mesh grid

Run Parametric
sweep

Validate Force factor
for each pose

204

Real-time
singularity check

Geometric
constraint

Check stroke

Check angle

Close-loop
structure must

be valid

Platform's
geometric must

be valid

Grassmann
singularity

co-planar
condition

line-line join
condition

line-line meet
condition

plane-line meet
condition

plane-line join
condition

Grassmann
probability

Low rank = OK High rank

Structure
collapse

Singulairty loci

External force

205

Parametric
sweep

Position check

Singularity

Geometric check

Grassmann check

Test data
population

Sweep method

Serial sweep

Parallel sweep

Prime factor or L-
System sweep

Quaternion
sweep

Extrusion sweep

Ternary algebra

Random
generator (3D
Mandelbrot)

3D graph

3D branching
tree

Platform's
orientation check

Checking the test
point

Marching cube

Spherical /
Helical / Polar

sweep

Workspace
validation

Compliance
workspace

Constant
orientation
workspace

206

Boolean algebra

Operand

AND

NAND

NOR

L-System

Optimization

Simplification

Remove
redundancies

Functions

Grassmann line,
plane, and
coplanar

Minimum
distance

Interval analysis

Slicing

Obstacle

Mesh

Haptic engine

Flow control

Connected
graph control

Growing fractal
cluster

Topology
straightening Search control

Upper bound

Lower bound

Reach
constraint /

limit

Mixed logic

207

Haptic controller

Sensor

RGB camera

9 DOF IMU

Motor voltage

Engine

3D Simplex

Grassmann pencil line

Voxel

Ternary / Binary Tree

human modality

PPPRRR

Simple kinematic

Extendible

Minimal effort in
producing a single-point
position and orientation

control's sensation

	Chapter 1 : INTRODUCTION
	1.1 Background to the project
	1.2 Aims and objectives
	1.3 Thesis layout

	Chapter 2 : LITERATURE REVIEW
	2.1 Challenges in Parallel Robot simulation design
	2.2 Parallel Robot’s Singularity
	2.3 Parallel Robot’s workspace
	2.4 Haptic Controller
	2.5 Limb rehabilitation strategy
	2.6 Cutting path strategy based on Bezier

	Chapter 3 : KINEMATIC MODEL
	3.1 Introduction
	3.2 Kinematic model
	3.3 Workspace calculations based on inverse kinematic
	3.4 Conclusion

	Chapter 4 : GRASSMANN ALGEBRA
	4.1 Introduction
	4.2 Grassmann theory
	4.3 Weighted value ranking based on Grassmann algebra
	4.4 Results for Grassmann probability experiment
	4.5 Conclusion

	Chapter 5 : PARAMETRIC SWEEP SEARCH
	5.1 Introduction
	5.2 Introduction to parametric sweep
	5.3 Condition test theory
	5.4 Parametric Sweep theory
	5.5 Parametric sweep modelling
	5.6 Basic Sweep theory
	5.7 Advanced Parametric Sweep search based on L-system
	5.8 Boolean control for Parametric Sweep search
	5.9 Test point population theory
	5.10 Test point population based on fractal theory
	5.11 Parametric Sweep methodology
	5.12 Parametric sweep random fractal generator
	5.13 Parametric sweep type Hilbert 3D
	5.14 Parametric sweep grid extrapolation
	5.15 Parametric sweep Euler-convention
	5.16 Parametric sweep spiral grid
	5.17 Parametric sweep 2D based on turtle-cursor method
	5.18 Parametric sweep grid strategic distribution
	5.19 Parametric sweep grid based large quaternion
	5.20 Conclusion

	Chapter 6 : BOOLEAN CONTROL FOR PARAMETRIC SWEEP SEARCH
	6.1 Introduction
	6.2 The Boolean algebra for fractal parametric sweep
	6.3 Boolean Logic for search control and validation strategy
	6.4 Case studies
	6.4.1 Case 1: Boolean search for platform A’s path when platform E’s path is known.
	6.4.2 Case 2: Boolean method for data slicing analysis
	6.4.3 Case 3: Boolean method for search whilst avoiding obstacle
	6.4.4 Case 4: Boolean method for search on a surface mesh
	6.4.5 Case 5: Boolean method for interval analysis
	6.4.6 Case 6: Boolean method for quadratic interpolation edge determination
	6.4.7 Case 7: Boolean method for L-system fractal random growth pattern determination
	6.4.8 Case 8: Boolean method for determining Grassmann search behaviour
	6.4.9 Case 9: Boolean method for finding singularity loci

	6.5 Conclusion

	Chapter 7 : PATH PLANNING
	7.1 Introduction
	7.2 Definition for search region
	7.3 Path planning strategy for parametric sweep search
	7.4 Experiment setup for two different scenario
	7.4.1 Setup 1: Path strategy between two Constant Orientation Workspace
	7.4.2 Setup 2: Path strategy for platform A when platform E is moving and following a path

	7.5 Path planning with slice analysis for trajectory control
	7.6 Experiment with various path planning methodologies
	7.6.1 Method (1) k-means clustering
	7.6.2 Method (2) following a given target
	7.6.3 Method (3) A* D* 3d path planning
	7.6.4 Method (4) Voxel-planner based on Binary tree
	7.6.5 Method (5) Connecting two constant orientation workspace dataset
	7.6.6 Method (6) 3D Ternary Interpolation
	7.6.7 Method (7) 3D sweeping

	7.7 Conclusion

	Chapter 8 : HAPTIC CONTROLLER DEVELOPMENT
	8.1 Introduction
	8.2 The haptic controller kinematics
	8.3 Kinematic formulation for the haptic controller
	8.4 The Haptic structure design
	8.5 Control and Validation
	8.6 Haptic interaction method using Simplex
	8.7 Haptic interaction method using Voxel
	8.8 Haptic interaction method using ternary and binary tree
	8.9 Sensors for detecting position and orientation
	8.10 The experimental setup
	8.11 The IMU sensor for detecting orientation
	8.12 Yaw North Compass noisy output
	8.13 RGB camera for detecting linear translation
	8.14 Haptic structure calibration
	8.15 Case studies for validating the Haptic interaction
	8.15.1 Case 1: Two spherical shape in the workspace
	8.15.2 Case 2: Simplex mesh in the workspace

	8.16 Conclusion

	Chapter 9 : APPLICATION OF PARALLEL ROBOT
	9.1 Introduction
	9.2 Application 1: Control strategy based on Bezier method
	9.2.1 Bezier method for producing a ternary extrusion
	9.2.2 Simulation result

	9.3 Application 2: Path planning based on dynamic force and velocity
	9.4 Application 3: Path’s slicing analysis as a therapist’s intervention tool in ankle robotic rehabilitation
	9.4.1 Experiment setup for the limb rehabilitation project
	9.4.2 Theory for therapist intervention
	9.4.3 Geometric Brownian motion
	9.4.4 Adjacency graph
	9.4.5 Optimizing the Hybrid robot effort to follow the given PATH
	9.4.6 Optimizing the given path
	9.4.7 The adjacency graph variations
	9.4.8 Experiment results

	9.5 Conclusion

	Chapter 10 : CONCLUSIONS
	10.1 Project aims and objectives
	10.2 Summary
	10.2.1 Phase 1
	10.2.2 Phase 2
	10.2.3 Phase 3
	10.2.4 Phase 4
	10.2.5 Phase 5

	10.3 Contributions of the research

