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ABSTRACT

How does the visual system make use of various sources of information from the three-
dimensional (3D) geometry world? To infer distances in a 3D scene, the brain uses multiple
cues such as binocular disparity, which provides metric estimates of depth; or shading, which
is inherently ambiguous and requires additional interpretation. In this thesis, 1 use
psychophysical and functional magnetic resonance imaging (fMRI) techniques to address the
following questions: (i) how does the visual system resolve ambiguities in a luminance signal,
in particular, separating shading cues to shape from luminance variations caused by the
changes in the surface material, (ii) when both shading and binocular disparity are available,
how do these cues interact to produce a coherent 3D shape estimate, (iii) what is the neural

substrate to this cue integration between shading and disparity?

First, in Chapter 3, I examine how first- and second-order luminance signals in a
luminance pattern are perceived, and ask if observers can benefit from the phase relationship
of these signals as a cue to shape. I show that observers learn to exploit the phase
relationship after training, and that the changes through training can be explained as
associative learning. Next, in Chapter 4, I ask whether decomposing shading and reflectance
cues to infer shape can be done in very short presentation times. Through training, observers
learn to use the phase relationship of first- and second-order luminance signals, where the
change in their performance seems to be at a perceptual level. In Chapter 5, I challenge the
dorsal visual cortical area V3B/KO which was previously indicated as a crucial locus when
integrating disparity and motion parallax cues to infer 3D shape. | present evidence that the

involvement of V3B/KO in 3D shape processing can be extended to disparity and shading
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signals. Moreover, I find a distinct relation between neural activity in this cortical area and
perceptual judgements of individual observers. Finally, in Chapter 6, I carry on investigating
cue integration to gain further insight into the individual variations. I report systematic
differences between observers, where about half of the population benefit from having
shading and disparity together; the other half fail to establish cue integration. Nevertheless,
after training, I show that these participants learn to exploit shading and disparity

information.
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CHAPTER 1:

General Introduction

1.1 Introduction

Our internal representation of the 3D world is so remarkably accurate that we can
interact with the environment and direct our actions without hesitation (e.g. playing tennis,
driving). Understanding the 3D geometry of the world predominantly relies on the
perception of the distances of objects with respect to the observer. The visual system’s ability
to estimate depth might seem effortless, but it surely requires many computations exploiting
multiple sources of information to depth. The computations will be especially complex if the
sources vary in the nature of information provided. Above all, the light entering each eye is
converted to electrical signals by a film of photoreceptors before being transmitted to the
visual cortex via the optic nerve. Therefore the visual system must acquire the 3D percept

from 2D input signals.

The brain uses multiple depth cues to infer distances in a 3D scene. Of these cues,
some, such as binocular disparity or motion parallax, provide metric (absolute) estimates of
distance, and can easily be mathematically defined. In the absence of these cues, the visual
system is still capable of constructing the 3D geometry by recruiting pictorial cues:

perspective, shading, cast shadows, and occlusion. Even though it is impossible to tell the



CHAPTER 1: General Introduction

absolute distance of a point from pictorial cues alone, one can still judge depth order, and a
rough geometry of the scene. Moreover, despite the computational discrepancy between
metric and pictorial cues, depth judgements seem to benefit from having both of these
present. In the next section I will give background information regarding the nature of the

two particular cues to depth, disparity and shading, which form the basis of this thesis.

1.1.1 Shape from Shading

While artists have exploited shading for centuries, and earlier researchers were
intrigued by the phenomenon (Brewster, 1826; Rittenhouse, 1786), the term shape-from-

shading was coined fairly recently (Horn, 1975).

Shading information is inherently ambiguous, in the sense that a shading pattern
might be interpreted in different ways by different people and when using different
measurement methods (Koenderink, van Doorn, Kappers, & Todd, 2001). Dutch graphic artist
M. C. Escher demonstrates this beautifully in his lithograph (Figure 1.1, Convex and Concave,
1955). The scene is coherent when viewed locally; it demonstrates strong and meaningful

local shading cues to depth despite the fact that the global architecture is impossible.
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Figure 1.1: Ambiguity of shading information in M. C. Escher’s lithograph Convex and Concave
(1955). The artist exploits variable local luminance information and distorts the geometry locally to
depict an impossible architecture introduced by the ambiguities in interpreting surface shape
throughout the image. Initially the pillars seem to be going into the intersection of the arches,
which can easily be reversed if the print is viewed upside down. It is almost impossible to maintain
a coherent percept for the disc shape in the centre of this print, whether it is a dome on the ceiling,
or a void on the floor.

Shape-from-shading is a mathematically ill-posed problem and is only tractable via
the application of number of constraints. Typical constraints in machine vision include:
uniform surface material and reflectance, Lambertian (matte) surface properties (Pentland,
1984), light source at infinity, and orthographic projection (Horn, 1975). Even when so
constrained, shape-from-shading still presents as a single equation in two unknowns: surface
orientation and light source direction. While it is often possible to infer the direction of the
light source from the image (Koenderink, Pont, van Doorn, Kappers, & Todd, 2007;
Koenderink, Van Doorn, & Pont, 2007), when this is not possible, observers will adopt a
default or prior assumption for lighting direction. Research on light source priors suggests

that human observers prefer to assume that light is coming from above-left, when there is no
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other cue to lighting direction (Adams, 2007; Adams, Graf, & Ernst, 2004; Brewster, 1826;
Mamassian & Goutcher, 2001; Sun & Perona, 1998). However, ambiguous shape-from-
shading can also be resolved by assuming a default surface geometry. Convex surfaces are

preferred more than concave (Liu & Todd, 2004).

Human observers use light priors to recover shape from shading in an automatic and
pre-attentive process (Adams, 2007). Adams (2008) also reported that depending on the
demands of the task, the light-from-above prior can aid a ‘quick and dirty’ recovery of the
shape in a visual search task, but this process becomes more elaborate when the retinal
frame of reference needs to be recalculated in a task, which requires fine estimation of the

shape.

Figure 1.2: (a) Cross section of a surface viewed from the side: convex and a concave. Surface
brightness is dependent on the surface curvature. Portions of the surface facing towards the light
source (points a and d) look brighter than those facing away (points b and c). (b) Same
phenomenon in (a) illustrated with simple linear luminance gradients. Top row discs have bright
portions on top, suggesting that they are facing toward an above light, hence convex; while this is
supported by bottom row, concave surfaces. The convexity/concavity matches can easily be
reversed if the image is viewed upside down.

Yet another challenge for the visual system is the segregation of luminance variations

caused by surface shape, from those caused by the changes in the reflectance properties of
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CHAPTER 1: General Introduction

the surface. To give an example, an appropriately painted flat surface and a curved but
uniform reflectance surface under directional lighting can provide the same shading pattern,
and this can be indistinguishable to human vision (Kingdom, 2008; Schofield, Hesse, Rock, &
Georgeson, 2006; Schofield, Rock, Sun, Jiang, & Georgeson, 2010; Todd & Mingolla, 1983).
Indeed, the lithograph in Figure 1.1 uses changes in reflectance to simulate curved surfaces.
Such ambiguities can be resolved by the segregation of shading and reflectance cues.
Kingdom (2008) describes this segregation as a layer decomposition process (also see
'intrinsic images', Barrow & Tanenbaum, 1978). Kingdom (2003) shows psychophysical
evidence that addition of colour information to a luminance pattern aids layer decomposition.
Similarly, visual texture can be a useful cue for layer decomposition. Adding a texture to the
shading pattern has been shown to enhance the interpretation of shape from shading
(Schofield et al, 2006; Schofield et al,, 2010; Todd & Mingolla, 1983). Schofield and colleagues
showed that when albedo textured (painted texture) and corrugated surfaces receive
directional lighting, the resulting shading pattern conveys changes in local mean luminance
(LM, a first-order signal) together with variations in the luminance difference between light
and dark elements of the texture (AM, amplitude modulation, a second-order signal). The
authors demonstrated that luminance variations caused by surface shape provide positively
correlated first- and second-order signals. On the other hand, luminance variations caused by
reflectance properties of the surface result in no such relationship, making the relationship

between first- and second-order signals a cue for layer decomposition.

In some cases, LM-AM also produces a depth percept, especially when presented
alone. However, the reported profiles of LM-AM are weaker than those reported for LM-only
and LM+AM; and this is even more attenuated when LM-AM is presented together with

LM+AM in a plaid.
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In computer vision, occluding edges can be identified by in-phase changes in
luminance and amplitude and may be treated as a material change. However, Schofield et al.
(2010) refer to smooth changes in stimulus properties and to reflectance changes ‘painted’
onto a smooth surface rather than changes between objects. It may be then that the meaning
of luminance and amplitude relationships themselves depends on image context and that the
sharpness of each change is an important cue. Occluding edges also tend to produce changes
in texture (e.g. dominant orientation) and these may be another cue to material changes even

if luminance and amplitude are correlated.

Shape from shading algorithms often assume Lambertian surfaces with constant
reflectance. This allows the interpretation of luminance changes in the image as shading and
thus the estimation of surface orientation during shape recovery. However, in natural images,
uniform reflectance is rare and changes in the luminance can also be caused by the changes in
reflectance. Humans recover shape from shading in the natural environment without a
problem. As might be expected, human observers overcome this problem by using other cues
such as context or spatial arrangements (Gilchrist, 1977, 1988) to separate illumination and

reflectance changes in addition to perceived brightness.

In an analogy with the intrinsic image representation in computer vision, the human
visual system'’s ability to perceive lightness, brightness and transparency is explained as the
image being represented in different layers separating the source of the change in luminance
(Kingdom, 2008). When the human visual system disambiguates reflectance from shading
(which is a direct input to recover shape), luminance changes that are aligned with changes in
hue appear to be related to reflectance, and non-aligned hue and luminance are likely to be
perceived as shading (Kingdom, 2003). The assumption of uniform albedo surfaces limits
shape from shading algorithms applications to only a subset of natural images. Barron and

Malik (2011) address this problem with a statistical formulation where they recover the

Page 15 of 163



CHAPTER 1: General Introduction

“most likely albedo and shape that explain a single image (p. 2521)”. They incorporate low
frequency priors on shape to show that recovering shape (and albedo) from shading is
possible. In their following work (2012), the authors introduce further priors, such as flatness
of the shape, surface orientation at the occluding contour, and second-order smoothness and
this time their algorithm estimates illumination as well as shape and albedo. These examples
show that shape from shading algorithms can succeed when the problem is addressed as an

optimization problem.”

1.1.2 Binocular disparity

Not all information provided by our 3D environment is ambiguous. On the contrary,
binocular disparity can provide a precise and metric cue to 3D depth. It is believed to be the
most intricate ability of the human visual system, and is also considered a valuable one, since
it was evolved at the expense of the wide field peripheral vision that might otherwise be

provided by having two eyes.

The visual fields of the two eyes provide slightly different images, due to the
separation of the eyes. When the overlapping portions of these visual fields are processed
together, an ability to perceive distances results. Unlike shading, the extraction of binocular
disparity can be understood with a relatively straightforward, tractable mathematical

description.

The horizontal separation between two eyes is on average 6.5 cm (inter-pupillary
difference, IPD), so the eyes have slightly different viewpoints. The brain uses the disparity
between the two images registered on each retina to construct the 3D geometry of the world
(Howard & Rogers, 2002; Julesz, 1971). The absolute disparity (or zero-order disparity) of a
point around fixation is the angular separation of its projection on the retinae (for point P,

this is illustrated by green arcs on each retina, Figure 1.3). For points in front of the fixation
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plane (Q in Figurel.3), the left retinal image is to the left of the central fovea; where the right
retinal image is more to the right, hence the eyes converge to fuse two images (crossed

disparity).

igure 1.3: Illustration of geometry of binocular vision: two eyes fixating at a point F, where
ach image falls in the centre (fovea) of the eyes. The absolute disparity of the fixation point
; zero (because projection of F into each retina is the centre of fovea), and so is any point
alling on the isovergence circle. The absolute disparity of point P is the angular difference of
'S projection to each eye’s retina from each eye’s fovea (a for left eye, B for right eye,
ifferences also indicated by green arcs). The relative disparity between point P and point Q
; the difference between their absolute disparities, which can also be calculated by .
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The relative disparity of two points, say P and Q, can simply be calculated by the
difference between their absolute disparities, but to be able to infer the distance between
these points, one has to take into account the viewing distance as follows. When the eyes are
fixating at a point in space at a viewing distance of D, the relative distance (d) of another

point (P) can be approximated by the following equation:

=[xdD2

given that the inter-pupillary distance of the viewer (I) is known (Howard & Rogers,
2002). This approximation specifies an inverse relation between viewing distance and
relative disparity, hence when two points are located at same distances from the fixation
point, the one behind the fixation (at a larger viewing distance) has a smaller disparity when

compared to the point located in front of the fixation.

The images in each retina also differ vertically, and when the visual stimulus has large
eccentricity and the viewing distance is small, observers can benefit from vertical disparity

(Rogers & Bradshaw, 1993).

When one eye’s image is vertically magnified relative to the other eye’s image, a
fronto-parallel surface in the field of view appears to be rotated about a vertical axis. This
phenomenon, known as the Ogle’s induced effect (1938), is considered to be a strong
evidence that the visual system exploits vertical disparities as well as horizontal disparities.
Especially in perception of slant, vertical disparity signals can be combined with ambiguous
horizontal disparities to provide an unambiguous estimate of slant (Backus, Banks, van Ee, &

Crowell, 1999).

1.1.3 Neural correlates of 3D shape processing
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Early studies in monkeys found evidence for neurons tuned specifically to binocular
information (Hubel & Wiesel, 1970). More recently, human brain imaging studies have shown
that binocular neurons are distributed throughout the occipital cortex (for reviews, see
Cumming & DeAngelis, 2001; Parker, 2007). Dorsal and ventral visual pathways differ in the
sense that binocular processing in the ventral regions (V3v, V4, LOC) represents depth in
shape categories without discriminating fine differences in binocular disparity, where dorsal
regions responsive to fine binocular disparity information (V3d, V34, V3B/KO) represent the
magnitude of disparity (Preston, Li, Kourtzi, & Welchman, 2008) and thus retain information

about surface shape within object boundaries.

Neurophysiological and fMRI studies investigating shape from shading have mostly
reported activity in the early visual areas. The orientation of shading gradient is often
psychophysically shown to be crucial for shape from shading (Kleffner & Ramachandran,
1992; Ramachandran, 1988), and Humphrey et al. (1997) report one of the first examples of
neurological evidence showing activity in V1 corresponding to the strong depth percept
obtained when shading gradient is vertical, as compared to the weak and unstable percept for

horizontal gradients.

Neural correlates of shading processing have also been studied in the context of
object perception (Kourtzi, Erb, Grodd, & Bilthoff, 2003; Moore & Engel, 2001). Kourtzi et al.
(2003) isolated shading and contour information in object presentations to demonstrate
selective responses to shape discrimination (convex vs. concave) in the anterior sub-region of
the LOC (lateral occipital cortex). When taken together, these studies, including Humphrey et
al. (1997), report shape from shading related activity in a variety of regions in the occipital
cortex, including the early visual cortex and both the dorsal and ventral pathways, but within
each design they investigate limited regions in the occipital cortex, which make it difficult to

demonstratedistributed activation related to shape processing.
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Taira and colleagues (2001) provide fMRI evidence from the whole brain while
observers discriminate convex and concave surfaces defined solely by shading gradients.
Their results show that the intraparietal area is involved in shape from shading in humans,
and because the parietal cortex is often reported to be involved in binocular processing, they
suggest this region might be a locus for integration of shading and disparity cues. In another
fMRI study using only monocular cues (shading and texture, Georgieva, Todd, Peeters, &
Orban, 2008), the authors report caudal inferior temporal gyrus and additional lateral
occipital cortex activity related to texture processing, but unlike Kourtzi et al. (2003) they

report no evidence for shape from shading in the LOC.

Variations in the reported brain areas involved in the processing of shading might
relate to the different stimulus sets used. Alternatively, they might reflect observer
idiosyncrasies, as inferring shape from shading requires many assumptions, not least about
light source direction. Data from electrophysiological recordings (Mamassian, Jentzsch,
Bacon, & Schweinberger, 2003) demonstrate that light source direction is detected very early
in the visual system (100 ms). In the same study, the authors also report individual
observers’ electrophysiological activity in the occipital and temporal cortex which is highly
correlated to their perception, i.e. the variation in bias for left light preference. These findings
not only suggest that shape from shading is achieved by bottom-up processes, but also that
ambiguously shading scenes are encoded very quickly in the visual system. A more recent
fMRI study to explore lighting prior in the brain (Gerardin, Kourtzi, & Mamassian, 2010)
separates shape-from-shading into two stages and demonstrate that early and quick ‘light

processing’ is followed by ‘shape processing’ at the higher stages of the visual system.

While it is more common to report neural basis of separate depth cues, other
examples show neurons to be sensitive to multiple depth cues (Howard, 2003). In their study,

Tsutsui and colleagues (2001) reported single cell recordings from monkey intraparietal
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sulcus while they were shown disparity and texture gradient defined slated surfaces. They
first specified neurons sensitive to disparity defined slant in the caudal intraparietal sulcus
(CIP, a dorsal visual area bordering with and receiving direct fibre projections from V3A).
Later, they discovered that these neurons are still selective to surface slant when it is defined
by a linear texture gradient in the absence of disparity. In a following study (Tsutsui, Sakata,
Naganuma, & Taira, 2002), the authors challenged CIP neurons to find that 77% of the
neurons sensitive to texture showed selectivity for disparity defined slant. This first report of
neurons selective to 3D depth invariant of the cue type raises an opportunity to further

explore the phenomenon in humans.

More recently, Ban et al. (2012) investigated the neural activity specific to the
integration of two computationally similar cues to depth: disparity and motion parallax. In
addition to providing further evidence for cortical locations related to disparity and motion
processing, they tested a region in the higher dorsal visual cortex (V3B/Kinetic Occipital, KO)
and showed evidence for distinct neural patterns corresponding to cue integration. This
finding presents an opportunity to test the cortical locus, V3B/KO, with other cue pairings
such as disparity and shading; because despite their computational dissimilarity,
psychophysical data already suggests that perception is enhanced when both shading and

disparity signal the same shape, as described in the next section.

1.2 Cue integration to estimate depth

When multiple cues signal 3D geometry, the visual system merges all available information to
estimate a coherent and/or more precise percept. Several models have been proposed to
understand this process. One can assume that the visual system estimates a modular percept
from each cue independently, and then combines these estimates linearly to obtain a unified

percept (weak fusion, Clark & Yuille, 1990). Comparatively, in a strong fusion model, cues can
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interact and a unified percept can be calculated without having access to the independent
estimates per cue. Moreover, the integration is not necessarily linear: it can be modelled so as
to maximise the likelihood of the percept (Nakayama & Shimojo, 1992). In a model that lies
between these two ends of the spectrum, Landy and colleagues (1995) propose a Modified
Weak Fusion for understanding depth cue combination. In this model, the resulting estimate

is a weighted average of the individual estimates; hence it resembles weak fusion.

In an earlier example of cue integration, Ernst and Banks (2002) investigate visual
and haptic cues while observers estimate height. The authors quantify visual cue dominance
over the haptic cue by measuring variances for height estimates individually from visual and
haptic cues, and then model behavioural data with a maximum likelihood integrator that
minimises the variance (hence maximises reliability) in the combined estimate. In other
words, they show that the human perceptual system weighs each cue according to its
reliability to integrate an optimal result, where the resulting percept is most reliable when

both visual and haptic cues are available.

When there are two cues available, the most efficient (optimal) way of combining the
estimates from these cues would be to come up with the most reliable combined estimate (S).
If the noise of each estimate is independent and Gaussian, the most reliable combined
estimate, i.e. one with the lowest variance, is the Maximum Likelihood Estimate (MLE). This is
calculated as a weighted sum of the individual estimates (s; and s2), where weight for each

cue, w;and wy, is the reliability of the cue (Ernst, 2006):

B=[1RA1+E2 A2

where w; + w2=1.

A=101210112+10122
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In this manner, the reliability of the combined estimate is the sum of the reliabilities
and it is increased, i.e. final estimate’s variance (oi2) is smaller than each individual

estimate’s variance:

R12=01 [201+02

This weighted sum is often referred to as ‘optimal combination’ of sensory estimates
(Figure 1.4a). As can be seen from the example in Figure 1.4a, when two estimates s; and sz
are combined to create s;z the resulting estimate is closer to sz, i.e. it is weighted more

because it has lower variance (higher reliability).

The maximum likelihood estimation model was also used to show that humans
combine texture and stereo vision cues (Hillis, Ernst, Banks, & Landy, 2002; Knill & Saunders,
2003) and; shading and stereo vision cues (Lovell, Bloj, & Harris, 2012) in a statistically

optimal fashion.

When the discrepancy between reliability of two cues is relatively high, the more
reliable cue might appear to capture the resulting percept, i.e. perceptual judgements might
rely on the more reliable cue almost entirely. However, when higher reliability is
compromised (e.g. with the addition of noise), resulting percept might rely on the previously

less effective cue (Alais & Burr, 2004; Ernst & Banks, 2002).

In the light of optimal integration, Nandy and Tjan (2008) quantify the behaviour of
the ideal observer with an index of integration. As illustrated in Figure 1.4b, two independent
cues (red and blue) provide similar sensitivity discriminations (distributions along the sides
of the square) in a two-fold classification (yellow and green, e.g. two shapes). When both cues
are taken into account, the discrimination sensitivity improves as can be seen merely by the
Euclidean distances (separation of distributions) along the sides of the square being shorter

than those along the diagonal. They quantify further improvements in discrimination
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sensitivity with an integration index (@) based on the quadratic summation of sensitivities ()

to individual cues:

R=RRAARA 1+RAR 22RRER 12+RIRARRA 22

According to this quantification, an index value of 1 indicates either independent
processing of each cue or optimal integration of the cues, where anything less than 1 shows
suboptimal integration. This value (¢ = 1) has also been suggested to be a minimum bound
for fusion, and for values greater than 1, the index would be an indicator of the fusion of two
cues (also see Ban et al,, 2012). Details of this framework which are specific to disparity and

shading cues are explained in section 5.1 of this thesis.

Figure 1.4: (a) Probability distributions of two estimates, S; and S, and the resulting estimate S;,
which is derived from the optimal combination of two estimates from two different cues. (b)
Probability distributions to discriminate two shape classes (e.g. convex and concave) are
illustrated by the dot density of the yellow and green clouds. Separation of distributions along the
vertical side demonstrate estimation from shading cue, and along the horizontal side from the
disparity cue. In this example, the x-axis indicates separation of convex and concave (left to right)
when only disparity cue is available (as indicated by the S distributions projected on top of the
square plot). A combined estimate from both disparity and shading provides a better
discrimination. As the combination of independent cues is shown along the diagonal as the
guadratic summation calculation; and fusion mechanism is shown as the multiplication of the
probability distributions on top. Cue and stimulus specific discussion of the fusion mechanism is
provided in Chapter 5.
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The maximum likelihood estimation model was also used to show that humans
combine texture and stereo vision cues (Hillis, Ernst, Banks, & Landy, 2002; Knill & Saunders,
2003), shading and stereo vision cues (Lovell, Bloj, & Harris, 2012) in a statistically optimal

fashion.

When the discrepancy between the reliability of two cues is relatively high, the more
reliable cue might capture the resulting percept, i.e. perceptual judgements might rely solely
on the more reliable cue. However, when higher reliability is compromised (e.g. with the
addition of noise), the resulting percept might rely on the previously less effective cue (Alais

& Burr, 2004).

Bulthoff and Mallot (1988) demonstrate that shading information is completely
overridden when edge information is available. However, their findings support the notion of
shading as an additional cue which increases the perceived depth profile of a disparity
defined surface. Similarly, Vuong et al. (2006) studied shading and disparity in combination;
even though their results do not directly imply an increase in depth profiles, they show that
perceptual reports become more precise when the two cues are both present. Furthermore,
when a third cue, motion parallax, is added, both accuracy and reaction time have been

reported to improve (Schiller, Slocum, Jao, & Weiner, 2011).

In a recent study by Lovell and colleagues (2012), when disparity cue was
compromised by adding noise, shading information proved to be a reliable cue to shape. By
matching the reliability of disparity to shading, the authors overcame the problem of shading
cues often being overridden by disparity and showed comparable sensitivity for shape
discrimination. Under these conditions, they found cue integration between disparity and

shading which can be modelled by a maximum likelihood estimator.
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Statistically optimal cue integration has been reported in adults, but infant studies
suggest that the ability to integrate visual cues is acquired in later stages of development
(Burr & Gori, 2012; Nardini, Bedford, & Mareschal, 2010). This later achievement supports
the view that different modalities recalibrate each other during development, especially

haptic information recalibrating visual information.

1.3 Overview of chapters

Chapter 2. The next chapter lays out a summary of the various methods and
equipment used in this thesis while discussing their merits and shortcomings. Each

experimental chapter describes the specific methods used in more detail.

Chapter 3. This first experimental chapter examines how first- and second-order
luminance signals are perceived, and whether their phase relationship provides a cue to layer
decomposition and hence shape for naive observers. We show that observers learn to benefit
from the phase relationship information after training with binocular feedback, and perceive
in-phase gratings as corrugated. However, the percept seems to be suddenly reversible with
little reinforcement, suggesting categorical learning of stimulus labels rather than a

perceptual improvement.

Chapter 4. The second experimental chapter shows that the phase relationship of
first- and second-order signals cannot be discriminated at short presentation times, so
processing phase information might be a high level function in the brain. Through training
with intermittent feedback on performance, phase discrimination can be learned at a
perceptual level. Here the results of training are specific to the trained stimulus properties.
These findings suggest that training tunes the processes of an early and automatic
mechanism that leads to layer decomposition of in- and anti-phase signals of first- and

second-order stimuli.
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Chapter 5. In this chapter, we challenge previously reported cortical locations for 3D
shape processing with disparity and shading cues. We report multiple lines of evidence from
behavioural and functional magnetic resonance (fMRI) data, suggesting that the dorsal area
V3B/KO plays a crucial role in integration of these cues. Furthermore, we find a distinct
relation between individual differences in perception and underlying neural activity for

processing disparity and shading cues in combination.

Chapter 6. In this chapter individual differences in perceiving disparity and shading
are explored more fully. Similar to the results from Chapter 5, we report systematic
differences between observers: Although beyond optimal integration for the two cues is
observable in half of the observers, it is far from optimal for the remaining observers; rather
the results suggest that an independent processing mechanism is preferred. However, I show

that fusion can be achieved for these participants after training.

Chapter 7. The final chapter summarises the findings in this thesis, and brings
together the contributions of the substantive chapters to our understanding of estimating 3D

shape from disparity and shading.
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General Experimental Methods

The empirical chapters in this thesis employ a number of psychophysical methods and imaging techniques.
This chapter serves as an overall summary of the methods used in each experiment, discussing each
method’s merits and limitations. | will start by describing the two general types of stimulus used in this
thesis. Then | will describe the different psychophysical set-ups which | used to present stimuli. Finally, | will
provide definitions for the psychophysics model that is used to interpret behavioural performance. This will
be followed by a general description of the imaging techniques used in Chapter 5. Each empirical chapter in

this thesis will also provide detailed stimulus specifications for the experiments under discussion.
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2.1 Psychophysics

2.1.1 Stimulus generation

[ used two sets of stimuli for the experiments in this thesis. The first set consisted of
luminance gratings, employing first-order luminance gratings and second-order modulations
of texture amplitude to simulate the effects of shading on a corrugated textured surface while
retaining precise control over the stimulus properties, thus allowing fine manipulations to
explore shape from shading. Next, [ used random dot stereograms (RDS) superimposed with
linear luminance gradients. RDS are popular for studying shape from disparity in isolation,
but when there is additional luminance information, they also become advantageous tools for
investigating disparity and shading cues in combination. In this thesis, RDS were used in both
psychophysical and imaging experiments, while luminance gratings were used for

psychophysical experiments only.

2.1.1.1 Luminance gratings of first- and second-order information

In Chapters 3 and 4, I used sine wave luminance gratings added to noise texture to simulate
the shading patterns found on albedo textured Lambertian surfaces. One sine wave grating
has luminance modulations, where in the other grating, the texture elements are amplitude
modulated. These sine waves are then added together, either spatially in-phase (LM+AM) or
anti-phase (LM-AM), to simulate the luminance variations that would occur on an undulating
surface (Figure 2.1). Stimuli were created following the original instructions reported in

Schofield et al. (2006) except for the noise pattern in Chapter 3 (see below).

For single gratings, BRE,2 and AEE,Rare created separately, and then imposed on a

noise texture:
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BAEE, A= xcos2BBcosA1R-sinA1R-211 (Egqn. 2.1)
BRME,A=Excos2BBcosA2E-sinA2RA-212 (Eqn. 2.2)

QR,E=A01+200,0+R00E,2+200,2xE2E,R (Eqn. 2.3)

where [ is the spatial frequency of the modulation, @ is the contrast of BIEA,E, and
is the modulation depth of @R[, . As for the angles, @1 and @2 are the orientations of LM and
@A, respectively; and, @1 and B2 are the spatial phase angles of @R and B, respectively. The
noise texture (@@,@) has contrast n and is added to and multiplied by BE. To plot an
LM/AM grating (Figure 2.1, c), and modulated noise is added to 1 and this is scaled by
the mean luminance of the monitor (B0) (Equation 2.3). In the case of an anti-phase grating,
signals are spatially aligned anti-phase: B@1-02=F (Figure 2.1, c, left); while for the in-phase

grating @11-@2=0 (Figure 2.1, c, right).
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Figure 2.1: Stimulus creation for LM/AM mixes. All gratings in this example are oriented vertical:
EI=[°. (a)Luminance modulation (LM), and (b) binary noise texture were used to create stimuli.
AM component is not visible unless there is a texture carrier present, so it is demonstrated in
combination with LM and binary noise in (c). (c) On the left, an anti-phase grating resulting from
addition of a, and modulated b; on the right an in-phase grating resulting from adding a, and
modulated b. (d) The plot represents each components (LM, red solid line; AM, black dotted line)
phase offset (x-axis). AM is plotted twice to indicate in- and anti-phase alignment with LM. When
LM and AM are combined with 0° offset, an in-phase luminance and amplitude modulated noise
texture results (green line), and when they are combined with an offset of B an anti-phase texture
results (purple line). The contrast ratio for AM in this plot (black dotted lines) depicts modulation,
where AM’s contrast ratio can only be seen in combination with a texture signal (blue and green
lines). In these examples, higher than normal contrast ratios were used for LM (I = 0.4), AM (m =
0.4) and binary noise (n = 0.2) for printing purposes.

In a plaid stimulus, a pair of luminance gratings (B&E) and a plaid of amplitude

modulations (AR ) are created first according to Equations 2.4 & 2.5.
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RIRIRIR, P=RIRIR, B +RIRlcos2A R cosPIRIRI-sinRIRIRI-RI R +RIRIcos 2R Rl cos AR Rl -sin EIRI I -1 2]
(Eqn. 2.4)

PIRIRIR, B=RIRIE, P xRIRlcos2A R cosPIRIRI-sinRIRIRI-RI R +RIPlcos 2R Rl cos A R Rl -sin EIRI I -1 ]
(Eqn. 2.5)
where [ is the spatial frequency of the modulation, and are the contrasts of
ARRR, R, and and are the modulation depths of ARER,A. As for the angles, and
are the orientations of components, and are the orientations of the
components, where and stand for the spatial phase angle of EI@&, and, and are
the spatial phase of BER. Essentially, Equation 2.4 gives a plaid consisting of two sine wave
gratings added to noise, where the components of the plaid are separated by BR-EIE° (which
would always be equal to the separation angle for the components of BARREE,AE, that is
AR-@EEC in this thesis). Similarly, Equation 2.5 produces a plaid composed of two AM

gratings of noise texture.

The plaid stimuli @@,2 used in Chapter 3 and Chapter 4 were created by combining
the @ERE and BEEE components while scaling the image with the monitor’s mean

luminance (20):

2E,B=A01+ARRE,A+2EEE,E (Eqn. 2.6)

For instance, in the orthogonal plaid, as illustrated in Experiment 1 (Chapter 4, Figure

4.1E), the right diagonal’s LM and AM components are orientated 45° clockwise from vertical
AR=EE=45° and the left diagonal’s LM and AM components are orientated -45° clockwise
from vertical BRE=EE=-45° In this example, the right diagonal is in-phase, so the difference
between angles, and is equal to 0, whereas for the left diagonal, BE-EAR=0, hence LM

and AM are combined anti-phase with a phase offset of 180°.

P-EREE-PEEEEEDE+DEEE (Eqn. 2.7)
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Elements of the binary noise texture given by the component BB,2 had one of two
intensity values: Highest luminance (AEZERA), or lowest luminance (EEARMA), and the overall
noise contrast (@) was set to 0.1 in all experiments (Equation 2.7). The experimental designs
manipulated AM signal level in the stimuli to probe performance, hence we used an interval
of AM contrasts (@) that fell into a previously reported detectable signal range (Schofield &

Georgeson, 1999).

In Chapter 3, instead of using binary noise texture, a texture consisting of Gabor
patches was used to optimise for the requirements for stereoscopic presentation (see
Methods section, Chapter 3). The single gratings were superimposed with disparity defined
corrugated surfaces, and disparity modulation of the surfaces was achieved by showing two
alternating image sequences through FE-1 goggles. A method similar to anti-aliasing was
used to achieve disparities less than a pixel. Gabor micro-patterns were created offline, and
each pixel was magnified into a 101x101 sub-pixel grid in which Gabor patches could be
displaced with sub-pixel accuracy. The final micro-patterns were created by averaging the
grey levels of the 101x101 sub-pixels in each display pixel. Thus small disparities were
converted into subtle changes in grey level. Despite this conversion, such micro-patterns can

convey small stereoscopic disparities well.

Grating and plaid stimuli were created and presented with custom software written

in C++, using the frame store of a VSG graphics card (CRS Ltd, UK).

2.1.1.2 Random Dot Stereograms with Shading

The experiments in Chapters 5 and 6 used stimuli composed of RDS patterns superimposed
with a Blinn-Phong shading algorithm. In each quadrant of the stimulus, a hemisphere

depicted a convex or a concave figure. Two convex figures on the left of fixation and two
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concave figures on the right of fixation (or vice versa) depicted identical surfaces in a given

interval, but were randomised for convex on the left and concave on the left during the trials.

Two parallel surfaces were created separately: the RDS (height field) and the shading
surface. Then the elements of RDS were assigned an intensity level according to their
corresponding projection point in the 2D image of the shading surface. The RDS subtended a
square of Ax@° including four hemispheres of 1.5° radius, and each (dot) element of RDS had
a radius of 0.03° at a viewing distance of 65 cm. Anti-aliasing on the RDS elements was used
(oversampling ratio = 3) to achieve sub-pixel disparity. The dot density was set to 94 dots per
degree square. The maximum depth amplitude used was 6 arcmin, i.e. the centre of the
hemisphere would be -6 arcmin in the convex surface and 6 arcmin in the concave surface.

These values were jittered + 1 arcmin across trials to minimise adaptation.

Using smaller RDS elements with higher dot density facilitated the approximation of a
continuous 3D surface and increasde the benefit from the shading cue while still allowing
control of the disparity cue. This surface has no intensity variation; rather it serves as a
height field map where elements are assigned a luminance value from the shading surface

according to their @, position in the height field.

R=Rl+ER+E Eqn. 2.8
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Figure 2.2: Cartoon of the settings for the shading model. Light source and the viewer are assumed
to be at infinity. The normalised vector for the viewpoint (V) is orthogonal to the stimulus plane
(xy-plane). Light source vector (L) is also normalised and it forms a 45° angle with the normal of
the stimulus plane. Points a and b are at the same depth amplitude (hence have the same height
field), but point a is brighter because it is facing towards the light source in this example of a convex
hemisphere.

The shading surface was created monocularly using the Blinn-Phong algorithm
implemented in Matlab (Lyon, 1993). This algorithm assumes that the light source and
viewer are at infinity, and calculates the halfway vector (H) between the normalised vectors
of a light source (L) and the viewpoint (V) (Equation 2.4). The viewpoint vector was set
parallel to the normal of the stimulus plane central to the fixation: BI(@,@,2)=0, 0, 1, and a
point light source was positioned over the observer’s head, making a 45° angle with the
surface normal: B(B,2,8)=0,-1,-1 (Figure 2.2). The specularity factor was minimised to

simulate a Lambertian surface so as to isolate the shading cue from any specular information.

For the disparity alone stimuli, the RDS elements had the same overall luminance
distributions with the shading stimuli, but their position within the figure was scrambled so
that the intensity variation did not indicate any shape from shading. For the shading alone
stimuli, the RDS elements depicted a flat disparity surface, and the luminance variation was

the cue to a curved 3D surface. For the binary luminance stimuli, the shading pattern was
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binarised (two intensity levels) corresponding to the mean luminance of the top and bottom
portions of the hemispheres. A peripheral grid of black and white squares that subtended
BAExARC° surrounded the stimuli. This larger grid remained unchanged throughout a session
and served as a stable background reference. The background of this reference grid was set

to mid-level grey.

Stimuli were created with custom made scripts in Matlab (The MathWorks, MA, USA)
and presented using the psychophysics toolbox (Brainard, 1997; Kleiner, Brainard, & Pellj,

2007; Pelli, 1997).

2.1.2 Stimulus presentation

2.1.2.1 Monocular display

We used a dichotopic presentation for the study reported in Chapter 4. Luminance grating

stimuli were presented on a ViewSonic P225f monitor at a refresh rate of 160 Hz.

The monitor’s gamma nonlinearity was estimated using a ColourCal luminance meter
(Cambridge Research Systems, CRS Ltd., UK) and corrected via the VSG’s look-up tables (LUT)

using a four parameter CRT display characterisation model (Brainard, Pelli, & Robson, 2002).

D-ERRERNRA-A=0 - AORRAEE - RA0F

Eqn. 2.9

where L (cd/m?2) is the luminance output read from the monitor, j is the luminance
value of the LUT that varies between 0 and (for an pseudo 15-bit- graphics card as
used here, ARRAA=32767), and Lmax, jo, k and y are the parameters to be adjusted). A sample

set of luminance values were first run from a linear LUT, and using the fminsearch function

Page 36 of 163



CHAPTER 2: General Methods

in Matlab, four parameters were estimated for the lowest value of LUT (E0), the lowest
luminance value that can be displayed by the monitor (k), Lmax, and finally the gamma value

(y) to generate a new LUT to be used in the experiments.

2.1.2.2 Stereoscopic displays

For the experiments in Chapter 3, I used a Clinton Monoray monitor (CRS Ltd, UK)
that emits a yellow/green (DP104) phosphor light at a refresh rate of 150 Hz. FE-1 shutter
goggles (CRS Ltd, UK) were fixed to a chin rest at a 0.6 m viewing distance. The goggles use
alternating frame sequences to give a stereoscopic view. Minimising cross talk between the
eyes is critical with this set-up. The FE-1 shutters have a very high transmittance ratio
between their on and off states and a very fast switching function. When combined with the
Monoray monitor with rapid decay phosphor, cross talk is minimised. This equipment set-up
is superior to a combination of LCD shutters and standard RGB monitor. The Monoray
monitor also has a high maximum luminance to counter attenuation from the goggles in their
on state. The monitor’'s gamma nonlinearity was estimated using a ColourCal luminance
meter (CRS Ltd, UK) with a neutral density filter to attenuate luminance to a level within the
ColourCals operating range. This attenuation was corrected prior to deriving the monitor’s
gamma characteristic. Gamma was again corrected using the VSG’s lookup tables. The method

used was similar to that described above (Equation 2.9).

For the behavioural experiments in Chapter 5 and Chapter 6, psychophysical stimuli
were presented on a mirror stereoscope in a Wheatstone configuration using a pair of
ViewSonic P225f CRT monitors. Each monitor had a screen resolution of 1600 x 1200 pixels,
and stimuli were displayed at a refresh rate of 100 Hz with an Nvidia Quadro 4400 graphics
card. Linearisation of the graphics card outputs was achieved using photometric
measurements. The haploscope setting allows us to show separate images to each eye

through front-silvered mirrors; hence the experimenter can simulate binocular disparities
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that specify a 3D object. Monitors and mirrors are mounted on adjustable arms, allowing us
to position the arms with respect to an individual observer’s inter-pupillary distance (IPD).

The observer’s head position was stabilised with a chin rest at a viewing distance of 0.5 m.

The stereoscopic presentation inside the scanner was achieved using two video
projectors (JVC; D-ILA SX21): the optical images were combined using a beam-splitter and
then projected into the scanner room (Preston et al, 2008). Participants were lying down
inside the bore, and they viewed images back projected on a translucent screen, with the aid
of a front-surfaced mirror mounted on the head-coil at a viewing distance of 0.65 m.
Stereoscopic presentation was achieved by using two projectors and separate spectral
interference filters (INFITEC), which are narrowly bandpass, allowing the presentation of
different spectra for each the eyes. The two projectors were matched and linearised using

photometric measurements.

2.1.3 Psychophysics methods

The stimuli defined in the previous section were designed to simulate aspects of visual
presentation in the physical world, while allowing us to quantify and manipulate their
properties systematically. For the behavioural experiments in this thesis, I used classical
measures of observers’ responses to stimuli that were varied systematically. With this in
mind, one stimulus dimension was manipulated at a time while everything else was kept

constant, to control the measures of performance.

The psychometric function was used as a model to describe the relationship between
the observer’s performance and the physical characteristics of the stimulus (Wichmann &
Hill, 2001). The independent variable was the physical quantity of the stimulus; that is
stimulus intensity (plotted on the x-axis), while the observer’s response, i.e. proportion

correct, is a dependent variable (plotted on the y-axis). The psychometric function describes
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the rate of change in performance in terms of the stimulus intensity. Ideally, it would be
similar to a sigmoid function: for the highest absolute stimulus intensity (two extremes of the
x-axis), one would get the highest proportion correct, but when stimulus intensity is too small
to be discriminable, performance would be around chance level. I used a cumulative Gaussian

shape to model the psychometric function in all experiments.

All the psychophysical experiments in this thesis employ a two-alternative forced
choice method, where the observer is forced to choose between two possible responses, and
usually instructed to make a guess when they are uncertain about the stimuli. Also, in these
experiments, test questions are always designed to prompt the observer to discriminate
between two types of stimulus, instead of detecting a signal; the reported thresholds refer to

discrimination thresholds instead of detection thresholds.

In Chapters 3 and 4, usually, a single stimulus is presented and the participant is
asked to choose between two responses, “Left” vs. “Right”, to answer the question, “Which
component of the plaid seemed more corrugated in depth?”. For the training experiments in
Chapter 3, two visual stimuli were presented simultaneously above and below the fixation at
a single interval, and the observer responded to “Which grating seemed more corrugated in

depth?” by choosing either “Above” or “Below”.

A two-interval presentation method was used for the experiments in Chapter 5 and 6.
One of the intervals always contained a standard stimulus, and the other interval contained
the test stimulus that would vary in stimulus intensity; the order of standard and test stimuli
was randomised. After the two intervals, observers were asked: “Which stimulus had greater
depth?” and responded between “First” or “Second”. The reason behind comparing various
stimuli against a standard stimulus was to find the point of subjective equality. In other
words, | measured the intensity at which observers report that they perceive the test

stimulus equal to the standard stimulus. Observers’ performance for discrimination is
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expected to be around 50 per cent correct when standard and test stimuli are the same, and
up to 100 per cent correct for those test stimuli that are separated most from the standard

stimulus.

In most of the experiments, I used the method of constant stimuli: a number of
stimulus intensities were chosen from an interval that contains both easily discriminable
signals and lower contrast signals which are difficult (or impossible at times) to discriminate.
Each stimulus level is presented multiple times (minimum 20 repetitions) and the mean of
these repetitions is taken to represent the performance at that stimulus level. A psychometric
function is then fitted to the data, where there is no limitation on the parameter slope and
shift. These parameters would help us define precision (slope) and the point of subjective
equality (PSE, shift) once the data has been fitted. When reporting group data, psychometric
functions were fitted to individual observers’ data, and then pooled to report mean and
errors (fit-then-pool). This method is reported (Wallis, Baker, Meese, & Georgeson, 2013) to
have an effect of maintaining the steepness of individual slopes when compared to fitting a
psychometric function to pooled data points (pool-then-fit), but the difference between the
two methods is suggested to be negligible. Chance level performance was at 50% correct, and

threshold values were acquired at the inflection point of the function where available.

[ have used the discrimination thresholds in psychophysics experiments in this thesis,
and these were derived from the standard deviation (slope) of the fitted cumulative Gaussian
functions. In experiments where I used the method of constant stimuli, [ constrained the two
parameters lapse rate and guess rate, and derived slope and point of subjective equality
parameters from the fit. The standard deviation of the fitted function (E2) is very much
related to the slope I use, 82% of the sigma squared is used to derive the slope. The Just
Noticeable Difference (JND) can be calculated as the difference between this point and the

50% point. The variability of the probability density function for the combined estimate is
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related to the JND defined at this level as JND corresponds toZ2:-B. Given that reliability is the

inverse of the variance ([2), the reliabilities can be derived from the JND measurements.

In Chapter 6, a Bayesian adaptive staircase method was implemented to measure
discrimination thresholds at an 82% correct level, which is similar to a conventional 3-up-1-
down staircase procedure (QUEST, Watson & Pelli, 1983). This procedure assumes that
participants’ behaviour is explained by a canonical psychometric function, i.e. it has a fixed
shape, while varying its position along the stimulus intensity axis (x-axis) to estimate a
threshold. A cumulative Gaussian distribution around the initial guess for a threshold
(maximum depth amplitude = 4.5 arcmin) is used as the prior probability density function
(pdf) at the start of the experiment. Afterwards, data from each trial is used to update the
estimated threshold (mean of pdf) while minimising the variance of the pdf. Participants
completed at least 30 trials per experimental condition, and the convergence of the data from

all trials was inspected before taking into account the final threshold estimate from QUEST.

The QUEST method is efficient in the sense that estimation for a threshold can be
acquired much more quickly than for a constant stimulus method. In a constant stimulus
method, on the other hand, many repetitions must be measured for each discrete stimulus
level in order to be able to fit the psychometric model reliably. An advantage of the
psychometric function is that if the constant levels of stimulus cover a sufficient range of
stimulus intensities, and performance measurements have enough repetitions to provide a
good fit of the function, then, by interpolation, one can infer the relation between stimulus
and response in the full dataset. Compared to this, a single QUEST procedure for each
stimulus condition is limited, because it gives a single estimation of the threshold, e.g. at an

82% correct level.
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2.2 Functional Magnetic Resonance Imaging

In addition to measuring behavioural performance using the previously described
methods, we also wanted to assess the neural activity underlying the behaviour (Huettel,
2009; Logothetis & Pfeuffer, 2004). This imaging technique relies on the haemodynamics
(blood flow) of the body, and measures the levels of oxygen in the blood, i.e. blood oxygen

level dependent (BOLD) signal.

In other words, instead of measuring a direct neurophysiological signal, MRI methods
inherently assume that neural activity and blood flow are correlated. However, studies
combining electrophysiological recordings with fMRI data confirm the speculation of BOLD
signal reflecting the neural activity in the cortex (Logothetis, Pauls, Augath, Trinath, &

Oeltermann, 2001; Logothetis & Pfeuffer, 2004).

2.2.1 Data acquisition

All fMRI data was acquired at the Birmingham University Imaging Centre using a 3 Tesla
Phillips Achieva MRI scanner with an 8-channel multi-phase array head coil. Two separate
sessions were run for each participant: one for functional localisers to create an individual
functional map of the participant’s visual cortex, and another experimental session to identify

neural activity related to the experimental condition.

An echo-planar (EPI) pulse sequence was used to acquire MR images quickly, where
an entire image was acquired within 35 ms (echo time, TE), and this pulse sequence was
repeated every 2s (repetition time TR). In total, 28 slices aligned orthogonal to the calcarine
sulcus (near the coronal) were used to cover the occipital cortex. The voxel dimensions in the
functional scans were 1.5x1.5x2 mm. In the functional localiser sessions, in order to be able to
acquire a decent segregation between grey and white matter, a high-resolution T1-weighted

structural (anatomical) scan was acquired for each participant with voxel size 1xIx1 mm.
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This structural scan was later used to reconstruct the cortical surface and to register
functional data acquired on different days in Talairach coordinates. In the functional scans,

T2-weighted images were acquired in order to be able to segregate tissue fluid, i.e. blood.

2.2.2 Data analysis

2.2.2.1 Pre-processing

High resolution anatomical scans were first translated by referencing the anterior and
posterior commissures, and extreme points in the individual brain, and then resized to fit into
a standard Talairach space. Inflated and flattened surface models were created for both

hemispheres for each participant.

For functional runs, the data had to be corrected using pre-processing steps prior to
analysis. First, a temporal interpolation was performed using TR and inter slice time value
(slice scan time correction). This made sure that that 28 slices which were acquired over time
could be interpreted as a whole volume at a given instance. Next, all volumes over time were
aligned to the first volume as a reference, and displacements in the x, y, and z axes were later
corrected by undoing the detected head motion (3D motion correction). After motion
correction, each participant’s functional data were aligned to their anatomical scan and
transformed into a Talairach space. For temporal filtering, linear trends were detected and
removed in each voxel’s time series (linear trend removal). Time series were converted to the
frequency domain first; after removing low frequency drifts (high pass filtering), series were

converted back to time space.

In the multi-variate analysis, when it comes to the classification of functional image
patterns (Section 2.2.2.4), the method relies highly on the spatial position of voxels over time.
For this reason, we applied sensitive criteria for motion correction, and discarded data from

participants who moved more than 4 mm in any direction (see Figure 2.3 for an example).
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Figure 2.3: Example of head motion during experimental scans. Data plotted represent head
movements from one participant (IM) who was discarded from further analysis. Displacement in
three directions is plotted as a function of slice volume number (every 2 s, total of 208 volumes
each run). Here, the criteria for data inclusion in analysis is breached by participant’s >4mm head
movements on y-axis.

2.2.2.2 Defining Regions of Interest

We acquired functional images from the whole visual cortex, but data was analysed only from
separately defined regions of interest (ROIs). Defining ROIs was independent of the
experimental stimuli, and relied on data from a separate imaging session. Specific stimuli (e.g.
moving dots with kinetic borders) were presented and regions were delineated according to
voxels’ functional selectivity when compared to other regions of the visual cortex. This
method has been criticised for disregarding anatomical specificity, and being context-
sensitive (Friston, Rotshtein, Geng, Sterzer, & Henson, 2006). However, it can be
advantageous when used with consideration of anatomical landmarks, and in an
experimental design where conditions are contrasted within ROIs rather than across the
cortex. Furthermore, using individual ROIs minimises anatomical variability across
participants, and representing a group of voxels (ROI) rather than looking for effects in

individual voxels simplifies data analysis.

Initially, in an individual localiser scanning session, retinotopic borders were
identified for each participant. Retinotopic borders in the early (V1, V2), dorsal (V3d, V3A,
V7), and ventral (V3v, V4) visual cortex were defined with the checker board stimuli (DeYoe

et al, 1996; Sereno et al.,, 1995, see Figure 2.4). Rotating wedges (size of 24° of central angle)
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and expanding concentric rings (from fovea to 16° eccentricity) of coloured checker boards
were used as stimuli, and the temporal pattern of neural activity was correlated to the phase

of the stimulus (Yamamoto et al., 2009).

Retinotopic borders were used to define the area V3B/KO, together with a separate
motion structure localiser. In the V3B/KO localiser, the stimuli were moving black and white
random dot kinematograms which contrasted transparent motion and partially grouped
motion (diagonal stripes) to define kinetic borders (also see Ban et al, 2012). A separate
localiser was also used to define the borders of hMT+/V5, where random static dots were
contrasted with coherently moving dots (Huk, Dougherty, & Heeger, 2002). Finally, a localiser
was run to define the lateral occipital cortex (LOC): grids showing black and white images of
objects were compared with scrambled versions of the objects to find the cortical areas

selective to intact object stimuli (Kourtzi & Kanwisher, 2000).

Figure 2.4: Examples of inflated and flattened cortex maps (for both left and right hemi-spheres)
depicting retinotopic mapping for one participant. Retinotopic borders related to rotating wedge
stimuli (flat maps on the left) and to expanding ring stimuli (flat maps on the right) are shown with
relative look-up tables to indicate stimulus position in the visual field.

2.2.2.3 Multi-voxel Pattern Analysis (SVMlight)

FMRI data is traditionally represented as changes in the BOLD signal in a time course for each

individual voxel (univariate analysis). This method restricts data representation to a point-
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by-point system with temporal variation. In multi-voxel pattern analysis (MVPA), one can
look for the differences in activity patterns from multiple voxels, hence adding a spatial
element and making the analysis multivariate (Cox & Savoy, 2003; Haxby et al, 2001;
Kamitani & Tong, 2005). When looking at the fMRI data across the cortex, MVPA allows more

subtle effects to be detected.

Initially, we selected voxels to be used by multivariate analysis, by sorting grey matter
voxels according to their response (t-statistic) to all stimulus conditions versus the fixation
baseline across all experimental runs (Table 2.1). For each ROI, 300 voxels were selected
because the benefit from MVPA saturated for more than 300 voxels. We used a linear support

vector machine (SVMlight toolbox) to deal with this large data set.

We calculated z-scores for the timecourse separately for each voxel and each
experimental run to minimise baseline differences between runs. fMRI time series were
shifted by 2 TRs (4 s) to account for the haemodynamic response lag when generating test
patterns for the multivariate analysis. To remove potential univariate differences, we
normalised by subtracting the mean of all voxels for a given volume (Serences & Boynton,
2007), with the result that each volume had the same mean value across voxels, and differed

only in the pattern of activity.

We used an n-fold leave-one-out cross validation procedure: data from all the runs
except one (typically 7 runs) were used to train the classifier (21 patterns, 3 per run) and the
remaining data (3 patterns) were used to evaluate prediction accuracy. Each participant’s

data represents the mean prediction accuracy across cross-validation folds.
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Table 2.1: Number of voxels representing each ROl (rows) averaged across 15 participants.
The left column represents mean number of voxels in a region and the right column gives the
mean number of significant voxels (t-statistic).

Mean number of Mean number of

voxels in the region significant voxels
Vi 2011 1152
V2 1981 1129
V3v 753 332
V4 573 269
LO 809 304
V3d 804 482
V3a 719 309
V3B/KO 747 411
V7 623 255
hMT+/V5 606 212

Accuracies were represented in units of discriminability (d") using the formula:

B'=2-BEEEEE20-1 (Eqn. 2.10)

where erfinv is the inverse error function and p the proportion of correct predictions.
To prevent undefined solutions, an observed value of p=1 was set to p=0.99 (@'=3.29).
Furthermore, when calculating ratio values, any bootstrapped values of p near 0.5 (i.e. @'=0)

were rounded down to 0.49 or up to 0.51 to prevent divide-by-zero type behavior.

In addition to standard MVPA, where we test and train the SVM with the same
condition (e.g. disparity), we also looked at transfer between disparity and shading cues in
Chapter 5. The SVM was trained with one condition and tested on the other, and we used a
Recursive Feature Elimination method (RFE) to analyse these results (De Martino et al,
2008). This method allowed us to detect the minimum number of voxels with the highest

prediction performance, where we started with the maximum set of voxels and discarded five

Page 47 of 163



CHAPTER 2: General Methods

voxels in each feature elimination step. Hence, sparse patterns of multiple voxels can be
detected when they provide meaningful information for discriminatation between classes, i.e.

convex vs. concave.

2.3 Measuring Eye vergence and eye movements

In Chapter 5, we used supplementary methods to control for eye movements and vergence.
Observer fixation is crucial for interpretation of fMRI results because the fixation centre of
the visual field is represented in a much larger area of the cortex then the rest of the
peripheral visual field (Cortical magnification, Qiu et al., 2006), hence deviations in observers’

fixations might cause large disruptions in the neural activity map aligned on the cortex.

To make sure that participants were fixating at the centre (radius = 1°), we presented
a square crosshair target (side = 0.5°) during the experimental scans. A vertical Vernier target
was briefly flashed (250 ms) on half of the trials, and participants were asked to judge its
offset: “Left” vs. “Right”. The Vernier task encouraged fixation and kept the observers alert

while giving us a subjective measure of eye vergence (Popple, Smallman, & Findlay, 1998).

In a separate session, we measured eye movements with a CRS Limbus Eye Tracker
(Cambridge Research Systems, CRS Ltd., UK). While the participant was lying in the scanner,
the eye tracker was placed between the eye and the spectral filters. A subset of participants
(n = 3) was asked to repeat the experiment during separate eye tracking sessions in the
scanner. Eye position data was recorded with a spatial resolution of < 0.25° as a single
voltage, and this was analysed by comparing the eye position for each experimental

condition.

2.4 Statistical testing and reporting the data

Statistical analyses such as paired sampled t-tests and repeated measures ANOVAs
were performed using SPSS (SPSS Inc.), and Greenhouse-Geisser correction was used when

appropriate. Custom scripts in Matlab were used for bootstrapping for d-prime statistics
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(minimum 1000 bootstrap samples) when calculating various indices defined in the empirical

chapters. Figures were edited in Adobe Illustrator prior to publishing.

2.5 Observers

Experimental procedures received favourable ethical opinion by the University of
Birmingham ethics committee. All observers were recruited from University of Birmingham
students and they gave written informed consent before participating in the experiments.
Participants had normal or corrected to normal vision. They were screened for stereo acuity
using the Netherlands Organization for Applied Scientific Research (TNO) stereo test
(Chapter 3), or in an RDS based stereo screening test developed in the Binocular Vision
Laboratory, University of Birmingham (Lugtigheid, 2012). The monetary compensation for
participants’ time was £6 per hour for behavioural studies, and £15 per hour for fMRI

sessions.
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CHAPTER 3:

Associative learning of second-order cues to
shape from shading.

Shading patterns on a corrugated, textured and illuminated surface comprise two signals: first-order
modulations of luminance (LM) and correlated second-order modulations of local luminance amplitude
(AM). Human vision is sensitive to both of these signals, and their alignment is beneficial as a cue to shape
perception (Baker, 1999; Dakin & Mareschal, 2000; Ellemberg, Allen, & Hess, 2006; Fleet & Langley, 1994;
Schofield & Georgeson, 1999, 2003). Observers see LM and AM gratings aligned in-phase (LM+AM) as
shaded corrugations, and anti-phase (LM-AM) as flat reflectance changes, when two mixtures are presented
together in a plaid. First, we trained naive observers with strong, trial-by-trial feedback. LM/AM mixes were
presented in separate spatial locations and feedback consisted of a disparity defined corrugated surface
superimposed on the in-phase pairing; anti-phase stimuli were paired with a flat surface. Performance
improved to a maximum over the first hour of training, after which there was no further improvement.
Even though this could suggest that rapid perceptual learning had occurred, such a rapid performance
increase could also arise from associative learning or the learning of labels applied to already discriminable
stimuli. When the feedback was flipped to reinforce the anti-phase pair as corrugated, the observers flipped
their responses without any deterioration in performance. In the first part of training, AM thresholds to
discriminate the phase relationship of LM/AM mixes reduced in the first hour and saturated for the rest of
the sessions. This result and the sudden reversal in the second phase of training suggest that the
performance benefit resulted from the association of the stimulus with labels rather than changes at a

perceptual level.

Page 50 of 163



CHAPTER 3: Associative learning of 2nd order cues to shape from shading

3.1 Introduction

The visual system is able to construct the 3D shape of a surface from the luminance
variations in a 2D image. However straightforward this construction might seem in a natural
environment, when isolated, the physical cause of variations in luminance can be ambiguous.
For example, at first sight, a corrugated matte surface with uniform reflectance under a point
light source can produce a similar luminance pattern to a flat surface that has non-uniform
reflectance (e.g. painted stripes). Even though the two luminance patterns are the same in
this example, the 3D surface geometry of the actual surfaces differs, i.e. corrugated vs. flat.
The visual system’s ability to disambiguate the cause of luminance variations, and accurately
construct a 3D surface shape (shape-from-shading) can be enhanced when second-order or

texture cues are available.

Shape judgements from luminance patterns are shown to improve when a reflectance
texture is added to the surface (Schofield et al, 2006; 2010; Todd & Mingolla, 1983) . When a
surface has highly variable reflectance at a small scale (a reflectance texture) and is
illuminated, local variations in luminance amplitude (the difference between the luminance
of light and dark elements) arise. These amplitude variations are second-order cues, similar
and sometimes identical to the contrast modulations used by many to study second-order
vision (Baker, 1999; Dakin & Mareschal, 2000; Ellemberg et al, 2006; Schofield et al., 2006;
Schofield et al., 2010). The spatial relationship between modulations of local mean luminance
(LM) and local luminance amplitude (AM) seems to be useful for disambiguating the physical
cause of luminance variations (Schofield et al,, 2006; 2010). When LM and AM are added in-
phase (LM+AM), such that the luminance peaks will coincide with the highest amplitude,
perceived depth is enhanced. Conversely, when LM and AM are negatively correlated (anti-
phase, LM-AM), the impression of depth is reduced, although some depth is still perceived.

Moreover, if an anti-phase mix is shown together with an in-phase mix on the opposing
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diagonals of a plaid, the anti-phase pairing is perceived as a flat surface with non-uniform
reflectance (Figure 3.1c), that is, strips of material change laid across the undulations formed
by the in-phase pair. These findings suggest that when an AM signal is negatively correlated
with an LM signal, the resulting anti-phase luminance pattern is ambiguous in the sense that
it might be interpreted as a corrugated uniform reflectance surface or as a flat non-uniform

reflectance surface.

When visual signals are ambiguous, the visual system requires additional information
in order to estimate surface shape and other properties. When shading is presented alone, the
visual system employs prior knowledge, i.e. assumes that the illuminant direction is known
(light-from-above, Kleffner & Ramachandran, 1992) in order to interpret the ambiguous
shading pattern. Further, co-occurring visual cues can aid the construction of a coherent
percept. For example, the shape implied by variations in luminance can be disambiguated by
contour information (Knill, 1992). Some cues dominate others, such that, for example,
shading information can be completely overridden by stereoscopic disparity (Biilthoff &

Mallot, 1988).

Performance changes related to exposure to visual stimuli can be understood in
several different ways. Observers can adjust their performance statistically: cues occurring
together may interact, or, similarly, they can modify their perceptual responses in response
to external feedback. The improvement in performance can be at a perceptual level
(perceptual learning, Fahle & Poggio, 2002, see also Chapter 4), or it can be at a higher
cognitive level such as associative learning. The disambiguation of visual signals has been
studied in the context of associative learning, where repetitive exposure to the ambiguous
stimulus is paired with explicit feedback to favour a coherent percept. In the case of bistable
stimuli, such as the Necker cube, observers can very quickly acquire a stabilised percept with

contextual feedback contingent on location (Haijiang, Saunders, Stone, & Backus, 2006; van
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Dam & Ernst, 2010). The light-from-above prior is shown to be adaptable after only a few
hours of laboratory training with haptic or disparity feedback (Adams et al., 2004; 2010).
More recently, Harding, Harris, and Bloj (2012) have used realistically lit 3D Mach card
stimuli to show that luminance gradient information alone is not sufficient to discriminate
convex from concave stimuli. However, training observers using a short video at the start of
the session was enough to disambiguate the gradient cue, producing reliable shape estimates.
Here, we explore whether observers can learn to disambiguate the anti-phase combination of
LM and AM cues to indicate a flat surface by using trial-by-trial training with disparity

feedback.

I used a plaid configuration of in- and anti-phase LM/AM mixes to measure
discrimination performance for the phase relationship between the two components of the
mix. Observers’ ability in this regard remained at chance level, even when plaids were
presented for 1 second (Experiment 1). I then trained observers to discriminate in- and
anti-phase gratings when presented separately (not in a plaid). The training used disparity
feedback to promote discrimination: in-phase gratings were paired with disparity
modulations depicting a corrugated surface presented in a feedback interval immediately
following each test trial. Anti-phase gratings were paired with flat, zero disparity, feedback
surfaces. I hypothesised that learning to see in-phase gratings as corrugated and anti-phase
gratings as flat, when presented alone, would transfer to improved discrimination of the
phase relationships when presented in a plaid configuration. Hence, after training, I expected
observers to achieve above chance level performance with plaid stimuli even when there had
been no exposure to plaids since the initial test phase of the experiment. To test for long-
term consolidation of learning, the post-test was repeated after a 20-day interval without
training (post-test 2, Experiment 2). Finally, to further investigate the nature of learning,
reversed feedback was given to reinforce the opposite responses to those previously learnt

by the observers in Experiment 1. Resistance to reversed training would suggest that
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learning had taken place at a perceptual level, whereas an immediate reversal of responses
would suggest associative learning and a cognitive strategy involving the labelling of already

discriminable percepts.

3.2 Methods

3.2.1 Stimuli

[ presented sinusoidal modulations of luminance (LM) and amplitude (AM)
superimposed on noise elements. As described in Chapter 2, noise elements consisted of
Gabor patterns. For training experiments, luminance and amplitude modulations were
imposed on the noise texture to create a single LM/AM grating (Equation 2.3). These
modulations were aligned either in-phase (LM+AM, Figure 3.1a) or anti-phase (LM-AM,
Figure 3.1b). I used plaid stimuli consisting of two LM/AM mixes in the tests before and after
training (Equation 2.6). The left and right components of the plaid were separated by 90°
throughout the tests (Figure 3.1c), i.e. each plaid stimulus had an in-phase and anti-phase

grating pseudo-randomly located in the right (45°) and left (135°) diagonals.

For the feedback in training, we used a flat disparity defined surface matching the
anti-phase grating, and a corrugated disparity defined surface for the in-phase grating
superimposed on the in-phase grating. Disparity was acquired using sub-pixel displacements
of the Gabor micro-patterns (101x101 sub-pixels per display pixel) presented to each eye. In
this magnified grid, Gabors were drawn with an offset from the centre (maximum offset =
50.5 sub-pixels). Then, sub-pixel grey levels were averaged to produce the grey level for each
display pixel, hence translating sub-pixel shifts into subtle changes in the grey level of the
display pixel. Overall, 101 templates were created offline, and these were used in addition to
whole pixel shifts of the Gabors. This method allowed the presentation of both monocular

shading cues and binocular cues in the same stimulus.
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The spatial frequency of the modulations was kept at 0.5c/deg within the experiment.
Gabor noise contrast was fixed at 0.1 in all trials. The contrast of the LM signal was set to 0.2
in all trials, whereas in the main experiments, AM modulation depths values differed in 5
fixed steps equally spaced between 0 and 0.4. To measure AM detection thresholds in the

post training tests, we used 9 logarithmic steps of AM modulation depth: AM = 0.040 to 0.244.
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Figure 3.1: Stimulus examples. (a) A 45° orientated in-phase grating composed of LM and
AM signals added to Gabor noise (amplitude modulation depth: 0.3) where pixels with the
highest luminance values are superimposed with AM peaks (highest amplitude). (b) An anti-
phase grating where LM troughs coincide with AM peaks. (c) Plaid stimuli consisting of an
in-phase grating on the right diagonal and an anti-phase grating on the left diagonal.
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In binocular displays, in-phase gratings were superimposed on a stereoscopically
defined sinusoidal surface where the peaks of the 3D surface were aligned with the peaks of
the shaded in-phase grating. The maximum depth amplitude in the stereo surfaces varied
between d = 200 to 600 sub-pixels (100 sub-pixels = 0.039 degrees). These amplitude steps
in disparity corresponded to the 5 steps of AM signal used in the shaded surface. The anti-

phase grating present in the same trial was superimposed on a flat, zero disparity surface.

Luminance and amplitude modulations could be aligned either in-phase (LM+AM) or
anti-phase (LM-AM) to form a single sine wave. Single sine wave gratings could be orientated
at two different angles: 45 deg (left diagonal) and 135 deg (right diagonal) with respect to the
vertical. During training trials, I used left diagonal sine waves, whereas pre- and post-training
tests included both orientations. This use of different orientations allowed me to test
stimulus-specific aspects of the training. In the test sessions before and after training, I used
plaid stimuli consisting of in- and an anti-phase gratings presented orthogonally (Figure 1E,
in-phase on the right diagonal, anti-phase on the left diagonal). Schofield and colleagues
(2010) have shown that when in- and anti-phase gratings are presented in a plaid
configuration, anti-phase is seen as flat; as opposed to separate presentation, where anti-

phase grating can be seen as corrugated, although not as strong as in-phase grating.

Stimuli were generated in the frame store of a VSG2.5 graphics card (CRS Ltd, UK)
with custom software written in C++ and version 8 of the VSG library. A 20-inch, 150Hz,
Clinton Monoray monitor (CRS Ltd, UK) with a fast decay, yellow/green (DP104) phosphor
was used for stimulus display with images intended for the two eyes presented in alternate
video frames. This monitor was combined with FE-1 shutter goggles (CRS Ltd, UK), which
were synchronised to the display by the VSG. The fast decay phosphor and low transmittance
of the FE-1 goggles in their dark state greatly reduce cross talk between the eyes. The

monitor’s gamma nonlinearity was estimated using a ColourCal luminance meter (CRS Ltd,
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UK) with a neutral density filter to dim the signal from the monitor, which otherwise
overdrives the ColourCal device. Gamma was corrected using the VSG’s lookup tables loaded
with values determined by fitting a 4 parameter monitor model (Brainard et al., 2002) to the
luminance readings multiplied by the inverse of the attenuation factor of the neutral density
filter. The stimuli subtended 13 by 13 degrees of visual angle (512x512 pixels). Binocular

stimuli were not occluded in any way because of the 44 mm wide apertures on the goggles.

3.2.2 Participants

Six postgraduate researchers from the University of Birmingham participated in the
experiments (mean age = 28 + 4 years). Participants were all right handed and had normal or
corrected to normal vision. They were screened for stereo acuity using the Netherlands
Organization for Applied Scientific Research (TNO) stereo test. Observers were naive to the
purpose of the experiments; they gave written informed consent, and were paid £6 per hour
of participation. The study was conducted under a protocol ethical approval by the

University’s ethics committee.

3.2.3 Procedure

In the test trials, stimulus presentation was limited to 1 second, but presentation time
was unlimited in the training trials. In every trial, an in-phase and an anti-phase stimulus
appeared either 1.5 deg above or below a fixation marker located in the centre of the screen.
Throughout the study, top and bottom stimuli were orientated at the same angle. In all of the
experiments, viewing distance was fixed to 0.6 m with a chin rest that also supported the FE-
1 goggles. Experiments took place in a dark room where the experimental monitor was the

only light source. The observers viewed the stimuli through the goggles even when the
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presentation was monocular (pre- and post-training tests). This ensured the same mean

luminance in all parts of the experiment.

The participants indicated whether the top or bottom stimulus seemed more
corrugated in depth using a CB3 response box (CRS Ltd, UK); the observers were instructed
to toggle a single key upwards if choosing the stimulus above fixation, and downwards for the

stimulus below fixation.

The pre-training test consisted of 100 trials (2 orientations x 5 AM levels x 10
repetitions) and participants took approximately 40 minutes to complete this session. No

feedback was provided at this stage.

During training, only LM/AM pairs on the right diagonal were used (45 deg).
Participants first viewed the stimulus without any stereoscopic cues and then made their
response. Feedback then appeared in the form of additional stereoscopic modulations
superimposed onto the LM/AM pairs. Feedback reinforced the in-phase stimuli as the correct
response in every trial (Experiment 1) by imposing stereoscopically defined corrugations
onto this stimulus pairing; Schofield and colleagues (Schofield et al., 2006; Schofield et al,
2010) have previously shown that the LM+AM pairing is normally seen as more corrugated
than the LM-AM pairing. After the feedback (duration = 1 s), participants pressed a key to
start the next trial. Training continued for five days (800 trials per day), and was followed
directly by a post-training test, which was identical to the pre-training session. Data from the
first 400 trials of the first training session (IE, initial exposure) are reported separately in the

results to demonstrate subsequent changes in performance with training.

Twenty days after the post-training test, the observers were asked to repeat the test,
followed by a reversed training session on the twenty-first day. In the reverse training trials,

feedback was flipped: Corrugated stereo surfaces were superimposed on anti-phase stimuli,
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while in-phase stimuli were paired with flat surfaces. This reversal tested the unlearning of
the previously trained state, and helped me to explore the nature of learning that took place
in the first part of the training. The participants continued reversed training until they
reached the level of performance obtained in the initial training phase, but with ‘correct’
responses recorded when the anti-phase stimuli were chosen as more corrugated.
Participants required between one and five reverse training sessions. Following the reverse
training, a further post-test session was conducted. Finally, the observers undertook a further
experiment to determine their AM detection thresholds following training. This session was

based on the methods of Schofield & Georgeson (1999).

3.3 Results

3.3.1 Experiment 1: Disparity feedback training with single gratings

In Experiment 1, | examined accuracy in discriminating the phase relationships (in- and anti-
phase) between LM/AM mixes. During training, observers were encouraged to see a 45 deg
orientated anti-phase grating as flat with trial-by-trial feedback; in-phase gratings were seen
as corrugated. On the feedback screen, a disparity defined corrugated surface was
superimposed to the in-phase grating, while the anti-phase grating had a flat surface
superimposed. Pre- and post-training tests consisted of plaid stimuli: an orthogonal
combination of in- and anti-phase components orientated at 45 and 135 degrees. In all trials

in Experiment 1, accuracy was assessed by counting “in-phase has greater depth” as correct.
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igure 3.2: Plaid test results in Experiment 1 (a) Cartoon showing the training procedure used
1 the experiment. (b) Data from pre- and post-training tests with plaids is shown. Before
raining (white bars), mean performance is around chance but this increases after training
olack bars). (c) Data from the post-training test shown separately for the two possible
rrientations of the LM+AM. Light grey bars indicate correct responses for trained orientation
left diagonal, 45 deg), and dark grey bars indicate responses for the untrained orientation
135 deg). All bars (b, c) show mean data from six participants, error bars indicate standard
rror of the mean.

Figure 3.2b shows the proportion of correct values before (white bars) and after
(black bars) training (mean of six observers, averaged over trained and untrained
orientations). Before training, the mean proportion correct was around chance level, showing
that participants were not able to see depth in LM/AM mixes or to discriminate them on the
basis of a difference in perceived depth. After five days of training, all participants showed a
benefit from training, with a mean performance of 93 per cent correct for the highest AM
level (St. dev = 0.08). Repeated measures ANOVA showed a main effect of training (before
and after training, F1,5 = 21.55, p <.01) and AM level in the stimulus (F4 20 = 4.39, p <.05). As
might be expected, this performance increment was more strongly emphasised for the
stronger AM signals (these being more visible) as shown by the interaction: F4 20 = 11.43, p <

.001.
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The pre-training data (white bars, Figure 3.2b), seems to indicate that on average,
naive participants have a tendency to respond anti-phase has greater depth. However, at the
group level (n=6), a repeated measures ANOVA show that these results are not significantly
different from chance level performance (Fi5 = 1.49, p = .28). Out of 6 participants, 3
participants’ performance is at chance level, and the rest is showing a tendency towards anti-
phase responses. Overall button responses show that 40 percent of the time participants

pressed the button on the right (St. dev = 8.2 percent).

When [ analyse the results separately for in-phase is on the right and on the left
oblique, the group average does not show a trend towards an orientation. But two
participants show different results, one having higher performance for left oblique and the
other for the right oblique. This might be explained as the participant attending to a single

component of the plaid (e.g. always the right oblique).

During training, participants were only exposed to 45 deg sine wave gratings,
whereas the pre- and post-tests included in- and anti-phase gratings orientated orthogonally
in a plaid configuration. In Figure 3.2c, the light grey bars indicate the proportion of correct
values after training for the trained orientation (i.e. in-phase component of the plaid is
orientated at 45 deg) and dark grey bars show data for untrained stimuli (i.e. in-phase
component is orientated at 135 deg). I looked for an orientation-specific effect of training,
however a repeated measures ANOVA showed no significant difference between trained and
untrained orientations (F1, 5 = .034, p = .862), suggesting a full transfer to 90 deg rotation

from trained to untrained orientation.
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Figure 3.3: Performance during training in Experiment 1. Bars represent thresholds (75% correct)
for AM signal intensity required to discriminate in- and anti-phase gratings in each training session
and during the initial exposure phase of the first training session (first 400 trials). Gray dashed line
indicates mean threshold (AM = 0.08) over the training sessions. All bars show mean data from 5
participants, error bars indicate standard error of the mean.

A cumulative Gaussian function was fitted to proportion correct data collected during
training, and thresholds at 75% correct were acquired where available. Data from one
participant, IF, where training thresholds were outside 2 standard deviations of the mean,
were discarded from this analysis. Figure 3 shows AM thresholds for discriminating the
phase of LM/AM mixes during training sessions (mean across five participants). Overall, the

mean threshold in all training sessions (AM = 0.08 £ 0.01) was reached in the second session

and saturated after this point. There was no significant training effect, as suggested by a
repeated ANOVA on training sessions (F4,12 = 2.20, p =.131). Learning took place very quickly

and most of the improvement was seen within the first hour of training.

3.3.2 Experiment 2: Consolidation and then reversal of learning

In Experiment 2, first I explored the lasting effects of training and next, the nature of
learning, by employing a reverse training paradigm. Twenty days after the first post-training
test (Experiment 1), the six participants were invited to the lab for a follow up session of

testing.
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Figure 3.4: Performance in plaid test after a 20-day break (Post-test 2, Experiment 2) is compared
to post-training test immediately after the training (Post-test 1, Experiment 1). All bars show
mean data from 6 participants, error bars indicate standard error of the mean.

In Figure 3.4, light blue bars (Post-test 2) show the proportion of correct values after
the 20-day break (mean of six observers, averaged over trained and untrained orientations).
Data from Experiment 1 is also shown for comparison (dark blue bars, Post-test 1). The
benefit of training was still clearly observable after the 20-day interval: performance was no
different from the immediate post-training test reported in Experiment 1 (Repeated

measures ANOVA, F1,5=.058, p =.819).
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Figure 3.5: Post-test data before and after reversed training (Experiment 2). Proportion correct
values before reversed training (Post-test 2) indicate matches for ‘in-phase component has
greater depth’; where after reversed training (Post-test 3), responses for ‘anti-phase component
has greater depth’ were represented as correct. Mean data from 6 participants is shown; error
bars indicate standard error of the mean.

Next, we ran a reverse training regime in which everything was the same as in
Experiment 1, except for the feedback. In contrast to the previous training sessions, anti-
phase components were reinforced as being corrugated by superimposing a corrugated
stereo surface onto them during the feedback phase of each trial. Proportion correct data are
shown in Figure 5 for the second post-test training session (light blue bars, Post-test 2)
conducted before the reverse training was applied, in which “in-phase component has greater
depth” was counted as correct, and for a final post-test session (dark blue bars, Post-test 3)
conducted after the reversed training, and in which “anti-phase component has greater
depth” was counted as correct. Reverse training with single gratings took effect immediately
within the first session, and this effect was carried on to the post-test with plaids (Post-test

3).
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34 Discussion

Constructing the 3D surface shape from the luminance variations in a 2D luminance
pattern is a complex task. Luminance variations can be directly related to the orientation of
the surface, with the brightest parts of the image representing surfaces orientated towards he
light. On the other hand, changes in the reflectance properties of a flat surface might cause
luminance variations, and these might look like the shading patterns produced by a
corrugated surface with uniform reflectance. One way in which the visual system might
disambiguate such luminance changes is by using the second-order (AM) information carried
by reflectance textures. Schofield et al. (2006; 2010) have shown that the phase relationship
between first-order luminance modulations and second-order AM signals is a useful cue to
discriminate luminance changes due to shape from those due to material variations. In-phase
combinations (LM+AM) cue for changes in surface shape, whereas anti-phase (LM-AM)
combinations cue for material changes in a flat surface. They have also shown that naive
observers are able to discriminate the phase relationship between first- and second-order
cues, given long presentation times. Here I have shown that if the presentation time is

restricted, observers cannot discriminate in-phase from anti-phase (pre-test, Experiment 1).

Observers learned to discriminate between in- and anti-phase gratings very quickly in
this study. Although previously reported studies show evidence for fast visual perceptual
learning (Fahle, Edelman, & Poggio, 1995; Karni & Sagi, 1993; Seitz et al., 2005), I cannot
argue that learning in Experiment 1 took place at a perceptual level. Firstly, perceptual
learning in visual tasks is often identified by specificity to some low-level feature of the
training stimulus, such as orientation, spatial frequency, or visual field position (Fahle et al,
1995; Fiorentini & Berardi, 1981; Karni & Sagi, 1991). Here, [ observed that training with 45
degree orientated gratings transferred to 135 degree orientated components of plaids (post-
test 1, Experiment 1). Next, in perceptual learning examples, initial fast learning is followed

by slow enhancement between days of training, which is frequently explained by
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consolidation of learning with sleep (Karni, Tanne, Rubenstein, Askenasy, & Sagi, 1994;
Stickgold, James, & Hobson, 2000). However, I did not observe improvement between
training sessions. Rather, discrimination sensitivity saturated during the second day of
training, showing a closer resemblance to associative learning behaviour based in an already

discriminable but previously un-labelled stimulus set.

If observers learned to associate the ‘correct’ feedback with the in-phase grating, then
[ would expect them to be able to flip this behaviour immediately in a reverse feedback
design, whereas for perceptual learning, the ‘unlearning’ phase would take more time. Here,
observers were capable of adjusting their responses within a very short period in a reversed
feedback design. Moreover, their discrimination sensitivity remained intact when the
feedback was reversed to indicate that the in-phase component should be ‘seen’ as flat. This
quick reversal in discrimination performance suggests that learning was not at a perceptual
level but relied on a cognitive process similar to naming, i.e. associating in-phase (or anti-

phase) with the correct response.

The observers retained the improvement from the first training phase, and they were
able to interpret LM/AM mixes after a period of 20 days during which time, presumably, they
had no direct exposure to the test stimuli. It has been reported that training effects can last

for several last years when learning is at a perceptual level (Qu, Song, & Ding, 2010).

In summary, I have shown that observers learn to discriminate phase relationships
with short presentation times rapidly when reinforced with trial-by-trial disparity defined
feedback. Performance improves to a maximum and saturates within the first hour of training
(Experiment 1). When feedback is reversed to reinforce the anti-phase component,
observers’ responses reverse rapidly without any deterioration in performance (Experiment

2). This training is more likely to be characterised as associative learning.
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Perceptual learning of second-order cues for

layer decomposition.!

Luminance variations are ambiguous: they can signal changes in surface reflectance or changes in
illumination. Layer decomposition—the process of distinguishing between reflectance and illumination
changes—is supported by a range of secondary cues including colour and texture. For an illuminated
corrugated, textured surface, the shading pattern comprises modulations of luminance (first order, LM) and
local luminance amplitude (second order, AM). The phase relationship between these two signals enables
layer decomposition, predicts the perception of reflectance and illumination changes, and has been
modelled based on early, fast, feed-forward visual processing (Schofield et al., 2010). However, while
inexperienced viewers appreciate this scission at long presentation times, they cannot do so for short
presentation durations (250 ms). This might suggest the action of slower, higher-level mechanisms. Here we
consider how training attenuates this delay, and whether the resultant learning occurs at a perceptual level.
We trained observers to discriminate the components of plaid stimuli that mixed in-phase and anti-phase
LM/AM signals over a period of five days. After training, the strength of the AM signal needed to
differentiate the plaid components fell dramatically, indicating learning. We tested for transfer of learning
using stimuli with different spatial frequencies, in-plane orientations, and acutely angled plaids. We report
that learning transfers only partially when the stimuli are changed, suggesting that benefits accrue from
tuning specific mechanisms, rather than general interpretative processes. We suggest that the mechanisms

which support layer decomposition using second-order cues are relatively early, and not inherently slow.

! This chapter has been published as: Dévencioglu, D. N., Welchman, A. E.,. Schofield, A.J.; Perceptual
learning of second order cues for layer decomposition, Vision Research, V. 77, 25/1/2013, P. 1-9, doi:
10.1016/j.visres.2012.11.005. Main text and figures were kept as in the manuscript. All authors contributed
to the conceptualisation of the experiment and writing of the paper, DND collected data and ran the
analyses.
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4.1 Introduction

Interpreting the luminance variations in an image in terms of their underlying physical cause
poses a significant challenge to the visual system. Specifically, luminance variations in an
image can have two distinct causes: (i) they might arise from variations in 3D surface
geometry so that different portions of a surface are differentially illuminated by the light
source(s) and/or (ii) they might arise from variations in the surface albedo, such as different
textures or paint on the surface. Somehow, the visual system must parse changes caused by
the illumination with respect to the 3D surface (shape-from-shading) from changes in surface
reflectance properties. This process is known as layer decomposition (Kingdom, 2008) or
intrinsic image extraction (Barrow & Tanenbaum, 1978) and it can be achieved by
considering the relationship between luminance variations and a range of other cues,
including colour (Kingdom, 2003) and, as we review below, second-order cues that arise in

objects with a textured surface.

A potentially informative cue to layer decomposition is provided by the spatial
relationship between changes in local mean luminance (LM) and local variations in the range
of luminance values that arise from an albedo texture: Local luminance amplitude (AM;
Schofield et al., 2006). In particular, when the illumination varies across an albedo textured
surface, changes in local mean luminance (LM) are positively correlated with changes in local
luminance amplitude (AM). Adding an albedo texture to a shaded surface, such that LM and
AM correlate positively (in-phase; LM+AM), enhances the impression of depth (Todd &
Mingolla 1983; Schofield et al, 2006, 2010; compare Figures 4.1A and B). Moreover, if LM and
AM are negatively correlated (anti-phase; LM-AM) the impression of depth is reduced
(compare Figure 1D with A). If both relationships are present in a plaid configuration, the in-
phase pairing appears as a shaded undulating surface whereas the anti-phase pairing appears

as a flat material change (Schofield et al, 2006, 2010; Figure 4.1E). The enhanced shape-
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from-shading in the in-phase case may be due to improved layer decomposition owing to the

information provided by the relative phase of the AM cue.

The changes in local luminance amplitude described above are, mathematically,
closely related to the contrast modulations typically used to study second-order vision. The
human visual system is known to be sensitive to second-order signals and it is thought that
they are detected separately from first-order cues (Baker, 1999; Dakin & Mareschal, 2000;
Ellemberg et al., 2006; Fleet & Langley, 1994; Schofield & Georgeson, 1999, 2003). First- and
second-order information is correlated in natural images (Johnson & Baker, 2004) but the
sign of this correlation varies (Schofield, 2000), suggesting that contrast/amplitude

modulations are informative by virtue of their relationship with luminance variations.

Building on the physiological work of Zhou and Baker (1996), Schofield et al. (2010)
developed the shading channel model in order to explain the role of AM in layer
decomposition. In this model, LM and AM are initially detected separately and then
recombined in an orientation / frequency specific additive sum that broadly mimics Zhou and
Baker’s (1996) envelope neurons. In-phase pairings sum to produce an enhanced output
(greater perceived depth), whereas anti-phase pairings subtract, weakening the output /
depth percept. However, AM components are given a relatively low weighting at the
summation stage, such that their effect on single LM components is marginal. A competitive
gain control mechanism working across orientations produces the dramatic scission found
for plaid stimuli. The model has been used to describe a range of psychophysical results
(Schofield et al, 2010; Sun & Schofield, 2011), has been applied directly to natural images
(Schofield et al., 2010), and has been used as the basis for a machine vision system for layer

decomposition (Jiang, Schofield, & Wyatt, 2010).
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The shading channel model relies on relatively low-level mechanisms, which might be
considered comparable to the envelope neurons found in area 17/18 of the cat visual cortex
(Zhou & Baker, 1996). Therefore we would expect layer decomposition based on LM and AM
mixtures to be automatic and fast acting. However, while the cues are effective for naive
participants at relatively long presentation times (circa 1s), anecdotally they see no
difference between LM+AM and LM-AM at short presentation times (250ms): even in the
more robust plaid condition. We confirmed this failing in Experiment 1. Thus, layer
decomposition is rather slow, implying the use of attentional mechanisms or at least multiple
stages of processing beyond those implied by the shading channel model. However, it is also
possible that early mechanisms exist for layer decomposition based on LM/AM mixtures but
that they are either (i) relatively underused or (ii) not well engaged by plaid stimuli that are
too different from everyday experience to allow fast layer decomposition. If this were the
case, we would expect performance to improve with training. Furthermore, if low level
mechanisms, such as those described in the shading channel model, are critical to the task, we
would expect any benefits of learning to follow the stimulus-specific pattern observed in
perceptual learning studies (Manfred, Fahle, & Morgan, 1996; Jeter, Dosher, Liu, & Lu, 2010;

Jeter, Dosher, Petrov, & Lu, 2009).

Perceptual learning has been explored in various visual contexts. For instance,
through repetitive training, humans improve in their ability to: detect luminance contrast
(Fiorentini & Berardi, 1981; Sowden, Rose, & Davies, 2002), perform Vernier tasks (Fahle &
Morgan, 1996; Spang, Grimsen, Herzog, & Fahle, 2010), discriminate between orientated
stimuli (Jeter et al, 2009), and discriminate between textures (Karni & Sagi, 1991). Such
perceptual learning is often reported to be specific to ancillary stimulus features such as
retinal location, spatial frequency or orientation. For example, Fiorentini and Berardi (1980)
report rapid learning in a phase discrimination task where observers are asked to

discriminate the two types of composite sinusoidal grating. This learning effect was specific
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for the trained orientation and did not transfer across 90 deg stimulus rotations. We might
expect to see similar cue-specific learning in the case of the relative phase discrimination

required in our layer decomposition task.

We used a perceptual learning paradigm to examine the improvement in layer
decomposition associated with LM/AM plaids at short presentation times. We then tested for
transfer across stimulus dimensions as a marker for perceptual learning. We hypothesised
that training would enable layer decomposition at short presentation times. Moreover, we
tested the generalisation of learning that results from training, considering the stimulus
dimensions of orientation and spatial frequency. In particular, we trained naive observers to
discriminate the phase relationship of LM and AM signals in briefly-presented plaid stimuli.
We then conducted three tests to probe the learning, examining the transfer of depth
discriminations based on LM+AM to different stimulus rotations (Experiment 1), different
stimulus spatial frequencies (Experiment 2), and plaids that differed in the relative
orientation of their compositions (Experiment 3). Poor transfer across these stimulus
manipulations would indicate perceptual learning, whereas full transfer would suggest the
learning of cognitive strategies such as labelling based on the LM/AM relationship regardless

of the percept formed by the stimuli.

In Chapter 3, I have found evidence that naive observers learnt to associate in-phase
gratings with positive feedback, which indicates greater depth. Even though the results
showed that naive observers could be trained to discriminate the phase relationships, it is not
sufficient to prove that the observers learnt to use first and second order signals to infer
shape from shading. Instead, it might be explained with a symbolic association of a type of the
stimulus with the feedback, in other words, they might have come up with a strategy to
succeed in the task without any improvement in the sensitivity to discriminate the phase

relationship of the signals. In Chapter 4, [ am aiming to find evidence that naive observers can
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learn to benefit from LM/AM mixes’ phase relationships to infer shape from shading. To do

this, I provide intermittent information during training to induce a change in sensitivity.”

4.2 Methods

4.2.1 Stimuli

To isolate shading and illumination cues from additional sources of shape information
(e.g. boundaries, occlusions or recognisable object outlines), we imposed sinusoidal
modulations of luminance (LM, Figure 4.1A) and amplitude (AM, Figure 4.1B) on binary noise
textures (see Schofield, Hesse, et al., 2006 for full details of the stimulus preparation method).
Luminance and amplitude modulations could be aligned either in-phase (LM+AM, Figure
4.1C) or out-of-phase (LM-AM, Figure 4.1D) and could be orientated at four different angles
(22.5, 67.5, 112.5 and 157.5 deg) with respect to the vertical. Plaids were formed from
combinations of an in-phase and an anti-phase grating presented at different orientations
(Figure 4.1E, in-phase on the right diagonal and anti-phase on the left diagonal). The

orientations of the plaid components were orthogonal except in Experiment 3.
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Figure 4.1: Stimulus examples (A) LM-only: A 45 deg oriented sine wave luminance grating added to
binary noise (B) AM-only: Amplitude modulated binary noise pattern (modulation depth = 0.40). (C)
An in-phase composite grating where peaks of LM (highest luminance) and AM (highest amplitude)
are superimposed. (D) An anti-phase grating where LM troughs are superimposed with AM peaks.
(E) A plaid consisting of an in-phase grating on the right diagonal (LM+AM) and an anti-phase
grating on the left diagonal (LM-AM).
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The contrast of all LM components was set to 0.2 in all experiments. The AM values in
the main experiment were chosen from an interval that would bound individual AM detection
thresholds based on previous work (Schofield & Georgeson, 1999) and a pilot study: AM =
0.040 to 0.244 in 5 logarithmic steps. The spatial frequency of the modulations was 0.5 c¢/deg,
except in Experiment 2. The noise contrast was fixed at 0.1 and new noise samples were
generated for each trial. The stimuli subtended 6.5 by 6.5 degrees of visual angle (256x256

pixels).

There were two training sets. Half of the participants were trained on Set 1 (22.5 deg
and 112.5 deg plaids) and the other half on Set 2 (67.5 deg and 157.5 deg plaids); the
allocation of participants to training sets was random. We describe the plaids with respect to
the orientation of the LM+AM component; thus, the 22.5 deg plaid contained the LM+AM
component on the left diagonal, orientated 22.5 deg, and an LM-AM component on the right
diagonal, orientated 112.5 deg. Having two training sets allowed us to examine the transfer of
learning to un-trained but otherwise similar stimuli. The component orientations were
chosen to allow us to reasonably ask observers to judge whether the left or right tilted

component was more corrugated.

Stimuli were generated in the frame store of a VSG graphics card (CRS Ltd, UK) with
custom software written in C++ and were presented on a ViewSonic P225f monitor at a
refresh rate of 160 Hz. The monitor’s gamma nonlinearity was estimated using a ColourCal

luminance meter (CRS Ltd., UK) and corrected using the VSG’s lookup tables.

4.2.2 Participants
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A total of 12 postgraduate students from the University of Birmingham took part in the study.
Six participants (mean age = 29 * 6 years) were tested to assess baseline measurements
using the test stimuli of Experiments 1 and 3 without any training. Another set of six
participants (mean age = 25 + 3 years) undertook the plaid training followed by the three test
experiments. One of the participants showed a reverse learning effect during the first training
session. She gave the opposite responses to those that were reinforced by the feedback; this
observer was excluded from further study and replaced by a new participant, given that we
set out to study perceptual learning and this participant was unable to benefit from the
feedback we provided. Participant GM was excluded from analysis in Experiment 3, as we
could not estimate thresholds for him in two out of the three conditions. All of the
participants were naive to the purposes of the experiment, and had normal or corrected to
normal vision. Participants gave written informed consent and were paid £6 per hour. They
were debriefed after the last test session. The work was subject to ethical review prior to

experimentation (University of Birmingham STEM ethics committee).

4.2.3 Procedure

The stimulus duration was 250 ms for each condition. Stimuli could appear in one of two
locations either 1.5 deg above or below the fixation marker; the other location was filled with
a binary noise pattern. This manipulation prevented the build up of afterimages, which can
selectively reduce the visibility of the LM cue. The participants viewed the stimuli in a
darkened room at a viewing distance of 0.6 m. Head position was stabilised with a chin rest.
Participants indicated whether the right or the left oblique seemed more corrugated in depth
by pressing one of two keys on a button box (CB3, CRS Ltd, UK). Given previous results
(Kingdom, 2003, Schofield et al., 2006; 2010), responses for “In-phase component has greater
depth” were counted as hits. Symbolic, intermittent feedback was given: specifically, at the
end of each block of 20 trials, observers were shown their per cent correct score for the last

block via a written message on the display. The first 200 trials on Day 1 of training were
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analysed separately to represent the performance levels for initial exposure to the stimuli.
Training continued for five days (1000 trials per day). In cases where overall accuracy was
below 75% correct after five days (participants GM, JB, and AAM), training continued until an
overall accuracy of 75% correct was achieved (longest duration: 10 days). Trained
participants undertook three experiments to test their newly learnt abilities in the days

immediately following training.

4.2.4 Post-Training Experiments

After training, participants made forced-choice judgements (“Which orientation in the plaid is
more corrugated in depth?”) on three sets of test stimuli: 1) stimuli were orthogonal plaids
differing from the training stimuli by a 45 deg rigid rotation (Figure 4.1E): participants who
were trained on Set 1 stimuli were presented with Set 2 stimuli to establish performance on
untrained stimuli, and vice versa; 2) spatial frequency (Figure 4.4A, s.f=2 or 4 c/deg, angle
between components 90 deg); or 3) shear (Figure 4.54A, angle between the LM+AM and LM-
AM components varied while still allowing left / right judgements to be made). No feedback
was given during the test phase. Experiment 1 took place one day after the final day of

training; Experiment 2, 9-13 days post training; and Experiment 3, 15-19 days post training.

4.3 Results

4.3.1. Performance during training

As a first analysis, we considered the efficacy of the training paradigm on participants’
behavioural performance. In particular, we considered trial-by-trial performance during
training for the three observers who completed the training regime within five days (Figure
2). We calculated the proportion correct (later converted to per cent correct) as a running
average, based on a window of the preceding 100 trials (1 = correct = “in-phase component
has most depth2, 0 =incorrect) for each day of training. (Performance on each day is
described from the 100th trial, therefore there are gaps in the traces between each day.) On
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the first training day, performance improved up to a peak of around 80% correct and but fell
dramatically in the last 200 trials, perhaps due to fatigue or reduced participant confidence
due to a run of weak stimuli. Such dips occur elsewhere in the data and are not confined to
the last trials of a session. Performance at the start of Day Two was above that at the outset of
Day One but below the Day One peak. Performance on subsequent days showed progressively
increasing initial performance with smaller lapses from the previous day. By Day Five, initial
performance was consentient with the overall mean. The remaining observers showed
similar training performance, but were slower to reach the asymptotic performance and

showed greater initial drops in performance.

Figure 4.2: The time course of training. Lines show trial-by-trial percent correct scores calculated
over the preceding 100 trials starting from the 100th trial in each session. Accuracy was assessed
relative to ‘in-phase has greater depth’ this being deemed the correct response. Gray boxes show
each day’s training. Green, blue and red traces show results for participants MH, DI and JH
respectively. The black line shows the mean performance of the three participants. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

4.3.2 Experiment 1: Specificity for orientation.

Following the training phase, we examined whether improvements in depth judgements
were specific to the trained stimuli. Experiment 1 tested for transfer between different
stimulus orientations. In particular, we tested for the transfer of performance between the

trained and untrained stimulus sets, which differed in overall orientation by 45 degrees.
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igure 4.3: Plaid training and Experiment 1 — specificity for trained orientation: (A) Mean
isychometric functions (6 participants), grey data points indicate per cent correct for initial
xposure to plaids, black symbols (line) data (fit) for trained stimuli, red symbols (line) data
fit) for untrained stimuli. (B) Thresholds (75% correct) for AM level required to discriminate
thase relationship for trained (black bar) and untrained (red bar) orientations. (C) Individual
isychometric functions, each graph represents data from a single participant on three
onditions as described in (A). (D) Cartoon showing the training procedure used in the
xperiment.

Figure 4.3A shows the per cent correct values and a fitted cumulative Gaussian
function (mean of six new observers; fits obtained using psignifit version 2.5.6; Wichmann
and Hill, 2001) for the trained and untrained stimulus sets. Performance during initial
exposure to stimuli (grey data points, see also Supplementary Figure 1) is around chance,
suggesting that untrained observers cannot differentiate LM-AM from LM+AM at short
presentation durations. This was also confirmed for six new, untrained observers
(Supplementary Figure 2). However, after training (black and red lines), observers were able
to determine that the LM+AM component had a greater corrugation than the LM-AM
component, with average performance reaching up to 96+4% correct at the highest AM level
for trained stimulus orientation (black dots). The difference between thresholds for trained

and untrained stimuli shows that the learning effect is specific to the trained stimulus set
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(Figure 2B). In particular, thresholds for the trained stimuli (black bar, AM = 0.09+£0.01) were
significantly lower than the untrained stimulus thresholds (red bar, AM = 0.13+0.02;
t(5)=2.11, p=.044). However, post-training thresholds for untrained stimuli were better than
pre-training thresholds (which were not measureable), suggesting a partial transfer of
training. Indeed two participants (GM and AM) performed slightly better on the untrained

stimuli, suggesting complete transfer for these individuals.

4.3.3 Experiment 2: Specificity for spatial frequency

In Experiment 1, the full benefits of training were specific to the trained orientation,
with only partial transfer to 45 deg rigid rotations. Here we test transfer along another
stimulus dimension: spatial frequency. Detection thresholds for LM and AM cues depend on
spatial frequency in different ways (Schofield & Georgeson, 1999) but relative and absolute
sensitivity for the two cues is approximately equal at 0.5 and 2 c/deg in the presence of
binary noise. That is, LM (or AM) thresholds are similar at the two frequencies and the ratio
of LM to AM sensitivity is also similar at the two frequencies. In this experiment, we tested
whether training at 0.5 c/deg transfers to 2 c/deg plaids (Figure 4.4A, top image). We also
tested for transfer to a higher spatial frequency (4 c/deg; Figure 4.4A, bottom image), where
AM sensitivity is known to be relatively weak. Only the strongest AM level (0.244) was used
in this experiment. The other stimulus dimensions were the same as the training stimuli and

the task was the same as in the general methods.

Page 80 of 163



CHAPTER 4: Perceptual learning of 2" order cues for layer decomposition

Figure 4.4: Experiment 2 — no transfer across spatial frequency: (A) Example stimuli for 2 c/deg
(upper) and 4 c/deg (lower) plaid. Both plaids are oriented at 22.5 deg, i.e. in-phase component is
on the right diagonal. (B): Performance for high spatial frequency plaids (2 c/deg and 4c/deg) at the
highest AM level compared to the equivalent perfromance for 0.5 c¢/deg for the trained stimuli in
Experiment 1. Error bars indicate + S.E.M. and asterisks indicate where the difference is significant
(*** for p < .001 and * for p < .05).

Per cent correct values were converted to d’ to indicate the discrimination sensitivity

for LM/AM phase relationship (in- or anti-phase) at the highest AM level (0.244). Figure 4.4B
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shows the mean performance across six observers. Data from Experiment 1 (0.5c/deg,
trained orientation, AM=0.244) is shown for comparison. A repeated measures ANOVA
showed that there was no transfer of training with 0.5 c/deg stimuli to 2 or 4 c¢/deg stimuli
(main effect spatial frequency, Greenhouse - Geisser corrected, Fio, 50 = 100.7, p<.001).
Bonferroni corrected comparisons also showed differences in mean d’ values for 2 c/deg vs.

4c/deg (p<.05).

4.3.4 Experiment 3: Partial transfer to non-orthogonal plaids.

Experiment 1 showed that training for a single orientation of plaids did not fully
transfer to 45 deg rigid rotations of orthogonal plaids. Here we investigate whether the
training effect is specific to the angle between the components of the plaids in training sets.
The plaids used in the training were all orthogonal; here we rotated the two components in a
plaid separately so that their combination was no longer orthogonal. We introduce shear
angle to define non-orthogonal combinations of the in- and anti-phase components. That is, if
a plaid has a shear angle of +10 deg, the angle between the two components is 100 deg;
whereas orthogonal plaids have 90 deg between their components and hence a shear angle of
0 deg. In Experiment 3, participants viewed non-orthogonal plaids with 6 shear angles (-50, -
30, -10, 10, 30, 50 deg; Figure 4.5A) at all five levels of AM. All other stimulus parameters

were as described in the general methods.
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Figure 4.5: Experiment 3 — Partial transfer to non-orthogonal plaids: (A) Stimulus examples used in
Experiment 3. Different shear angles are shown (rows) where left and right columns separate
negative and positive shears, respectively. (B) Mean psychometric functions for six participants.
Each plot shows per cent correct data points and psychometric functions (where available) as shear
angle decreases from top to bottom. (C) Mean thresholds for AM level at 75% correct (‘in-phase
has a greater depth’) rate from six participants are presented for £30 deg shear (darker grey bar)
and +10 deg shear (lighter grey bar); it was not possible to extract threshold for +50 deg shears.
Data from Experiment 1 (white bars, O deg shears) are added for comparison. Error bars indicate +
S.E.M. and asterisk indicates a significant difference (p < .05). (D) Individual plots show
psychometric functions for each participant (columns) on three groups of shear angles (rows).
Shear angles decrease from top row to bottom row, hence becoming more similar to the training
stimulus (shear = 0 deg).

It was not possible to fit psychometric functions for shear angles +50 or -50 deg,
because participants performed around chance even for the highest AM signal in these
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conditions (Figure 4.5B, top graph). A repeated measures ANOVA with 2 factors (shear sign
and magnitude) showed a significant main effect of magnitude (F28=31.93, p<.0001) but no
effect of sign (F14<1, p=.42) and no interaction (F1.0,40<1, p=.729), therefore we grouped shear
angles according to their magnitudes: +10, £#30, +50. Figure 4.5B shows average per cent
correct (see Supplementary Figure 3 for d’) values at each AM level and fitted cumulative
Gaussian psychometric functions (where possible) for three different groups of shear angle

magnitudes of non-orthogonal plaids.

The thresholds decreased for smaller absolute shear angles but they were still higher
than the thresholds obtained for trained stimuli in Experiment 1 (mean * st. dev. for £10 deg:
AM = 0.14+0.04 and for +30 deg: AM = 0.18+0.04). Figure 4.5C shows mean thresholds
alongside data from Experiment 1: it can be seen that thresholds increase as the shear
increases. These results show that the smallest shear angles did not differ from the trained
plaids when we compare thresholds (trained plaid vs. #10 deg shear: ¢t(4)=1.81, p=.078), so
the benefit of training transferred to +10 deg shears. Experiment 3 was conducted last in the
test sequence, so this result also shows that the lack of transfer in Experiment 2 cannot be
due to a return to the untrained state over time. The thresholds for +30 deg are significantly
higher than the plaid thresholds for the trained stimulus set in Experiment 1 (t(4)=4.36,
p=.006). However, statistical analysis showed that the thresholds for £10 and +30 deg were
not significantly different (¢(4)=<1, p=.373). Supplementary Figure 4.5 shows d’ values for
untrained observers in the shear task, showing again that the task is impossible without

training.

4.4 Discussion

The luminance variations in a scene are potentially ambiguous. They could be caused
by changes in the light source position, changes in illumination due to surface orientation or

shadows, or they can represent intrinsic properties of the viewed surface such as albedo
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reflectance. For example, a surface might have different colours or it may consist of different
materials, so that its reflectance changes. Schofield et al. (2006; 2010) have shown that the
phase relationship between first-order luminance modulations (LM) and second-order
amplitude modulations (AM) can be used to discriminate luminance dependent changes from
reflectance dependent changes: in-phase combinations give rise to the percept of a
corrugated surface via shape-from-shading, while anti-phase combinations appear as
reflectance changes. Schofield et al. (2010) proposed the shading channel model as a
mechanism by which AM can influence the perceived role of luminance variations in an
image. This model relies on early visual mechanisms and suggests that layer decomposition
using these cues should be automatic and quick. However, whereas naive participants can use
the relationship between LM and AM at relatively long presentations times (Schofield et al,,

2006; 2010) they fail to do so at shorter presentation times.

Here we have shown that layer decomposition based on the phase relationships of LM
and AM cues in plaid stimuli can be achieved at short presentation times (250ms) following
training with intermittent feedback. This decomposition was specific to the trained stimulus
and did not fully transfer to plaids at other orientations (Experiment 1). It transferred for
small shear angles of non-orthogonal plaids (Experiment 3). However, training did not
transfer at all to higher spatial frequency plaids (Experiment 2) or to larger shear angles for
non-orthogonal plaids, even though the AM cue was as visible in such test stimuli as it was in

the trained stimuli.

In the initial exposure phase of plaid training, we showed that observers are not able
to differentiate LM+AM from LM-AM at brief presentation times. After five to ten days of
training with intermittent feedback, performance improves and observers start judging
LM+AM as more corrugated than LM-AM. This suggests that observers learn to make use of

the AM cue and its alignment with LM (in- or anti-phase) as cues to shape from shading; they
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learn to segment shading dependent illumination changes from material dependent changes.
In other words, they learn to see the difference caused by the alignment of the AM cue;

judging the anti-phase aligned LM/AM combination as a flat surface.

In Experiment 1, we also used novel stimuli to test whether the benefit of training
transfers across rigid rotations. We found that the performance on novel plaids was better
than the performance at initial exposure; however, thresholds remained significantly higher

than those for trained plaids.

The results of Experiment 2 indicate that observers could not make use of the AM cue
or phase relationship to differentiate shading from reflectance changes in high frequency
stimuli. The ability to use the AM signal failed to transfer to 2 c/deg plaids. AM sensitivity
varies with spatial frequency, as does that for LM, but, based on the sensitivity functions
found by Schofield and Georgeson (1999), we would not expect any marked change in the
visibility of either cue between 0.5 and 2 c/deg when binary noise is present. So the change in
performance cannot be due to a lack of visibility for the AM cue at the higher frequencies, and
must rather reflect an inability to combine the cues or make use of the relative phase

information.

The spatial configuration of LM+AM and LM-AM components in a plaid seems to be
important for layer decomposition. Specifically, the LM-AM component in a plaid with an
orthogonal LM+AM component is seen as a very flat reflectance change, whereas it is seen as
moderately corrugated when presented alone. We now show that the orthogonal
configuration is itself important. Even when trained in the layer decomposition task,
participants cannot discriminate the two components when the plaid is sheared by 50 deg,
thus reducing the minimum angle between the two components to 40 deg. There is little
transfer of training at a 30 deg shear (min angle 60 deg). This shows that the training is

specific to the alignment of the two components in the plaid.
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Overall, our findings provide evidence for stimulus-specific perceptual learning of the
layer decomposition task based on the phase relationship of LM/AM mixtures at short
presentation times. This supports the shading channel model proposed by Schofield et al.
(2010). The ability to perform the tasks described in this paper at short presentation times
strongly suggests that the task is supported by early, automatic, mechanisms. The failure of
transfer across stimuli properties confirms that learning took place at a perceptual rather

than cognitive level, again implicating low level mechanisms.

We should, however, consider why fast layer decomposition is available only after
training. According to the shading channel model, cross-orientation gain control is
fundamental to the perceptual scission between LM+AM and LM-AM cues in the plaid
condition. One possibility is that this mechanism, which most likely relies on feedback loops,
is normally quite sluggish, but that its action can be speeded up with training via a
strengthening of the inhibitory links. Gain control mechanisms are known to be relatively
broadband, so this reasoning may explain the partial transfer that we found in some
conditions. It should also be noted that the gain control mechanism seems to be less useful in
natural stimuli than in our plaid stimuli (Schofield et al., 2010) and that the machine vision
system proposed by Jiang et al. (2010) dispenses with it altogether. Thus, the human visual
system might not normally deploy the cross-orientation gain control mechanism implied by
the shading channel model, but might engage it when repeatedly presented with the plaid

decomposition task.

In summary, we have shown that layer decomposition based on the phase
relationship of LM and AM cues can be achieved at short presentation times only after
training and that this training is characterised by perceptual rather than cognitive learning.
These findings support an account of layer decomposition based on early, automatic
processes, although training may be required to tune these processes to deal with specific

experimental stimuli.
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CHAPTER 5:

Dorsal visual cortex integrates qualitatively
different depth cues in a perceptually-relevant

manner.?

The visual system’s flexibility in estimating depth is remarkable: we readily perceive three-dimensional (3D)
structure under diverse conditions from the seemingly random dots of a ‘magic eye’ stereogram to the
aesthetically beautiful, but obviously flat, canvasses of the Old Masters. However, 3D perception is often
enhanced when different cues specify the same depth. This perceptual process is understood as Bayesian
inference that improves sensory estimates. Despite considerable behavioural support for this theory,
insights into the cortical circuits involved are limited. Moreover, extant work has tested quantitatively
similar cues, reducing some of the challenges associated with integrating computationally and qualitatively
different signals. Here we address this challenge by measuring functional MRI responses to depth structures
defined by shading, binocular disparity and their combination. We quantified information about depth
configurations (convex ‘bumps’ vs. concave ‘dimples’) in different visual cortical areas using pattern-
classification analysis. We found that fMRI responses in dorsal visual area V3B/KO were more discriminable
when disparity and shading concurrently signalled depth, in line with the predictions of cue integration.
Importantly, by relating fMRI and psychophysical tests of integration, we observed a close association
between depth judgements and activity in this area. Finally, using a cross-cue transfer test, we found that
fMRI responses evoked by one cue afford classification of responses evoked by the other. This reveals a
generalised depth representation in dorsal visual cortex that integrates qualitatively different information

in line with 3D perception.

% This chapter was published in Journal of Cognitive Neuroscience on 06/05/2012. Dévencioglu, D., Ban, H.,
Schofield, A.J., and Welchman, A.E. (2013). "Perceptual Integration for Qualitatively Different 3-D Cues in
the Human Brain." Journal of Cognitive Neuroscience: 1-15. Main text and figures were kept as in the
submitted manuscript. All authors contributed to the conceptualisation of the experiment and writing of
the paper, DND collected data and ran the analyses.
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5.1 Introduction

Many everyday tasks rely on depth estimates provided by the visual system. To facilitate
these outputs, the brain exploits a range of inputs: from cues related to distance in a
mathematically simple way (e.g., binocular disparity, motion parallax) to those requiring
complex assumptions and prior knowledge (e.g. shading, occlusion) (Burge, Fowlkes, &
Banks, 2010; Kersten, Mamassian, & Yuille, 2004; Mamassian & Goutcher, 2001). These
diverse signals each evoke an impression of depth in their own right; however, the brain
aggregates cues (Buelthoff & Mallot, 1988; Dosher, Sperling, & Wurst, 1986; Landy, Maloney,

Johnston, & Young, 1995) to improve perceptual judgments (Knill & Saunders, 2003).

Here we probe the neural basis of integration, testing binocular disparity and shading
depth cues that are computationally quite different. At first-glance these cues may appear so
divergent that their combination would be prohibitively difficult. However, perceptual
judgments show evidence for the combination of disparity and shading (Buelthoff & Mallot,
1988; Doorschot, Kappers, & Koenderink, 2001; Lovell, Bloj, & Harris, 2012; Schiller, Slocum,
Jao, & Weiner, 2011; Vuong, Domini, & Caudek, 2006), and the solution to this challenge is
conceptually understood as a two stage process (Landy et al., 1995) in which cues are first
analyzed quasi-independently followed by the integration of cue information that has been
‘promoted’ into common units (such as distance). Moreover, observers can make reliable
comparisons between the perceived depth from shading and stereoscopic, as well as haptic,
comparison stimuli (Kingdom, 2003; Schofield, Rock, Sun, Jiang, & Georgeson, 2010),

suggesting some form of comparable information.

To gain insight into the neural circuits involved in processing three-dimensional
information from disparity and shading, previous brain imaging studies have tested for

overlapping fMRI responses to depth structures defined by the two cues, yielding locations in
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which information from disparity and shading converge (Georgieva, Todd, Peeters, & Orban,
2008; Nelissen et al., 2009; Sereno, Trinath, Augath, & Logothetis, 2002). While this is a useful
first step, this previous work has not established integration: for instance, representations of
the two cues might be collocated within the same cortical area, but represented
independently. By contrast, recent work testing the integration of disparity and motion depth
cues, indicates that integration occurs in higher dorsal visual cortex (area V3B/Kinetic
Occipital (KO)) (Ban, Preston, Meeson, & Welchman, 2012). This suggests a candidate cortical
locus in which other types of 3D information may be integrated, however, it is not clear
whether integration would generalize to (i) more complex depth structures and/or (ii)

different cue pairings.

First, Ban and colleagues (2012) used simple fronto-parallel planes that can sub-
optimally stimulate neurons selective to disparity-defined structures in higher portions of the
ventral (Janssen, Vogels, & Orban, 2000) and dorsal streams (Srivastava, Orban, De Maziere,
& Janssen, 2009) compared with more complex curved stimuli. It is therefore possible that
other cortical areas (especially those in the ventral stream) would emerge as important for
cue integration if more ‘shape-like’ stimuli were presented. Second, it is possible that
information from disparity and motion are a special case of cue conjunctions, and thus
integration effects may not generalize to other depth signal combinations. In particular, depth
from disparity and from motion have computational similarities (Richards, 1985), joint
neuronal encoding (Anzai, Ohzawa, & Freeman, 2001; Bradley, Qian, & Andersen, 1995;
DeAngelis & Uka, 2003) and can, in principle, support metric (absolute) judgments of depth.
In contrast, the 3D pictorial information provided by shading relies on a quite different
generative process that is subject to different constraints and prior assumptions (Fleming,
Dror, & Adelson, 2003; Horn, 1975; Koenderink & van Doorn, 2002; Mamassian & Goutcher,

2001; Sun & Perona, 1998; Thompson, Fleming, Creem-Regehr, & Stefanucci, 2011).
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igure 5.1: Stimulus illustration and psychophysical results. (a) Left side: Cartoon of the
isparity and/or shading defined depth structure. One of the two configurations is
resented: bumps to the left, dimples to the right. Right side: stimulus examples rendered as
ed-cyan anaglyphs. (b) Behavioral tests of integration. Bar graphs represent the between-
ubjects mean slope of the psychometric function. * indicates p<.05. (c) Psychophysical
esults as an integration index. Distribution plots show bootstrapped values: the center of
he ‘bowtie’ represents the median, the colored area depicts 68% confidence values, and the
pper and lower error bars 95% confidence intervals.

To test for cortical responses related to the integration of disparity and shading, we
assessed how fMRI responses change when stimuli are defined by different cues (Fig 1a). We
used multi-voxel pattern analysis (MVPA) to assess the information contained in fMRI
responses evoked by stimuli depicting different depth configurations (convex vs. concave
hemispheres to the left vs. right of the fixation point). We were particularly interested in how
information about the stimulus contained in the fMRI signals changed depending on the cues
used to depict depth in the viewed display. Intuitively, we would expect that discriminating
fMRI responses should be easier when differences in the depicted depth configuration were

defined by two cues rather than just one (i.e., differences defined by disparity and shading

together should be easier to discriminate than differences defined by only disparity). The
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theoretical basis for this intuition can be demonstrated based on statistically optimal
discrimination (Ban, Preston, Meeson, & Welchman, 2012), with the extent of the
improvement in the two-cue case providing insight into whether the underlying
computations depend on the integration of two cues or rather having co-located but

independent depth signals.

To appreciate the theoretical predictions for a cortical area that responds to
integrated cues vs. co-located but independent signals, first consider a hypothetical area that
is only sensitive to a single cue (e.g., shading). If shading information differed between two
presented stimuli, we would expect neuronal responses to change, providing a source of
information that could be decoded by the MVPA technique. By contrast, manipulating a non-
encoded stimulus features such as disparity would have no effect on neuronal responses,
meaning that our ability to decode the stimulus from the fMRI response profile of the area
would be unaffected. Such a computationally isolated processing module is biologically rather
unlikely, so next we consider a more plausible scenario where an area contains different
subpopulations of neurons, some of which are sensitive to disparity and others to
information from shading. In this case, we would expect to be able to decode stimulus
differences based on changes in either cue. Moreover, if the stimuli contained differences
defined by both cues, we would expect decoding performance to improve, where this
improvement is predicted by the quadratic sum of the discriminabilities for changes in each
cue. This expectation can by understood graphically by conceiving of discriminability based
on shading and disparity cues as two sides of a right-angled triangle, where better
discriminability equates to longer side lengths; the discriminability of both stimuli together
equals the triangle’s hypotenuse whose length is determined based on a quadratic sum (i.e.,
the Pythagorean equation) and is always at least as good as the discriminability of one of the

cues (i.e., the hypotenuse can never be less than the length of the longest side).

The alternative possibility is a cortical region that responds on the basis of integrating
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two different depth cues. Under this scenario, we would also expect better discrimination
performance when two cues define differences between the stimuli. Importantly however,
unlike the independence scenario, when stimulus differences are defined by only one cue, a
fusion mechanism is adversely affected. For instance, if contrasting stimulus configurations
differ in the depth indicated by shading but disparity indicates no difference, the fusion
mechanism combines the signals from each cue with the result that it is less sensitive to the
combined estimate than the shading component alone. By consequence, if we calculate a
quadratic summation prediction based on measuring MVPA performance for depth
differences defined by single cues (i.e., disparity; shading) we will find that empirical
performance in the combined cue case (i.e., disparity + shading) actually exceeds the
prediction (Ban, Preston, Meeson, & Welchman, 2012). Here we exploit this expectation to
identify cortical responses to integrated depth signals, seeking to identify discrimination
performance that is ‘greater than the sum of its parts’ due to the detrimental effects of

presenting stimuli in which depth differences are defined in terms of a single cue.

To this end, we generated random dot patterns (Fig. 5.1a) that evoked an impression
of four hemispheres, two concave (‘dimples’) and two convex (‘bumps’). We formulated two
different types of display that differed in their configuration: (1) bumps left — dimples right
(depicted in Fig. 5.1a) vs. (2) dimples left - bumps right (turn the stereograms in Fig. 5.1a
upside down). We depicted depth variations from: (i) binocular disparity, (ii) shading
gradients, and (iii) the combination of disparity and shading. In addition, we employed a
control stimulus (iv) in which the overall luminance of the top and bottom portions of each
hemisphere differed (Ramachandran, 1988) (disparity + binary luminance). Perceived depth
for these (deliberately) crude approximations of the shading gradients relied on disparity. We
tested for integration using both psychophysical- and fMRI- discrimination performance for
the component cues (i, ii) with that for stimuli containing two cues (iii, iv). We reasoned that a

response based on integrating depth cues would be specific to concurrent cue stimulus (iii)
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and not be observed for the control stimulus (iv).

In previous Chapters (3 and 4) I have provided evidence that human observers can
use first and second order luminance signals as a cue to shape from shading, and they learn to
discriminate luminance dependent changes in the shading pattern from material dependent
changes. Here, I focus on the interaction of the shading cue with disparity cue. In this chapter,
[ focus on the underlying neural mechanisms of shading and disparity processing when

observers are estimating 3D shape.

5.2 Materials and Methods

5.2.1 Observers

Twenty observers from the University of Birmingham participated in the fMRI experiments.
Of these, five were excluded due to excessive head movement during scanning, meaning that
the correspondence between voxels required by the MVPA technique was lost. Excessive
head movement was defined as = 4mm over an eight minute run, and we excluded
participants if they had fewer than 5 runs below this cut-off as there was insufficient data for
the multivoxel pattern analysis. Generally, participants were able to keep still: the average
absolute maximum head deviation relative to the start of the first run for included
participants was 1.2 mm vs. 4.5 mm for excluded participants. Moreover only one included
participant had an average head motion of > 2 mm per run, and the mode of the head
movement distribution across subjects was <1 mm. Six female and nine male participants
were included; twelve were right-handed. Mean age was 26 + 1.2 (S.E.M.) years. Authors AEW
and HB participated, all other subjects were naive to the purpose of the study. Four of the
participants had taken part in the study of (Ban, Preston, Meeson, & Welchman, 2012).
Participants had normal or corrected to normal vision and were prescreened for stereo
deficits. Experiments were approved by the University of Birmingham Science and

Engineering ethics committee; observers gave written informed consent.

Page 94 of 163



CHAPTER 5: Dorsal visual cortex integrates disparity and shading

5.2.2 Stimuli

Stimuli were random dot stereograms (RDS) that depicted concave or convex
hemispheres (radius = 1.7°; depth amplitude 1.85 cm = 15.7 arcmin) defined by disparity
and/or shading. The individual dots subtended 0.06° and patterns had a density of 94
dots/deg?2 We depicted shading using the Blinn-Phong shading algorithm implemented in
Matlab under a diffuse light source that was positioned directly overhead. For the disparity
condition, the dots in the display followed the luminance distribution of the shaded patterns;
however, their positions were randomised across the shape. For the shading condition,
disparity specified a flat surface. To create the binary luminance stimuli, the luminance of the
top and bottom portions of the hemispheres was held constant at the mean luminance of
these portions of the shapes for the shaded stimuli. Four hemispheres were presented: two
convex, and two concave, located either side of a fixation marker. Two types of stimulus
configuration were used: (i) convex on the left, concave on the right, and (ii) vice versa. The
random dot pattern subtended 8x8° and was surrounded by a larger, peripheral grid
(18x14°) of black and white squares which served to provide a stable background reference.

The other portions of the display were set to mid-level grey.

5.2.3 Psychophysics

Stimuli were presented to participants in a lab setting using a stereo set-up in which the two
eyes viewed separate CRTs (ViewSonic FB2100x) through front-silvered mirrors at a distance
of 50 cm. Linearisation of the graphics card outputs was achieved using photometric
measurements. Images were displayed at 100Hz with a screen resolution of 1600 x 1200

pixels.

Under a two interval forced choice design, participants decided which stimulus had the

greater depth profile (Fig 1b; presentation time = 500ms, interstimulus interval = 500ms). On
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every trial, one interval contained a standard disparity-defined stimulus (* 1.85 cm / 15.7
arcmin), the other interval contained a stimulus from one of three conditions (disparity
alone; disparity + shading; disparity + binary luminance) and had a depth amplitude that was
varied using the method of constant stimuli. The shading cue varied as the depth amplitude of
the shape was manipulated such that the luminance gradient was compatible with a
bump/dimple whose amplitude matched that specified by disparity. Similarly, for the binary
luminance case, the stimulus luminance values changed at different depth amplitudes to
match the luminance variations that occurred for the gradient shaded stimuli. The order of
the intervals was randomized, and conditions were randomly interleaved. On a given trial, a
random jitter was applied to the depth profile of both intervals (uniform distribution within
*+1 arcmin to reduce the potential for adaptation to a single disparity value across trials).
Participants judged “did the first or second stimulus have greater depth” by pressing an
appropriate button. On some runs participants were instructed to consider their judgment
relative to the convex portions of the display, in others the concave portions. The spatial
configuration of convex and concave items was randomized. A single run contained a
minimum of 630 trials (105 trials x 3 conditions x 2 curvature instructions). We made limited
measures of the shading alone condition as we found in pilot testing that participants’
judgments based on shading ‘alone’ were very poor (maximum discriminability in the
shading condition was d’ = 0.3 + 0.25) meaning that we could not fit a reliable psychometric
function so threshold estimates were unstable and uninformative, and participants became
frustrated by a seemingly impossible task. Moreover, in the shading alone condition, stimulus
changes could be interpreted as a change of light source direction, rather than depth, given
the bas-relief ambiguity (Belhumeur, Kriegman, & Yuille, 1999). This ambiguity should be
removed by the constraint imposed by the disparity signals available in the disparity +
shading condition, although this does not necessarily happen (see Discussion section on

Individual differences in integration).
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5.2.4 Imaging

Data were recorded at the Birmingham University Imaging Centre using a 3 Tesla Philips MRI
scanner with an 8-channel multi-phase array head coil. BOLD signals were measured with an
echo-planar (EPI) sequence (TE: 35 ms, TR: 2s, 1.5x1.5x2 mm, 28 slices near coronal,
covering visual, posterior parietal and posterior temporal cortex) for both experimental and
localizer scans. A high-resolution anatomical scan (1 mms3) was also acquired for each
participant to reconstruct cortical surface and coregister the functional data. Following
coregistration in the native anatomical space, functional and anatomical data were converted
into standardized Talairach coordinates.

During the experimental session, four stimulus conditions (disparity; shading; disparity +
shading; disparity + binary luminance) were presented in two spatial configurations (convex
on left vs. on right) = 8 trial types. Each trial type was presented in a block (16s) and repeated
three times during a run (Fig. 1c). Stimulus presentation was 500 ms on, 500 ms off, and
different random dot stereograms were used for each presentation. These different stimuli
had randomly different depth amplitudes (jitter of 1 arcmin) to attenuate adaptation to a
particular depth profile across a stimulus block. Each run started and ended with a fixation
period (16s), total duration = 416s. Scan sessions lasted 90 minutes and allowed us to collect
7 to 10 runs depending on the initial setup time and each individual participant’s
requirements for breaks between runs.

Participants were instructed to fixate at the centre of the screen, where a square crosshair
target (side = 0.5°; horizontal and vertical nonius lines displayed) was presented at all times
(Fig. 1d). This was surrounded by a mid-grey disc area (radius = 1°). A dichoptic Vernier task
was used to encourage fixation and provide a subjective measure of eye vergence (Popple,
Smallman, & Findlay, 1998). In particular, a small vertical Vernier target was flashed (250

ms) at the vertical center of the fixation marker to one eye. Participants judged whether this

Page 97 of 163



CHAPTER 5: Dorsal visual cortex integrates disparity and shading

Vernier target was to the left or right of the upper nonius line, which was presented to the
other eye. We used the method of constant stimuli to vary Vernier target position, and fit the
proportion of ‘target on the right responses’ to estimate whether there was any bias in the
observers responses that would indicate systematic deviation from the desired vergence
state. The probability of a Vernier target appearing on a given trial was 50%, and the timing
of appearance was variable with respect to trial onset (during the first vs. second half of the
stimulus presentation), requiring constant vigilance on behalf of the participants. In a
separate session, a subset of participants (n = 3) repeated the experiment during an eye
tracking session in the scanner. Eye movement data were collected with CRS limbus Eye
tracker (CRS Ltd, Rochester, UK).

The vernier task was deliberately chosen to ensure that participants were engaged in a task
orthogonal to the main stimulus presentations and manipulation. The temporal uncertainty
in the timing of presentation, and its brief nature, ensured that participants had to constantly
attend to the fixation marker. Thereby, we ensured that differences in fMRI responses
between conditions could not be ascribed to attentional state, task difficulty or the degree of
conflict inherent in the different stimuli.

Note also that the differences between stimuli presented during scanning were highly
suprathreshold (i.e. convex vs. concave) to ensure that the depth configurations could be
reliably decoded from the fMRI responses. This differed from the psychophysical judgments
where we measured sensitivity to small differences in the depth profile of the shapes. We
would expect benefits from integrating cues in both cases, however it is important to note
these differences imposed by the different types of measurement paradigms (fMRI vs.
psychophysics) we have used.

Stereoscopic stimulus presentation was achieved using a pair of video projectors (JVC D-ILA
SX21), each containing separate spectral comb filters (INFITEC, GmBH) whose projected

images were optically combined using a beam-splitter cube before being passed through a
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wave guide into the scanner room. The INFITEC interference filters produce negligible
overlap between the wavelength emission spectra for each projector, meaning that there is
little crosstalk between the signals presented on the two projectors for an observer wearing a
pair of corresponding filters. Images were projected onto a translucent screen inside the bore
of the magnet. Subjects viewed the display via a front-surfaced mirror attached to the
headcoil (viewing distance = 65 cm). The two projectors were matched and linearized for
grey scale outputs using photometric measurements. The INFITEC filters restrict the visibility
of the eyes for a remote monitoring system, making standard remote eye tracking equipment
unsuitable for eye movement recording in our set up. We therefore employed a monocular
limbus eye tracker located between the participants’ eyes and the spectral comb filters. This
eye tracking system has a stated accuracy of < 0.25 degrees of visual angle.

Functional and anatomical pre-processing of MRI data was conducted with BrainVoyager QX
(Brainlnnovation B.V.) and in-house MATLAB routines. We transformed anatomical scans
into Talairach space, created inflated and flattened surface models for both hemispheres for
each participant. For each functional run, data were corrected with slice time correction, 3D
motion correction, high pass filtering, and linear trend removal. After motion correction, each
participant’s functional data were aligned to their anatomical scan and transformed into
Talairach space. No spatial smoothing was performed. Retinotopic areas were identified in

individual localizer scanning sessions for each participant.

5.2.5 Mapping Regions of Interest

We identified regions of interest within the visual cortex for each individual participant in a
separate fMRI session prior to the main experiment. To identify retinotopically organized
visual areas, we used rotating wedge stimuli and expanding/contracting rings to identify
visual field position and eccentricity maps (DeYoe et al., 1996; M. L. Sereno et al., 1995).
Thereby we identified areas V1, V2 and the dorsal and ventral portions of V3 (which we

denote V3d and V3v). Area V4 was localized adjacent to V3v with a quadrant field
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representation (R. B. H. Tootell & Hadjikhani, 2001) while V3A was adjacent to V3d with a
hemi-field representation. Area V7 was identified as anterior and dorsal to V3A with a lower
visual field quadrant representation (R. B. Tootell et al, 1998; Tyler, Likova, Chen,
Kontsevich, & Wade, 2005). The borders of area V3B were identified as based on a hemi-field
retinotopic representation inferior to, and sharing a foveal representation with, V3A (Tyler et
al,, 2005). This retinotopically-defined area overlapped with the contiguous voxel set that
responded significantly more (p = 10-4) to intact vs. scrambled motion-defined contours
which has previously been described as the kinetic occipital area (KO) (Dupont et al,, 1997;
Zeki, Perry, & Bartels, 2003). We therefore denote this area as V3B/KO as we have previously
found no good means of differentiating the response properties of this region (Ban et al,,
2012) (see also (Larsson, Heeger, & Landy, 2010)). We provide Talairach coordinates for the
centroids of this area in Table 1. We identified the human motion complex (hMT+/V5) as the
set of voxels in the lateral temporal cortex that responded significantly more (p = 10-4) to
coherent motion than static dots (Zeki et al., 1991). Finally, the lateral occipital complex
(LOC) was defined as the set of voxels in the lateral occipito-temporal cortex that responded
significantly more (p = 10-4) to intract vs. scrambled images of objects (Kourtzi & Kanwisher,
2001). The posterior subregion LO extended into the posterior inferiotemporal sulcus and
was defined based on the overlap of functional activations and anatomy (Grill-Spector,

Kushnir, Hendler, & Malach, 2000).
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Table 5.1. Talairach coordinates of the centroids of the region we denote V3B/KO. We present
data for all participants, and participants separated into the good and poor integration groups.

Left hemisphere Right hemisphere

X y z X y z
V3BIKO (all Mean | —275 | —84.7 | 7.0 | 316 | —80.7 | 65
participants) SD 44 | 43 | 39 | 41 44 | 48
Good Mean | —26.9 | —=86.0 | 6.7 | 315 | —81.7 | 7.2
integrators SD 42 | 42 | 42 | 40 | 45 | 48
Poor Mean | —28.1 | —83.4 | 7.2 | 318 | -799 | 58
integrators SD 46 | 44 | 37 | 441 44 | 48

5.2.6 Multi-voxel pattern analysis (MVPA)

To select voxels for the MVPA, we used a participant-by-participant fixed effects GLM across
runs on grey matter voxels using the contrast ‘all stimulus conditions vs. the fixation
baseline’. In each ROI, we rank ordered the resultant voxels by their t-statistic (where t>0),
and selected to the top 300 voxels as data for the classification algorithm (Preston, Li,
Kourtzi, & Welchman, 2008). To minimize baseline differences between runs we z-scored the
response timecourse of each voxel and each experimental run. To account for the
hemodynamic response lag, the fMRI time series were shifted by 2 TRs (4 s). Thereafter we
averaged the fMRI response of each voxel across the 16 sec stimulus presentation block,
obtaining a single test pattern for the multivariate analysis per block. To remove potential
univariate differences (that can be introduced after z-score normalization due to averaging
across timepoints in a block, and grouping the data into train vs. test data sets), we
normalized by subtracting the mean of all voxels for a given volume (Serences & Boynton,
2007), with the result that each volume had the same mean value across voxels, and differed
only in the pattern of activity. We performed multivoxel pattern analysis using a linear

support vector machine (SVMlighttoolbox) classification algorithm. We trained the algorithm
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to distinguish between fMRI responses evoked by different stimulus configurations (e.g.,
convex to the left vs. to the right of fixation) for a given stimulus type (e.g., disparity).
Participants typically took part in 8 runs of the experiment, each of which had 3 repetitions of
a given spatial configuration and stimulus type, creating a total of 24 patterns. We used a
leave-one-run out cross validation procedure whereby we trained the classifier using 7 of the
8 runs (i.e., 21 patterns) and then evaluated the prediction performance of the classifier using
the remaining, non-trained data (i.e., 3 patterns). We repeated this, leaving a single run out in
turn, and calculated the mean prediction accuracy across cross-validation folds. Accuracies

were represented in units of discriminability (d”) using the formula:

@'=2-erfinvZ@-1 (Eqn. 5.1)

where erfinv is the inverse error function and p the proportion of correct predictions.

For tests of transfer between disparity and shading cues, we used a Recursive Feature
Elimination method (RFE) (De Martino et al., 2008) to detect sparse discriminative patterns
and define the number of voxels for the SVM classification analysis. In each feature
elimination step, five voxels were discarded until there remained a core set of voxels with the
highest discriminative power. In order to avoid circular analysis, the RFE method was applied
independently to the training patterns of each cross-validation fold, resulting in eight sets of
voxels (i.e. one set for each test pattern of the leave-one-run out procedure). This was done
separately for each experimental condition, with final voxels for the SVM analysis chosen
based on the intersection of voxels from corresponding cross-validation folds. A standard
SVM was then used to compute within- and between- cue prediction accuracies. This feature
selection method was required for transfer, in line with evidence that it improves

generalization (De Martino et al.,, 2008).
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We conducted Repeated Measures GLM in SPSS (IBM, Inc.) applying Greenhouse-
Geisser correction when appropriate. Regression analyses of the psychophysical and fMRI
integration indices were also conducted in SPSS. For this analysis, we considered the use of
repeated measures MANCOVA (and found results consistent with the reported regression
results); however, the integration indices (defined below) we use are partially correlated
between conditions because their calculation depends on the same denominator, violating
the GLM model’s assumption of independence. We therefore limited our analysis to the
relationship between psychophysical and fMRI indices for the same condition, for which the

psychophysical and fMRI indices are independent of one another.

Statistical analyses were performed in SPSS (SPSS Inc.), and Greenhouse-Geisser

correction was used when appropriate.

5.2.7 Quadratic summation and integration indices

We formulate predictions for the combined cue condition (i.e., disparity + shading) based on
the quadratic summation of performance in the component cue conditions (i.e., disparity;
shading). As outlined in the Introduction, this prediction is based on the performance of an
idea observer model that discriminates pairs of inputs (visual stimuli or fMRI response
patterns) based on the optimal discrimination boundary. Psychophysical tests indicate that
this theoretical model is the appropriate one to use in understanding performance when

human observers combine cues (Hillis et al., 2002; Knill and Saunders, 2003).

To compare measured empirical performance in disparity + shading condition with
the prediction derived from the component cue conditions, we calculate a ratio to formulate

an index (Ban et al,, 2012; Nandy & Tjan, 2008) whose general form is:

=AR+RAREZ2+RAE2-1
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If the responses of the detection mechanism to the disparity and shading conditions
(Cp, Cs) are independent of each other, performance when both cues are available (Cp:s)
should match the quadratic summation prediction, yielding a ratio of 1 and thus an index of
zero. A value of less than zero suggests suboptimal detection performance, and a value above
zero suggests that the component sources of information are not independent (Ban et al,
2012; Nandy & Tjan, 2008). However, a value above zero does not preclude the response of
independent mechanisms - for instance noise introduced during fMRI measurement (scanner
noise, observer movement) can lead to a positive index based on co-located but independent
responses (Ban et al, 2012 consider this issue in their Supplementary Figure 3; they use fMRI
simulations to show that in low non-neural noise situations, collocated but independent
signals can sometimes surpass the quadratic summation prediciton). Thus, the integration
index alone cannot be taken as definite evidence of cue integration, and therefore needs to be
considered in conjunction with the other tests. To assess statistical significance of the
integration indices, we used bootstrapped resampling, as our use of a ratio makes

distributions non-Normal, and thus a non-parametric procedure more appropriate.

5.3 Results

5.3.1 Psychophysics

To assess cue integration psychophysically, we measured observers’ sensitivity to slight
differences in the depth profile of the stimuli. Participants viewed two shapes sequentially,
and decided which had the greater depth (that is, which bumps were taller, or which dimples
were deeper). By comparing a given standard stimulus against a range of test stimuli, we
obtained psychometric functions. We used the slope of these functions to quantify observers’

sensitivity to stimulus differences (where a steeper slope indicates higher sensitivity). To
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determine whether there was a perceptual benefit associated with adding shading
information to the stimuli, we compared performance in the disparity condition with that in
the disparity and shading condition. Surprisingly, we found no evidence for enhanced
performance in the disparity and shading condition at the group level (F(1,14)<1, p=.38). In
light of previous empirical work on cue integration this was unexpected (e.g. (Buelthoff and
Mallot, 1988; Doorschot et al., 2001; Vuong et al., 2006; Schiller et al., 2011; Lovell et al,,
2012)), and prompted us to consider the significant variability between observers
(F(1,14)=62.23, p<.001) in their relative performance in the two conditions. In particular, we
found that some participants clearly benefited from the presence of two cues, however others
showed no benefit and some actually performed worse relative to the disparity only
condition. Poorer performance might relate to individual differences in the assumed direction
of the illuminant (Schofield, Rock, & Georgeson, 2011); ambiguity or bistability in the
interpretation of shading patterns (Liu & Todd, 2004; Wagemans, van Doorn, & Koenderink,
2010); and/or differences in cue weights (Knill & Saunders, 2003; Lovell et al.,, 2012; Schiller
etal,2011) (we return to this issue in the Discussion). To quantify variations between
participants in the relative performance in two conditions, we calculated a psychophysical
integration index (y):

=S D+SS D-1 (Eqn. 5.2)
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where Sp.s is sensitivity in the combined condition and Sp is sensitivity in the disparity
condition. This index is based on the quadratic summation test (Ban et al, 2012; Nandy &
Tjan, 2008); see Methods for a description of the logic) where a value above zero suggests
that participants integrate the depth information provided by the disparity and shading cues
when making perceptual judgments. In this instance we assumed that Sp = V(Sp? + §52)
because our attempts to measure sensitivity to differences in depth amplitude defined by
shading alone in pilot testing resulted in such poor performance that we could not fit a
reliable psychometric function. Specifically, discriminability of the maximum depictable
depth difference was d’ = 0.3+0.25 for shading alone, in contrast to d’ = 3.9+0.3 for disparity,
i.e. Sp2 >> Sg2.

We rank-ordered participants based on B, and thereby formed two groups (Fig. 1b, c): good
integrators (the 7 participants for whom [ > 0) and poor integrators (the 8 participants
where [l < 0). By definition, these post-hoc groups differed in the relative sensitivity to
disparity and disparity + shading conditions. Our purpose in forming these groups, however,

was to test the link between differences in perception and fMRI responses.

5.3.2 fMRI measures of integration

Before taking part in the main experiment, each participant underwent a separate fMRI
session to identify regions of interest (ROIs) within the visual cortex (Fig. 2). We identified
retinotopically organized cortical areas based on polar and eccentricity mapping techniques
(DeYoe et al, 1996; M. L. Sereno et al., 1995; Tootell & Hadjikhani, 2001; Tyler, Likova, Chen,
Kontsevich, & Wade, 2005). In addition we identified area LO involved in object processing
(Kourtzi & Kanwisher, 2001), the human motion complex (hMT+/V5) (Zeki et al.,, 1991) and
the Kinetic Occipital (KO) region which is localized by contrasting motion-defined contours

with transparent motion (Dupont et al., 1997; Zeki et al., 2003). Responses to the KO localizer
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overlapped with the retinotopically-localized area V3B and were not consistently separable
across participants and/or hemispheres (see also (Ban et al., 2012)) so we denote this region
as V3B/KO. A representative flatmap of the regions of interest is shown in Fig. 2, and Table 1

provides mean coordinates for V3B/KO.

igure 5.2: Representative flat maps from one participant showing the left and right regions
f interest. The sulci are depicted in darker grey than the gyri. Shown on the maps are
etinotopic areas, V3B/KO, the human motion complex (hMT+/V5), and lateral occipital (LO)
rea. The activation on the maps shows the results of a searchlight classifier analysis that
1oved iteratively throughout the measured cortical volume, discriminating between
timulus configurations. The colour code represents the t-value of the classification
ccuracies obtained. This procedure confirmed that we had not missed any important areas
wutside those localised independently.

We then measured fMRI responses in each of the independently localized ROIs, and
were, a priori, particularly interested in responses from the V3B/KO region (Ban, Preston,
Meeson, & Welchman, 2012; Tyler, Likova, Kontsevich, & Wade, 2006). We presented stimuli
from four experimental conditions (Fig. 1a) under two configurations: (a) bumps to the left
of fixation, dimples to the right or (b) bumps to the right, dimples to the left, thereby allowing

us to contrast fMRI responses to convex vs. concave stimuli.
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To analyze our data, we trained a machine learning classifier (support vector
machine: SVM) to associate patterns of fMRI voxel activity and the stimulus configuration
(convex vs. concave) that gave rise to that activity. We used the performance of the classifier
in decoding the stimulus from independent fMRI data (i.e., a leave-one-run-out cross-
validation procedure) as a measure of the information about the presented stimulus within a

particular region of cortex.

igure 5.3: Performance in predicting the convex vs. concave configuration of the stimuli
iased on the fMRI data measured in different regions of interest (n=15). The bar graphs
how the results from the ‘single cue’ experimental conditions, the ‘disparity + shading’
ondition, the quadratic summation prediction (horizontal red line). Error bars indicate SEM.

We were able to reliably decode the stimulus configuration in the four different
conditions in almost every region of interest (Figure 5.3), and there was a clear interaction
between conditions and regions of interest (Fgo, 1042=8.92, p<.001). This widespread
sensitivity to differences between convex vs. concave stimuli is not surprising, in that a range

of image features might modify the fMRI response (e.g., distribution of image intensities,
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contrast edges, mean disparity, etc.). The machine learning classifier may thus decode low-
level image features, rather than ‘depth’ per se. We were therefore not interested in overall
prediction accuracies between areas (which are influenced by our ability to measure fMRI
activity in different anatomical locations). Rather, we were interested in the relative
performance between conditions, and whether this related to between-observer differences
in perceptual integration. We therefore considered our fMRI data subdivided based on the
behavioural results (significant interaction between condition and group (good vs. poor

integrators): F2.0,266=4.52, p=.02).

igure 5.4: Prediction performance for fMRI data separated into the two groups based on the
isychophysical results (‘good’ vs. ‘poor’ integrators). The bar graphs show the results from
he ‘single cue’ experimental conditions, the ‘disparity + shading’ condition, the quadratic
ummation prediction (horizontal red line). Error bars indicate SEM.

First, we wished to determine whether fMRI decoding performance improved when
the two depth cues were viewed concurrently. Prediction accuracies for the concurrent
stimulus (disparity + shading) were statistically higher than the component cues in areas V2
(F3, 39 =7.47, p<.001) and V3B/KO (Fis 217=14.88, p<.001). To assess integration, we
compared the extent of improvement in the concurrent stimulus relative to a minimum

bound prediction (Figures 5.3, 5.4, red lines) based on the quadratic summation of decoding
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accuracies for ‘single cue’ presentations (Ban et al, 2012). This corresponds to the level of
performance expected if disparity signals and shading signals are collocated in a cortical area,
but represented independently. If performance exceeds this bound, it suggests that cue
representations are not independent, as performance in the ‘single’ cue case was attenuated
by the conflicts that result from ‘isolating’ the cue (e.g., responses to shading in the ‘single
cue’ shading case are attenuated by conflicting disparity information that the surface was
flat). We found that performance was higher (outside the SEM) than the quadratic summation
prediction in areas V2 and V3B/KO. However, this result was only statistically reliable in
V3B/KO (Figure 5.4). Specifically, there was a significant interaction between behavioural
group and experimental condition (Fz 26=5.52, p=.01), with decoding performance in the
concurrent (disparity + shading) condition exceeding the quadratic summation prediction for
good integrators (F1,6=9.27, p=.011), but not for poor integrators (F1,7<1, p=.35); Figure 5.4).
). In V2 the there was no significant difference between the quadratic summation prediction
and the measured data in the combined cue conditions (F(2,26)<1, p=.62) nor an interaction
between condition and behavioral group (F(2,26)=2.63, p=.091). We quantified the extent of
integration using a bootstrapped index (@) that contrasted decoding performance in the
concurrent condition (d'D+S) with the quadratic summation of performance with ‘single’ cues

(d'D and d'S):

B=d'D+Sd'D2+d'S2-1 (Eqn. 5.3)
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Using this index, a value of zero corresponds to the performance expected if
information from disparity and shading are collocated, but independent. We found that the
integration index for the concurrent condition was only reliably above zero for the good

integrators in areas V2 and V3B/KO (Figure 5.5; Table 5.1).

igure 5.5: fMRI based prediction performance as an integration index for the two groups of
\articipants in all the regions of interest. A value of zero indicates the minimum bound for
usion as predicted by quadratic summation. Data represent the ‘Disparity + shading’ and
Disparity + binary shading’ conditions. Data are presented as notched distribution plots. The
entre of the ‘bowtie’ represents the median, the coloured area depicts 68% confidence
alues, and the upper and lower error bars 95% confidence intervals.
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Table 5.2: Probabilities associated with obtaining a value of zero for the fMRI integration
index in the (i) disparity + shading condition and (ii) luminance control condition. Values are
obtained from a bootstrapped resampling of the individual participants’ data using 10,000
samples. Bold formatting indicates Bonferroni corrected significance.

Disparity + Shading Luminance control
Cortical area Good Poor Good Poor
integrators integrators integrators integrators

Vi 0.538 0.157 0.999 0.543

V2 0.004 0.419 0.607 0.102
V3v 0.294 0.579 0.726 1.000
V4 0.916 0.942 0.987 0.628

LO 0.656 0.944 0.984 0.143
V3d 0.253 0.890 0.909 0.234
V3A 0.609 1.000 0.999 0.961
V3B/KO <0.001 0.629 0.327 0.271
V7 0.298 0.595 0.844 0.620
hMT+/V5 0.315 0.421 0.978 0.575

To provide additional evidence for neuronal responses related to depth estimation,
we used the binary luminance stimuli as a control. We constructed these stimuli such that
they contained a very obvious low-level feature that approximated luminance differences in
the shaded stimuli but did not, per se, evoke an impression of depth. As the fMRI response in a
given area may reflect low-level stimulus differences (rather than depth from shading), we
wanted to rule out the possibility that improved decoding performance in the concurrent
disparity + shading condition could be explained on the basis that two separate stimulus
dimensions (disparity and luminance) drive the fMRI response. The quadratic summation
test should theoretically rule this out; nevertheless, we contrasted decoding performance in

the concurrent condition vs. the binary control (disparity + binary luminance) condition. We
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reasoned that if enhanced decoding is related to the representation of depth, the
superquadratic summation effects would be limited to the concurrent condition. We found
this to be true for the good integrator subjects in area V3B/KO: sensitivity in the concurrent
condition was above that in the binary control condition (F;, s=14.69, p=.004). By contrast,
sensitivity for the binary condition in the poor integrator subjects matched that of the
concurrent group (Fq, 7<1, p=.31) and was in line with quadratic summation. Results from
other regions of interest (Figure 5.5) did not suggest the clear (or significant) differences
that were apparent in V3B/KO. As a further line of evidence, we used regression analyses to
test the relationship between psychophysical and fMRI measures of integration. While we
would not anticipate a one-to-one mapping between them (the fMRI measure is likely to be
more variable) our group-based analysis suggested a correspondence. We found a significant
relationship between the fMRI and psychophysical integration indices in V3B/KO (Figure
5.6) for the concurrent (R=0.57, p=.026) but not the binary luminance (R=0.10, p=.731)
condition. This result was specific to area V3B/KO (Table 5.2), and, in line with the preceding
analyses, suggests a relationship between activity in area V3B/KO and the perceptual

integration of disparity and shading cues to depth.
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Table 5.3: Results for the regression analyses relating the psychophysical and fMRI integration
indices in each region of interest. The table shows the Pearson correlation coefficient (R) and the
signficance of the fit as a p value for the ‘Disparity + shading’ and ‘Disparity + binary luminance’
conditions.

Disparity + shading Dis;l)::'i]ti:l]:nzrary
Cortical area R p-value R p-value

V1 -0.418 0.121 -0.265 0.340
V2 0.105 0.709 -0.394 0.146
V3v -0.078 0.782 0.421 0.118
V4 0.089 0.754 -0.154 0.584
LO 0.245 0.379 -0.281 0.311
V3d 0.194 0.487 -0.157 0.577
V3A 0.232 0.405 -0.157 0.577
V3B/KO 0.571 0.026 0.097 0.731
V7 0.019 0.946 -0.055 0.847
hMT+/V5 0.411 0.128 -0.367 0.178
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Figure 5.6: (A) fMRI based prediction performance as an integration index for the two groups of
participants in area V3B/KO. A value of zero indicates the minimum bound for fusion as predicted
by quadratic summation. The index is calculated for the “disparity + shading” and “disparity +
binary shading” conditions. Data are presented as notched distribution plots. The center of
the”bowtie” respresents the median, the coloured area depicts 68% confidence values, and the
upper and lower error bars represent 95% confidence intervals. (b) Correlation between
behavioral and fMRI integration indices in area V3B/KO. Psychophysics and fMRI integration
indices are plotted for each participant for disparity + shading and disparity + binary luminance
conditions. The Pearson correlation coefficient (R) and p-value are shown. (c) The transfer index
values for V3B/KO for the good and poor integrator groups. Using this index, a value of 1 indicates
equivalent prediction accuracies when training and testing on the same cue vs. training and
testing on different cues. Distribution plots show the median, 68% and 95% confidence intervals.
Dotted horizontal lines depict a bootstrapped chance baseline based on the upper 95" centile for

transfer analysis obtained with randomly permuted data.
As a final assessment of whether fMRI responses related to depth structure from
different cues, we tested whether training the classifier on depth configurations from one cue

(e.g. shading) afforded predictions for depth configurations specified by the other (e.g.
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disparity). To compare the prediction accuracies on this cross-cue transfer with baseline
performance (i.e. training and testing on the same cue), we used a bootstrapped transfer

index:

B=20'B B'B+E'8 (Eqn. 5.4)

where B'R is between-cue transfer performance. A value of one using this index
indicates that prediction accuracy between cues equals that for testing within cues. To
provide a baseline for the amount of transfer that might occur by chance, we calculated the
transfer index on randomly shuffled data (1000 tests per ROI). We used the 95th centile of
the resulting distribution of transfer indices as the cut-off for statistical significance. We
found reliable evidence for transfer between cues in area V3B/KO (Figure 5.7; Table 3) for
the good, but not poor, integrator groups. Moreover, this effect was specific to V3B/KO and
was not observed in other areas. Together with the previous analyses, this result suggests a
degree of equivalence between representations of depth from different cues in V3B/KO that

is related to an individual’s perceptual interpretation of cues.
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Table 5.4: Probabilities associated with the transfer between disparity and shading
producing a Transfer index above the random (shuffled) baseline. These p-values are
calculated using bootstrapped resampling with 10,000 samples. Bold formatting indicates
Bonferroni-corrected significance.

Cortical area Good Poor
integrators integrators

V1 0.247 0.748
V2 0.788 0.709
V3v 0.121 0.908
V4 0.478 0.062
LO 0.254 0.033
V3d 0.098 0.227
V3A 0.295 0.275
V3B/KO <0.001 0.212
V7 0.145 0.538
hMT+/V5 0.124 0.302

To ensure we had not missed any important loci of activity outside the areas we
sampled using our region of interest localizer approach, we conducted a searchlight
classification analysis (Kriegeskorte, Goebel, & Bandettini, 2006) in which we moved a small
aperture (9 mm) through the sampled volume performing MVPA on the difference between
stimulus configurations for the concurrent cue condition (Fig. 2). This analysis indicated that
discriminative signals about stimulus differences were well captured by our region of interest

definitions.

Our main analyses considered MVPA of the fMRI responses partitioned into two
groups based on psychophysical performance. To ensure that differences in MVPA prediction

performance between groups related to the pattern of voxel responses for 3D processing,
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rather than the overall responsiveness of different regions of interest, we contrasted the
average fMRI activations (% signal change) in each ROI for the two groups of participants.
Reassuringly, we found no evidence for statistically reliable differences between groups in
any of the measured ROIs. Further, we ensured that we had sampled from the same cortical
location in both groups by calculating the mean Talairach location of V3B/KO subdivided by
groups (Table 5.1). This confirmed that we had localized the same cortical region in both

groups of participants.

To guard against artefacts complicating the interpretation of our results, we took
specific precautions during scanning to control attentional allocation and eye movements.
First, the participants performed a demanding Vernier judgement task at fixation. This
ensured equivalent attentional allocation across conditions, and, as the task was unrelated to
the depth stimuli, psychophysical judgements and fMRI responses were not confounded and
could not thereby explain between-subject differences. Second, the attentional task served to
provide a subjective measure of eye vergence (Popple et al., 1998). In particular, participants
judged the relative location of a small target flashed (250 ms) to one eye, relative to the upper
vertical nonius line (presented to the other eye). We fit the proportion of “target is to the
right” responses as a function of the target’s horizontal displacement. Bias (i.e. deviation from
the desired vergence position) in this judgement was around zero. Using a repeated measures
ANOVA, we found that there was no effect of condition (F3, 42=2.59, p =0.07) or curvature sign
(F1, 14=1.43, p=0.25), and no interaction (F3 42=1.95, p=0.14). Moreover, there were no
differences in the slope of the psychometric functions: no effect of condition (F3 42 < 1, p
=0.82) or curvature (Fq, 14 < 1, p =0.80), and no interaction (F3 42 < 1, p =0.85). Third, our
stimuli were constructed to reduce the potential for vergence differences: disparities to the
left and right of the fixation point were equal and opposite, a constant low spatial frequency
pattern surrounded the stimuli, and participants used horizontal and vertical nonius lines to

monitor their eye vergence. Finally, we recorded horizontal eye movements for three
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participants inside the scanner bore. Analysis of the eye position signals suggested that the
participants were able to maintain steady fixation: in particular, deviations in mean eye
position were < 1 degree from fixation. A repeated measures ANOVA showed no significant
difference between conditions in mean horizontal eye position (F3,6 < 1, p = 0.99), number of

saccades (F3¢6< 1, p = 0.85), or saccade amplitude (F3 ¢ =1.57, p = 0.29).

5.4 Discussion

Here we provide three lines of evidence that activity in the dorsal visual area V3B/KO reflects
the integration of disparity and shading depth cues in a perceptually-relevant manner. First,
we used a quadratic summation test to show that performance in concurrent cue settings
improves beyond that expected if depth from disparity and shading are collocated but
represented independently. Second, we showed that this result was specific to stimuli that
are compatible with a three-dimensional interpretation of shading patterns. Third, we found
evidence for cross-cue transfer. Importantly, the strength of these results in V3B/KO varied
between individuals in a manner that was compatible with their perceptual use of integrated

depth signals.

These findings complement evidence for the integration of disparity and relative
motion in area V3B/KO (Ban et al, 2012), and importantly suggest both a strong link with
perceptual judgments and a more generalized representation of depth structure. Such
generalization is far from trivial: binocular disparity is a function of an object’s 3D structure,
its distance from the viewer and the separation between the viewer’s eyes; by contrast,
shading cues (i.e., intensity distributions in the image) depend on the type of illumination, the
orientation of the light source with respect to the 3D object, and the reflective properties of
the object’s surface (i.e., the degree of Lambertian and Specular reflectance). As such

disparity and shading provide complementary shape information: they have quite different
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generative processes, and their interpretation depends on different constraints and
assumptions (Blake, Zisserman, & Knowles, 1985; Doorschot, Kappers, & Koenderink, 2001).
Taken together, these results indicate that the 3D representations in the V3B/KO region are
not specific to specific cue pairs (i.e., disparity-motion) and generalize to more complex forms
of 3D structural information (i.e., local curvature). This points to an important role for higher
portions of the dorsal visual cortex in computing information about the 3D structure of the

surrounding environment.

5.4.1 Individual differences in disparity and shading integration

One striking, and unexpected feature of our findings was that we observed significant
between-subject variability in the extent to which shading enhanced performance, with some
subjects benefitting, and others actually performing worse. What might be responsible for
this variation in performance? While shading cues support reliable judgments of ordinal
structure (Ramachandran, 1988), shape is often underestimated (Mingolla & Todd, 1986) and
subject to systematic biases related to the estimated light source position (Curran & Johnston,
1996; Mamassian & Goutcher, 2001; Pentland, 1982; Sun & Perona, 1998) and composition
(Schofield, Rock, & Georgeson, 2011). Moreover assumptions about the position of the light
source in the scene are often esoteric: most observers assume overhead lighting, but the
strength of this assumption varies considerably (Liu & Todd, 2004; Thomas, Nardini, &
Mareschal, 2010; Wagemans, van Doorn, & Koenderink, 2010), and some observers assume
lighting from below (e.g., 3 of 15 participants in Schofield et al, 2011). Our disparity + shading
stimuli were designed such that the cues indicated the same depth structure to an observer
who assumed lighting from above. Therefore, it is quite possible that observers experienced
conflict between the shape information specified by disparity, and that determined by their
interpretation of the shading pattern. Such participants would be ‘poor integrators’ only

inasmuch as they failed to share the assumptions typically made by observers (i.e., lighting
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direction, lighting composition, and Lambertian surface reflectance) when interpreting
shading patterns. In addition, participants may have experienced alternation in their
interpretation of the shading cue across trials (i.e, a weak light-from-above assumption
which has been observed quite frequently, Schofield et al, 2011; (Thomas et al., 2010;
Wagemans et al, 2010)); aggregating such bimodal responses to characterize the
psychometric function would result in more variable responses in the concurrent condition
than in the ‘disparity’ alone condition which was not subject to perceptual bistability. Such
variations could also result in fMRI responses that vary between trials; in particular, fMRI
responses in V3B/KO change in line with different perceptual interpretations of the same
(ambiguous) 3D structure indicated by shading cues (Preston, Kourtzi, & Welchman, 2009).
This variation in fMRI responses could thereby account for reduced decoding performance

for these participants.

An alternative possibility is that some of our observers did not integrate information
from disparity and shading because they are inherently poor integrators. While cue
integration both within and between sensory modalities has been widely reported in adults,
it has a developmental trajectory and young children do not integrate signals (Gori, Del Viva,
Sandini, & Burr, 2008; Nardini, Bedford, & Mareschal, 2010; Nardini, Jones, Bedford, &
Braddick, 2008). This suggests that cue integration may be learnt via exposure to correlated
cues (Atkins, Fiser, & Jacobs, 2001) where the effectiveness of learning can differ between
observers (Ernst, 2007). Further, while cue integration may be mandatory for many cues
where such correlations are prevalent (Hillis, Ernst, Banks, & Landy, 2002), inter-individual
variability in the prior assumptions used interpret shading patterns may cause some
participants to lack experience of integrating shading and disparity cues (at least in terms of

how these are studied in laboratory settings).
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These different possibilities are difficult to distinguish from previous work that has
looked at the integration of disparity and shading signals. This work indicated that perceptual
judgments are enhanced by the combination of disparity and shading cues (Buelthoff &
Mallot, 1988; Doorschot et al,, 2001; Lovell et al, 2012; Schiller et al, 2011; Vuong et al,
2006). However, between-participant variation in such enhancement is difficult to assess
given that low numbers of participants were used (mean per study = 3.6, max = 5) a sizeable
proportion of whom were not naive to the purposes of the study. Here we find evidence for
integration in both authors H.B. and A.W., but considerable variability among the naive
participants. In common with Wagemans et al (2010), this suggests that interobserver
variability may be significant in the interpretation of shading patterns in particular, and
integration more generally, providing a stimulus for future work to explain the basis for such

differences between individuals.

5.4.2 Responses in other regions of interest

When presenting the results for all the participants, we noted that performance in the
disparity + shading condition was statistically higher than for the component cues in area V2
as well as in V3B/KO (Fig. 5.3). Our subsequent analyses did not provide evidence that V2 is
a likely substrate for the integration of disparity and shading depth cues. However, it is
possible that the increased decoding performance—around the level expected by quadratic
summation—is due to parallel representations of disparity and shading information. It is
unlikely that either signal is fully elaborated, but V2’s more spatially extensive receptive
fields may provide important information about luminance and contrast variations across the
scene that provide signals important when interpreting shape from shading (Schofield et al,,

2010).

Previous work (Georgieva et al,, 2008) suggested that the processing of 3D structure

from shading is primarily restricted in its representation to a ventral locus near the area we
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localize as LO (although (Gerardin, Kourtzi, & Mamassian, 2010) suggested V3B/KO is also
involved and (Taira, Nose, Inoue, & Tsutsui, 2001) reported widespread responses). Our fMRI
data supported only weak decoding of depth configurations defined by shading in LO, and
more generally across higher portions of both the dorsal and ventral visual streams (Figs.
5.3, 5.4). Indeed, the highest prediction performance of the MVPA classifier for shading
(relative to overall decoding accuracies in each ROI) was observed in V1 and V2 which is
likely to reflect low-level image differences between stimulus configurations rather than an
estimate of shape from shading per se. Nevertheless, our findings from V3B/KO make it clear
that information provided by shading contributes to fMRI responses in higher portions of the
dorsal stream. Why then is performance in the ‘shading’ condition so low? Our experimental
stimuli purposefully provoked conflicts between the disparity and shading information in the
‘single cue’ conditions. Therefore, the conflicting information from disparity that the viewed
surface was flat is likely to have attenuated fMRI responses to the ‘shading alone’ stimulus.
Indeed, given that sensitivity to disparity differences was so much greater than for shading, it
might appear surprising that we could decode shading information at all. Previously, we used
mathematical simulations to suggest that area V3B/KO contains a mixed population of
responses, with some units responding to individual cues and others fusing cues into a single
representation (Ban et al., 2012). Thus, residual fMRI decoding performance for the shading
condition may reflect responses to non-integrated processing of the shading aspects of the
stimuli. This mixed population could help support a robust perceptual interpretation of
stimuli that contain significant cue conflicts: for example, the reader should still be able to
gain an impression of the 3D structure of the shaded stimuli in Fig. 5.1, despite conflicts with

disparity).

In summary, previous fMRI studies suggest a number of locations in which three-
dimensional shape information might be processed (Nelissen et al., 2009; Sereno, Trinath,

Augath, & Logothetis, 2002). Here we provide evidence that area V3B/KO plays an important
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role in integrating disparity and shading cues, compatible with the notion that it represents
3D structure from different signals (Tyler et al, 2006) that are subject to different prior
constraints (Preston, Kourtzi, & Welchman, 2009). Our results suggest that V3B/KO is
involved in 3D estimation from qualitatively different depth cues, and its activity may

underlie perceptual judgments of depth.
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Learning to integrate shading and disparity

cues to estimate 3D shape

To estimate a coherent 3D shape, the visual system exploits multiple sources of information. The cues to
shape estimation differ in their nature. Shape estimates from binocular disparity and motion parallax are
guantitative and metric, and can be understood with easily tractable mathematical models. Pictorial cues
such as shading, on the other hand, provide only qualitative estimates of shape and are not mathematically
tractable: to make sense of such cues, observers must make additional assumptions (e.g. that the light is
coming from above) or apply constraints from other, more metric, cues. Despite their computationally
different nature, shading and disparity cues are integrated to produce coherent shape estimation, and it
has been shown that using these cues together can improve perceptual judgements. However, the extent
to which an observer benefits from the integration of disparity and shading varies idiosyncratically. Here, |
explore individual differences in cue integration. First, | measure sensitivity for slight changes in depth
profiles of convex (‘bump’) and concave (‘dimple’) surfaces defined by shading, disparity, and combination
of shading and disparity. | find that for some observers, depth structures are more discriminable when
shading and disparity are both present. In contrast, other observers show either no benefit or poorer
performance in the combined shading and disparity condition than they do for disparity or shading alone. |
used a learning paradigm to probe experience dependent changes in shading and disparity integration, and

show that non-integrating observers can learn to integrate the two cues after training with feedback.
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6.1 Introduction

Estimating shape is a crucial ability of the visual system that aids interaction with the
environment. There are multiple sources of information on shape, and the visual system
exploits these various cues to come up with the most likely interpretation (Biilthoff & Mallot,
1988; Dosher et al., 1986; Landy et al., 1995), using multiple cues to improve shape estimates
(Knill & Saunders, 2003). Regardless of the computational differences between the shape
estimates provided by disparity and shading, it has been shown that the human visual system
integrates these cues when they signal the same shape (Biilthoff & Mallot, 1988; Lovell et al,
2012; Schiller et al.,, 2011; Vuong et al.,, 2006). In the previous chapter, we demonstrated that
observers can benefit from having shading and disparity information together by considering
perceptual judgements of shape and their correlated neural activity patterns (Chapter 5).
Additionally, we encountered a systematic variation in the extent to which individuals
integrate these cues. Some integrated the two cues super-optimally, going beyond the
predicted boundary for independent processing; others did not integrate the cues at all. Here,
we investigate these individual differences further while probing experience-related changes

in people’s ability to integrate disparity and shading cues.

When multiple cues to shape are available, the interaction between the cues may
result in a fusion, where redundant information is discarded to efficiently come up with a
coherent percept. During this process, more reliable cues moderate the influence of less
reliable cues by adjusting their weights in the integration process (Adams et al.,, 2010; Atkins,
Fiser, & Jacobs, 2001; Ernst, Banks, & Bulthoff, 2000; Landy et al., 1995). When the cues occur
in a statistically meaningful fashion, the visual system calibrates the cue weights in the
integration process according to the reliability of each cue, how frequently they occur, and
also the consistency between the available cues. Binocular disparity is a robust cue to depth

(and hence shape) and can be understood via mathematical models which produce a metric
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shape geometry. In contrast, qualitative (pictorial) shape cues such as shading do not provide
straightforward estimates of shape: additional calculations and assumptions must be applied
obtain a coherent estimate of shape from shading. The shading cue is particularly intriguing
because of the prior assumptions necessary to infer shape from it. The light-from-above prior
is one such assumption (Kleffner & Ramachandran, 1992; Schofield et al, 2011; Sun &
Schofield, 2012) and is consistent with the natural statistics of the environment (Dror,
Willsky, & Adelson, 2004). Individuals’ different assumptions of the lighting prior may result
in a discrepancy between shape inferences or, similarly, an observer’s inability to adopt a
consistent lighting source might result in ambiguous perception of the shading signal. In such
cases, the shading cue would be very unreliable and hence this cue would receive a low
weight in any cue integration process. Thus for these individuals shading would not

contribute to estimates of shape when a more reliable cue such as disparity was available.

Although reliable, perhaps even mandatory, cue integration is established in adults,
recent studies show that infants lack the ability to combine visual signals to form an
improved estimate (Burr & Gori, 2012; Nardini et al, 2010). This finding suggests that cue

integration might be a learnt ability for the human visual system.

In Chapter 5, we observed large individual differences for the integration of disparity
and shading when estimating 3D surface shape. Our results showed that while some
observers clearly benefit from fusing these cues, about half of the population perform at the
level of a single cue, or even worse, when disparity and shading concurrently signal the same
shape. Here, I focus on poor integrators and ask if more optimal integration of disparity and
shading can be learnt via appropriate training. To investigate this, I first measured
discrimination thresholds in shape profiles for each cue alone and for their combination. The
cues depicted concave and convex surfaces (Figure 5.1a). Next, | quantified the benefit from

cue integration using a method based on the quadratic summation test (see Chapter 5).
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Finally, I trained observers who performed sub-optimally with combined disparity and
shading conditions, and also with a control condition combining disparity with binary
luminance. I hypothesise that repeated exposure improves sensitivity for both disparity and
shading. Moreover, [ aim to demonstrate that after training, sub-optimal integrators achieve
cue integration, with performance exceeding the minimum limit implied by independent

processing of the two cues.

In Chapter 5, we have seen significant variability between subjects in terms of their
benefit from having both disparity and shading cues signaling the same shape. While some
observers benefitted from having both cues present, others performed better when disparity
cue alone signaled the shape. In this chapter, I look into the behavioural paradigm closer with
a group of naive participants; and investigate whether observers who initially perform worse
in the combined cue condition can be trained to benefit from having the two cues present at

the same time.

6.2 Materials and Methods

6.2.1 Observers

Twelve experimentally naive observers from the University of Birmingham participated in
the experiments. The participants had normal or corrected to normal vision. The experiments

were approved by the local ethics committee; all observers gave written informed consent.

6.2.2 Stimuli and Methods

The stimuli were similar to those described in Chapter 5. The random dot
stereograms had disparity and/or shading cues to depict two concave and two convex
hemispheres of radius 1.7° and depth amplitude of 6 arcmin. The spatial configuration of the
hemispheres was either convex on the left of fixation and concave on the right, or vice versa,
this configuration being randomised from trial to trial to avoid adaptation effects. Elements of

the RDS subtended 0.06° and there were approximately 94 dots per degree. I wanted to
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increase the benefit from the shading cue by using dense patterns with smaller dots. The
shading model followed the Blinn-Phong shading algorithm, with a directional light source
that was positioned at infinity above the observer’s head, making a 45° angle with the surface
normal. We used three component cues: (i) disparity only: where the intensity of dots in the
display followed the luminance distribution of the shaded patterns, but their positions were
randomised across the shape; (ii) shading only: where disparity indicated a flat surface; (iii)
binary luminance only, where luminance levels were binarised and disparity indicated a flat
surface. To create the binary luminance stimuli, the luminance of the top and bottom portions
of the hemispheres was held constant at the mean luminance of the corresponding portions
in the shaded stimuli. We also created two composite cues from: (iv) disparity + shading; and
(v) disparity + binary luminance, where disparity and the shading or binary luminance cue
specified the same shape. The random dot pattern subtended 8x8° and was surrounded by a
larger, peripheral grid (18x14°) of black and white squares which served to provide a stable

background reference. All other parts of the display were set to mid-grey.

Stimuli were presented to the participants in a lab setting using a stereo set-up in
which the two eyes viewed separate CRTs (ViewSonic FB2100x) through front-silvered
mirrors at a distance of 50 cm. Linearisation of the graphics card outputs was achieved using
photometric measurements. Images were displayed at 100Hz with a screen resolution of

1600 x 1200 pixels.

Participants sequentially viewed two images and decided which stimulus had the
greater depth profile (presentation time = 500 msec, interstimulus interval = 500 msec). In
two randomly ordered intervals, one interval contained a standard stimulus (* 6 arcmin)
defined by one of the five cues and the other interval contained a stimulus defined by the
same cue varying in depth magnitude. In the test blocks, the QUEST method was used to

estimate 82% correct discrimination thresholds: the QUEST algorithm started at a maximum
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intensity difference of 4.5 arcmin in the first trial. Threshold values were converted to

sensitivity (sensitivity = 1/threshold) before interpreting results.

To screen for idiosyncrasies in integrating the two cues, an initial test block
containing 150 trials (15 trials x 5 conditions x 2 curvature configurations) was applied and
an integration index was calculated for each observer. First, participants completed a
screening test where they viewed 3 single cues (shading, disparity, binary luminance) and 2
composite cues (disparity+shading, disparity+binary luminance). This was done to screen for
idiosyncrasies in integrating the two cues, and it contained 150 trials (15 trials x 5 conditions
x 2 curvature configurations). After this session, an integration index calculated for each
observer and the group of subjects were divided into two: those who benefit from having
both disparity and shading signalling the same shape (good integrators), and those who
perform worse in disparity+shading condition (poor integrators). This was followed by the
training sessions. Because there was a gap of 1-5 days between screening test and first day of
training, poor integrators repeated a follow up test, which was used to establish pre-training
integration levels for Experiment 2. During training, participants completed 2-3 blocks (120
trials per block) for 3 days. Participants viewed composite cues (disparity + shading and
disparity + binary luminance) in training blocks, which included 120 trials (30 trials x 2
conditions x 2 curvature configurations). After every trial, we presented a high pitch tone
‘beep’ for correct, and a low pitch tone ‘boop’ for incorrect responses. During training blocks,
the threshold and standard deviation estimates from the previous block were fed into the
subsequent block as the initial values. Conditions in a block were randomly interleaved. One
day after the last training session, participants completed post-training test (2-3 blocks)

which was the same as the screening test.
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6.3 Results

6.3.1 Experiment 1: Quantifying individual differences in cue integration

We used QUEST to measure discrimination thresholds in a task where the observers judged
the depth profiles of the stimuli. Within a block, both the component cues (shading, disparity,
binary luminance) and the composite cues (‘disparity and shading’, ‘binary luminance and
shading’) were shown. A block included five separate but interleaved QUEST procedures (30
trials each) to estimate a threshold for discriminating the depth thresholds for each cue / cue
combination. Out of twelve participants, six showed higher sensitivity for the composite cue
‘disparity + shading’, suggesting better than optimal integration of disparity and shading
(optimal integrators); the remaining six observers performed less well with the composite
cue as compared to the disparity only condition (sub-optimal integrators). Measures of the
shading- and binary-luminance-only cases were limited in the sense that both the thresholds,

and their variance were very high, making it difficult to compare sensitivity for shading to

that for disparity (i.e. BEZ >AR2).
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igure 6.1: Observers’ performance in discriminating slight differences in five cues: shading
5), binary luminance (BL), disparity (D), disparity + binary luminance (DBL), and disparity +
hading (DS). (a) The bar graphs show sensitivity based on the threshold estimate for each
ue. Error bars indicate +SEM. Data averaged across all participants is shown on the left (red
:ars), and on the right, group means are separately shown for optimal (n = 6, green bars) and
ub-optimal integrators (n = 6, blue bars). Quadratic summation prediction is marked with a
orizontal line in each plot. (b) Distribution plots represent discrimination performance as an
1tegration index calculated for two composite cues, disparity + shading (DS) and disparity +
inary luminance (DS). Bow-tie plots mark mean, 68% and 90% confidence intervals

We quantified the differences in interpreting disparity + shading cues with an

integration index () originating from a quadratic summation test (see also Chapter 5,

Equation 5.2).
B=EE+EEE-1

A value of v around zero would indicate that disparity and shading are processed

independently, while positive 1y values suggest the fusion of these two cues. After rank
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ordering participants based on wy value (Figure 6.1c), I formed two groups: For six
participants, the disparity + shading indices fell above zero (optimal integrators) while for
the remaining six participants the integration index was below zero (sub-optimal
integrators). A repeated measures ANOVA between 5 cues revealed a significant main effect
(F14,137 = 51.57, p<10-¢) and an interaction with the two groups as a between-subjects factor
(F14, 137 = 4.11, p<0.05). Group means across the participants showed higher sensitivity
measures for optimal integrators (Figure 6.1a, green bars) when compared to sub-optimal

integrators (blue bars, post-hoc pairwise comparisons, p<0.05).

The difference was also confirmed using a quadratic summation test: Optimal
integrators showed a super-quadratic summation performance for ‘disparity and shading’
condition, but this was not the case for sub-optimal integrators (green and blue lines indicate
quadratic summation prediction for optimal and sub-optimal integrators respectively). The
integration index for disparity + shading was significantly higher for optimal integrators
(Figure 6.1b, right column, 10,000 bootstrapped samples, p<0.05). Overall, these results
suggest that participants in the optimal integrators group benefitted from having both
disparity and shading together, while sub-optimal integrators performed better when
disparity was presented alone. Even though sub-optimal integrators seem to be less sensitive
to the disparity cue presented alone, the difference between group means for disparity
sensitivity remains statistically non-significant (tio = 0.73, p = 0.42). The sub-optimal
performance in this group might be relevant to the interpretation of the shading cue:
idiosyncrasies in shading priors (Liu & Todd, 2004; Wagemans et al, 2010) could conflict
with the fixed overhead lighting in our stimuli, or the internal lighting assumption might be
bistable, leading to an ambiguous percept. If the latter case were true, then practice with
external feedback would disambiguate the percept, either by altering the light source prior

and interpretation of shading (Adams et al,, 2004) or merely associating a type of feedback
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with the type of cues presented (Haijiang et al, 2006). To investigate this, in Experiment 2,

we trained the participants in the sub-optimal group with external feedback.

6.3.2 Experiment 2: Training with composite cues

[ reasoned that if sub-optimal integration results were due to the individual
differences in shading inferences that conflict with our fixed shading interpretation, then
reinforcing a single interpretation with training would alter the percept, consequently
resulting in an increased benefit from co-occurring disparity and shading cues. Alternatively,
training might help to disambiguate bistable interpretations of the shading cue throughout a
testing block, hence causing improved sensitivity for disparity + shading after training. Five
days after Experiment 1, the six poor integrators were asked to complete a further test block
(pre-training test), repeating the same procedure described in Experiment 1. After this, we
ran training with trial-by-trial symbolic feedback for three days. During the training sessions,
participants viewed two cues randomly interleaved in a block: disparity + shading and

disparity + binary luminance.

One participant (00) was excluded from further study because, unlike the sub-
optimal integration she performed in Experiment 1, one week later, and with no additional
exposure to the stimuli, she showed super-quadratic summation in the follow-up test (> 2
standard deviations above group mean = -.20). Although we observed increased sensitivities
for all other observers (n = 5) in the follow-up test, their integration performance remained

sub-optimal.

We found a significant effect of training day (F2 s = 5.98, p<0.05), but there was no
significant difference between disparity + shading and disparity + binary luminance (Fy,4 <1,
p = 0.73). After three days of training, participants undertook a post-training test (2-3 blocks)

where they judged all of the five cues in every block.

Page 134 of 163



CHAPTER 6: Learning to integrate shading and disparity cues

Figure 6.2: Sub-optimal observers’ performance, before and after training, in discrimination
sensitivity for five cues. (a) The bar graphs show sensitivity based on the threshold estimate for
each cue in the tests before (blue bars) and after (red bars) training. Quadratic summation
prediction is marked with a horizontal line in the corresponding colour of testing. Data averaged
across 5 participants, error bars indicate #S.E.M. (b) Distribution plots represent discrimination
performance as an integration index calculated for two composite cues disparity + shading (DS) and
disparity + binary luminance (DS) before and after training (blue and red respectively). Bow tie plots
mark mean, 68% and 90% confidence intervals.

Figure 6.2 shows the training effect in terms of sensitivity for each cue before (blue
bars) and after (red bars) training. Compared to pre-training, post-training sensitivities
improved largely for all the cues (Fs4 16 = 73.92, p<10-9). The results showed a significant
difference between pre- and post-training tests (Fi, 4 = 7.09, p<0.05) and a significant
interaction between the cue and test conditions (F4 16 = 6.08, p<0.005). After training, the
disparity and shading integration index for all sub-optimal integrators () increased above 0

(Figure 6.2b, red distributions, p<0.05). Integration indices for disparity + binary luminance
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also increased for three participants, but the difference remained non-significant at the group
level (Figure 6.2b, blue distributions, p = 0.84). Overall, after the training, the observers seem
to benefit from both composite cues but this effect is more pronounced for disparity +

shading cues when compared to disparity + binary luminance cues.

6.4 Discussion

In this study, I explored the integration of disparity and shading and experience related
changes in their integration. In line with our previous results (Chapter 5), I observed
systematic differences between individuals’ ability to discriminate slight changes in depth
profiles defined by disparity and shading. Here, I used an adaptive staircase method to show
that for some, but not all, observers, when disparity and shading are presented together,
discrimination sensitivities are reliably higher than when disparity is presented alone. Next, |
tested this increase in sensitivity using a quadratic summation test that sets a minimum

prediction boundary for the independent processing of component cues.

First, in Experiment 1, | showed that half of the participants (optimal integrators)
showed sensitivity to disparity + shading above the minimum quadratic prediction,
suggesting fusion between these cues. For the remaining observers, performance remained

close to that for disparity alone, or in some cases worse than for disparity alone.

When presented alone, disparity and shading provide different estimates of shape:
disparity is generally a more reliable cue from which an observer can infer a metric estimate
of depth structure. Shading, on the other hand, is more ambiguous and the observer has to
make assumptions about the light source. Less reliable cues such as perspective may indicate
bistable percepts (van Ee, Adams, & Mamassian, 2003); similarly, the same shading pattern
can be interpreted as convex if a light-from-above prior is adopted, or concave if the lighting

is assumed to come from below. Even when observers adopt a single light source assumption
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to make an inference about depth throughout a testing session, estimates relying solely on
shading information are shown to be of lower magnitude than estimates from disparity

(Mingolla & Todd, 1986).

It is worth noting that, as with the results from the previous chapter, there was a clear
division in individual performances when judging depth from shading, disparity, and their
combination. Half of the participants performed better than an optimal integration
mechanism would predict when both cues were present, whereas the other half showed
better discrimination sensitivity when disparity was presented independently. Considering
that the participant populations were completely different in the two studies, the integration
index () based on the quadratic summation test seems to be a useful measure with which to

exploit the individual variation in integrating disparity and shading cues.

Next, in Experiment 2, I trained the sub-optimal integrators with symbolic external
feedback. I observed an increase in discrimination sensitivities for composite cues after
training, and this can be explained in the light of the following concepts. Here, instead of
quantitatively comparing depth estimates from separately presented cues, | examined how
disparity and shading cues complement each other by using only composite cues during
training. In other words, | aimed to quantify the benefit gained from an additional shading

cue when the perceived surface already conveys disparity information.

Idiosyncrasies related to light source assumption in interpreting shape from shading
have often been reported (Adams et al, 2004; Liu & Todd, 2004; Lovell et al, 2012;
Wagemans et al., 2010). Furthermore, Adams and colleagues have shown that the light source
prior can be modified during interaction with haptic cues (Adams et al., 2004). In this regard,
our improved integration after training might be explained by a modification of the light
source assumptions towards a light-from-above prior. In other words, individual observers

normalise their lighting priors to match the only shading interpretation reinforced by our
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stimuli. This explanation would also explain the increased sensitivities to shading after
training. Stabilisation of the interpretation of shape from shading could produce such an
outcome. However, | also observed improvement for the disparity and binary luminance
condition. This is an unexpected result, because the percept in this composite cue mainly
relies on the disparity signal, as binary luminance is not supposed to signal 3D shape per se.
Then again, during training, observers are equally exposed to this cue as to the disparity and
shading cues. Even though binary luminance alone does not signal 3D shape, it still provides a
symbolic cue (e.g. upper portion brighter for convex) that might have complemented the

shape estimate from the disparity cue.

Additionally, training may compensate for the underestimation of depth estimates
from the shading cue compared to disparity estimates, and this would yield an increase in
gain from shading when the cues are available together. If we reconsider the findings in the
light of the quadratic summation test, initially some observers perform below the limit for
optimal integration, suggesting an independent processing mechanism. After training, their
performance improves beyond the minimum predicted boundary for fusion of these cues.
The fusion mechanism indeed predicts an increase in gain from the cues, as well as an

improvement in their discrimination ability.

Given the points discussed above, our findings suggest that between-observer
differences are inevitable for integration of shading and disparity to estimate 3D shape. In
addition, sub-optimal integration performance can be improved via training, indicating that
observers can learn to fuse shading and disparity cues. This finding has important
implications for our understanding of cue integration processes, which are often considered
to be mandatory but based on the instantaneous reliability of cues. My results suggest that
fusion is not mandatory, but that it can be learnt based on associations between cues over

time.
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General Discussion

In this thesis, I have presented psychophysical and fMRI studies aiming to provide
further insight into the role of shading and binocular disparity cues in shape estimation.
Specifically, the goal of this thesis was to answer the following questions: (i) how does the
visual system resolve ambiguities in the luminance signal to separate shading cues from
material changes, and can tasks such as layer decomposition be learnt at a perceptual level;
(i) when both shading and disparity are available, how do these cues interact in the estimate
3D surface shape; (iii) what are the neural correlates for the integration of shading and
disparity? In the following sections, first, | summarise the main findings of each experimental
chapter. Then I list the contributions of these findings to the literature, and I close the thesis

with a conclusion.



CHAPTER 7: General Discussion

7.1 Summary of Findings

7.1.1 Chapter 3: Adaptive learning to use first- and second-order signals when

inferring shape from shading

Luminance variations in a scene are inherently ambiguous, as they can be caused by changes
in the light source position, different surface geometries, or different surface materials. The
visual system can use the relationship between first-order luminance variations (LM) and
second-order amplitude modulations (AM) as a cue to discriminate the potential causes of a
luminance change (layer decomposition, Kingdom, 2008). However, naive observers do not
make use of the relationship between these cues at short presentation times. In the first
experimental chapter [ looked at whether the relationship between first- and second-order
cues can be used for layer decomposition following training with binocular disparity
feedback. It has been previously shown that in-phase combinations of LM and AM are seen as
corrugated surfaces whereas anti-phase combinations are perceived as flat material changes
(Schofield et al, 2006; Schofield et al, 2010). The human visual system is sensitive to small
variations in local luminance amplitude (AM, second order) as well as modulations in
luminance (LM, first order). Here I asked whether naive observers could use the relation
between LM/AM combinations to disambiguate the nature of luminance variations in a

shading pattern, and infer a coherent percept of surface geometry.

The stimuli [ present in this thesis enforces the observer to make judgments about
illumination and reflectance properties of the surface with only one input that is the intensity
of each pixel. The generative model assumes uniform Lambertian surfaces with a texture on.
When there is directional lighting onto this surface, the luminance at a point L(x,y) is the

multiplication of shading S(x,y) and the reflectance R(x,y). The training reinforces in-phase
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grating to be seen as a corrugated surface. In other words, when local mean luminance
changes (LM) positively correlate with the changes in local luminance amplitude (AM), then
the shading pattern is more likely to be caused by a change in surface shape. This is mainly
because when there is uniform texture on the surface, the difference between dark and light
pixels will vary with the change in mean luminance (i.e. LM+AM). On the other hand, when
this correlation is negative (anti-phase, LM-AM), feedback suggests this to be interpreted as
texture changes on a flat surface, so that the variations in the luminance pattern would be

seen as painted stripes on a flat surface.

Initially, a plaid consisting of an in-phase and an anti-phase grating was presented for
1 s in a single interval while the observers judged which grating seemed more corrugated
(Chapter 3, Experiment 1). In this part of the study, the observers’ performance was at chance
level, showing no ability to discriminate phase relationships of LM/AM mixes. This initial test
was followed by training with feedback, where in- and anti-phased gratings were shown
separately above and below fixation instead of a plaid configuration. A disparity defined
corrugated surface was superimposed on the in-phase grating, and a flat disparity surface
was superimposed on the anti-phase grating in the feedback. This training was followed by a
post-training test using plaid stimuli. I reasoned that if observers are trained to use phase
information when LM/AM mixes are presented separately, then they would transfer this
ability to a post-training test for judging LM/AM mixes in a plaid configuration because it was
previously shown that the discrimination performance improved when LM/AM mixes are
presented in a plaid. Training took effect very quickly and saturated after the second training
session for most of the observers. In the post-training test, I observed that performance was
similar for LM/AM mixes in the trained orientation (in-phase component orientated at 45°),

and a novel orientation (in-phase component orientated at 135°). The rapid learning effect

Page 141 of 163



CHAPTER 7: General Discussion

and full transfer of learning to 90° rotation to untrained stimulus is atypical of learning at a
perceptual level. Even though there are examples of fast perceptual learning (e.g. Seitz et al,
2005), the reported effects are stimulus- and task-specific. In a follow-up test 20 days
afterwards (Chapter 3, Experiment 2), I observed that performance remained at a same level
as the immediate post-training test. This time, to further investigate the nature of learning,
observers were trained with a reversed feedback to reinforce the in-phase grating being seen
as flat. I hypothesised that if learning were at a perceptual level, reverse reinforcement
would not affect observers’ phase discrimination sensitivity, or at least it would take time to
flip the perception of in-phase gratings from corrugated to flat. The results revealed a sudden
reversal (within 1 hour) of depth judgements, and there was no deterioration of

discrimination sensitivity after this training with reversed feedback.

In summary, [ showed that naive observers could learn to benefit from initially
ambiguous phase relationships of first- and second-order signals to discriminate shading
patterns caused by luminance changes from those caused by material changes. This learning
generalises to other orientations, and discrimination performance is susceptible to reversed
training. The overall results imply that the observed learning here can be characterised as an
association between the stimulus and feedback, such as labelling; rather than as perceptual

learning.

7.1.2 Chapter 4: Perceptual learning of layer decomposition when inferring shape

from shading

In Chapter 4, we aimed to gain further insight onto how observers can use shading
information from an albedo textured surface to infer shape. Following the results from the
previous chapter, we used first- and second-order signals to analyse shading patterns, this
time aiming to demonstrate changes at a perceptual level. When two LM/AM mixes are

presented in an orthogonal plaid configuration for long enough, the visual system can benefit
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from phase relationship information to disambiguate the cause of shading pattern, i.e. to
decompose two layers of the plaid: The in-phase mix being seen as a uniform reflectance

corrugated surface and anti-phase mix being seen as a flat surface with varying reflectance.

When in- and anti-phase combinations are presented briefly (250 ms), naive
observers cannot use the phase relationship to decompose the layers of a plaid. The studies
reported in Chapter 4 do not present a systematic analysis of the effect of presentation time
per se, but they rely on previously reported studies using the same stimuli. In a depth
mapping experiment by Schofield et al. (2006), naive observers (5 out of 6) were given
unlimited time to view LM/AM mixes and indicate which of the two probe dots appeared
closer to them in depth. In the following two experiments, the authors used a two-interval
forced choice design to present LM/AM mixes, and single signals (LM-only, AM-only) for
1400 ms (interstimulus interval = 1400 ms) where they asked naive observers to indicate
whether the first or second stimulus appeared to have greater depth. Overall from these
three experiments, authors conclude that naive observers tend to see in-phase LM/AM
combination as having the greater depth followed by LM-only signal, and anti-phase LM/AM
combination. They also report that when anti-phase grating is presented alone, naive
observers tend to see it corrugated but when it is presented together with the in-phase
grating in a plaid configuration, anti-phase component is seen as almost flat. These findings
were duplicated in a more recent study (Schofield et al., 2010), where naive participants (4
out of 5) adjusted the depth amplitude of the haptic stimulus (sinusoidal undulations) to
match the visual stimulus (LM/AM mixes) with no limitation on viewing time. These findings
show that naive observers can discriminate phase relationships of LM and AM gratings for
long stimulus durations. In Chapter 4, I use 250 ms as the presentation time for the plaid
stimulus, and as can be seen from the initial exposure data reported in Experiment 1 (Section
4.3.2), I show that naive observers cannot discriminate in-phase grating from anti-phase

grating before they go through training. However, after training observers can discriminate
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phase relationships to match in-phase grating with greater depth in short presentation

durations.

We trained naive observers with intermittent feedback for five to ten days (Chapter 4,
Experiment 1). Consequently, the observers were able to benefit from the phase relationships
of LM/AM combinations to disambiguate the cause of luminance variations in shading
patterns. Next, when the training effect was tested with novel stimuli differing in overall
orientation (Chapter 4, Experiment 1) and spatial frequency (Chapter 4, Experiment 2), we
found performance to be significantly lower (orientation) and equivalent to initial exposure
(spatial frequency). These results showed that the learning was specific to the stimulus
dimensions to which observers were exposed during training. Finally, we manipulated the
combination angle of the LM/AM components superimposed as a plaid (Chapter 4,
Experiment 3). The results showed a learning effect for small shear angles, but we did not
observe any generalisation to higher shear angles. This partial transfer indeed emphasises

that the orthogonal layout of the plaid is crucial to the layer decomposition process.

When considered on its own, results reported in Chapter 4, Experiment 3, might not
fully convince that learning is specific to the spatial frequency of the training stimulus. I show
post-test data on two levels of spatial frequency (2 and 4 c/deg) as evidence for a lack of
transfer after training with low spatial frequency (0.5 c/deg) plaids. Having said that,
previous evidence (Experiment 4, Georgeson & Schofield, 2002) show that in- and anti-phase
gratings are discriminable at a high spatial frequency (1 c/deg). Furthermore, Sun and
Schofield (2011) look at how the ratio of modulation (LM) and carrier (AM) frequencies
correlates with the layer decomposition process, i.e. discriminating the phase relationship of
LM/AM mixes. In a depth comparison task, they test a range of 1 - 16 c/deg carrier
frequencies, and report very similar perceived depth amplitudes for 1 and 2 c/deg stimuli

(Experiment 1, Figure 3 in the paper) suggesting that observers can use the phase
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relationship as a cue to layer decomposition even for high frequency (2 c¢/deg) AM signal. In
the light of these two examples, I concluded that observers failed to transfer the effects of

training with 0.5 c/deg to higher spatial frequencies.

Nevertheless, to fully understand the specificity of learning to the spatial frequency,
one can directly investigate the effect of modulation and carrier frequency on learning. One
way to do this might be to exploit the effects of training with high frequency stimuli and ask

whether the training transfers to low spatial frequencies.

In these results, the performance after training can be explained by a computational
model where first- and second-order signals are processed through separate channels at first,
and then combined to produce a shading signal (Schofield et al, 2010). The model accounts
for the processing of the shading signal as automatic and quick, such that the earlier visual
mechanisms would be involved. The specificity of learning effect to the trained stimulus is

also in line with a perceptual change at the early stages of visual processing.

Plaid stimuli are defined by correlated first and second order luminance signals, and
these signals are reported to be correlated in natural images (Johnson & Baker, 2004). Jiang,
Schofield, and Wyatt (2010), present an algorithm based on the relationship between
intensity, luminance amplitude, texture and colour. The image is split into components in the
frequency domain. Each of the components is given a weight according to their
corresponding relationship to the above cues. Weighted combinations of these components
are then used to construct shading and reflectance images from a single image. Their tests
using photographs of surfaces under different lighting conditions (Image database:
www.bold.bham.ac.uk) suggest that luminance amplitude is a useful cue to extract intrinsic
images. Undoubtedly, the stimuli used in this thesis are artificial where I try to isolate
luminance variations in the shading pattern by eliminating any other cue to shape. For this

reason, in- and anti-phase gratings might look indiscriminable to the naive observer at first
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instance. However, as previously reported studies suggest that under limited viewing, -even

naive observers see in-phase grating to have greater depth than the anti-phase grating.

Overall, this chapter demonstrates that AM signal’s spatial phase relation to LM signal
plays a crucial role in resolving potential ambiguities caused by a shading pattern. Although
at long presentation times, naive observers can benefit from these signals to interpret shape
from shading, training is necessary to accomplish this at shorter presentations. A
computational shading model that assumes automatic processes can explain the finding that
trained observers can learn to decompose layers to judge whether luminance variations are
caused by geometry or material changes. Specificity to the trained stimulus suggests that

training can result in changes at a perceptual level.

In its broadest sense, practice dependent changes in a perceptual task are referred to
as perceptual learning, whether it is explicitly changing the decision criterion, or implicitly
changing the (discrimination) sensitivity. Although perceptual learning was initially reported
as quite stimulus specific (Fiorentini & Berardi, 1980; Karni & Sagi, 1991), more recently
there has been growing evidence suggesting that learning transfers, for instance if the task is
easy or low precision (Ahissar & Hochstein, 1997; Jeter, Dosher, Petrov, Lu, 2009). Generally,
if learning is described by the change in sensitivity, an unbiased criterion is assumed and
changes in decision criterion are ignored. However, more recently, Aberg and Herzog (2012)
suggested that changes in sensitivity and decision learning are very different, they interact
with each other and these can be distinguished by looking at the type of feedback provided,
maintenance of the changes between sessions, and changes with consolidation. According to
their study, the learning we observe in Chapter 3 is more likely to be changes in decision
criterion: There is a tendency towards ‘anti-phase has greater depth’ during pre-test. This is
rapidly reversed to ‘in-phase has greater depth’ as indicated by the feedback, but following

sessions with feedback fail to show improvement in discrimination sensitivities. Moreover, in
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the reverse training phase (when feedback is reversed), observers change their criteria

almost immediately to match the ‘correct response’.

[ have reported two studies demonstrating perceptual learning. First, in Chapter 3,
observers undertook training with trial-by-trial feedback and they improved their
performance in the in- and anti-phase discrimination task as seen by the increase in
proportion correct in pre- and post-training tests. The feedback enforced in-phase
component to be matched with ‘has-greater-depth’ responses at every trial. During training,
sensitivity change was observed only in the first two sessions, where it saturated for the
following three days. Change in the sensitivity is usually the benchmark for perceptual
learning; however, it has been shown that criterion changes can signal learning without any
improvement in sensitivity (Aberg, Herzog, 2012). In the light of this, the results observed in
Chapter 3 can be explained by a change in criterion: observers were associating the feedback
with each trial, i.e. voluntarily updating the decision criterion by the explicit information
provided by the trial-by-trial feedback. This can be done very quickly (e.g. criterion can be
reversed within a trial after a negative feedback), as opposed to changes in sensitivity, which
are reported to be dependent on consolidation (Karni, et al., 1994 -Science). Therefore, it is
difficult to argue that the observer learnt to see in-phase aligned LM/AM signal as corrugated,
but more likely that it was cognitive learning, where the observer generates a strategy to

match the positive feedback with in-phase stimuli.

Next, in Chapter 4, feedback was provided intermittently during training. After every
20 trials, the percent of correct responses for the most recent block was presented on the
screen. In addition to sensitivity improvement before and after training, change in sensitivity
was also observed during training performance this time. The intermittent feedback did not
provide the complete information for the observers to directly match one type of stimulus

(e.g. the in-phase) with a specific feedback (e.g. the positive feedback). Since they did not
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have the complete information to change their criterion, one might argue that the observed
changes were involuntary and they were seen as a change in sensitivity . In this case, the
nature of learning is better explained with early processes in the visual system rather than a

cognitive strategy.

7.1.3 Chapter 5: Neural correlates of estimating shape from shading and disparity cues

In Chapter 5, we explored 3D shape estimation when both shading and disparity cues were
present, aiming to assess their integration using psychophysical and fMRI techniques. Despite
the different nature of depth estimates that shading and disparity can signal (pictorial vs.
metric), observers benefit from their integration, as suggested by behavioural results
(Bulthoff & Mallot, 1988; Lovell et al., 2012; Schiller et al, 2011; Vuong et al, 2006). Human
brain imaging studies also indicate the cortical locations involved in both processing
disparity and shading (Georgieva et al., 2008; Nelissen et al., 2009; M. E. Sereno et al.,, 2002),
but these studies do not explore the locus for cue integration. A recent finding (Ban et al,
2012) predicts that the dorsal visual region V3B/KO is a crucial locus for cue integration
when processing 3D shape from disparity and motion parallax. Here, we ask whether this

brain region is also involved in the integration of disparity and shading.

Using psychophysical methods, observers judged slight differences in depth profiles
between sequentially presented stimuli which depicted convex and concave surfaces using
random dot stereograms, Blinn-Phong shading gradients and their combination. A binary
luminance and disparity defined stimulus condition was included to control for having
multiple signals in the stimulus. Here we found that half of the observers benefitted from
having disparity and shading signalling the same shape, showing less variance in their
performance, but the other half did not benefit or even performed worse when compared to

disparity defined stimuli. The amount of benefit obtained from using two cues together was
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quantified using a psychophysics integration index that is based on the quadratic summation

test to set a minimum bound for cue integration.

Next, in an fMRI experiment, we measured shading and disparity related cortical
activation in independently localised regions of the occipital cortex. One of these regions
(V3B/KO) was previously reported to be involved in processing the integration of cues to 3D
depth, so a specific aim of this chapter was to probe this region with disparity and shading
cues. The results were analysed with an MVPA method where a support vector machine was
trained to classify the spatial configuration of the stimulus by decoding multivoxel patterns of
fMRI activity. Two classes were defined: convex on the left and concave on the right, and vice
versa; i.e. the classification performance at chance level was 50 per cent. We reasoned that
the classification would improve when the two cues signalled the same shape together. The
results revealed that in V3B/KO, for disparity and shading combined stimulus classification,
performance was above the limit predicted by quadratic summation test. This suggests that
the neural responses were not merely related to co-processing of disparity and shading, but

rather that fMRI patterns essentially reflect the fusion of these cues.

The data were then re-analysed after separating the observers into two groups (good
and poor integrators) based on their psychophysical performance. The cue integration effect
in V3B/KO was carried by those observers who showed a benefit from having disparity and
shading together in the psychophysics results (good integrators). In the poor integrators
group, classification performance in the combined cue condition was no better than for the

disparity alone condition.

Using an fMRI based integration index (similar to the quadratic summation test), we
quantified the extent of improvement in classification performance for the combined cue

condition for each observer. The quantifications for fMRI patterns in V3B/KO exhibited a
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correlation with the individual differences in the psychophysics integration index. This

relation was only observable in V3B/KO, out of the ten occipital regions examined.

All these comparisons were also tested for the binary luminance plus disparity
stimuli, but no evidence for integration was observed in this case. This adds weight to the
notion that our predictions for cue integration are not solely based on having multiple signals
in the stimuli; on the contrary, the findings are limited to the disparity and shading

combination, where both of the cues provide an interpretation of 3D shape.

Furthermore, we probed the fMRI patterns related to disparity and shading with a
transfer analysis where the machine learning algorithm was trained with one cue, and tested
with the other cue. Classifier performance for cross-cue transfer stayed at chance level in all
of the regions tested except V3B/KO. In V3B/KO, for the good integrators, performance in the
cross-cue MPVA comparison was on par with the with-in cue MVPA (where both training and
testing was conducted on the same cue). We concluded that, in addition to our previous
findings, this result implies that shading and disparity are represented similarly in this
region. This representation might be an entity of the observers’ interpretation of 3D shape

isolated from shading and disparity.

At a first glance, the psychophysical results described above suggest that poor
integrators lack the ability to benefit from fusion between disparity and shading, and that
they base their shape estimates on only one cue. However, individual differences in our
results might be caused by several reasons, including different prior assumptions made by
each observer while inferring shape from shading. Poor integrators might be capable of
combining the two cues under other circumstances, but the constrained lighting condition in
this study might conflict with their prior assumptions. Alternatively, these observers’
performance might be compromised by an unstable, alternating interpretation of shading

during an experimental session.
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7.1.4 Chapter 6: Learning to estimate shape from shading and disparity in an optimal
fashion

In Chapter 6, I reported behavioural results relating to observers’ ability to discriminate
slight differences in the depth profiles of surfaces defined by disparity, shading, and their
combination. The aim was first to gain further insight onto idiosyncrasies between
individuals’ shape-from-shading inferences, and the extent of the benefit they gain from the
integration of shading and disparity. Moreover, 1 attempted to improve sub-optimal

performance for cue integration inducing learning using feedback.

First, | used a QUEST procedure adaptive staircase method to measure discrimination
thresholds for three component cues (shading, disparity, binary luminance) and two
composite cues (disparity and shading, disparity and binary luminance). To measure this,
observers were asked to judge differences in the depth profiles of two sequentially presented
with-in cue stimuli. A psychophysics index (see also Chapter 5) was used to rank order the
participants with respect to the extent of their benefit from viewing composite cues. The
results from this test were used as an initial screening, where half of the participants showed
performance above the minimum bound for optimal cue integration, and the other half of the
participant group showed sub-optimal performance for cue integration. Even though there
were small alterations in the methods, and the observers were naive to the study, the

idiosyncrasies showed a remarkably similar grouping to that found in Chapter 5.

Next, I asked whether the sub-optimal performance was due to ambiguous
interpretation of the shading cue, and whether observers could learn to maintain a coherent
percept through training. To investigate this, the sub-optimal integrators undertook three
training sessions where they judged the depth profiles defined by composite cues and
received symbolic feedback for every trial. Previous studies imply that cue integration can be
improved with repeated exposure to multi-modal cues (Adams et al, 2010; Atkins et al,

2001; Burge, Girshick, & Banks, 2010; Ernst et al, 2000) or in multiple visual cues to shape
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(Knill, 2007). Here, I investigated the effect of repeated exposure to combined stimuli in the
training. After training, discrimination thresholds improved for both trained composite cues,
and the sensitivity exceeded the minimum bound for optimal cue integration. Disparity and
binary luminance was again used as a control cue and, as expected, the improvement in
performance was not as prominent as for the disparity and shading combination. However, a
small super-quadratic summation effect was still observed for the control condition. One
reason for this might be that participants were exposed to as much training with the control
combination as they were the disparity and shading combination; hence their sensitivity for
the control cue is also increased. After all, the binarised luminance pattern in this control
condition can still act as a cue to shape: an approximation to binary shading can occur in
extreme lighting conditions. In Chapter 6, I trained participants who did not initially benefit
from having disparity and shading signals combined. Training took three days, during which
observers judged small depth differences within disparity+shading (DS) and disparity+binary
luminance (DBL) defined stimuli, and they received symbolic trial-by-trial feedback.
Following this, a post-test with single (binary luminance, shading, disparity) and composite
(disparity+shading and disparity+binary) cues revealed a significant improvement in
sensitivity for both composite cues. I expected improvements in sensitivity for shading and
disparity condition as a sign of learning to integrate these cues to estimate shape. At first
glance, binary luminance cue does not seem to be as informative as the shading cue, but as
can be seen from the integration indices (Figure 6.2b, p.110) before training, observers
perform better for DBL (almost around the level of sensitivity for disparity) when compared
to DS (worse than sensitivity for disparity). One reason might be that, however rough the
binary luminance cue is, it still signals the shape; e.g. in the case of DBL, upper portion is
bright when disparity signals convex, and vice versa. Considering that during training
observers were exposed to co-occurring disparity and binary luminance repetitively, and

explicit feedback was available in every trial, it is not difficult to suggest that they have learnt
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to integrate binary luminance with disparity solely by their statistical co-occurrence (Ernst,
2007). At first glance, one might expect that disparity and binary luminance cues are
combined as a linear summation showing a simple co-occurred visual event integration,
where disparity and more naturalistic shading cue are fused. But the results show that after
training both composite cues are improved to the same level. This might suggest a more

flexible joint neural coding mechanism, where fusion can be established after training.

We correlated fMRI metrics with perceptual metrics for the integration of disparity
and shading in Chapter 5. However this relationship was not observed in the disparity and
binary luminance condition. It would be interesting to investigate the classification patterns
from trained integrators to see if arbitrarily associated cues also improve decoding

performance from fMRI patterns as they improve perceptual discrimination sensitivities.

In summary, this chapter shows that while some people initially fail to integrate
shading and disparity cues, they can be trained to integrate these two cues. This apparent
change in integration performance via training has important implications for our

understanding of cue integration.

7.2 Contributions

Throughout this thesis, [ have explored how shading and disparity information is processed
to estimate 3D shape. This section summarises the contribution of the findings presented in

this thesis to our current understanding of the human visual system.

First, in Chapter 3, I addressed how observers could use first- and second-order
luminance signals in a shading pattern to overcome the ambiguities related to the cause of
luminance variations (Schofield et al, 2006; Schofield et al, 2010). In Chapters 3 and 4, we
provided evidence supporting that the human visual system is capable of using the phase

relation between these signals to accomplish layer decomposition and discriminate
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luminance variations caused by surface shape (related to in-phase signal) from those that are
caused by surface material (related to in-phase signal). Furthermore, I studied the effect of
presentation duration on this layer decomposition task. To the untrained eye, the difference
between in- and anti-phase signals is invisible or takes a long time to discriminate. However,
my results reveal that layer decomposition can be achieved at very short presentations after
training. A computational model that adopts a quick and automatic mechanism could explain
this shape-from-shading process (Schofield et al., 2006; Schofield et al, 2010). Perceptual
learning was specific to trained stimulus dimensions, again mostly explained as changes in
the early steps of perceptual processes (Fahle & Poggio, 2002; Jeter et al, 2010; Karni & Sagi,
1991). Together, these results suggest that shape from shading occurs in the early stages of
visual processing, and the relation of first and second-order signals can serve as a useful tool

to understand this process.

Second, I reported behavioural and fMRI results to establish further understanding
into the interaction of shading and disparity cues. When presented together, shading and
disparity have been shown to improve perceptual judgements of 3D shape (Biilthoff & Mallot,
1988; Lovell et al,, 2012; Schiller et al., 2011), but there is a lack of evidence on the neural
correlates of this improvement. Recently, the dorsal visual area V3B/KO has been identified
as an important cortical locus for integration of disparity and motion parallax cues to 3D
shape (Ban et al, 2012). In Chapter 5, we demonstrate evidence for V3B/KO also being
involved in fusion of shading and disparity. The results presented in this chapter repeatedly
imply that V3B/KO is not only important for 3D shape processing from computationally
similar cues, but is also involved in the estimation of shape from qualitatively different visual
cues such as disparity and shading. Moreover, we present a correlation between
idiosyncrasies in behavioural estimates of shape and patterns of cortical activation in
V3B/KO during combined disparity and shading processing. Finally, in Chapter 6, I quantified

individual differences for cue integration between disparity and shading. The results here

Page 154 of 163



CHAPTER 7: General Discussion

show that observers who show sub-optimal cue integration improve their sensitivity for
composite cues after training with feedback. That is, they learn to integrate the cues at a

super-quadratic level, suggesting that fusion of disparity and shading can be learned.

7.3 Conclusions

In summary, the experimental findings presented in this thesis have two main implications.
First, the human visual system can learn to decompose stimuli into shading and reflectance
cues, and thus derive shape from shading at very short display durations, and the
computational mechanisms behind this process can be explained as a layer decomposition
process that takes place in the early steps of visual processing. Second, integration of
disparity and shading cues improves estimates of shape when compared to estimates from
either cue alone. Despite the computational discrepancy between binocular disparity and
shading, the fusion of these cues is observable in patterns of cortical activation and
correlating behavioural judgements. However, not all people integrate shading and disparity
automatically. About half of the population fail to integrate these two cues, as has been
verified using both psychophysical and neural metrics. Nonetheless, poor integrators can be

trained to integrate the cues in a super-optimal fashion with relatively little training.
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