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ABSTRACT 

The presence of particulate and gaseous pollutants at elevated concentrations in the 

atmospheric environment is detrimental to public health. The present study has 

investigated the impacts of a steelworks complex on the air quality in Port Talbot, South 

Wales, United Kingdom.  

 

Different offline and online air monitoring instruments were deployed to four sites around 

the perimeter of the steelworks (at one coastal site (Little Warren LW) and 3 inland sites 

placed along the length of the steelworks (Fire Station FS, Prince Street PS and Dyffryn 

School DS) in the study area for a four-week campaign (April 16 to May 16, 2012). Prior 

to Port Talbot campaign, a separate two week sampling (March 30 to April 12, 2012) was 

conducted at Elms Road Observatory Site (EROS) for a representation of an urban 

background. 

 

Gaseous and meteorological data logged during the period of sampling were also collected 

from the Automatic Urban and Rural Network (AURN) site at Port Talbot Margam (FS 

site). Hourly and daily data collected were prepared for receptor modelling using Positive 

Matrix Factorization (PMF) and with the use of Open Air and Lakes Environmental 

WRPLOT View software, windrose and polar plots were produced to show the directional 

emissions of particulate and gaseous pollutants. The online sampling instrument of 

Aerosol Time of Flight Mass Spectrometer (ATOFMS) as well as PMF solutions for 

Streaker and Partisol were able to identify different processing units of the steelworks 

responsible for pollutant emissions. The polar plots for most air pollutants revealed the 

steel industry as the major contributor to air pollution in the study area. 
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CHAPTER 1- INTRODUCTION 

 

1.1 Abstract 

This section details the general overview of particulate matter, its sources and composition 

as well as its health effects. Receptor models often used for source apportionment of 

particulate matter are discussed within this chapter. The aims and objectives of the study 

are also highlighted in this section. Literature reporting work conducted around steel 

industrial sites is also reviewed. Part of this review has been prepared for publication. 
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1.2     General Overview of Airborne Particulate Matter 

Particulate matter (PM) is a mixture of organic and inorganic substances suspended as 

liquid droplets or solid particles in the air. These suspended minute particles originate 

from diverse sources, and with sizes ranging from tens of micrometers to a few 

nanometers. These particulate pollutants are emitted from different sources and are 

transported into the atmosphere, where they are mixed, transformed, some are bio-

accumulated and consequently cause ill-effects on both biotic and abiotic systems. Particle 

pollution is made up of a number of components such as ionic and carbonaceous species, 

organic constituents (including acids), metals, and soil or dust particles.  

 

Rapid economic and industrial developments have led to increased energy consumption, 

emission of air pollutants and poor air quality in the major cities of the world (Chan and 

Yao, 2008).  According to Celis et al. (2004), Penner et al. (2004), Hong et al. (2002), 

Khoder (2002), Kaufman et al. (2002) and Rajkumar and Chang (2000), PM is capable of 

influencing many atmospheric processes including cloud formation, visibility, solar 

radiation and precipitation. It also plays a major role in acidification of clouds, rain and 

fog. It may also carry some toxic or acidic substances like heavy metals and carcinogenic 

organic compounds and may initiate detrimental health effects on humans and ecosystems 

(Karthikeyan et al., 2006; Lewtas, 2007).  

 

Aerosols found in urban areas represent a mixture of primary particles from several 

sources such as vehicles, coal-fired power plants, oil refineries, forest fires, and steel, 

cement and paper plants (DoT, 2002; Braga et al., 2002; Samara et al., 2003) and 

secondary particles formed by chemical reactions. These urban particles are very diverse 
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in chemical composition and structure because of their sources (Johnson et al., 2005). 

Although, measures have been put in place by the developed nations to abate air pollution, 

epidemiological studies still show that the current air pollution episodes are capable of 

causing harm to the public. The Natural Resources Defence Council reported that 

particulate air pollution causes 64,000 deaths annually in the United States (Mysliwiec and 

Kleeman, 2002). In Europe, Watkiss et al. (2005) has reported around 350,000 annual 

premature deaths, while at the global scale more than 1 million deaths per year are 

recorded due to exposure to ambient particulate matter (WHO, 2009; Anenberg et al., 

2010). 

 

Two important airborne particulate matter metrics are fine (< 2.5µm aerodynamic 

diameter; PM2.5) and coarse (> 2.5 µm <10 µm aerodynamic diameter; PM2.5-10) particles. 

PM10 is the summation of the two fractions (i.e PM10 = PM2.5 + PM2.5-10). Fine and coarse 

particles are defined primarily in terms of their formation mechanisms and sizes; and they 

also differ in sources, chemical composition, and removal processes (Harrison et al., 

2001).  

 

Fine particles normally arise from anthropogenic sources (Pope and Dockery, 2006) and 

can be subjected to regulation by air pollution control technologies. The formation of 

coarse particles is a result of mechanical disruption and attrition processes, and these are 

largely re-suspended soils and street dusts, fugitive dusts from industrial sources, sea salts, 

pollen and fungi spores, plant and animal fragment and tyre-wear debris. These particles 

are mainly of natural origin (as well as from industries like construction, mining and 

quarrying) and therefore extremely difficult to develop control strategies for (Harrison et 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Anenberg%20SC%5Bauth%5D
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al., 2001; Pope and Dockery, 2006). The processes such as condensation, evaporation and 

coagulation may change the size and composition of particulate matter (Braga et al., 2005; 

Debry et al., 2006).   

 

Ultrafine particles are those with an aerodynamic diameter less than 0.1 µm (PM0.1). These 

particles are released into the ambient atmosphere from combustion-related sources, such 

as vehicle exhaust, and atmospheric nucleation and reactions (Oberdorster, et al., 2005). 

They are short-lived and rapidly grow to form larger particles. Particles are formed 

through gas-to-particle conversion processes which are condensation, nucleation and 

coagulation (Malm, 1999).  

 

Condensation occurs when gaseous vapours condense or combine with existing small 

nuclei known as condensation nuclei. These small condensation nuclei may originate from 

marine or combustion activities. Particles may be formed when gases interact and combine 

with molecules of their own kind in a process called homogeneous nucleation (Malm, 

1999). When gases nucleate on particles of a different kind than themselves, this is called 

heterogeneous nucleation. After aerosols are formed, they can grow in size by coagulation, 

in which particles essentially collide and stick together (Malm, 1999). These processes are 

summarized in Figure 1.1. Fine particles arise predominantly from high temperature 

sources or from gas to particle conversion processes within the atmosphere (Harrison et 

al., 2001).  

 

Fine particles contain substantial amounts of sulphate and nitrate in the form of their 

ammonium salts, plus organic and elemental carbon as well as varied trace metals 



5 

 

(Harrison and Yin, 2000; Mysliwiec and Kleeman, 2002). Carbonaceous species are a 

major component of PM and could account for up to 50% of the fine particulate mass 

concentration (PM2.5) on an annual average (Baltensperger et al., 2005). A study has also 

revealed ionic species to constitute up to 70% of the total aerosol mass (Hueglin et al., 

2005). 

 

 

Figure 1.1: The arrangement of particles by their typical mass/size distribution in the 

atmosphere (Malm, 1999) 

 

Fine particulate matter is the most dangerous component because it can travel over long 

distances and can penetrate into the respiratory tract carrying toxic substances (Pope and 

Dockery, 2006). Many studies have suggested that the fine particles rather than coarse 

particles (PM10) are more damaging to health (Harrison and Yin 2000; Samet et al. 2000). 

Schwartz et al. (1996) disputed these theories that fine particles produce more health 
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effects than coarse particles. This is because during certain times, one size range of 

particles has been shown to produce a certain health effect, while at the other times this 

same size range of particles has shown no effect. The health effects may be irrespective of 

particle size but dependent upon source type. Particles from different sources have been 

shown to have quite different health effects (Laden et al., 2000; Morawska and Zhang, 

2002). However, the concentrations of fine and coarse particles are well correlated 

(Anderson et al., 2001). An increase in daily mortality by approximately 1% per 10 µg m
-3

 

increase in PM10 concentration has been reported by Harrison and Yin (2000). Similar 

evidence has been reported by Anderson et al. (2001), as they linked ambient particles of 

PM10 measured in the West-Midlands conurbation of the UK with daily mortality.  

 

Determination of particulate matter size and identification of aerosol sources are important 

tools for strategizing abatement measures in air quality control and for policy making. 

Aside from the health consideration of PM10, Hien et al. (2001) stated that it also provides 

information about dissimilarity between anthropogenic and natural crustal matter sources.  

 

1.3     Health Effects of Particulate Matter 

Continuous exposure to small-sized particle of atmospheric aerosols could pose negative 

effects on human health and the environment. The World Health Organization (WHO), 

European Union (EU), and the United States Environmental Protection Agency (US EPA) 

have highlighted guidelines for ambient particles concentration exposure (Table 1.1) for 

protection of human health. These guidelines are based on clinical, toxicological, and 

epidemiological evidence and were established by determining the concentrations with the 

lowest observed adverse effect (World Bank Group, 1998).  
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The health problems caused by particulate matter had been reviewed by many researchers 

(Harrison and Yin, 2000; Davidson et al., 2005; Pope and Dockery, 2006). These particles 

may due to their relatively minute sizes be dangerous to both human health and the 

ecosystem. It has been proven that toxicity of a substance would increase as particle size 

decreases (Buzea et al., 2007) due to greater surface area per unit mass. 

 

Epidemiological studies from many researchers have indicated a strong correlation 

between elevated concentrations of PM10 and increased mortality and morbidity (Lin and 

Lee, 2004; Arditsoglou and Samara, 2005; Namdeo and Bell, 2005). Pope et al. (2002) 

have shown an association between PM pollution and the number of deaths from cancer 

and cardiovascular and respiratory diseases. US EPA (2004) also linked PM concentration 

to increased adverse cardiac and respiratory health effects. Schwartz et al. (2002) 

demonstrated a strong relationship between PM2.5 and mortality in US six cities.  

 

Special importance has also been attributed to ultrafine particles by Pope and Dockery 

(2006) due to their high toxicity and effect on public health. Particles of less than 0.1 µm 

have been reported to form 60% total lung deposition while particles of sizes 0.1-1.0 µm 

and 5.0 µm formed 20 and 80% deposit, respectively (WHO, 2000). Elemental carbon 

(EC) or black carbon (BC) is a component of PM that has been associated with respiratory 

diseases and adverse cardiac effects in children (Tolbert et al., 2000; Gauderman et al., 

2004).  
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Table 1.1: Guidelines for average ambient particulate and gaseous concentrations 

 Pollutant Averaging Time                                     AQG value 

                    µg m
-3

 

  WHO (2006) EC (2006) US EPA 

(2008) 

PM2.5 1 year 10 25 15 

 24 h (99 

Percentile) 

25 50 35 

PM10 1 year 20 40  

 24 h (99 

Percentile) 

50  150 

Ozone, O3 8 h, daily 

maximum 

100 120 75 

Nitrogen dioxide, 

NO2 

1 year 40 40  

 1 h 200 200  

Sulphur dioxide, 

SO2 

24 h 20 125 14 

 10 min 500   

Benzene 1 year  5  

Lead 1 year  0.5 0.15 

  

ng m
-3

 

Arsenic   6  

Cadmium   5  

Nickel   20  

PAH   1  

 mg m
-3

 

Carbon monoxide, 

CO 

8 h daily 

Maximum 

 10 9 

 

 

Accumulated data suggested that PM may lead to pulmonary inflammation, lung diseases 

such as asthma and chronic obstructive pulmonary disease (COPD) (Gong et al., 2003; 

Gan et al., 2004). A study conducted in Germany has also shown a consistent significant 

increase in blood pressure in adults in association with increased concentrations of total 

suspended particulates (TSP) at a central site (Ibald-Mulli et al., 2001). Additionally, PM 

from combustion sources contains polycyclic aromatic hydrocarbon (PAH), which are 

anticipated to be carcinogenic (NTP, 2003). The potential carcinogenic effect of certain 
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dust compounds have been analyzed, and in some cases (for example, for silica dust), 

limited evidence of carcinogenic effects has been found (Soutar et al., 2000). 

Epidemiologic evidences suggested that there may be no safe threshold for fine particulate 

matter and that the effects are linearly related to its concentration (DiBattista and Brown, 

2003; Daniels et al., 2004). WHO (2000) observed that about 30% of the respiratory 

diseases are related to personal exposure to high levels of outdoor PM concentration.  

 

1.4   Effects of PM on the Environment 

Atmospheric particles can alter the amount of solar radiation transmitted through the 

Earth’s atmosphere (USEPA, 2004). Absorption of solar radiation by atmospheric 

particles, together with the trapping of infrared radiation emitted by the Earth’s surface by 

certain gases, enhances the heating of the Earth’s surface and lower atmosphere (Jacobson, 

2002). Increases in the atmospheric concentration of these gases due to human activities 

may lead to climate change with subsequent effect on humans and ecological system 

(IPCC, 2001). Reflective particles can also cause cooling by reflecting incoming solar 

radiation back to space. Stanhill and Cohen (2001) has shown a correlation between 

significant reductions in solar radiation received globally over 50 years on the earth 

surface due to increase in atmospheric aerosol. Hence, particulate matter plays a 

significant role in defining climate on both global and regional scales.  

 

Effects of air pollution on materials are related to both loss of aesthetic value and physical 

damage (US EPA, 2005). Studies have demonstrated that particle pollutants, primarily 

carbonaceous compounds caused soiling of commonly used building materials and 

culturally important items, such as statutes and artistic works (Ghedini et al., 2006; Nava 
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et al., 2010). This may lead to an increase in cleaning and maintenance costs and a loss of 

utility. Physical damage from the dry deposition of air pollutants, especially sulphates and 

nitrates, and the absorption or adsorption of corrosive agents on deposited particles also 

can result in the acceleration of naturally occurring weathering processes of man-made 

building and cultural materials (US EPA, 2004). 

 

1.5   Particulate Matter Measurements 

Aerosols are complex in nature, and the understanding of them depends on the 

instrumentation available to study them. Over time, different instruments have evolved 

ranging from offline to online. These instruments enable measurement of particles at 

different size ranges. Generally, offline PM measurement involves collection of aerosol 

onto filter substrates over a specified collection time. Offline air samplers such as micro-

orifice uniform deposit impactor, Partisol dichotomous and Streaker have been used for 

airborne particle sampling (Nava et al, 2002; Gietl et al., 2010; Yin et al., 2010; Gupta et 

al., 2012). The exposed filters are transported to laboratory for chemical analysis. Major 

disadvantages of offline measurement include bulky sampling, poor temporal resolution, 

problems of internal and external mixing, aerosol volatility during sampling, loss of 

materials during transportation of samples, filter weighing or cutting, and general 

laboratory errors (Rodriguez et al., 2012). Most of these shortcomings could be 

circumvented by practising good sampling and laboratory procedures. The use of online 

instruments for aerosol measurement provides solutions to all the problems arising from 

offline sampling methods of PM. Online instruments entail measuring PM in a real time. 

This gives a high time resolution measurement and can be used to complement offline 

instruments.  
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1.6   Single Particle Analysis 

Aerosol time of flight mass spectrometry (ATOFMS) provides continuous, real-time 

detection and characterization of single particles from poly-disperse samples, supplying 

information on particle size and composition (see details in the methodology chapter). 

Single particle analysis involving airborne particulate matter has been traced back to the 

1970s (Gross et al., 2000). The breakthrough of simultaneous analyses of both negative 

and positive spectra of a single particle in a real time came when Prather and co-workers 

developed ATOFMS in 1994 at the Department of Chemistry, University of California, 

Riverside, California, United States. The instrument was used for calibration and 

optimization of organic-based particles containing small amounts of various salts 

including NaCl, KCl, and Na2SO4. Three clear distinct mass spectra were created 

indicating that the instrument was capable of sizing and ionising particles typical of the 

atmospheric environment.  

 

Single particle mass spectrometry is a documented technique well suited to determine the 

size and composition of large numbers of particles (Sullivan and Prather, 2005). The 

advantage of ATOFMS over other methods of source apportionment is its ability to 

identify association among species within individual particles. This association can be 

related to direct source apportionments (Kelly et al., 2003). ATOFMS is also capable of 

avoiding incorrect mass assignment due to interferences (multiple ions detected at the 

same nominal mass) (Noble and Prather, 2000). However, the key disadvantage is its cost 

of purchase and interpretation of the spectra which requires a steep learning curve (Kelly 

et al., 2003). 
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1.6.1     Literature review on ATOFMS 

The single particle mass spectrometry technique with ATOFMS has been used extensively 

for online source apportionment of ambient aerosols as well as indoor air quality 

monitoring (Dall’Osto et al., 2004; Dall’Osto et al., 2007; Toner et al., 2008; Smyth et al., 

2013).  

 

In 1997, during the South California Ozone Study-North American Research Strategy for 

Tropospheric Ozone (SCOS97-NARSTO), an ATOFMS instrument was used by Pastor 

and co-workers for single particle measurements. The data were published in 2003. ART-

2a  (Adaptive Resonance Theory) software applied for the analysis of particles identified 

classes such as organic carbon with amines, elemental carbon, organic carbon, ammonium 

nitrate, sea salt, soil dust and various metal-rich types.  

 

In 2008, Toner et al. deployed Ultra Fine Aerosol Time of Flight Mass Spectrometer (UF-

ATOFMS) to a freeway site in San-Diego, California, USA for a single particle analysis. 

With the aid of ART-2a, UF-ATOFMS revealed clusters categorized as emissions from 

diesel powered heavy duty diesel vehicles (HDDV) and gasoline powered light duty 

vehicles (LDV). The study showed that 83% of the UF-ATOFMS detected particles were 

emitted from vehicles of which 51% and 32% were apportioned to HDDV and LDV, 

respectively. The single particle analysis revealed HDDV as the major emitter of ultrafine 

particles of diameter 50-100 nm while LDV was a major contributor to fine particles (100-

300 nm). The study was consistent with many studies which linked HDDV to ultrafine 

particle emissions (Hallquist et al., 2012). The ATOFMS instrument has proven its ability 

to resolve different particles associated with different fuel-types.  
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In Northern Mexico City, Moffet et al. (2008) was able to measure ambient aerosol in the 

industrial and residential areas of the city using ATOFMS. Their findings indicated that 

biomass burning and industrial emissions made significant contributions to primary 

particle loadings in Mexico City, depicting strong correlations with local meteorology. 

Results also showed that the majority of particles in the submicron mode were emitted 

from biomass/bio fuel burning (40%) and aged organic carbon (31%), internally mixed 

with oxidized OC marker (C2H3O, m/z = 43), nitrate, sulphate and ammonium. This study 

showed the relevance of ATOFMS instrument in the identification of biomass markers; 

and also for the apportionment of particulate matter. 

 

Dall’Osto and Harrison have employed the ATOFMS instrument for single particle 

analysis of PM in Athens (Greece) in 2006. A unique ‘car particle’ due to signals at m/z 54 

(
54

[Fe]
+
), 56 (

56
[Fe]

+
), 88 [FeO2]

+
, 138 [Ba]

+
 and 154 [BaO]

+
 was identified as a traffic 

fingerprint. Five broad classes of PM identified during the study were sea salt, dust, 

carbon, inorganic and K-rich particles. Secondary carbonaceous particles which could 

have been difficult to detect by ion chromatography analysis were also revealed in the 

study. 

 

Sullivan et al. (2007) also adopted ATOFMS for online characterization and composition 

of 731,309 particles from the marine environment. The ART-2a software used for 

classification of particles showed that nitrate and sulphate made up of 60-80% of PM in 

the super-micrometer size range. The observed nitrate and sulphate were associated with 

mineral dust particles formed during dust events. Information about the chemical mixing 
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state, which could have been difficult to obtain with filter-based measurement, was 

highlighted by the ATOFMS instrument. 

 

In 2008, Dall’Osto et al. published the work done in the vicinity of an integrated 

steelworks in Port Talbot using ATOFMS. The single particle analysis linked with wind 

sectors has attributed Fe and Mn particles to basic oxygen furnace steelmaking (BOS), 

cokemaking, and/or coal stockyards emissions at the integrated steel units. The study 

further attributed Ni, Pb and Zn to hot and cold mills; Fe-rich particles were linked to the 

sinter plant/blast furnace and ore stockyard demonstrating that ATOFMS is a formidable 

tool for characterizing chemical fingerprints of steelworks emissions. 

 

Recently, Giorio et al. (2012) applied three different techniques to analyse ATOFMS data 

collected in London, UK. The data analysis techniques used were PMF, ART 2a and 

Environmental Chemistry through Intelligent Atmospheric Data Analysis (ENCHILADA) 

(K mean cluster). Among the components revealed by ATOFMS were fresh and aged EC, 

organics, sodium chloride, sulphate, nitrogen and potassium. This showed that ATOFMS 

is capable of identifying aged and freshly emitted particles. 

 

With an ATOFMS instrument, Smyth et al. (2013) in their recent study at a sampling site 

in Milwaukee, USA attributed emissions of Se, Cd, Sb and Mo to coal-fired plant. 

Bromine containing compounds that could have been difficult to determine with offline 

instrumentation was revealed by ATOFMS.  
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1.7      Receptor Models 

The fundamental principle of receptor models is that mass conservation can be assumed 

and a mass balance analysis can be used to identify and apportion sources of airborne 

particulate matter in the atmosphere (Viana et al., 2008a). They infer contributions from 

different source types using multivariate measurements taken at one or more receptor 

locations, which could be indoor or outdoor (Watson et al., 2002). They are a 

complementary air quality assessment to the source models (dispersion model) that 

estimate receptor concentrations from source emissions and meteorological measurements. 

Receptor models use mathematical approach to quantify sources contribution using the 

analytical results obtained from chemical markers (Watson et al., 2002). The receptor 

model attributes primary particles to their source types and determines the chemical form 

of secondary aerosol when appropriate chemical components have been measured 

(Guttikunda, 2009).  

 

The two main types of receptor models are the Chemical Mass Balance (CMB) (Watson et 

al., 2002) and multivariate statistical methods (Hopke, 2003). Multivariate models include 

Principal Component Analysis (PCA) (Garcia et al., 2006), Positive Matrix Factorization 

(PMF) (Paatero and Tapper, 1994) and Unmix (Henry, 1997; 2002).  

 

The CMB model reconstructs the chemical compositions of ambient samples through co-

linearity between the emission source and compositional profiles (Watson et al., 2002). 

The model assumes that the chemical species to be included in source profiles do not 

undergo chemical transformation between the sources of emission and receptor sites (Held 

et al., 2005), which implies that CMB model is not suitable for apportionment of 

secondary aerosols. This assumption is one of the major drawbacks of the model. 
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However, CMB has been applied extensively for source apportionment of PM; the model 

has been able to identify and apportion PM to vehicular, industrial, coal combustion, 

vegetative and wood burning, sea salt, crustal materials, fly ash, paved road dust, gasoline 

engines, meat cooking (Vega et al., 2000; Watson et al., 2001; Held et al., 2005, Yin et 

al., 2010).  

 

Generally, the major advantage of multivariate statistical analysis over CMB is that no 

prior knowledge of emission source profiles is required (Watson et al., 2002). However, 

large numbers of samples are needed to be fed into the models for optimal results to be 

achieved. Difficulty in selection of the numbers and types factors in the multivariate 

receptor model stands as another limitation. It is obvious that none of these models is 

without its own limitation. To overcome this problem, combinations of two or more 

models have been found feasible and plausible for source apportionment of environmental 

data.  

 

Receptor models of principal component analysis (PCA), principal matrix factorization 

(PMF) and enrichment factor (EF) were used in this study. 

  

1.7.1    Principal component analysis (PCA) 

PCA is a technique which attempts to explain the statistical variance in a number of 

original variances by a minimum number of significant components. It is a multi-element 

statistical measurement that has been widely applied to source apportionment of 

particulate pollutants such as inorganic (metals and water soluble ions) (Jeon et al., 2001; 

Venkataraman, et al., 2002; Marcazzan et al., 2003; Almeida et al., 2005; Ayrault et al., 
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2010), and organic (polycyclic aromatic hydrocarbons) (Singh et al., 2008; Liu et al., 

2009; Yang et al., 2013).  

 

1.7.2    Positive matrix factorization (PMF) 

Positive matrix factorization (PMF) is a source apportionment model based on the 

measurement of ambient data with the knowledge of the specific study for interpreting the 

resolved factors into meaningful sources (Johnson et al., 2006). It allows for the 

determination of source composition profile and source contribution simultaneously. PMF 

is an advanced algorithm in receptor modelling developed by Paatero and Tapper (1994). 

Details of the PMF model have been extensively discussed in Hopke (2000) and Paatero 

(2000). It has been used to identify sources of bulk wet deposition concentration of strong 

acids in Finland (Anttila et al., 1995), urban aerosol (Ramadan et al., 2000; Harrison et 

al., 2011), exposure to volatile organic compounds (VOCs) in New Jersey and California 

(Anderson, Miller and Milfor, 2001), and hydrocarbon emissions in Houston, Texas (Xie 

and Berkowitz, 2006). PMF has been used for a variety of source apportionment and 

spatial analysis (Hopke et al., 2003; Paatero et al., 2003; Kim et al., 2004; Kim et al., 

2005; Harrison et al., 2011; Gupta et al., 2012). One major advantage of PMF is that it 

does not require source profiles to determine source contribution. However, it could be 

difficult to identify potential sources without some sort of profiles to which to compare the 

final results (Rizzo and Scheff, 2007). 

 

1.7.3     Enrichment factor (EF) 

Enrichment factor model has to do with the comparing the ratios of atmospheric 

concentrations of elements to a reference element and same ratios in geological or marine 
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material. Reference ratios vary substantially between bulk soil and suspendable particles, 

and among different regions. Heavy metal enrichments are commonly attributed to 

industries: sulphur to secondary sulphate as potassium to biomass burning; vanadium and 

nickel to oil combustion, selenium to coal-fired plants, iron and manganese to steel and 

calcium to construction or cement (Watson and Chow, 2007). Many researchers have 

applied this technique in particulate matter analysis (Choi et al., 2001; Braga et al., 2005; 

Reimann and de Caritat, 2005; Ayrault et al., 2010). 

 

1.8       Integrated Iron and Steel Production 

Steel production is globally significant in the aspect of construction, machinery, 

equipment, household materials, agriculture, power generation and distribution, and 

medicine. However, it has been linked to emission of major air pollutants especially PM 

and heavy metals (Remus et al., 2013). In the UK, emission data in 2006 attributed 36% 

of Pb, 32% Zn, 40 % Mn and 12% Cd to steel emissions (Dore et al., 2008). Air pollutants 

emitted from the integrated steelworks could be attributed to the diverse operation units 

involved in steel production (Figure 1.2). Amongst the production processes involved in 

the integrated steel works are coke production, blast furnace (BF) and basic oxygen 

furnace steelmaking (BOS). These processes entail primary production of steel from the 

iron ore. Secondarily, steel scraps can be processed into steel at the electric arc furnace.  

Presently, about 70% of the world steel is produced from BOS while 29% in EAF (World 

Coal Association, 2013). Each of these steelmaking processes from the materials handling 

to steelmaking contributes significantly to emissions of metals into the atmospheric 

environment (Tsai et al., 2007). Researchers around the world have assigned certain 
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chemical fingerprints to the individual processing units in the steel industry to attribute 

their PM sources.  

 

 

 Figure 1.2: Materials flowchart in an integrated steelworks (Remus et al., 2013) 

 

1.8.1 Cokemaking (Coking) 

This involves coal (pulverized, bituminous coal) cooking that is subsequently used as fuel 

to reduce the iron ores and also drive off volatile impurities that would interfere with iron 

reduction step. The process is associated with release of particulate matter, carbon 
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monoxide, nitrogen dioxide, sulphur dioxide, toluene, naphthalene, phenol and other 

aromatics, cyanide compounds, hydrogen sulphide, and ammonia (Liberti et al., 2006). 

 

1.8.2 Sintering production 

This involves mixing materials such as iron ores, filter dusts and mill scale, together to 

prepare an appropriate feedstock for the blast furnace (Brigden et al., 2000). The sinter 

plant is associated with the emission of dust, polychlorinated dibenzodioxin and 

dibenzofuran (PCDD/F), heavy metals, SO2 and NOx in waste gases (Anderson and Fisher, 

2002). 

 

1.8.3 Ironmaking 

This is a high temperature process where metallic iron reduction from the oxide form 

takes place by burning with coke produced in the coking process.  The process takes place 

in a blast furnace with copious release of carbon monoxide, nitrogen oxides and sulphur 

oxides as major air pollutants. 

 

1.8.4 Steelmaking 

This is the final stage in iron and steel production, which involves the addition of various 

alloying elements to give the finished material the combination of properties desired. Steel 

making takes place in three ways viz: Basic Oxygen Furnace Steelmaking (BOS) used for 

processing pig iron; Electric Arc Furnace (EAF) used for recycled materials; and Open 

Hearth Furnace (OHF) where excess carbon and other impurities are burnt out of the pig 

iron to produce steel.   
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1.8.5 Literature review on industrial emission, in particular from steelworks 

In this section, the major types of PM-related pollutants will be briefly introduced with a 

particular focus on those from iron and steel industries. Particulate phase pollutants from 

industries include metals (Passant et al., 2002; Querol et al., 2007; Tsai et al., 2007), 

OC/EC (organic carbon, elemental carbon), PAHs (Rehwagen et al., 2005; Querol et al., 

2007), and water soluble ions (Querol et al., 2002). 

 

The iron and steel industry seems to contribute significantly to the emission of several key 

trace elements, such as Cd, Cr, Cu, Hg, Ni, Se, V, and Zn (Table 1.2). Analysis of airborne 

PM close to steel plants also showed that Fe, Mn, Zn, Pb, Cd and K are associated with 

emissions from the steel and iron plants. Microscopic analysis of individual particles also 

identified individual Fe-rich particles close to steel plants. For example, Moreno et al. 

(2004) identified iron spherules in both fine and coarse PM fractions at a steelworks in 

Port Talbot, South Wales, UK; Ebert et al. (2012) observed a significant fraction of 

individual iron oxides and iron mixtures in airborne PM near a steel industry in Duisburg, 

Rhine-Ruhr area, Germany. Elevated concentrations of these elements at the steel industry 

sites derive from the raw materials being used for steel production.  

 

A study by Tsai et al. (2007) also suggested that K and Pb, which contribute a significant 

percentage (15 and 2%) to the total observed particle mass, are associated with the 

sintering process. Similarly, Oravisjarvi et al. (2003) found that the sinter plant contributes 

96% and 95% of the total measured concentrations of Pb and Cd at Rahee, Finland. At the 

coke making process, major elements observed by Tsai et al. (2007) were S, Fe and Na. In 

the cold forming aspect of the iron and steel industry, major elements observed in the 
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particles were S, Fe, Na, K and Ni. The hot forming process showed high abundance of S, 

Fe, Na and Ca (Tsai et al., 2007).  

 

Table 1.2: Contribution of each trace metal from industrial processes to total emissions 

and their major sources in the UK based on 1999 NAEI (adapted from Passant et al., 

2002)  

 

 Industrial 

contribution, % 

Major sources 

As 16 blast furnaces; basic oxygen furnaces; electric arc furnaces; primary 

lead/zinc production; secondary copper production; cement 

production; glass production 

Cd 60 sinter plant; basic oxygen furnaces; primary lead/zinc production; 

secondary lead production; glass production; other processes 

(cadmium pigment manufacture) 

Cr 60 coke ovens; sinter plants; basic oxygen furnaces; electric arc 

furnaces; primary lead/zinc production; cement production; glass 

production; 

chromium chemicals 

Cu 53 sinter plants; blast furnaces; electric arc furnaces; secondary copper 

production; copper alloys and semis; chemicals 

Pb 28 sinter plants; basic oxygen furnaces; electric arc furnaces; primary 

lead/zinc production; secondary lead production; glass production; 

alkyl lead processes 

Hg 32 electric arc furnaces; iron and steel foundries; primary lead/zinc 

production; cement production; chloralkali processes 

Ni 14 sinter plants; blast furnaces; electric arc furnaces; primary aluminium 

production; glass production; nickel production 

Se 49 sinter plants; blast furnaces; secondary lead production; cement 

production;  

glass production 

V 10 sinter plants; blast furnaces; glass production 

Zn 71 blast furnaces; basic oxygen furnaces; electric arc furnaces; primary 

lead/zinc production; secondary copper production; glass production; 

other processes (zinc alloys, chemicals) 

 

The study of Machemer (2004) showed elevated concentration of Fe, Al, Si, S and Zn at 

sections close to both BOS and BF. Raw materials including iron ores (FeO, Fe2O3, 
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Fe3O4), limestone (CaCO3) and dolomite (CaMg(CO3)2) are used in a BF while, lime 

(CaO) and fluorspar (CaF2) are used in a BOS plant (Machemer, 2004).  

 

Integrated steel plants are also known for high emissions of mercury (Pacyna and Pacyna, 

2002; Themelis and Gregory, 2002; Borderieux et al., 2004). Asia and Europe are the 

regions where steel industries contribute most to the global mercury budget (Pirrone et al., 

2001; Pacyna et al., 2006). Mukherjee et al. (2008) reported that annual mercury 

emissions from iron and steel industries in India increased by a factor of 1.25 between 

2000 and 2004.   

 

Querol et al. (2007) observed higher mean concentrations of metals in the PM sampled at 

the industrial sites in Spain between 1995 and 2006 compared to rural background values. 

Metals observed showed some concentrations peculiar to corresponding industries: steel 

industry (Cr, Mn, Zn, Se, Mo, Cd, Sn and Pb); stainless steel industry (V, Cr, Mo);  copper 

metallurgy industry (Cu, As); zinc metallurgy industry (Zn); petrochemical estates (V, 

Ni);  glaze and ceramic estates (Zn, As, Se, Zr, Pr, Tl, Pb and Bi);  and brick 

manufacturing industry (Li, Ti, V, Ni, Ge, Se, Rb, Ce and Tl).  

 

Steel industry is an important emitter of PAHs into the atmosphere (Yang et al., 2002; 

Manoli et al., 2004). PAHs are usually released from coke manufacturing, sintering, iron 

making, casting, mould pouring and cooling and steelmaking (Yang et al., 2002). Bjorseth 

and Ramdahl (1985) estimated PAH emissions from the iron and steel industries as 12% 

of yearly total PAH emission in Norway and therefore, represented the second major 

emitter of PAH in the country. Choi et al. (2007) suggested that the steel complex was the 
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major PAH emitter in the South Eastern city of Korea. PAH emission profiles from iron 

and steel industries have also been measured by Yang and co-workers (2002) in southern 

Taiwan. According to Liberti et al. (2006), the level of benzo[a]pyrene around a coke 

oven battery may range from 100 to 200 µg m
-3

. High concentrations of PAH have been 

documented by Rehwagen et al. (2005) at the industrial site of La Plata in Argentina. The 

study showed a wide difference in the concentration of benzo (a) anthracene and chrysene 

between the industrial locations compared to a control site. The sum of PAH at the 

industrial study site was found to be five times higher than at the control site, and almost 

two times higher than at a La Plata city centre monitoring location. 

 

In addition, steel smelters have been reported to be amongst the largest source of dioxins 

to the atmosphere of Europe (Lexen et al., 1993; HMIP, 1995; EC, 1999). The study by 

Choi et al. (2008) assessed the atmospheric levels and distribution of dioxin-like 

polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) around an 

iron and steel industry. High concentrations of dioxin-like PCBs and PBDEs were 

observed near the steel plants compared to those at residential and semi-rural areas, and 

the source was attributed to the steel complex. The study concluded that the unexpectedly 

high levels of PBDEs in the steel complex might be caused by the emissions of PM from 

the mini mills where scrap metals and flame-retardant materials are used in the plant.  

 

Highly time-resolved ambient measurement made at a fence line site adjacent to a large 

coke production facility have also revealed periodic spikes of high pollutant 

concentrations associated with the emissions from the coke plant (Weitkamp et al., 2005). 

Major emissions from the coke plant were OC, EC and trace metals. PM emissions from 
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the coke facility were dominated by PM2.5, which were estimated to contribute 84% of the 

PM10 mass.   

 

Apart from the primary particulate pollutants discussed above, industries are also known 

for emission of gaseous pollutants such as carbon dioxide (CO2), carbon monoxide (CO), 

sulphur dioxide (SO2), nitrogen oxides (NOx) and hydrogen gas (H2), and volatile organic 

carbon (Tsai et al., 2008; Johansson and  Soderstrom, 2011). Some of these gaseous 

pollutants can be transformed into secondary aerosols which are commonly detected in 

urban aerosols. It is challenging to estimate how much of the secondary aerosols are from 

the primary pollutants emitted from different industries based on receptor modelling.  

 

1.9      Objectives of the Study 

The main aim of this study is to quantity the contribution of a steelwork complex to 

airborne particulate matter concentrations. 

 

Specific objectives are: 

 To quantify the mass and chemical concentrations of PM in the vicinity of the Port 

Talbot steelworks, 

 Understanding the composition and sources of individual particles at Port Talbot 

steelworks,  

 Determination of the size distribution of PM mass, number and chemical 

concentrations in the vicinity of steel industry and at an urban background site, 

 Source apportionment of particle compositional concentrations using PMF and 

PCA, 
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 Understanding the contribution of different pollutants from the specific steelwork 

processes using pollution rose plots of air pollutants during Port Talbot sampling 

campaign, 

 Quantification of the steelworks increment by wind sector linking source to 

receptor locations. 

 

This work will identify different emission components of an integrated iron and steel 

industry responsible for particle and gaseous pollution in Port Talbot. This will provide 

pollution control and mitigating strategies for relevant agencies and policy makers in the 

study area.  
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CHAPTER 2 - GENERAL METHODOLOGY 

 

2.1 Abstract 

This chapter describes the general instrumentations for aerosol sampling and online 

monitoring and for the analysis of offline samples. Details of the sampling sites and the 

individual campaigns will be described in the following chapters. Aerosol sampling was 

achieved using two approaches: offline and online sampling methods. Part of this thesis 

methodology has been published in AWE International. The offline aerosol samplers used 

include Dichotomous Partisol 2025, Micro-Orifice Uniform Deposit Impactor (MOUDI), 

PCR TECTORA Streaker and High Volume Sampler (Digitel). The online instruments 

include Aerosol Time of Flight Mass Spectrometer (ATOFMS), Aethalometer, Grimm 

Optical Particle Counter (OPC) (model #1.108) and Filter Dynamic Measurement System 

(FDMS).  

 

Particulate matter (PM) mass analysis involves both online (FDMS) and gravimetric 

analyses. PM chemical components measured include metals (Al, V, Cr, Fe, Mn, Cu, Ba, 

Sb, Pb, Zn, Ni, Cd) and water soluble ions (Cl
-
, NO3

-
, SO4

2-
, Na

+
, NH4

+
, K

+
, Mg

2+
, Ca

2+
). 

Metal concentrations were measured by Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) while water soluble ions were measured by Ion Chromatography (IC). Streaker 

filters were analysed by Particle Induced X-ray Emissions (PIXE) analysis for elemental 

concentrations (Na, Mg, Al, Cl, S, K, Ca, Ti, V, Cr, Ni, Mn, Fe, Cu, Zn, As, Se, Rb, Sr, 

Si,Br, Pb). Black carbon (BC) mass concentrations were monitored online using an 

athalometer. 
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Gaseous pollutants including NO, NO2, NOx, SO2, CO and ozone and meteorological 

parameters were monitored during the campaign.  

 

2.2 Offline Instruments for PM Measurement 

2.2.1    Micro-orifice uniform deposit impactor (MOUDI) sampler 

Size resolved particles were sampled with a MOUDI sampler. The MOUDI (MSP 

Corporation, Shoreview, MN, USA) sampler is a general-purpose impactor that has been 

adopted for sampling indoor and outdoor particles. It has been employed for many studies 

such as visibility, underground mine and environmental pollution (e.g., Marple et al., 

1991). The MOUDI sampler used for this study was an 8-stage version (Model 100) with 

the cut points 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32 and 0.18 µm; and a nominal flow rate of 30 

L min
-1

. However, the flow rate of 30 L min
-1 

could not be attained during the sampling, 

thus a correction factor was adopted using the formula:  

 

Dp * √
  

  
        (2.1) 

 

where Dp is the MOUDI stage nominal cut-point, F1 is the design flow rate of the MOUDI  

sampler (30 L min
-1

) while F2 was the achieved flow rate during the campaign (21.5 L 

min
-1

).  

 

Polytetrafluoroethylene (PTFE) filters (Whatman, diameter 47 mm and pore size 1.0 µm) 

were used for particle collection on all the impaction stages while quartz filters (Whatman, 

diameter 37 mm) were used as backups (after-filters). 
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The operational principle of the instrument follows the same steps as any other inertial 

cascade impactor with multiple nozzles (MSP Corporation, 1998). However, unlike other 

conventional cascade impactors, MOUDI uses a large number of micro-orifice nozzles to 

reduce jet velocity and pressure drop. It minimizes particle bounce and re-entrainment 

thereby encouraging collection efficiency.  

 

 

Figure 2.1: A pictorial representation of MOUDI and schematic diagram of a stage in 

MOUDI (MSP Corporation, 1998) 

 

The particle laden air impinges upon an impaction plate at each stage where particles 

larger than cut-size cross the air streamlines and are collected on the impaction plate. 

Particles of smaller sizes with less inertia move to the next stage with smaller nozzles 
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(higher velocity) and are collected. This process continues through the cascade impactor 

until the after-filter stage (back-up) where the smallest particles are collected. Details of 

particle collection by MOUDI have been discussed explicitly in Marple et al. (1991). 

Figure 2.1 shows a picture of a fully assembled MOUDI and a stage in a MOUDI 

instrument. 

 

2.2.2 Partisol dichotomous sequential air sampler (PM2.5 and PM2.5-10) 

A Partisol-Plus dichotomous sequential sampler (Model 2025) was employed for 24-hour 

(noon to noon) sampling of PM2.5 and PM2.5-10 on PTFE filters of diameter 47 mm. This is 

a sequential air sampler that splits a PM10 sample stream into PM2.5 and PM2.5-10 fractions 

with a virtual impactor (Rupprecht & Patashnick  Inc., 2001). In the system there are four 

cartridges each with a capacity of 16 cassettes containing the 47 mm filters. The two 

cartridges automatically supply the loaded 47mm filters for sampling while the remaining 

two cartridges store the exposed filters. One of the unique features of the dichotomous 

Partisol is its configuration for a range of programming, data input and storage.  The 

schematic diagram of the Partisol-plus Model displaying the flow configuration of the 

sampler is displayed in Figure 2.2. The volumetric flowrate of the Partisol is 15 L min
-1

 

for fine PM, and 1.7 L min
-1

 for coarse PM.  
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Figure 2.2: A picture and schematic diagram of dichotomous sampler (Rupprecht & 

Patashnick  Inc., 2001) 

 

The formulas required for calculation of fine and coarse PM are presented in equation 2.2 

and 2.3. 

 

For fine PM: 

 

Cf =   
  

   
         (2.2) 

For Coarse PM: 

 

Cc = 
  

  
 –  

  

  
 * Cf       (2.3) 
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Cf = concentration of fine PM 

Cc = concentration of coarse PM 

Mf  = mass of fine filter 

Mc = mass of coarse filter 

Vf = volume of air sampled by fine (Flowrate (15.0 L min
-1

) * time (60*24 min)  

Vt = volume of total air sampled (Flowrate (16.7 L min
-1

) * time (60*24 min) 

Vc = volume of air sampled by coarse component (Flowrate (1.7 L min
-1

) * time (60*24 

min) 

 

2.2.3 Filter dynamic measurement system instrument (FDMS) 

The Filter Dynamic Measurement System (FDMS, Model 8500, Rupprecht & Patashnick 

Inc., Albany, NY) instrument belonging to the Automatic Urban Rural Network (AURN), 

Port Talbot is an online PM measuring instrument based on Tapered Element Oscillating 

Microbalance (TEOM) technology. The evolution of FDMS was a result of TEOM 

shortcomings in which semi-volatile compounds such as ammonium-nitrate and organic 

aerosols are lost during measurement (Charron et al., 2004). The FDMS instrument 

measures PM mass concentration and also quantifies the change in filter mass from 

evaporative and condensation processes (Green, 2004). Like TEOM (principles detailed in 

Green (2004), airflow of 16.7 L min
-1 

enters through the Rupprecht & Patashnick PM10 

inlet. By the principle of isokinetism, the airflow is split into two (main, 3.0 L min
-1 

and 

auxiliary, 13.7 L min
-1

) with the main flow going through a microbalance. Instead of 

heating to 50 
o
C as in TEOM, air stream is passed over a dryer and mass is measured at 30 

o
C. Air sample is then alternated between base and purge mode where changes in the mass 
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of filter is measured. The FDMS instrument is depicted in Figure 2.3. FDMS PM data 

were downloaded from the Department for Environment, Food and Rural Affair (DEFRA) 

Air Quality Data Achieve at (http: //uk-air.defra.gov.uk/data/.), and Welsh Air Quality 

website (http://www.welshairquality.co.uk/data_and _statistics.php). 

 

 

Figure 2.3: FDMS unit and the schematic of operation (Rupprecht & Patashnick 

Inc., 2003) 

 

2.2.4 Streaker sampler 

In this study, two Streaker samplers (TCR TECTORA) were employed. The first Streaker 

was placed at the background site (Little Warren) while the second Streaker was placed at 

the Fire Station site (which is about 250 m away from the steelworks). Figure 2.4 shows a 

unit of a Streaker instrument as well as its sampling component.   

 

http://www.welshairquality.co.uk/data_and%20_statistics.php
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Figure 2.4: A unit and sampling diagram of a Streaker (PIXE International 

Corporation, 2003-2008) 

 

Generally, the Streaker sampler is a two-stage continuous sampler that separates PM10 into 

two fractions: fine by filtration and coarse by impaction. An air flow of one litre per 

minute enters through the sampler’s inlet into the non-rotation impactions stage (PM10), 

followed by a rotating impaction stage (PM2.5-10) which exits through a rotating filter stage 

where smaller particles (PM2.5) are retained (Figure 2.4). It should be noted that the 

Streaker sampler employed in this study is not the PIXE Streaker. However, in operations 

and principles, there are no differences between these Streakers (PIXE International 

Corporation, 2003-2008). Therefore, readers are directed to PIXE international manual for 

further reading. An interesting aspect of a Streaker sampler is its selectiveness in 

operational time and sizes that is switch controlled. Particle samplings are collected on a 

special 82 mm filter (kapton (yellow colour) for PM2.5-10 and nucleophore (white) for 
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PM2.5).  Although, the Streaker filter size is 82 mm in diameter, only a 7 mm circular 

portion of the filter collects the particles. The sampled filters are analysed using ion beam 

analysis of Particle Induced X-ray Emission (PIXE). 

 

2.2.5 Digitel high volume aerosol sampler 

The Digitel high-volume sampler (model DHA-80 Digitel Elektronik GA, Hagnau, 

Switzerland) employed in this study is an automatic air sampler for the collection of 

aerosol samples (PM2.5). The exposed Digitel filter samples were subsequently analysed 

for organic and elemental carbon. Unlike a conventional high volume sampler, the Digitel 

high volume sampler is equipped with an integrated microprocessor unit for collecting 

necessary sampling data as well as for filter exchange at a preset time. Airflow is also 

controlled, even though the instrument was designed for air flowrate of 100-1000 L min
-1

, 

the flowrate set for this study was 506 L min
-1

. The filters (150 mm) are held in holders 

and are loaded in a cartridge that could contain 15 filter holders. Prior to sampling, the 

quartz filters (Whatman) were pre-treated by heating in an oven set at 500 
o
C for 4 hours. 

The meteorological measurements can be integrated with the sampler if their sensors are 

available. The pictorial and schematic diagram of a Digitel sampler showing its mode of 

operation is presented in Figure 2.5.  
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Figure 2.5: A filter loaded and schematic unit of a Digitel high-volume sampler 

(Digitel Elektronik, 2010) 

 

2.3 Online Instruments 

2.3.1 Portable aerosol spectrometer 

Particle number concentration was determined with a Grimm optical particle counter 

(OPC) (Figure 2.6). The Grimm instrument (model #1.108) developed by Grimm aerosol 

Technik GmbH, Ainring, Germany, is a real time particle counter with 15 particle size 

bins (from 0.3 to 20 µm). Particles of different sizes enter into the system through an inlet 

placed on top of the mobile laboratory roof deployed to the sampling site. The particles 

sizes are scattered by a flat light beam produced by a laser diode. The scattered light signal 

produced by each particle is detected by a high speed diode. This particle signal is then 

counted into 15 size fractions by a pulse height analyser incorporated into the 

spectrometer. The response time was set at 6 seconds for the counts to be displayed on the 
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computer system. The Grimm instrument could measure particle number concentrations 

up to 2000 # cm
-3

.  

 

 

Figure 2.6: A unit of a potable Grimm aerosol spectrometer 

 

2.3.2 Aerosol time of flight mass spectrometer (ATOFMS) 

Single particle analysis was achieved using ATOFMS (TSI model 3800) instrument. 

ATOFMS was developed by Professor Kimberly Prather and her research group in 1994. 

The instrument provides a real time measurement for aerosol sizes, concentration, and 

compositions. The ATOFMS model used for this study is TS1 3800 model (Figure 2.7). 

The entire system includes three notable compartments: (1) sampling or an aerosol 

introduction interface (2) particle sizing; and (3) mass spectrometry region for analysis of 

single particle composition (Figure 2.7; Huang et al., 2006). 
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Figure 2.7: A pictorial and schematic diagram of TSI ATOFMS (TSI Inc., 2004) 

 

The instrumentation of ATOFMS has been discussed by Gard et al. (1997). Aerosol 

particles from ambient atmospheric conditions are drawn through an inlet nozzle at a 

certain atmospheric pressure (760 torr) where the gas undergoes expansion. The small 

particles are accelerated to a higher velocity. The aerosol beam then passes through two 

stages of differential pumping before getting into the particle sizing region (Prather, 

1998). The aerodynamic diameter of the particle size is determined here based on the 

velocity distribution within the particle beam.  

 

The inlet in this study is made up of a copper pipe placed on top of the deployed mobile 

laboratory (Figure 2.8); and was fitted to an aerodynamic focusing lens (AFL). The inlet is 

protected with a rain cap. Air flow of 0.1 L min
-1 

is drawn into the AFL at a pressure of 2 

torr (Giorio et al., 2012). The particles then pass through a continuous-wave argon laser 

beam and generate a pulse of scattered light which is collected by a photomultiplier tube 

(PMT) (Gard et al., 1997). The particles then encounter a second laser beam (after 
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travelling 6.0 cm) placed orthogonally to the first and another scatter pulse is generated 

and detected with the second PMT (Gard et al., 1997). The distance between the scattering 

lasers and the measured time are used to calculate the particle velocity, which equates the 

particle’s aerodynamic diameter (Gard et al., 1997). Transforming the transit time into 

size is done by calibrating the instrument with a number of particles of known size to 

create a calibration curve from which the unknown sample particle’s size is determined.  

 

The particle after sizing enters the region of the laser desorption/ionization time-of-flight 

mass spectrometer where both the positive and negative ions generated by the 

desorption/ionization laser (Nd:YAG; 266 nm) are measured (Gard et al., 1997; Dall'Osto 

and Harrison, 2006; Giorio et al., 2012).  

 

From the calibration of this instrument, the measured ion transit times can be converted to 

the corresponding mass-to-charge ratios, which are related to the chemical components in 

the original particle.  

 

Size calibration was achieved by ranges of polystyrene latex spheres (PSL) in the diameter 

range 0.1-1.3 µm. These were introduced with TSI atomizer. Mass-to-charge (m/z) 

calibration was done with NaCl and graphite powder. A solution containing Li, Na, K and 

Pb was also introduced for mass calibration. Upon calibration, the data is loaded to MS 

Analyse programme to obtain a better fit curve for both size and mass. The files are saved 

and latter used in Environmental Chemistry through Intelligent Atmospheric Data 

Analysis (ENCHILADA) programme for K-mean clustering analysis. 
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Figure 2.8: The Mobile Laboratory showing sampling inlets of ATOFMS and 

other instruments during Port Talbot sampling campaign 

 

2.4 Determination of Black Carbon (BC) 

The aethalometer (model AE-31) developed by Magee Scientific Company, Berkeley, CA, 

USA was adopted for determination of black carbon. It provides a real time measurement 

for black carbon (BC) in aerosol through optical absorption analysis. An air stream of 4 L 

min
-1

 flow rate is drawn continuously through the inlet placed on the roof of the mobile 

laboratory housing the instrument, onto the quartz fiber filter tape. The attenuation of a 

light beam at wavelengths 880 nm, 370 nm and others passed through the filter tape 

(where aerosol particles are collected) is measured, and BC is calculated (Hansen, 2005). 

The time base of the instrument in this study was set at five minutes. Figure 2.9 shows the 

pictorial plate of the aethalometer used for online measurement of BC in this study.  
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Figure 2.9: The Magee Scientific Aethalometer during Port Talbot sampling campaign 

 

2.5 Laboratory Analysis of Offline PM Filters 

 2.5.1 Filter weighing 

Prior to sampling and after sampling, all filters were weighed with a Sartorius 

microbalance (Model MC 5;  1 µg sensitivity) equipped with a Polonium-210 anti-static 

source having been subjected to at least 24 hours pre-conditioning (25  5ºC and 30  

10% R.H.) in our clean weighing  room.  

 

2.5.2. Sample digestion for metals determination  

All exposed Teflon filters for Partisol and MOUDI samplers were cut into two equal 

portions. One-half portion was digested for metal analysis by reverse aqua regia 

procedures described in Harrison et al. (2003). Filters were digested in a solution of mixed 

concentrated acids (2.23 M HCl and 1.03 M HNO3) prepared by mixing concentrated 

nitric acid (65 mL) and concentrated hydrochloric acid (185 mL) in a 1000 cm
3
 volumetric 

flask and making up to 1 L with distilled deionised water. The mixed acid extractant (2 
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mL) was introduced into filters placed inside 4 mL narrow neck bottles and heated at 

100
o
C for 30 minutes in a water bath and then placed in an ultrasonic bath at 50 

o
C for 

another 30 minutes. This cycle was repeated and the ready digests transferred into 15 mL 

narrow neck bottles and made up to 10 mL with distilled deionised water. The ready 

extracts of filter samples were then analysed using an inductively coupled plasma mass 

spectrometer (ICPMS). The instrument was calibrated with appropriate standards to obtain 

calibration curves. The detection limits were calculated as three times standard deviations 

of the blank concentration. 

 

2.5.3 Water soluble ions analysis 

The second half of the exposed filter samples were analysed for water soluble ions 

(cations-Na
+
, K

+
, Mg

2+
, Ca

2+
,  NH4

+
, anions-Cl

-
, NO3

-
, SO4

2-
, C2O2

2-
, PO4

3-
). The filter 

samples were leached with 7.5 mL distilled de-ionized water in a Sonicator for 30 

minutes. The leachates were measured with Dionex ICS 2000 and DX 500 for anions and 

cations, respectively. 

 

An Ion Chromatography System (ICS) was employed for the analysis of water soluble 

anions. Generally, ion analysis processes involve eluent delivery, sample injection, 

separation, suppression, detection and data analysis (Figure 2.10). The samples were 

loaded into an autosampler in 0.5 mL vials. The sample was injected into the eluent stream 

of the instrument. For anionic component (Dionex ICS 2000), the eluent used was 

potassium hydroxide (KOH). The eluent and the sample are pumped through an analytical 

(separator) column, AS 11 HC (2x250 mm) and a guard column, AG 11 HC (2x50 mm) 

for separation or ion exchange and contaminants removal respectively (Thermo Fischer 
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Scientific Inc., 2012). For water soluble cations, the IC employed was Dionex DX 500 

equipped with CS 12A analytical column (4x250 mm) and CG12A guard column (4x50 

mm) (Thermo Fischer Scientific Inc., 2012). The eluent solution used was 1N methane 

sulphonic acid. On leaving the column, sample ions and eluent enter into a suppressor 

compartment. Here, sample ion detection is enhanced, while the eluent conductivity is 

suppressed. The next step is detection where the electrical conductance of sample ions are 

detected by conductivity cell based on the chemical and physical properties of the analyte 

(Thermo Fischer Scientific Inc., 2012). The signal is sent to a Chromeleon data collection 

system for further processing. Normally, the results in the Chromeleon are displayed as an 

ion chromatogram of the analytes. 

 

Calibration curves (for anions and cations) were obtained with series of mixed standard 

solutions prepared in the range concentration between 0.5 and 10 ppm. Ten blank filters 

were run for all the elemental concentrations to cancel the matrix effect of background 

levels. 
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Figure 2.10: Schematic diagram showing ion analysis process (Thermo Fischer 

Scientific Inc., 2012) 

 

2.5.4 Thermal optical reflectance analysis of organic and elemental carbon (OC/EC) 

OC/EC analysis was determined using a Sunset Laboratory thermal-optical carbon aerosol 

analyzer after the EUSAAR (European Supersites for Atmospheric Aerosol Research) 

protocol. Prior to determination, the quartz filters used for OC/EC analyses have been pre-

heated in an oven set at a temperature of 500
o
C for 4 hours. The essence of this is to 

remove any OC present in the blank filters. A punch of the exposed quartz filters (1.0 cm
2
) 

was placed into the manganese dioxide (MnO2) oven of the OC/EC measurement for 

analysis.  

  

The thermal-Optical Carbon Aerosol Analyzer uses thermal desorption in combination 

with optical transmission of laser light through the sample to speciate carbon collected on 

a quartz fibre filter (Sunset Laboratory Inc., 2000). OC is the optically transparent carbon 
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removed during an initial non-oxidizing temperature ramp from ambient temperature to 

870 
o
C under a helium atmosphere. The pyrolysed carbon fragment then passes through a 

MnO2 oxidizing oven where it is converted to carbon dioxide, which is mixed with 

hydrogen gas and quantitatively converted to methane over a heated nickel catalyst (Yin et 

al., 2010). The methane is subsequently measured by a flame ionization detector (FID). 

The oven then cools down to 600
o
C after completion of first temperature ramp.  

 

EC, an optically absorbing carbon removed at a high second temperature ramp from 550 

to 850
o
C is then initialized with the carrier gas switched to a helium/oxygen mixture, 

under which elemental carbon and pyrolysis products are oxidized and carried through the 

system and measured in the same manner as the organic carbon (Sunset Laboratory Inc., 

2000, Yin et al., 2010). The OC/EC instrument was calibrated with a sucrose solution 

standard.  

 

2.5.5 Inductively coupled plasma mass spectrometer (ICPMS) 

The extracts of filter samples for metals were analysed with an ICPMS (Agilent 7500 Ce) 

at the University of Birmingham. The version of this ICPMS is a quadrupole equipped 

with octopole reaction system that removes interfering species. Metals of interest were Al, 

Mn, Cr, V, Fe, Zn, Cu, Ni, Cd, Sb, Ba and Pb. The mixed standards (from the stock 1000 

mg L
-1

 VWR standard solution) were prepared in the series 0, 1, 5, 10, 20, 50 and 100 

ppb.  Internal standards used for ICPMS analysis were Sc, Ge, Y, In and Bi.  

In earlier work, this procedure has been evaluated by analysis of NIST SRM 1648a (Allen 

et al., 2001) and more recent trials have shown high efficiency (< 85%) for all elements 
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analysed except Al (ca 50% efficiency, also by comparision with XRF) and Cr (ca 50% 

efficiency). 

 

2.5.6 Particle induced X-ray emission (PIXE) analysis 

Streaker filters were sent to the University of Milan, Italy for particle induced x-ray 

emission (PIXE) analysis. PIXE is based on an ion beam analysis (IBA) technique 

involving hitting a target with a high energy ion beam to produce beam of accelerated 

particles. PIXE analysis could detect up to 20 elements from Na to Pb in less than ten 

minutes of bombardment (Lucarelli et al., 2011). Being a non-destructive technique, it 

also gives room for further complementary sample analysis. The exposed Streaker filters 

(Nucleophore and Kapton) were analysed with PIXE instrument (KN3000 3 MV Van de 

Graaf accelerator) (D’Alessandro et al., 2003). PIXE analysis of aerosol has been 

described in detail in Chiari et al. (2005). In brief, it involves air extraction of a proton 

beam of 3 MeV energy through a 7.5 µm Upilex Window. The Streaker filter samples 

were placed perpendicular to the beam at a distance 1 cm from the window and irradiated 

with a current beam of between 5 and 10 nA for around 10 minutes per sample. The 

collimated rectangular ‘streak’ (1 x 1.8 mm
2
) to the beam is equivalent to one hour aerosol 

sampling where the emitted X-rays for each spot are collected for 5 minutes (Nava et al., 

2002). It takes about 15 hours to completely scan through a whole Streaker filter with a 

mean collection of 3 µC per step. Loss of volatiles during irradiation was handled using 

helium flow. The spectra produced by PIXE were analysed using GUPIX software 

package. The elemental concentrations were obtained with calibration curves constructed 

with known certified standards (Micromatter Inc., USA). The elements observed with 

PIXE were Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, 
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Ba and Pb. Detection limits in the low Z elements (Z≤20) for Nucleophore ranged 12-46 

and 1-5 ng m
-3 

for medium to high Z elements (Z>20). In the Kapton, detection limits 

variations were 7-31 ng m
-3

 and 1-2 ng m
-3

 for low and medium-to-high Z elements, 

respectively. Si and Br were not detected in the Nucleophore filters while V was scarcely 

detected in both fine and coarse particles.  

 

2.6 Meteorological and Gaseous Parameters 

The meteorological and gaseous data were downloaded from the Department of 

Environment, Food and Rural Affairs (DEFRA) Air Quality Data Achieves at http://uk-

air.defra.gov.uk/data/. 

 

2.7 Data Processing 

2.7. 1 Offline data processing 

The daily and hourly data collected with offline instruments were processed with 

Statistical Package for Social Sciences (SPSS) for descriptive statistics, Analysis of 

Variance (ANOVA) and Duncan Multiple Range Test (DMRT). Time series and MOUDI 

size distribution curves were plotted using Microsoft Excel package.  

 

2.7.2 Online ATOFMS data processing with ENCHILADA software 

The ATOFMS detected 5,162,018 particles during sampling, out of which 580,798 

particles were ionised. ATOFMS data was transferred to the ENCHILADA software 

package for K-mean clustering. ENCHILADA software was developed by Gross and her 

research group at the Department of Chemistry, Carleton College, Minnesota, USA. In K-

mean clustering (non-hierarchical), the centres of clusters are picked to minimize the total 
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Euclidean distance (Gross et al. 2010). It involves sub-dividing single particles into a 

number of clusters defined at the operator’s discretion (Giorio et al., 2012).  The numbers 

of clusters were determined in this study by analysing the particles with varying numbers 

of clusters from 5 to 35. The errors of clusters were plotted against numbers of clusters 

(K). The best fit for the K mean cluster was 20 (Figure 2.11).      

                                                                                                                       

 

Figure 2.11: Plot of clustering error against numbers of K 

 

ENCHILADA requires that calibration data of chemical (m/z) and size be fed into the 

programme along with the ATOFMS data before operation. These calibration data were 

generated by uploading the raw ATOFMS data to MS Analyse programme. The chemical 

(m/z) calbration curve is displayed in Figure 2.12 while that of size is shown in Figure 

2.13 (r
2
=0.9999). 
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Figure 2.12: m/z calibration plots for positive and negation spectra 

 

Figure 2.13: Size calibration curve 
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2.7.3 Receptor models 

2.7.3.1 Principal matrix factorization (PMF) 

Daily and hourly data of particulate matter chemical composition were used for the source 

apportionment of PMF (model 3.0). Generally, all multivariate statistical models including 

PMF aim at solving environmental problems using the equation that can be written as: 

 

           *                   (2.1) 

 

Where xij is the elemental concentration of j species measured on i
th

 sample, gik is the 

contributing factor of k to i
th

 sample; f is the fraction of j species in the profile factor k, 

while eij is the residual error of PMF. This equation could be written as X matrix with i 

and j dimensions and expressed as: 

 

      ∑     

 

   

               

           (2.2) 

The main goal of PMF solution is to find the best fit for xij by adjusting gik and fkj until a 

minimum Q is obtained for a given contributing factor, p (Reff et al., 2007). Q can be 

defined as:    

 

   ∑∑(
   

   
)

  

   

 

   

 

                                                                                                                           (2.3) 
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Where n is the number of samples, m is the number of species and  ij is the uncertainty of 

j species concentration in the i
th

 sample.   

  

It is required that the error estimates are determined in order to optimize the PMF model. 

This is usually achieved through proper handling of missing and below-detection-limit 

data as well as calculation of uncertainties. There were few below-detection-limit data in 

the Partisol daily samples compared to the Streaker hourly samples. In this regard, some 

chemical species were excluded from the PMF analysis.  

 

Uncertainties for both Partisol and Streaker samples were calculated using the formula 

adopted by Viana et al. (2008b) as: 

 

 0.1*C+
   

 
                (2.4) 

 

where C is the concentration and MDL is the method detection limit. All below-detection-

limit data as well as missing data were treated equally by replacing with 1/2*MDL and 

their corresponding uncertainties calculated as 5/6*MDL (Polissar et al., 1998).   

 

Signal to noise (S/N) ratios were also adopted to maximize PMF solution. S/N values less 

than 0.2 were assigned ‘bad’ while S/N values between 0.2 and 2 were assigned ‘weak’ as 

stated in the PMF manual. Additionally, the values of correlation coefficient, r
2
 between 

the observed and predicted particulate constituents were also taken into consideration 

during PMF base model run. As a result of this, correlation coefficient (r
2
) values less than 

0.60 were marked ‘weak’ while r
2
>0.60 were marked ‘strong’. Relationship between Q 
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theory, Q robust and Q true values were taken into consideration in the PMF solutions. 

These Q values were indications of the goodness-of-fit of calculated parameters. The 

ratios of Q robust to Q true for all PM categories subjected PMF analysis in this study 

were less than 1.5. The Q theory was calculated as mn-p(m+n), where m, n and p are the 

number of species, samples and factors, respectively. The Q theory and Q robust values 

were close for Streaker and Partisol PM10 data. But for Partisol PM2.5 and PM2.5-10, PMF Q 

values were about 2 times higher than Q theory. Complementary to the base model, 

Bootstrap model runs were performed (minimum of r
2
=0.6) as described in the PMF EPA 

guide. The Bootstrap summary of the PMF model was used either to accept or reject the 

base model runs. In a situation where two or more Bootstrap mapped values are less than 

90, the base run model is rejected and re-run by varying the number of factors.  

 

The Partisol dataset at each sampling site was not enough to satisfy PMF data adequacy 

requirements, and hence all the data were pooled together to make N=99. After the PMF 

runs, source contributions by each site were separated.  

 

2.7.3.2 Principal component analysis (PCA) 

The technique which is based on eigenvalues involves mathematical operations where sets 

of variables are orthogonally transformed into a set of values of uncorrelated principal 

components (Ali and Chahouki, 2011). The PCA analysis in this study was carried out 

with SPSS package version 19.0. All the Partisol data for each PM size fraction at the four 

sites were pooled together and varimax rotations were performed. The hourly Streaker 

data were also screened through the varimax PCA. Multiple Linear Regression (MLR) 

analysis was conducted on the principal scores obtained from the varimax PCA for the 
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calculation of percentage source contribution. Details of PCA analysis has been given in 

Guo et al. (2004). 

 

2.7.3.3 Enrichment factor (EF) 

Enrichment is applied to environmental measurements in order to identify the origins of 

measured elements in the atmosphere, seawater and rainfall (Reimann and de Caritat, 

2000). EF is calculated as the double ratio of the concentration of a measured element to 

the reference element in the atmosphere and earth crust. Calculation of EF is expressed as: 

 

EF = 
     

    
 Sample    

     

    
 Crust      (2.5) 

 

Where Ca and Xa are the concentrations of desired and reference elements in the 

atmosphere while Cb and Xb are the concentrations of desired and reference elements in 

the earth crust. Reference elements are usually taken as Al, Li, Sc, Ti, Zr, Mn and Fe 

(Reimann and de Caritat, 2005). In this study, Al was selected as the reference material. 

The choice of Al was based on the fact that it is the most abundant terrestrial element. 

Apart from this, most of the elements adopted as reference materials are not considered in 

this study except Fe and Mn. This study was conducted at a steelworks complex and as Fe 

is one of the most concentrated elements measured at the steel industries (Oravisjarvi et 

al., 2003; Moreno et al., 2004 a, b, Tsai et al., 2007), it would therefore be unsuitable to 

select Fe as a reference element.  The [Cb]/[Xb] crust ratio used in this study was adopted 

from Wedepohl’s (1995) published work on the composition of the continental crust.  
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2.7.4 Windrose and Polar Plots 

The Open Air (version 0.8-0) and Lakes Environmental WRPLOT View™ (version 7.0.0) 

softwares were employed for polar and windrose plots of particulate and gaseous 

pollutants. Open Air software is a statistical package based on R computer programming 

language. Operational details of Open Air software can be seen in Carslaw (2013) while 

that of Lakes Environmental WRPLOT View is at www.weblakes.com/products 

/wrplot/resources/ lakes_wrplot_view_release_notes_7.pdf). 

 

2.8 The Summary of Port Talbot (PT) Sampling Campaign 

Receptor models were used in this study to identify and apportion the emission sources of 

PM in Port Talbot. Different PM sampling instruments were deployed during a one month 

monitoring campaign. Figure 2.14 summarizes the methodology applied in this study.  

 

                                     PM SAMPLING INSTRUMENTS 

 

OFFLINE           ONLINE 

Partisol           ATOFMS 

Streaker             Grimm   

MOUDI               FDMS                                                                       

 

 

Chemical Analysis       Data Analysis 

IC/ICPMS              Polar Plots 

PIXE Analysis        ENCHILADA 

  

  

 

 

Receptor Model (PMF and PCA)      Single Particle Apportionment 

Figure 2.14: The flow chart showing the methodology applied in Port Talbot study  

 

 

http://www.weblakes.com/products%20/wrplot/resources/%20lakes_wrplot_view_release_notes_7.pdf
http://www.weblakes.com/products%20/wrplot/resources/%20lakes_wrplot_view_release_notes_7.pdf
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CHAPTER 3- EROS AND BROS CAMPAIGN 

 

3.1 Abstract 

This chapter details the study conducted at an urban background (EROS) and roadside 

(BROS) site in Birmingham for comparison with the Port Talbot campaign, which is a 

typical industrial location. At EROS, both MOUDI and Partisol samplers were used for 

measurement of mass and compositional size distributions. At BROS, only the Partisol 

sampler was used for a two-week sampling campaign between March 28 and April 11, 

2012. Observed parameters include water soluble ions (Cl
-
, NO3

-
, SO4

2-
, Na

+
, NH4

+
, K

+
, 

Mg
2+

, Ca
2+

) and trace metals (V, Al, Cr, Mn, Fe, Zn, Cu, Sb, Ba, Pb). Results showed 

higher concentrations of NO3
-
, NH4

+
, Al and Fe at BROS than EROS for fine particles, 

and Cl
-
, NO3

-
, Na

+
, K

+
 and Fe for coarse PM indicating roadside increments. The ionic 

and trace metal components of PM2.5 at EROS constituted 44 and 7% of the total measured 

mass, respectively. The proportion of these species were 46 and 8% at BROS. For coarse 

PM fraction, water soluble and trace metal components represented 42 and 12% at EROS, 

and 56 and 11% at BROS. Good agreement was also found between Partisol and MOUDI 

PM data at EROS. 
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3.2 Introduction 

The presence of particulate matter at a high concentration could pose serious 

environmental and health concerns. Particles are emitted from numerous anthropogenic 

and natural activities. The prominent sources of PM in cities and urban areas include 

traffic, secondary, industrial, crustal, marine, combustion activities and power plants 

(Levy et al., 2003; Charron and Harrison, 2005; Liu and Harrison, 2011).  

 

The contribution of traffic to PM2.5, PM2.5-10 and PM10 was researched by Liu and Harrison 

(2011) in the UK. The results showed a significant increment at the roadside relative to 

urban background site. The study also indicated industrial and marine aerosol as major 

contributors to coarse PM in the UK. A related study by Harrison et al. (2012a) also 

showed an elevated mean concentration of PM2.5 at roadside sites compared to background 

sites.  

 

The aim of this section is to compare the PM compositional data collected at the urban 

background and traffic sites.  The mass size distribution patterns of particles collected at 

the urban background site (EROS) will also be compared with that of the Port Talbot 

industrial site.  

 

3.3. Materials and Methods 

3.3.1 Description of the study area 

Elms Road Observatory Site (EROS; 1.93
o
W, 52.46

o
N) is a typical urban background site 

which is located on an open field within the University of Birmingham campus. The 

nearest roads are lightly trafficked and the nearby railway line carries mainly electric 
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trains. Bristol Road Observatory Site (BROS; 1.93
o
W, 52.45

o
N) is a traffic polluted site 

also located within the University of Birmingham campus. These two sites are about 3.5 

km southwest of the centre of Birmingham (population of over one million and is part of a 

conurbation of 2.5 million people (Yin et al., 2010). EROS and BROS sites are shown in 

Figure 3.1.  

 

 

Figure 3.1: Map showing EROS and BROS monitoring sites 

 

3.3.2 Particulate matter sampling  

Particle sampling was carried out with Partisol samplers placed at the two monitoring sites 

within the University of Birmingham, UK for two weeks between March 28 and April 11. 

MOUDI 72 hour-samples were also collected at the EROS site only during the sampling 

period (March 30-April 11, 2012).  
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3.3.3 Sample digestion and analysis 

Details of sample digestion and analysis have been described in chapter two (section 2.5). 

 

3.4 Results  

3.4.1 Partisol PM compositions at EROS and BROS 

Figure 3.2 shows the mean mass and chemical compositions of PM2.5 and PM2.5-10 at 

EROS and BROS. The two sites show higher mass concentration of PM2.5 than PM2.5-10 

signifying more influence by anthropogenic emissions. The two categories of PM were 

higher at BROS, probably due to traffic contribution. The water soluble components of 

PM showed domination of NO3
-
 at BROS and SO4

2-
 at EROS. The order of abundance of 

species in PM2.5 at EROS is as follows: sulphate (17% of PM2.5), nitrate (13%), 

ammonium (12%) and Al (6%). The water-soluble and trace metal species constituted 44 

and 7% of measured PM2.5 mass concentration, respectively. In the PM2.5-10 fraction, the 

sequence of abundance of species followed: NO3
-
 >Al>SO4

2-
 >Cl

-
 >Ca

2+
 >Na

+
 /Fe>Mg

2+
. 

These components represented 42 and 12%, respectively for PM2.5-10. The remaining 

components of PM could be attributable to carbonaceous species which were not 

measured during the study. 

 

At BROS, NO3
-
 constituted 20 and 24% of the total PM2.5 and PM2.5-10 mass concentration, 

respectively. The sequence followed 15 and 10% for SO4
2-

, 15 and 1% for NH4
+
, 1 and 7% 

for Cl
-
, 1 and 4% for Na

+
, 8 and 5% for Al, and 1 and 5% for Fe. Mg and Ca

2+
 occupied 1 

and 4% of PM2.5-10 mass, respectively. The measured components of PM2.5 showed 

dominance by water soluble ions (46%) while trace metals only constituted 8% of PM2.5 

mass. A total fraction of 56% of measured coarse mass concentration was attributed to 



59 

 

ionic species and 11% to trace metals. The summary of mean and standard deviations of 

EROS and BROS PM data are shown in Appendix I. 
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Figure 3.2: Compositions of PM mass and chemical components at EROS and BROS 
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while elevated SO4
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, K

+
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and additionally, from the sea spray source (Mazzei et al., 2008). 
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ratio was 0.61 at EROS, and 0.60 at BROS indicating anthropogenic emissions at these 

sites.  

 

 

Figure 3.3: Linear regression analysis of PM2.5 and PM2.5-10 at EROS and BROS 

 

PM elemental differences between background (EROS) and roadside (BROS) sites are 

plotted in Figure 3.4. There were convincing increments in the mean values of NO3
-
, 

NH4
+
, Al and Fe at the roadside for PM2.5; and Cl

-
, NO3

-
, SO4

2-
, Na

+
, K

+
 and Fe for PM2.5-

10. Incremental parameters of Fe, Cl
-
, and Al have been reported as markers for traffic in 

many published studies (Kleeman et al., 2002; Chung et al., 2006; Lim et al., 2010; Xia 

and Gao, 2010). The increment values observed for Na
+
 and Cl

-
 at the roadside might be 

traced to de-icing salt (Harrison et al., 2004). The observed higher concentrations of Fe at 

the roadside for PM2.5 and PM10 agreed well with previous studies by Harrison et al. 

(2003).  
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Figure 3.4: PM elemental differences between background (EROS) and roadside 

(BROS) sites indicating roadside increments 

 

3.4.2 Partisol versus MOUDI data at EROS 

Figure 3.5 shows comparison between the mean Partisol and MOUDI data for fine and 

coarse PM. The sum of MOUDI particle size less than 2.1 µm was adopted as fine PM 

(PM2.5) while particles greater than 2.1 µm represent the coarse PM (PM2.5-10). In PM2.5 

fraction, both instruments have depicted dominance by SO4
2-

. Notable distinctions were 
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clearly observed for Partisol mean values for NO3
-
, NH4

+
 and Al in PM2.5. Elevated 

concentrations of NO3
-
, SO4

2-
, NH4

+
, Ca

2+
, Al and Fe were observed for Partisol relative to 

MOUDI PM2.5-10. However, Na
+
 and Cl

-
 values were higher in MOUDI PM2.5-10. PM data 

of MOUDI is shown in Appendix II. 

 

The two measuring instruments have shown a well defined relationship for measured 

components at EROS. This is depicted in Figure 3.6 where all measured PM components 

for Partisol and MOUDI were correlated. Inclusion of mass concentrations in the 

regression analysis gave a better relationship. The PM2.5/PM10 mass concentration ratio 

calculated for MOUDI was 0.60, similar to the value of 0.61 obtained for Partisol at 

EROS. The absence of MOUDI data at BROS made its comparison with Partisol data 

impossible. The full detail of MOUDI size-resolved compositions will be discussed in the 

next chapter as it is compared with the Port Talbot campaign.    
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Figure 3.5: Comparison between average Partisol and MOUDI data at EROS 

 

 

Figure 3.6: Relationship between Partisol and MOUDI data at EROS 
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+
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+
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2
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could indicate likely emissions from woodsmoke and incineration (Lim et al., 2010). Most 

of the trace metals were highly associated with one another, especially Fe with Mn and 

Ba; and Sb with Ba, Zn, Fe and Pb. This could signify crustal and traffic emissions. The 

marine influence was prominent in EROS PM2.5 with solid association that existed 

between Na
+
 and Cl

-
 (R

2
=0.78; p<0.01) 

 

The PM2.5-10 mass concentration at EROS showed strong correlations with NH4
+
, K

+
, Ca

2+
, 

Fe, Cr, Mn, Cu, Zn, Ba and Pb (R
2
=0.68-0.86; p<0.01). A strong relationship was 

established for Na
-
 and Cl

-
 (R

2
=0.95; p<0.01). Mn and Fe were significantly correlated 

indicating a similar emission source probably, from crustal or industry. Aluminium has 

not correlated well with Fe and Mn, suggesting their separate emission sources. Strong 

associations were established among the traffic signatures Sb, Fe, Cu, Zn and Ba in coarse 

PM.  

 

Pearson’s correlations for PM2.5 mass with other constituents at BROS are similar to what 

was observed at EROS. Association of NH4
+
 with SO4 and NO3, though weak, was better 

defined in PM2.5 at BROS than at EROS. Mg
2+

 and Ca
2+

 are also strongly correlated. 

Traffic signatures of Sb, Fe, Cu, Zn and Ba exhibit stronger correlations at BROS. The sea 

salt aerosols (Na
+
, Cl

-
) are weakly correlated at BROS. In PM2.5-10 portion at BROS, mass 

concentration shows negative correlation with most observed constituents. Na, K and Mg 

are strongly associated (0.98-0.99; p<0.01) in the coarse PM component at BROS 

confirming probable influence from the road re-suspension dust. The traffic elements were 

also strongly associated at BROS for PM2.5-10 as observed at EROS. 
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Table 3.1: Inter-site correlations between EROS and BROS PM 

Components Coefficient 

r
2
 

 Components r
2
 

PM2.5 Mass 0.87**  Al 0.20 

Cl
-
 0.55  V 0.92** 

NO3
-
 0.12  Cr -0.17 

SO4
2-

 0.36  Mn 0.87** 

Na
+
 0.29  Fe 0.81** 

NH4
+
 0.86**  Cu 0.54* 

K
+
 0.62*  Zn 0.92** 

Mg
2+

 0.68*  Sb 0.85** 

Ca
2+

 0.44  Ba 0.89** 

   Pb 0.71** 

     

PM2.5-10 Mass -0.33  Al -0.10 

Cl
-
 0.73**  V 0.87** 

NO3
-
 0.18  Cr 0.07 

SO4
2-

 -0.01  Mn 0.84** 

Na
+
 0.22  Fe 0.86** 

NH4
+
 0.30  Cu 0.88* 

K
+
 -0.20  Zn 0.48 

Mg
2+

 0.05  Sb 0.91** 

Ca
2+

 0.90**  Ba 0.91** 

   Pb 0.61* 

 

Table 3.1 shows the inter-site relationship among the measured components of PM2.5 and 

PM2.5-10 at EROS and BROS. These sites are about 250 m apart and hence could be 

influenced by related a factor, of which traffic is the major suspect. Strong relationships 

were also observed at EROS and BROS for PM2.5 and PM2.5-10 components of V, Mn, Fe, 

Cu, Zn, Sb, Ba and Pb. The species such as NH4
+
, K

+
, Mg

2+
 and Zn showed better 

associations at EROS and BROS for fine PM; while Cl
-
 and Ca

2+
 are better correlated in 

the coarse PM at the two sites. 

 

3.5 Discussion 

Most of the PM components (including mass concentrations) measured at the EROS 

background site are generally lower than those at BROS, a typical traffic-polluted site. 



69 

 

This is not surprising due to the roadside increment of pollutants. Elemental difference 

between fine SO4
2-

 and coarse NH4
+
 at EROS and BROS were 245 and 262 ng m

-3
. 

Conversely, coarse SO4
2-

 and fine NH4
+
 were measured at higher concentrations at BROS 

with incremental difference of 415 and 298 ng m
-3

, respectively. Since the two sites were 

within the University of Birmingham, insignificant regional transportation of these 

pollutants is expected (Harrison et al., 2004). The discrepancies in NH4
+
 measured at the 

two sites might be related to emission sources like biomass burning or incineration (Lim et 

al., 2010). Elevated coarse SO4
2-

 at BROS might be attributable to road resuspended dust 

or soil (Harrison et al., 1997).  A large difference was found in the nitrate concentrations 

between the two sites for the fine (875 ng m
-3

) and coarse (1108 ng m
-3

) PM, which is 

evidence of a distinctive roadside emission. Higher PM2.5 and PM2.5-10 mass concentrations 

at BROS also indicate traffic contributions from vehicular emissions and road re-

suspension. Harrison et al. (1997) found a very strong correlation between PM2.5 and NOx, 

suggesting that PM2.5 mass concentration could be adopted as a better traffic signature.  

 

This study shows elevated SO4
2-

, lower NO3
-
 and Cl

-
 values in PM2.5 component relative 

to the research recently published by Laongsri and Harrison (2013) at EROS. In PM2.5-10 

component, NO3
-
 and SO4

2-
 concentrations in this study are about 2 times higher than 

concentrations reported by Laongsri and Harrison (2013) but lower amount of Cl
-
. At 

BROS, a previous study of Yin et al. (2010) for PM10 components Cl
-
, SO4

2-
, NO3

-
, Ca

2+
 

and Fe are calculated to represent approximately 3, 9, 6, 1 and 4% of the total measured 

mass, respectively. In this study, the corresponding values of these components in PM10 

(computed by addition of PM2.5 and PM2.5-10) were 4, 12, 20, 2 and 5%, respectively. 

Except for NO3
-
 where a relatively higher fraction was measured, it appeared that other 
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observed components are comparable to Yin et al. (2010) study. The wide difference 

observed in the percentages of these secondary aerosol (nitrate and sulphate) relative to 

previously reported values at these sites might still be linked with regional influence rather 

than local emissions (Abdalmogith et al., 2006). Other probable reasons for the lack of 

agreement may be attributable to different sampling times and meteorological conditions.  

 

Aluminium showed an increment of fine PM at BROS while the reverse was the case for 

coarse PM, which exhibited higher amounts at EROS. Fine Al can be attributed to 

vehicular emissions while coarse Al may take its source from soil. Traffic signatures such 

as Zn, Fe, Cu, Ba, Mn and Pb (Thorpe and Harrison, 2008) showed greater concentrations 

in fine and coarse PM at BROS agreeing with studies conducted at the roadsides (Gietl et 

al., 2010; Amato et al., 2009; Amato et al., 2011). Pearson correlation coefficients 

depicted in Table 3.1 revealed strong significant correlations among these traffic 

signatures for PM2.5 and PM2.5-10 showing the pronounced contribution by traffic at both 

sites. 

 

The PM2.5/PM10 ratios observed at EROS and BROS showed dominance of anthropogenic 

emissions at the two sites. This is comparable to most studies reported at urban sites. The 

earlier study of Yin and Harrison (2008) has observed PM2.5/PM10 ratio of 0.60 at BROS 

in perfect agreement with this present study. In the Harrison et al. (2004) study at an urban 

background site in London (High Holborn), the ratio of PM2.5/PM10 was calculated as 0.62 

while the value was 0.64 at the roadsides. Across the UK, the mean ratio of PM2.5-10/PM10 

has been reported as 0.31±0.13 (Liu and Harrison, 2011). This indicates dominance of 

PM2.5 in agreement with observations at BROS and EROS.  
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3.6 Conclusion 

The data of EROS and BROS presented above depicts higher concentrations of most PM 

parameters at the BROS site which reflects the road increment. The fine particles were 

dominated by sulphate at EROS (17% of PM2.5 mass) while nitrate at BROS (20%). In the 

coarse fraction, nitrate was the highest chemical component at both sites, represented by 

15% at EROS and 24% at BROS. The measured chemical components of PM (ionic and 

metal species) constituted only 51 and 54% of PM2.5; and 54% and 67% of PM2.5-10 at 

EROS and BROS, respectively. The remaining components can be attributed to the 

unmeasured carbonaceous species, mass-associated oxygen, particle-bound water and 

other chemical constituents.  
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CHAPTER 4 -COMPARISON OF SIZE DISTRIBUTION OF PM AT EROS AND 

PORT TALBOT 

 

4.1 Abstract 

The aim of this chapter is to compare the size-resolved composition of particulate matter 

(PM) sampled in the industrial town of Port Talbot (PT), UK and a typical urban 

background site in Birmingham (EROS). A Micro-Orifice Uniform Deposit Impactor 

(MOUDI) sampler was deployed for the two separate sampling campaigns with the 

addition of a Grimm optical spectrometer at the PT site. MOUDI samples were analysed 

for water soluble anions (Cl
-
, NO3

-
 and SO4

2-
) and cations (Na

+
, NH4

+
, K

+
, Mg

2+
 and Ca

2+
) 

and trace metals (Al, V, Cr, Mn, Fe, Cu, Zn, Sb, Ba and Pb). Both 72-hour and campaign 

average data are discussed with comparison of PM composition highlighted for the two 

sites. The average MOUDI results showed a unimodal peak for Cl
-
, Mg

2+
, NH4

+
 and Ca

2+
 

at EROS while other analytes exhibited at least two peaks occurring in the fine and coarse 

modes (except for Zn, Sb and Pb in which the two peaks occurred at fine modes of 0.5 and 

1-2 µm). PT size-resolved mean data displayed bimodal distributions (with the exception 

of NH4
+
) with modes in the fine and coarse fractions, except Zn and Pb with two fine 

fraction modes as observed in the EROS data. The PM mass distribution showed a 

predominance of fine particle mass at EROS whereas the PT samples were dominated by 

the coarse fraction. SO4
2-

, Cl
-
, NH4

+
, Na

+
, NO3

-
, and Ca

2+
 were the predominant ionic 

species at both sites while Al and Fe were the metals with highest concentrations at both 

sites. Mean concentrations of Cl
-
, Na

+
, K

+
, Ca

2+
, Mg

2+
, Cr, Mn, Fe and Zn were higher at 

PT than EROS due to industrial and marine influences. The contribution of regional 

pollution by sulphate, ammonium and nitrate was greater at EROS relative to PT. The 
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traffic signatures of Cu, Sb, Ba and Pb were particularly prominent at EROS. Overall, PM 

at EROS was dominated by secondary aerosol and traffic-related particles while PT was 

heavily influenced by industrial activities and marine aerosol. Profound influences of wind 

direction are seen in the 72-hour data, especially in relation to the PT local sources.  

Measurements of particle number in 14 separate size bins plotted as a function of wind 

direction and speed are highly indicative of contributing sources, with local traffic 

dominant below 0.5 µm, steelworks emissions from 0.5-15 µm, and marine aerosol above 

15 µm. This chapter has been submitted for publication in a reputable journal-The Science 

of the Total Environment. 
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4.2 Introduction 

The Micro-Orifice Uniform Deposit Impactor (MOUDI) has been widely used for particle 

size measurement in both indoor and outdoor pollution studies. These studies have 

reported PM size distributions for water soluble and trace metal components (Allen et al., 

2001; Cabada et al., 2004; Harrison et al, 2003; Chang et al., 2008; Dall’Osto et al., 2008; 

Liu et al., 2008; Zhao and Gao, 2008; Gietl et al., 2010; Ny and Lee, 2011). Na, Cl, Ca 

and Al typically show modes in the coarse fraction while Cd, Zn, Mn, Ni and Cu have 

modes in the fine fraction (Ny and Lee, 2011). Allen et al. (2001) reported MOUDI data 

for trace metals from three urban background sites in the UK. Dall’Osto et al. (2008a) 

employed a MOUDI for particle size-resolved measurements at a steel industry site in the 

UK. Water soluble ions in particulate matter, from nanoparticles to the coarse mode, have 

been determined with a MOUDI and nano-MOUDI in Taiwan by Chang et al. (2008). In 

London, particle size-segregated aerosol has been measured at roadside and background 

sites by Gietl et al. (2010). PM size-segregation and associated metallic elements in an 

industrialized city in Korea have been reported (Ny and Lee, 2011). None of these studies 

have compared the size distribution of PM and its components collected at urban 

background and industrial (especially steelworks) locations for both water soluble ions 

and trace metals.  

 

In this study, particle size distributions of both ionic species and trace metals at typical 

background (EROS) and industrial sites (Port Talbot) were studied, offering an 

opportunity for identifying source signatures of components contributing to PM in the 

atmosphere of the two study areas. Additionally, particle number spectra from 0.3 µm to > 

15 µm are reported and analysed according to windspeed and direction. 
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4.3 Materials and Methods 

4.3.1 The study areas 

4.3.1.1 Port Talbot (PT) 

PT is a coastal industrial town with roughly a population of 35,000 and located on the M4 

corridor in South Wales (51° 34' N and 3° 46' W). The Tata steel complex located in Port 

Talbot town is the main industry in the study area and a major source of PM emissions 

(AQEG, 2011). The site covers approximately 28 km
2
, comprises of ~50km of roads, 100 

km of railway, and 25,000 vehicle movements per day. The production capacity is around 

5 m tonnes per year with the main processes in the steelworks being iron-making 

(sintering, blast furnace and raw materials), steel-making (basic oxygen steel-making 

(BOS) and coking) and rolling mills (hot and cold mills) (Moreno et al., 2004; Dall’Osto 

et al., 2008). Figure 4.1 shows the sampling sites chosen in Port Talbot. These include 

Automatic Urban Rural Network (AURN) site located at Margam Fire Station (FS), 

Environmental Agency Wales monitoring sites at Prince Street (PS), NPTCBC stations at 

Dyffryn School (DS) and Little Warren (LW). FS, PS and DS were representative of 

upwind sites while LW as a downwind site.  
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Figure 4.1:  Port Talbot sampling station and the steelworks processing units 

 

4.3.1.2 Elms Road Observatory Site (EROS) 

Detailed description of EROS site has been described in section 3.1 (Chapter 3).   

 

4.3.2 Particulate matter sampling  

Size-fractionated particle sampling was carried out with an 8-stage MOUDI TM (Model 

100, see section 2.2.1). At EROS, a total of four MOUDI 72 hour-samples were generated 

during the sampling period between March 30 and April 11. At the PT sampling site, ten 

MOUDI samples of 72 hours each were collected during a one-month sampling campaign 

that started on the April 17 and ended on May 16, 2012. The tenth sample was collected 

for just 36 hours.   
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4.3.3 Sample digestion and analysis 

The procedures for sample digestion and analysis have been discussed in chapter 2. 

 

4.3.4 Number size distributions 

Particle number size spectra in the range 0.3 to 20 µm were measured at the Port Talbot 

site using a Grimm model #1.108 optical particle spectrometer which measures the 

intensity of light scattered at 90º to a beam produced by a laser diode. The full explanation 

of the Grimm instruments could be seen in chapter 2. Particles are classified into 14 size 

fractions between the smallest (0.3-0.4 µm) and largest (15-20 µm) bins. 

 

4.4 Results and Discussion 

4.4.1 MOUDI particle size distributions at EROS  

4.4.1.1 Port Talbot 

Figure 4.2 and Appendix IV detail the temporal variations of MOUDI data for mass and 

ionic components from the industrially influenced PT site. Bimodal peaks (0.5 and 2-6 

µm) were observed for mass distribution for each MOUDI sample during the campaign 

with highest mass concentration observed on April 23-26 which coincided with the start of 

a PM10 episode on April 26th reaching hourly concentrations in excess of 100 µg m
-3

. 

Most of the water soluble components displayed two distinct modal peaks in the fine 

mode except Cl
- 
(other than the May 11-14 sample which showed two modal peaks), NH4

+
 

and Ca
2+

. Common fine modal peaks of 0.5 µm and coarse modal peaks of 2-6 µm were 

observed for most of the ionic species except for K
+
 which showed diverse modal peaks in 

various sampling periods, suggesting multiple sources of K
+
 in Port Talbot. However, the 

common peak at 0.5 µm shown by K
+
 in all the samples indicated a common emission 
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source for which biomass combustion or steelworks activities are the major suspects. An 

episode of Ca
2+

, Cl
-
, and NO3

-
 was observed between May 2-5 all showing higher 

concentrations at 3.0 µm. This was also observed for ammonium and sulphate with a peak 

at 0.5 µm. Elevated Ca
2+

 observed during this episode might have sources either from 

construction activities or steelworks emissions. In the blast furnace of the steelworks, 

limestone (CaCO3) and dolomite (CaMg(CO3)2) are used as fluxing agents while in the 

basic oxygen furnace (BOF) section, lime (CaO) and fluorspar (CaF2) are fluxing raw 

materials (Machemer, 2004). The MOUDI sample of April 20-23 showed higher 

concentrations of Cl
-
, Na

+
 and Mg

2+
 all peaking in the particle size range 3-5 µm. This 

typifies a sea spray episode.  

 

 
Figure 4.2: Variations of 72-hour MOUDI PM mass size distributions at the PT site 

 

 

Figure 4.3 and Appendix V show the trace metal size distribution of MOUDI samples 

during the one-month campaign. The concentration of Fe was the highest (Figure 4.2), 

followed by Al and Zn. All the metal data show two or more modal peaks covering the 

fine and coarse particle ranges except Pb and Zn which have their modes in the fine 
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fraction only (0.5 and 1-2 µm). Mn and Fe showed similar modes throughout the sampling 

periods suggesting common emission sources.  In the fine mode, most of the trace metals 

peak at 0.5 µm except for the April 26-29 sample which showed exceptional elevated 

peaks for Cr and Cu at 0.2-0.3 µm. Combustion of copper chrome arsenate (CCA) treated 

wood could explain the unusual peaks of these trace metals on these days.  CCA was used 

as wood preservative before its ban in the UK in 2007 (Wood Protection Association, 

2010). However, CCA treated woods may still remain in many structures. Despite the fact 

that Cu is often a good marker for traffic (brake dust), its appearance at 0.2-0.3 µm is not 

consistent with traffic as other traffic markers such as Sb and Ba were peaking at a 

different diameter (0.5 µm). Additionally, in the size range 1-2 µm significant amounts of 

Al and V appeared in the April 26-29 MOUDI sample. Apart from this date, V peaked at 

0.5 µm throughout; but Al showed different fine modal peaks at 0.2-0.3, 0.5 and 1-2 µm.  

 

 

Figure 4.3: Variations of 72-hour MOUDI PM size distributions of Fe at the PT site 

 

Al in the fine mode could arise from vehicular, coal combustion and metallurgical 

activities (Kleeman et al., 2000; Xia and Gao, 2010) while fine V normally arises from 

fuel/oil combustion and shipping emissions (Figueroa et al., 2006; Pandolfi et al., 2011). 
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The appearance of irregular peaks on April 26-29 implies that Al and V could arise from 

the same sources that emitted Cu and Cr into the atmosphere. The wind rose for that 

sampling interval (see Figure 4.3) indicates that the source is unlikely to be associated 

with the steelworks. 

 

4.4.1.2 EROS 

Individual 72-h MOUDI size segregated mass and water soluble ion distributions from the 

EROS site are represented in Figure 4.4 and Appendix VI. The gravimetric mass showed 

modal peaks in the fine and coarse PM ranges at 0.5 µm and 2-4 µm. Among the water 

soluble ions, Cl
-
, Na

+
, Mg

2+
 and Ca

2+
 depicted a unimodal peak at 3-6 µm. Ammonium 

exhibited a single peak in the fine mode (0.5µm). Other ionic species showed bimodal 

behaviour generally peaking at 0.5 and 3 µm except in the April 8-11 sample where NO3
-
 

peaked at a single mode of 1-2 µm. A sulphate coarse mode occurred at around 5.0 µm. 

Among the ionic components of PM, sulphate constituted the highest concentration while 

K
+
<Mg

2+
<Ca

2+
 were the ionic species of lowest abundance. 

 

 
Figure 4.4: Variations of 72-hour MOUDI PM mass size distributions at the EROS site 

0

2

4

6

8

10

12

14

16

18

0.1 1 10 100

d
M

/d
lo

gD
 [

µ
g 

m
-3

] 

Diameter [µm] 

Mass Concentrations 
March 30-April 02

April 02-05

April 05-08

April 08-11



81 

 

MOUDI trace metal size distributions at the EROS sampling site are shown in Figure 4.5 

and Appendix VII. Unlike water soluble ions where the highest concentrations were 

observed in the March 30-April 2 sample, metal concentrations were higher on April 5-8. 

All of the metals displayed at least two peaks covering fine and coarse PM fractions 

except Pb, Zn, Sb where the two modes were both in the fine fraction, other than in the 

sample collected on April 8-11 which displayed a coarse mode peak at 2-3 µm for Sb. 

Multiple modes were observed for Al, V and Cr (0.5, 1-2, 3 and 10 µm). On March 30-

April 2, V, Cr, Cu, Zn, Sb and Pb all showed similar peaks at fine modes of 0.5 and 1-2 

µm indicating possible emissions from traffic and industrial combustion processes 

(Zanobetti et al., 2009). Zn measured on April 5-8 showed a coarse modal peak which 

might be linked with traffic emissions of brake or tyre dust (Harrison et al., 2012b). 

Different peaks exhibited by the measured metals during different sampling periods 

suggested diverse emission sources.   

 

 

Figure 4.5: Variations of 72-hour MOUDI PM size distributions of Fe at the EROS site 
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4.4.2 Comparison of average MOUDI size distributions from EROS and PT 

Figure 4.6 shows the average size distribution data for mass, water soluble ions and trace 

metal concentrations at EROS and PT sites. Different patterns were observed for these 

particle constituents. At both sites, mass concentrations, Na
+
, K

+
, Fe, Cu and Ba exhibited 

two modal peaks generally occurring at 0.5-0.6 µm and at 2-6 µm. Average mass 

concentrations showed a slight elevation of fine particle mass at EROS while an elevated 

concentration of coarse particles was evident at PT relative to the other sites. 

Meteorological conditions, especially windspeed and temperature are known to influence 

particle concentration and size distributions (Charron and Harrison, 2005; Jones et al., 

2010). During dry and windy conditions, elevated amounts of coarse particles could be 

favoured due to re-suspension of soil, road and industrial dusts. Average windspeed and 

temperature at the Birmingham (Tyburn) and Port Talbot (Fire Station) Automatic Urban 

Rural Network (AURN) sites were calculated (http://uk-air.defra.gov.uk/networks/aurn-

site-info). The AURN station at Birmingham, Tyburn was used to represent the EROS 

site. During the period of sampling at EROS (March 30 – April 11), the average 

windspeed and temperature were 4.3±1.8 m s
-1

 and 6.7±1.4 
o
C respectively. At PT where 

the sampling campaign took place between April 17 and May 16, the values were 6.3±2.3 

m s
-1

 and 8.6±1.4
 o

C. The higher average windspeed at PT would be expected to reduce 

concentrations of primary pollutants, other than those derived from the wind-driven 

processes such as resuspension. 
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Figure 4.6: Average MOUDI mass size distributions of total PM and its components at the 

EROS and PT sites 
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are most likely attributable to an emission from the steelworks (see previous section), as 

the only major local construction activity related to earthworks associated with road 

building, particularly the Port Talbot Peripheral Distribution Road, which would be 

expected to cause an elevation in both elements. 

 

Seawater ratios of Cl/Na, K/Na, Ca/Na, Mg/Na and SO4/Na are 1.8, 0.037, 0.038, 0.12 and 

0.25 respectively (Parmar et al., 2001). In the fine mode, these values in their respective 

order at EROS were 1.8±2.5, 0.93±0.95, 1.31±1.89, 0.11±0.11, 59.82±49.88 while their 

corresponding coarse particle ratios were 1.5±0.4, 0.06±0.04, 1.30±1.62, 0.16±0.03 and 

0.53±0.32. Of these figures, Cl
-
/Na

+
 and Mg

2+
/Na

+
 at EROS were the closest ratios to 

seawater composition, and therefore portrayed marine aerosol as the major source of Cl
-

/Na
+
/Mg

2+
 in fine and coarse PM. The observed ratios of Cl

-
/Na

+
, K

+
/Na

+
, Ca

2+
/Na

+
, 

Mg
2+

/Na
+
 and SO4

2-
/Na

+
 at PT were 0.6±0.3, 0.43±0.32, 0.71±0.37, 0.11±0.04 and 2.81 

for fine PM and 1.11±0.39, 0.08±0.02, 0.91±0.21, 0.13±0.03 and 0.35±0.19 for the coarse 

fraction. Comparing these ratios with seawater values revealed only Cl
-
/Na

+
 in the larger 

particles to be mainly influenced by marine aerosol, while the corresponding low value in 

the fine fraction is reflective of chloride loss. Mg
2+

/Na
+
 ratios in both modal peaks were 

also related to seawater composition at PT. Calculation of chloride depletion adopting the 

formula given by Zhao and Gao (2008) as % Cl = 1.81 x ([Na]-[Cl])/(1.81 x [Na]) x 100 

for PM at EROS and PT gave 60 and 70% respectively. This Cl depletion value obtained 

at the PT site was similar to the study of Zhao and Gao (2008) who reported a Cl depletion 

value of 65% at a coastal site in the eastern US. The ratios again show a strong excess of 

coarse mode Ca
2+

 at the PT site.  Reaction of sea salt with atmospheric strong acids 

(HNO3 and H2SO4) is the likely cause. 
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SO4
2+

 and NH4
+
 appearing in the fine mode at 0.5-0.6 µm suggests formation of 

(NH4)2SO4 or NH4HSO4 in the droplet mode. The droplet phase reaction involving 

oxidation of SO2 to sulphate is very important in the atmosphere (Khoder, 2002). The 

modal peaks of 0.5 µm and a small mode between 1-2 µm observed for SO4
2-

 at PT 

coinciding with those of Zn and Pb suggested internal mixing between SO4
2-

 and Pb, and 

Zn. Formation of PbSO4 and ZnSO4 from the reactions involving Pb, Zn and SO4 at the 

two modal sizes might have evolved from separate emission sources, which might be 

linked to the steelworks units or other anthropogenic activities. Previous studies at the 

steelworks have identified Pb and Zn as major emissions from the sinter and basic oxygen 

steel making sectors (Oravisjarvi et al., 2003; Dall’Osto et al., 2008).  

 

At the PT site, Dall’Osto et al. (2008a) found two peaks of Pb occurring at fine modes of 

0.4-0.5 µm and 1-2 µm, which is similar to the modal peaks of Pb obtained in this study.  

Also, Dall’Osto et al. (2008a) reported Zn to have a lone peak occurring at 1-2 µm 

relating to that obtained in this present study. However, another larger mode was found for 

Zn at 0.5 µm in this study. A small peak of SO4
2-

 concentration in the coarse mode at 5.0 

µm is suggestive of a reaction with mineral dust forming CaSO4. The coarse mode Ca
2+

 

extended between 3 and 6 µm indicating internal mixing with coarse SO4
2-

. This may be 

an emission from the sinter process.  Dall’Osto et al. (2008a) reported different coarse 

modes for Fe dependent on the emission source. Such behaviour is also reflected in the 

size distributions for Fe seen in Figure 4.6. 

 

Generally, the modes in the size distributions were similar at the two sites (Figure 4.6).  

Notable differences in the modes were as follows: 
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 calcium showed a fine mode at PT which was not evident at EROS.  This may be 

an emission from the steel industry. 

 aluminium showed a pronounced mode > 10 µm at EROS which has no parallel at 

PT, and probably arises from resuspension of road dust (Harrison et al., 2012b).   

 chromium shows multi-modal behaviour at both sites, but the smallest mode at PT 

is at around 0.2 µm, whereas at EROS it is close to 0.5 µm.  Either steelworks 

emissions or combustion of wood treated with copper chrome arsenate (CCA) 

preservative may be the source. 

 manganese, for which PT shows a very pronounced coarse particle mode at ca 5 

µm, while at EROS, the mode is much broader, peaking at 1-2 µm. 

 iron, for which both sites show a bimodal distribution. The most obvious 

difference is the coarse mode, which centres on 5 µm at PT and 2 µm at EROS, 

and parallels the behaviour of manganese.  The mode at 2 µm seems likely due to 

brake dust, as that for Cu and Ba at EROS are at a similar size, close to that 

reported by Gietl et al. (2010) from a site in central London.  The large peak at 

Ca
2+

 5µm for both Fe and Mn is most probably associated with emissions from the 

steelworks, based upon the much elevated concentrations observed at the PT site 

(see Figure 4.6). 

 

Components showing similar size modes, but different relative abundances were: 

 particle mass, for which the fine mode was very similar at both sites, but the coarse 

mode was much more prominent at PT due largely to increased marine aerosol (Cl
-

, Na
+
, Mg

2+
) and metallic elements, most notably Fe and Mn. 
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 coarse Cl
-
 and Na

+
 from marine aerosol reflecting the proximity of the PT site to 

the sea. 

 SO4
2-

 and NH4
+
 which showed a greater abundance at the EROS site and are 

primarily associated with regional transport of secondary ammonium sulphate. 

 NO3
-
 is markedly coarser than ammonium at both sites, and a little finer than Cl

-
 

and Na
+
, consistent with an association with aged marine aerosol (Ottley and 

Harrison, 1992).  Concentrations are higher at EROS, probably reflecting the east 

to west gradient in secondary nitrate and sulphate observed across the UK (AQEG, 

2012), although the relatively short duration of sampling is insufficient to establish 

this beyond doubt. 

 K
+
, which shows similar modes, but significantly higher concentrations at PT.  

Woodsmoke is usually the main source of fine K, while the coarse K may in part 

reflect marine aerosol, with also a likely contribution from steelworks emissions. 

 coarse Ca
2+

 is also highly elevated at PT, probably reflecting emissions from 

steelworks processes and stockpiles. 

 Al and V show elevated concentrations at EROS, probably reflective of soil/road 

dust as a source of Al (although the fine mode is hard to explain) and fuel oil 

combustion for V. 

 Mn and Fe both show a much enhanced coarse mode at similar sizes at PT, 

consistent with a common steelworks source. 

 Cu, Sb and Ba are all elements associated with brake wear emissions (Gietl et al., 

2010).  All appear to show a brake dust component at both sites – the mode at 3 

µm is characteristic (Gietl et al., 2010).  In all cases, the data from EROS show 

higher concentrations.  Published studies have reported Cu/Sb values of 4.6 and 5.3 
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for brake wear emissions (Sternbeck et al., 2002; Hjortenkrans et al., 2007). 

Studies on major roads have measured higher Cu/Sb values of 8.7-12 for fine and 

10.5-13 for coarse particles (Song and Gao, 2011); and 9.1 (Gietl et al., 2010). In 

this study, these ratios were calculated to be 2.3, 7.2 and 3.7 (fine, coarse and 

PM10) at EROS and 4.3, 5.4 and 4.9, respectively at PT. In the coarse mode the 

Cu/Sb ratio obtained at EROS was closer to Song and Gao (2011) and Gietl et al. 

(2010) consistent with a traffic influence. Cu, Sb, Pb and Zn all show a marked 

peak at 0.4-0.5 µm, probably associated with a higher temperature source, in the 

case of Cu, Sb and Pb most prominent at EROS. 

 Zn shows modes at 0.4 µm and 2 µm which are more abundant at PT, especially 

the coarser mode.  This is an element which has previously been associated with 

steelworks emissions (Dall’Osto et al., 2008). 

 

Comparing the results of this study with the past work on MOUDI size distributions at PT 

reported by Dall’Osto et al. (2008a), similarities were observed only for Fe, Pb and Zn, 

peaking at similar diameter. But unlike that study where Zn showed two peaks in the 

accumulation mode, only one peak was observed. Most of the elements reported in this 

study were not measured by Dall’Osto et al. (2008a) besides a dissimilar modal peak 

measured for Cl
-
. As for the EROS site, MOUDI size distributions for ionic and trace 

metal species have not previously been published. However, the work in the urban 

background (Regents Park) in London by Gietl et al. (2010) could be expected to provide 

data comparable with EROS. Elements reported by Gietl et al. (2010) were Ba, Cu, Fe and 

Sb which are notable traffic markers. Except for Cu which exhibited two modal peaks, the 

EROS data were very similar to London for the other metals.   
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4.3.3 Data from specific sampling periods 

4.3.3.1 Influence of wind conditions upon size distributions 

Wind roses for the respective periods appear in Figures 4.7. 
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(b) EROS 

 

Figure 4.7:  Wind roses for the individual sampling periods (a) Port Talbot; (b) EROS 

 

4.3.3.1.1 Port Talbot 

The wind roses may be characterised as follows: 

 April 17-20:  Predominantly north-westerly with speeds of 5.7-8.8 m s
-1

 

 April 20-23:  Predominantly westerly;  speeds 5.7-11.1 m s
-1
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 April 23-26:  Predominantly a mix of south-westerly (5.7-11.1 m s
-1

) and south-

easterly (largely 5.7-15.0 m s
-1

) 

 April 26-29:  Predominantly north-easterly with strengths of 5.7-15 m s
-1

 

 April 29-May 2:  From north-easterly to south-easterly;  speeds ranging from 3.8-

15 m s
-1

 

 May 2-5:  Predominantly east-north-east;  strength 3.8-8.8 m s
-1

 

 May 5-8:  Covering a broad sector from east-north-east to west-south-west;  speeds 

mostly in the range 3.6-11.1 m s
-1

 

 May 8-11:  Predominantly in the sector between south and west with speeds of 3.6-

16  m s
-1

 but minor contributions from other sectors 

 May 11-14:  Predominantly a mix of westerlies (5.7-11.1 m s
-1

) and northerlies (3.6-

8.8 m s
-1

) 

 May 14-16:  A predominance of west to north-north-west (5.7-11.1 m s
-1

) 

 

The periods showing the greatest mass concentrations in the coarse fraction (Appendix 

IV) are April 23-26, May 8-11 and May 5-8. All of these show a significant component to 

the wind rose in the southerly to westerly sector consistent with atmospheric transport 

from the steelworks. These periods also correspond to a major elevation in the 

concentrations of iron and manganese (Appendix V).  The period April 23-26 was also 

associated with high concentrations of zinc, barium, coarse vanadium, coarse calcium and 

coarse potassium, all of which have potential sources within the steelworks.  The period 

with the highest concentrations of coarse sodium and chloride was April 20-23 consistent 

with strong winds in the westerly sector transporting marine aerosol. The period with the 

greatest association with the easterly wind sector were April 26-29, April 29-May 2 and 
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May 2-5. The latter period was associated with high concentrations of nitrate, sulphate and 

ammonium, the secondary constituents whose concentrations are typically elevated in 

easterly air masses in the UK. Also elevated in this sample were concentrations of calcium 

and chloride with a mode at around 3 µm consistent with that of nitrate.  This would 

appear to be due to transport of crustal calcareous material from the land masses to the 

east of Port Talbot which had collected nitrate and chloride from the vapour phase during 

their transport. Concentrations of iron and manganese were very low in these easterly 

samples.   

 

Coarse particle modes for barium, antimony and copper, all constituents associated with 

automotive brake wear, were notably elevated in the sample of April 17-20 consistent with 

a major automotive contribution on winds from the north-west. This sample was also 

elevated in fine potassium suggesting a possible wood burning source also within this 

sector.  

 

4.3.3.1.2 EROS site 

The predominant features of the wind roses displayed were as follows: 

 March 30-April 2:  Predominant concentrations were from the east-north-east 

(mainly 3.8-5.7 m s
-1

) and north (3.8-8.8 m s
-1

) 

 April 2-5:  A major contribution from the north-east (3.8-11.1 m s
-1

) but significant 

contributions from other compass points 

 April 5-8:  The vast majority of winds were in a sector between west-north-west 

and north-north-west with strength 2.1-5.7 m s
-1
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 April 8-11:  A single westerly sector predominated with speeds mostly in the range 

3.6-8.8 m s
-1

 

 

The largest mass concentration in both the coarse and fine fractions was in the March 30-

April 2
nd

 sample (Appendix VI) which had the largest easterly wind component and 

intermediate windspeeds. The major ionic components exhibited their highest 

concentrations in this sample with ammonium and sulphate dominating the sub-

micrometre fraction and chloride, nitrate and sodium, the coarse particle fraction. 

Concentrations of potassium, magnesium and calcium were also elevated in the coarse 

fraction in this sample.  However, concentrations of the trace element constituents were in 

most cases relatively low in the sample of March 30-April 2 which is perhaps surprising 

given that the sample appears to contain a substantial continental component.  The sample 

collected on April 5-8 stands out as having the highest concentrations of vanadium, 

manganese, copper, antimony and lead in the fine mode and of iron, manganese, barium 

and zinc in the coarse mode (Appendix VII).  The wind directions associated with the 

sample were predominantly in the sector from north-west to north-east corresponding to 

the Birmingham city centre and these constituents appear to be associated largely with 

non-tailpipe emissions from road traffic.  The sample collected on April 8-11 associated 

with a predominant westerly wind component showed the lowest concentrations of nitrate, 

sulphate, ammonium, potassium and calcium suggesting relatively clean marine air on this 

westerly sector, although concentrations of the marine indicator elements chloride and 

sodium were not particularly elevated.  An interesting feature of the EROS dataset is that 

the ranking of concentrations between the samples for fine fraction potassium was the 

same as that for sulphate.  Since the latter is well known as a pollutant subject to regional 
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transport, this suggests that fine potassium, whose main source is believed to be 

woodsmoke (Harrison et al., 2012c), is also subject to long-range transport in a broadly 

similar manner. Other constituents which showed identical or similar rankings of 

concentration to one another (but not to sulphate and potassium) were vanadium, 

manganese, iron, antimony, barium and lead suggesting a common source for most 

elements, most probably in non-tailpipe emissions from road traffic. 

 

4.3.4 Coarse particle increment at Port Talbot 

The measured data are insufficient to conduct a mass closure on the aerosol composition, 

but it is nonetheless instructive to examine the differences in coarse particle mass and 

composition between PT and EROS (see Appendix II).  The difference in coarse particle 

(PM2.5-10) mass between the sites is 6.1 µg m
-3

.  Marine aerosol (taken as Na
+
, Cl

-
 and 

Mg
2+

) accounts for just 1.0 µg m
-3

 of this.  Elements thought to be associated with 

steelworks (Fe and Ca
2+

) together amount to 1.6 µg m
-3

, which may approximately double 

to 3.2 µg m
-3

 when associated elements are added (e.g. Fe2O3 and CaCO3).  This suggests 

that under the conditions sampled, steelworks-related emissions account for at least half of 

the elevation in PM2.5-10. The mass unaccounted for of ca 2 µg m
-3

 may be attributable to 

carbonaceous emissions, for example from the coke ovens, but data were not collected 

allowing this to be tested. 

 

4.3.5 Analysis of particle size spectra collected with the Grimm Optical Spectrometer 

The Grimm instrument has a response time of seconds, and in order to obtain statistically 

significant counts, the data were averaged over hourly periods and were then plotted as 
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polar plots as a function of wind direction and windspeed. The data are collected in 14 

separate size bins and polar plots for each size bin appear in Figure 4.8.   
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Figure 4.8:  Polar plots of particle number concentrations from the Grimm analyser in 14 

size bins as a function of wind direction and speed at Port Talbot 
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In the case of PM0.4-0.5 (see Figure 4.8) the highest concentrations are associated with all 

wind sectors and very low windspeeds (the red area in the centre of the plot). This is 

indicative of a local ground-level source with maximum concentrations under low 

windspeed conditions. This was attributed to local road traffic. This behaviour is also seen 

for PM0.3-0.4 and to a lesser extent for the PM0.5-0.65 plot.  For sizes between PM0.5-0.65 and 

PM5.0-7.5, the behaviour is very similar for each size fraction and is exemplified by the plot 

for PM2.0-3.0 in Figure 4.8. This indicates a source area on a sector between 200º and 250º 

and intermediate windspeeds of 5-10 m s
-1

, extending to the highest observed windspeeds 

of >10 m s
-1

 for particle sizes of PM2.0-3.0 and below to PM0.5-0.65. The association with the 

highest windspeeds becomes much less strong and the plot for PM7.5-10 (Figure 4.8) shows 

a strong association with the intermediate windspeeds.  The directional association of this 

peak clearly links it with sources within the steelworks and the association with 

intermediate windspeeds strongly suggests an elevated source. A ground-level emission 

source would most likely give peak concentrations at lower windspeeds (as for road 

traffic) and a resuspension source would be associated primarily with the highest 

windspeeds.  Consequently, the data for particle sizes between the PM0.5-0.65 and PM2.0-3.0 

plots appear to be a combination of both the elevated source and the ground-level 

resuspension source while the plots from PM3.0-4.0 to PM10-15 are indicative of an influence 

predominantly from the elevated sources. 

 

The plot for PM7.5-10 gives a very clear indication of a predominant emission at 

intermediate windspeeds on the south-westerly sector (i.e. centred on 225º) which is the 

direction associated with the sinter plant and blast furnace within the steelworks.  For the 

highest particle size bin (PM15-20) the polar plot (Figure 4.8) has changed to one focussed 
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heavily on the strongest windspeeds and also covering a wider range of wind sectors 

strongly suggestive of a marine source (O’Dowd and Leeuw, 2007), possibly 

supplemented by resuspension from within the steelworks as indicated by the highest 

concentrations on the south-westerly sector. 

 

It would be useful to look for associations between the modes in the MOUDI size 

distributions and the peaks in the polar plots for different particle sizes.  This is, however, 

made difficult by the lack of a clear relationship between optical diameters measured by 

the Grimm spectrometer and aerodynamic diameters measured by the MOUDI.  The 

elements showing far the greatest elevation at PT over EROS are Fe and Mn (Figure 4.6) 

with a mode at around 5 µm, extending from ca 2-10 µm aerodynamic diameter.  This 

appears to be associated with the major peak in the polar plots at around 225º appearing 

for particles in size ranges from 0.3-3.0 µm to 10-15 µm (Figure 4.8).  The two datasets 

therefore appear broadly consistent. 

 

4.4 Conclusions 

This study has revealed distribution patterns of size-segregated particles at a typical urban 

background (EROS) and an industrial setting (Port Talbot). Individual sample and average 

MOUDI data presented were diverse and varied between the two sites. EROS was 

dominated by fine particles while PT showed an elevated coarse particle concentration 

reflected in a higher ratio of PM2.5/PM10 obtained at EROS. The influence of secondary 

aerosol was more evident at the urban background than the industrial site. Port Talbot 

showed elevated concentrations of marine (Na
+
, Mg

2+
 and Cl

-
) and steelworks emissions 

(Fe, Mn and Ca
2+

). Higher concentrations of trace metals such as V, Al and Pb were 
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observed at EROS. Strong similarities in mass size distributions were observed between 

Mn and Fe at PT (this was not so at EROS) suggesting a common emission source from 

the steel industry. Trace metals associated with brake wear (Cu, Sb, Ba) were clearly 

observed at both sites. 

 

The analysis of size distributions from individual 72-hour sampling intervals confirmed 

the inferences derived from the average data, but allowed some appreciation of the 

episodicity of contributions both from the steelworks and secondary particles. Both 

showed the expected associations with, in the former case local winds from the direction 

of the steelworks, and easterly sector winds associated with regional transport in the latter. 

Although containing no chemical information, the polar plots of particle number size 

spectra revealed much source-related information. Local emissions, probably from road 

traffic dominated the smaller size bins (0.3-0.5 µm), while steelworks emissions 

dominated the range 0.5-15 µm, and for particles > 15 µm marine aerosol appeared 

dominant. Although there appeared to be contributions from more than a single source 

within the steelworks, the wind direction-dependence suggested the sinter plant and/or 

blast furnaces as the major contributor. 
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CHAPTER 5 - PORT TALBOT PARTICULATE AND GASEOUS POLLUTANT 

CONCENTRATIONS  

 

5.1 Abstract 

This chapter gives an overview of the PM mass concentration data collected at Port Talbot 

with different measuring instruments. Sample collections were achieved using Partisol 

Dichotomous, Filter Dynamic Measurement System (FDMS) and Grimm optical particle 

counter. Black carbon (BC) and gaseous pollutants were also measured. Time series and 

polar plots of gaseous and particulate constituents are shown in this section. FDMS and 

Partisol instruments at the Fire Station (FS) site have depicted similar days of PM10 

episodes where the World Health Organization (WHO) limit of 24-hour mean value of 50 

µg m
-3

 was exceeded. The Partisol PM2.5/PM10 ratios revealed elevated coarse particle 

concentrations while the FDMS PM2.5/PM10 ratios showed domination by PM2.5 particles. 

The lack of agreement between the FDMS and Partisol instruments on PM2.5/PM10 ratios 

can be explained by greater losses of semi-volatiles in Partisol PM2.5 than FDMS. This 

study has also established a good correlation between data from FDMS, Partisol, Grimm 

and MOUDI measuring instruments. The polar plots of PM10 (at FS, Prince Street (PS), 

Dyffryn School (DS) and Little Warren (LW)), PM2.5 (FS and PS), NO, NO2, NOx, SO2, 

CO and BC (FS) provide the directional emission patterns of particulate and gaseous 

pollutants indicating the steelworks as the major emission source. 
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5.2 Introduction 

In 2001, the Neath Port Talbot County Borough Council (NPTCBC) who has been 

monitoring the exceedances of PM10 around the steel complex activities since 1997, 

declared the steel industry as the major source of PM10 in Port Talbot. Additionally, Air 

Quality Expert Group, AQEG (2011) has reported some years at Port Talbot when the 

daily PM10 average has exceeded 50 µg m
-3

 in 24 hours for more than 35 days per year. 

This is a breach of national air quality objective as well as WHO/EU limits for air quality 

standard. In the recent years however, the number of exceedances has reduced probably 

due to series of regulations put in place and constant monitoring by the concerned 

Environmental Authorities.  

 

Undoutedbly, the steel complex activities remain the major contributor to the PM10 

concentration in Port Talbot. The work done by Hayes and Chatterton (2009) has 

compared the PM10 collected in Port Talbot with that collected in Swansea and Narbeth. 

Elevated values were recorded in Port Talbot with PM10 mass concentration 20 µg m
-3

 

higher than the neighboring rural background. The conclusion of the study was that the 

various industrial activities taking place at the steel complex in Port Talbot remained the 

leading emission source. Nevertheless, the principal contributor to PM from the steel 

industry is yet to be ascertained (AQEG, 2011), since many individual processes are 

engaged in the industrial complex.  

 

This section will highlight the relationship between the gaseous and particulate data 

collected during the sampling campaign at Port Talbot.  
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5.3 Materials and Methods 

5.3.1 Particulate matter sampling  

Daily particle sampling was carried out with Partisol-Plus dichotomous sequential sampler 

(Model 2025) between April 17 and May 16, 2012 (12 pm to 12 pm). Four Partisol 

samplers were deployed to the four selected sites which were Fire Station (FS), Prince 

Street (PS), Dyffryn School (DS) and Little Warren (LW). 

 

Hourly PM sampling was done with the Streaker samplers positioned at two monitoring 

sites (FS and LW) for upwind and downwind measurements. See details of the Streaker’s 

instrumentation in chapter 2.   

 

Filter Dynamic Measurement System (FDMS) mass concentration data (PM2.5 and PM10) 

for FS site were obtained from the data archive of the Department for Environment, Food 

and Rural Affairs (DEFRA) (available at http://uk-air.defra.gov.uk/networks/aurn-site-

info). At the PS, DS and LW monitoring sites, FDMS PM10 data were downloaded from 

the Welsh Air Quality website (http://www.welshairquality.co.uk/data_and_ 

statistics.php?). 

 

5.3.2 Sample digestion and analysis 

The procedures for sample digestion and analysis of Partisol samples have been discussed 

in chapter 2. The Streaker samples were sent to the University of Milan, Italy for Particle 

Induced X-ray Emission (PIXE) analysis discussed explicitly in chapter 2.  

 

 

http://uk-air.defra.gov.uk/networks/aurn-site-info).%20At%20the%20PS,%20DS%20and%20LW%20monitoring%20sites,%20FDMS%20PM10
http://uk-air.defra.gov.uk/networks/aurn-site-info).%20At%20the%20PS,%20DS%20and%20LW%20monitoring%20sites,%20FDMS%20PM10
http://www.welshairquality.co.uk/data_and_
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5.3.3 Gaseous Pollutants 

Gaseous pollutant data at the Fire Station monitoring site were also obtained at the AURN 

site (http://uk-air.defra.gov.uk/networks/aurn-site-info). 

 

5.4 Results and Discussion 

 5.4.1 FDMS versus Partisol PM mass concentration data 

 

Figure 5.1 shows the time series plot of daily PM mass data collected at the four sampling 

sites for both FDMS and Partisol instruments. Both the Partisol and FDMS PM10 data 

have shown similar variations in trend and pattern at all the monitoring sites. There seems 

to be small difference in the daily PM10 mass concentrations from the two PM measuring 

instruments. However, FDMS PM2.5 values were higher than Partisol PM2.5 daily 

concentrations.  

 

 

0

5

10

15

20

25

0

10

20

30

40

50

60

70

1
8

-0
4

2
0

-0
4

2
2

-0
4

2
4

-0
4

2
6

-0
4

2
8

-0
4

3
0

-0
4

0
2

-0
5

0
4

-0
5

0
6

-0
5

0
8

-0
5

1
0

-0
5

1
2

-0
5

1
4

-0
5

1
6

-0
5

P
M

2.
5
 (

µ
g 

m
-3

) 
 

P
M

1
0 

(µ
g 

m
-3

) 

Date (Year=2012) 

Fire Station  Partisol PM10 FDMS-PM10

Partisol PM2.5 FDMS-PM2.5



108 

 

 

Figure 5.1: Daily plots of Partisol and FDMS PM10 and PM2.5 at the four sampling stations 
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FDMS and Partisol instruments at FS have observed a common day of PM10 episode 

where the threshold of daily average value of 50 µg m
-3

 (WHO, 2006) was exceeded on 

April 26 (64.5 µg m
-3

 for both Partisol and FDMS). The activities of the steel industry 

may have contributed to the elevated PM10 mass concentration experienced on this day. 

Furthermore, FDMS data also demonstrated a PM10 exceedance on May 11 (51.0 µg m
-3

). 

Some episodic days where PM10 concentrations were greater than 40 µg m
-3

 included May 

8 for both Partisol and FDMS; and April 18 for Partisol only. PM2.5 data have shown 

similar daily trends as observed for PM10 in Partisol and FDMS at FS monitoring site. The 

mean 24-hour threshold of 25 µg m
-3

 set for PM2.5 (WHO, 2006) was not exceeded by 

either FDMS or Partisol PM throughout the sampling period.   

 

At PS, there was a good agreement between FDMS and Partisol PM mass concentrations 

daily variations. Partisol measurement was discontinued on April 29 due to a faulty 

instrument. This made it difficult to compare the FDMS and Partisol data throughout the 

whole campaign. Nevertheless, during the period of active sampling, Partisol PM2.5 and 

PM10 concentrations were slightly higher than FDMS PM. An extremely high value of 

FDMS PM10 (154.2 µg m
-3

) with elevated FDMS PM2.5 (24.7 µg m
-3

) was observed on 

May 14. These FDMS PM values were the highest observed concentrations at all the sites 

during the whole campaign. The reason for this extreme PM10 value was unclear because 

on May 14, none of the remaining sampling sites measured PM10 concentrations > 35 µg 

m
-3

 by either of FDMS or Partisol sampler. It was unfortunate that there was no Partisol 

PM mass concentration on this day at PS to compare with the elevated FDMS PM10 

concentration. By subtracting FDMS PM2.5 from PM10, it was clear that coarse PM formed 

the major constituent of PM10 on this episodic day representing 84% of the measured 
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PM10. The coarse PM value calculated as 129.5 µg m
-3

; the value was greater than the 

combined sum of all Partisol PM10 samples at FS, DS and LW stations on this episodic 

day.  

 

At the DS and LW sites, there was no PM10 exceedance observed for FDMS and Partisol 

mass data on this day. Partisol PM10 was slightly higher than that of FDMS at DS while no 

significant temporal variations were observed for the two measuring instruments at LW.  

 

5.4.2 Inter-comparison between FDMS and Partisol PM at the monitoring sites 

FDMS and Partisol daily PM variations at FS, PS, DS and LW monitoring sites are shown 

in Figure 5.2. FDMS PM10 concentrations were generally high at Fire Station and Prince 

Street locations. Lowest concentrations of PM10 were recorded at DS and LW. A relatively 

higher Partisol PM2.5 has been measured at FS monitoring station than PS site in contrast 

to FDMS measurement. 
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Figure 5.2: Time series plot comparing FDMS and Partisol PM all the monitoring site 

 

The summary of FDMS and Partisol PM data are displayed in Table 5.1. At FS site, 

FDMS and Partisol mean concentrations were 21.7±12.9 and 21.0±13.3 µg m
-3

 for PM10 

and 11.3±3.7 and 7.4±2.6 µg m
-3

 for PM2.5 respectively. Highest average PM10 values 

were measured at PS for FDMS (22.7±27.7 µg m
-3

) and Partisol (25.9±11.8 µg m
-3

) 

relative to the other sites. PM10 mass concentrations at DS and LW were 12.8±5.8 and 

15.1±5.1 µg m
-3

 for FDMS and 15.6±6.47 and 15.8±5.26 µg m
-3

 for Partisol, respectively. 

The lowest mean FDMS and Partisol PM10 value was recorded at DS against the LW site, 

which has been used as background site.  For PM2.5, there were no available data for 

FDMS PM at these two stations, while a slightly higher mean Partisol value was observed 

at DS than LW site. It is therefore apparent that the LW station was much influenced by 

coarse PM; this could have been responsible for its higher PM10 mean concentration 

compared to DS. LW is the nearest site to the Swansea Bay, therefore the impact of sea 

spray is likely to be more pronounced at this site than anthropogenic activities of the steel 

industry. Studies at the coastal sites have been reported to raise PM pollution due to sea 

salt aerosol (Pryor et al., 2007; Athanasopoulou et al., 2008).  
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Table 5.1: Summary of mean concentrations of FDMS and Partisol PM10 

Monitoring 

Sites 

FDMS (µg m
-3

) Partisol (µg m
-3

) 

 PM10 PM2.5 PM10 PM2.5 

FS 21.7±12.9 11.3±3.7 21.0±13.3 7.4±2.6 

PS 22.7±27.7 9.3 ±3.7 25.9±11.8 9.2±1.7 

DS 12.8±5.8 - 15.6±6.5 7.3±3.0 

LW 15.1±5.1 - 15.8±5.3 6.5±2.5 

Note: FS- Fire Station, PS-Prince Street, DS-Dyffryn School, LW-Little Warren 

 

The combined mean value of FDMS PM10 and PM2.5 at all the sampling sites during the 

one-month sampling campaign in Port Talbot were 18.1±4.9 and 10.3±0.01 µg m
-3

 

respectively. Fine PM formed a total 57% of PM10 while coarse PM fraction represented 

the remaining 43%. The pool mean of Partisol PM10 and PM2.5 were 19.6±4.9 and 7.6±1.1 

µg m
-3

 (39% PM2.5 and 61 % PM2.5-10).  

 

Reduced major analysis (RMA) regression model (see Appendix VIII) showed strong 

relationships for PM data measured with FDMS and Partisol instruments at the four sites. 

FDMS and Partisol PM10 have shown exceptionally better correlation (r
2
=0.92-0.99) with 

slope near unity than with PM2.5 (r
2
=0.79 at FS and 0.44 at PS, slope=0.62 and 0.76, 

respectively). The observations of Green (2004) with FDMS and Partisol PM10 data at 

Marylebone Road and North Kensington in London showed slopes of 0.80 and 0.93, with 

r
2
 equal to 0.92.  

 

FDMS and Partisol PM average concentration plots of the days of the week showed 

greatest peaks on Thursday and Friday while least peaks were observed on Sunday (see 

Appendix IX). Elevated PM values during the weekdays can be attributed to pronounced 

anthropogenic activities from industrial sources, traffic and railway.  
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5.4.3 PM2.5 to PM10 ratios  

Figure 5.3 represents the PM2.5 to PM10 ratios calculated for FDMS and Partisol PM at the 

four air sampling sites. FDMS PM2.5/PM10 ratio showed higher value at PS than FS. High 

PM2.5/PM10 ratio is a confirmation of the domination by PM2.5 particles. Owing to non-

availability of FDMS PM2.5 data at DS and LW, PM2.5/PM10 ratios at these sites could not 

be determined. Partisol PM2.5/PM10 ratios revealed contrary results showing the 

domination by PM2.5-10 particles. Discrepancies between the FDMS and Partisol 

instruments on PM2.5/PM10 ratios at FS and PS can be explained by greater losses of semi-

volatiles in Partisol PM2.5 than FDMS (Charron and Harisson, 2005). The RMA equations 

between PM2.5, PM2.5-10 and PM10 also revealed coarse PM (Appendix X) as the major 

contributor to PM10 concentrations in Port Talbot.  

 

 

Figure 5.3: PM2.5/PM10 ratio for FDMS and Partisol in all the monitoring sites 

 

5.4.4 Gaseous pollutant concentrations at FS site during Port Talbot campaign 

Daily variations in gaseous pollutants are plotted in Figure 5.4. The average 

concentrations of gaseous pollutants during the one-month monitoring were NOx 

(20.2±8.6 µg m
-3
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-3
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These gaseous concentrations were all within the standard limits set for them (WHO, 

2006). The highest concentration of O3 (90.4 µg m
-3

) was observed on May 14 while the 

lowest value (30.3 µg m
-3

) occurred on May 4. NOx, NO2 and NO have all peaked at the 

dates where the lowest O3 concentration was measured. SO2 has displayed a related 

pattern in variations with NOx, NO2 and NO with notable peaks on April 26 and May 8. 

Related elevated pollution peaks also occurred for CO on April 26 and May 8. The days of 

elevated concentrations observed for these gaseous pollutants coincided with PM10 

pollution episodes measured at the FS site. PM2.5 also showed the highest concentrations 

on these three days. It is possible that this is due to a common emission source from a 

distinctive process probably from the steelworks.  

 

 

Figure 5.4: Daily variations of gaseous pollutants during the sampling at Port Talbot 
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and stationary sources (Aneja et al., 2001). High CO/NOx and low SO2/NOx ratios 

indicates mobile source while low CO/NOx and high SO2/NOx could be linked to a point 

emission source. CO/NOx ratio during the whole campaign has a range of 4.3 to 26.2 

while SO2/NOx ratio varied from 0.01 to 0.47. The average ratios of CO/NOx and 

SO2/NOx during the whole campaign were 12.1±6.3 and 0.21±0.21, suggesting that the 

impact of mobile source (especially from gasoline vehicles) appeared to be more 

important than point source. But, on the days where PM10 episodes were observed (April 

26 and May 11), CO/NOx ratios were 23.4 and 20.2, while SO2/NOx ratios were 0.50 and 

0.52. This indicates that the impact of stationary source (steelworks emissions) was 

significant on these days. Aneja et al. (2001) has assigned SO2/NOx ratio of 0.6 to point 

source emission.  

 

5.4.5 Relationships between FDMS and Partisol PM versus gaseous pollutants 

As part of efforts to identify the possible emission sources of PM in Port Talbot, a linear 

relationship between FDMS and Partisol PM2.5-10 and PM2.5 against the gaseous pollutants 

has been examined (Appendix XI). Gaseous data are only available at the FS site. A better 

relationship was observed between FDMS/Partisol PM2.5-10 and SO2 (r
2
=0.67 for FDMS 

and 0.73 for Partisol) than with NOx (r
2
=0.13 for FDMS and 0.15 for Partisol). However 

with PM2.5, a well-defined positive correlation was established between FDMS/Partisol 

PM2.5 and NOx (r
2
=0.60 and 0.49). It could be inferred that stationary emissions, probably 

from the steelworks, might influence coarse particle concentration while mobile emissions 

from traffic increased fine particle loads during the study.  
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FDMS PM2.5 and PM2.5-10 have moderately correlated with CO (r
2
=0.38 and 0.28, 

respectively). The corresponding values of these coefficients for Partisol PM2.5 and PM2.5-

10 are 0.28 and 0.27, respectively.  

 

5.4.6 Meteorological conditions during the sampling campaign 

Hourly variations of meteorological data at Port Talbot between April 18 and May 16 are 

shown in Figure 5.5a. PM10 episodes on April 26 and May 11 occurred when the 

windspeed >8 m s
-1

 and temperature > 8
o
C. These conditions may be favourable to dust 

re-suspension leading to high concentrations of the coarse portion at the receptor site. 

Diurnal windspeed and temperature diagram (Figure 5.5b) showed similar trends with 

significant peaks observed between 10 am and 7 pm. This might be related to the active 

period of the steelworks activities, traffic and sea salt emissions. The windrose plots of 

April 26, May 8 and 11 when PM10 episodes were observed are shown in Figure 5.6 (a-c). 

The domination of south-easterly and mild north-westerly and north-easterly winds was 

observed. The prevailing south-westerly revealed the steel complex to be the main 

contributor to local emission source during these pollution events.  
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Figure 5.5: Meteorological data variations at Port Talbot during the monitoring period 

 

 

 

Figure 5.6: Windrose plots at Port Talbot during the PM10 pollution episodes on (a) April 

26 (b) May 8 and (c) May 11 
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5.4.7 Black carbon concentrations during the campaign 

Black Carbon (BC) daily concentration was presented in Figure 5.7a. On the average, BC 

concentration was 0.52±0.26 µg m
-3

. The contribution of BC to PM episode of April 26 

was significant while the highest elevated BC concentration was also observed on May 3. 

BC is usually emitted from industry, transport and residential sources (Qin and Xie, 2012; 

Zhang et al., 2013). Since CO is also a product of incomplete combustion like BC, the 

relationship between BC and CO is important to identify their likely emission sources. A 

strong relationship has been established between BC and CO by Pan et al. (2011) with 

r
2
>0.8. BC is poorly correlated with CO (r

2
=0.13) in this study, but was well correlated 

with NOx (r
2
=0.59). BC also exhibited good correlation with PM2.5 (r

2
=0.62). These 

results suggest more of vehicular than industrial emissions. Diurnal variation of BC 

showed highest peak between 7-8 am (Figure 5.7b), which demonstrates the influence 

from traffic. 
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Figure 5.7: Daily and diurnal concentrations of Black Carbon 

 

5.4.8 Polar plots of particulate and gaseous pollutants 

The polar plots (Figure 5.8) of PM10 (at FS, PS, DS and LW), PM2.5 (FS and PS), NO, 

NO2, NOx, SO2, CO, O3 and BC (FS) provide the directional emission patterns of 

particulate and gaseous pollutants during the sampling. Most of the air pollution 

parameters were concentrated towards the south-western region from the FS site where the 

steelworks complex is located. PM10 at the monitoring sites also showed a directional 

higher concentration towards the steelworks complex with additional significant 

contribution from marine aerosol. Ozone exhibited multi-dimensional higher 

concentrations explaining sources beyond the local impacts only. The impact of the 

industry could be indicated on PM10, CO and SO2 than the rest of the air pollutants. Other 

air pollutants might be more affected by regional long- range transport. NO, NO2, NOx 

and black carbon polar plots showed dual emission sources from both the local traffic and 

the steelworks. The polar plots have also revealed higher concentrations of most of these 

air pollutants at higher windspeed except PM10 at PS. However, BC and NOx 

demonstrated elevated concentrations at low windspeed.    
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Figure 5.8: Polar Plots of air pollutants during Port Talbot campaign 

 

5.4.9 Grimm vs. Partisol, FDMS and MOUDI mass concentrations  

The polar plot data of Grimm particle number counts have been discussed in chapter 4. To 

compare the Grimm PM mass data with the other mass measuring instruments, particle 

number concentration (PNC) was converted to mass. Grimm fine (PM2.0) and coarse 

(PM2.0-10) mass concentrations were calculated from the volume distribution of Grimm 

particles. The mass concentration was calculated by multiplying the volume concentration 

with particle density which was assumed to be 1.7 g cm
-3

 (Pitz et al., 2003). Results were 

plotted against daily FDMS, Partisol and MOUDI PM2.5 and PM2.5-10 mass concentrations 

(Figure 5.9). The time series plots of the four mass measuring instruments were consistent 

in patterns and variations for fine and coarse mass concentrations.  

 

Reduced major axis (RMA) correlations of Grimm-calculated PM for fine and coarse 

fractions versus corresponding FDMS, Partisol and MOUDI PM data are outlined in 

Appendix XII. Grimm PM correlated well with all the PM mass-measuring devices with r
2 

ranging between 0.49-0.91 for fine and 0.67 to 0.82 for coarse PM. The relationship was 

best defined between Grimm and FDMS and least defined with MOUDI. 

BC 
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Figure 5.9: Temporal variations between Grimm, FDMS, Partisol and MOUDI PM 

size distribution 

 

 

 

5.4.10 Diurnal variations of PM, PNC and gaseous pollutants  

Diurnal variations of PM, PNC and gaseous pollutants are shown in Figure 5.10. Similar 

diurnal patterns were displayed by PM10 at FS and PS with common elevated peaks at 16 

pm. A previous investigation by AQEG (2011) has also observed the highest peak of PS 
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0

5

10

15

20

25

1
8

-0
4

2
0

-0
4

2
2

-0
4

2
4

-0
4

2
6

-0
4

2
8

-0
4

3
0

-0
4

0
2

-0
5

0
4

-0
5

0
6

-0
5

0
8

-0
5

1
0

-0
5

1
2

-0
5

1
4

-0
5

1
6

-0
5

µ
g 

m
-3

 

Date (Year=2012) 

PM Fine 
Grimm fine Partisol fine FDMS fine MOUDI fine

0

10

20

30

40

50

60

1
8

-0
4

2
0

-0
4

2
2

-0
4

2
4

-0
4

2
6

-0
4

2
8

-0
4

3
0

-0
4

0
2

-0
5

0
4

-0
5

0
6

-0
5

0
8

-0
5

1
0

-0
5

1
2

-0
5

1
4

-0
5

1
6

-0
5

µ
g 

m
-3

 

Date (Year=2012) 

PM Coarse 
Grimm coarse Partisol coarse FDMS coarse MOUDI coarse



123 

 

LW, the diurnal patterns of PM10 showed no significant variations. Diurnal concentrations 

of PM2.5 and PM10 suggested that they were linked with traffic and the steel industry. 

Pollution peaks of PM10 at 4 pm in Port Talbot (FS and PS) might be related to fugitive 

dust from the steelworks and road re-suspension favoured by high windspeed (Charron 

and Harrison, 2005). Particle number concentrations showed significant peaks for particles 

between diameter 0.3-0.65 µm at 7 am and 16 pm similar to peaks shown by mass 

concentrations of PM2.5 and further re-affirming possible impact from rush hour traffic. 

For coarser particles greater than 2.0 µm, notable peaks were observed at 2 am, 14 and 19 

pm indicating possible contributions by the steel industry or marine source. 

 

A unimodal diurnal peak displayed by NO, NO2, NOx and SO2 between 7 and 8 am might 

largely be due to high volume traffic and poor dispersion at this period (Bigi and Harrison, 

2010). Ozone has shown only one peak extending between 7 am and 21 pm due to 

photochemical activity. The effect of NO titration on O3 was observed between 7 and 8 

am during the morning rush hour. Diurnal pattern of CO concentrations exhibited two 

notable peaks at 7 am and 12-19 pm probably due to both traffic and industrial emissions.  

 

The diurnal variations of particle number concentration (Figure 5.10) showed significant 

peaks at 7 am and 16 pm which could be linked to morning and evening rush hour traffic, 

and also from the steelworks. The 7 am peak shown in this study was consistent with the 

study of Harrison and Jones (2005) who have used Condensation Particle Counter (CPC) 

instrument for their particle measurements. There were peaks also displayed by the 

particles at 2 am, 12, 1-2 pm and 8 pm.  
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Figure 5.10: Diurnal variations of PM and gaseous pollutants 

 

5.5 Conclusion 

This study revealed the significant contributions by the steelworks complex activities in 

Port Talbot to particulate and gaseous pollutants. FDMS and Partisol PM data have shown 

days of exceedances when the 24 hour mean of 50 µg m
-3

 was breached. While coarse 

particles dominated the Partisol PM10, fine particles dominated FDMS PM10. The 

windrose plots indicted the steelworks as major contributor to PM episodes observed on 

April 26, May 8 and 11. This study has also established a good correlation between data 

from FDMS, Partisol, Grimm and MOUDI measuring instruments. The influence of 

meteorological conditions on particulate and gaseous pollutants has also been discussed. 

The activity of the steel industry on the PM, PNC and most gaseous pollutants became 

clearer with the polar plots. 
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CHAPTER 6- CHEMICAL COMPOSITIONS OF PARTISOL AND STREAKER 

SAMPLES 

6.1 Abstract 

This chapter documents the chemical components of particulate matter samples collected 

with Partisol and Streaker samplers at Port Talbot. For Partisol samples, metals analysed 

were Mn, Fe, Al, Cr, Zn, Ni, V, Cu, Sb, Ba, Pb, Cd; while ionic species include Cl
-
, NO3

-
, 

SO4
2-

, Na
+
, NH4

+
, K

+
, Mg

2+
 and Ca

2+
. For Streaker samples, 22 elements from Na to Pb 

were measured with PIXE. Results of PM chemical assays for Partisol PM showed 

domination of water soluble ions, which constituted the highest percentage varying 

between 42-87% for fine and 31-65% for coarse PM at the four stations. Non-sea-salt 

(nss) sulphate was the highest observed water-soluble ions for fine PM while chloride was 

observed highest in the coarse PM. The metal fractions represented between 4-5% for both 

PM categories. Fe was the most abundant metal and formed 38-52% of the total metals 

measured in PM2.5 and 73-88% in PM2.5-10.  

Of all the measured PIXE elements, sulphur concentrations were highest constituting 31 

and 29% of the summed up fine particles at Fire Station (FS) and Little Warren (LW). In 

the coarse portion, Fe (28% of the summed up PM2.5-10 elemental concentration) was the 

most abundant element at FS while Cl
-
 (35%) was observed highest at LW. Furthermore, 

most observed elements have an enrichment factor greater than 10 indicating their 

anthropogenic origin. The polar plots of the hourly PIXE data suggested the steelworks to 

be major contributor to the local pollution in Port Talbot. 
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6.2 Introduction 

Urban aerosol comprises organic and inorganic constituents originated from diverse 

natural and anthropogenic emission sources. The physical and chemical properties of 

particulate matter play important roles in atmospheric processes including visibility 

impairment, climate change, acidic precipitation and haze formation (Huang et al. 2003). 

Several adverse health effects associated with aerosol are also linked directly to their 

chemical compositions (Huang et al. 2003). Association between PM compositions, 

cardiovascular diseases, morbidity and mortality have been reported by many authors 

(Schwartz, 2000; Riediker et al., 2004; Schwarze et al., 2006; Pope and Dockery, 2006). 

Epidemiological evidence has demonstrated severe allergic respiratory disease in PM2.5 

exposed mice due to their metal toxicity (Gavett et al., 2003). Deleterious effects of 

particulate matter on climate, environment and health are principally caused by their 

chemical and physical characteristics (Hueglin et al., 2005; Aldabe et al., 2011; Huang et 

al., 2012).  

There are still scanty published literature works on chemical compositions of particulate 

matter from the steel industry across the world, particularly in the UK. The aim of this 

chapter is to determine the elemental compositions of PM (fine and coarse portion) 

collected with Partisol and Streaker samplers during the Port Talbot sampling campaign.  
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6.3 Results  

6.3.1 Partisol PM Data 

6.3.1.1 The Average elemental concentrations at the monitoring sites 

Table 6.1 shows the mean concentrations of ionic and metal components from 29 days of 

Partisol data collected at the four monitoring sites, with their percentages in the total PM 

mass. Most of the observed ionic components showed highest mean values at Little 

Warren while trace metal compositions at the Prince Street site was higher relative to the 

other three sites. In total, secondary aerosol components (nss-SO4
2-

, NO3
-
 and NH4

+
) 

constituted 43% of measured PM2.5 at FS, 30% at PS, 54% at DS and 67% at LW. Na
+
 and 

Cl
-
 were also significant components of PM2.5 at the monitoring sites. The combined 

component of Na and Cl represented 10, 7, 11 and 23% of the PM2.5 fraction at FS, PS, DS 

and LW respectively. The LW site is the closest site to the Swansea Bay beach; therefore, 

the highest observed Na
+
 and Cl

-
 concentrations at this site are expected. Average Ca

2+
 

concentration of 0.15 µg m
-3

 was observed in PM2.5 at FS and LW, and statistically higher 

than Ca
2+

 mean values at PS and DS. The average concentrations of fine particulate matter 

showed domination by Fe, Al and Zn. These 3 metals constituted over 90% all the 

measured metal components of PM2.5 (apart from Na
+
, K

+
, Ca

2+
 and Mg

2+
) and showed 

highest mean concentrations at PS except Al which was highest concentration at FS.  
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Table 6.1: Mean, standard deviation and percentage compositions of water soluble ion and Metal concentrations of Partisol PM2.5 and 

PM2.5-10 in Port Talbot 

               Note:  * units in ng m
-3

 

Site Fire Station (N=29) Prince Street (N=12) Dyffryn School (N=29) Little Warren (N=29) 

 PM2.5  

(µg m
-3

) 

PM2.5-10 

( µg m
-3

) 

PM2.5 

( µg m
-3

) 

PM2.5-10 

( µg m
-3

) 

PM2.5 

( µg m
-3

) 

PM2.5-10 

( µg m
-3

) 

PM2.5 

( µg m
-3

) 

PM2.5-10 

( µg m
-3

) 

Parameters Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% 

Mass 7.4
a     

±2.1 

100 13.6
bc 

±11.7 

100 9.2
b 

±1.7 

100 16.7
c 

±10.5 

100 7.3
a 

±3.0 

10

0 

8.3
a 

±4.9 

100 6.5
a 

±2.5 

100 9.3
ab 

±4.36 

100 

Cl
-
 0.34

a 

±0.33 

5 1.33
a 

±1.06 

10 0.41
a 

±0.43 

4 1.80
a 

±1.34 

11 0.44
a 

±0.42 

6 1.52
a 

±1.54 

20 0.40
a 

±0.37 

6 1.96
a 

±1.47 

21 

NO3
-
 0.62

a 

±0.49 

8 0.45
a 

±0.27 

3 0.52
a 

±0.41 

6 0.47
a 

±0.35 

3 0.95
a 

±0.81 

13 1.03
b 

±1.58 

15 0.95
a 

±0.74 

15 0.81
ab 

±0.79 

9 

nss-SO4
2-

 1.91
ab 

±1.02 

26 0.36
a 

±0.38 

3 1.66
a 

±0.38 

18 0.28
ab 

±0.26 

2 2.29
ab 

± 1.31 

31 0.70
c 

±0.46 

9 2.51
b 

± 1.23 

39 0.57
bc 

±0.42 

6 

ss-SO4
2-

 0.09
a
 

±0.05 

1 0.21
a
 

±0..13 

2 0.08
a
 

±0.05 

1 0.27
ab

 

±0.16 

2 0.09
a
 

±0.05 

1 0.21
ab

  

±0.15 

3 0.12
b
 

±0.05 

2 0.31
b
  

±0.19 

3 

Na
+
 0.34

a 

±0.20 

5 0.82
a 

±0.52 

6 0.31
a 

±0.19 

3 1.06
ab 

±0.62 

6 0.34
a 

±0.21 

5 0.87
ab 

±0.59 

10 0.49
b 

±0.22 

8 1.23
b 

±0.74 

13 

NH4
+
 0.68

a 

±0.53 

9 0.07
a 

±0.06 

0 0.58
a 

±0.34 

6 0.06
a 

±0.04 

0 0.75
a 

±0.65 

10 0.07
a 

±0.09 

2 0.82
a 

±0.65 

13 0.14
b 

±0.11 

2 

K
+
 0.11

a 

±0.01 

2 0.08
a 

±0.07 

1 0.14
a 

±0.09 

2 0.09
a 

±0.08 

1 0.10
a 

±0.07 

1 0.08
a 

±0.06 

1 0.15
a 

±0.10 

2 0.12
a 

±0.07 

1 

Mg
2+

 0.05
a 

±0.04 

1 0.13
a 

±0.10 

1 0.05
a 

±0.02 

1 0.16
a 

±0.11 

1 0.04
a 

±0.03 

1 0.12
a 

±0.09 

1 0.06
a 

±0.03 

1 0.15
a 

±0.09 

2 

Ca
2+

 0.15
a 

±0.13 

2 0.80
b 

±0.77 

6 0.11
a 

±0.07 

1 0.91
b 

±0.77 

5 0.10
a 

±0.15 

1 0.41
a 

±0.45 

5 0.15
a 

±0.17 

2 0.45
a 

±0.37 

5 

Al* 128.9
b     

±34.3 

2 142.6
b 

±58.5 

1 109.6
a 

±7.9 

1 140.8
ab 

±44.8 

1 116.0
ab 

±16.1 

2 110.6
a 

±34.1 

1 117.9
ab 

±24.7 

2 123.6
ab 

±48.3 

1 

V* 0.52
a     

±0.23 

0 0.53
bc 

±0.42 

0 0.50
a 

±0.23 

0 0.64
c 

±0.34 

0 0.49
a 

±0.21 

0 0.41
a 

±0.32 

0 0.59
a 

±0.28 

0 0.31
ab 

±0.18 

0 

Cr* 3.48
a 

±1.52 

0 2.89
a 

±1.52 

0 4.76
a 

±2.04 

0 3.67
a 

±1.16 

0 2.78
a 

±1.55 

0 3.14
a 

±1.49 

0 4.52
a 

±3.19 

0 2.97
a 

±1.49 

0 

Mn* 5.72
a 

±7.6 

0 26.47
bc 

±35.1 

0 12.76
b 

±11.8 

0 29.52
c 

±27.0 

0 7.03
a 

±10.7 

0 12.65
ab 

±13.8 

0 3.84
a 

±4.8 

0 10.0
a 

±12.5 

0 
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Table 6.1 contd. 

 

Superscripts of the same alphabets on the rows are not significantly different at p<0.05

Site Fire Station (N=29) Prince Street (N=12) Dyffryn School (N=29) Little Warren (N=29) 

 PM2.5  

(ng m-3) 

PM2.5-10 

( ng m-3) 

PM2.5 

( ng m-3) 

PM2.5-10 

( ng m-3) 

PM2.5 

( ng m-3) 

PM2.5-10 

( ng m-3) 

PM2.5 

( ng m-3) 

PM2.5-10 

( ng m-3) 

Parameters Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% Mean 

±SD 

% 

Fe 173a 

±237 

2 1196b 

±1642 

9 290b 

±229 

3 1439b 

±1485 

9 142a       ± 

147 

2 421a 

±433 

5 104a 

± 108 

2 520a 

±669 

6 

Ni 0.20a 

±0.33 

0 0.19ab 

±0.22 

0 0.16a 

±0.27 

0 0.24b 

±0.22 

0 0.12a 

±0.17 

0 0.11a 

±0.15 

0 0.12a 

±0.20 

0 0.14ab 

±0.22 

0 

Cu 1.89a 

±1.21 

0 2.05b 

±0.87 

0 2.90b 

±1.51 

0 3.20c 

±1.69 

0 1.42a 

±0.90 

0 1.45ab 

±1.0 

0 1.38a 

±1.26 

0 1.12a 

±0.70 

0 

Zn 43.0a 

±85.55 

1 7.30a 

±8.03 

0 67.97a 

±165.8 

1 16.26a 

±30.87 

0 71.51a 

±117.2 

1 20.31a 

±26.48 

0 33.98a 

±86.7 

1 8.30a 

±17.71 

0 

Cd 0.26a 

±0.55 

0 0.02a 

±0.06 

0 0.88a 

±2.11 

0 0.06a 

±0.12 

0 0.69a 

±1.34 

0 0.08a 

±0.15 

0 0.31a 

±0.52 

0 0.03a 

±0.09 

0 

Sb 0.57a 

±0.52 

0 0.36b 

±0.21 

0 0.99b 

±1.14 

0 0.66c 

±0.34 

0 0.38a 

±0.32 

0 0.13a 

±0.14 

0 0.53a 

±0.71 

0 0.11a 

±0.22 

0 

Ba 1.04b    

±0.5 

0 3.03b 

±2.06 

0 1.69c 

±0.75 

0 4.04c 

±2.32 

0 0.49a 

±0.25 

0 1.41a 

±0.81 

0 0.34a 

±0.26 

0 1.15a 

±0.70 

0 

Pb 4.42a     

±3.88 

0 2.04ab 

±2.40 

0 7.65a 

±7.98 

0 2.95b 

±4.20 

0 8.12a 

±9.27 

0 1.44a 

±1.51 

0 7.02a 

±6.86 

0 1.32a 

±1.43 

0 
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The marine aerosol component (Na
+
 and Cl

-
) constituted 16% of the total measured PM2.5-

10 at FS, 17% at PS, 30% at DS and 33% at LW. Ca
2+

 also formed a significant portion of 

PM2.5-10 at the monitoring sites; with highest average concentrations observed at PS. The 

secondary aerosol components also contributed significantly to the total mass of coarse 

PM. The sea-sulphate formed 2% of PM2.5-10 at FS and PS, and 3% at DS and LW. The 

crustal element, Al represents approximately 1% of coarse PM at each monitoring site.   

 

6.3.1.2 Time series plots for water soluble ion and metal concentrations of Partisol 

fine and coarse PM 

The daily variations of water soluble ion concentrations for PM2.5 at the monitoring sites 

are plotted in Appendix XIII. The domination of nss-sulphate throughout the monitoring 

periods was clearly observed at the four sampling sites. At the FS, DS and LW sites, 

elevated concentrations of secondary aerosols occurred on May 4, and might explain the 

elevated concentrations of Partisol and FDMS PM2.5 (see Figure 5.1 and 5.2) on this day. 

FDMS mass concentration data for fine PM are not available at the DS and LW sites. 

There are no distinctive patterns in temporal variations of other ionic species. However, at 

PS, peaks of K
+
 and Ca

2+
 occurred together on April 21. The mass concentration data of 

PM2.5 in chapter 5 showed a significant peak on April 21 at PS. Woodsmoke and blast 

furnace (BF) steelworks are notable emission sources of fine K
+
 and Ca

2+
 (Machemer, 

2004; Dall’Osto et al., 2008a; Harrison et al., 2011).  

 

The daily patterns of water soluble components of coarse PM mode are presented also in 

Appendix XIII.  The PM2.5-10 ionic species was dominated by sea salt aerosols (Cl
-
, Na

+
, 

Mg
2+

), sea salt-sulphate and Ca
2+

. The common peaks of PM2.5-10 water soluble ions were 
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shown at all the monitoring stations on April 22-23. Significantly elevated peaks were 

found for water soluble components at FS on April 26, May 8 and 11 which were days of 

PM10 episodes at the site. This shows the evidence of the steelworks contribution to coarse 

PM at the site.  

 

In Appendix XIV are shown the time series plots of metal data for fine PM at the four 

sampling sites. At the Fire Station site, most of the metals have shown similar undulating 

pattern of daily concentrations. The notable peaks were observed on the April 18 and 26, 

May 2-4, 8 and 11. Elevated concentration of Fe (greater than 1,000 ng m
-3

) observed on 

April 26 at FS is evidence of steelworks emissions (Connell et al., 2006; Mazzei et al., 

2008; Hleis et al., 2013). At the Prince Street sampling site, there were distinctive peaks of 

metal pollution on April 18, 23 and 26 similar to that of FS. It appeared that there was a 

factor responsible for the emission of Fe, Mn, Zn and Cd on these episodic days. The 

activities of the steelworks are likely to be the major suspect since these metals are best 

tracers for steel industry (Oravisjarvi et al., 2003). A relatively small peak of Pb, Zn, Mn, 

and Fe was observed at the Dyffryn School (DS) on May 11 coinciding with the episode 

observed at FS.  

 

Results of daily variations of metal concentrations in the PM2.5-10 portion at the four 

sampling sites are displayed in Appendix XIV. Most of the peaks observed in the coarse 

PM are consistent with peaks displayed for PM2.5 for Fe, Mn and Al on episodic days at 

FS.  Except on April 21, daily variations of coarse metals have been inconsistent with fine 

metal values at PS. At DS site, significant peaks occurred on May 2, 11 and 14 similar to 

PM2.5 metal variations. Interestingly, almost all the metals were peaked on May 2-3 and 11 
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indicating episodic events by the steelworks activities. The daily trends of metal 

concentrations at LW for coarse PM are related to what was observed for PM2.5.  

 

6.3.1.3 Aerosol chemistry at the monitoring sites 

Ion balance equations of PM2.5 and PM2.5-10 using RMA regression is shown in Table 6.2. 

The aim of this is not only to show the reliability and accuracy of the measured data 

(Wang et al., 2005), but also to study the chemistry of aerosol at each sampling site. The 

molar equivalent of NO3
-
 + SO4

2-
 versus NH4

+
 equation indicates acidity, alkalinity and 

neutrality of aerosol. In a situation where the slope is > 1.0, this indicates acidic aerosol; 

slope <1.0 depicts an alkaline aerosol, and slope=1.0 signify neutral aerosol formation. 

The molar equivalent of NO3
-
 + SO4

2-
 versus NH4

+
 in PM2.5 showed a slope ranges from 

0.62 at PS and 1.04 at DS. Correlation coefficient (r) varies between 0.55 at PS and 0.84 at 

FS. At DS and LW, where the slopes were approximately 1.0, a situation of complete 

neutralization of acidic aerosols by ammonium was observed. At FS where the slope was 

0.94, the neutralization system was fair just like that of DS and LW. Complete formation 

of ammonium sulphate/ammonium bisulphate and ammonium nitrate were prominent. 

However, the condition at PS where the slope was 0.62 showed an incomplete system due 

to excess availability of ammonia and depletion of one of the acidic gases (Parmar et al., 

2001).  In the coarse mode, the molar equivalent of NO3
-
 + SO4

2-
 versus NH4

+
 has slopes 

which vary from 3.01 to 4.57. Molar equivalent data for PM2.5-10 are poorly correlated.  
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Table 6.2: Reduced Major Axis (RMA) equations for ionic balance 

 

Sites 

[NO3
-
] + [SO4

2-
] vs. 

[NH4
+
] 

 

[Mg
2+

] + [Na
+
] vs. 

[Cl
-
] 

[Total Cations] vs. 

[Anions] 

 PM2.5  PM2.5-10  PM2.5 PM2.5-10  PM2.5  PM2.5-10  

FS y=0.94x 

r
2
=0.84 

 

y=3.16x 

r
2
=0.01 

y=1.12x 

r
2
=0.66 

y=1.01x 

r
2
=0.96 

y=0.98x 

r
2
=0.69 

y=1.76x 

r
2
=0.81 

PS y=0.64x 

r
2
=0.59 

 

y=3.01x 

r
2
=0.24 

y=0.80x 

r
2
=0.77 

y=0.93x 

r
2
=0.98 

y=1.10x 

r
2
=0.36 

y=1.42x 

r
2
=0.81 

DS y=1.05x 

r
2
=0.63 

 

y=4.57x 

r
2
=0.01 

y=1.16x 

r
2
=0.72 

y=1.03x 

r
2
=0.95 

y=0.93x 

r
2
=0.56 

y=1.29x 

r
2
=0.79 

LW y= x 

r
2
=0.76 

 

y=3.49x 

r
2
=0.04 

y=1.04x 

r
2
=0.60 

y=0.94x 

r
2
=0.96 

y=x 

r
2
=0.76 

y=0.83x 

r
2
=0.64 

FS-Fire Station, PS-Prince Street, DS-Dyffryn School, LW-Little Warren 

 

 

Titrations of [Mg
2+

] + [Na
+
] against [Cl

-
] were defined well at all the monitoring sites for 

the two PM categories. The slopes (molar equivalent ratios) vary between 0.80 and 1.16 

for PM2.5 and 0.94 to 1.03 for PM2.5-10. The associations of [Mg
2+

] + [Na
+
] vs. [Cl

-
] have 

also been intimately defined (r
2
=0.60-0.77 for fine, and 0.95-0.98 for coarse PM). A 

perfect formation of sea salt aerosol at both fine and coarse modes was prominent at all 

the monitoring sites. Sea salt aerosol in fine and coarse PM mode is mainly form of NaCl 

and MgCl2. Marine influence on the atmospheric aerosol processes and formation is a 

significant factor to local emission source of particle pollutants in Port Talbot. However, 

the presence of NaCl and KCl in fine particles has also been attributed to emissions from 

waste incineration (Bourotte et al., 2007). KCl is also a notable emission from the sinter 

plant (Oravisjarvi et al., 2003; Dall’Osto et al., 2008). 
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The molar equivalent of total cations and anions is also illustrated in Table 6.2. The ratio 

indicates slight domination of anions for PM2.5 at FS and DS. At LW, it appears that there 

is a balance between cationic and anionic species in PM2.5.  For PM2.5-10, domination of 

cationic species was obvious except at the LW site. More contribution from marine 

sources at LW (being the closest to the coast) might have resulted into higher 

concentrations of anionic species particularly chloride.  

 

6.3.1.4 Mass ratios of NO3/nss-SO4   

The mass ratio of NO3/nss-SO4 is used as indicator for mobile and stationary emission 

sources of nitrogen and sulphur to the atmospheric environment (Yao et al., 2002). 

Sulphate and nitrogen are formed as a result of photochemical reactions of their 

precursor’s gases (SO2 and NOx) with ammonia. When NO3/SO4<1, it signifies that 

emission is mainly from the stationary combustion source (industrial and power plants) 

and when the ratio is greater than 1, the mobile emission dominates (traffic). The NO3/nss-

SO4 mass ratios for fine and coarse PM at the four monitoring stations are plotted in 

Figure 6.1. NO3/nss-SO4 mass ratios for fine PM were between 0.30-0.42 while for coarse 

PM it was 2.34-3.82. The results of NO3/nss-SO4 suggest that fine particles at Port Talbot 

are more influenced by traffic while coarse by the steelworks (AQEG, 2011). 
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Figure 6.1: NO3/nss-SO4 mass ratios for PM2.5 and PM2.5-10 

 

6.3.1.5 Enrichment factors 

Results of enrichment factor analysis for PM2.5 and PM2.5-10 are displayed in Figure 6.2. In 

both PM fractions, EFs are classified into four groups based on their EF values. 

Aluminium was adopted as the reference element (see details in chapter 2). The groups are 

EF<10, EF>10, EF>100 and EF>1000. Elements with EF value less than 10 is usually 

taken as being from a crustal or natural origin while EF>10 is assigned to anthropogenic 

emission sources (Kothai et al., 2011). EF values >100 and 1000 could be seen as highly 

and heavily enriched. EF value close to 1.0 has a strong crustal origin (Braga et al., 2005). 

The EF results have shown mixed values at each sampling site. In the group of EF<10 for 

PM2.5 are Al, Ba, K
+
, Mg

2+
, Fe, Ca

2+
, V, Na (at FS and PS sites) and Mn (FS). These 

elements are typical crustal origin. However, higher EF data is expected of V and Fe in the 

fine PM due to the activities of the steel industry. It is not surprising as similar low EF 

value of V has been reported at a smelting industry in Northern Europe (Reinmann and de 

Caritat., 2005). In the category of EF>10 but less than 100 were Na
+
 (DS and LW), Mn 

(PS), Cu and Cr. Elements with EF>100 were Pb, Cl
-
 and Zn. In the group with EF>1000 
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were found Sb and Cd. These metals are heavily enriched with emission sources likely 

from traffic and steelworks, respectively. 

 

In the coarse PM fraction, Al, Ba, K
+
, V, Mg

2+
, Ni, Ca

2+
 (DS and LW), Fe (DS and LW), 

and Mn (LW) all have their enrichment factors less than 10 while Ca
2+

 (FS and PS), Cr 

(FS and DS), Mn (FS, PS and DS), Na
+
, Pb (FS, DS, LW) and Zn (FS and LW) have 

EF>10. Elements in the highly enriched group with EF>100 are Pb (PS), Zn (PS and DS), 

Sb (FS, DS and LW) and Cd (FS). In the category of heavily enriched elements with EF 

above 1000 are Sb (PS) and Cd (PS, DS and LW) and Cl
-
. The EF of Sb as heavily 

enriched element in Port Talbot aerosol is in accordance with reported studies of urban 

dusts (Ayrault et al., 2010). The crustal elements (Fe, Mn, Ca) showed higher EF values in 

coarse than fine PM fraction. Elements of soil origin might be mobilized into the 

atmospheric environment from windblown dust or abrasion of rock-derived minerals, and 

road re-suspensions (Harrison and Yin, 2000). All the anthropogenic elements with high 

EF values might be generated via industrial activities including vehicular emissions, 

steelworks, shipping and residential emissions.  

 

 

 

1

10

100

1000

10000

Al Mg Ca V K Fe Ni Na Mn Cr Cu Pb Cl Zn Sb Cd

FS 1 1.39 2.36 3.26 3.23 2.47 5.23 8.9 4.94 17.1 46.7 184 451 408 1208 4178

PS 1 1.55 2.65 3.72 4.81 4.86 5.04 9.52 12.9 27.4 84.2 375 635 759 2388 1914

DS 1 1.18 2.38 3.46 3.29 2.26 3.73 10.1 6.74 15.2 39.1 376 635 755 1088 1047

LW 1 1.84 3.28 4.06 4.7 1.63 4.36 14.1 3.62 24.2 37.2 320 576 353 1562 4588

EF
 

Enrichment Factors for PM2.5 
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Figure 6.2: Enrichment factors for Partisol PM2.5 and PM2.5-10 chemical components 

 

6.3.1.6 Concentration ratios of PM chemical compositions  

The ratios of metal concentrations provide useful information on the emission sources of 

particular metals or group of metals. Metal signatures for road traffic are Cu, Sb, Zn, Ba 

and Fe (Thorpe and Harrison, 2008, Amato et al., 2011). Cu/Sb, Fe/Sb, Fe/Cu ratios are 

good indicators for road traffic signatures. The corresponding range ratios of these metals 

for PM2.5 in this study are 12.6-3.7, 196-374 and 75-100 accordingly. Cu/Sb ratios at the 

sites and close to Sternbeck et al. (2002) value; this suggests traffic impact. At the LW 

where the Cu/Sb ratio is 2.6 gives indication of minimal emissions by traffic. Lowest 

Fe/Sb and Fe/Cu ratios are also documented at the LW site. In the PM2.5-10 portion, ranges 

of Cu/Sb, Fe/Sb, Fe/Cu at the monitoring sites are 4.8-11.2, 2180-4427 and 290-583.  

 

Ni/V ratio has been used to ascribe emissions to residual oil or gas/diesel burning or ship 

emissions (Figueroa et al., 2006, Pandolfi et al., 2011). Ni/V ratios in this study for PM2.5 

1

10

100

1000

10000

Al Ba K V Ni Mg Ca Cr Fe Mn Na Cu Pb Zn Sb Cd Cl

FS 1 2.9 2.2 2.99 3.84 3.42 11.6 12.8 15.5 20.6 19.3 45.8 77.1 62.7 812 939 1568

PS 1 3.92 2.96 3.7 3.26 4.2 13.4 16.5 18.8 23.3 25.4 72.4 113 141 135814092160

DS 1 1.73 2.75 3.35 3.41 3.88 7.35 18 7.01 13.2 25.8 41.8 70 225 557 18322449

LW 1 1.26 3.83 2.05 3.81 4.39 7.58 15.2 7.75 8.99 33.5 28.8 57.4 82.2 467 11942667

EF
 

Enrichment Factors for PM2.5-10 
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range between 0.20 at LW and 0.38 at FS. For coarse fraction, the ratios vary from 0.27 at 

DS and 0.45 at LW.  

 

Mn/Zn ratio is a good indicator for identifying steel emissions (Connell et al., 2006). 

These ratios in this study for PM2.5 vary between 0.10 at DS to 0.19 at PS in line with 0.15 

value reported by Connell et al. (2006) for PM2.5 sampled at Steubenville, US. In the 

coarse PM, higher ratios of Mn/Zn are calculated with variation from 0.64 at DS to 3.63 at 

FS. The low Mn/Zn ratio (0.64) obtained at DS may suggest more pronounced influence 

of basic oxygen furnace steelmaking (BOS) section of the steelworks at the site.   

 

Regarding the Pb/Cd ratios in this study; the values are 17 and 102 for PM2.5 and PM2.5-10, 

respectively at FS, 8.7 and 49.2 at PS; 11.8 and 18 at DS and 22.7and 44 at LW. These 

ratios are similar to calculated Pb/Cd ratios in emission profiles reported by Tsai et al. 

(2007) at a steel industry in Taiwan. In Tsai et al. (2007) study, Pb/Cd ratios at 

cokemaking, sintering, cold and hot forming processes are 3.0, 17.0, 0.69 and 20, 

respectively. Pb/Cd ratios calculated for USEPA speciates PM10 at the steel foundry, the 

BOS and sinter plants gave the values of 16, 11 and 22.2, respectively.  

 

By calculating the corresponding mass ratios of Cl
-
, K

+
, Ca

2+
, Mg

2+
 and SO4

2- 
to Na

+
, it is 

possible to infer the influence of marine and other emission sources on fine particles. 

Ratios of Cl
-
/Na

+
, K

+
/Na

+
, Ca

2+
/Na

+
, Mg

2+
/Na

+
 and SO4

2-
/Na

+
 in seawater are 1.8, 0.037, 

0.038, 0.12 and 0.25 respectively (Parmar et al., 2001). In the PM2.5 fraction, Cl
-
/Na

+
, 

K
+
/Na

+
, Ca

2+
/Na

+
, Mg

2+
/Na

+
 and SO4

2-
/Na

+ 
ratios are calculated for each site; the ratios 

are 1.01-1.33, 0.30-0.46, 0.30-0.43, 0.12-0.17 and 5.63-7.59. In the coarse PM portion, Cl
-
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/Na
+
, K

+
/Na

+
, Ca

2+
/Na

+
, Mg

2+
/Na

+
 and SO4

2-
/Na

+
 ratios at the sites are 1.59-1.76, 0.09-

0.10, 0.47-0.98, 0.12-0.17 and 0.50-1.08, respectively. Cl
-
/Na

+
, K

+
/Na

+
, Mg

2+
/Na

+
 as well 

as SO4
2-

/Na
+
 ratios are close to seawater values indicating a marine influence.  

 

The ratio of SO4
2-

 to Ca
2+

 is important for identifying possible emission sources of SO4
2-

 

(Zhao et al., 2011). Higher ratio value SO4
2-

/Ca
2+

 indicates anthropogenic influences and 

low ratio signifies emissions through natural processes (Ming et al., 2007). The SO4
2-

/Ca
2+

 

ratio was calculated for PM2.5 and PM2.5-10 in this study have range values of 13.57-22.68 

and 0.51-2.31 (total-SO4
2+

 value was used for calculation) at the four monitoring sites.  

 

6.3.1.7 Correlations among Partisol PM constituents and other pollutants at FS 

Tables 6.3 and 6.4 represent the Pearson’s correlation coefficients (R
2
) between Partisol 

PM2.5 and PM2.5-10 metal/water-soluble components, black carbon, meteorological 

parameters and gaseous pollutants at the FS monitoring sites. Pearson’s correlation 

coefficients at the PS, DS and LW sites are presented in Appendices XV-XVII. Strong 

associations were found between PM2.5 mass concentration and Cl
-
 (R

2
=0.40; p<0.05), nss-

SO4
2-

 (R
2
=0.48; p<0.05), NH4

+
 (R

2
=0.55; p<0.01), Mn (R

2
=0.56; p<0.01), Fe (R

2
=0.57; 

p<0.01), Cu (R
2
=0.42; p<0.05), Zn (R

2
=0.50; p<0.01), Sb (R

2
=0.39; p<0.05), Ba 

(R
2
=0.68; p<0.01) and Pb (R

2
=0.74; p<0.01). NH4

+
 is strongly related with NO3

-
 

(R
2
=0.81; p<0.01), and nss-SO4

2-
 (R

2
=0.90; p<0.01) indicating secondary aerosol 

formation while Na
+
 and Cl

-
 are well correlated (R

2
=0.85; p<0.01) suggesting common 

emission sources.  
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V was significantly correlated with Sb (R
2
=0.59; p<0.01) and Ba (R

2
=0.52; p<0.01) with 

emissions probably from oil combustion (Lim et al., 2010). Strong correlations were 

observed between Mn and, Fe (R
2
=0.96, p<0.01), Zn (R

2
=0.86, p<0.01), Cd (R

2
=0.76, 

p<0.01), Ba (R
2
=0.66, p<0.01), Pb (R

2
=0.78, p<0.01). These elements are markers for 

steel industry (Oravisjarvi et al., 2003, Yatkin and Bayram, 2007). Cu and Sb are highly 

related (R
2
=0.75; p<0.01); the relationship was extended to Ba (R

2
=0.72; p<0.01) and Pb 

(R
2
=0.54; p<0.01). This suggests emissions from traffic.  

 

The coarse FS PM mass concentration at FS site (Table 6.4) exhibited very strong 

relationships with Cl
-
 (R

2
=0.67; p<0.01), nss-SO4

2-
 (R

2
=0.81; p<0.01), Na

+ 
 (R

2
=0.70; 

p<0.01), K
+
 (R

2
=0.42; p<0.05), Mg

2+
 (R

2
=0.89; p<0.01), Ca

2+
 (R

2
=0.95; p<0.01), Al 

(R
2
=0.86, p<0.01), V (R

2
=0.91; p<0.01), Mn (R

2
=0.96; p<0.01), Fe (R

2
=0.97; p<0.01), Cd 

(R
2
=0.91; p<0.01), Ba (R

2
=0.92; p<0.01) and Pb (R

2
=0.87; p<0.01). The agreement of 

PM2.5-10 with these metals gives possible contribution of soil, road dust, steelworks, brake 

wears and oil combustions to coarse PM load in the study area. Al and V have shown very 

strong relationship with each other (R
2
=0.83; p<0.01) and with other metals except Cr. 

The natural crustal origin of Al and V in the coarse mode has been proved in their low EF 

values (Figure 6.2). Together with Ba, it could be established that Al and V could be of 

soil origin. The FS coarse metals have shown correlations between Sb and Ba with Cu 

suggesting traffic contributions. The strong relationship between Cl
-
, Na

+
 and Mg

2+
 

showed domination of marine aerosol of NaCl and MgCl2 in the coarse particles. 

Significant associations were found between Ca
2+

 and Cl
-
 (R

2
=0.59; p<0.05), and Ca 

versus nss-SO4
2-

 (R
2
=0.77; p<0.01).  
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As regarding the gaseous pollutants, most of the observed metal species (in fine and 

coarse PM) formed strong correlations with the gaseous pollutants. Mn, Fe, Zn, Cd, Ba 

and Pb were all correlated significantly with NO, NO2, NOx, SO2 and CO. The trios of 

NO, NO2 and NOx were all correlated with Cu, Sb and Ba indicating vehicular origin. V 

and Cd were found to be statistically correlated with CO and SO2 to suggest oil 

combustion or shipping and steel emission sources. The influence of meteorology on 

particle formation was much observed between windspeed and Cl
-
 (R

2
=0.40; p<0.05, for 

both fine and coarse) and Na (R
2
=0.45; p<0.05). The relationship was extended to Ca

2+
 

and Mg
2+

 for the coarse portion. Associations between the sea salt elements (Cl
-
, Na

+
, 

Mg
2+

) in the fine and coarse PM, and windspeed were strongly defined. This shows the 

significant contribution of marine aerosol to particle pollution in Port Talbot. 

 

Pearson’s correlation has not shown significant agreement between the fine metal species 

and black carbon (BC) except with Sb (R
2
=0.49, p<0.01). BC was strongly correlated with 

vehicular marker NO3 (R
2
=0.66; p<0.01). In the coarse fraction, BC defined good 

relationship with Cu (R
2
=0.55; p<0.01). Cu, NO3 and Sb are better tracers for vehicular 

emission; their close association with BC, which is a product of incomplete combustion of 

fuel (Reddington et al., 2012) is a confirmation of influence by vehicular emission.  
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           Table 6.3: Pearson’s correlation coefficient PM2.5 metal compositions, water soluble ions and gaseous pollutants at FS site 

 
 PM2.5 Cl- NO3

- nss-

SO4
2- 

Na+ NH4
+ K+ Mg2+ Ca2+ Al V Cr Mn Fe Ni Cu Zn Cd Sb Ba Pb 

PM2.5 1 .397* .489** .481* .153 .545** .251 .018 .163 .217 .282 .319 .562** .566** -.188 .421* .502** .488** .393* .677** .736** 

Cl-  1 -.298 -.412* .853** -.325 -.151 .536** .431* .018 -0.19 -.023 .404* .365 .403 -.068 .447* .470* -.238 .257 .281 

NO3
-   1 747** -.381* .853** -.325 -0.151 .536** .431* .018 -0.19 -.023 .404* .365 .403 -.137 -.086 .629** .251 .253 

nss-SO4
2-    1 -.602** .895** .103 -.642** -.278 .134 .266 .063 -.003 -.034 -.278 .387* -.004 .053 .548** .233 .448* 

Na+     1 -.546** -.111 .707** .242 .029 -.216 -.009 .259 .244 .315 -.124 .351 .381* -.230 .100 .061 

NH4
+      1 .078 -.479** -.281 .041 .150 .107 -.109 -.150 -.246 .296 -.128 -.062 .417* .190 .353 

K+       1 .271 .224 .051 .242 .316 .497** .525** -.406 .419* .418* .313 .164 .464* .334 

Mg2+        1 .309 -.136 -.251 -.012 .122 .155 .396 -.177 .149 .114 -.303 .087 -.156 

Ca2+         1 -.104 -.061 -.109 .413* .449* -.230 -.032 .330 .258 -.173 .285 .169 

Al          1 .144 .064 .311 .249 -.114 -.013 .346 .404* -.045 .191 .394* 

V           1 -.070 .331 .321 -.161 .692** .136 .126 .593** .523** .279 

Cr            1 .304 .360 -.126 .185 .404* .273 .076 .158 .279 

Mn             1 .955** -.301 .416* .857** .758** .097 .664** .776** 

Fe              1 -.227 .358 .805** .666** .084 .624** .669** 

Ni               1 -.171 -.100 -.131 -.169 -.296 -.447 

Cu                1 .343 .358 .749** .717** .541** 

Zn                 1 .942** .063 .517** .785** 

Cd                  1 .102 .502** .828** 

Sb                   1 .568** .359 

Ba                    1 .705** 

Pb                     1 

* p<0.05, ** p<0.01 
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Table 6.3 contd. 

 
 Dir Speed Temp NO NO2 NOx as NO2 O3 SO2 CO BC 

PM2.5 .167 -.240 .132 .608** .712** .697** -.423* .599** .533** .502** 

Cl .509** .404* .034 .072 .022 .035 .185 .406* .207 -.176 

NO3 -.128 -.586** -.077 .433* .540** .521** -.548** -.125 .088 .659** 

nss-SO4 -.395* -.431* .115 .394* .495** .479** -.550** .037 .169 .406* 

Na .552** .453* -.093 -.104 -.197 -.176 .379* .266 .076 -.286 

NH4
+ -.278 -.539** -.028 .387* .482** .468* -.600** -.046 .154 .452* 

K .200 -.286 .188 .423* .543** .517** -.248 .446* .404* .035 

Mg .535** .107 -.070 -.017 -.075 -.064 .260 .120 .071 -.255 

Ca .208 .142 .124 .140 .169 .161 .224 .421* .220 -.187 

Al -.300 .182 .042 -.108 .029 -.014 .128 .349 -.097 -.122 

V .032 -.161 .389* .288 .338 .334 -.003 .400* .518** .111 

Cr -.109 -.227 -.053 .234 .222 .231 -.298 .165 .318 .230 

Mn .195 .213 .450* .557** .591** .595** -.176 .938** .684** -.056 

Fe .180 .163 .375* .493** .555** .549** -.090 .911** .657** -.115 

Ni -.186 .273 -.313 -.512 -.574 -.574 .441 -.334 -.394 -.041 

Cu .232 -.185 .208 .562** .629** .625** -.418* .356 .468* .358 

Zn .103 .306 .302 .388* .469* .454* -.067 .782** .481** -.065 

Cd .131 .272 .166 .322 .427* .403* -.014 .751** .393* -.080 

Sb .047 -.412* .054 .574** .571** .591** -.443* .118 .235 .486** 

Ba .410* -.249 .123 .718** .748** .759** -.363 .637** .523** .311 

Pb .051 -.068 .273 .619** .726** .710** -.417* .770** .557** .141 

Dir 1 .048 -.096 .272 .243 .253 -.056 .148 .160 -.044 

Speed  1 .219 -.327 -.348 -.350 .387* .131 -.218 -.346 

Temp   1 .356 .280 .312 -.217 .354 .490** -.021 

NO    1 .884** .946** -.745** .469* .565** .534** 

NO2     1 .988** -.718** .533** .487** .408* 

NOx asNO2      1 -.746** .527** .525** .464* 

O3       1 -.025 -.238  -.548** 

SO2        1 .689** -.172 

CO         1 -.037 

BC          1 

Dir-wind direction, Temp-temperature, speed-windspeed, * p<0.05, ** p<0.01 
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Table 6.4: Pearson’s correlation coefficient PM2.5-10 metal compositions, water soluble ions and gaseous pollutants at FS site 

 
 PM

2.5-10 

Cl- NO3
- nss-

SO4
2- 

Na+ NH4
+ K+ Mg2+ Ca2+ Al V Cr Mn Fe Ni Cu Zn Cd Sb Ba Pb 

PM2.5-10 1 .673** .047 .813** .696** .099 .417* .894** .954** .861** .911** -.394* .963** .973** .332 .160 .366* .919** .454 .919** .873** 

Cl-  1 -.181 .391* .989** .035 .313 .890** .590** .640** .603** -.460* .521** .533** .248 .102 -0.041 .041 .081 .498** .480** 

NO3
-   1 0.083 -.139 .064 -.123 -.056 .120 0.124 .212 .228 .082 .041 -.193 .446* 0.032 .179 .427* .263 .187 

nss-SO4
2-    1 .377* .136 .176 .625** .767** .715** .789** -.268 .896** .878** .362 -.063 0.314 .786** .184 .748** .890** 

Na+     1 -.012 .370* .905** .615** .658** .614** -.454* .538** .552** .268 .105 -0.024 .161 .123 .519** .477** 

NH4
+      1 -.121 0.068 .090 0.039 .064 .082 .085 .104 .040 .194 0.03 .931 .180 .146 .087 

K+       1 .531** .348 .394* 0267 -.484** .344 .354 .264 -.074 0.292 .856 .432* .400* .232 

Mg2+        1 .817** .795** .783** -.488** .790** .805** .297 .106 0.206 .751 .306 .761** .709** 

Ca2+         1 .800** .945** -.246 .948** .940** .194 .259 .474* .883 .398 .916** .871** 

Al          1 .833** -.331 .849** .809** .275 .205 .347* .363 .403 .813** .705** 

V           1 -.240 .927** .888** .324 .251 .421* .547 .302 .888** .868** 

Cr            1 -.306 -.340 -.459 .133 0.147 -.898 -.226 -.295 -.332 

Mn             1 .985** .308 .131 .466* .885** .334 .915** .922** 

Fe              1 .298 .104 .419* .959* .320 .904** .915** 

Ni               1 .395* 0.16 .873 -.060 .644** .549** 

Cu                1 0.284 -.516 .722** .462* .212 

Zn                 1 -.59** .268 .492** .365 

Cd                  1 .876 .970* .515** 

Sb                   1 .588** .437* 

Ba                    1 .884** 

Pb                     1 

 

* p<0.05, ** p<0.01 
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Table 6.3 Contd. 
 

 Dir Speed Temp NO NO2 NOx as NO2 O3 SO2 CO BC 

PM2.5-10 .375* .251 .214 .356 .396* .392* .121 .851** .523** -.115 

Cl- .602** .409* -.043 -.041 -0.075 -.069 .360 .406* .090 -.283 

NO3
- -.013 -.285 -.136 .242 .409* .369* -.161 .143 .009 .252 

nss-SO4
2- .099 .087 .311 .407* .460* .456* -.097 .892** .627** -.086 

Na+ .617** .446* -.023 -.046 -.063 -.062 .387* .411* .094 -.279 

NH4
+ -.041 -.233 .131 .360 .290 .323 -.426* .027 .050 .161 

K+ .238 .415* .253 .043 .220 .164 -.025 .270 .093 -.181 

Mg2+ .513** .427* .179 .168 .191 .186 .218 .662** .298 -.223 

Ca2+ .322 .225 .269 .409* .413* .423* .118 .879** .584** -.016 

Al .442* .193 .081 .387* .447* .438* .072 .824** .480** -.075 

V .308 .211 .233 .434* .453* .458* .074 .924** .576** .012 

Cr -.047 -.245 .029 .205 .097 .137 -.252 -.225 .153 .319 

Mn .248 .204 .348 .452* .483** .485** .028 .943** .642** -.046 

Fe .248 .207 .298 .409* .450* .449* .048 .890** .567** -.064 

Ni .399* .067 .003 .389* .386* .397* -.042 .259* .388* -.234 

Cu .469* -.421* -.078 .616** .496** .550** -.312 .034 .156 .551** 

Zn .013 -.145 .408* .552** .497** .529** -.314 .499** .711** .296 

Cd .117 .250 .331 .428* .487** .479** -.107 .494 .061 -.814 

Sb .612** -.240 .038 .706** .643** .681** -.329 .242 .146 .206 

Ba .404* .050 .217 .584** .610** .618** -.114 .819** .571** .114 

Pb .219 .131 .299 .420* .448* .451* -.021 .857** .536** -.003 

Dir 1 .048 -.096 .272 .243 .253 -.056 .115 .160 -.013 

Speed  1 .219 -.327 -.348 -.350 .387* .197 -.218 -.414* 

Temp   1 .356 .280 .312 -.217 .386* .490** .026 

NO    1 .884** .946** -.745** .450* .565** .594** 

NO2     1 .988** -.718** .517** .487** .555* 

NOx as NO2      1 -.746** .510** .525** .621** 

O3       1 -0.011 -.238  -.575** 

SO2        1 .679** .000 

CO         1 .169 

BC          1 

 

Dir-wind direction, Temp-temperature, speed-windspeed, * p<0.05, ** p<0.01 
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6.3.1.8 Analysis of variance (ANOVA) of Partisol PM components at the monitoring 

sites 

ANOVA results (Appendix XVIII) revealed significance (p<0.05) in concentrations of 

PM2.5 mass, sodium and chromium. PM2.5 mass and Cr concentrations at PS were 

significantly (p<0.05) higher relative to the other three sampling locations. Fine sodium 

was also significantly (p<0.05) higher at LW relative to the remaining stations. DS 

showed a significantly lower value of PM2.5-10 mass concentration and highest nss-SO4
2-

 

concentrations. The coarse NO3
-
 value was elevated at DS compared to PS. Ammonium 

was significantly higher at LW relative to the other sites. Significant elevated values of 

Ca
2+

 were observed at FS and PS than at DS and LW.  

 

6.3.2 Streaker PM Components 

6.3.2.1 Comparison of hourly Streaker and FDMS mass components  

Figure 6.3 shows the hourly variations of FDMS and Streaker mass concentrations. The 

Streaker mass concentrations were determined by summing of all the measured elemental 

components. The emission patterns shown in Figure 6.3a depict similar variations between 

FDMS and Streaker mass concentrations for both PM2.5 and PM10 at FS. 

 

Episodic hours of PM10 pollution (> 50 µg m
-3

) were observed for both PM measuring 

instruments on May 7
th

 and 10
th

. On May 2
nd

 and 14
th

, cases of hourly episodic peaks were 

observed for FDMS but not for Streaker. However, PM10 peak > 40 µg m
-3

 was observed 

for Streaker on May 14
th

.  

 



148 

 

 

Figure 6.3: Variations in hourly FDMS and Streaker constructed mass concentration at (a) 

FS and (b) LW 

 

At the LW site, related peaks patterns were observed for FDMS and Streaker PM10 

constructed mass with no record of exceedances (Figure 6.3b). The hourly data of FDMS 

PM2.5 was not available and hence their comparison with Streaker-summed PM2.5 mass is 

impossible. Looking at the Figure 6.3a & b, the PM mass concentrations from the two 
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mass measuring instruments showed higher concentration at FS than LW. Hourly peak 

heights were seen on both May 7, 10 and 14. This suggests a related contributing factor at 

the two sites.  

 

The hourly trend of each Streaker elemental concentration at FS site is presented in 

Appendix XIX. The dominating element on the May 10 episode was Fe with hourly 

concentration around 60 µg m
-3

. Other elements with significant elevated concentration on 

this day were Cl, Ca, Na, S, Si, Mg, Al and Mn; these metals mostly concentrated at the 

coarse mode. These elements could be categorized into four clusters: marine (Cl, Na, Mg, 

Br), secondary (S), crustal (Ti, Ca, Al) and steel (Fe, Mn).  

 

The hourly trend shown by Na, Mg and Cl in fine and coarse PM indicates a common 

emission source. These sea spray signatures have shown notable emission heights on May 

5, 6, 7, 10, 13, 14 and 16. Elevated amounts of Al, Si, Ti, Mn, Fe, Ca and S were also 

observed on these days. The fine S exhibited additional huge hourly peaks on May 2-5 

which can indicate plume emissions from the steelworks.  

 

Appendix XX shows the Streaker hourly elemental trends of both fine and coarse particles 

at the LW monitoring station. Unlike at the FS site where highest peak of pollutants were 

observed on May 10; LW showed elevated components of elements on May 13-14. Al and 

Si showed a common episode at the two monitoring sites on May 7, 13 and 14. The hourly 

concentration of Fe, Mn and Ca on May 7 is an indication of a common emission source 

with the steel industry as the major suspect. Both Zn and Pb peaked on May 7 and 9. Br 

and Sr appeared to show related peaks on May 11 and 14 indicating similar emission 
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sources. On May 11, none of the marine aerosol showed peaks as observed for Br. 

Emission of Br on this day might be linked to a source other than marine origin. Ca 

displaying a peak on May 11 with Sr may suggest dual emission sources from the 

steelworks (blast furnace plant) and crustal matter from construction activities (Widory et 

al., 2010).  

 

6.3.2.2 Average elemental concentrations for Streaker (PIXE) PM data 

The average Streaker (PIXE) elemental concentrations for PM2.5 and PM2.5-10 are 

displayed in Table 6.5. Like the Partisol nss-SO4
2-

 which was the highest observed PM 

component in the fine PM, sulphur was the most abundant constituent at FS and LW. The 

order of abundance of elemental composition for PM2.5 followed the sequence 

S>Fe>Na>Ca>Cl at FS and S>Na>Fe>Cl at LW. The wide gap between Fe concentrations 

at the two stations still depicted FS to be more affected by the steelworks probably due to 

its closeness to the blast furnace, basic oxygen furnace and sinter plants. The fine PIXE 

average concentrations for Al, Ti, V, Ni, Cu, As, Se and Sr were similar and imply equal 

contribution from the processes that emitted these particulate trace metals. The coarse 

fraction of PIXE elemental concentrations showed the order of concentration as: 

Fe>Cl>Na>Ca at FS and Na>Cl>Fe>Mg at LW.  
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Table 6.5: Mean, standard deviation of Streaker elemental concentrations of PM2.5 and 

PM2.5-10 in Port Talbot 

 
   Fire Station Little Warren 

Para

meter

s 

 

 

 PM2.5 

(ng m
-3

) 

 PM2.5-10 

(ng m
-3

) 

 PM2.5 

(µg m
-3

) 

 PM2.5-10 

(µg m
-3

) 

  N Mean 

±SD 

N Mean 

±SD 

N Mean 

±SD 

N Mean 

±SD 

Na  297 346.58 

±322.35 

300 2085.83 

±1762.2 

319 424.72 

±387.14 

322 1309.38 

±1040.49 

Mg  280 59.68 

±37.79 

299 277.06 

±314.69 

296 62.85 

±36.65 

322 147.63 

±101.53 

Al  294 48.38 

±22.64 

298 116.81 

±180.03 

289 42.35 

±24.32 

294 42.70 

±54.17 

Si  - - 299 267.70 

±424.28 

- - 320 96.84 

±126.97 

S  300 558.60 

±522.89 

300 290.59 

±530.68 

322 561.96 

±561.16 

322 99.05 

±94.55 

Cl  298 140.96 

±326.56 

266 2185.52 

±2455.71 

321 210.76 

±437.70 

276 1235.81 

±1163.73 

K  292 62.74 

±63.14 

300 90.41 

±107.76 

298 89.47 

±141.77 

317 44.92 

±33.58 

Ca  300 141.22 

±201.60 

300 749.14 

±1755 

312 95.91 

±124.17 

322 117.70 

±168.61 

Ti  130 8.58 

±3.33 

214 16.14 

±28.20 

108 8.05 

±3.86 

133 5.82 

±4.86 

V  23 4.30 

±1.09 

16 4.94 

±4.37 

30 4.05 

±0.91 

15 1.91 

±0.80 

Cr  298 3.67 

±1.77 

278 3.04 

±3.58 

256 2.65 

±1.08 

309 1.91 

±0.62 

Mn  264 10.35 

±17.27 

259 39.29 

±105.01 

166 11.15 

±16.15 

187 6.44 

±9.41 

Fe  299 377.79 

±688.03 

300 2362.77 

±7431.10 

321 231.24 

±452.03 

322 306.63 

±725.40 

Ni  271 1.37 

±0.62 

227 0.67 

±0.26 

294 1.29 

±0.63 

294 0.60 

±0.24 

Cu  297 3.34 

±3.86 

296 3.03 

±2.76 

237 2.63 

±4.74 

231 0.74 

±0.71 

Zn  300 32.51 

±82.27 

298 9.30 

±20.34 

321 80.64 

±383.57 

316 9.24 

±42.30 

As  32 1.36 

±0.62 

29 0.76 

±0.77 

28 1.31 

±0.80 

15 0.45 

±0.31 

Se  71 1.94 

±1.19 

16 1.59 

±1.44 

83 1.74 

±1.32 

15 0.63 

±0.46 

Br  - - 94 1.03 

±0.84 

- - 140 1.73 

±1.87 

Rb  24 9.33 

±5.95 

85 44.01 

±88.49 

27 7.29 

±3.09 

55 5.39 

±5.79 

Sr  13 2.11 

±0.50 

126 1.62 

±0.98 

20 2.34 

±0.86 

127 1.51 

±1.0 

Pb  230 7.40 

±7.37 

106 9.53 

±23.93 

200 14.44 

±19.64 

69 3.58 

±3.41 

              SD- Standard Deviation 
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6.3.2.3 Temporal variations of Streaker PM elemental concentrations 

The diurnal variations of Streaker fine and coarse PM at FS and LW are shown in Figure 

6.4. Similar diurnal variations were highlighted for fine Fe and Mn at FS with notable 

peaks at 7-9 am, 2 pm and 6 pm. At LW, a common peak was observed at 1 pm and 10 pm 

while other peaks did not match. Different patterns of Fe and Mn peaks at FS and LW 

might be related to prevailing wind direction from the steelworks to the two sites. 

Additional contribution by traffic might probably explain the peaks observed at morning 

and evening rush hours at FS. The temporal trend of fine Zn and Pb is closely related to 

the pattern observed for Fe and Mn. Zn and Pb showed a common peak at 1 pm at the two 

sites. The Fe and Mn at the LW also showed a recognizable peak during this period. The 

fine Na, Cl and Mg displayed a stretched peak that started from 9 am till 8 pm at FS,  and 

9 am to 9 pm at LW.  
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Figure 6.4: Diurnal variations of Streaker elemental concentrations 

 

Diurnal peaks for coarse Fe and Mn at FS were 4-9 am, 11 am to 2 pm and 5-11 pm. At 

LW, there were times when Fe and Mn peak did not match, however, significant peaks 

were observed at 3-5 am and 6-9 am. The crustal elements (Al, Ti, Sr, Ca and Si) 

displayed different diurnal trends which suggested different emission sources at the two 

sites. The contributing factor from the road resuspension was more evident at LW than FS 

with peak heights observed around 6-11 am and 12 pm to 7 pm. Elevated concentrations 

of Ca and Ti between 9 and 10 pm could represent emissions from the steel production 

processes. The coarse marine aerosol (Na, Cl, Mg) showed similar temporal trends 

observed for fine PM at FS, and different diurnal variations with LW fine.  
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6.4.2.4 Enrichment factor analysis of Streaker data 

Enrichment factors of Streaker elements for both fine and coarse PM at the two stations 

are presented in Table 6.6. PM2.5 EF values for Mg, K, Ca and Ti at the two sites were <10 

indicating their natural origins. The coarse fractions showed Si, K, Ti and Sr to be mainly 

of natural origin at FS and LW with their EF values less than 10. Additionally, Mg and Ni 

have EF<10 at FS while these elements showed some anthropogenic influence at LW.  

 

EF ratios of Al, Si and Ti for coarse PM at the two stations have a strong link with crustal 

matter. The scatter plots of Al against Si and Ti at FS and LW shown in Figure 6.5 

established also common origins of these metals. Si/Al ratios at FS and LW are 2.3 and 

2.2, similar to the typical rock composition of 2.79 reported in D’Alessandro et al. (2003); 

and also similar to Si/Al ratio value of Wedepohl (1995) calculated as 3.6.  

 

The fine particles at FS revealed S, As and Se as the most highly enriched elements with 

an EF value >1000. In the coarse fraction at this site, Cl and Se are highly enriched 

(EF>1,000). At LW, fine S, Zn, As, Se and Pb have EF values > 1000; while coarse Cl, Se 

and Br recorded EF>1000. The elevated EF amounts calculated for Na and Cl showed 

additional contributions from anthropogenic pathways especially the steelworks rather 

than from a wholly marine emission. Further confirmation could be established with 

relatively low Cl/Na ratios in PM2.5 (0.41 and 0.50 at FS and LW, respectively) and PM2.5-

10 (1.1 and 0.9 at FS and LW) when compared with seawater value of 1.8.   
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 Table 6.6: The EF values of elemental concentrations of PM at FS and LW stations 

 

                                     Fire Station                                 Little Warren 

   PM2.5  PM2.5-10  PM2.5  PM2.5-10 

Na 24 60 35 106 

Mg 5 9 5 13 

Al 1 1 1 1 

Si - 1 - 1 

S 1331 284 1420 254 

Cl 485. 3155 849 4785 

K 5 3 8 4 

Ca 6 13 5 6 

Ti 3 3 4 3 

V 73 34 78 36 

Cr 48 16 359 28 

Mn 24 37 31 17 

Fe 14 37 10 14 

Ni 41 8 42 20 

Cu 219 83 201 53 

Zn 831 97 2397 271 

As 1311 307 1381 478 

Se 26836 9037 27709 9559 

Br - 705 - 3131 

Rb 198 384 171 122 

Sr 10 3 13 8 

Pb 895 439 1883 443 

 

 

 

 
 

Figure 6.5: Scatter plots of coarse PM showing relationships among Al, Si and Ti at FS 

and LW 
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The significant influence of the steelworks could be established with higher EF values 

observed for the steel signatures of Fe, Mn, Zn, Pb and Cr. An elevated EF amount was 

observed for Br suggesting anthropogenic dominance which might be related to traffic 

influence. The ratio of Br/Pb has been adopted to establish traffic emission sources 

(D’Alessandro et al., 2003). The values of Br/Pb for coarse PM in this study were 0.11 at 

FS and 0.48 at LW, close to 0.23-0.33 reported for traffic emissions in Italy 

(D’Alessandro et al., 2003). 

 

6.4.2.5 Correlational analysis among Streaker elemental components 

Pearson correlation coefficients of PIXE data for fine and coarse PM at FS and LW sites 

are presented in Tables 6.7 and 6.8, respectively. In the Table 6.7a showed correlation 

coefficients for fine particles at FS. Strong correlations (R
2
>0.70; p<0.01) were observed 

among Mg, Na and Cl depicting their related common origin. Al, Ca, Ti, Mn, Fe and Rb 

showed better correlations among themselves indicating possible emissions from the 

steelworks. Mn and Fe as well best markers for steelworks emissions showing a strong 

positive correlation (R
2
=0.94; p<0.01) while K, As, Se and Zn also associated well with 

Mn and Fe. Pb is as well strongly associated with Zn (R
2
=0.77; p<0.01) with the steel 

emission as the most suspected source.  

 

A strong association existed between Cu and Sr (R
2
=0.77; p<0.01) may signify 

contribution by the local traffic. Good relationship established between K and Se 

(R
2
=0.77; p<0.01) suggested a woodsmoke emission. K and Se were reported to be 

emitted from combustion of plant tissues by Samsonov et al. (2005) during the fire 

episode of Siberian Scots pine forests. Ni and V are unusually anticorrelated  at FS 



159 

 

showing their different emission sources. Instead, V has been correlated with Mn and Rb 

(R
2
=>0.60) while Ni only strongly associated with Sr (R

2
=0.68; p<0.01). A very strong 

correlation was also found betwen Se and Sr (R
2
=1.0; p<0.01) similar to the relationship 

between Se and As (R
2
=1.0; p<0.01). Se and As have been used as good marker elements 

for cokemaking emissions (Konieczynski et al., 2012).   

 

Pearson’s correlations among the elemental components of coarse PIXE data is displayed 

in Table 6.7b. Most of the coarse elements showed better correlations than what was 

observed for fine Streaker data. A well defined correlation between coarse Br and Pb 

(R
2
=0.81; p<0.01) may be related to a contribution from traffic emission (D’Alessandro et 

al., 2003). 

 

Table 6.8a shows the Pearson’s correlation coefficients of fine Streaker data at LW. These 

elemental coefficients were not as strong at LW compared to the FS data. 

Notwithstanding, Mg, Na and Cl were strongly associated with R
2
>0.80 (p<0.01). The 

notable crustal elements of Al, Ca, Sr and Ti were positively correlated. The high 

corelation coefficients between K, Mn, Fe, Zn, Sr and Pb might indicate emissions from 

the steel industry.  
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Table 6.7: Pearson correlations coefficients at FS for (a) PM2.5 

(b) PM2.5-10 
 Na Mg Al S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn As Se Rb Sr Pb Si B

r 

Na 1                      

Mg .774** 1                     

Al .552** .919** 1                    

S .456** .858** .910** 1                   

Cl .933** .857** .658** .584** 1                  

K .708** .960** .926** .891** .816** 1                 

Ca .475** .894** .947** .927** .613** .896** 1                

Ti .430** .883** .963** .948** .551** .894** .956** 1               

V .662** .860** .896** .873** .728** .836** .935** .906** 1              

Cr .363** .820** .896** .914** .487** .834** .929** .948** .928** 1             

Mn .380** .859** .947** .950** .512** .869** .967** .988** .917** .951** 1            

Fe .364** .845** .924** .959** .515** .868** .935** .978** .855** .937** .978** 1           

Ni .346** .443** .533** .534** .319** .456** .509** .560** .243 .539** .507** .491** 1          

Cu .355** .618** .693** .610** .440** .599** .621** .640** .812** .630** .619** .604** .416** 1 .        

Zn .256** .337** .319** .328** .216** .316** .328** .289** .969** .319** .298** .240** .333** .346** 1        

As .613** .743** .843** .918** .619** .715** .913** .955** - .795** .965** .966** .518** .242 .633** 1       

Se .551* .939** .948** .894** .756** .952** .932** .970** - .897** .960** .951** .261 .544* .808** 1.00** 1      

Rb .205 .819** .906** .930** .425** .843** .901** .962** .691 .916** .956** .988** .547** .619** .045 .859* .939** 1     

Sr .695** .829** .771** .788** .732** .732** .783** .791** .988* .638** .733** .797** .438** .374** .308** .993** .904* .911** 1    

Pb .345** .797** .810** .728** .518** .748** .790** .798** .835* .740** .809** .825** .346** .588** .082 .921 .919** .806** .510** 1   

Si .535** .900** .987** .900** .620** .901** .958** .971** .945** .908** .959** .920** .530** .697** .340** .822** .935** .900** .738** .795** 1  

Br .756** .780** .643** .848** .693** .586** .612** .602** .946 .582** .705** .747** .464** .477** .590** .863 -.716 .743* .813** .813** .609** 1 

* P<0.05, ** p<0.01

 Na Mg Al S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn As Se Rb Sr Pb 

Na 1                    

Mg .907** 1                   

Al .370** .598** 1                  

S .223** -.076 .141* 1                 

Cl .883** .784** .292** .136* 1                

K .285** .456** .577** .269** .151* 1               

Ca .386** .648** .779** .131* .317** .603** 1              

Ti .323** .525** .720** .112 .200* .415** .682** 1             

V .500* .624** .482* -.040 .422* .272 .726** .224 1          

Cr .453** .423** .212** .267** .338** .121* .233** .345** .262 1           

Mn .195** .466** .710** .186** .082 .727** .891** .639** .692** .076 1          

Fe .223** .501** .722** .183** .096 .761** .893** .625** .514* .170** .937** 1         

Ni -.096 -.053 .008 .149* -.084 .184** .035 .025 -.264 -.009 .086 .058 1        

Cu -.088 -.049 .100 .178** -.042 .121* .060 .213* .144 -.096 .085 .048 .078 1       

Zn .027 .099 .288** .221** -.015 .648** .271** .255** .107 -.082 .462** .375** .144* .167** 1      

As -.292 -.329 .033 .747** -.213 .386* .352* -.070 -.926 .394* .467* .342 .147 .698** .486** 1     

Se .379** .619** .572** .117 .005 .766** .668** .504** .537 .397** .667** .795** .043 .034 .093 1.000** 1    

Rb .157 .518** .696** .627** .126 .440* .678** .572* .731 .217 .789** .879** .388 -.367 -.176  .491* 1   

Sr .137 .178 .466 .057 .289 .361 .748** .809 - .545 .460 .635* .667* .773** .362  1.000**  1  

Pb -.097 .026 .253** .540** -.098 .577** .241** .254* -.020 .213** .362** .321** .098 .255** .772** .551* .105 .266 .135 1 
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Table 6.8: Pearson correlation coefficients at LW for (a) PM2.5 
 Na Mg Al S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn As Se Rb Sr Pb 

Na 1                    

Mg .886** 1                   

Al .211** .402** 1                  

S -.251** -.238** .238** 1                 

Cl .862** .854** .331** -.127* 1                

K .391** .191** .192** .296** .257** 1               

Ca .230** .352** .701** .298** .293** .539** 1              

Ti .088 .184 .601** -.009 .190* .012 .386** 1             

V -.230 -.226 .297 .091 -.325 .103 .029 -.430 1            

Cr -.103 -.063 .098 .157* -.057 .128 .159* .007 .458* 1           

Mn .390** .201* .145 .265** .237** .908** .559** .014 .308 .215* 1          

Fe .028 .064 .370** .444** .005 .664** .730** .131 .215 .260** .781** 1         

Ni .133* -.043 .032 .278** .040 .626** .245** -.082 .078 .203** .680** .464** 1        

Cu .021 .041 .001 .072 .014 .050 .047 .002 -.073 -.024 .069 .108 .214** 1       

Zn .466** .138* -.048 .075 .263** .822** .259** -.075 -.064 .050 .740** .370** .578** .033 1      

As -.304 -.280 -.005 .078 -.264 -.140 -.226 -.082 .380 .016 .490 .354 -.059 .094 .322 1     

Se -.113 .047 .490** .403** -.147 .830** .629** .265 .569* .406** .818** .889** .441** .338** .270* .836** 1    

Rb .119 .330 .292 .173 .095 .331 .320 .102 .647 -.007 .272 .605** .244 .011 .098  .661** 1   

Sr -.090 -.028 .409 .463* .039 .777** .582** .662* -.049 .229 .783** .741** .423 -.226 .337 1.000** .878  1  

Pb .439** .244** .177* .299** .363** .794** .465** -.001 .134 .174* .761** .621** .590** .424** .671** .114 .653** .304 -.063 1 

(b) PM2.5-10 
 Na Mg Al S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn As Se Rb Sr Pb Si Br 

Na 1                      

Mg .963** 1                     

Al .345** .447** 1                    

S .644** .767** .623** 1                   

Cl .960** .932** .335** .605** 1                  

K .792** .863** .699** .840** .810** 1                 

Ca .139* .316** .759** .727** .108 .583** 1                

Ti .291** .408** .723** .542** .245** .561** .594** 1               

V -.058 .148 .540* .675** -.146 .324 .720** .266 1              

Cr -.103 -.034 .245** .210** -.132* .090 .363** .315** .780** 1             

Mn -.171* .044 .450** .584** -.336** .218** .806** .330** .677* .415** 1            

Fe -.084 .013 .369** .420** -.126* .200** .619** .339** .974** .464** .680** 1           

Ni -.012 -.012 .035 .030 .055 .046 .059 .004 .485 .397** .063 .096 1          

Cu -.093 -.067 .063 .037 -.047 -.011 .117 .049 .328 .214** .256** .167* .183** 1         

Zn -.125* .008 .096 .327** -.149* .216** .545** .094 .326 .167** .522** .293** .104 .015 1        

As -.389 -.301 .037 -.094 -.417 -.125 .331 .037 - .490 .811** .869** -.557* -.174 .807** 1       

Se .154 .021 .671** .440 .172 .260 .774** .894** - .600* .311 .978** -.196 -.081 .270 .a 1 .963**     

Rb .042 .092 .070 .354** .051 .156 .341* .111 .341 .481** .227 .871** .170 .450** .143 .a .963** 1     

Sr .798** .832** .816** .855** .866** .929** .856** .784** .932* .005 .430** .384** .057 -.080 .111 .130 -.361 .974** 1    

Pb -.180 .090 .225 .551** -.196 .341** .677** .306* .087 .386** .624** .636** .182 .080 .675** - .938 .474** -.127 1   

Si .345** .440** .969** .618** .351** .722** .752** .723** .597* .215** .393** .360** .043 .052 .129* -.020 .759** .080 .772** .271* 1  

Br .680** .757** .392** .715** .787** .687** .490** .426** .911* -.108 .093 .005 -.048 .042 -.034 -.252 -.120 -.099 .658** -.223 .340** 1 

* P<0.05, ** p<0.01
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The LW coarse particles correlation coefficients (Table 6.8b) showed significance among 

the sea salt (Na, Mg, Cl) and crustal elements (Al, Ca, Sr, Si and Ti). The steel metals 

(Mn, Fe, Ca, Pb, Zn) were also found to be strongly related. Association between Ni and 

V was better defined for coarse (R
2
=0.49) than fine PM (R

2
=0.09). Multi-emission sources 

of Br apart from traffic could be established with its strong correlation with Na, Mg, S, K, 

V and Sr. Notable emission sources of Br are marine, biomass burning, plant and biomass 

emission, gasoline fuel combustion, soil and salty marshes (Yvon-Lewis et al., 2009).  

 

6.4.2.6 Streaker elemental ratios 

The ratios of the Streaker Ni/V for PM2.5 was 0.32 at both FS and LW while for PM2.5-10 

the values were 0.14 and 0.31 at FS and LW, respectively. The Mn/Zn ratios for fine and 

coarse PM were 0.32 and 4.22 at FS, and 014 and 0.70 at LW. The observed ratios of 

Cl/Na, K/Na, Ca/Na, Mg/Na and SO4/Na at FS were 0.40, 0.18, 0.41, 0.17 and 4.83 for 

fine PM and 1.05, 0.04, 0.36, 0.13 and 0.42 for the coarse fraction, respectively. At LW, 

the corresponding values of these elemental ratios were 0.50, 0.21, 0.23, 0.15 and 3.97 for 

PM2.5 and 0.94, 0.03, 0.09, 0.11 and 0.23 for PM2.5-10. The SO4/Ca values at FS and LW 

were 11.9 and 17.6 for fine, and 1.16 and 2.52 for the coarse PM. 

 

6.4.2.7 Polar plots of elements 

Polar plots for each Streaker elemental concentration of fine and coarse PM at the FS 

monitoring site are presented in Figures 6.6 and 6.7. The marine significance of fine Na, 

Mg and Cl was predominant with the prevailing south-westerly wind blowing across the 

ore stockyard (ironmaking section) of the steelworks complex (see details of the 

steelworks locations in section 7, Table 7.1). Moderate concentrations of Mg were also 
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observed at the ironmaking section (BF/Sinter plants).  Sulphur shows high values at the 

center of the polar plot, and also with the north-easterly wind direction probably due to 

residential emissions from fossil fuel combustion or traffic emissions. The steelworks’ 

contribution to sulphur emissions was also identified at the south-westerly region of the 

wind sector polar plot.  

 

High concentrations of Al, Ca, Fe, Mn, Cu, Zn and Pb were measured towards the south-

westerly direction with probable emissions from the blast furnace (BF)/sinter /basic 

oxygen furnace steelmaking (BOS) sections of the steelworks. The mills unit of the 

steelworks shows elevated concentration of Cu. The wind sector plots of Cr and Ni 

suggest additional emission sources apart from the steelworks. Port Talbot shipping 

emissions from the docks may have contributed to fine Ni and Cr (Figueroa et al., 2006). 

Elevated concentration of Cr towards the northerly and north-westerly wind sector may be 

attributed to emissions from a waste incineration plant located in Crymlyn Burrow, 

Swansea (Morawska and Zhang, 2002). Coarse Ni also exhibits similar wind plot pattern 

as observed for fine Cr.  

 

The polar plots for Streaker coarse particulate matter at FS (Figure 6.7) revealed higher 

concentrations of most elemental concentrations towards the south-westerly axis of the 

steelworks. The wind sector plots of coarse metals are similar to those of fine PM except 

for Ni and Cr. The polar plot revealed emissions of coarse Cl from marine and steelworks 

sources. Silica and titanium were observed at elevated concentrations around the 

steelworks.  
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Figures 6.8 and 6.9 are polar plots for fine and coarse PIXE data at LW. The steelworks is 

located between the southern and south-western axis from the LW site. The polar plots of 

fine Na, Mg, Al, Ca and Cl at LW show high concentration towards the westerly 

prevailing wind due to marine and emissions from the dock. Cu showing a high 

concentration towards the northerly wind sector may suggest traffic emissions. The polar 

plots for Cr, Mn, Fe, Ni, Zn, Al, Ca and Pb showed the steelworks to be dominant 

emission source. Most of the coarse metals polar plots demonstrated emission trends 

similar to what was observed for fine plots with the exception of S, Ni and Cu. It appeared 

that shipping emissions contribute significantly to coarse Ni while the steelworks to fine 

Ni.  This observation was also found for polar plots of Ni at the FS site. 
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a-Ironmaking, b-Steelmaking, c-Mills 

Figure 6.6: Polar Plots of elemental concentrations of Streaker PM2.5 at FS 
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Figure 6.7: Polar Plots of elemental concentrations of Streaker PM2.5-10 at FS 
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a-Ironmaking (BF/Sinter), b-Steelmaking & Mills, c-ore stockyard 

Figure 6.8: Polar Plots of elemental concentrations of Streaker PM2.5 at LW 
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Figure 6.9: Polar Plots of elemental concentrations of Streaker PM2.5-10 at LW 

 

6.4.3 Organic carbon (OC) and elemental carbon (EC) concentrations of PM2.5 at FS 

OC and EC concentrations were measured on the PM2.5 collected with the Digitel high 

volume sampler placed at FS monitoring site. Figure 6.10 shows the daily variations of 

OC and EC during Port Talbot campaign. A common elevated peak was observed for both 

PM chemical constituents on May 3. Higher concentrations of OC were also observed on 

April 26, May 4-5 and 13. The average concentrations of OC and EC were 1.0±0.36 and 

0.68±0.29 µg m
-3

, respectively. These carbonaceous species constituted 14 and 9% of the 

total PM2.5 mass (Partisol), respectively. The mean OC/EC ratio calculated in this study 

was 1.6±0.6.  
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Figure 6.10: Daily variations of OC/EC during Port Talbot campaign  

 

6.5 Partisol and Streaker Data Discussion 

The daily plots of fine and coarse PM (May 4-16) for Partisol and Streaker data (Appendix 

XXI) has been consistent in trends and patterns for most observed chemical species at the 

FS and LW sites. The mean values of Partisol and Streaker data are comparable for Na, 

Mg, S, Ca and Cr for fine PM at FS, and Na, Mg, Cu and Pb for LW PM2.5 (Appendix 

XXII). In  the coarse fraction, the daily average of the two instruments are not far apart 

with close data for Al, Ca, Cr, Cu and Zn at FS, and Na, Mg, Cr, Cu and Zn at LW. The 

least squares regression plots shown in Appendix XXIII further confirm the strong 

relationships between Partisol and Streaker data for most measured chemical components.  

 

The Partisol PM2.5 was dominated by water soluble species at all the four sites in this 

study, which is in line with studies around the world. PIXE analysed Na, Mg, Cl, K, Ca 
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90% ionic components of PM<1.0 µm (Tsai et al., 2012). It is obvious from the water-

soluble species data that the activities of the steel industry spread across the monitoring 

sites probably due to local meteorology.  

 

With Partisol instrument, Prince Street monitoring site recorded higher metal 

concentrations than the rest of the stations probably due to its closeness to the blast 

furnace (BF) plant. Both Streaker and Partisol demonstrated Fe and Al as the dominating 

metals at FS and LW. Mn and Zn are other trace metals measured at significant 

concentrations with Partisol and Streaker instruments. Fe, Al, Mn and Zn are typical 

emissions from the steelmaking industries (Hleis et al., 2013). The previous work of 

Moreno et al. (2004b) based on scanning electron microscopy (SEM) has indicted 

steelworks as the major culprit to total load of metals (Fe, Zn, Mn and Ni) in Port Talbot. 

Unlike this study, where Fe and Al were the most abundant measured metals, Moreno et al 

(2004b) study has suggested Fe and Zn as the most elevated elements.  Zinc is the third 

most abundant metal in this study. Al is a crustal element (Wang et al., 2005) and hence 

the activities of the construction works during the period of this study might have 

responsible for the discrepancy against the Moreno et al. (2004b) work.  

 

The values of Partisol NO3
-
/nss-SO4

2-
 mass ratios which were generally < 0.45 at the four 

monitoring sites for fine and coarse PM indicates a greater impact of stationary emission 

sources (Figure 6.1). This could be directly linked to the activities of the steel industry 

(cokemaking) or alternately from domestic heating involving coal combustion. Studies at 

the industrial site of Castello, Spain showed low NO3
-
/SO4

2-
 (0.30) value in PM10 (Viana 

et al., 2008b). The low NO3/SO4 ratio for PM2.5 in this study has shown good agreement 
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with the studies conducted in industrial/urban cities (Viana et al., 2008b; Gupta et al., 

2012). In the UK, NO3
-
/SO4

2-
 calculated at Birmingham roadside was 0.30-1.82 (Harrison 

et al., 2003) while a higher ratio (1.28-1.47, for total suspended particles) has been 

reported in France (Ledoux et al., 2006) and Italy (3.48 for PM2.5, Lonati et al., 2005). 

 

The values of Cu/Sb, Fe/Sb and Fe/Cu ratios are important to identify traffic contributions. 

The corresponding values for these ratios in this study are 2.6-3.7, 196-374 and 75-100 for 

PM2.5; 4.8-11.2, 2180-4427 and 290-583 for PM2.5-10, respectively. At the roadside in 

Barcelona, Amato et al. (2011) has reported ratios of Cu/Sb, Fe/Sb, Fe/Cu in PM10 as 8.0, 

137 and 17 against the values of 6.8, 158 and 29, respectively observed at an background 

site. Sternbeck et al. (2002) assigned Cu/Sb ratio of 4.6 to brake dust emissions. Cu/Sb 

ratio of 1.3 has been suggested by Adachi and Tainosho (2004) as the traffic signature 

precisely from the brake lining.  

 

The Cu/Sb ratios obtained has agreed well with these reported values. The Cu/Sb ratio for 

PM2.5-10 is closer to Sternbeck et al. (2002) value indicating traffic influence while the 

extreme ratio values of Fe/Cu and Fe/Sb could be linked to the activities of the steelworks. 

Comparing these ratios with Amato et al. (2011) study, Cu/Sb ratio is lower while Fe/Sb 

and Fe/Cu ratio values are extremely high. Suggestion for high Fe/Sb and Fe/Cu value 

could be explained by elevated concentration of Fe, which is a major steelworks (Mazzei 

et al., 2008; Hleis et al., 2013). 

 

According to Figueroa et al. (2006), Ni/V value around 3.0 suggests oil burning while a 

range 0.3-0.5 indicates gas or diesel burning. The values of Ni/V (0.14-0.38) for Partisol 
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and Streaker PM2.5 and PM2.5-10 showed contribution from fuel combustions. The higher 

Ni/V ratio at LW (0.45 for Partisol PM2.5-10 and 0.31 for Streaker PM2.5-10) is similar to 

0.32 value reported by Pandolfi et al. (2011) for shipping emissions at the Algeciras Bay 

in southern Spain. This might be expected at LW due to its closeness to the Docks. The 

Ni/V values are also in line with values assigned to traffic and boating by Figueroa et al. 

(2006). The PCA rotation in chapter 7 has identified oil combustion or shipping emissions 

at both LW and FS.  

 

Pb and Cd are tracers for steelworks (Oravisjarvi et al., 2003). Leaded gasoline could also 

be responsible for emission of Pb (Duan et al., 2012). Leaded gasoline has been banned in 

most cities of the world with subsequent reduction in atmospheric lead. However, Pb is 

still present in road dusts in the cities (Amato et al., 2009).  Recent work of Razos and 

Christidies (2010) has reported Pb/Cd ratios of 88 and 99 in PM2.5 and PM10 at an 

industrial site in Greece, which were attributed to heavy traffic emissions. The Pb/Cd 

values obtained in this study may be linked to the steel emissions comparable to the values 

obtained from the Tsai et al. (2007) and USEPA speciates steel profiles. Some studies 

conducted near steel industries have also recorded lofty ratios of Pb/Cd (Cetin et al., 2007, 

Querol et al., 2007). 

 

The influence of marine contribution to aerosol pollution at Port Talbot has been 

calculated for Partisol and Streaker data with ratios of Cl/Na, K/Na, Ca/Na, SO4/Na and 

Mg/Na. In Partisol PM2.5, Cl
-
/Na

+
 mass ratio was less than 1.8 (Ooki et al., 2002) at all the 

monitoring sites and could still be assigned to sea salt source. The corresponding Cl/Na 

ratio for Streaker PM2.5 at FS was 0.41. Bourotte et al. (2007) reported a range of Cl/Na 
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ratios of 1.0-1.7 to be marine source. The Partisol Cl/Na ratios at FS and LW were higher 

than the values obtained for the Streaker. The values of Cl/Na for both instruments were 

lower than the sea water ratios suggesting additional contribution by the steelworks 

(Oravisjarvi et al., 2003; Dall’Osto et al., 2008). The mass distribution pattern for 

MOUDI Cl
-
 revealed bimodal peaks suggesting both natural and anthropogenic 

contributions. The Cl/Na values observed for coarse PM in this study is similar to what 

Dos Santos et al. (2012) reported at the coastal areas of Buenos Aires in Argentina 

suggesting marine influence. Mg/Na ratios for both Partisol and Streaker are perfectly 

aligned with marine incorporation while K/Na, Ca/Na and SO4/Na ratios were greater than 

seawater ratios for Partisol and Streaker data. However, the corresponding values of K/Na, 

Ca/Na and SO4/Na for Streaker PM2.5-10 at the LW site depicted more of marine influence. 

The Mg/Na ratio observed in this work is similar to the observation of Hara et al. (2012) 

at the Antarctic coast. Ooki et al. (2002) has attributed K/Na ratio of 0.11-0.56 to coal 

combustion. K/Na ratio in this study (0.30-0.46 for Partisol and 0.18-0.21 for Streaker 

PM2.5) fell within this range, and could therefore be traced to residential coal combustion 

or cokemaking steelworks. Globally, around 70% of the steel industries are absolutely 

dependent on the use of coking coal for production (World Coal Association, 2013). 

  

The OC/EC ratio value of 1.6±0.6 obtained during the sampling period suggests 

contributions by the local traffic (Hildermann et al., 1991; Watson et al., 1994). 
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6.6 Conclusion 

Chemical compositions of Partisol sampled-fine and coarse particles at the industrial and 

coastal town of Port Talbot have been presented. Variations and trends were observed in 

the data collected from element to element and site to site. High abundance of elements 

such as non sea salt-sulphate, ammonium, nitrate and iron were observed for fine PM 

while chloride and sodium were leading components of PM2.5-10 at the monitoring sites. 

Water soluble constituents were the dominant constituents of both PM categories ranging 

between 42-87% for fine and 31-62% for coarse PM. Metal components represented 

between 4-5% of coarse and fine PM.  

 

The hourly elemental concentration data of Streaker fine and coarse PM showed episodic 

pollution days common to the two selected sites. The sum of PIXE elemental data showed 

similar daily variations with that of FDMS mass concentrations. Most of the observed 

elements in the PM2.5 and PM2.5-10 fractions were higher at FS than LW site. High EF 

values observed for most measured components by Partisol and Streaker samplers 

indicated predominance of anthropogenic activities attributable to steelworks emissions. 

The interpretation of the EFs is dependent upon the assumption that there are no other 

sources of Al (used as the reference element) in the particles. The polar plots have also 

revealed the steelworks as a major contributor to elemental pollution in Port Talbot.  
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CHAPTER 7- RECEPTOR MODELLING OF PARTISOL AND STREAKER 

SAMPLES 

 

7.1 Abstract 

This section explains the source apportionment of hourly and daily PM data collected with 

Streaker and Partisol instruments. The two receptor models used are positive matrix 

factorization (PMF) and principal component analysis (PCA). Data analysis using PMF 

identified between 6 and 7 factors from the Partisol and Streaker data, respectively. PCA 

identified only 4-6 components. Both PMF and PCA solutions for datasets from the two 

measurement techniques were able to resolve different steel processing units including 

emissions from the sinter plant, blast furnace and basic oxygen furnace steelmaking plant. 

The PMF and PCA model showed secondary aerosol and steelworks emissions as the 

main contributors to PM2.5 while marine aerosol and steelworks emissions dominated the 

PM10. Among the steelworks factors, the blast furnace appeared to be the largest emitter of 

PM10 in the study area. The influence of steelworks sources on ambient particulate matter 

at Port Talbot was clearly distinguishable for several separate processing sections within 

the steelworks.   
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7.2 Introduction 

Both acute and chronic exposures to airborne particulate matter (PM) have been associated 

with adverse effects upon health including premature mortality (Pope and Dockery, 2006). 

Consequently, the World Health Organisation (WHO, 2006) recommends strict guidelines 

for airborne particulate matter measured both as PM10 and PM2.5. Governments around the 

world are developing and applying abatement strategies to reduce population exposures to 

particulate matter. The development of cost-effective strategies depends critically upon a 

quantitative knowledge of the contribution of different sources to airborne particulate 

matter concentrations.  This is best determined by receptor modelling methods of which 

Positive Matrix Factorization (Paatero and Tapper, 1994) is probably the most commonly 

applied. 

 

For many years the town of Port Talbot has suffered some of the worst air quality in the 

United Kingdom (AQEG, 2011) and earlier work (Moreno et al., 2004a, b; Dall’Osto et 

al., 2008; Hayes and Chatterton, 2009) has indicated the steelworks as a major contributor 

to local PM concentrations.  However, knowledge has been lacking as to the size of the 

contribution of the steelworks to airborne PM concentrations as well as the identity of the 

predominant sources within the steelworks. 

 

 

The basic operational steelworks units in Port Talbot are cokemaking, sintering, basic 

furnace, basic oxygen furnace and other steel processing units (Passant et al., 2002). These 

units have been identified as major emission sources of important heavy metals such as 

chromium, copper, lead, cadmium, arsenic, zinc, manganese, iron, nickel, vanadium and 

selenium (Passant 2002; Moreno et al., 2004a; Dall’Osto et al., 2008; Table 7.1).  
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Table 7.1:  Summary of emissions from the steelworks components (adapted from 

Dall’Osto et al., 2008) 
 

Sector/plant Plant/operation Emission type  Components  Wind 

Sectors 

  

    FS PS DS LW 

Ironmaking  190–

270◦ 

220-

280◦ 

270-

310◦ 

110-

140◦ 

Sinter plant  Iron ore 

sintering 

Stationary source – 

continuous 

KCl, Fe, Pb, 

Zn, Mn 

    

 Sinter plant de-

dusting  

Stationary source – 

continuous  

Fe, Mn     

Blast furnace  Tapping  Fugitive – 

intermittent  

Fe, Mn     

 Slag processing  Stationary source – 

intermittent  

Ca, Al, Si, S     

 Stove heating  Stationary source – 

continuous  

CO2, SO2, 

NOx 

    

Raw materials  Unloading, 

stocking, 

blending wind 

entrainment 

Fugitive – 

intermittent  

Fe, Ca, Mg, 

Mn 

    

Steelmaking/cokemaking  170–

190◦ 

180-

220◦ 

230-

270◦ 

140-

170◦ 

BOS plant  Steelmaking  Stationary source – 

batch  

Fe, Zn, 

Pb,Mn 

    

 Charging, 

blowing, 

tapping  

Fugitive – 

intermittent  

Fe, Zn, Pb, 

Mn 

    

Cokemaking  Battery 

underfiring  

Stationary source - 

continuous  

CO2, SO2, 

NOx, soot 

(C) 

    

 Charging  Fugitive – 

intermittent  

Organics, 

particulates 

    

 Door and top 

leakages  

Fugitive – 

intermittent  

Organics, 

particulates 

    

 Pushing  Fugitive – 

intermittent  

Particulates     

 Quenching  Fugitive – 

intermittent  

Particulates, 

soluble salts 

    

Mills  150–

170◦ 

150-

180◦ 

180-

230◦ 

130-

150◦ 

Rolling mills  Hot mill  Fugitive – 

intermittent  

Fe, coolants     

 Cold mill  Fugitive – 

intermittent  

Lubricants, 

coolants 

    

FS-Fire Station, PS-Prince Street, DS-Dyffryn School, LW-Little Warren 

 

As a complement to the reported studies at Port Talbot steelworks, the present study has 

applied Positive Matrix Factorization to identify and apportion emission sources of 

particle pollutants in the study area. The aim was not only to identify the steel emission 
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profiles, but also to attribute emissions to specific production units in the integrated steel 

complex. 

 

7.3 Results and Discussion  

7.3.1 Positive matrix factorization (PMF) 

7.3.1.1 PMF for Partisol PM data 

Figure 7.1 (a-c) presents the PMF profiles for Partisol PM2.5, PM2.5-10 and PM10 data. The 

optimal PMF solution showed six factors for PM2.5 (Figure 7.1a). The first factor is 

significant for Cl
-
, Na

+
 and Mg

2+
 and accounted for 79, 67 and 61% of their modelled 

concentrations, respectively. This component accounted for 19% of PM2.5 mass 

determined with a Filter Dynamic Measurement System (FDMS) instrument. This factor 

represents marine aerosol. The second factor describes secondary aerosol with significant 

percent contributions to NO3
-
 (89%), NH4

+
 (79%) and non-sea sulphate (nss-SO4

2-
) (70%). 

This source makes the largest contribution to PM2.5 of 36%. Moderate contributions to Pb 

(27%) and K
+
 (13%) also occurred in this factor, suggesting likely regional transport of Pb 

and K
+
 alongside the local emissions. Factor 3 is the largest contributor to K

+
 with 61% of 

the modelled concentration loading for this factor. This represents a biomass burning 

emission source, most probably woodsmoke (Naeher et al., 2007; Harrison et al., 2012c). 

Mg
2+

, Na
+
 and nss-SO4

2-
 also occurred in this factor with moderate percent contributions 

of 29, 15 and 12% respectively. Factor 4 is characterised by large contributions to Fe 

(67%), Mn (63%) with moderate amounts of Ba (28%), Pb (17%), K
+
 (17%) and Cu 

(13%). This component may derive from the blast furnace (BF) plant of the steelworks. Fe 

has been generally observed at all the processing units of integrated steel production 

(Oravisjarvi et al., 2003; Machemer, 2004; Moreno et al., 2004a; Connell et al., 2006; 
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Tsai et al., 2007; Dall’Osto et al., 2008; Hleis et al., 2013). However, the recent source 

profile study of integrated steel facilities by Hleis et al. (2013) showed an elevated Fe 

concentration from the BF relative to the other steelworks units. The study of Mazzei et al. 

(2008) adopted Fe and Mn as marker elements for BF emissions. The fifth factor shows 

large contributions to Sb, Cu and Ba constituting 92, 68 and 59% of their modelled 

concentrations, respectively. Other elements that formed an appreciable fraction of this 

source include Pb (14%), Fe (12%) and Mn (10%). These trace metals are a signature of 

road traffic especially from brake wear (Sternbeck et al., 2002; Thorpe and Harrison, 

2008). About one-fifth of the measured PM2.5 mass concentration is attributed to the 

traffic factor. The sixth factor in the PM2.5 PMF profile is significant for Cd (90%), Zn 

(77%), Pb (46%), Mn (22%), Cl
-
 (14%) and Fe (13%). This factor is a mixed steelworks 

source from the basic oxygen furnace steelmaking (BOS) and sinter plants. The use of 

galvanised scrap in the BOS has been stated to increase Zn concentrations in the 

steelworks processing section (Oravisjarvi et al., 2003; Hleis et al. 2013). The study of 

Hleis et al. (2013) has reported KCl has a major constituent of sinter plant emissions. 

Particle dust analysis from the industrial steelworks monitoring site in Rahee, Finland 

attributed 98 and 96% of measured Cd and Pb concentrations in PM2.5 to sinter plant 

emissions (Oravisjarvi et al., 2003). 

 

 



181 

 

 

(a) Partisol PM2.5 

 

 

(b) Partisol PM2.5-10 
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(c) Partisol PM10 

Figure 7.1: PMF source profiles for combined daily Partisol PM fractions at the four 

sites in Port Talbot 

 

Figure 7.1 (b) shows the PMF profiles for Partisol coarse PM (PM2.5-10) data where six 

factors were resolved by the PMF. In Factor 1 there is an elevated contributions to K
+
 

(86%) and a moderate contribution to Al (14%). This factor suggests steel emissions from 

the sinter plant. Coarse K
+
 has been measured at elevated concentration at the vicinity of a 
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steel industry in France (Hleis et al., 2013). A strong loading for Cd (100%) and Zn (80%) 

with 11% of modelled Pb characterizes the PMF profile in Factor 2 representing combined 

steelworks emissions from the BOS and sinter plants. In the third factor are found large 

amounts of Cl
-
 (85%), Na

+
 (73%) and Mg

2+
 (64%) indicating a marine aerosol. About one-

third of PM2.5-10 mass is contributed by this factor. The fourth factor represents a source 

deriving from the steelworks (BF). Elements showing highly significant loadings in this 

factor include Fe (85%), Mn (80%), Pb (69%), Ca
2+

 (56%), V (38%) and Ba (34%).  The 

crustal element, Al also appeared in this factor with its 14% profile concentration given to 

the factor, and nss-SO4
2-

 and Mg
2+

 show moderate contributions from this factor. 

However, the occurrence of V in this source is suggestive of heavy oil burning or even 

shipping emissions (Figueroa et al., 2006; Mazzei et al., 2008; Amato et al., 2009; 

Pandolfi et al., 2011) consistent with sources in the harbour area. Factor 5 was unable to 

be separated by the PMF solution and mixed emission sources were identified. The factor 

is dominated by secondary aerosol having a contribution of 75% to the nss-SO4
2-

 modelled 

concentration. Cu (34%), Al (32%), Ba (17%), V (16%) and K
+
 (12%) are included in this 

factor suggesting traffic emissions may be accompanying the secondary particles. The 

sixth PMF factor of PM2.5-10 demonstrates a highly significant contribution to Sb (88%), 

Cu (64%) and Ba (41%) representing a non-exhaust traffic source (Sternbeck et al., 2002; 

Thorpe and Harrison, 2008). Moderate loadings of Al (22%) and Ca
2+

 (15%) are also 

found in this component also suggesting traffic.   

 

PMF results for PM10 gave an optimal 7 distinctive factors (Figure 7.1 (c)). The first PMF 

component for PM10 is significant for Fe, Mn and Ca
2+

 with their 70, 65 and 41% of 

profile mass contributed. Ba (23%) and Pb (22%) also showed moderate loadings for this 
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factor. A steelworks (BF) factor is indicated. Factor 2 is dominated by the mixed steel 

sources of BOS and sinter plant with strong loadings for Zn (84%) and Cd (73%). Other 

elements that contributed moderately to this factor include Pb (40%) and Mn (13%).  This 

factor is similar to Factor 6 and Factor 2 in PM2.5 and PM2.5-10, respectively. Marine 

aerosols contributing to Cl
-
 (82%), Na

+
 (72%) and Mg

2+
 (58%) are highly significant for 

Factor 3. Elevated contributions to the traffic signature elements Cu (60%) and Ba (56%) 

characterize Factor 4.  Ca
2+

 and V are contributed 32 and 28% respectively by this source. 

The PMF solution separated the PM10 secondary aerosol into two in contrast to the 

observations for PM2.5 and PM2.5-10. NH4
+
, nss-SO4

2-
 and NO3

-
 are dominating species in 

Factor 5 contributing 68, 43 and 21% to their profile masses respectively from this factor. 

This factor represents a secondary sulphate source. Factor 6 is also a secondary aerosol 

source dominated by NO3
-
 (67%) and nss-SO4

2-
 (28%) as a lesser component. The factor 

describes a secondary nitrate source. The abundance of K
+
 (65%) with a significant 

contribution to Mg
2+

 (21%) in Factor 7 suggests another steelworks emission from the 

sinter plant.  

 

Relationships between the measured and predicted concentrations for the 3 categories of 

PM are shown in equation 5.1:  

 

PM2.5 = 0.99x-0.21, r
2
=0.78 

PM2.5-10 = 0.94x+0.35 r
2
=0.96 

PM10 = 0.93x+0.81 r
2
=0.95                                                             (5.1) 
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The equations showed well-defined associations. The values of the slopes (0.93-0.99) and 

correlation coefficients, r
2
 (0.78-0.96) showed the good performance of the PMF for the 

Partisol data. For individual chemical species, r
2
 ranged from 0.71-0.95 for those within 

PM2.5, 0.65-0.99 for PM2.5-10 and 0.68-0.97 for PM10.  

 

Appendix XXIV represents the daily contributions by each identified factor to particulate 

fractions at each site. The fine PM2.5 showed the greatest peak on May 4 at FS, DS and 

LW the large contribution by secondary aerosol. Distinguishable peaks of pollution 

episodes were observed for PM2.5-10 at FS on April 18 and 26, and May 8 and 11 with 

none of these peaks coinciding with episode observed at DS on April 19 and May 15, and 

LW on April 22. The episodes of marine aerosol were prominent at each site contributing 

to coarse particle concentrations. The contribution from the steelworks is also observed on 

these episodic days. The daily contribution of profile factors to particle pollution for PM10 

is similar to that of PM2.5-10. This suggests that PM10 episodes are influenced by PM2.5-10 

concentrations in Port Talbot. Hayes and Chatterton (2009) reported that PM10 at Port 

Talbot is more impacted by the coarse than fine PM fraction. 

 

Figure 7.2 illustrates the source contribution percentages of each factor for PM2.5, PM2.5-10 

and PM10 at the four monitoring sites. The fine PM portion is dominated by secondary 

aerosol at the sites in the percentages of 52, 36, 57 and 58% at FS, PS, DS and LW 

respectively. The combined steelworks source formed the second largest contributor to 

PM2.5 at the four sites except at LW. The steelworks has most impact at PS and least at 

LW during this sampling period. Marine, woodsmoke and traffic are other sources 

contributing to PM2.5 across the four sites. Marine aerosol clearly dominated the coarse 
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PM fractions (38-60%). As expected, LW showed marine aerosol to represent more than 

half of the total observed coarse PM fraction. The combined steelworks source is another 

major contributor to PM2.5-10 at FS and PS while secondary aerosol and traffic is next to 

marine at DS and LW. The secondary aerosols (secondary sulphate and nitrate) dominated 

PM10 pollution at all the stations followed by the marine source. The traffic contribution to 

PM10 is more pronounced at the PS and FS monitoring sites.  
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(b) Partisol PM2.5-10 

 
                  (c) Partisol PM10 

 

Figure 7.2: Percent contributions to sources identified by PMF 
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7.3.1.2 PMF for Streaker (PIXE) data  

The PMF profiles of PIXE PM2.5 and PM10 data at FS and LW sites are presented in 

Figure 7.3(a-d). PMF solution for PM2.5-10 data did not yield good results and hence could 

not be presented. However, the model worked well with PM2.5 and PM10 data. The PMF 

profiles for fine particles at FS and LW exhibit correlation coefficients (r
2
) varying 

between 0.60-0.99 except for BC (0.46) and Al (0.33). For PM10, components have r
2
 

>0.91 except for Pb (0.74). At LW, the correlations between observed and predicted 

components are also generally strong (PM2.5 species show r
2
 =0.65-0.99 while PM10 

species exhibit r
2
=0.81-0.99 except for PM10 mass (0.63) and Ti (0.53). 

 

At FS, the PMF solution identified 6 prominent source components. Factor 1 is highly 

associated with 65% CO, 65% SO2, 37% Se and 30% K. This suggests steelworks 

emissions from the coke ovens. Se and SO2 have been attributed to coking emissions 

(Konieczynski et al., 2012; Pancras et al., 2013). SO2 is a well-known stack emission from 

coal fired plants and the steel industry (Remus et al., 2013). Factor 2 explains a large 

proportion of S (68%), Pb (42%) and BC (34%). 39% of the modelled PM2.5 is associated 

with this factor, which we attribute to the sinter plant. Factor 3 provides an elevated 

contribution to Zn (76%) and a moderate contribution to Pb (28%). The factor is a 

steelworks emission source from the BOS plant. The fourth factor accounts for 77% NOx, 

49% BC, 31% Ti, 23% CO and 21% Al, and is attributed to road traffic. NOx and CO are 

prominent emissions from traffic (Ogulei et al., 2006; Wallington et al., 2008). Factor 5 

shows contributions to Fe (74%), Ca (71%), Mn (59%), Ti (17%), Se (18%), Al (15%) 

and SO2 (14%) and thus represents a steelworks (BF). The last sixth factor is attributed 

marine aerosol due to a high association with 86% Mg, 80% Cl and 66% Mg. Other 
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elevated elements were Al (36%), Ti (34%), K (28%), 20% Se and Ca (19%) in this 

factor. This suggests a mixture of crustal elements with marine aerosol.  

 

 

(a) FS PM2.5 
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(b) FS PM10 

 

(c) LW PM2.5 
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(d) LW PM10 

Figure 7.3: Streaker PMF profiles for PM2.5 and PM10 at FS and LW 

 

Seven factors are resolved by PMF for PM10 at FS. Four factors are attributed to the 

steelworks while two factors are linked to marine aerosol. Factor 1 shows major 

contributions of Ca, Mn, Al, Ti and Fe (59, 44, 43, 34 and 28%, respectively). This 

component represents a crustal matter source. A significant fraction of FDMS PM10 

occurred in this factor representing 20% of the modelled PM.  Factor 2 is a combined steel 

and marine aerosol with loadings for S (30%), Na (30%), Mg (27%), Ti (27%), Al (27), K 

(25%) and Zn (13%). Although there is not a clear steelworks contribution to this factor, 

steelworks fugitive dust may be a contributor. With 90% of Cl, 65% Na, 44% Mg and 

30% K explained by Factor 3, marine aerosol is clearly the source (Harrison et al., 2003). 

Factor 4 shows importance of Cu (87%), with Al the only other element associated. Both 

Cu and Al are characteristic of vehicular emissions arising from brake wear and 

resuspension respectively (Kleeman et al., 2000; Harrison et al., 2012b). Factor 5 is 
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dominated by Fe (72%), Mn (48%), Ca (25%), Ti (24%) and Pb (20%) suggesting BF 

emissions from the steelworks. Zn (80%) is highly loaded for Factor 6 indicating a source 

from the steelworks BOS plant. 19% of K is also contributed by this source. With a total 

62% of S explained, Factor 7 is attributed to secondary aerosol.  The presence of Pb (46%) 

explained in this factor suggests a contribution from the sinter plant emissions. Long range 

transport of Pb rather than local emissions is an alternative, but unlikely explanation. 

 

The PMF solution for LW fine particles also produced six factors (Figure 7.3 (c)). The 

first factor is a major contributor to Mg (63%), Na (62%), Al (41%), Se (42%), K (28%) 

and Pb (10%). This factor could be represented as mixed steel (coking) and marine 

sources. A large fraction of FDMS PM10 occurred in this factor representing 42% of the 

modelled PM. Despite the fact that Cl does not contribute to this factor, the polar plot 

(which will be discussed later) showed marine. The second factor is another combined 

source characterized by contributions to 72% S, 43% Pb, 23% Se, 18% Al and 15% Mn. 

This factor may represent secondary and steelworks emissions from the sinter plant. The 

third factor is another steelworks emission from BOS having loading for Zn (89%) and 

moderate contributions to Pb (30%), K (25%) and Mn (25%). Factor 4 shows abundance 

of crustal components of Ca (74%) and Al (35%). The fifth factor has associated 

steelworks signatures of Fe (77%) and Mn (48%) along with contributions from Se (31%), 

Ca (22%) and K (21%). This source may probably be linked to the BF steelworks unit.  

Factor 6 has the presence of abundant Cl (91%) and moderate amounts of Na (30%) and 

Mg (21%) indicating marine aerosol.  

 

The PMF profile for PM10 at LW is shown in Figure 7.3 (d). PMF analysis revealed six 

factors as observed for PM2.5. Factor 1 is a steelworks source (BOS) characterized mostly 
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by Zn (98%) with additional contributions to Mn (22%), K (20%) and Pb (10%). A 

secondary aerosol origin is apparent for Factor 2 which contributes highly to S (95%). 

About 45% of total predicted PM10 mass is apportioned to this source. The possibility of 

this factor mixing with crustal matter aerosol is apparent from co-existence of 

considerable amount of Ti (17%) and Al (16%). Greater abundance of Al (64%), Ti 

(55%), Ca (35%), Mg (26%) and K (24%) are features of Factor 3 indicating crustal 

aerosol. In Factor 4 there is a dominant lone steelworks signature of Pb (72%) from the 

sinter section. Fe (81%), Mn (56%) and Ca (39%) are dominant species in Factor 5. This 

factor is attributed to emissions from the BF plant. However, the impacts from other 

steelworks units such as the BOS, sinter plant and perhaps, desulphurization slag 

processing section may be present (Hleis et al., 2013). Factor 6 is a marine source with 

significant contributions to 93% Cl, 72% Na, 60% Mg and 24% K. 

 

Appendix XXV shows the hourly contributions to PM2.5 and PM10 as explained by the 

PMF model.  Whereas the Partisol PMF profiles for PM2.5 showed the highest daily peak 

on May 4 at the FS site, the PIXE PMF depicts major pollution peaks on May 8, 10 and 14 

due to the higher resolution information provided by the Streaker. Also at the LW site, 

pollution events were observed in the PIXE data on May 3, 7, 9 and 14 similar to those 

seen in the Partisol data for fine PM. The agreement between the Partisol and Streaker 

PMF data on these episode days may reflect secondary, steelworks (BF/BOS) and/or 

marine particles as the paramount contributors at the two sites. An elevated pollution 

event was also seen at LW on May 9 for Streaker PM with large contributions from 

marine, steelworks BOS and sinter plant emissions. The PMF hourly profiles of PM10 

showed pollution peaks similar to those for PM2.5 at FS dominated by steelworks (BF) and 
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marine sources. Hourly variations of PMF profiles of PM10 data at LW showed several 

episodic events that are largely driven by marine aerosol.    

 

Average diurnal variations of PM2.5 and PM10 PMF profiles are depicted in Appendix 

XXVI. At FS, two significant peaks are shown for PM2.5 at 7-8 am and 4 pm. These peaks 

appear to be the result of contributions from multiple emission sources. Four distinctive 

diurnal peaks at 5-6 am, 9 am, 4-5 pm and 9-10 pm are shown for the PMF profile of PM10 

at FS. Previous work at Port Talbot has reported the highest peaks of PM10 at 4 pm 

(AQEG, 2011). The temporal trend of the PMF profile at LW also revealed two peaks 

between 8am and 2 pm and 4-10 pm, with the marine and steel (BF) sources the major 

contributors.  

 

Source contributions to Streaker PM2.5 and PM10 at FS and LW are plotted in Figure 7.4. 

The PIXE PMF results show domination of steelworks sources at FS and LW. A clear 

deviation was observed between the PM2.5 PMF profiles for Partisol and Streaker data. 

Abundance of secondary aerosols (sulphate and nitrate) and marine aerosol characterised 

the Partisol PM2.5 profiles. Both the secondary aerosol and steelworks factors impact upon 

the Streaker PM2.5. The crustal source is a prominent factor identified by PMF that was 

not observed in the Partisol result. The discrepancies observed for the PMF solutions for 

the two PM measuring instruments might be linked to the chemical species included in the 

PMF model. Both Partisol and Streaker PMF solutions identified marine aerosol as the 

largest contributor to PM10 at FS and LW. Due to the missing of traffic signature elements, 

especially Cu in LW PM2.5 and PM10, a traffic factor was not identified.  
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Figure 7.4: Source contributions by PMF at the two monitoring sites for PM2.5 and PM10 

(Streaker samplers) 

 

 

 

Figure 7.5 shows polar plots for factors identified by PMF for PM2.5 and PM10 at the two 

monitoring stations. The steelworks (BF, sinter plant, BOS, coking, ore stockyards) were 

located between the southern and western section from the FS (210-270
o
) site at Port 

Talbot. This is thus reflected in the directional concentration of steelworks factors for 

PM2.5 observed in the polar plots. Secondary aerosol polar plots for the PM2.5 fraction 

depict elevated concentrations at both the centre and the easterly axis from FS, indicating 

both local and regional emissions. This agrees with the previous study at Port Talbot, 

which concluded regional pollutants to be a major contributor to fine PM (AQEG, 2005). 
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The traffic factor in PM2.5 shows a possible contribution from the M4 road to the north of 

the sampling sites, and also from the A48 road closer to the FS site (DfT, 2012). The polar 

plots for PM10 at the FS site show the sources positioned along the direction of the 

steelworks complex. Elevated concentration of the Steel 1/Marine 1 factor towards the 

south-easterly wind sector could be traced to an additional influence from the rolling mills 

(150-170
o
). The traffic source shown by PM10 polar plots for FS in the direction of the 

steelworks may be due to fugitive emissions from vehicular movements on paved and 

unpaved roads (Landeg, 2010). From the LW site, the steel industry is located between the 

south and south-east sector (100-180
o
). Most of the polar plots for steel process factors in 

PM2.5 and PM10 displayed higher concentrations towards the steel industry. In the 

southerly direction (180
o
) the steel factor observed could be traced to fugitive dust from 

ore stockyards.  

 

 

 
(a) FS PM2.5 
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(b) FS PM10 
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(c) LW PM2.5 

 

 
(d) LW PM10 

Figure 7.5: Polar Plots for Streaker PMF profiles at FS and LW 
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and Pb indicating steel 1 source from the sinter/blast furnace (BF)/basic oxygen 

steelmaking (BOS) plants. PM2.5 mass, nitrate, nss-sulphates, ammonium and potassium 

are all significantly elevated in factor 2 with 16.7% variance thereby representing a 

combined secondary aerosol and woodsmoke source. Factor 3 is positively loaded for Cl
-
, 

Na
+
, Mg

2+
 and Ca

2+
. This factor is a marine source. In the factor 4, Cu and Sb and Ba are 

strongly associated explaining about one-sixth of the total dataset. This factor represents a 

traffic source. Factor 5 has a strong affinity for Ca
2+

, Al and Fe. This factor could be 

assigned to a steel source from the blast furnace. This factor may also represent crustal 

matter source. The sixth factor is significant for V and Ni indicating oil/fuel combustion or 

shipping emission (Pandolfi et al., 2011). This source was not prominent in the PMF 

model because Ni could not meet the requirement of PMF and was therefore removed.  

 

Table 7.2 (b) represents the PCA for PM2.5-10. A total 77.7% variance was explained with 

5 factors identified. Factor 1, which has high loading for PM2.5-10 mass, Ca
2+

, Al, V, Mn, 

Fe, Ni, Ba, Sb and Pb. Factor 1 represents around 40% of the explained total variance, 

which was a mixed emission source comprising steelworks, crustal matter and oil 

combustion; Factor 2 is significantly loaded for Cl
-
, Na

+
 and Mg

2+
. This factor indicates a 

marine source. The steel markers of Zn and Cd were abundant in factor 3. This steel 

source could represent BOS/sinter plant emissions. Cu and Sb are significant for factor 4 

and attributable to traffic source. The last factor is highly variable for sulphate and nitrate 

representing secondary aerosol. 
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Table 7.2: Rotated Component Matrix for Partisol (a) PM2.5 

  Component   

1 2 3 4 5 6 Communalities 

PM2.5 0.332 0.748 -0.068 0.327 0.246 -0.024 0.842 

Cl- 0.37 -0.146 0.779 -0.197 0.099 -0.144 0.835 

NO3
- -0.195 0.875 -0.091 -0.04 -0.214 0.026 0.861 

nss-SO4
2- 0 0.817 -0.229 -0.25 -0.136 -0.008 0.802 

Na+ -0.003 -0.284 0.845 -0.098 -0.077 -0.219 0.859 

NH4
+ -0.209 0.834 -0.38 -0.019 -0.106 -0.027 0.897 

K+ 0.267 0.711 0.147 0.161 0.137 0.169 0.671 

Mg2+ 0.325 -0.12 0.81 -0.069 0 0.188 0.816 

Ca2+ -0.2 0.147 0.546 -0.126 0.631 -0.077 0.779 

Al -0.089 -0.204 -0.228 -0.223 0.648 0.18 0.603 

V -0.264 0.034 -0.191 -0.023 0.124 0.631 0.521 

Cr -0.285 -0.203 0.226 0.262 0.162 -0.464 0.484 

Mn 0.831 -0.003 0.179 0.224 0.359 -0.081 0.908 

Fe 0.545 -0.039 0.213 0.328 0.631 -0.112 0.863 

Ni -0.197 -0.023 0.131 0.182 0.002 0.757 0.662 

Cu 0.326 0.057 -0.07 0.842 -0.162 0.098 0.86 

Zn 0.897 -0.078 0.153 0.026 -0.025 -0.118 0.849 

Cd 0.91 -0.072 0.148 0.034 -0.145 -0.1 0.887 

Sb -0.146 0.112 -0.172 0.798 -0.329 -0.03 0.81 

Ba 0.116 -0.115 -0.133 0.843 0.285 0.028 0.837 

Pb 0.907 0.236 0.036 0.049 -0.081 -0.121 0.902 

% Variance  20.6 16.7 13.5 12.6 8.6 6.8 -78.8 

 Steel 1 Secondary + Woodsmoke Marine Traffic Steel 2 Oil combustion  

(b) PM2.5-10 

 Component  

1 2 3 4 5 Communalities 

PM2.5-10 0.881 0.407 0.086 0.063 0.006 0.954 

Cl- 0.146 0.967 0.065 -0.015 0.012 0.962 

NO3
- -0.199 -0.175 0.045 0.107 0.861 0.826 

nss-SO4
2- 0.134 0.232 -0.057 -0.122 0.799 0.729 

Na+ 0.14 0.965 0.053 -0.034 0.018 0.956 

NH4
+ -0.055 -0.203 -0.048 -0.154 0.248 0.131 

K+ 0.292 0.349 0.197 -0.088 0.382 0.4 

Mg2+ 0.44 0.827 0.269 -0.052 -0.032 0.955 

Ca2+ 0.885 0.203 0.244 0.135 -0.07 0.907 

Al 0.742 0.29 -0.067 0.06 -0.004 0.642 

V 0.825 0.239 0.345 0.165 0.02 0.885 

Cr -0.326 0.067 0.207 0.438 -0.162 0.372 

Mn 0.947 0.158 0.175 0.027 0.015 0.953 

Fe 0.949 0.157 0.034 -0.009 -0.012 0.926 

Ni 0.423 0.314 0.021 0.47 -0.039 0.5 

Cu 0.237 -0.122 -0.009 0.875 -0.011 0.836 

Zn 0.121 0.072 0.935 0.068 -0.02 0.899 

Cd 0.313 0.196 0.87 0.012 0.026 0.894 

Sb 0.539 -0.148 -0.028 0.704 -0.044 0.811 

Ba 0.899 0.015 0.054 0.388 -0.034 0.963 

Pb 0.862 0.001 0.203 0.163 0.058 0.813 

% Variance 42.3 13.5 8.1 7.7 6.1 -77.7 

  Crustal Matter + Steel 1 Marine Steel 2 Traffic Secondary   
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Figure 7.6 shows the summary of source contribution to Partisol fine and coarse PM. The 

combined secondary and woodsmoke factor (43%) remained the leading contributor to 

PM2.5 in Port Talbot. All the steelworks sources formed a total of 36% while traffic formed 

19% of PM2.5 emission. In the coarse category, the mixed source of crustal and steel 

emission constituted two-third of total PM2.5-10. Marine is the second contributor to PM2.5-

10 emission. Studies along the coastal areas have allocated an appreciable percentage of 

coarse particles to sea spray source (Visser et al., 2001; Querol et al., 2004). 

 

 

 

 

 
 

Figure 7.6: PCA source contributions for PM2.5 and PM2.5-10 
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7.3.2.2 Rotated PCA for Streaker data 

The rotated PCA for fine and coarse particles at FS is shown in Table 7.3 (a, b). In both 

PM fractions, four components were resolved by the rotated PCA. In the fine PM, 81.6% 

of the total dataset was explained with factor 1 constituting 38.5% of the explained 

variance (Table 7.3a). The most abundant elements in factor 1 are Mg, Al, K, Ca, Mn, Fe, 

Ti and Se. This may indicate a mixed source factor showing markers for steel and crustal 

matter. Factor 2 shows significance for Na, Mg and Cl, representing a marine source. 

Component 3 also represents a mixed source with significant contributions from K, Cu 

and Zn. Fine K is a good tracer for woodsmoke emission while Cu and Zn are markers for 

brake wear and lining (Harrison et al., 2012b). This factor is therefore a traffic and 

woodsmoke (Harrison et al., 2012b, c). Component 4 has only Ni as the significant tracer. 

This source could either represent oil combustion or shipping emission.  

 

The rotated PCA was able to account for 82.6% of coarse PM data at FS (Table 7.3b). Al, 

Si, Ca, Ti, Mn and Cu are highly loaded in factor 1 with 25.8% variance. This factor is a 

mixed source from crustal matter and traffic. The second component is significant for Na, 

Mg, S, Cl and K explaining almost equal variance with factor 1. Factor 2 could be best 

described as marine (Na, Mg, Cl) and steel source (K, Cl, S). KCl in coarse PM fraction is 

a notable emission from the sinter plant (Dall’Osto et al., 2008a; Hleis et al., 2013). Factor 

3 has high loading in S, Cr, Ni and Zn. This factor could be described as a combined 

source from the steelworks (BOS/stainless steel welding and oil/coal combustion). Cr is 

also a notable emission from electroplating industries. It has been also been reportedly 

emitted through welding of stainless steel (Heung et al., 2007; Querol et al., 2007). The 

presence of S in this factor could signify steelworks emissions. The fourth factor of coarse 
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PM is significantly associated with Mn, Fe, Rb and Pb. This is also a steel source from the 

blast furnace section. 

 

The rotated PCA at the LW monitoring station is shown in Table 7.4 (a, b) for fine and 

coarse PM. These two PM categories explained 79.8 and 91.6% of their total dataset with 

four components identified accordingly. Fine PM factor 1 has high loading for K, Ca, Mn, 

Fe, Ni, Zn and Pb. This is a combined steel (BF/Sinter/BOS) and oil 

combustion/woodsmoke source. Factor 2 is associated with Na, Mg and Cl representing a 

marine source. Factor 3 has high loadings of Al, Ca with moderate loading of Ti. This 

indicates a crustal source. Factor 4 is highly loaded with S and Cr. This source is 

attributed to steelworks from cokemaking (US EPA, 1995). S has been observed in 

elevated amounts at a steel smelting plant (Prati et al., 2000), coal-fired plants and 

refineries (Barret, 2004).  

 

The coarse PM factor 1 is dominated by Na, Mg, Al, Cl, K, Ca, Br and Sr where a total 

variance of 40% was explained. This factor is a mixed source associated steel and marine 

emissions. Factor 2 has high loading of Al, Si, K, Ca, Mn, Fe, Ti, Zn and Sr indicating a 

combination of crustal and steelworks sources. The steel factor in component 1 and 2 

could be linked to steelworks production units including the sinter, BF and BOS plants. 

Factor 3 has significant affinity for Cr but is anti-correlated with Cu. This factor is 

attributed to stainless steel welding. Lastly, Cr and Ni are highly loaded for factor 4 and 

thus represents oil/coal combustion source.  
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Table 7.3: Rotated components for FS Streaker (a) PM2.5 

 
 Component  

                 

1 

         2                3                    4 Communalities 

Na .331 .914 .044 -.002 .946 

Mg .626 .719 -.097 -.119 .932 

Al .725 .242 .035 -.373 .725 

S .247 -.405 .246 -.454 .492 

Cl -.049 .924 .016 -.114 .869 

K .753 .023 .529 .173 .878 

Ca .823 .391 -.203 -.114 .884 

Cr .415 .484 -.268 .443 .675 

Mn .969 .042 .143 -.033 .961 

Fe .957 .040 .015 -.007 .919 

Ni -.071 -.183 .137 .818 .726 

Cu .022 -.021 .872 -.156 .785 

Zn -.006 -.036 .932 .170 .900 

Ti .722 .268 -.077 -.214 .645 

Se .940 -.024 .036 .108 .897 

 

% Variance 38.5 19.5 14.3 9.3 (81.6 %) 

 Steel (BF) 

+ Crustal  

Marine Traffic + 

Woodsmoke 

Oil 

Combustion 

 

   
(b) PM2.5-10 

 Component  

           1                      2                                  

3 

           4 Communalities 

Na .109 .934 .200 .087 .931 

Mg .249 .906 .260 .122 .966 

Al .867 .228 .030 .390 .957 

Si .858 .237 .055 .361 .926 

S .029 .646 .695 .162 .928 

Cl .180 .941 .108 .075 .936 

K .065 .685 -.136 .095 .501 

Ca .746 .363 .168 .451 .919 

Ti .823 .335 .162 .372 .954 

Cr .360 .069 .813 -.022 .796 

Mn .693 .241 .280 .525 .891 

Fe .366 .487 .451 .584 .916 

Ni .340 .040 .677 .233 .629 

Cu .746 -.147 .118 -.237 .648 

Zn -.133 .068 .758 -.027 .597 

Rb .279 .376 .310 .711 .821 

Pb .211 -.041 -.105 .834 .753 

 

% 

Variance 
25.8 25.2 16.3 15.4 (82.7%) 

 

 Crustal 

+ Traffic 

Marine + Steel 

1(Sinter Plant) 

Steel 2 (BOS) + 

Oil/Coal 

Combustion) 

Steel 3 

(BF) 
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Table 7.4: Rotated Component Matrix of LW Streaker (a) PM2.5 

 

 Component  

                       1         2           3                                         4 Communalities 

Na .489 .828 -.022 -.208 .968 

Mg .123 .841 .332 -.239 .890 

Al .005 .294 .899 .110 .906 

S -.041 -.262 -.086 .760 .655 

Cl .212 .899 .230 .014 .906 

K .902 .350 -.085 -.058 .946 

Ca .625 .106 .664 -.135 .862 

Ti -.139 .060 .417 .094 .206 

Cr -.069 .122 .379 .764 .747 

Mn .959 .156 .028 -.023 .946 

Fe .854 -.103 .373 -.103 .890 

Ni .699 .289 -.430 .324 .862 

Cu .345 -.317 .041 .478 .450 

Zn .813 .408 -.308 -.043 .924 

Pb .868 .124 -.127 .168 .813 

 

% 

Variance 

34.7 19.4 14.5 11.2 (79.8%) 

 Steel 1 

(BF/BOS) + 

Woodsmoke 

Marine Crustal Steel 2 

(Cokemaking) 

 

      

(b) PM2.5-10 

  Component   

Communalities 
1 2 3 4 

Na 0.926 0.287 0.139 -0.116 0.972 

Mg 0.922 0.337 0.083 -0.075 0.976 

Al 0.554 0.811 0.137 0.036 0.985 

Si 0.489 0.843 0.159 0.054 0.978 

S 0.779 0.44 0.097 -0.33 0.92 

Cl 0.938 0.295 0.088 -0.068 0.979 

K 0.738 0.651 0.132 -0.017 0.985 

Ca 0.689 0.673 0.095 0.053 0.939 

Cr -0.008 0.055 0.576 0.652 0.759 

Mn 0.474 0.838 0.13 -0.002 0.944 

Fe 0.455 0.863 0.121 0.045 0.969 

Ni -0.191 0.029 -0.222 0.821 0.76 

Cu -0.058 -0.158 -0.83 0.139 0.737 

Ti 0.418 0.848 0.139 0.144 0.934 

Zn 0.028 0.913 -0.072 -0.139 0.859 

Br 0.866 0.202 -0.307 -0.08 0.892 

Sr 0.829 0.534 0.093 -0.009 0.981 

% Variance 40.3 35.7 7.9 7.7 -91.60% 

  Marine + 

Steel 1 

(Sinter 

Plant) 

Crustal + 

Steel 2 

(BF/BOS) 

Steel 3 

(Stainless 

welding 

Oil/coal 

combustion 
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The PCA rotations for Streaker data were able to explain 79.8-81.6% of the total PIXE 

dataset for PM2.5 similar to Prati et al. (2000) work at a steelworks site in Italy where 81.7-

83.8% variance was explained. In the coarse fraction, Prati et al. (2000) study defined 

85.1-85.6% of data variance relative to 82.8-91.6% obtained in this study. Related study 

by D’Alessandro et al. (2003) with PCA at four towns in Italy including Genoa, revealed 

3-4 components that explained the variance range of 71-84% and 73-87% for PM2.5 and 

PM2.5-10 PIXE data, respectively 

 

7.4 Conclusions 

The PMF analysis of daily and hourly data collected at Port Talbot has allowed 

identification of between 6-7 factors for PM2.5 and PM10 while PCA has identified 4-6 

emission components. The hourly data has been found to more effective in resolving 

sources that the daily data could not detect.  Also, diurnal profiles of pollution events were 

highlighted by the PIXE PMF data. The polar plots for the PMF profiles of PIXE data 

were helpful to resolve sources with similar signatures. Additionally, the polar plots were 

able to identify the directional locations of different steel processing units resolved by 

PMF. By and large, both daily and hourly PMF profiles are complementary and effective 

in identifying and apportioning pollution sources. The PMF and PCA solutions for both 

Partisol and PIXE data have been able to separate contributions from different steelworks 

units.  
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CHAPTER 8 - SINGLE PARTICLE ANALYSIS DURING THE PORT TALBOT 

CAMPAIGN 

 

8.1 Abstract 

This chapter summarizes the results of the single particle analysis using Aerosol-Time-of- 

Flight Mass Spectrometry (ATOFMS) during the Port Talbot campaign. During the four 

week sampling periods (April 18 to May 16, 2012), a total of 5,162,018 particles were 

sized. Of these, 580, 798 were successfully ionized. ENCHILADA software employed for 

analysing ATOFMS data utilized 96% of the hit particles to generate 20 clusters. Similar 

clusters were merged together and 18 clusters were generated from which 8 main particle 

classes were identified. The particle classes include:  K-rich particles (K-CN, K-NO3, K-

EC and K-Cl-PO3), sea salt (Na-NO3),  Silica dust (Na-HSiO2), sulphate rich particles (K-

HSO4), nitrate rich particles (AlO-NO3), Ca particles (Ca-NO3), carbon particles (Mn-OC, 

Metallic-EC, EC, OC and OC-EC), and aromatic hydrocarbon (Arom) - PAH particles 

(Arom-CN, Fe-PAH-NO3 and PAH-CN). With the aid of the wind sector plots, particle 

clusters of K-Cl-PO3 and Na-HSiO2 were related to the steelworks blast furnace/sinter 

plant while Ca-rich particles represented blast furnace emissions. K-CN, K-EC, Na-

HSiO2, K-HSO4, Mn-OC, Arom-CN, Fe-PAH-NO3, and PAH –CN particles were closely 

linked with emissions from the cokemaking and mills (hot and cold) steelworks sections. 

Na-HSiO2 particles were also associated with blast furnace and crustal matter. Altogether, 

the steelworks showed a significant contribution to emitted single particles in Port Talbot. 
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8.2 Introduction 

Aerosol time of flight mass spectrometry (ATOFMS) is a high time resolution online 

measuring instrument that provides a better and reliable approach for identification and 

apportionment of single particles. This method of particles measurement complements 

filter-based techniques in that it provides abundant information on the chemical mixing 

states and size of particles and helps to identify episodic pollution events (Dall’Osto et al., 

2008a).  

 

The deployment of ATOFMS for both outdoor and indoor pollution studies has been 

widely reported in published works (Held et al., 2002; Dall’Osto and Harrison, 2012; 

Ferge et al., 2006; Dall’Osto et al., 2007; Dall’Osto et al., 2008a, b; Gross et al., 2010; 

Healy et al., 2013; Smyth et al., 2013). Despite the numerous studies conducted around 

the world on single particle measurement, only a few have been done around the area of 

steel industries (Dall’Osto et al., 2008a, b). This study aims to identify and apportion 

individual particles with steelworks fingerprint.  

 

8.3 Materials and Methods 

Single particle sampling using ATOFMS instrument has been discussed in chapter two. 

During the four week campaign, 5,162,018 particles were sized of which 580, 798 

successfully ionized (hit particles). Successfully ionized particles were imported to 

ENCHILADA software for analysis (see details in chapter two). With ENCHILADA, 96% 

of the hit particles were analysed.  
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8.4 Results and Discussion 

8.4.1 ATOFMS chemical composition 

The chemically analysed (hit particles) represented 11.2% of the total sampled particles. 

Out of the total ionized particles, ENCHILADA utilised 96% (555,525 particles) to 

generate 20 clusters which are reduced to 18 clusters (by merging similar clusters with 

related spectral peaks and diurnal or temporal variations). The unscaled mean diameters as 

well as percentages represented by these particle clusters are also displayed in the Table 

8.1. Most of the particle class exhibited mean particle diameter (Da) less than 1.0 µm, 

except Na-NO3, which occurred at Da >1.0 µm. 

 

These clusters could be categorized as: 

1.  K-rich particles and comprises of K-CN, K-NO3, K-EC and K-Cl-PO3 

2. Sea Salt - Na-NO3  

3. Silica Dust -Na-HSiO2 

4. Sulphate-rich particles- K-HSO4 

5. Nitrate-rich particles-AlO-NO3 

6. Ca-rich particles –Ca-NO3 

7. Carbon particles Mn-OC, Metallic-EC, EC, OC and OC-EC 

8. Aromatic Hydrocarbon  (Arom) and PAH particles-Arom-CN, Fe-PAH-NO3 and 

PAH-CN 

 

 

 

 



210 

 

Table 8.1 Summary ATOFMS particle cluster information 

 
 Particle 

Classes 

Clusters Notable Peaks Unscaled

Mean 

Diameter 

(µm) 

Number 

of 

Particles 

% of 

Particles 

1  

 

 

K-rich 

K-CN m/z  +23, +39, -26, -46, -62, -97  0.50 28408 5.1% 

2 K-NO3 m/z  +39,  -26, -46 , -62, -97 0.50 92318 16.6% 

3 K-EC m/z +23, +39, +60, -24, -26, -46, -

48, -60, -62, -72, -84, -96, -108 

0.54 39931 7.2% 

4 K-Cl-PO3 m/z +23, +39, -35, -46, -60, -62, -

79, -96 

0.67 61513 11.1% 

5 Sea Salt Na-NO3 m/z  +23, +39,  -62, -46, -120, -147 1.34 29394 5.3% 

6 Silica Dust Na-HSiO2 m/z  +23, +39, -16, -26, -36, -46, -

48, -61, -72, -79, -97, -142, -144 

0.94 29137 5.2% 

7 Sulphate K-HSO4 m/z  +23, +39, +43,  -26, -46, -62, -

80, -97 

0.51 29845 5.4% 

8 Nitrate AlO-NO3 m/z +43, +137, -46, -62, 97 0.51 27358 4.9% 

9 Ca-rich Ca m/z  +23, +40, -26, -36, -46, -47,  -

60, -62, -72, -79, -84, -97, -108 

0.58 15303 2.8% 

10  

 

 

 

 

Carbonace

ous 

Mn-OC m/z  +39, +55, -25 0.56 1742 0.3% 

11 OC m/z +38, -26, -46, -48, -62, -79, -97 0.56 35051 6.3% 

12 Metallic-

EC 
m/z  +23, +27, +41, +48, +56, +59, 

-24, -36, -48, -60, -72, -84, -96, -

108 

0.57 20339 3.7% 

13 OC-EC m/z  ±36, ±60, +48, -24, -47, -72, -

94, -97 

0.56 14619 2.6% 

14 EC m/z  ±36, ±48, ±60, ±72, ±84, ±96, 

±108, ±120, +132, +144, -24 

0.52 50657 9.1% 

15 EC-NO3 m/z ±36, ±48, ±60, +39, -24, -46, -

62, 97 

0.64 10953 2.0% 

16  

 

 

 

 

Arom-

PAH 

Aromatic-

CN 
m/z  +39, +51, +63, +74, +87, +98, 

-26, -35, - 46, -49, -62, -73, - 97 

(for m/z>100, strong peaks were + 

188 +200, +202, +224, +250) 

0.40 25242 4.5% 

17 Fe-PAH-

NO3 
m/z  +56, -46, -62, -97, (for m/z 

>100, strong peaks were +226, 

+250,  +202, +250) 

0.49 24980 4.5% 

18 PAH-CN m/z +39, +43, +63, +152, +165, 

+189, +202, +215, +226, +239, 

+252, +276, -26, -35, -46, -48, -62, 

-73, -80, -97 

0.52 18460 3.3% 

Total     555,250  
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 Table 8.2: Locations of the steelwork sectors from the Fire Station sampling site 
 

Sector/plant Fire Station 

Ironmaking  

Sinter plant 

Blast furnace  

Raw materials 

190–270◦ 

 

Steelmaking/cokemaking  

BOS plant 

Cokemaking 

 

170–190◦ 

Mills  

Hot mill 

Cold mill 

150–170◦ 

 

 

8.4.1.1 K-rich particle class  

This category includes K-CN, K-NO3, K-EC and K-Cl-PO3 and formed 40% of the total 

ionized particles. The high abundance of the K-rich particles could be explained by the 

extreme sensitivity of ATOFMS instrument to K (Healy et al., 2013). The spectra and 

polar plots of this particle class are shown in Figures 8.1-8.2. 

 

8.4.1.1.1 K-CN particle 

This particle type is characterized by elevated positive ion strength at m/z +23 [Na]
+
 and 

intense negative signal at m/z -26 [CN]
 -
, Other little peaks (weak) are found at m/z +39 

[K]
+
, m/z -46 [NO2]

-
, m/z -62 [NO3]

 -
, m/z -97 [HSO4]

 -
, m/z -35 [Cl]

-
, m/z -42 [CNO]

-
, m/z 

-48 [C4]
-
, m/z -60 [C5]

-
 and m/z -72 [C6]

-
. The polar plot shows multi-dimensional 

emissions of this particle with much influence from local emissions (Figure 8.2). The 

evidence of steelworks contribution could be seen in the elevated concentration of the 

cluster towards the south-easterly and southerly wind-direction. The mills (hot and cold) 

and cokemaking units of Port Talbot steelworks are located between 150-190
o
 wind 
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sector. Table 8.2 shows the locations of the wind sectors of the steelworks from the Fire 

Station monitoring site where the ATOFMS instrument was placed. Contributions from 

the steelmaking section were apparent for this particle type. 

 

K is a notable biomass burning/woodsmoke marker but has also been reported from the 

steelworks sinter plant (Hleis et al., 2013).  ATOFMS K-CN particle sampled at Athens, 

Greece by Dall’Osto and Harrison (2006) has been attributed to vegetative debris. [CN]
-
 

as suggested by Tao et al. (2011) might not necessarily be cyanide but carbon and 

nitrogen containing organic particle. In this study the identified cyanide with notable peak 

at m/z -26 might be related more to cokemaking emissions. Wastewater from cokemaking 

at the steelworks has been reported to contain significant amount of cyanide and 

thiocyanate (http://www1.eere.energy.gov/ manufacturing/ resources /steel 

/pdfs/roadmap_chap4.pdf).  
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Figure 8.1: Mass spectra plots of K particle class 

 

 

  
a-Ironmaking, b-Steelmaking/cokemaking, c-Mills 

 

  
Figure 8.2: Polar plots of K-rich particle class 
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8.4.1.1.2 K-NO3 particle 

This particle class shows strong peaks for potassium (m/z +39) and NOx (m/z -46 and -62) 

Low peaks are also displayed for [CN]
-
 (m/z -26), [Cl]

-
 (m/z -35),  and [HSO4]

-
 (m/z -97).  

The polar plot reveals that K-NO3 particle is concentrated towards the northern axis of the 

sampling site. This might be related to traffic emissions from the M4 motorway as well as 

residential woodsmoke (see Port Talbot map in chapter 4). A mild concentration shown at 

centre of the plot might suggest additional traffic contribution from A48 road.  

 

 8.4.1.1.3 K-EC particle type 

K-EC particle shows strong peaks for potassium (m/z +39) and elemental carbon, EC (m/z 

[Cn]
-
, n=2-9). Insignificant peaks of nitrite and nitrate (m/z -46 and -62), sodium (m/z +23) 

and [C5]
+
 (m/z +60) are also observed in this class. The evidence of internal mixing of K 

with EC is obvious in this particle type (Held et al., 2002). The polar plots of K-EC cluster 

and K-CN appeared similar suggesting a related emission source. However, the temporal 

correlation between the two clusters is weak (r
2 

= 0.13). K is a good marker for 

woodsmoke while EC could be emitted through traffic and coal combustion (Dan et al., 

2004; Harrison et al., 2012c). The wind sector plot (Figure 8.2) showed the mills (cold and 

hot) as the highest emitter of K-EC particle. Moderate emissions from cokemaking ovens 

and residential combustions were also revealed by the polar plot. The previous work at 

Port Talbot has not identified K-EC particle (Dall’Osto et al., 2008b). K-EC particle has 

been reported by Healy et al. (2013) at an urban background in Paris. The particle was 

attributed to local biomass combustion. The study of Bi et al. (2011) at the Pearl River 

Delta urban area has allocated 10.5% of biomass particle classes identified to K-EC.   
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8.4.1.1.4 K-Cl-PO3 particle type 

This particle type is characterized by strong peaks observed at m/z 39 [K]
+
, m/z -35 [Cl]

-
,  

m/z -79 [PO3]
-
 and m/z -96 [HPO3]

-
. The evidence of internal mixing of potassium and 

chloride showed that KCl might be related to an emission from the sinter plant and 

biomass burning (Li et al., 2003; Dall’Osto et al., 2008a, Hleis et al., 2013). The recent 

work of Hleis et al. (2013) has reported KCl as a good indicator of sinter plant emission. 

The polar plot also established the sinter plant (located between 190-270
o
 of the sampling 

site, Table 8.2) as the major emission route of KCl. But the source of phosphate is 

unknown. In the filter-based measurement, phosphate was not observed. But the study by 

Dall’Osto et al. (2008a) has linked phosphate emission to the rolling mills contrary to 

depicted wind sector polar plot.  

 

 

8.4.1.2 Sea salt class 

The cluster found in this particle class is Na-NO3. This class represents 5.3% of the total 

ENCHILADA particles. The evidence of coarse domination for Na-NO3 cluster is clearly 

oberved by the mean aerodynamic diameter greater than 1.0 µm. Details of mass spectra 

and polar trends are shown respectively in Figure 8.3. 

 

8.4.1.2.1 Na-NO3 particle 

This cluster is dominated by sodium (m/z +23) in the positive spectrum and nitrates in the 

negative spectrum (m/z -46 and -62). Smaller peaks are also found  at m/z +39 [K]
+
, +62 

[Na2O]
+
, +81 [Na2Cl]

+
, -16 [O]

-
, -35 [Cl]

-
, -93 [NaCl2]

-
,  -120 [NaClNO3]

-
 and -147 [Na 

(NO3)2]
-
. The negative spectra of m/z -46 and -62 might also be suggesting the presence of 

[Na2]
-
 and [Na2O]

-
 instead of the conventional nitrate signatures. But the peaks of m/z -120 
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and -147 shows the evidence of internal mixing of sea salt with nitrate. Strong m/z -35 

[Cl]
-
 was expected to be high in this cluster but this was not the case. This might be linked 

to chloride depletion due to reaction between sea salt and nitrate or mineral dust aerosols 

(Zhao and Gao, 2008). The chloride depletion calculated for MOUDI’s samples was 70 % 

supporting the low intensity of m/z -35 found in this cluster. The spectral characteristics 

displayed by this cluster are related to features of pure and aged salts described by 

Dall’Osto et al. (2004). However, the polar plot suggests that the particle might be mainly 

of aged sea salt. Tao et al. (2011) has adopted m/z -147 [Na (NO3)2]
-
 as a marker for aged 

sea salt which agreed well with this particle cluster. 

 

 

 

Figure 8.3: Sea salt particle spectra and polar plots 
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8.4.1.3. Silica dust particle 

8.4.1.3. 1 Na-HSiO2 particle 

This particle cluster  is characterized by intense signals of m/z +23 [Na]
+
 in the positive 

spectrum and m/z -61 [HSiO2]
-
 in the negative spectrum (Figure 8.4).  Evidence of internal 

mixing of this particle with EC was found with smaller peaks occuring at m/z -36, -48, -72 

and -144. Nitrate peaks (m/z -46 [NO3]
-
 and -142 [NH4(NO3)2]

-
), m/z -16 [O]

-
, -79 [PO3]

-
, 

and -97 [HSO4]
-
 are also identified in this peak. Multi-directional emissions of this particle 

class from sources such as blast furnace plant, mills and crustal matter was revealed by the 

polar plot. Silica is a raw material used at a relatively small proportion (0.3-0.9%) at a 

blast furnace during steel production (Ricketts, 2013). Silicate particles could originate 

from erosion and abrasion of local geological materials as well as construction activities 

(Moreno et al., 2004a). The previous work at Port Talbot by Moreno et al. (2004a) using 

scanning electron microscopy revealed silicate particles to constitute 2 and 12% of the 

total mass of PM2.5 and PM2.5-10, respectively. A significant temporal correlation  (r
2
=0.52) 

was established between Na-HSiO2 and Na-NO3 particles indicating possible marine 

influence (Andreae et al., 1986). The polar plot of Na-HSiO2 particle (Figure 8.4) shows 

that the formation of this type of particles is favored at higher windspeed, relative to Na-

NO3 particle. 
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Figure 8.4 Silica particle mass spectra and polar plots 

  

 

8.4.1.4 Sulphate (K-HSO4) particle class 

Sulphate rich particle is characterized by elevated negative peak of m/z -97 [HSO4]
-
 plus 

other weak peaks at m/z -26 [CN]
-
, -46 [NO2]

 -
, -62 [NO3]

 -
 and -80 [SO3]

 -
. The positive 

spectrum is dominated by the presence of m/z +39 [K]+ and other smaller peaks at m/z 

+23 [Na]
+
, +43 [AlO]

+
 and +59 [AlO2]

+
. [HSO4]

-
 particle constituted 5.4% of the total 

analysed particles. The polar plot depicts the steelworks cokemaking section as the major 

emitter of this particle. Significant contributions from the sinter and blast furnace plants 

are also evident in the polar plot. Elevated concentration of this particle observed at the 

northerly wind sector might suggest a long range transport. The spectra and polar plots of 

the particle class is shown in Figure 8.5. 
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Figure 8.5: Mass spectra and polar plots of  K-HSO4  particle 

 

8.4.1.5 Nitrate (AlO-NO3) particle class 

Abundance of nitrate spectral peaks at m/z -46 [NO2]
-
 and -62 [NO3]

 -
 as well as m/z +43 

[AlO]
+
 are features of this particle class (Figure 8.6). Smaller peaks are also observed at 

m/z -97 [HSO4]
-
 and m/z +137 [Ba]

+
. This particle formed 4.9% of the total ENCHILADA 

analysed particles. The evidence of a mixed source of secondary nitrate and crustal matter 

is peculiar with this source. Some published works have interpreted m/z +43 as oxidized 

organic compounds [C2H3O]
+
 or nitrogen- containing organics [CHNO]

+
 (Dall’Osto et al., 

2007; Dall’Osto and Harrison, 2012; Smyth et al., 2013) but the unique m/z +137 [Ba]
+  

occuring in this cluster could also suggest a crustal or soil source. 
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Barium and aluminium could be associated with traffic emissions from road resuspension 

and brake wear (Gietl et al., 2010; Harrison et al., 2012b). The directional plot of nitrate 

particle is also highlighted in Figure 8.6. The mild concentration of this cluster counts at 

the centre of the plot indicates traffic emissions from vehicular exhaust and road dust. 

Higher concentration of these particles at the northerly wind direction suggests traffic 

emissions from the M4 (South Wales to London) motorway. AlO-NO3 particles show a 

strong temporal relationship (r
2
=0.70) with K-NO3 particles depicting a related emission 

source. 

 

 

 
 

 
Figure 8.6: Mass spectra, polar and diurnal plots of  AlO-NO3  particle 

 

8.4.1.6 Ca-rich particle class 

Calcium-rich particle class constitutes 2.8% of the total ENHILADA analysed particles. 
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particle type typically shows high spectra peaks at m/z +40 [Ca]
+
, -46 [NO2]

-
 and -62 

[NO3]
-
. Calcium particle is internally mixed with elemental carbon m/z -24 [C2]

-
, -36 [C3]

-
, 

-48 [C4]
-
, -60 [C5]

-
, -72 [C6]

-
, -84 [C7]

-
, -108 [C9]

-
, organic carbon -m/z  -43 [C2H3O]

-
, 

phosphate m/z -79 [PO3]
-
 and sulphate m/z -97 [HSO4]

-
. A relatively smaller sodium peak 

m/z +23 [Na]
+
 occurs in this cluster. This particle type might be related to anthropogenic 

emissions especially from the steelworks. This could be further established with the 

cluster aerodynamic diameter that is less than 1.0 µm (Table 8.1).  

 

The polar plot shows the blast furnace steel production unit as the main contributor to this 

particle class. Limestone (CaCO3) and dolomite (CaMg(CO3)2) are key raw materials in 

basic furnace unit of steel industry (Machemer, 2004).  

 

  

 
 

Figure 8:7: Mass spectra, polar and diurnal plots of Ca particle 
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8.4.1.7 Carbon class particles 

The carbon particles comprise the following particle types: Mn-OC, OC, Al, OC-EC, OC-

EC, EC and EC-NO3. Carbon particle class makes a total of 24% of ENCHILADA 

analysed particles. The mean aerodynamic diameter of carbon class particles are less than 

1.0 µm (Table 8.1). Figures 8.8-8.9 show the mass spectra and polar plots of carbon class 

particles. 
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Figure 8:8: Mass spectra trends of carbonaceous particles 
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Figure 8:9: Polar plots of carbonaceous particles 
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and +55 [Mn]
+
. 

A lone strong negative peak was observed at m/z -25 [C2H]
-
 (Figure 8.10). Manganese is a 

notable emission from the steel industry from the ironmaking production unit (Dall’Osto 

et al., 2008a; Mazzei et al., 2008). The spectra m/z +39 and +55 could possibly be due 

hydrocarbon fragments of [C3H3]
+
 and [C4H7]

+
. The m/z +55 might be better attributed to 
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 +
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 +
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 +
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+
 (Bi et al., 2011; Dall’Osto and Harrison, 2012). Organic carbon 
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+
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burning (Tao et al., 2011). The directional plot indicates multi-emission pattern of Mn-OC 

particle which does not support the exclusive emission from the steelworks.  

 

8.4.1.7.2 Metallic-EC particle type 

Metallic-EC particle shows positive spectral signal at m/z +23 [Na]
+
, +27 [Al]

+
, +48 [Ti]

+
, 

+56 [Fe]
+
, +59 [AlO2], +72 [FeO]

+
 and +84 [ZnO]

+
. Elevated m/z peak observed at +41 

might be related to organic carbon [C3H6]
+
. The negative spectrum is characterized mainly 

by elemental carbon [Cn]
-
 where n=2-9. This particle-type may be related to local 

emissions from the traffic as indicated by polar plot. The review by Thorpe and Harrison 

(2008) has shown that Al, Fe, Zn, Ti and K can be emitted from brake lining or wear as 

well as road dust.  

 

8.4.1.7.3 EC particle type 

EC particle shows notable peaks at m/z [Cn]
±
 (n = ±2-10). Other peaks occur at [Cn]

+
 

(n=11 and 12) and m/z +23 [Na]
+
. Among the carbonaceous species, EC particle is the 

most abundant. Excluding K-EC particle type categorized under K-rich class, EC-particle 

represented 38% of all carbon-rich particles. As usual, this particle has a signature from 

local traffic emissions. This is supported by the polar plot which also depicts reasonable 

contributions from the sinter and blast furnace plants.  

 

8.4.1.7.4 OC particle type 

OC particle is mainly characterized by m/z spectra showing positive peak at m/z +38 

[C3H2]
+
 and negative peaks at m/z -26 [CN]

-
, -46 [NO2]

-
, -48 [C4]

-
, -62 [NO3]

-
, -79 [PO3]

-
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and -97 [HSO4]
-
. Smaller peaks are shown at m/z -35 [Cl]

-
 and -72 [C6]

-
. Polar plot 

suggested the cokemaking plant as the main source of this type of particles.  

 

8.4.1.7.5 OC-EC particle type 

The characteristic peaks of this particle class include: m/z  ±36 [C3]
±
, +48 [C4]

+
,  ±60 [C5]

 

±
, -47 [C3H11]

-
, -72 [C6]

-
, -94 [C8H10]

-
 and -97 [HSO4]

-
. The presence of m/z -47 and -94 

could also suggest signatures of carbon-containing-halogen particles which are [CCl]
-
 and 

[(CCl)2]
-
. Halogenated carbon has been proved very difficult to observe in negative 

spectrum and has been rarely observed in positive spectrum (Silva and Prather, 2000).  

 

OC-EC exhibits better temporal relationship with metallic-EC (r
2
=0.80) than any other 

carbonaceous particles suggesting common emission sources. OC-EC particle shows a 

relatively weak association with OC particle class (r
2 

= 0.22) and a moderate relationship 

with EC-NO3 (r
2 

= 0.33). This particle type shows a trend similar to metallic-EC particle 

polar plot re-establishing related emission sources. 

 

8.4.1.7.6 EC-NO3 particle type 

EC-NO3 particle is another sub-particle class observed for carbonaceous species. The 

peaks of this particle type occur at m/z ±36 [C3]
±
, ±48 [C4]

±
, ±60 [C4]

±
, -24 [C2]

-
, -46 

[NO2]
-
, -62 [NO3]

-
, -72 [C6]

-
 and -97 [HSO4]

-
. This particle type is moderately correlated 

with EC particle with coefficient of 0.45. The wind direction plot indicates the traffic and 

ironmaking sections of the steelworks as a major contributor to this particle type.  
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8.4.1.8. Aromatic hydrocarbon (Arom) and PAH particle class 

Three particle types are found for Arom-PAH particle class (Aromatic-PAH-CN-HSO4, 

Fe-PAH-NO3 and PAH-NO3) which constitutes 12.3% of ENCHILADA analysed 

particles. The spectra and polar information of Arom/PAH class particles is shown in 

Figures 8.10 and 8.11. 

 

 

  

  
 

Figure 8.10:Mass spectra plots of Arom-PAH particles 
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Figure 8.11: Polar plots of Arom-PAH particles 

 

 

 

 

8.4.1.8.1 Aromatic-CN particle type 

Arom-CN particles are defined at these significant spectral signals; namely m/z +39 

[C3H3]
+
, +51 [C4H3]

+
, +63 [C5H3]

+
, +74 [C4H12N]

+
, +87 [C5H13N]

+
, -26 [CN]

-
, -35 [Cl]

-
, -

42 [CNO]
-
, -46 [NO2]

-
, -49 [C4H]

-
, -62 [NO3]

-
, -73 [C6H]

-
 and -97 [HSO4]

-
. This particle 

class shows uniqueness for amide functional group at m/z +74, +87, -26 and -42. The 

occurrence of m/z -49 and -73 in this particle class also indicates fragmentation of PAH 

and unsaturated organic carbon (Silva and Prather, 2000; Dall’Osto and Harrison, 2012). 

Traces of PAH could be seen in this cluster at m/z > 100. The m/z +39, +51 and +63 might 

also suggest interference of [K]
+
, [V]

+
 and [Cu]

+
. The polar plot of this particle shows a 

convincing steelworks emission from the basic furnace (BF) plant (190-270
o
) and 
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moderate contributions from the cokemaking and basic oxygen furnace steelmaking 

(BOS) sections (170-190
o
).  

 

8.4.1.8.2 Fe-PAH-NO3 particle type 

Elevated peaks of m/z +23, +43, +56, +63, +188, +202, +224 and +250 are found in the 

positive spectrum of this cluster while the negative spectrum occurs at m/z -35, -46, -62, -

79 and -97. This particle class shows low intensity for PAH (m/z>100) but strong peak for 

Fe (m/z +56), nitrate (m/z -46 and -62) and sulphate (m/z -97). The previous study at Port 

Talbot has reported strong m/z peak for Fe and PO3 (FeP particle) which has been 

attributable to emissions from the rolling mill section (Dall’Osto et al., 2008a). In this 

study, there is also a convincing evidence of internal mixing of Fe with PO3 (m/z -79); 

though the phosphate peak is weak. A relatively weak m/z +207 appearing in this particle 

cluster might suggest Pb which has been reported in Dall’Osto et al. (2008a) work. With 

directional plot, emission of this particle is similar to that of Arom-CN particle from the 

steelworks. Temporal correlation shows a strong association between Fe-PAH-NO3 and 

Arom-CN (r
2
 = 0.64). PAH emissions have been linked with steelworks emissions in 

published works (Tsai et al., 2007; Baraniecka et al., 2010; Brown et al., 2013). Fe is a 

notable BF emission (Oravisjarvi et al., 2003; Machemer, 2004; Moreno et al., 2004a). 

  

8.4.1.8.3 PAH-CN particle particle type 

This particle class has a resemblance of both Arom-CN and Fe-PAH  (temporal 

correlation coefficients of 0.57 and 0.87, respectively) but with a unique strong m/z signal 

at +202, +226, +252, -26, -46 and -97. Peaks are also distinctively observed at m/z +43, 

+63, +189, +215, +276, -35, -49, -62 and -73. This particle is a typical PAH cluster 
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internally mixed with inorganic constituents. The PAH species represented by m/z +202, 

226 and 252 are most likely to be pyrene (mass=202), chrysene (226), benzo[a]pyrene 

(252), benzo[k] fluoranthene (252) and benzo[b]fluoranthene (252). Some of these PAH 

constituents have also been reportedly to be associated with emissions from diesel engine, 

wood and coal combustion (Lakhani, 2012). PAH is a known human carcinogen (Bostrom 

et al., 2002; Delgado-Saborit et al., 2011). The polar plot of PAH-CN particle shows more 

of the steelworks (BF and BOS) emission and no evidence of traffic which distinguishes 

the particle type from Fe-PAH and Arom-CN. These similarities among the Arom-CN, 

Fe-PAH-NO3 and PAH-CN suggest common emission source with probable emission 

from the BF, sinter, BOS and cokemaking steeworks sections. 

 

8.4.2 Source Contributions by ATOFMS Particles  

A summary of ATOFMS identified particle classes is presented in Table 8.3. The K-

particle class shows the highest contribution which could be linked to emission sources 

like biomass burning, wood combustion, vegetation, steelworks and traffic. Next to K-

particle class in the ATOFMS source contribution data is the carbon class which 

constitutes 24% of the total ENCHILADA particles. The least contribution is shown by 

the calcium particle class which represents 2.8% of the total analysed particles. 
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Table 8.3: Summary of the particle cluster emission sources 

 Particle 

Classes 

Cluster s All Emissions 

Sources 

Strong Emissions 

Sources 

% of 

Particle

s 

1 K-rich K-CN Cokemaking/Mills Cokemaking/Mills 5.1% 

2 K-NO3 Traffic/Biomass Traffic 16.6% 

3 K-EC Cokemaking/Mills/Bi

omass 

Cokemaking/Mills 7.2% 

4 K-Cl-PO3 BF/Sinter/Mills BF/Sinter 11.1% 

5 Sea Salt Na-NO3 Marine Marine 5.3% 

6 Silica Dust Na-HSiO2 Traffic/BF/Cokemaki

ng/Mills 

Cokemaking/Mills 5.2% 

7 Sulphate K-HSO4 Cokemaking/Mills/Se

condary 

Cokemaking/Mills 5.4% 

8 Nitrate AlO-NO3 Traffic/Secondary Traffic 4.9% 

9 Ca-rich Ca BF/sinter BF/sinter 2.8% 

10 Carbonaceous Mn-OC Cokemaking/Mills Cokemaking/Mills 0.3% 

11 OC Cokemaking/Mills Cokemaking/Mills 6.3% 

12 Metallic-EC Traffic Traffic 3.7% 

13 OC-EC Cokemaking/Mills Cokemaking/Mills 2.6% 

14 EC Traffic Traffic 9.1% 

15 EC-NO3 Traffic Traffic 2.0% 

16  

Arom-PAH 

Aromatic-CN BF/Sinter/BOS/ 

Cokemaking 

BF/Sinter 4.5% 

17 Fe-PAH-NO3 BF/Sinter/BOS/ 

Cokemaking 

BF/Sinter 4.5% 

18 PAH-CN BF/Sinter/BOS/Coke

making 

BF/Sinter 3.3% 

 BF-blast furnace, BOS-basic oxygen furnace steelmaking 

 

From Table 8.3, the source emissions of the ATOFMS particle types could be broadly 

categorised into steelworks, traffic, marine and secondary aerosols. Source contributions 

of these particle clusters were calculated from their scaled mass concentrations. Results 

are shown in Figure 8.12. The combined steelworks (BF/Sinter+/Mills/Cokemaking) show 

the highest contribution (50%) of the total fine (ATOFMS) particles followed by traffic 

and marine. The secondary aerosols explain a total contribution of 10%. As depicted in 

their polar plots (see Figures 8.5 and 8.5) sulphate particles have a close link with the 
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steelworks emissions from cokemaking and mills while nitrate particles are related with 

traffic emissions. 

 

 

Figure 8.12: Source contribution of particle classes 

 

8.4.3 Size Distribution of Particle Classes 

 The data collected with the ATOFMS instrument was scaled for particle size distribution 

and number concentrations with particles’ information obtained from the Grimm optical 

particle counter (OPC). The Grimm OPC was operated simultaneously with the ATOFMS 

at the Fire Station sampling site. The purpose of this, is to scale and quantify the data 

generated by the ATOFMS system. The inlet efficiency (inverse transmission efficiency, 

E) of the ATOFMS instrument was therefore calculated.  

 

The inverse transmission efficiency, E is calculated therefore as: 

  

E = NGrimm/NATOFMS                                   (8.1) 

 

where, 

Cokemaking/
Mills 
22% 

BF/Sinter 
28% 

Traffic 
28% 

Marine 
12% 

Sulphate 
5% 

Nitrate 
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NGrimm is the Grimm particle number concentration  

NATOFMS is ATOFMS particle number concentration 

 

ATOFMS particles are defined by number counts of total hit and missed particles that 

correspond to same size range of Grimm particle counter. Hit particles are completely 

sized and ionized particles while missed particles are sized but un-ionized particles in the 

ATOFMS instrument. The size range of ATOFMS particles during the campaign is 0.2-

1.9 µm while the size range for Grimm was 0.3-20 µm. The particle sizes where E was 

calculated to merge with Grimm size range are in the interval 0.3-0.4, 0.4-0.5, 0.5-0.65, 

0.65-0.8, 0.8, 1.0, 1.0-1.6 and 1.6-2.0 µm. 

 

 

Figure 8.13: Inverse transmission Efficiency versus Da 

 

By applying the equation 8.1, the resulting curve generated for correcting the ATOFMS 

counts is displayed in Figure 8.13. The inverse transmission efficiency shows a minimal 

value at particle diameter, Da =1.3 µm which therefore represents the maximum inlet 
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efficiency of the ATOFMS instrument during the campaign. Further details of inverse 

transmission efficiency has been discussed in Dall’Osto et al. (2006).  

 

The hit rate calculated for ATOFMS particles in the size range that corresponds to the 

Grimm size range is shown in Table 8.4. The hit rate, H is calculated using equation 8.2: 

 

H= Hit/(Hit+Missed)  * 100       (8.2) 

 

The hit rate of particle are generally higher for the particle range 0.3-0.4 µm while 

particles between 0.4-2.0 µm have closely related values of H. 

 

Table 8.4: The hit rate of particle diameters 

Size range Hit Missed H (%) 

 0.3-0.4 120149 389536 31 

0.4-0.5 122092 1077979 11 

   0.5-0.65 172133 1784027 10 

  0.65-0.8 58978 630383 9 

0.8-1.0 30239 367278 8 

1.0-1.6 48760 681845 7 

1.6-2.0 21166 257752 8 

 

The corrected ATOFMS size distributions of particle number concentrations for the 

particle clusters identified is presented in Figure 8.14. The scaled ATOFMS particles 

show higher number concentrations at diameters of 0.3-0.4 µm. K-Cl-PO3 and some 

carbon particle clusters also exhibit elevated number concentrations at 0.5 µm.  
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Figure 8.14: Size distribution of scaled particle class counts 

 

The size distributions for mass concentrations of the particle classes are highlighted in 

Figure 8.15. Mass concentrations for the particle cluster were calculated on the scaled 

ATOFMS particle counts. The formula adopted was: 

 

M = V* ρ         (8.3) 

where, 

M= mass, 

V=volume of particle, 

-5

0

5

10

15

20

0

20

40

60

80

100

120

140

160

180

0.1 1 10

O
C

-E
C

, 
M

n
-O

C
, E

C
-N

O
3 

 
d

N
/d

lo
gD

p
  (

cm
-3

) 

M
e

ta
lli

c-
EC

, 
EC

, O
C

 
 d

N
/d

lo
gD

p
  (

cm
-3

) 

Diameter [µm] 

Carbon Particles 

Metallic-EC
EC
OC
OC-EC
Mn-OC
EC-NO3

0

50

100

150

200

250

300

350

400

450

0

20

40

60

80

100

120

140

160

180

0.1 1 10
A

ro
m

-P
A

H
 

d
N

/d
lo

gD
p

  (
cm

-3
) 

Fe
-P

A
H

, 
P

A
H

-C
N

, 
A

ro
m

.-
P

A
H

 
d

N
/d

lo
gD

p
  (

cm
-3

) 
 

Diameter [µm] 

Arom-PAH 

Fe-PAH

PAH-CN

Aromatic-PAH



237 

 

ρ = particle density (assumed to be 1.7g cm
-3

) 

Volume is calculated as: 

 

V = 4/3 * π *(d/2)
3
                     (8.4) 

where,  

d=particle diameter 

π =3.142 

 

Equations 8.3 and 8.4 can be combined as: 

 

M= 1/6 * π *d
3 

* ρ                   (8.5) 

 

The scaled size distribution for corrected mass concentrations of clusters highlighted in 

Figure 8.15 shows bimodal peaks for K-rich particles of K-EC and K-Cl-PO3. The 

remaining two types of K-containing particles (K-CN and K-NO3) showed only one peak 

in the fine mode. The fine modes occur between 0.3 and 1.0 µm while the coarse peak 

shows at around 1.8 µm. K-Cl-PO3 exhibits a stronger peak in the coarse mode relative to 

K-EC particles. As earlier discussed, K-Cl is a typical emission from the sinter plant at a 

larger particle mode (Hleis et al., 2013). The sea salt particle shows a unique elevated 

coarse mode at 1.8 µm. Calcium and silica particles are bimodal with peaks at around 0.3 

and 1.7 µm indicating both anthropogenic and natural emissions. Sulphate and nitrate 

particles show peaks at fine modes of 0.4 and 0.9 µm. Most of the carbonaceous species 

exhibit unimodal peaks at diameter less than 1.0 µm except for OC-EC which shows 

another insignificant peak around 1.8 µm. The aromatic-PAH class shows a unimodal 

peak centred at 0.3 µm. 
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Figure 8.15: Mass distribution of particle classes 

 

8.4.4 Temporal variations and polar plot of total particle number concentration 

Figure 8.16 shows temporal variation of total particle number concentration of the 4 week 

ATOFMS analysed particles. Peaks of elevated counts where particle numbers are greater 

than 2000 per hour (highlighted with the red cycles in Figure 8.16) were observed on 

April 19-20, 23-24, 25-26, May 1-2, 6-7 and 9-10. The hourly trend of unscaled ATOFMS 

total particle numbers shows similar variations with that of Grimm optical particle counter 

(Appendix XXVII). For individual clusters, the time series plots of the particle number 
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concentrations are plotted in Appendix XXVIII. Common episodes of particle pollution at 

May 1-2 and 7-8 were observed for K-rich particles (K-EC, K-NO3 and KCl-PO3). 

Pollution peaks for the sea salt and silica dust classes are similar while metallic-EC and 

EC particle sub-classes in carbonaceous species exhibited related pollution events. Two 

common peaks of elevated particle number concentrations were observed for arom-PAH 

particle class. Occurrences of particle pollution events are most frequently observed for 

the sea salt particle type.   

 

The polar plot of the total particle counts from the ATOFMS shown in Figure 8.17 has 

highlighted multiple emission sources of particles in Port Talbot.  Elevated concentrations 

observed at the northerly wind sector suggest traffic and residential emissions. At the 

centre, the high number concentration of total particles indicates local traffic emissions.  

The south-easterly high particle number concentrations suggest steelworks emissions from 

hot and cold mills. Finally, elevated particle concentrations in the south-westerly wind 

sector signify emission from the steelworks ironmaking section as well as marine sources. 

 

 

Figure 8.16: ATOFMS total particle number concentration 
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Figure 8.17: Polar plot of ATOFMS total particle counts 

 

8.4.5 Comparison of the Daily ATOFMS Mass and other PM Measuring Instruments 

The daily trends of ATOFMS mass concentration with other PM measuring instruments is 

shown in Figure 8.18. The daily variation plot shows good agreement among the different 

instruments with common episode of fine particle (PM2.5) observed on April 26 and May 

08. However, there were occasions where slight differences are observed in peaks shown 

between ATOFMS and other instruments. 

 

Figure 8.19 shows the wind direction plots of major peaks exhibited by the mass 

measuring instruments. Prevailing winds during these periods were mostly south-westerly; 

and occasionally moderate winds from southerly, westerly, north-westerly and northerly 

axis. The activities of the steelworks were more prominent during these periods of 

pollution peaks.  
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Figure 8.18: Daily mass distribution of ATOFMS and other mass-measuring instruments 
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                 May 4        May 8 

           

                      May 10              May 11 

               Figure 8.19: Wind direction plots during elevated ATOFMS mass concentrations 

 

8.5 Conclusion 

The single particle analysis using ATOFMS is useful for source identification and 

apportionment of particulate matter. With the assistance of ENHILADA software, 20 

clusters, which were subsequently grouped into 18 clusters, were identified. These clusters 

were classified into 8 particle classes viz: K-rich, sea salt, silica dust, sulphate, nitrate, Ca-

rich, carbonaceous and Arom/PAH. ENCHILADA software analysed 96% of successfully 

ionized particles. Among the identified species by ATOFMS, K-rich particles represented 

the highest percent (40%), followed by carbon-rich particles (24%). Arom/PAH, sea salt, 
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silica dust, sulphate, nitrate and Ca particles constituted 12, 5, 5, 5, 5 and 3%, respectively. 

The polar plots of individual cluster indicate that Port Talbot PM is mainly from marine, 

industrial steelworks, traffic and mineral dust sources. The steelworks showed the greatest 

contributor to ATOFMS particles representing 50% of the apportioned particles. Out of 

the 18 particle clusters, 11 were associated with signatures from the steelworks; these 

include: K-CN, K-NO3, K-Cl-PO3, K-HSO4, Ca, Mn-OC, EC-OC, Arom-CN, Fe-PAH-

NO3 and PAH-CN. The scaled ATOFMS mass concentration for temporal variations is 

also comparable with other PM measuring instruments indicating the reliability of the 

ATOFMS for particle analysis.    
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CHAPTER 9 – SUMMARY AND FURTHER WORKS 

 

In this chapter, the offline and online data during the one month field campaign in Port 

Talbot were summarized and synthesized. The average increments in daily and hourly 

average concentration of PM and its components associated with particular wind sectors 

linking the emission sources to the receptor sites were also calculated. 

 

9.1 Offline Partisol, MOUDI and Streaker Data 

9.1.1 Mass and chemical composition 

Prior to the Port Talbot campaign, two-week PM sampling has taken place at the EROS-

urban background and BROS-roadside sites. The details of the EROS and BROS 

campaign and the collected physical and chemical data were presented in Chapter 3. The 

purpose of the EROS and BROS campaign was to compare the PM data of these two sites 

with that of the industrially polluted site of Port Talbot (PT) (Appendix XXIX).  

 

Port Talbot Partisol PM was dominated by coarse particles (Appendix XXIX) while 

EROS and BROS PM by fine particles (Appendix XXIX). Partisol PM2.5/PM10 ratio at PT 

is 0.43±0.05, which is similar to the value (0.43) reported by Chung et al. (2006) at an 

industrial site in Daejon, Korea. Studies around the steel industries have reported higher 

PM2.5/PM10 ratios. At Rahee, Finland, the study of Oravisjarvi et al. (2003) at the vicinity 

of a steel industry demonstrated fine particles to constitute 61% of PM10. At Izmir, 

Turkey, the study of Yatkin and Bayram (2008) at an industrial zone (including 

steelworks) showed higher ratio of PM2.5/PM10 (0.80). An earlier study by Yatkin and 

Bayram (2007) at an industrial site also reported a high percentage of fine particles (70%).  
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Elevated levels of Na
+
, Cl

-
, Ca

2+
, Fe and Mn were observed for PM2.5 and PM2.5-10 at PT 

compared to values obtained at EROS and BROS. The PM2.5 constituents of SO4
2-

, K
+
, 

Ca
2+

, Cr and Zn were also higher at PT than at BROS or EROS. This suggests that particle 

pollution in Port Talbot was influenced by marine aerosols (Na
+
, Cl

-
) and the steelworks 

(Ca
2+

, Fe, Mn, Cr and Zn). Higher concentrations of Ba, Sb, Cu, Al, Pb and NO3
-
 at BROS 

than PT and EROS revealed a higher contribution from vehicular emissions (Sternbeck et 

al., 2002; Hjortenkrans et al., 2007; Thorpe and Harrison, 2008).  

 

The MOUDI size distributions of particulate matter mass concentration at Port Talbot also 

supported the dominance of PM10 by coarse particles. The size-segregated distribution for 

chemical species showed significant peaks of Cl
-
, Na

+
, Mg

2+
 and Ca

2+
 at particle diameter 

3-5 µm and of Mn and Fe at 4-6 µm. These results suggested a significant contribution 

from the sea salt aerosol, crustal and steelworks emissions to the PM10 mass. These might 

be responsible for the low ratio of PM2.5/PM10 observed at Port Talbot. Fe and Mn are 

notable signatures for steelworks especially at the blast furnace and basic oxygen furnace 

steelmaking (Machemer, 2004; Mazzei et al., 2008; Hleis et al., 2013). These two 

elements have also been used as crustal matter fingerprints (Hien et al., 2001; Chung et 

al., 2006; Alleman et al., 2010). In the fine modes, levels of Cr, K
+
 and Zn measured by 

both MOUDI and Partisol instruments at PT were significantly higher than those at EROS 

and BROS. These PM constituents may be related to the steelworks from cokemaking, 

sinter and steelmaking (Heung et al., 2007; Hleis et al., 2013). Fine K
+
 is also associated 

with woodsmoke emissions (Harrison et al., 2012c). 
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Aside from the emission of marine aerosol and the steelworks, meteorological conditions 

may be another factor leading to the elevated concentrations of coarse PM at PT through 

soil and dust resuspension (Charron and Harrison, 2005). The average windspeed during 

the whole sampling period was 6.3±2.3 m s
-1

. This favoured higher concentration of 

coarse particles (Charron and Harrison, 2005). Formation of sea spray is also favoured by 

elevated windspeed (O’Dowd and Leeuw, 2007).  

 

The Streaker samples complement Partisol and MOUDI data with an advantage of 

providing diurnal variations of elemental concentrations. Comparison of Streaker with 

Partisol data revealed good agreement for most observed chemical species (Appendices 

XXI-XXIII). Similar emissions patterns and concentrations were observed for fine Na, 

Mg, S, Ca, Cr, Cu and Pb; while Al, Ca, Cr, Cu, Mg and Zn showed similar trends for 

coarse PM concentrations. The Streaker data made it possible to plot the wind sector plots 

(Figures 6.6-6.9), allowing an identification of particle emissions from specific processes 

at the steelworks. The polar plots of FS Streaker data showed evidence of steelworks 

emissions with elevated concentrations of elements (Al, S, Ca, Fe, Cr, Ni, Mn, Pb and Zn) 

towards the south-westerly wind sector (Figures 6.6 and 6.7). At the LW station, high 

concentration of elements Ca, Cr, Cu, Fe, Mn, Ni, Zn and S between the southerly and 

easterly wind directions confirms emissions from the steelworks (Figures 6.8 and 6.9).   

 

At the two sites (FS, LW), the Streaker PM2.5 fraction was dominated by S; while Fe (FS) 

and Na (LW) were the most abundant components of PM2.5-10. High concentration of 

sulphur and Fe could be associated with the local steelworks (Prati et al., 2000). The 

regional contributions to sulphur levels in PT may also be of significance (AQEG, 2012). 
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The relative abundance of Na at LW is not surprising, being in the proximity of Swansea 

Bay. The hourly sum of the measured constituents of Streaker data showed two days 

where PM10 mass concentrations were greater than 50 µg m
-3

 on May 7 and 10 at FS 

(Figure 6.3a). The daily Partisol and FDMS mass data have shown similar trends at all the 

stations (Figure 5.2) indicating their comparability with the Streaker hourly data (when 

calculated as 24-hour averages). General observations during the periods of 24- hour PM10 

episodes have been summaried in Table 9.1. 

 

Table 9.1: General observation at the FS site during the period when high PM10 

concentrations were recorded 

Sampling date Partisol PM10  

(µg m
-3

) 

FDMS PM10  

(µg m
-3

) 

Observations 

18/04/12 41.4 37.9 Cloudy and raining. Mild plume 

emissions from the steelworks 

26/04/12 64.5 64.5 Sulphur-like odours, calm weather, 

high plume emissions from the south-

western regions where the BF and 

Sinter plants located  

08/05/12 40.2 41.6 Calm weather and high plume 

emissions from the steelworks 

11/05/12 47.8 51.0 Sunny. Mild emissions from the 

steelworks 
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The diurnal variations of the Streaker data further revealed the pollution patterns in Port 

Talbot. The most significant peaks were found at 7-9 am, 1-3 and 5-11 pm. The morning 

peak indicated by Streaker data at 7-9 am corresponds to peaks shown by gaseous 

pollutants NO, NO2, NOx, SO2 and CO. Additionally, FDMS PM2.5, black carbon and 

Grimm particle counts (diameter 0.3-1.6 µm) have shown a significant morning peak, 

indicating traffic contributions (Rattigan et al., 2010). However, the steelworks emissions 

during this morning peak may not be ignored.  

 

The major aim of this thesis is to identify and apportion different emission sources of air 

pollutants in Port Talbot using receptor models. Two receptor models, principal 

component analysis (PCA) and positive matrix factorization (PMF) were used for PM 

source identification and apportionment. These models have been applied to both daily 

Partisol and hourly Streaker data. The PCA for fine and coarse PM was able to identify 

prominent emission sources. Apart from the identified steelworks factors, other notable 

components were crustal, traffic, oil combustion, secondary and woodsmoke. It should be 

noted that K
+
 has been adopted as a marker for a woodsmoke for fine PM2.5 and a sinter 

plant for coarse PM. The PCA model was able to identify specific steelworks units 

contributing to particulate pollution in PT. The notable steelworks processes identified 

were sinter, BF, cokemaking and BOS. The multiple linear regression (MLR) analysis of 

factors successfully apportioned components identified for Partisol data only. In the case 

of Streaker, the MLR analysis could not resolve the source contributions due to problems 

arising from negative factors.  
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The PMF model has identified some components similar to that of the PCA 

(BF/Sinter/BOS, secondary aerosol, marine aerosol and traffic). With the PMF model, 

source contributions of factors for Partisol and Streaker samples were clearly explained. 

Gaseous pollutants and black carbon data were successfully incorporated into Streaker 

hourly data. Diurnal trends and wind sector patterns of identified factors were plotted from 

the hourly data. Not much difference was observed between PMF and PCA factors, except 

the additional steelworks sinter fugitive dust. Another significant observation for PMF 

was the traffic factor characterized by significant loadings for BC, NOx and CO. This 

study showed a strong accord with the recent published research work of Pancras and co-

workers (2013) who applied the PMF model to hourly data collected at Dearbon, 

Michigan, USA. The study included the gaseous pollutants and identified different 

steelworks sections including cokemaking, sinter, slag, and iron and steel production 

(Pacreas et al., 2013).  

 

PCA and PMF models for Partisol data identified secondary aerosol as the leading 

contributor to PM2.5 supporting the report of AQEG (2005). The combination of all the 

steelworks factors of PCA and PMF represented 31 and 16% for Partisol, and 28 and 38% 

for Streaker, respectively. The steelworks therefore formed the second largest contributor 

to PM2.5 in PT. For coarse particles, PCA and PMF revealed the combined steelworks 

constituting 67 and 41% of the apportioned PM2.5-10. The summary of sources identified 

and apportioned by PCA and PMF for Partisol and Streaker fine and coarse PM are 

displayed in Appendix XXX.  In this study, PMF showed a better performance than PCA 

for source apportionment. 
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As highlighted in Figure 5.1 and Table 7.3, there are different steelworks sections in Port 

Talbot. The receptor models used in this study could not identify cold and hot mills, 

probably due to non-inclusion of their corresponding marker elements in the models. The 

study of Tsai et al. (2007) has reported higher values of OC and total PAHs in cold mill 

particles collected at the integrated steelworks complex in Taiwan. The daily OC/EC 

measured with a high-volume sampler could not be included in the receptor models 

because too few data were collected. OC/EC results are available at the FS site only and 

thus do not satisfy the requirement for PCA and PMF analysis.  

 

The pragmatic mass closure model described by Harrison et al. (2003) was adopted to 

reconstruct the fine PM mass at FS due to available OC/EC data at the site. The regression 

plot in Appendix XXXI showed a good correlation between the measured and 

reconstructed fine PM mass indicating mass closure of measured components.  

 

9.1.2 Average steelworks increments associated with wind sectors 

The purpose of this section is to calculate the steelworks increments for PM mass and 

chemical composition of Partisol and Streaker data. This will provide another method for 

apportioning source contributions to specific steelworks sections using wind sector 

analysis. This was achieved by finding the differences between the downwind and upwind 

PM data that were associated with the steelworks production units. It should be noted that 

LW represents the upwind site when the prevailing wind blows from westerly and south-

westerly (from the Swansea Bay) across to FS site (downwind). In a condition when 

prevailing wind is blowing from the south-east and south, LW represents the downwind 
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sector. The wind sectors of different steelworks production units in Port Talbot are shown 

in Table 9.2.  

 

Table 9.2: The wind sector locations of the steelworks facilities 

Steelworks Wind sectors from FS Wind sectors from LW 

Ore stockyards W, WSW S, ESE 

Sinter SW SE 

BF SSW SE 

BOS/Cokemaking S SSE 

Mills SE, SSE SSE 

 

The average daily Partisol wind sector linking the steelworks location to the receptor site 

was calculated for the periods where prevailing winds were between the southerly and 

westerly areas where the steelworks units are located.  Figure 9.1 shows the periods when 

prevailing winds were blowing from the ore stockyards and BF/sinter plants of the 

steelworks. 

 

 

        April 22      April 23 
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      May 8         May 14 

 

Figure 9.1: Wind rose plots showing days where prevailing winds blow across the 

steelworks to the receptor location at FS for which the steelworks increments for Partisol 

data are calculated 

 

Appendix XXXII (a,b) shows the average increments of daily Partisol PM concentrations 

associated with a wind sector linking the source to the receptor locations at FS and LW. At 

the FS (Appendix XXXII a), the wind-determined data showed blast furnace (BF)/Sinter 

plant to contribute significantly to PM in Port Talbot. Steelworks increments were also 

observed for PM mass concentrations at the ore stockyard. Coarse Ca and Fe were the 

major particulate elements from the ore stockyard at FS while Cu, Sb and Ba were 

observed at relatively low concentrations in PM2.5, PM2.5-10 and PM10. PM from the 

BF/Sinter plant was abundant in Fe, Mn, Ca, nss-SO4, Al and Zn (Machemer, 2004). 

Steelworks increments were observed for Pb, Cd, Ni, Sb and Ba at the BF/Sinter plants.  

 

The steelworks elemental increments from BF/Sinter plant at FS could account for about 

25% of the PM mass increment with excess mass of 5.2, 17.3 and 22.5 µg m
-3

 for PM2.5, 
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PM2.5-10 and PM10, respectively. The excess mass may be attributed to many factors 

including unmeasured components such as OC/EC, mass-associated oxygen, particle- 

bound water and other chemical constituents. Additionally, the Streaker PM on the 

specific day (May 8) when the steelworks increment was calculated (for daily Partsiol 

BF/Sinter) revealed an elevated value of coarse Fe (10.3 µg m
-3

) compared to Partisol Fe 

value of 3.5 µg m
-3

. Higher amounts of Na, Cl and Ca were observed for Streaker’s coarse 

PM than those of Partisol. A clear underestimation of chemical components of Partisol 

may therefore provide a reasonable explanation for the unaccounted PM mass.   

 

At LW, most of the measured components demonstrated high elemental increments from 

the ore stockyard steelworks (Appendix XXXII b). The measured components for ore 

stockyard steelworks showed over-estimation of PM2.5 and PM10. The LW site was more 

influenced by the ore-stockyard than FS.  

 

The hourly Streaker PM data at FS were grouped into 16 wind sectors (Figure 9.2) from 

which the sectors relating to the steelworks sections representing the downwind data were 

calculated. At LW, the Streaker elemental data not affected by the steelworks emissions 

were used as upwind data.  
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Figure 9.2: Map of Port Talbot showing the 16 wind sectors linking the steelworks 

productions units to the receptor site at FS  

 

The average steelworks increments for Streaker hourly elemental concentrations 

associated with wind sectors linking the emission source to the receptor location at FS and 

LW are presented in Appendices XXXIII and XXXIV, respectively. The wind sector 

associated data was better defined with Streaker compared to Partisol data. Five 

steelworks sections {ore stockyard, basic oxygen furnace steelmaking 

(BOS)/Cokemaking, Sinter, BF and Mills (hot and cold)} were identified by the wind 

sector linking data at FS (Appendix XXXIII). At LW, two steelworks components were 

revealed (Appendix XXXIV). These increments provide additional source apportionment 

information and chemical profiles of the PM collected during this study.  
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As explained in the previous chapters; Fe, Mn and Ca were better markers for BF; the 

wind sector associated data showed BF plant as the major contributors to these elements in 

all the PM fractions. In the coarse PM fraction, a high concentration of Si was also 

observed at the BF plant. The sinter section was dominated by S, Zn and Pb for fine PM 

and Na, Mg, Zn, Se and Cu for PM2.5-10. At FS, the ore-stockyard demonstrated the 

highest level of fine K, but at LW, the sinter plant was the largest emitter of K. In the 

PM10, K has shown elevated concentration at BF while Cl at the sinter plant. The wind-

determined data has revealed K and Cl as good makers for sinter plant emissions.   

 

Zn has been adopted as a good tracer element for steelworks for BOS due to the addition 

of galvanized scraps to the hot molten iron during steelmaking (Hleis et al., 2013). The 

work published by Dall’Osto et al. (2008) has included Zn as one of the major metal 

emissions from the BOS plant. During the receptor modelling of PMF and PCA, Zn was 

adopted as a tracer element for BOS. The wind-determined data linking the BOS to FS 

receptor site has revealed sinter plant as the major emission source of Zn. However, at 

LW, the wind sector data has shown BOS/Mills/Ore stockyard as major sources of Zn for 

PM2.5 and PM10 (Appendix XXXIV).  

 

S, Se and As were also expected to show the highest concentrations at the BOS/Coking 

plants but were observed at elevated values at the Sinter/BF at FS and LW. The ore 

stockyard demonstrated highest amounts for fine Mg and Cl and coarse Cl. The mills 

sector revealed the highest concentration of fine Cu at FS. Generally, BF and sinter 

sections of the steelworks have displayed elevated components of PM, followed by ore 
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stockyard while BOS/Coking and Mills showed the lowest incremental values. The high 

values of elemental concentrations from the ore stockyard suggest additional contributions 

from the docks. 

 

The wind sector data has revealed the blast furnace and sinter plants as major steelworks 

contributors to PM at FS while the BOS/Coking/Mill/Ore stockyard sections represented 

the largest steelworks emissions of PM at LW (Appendix XXXIV). This is consistent with 

PMF source apportionment results where BF and sinter plants were the dominating 

steelworks emissions at FS. The ATOFMS also revealed the BF and sinter plants as the 

largest emission sources of PM. This information is therefore useful for the Steelworks 

management to put in place particle-control measures at the BF and sinter plants for 

protection of public health. Recently, the Natural Resources Wales (NRW), upon the 

complaints by the residents of Port Talbot, issued an enforcement notice to the 

management of Port Talbot Steelworks to curb pollution around the steelworks (Air 

Quality News, 2013). The NRW identified the sinter plant section as one of the root 

causes of particle pollution in Port Talbot.  

 

The wind data analysis of both Partisol and Streaker revealed dominance of Fe, Mn, Pb, 

SO4
2-

 / S and Ca at the BF/Sinter plant while significant amounts of Fe and Cu were 

observed at the ore stockyard. The ore stockyard has also shown a significant increment 

for fine K while the sinter and BF plants revealed elevated coarse K.   

The wind-determined (Appendices XXXII a and XXXIII) and PMF (Appendices XXXV a 

and XXXVI a) mass and chemical profiles of steelworks factors for Partisol and Streaker 

PM data at FS are compared in Figures 9.3-9.5.  
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Figure 9.3: Wind-determined and PMF mass and chemical profiles for steelworks 

sinter plant at FS (Note: *PM =µg m
-3

) 
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Figure 9.4: Wind-determined and PMF mass and chemical profiles for BF 

steelworks at FS (Note: *PM =µg m
-3

) 
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Figure 9.5: Wind-determined and PMF mass and chemical profiles for steelworks       

BOS/Coking at FS (Note: *PM =µg m
-3

) 

 

Generally, abundance of Fe, Mn, sulphate (Partisol) or sulphur (Streaker), Al, Ca and Pb 

were observed for all the steelworks factors. For the sinter plant steelworks factor (Figure 

9.3), a well-defined relationship was observed for most observed PM components for 

wind-determined and PMF profiles. The wind-calculated sinter profile appeared to show 

higher elemental values of PM than for PMF. Elevated levels of Cd and Pb were revealed 

at the sinter plant for both profiles for PM2.5 and PM10 compared to other steelworks 

sections. The coarse K was also relatively higher at the sinter compared to BF and 

BOS/Coking steelworks units.  

 

The profiles by wind sectors and PMF revealed higher concentrations of Fe, Mn, Ca, V, 

nss-sulphate /sulphur, Ti, NH4
+
 and Mg at BF (Figure 9.4) than at the other steelworks 

components. Ba and Al also showed slightly elevated values for PM10 fraction for BF. 

There is no distinctive element that defined the BOS/Coking component in terms of 

abundance. However, the Partisol PMF (BOS/Sinter) revealed a unique incremental value 

for nitrate which may represent BOS/Coking signature (Figure 9.5). The mass 

concentration of PM was slightly higher at the sinter plant than at BF while BOS/Coking 
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recorded the lowest mass concentration. It should be noted that the FDMS mass 

concentrations were used in place of the Streaker PM10 mass. 

 

The steelworks increments by wind sector (Appendices XXXII b and XXXIV) and PMF 

(Appendices XXXV b and XXXVI b) analyses at LW are compared in Figure 9.6. The 

sinter plant also revealed elevated PM2.5-10 mass concentration while BF/Sinter 

represented the highest concentration of PM10 mass. At LW, the profiles of BF/sinter 

steelworks is characterised with elevated concentrations of Fe, Pb, Zn while sinter has 

high loadings of V, Cu and K. BOS/Sinter revealed higher levels of ammonium and Cd.  

 

The Partisol PMF (BOS/Sinter) and the Streaker wind-determined (BOS/Coking) PM 

profiles at LW are presented also in Figure 9.6. The Streaker wind-determined profile 

showed a slightly higher PM mass and elemental increment than the Partisol PMF 

(BOS/Sinter) component.  
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Figure 9.6: Wind-determined and PMF mass and chemical profiles of steelworks 

factors at LW 

 

The differences between the wind-determined and PMF profiles presented above may be 

explained by the fact that: 

 the wind direction analysis for the Partisol is restricted to a small number of days 

(Figure 9.1) and therefore, since the work’s emissions are not necessarily constant 

from day-to-day, this may attribute a different influence to that obtained from the 

larger dataset from the Streaker. The PMF analysis takes account of all days and 

hence represents a larger dataset than the Partisol wind direction analysis.   

 mass increments determined from the Streaker do not contain all of the associated 

mass because of missing components such as oxygen associated particles. 
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At the FS site, the total PM mass increments of Partisol wind sector analysis for PM2.5, 

PM2.5-10 and PM10 are 6.4, 23.6 and 30 µg m
-3

 respectively, while the corresponding values 

in PM fractions for Partisol PMF are 1.4, 7.4 and 7.0 µg m
-3

. The Streaker wind sector 

analysis revealed an elevated value of 55.8 µg m
-3

 for PM10 while the Streaker PMF gave 

incremental values of 7.3 µg m
-3

 for PM2.5 and 9.2 µg m
-3

 for PM10.  

 

At the LW site, the steeelworks’ increments by wind-determined and PMF PM mass were 

relatively lower than those at FS. The wind sector data for Partisol showed PM increments 

of 0.2, 2.3 and 2.5 µg m
-3 

for PM2.5, PM2.5-10 and PM10 respectively. The Streaker PM10 

showed a steelworks increment of 12.1 µg m
-3 

by the wind-determined analysis and 3.1 µg 

m
-3

 by PMF analysis. 

 

9.1.3 The annual PM steelworks increments 

The chemical profiles calculated from the wind sector and PMF profiles have revealed 

significant increments for most observed elements by Partisol and Streaker. Increased PM 

mass concentrations have been observed at the different steelworks production units 

during the one-month campaign at Port Talbot.  

 

The annual steelworks increments of PM mass from the steelworks units were calculated 

from the one-month steelworks increment data. Consequently, the one-year windrose 

showing the wind frequency that corresponds to each steelworks section was plotted. The 

windrose between January 1 and December 31, 2012 is presented in Figure 9.7. The 

annual wind frequency was multiplied by the one-month PM mass incremental values to 

obtain the annual steelworks increments presented in Table 9.3 (a, b). The annual 
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increment showed the combined BF/Sinter factor as the dominating source emission of 

PM2.5 (0.41µg m
-3

) while the sinter plant as a single source contributed to (0.38 µg m
-3

). 

The sinter plant may therefore represent the highest contributor to PM2.5 concentration 

among other steelworks processing units at FS. However, the PMF model reveals the BF 

plant as the major emission of observed PM chemical components.   

 

In the PM2.5-10 and PM10 category wind-determined and PMF steelworks increments of 

Partisol and Streaker instruments also apportioned the highest mass concentration to the 

sinter plant. The ore stockyard also contributed significantly to the annual PM10 mass at 

FS. At LW, the PMF steelworks profiles showed equal PM10 mass annual increments by 

the sinter and BF plants while the wind-determined profiles assigned a slightly higher 

mass to the BF plant. The fine and coarse PM emissions were largely from the BF plant.  

 

 

Figure 9.7: The annual wind rose plot at Port Talbot from January 1 to December 

31, 2012 
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Table 9.3: Annual PM steelworks increment calculated from the wind-determined and 

PMF analyses at (a) FS 

 

Steelworks increments 

from  

 PM2.5 

(µg m
-3

) 

PM2.5-10 

(µg m
-3

) 

PM10 

(µg m
-3

) 

Wind-determined 

(Partisol) 

BF/Sinter 0.41 1.52 1.93 

 Ore stockyard 0.08 0.30 0.94 

     
Wind-determined 

(Streaker) 

Sinter   1.56 

 BF   0.74 

 BOS/Coking  0.56 

 Mills   0.07 

 Ore stockyard  1.81 

     
PMF (Partisol) Sinter  0.64 0.80 

 BF 0.07 0.38 0.33 

 BOS/Sinter 0.02 0.01 0.04 

     
PMF (Streaker) Sinter 0.38  0.34 

 BF 0.03  0.04 

 BOS 0.01  0.01 

 Coking 0.12  0.25 

 

(b) LW 

Steelworks increments 

from (µg m
-3

) 

 PM2.5 

(µg m
-3

) 

PM2.5-10 

(µg m
-3

) 

PM10 

(µg m
-3

) 

Wind-determined 

(Partisol) 

Ore stockyard 0.004 0.05 0.05 

     
Wind-determined-

Streaker 

BF/Sinter   0.10 

 BOS/Coking/Mills   0.15 

     

PMF-Partisol Sinter  0.80 0.04 

 BF 0.40 1.60 0.04 

 BOS/Sinter 0.08 0.16 0.01 

     

PMF-Streaker Sinter   0.03 

 BF   0.03 

 BOS   0.004 
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9.2 Online Instruments Data  

FDMS, Grimm optical particle counter, Aethalometer and ATOFMS system were 

employed to measure the physical and chemical properties of particulate matter in real 

time. A good correlation was found between FDMS and Partisol indicating a good 

agreement between the online and offline mass measuring instruments (Appendix VIII).  

 

The Grimm data for size distributions and particle count numbers revealed emission 

patterns of particle sizes in Port Talbot. The two distinctive emission types identified by 

Grimm optical counter (for polar plots) are ground-level with elevated peak concentrations 

at lower windspeeds and a resuspension source that is associated with the highest 

windspeeds. Particles with diameter less than 0.5µm have a clear signal of traffic emission 

while higher concentrations of particles greater than diameter 2.0 µm could be traced to 

sea salt and resuspension from the steelworks (Figure 4.4). The evidence of steelworks 

contributions to coarse PM was further established by the wind sector associated data 

shown in Appendices XXXII and XXXIII. The Grimm calculated mass revealed the 

coarse PM fraction representing 64% of PM10 in agreement with the Partisol PM2.5/PM10 

ratio.  

 

Aethalometer black carbon (BC) concentration revealed by the polar plot (Figure 5.8) was 

related to both traffic and steelworks emissions. In the PMF model at FS site, BC co-

existed with NOx in the component assigned to a traffic source. Diurnal variation of BC 

(Figure 5.7) showed a prominent peak at 7 am which may establish vehicular 

contributions. Contributions from the steelworks may also be responsible for the elevated 

BC observed at 7 am morning peak. The PMF profile of Streaker PM revealed the sinter 
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plant as one of the major contributors to BC (Appendix XXXVI). The polar plot of BC has 

also revealed a significant contribution by the steelworks from both sinter and cokemaking 

production units.  

 

The polar plots of the gaseous pollutants have also indicated the steelworks industry as the 

major emission source of NO, NO2, NOx, CO and SO2. High SO2/NOx ratio observed in 

this study shows the impact of stationary emissions by the steelworks (Aneja et al., 2001). 

The single particle analysis with the ATOFMS instrument has identified 8 classes of 

particles in Port Talbot. The particle classes were  K-rich (K-CN, K-NO3, K-EC and K-Cl-

PO3), sea salt (Na-NO3),  silica dust (Na-HSiO2), sulphate rich particles (K-HSO4), nitrate 

rich particles (AlO-NO3), Ca particles (Ca-NO3), carbon particles (Mn-OC, Metallic-EC, 

EC, OC and OC-EC), and aromatic hydrocarbon (Arom) - PAH particles (Arom-CN, Fe-

PAH-NO3 and PAH-CN). It should be noted that the ATOFMS data was available only at 

the FS site. 

 

The emission sources of ATOFMS particle classes were apportioned (Table 8.3) into 6 

components, which were BF/Sinter, Cokemaking/Mills, traffic, marine, sulphate and 

nitrate (Figure 8.12). Most of these emission sources have also been identified by other 

source apportionment models adopted in this study. The PMF for Partisol at FS has 

identified BF, BOS/Sinter, traffic, marine, woodsmoke and secondary aerosol as the main 

emission sources of fine PM. (Figure 7.2). The Streaker PMF revealed PM2.5 sources as: 

BF, sinter (plus secondary), BOS, coking, marine and traffic (Figure 7.4). The PCA model 

was able to indicate sources including BF, BF/Sinter/BOS, secondary/woodsmoke, oil 

combustion, traffic and marine for Partsiol PM2.5; and BF/crustal, marine, 
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traffic/woodsmoke and oil combustion for Streaker PM2.5. A clear agreement was 

therefore established between the ATOFMS and other receptor models, establishing the 

source apportionment ability of ATOFMS.  

 

The polar plots of the ATOFMS K-rich particle showed K-CN and K-EC emissions from 

the cokemaking/mills/BOS facilities while K-Cl-PO3 has been strongly linked with the 

sinter plant. In the PMF solution for Streaker data at FS site, K has 30% of its total 

concentration in the cokemaking factor. BC (34%) and K (13%) also occurred in the fine 

PMF profile for sinter factor. Steel emissions from the sinter and cokemaking plants were 

also established by both PMF and PCA models. In the Partisol PMF, fine K has been 

allocated to woodsmoke while coarse K allotted to the sinter plant. The ATOFMS mass 

size distribution for K-Cl-PO3 showed a dual peak in fine and coarse fractions (Figure 

8.15). The polar plot has established emissions of K-Cl-PO3 particles from the BF/Sinter 

plants. The source contribution from the BF/Sinter plant revealed by the ATOFMS (28%) 

may be comparable with the Streaker PMF apportioned PM2.5 (28% Sinter and Secondary, 

and 20% for BF). The Partisol PMF revealed BF contributing 11%, and BOS/Sinter 5% 

for fine particles. With PCA, the Partisol fine fraction has shown BF constituted 14% 

while Sinter/BF/BOS was assigned 19%.  Cokemaking/Mills was another significant 

steelworks factor identified by the ATOFMS instrument representing 22% of apportioned 

single particles. In the PMF profile for Partisol, the cokemaking factor was unidentified, 

while the Streaker PMF was able to allocate 8% of fine PM to coking. Different 

percentages might be apportioned to the steelworks factors by the ATOFMS and other 

offline instruments; however, both online and offline instruments have identified the 

BF/Sinter plants as the largest steelworks contributor to PM in Port Talbot. For protection 
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of public health, there is a necessity to install dust suppressant equipment on the BF/Sinter 

plant sections. 

 

The sulphate and nitrate particle classes formed 10% of the ATOFMS apportioned 

particles and are related to secondary aerosol. The figure was relatively lower than the 

Partisol PMF secondary factor (52%, Figure 7.2) for fine PM. For Streaker PMF, 

secondary aerosol co-existed with the sinter component representing 28% of PM2.5. The 

wind sector plot showed sulphate particulate relating to cokemaking/mills sections. The 

fine PMF profile for coking at FS revealed significant loading for SO2 (65% of its 

modelled concentration). The sulphate particle class identified by ATOFMS may therefore 

be linked to cokemaking emission (Konieczynski et al., 2012; Pancras et al., 2013).  

 

The nitrate particle class revealed by ATOFMS showed no links with the steelworks 

emissions. The polar plot of this particle class showed evidence of traffic emissions. The 

ATOFMS showed traffic as one of the major emission sources of particles in Port Talbot 

with 28% (Figure 8.12), which is close to the PM2.5 PCA resolved factor assigned to 

traffic at 19% (Figure 7.6). The PMF analysis reported apportioned values of 5% and 14% 

for Partisol and Streaker data, respectively.  

 

The marine source of ATOFMS particles showed a percent contribution of 12% while the 

Streaker and Partisol PMF PM2.5 marine factors were allotted 16% and 26%, respectively. 

A relatively lower value of 4% was given by PCA.  
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The ATOFMS instrument has effectively identified important steelworks marker elements 

which have been used for sources apportionment by filter-based measurement. Fe, Mn and 

Ca are important steelworks emissions from the BF plant (Machemer, 2004; Mazzei et al., 

2008; Hleis et al., 2013). Ca-rich particles were identified by the ATOFMS instrument 

with the polar plot revealing the blast furnace unit as the source. Ca-rich particle 

represented approximately 3% of the total analysed ATOFMS particle (Table 8.3), and 

therefore was comparable with blast furnace factor of the Streaker PMF for PM2.5 at FS 

site. Ca is the second most abundant element (71% of PMF modelled concentration) 

apportioned to blast furnace factor after Fe (74%). The scaled ATOFMS dM/dlogD 

concentrations of Ca showing two peaks at both fine and coarse mode indicate emissions 

from the steelworks and crustal sources (Figure 8.15). However, the elevated fine peak of 

Ca demonstrates dominance of steelworks emissions (from the blast furnace). This trend 

was observed for silica particles but with a relatively small peak at the fine mode probably 

due to the low quantity input in steel production (Ricketts, 2013). Fe-PAH-NO3 was also 

identified by the ATOFMS and indicated BF/Sinter emissions. 

 

The carbon and aromatic/polycyclic aromatic hydrocarbon particle class formed 24% of 

all the classified particles (Table 8.3). Most of the carbon type particles showed local 

traffic emissions at a relatively low windspeed. The value of OC/EC ratio (1.6±0.6) of the 

Digitel PM2.5 also confirms the local traffic contribution to carbonaceous species in 

agreement with reported studies (Hildermann et al., 1991; Watson et al., 1994). This 

shows consistency between the ATOFMS and the Digitel measured OC/EC. However, the 

ATOFMS OC and Mn-OC particles showed higher concentration levels around the 
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cokemaking and mills (Figure 8.9). The study of Tsai et al. (2007) has reported elevated 

value of OC around the cold forming mill in Taiwan.  

 

 The aromatic/PAH particle class has revealed cokemaking and BOS sections of the 

steelworks as the major emitters. These organic constituents were not included in the 

PMF/PCA model and hence do not allow for their comparison with ATOFMS apportioned 

particles. However, the evidence of steelworks emission of organics such as hydrocarbons, 

aromatic and polycyclic aromatic hydrocarbons was established by the ATOFMS 

instrument. A number of studies based on filter and single particle measurements have 

reported elevated concentrations of organics around steelworks sites (Yang et al., 2002; 

Manoli et al., 2004; Liberti et al., 2006; Choi et al., 2007; Tsai et al., 2007; Dall’Osto et 

al., 2008).  

 

As discussed above, the chemical profiles revealed by both PMF and wind determined 

analyses have demonstrated significant steelworks increments for Fe, Mn, sulphate, Al, Ca 

and Pb. In the ATOFMS single particle analysis, these elements were identified as Fe-

PAH-NO3, Mn-OC, HSO4, AlO and Ca particles. A weak signal of ATOFMS spectra at 

m/z 207, which also occurred with Fe in Fe-PAH-NO3 particles, may indicate the presence 

of Pb (Figure 8.10). Assignment of Fe-PAH, Mn-OC, HSO4, AlO and Ca particles to 

different steelworks sections can be seen in Table 8.3.  A good relationship may therefore 

be established for ATOFMS, wind-determined and PMF source apportionment methods. 

 

Scaling of the ATOFMS instrument was successfully done with the Grimm particle 

counting instrument. The scaled ATOFMS counts showed highest dN/dlogDp value for K-
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NO3 and aromatic/PAH particle classes with all the sub-class particles peaking around 0.3 

µm. ATOFMS calculated-mass showed sea salt particles peaking at 1.8 µm. These peaks 

could represent the coarse particles for the ATOFMS instrument. The MOUDI instrument 

has shown elevated coarse peaks of marine aerosols of Na and Cl. K-Cl-PO3 which has 

been attributed to sinter plant emission showed two modal peaks at fine (Da<1.0 µm) and 

coarse diameter around 1.8 µm. The MOUDI size distribution of K (Figure 4.2) showed a 

similar bimodal peak indicating good agreement between the two instruments. 

 

The scaled arom/PAH particles size-distribution in this study peaked at 0.3 µm and agreed 

well with the work of Dall’Osto et al. (2008) and Baraniecka et al. (2010). The abundance 

of m/z +202 (pyrene) displayed by PAH-CN particle class (Figure 8.10) is also consistent 

with the study of Baraniecka et al. (2010) at a steel industry in Poland. A related study at 

Taranto, southern Italy, has observed elevated amounts of Fe and PAH (benzo[a]pyrene 

(m/z +252) (Amodio et al., 2013). Benzo[a]pyrene measured at rolling mills by 

Baraniecka et al. (2010) constituted around 50% of the total PAH determined with size 

peak at 0.25 µm. 

 

The polar plot of the total particle counts of ATOFMS (Figure 8.17) has highlighted 

multiple emission sources of particles in Port Talbot which may be related to emissions 

from the local traffic, residential houses, the steelworks, marine, and regional pollutants. 

As explained above, the receptor models adopted for apportioning emission sources have 

also identified these sources indicating the complementary nature of the ATOFMS 

instrument. 
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The comparison plot (Fig. 8.18) of PM mass concentrations by all the PM measuring 

instruments with ATOFMS has shown good agreements in terms of daily variations. The 

ATOFMS instrument is therefore, a useful tool for identification and apportionment of 

urban aerosol sources.  

 

9.3 Conclusion 

The present study was designed using receptor models to identify and apportion air 

pollutants sampled at an industrial site. Different offline and online particulate matter 

(PM) measuring instruments were deployed to the industrial town of Port Talbot during a 

one-month sampling campaign. Two week sampling of PM was also carried at EROS (an 

urban background site). The mass distribution patterns of particles showed elevated 

bimodal peaks for Fe, Zn, Cr, Ca
2+

, K
+
, Na

+
 and Cl

-
 at Port Talbot compared to EROS. 

PM2.5-10 mass concentration and Mn were also found at higher values at Port Talbot 

relative to EROS. This study also found the PM in Port Talbot to be dominated by the 

coarse fraction. 

 

The polar plots of particle number size spectra revealed much source-related information 

including local emissions, probably from road traffic, which dominated the smaller size 

bins (0.3-0.5 µm), while steelworks emissions dominated the range 0.5-15 µm, and for 

particles greater than 15 µm marine aerosol appeared dominant. Although there appeared 

to be contributions from more than a single source within the steelworks, the wind 

direction-dependence suggested the sinter plant and/or blast furnace plant to be the major 

contributors. 
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The receptor models (PCA and PMF), ATOFMS and wind sector associated data were 

able to resolve different production components of the steelworks. The PMF analysis of 

daily and hourly data collected at Port Talbot has allowed identification of 6-7 factors for 

PM2.5, PM2.5 -10 and PM10, while PCA identified 5-6 emission components for Partisol data 

only. The hourly data has been found to be more effective in resolving sources that the 

daily data could not detect. PMF and PCA revealed secondary aerosol as the dominating 

component of PM2.5 while the combined steelworks dominated the coarse fraction. The 

apportionment of PM from the offline measuring instruments revealed the blast furnace 

and sinter plants to be the major contributors to particle pollution in Port Talbot.  

 

The average increments of Partsol and Streaker by wind sector linking source to receptor 

locations at FS and LW have revealed steelworks sections including ore stockyard, blast 

furnace, sinter, BOS/Cokemaking and mills as major sources of PM in Port Talbot. This 

study has identified the blast furnace and sinter plants as the major emission sources. 

Urgent action is therefore required from the Local Environmental Agency to enforce a 

particle control system as part of the management of the steelworks especially at the sinter 

and blast furnace sections. The wind sector data has also provided steelworks fingerprints 

from different sections of the integrated steelworks, which can be used for source 

apportionment studies.  

 

The single particle analysis using ATOFMS has provided further information on the 

contribution of the steelworks to PM pollution in Port Talbot with BF/Sinter representing 

the major emission source. Emissions from the steelworks cold and hot mills section, 

which had not been identified with PCA and PMF were clearly revealed by ATOFMS. 
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The ATOFMS instrument was able to identify major emission sources highlighted by the 

PMF and PCA which are marine (12%), traffic (28%), secondary (10%), 

Cokemaking/Mills (BOS, 22%) and BF/Sinter (28%). PMF and PCA showed the total 

steelworks PM contributions as 31% and 16% for Partisol, 28% and 38% for Streaker and 

50% for ATOFMS.   

 

This study has revealed the significant contributions by the steelworks complex activities 

in Port Talbot to particulate and gaseous pollutants. Furthermore, secondary aerosol, 

marine sources and traffic are significant emission sources of PM. During this study, days 

of PM exceedances where the WHO/EU 24-hour mean limit of 50 µg m
-3

 was breached 

were observed. This can be damaging to the public health. The ATOFMS result also 

showed the PAH particle types contributing to ca 8% of the total analysed particles. 

Chronic exposure to PAH may initiate carcinogenic health effects in the exposed 

population. 

 

The results obtained and presented in this thesis have provided useful information of the 

steelworks emission sources and their ground-level concentrations at Port Talbot. This 

will be useful for different environmental and research groups on air quality management 

as well as the local authority policymakers. Control and abatement measures for reducing 

particulate emissions at the steelworks (most especially at the BF and sinter plants) are 

recommended to the management of the steelworks industry at Port Talbot. 
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9.4 Further Work 

The results presented in this study have been based on the offline and online source 

apportionment methods around the integrated steelworks at Port Talbot. Most of the 

analysed portions of particulate matter were inorganic chemical species. But with 

ATOFMS, organic constituents were identified. Since ATOFMS is more of a qualitative 

measurement, future studies should focus more on the filter-based determination of 

organic constituents of particulate matter around the steelworks in Port Talbot. An Aerosol 

Mass Spectrometer (AMS) could also be placed alongside the ATOFMS instrument for 

quantification of organics in future studies.  

 

As this study was designed, four sampling sites were selected to evaluate the overall 

impacts of the steelworks activities across Port Talbot town. However, only Partisol 

samplers were present at each of the sampling sites. It will be worthwhile adding the 

Streaker samplers at all the monitoring sites instead of the present two sites where these 

samplers were placed. It was obvious that mass and chemical concentrations of particulate 

matter measured were the highest at Prince Street. Unfortunately, only 12-day Partisol 

data was available at this site due to instrumental breakdown. This is one of the limitations 

of this study. It would be more appropriate to place the mobile laboratory at the Prince 

Street site rather than at the present Automatic Urban Rural Network (AURN) Fire Station 

site.  

 

It will be necessary to run two ATOFMS instruments simultaneously at the upwind (Little 

Warren) and downwind (Fire Station or Prince Street) sites. This will give room for 

ATOFMS data comparison as well as wind sector analysis. Even though this was done for 
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Partisol and Streaker instruments in this study, more instruments should be included in 

future work. If it is possible to place both offline and online particle measuring 

instruments within the steelworks facilities (sinter, blast furnace, basic oxygen furnace and 

mills plants) for at least one-week sampling of particulate matter, gaseous pollutants and 

black carbon, this may provide more distinctive steelworks fingerprint data.    

 

Finally, the health aspects of Port Talbot steelworks should be investigated. The scope of 

the study should cover the impacts of the steelworks emissions on the health of workers 

and the residents. The study should also integrate hospital admissions with particulate and 

gaseous pollutant emissions.  

 

Collaborative work with other research groups might be necessary to investigate different 

atmospheric pollution issues in Port Talbot. A receptor modelling study with offline and 

online instruments should be extended to other steelworks industries within the UK.  
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LIST OF APPENDICES 

Appendix I 

Chemical concentrations of PM2.5 and PM2.5-10 at EROS and BROS 

 EROS    BROS    

 PM2.5 

(ng m
-3

) 

SD PM2.5-10 

(ng m
-3

) 

SD PM2.5 

(ng m
-3

) 

SD PM2.5-10 

(ng m
-3

) 

 

*Mass 12.5 9.3 8.1 5.4 14.4 8.8 9.7 6.2 

Cl 105.86 70.59 461.27 417.29 171.40 131.79 718.47 743.45 

NO3 1561.58 1771.39 1221.34 1207.94 2436.32 2207.89 2330.21 3283.17 

SO4 2049.16 1499.62 1868.65 1362.30 1790.23 1347.42 1003.23 870.20 

Na 85.76 70.79 329.69 265.24 151.25 146.69 437.52 435.31 

NH4 1544.70 1238.89 363.15 618.58 1842.69 1284.17 100.67 45.18 

K 50.67 24.93 20.99 10.65 62.46 41.63 365.03 399.16 

Mg 19.12 11.14 54.71 35.26 25.94 20.99 65.83 51.13 

Ca 40.30 29.85 371.00 300.80 53.47 26.60 391.78 313.30 

Al 768.84 879.98 621.85 1085.67 993.91 1228.42 496.66 445.26 

Fe 1.37 0.65 0.79 0.33 1.08 0.48 1.01 0.51 

V 2.48 1.91 2.44 1.39 2.71 1.84 3.39 2.69 

Cr 4.42 5.04 5.89 4.61 5.09 5.12 7.61 5.01 

Mn 89.23 61.24 312.95 250.05 153.67 99.29 468.08 307.55 

Cu 4.98 4.50 8.03 7.51 6.38 4.88 13.76 10.81 

Zn 25.41 23.92 13.39 10.04 26.45 20.17 20.21 12.68 

Sb 2.48 1.98 1.74 1.26 2.14 1.50 2.05 1.67 

Ba 2.29 1.91 7.73 6.45 3.59 2.79 11.47 8.40 

Pb 10.26 7.64 2.87 2.06 11.35 8.89 3.03 2.56 

Note: * µg m
-3
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Appendix II 

 

MOUDI mass and chemical concentrations for PM2.5, PM2.5-10 and PM10 at EROS and Port 

Talbot sampling sites (SD- standard deviation) 

 
 

Parameters EROS Port Talbot 
 Mean ±SD Mean ±SD 

 PM2.5 PM2.5-10 PM10 PM2.5 PM2.5-10 PM10 

PM Mass (µg m
-3

) 7.0±2.5 4.7±2.6 11.8±5.1 8.0±3.6 10.8±4.6 18.8±8.2 

Cl
-
 (µg m

-3
) 0.06 ±0.05 0.58±0.46 0.64±0.51 0.28±0.23 1.09±0.50 1.37±0.73 

NO3
-
 (µg m

-3
) 0.34±0.18 0.50±0.33 0.84±0.51 0.34±0.15 0.35±0.21 0.69±0.36 

SO4
2-

 (µg m
-3

) 1.71±1.15 0.32±0.22 2.03±1.37 1.04±0.36 0.35±0.23 1.39±0.59 

Na
+
 (µg m

-3
) 0.11±0.09 0.45±0.31 0.56±0.41 0.37±0.14 0.86±0.36 1.23±0.50 

NH4
+
 (µg m

-3
) 0.67±0.42 0.03±0.02 0.70±0.44 0.55±0.40 0.05±0.03 0.60±0.43 

K
+
 (µg m

-3
) 0.03±0.02 0.02±0.01 0.05±0.03 0.09±0.07 0.07±0.04 0.16±0.11 

Mg
2+

 (µg m
-3

) 0.02±0.01 0.07±0.04 0.09±0.05 0.05±0.03 0.13±0.06 0.18±0.08 

Ca
2+

 (µg m
-3

) 0.04±0.03 0.19±0.12 0.23±0.15 0.19±0.18 0.74±0.66 0.93±0.84 

Al (µg m
-3

) 0.94±0.81 0.82±0.93 1.76±1.74 0.10±0.24 0.06±0.06 0.16±0.30 

V (ng m
-3

) 0.93±0.33 0.61±0.22 1.54±0.55 0.55±0.29 0.40±0.22 0.95±0.51 

Cr (ng m
-3

) 1.58±1.02 1.75±1.19 3.33±2.21 3.87±2.90 3.01±1.68 6.88±5.58 

Mn (ng m
-3

) 3.11±2.74 2.01±1.32 5.12±4.06 5.44±5.26 19.68±18.35 25.12±23.61 

Fe (µg m
-3

) 0.06±0.03 0.12±0.06 0.18±0.09 0.19±0.20 1.02±0.11 1.21±1.30 

Cu (ng m
-3

) 2.76±0.78 3.39±1.09 6.15±1.86 2.38±2.64 2.09±1.12 4.47±3.76 

Zn (ng m
-3

) 24.77±25.57 5.46±3.42 30.23±29.0 38.50±41.82 7.23±6.90 45.73±48.72 

Sb (ng m
-3

) 1.19±0.52 0.47±0.12 1.66±0.64 0.55±0.31 0.36±0.12 0.91±0.43 

Ba (ng m
-3

) 1.20±0.44 2.50±1.0 3.70±1.44 0.93±0.54 1.96±0.96 2.89±1.51 

Pb (ng m
-3

) 6.59±3.58 0.69±0.33 7.28±3.91 4.17±2.92 1.41±1.10 5.58±4.03 
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Appendix III 

Pearson’s correlation coefficients of Partisol PM chemical species at EROS and BROS (a) EROS PM2.5 
 Mass Cl NO3 SO4 Na NH4 K Mg Ca Al Fe V Cr Mn Cu Zn Sb Ba Pb 

Mass 1 .216 .075 -.213 -.191 .864** .860** -.351 .079 -.209 .778** .342 .565* .683** .558* .734** .786** .668** .836** 

Cl  1 .029 -.255 .775** .552 .354 .590 .245 -.162 .586* .663* .360 .363 -.258 .326 -.303 -.020 .270 

NO3   1 .622* .047 -.056 .258 .463 -.024 .099 .467 .302 -.139 .361 .107 .289 .296 .591* .163 

SO4    1 -.191 -.303 .161 .161 .054 .787** .177 .187 -.329 .194 -.034 .071 .075 .400 -.179 

Na     1 .069 -.006 .972** .083 -.207 .037 .356 .018 .025 -.428 -.087 -.479 -.293 -.007 

NH4      1 .745** -.207 .193 -.265 .724** .602* .839** .682** .265 .769** .426 .388 .806** 

K       1 -.064 .146 .250 .791** .703* .744** .877** .837** .866** .683* .720* .857** 

Mg        1 .219 -.100 -.014 .139 -.213 .006 -.336 -.324 -.486 -.087 -.167 

Ca         1 .270 .147 .165 .177 .569* .173 .060 .344 .417 .017 

Al         . 1 -.123 .111 -.260 .091 -.072 -.085 -.037 .155 -.273 

Fe           1 .643** .534* .787** .412 .860** .670* .738** .761** 

V            1 .710** .564* .235 .755** .058 .281 .630* 

Cr             1 .608* .752** .808** .268 .252 .802** 

Mn              1 .456 .790** .795** .888** .748** 

Cu               1 .530* .778** .774** .861** 

Zn                1 .598* .644* .910** 

Sb                 1 .895** .617* 

Ba                  1 .603* 

Pb                   1 

(b) EROS PM2.5-10 

 Mass Cl NO3 SO4 Na NH4 K Mg Ca Al Fe V Cr Mn Cu Zn Sb Ba Pb 

Mass 1 .246 -.378 -.373** .062 .785** .726** .154 .684** .060 .878** .259 .797** .847** .665** .837** .624 .729** .864** 

Cl  1 -.327 -.518 .946** -.020 .599* .909** -.085 .308 .059 -.276 .077 -.075 -.216 -.160 -.415 -.246 .039 

NO3   1 .721** -.229 -.088 -.147 -.219 -.365 -.222 -.529 -.074 -.513 -.364 -.238 -.313 .679* -.292 -.528 

SO4    1 .002 -.294 -.363* -.350 -.194 -.105 -.023* -.369 .196 -.328 -.181* -.235 .187* -.186* -.426 

Na     1 -.207 .581* .981** -.233 .388 -.124 -.273 -.066 -.265 -.409 -.183 -.462 -.326 -.009 

NH4      1 .648* -.186 .399 -.141 .578 .317 .343 .703* .836** .586 .872** .812** .550 

K       1 .619* .157 .140 .424 .037 .372 .364 .202 .455 .313 .356 .594* 

Mg        1 -.082 .408 -.009 -.211 .070 -.136 -.314 -.065 -.349 -.212 .106 

Ca         1 -.059 .874** .324 .890** .932** .842** .820** .735* .856** .736** 

Al          1 -.099 .511 -.012 -.037 -.119 -.175 -.276 -.157 .022 

Fe           1 .189 .922** .926** .763** .930** .687* .827** .886** 

V            1 .245 .454 .566* .199 .544 .519 .383 

Cr             1 .891** .690** .884** .561 .747** .936** 

Mn              1 .926** .909** .896** .951** .871** 

Cu               1 .748** .985** .988** .694* 

Zn                1 .672* .815** .905** 

Sb                 1 .983** .617 

Ba                  1 .770** 

Pb                   1 
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(a) BROS PM2.5 

 Mass Cl NO3 SO4 Na NH4 K Mg Ca Al Fe V Cr Mn Cu Zn Sb Ba Pb 

Mass 1 .006 .222 .485 -.015 .891** .791** -.068 .039 -.292 .900** .085 .558* .476 .495 .754** .562* .466 .760** 

Cl  1 -.195 -.046 .290 -.001 -.186 .204 .370 -.117 .052 -.373 .106 -.200 -.288 -.086 -.313 -.335 -.159 

NO3   1 .709** -.211 .198 .378 -.111 -.252 .373 .095 -.332 -.200 .038 .024 -.084 .100 .158 .073 

SO4    1 -.322 .355 .761** -.276 -.208 -.130 .441 -.213 -.061 .398 .334 .196 .382 .470 .372 

Na     1 -.239 -.258 .988** .443 .238 -.143 .009 -.240 -.267 -.390 -.253 -.260 -.245 -.244 

NH4      1 .686** -.302 -.003 -.351 .802** .025 .658** .402 .448 .643** .478 .330 .583* 

K       1 -.337 -.264 -.384 .696** -.035 .308 .610* .586* .519 .610* .668** .641* 

Mg        1 .704* .522 -.076 .234 -.266 -.054 -.354 -.240 -.123 -.014 -.250 

Ca         1 -.014 .313 .324 .270 .276 .152 .220 .184 .149 .111 

Al          1 -.392 -.104 -.375 -.380 -.407 -.405 -.314 -.377 -.397 

Fe           1 .204 .665** .637* .632* .855** .659** .573* .809** 

V            1 .207 .389 .451 .380 .425 .354 .280 

Cr             1 .512 .641** .804** .636* .345 .594* 

Mn              1 .957** .673** .935** .953** .725** 

Cu               1 .778** .975** .911** .786** 

Zn                1 .794** .622* .933** 

Sb                 1 .900** .814** 

Ba                  1 .756** 

Pb                   1 

(b) BROS PM2.5-10 

 Mass Cl NO3 SO4 Na NH4 K Mg Ca Al Fe V Cr Mn Cu Zn Sb Ba Pb 

Mass 1 -.459 .365 .286 -.083 -.287 -.121 -.184 -.591* .000 -.478 -.202 -.481 -.454 -.447 -.397 -.422 -.492 -.429 

Cl  1 -.364 -.331 .281 .202 .273 .287 -.127 .186 .017 -.200 -.116 -.376 -.446 .234 -.471 -.411 -.175 

NO3   1 .889** -.056 -.354 -.035 -.076 -.526* -.138 -.430 -.292 -.347 -.226 -.159 -.413 -.163 -.198 -.305 

SO4    1 -.151 -.059 -.053 -.058 -.442 -.322 -.305 -.236 -.145 -.041 -.017 -.267 -.009 -.028 -.150 

Na     1 .451 .989** .979** -.236 .440 -.224 -.554* -.206 -.318 -.267 .199 -.281 -.231 -.261 

NH4      1 .373 .444 .021 .168 -.107 -.107 -.133 .005 .156 -.055 .086 .078 -.064 

K       1 .975** -.267 .424 -.293 -.505 -.232 -.309 -.237 .193 -.255 -.203 -.256 

Mg        1 -.085 .478 -.075 -.492 -.049 -.189 -.175 .268 -.188 -.127 -.126 

Ca         1 .039 .862** .519* .887** .855** .737** .485 .752** .800** .786** 

Al          1 -.181 -.219 -.183 -.206 -.179 -.163 -.190 -.211 -.180 

Fe           1 .411 .949** .752** .523* .626* .542* .638* .771** 

V            1 .423 .580* .584* .431 .562* .559* .766** 

Cr             1 .849** .647** .601* .673** .760** .805** 

Mn              1 .942** .481 .952** .972** .814** 

Cu               1 .402 .997** .982** .694** 

Zn                1 .392 .484 .601* 

Sb                 1 .986** .694** 

Ba                  1 .750** 

Pb                   1 
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Appendix IV 

MOUDI mass and water soluble ion size distributions measured at the Port Talbot (PT)  
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Appendix V 

Trace metal size distributions measured at the Port Talbot (PT) site 
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Appendix VI 

Particle size distribution PM mass and water-soluble ions at the EROS site 
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Appendix VII 

MOUDI trace metal size distributions at the EROS site 
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Appendix VIII 

RMA plots between FDMS and Partisol PM in all the four monitoring sites 
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Appendix IX 

FDMS and Partisol PM mean values during the days of the week 
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Appendix X 

Reduced Major Analysis regression equations for PM10 vs. PM2.5 and PM2.5-10 

(a) FDMS 

Monitoring sites PM2.5-10 PM2.5 

Fire Station PM2.5-10 = 0.88 (PM10)- 8.83 

 r
2
=0.92 

PM2.5 = 0.29 (PM10) + 5.07 

 r
2
=0.28 

Prince Street PM2.5-10 = 0.88(PM10) - 6.62 

 r
2
=0.99 

PM2.5 = 0.11(PM10) + 6.62 

r
2
=0.76 

 

(b) Partisol 

Monitoring sites PM2.5-10 PM2.5 

Fire Station PM2.5-10 = 0.88 (PM10)- 4.94  

r
2
=0.97 

PM2.5 = 0.20 (PM10) + 3.29 

r
2
=0.45 

Prince Street PM2.5-10 = 0.89 (PM10)- 6.28 

r
2
=0.99 

PM2.5 = 0.15 (PM10) – 5.38 

r
2
=0.64 

Dyffryn School PM2.5-10 = 0.76 (PM10)- 3.59 

r
2
=0.81 

PM2.5 = 0.46 (PM10) + 0.15 

r
2
=0.48 

Little Warren PM2.5-10 = 0.58 (PM10)- 1.38 

r
2
=0.85 

PM2.5 = 0.52 (PM10) - 0.08 

r
2
=0.81 
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Appendix XI 

Linear relationship between PM and NOx, CO and SO2 

 

*CO unit in mg m
-3
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Appendix XII 

 

Reduced Major Axis correlation plots between Grimm, FDMS and Partisol PM size 

fraction concentrations 
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Appendix XIII 

Time series plot of PM2.5 and PM2.5-10 water soluble ion concentrations at the four 

monitoring sites 
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Appendix XIV 

Time variation plots of metals (PM2.5 and PM2.5-10) at the sampling sites   
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Appendix XV 

 

Prince Street Pearson’s Correlation Coeffients for 

 

(a) PM2.5 

  PM2.5 Cl NO3 SO4 Na NH4 K Mg Ca Al V Cr Mn Fe Ni Cu Zn Cd Sb Ba Pb 

PM2.5 1                                         

Cl .604* 1                                       

NO3 .101 -.499 1                                     

SO4 .706* .040 0.413 1                                   

Na .425 .847** -0.51 -0.145 1                                 

NH4 -.059 -0.536 .875** 0.462 -.591* 1                               

K .505 0.182 0.007 .642* 0.157 0.114 1                             

Mg .289 .816** -0.552 -0.127 .727** -0.532 0.236 1                           

Ca .489 0.379 -0.39 0.419 0.546 -0.293 .606* 0.356 1                         

Al .459 0.335 0.087 0.253 0.199 -0.018 -0.084 0.056 0.152 1                       

V -.016 -0.27 0.24 -0.037 0.017 0.136 -0.326 -0.469 0.164 0.497 1                     

Cr .044 -0.318 .841** 0.089 -0.21 .695* -0.236 -0.472 -0.356 0.175 0.517 1                   

Mn .810** .690* -0.435 0.45 0.499 -0.511 0.505 0.438 0.571 0.262 -0.212 -0.467 1                 

Fe .707* 0.451 -0.382 0.544 0.349 -0.414 0.411 0.186 .683* 0.143 -0.093 -0.473 .858** 1               

Ni -.024 -0.133 0.035 -0.16 0.04 -0.067 -0.319 -0.318 0.088 .643* .902** 0.331 -0.073 -0.127 1             

Cu .485 0.135 0.115 0.059 0.253 -0.256 0.019 -0.16 0.122 0.434 0.536 0.295 0.407 0.246 .608* 1           

Zn .352 0.401 -0.161 -0.156 0.117 -0.45 -0.181 0.284 -0.304 0.224 -0.254 -0.143 0.446 0.171 -0.017 0.465 1         

Cd .426 0.518 -0.211 -0.114 0.227 -0.481 -0.063 0.402 -0.231 0.232 -0.322 -0.192 0.538 0.205 -0.06 0.46 .982** 1       

Sb .105 -0.18 0.47 -0.103 0.025 0.195 -0.062 -0.379 -0.178 0.032 0.395 .697* -0.153 -0.206 0.317 .581* 0.01 -0.005 1     

Ba .546 .072 0.138 0.259 0.253 -0.148 0.16 -0.223 0.397 0.486 .680* 0.293 0.419 0.384 .666* .929** 0.203 0.194 0.511 1   

Pb .661* .053 -0.279 0.236 0.245 -0.469 0.343 0.326 0.128 0.204 -0.333 -0.34 .842** 0.564 -0.089 0.52 .798** .855** 0.000 0.367 1 
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(b) PM2.5-10 
 

PS PM2.5-10 Cl NO3 nss-SO4 ss-SO4 Na NH4 K Mg Ca Al V Cr Mn Fe Ni Cu Zn Sb Ba Pb 

PM2.5-10 1                                         

Cl .747** 1                                       

NO3 -0.457 -0.426 1                                     

Nss-SO4 .890** .738** -0.511 1                                   

ss-SO4 .741** .994** -0.366 .723** 1                                 

Na .741** .994** -0.366 .723** 1.000** 1                               

NH4 -0.246 -0.382 -0.334 -0.062 -0.413 -0.413 1                             

K .811** .582* -0.38 0.566 .582* .582* -0.114 1                           

Mg .794** .938** -0.419 .728** .944** .944** -0.259 .762** 1                         

Ca .939** .625* -0.348 .729** .615* .615* -0.27 .849** .706* 1                       

Al .947** .629* -0.426 .790** .620* .620* -0.212 .738** .655* .931** 1                     

V .933** .757** -0.385 .768** .754** .754** -0.348 .734** .778** .924** .901** 1                   

Cr -0.128 0.247 -0.028 -0.075 0.283 0.283 -0.14 -0.109 0.107 -0.191 -0.166 -0.021 1                 

Mn .989** .697* -0.506 .895** .694* .694* -0.176 .813** .767** .908** .921** .902** -0.134 1               

Fe .945** .604* -0.515 .880** .604* .604* -0.161 .727** .662* .834** .878** .815** -0.154 .974** 1             

Ni 0.401 0.215 0.197 0.352 0.218 0.218 -0.503 0.201 0.084 0.464 0.414 0.343 0.16 0.343 0.366 1           

Cu 0.006 -0.115 .809** -0.189 -0.072 -0.072 -0.524 0.011 -0.122 0.177 0.06 0.08 -0.117 -0.08 -0.112 0.568 1         

Zn 0.014 0.129 0.037 -0.178 0.137 0.137 -0.1 0.453 0.357 0.15 -0.149 0.078 -0.152 0.022 -0.087 -0.318 0.027 1       

Sb 0.411 0.139 0.485 0.123 0.177 0.177 -0.482 0.413 0.19 0.57 0.453 0.472 -0.143 0.34 0.294 .602* .879** 0.089 1     

Ba .813** 0.408 -0.021 0.574 0.414 0.414 -0.357 .662* 0.458 .908** .871** .818** -0.275 .762** .712** .600* 0.503 -0.045 .808** 1   

Pb .788** 0.256 -0.329 0.564 0.233 0.233 -0.047 .721** 0.356 .888** .835** .747** -0.37 .785** .762** 0.447 0.189 0.009 .577* .887** 1 
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Appendix XVI 

 

Dyffryn School Pearson’s Correlation Coeffients for 

 

(a) PM2.5 

 
DS PM2.5 Cl NO3 nss-

SO4 

ss-SO4 Na NH4 K Mg Ca Al V Cr Mn Fe Ni Cu Zn Cd Sb Ba Pb 

PM2.5 1                                           

Cl -0.254 1                                         

NO3 .725** -0.225 1                                       

nss-SO4 .828** -0.362 .713** 1                                     

ss-SO4 -.461* .778** -.493** -.592** 1                                   

Na -.461* .778** -.493** -.592** 1.000** 1                                 

NH4 .883** -.505** .749** .844** -.622** -.622** 1                               

K .516** -0.225 .628** .631** -.381* -.381* .540** 1                             

Mg -.476** .437* -0.212 -0.334 .478** .478** -.420* 0.026 1                           

Ca -0.116 .546** 0.016 -0.102 0.205 0.205 -0.159 -0.199 -0.023 1                         

Al 0.034 -0.096 -0.059 0.157 -0.179 -0.179 0.026 -0.107 -0.117 -0.1 1                       

V 0.314 -0.09 0.366 .421* -0.331 -0.331 0.24 0.345 -0.17 0.21 0.014 1                     

Cr -0.109 0.245 -0.272 -0.144 0.212 0.212 -0.136 -0.34 0.125 0.12 -0.059 0.086 1                   

Mn .431* 0.069 0.071 0.337 -0.273 -0.273 0.139 0.073 -0.243 0.023 0.192 0.209 0.066 1                 

Fe 0.303 -0.027 0.065 0.261 -0.288 -0.288 0.11 -0.046 -0.222 0.005 0.185 0.229 0.213 .884** 1               

Ni .629** -0.196 .585** .637** -.442* -.442* .527** .487** -0.204 -0.014 0.174 .803** 0.118 .403* .388* 1             

Cu .375* -.392* .446* 0.189 -0.317 -0.317 0.352 0.215 -0.276 -0.296 -0.187 0.035 -0.26 -0.029 -0.04 0.235 1           

Zn 0.151 0.172 -0.105 0.037 -0.094 -0.094 -0.12 0.209 -0.11 -0.066 -0.007 0.154 0.028 .633** .379* 0.175 -0.067 1         

Cd 0.153 .373* -0.065 0.024 0.08 0.08 -0.167 0.286 0.111 -0.07 0.064 0.077 -0.022 .648** .461* 0.178 -0.068 .816** 1       

Sb 0.274 -0.31 0.26 0.149 -0.14 -0.14 0.279 0.166 -0.204 -0.26 -0.11 -0.04 -0.213 -0.193 -0.254 0.118 .703** -0.132 -0.114 1     

Ba .710** -0.326 0.363 .583** -.401* -.401* .604** 0.364 -367* -0.188 0.15 0.293 -0.132 .496** .425* .578** .444* 0.1 0.145 .416* 1   

Pb .383* -0.221 0.195 0.271 -.414* -.414* 0.24 0.299 -0.339 -0.235 0.167 0.11 -0.149 .588** .549** 0.287 0.199 .464* .538** 0.169 .514** 1 
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 (b) PM2.5-10 

 

  PM2.5-10 Cl NO3 nss-SO4 ss-SO4 Na NH4 K Mg Ca Al V Cr Mn Fe Ni Cu Zn Sb Ba Pb 

PM2.5-10 1                                         

Cl .689** 1                                       

NO3 -0.174 0.21 1                                     

nss-SO4 0.049 0.083 0.182 1                                   

ss-SO4 .838** .826** -0.228 0.147 1                                 

Na .838** .826** -0.228 0.147 1.000** 1                               

NH4 -0.145 0.29 .747** -0.169 -0.253 -0.253 1                             

K .401* 0.326 0.186 0.212 .397* .397* -0.158 1                           

Mg .950** .717** -0.292 0.023 .913** .913** -0.239 .455* 1                         

Ca .850** 0.356 -0.176 -0.093 .506** .506** -0.116 .398* .777** 1                       

Al .467* 0.319 -0.004 0.059 .408* .408* -0.124 0.152 .408* 0.362 1                     

V .850** .498** 0.011 0.108 .562** .562** -0.001 .420* .751** .913** .448* 1                   

Cr 0.092 -0.183 -0.101 0.06 -0.059 -0.059 -0.23 0.027 0.019 0.282 0.162 0.221 1                 

Mn .908** .462* -0.14 0.015 .604** .604** -0.132 .395* .823** .942** .456* .947** 0.279 1               

Fe .895** .487** -0.185 -0.073 .635** .635** -0.148 0.294 .783** .826** .428* .809** 0.191 .895** 1             

Ni .764** .556** -0.156 0.201 .680** .680** -0.137 .415* .738** .632** 0.171 .645** 0.08 .690** .643** 1           

Cu 0.051 -0.119 -0.036 0.186 -0.064 -0.064 -0.045 -0.234 -0.032 0.106 -0.001 0.113 0.292 0.103 0.012 0.074 1         

Zn .813** 0.348 -0.191 -0.132 .486** .486** -0.093 0.245 .747** .884** .375* .853** 0.235 .941** .813** .588** 0.135 1 0.353     

Sb 0.15 -0.257 0.042 0.346 -0.17 -0.17 -0.014 -0.188 -0.031 0.246 0.235 0.319 0.141 0.31 0.251 0.219 .502** 0.353 1     

Ba .620** 0.127 0.027 0.139 0.198 0.198 0.062 0.08 .438* .715** .375* .750** 0.224 .770** .674** .533** .414* .786** .784** 1   

Pb 0.333 0.486 -0.04 0.408 0.449 0.449 0.19 -0.067 0.373 0.045 0.034 0.122 -0.128 0.16 0.249 0.15 -0.059 0.057 -0.309 0.01 1 
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Appendix XVII 

 

Little Warren Pearson’s Correlation Coeffients for 

 

(a) PM2.5 

 
LW PM2.5 Cl NO3 nss-SO4 ss-SO4 Na NH4 K Mg Ca Al V Cr Mn Fe Ni Cu Zn Cd Sb Ba Pb 

PM2.5 1                                           

Cl 0.132 1                                         

NO3 .719** -0.169 1                                       

nss-SO4 .568** -0.188 .695** 1                                     

ss-SO4 -0.023 .788** -0.235 -0.241 1                                   

Na -0.023 .788** -0.235 -0.241 1.00** 1                                 

NH4 .681** -.468* .758** .728** -.385* -.385* 1                               

K .664** 0.175 .580** .458* 0.007 0.007 0.348 1                             

Mg 0.141 .887** -0.334 -0.273 .770** .770** -.438* 0.146 1                           

Ca 0.148 0.315 0.31 -0.029 0.177 0.177 -0.025 0.294 0.045 1                         

Al -0.038 0.032 -0.039 -0.141 0.111 0.111 -0.032 -0.165 0.099 0.169 1                       

V 0.349 -0.231 .425* 0.187 -0.317 -0.317 0.29 0.218 -0.286 0.311 0.103 1                     

Cr 0.067 -.448* 0.214 0.106 -0.327 -0.327 .383* -0.154 -.367* -0.367 0.012 -0.096 1                   

Mn .412* .491** -0.006 0.123 0.247 0.247 -0.141 .542** .586** 0.041 -0.092 0.039 -0.205 1                 

Fe .379* .533** -0.102 -0.005 0.277 0.277 -0.187 0.367 .656** 0.071 -0.086 -0.052 -0.164 .871** 1               

Ni .682** -0.113 .637** .513** -0.31 -0.31 .546** .436* -0.173 0.297 0.184 .714** -0.014 0.181 0.055 1             

Cu .727** .393* 0.366 0.367 0.177 0.177 0.235 .657** .438* 0.112 -0.149 0.052 0.064 .771** .706** .474** 1           

Zn .412* .594** 0.005 0.16 0.324 0.324 -0.178 .529** .631** 0.061 -0.1 -0.034 -0.304 .940** .819** 0.163 .753** 1         

Cd 0.349 .637** -0.087 0.075 0.366 0.366 -0.258 .500** .683** 0.088 -0.075 -0.128 -0.353 .853** .821** 0.091 .716** .943** 1       

Sb .704** -0.087 .522** .452* -0.059 -0.059 .644** .414* 0.006 0.001 -0.021 0.154 0.35 0.304 0.27 .503** .613** 0.238 0.195 1     

Ba .765** -0.007 .704** .631** -0.047 -0.047 .669** .472** -0.016 0.044 -0.115 0.318 .382* 0.29 0.241 .600** .672** 0.207 0.093 .697** 1   

Pb .506** .599** 0.046 0.213 0.333 0.333 -0.079 .480** .641** -0.002 -0.133 -0.108 -0.192 .818** .840** 0.176 .793** .893** .944** .381* 0.279 1 
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 (b) PM2.5-10 

 
LW PM2.5-10 Cl NO3 nss-SO4 ss-SO4 Na NH4 K Mg Ca Al V Cr Mn Fe Ni Cu Zn Sb Ba Pb 

PM2.5-10 1                                         

Cl .580** 1                                       

NO3 -0.117 -0.238 1                                     

nss-SO4 0.272 0.306 .528** 1                                   

ss-SO4 .590** .982** -0.253 0.284 1                                 

Na .590** .982** -0.253 0.284 1.000** 1                               

NH4 -0.17 -0.235 0.182 0.219 -0.131 -0.131 1                             

K 0.205 0.059 0.244 0.076 0.072 0.072 -0.043 1                           

Mg .703** .925** -0.321 0.233 .932** .932** -0.154 0.087 1                         

Ca .384* -0.06 -0.08 -0.192 -0.131 -0.131 -.385* 0.082 0.03 1                       

Al .397* 0.191 -0.271 0.125 0.182 0.182 0.129 -0.054 0.264 0.245 1                     

V .643** -0.022 -0.208 -0.103 0.002 0.002 -0.1 0.142 0.202 .643** .420* 1                   

Cr 0.05 0.159 -0.247 -0.078 0.147 0.147 -0.064 0.081 0.136 -0.02 0.212 -0.056 1                 

Mn .567** -0.148 -0.147 -0.003 -0.145 -0.145 -0.139 0.107 0.077 .679** .453* .929** -0.169 1               

Fe .577** -0.112 -0.164 -0.059 -0.112 -0.112 -0.269 0.108 0.12 .704** 0.366 .902** -0.148 .969** 1             

Ni 0.075 0.132 0.002 -0.154 0.065 0.065 -0.067 0.106 0.15 0.301 0.176 0.081 0.164 0.001 -0.02 1           

Cu -0.049 -0.144 0.191 0.228 -0.159 -0.159 0.135 -0.099 -0.12 -0.087 0.113 0.084 0.062 0.086 0.05 .438* 1         

Zn 0.258 -0.036 -0.197 -0.173 -0.031 -0.031 -0.132 -0.022 0.07 .368* 0.256 .623** 0.166 .490** .543** -0.003 -0.049 1       

Sb -0.172 -0.291 0.018 0.154 -0.29 -0.29 .430* 0.05 -0.318 -0.069 .477** 0.095 0.054 0.166 -0.004 0.215 .495** -0.08 1     

Ba .418* -0.197 -0.076 0.091 -0.209 -0.209 0.035 0.04 -0.014 .570** .539** .813** -0.073 .863** .774** 0.239 .429* .406* .496** 1   

Pb 0.339 -0.318 -0.14 -0.263 -0.332 -0.332 -0.118 -0.009 -0.142 .796** .387* .872** -0.098 .883** .855** 0.126 0.089 .664** 0.198 .818** 1 
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Appendix XVIII 

 

Analysis of Variance (ANOVA) for fine and coarse PM chemical compositions 

 
 PM2.5  

 

PM2.5-10 

 F values Significance F values Significance 

PM Mass 3.010 0.034* 4.514 0.005* 

Cl 0.293 0.830 1.255 0.294 

NO3 2.461 0.067 4.807 0.004* 

nss-SO4 2.249 0.088 4.445 0.006* 

Na 3.837 0.012* 2.696 0.050 

NH4 0.550 0.649 1.161 0.329* 

K 1.834 0.146 2.080 0.108 

Mg 2.031 0.115 0.851 0.470 

Ca 0.642 0.642 4.383 0.006* 

Al 2.267 0.086 2.563 0.059 

V 0.875 0.457 3.831 0.012 

Cr 3.176 0.028* 0.879 0.455 

Mn 3.181 0.027 3.857 0.012 

Fe 3.130 0.029 4.285 0.007 

Ni 0.647 0.587 1.581 0.199 

Cu 5.576 0.001 14.053 0.000 

Zn 0.743 0.529 2.518 0.063 

Cd 1.501 0.219 1.560 0.204 

Sb 2.608 0.056 23.764 0.000 

Ba 37.707 0.000 16.758 0.000 

Pb 1.454 0.232 1.745 0.163 

*Significance at p<0.05 
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Appendix XIX 

Hourly elemental concentrations of Streaker PM at Fire Station (FS) site 
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Appendix XX 

Hourly elemental concentrations of Streaker PM at Little Warren (LW) site 

 

0

500

1000

1500

2000

2500

3000

0

1000

2000

3000

4000

5000

6000
0

2
-0

5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

N
a 

 f
in

e
 (

n
g 

m
-3

) 

N
a 

 c
o

ar
se

 (
n

g 
m

-3
) 

  LW - Na 

Na coarse

Na fine

0

50

100

150

200

250

300

0

200

400

600

800

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

M
g 

 f
in

e
 (

n
g 

m
-3

) 

M
g 

 c
o

ar
se

 (
n

g 
m

-3
) 

 LW - Mg 

Mg fine

Mg coarse

0

500

1000

1500

0

50

100

150

200

250

300

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

K
  f

in
e

 (
n

g 
m

-3
) 

K
  c

o
ar

se
 (

n
g 

m
-3

) 

LW - K 

K coarse

K fine

0

500

1000

1500

2000

2500

3000

0

2000

4000

6000

8000

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

C
l  

fi
n

e
 (

n
g 

m
-3

) 

C
l  

co
ar

se
 (

n
g 

m
-3

) 

Date (Year=2012) 

LW - Cl 

Cl coarse

Cl fine



344 

 

 

0

50

100

150

200

0

100

200

300

400

500

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

A
l  

fi
n

e
 (

n
g 

m
-3

) 

A
l  

co
ar

se
 (

n
g 

m
-3

) 
LW - Al 

Al coarse

Al fine

0

200

400

600

800

1000

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

n
g 

m
-3

 

LW - Si 

Si coarse

0

10

20

30

40

0
2

-0
5

0
3

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
3

-0
5

1
4

-0
5

1
5

-0
5

1
5

-0
5

n
g 

m
-3

 

LW - Ti 

Ti coarse
Ti fine

0

20

40

60

80

100

0

10

20

30

40

50

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

M
n

  f
in

e
 (

n
g 

m
-3

) 

M
n

 c
o

ar
se

 (
n

g 
m

-3
) 

Date (Year=2012) 

LW - Mn 
Mn coarse

Mn fine



345 

 

0

1000

2000

3000

4000

5000

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

n
g 

m
-3

 
LW - Fe 

Fe coarse
Fe fine

0

200

400

600

800

1000

1200

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

n
g 

m
-3

 

LW - Ca 
Ca coarse

Ca fine

0

1000

2000

3000

4000

0

100

200

300

400

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

S 
 f

in
e

 (
n

g 
m

-3
) 

S 
 c

o
ar

se
 (

n
g 

m
-3

) 

LW - S S coarse
S fine

0

2

4

6

8

0

1

2

3

4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

N
i  

fi
n

e
 (

n
g 

m
-3

) 

N
i  

co
ar

se
 (

n
g 

m
-3

) 

Date (Year=2012) 

LW - Ni 
Ni coarse
Ni fine



346 

 

 

0

2

4

6

8

10

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

n
g 

m
-3

 
LW - Cr 

Cr coarse

Cr fine

0

10

20

30

40

50

60

0

2

4

6

8

10

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

C
u

  f
in

e
 (

n
g 

m
-3

) 

C
u

  c
o

ar
se

 (
n

g 
m

-3
) 

LW - Cu 
Cu coarse

Cu fine

0

1000

2000

3000

4000

0

100

200

300

400

500

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

C
u

  f
in

e
 (

n
g 

m
-3

) 

Zn
  c

o
ar

se
 (

n
g 

m
-3

) 

LW - Zn 

Zn coarse
Zn fine

0

20

40

60

80

100

120

0

5

10

15

20

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

P
b

  f
in

e
 (

n
g 

m
-3

) 

P
b

  c
o

ar
se

 (
n

g 
m

-3
) 

Date (Year=2012) 

LW - Pb 

Pb coarse
Pb fine



347 

 

 

 

 

 

0

2

4

6

8

0
2

-0
5

0
3

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
3

-0
5

1
4

-0
5

1
5

-0
5

1
5

-0
5

n
g 

m
-3

 
LW - Sr 

Sr coarse
Sr fine

0

2

4

6

8

10

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

n
g 

m
-3

 

LW - Br 

Br

0

10

20

30

40

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
4

-0
5

0
5

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
4

-0
5

1
5

-0
5

1
6

-0
5

n
g 

m
-3

 

LW - Rb 

Rb coarse

Rb fine

0

2

4

6

8

0
2

-0
5

0
3

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
5

-0
5

0
6

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
8

-0
5

0
9

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
1

-0
5

1
2

-0
5

1
2

-0
5

1
3

-0
5

1
3

-0
5

1
4

-0
5

1
5

-0
5

1
5

-0
5

n
g 

m
-3

 

Date (Year=2012) 

LW - Se 

Se fine



348 

 

 

Appendix XXI 

 

Daily comparison of Partisol and Streaker PM2.5 and PM2.5-10 data at FS and LW 
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(c) LW Fine 
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(d) LW coarse 
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Appendix XXII 

 

Bar chart depicting relative average PM data of Partisol and Streaker data 
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(a) FS Fine PM 
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(b) FS Coarse 
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(c) LW Fine 
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(d) LW Coarse 
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Appendix XXIII 

 

Least regression analysis of Partisol and Streaker daily data 
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(b) FS Coarse 
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Appendix XXIV 

Daily variations in PMF source contributions for Partisol PM 
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(b) Partisol PM2.5-10 
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(c) Partisol PM10 
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Appendix XXV 

Time series plots of Streaker hourly variations in PMF source contributions 
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Appendix XXVI 

Diurnal Variations of PMF source conributions 
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Appendix XXVII 

 

Hourly trends of unscaled ATOFMS counts and Grimm OPC 
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Appendix XXVIII 

Daily variations of particle class counts 

 

 

 

 

 

0

100

200

300

400

500

1
8

-0
4

1
9

-0
4

2
1

-0
4

2
2

-0
4

2
3

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
1

-0
5

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
5

-0
5

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 K-CN 

0

500

1000

1500

2000

1
8

-0
4

1
9

-0
4

2
1

-0
4

2
2

-0
4

2
3

-0
4

2
4

-0
4

2
5

-0
4

2
7

-0
4

2
8

-0
4

2
9

-0
4

3
0

-0
4

0
1

-0
5

0
2

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

1
1

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
5

-0
5

U
n

sc
al

e
d

 A
TO

FM
S 

C
o

u
n

ts
 K-NO3 

0

100

200

300

400

500

600

1
8

-0
4

1
9

-0
4

2
1

-0
4

2
2

-0
4

2
3

-0
4

2
4

-0
4

2
5

-0
4

2
7

-0
4

2
8

-0
4

2
9

-0
4

3
0

-0
4

0
1

-0
5

0
2

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

1
1

-0
5

1
2

-0
5

1
3

-0
5

1
4

-0
5

1
5

-0
5

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 K-Cl-PO3 

0

100

200

300

1
8

-0
4

1
9

-0
4

2
1

-0
4

2
2

-0
4

2
3

-0
4

2
4

-0
4

2
6

-0
4

2
7

-0
4

2
8

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
3

-0
5

1
4

-0
5

1
5

-0
5U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

Date (Year=2102) 

Na-NO3 



382 

 

 

 

  

0

50

100

150

200

250

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/…

5
/1

4
/…

5
/1

5
/… U

n
sc

al
e

d
 A

TO
FM

S 
co

u
n

ts
 

Na-HSiO2 

0

50

100

150

200

250

300

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/2

0
1

2
…

5
/1

4
/2

0
1

2
…

5
/1

5
/2

0
1

2
…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

K-HSO4 

0

200

400

600

800

1000

1200

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
8

-0
4

3
0

-0
4

0
1

-0
5

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
2

-0
5

1
3

-0
5

1
5

-0
5

5
/1

3
/…

5
/1

4
/…

5
/1

5
/…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

AlO-NO3 

0

50

100

150

200

250

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/2

0
1

2
…

5
/1

4
/2

0
1

2
…

5
/1

5
/2

0
1

2
…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

Date (Year=2102) 

Ca 



383 

 

 

 

 

 

0

5

10

15

20

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/…

5
/1

4
/…

5
/1

5
/…U

n
sc

al
e

d
 A

TO
FM

S 
co

u
n

ts
 

Mn-OC 

0

50

100

150

200

250

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/2

0
1

2
…

5
/1

4
/2

0
1

2
…

5
/1

5
/2

0
1

2
…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

OC-EC 

0

200

400

600

800

1000

1200

1400

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/2

0
1

2
…

5
/1

4
/2

0
1

2
…

5
/1

5
/2

0
1

2
…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

Metallic-EC 

0

200

400

600

800

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/…

5
/1

4
/…

5
/1

5
/…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

Date (Year=2012) 

EC 



384 

 

 

 

 

 
 

 

 

 

 

0

5

10

15

20

2
0

-0
4

2
1

-0
4

2
3

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
1

-0
5

0
2

-0
5

0
3

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
8

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
3

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/2

0
1

2
…

5
/1

4
/2

0
1

2
…

5
/1

5
/2

0
1

2
…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

EC-NO3 

0

100

200

300

400

500

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/2

0
1

2
…

5
/1

4
/2

0
1

2
…

5
/1

5
/2

0
1

2
…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

Arom-CN 

0

200

400

600

800

1000

1200

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/2

0
1

2
…

5
/1

4
/2

0
1

2
…

5
/1

5
/2

0
1

2
…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

Fe-PAH-NO3 

0

100

200

300

400

1
8

-0
4

2
0

-0
4

2
1

-0
4

2
4

-0
4

2
5

-0
4

2
6

-0
4

2
7

-0
4

2
9

-0
4

3
0

-0
4

0
2

-0
5

0
3

-0
5

0
4

-0
5

0
5

-0
5

0
6

-0
5

0
7

-0
5

0
9

-0
5

1
0

-0
5

1
1

-0
5

1
2

-0
5

1
4

-0
5

1
5

-0
5

5
/1

3
/2

0
1

2
…

5
/1

4
/2

0
1

2
…

5
/1

5
/2

0
1

2
…

U
n

sc
al

e
d

 A
TO

FM
S 

co
u

n
ts

 

Date (Year=2012) 

PAH-CN 



385 

 

Appendix XXIX 

 

Partisol PM data comparing urban background (EROS), traffic (BROS) and industrial 

(PT) sites  
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Appendix XXX 

 

Summary of Source Apportionment  

(a) PM2.5 
Source 

Contributions (%) 

Partisol Streaker  ATOFMS 

 FS LW FS LW FS 

       

PMF 

       

PCA 

PMF PMF PMF  

BF 11 14 6 20 11 28 

BOS/Sinter  5 19 4    

Coking/Mills   8 26 22 

Woodsmoke 11  14    

Secondary 52 43 58 28 25 20 

Traffic 5 19 3 14  28 

Marine 16 4 15 26 19 12 

Oil combustion  1     

 

(b) PM2.5-10 
Source 

Contributions 

(%) 

 Partisol  

 FS LW  

 PMF  PCA 

Sinter 5 8  

BF 36 12 61 

BOS/Sinter  2 3 6 

Coking+Marine   

Woodsmoke   

Secondary 8 14 1 

Traffic 11             3 4 

Marine 38 60 28 

 

(c) PM10 
  Partisol  Streaker  

 PMF PCA    

 FS  LW FS LW 

Sinter 5  9 6 2 

BF 21  7 24 11 

BOS/Sinter  2  2 1 4 

Coking+Marine   12  

Woodsmoke     

Secondary 

Sulphate 

18  24   

 

       17 Secondary 

Nitrate 

12  22  

Traffic 13  3 2  

Marine 29  33 38 54 

Crustal    17 12 
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Appendix XXXI 

 

Relationship between measured and reconstructed PM2.5 at FS, during Port Talbot 

sampling campaign (April 23-May 16, 2012) 
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Appendix XXXII 

Average increment in 24-hour Partisol PM concentrations associated with a wind sector 

linking the source to the receptor locations (a) Fire Station 

 

Note: * (µg m
-3

)   

 

(b)  LW site 
ng m-3 Ore stockyard 

 PM2.5 PM2.5-10 PM10 

*PM mass 0.2 2.3 2.5 
Cl- 116.7 64.35 181.0 

NO3
- 707.2 127.8 835.0 

nss-SO4
2- 674.2 0.0 674.2 

ss-SO4
2- 19.95 48.16 68.11 

Na+ 79.17 191.1 270.3 

NH4
+ 361.5 23.76 310.5 

K+ 27.29 -4.78 22.51 

Mg2+ 95.14 -19.68 75.46 

Ca2+ 92.5 215.4 307.9 
Al 32.04 -3.68 28.36 

V 0.1 0.08 0.18 

Cr 1.77 -0.04 1.73 
Mn 5.47 13.09 18.56 

Fe 228.9 799.2 1028.1 

Ni 0.0 0.0 0.0 
Cu 0.83 -0.13 0.7 

Zn 4.58 1.52 6.1 
Cd 0.0 0.0 0.0 

Sb 0.0 0.0 0.0 

Ba 0.0 0.46 0.46 
Pb 2.58 0.8 3.38 

       Note: * (µg m
-3

)   

ng m-3 Ore stockyard BF/Sinter 

 PM2.5 PM2.5-10 PM10 PM2.5 PM2.5-10 PM10 

*PM Mass 0.5 1.9 2.4 5.9 21.7 27.6 

Cl- -418.6 -1777.1 -2195.7 163.1 -437.8 -274.8 

NO3
- -480.6 -135.8 -616.4 -133.7 -225.6 -359.3 

nss-SO4
2- -1193.7 -655.3 -1849.0 39.66 274.9 314.5 

ss-SO4
2- -55.35 -247.8 -303.1 -40.71 -106.4 -147.1 

Na+ -219.7 -983.2 -1202.8 -161.5 -422.1 -583.6 

NH4
+ -194.1 -25.71 -219.8 85.63 -82.05 3.58 

K+ 14.77 -32.04 -17.27 -78.89 35.89 -43.00 

Mg2+ -16.41 -90.19 -106.6 -56.53 62.77 6.25 

Ca2+ -336.1 488.5 152.4 165.1 1696.6 1861.7 

Al 1.60 -23.39 -21.79 20.28 176.4 196.7 

V -0.07 0.11 0.04 -0.24 1.00 0.76 

Cr -4.64 -2.82 -7.46 -1.71 0.88 -0.83 

Mn -2.88 10.22 7.34 19.17 87.96 107.1 

Fe 3.35 623.5 626.8 547.7 3283.8 3831.5 

Ni 0.44 -0.12 0.34 0.07 0.45 0.52 

Cu 1.10 1.45 2.55 2.44 1.56 3.99 

Zn -20.43 -1.05 -21.48 111.0 16.37 127.4 

Cd -0.27 -0.04 -0.31 0.75 0.14 0.90 

Sb 0.24 0.42 0.66 0.93 0.50 1.43 

Ba 0.78 1.68 2.48 1.39 4.96 6.34 

Pb -0.79 0.44 -0.36 9.25 3.45 12.70 
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Appendix XXXIII 

 

Average increment in Streaker hourly PM concentrations associated with a wind sector 

linking the source to the receptor location at FS 

 

(a) FS PM2.5 

ng m-3 Ore-stockyard Sinter BF BOS/Coking Mills 

Na 355.9 74.05 104.3 16.95 -88.16 

Mg 50.12 27.21 40.3 8.04 -4.38 

Al 23.19 30.69 41.88 13.04 7.40 

S 154.9 562.3 356.7 64.07 300.2 

Cl 265.5 52.53 28.86 42.95 -0.47 

K 21.70 86.03 111.1 -13.58 -7.85 

Ca 188.5 223.1 270.5 22.31 -3.47 

Ti 1.26 2.98 3.16 -0.42 -0.46 

V 1.28 1.41 1.27 0.05 -0.04 

Cr 2.07 0.59 1.26 1.48 0.55 

Mn 9.27 26.22 28.43 1.05 1.68 

Fe 553.4 1009.2 1542 148.0 138.7 

Ni 0.31 0.45 0.42 0.31 0.42 

Cu 0.99 3.28 1.28 1.09 4.68 

Zn 20.66 150.7 109.1 10.80 12.90 

As -0.72 1.51 0.66 -0.72 0.26 

Se -0.06 0.27 0.81 -0.85 -0.97 

Rb 1.11 5.74 10.76 -3.63 -2.04 

Sr -0.05 -1.98 -1.98 0.23 -1.01 

Pb 3.17 9.96 9.14 0.27 2.64 

 

(b) FS PM2.5-10 

ng m-3 Ore-stockyard Sinter BF BOS/Coking Mills 

Na 2644.9 1309.8 1575.1 151.3 259.8 
Mg 389.3 307.1 422.7 18.22 28.00 

Al 190.3 204.3 275.4 15.06 26.64 

S 446.3 618.2 866.8 34.23 67.54 
Cl 3482.2 1552.2 1395.8 55.34 -450.3 

K 130.9 114.9 172.9 9.21 8.98 

Ca 1631.9 1685.9 2634.3 79.66 111.4 
Ti 19.49 29.65 43.19 1.67 0.80 

V 5.87 5.08 11.94 -1.46 -0.77 

Cr 2.41 4.15 5.54 0.24 0.48 
Mn 64.83 101.4 172.3 4.13 5.25 

*Fe 4.68 7.03 11.39 0.16 0.25 

Ni 0.24 0.11 0.05 0.01 0.08 
Cu 4.33 4.55 3.44 1.36 1.59 

Zn 11.65 33.18 23.84 3.28 2.45 
As 1.48 0.29 -0.28 0.04 0.06 

Se 1.22 3.60 1.87 0.25 -0.32 

Rb 31.87 50.20 88.15 1.79 2.15 
Sr 1.11 -0.42 -0.57 -0.46 -0.48 

Pb 14.59 10.31 17.35 0.65 2.01 

Si 446.6 481.7 743.7 55.79 102.0 

Note: * (µg m
-3

)   
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(c) FS PM10 

ng m-3 Ore-stockyard Sinter BF BOS/Coking Mills 

*PM Mass 11.3 19.5 12.4 9.3 3.3 

Na 3000.8 1383.9 1679.4 168.2 171.7 

Mg 439.4 334.3 463.0 26.26 23.62 

Al 213.5 235.0 317.3 28.10 34.03 

S 601.3 1180.5 1223.5 98.30 367.7 

Cl 3747.7 1604.7 1424.6 98.28 -450.7 

K 152.6 200.9 284.0 -4.37 1.14 

Ca 1820.4 1909.0 2904.8 102.0 107.9 

Ti 20.8 32.62 46.35 1.24 0.33 

V 7.15 6.49 13.21 -1.41 -0.81 

Cr 4.47 4.73 6.80 1.72 1.03 

Mn 74.11 127.6 200.7 5.18 6.93 

*Fe 5.24 8.04 12.93 0.30 0.39 

Ni 0.55 0.56 0.47 0.32 0.50 

Cu 5.32 7.83 4.72 2.45 6.27 

Zn 32.31 183.9 133.0 14.08 15.35 

As 0.75 1.80 0.38 -0.69 0.32 

Se 1.16 3.87 2.67 -0.60 -1.30 

Rb 32.98 55.94 98.91 -1.84 -1.44 

Sr 1.06 -2.40 -2.54 -0.23 -0.37 

Pb 17.76 20.27 26.49 0.92 4.22 

Note: * (µg m
-3

)   
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Appendix XXXIV 

 

Average increment in Streaker hourly PM concentrations associated with a wind sector 

linking the source to the receptor location at LW 

 
ng m-3  BF/Sinter   BOS/Coking/Mill/Ore 

Stockyard 

 PM2.5 PM2.5-10 PM10 PM2.5 PM2.5-10 PM10 

*PM Mass   4.8   7.3 

Na -50.39 -429.4 -479.8 178.5 12.34 190.8 

Mg 7.84 -36.45 -28.61 20.32 -0.75 19.57 

Al 21.44 5.02 26.46 13.82 16.38 30.19 

S 958.2 -13.13 945.1 444.5 6.74 451.3 

Cl -0.66 363.6 363.0 112.8 1141.2 1254.0 

K 199.6 -30.14 169.5 147.6 -17.30 130.27 

Ca 187.6 32.59 220.2 148.0 54.55 202.51 

Ti -2.11 -0.09 -2.2 -0.91 0.47 -0.43 

V 0.61 -2.3 -1.7 -1.03 -1.30 -2.33 

Cr -1.43 0.14 -1.29 -1.98 0.02 -1.96 

Mn 21.22 6.9 28.12 17.10 8.07 25.17 

Fe 858.6 405.3 1263.9 535.5 673.5 1209.0 

Ni 0.74 -0.14 0.6 0.38 -0.11 0.27 

Cu 0.20 -1.56 -1.36 -0.53 -1.35 -1.89 

Zn 137.1 22.67 159.7 352.2 6.00 358.2 

As 0.36 -0.05 0.31 -0.07 -0.15 -0.23 

Se 1.88 -0.44 1.43 1.12 -0.44 0.68 

Rb 5.85 6.09 11.93 4.07 5.40 9.48 

Sr 1.33 -0.09 1.25 -0.84 0.06 -0.78 

Pb 20.87 6.01 26.88 14.02 2.18 16.20 

Si  129.8   35.83  

Note: * (µg m
-3

)   
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Appendix XXXV 

Steelworks PMF Profiles for Partisol data at (a) FS 

ng m
-3

  Sinter  BF   BOS/Sinter  

 PM2.5-10 PM10 PM2.5 PM2.5-10 PM10 PM2.5 PM2.5-10 PM10 

* PM Mass 0.8 1.0 1.1 6.4 5.5 0.3 0.2 0.5 

Cl
-
 1.04 2.96 4.58 24.25 81.65 29.95 6.33 36.21 

NO3
-
  -1.73 4.65  -1.73 16.25  -1.73 

nss-SO4
2-

 5.9 141.6 239.7 70.92 387 86.55 -12.26 63.64 

Na
+
 55.36 134.1 -2.31 -3.26 2.16 0.55 0.05 -2.76 

NH4
+
  3.43 59.11  10.58 14.46  3.43 

K
+
 76.72 104.6 23.91 -0.15 39.09 2.58 0.56 2.37 

Mg
2+

 7.59 30.1 3.38 26.63 14.96 2.48 4.16 7.35 

Ca
2+

 43.12 66.3  510.3 407.8  27.59 32.51 

Al 18.64   30.97   3.48  
V 0.03 0.12  0.27 0.24  0.02 0.02 

Mn 0.76 0.19 4.11 23.31 23.02 0.68 0.82 2.13 

Fe 39.94 20.04 118.35 1060.7 988.2 12.44 23.73 42.76 

Cu 0.01 0.24 0.24 0.01 -0.03 0.09 0.02 0.13 

Zn 0.09 0.96 6.95 0.16 7.12 19.46 3.96 34.35 

Cd 0.0 0.04 0.0 0 0.04 0.21 0.01 0.05 

Sb 0.0  0.0 0.04  0.02 0.0  
Ba 0.09 0.02 0.26 1.2 0.98 0.04 0.05 0.11 

Pb 0.03  1.04 1.61  1.32 0.08  

Note: * (µg m
-3

)   

 

(b) LW 

ng m
-3 Sinter   BF   BOS/Sinter  

 PM2.5-10 PM10 PM2.5 PM2.5-10 PM10 PM2.5 PM2.5-10 PM10 

*PM Mass 1.0 1.8 0.5 2.0 2.0 0.1 0.2 0.3 

Cl
-
 7.40 3.40 6.36 14.61 33.52 33.84 16.33 31.75 

NO3
-
  12.59 19.85  12.59 31.76  12.59 

nss-SO4
2-

 33.11 258.3 153.6 33.98 147.6 103.9 8.16 44.30 

Na
+
 96.46 295.3 16.50 15.91 14.52 19.43 21.50 12.63 

NH4
+
  6.88 38.57  9.61 15.52  6.88 

K
+
 106 213.6 12.91 0.38 14.21 3.24 1.58 0.78 

Mg
2+

 10.03 59.40 3.01 9.44 5.82 3.04 6.16 5.56 

Ca
2+

 61.42 135.4  172.6 175.2  45.22 41.06 

Al 24.02   11.39   3.28  

V 0.04 0.24  0.08 0.10  0.02 0.03 

Mn 0.73 0.05 2.18 7.11 8.67 0.75 1.02 1.61 

Fe 51.14 23.21 61.38 338.3 380.3 11.97 32.52 32.84 

Cu 0.03 0.59 0.17 0.03 0.03 0.13 0.05 0.16 

Zn 0.00 0.70 3.51 0.02 3.05 18.47 6.53 29.17 

Cd 0.00 0.05 0.01 0.00 0.05 0.22 0.02 0.06 

Sb 0.01  0.04 0.02  0.06 0.01  

Ba 0.08 -0.01 0.09 0.36 0.36 -0.02 0.03 0.07 

Pb 0.05 0.59 1.06 0.54 1.28 1.87 0.15 1.92 

Note: * (µg m
-3

)   
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Appendix XXXVI 

Steelworks PMF Profiles for Streaker data at (a) FS 

ng m
-3 Sinter 

(Secondary) 
      BF    BOS    Coking  

          PM2.5      PM10   PM2.5      PM10      PM2.5      PM10      PM2.5      PM10 

*PM Mass 4.7 4.3 0.5 0.6 0.1 0.1 2.0 4.2 

Na 9.93 6.58 5.59 6.58 11.93 48.44 29.69 6.58 

Mg 3.6 5 5.23 26.94 0.17 7.59 6.1 42.65 

Al 6.68 12.78 7.17 9.59 1.04 2.22 6.51 67.7 

S 369.4 509.3 34.56 2.33 13.56 2.33 55.93 68.06 

Cl 15.61 4.6 15.54 72.95 19.51 3.74 15.35 140.4 

K 7.95 12.08 6.79 21.14 8.33 11.74 17.96 15.02 

Ca 11.58 34.6 92.81 202.6 2.13 21.71 2.08 471.9 

Ti 0.68 1.12 0.86 3.75 -0.05 0.27 0.19 5.33 

Mn 0.75 1.68 5.01 18.34 0.77 1.7 1.1 16.86 

Fe 15.36 -8.58 267.8 1898.3 14.05  42.8 721.2 

Cu  0.04  0.01  0.01  0.78 

Zn 3.12 0.1 0.02 0.1 24.86 33.07 1.76 3.03 

Se 0.14  0.15  -0.01  0.31  
Pb 2.33 3.81 0.21 1.79 1.55 1.68 0.52 0.21 

BC 155.0  11.85  18.02  26.19  
NOx 2.01  1.16  0.57  0.7  
SO2 0.1  0.74  0.07  3.14  
CO 0.01  0.01  0.01  0.13  

Note: * (µg m
-3

)   

 

(b) LW 

ng m
-3    Sinter Plant 

(Secondary)   
        BF        BOS  Coking 

       PM2.5     PM10     PM2.5     PM10    PM2.5     PM10   PM2.5 

*PM Mass  1.5  1.4  0.2  
Na 1.47 63.63 4.64 1.79 23.94 29.91 262.6 

Mg 3.1 8.21 1.55 4.95 0.46 2.87 36.11 

Al 7.09 1.34 1.52 11.53 0.65 0.77 15.09 

S 400.6 2 1.62 10.34 15.38 26.36 107.7 

Cl 0.37 35.52 0.19 29.57 0.21 43.33 1.73 

K 10.82 7.75 17.66 17.14 19.74 25.18 21.93 

Ca 0.23 5.81 19.51 74.62 2.34 12.81 0.72 

Ti  0.43  0.81  0.33  
Mn 0.94 0.36 2.81 5.04 1.47 2.14 0.33 

Fe 21.11 24.5 174.0 392.2 9.1 13.03 12.25 

Zn 5.28 1.41 3.24 2.56 68.84 82.64 0.41 

Se 0.17  0.23  -0.01  0.32 

Pb 3.39 7.42 1.48 0.7 2.49 1.07 1.12 

Note: * (µg m
-3

)   

 




