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Abstract

This thesis describes work on de�ning and modelling text comprehension. The basis of

my approach is a theory of comprehension as a form of abductive reasoning. The speci�c

problem addressed is inferential control and the management of alternative, competing

representations.

This problem is related to issues of representation quality, with decisions between rep-

resentations being made on the basis of quality comparisons. Simultaneously, monitoring

of representation quality determines when comprehension halts; in other words, there is

some kind of threshold against which quality is compared.

In the �rst part of the thesis I analyse concepts of representation quality, describing the

structure of episodic and semantic representations and processes. I then look at metrics

for representation quality before developing my own metric. The metric is based on the

concept of incoherence, derived from the structural potential of representations.

The second part of the thesis describes a computational model of incoherence, the

Incoherence-Driven Comprehender (IDC). IDC combines AI implementation technology

with insights from cognitive psychological studies of text comprehension. I show how IDC

can be applied to various comprehension tasks.

Throughout the thesis I suggest how aspects of IDC's architecture and behaviour may

o�er a fresh perspective on human comprehension.

Keywords: abduction, coherence, episodic and semantic memory, inference, interpreta-

tion, representation quality metrics, story understanding.
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Chapter 1

Introduction

1.1 Approaching Comprehension

This is what things have come to in this world

The cows sit on the telegraph poles and play chess

(from `End of the World' (1916) by Richard Huelsenbeck, in [Richter, 1965])

Human conceptual activity has a `requirement for understanding' at its core. As our

senses continually gather data, we are driven to catalogue, compress and store it. When

confronted by a novel group of stimuli, we try to explain how those stimuli arrived at

our senses, where and how they originated, why they happened to be grouped together,

and so on. This process of constructing interpretations can be described by the general

term comprehension. This term applies both to tasks colloquially described as compre-

hension, such as reading, and to other tasks often considered as separate activities, such

as categorisation and visual perception. In all of these cases, the comprehension process

generates an interpretation, a representation which depicts, describes, models or `stands

for' the data which was observed.

Text comprehension is a particularly specialised aspect of this general cognitive ability.

While it has similarities with other forms of comprehension, there are peculiar complica-

tions. Most of these are derived from a statement which is (generally) true of texts, but

not of eventuality sequences in the real world: a text is (generally) composed with the

purpose of conveying meaning.1

1I use the term eventuality to refer to events and states, after [Moens and Steedman, 1988].

1



Chapter 1. Introduction 2

This underlying purpose often leads to the mistaken assumption that the compre-

hender's aim is to uncover a text's `intended meaning'. However, the only warranted

assumption is that everything mentioned in a text contributes to its meaning; the elements

of a text are relevant with respect to each other. In turn, this implies that relationships

between elements of a text are intended (though the exact nature of those relationships

is not predetermined); and that �nding relationships between these elements is desirable.

Thus, an interpretation which connects elements of the text is preferable to an interpre-

tation which leaves them disparate. In other words, the more coherent an interpretation

is, the better.

The above summary of comprehension is, naturally, incomplete and not uncontrover-

sial. It glosses over several diÆcult questions:

1. How do comprehenders make connections between elements of the text?

2. How does a comprehender know when to stop making connections?

3. Are the connections formed by the same mechanisms used for generating connections

between real world event sequences?

These issues have been approached by previous researchers, as I describe in section 2.1.

However, during the history of this research, problems which were not initially obvious

came to light, mainly as a result of implementation e�orts (see section 2.2). Because

implemented models had to be very detailed to run as programs, every aspect of the com-

prehension process was minutely analysed. An obvious �rst step was to program computer

models to make inferences from a text: no text explicitly contains the entire world in which

it takes place, and every instance of comprehension involves inference. However, when you

allow a program to make inferences, the problem of inferential promiscuity soon becomes

apparent: the tendency for unrestrained processing to give rise to spurious inferences

which tax the credibility and/or usefulness of an interpretation (see section 2.3).

Thus, a processing constraint on comprehension was recognised: some limit on in-

ference making had to be imposed to prevent systems from wasting energy and time

on promiscuous inferences. Presumably, in a psychological (human) context, a similar

control mechanism must be at work, otherwise the comprehender would be inundated

with the implications of a text and unable to form viable interpretations. Therefore,

some relevancy or utility criteria must be at work. In a computational context, these

criteria were naturally implemented using heuristic methods for restricting inferences and

evaluating interpretations.
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The issue of constraints on inference-making provided the initial impetus for my

research and remains central to this thesis. My approach to this issue has been the

development and implementation of a comprehension model which incorporates several

cognitively-motivated control mechanisms. The next two sections briey describe my

work, to give an idea of important concepts. I then describe my general research method-

ology in section 1.4. Finally, section 1.5 explains the structure of the thesis, hopefully

showing the `thread' of the argument as a whole.

1.2 A Broad Overview of My Work

As I mentioned in the previous section, the problem of how to constrain inferences during

comprehension provided the initial impetus for my work. In particular, I was interested in

how a comprehender's subjective assessment of their current interpretation could inuence

future inference processes. Two particular aspects of the problem became evident:

1. Inferential Decisions

Decisions about which inferences to make depend on some method of comparison.

Given two possible inferences, how can a comprehender decide which to make and

which to discard? Or whether both should be made in parallel?

2. Comprehension Halting

During comprehension, why/when/how does the comprehender decide to stop en-

riching their current interpretation and `accept' it? Presumably, any amount of

information could be added to an interpretation; so why don't comprehenders

produce exhaustive interpretations?

My approach was to adapt an idea from the �eld of abduction metrics in AI research,

with the aim of modelling inferential processing in human comprehenders. Abduction

is a method of inference often used in modelling explanation generation in AI (e.g.

[Ng and Mooney, 1990], [Peng and Reggia, 1990]); more recently, cognitive psychologists

have suggested abduction as an important mechanism in human comprehension

[Noordman and Vonk, 1998]. In computational implementations, the nature of abduction

often leads to competition between explanations (see section 3.2.5). This competition has

been solved by rating explanations according to metrics which refer to appealing concepts

like simplicity, probability and coherence (see chapter 5). The explanation selected from
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the set of competitors is the one which is assigned the highest `quality' rating by the

metric (e.g. it is the simplest, most probable, or most coherent explanation).

In my work, such a metric is used for the rating of representations, based on a notion

of incoherence. Representations are rated according to the amount of incoherence they

contain; this is assigned by determining the total potential structure of the representation's

elements. Inferences can also be rated, by measuring how well they increase the coherence

of a representation by reducing its incoherence (c.f. [van den Broek et al., 1995]).

While incoherence of elements was �xed with respect to a particular knowledge base,

I decided to modulate incoherence by subjective, process-based criteria. My �rst step was

to incorporate a skepticism parameter: by altering the model's skepticism, the same text

can be read with the same knowledge base on di�erent occasions, yet produce di�erent

comprehension pro�les. For example, the system may make inferences at di�erent points

in time, or even make di�erent inferences. Some examples are given in chapter 7.

Later re�nements to the model added further control mechanisms, to allow it to cope

with short- and long-term memory stores and maintenance of multiple representations

(see chapter 6).

The next section de�nes the main characteristics of the theory.

1.3 Incoherence-Driven Comprehension

The model and implementation described in this thesis go under the collective heading

of IDC (Incoherence-Driven Comprehender). IDC is intended as a generic theory of text

comprehension which builds on much past work: I do not introduce too many complicated

new representational formalisms or algorithms, but use several existing formalisms as a

foundation. The theory is also, of necessity, simpli�ed and abstracted away from low-

level morpho-syntactic processes, focused instead on semantic and pragmatic issues. I

have also side-stepped several important high-level elements of comprehension, such as

the ability to learn and the role of creativity. However, I recognise the importance of all of

these missing factors. In an ideal model of comprehension, parsing, learning and creative

inference would all play important roles; unfortunately, such an ideal is not realistic within

the bounds of a PhD.

The particular focus of the work is inference making. As I describe in chapter 2,

inference making has been a central concern of comprehension modelling for many decades,

being the dominant process in the construction of interpretations. Within the topic of
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inference making, the role of control in comprehension has been central to my work.

Control is of concern both in cognitive and computational systems, yet is often glossed over

in discussions of comprehension. My aim is to address this imbalance, suggesting possible

interlaced control mechanisms which act together in the management of inferences.

Control in IDC has its basis in a theory of incoherence. A �rst de�nition of incoherence

will be useful at this point (and will be progressively re�ned throughout the thesis). I

intend the word `incoherence' in a sense which diverges from its intuitive de�nition. In

everyday conversation, incoherence is de�ned as `a lack of clarity' or `lack of organisation'

[Collins English Dictionary, 1994]. In IDC, the de�nition of incoherence is less intuitive,

yet hopefully more precise:

The incoherence of a representation is determined by the number of rep-

resentations which could possibly be derived from it via inference, or its

possible representations space (PRS). The PRS of a representation depends on

the comprehender's knowledge base: if knowledge sources exist which could

be applied to elements of the representation to produce new elements, new

representations based on those elements are possible; if such knowledge sources

do not exist, there are no other possible representations.

Note that this de�nition departs from the colloquial meaning of `incoherence' as it mea-

sures incoherence with respect to a knowledge base, rather than with respect to individual

texts. Human comprehenders tend to judge as incoherent those texts for which they are

unable to form sensible interpretations. However, in IDC, the emphasis is on the role of

knowledge in assessing incoherence: it is the lack of a suitable knowledge structure which

prevents construction of a sensible interpretation, rather than the text. If a knowledge

structure could be brought to bear on the text and thus allow it to be integrated, the

incoherence would disappear.

Even though this de�nition seems to deny that texts themselves are coherent or in-

coherent, the argument can be adjusted to show that this is not the case. Judgements

of the coherence and incoherence of particular texts are made with respect to a shared

reserve of knowledge structures, a kind of cultural knowledge base (e.g. English sentence

structure, Western genre conventions); those texts which can be integrated and structured

by that knowledge base are coherent, while those which cannot are incoherent. For

example, Agatha Christie's novels seem neat and coherent to Western readers, as the plots,

characters and language merge snugly with recognised, stereotyped knowledge structures
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common to those readers. However, it is easy to demonstrate the relativity of judgements

of coherence by examining texts from other cultures, or texts from subcultures within a

culture such as the example at the start of this chapter.2 These texts only `make sense' or

can be made coherent with respect to certain knowledge structures: an understanding of

shared imagery, the signi�cance of particular plot devices, multiple meanings of particular

words, outlooks on the world, etc..

Comprehension and the assessment of coherence are thus chiey dependent on two aspects

of the comprehender's context:

1. The amount and types of knowledge (in an abstract sense) which the comprehender

brings to the text. This includes their speci�c, personal knowledge and shared,

cultural knowledge.

2. The abstract evaluation of representations, based on the comprehender's subjective

criteria for an acceptable interpretation (their skepticism and tolerance of incoher-

ence).

The theoretical background to this theory is described in greater depth in section 3.1.

The theory of incoherence is described in chapter 5, while the full implementation of IDC

is described in chapter 6.

In the next section, I discuss the methodological framework within which this work

was carried out.

1.4 Research Methodology

Psychological models are often concerned with describing the relationship between psy-

chological data and a generalised, natural language description. The need to cope with

real-world data means that implementations frequently have to be curtailed and drastically

simpli�ed: for example, the stimuli involved may be reduced to propositional represen-

tations (rather than �rst-order predicate calculus formulae). While these simpli�cations

are necessary, they can mean that it is sometimes diÆcult to see how the theory would

be extended to more complex data.

2Bartlett's early experiments on memory demonstrated the tendency for comprehenders to lever an

unfamiliar text (a folktale called The War of the Ghosts) from a foreign culture (Indian) into culturally-

familiar structures [Gardner, 1987].
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Frequently, this drive to simpli�cation may also result in dynamic processes

(such as construction of an interpretation) being split into their component parts.

For example, these might include `deciding whether to extend an interpretation'

[van den Broek et al., 1995], `deciding which elements to retain in working memory'

[Fletcher et al., 1990], and `rating interpretations' [Thagard, 1988]. While it is often

necessary to split processes in this way, it can obscure the relationships between them

and remove the need to de�ne the interactions between di�erent parts of a process. For

example, decisions about whether to extend an interpretation may depend on the goodness

of that interpretation; in turn, this depends on the rating mechanism used; and again,

deciding which elements to retain in working memory may depend on how useful they

may be for understanding future elements.

On the other hand, AI models are usually detailed and integrated: processes and

the interfaces between them are speci�ed in great detail, as the program actually has

to `run'. Each process must function correctly and produce an output usable by related

processes; every piece of information involved in the task has to be de�ned; there is

no way to gloss over processes if they are inconveniently complex. However, this drive

to speci�cation can give rise to an underlying yearning for `correctness' of the model.

This means that often a lot of emphasis is given to logical consistency and computational

eÆciency, such that psychological evidence can go out of the window (e.g. Ng and Mooney

[Ng and Mooney, 1990]). By concentrating on `proof', AI models can also become highly

restricted: the range of phenomena they deal with is reduced to increase the speed or

correctness of the algorithm.

In my model, I have attempted to �nd a middle-ground between these two approaches,

possibly leaning more towards AI. So, while I attempt to de�ne the mechanisms that

might underly the choice between two explanations in a psychological experiment, I have

done so with a computational theory (abduction). And while I have aimed to make

the theory as `correct' as possible (in a computer science sense), it is impractical as a

`commercial' solution. For example, the data structures used in the rulebase are limited

in their expressive power, as they were deliberately designed to be as `process-free' as

possible. This means that some eÆciency is lost, but hopefully with a concurrent gain in

clarity.

I have also tried to produce a theory which is wide-ranging and takes into account

much current cognitive psychological research, while using the minimum number of new

theoretical constructs. Those constructs I do introduce are set against a background of sev-
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eral well-established ideas, such as scripts [Schank and Abelson, 1977], working memory

([Shallice, 1982], [Fletcher et al., 1990]), and coherence-seeking, constructive comprehen-

sion ([van den Broek et al., 1995], [Graesser et al., 1994]).

1.5 Structure of the Thesis

� Chapter 2 covers the general background to my work. It puts in place the historical

context, and a general theoretical framework for analysing story comprehension

theories.

� Chapters 3 and 4 specify a framework for modelling comprehension, both in cognitive

and computational terms. This framework is then used as a rationale for my own

computational model.

� Chapter 5 concerns the central problem de�ned in this introduction: how a com-

prehender can judge the relative quality of competing representations, and how

representations are managed within the context of interpretation. My answers are

chiey computational, as is reected by the tone of the chapter.

� Chapter 6 describes my implemented model. The intention is to show how the model

maps onto the framework described in the previous chapters; I also suggest some

cognitive analogues of mechanisms in the model.

� Chapter 7 contains some tentative experimental results, with some suggestions for

comparing the output of the model with human behaviour.

� Chapter 8 discusses the achievements of my work, as well as places where it fails. I

also suggest some directions for future work.

� The three appendices cover actual program code and examples of output. These

have been removed from the main body of the thesis to improve its readability.



Chapter 2

Background to the Problem

This chapter describes the broad theoretical background to text comprehension as a whole.

It then covers in greater detail the particular question which prompted this thesis: how

can inferences during comprehension be controlled?

2.1 A Brief History of Text Comprehension

Text comprehension has already received much attention in many academic �elds over

a long period of time. For example, some literary critics, such as Roman Ingarden and

Wolfgang Iser, have examined the interpretory processes involved in the act of reading

[Ingarden, 1973], [Iser, 1971]; and several psychologists have tried to specify and demon-

strate the existence of the knowledge structures underlying story recall [Bartlett, 1932].

However, these analyses typically take the form of informal verbal descriptions of the

mechanisms involved. This informality is not a de�ciency: it is simply an artifact of the

times in which they were written and contemporary research paradigms.

Psychologists were the �rst to concern themselves with the detailed processes com-

prising text comprehension. During the reign of Behaviourism in the 1920s, 30s and 40s,

many psychologists avoided discussing mental representation: psychological theories were

to be based on observable evidence alone, without recourse to dubious hypothetical mental

entities [Gardner, 1987]. However, by the early 1950s, many researchers realised that Be-

haviourism was an intellectual dead-end, unable to provide reasonable or realistic theories

of language, planning, or other aspects of the internal organisation of external behaviour.

As a result, these psychologists turned to descriptions of comprehension which explicitly

de�ned individual mental components. These researchers found useful metaphors for

9
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their work in the emerging �elds of computer science and cybernetics: for example,

Miller described human short-term memory capacity in terms of information theory, using

bits as a measure of capacity [Miller, 1956]; and Broadbent regarded whole organisms as

information-ow mechanisms, depicting them as owcharts resembling program designs

[Broadbent, 1958].

This shift to cognitive psychology, inuenced by advances in computer science, led

to the use of computer programs as models of human behaviour. Some of the earliest

programs to deal with language comprehension issues include Bobrow's STUDENT system

for solving algebra problem stories [Bobrow, 1968] and Quillian's system for knowledge

retrieval from semantic networks [Quillian, 1968]. Both systems had to deal with the

problem of inference: deriving implicit information from explicit data. For example,

STUDENT could infer the antecedents of pronouns and Quillian's system could infer

conceptual overlap between discrete input units.

It was obvious that inference was central to comprehension: construction of an in-

terpretation requires relating inputs to stored knowledge, such that any `gaps' in the

input are �lled and connections between input units speci�ed. No text contains all the

information required for its understanding, but gives `cues' which facilitate construction

of its `meaning'; comprehension involves a `search after meaning' where inferences build

representational units in memory, relating and grouping input units [Graesser et al., 1994].

This constructive approach to comprehension has its basis in Bartlett's theory of schemas

[Bartlett, 1932], and was highly inuential in the 1970s, particularly with cognitive scien-

tists, e.g. [Charniak, 1972] and [Rumelhart, 1975]. These 1970s researchers were trying

to �nd models of human text comprehension precise enough to be implemented as com-

puter programs; in the next section, I describe their computational work as it forms the

background and impetus for my own research.

2.2 Implementing Constructive Comprehension

The models of text comprehension developed in the 1970s shared a concern with the

constructive role of inferences. An important issue was how to model the origins of these

inferences. The answer lay in adapting Bartlett's schemas to represent stored knowledge.

Schema theory states that when new data arrives at the senses, it activates stored

schemas which are used to encode that data in memory. For example, on seeing an

agglomeration of lines and colours in some particular alignment, the schema for `bird' may
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be activated. Once a schema has been activated in response to an input, the slots attached

to the schema become available for `�lling'. Slots are blank `conceptual spaces' into which

actual instances are inserted as they are encountered in the input. Alternatively, slots

may be �lled by default inferences: for example, the slot for the type of instrument used

in a co�ee stirring schema may be �lled by the default value spoon. More details about

models based on schema theory are given in chapter 3.

The computational realisations of Bartlett's ideas resulted in various schema-like struc-

tures variously called `frames' [Minsky, 1975], `scripts' [Schank, 1975], `macrostructures'

[Correira, 1980], and even `schemas' (a direct borrowing from Bartlett) [Rumelhart, 1975].

Distinctions were frequently made between these structures, but at heart they are very

similar (Minsky himself compared his conception of frames to scripts). For this reason, I

will use the generic term schemas to refer collectively to these structures. For the moment,

I discuss them generally, leaving detailed discussion of their technical characteristics until

section 4.1.1.

Early AI systems based on schema theory were generally implemented as production

systems. In these systems, schemas were written as rules which represented implications

from a higher-level structure to one or more lower-level structures. This represents

the assumption that superstructures are abductively implied by the presence of their

substructures; for example, observing someone entering a bank allows a comprehender

to abductively infer that they plan to deposit some money.1 New elements are added to

the representation by matching current elements to the right-hand side (or consequent)

of a rule; the left-hand side (the antecedent) is then inferred by backward-chaining and

asserted as a new element. An example rule in this format is:

(1) hold plan(planner:X, object:Y) �!

grasp(agent:X, object:Y).

This rule speci�es that if some actor X grasps some object Y , a reasonable inference is

that X has a plan to hold Y . Another rule in the same format is:

(2) goal(planner:X, objective:(possess(agent:X, object:Y)) �!

hold plan(planner:X, object:Y).

1c.f. inferring causes from e�ects in medical diagnosis, as in PATHEXnLIVER in

[Josephson and Josephson, 1996].
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This rule speci�es that if some planner X has a plan to hold Y , a reasonable infer-

ence is that X has a goal to possess Y . (Both rules are adapted from chapter 8 of

[Schank and Riesbeck, 1981].) If a system with these two rules were presented with an

input like:

grasp(agent:geo�, object:thing1)

two inference steps are possible (with the second being derived from the �rst):

1. geo� is planning to hold thing1.

2. geo� has a goal to possess thing1.

The above inferences are reasonable, given the input. The early systems formed chains

of such inference steps between input elements, following the maxim `To \understand" is

to establish relations between the new and the old' [Schank, 1975]. This enabled them to

perform well on simple texts.

However, part of the reason for this success was that the knowledge base consisted of

very few rules and was geared towards a small group of similar texts. This meant that

very little information could be derived, even if all the rules were applied; it also made it

likely that derived information would be (at worst) marginally relevant, as the rules were

designed for comprehending a collection of similar texts.

In summary, the small scale of the programs was partly responsible for their success.

As production systems in other areas of AI grew, researchers began to realise that as the

scale of the knowledge base increases, the number of potential inferences soon gets out

of hand [Davis, 1980], [George�, 1982], [Clancey, 1983]. Other problems arise due to the

types of inference allowed, and the stringency (or lack of) with which inferences are made.

These issues are described in section 2.3.

2.2.1 A Note on Notation

Note that the format for representing `knowledge structures' (e.g. rules, scripts, schemas)

is as consistent as possible throughout this thesis, and the rules in the previous section

are no exception. Knowledge structures are assumed to have the form:

a �! b1; : : : ; bn:
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This rule states that there is some relationship between an element a and some other

elements b1; : : : ; bn; the commas in the consequent are intended as denoting something akin

to the logical `and' (^). Elements may be either propositions, or may contain variables;

variables are treated as they are in Prolog, and denoted by capital letters. (N.B. no

quanti�ers are used in rules.) Another assumption I have made is that events are composed

of a predicate and a set of roles (c.f. [Alterman and Bookman, 1990], [Fillmore, 1968],

[Lindsay and Norman, 1977]).

The exact nature of rule types and components is left for discussion in later chapters.

2.3 Inferential Promiscuity

Borrowing a term from Norvig and Charniak, an excessive number of inferences could

be termed promiscuous, as it wastes the comprehender's resources: time and memory

([Norvig, 1989], [Charniak, 1986]). These resources are wasted because chains of inference

may be pursued exhaustively to irrelevant levels of detail and spuriousness. This requires

commitment of resources to producing, storing, comparing, and removing representational

elements, many of which may ultimately prove to be useless.

In production systems, the promiscuous inference problem is exacerbated by three

main factors:

1. Bi-directional chaining.

2. Incomplete matching.

3. Number of rules.

Each of these can justi�ably be added to a production system to increase its power;

however, each can also increase the number of possible inferences. Each factor is described

in more detail in the following sections.

2.3.1 Bi-directional Chaining

So far, the system I have described makes inferences by backward-chaining on rules: the

consequent of a rule is matched against the input and its antecedent inferred [Frost, 1986].

An alternative is to forward-chain on rules. To do this, the system matches the antecedent
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of a rule against the input and infers its consequent. This is the classical, familiar form

of logical inference represented by the syllogism:

a; a! b

b

If we again read the rules causally, forward-chaining allows inferences from causes to

their e�ects; or, in other words, prediction [Shanahan, 1989]. In the system I'm outlining

here, this might allow the following pattern of inference:

Observation:

goal(planner:emma, objective:(possess(agent:emma, object:orange1))).

Rule:

goal(planner:X, objective: (possess(agent:X, object:Y)) �!

hold plan(planner:X, object:Y).

Inference:

hold plan(planner:emma, object:orange1).

Is the inference `emma plans to hold orange1' useful? It doesn't explain why emma has a

goal to possess orange1; it merely predicts how she may go about ful�lling this goal. In

this respect the inference elaborates the observation and doesn't add to the understanding

of `why' emma acts the way she does. This seems to contradict recent psychological

results, which contrast the redundancy and ineÆciency of predictive inferences with

the over-riding importance of explanatory (abductive) inferences [Graesser et al., 1994],

[Keefe and McDaniel, 1993], [Trabasso and Magliano, 1996].

However, in the system we are considering, we can justify forward ({chaining) inference

as necessary for three reasons, described below.

Coherence dependent on forward inference

While some researchers view forward inferences as being only minimally made, or as

not being drawn at all (see [Keefe and McDaniel, 1993] for a review), others have shown

that forward inferences do play a part in comprehension. Some research shows that

forward inferences are made, but that they are quickly removed from working mem-

ory unless immediately con�rmed by subsequent text [Keefe and McDaniel, 1993]. In

some cases, they may even establish `predictive explanations' for statements currently in

working memory [Murray et al., 1993]. Seemingly inexplicable eventualities may only be
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explainable by reference to some expected future eventualities, for example (adapted from

[Murray et al., 1993]):

The angry waitress was totally fed up with her job. When a rude customer

criticised her, she lifted a plate of spaghetti above his head.

These two sentences do not seem to make sense (at this point in comprehension) without

the causal consequent inference `She poured the spaghetti over the customer's head'.

Unless we make the assumption that explanations only occur under complete information

(e.g. when both an antecedent event and its causal consequent event are present in

working memory), a comprehension system requires some way of making a prediction to

allow these statements to be connected.

Literary texts

Certain types of literary text rely on the comprehender's construction of predictive infer-

ences for their e�ects. Narratives with ashbacks, for example, encourage the comprehen-

der to predict possible consequences of the ashback, and �nd inferential chains between

those predictions and the current circumstances of the narrative [Zwaan, 1996]. In the

relatively straightforward, linear narratives commonly employed in reading comprehension

studies, predictive inferences are generally unnecessary and not explicitly encouraged.

Other forms of elaborative processing may not be so obviously `predictive' (in a

temporal sense), such as occasions where a comprehender `predicts' details of an event.

For example, if an agent in a text stirs a cup of co�ee, the comprehender may infer that

a spoon was used as the instrument of the event. These and related forms of temporally-

concurrent inference, such as inferences about characters' emotions, are also important

in literary comprehension, where the comprehender employs a mode of processing which

facilitates their involvement and helps them `explore the stimulus' o�ered by the text

[Zwaan and Graesser, 1993]. The focus on `non-literary' texts in cognitive psychology has

led to an under-estimation of the importance of elaborative processing in comprehension.

Computational eÆciency

The third reason is a slightly more arti�cial and pragmatic one: in a comprehension system

which can only form explanations by backward-chaining, some obvious and important

inferences may be missed. To demonstrate this, consider the following observations:
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drive(agent:geo�, to:b, in:c), hold up(agent:geo�, place:b)

and the following set of rules:

(1) rob plan(agent:X, place:Y) �!

go step(agent:X, to:Y), hold up step(agent:X, place:Y).

(2) go step(agent:X, to:Y)

�! go(agent:X, to:Y).

(3) drive(agent:X, to:Y)

�! go(agent:X, to:Y).

Naturally, we would like the system to interpret the observations as `geo� drove to b,

which explains how he went to b; this going event was a step in geo�'s plan for robbing

b'. This is shown diagrammatically below:

observations

inferences

rule direction

inference direction

go(agent:geoff, to:b)

rob_plan(agent:geoff, place:b)

go_step(agent:geoff, to:b) drive(agent:geoff, to:b)hold_up_step(agent:geoff, place:b)

Figure 2.1: The necessity of bi-directional inference

Making the connection between drive(agent:geo�, to:b) and rob plan(agent:geo�, place:b)

requires at least one predictive inference: either from drive to go (as shown on the

diagram), or from go step to go; otherwise, the drive event cannot be considered as being

related to the rob plan.

If bi-directional chaining is added to a comprehension system, most texts will consequently

engender more inferences than if backward-chaining alone were allowed. For example,

consider the above system's interpretation of the text statement:
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go step(agent:paul, to:c)

If backward-chaining is the only mode of rule application, rule (1) alone is applicable

(by matching the statement against one of its consequents).2 If forward-chaining is

additionally allowed, rule (2) is also applicable (by matching the text statement against

its antecedent).

2.3.2 Incomplete Matching

A second method for increasing the power and exibility of a production system is to allow

incomplete matches. In strict rule-matching, only rules whose antecedent(s) (for forward-

chaining) or consequent(s) (for backward-chaining) are completely matched may `�re'.

This prevents errors being made; desirable for computational eÆciency reasons, but not

in cognitively-valid models. In the latter, it is essential to allow partial matches to account

for certain psychological phenomena [Anderson, 1983]. In recent research, one text-related

phenomena attributed to partial matching is the so-called `Moses illusion'. This e�ect

occurs when `a term in a sentence or question (the \critical term") is replaced with a

semantically similar but incorrect term (the \distorted term")' and the comprehender

responds `as if this distortion were not present' [Kamas et al., 1996]. The e�ect gets its

name from the archetypical example question:

`How many animals of each kind did Moses take in the Ark?'

People will often respond to this question with the answer `Two', even though Noah

took the animals onto the Ark, and not Moses. This e�ect is often attributed to partial

matching, where concepts in the question are matched against rules in memory which gen-

erate its semantic representation. Where there is suÆcient match between the meanings

of the critical term and the distorted term (e.g. both Moses and Noah are Old Testament

characters), the `switch' is not noticed; if there is insuÆcient overlap (e.g. Nixon is used

as the distorted term), the distortion is recognised and no answer given.

Another perhaps related e�ect occurs during the reading of role-shift texts

[Sanford and Garrod, 1981]. Here, comprehenders jump to conclusions about the roles

of characters which later turn out to be incorrect. Their early assignation of a role

to a character may be based on incomplete matches between rules in memory; once

more information becomes available, matches with other role-assignment rules may be

2Incomplete matching would also be required, as described in section 2.3.2.
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more complete, and the initial role assignment retracted as a result. The fact that

such phenomena occur in comprehension points to the necessity of allowing incomplete

matching in a comprehension system. This kind of `interpretation revision' is central to

my work and is discussed in greater detail in chapter 6.

Incomplete matching can contribute to inferential promiscuity by licensing inferences

on the basis of very little information. Consider a system with the following rulebase (the

system can only backward-chain on rules):

(1) hold plan(planner:X, object:Y) �!

grasp(agent:X, object:Y).

(2) juggle plan(planner:X, object:Y) �!

skittles(Y), grasp(agent:X, object:Y).

The system works by matching observations against the consequents of rules. Given

the following text:

grasp(agent:jill, object:s)

both rules are applicable if incomplete matching is allowed. Even though the object of

the grasp has no type de�ned, as indicated by rule (2), the inference to juggle plan is

allowed. If only complete matching were allowed, only rule (1) would be applicable; the

missing information skittles(b) would prohibit application of rule (2), resulting in one less

potential inference.

2.3.3 Number of Rules

Imagine we added two more rules to the system described in section 2.2 to yield the

following rulebase:

(1) hold plan(planner:X, object:Y) �!

grasp(agent:X, object:Y).

(2) goal(planner:X, objective:(possess(agent:X, object:Y)) �!

hold plan(planner:X, object:Y).

(3) grasp(agent:X, object:Y) �!

throw plan(planner:X, object:Y).

(4) throw plan(planner:X, object:Y) �!

goal(planner:X, objective:(dispose of(agent:X, object:Y)).
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We could continue adding rules for relationships between actions, goals and plans in

this manner, which would be absolutely necessary if the system were to cope with anything

approaching a real text. Now, when the system comprehends the text:

grasp(agent:geo�, object:thing1)

even more inferences are produced: some of these are relevant and some less so. For

example, the system could generate the possibly relevant inference `geo� has a plan to

dispose of thing1' by applying rules (3) and (4), rather than rules (1) and (2). The system

could also create a contradiction by applying all four, resulting in `geo� plans to dispose

of thing1' and `geo� plans to hold thing1'.

Each time a rule is added, an interpretation containing the elements of the rule licenses

more potential inferences. In addition, if several rules apply equally to the current

interpretation and create multiple explanations for the same element(s), contradictions

may arise.

2.3.4 Can Inferential Promiscuity be Prevented?

Each of the three factors above (bi-directional chaining, incomplete matching, and number

of rules) increases the quantity of inferences which could potentially be generated during

comprehension. When their e�ects are combined, this increase may be explosive, causing

a system to grind to a halt under the processing load, or produce useless interpretations

due to excessive, irrelevant detail.

However, each of the three elements is also necessary in a cognitive simulation of

comprehension. Without these facilities, a system would su�er the following de�cits:

� Without bi-directional chaining, certain types of texts may be incomprehensible or

poorly-interpreted; computationally, the system may miss important inferences.

� Without incomplete matching, modelling of some psychological phenomena (e.g.

human comprehension errors) is awkward. For example, inputs which almost match

a rule may be completely ignored, when it would be preferable to infer the `missing'

part of the match.

� With few rules, the system's area of application would be severely limited.
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The answer is to factor in the facilities described above, but to constrain their ap-

plication, hopefully to those occasions where it is actually warranted. In other words,

there is a requirement for an inferential control mechanism which evaluates the inference

process and decides which of the potential inferences to actually make, and/or which of

the resulting information to incorporate into the evolving interpretation.

Control mechanisms are `fundamental to all cognitive processes and intelligent systems'

[Hayes-Roth, 1985]. Their importance to computational models cannot be overestimated:

they both enhance their accuracy as models of cognition and their eÆciency as computer

programs. The speci�c control mechanisms at work during comprehension are a central

concern of my work, and are outlined in the next section.

2.4 Inferential Control

For the purpose of explaining the types of control which could be applied to comprehen-

sion, I describe a simpli�ed model of inference generation. This model has similarities to

many previous ones (e.g. [Alterman, 1985], [Correira, 1980], [Thorndyke, 1976]), but at

the same time has been generalised.

In this generic model, I assume that each interpretation derived by the comprehender

is encoded into memory as one or more representations. Initially, representations only

represent text statements; as more text statements are added to representations, the

comprehender generates inferences to explain and elaborate them. Useful inferences

can also be added to the representations. The items (text statements or inferences)

manipulated during comprehension are called representational elements, or r-elts.

Figure 2.2 shows how the comprehender's current set of representations may be ex-

tended to generate new representations.3

The diagram shows a single cycle of inference generation, starting from one set of

representations and ending with a new set of representations. The processes (rectangles)

shown in the diagram are as follows:

1. Match some or all or the current representations (reprs) to rules in long-termmemory

(similar to the example rules in the previous sections).

2. Apply the rules to the current representations to generate inferences (possible new

r-elts).

3`Representations' is intended in the sense `one or more representations'.
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Input reprs

Match to rules

to generate new inferences

Output reprs

Retrieve rules

Apply rules to reprs
to generate new extensions

Apply rules to reprs

reprs to use for matching

Match to indices

rules to apply
Choose which

Select new reprs by
comparing to input reprs

Prune inferences

3

4

5

2

1

Generate new extensions

Choose parts of and/or

Figure 2.2: Generic process model for the inference cycle

3. Attach inferences to the current representations to produce new extensions. The

term extension is used to denote the following:

� An existing representation, extended with some new inferences (or other alter-

ations, such as deletions or transfers between memory stores (see section 6.4.1

on page 146)).

� Possibly some information about the quality of the resulting, extended rep-

resentation (e.g. the probability that the new representation is correct, or a

number representing the connectivity of the new representation).

Note that paths are possible through the diagram that avoid one or more steps. For
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example, it is possible to generate extensions from current representations by applying

retrieved rules directly: in this case, inferences are not generated as separate entities which

are then attached to the representation. However, the alternative paths allow control to

be applied at one or more points, as indicated by the shaded boxes on the diagram. The

numbers in these boxes correspond to the following control mechanisms:

1. Focusing.

2. Directed rule retrieval.

3. Evaluation of rule matches.

4. Evaluation of inferences.

5. Evaluation of representations.

These mechanisms are described in the following sections.

Focusing

Before matching a representation to the rulebase, the comprehender may select a subset

of the representation to be used for matching: for example, the most recently-encoded

N elements of the representation. This restricted range of elements is usually referred to

as working memory [Laird et al., 1987]; a more satisfactory term is short-term store, as

`working memory' is often de�ned as a cognitive system with both storage and processing

potential [Baddeley, 1992].

In cognitively-motivated systems, the short-term store typically consists

of the elements of a representation which reach some `activation threshold'

[Just and Carpenter, 1992]. Elements whose activation falls below the threshold

are considered to have been encoded into the long-term store or forgotten; only those

elements whose activation is above the threshold are used for matching against the

rulebase.

Focusing reduces the gross number of rule matches which are possible, which can

create considerable eÆciency increases. Note that elements from long-term memory may

still be retrieved into the short-term store, so that they can be incorporated into inferences

[Trabasso and Magliano, 1996]. However, those elements which go `out of focus' may be

neglected, even when subsequent processing opens a route through which they could be

integrated.
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Directed rule retrieval

Rather than matching r-elts with the whole rulebase, the rulebase may be partitioned

into sets of rules which apply under similar circumstances. Then, only those rule sets

which are contextually appropriate to the r-elts may be considered as providing potential

inferences.

For example, in Leake's ACCEPTER, the `things to be explained' in a text are

categorised as belonging to one or more anomaly categories [Leake, 1992]. Each rule

(technically, case) in the knowledge base is also categorised according to the same anomaly

vocabulary. In deciding which explanatory rules to invoke, ACCEPTER compares the

text's anomaly categories with those of the rules in the rulebase; only matching rules are

considered as potential explanations for the text. This `directed' retrieval of applicable

rules reduces search, as text elements do not have to be compared to every rule in the

rulebase: only those rules indexed under the same anomaly category are considered as

producing viable inferences. While assigning and matching anomaly categories may seem

to involve its own overheads, these are outweighed by the eÆciency bene�ts of less rule

to r-elt matching.

Evaluation of rule matches

Once r-elts have been matched with the rulebase or to indices, there may be one or

more rules which are applicable. Each applicable rule is a potential inference which the

system could make. However, rather than making all of these inferences without further

consideration, the system may select one or more which are most likely to yield useful

extensions to representations. The decision about which potential inferences to select is

often called conict resolution [Charniak and McDermott, 1985]. Conict resolution is

usually carried out with respect to syntactic preferences, one of the most important being

speci�city (see section 5.1.1). Using this criterion, if one rule matched two r-elts and

another only one, the rule which matched two r-elts is preferred; in other words, the �rst

rule's match is more speci�c [Reichgelt, 1989]. Anderson cites speci�city as important

for dealing with exceptions to rules, such as irregular plurals in language production

[Anderson, 1983].
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Evaluation of inferences

Once inferences have been constructed, it is possible to evaluate the resulting output

before it is accepted as an extension to a representation. Those inferences which do not

add any useful information are `pruned' out of the set of possible inferences; the remainder

are then used to generate new r-elts which are attached to the current interpretation.

This form of control is used in Norvig's FAUSTUS system [Norvig, 1989]. FAUSTUS

suggests inferences using a weak marker-passing mechanism, which operates using a

variant of spreading-activation (see section 4.3.1). Using the path taken by markers across

a semantic network, FAUSTUS decides which paths could add useful information to the

representation and which probably won't. Those paths deemed possibly useful are then

used to construct new representational elements; the remaining paths are discarded.

Other models which use relaxation in connectionist networks are employing a similar

principle; this seems to be the case in Kintsch's work, for instance [Kintsch, 1988]. Acti-

vation is passed between concepts, in much the same way as markers, and those concepts

which receive suÆcient activation are considered to be part of the representation. This

topic is discussed in more detail in section 3.2.5.

Evaluation of representations

After inferences have been added to an interpretation, the representations constituting

that interpretation are themselves evaluated. Those which are of the best `quality' are

retained, while the others are discarded.

For example, an interpretation may contain three competing representations. During

the next inference-generation cycle, three inferences are made, one for each representation.

These inferences are then attached to their respective representations, creating three new

representations. The comprehender then evaluates the new representations, and �nds that

one is of signi�cantly lower quality than the others. At this point, the comprehender may

discard the low-quality representation, leaving the other two new representations.

Various metrics may be used to evaluate representations and assign quality ratings

to them, such as Ng's coherence metric [Ng and Mooney, 1990] or a simplicity metric

[Thagard, 1989]. The evaluated representations may then be sorted according to their

quality, and those below a certain threshold discarded; Ng's ACCEL system uses beam-

search to do this [Ng and Mooney, 1990].

(This description is brief as the concepts behind evaluation metrics and their use are

discussed more thoroughly in chapter 5.)
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Meta-level Monitoring

One additional form of control cannot be drawn on the diagram, as it operates between

processing cycles, not within them. This form of control could be called meta-level

monitoring.

Meta-level monitoring controls the other forms of control: it decides whether

new inference-generation cycles should be instigated at all, by monitoring the current

state of the comprehender's interpretation. This meta-level control mechanism thus

continually tracks the evolving interpretation, deciding whether it is acceptable or requires

improvement.

Interestingly, meta-level monitoring processes have received little attention in the AI

literature. Comprehension is often assumed to continue until a structure at a pre-speci�ed

level of detail is instantiated. The reason for this may be that these systems often rely

on a `most-speci�c' de�nition of interpretation, inherited from diagnostic models, e.g.

�nding one of the set of `allowable' hypotheses. For example, in Kautz's comprehension

(plan recognition) system, the system does not halt until it discovers the minimal number

of high-level plans that can be inferred from lower-level actions [Kautz and Allen, 1986].

This is not to say that these systems are bad, just that their behaviour can seem `at': each

time a story is comprehended, the interpretation contains the same densities and types

of information [Kayser and Coulon, 1981]; the interpretation also tends to be derived by

the same process, over the same period of time, on every occasion the system is run. For

example, if a system is based on scripts (see section 4.2), the triggering and instantiation

of scripts occurs at a consistent pace: an initial event triggers a script, and subsequent

events are used to �ll the slots of the script. There is no method for slowing the rate at

which scripts are triggered (for example, if there is little evidence to suggest they will be

helpful); and no method for varying the amount of information which can be considered

simultaneously (which may be useful if modelling short-term memory di�erences).

Evaluation of representations can give the appearance of meta-level monitoring in a

computational system. Ng's ACCEL system, for example, constructs its interpretations

to various levels of speci�city, depending on whether an inference will add to their quality;

once the best interpretation has been derived (i.e. no inferences can improve its quality),

comprehension halts [Ng and Mooney, 1990]. However, this form of control is objective, as

the criteria for quality are the same each time the program is run and the `most-coherent'

interpretation will always be derived.

The important point about meta-level monitoring is the idea of acceptability. This
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is distinct from the goal to `�nd the highest quality interpretation'; instead, the goal is

to `�nd an acceptable interpretation', which may or may not be of the highest quality

according to abstract, absolute criteria such as simplicity (see chapter 5).4 Acceptability

is de�ned with respect to subjective criteria; these criteria di�er between individual

comprehenders, and may vary from `�nd the best possible interpretation' (as in the most-

speci�c interpretation) to `infer the few most important concepts' (as in comprehension

for `gist').

Acceptability thus seems to require some notion of representation quality which would

allow interpretations (and their component representations) to be rated, alongside a notion

of quality threshold against which interpretations are compared. Once the quality of an

interpretation reaches this threshold, an acceptable interpretation has been determined

and comprehension can cease.

A detailed discussion of `quality' is deferred until chapter 5. For the moment, let it

suÆce that there is some mechanism by which the comprehender can rate and compare

representations.

I am now in a position to relate this idea back to the forms of control which are vital in

preventing inferential promiscuity while maintaining cognitively important abilities (see

section 2.3.4). In particular, representation quality and quality threshold could be used in

an implementation of control as follows:

� Focusing could be made dependent on the quality of representational elements. For

example, those r-elts of the lowest quality take priority on each inference generation

cycle. If quality of an r-elt were de�ned in terms of the number of relationships

between that r-elt and others, the lowest-quality r-elts would be those which are

least-connected to other r-elts, and would thus be given priority.

� Evaluation of inferences could be determined by measuring the quality improve-

ment a�orded by an inference: those inferences making no improvement, or those

inferences making the least improvement, could be discarded.

� Evaluation of representations can be directly related to representation quality: those

representations falling within a certain range of quality values could be maintained

and the others discarded.

4The idea of acceptability tallies closely with that of satis�cing in problem-solving

[Simon and Kadane, 1975].
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� Meta-level monitoring is probably the most interesting and most neglected form of

control. It can be applied by comparing the quality of representations with the

quality threshold: those representations which fall outside this threshold are either

discarded, or an attempt made to improve them; representations which cross this

threshold are considered acceptable, at which point a decision to halt comprehension

may be made.

Most of the suggestions made above have been incorporated into my theory of com-

prehension, and implemented using a particular model of representation quality and asso-

ciated quality threshold.5 Control occurs at multiple levels and allows the comprehender

to gradually �lter out useless inferences and representations, hopefully leading to more

economical, yet still cognitively realistic, comprehension. Later chapters specify these

layers of control and their implementation.

2.4.1 Chapter Summary

In this chapter, I've described the core issue of this thesis: inferential control. I've

demonstrated that inferential promiscuity can be a problem for computational models

of comprehension; I also showed that its causes must be retained, otherwise interesting

psychological aspects may be lost. I then showed that inferential promiscuity could

possibly be curtailed by applying inferential control mechanisms. In the previous section,

I suggested that a measure of interpretation quality, in tandem with a quality threshold,

could encapsulate control e�ectively.

However, before reviewing the role of interpretation metrics in greater detail, it is

necessary to de�ne the framework into which these metrics �t. As I mentioned previously,

the use of metrics is centred on inference-generation cycles, where interpretations are

successively re�ned by the comprehender. Metrics for interpretations depend on an

intimate understanding of the nature of interpretations, their representations, and the

processes by which they are re�ned. To address this, the next two chapters describe the

structures and procedures which `implement' these ideas and which are common to both

computational and psychological models of comprehension.

5Note that two of the forms of control not mentioned above, directed retrieval of rules and evaluation

of rule matches, are also part of my theory, but rely on criteria independent of the quality metric; see

chapter 6.



Chapter 3

Episodic Representations and

Inference

This chapter introduces theories of episodic representation and its relationship to infer-

ence. The main themes are:

1. How interpretation can be de�ned, and how this relates to theories of episodic

representation.

2. Inference processes: what an inference is, how inferences are made, and how they

contribute to representations.

3. The role of episodic representations in comprehension.

3.1 What's the Point of Comprehension?

This may seem like a strange question to ask: because comprehension is central to many

activities which we carry out on a day-to-day basis, we tend to forget that we are even

doing it. One answer might then be `Because we are human.' However, by trying to answer

this question more precisely, we can get a handle on why people comprehend texts, as

opposed to doing anything else with them. This may also give us an idea of how to apply

control in comprehension: if we know why people halt their comprehension, settling for

a particular interpretation, we may use this to shed light on control of computational

models.

28
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To answer the question, a �rst step is to de�ne comprehension and look at alternatives

to it: what can we do with a text if we don't comprehend it? I de�ne comprehension as

the construction of an interpretation which contains more information than that explicitly

given in the text. In other words, an interpretation does not merely contain the data in

a text, but contains the information derived from the data in the text; in the words

of Dretske, an input containing many `information-bearing' components (the data) is

represented by fewer, less-informative components [Dretske, 1981]. This emphasises the

constructive processes of comprehension, beyond simple representation of textual data.

An alternative to comprehending a text (in the sense of inferring information from

its data) would be to represent with equal weight every datum in the text. The result

of interacting with a text would then be a `copy' of the text in memory (even the most

mechanical comprehender, learning a text by rote, produces a richer representation than

this).

There are several bene�ts to comprehending a text, over simply representing it in

memory. The construction of text interpretations can be likened to a process of cat-

egorisation, where parts of the text are linked in memory into larger cognitive units

[Barsalou and Sewell, 1985]. Like categorisation, this has certain bene�ts for the compre-

hender [Rosch, 1978]:

� Economy

A comprehender can't store every individual piece of data without generalisation,

as this would require greater memory storage than they have available. Instead

of representing new data individually in memory, a comprehender can `summarise'

those data by attaching them to an existing, structured concept. The more speci�c

the data considered, the more speci�c the structure which can be applied and the

less ambiguity there is in the interpretation.

� Communication

If culturally-shared structures (`frames of reference') are used to represent texts,

interpretations can be shared with those who share those structures. By contrast,

if everyone had a distinct interpretation of a set of data (e.g. a sequence of events

occurring in a text), there would be no way for them to share information about

those data. For example, if my conception of `writing a program' were represented

with unique structures that had no connection with cultural norms, there would be

no way for me to share my programming experience with other people (e.g. students

I'm teaching).
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� Learning

By structuring the information in an interpretation and associating it with other

parts of memory, a comprehender may learn new cognitive structures. While these

structures are based on existing ones, they may contain insights which improve the

comprehender's understanding of the world around them [Mooney, 1990]. Here, I

don't mean that they can only learn about the mating habits of mosquitoes or the

densities of stars, for instance; rather, they may learn more broadly, about how to

interact with other people or even themselves, which in turn increases their chances

of `survival' (in the broadest sense).

If text data are stored as an undi�erentiated mass, there is no way to relate the text

to what the comprehender already knows. This then precludes the formation of

cognitive structures: learning depends on processes such as analogy and induction,

which are impossible without recognition of relationships between fragments of

information [Kaplan and Berry-Rogghe, 1991].

By comprehending a text, it may be stored economically and in a format where it can

be communicated to other people. In addition, it may be used as a basis for learning new

cognitive structures which increase the comprehender's chances of functioning e�ectively

in the world.

The most important of these issues as far as my own work is concerned is that of

economy, or how the comprehender structures text interpretations. Given that there are

many possible interpretations which could be generated (see section 2.3), it is important

to de�ne how these possibilities are explored, accepted and rejected, leaving a �nal

interpretation. One way to think of this is as a process of reducing the number of possible

`text worlds' spawned by a text, to leave a single text world [Enkvist, 1989]:

...when we are exposed to an emerging text, certain elements and their col-

locations in the text activate references to a semantic universe of discourse,

de�nable as a conceptually organised and retrievable system of models of real-

ity, and lead us to a speci�c text world characterised by a highly constrained,

speci�c set of states of a�airs.

If we equate `text worlds' with representations in memory, and the `semantic universe

of discourse' with the comprehender's knowledge base, the resulting `speci�c text world'

can be seen as the comprehender's �nal interpretation. We can begin to formalise this

reduction process with Hobbs' pseudo-equation for comprehension [Hobbs, 1990]:
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F (K; T ) = I

where F is the comprehension process, taking as inputs the comprehender's knowledge

base K and a text T . The output of this process is an interpretation, I. The important

aspects of this formula are its emphasis on the combined role of knowledge and the text

in determining the interpretation: there is no interpretation `hidden' in the text which

is wheedled out, but a dynamic process of construction and selection of representations,

eventually leading to the comprehender settling on a set of the possible representations.

This �nal set of representations constitutes their interpretation of the text.

The formula above expresses a relationship between the inputs and outputs of compre-

hension, but doesn't specify how representations are constructed and selected. Specifying

these processes requires a model of how representations are constructed from input data;

implementing these processes requires speci�cations which are computable. For this

purpose, I next de�ne how texts (T ), representations (K and I) and comprehension

processes (F ) can be described computationally.

3.2 Computing Comprehension

In this section, I use deductive-nomological explanation as the foundation for a de�nition

of comprehension [Hempel, 1966]; this model underlies computational work on abduction

[Charniak and Shimony, 1994], which I describe in detail later in the section (expanding

on section 2.3.1).

The general form of a deductive-nomological argument is [Hempel, 1966]:

l1; l2; : : : ; lr
a1; a2; : : : ; ak

E

In this equation, l1; l2; : : : ; lr and a1; a2; : : : ; ak are called the explanans (the things doing

the explaining), and E is the explanandum (the set of things which are explained). The ex-

planans consists of two types of element: laws (l1; l2; : : : ; lr) and assertions (a1; a2; : : : ; ak).

In the �eld of scienti�c explanation (where this formula was �rst de�ned), the scientist

is assumed to take a set of assertions a1; a2; : : : ; ak, such as facts about the world, and a
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phenomenon to be explained, E; their aim is then to determine l1; l2; : : : ; lr which make

the above formula true.1

Although this provides the basis for theories of abduction, there is a crucial di�erence.

In abduction, the laws are known and the aim is to derive the assertions which, together

with the laws, will semantically entail the explanandum. In other words, the aim is to

derive A = a1; a2; : : : ; ak, where L = l1; l2; : : : ; lr and E are known, such that

A [ L j= E (3.1)

is true. A is determined by inference from E and L.

If the members of L are rules relating causes to e�ects of the form cause �!

e�ect1 ; : : : ; e�ectn , and E is a set of e�ects or symptoms of unknown causes, abduction

can be further characterised as inference from e�ects to causes or `deduction in reverse'

[Charniak and McDermott, 1985].2 The A of formula 3.1 thus consists of the set of

explanations for elements of E which make the above formula true. Each explanation

is generated by application of the standard abductive syllogism [Brewka et al., 1997]:

b; a �! b

a
(3.2)

For example, if wet lawn is to be explained (wet lawn 2 E), and L contains the rule

rain �! wet lawn, the following inference can be made:

wet lawn; rain �! wet lawn

rain

i.e. rain is inferred as a cause of wet lawn. Note that the resulting inference of the

explanation rain makes formula 3.1 true:

rain; (rain �! wet lawn) j= wet lawn

It is important to note that abduction is not logically sound. Despite this, it can �nd

instantiations of A which satisfy the criteria for a valid explanation.

1This is an extremely simpli�ed version of Hempel's theory, and it has many opponents in philosophy

of science, e.g. [van Fraassen, 1977]. However, as I show in the rest of this section, it provides a reasonable

grounding for a computational theory of comprehension.
2This interpretation of abduction is largely derived from diagnosis systems, where a set of

hypotheses and their e�ects (e.g. medical conditions and their symptoms) can be easily encoded

[Peng and Reggia, 1990].
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This may seem a long way from text comprehension. However, many language

comprehension tasks, such as resolution of pragmatic ambiguity and plan recognition,

are particularly amenable to abductive techniques [Goldman, 1990], [Hobbs et al., 1993],

[Ng and Mooney, 1992]. This is because abductive reasoning is a formalisation of

`reasoning to the best explanation', and it is a small leap of faith from this to de�ning

comprehension as `�nding the best explanation for a text'. This perspective is backed up

by much research which shows how explanation is the driving force behind comprehension:

while comprehending a text, people look for answers to `Why?' questions, as opposed to

`What happens next?', `How?', `Where?', or `When?' questions [Graesser et al., 1994].

Empirical studies based on verbal protocols have also shown the predominance of

explanatory inferences over elaborative or predictive ones [Trabasso and Magliano, 1996].

Researchers in psychology have even begun citing AI research into abduction in

papers about comprehension [Noordman and Vonk, 1998]. However, despite this, I have

reservations about abduction as a complete theory of comprehension (see section 3.2.2).

3.2.1 Formalising and Visualising Comprehension

Text comprehension can be formalised as an abductive task by making the following

assumptions:

1. Texts can be represented in some kind of semantic formalism. The formalism chosen

is usually a propositional representation [Goldman, 1990], [Ng and Mooney, 1992];

my work follows this tradition, being generally classi�able as symbolic AI

[Newell and Simon, 1972]. There is also signi�cant evidence that propositions are

valid units of psychological processing [Kintsch, 1998].

2. Propositions in the text are called observations. The set of observations comprising

the text is designated by T .

3. Propositions can be manipulated by rules to generate new propositions and/or

explanatory relations (I have already been using this assumption throughout the

previous chapters). The set of rules is called a knowledge base and is denoted by K.

4. Observations and inferred propositions are incorporated into the comprehender's

representation R as nodes. It is important to distinguish between nodes, which

represent propositions in memory, and the propositions from which they are derived.
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The latter are used in tandem with explanatory relationships in deciding whether a

particular set of propositions satis�es the abductive criteria of formula 3.1.

5. An explanatory relation can be constructed if a proposition B (either derived from

the text or a previous inference) is in R and there is some rule A �! B in K. In

this case, the comprehender infers A �! B by copying a relationship from semantic

memory into episodic memory (see chapter 4). The comprehender also infers A as

support for the relation. Note that this is inference by abduction, reasoning from

e�ects to causes.

The �nal representation R therefore consists of the following elements:

� Observations represented as nodes.

� Inferred propositions represented as nodes.

� Inferred explanatory relations represented as arcs.

Returning to the simple example from chapter 2, we could use abduction to infer an

explanation for someone's plan as follows:

Proposition from text:

take plan(planner:emma, object:orange1).

Rule:

goal(planner:X, objective: (possess(agent:X, object:Y)) �!

take plan(planner:X, object:Y).

Inferred proposition:

goal(planner:emma, objective:(possess(agent:emma, object:orange1))).

Inferred relationship:

goal(planner:emma, objective:(possess(agent:emma, object:orange1)))

�! take plan(planner:emma, object:orange1).

This inference is based on syllogism 3.2. Note also that formula 3.1 is satis�ed as the

inferred relationship and proposition semantically entail the observation, i.e.

goal(planner:emma, objective:(possess(agent:emma, object:orange1))),

goal(planner:emma, objective:(possess(agent:emma, object:orange1)))

j= take plan(planner:emma, object:orange1).
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I have slightly changed the criteria of formula 3.1 by requiring that the representation

alone explains the text, rather than a set of assertions and a knowledge base. This is done

by copying relationships from the knowledge base into the representation, so that the

representation becomes a valid abductive interpretation in isolation from the knowledge

base.

The resulting representation can be visualised as an episodic network, simi-

lar to those used by psychologists [Kintsch, 1998], [Trabasso and Magliano, 1996],

[van den Broek and Lorch, 1993]. The above representation can be converted into a

network with two nodes, one for each proposition, and a single arc representing the

explanatory relationship between them, as shown in �gure 3.1.

#goal(planner:emma, objective:(possess(agent:emma, object:orange1)))

@take_plan(planner:emma, object:orange1)

Figure 3.1: Episodic network representation of an abductive explanation

Also note that the nodes in the network have been marked with their origins:

� @ = nodes derived from observations.

� # = nodes derived by inference. These nodes are also shaded to make the distinction

clearer.

This section has demonstrated how the criteria and syllogism for abductive explanation

can be applied to interpretations of texts. However, there are important questions which

are not answered by the basic model of abduction:

� Are interpretations just explanations?, i.e. can abduction deal with other types of

non-explanatory relations?

� Can observations explain each other?, or must all explanatory relationships be

constructed from inferred explanations to observations.
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� Should all observations be explained? Are there any occasions on which it is better

not to explain a text?

� Are multiple representations maintained? If comprehenders maintain multiple rep-

resentations, can abduction model this?

In the next four sections, I show how these questions may be answered.

3.2.2 Are Interpretations Just Explanations?

If a model of comprehension is based entirely on abduction, this prioritises explanation

to the exclusion of other kinds of inference. In particular, it prioritises explanation on the

basis of logical implication. As I've stated before, explanation is by far the most important

form of inference. However, other forms of inference do play a role: up to 30% of inferences

made by readers of narratives are non-explanatory [Trabasso and Magliano, 1996]. In

section 2.3.1, I described why it is necessary for a comprehension system to be able to

make inferences by forward-chaining on schemas, which allows predictive and other types

of inference to be made. In that section, I deliberately avoided technical detail for the

sake of clarity. Now, with the technical background of section 3.2, it is possible to show

more precisely how non-explanatory inferences relate to abduction.

What are these other forms of inference? This is a complex and confusing question

to answer, because di�erent researchers make di�erent assumptions about the meanings

of words like `explanatory', `elaborative' and `predictive'. For example, one de�nition

of `elaborative' contrasts it with `bridging', stating that elaborative inferences are not

necessary for comprehension while bridging inferences are [Singer, 1994]; another de�ni-

tion claims that predictive inferences, possibly unnecessary for comprehension in most

circumstances, can have an explanatory function in some situations [Murray et al., 1993].

Another example: some researchers di�erentiate between predictive and elaborative in-

ferences [Whitney et al., 1991], while others treat predictive inferences as a subset of the

class of elaborative inferences [Keefe and McDaniel, 1993].

To circumvent this confusion, I consider representations to consist of propositions

and relationships between them, as in section 3.2. All relationships are directional, that

is, they point from one proposition (the parent) to one or more other propositions (the

children). Each relationship is treated as specifying a `connection': the parent is a point of

connection for the children; or, the parent is a more speci�c way of describing, classifying,
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or linking the children. The structure formed by a parent and its children is termed a

tree. An example in network form is shown in �gure 3.2.

@go(agent:harry, to:c) @explore(agent:harry, place:c) #leave(agent:harry, from:c)

#visit(agent:harry, place:c)

Figure 3.2: A tree representing a script-like explanation

The tree in �gure 3.2 shows a relationship between a proposition representing a script-level

event and several propositions at a lower level, representing the subevents of the script

[Read, 1987]. (This tree is based on the schema described in section 4.2.1.) Note that

both the parent and one of the children are inferred (marked with #). Also note that

the relationship depicted is more complex than the one-to-one relationships previously

described: this relationship connects a single parent to several children (one-to-many).

The ability to create one-to-many connections is signi�cant, for the reasons described in

section 4.2.2.

I am now in a position to relate this simpli�ed view to notions of explanation and

elaboration. Each tree represents a relationship between the parent propositions and its

children, providing a rationale for their co-occurrence in the representation. Trees may

be generated either by forward- or backward-chaining, depending on which propositions

are present in the representation when the inference is made.

The distinction between an elaboration and an explanation is in terms of the utility

of a tree. If a tree's children have no basis in the text (i.e. all of its children are inferred

and marked with #), and the children are not parents of any trees themselves, then

the children elaborate the parent, and the tree is classed as elaborative. This functional

view of representational elements speci�es exactly when inferences are elaborative: when

the resulting tree does not contain any children which are parents of trees, i.e. when its

children have no explanatory function. An example elaborative tree is shown in �gure 3.3.

Note that elaborations don't invalidate formula 3.1. The explanatory relationship

between inferred propositions and observations still holds, but the formula is altered to
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#leave(agent:harry, from:c)

#visit(agent:harry, place:c)

#go(agent:harry, to:c) #explore(agent:harry, place:c)

Figure 3.3: An elaborative tree

discriminate between propositions which explain observations and propositions which are

just inferred children. The revised formula which takes account of this is:

X [ E [ C j= T (3.3)

where:

� X is the set of inferred propositions which are parents (explanations).

� E is the set of inferred propositions which are children and not parents (elabora-

tions).

� C is the set of relations, described as trees.

� T is the set of observations.

In this case, the presence of E makes no di�erence to the truth of the formula, as the

propositions in E do not explain any of the propositions in T ; another way of looking at

this is that they do not occur as parents in C. While this may make elaborative trees

seem redundant, they are signi�cant in terms of the interpretation metric I describe in

chapter 5.

The other types of inference commonly referred to in the literature can also be incor-

porated into this framework, as described in the following sections. While some appear to

be obviously explanatory (such as causal inferences) and others obviously elaborative (e.g.

instrumental inferences), I attempt to show that the functional signi�cance of an inference

is more important than the super�cial classi�cation which it may be given. All types of

inference may be either elaborative or explanatory, depending on their contribution to the

quality of an interpretation.
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Causal Inferences

Causal antecedent inferences establish suÆcient causal explanation for an event

[Graesser et al., 1994], [van den Broek et al., 1995]. For example, `John struck a match'

is a suÆcient condition for `John lit his cigarette'. Given a node `John lit his cigarette', a

proposition representing `John struck a match' may either be retrieved from the current

representation or a new proposition may be created.

The di�erence between causal antecedent inferences and causal consequent inferences

(the latter are often called predictive inferences [St. George and Kutas, 1998]) is the con-

text in which the inference is made. For instance, if a comprehender reads a text containing

the two `cigarette-lighting' events above, there are two ways in which they could establish

a causal relationship, as shown in �gure 3.4 (next page).

In the causal antecedent condition, the inference is backward in narrative time, from

the lighting of the cigarette to the striking of the match. In the causal consequent

condition, a prediction of a cigarette lighting event is inferred on the basis of a match

being struck; this prediction is then instantiated when the lighting event occurs in the

text [DeJong, 1979]. Note that in this case one proposition from the text is providing a

causal explanation for another. The criteria for abductive explanation in formula 3.3 do

not allow this, but I suggest an extension to amend this in section 3.2.3.

Causal antecedent inferences are one type of the broader class of bridging inferences

[Singer, 1994]. Bridging inferences are considered by some to consist of inferences nec-

essary for comprehension, as opposed to inferences which are purely elaborative (ibid.).

This is the de�nition of bridging which I use here: any inference which contributes to

explanation (as de�ned broadly in section 3.2) is considered a bridging inference. As

such, causal inferences may be bridging inferences, or they may be elaborative, depending

on their function in the interpretation.

Associative Inferences

I'm using the term `associative' here in the sense of [Trabasso and Magliano, 1996]: in-

ferences from a proposition which refer to information neither temporally consequent

nor temporally antecedent to that proposition. Such inferences generally involve adding

information about `features, properties, relations, and functions of persons, objects or

concepts' (ibid.). This information is temporally concurrent with the source proposition:

for example, an inference from `Ted is a dog' to `Ted is a mammal' is not a causal

antecedent or consequent inference, as Ted's being a dog and a mammal are temporally
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concurrent. Some examples of associative inferences include inferences about instruments

used in an event [O'Brien et al., 1988] and inferences about the spatial layout of locations

in a narrative [Zwaan and Van Oostendoorp, 1993].

The structure generated by associative inferences is considered to be a tree expressing

a connection between nodes, the same as other types of inference. Again, associative

inferences may serve an explanatory or elaborative function [van den Broek, 1994]. For

example, consider the following text:

Jane was reading a newspaper. A y was annoying her. She swatted it.

The node representation of this text is shown in �gure 3.5.

@read(agent:jane, pat:n) @annoy(agent:f, patient:jane)

@type(f, fly)@type(n, newspaper)

@swat(agent:jane, patient:f, inst:X)

Figure 3.5: Representation of the `y swatting' text

Imagine that the comprehender has the following two rules:

(1) y swatting(agent:X, patient:Y, inst:Z) �!

swatted(agent:X, patient:Y, inst:Z), type(Y, y),

type(Z, swatter).

(2) type(X, newspaper) �! type(X, swatter).

The comprehender is able to infer a y swatting on the basis of a swat event and an entity

of type y. However, this leaves the instrument of the `swatting' unspeci�ed. By inferring

that a newspaper can be used as a swatter using rule (2), the comprehender can specify

the instrument of the swatting event. This chain of inferences is shown in �gure 3.6.

The inference from newspaper to swatter is associative (concurrent in narrative time,

not a prediction, and not directly explanatory); however, it creates coherence by forming a

connection between an explicit observation (the existence of a newspaper) and an inferred

proposition which is part of the explanation of the swatting. Another way of stating this

is that Jane's possessing a newspaper `causes' her to have a swatter to hand.
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@annoy(agent:f, patient:jane)@read(agent:jane, pat:n)

@type(f, fly)

@type(n, newspaper)

@swat(agent:jane, patient:f, inst:n)

#type(n, swatter)

#fly_swat(agent:jane, patient:f, inst:n)

Figure 3.6: Inferences connecting newspapers and y swatting

Although associative inferences seem to have little direct explanatory capability, they

are important for instantiating roles within events, which can establish indirect explana-

tory connections between them. Other types of association, such as inferring the type

of an instrument used in an event, may have a similar role in creating connections, for

example:

Felicity drove the nail into the wood. Then she hit Mike.

Unlike the previous text, the type of the item being used to drive the nail is not mentioned.

However, use of the word `nail' may lead to an inference that a hammer is being used as

an instrument. In turn, Felicity's hitting Mike mentions no explicit instrument; however,

if the existence of a hammer has been inferred, the availability of this in the representation

makes it a likely candidate for this role.

Any type of inference may thus contribute to interpretation quality if it speci�es

relationships between elements of a representation. This formulation ties in with the

idea of convergence and constraint satisfaction described in [Graesser et al., 1994]: an

inference may be made when it receives `a high strength of activation from multiple

information sources, and it satis�es the constraints from multiple information sources'.

This is regardless of the direction of an inference (relative to narrative time) or the type

of inference (causal, bridging, associative etc.). The important distinction is between

explanatory inferences and elaborative ones; the time when an inference is made depends

not on its type, but on whether making that inference will prove pro�table at a certain

point in comprehension [Noordman and Vonk, 1992], [van den Broek et al., 1995]. My

computational interpretation of this idea is explored in depth in chapter 5.
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3.2.3 Can Text Propositions Explain Each Other?

This question returns us to a consideration of how abduction can account for interpreta-

tions of texts. In formula 3.3, I showed how elaborative trees would have no impact on

the truth of the formula, which still required a set of inferred parent nodes to explain the

text. In other words, the observations stay on the right-hand side of the formula (they

are the `things to be explained') and the inferred explanations stay on the left-hand side.

However, in some circumstances, it may be necessary for observations themselves to

provide explanations. This is often the case in AI models of abduction, such as ACCEL

[Ng, 1992]. In one example from Ng's thesis (ibid.), the following text is used:

Mary had a heart attack. John is depressed.

The explanation produced by ACCEL uses the observations had(mary, h) and

heart attack(h) to explain the observation depressed(john), via the inferences: (1) if X

has a heart attack, then X is in a bad condition; (2) if Y likes X, and X is in a bad

condition, and X is irreplaceable, then Y is depressed. Again, formula 3.3 is satis�ed by

the propositions in the representation (adapted from Ng's notation):

@had(mary, h), @heart attack(h), #illness(h),

#bad condition(mary), #like(john, mary), #irreplaceable(mary)

[@heart-attack(h) �! #illness(h)],

[@had(mary, h) ^ #illness(h) �! #bad condition(mary)],

[#bad condition(mary) ^ #like(john, mary) ^ #irreplaceable(mary)

�! @depressed(john)]

j= @depressed(john), @had(mary, h), @heart attack(h).

(Note that the observations which are also explanations must appear on both sides of the

formula.)

Is it important that observations are being used to explain each other, rather than

inferred propositions? In a situation where two or more representations could satisfy

the formula, priority should perhaps be given to those representations which contain the

lowest number of inferred elements and hence the `smallest' explanations (see sections 5.1.1

and 5.1.2). In other words, preference should be given to representations where paths of

explanatory relationships originate and terminate at observations, over representations

where inferred propositions are providing explanations. This is a version of the idea

that some elements of the representation have priority over others, e.g. propositions
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derived from observation or experiment [Thagard et al., inpr]. In the case of comprehen-

sion, observations have priority because they are known to be true; by contrast, inferred

propositions always carry some degree of uncertainty. ACCEL relies on this for rating

interpretations: the more paths there are between observations, or from intermediate

nodes to pairs of observations, the higher the quality of an interpretation (see section 5.2.4

on page 103 for a fuller description of this metric).

By distinguishing between observations which are explained by inference and those

explained by other observations, a system is not merely seeking to satisfy formula 3.3 but

also trying to optimise how the formula is satis�ed. This requires heuristic criteria which

are diÆcult to de�ne in terms of logical proof (see chapter 5).

3.2.4 Should All Observations be `Explained'?

Does every element of the text have to be `explained' (or `proved', in the abductive

framework)? An alternative is to not explain observations, instead maintaining their

ambiguity. Cases where ambiguity should be maintained (or further investigated) occur

where there is insuÆcient evidence to point to a de�nite representation. For example,

if a comprehender reads the sentence `John is depressed', it is probably more eÆcient

to attempt no explanation than to produce one of the many possible explanations for

depression.3

A comprehender may also be unable to explain a phenomenon if they lack the necessary

cognitive structures for its comprehension. In such cases, an attempt may made to either

�nd an analogical representation or generate a new structure which can account for the

phenomenon (c.f. [Thagard, 1997]). In my model, I do not account for these creative

mechanisms, concentrating instead on situations of the �rst type.

If no explanation is attempted of particular observations, the criteria for abduction

(as de�ned in formula 3.3) are not met. Instead, we end up with the following:

X [ E [N [ C j= O [N (3.4)

where:

3In safety critical situations, it may make more sense to attempt clari�cation of ambiguity rather than

maintain it [Norvig and Wilensky, 1990]. During comprehension, attempts at clari�cation may take the

form of actively seeking `missing information', e.g. searching for more evidence to back up a potential

interpretation.
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� X is the set of propositions which are parents (explanations); these may be inferred

or observed.

� E is the set of inferred propositions which are children and not parents (elabora-

tions).

� C is the set of relations, described as trees.

� N is the set of observations which are not explained, i.e. observations which are

neither parents nor children.

� O is the set of observations which are explained, i.e. observations which are children.

� O and N together comprise the text (T ).

It seems as though the formula with which I began (formula 3.1) is becoming less and

less adequate for deciding when a representation is satisfactory. The neat relationship

between text propositions on the right-hand side of the formula and inferred explanations

on the left is disappearing, as some observations provide explanations for others, and some

observations are maintained without explanation.

While a valid representation may be considered primarily as an inferred set of explana-

tory propositions which must satisfy the formula, this gives no basis for deciding between

competing representations. The problem comes from the formula's failure to recognise

what is important about a representation: that is, the e�ort required to produce it (the

number of inferred elements it requires) and the explanatory relationships it contains. The

j= relationship doesn't really capture the nuances of the representation, instead describing

it at a relatively abstract level, divorced from its content.

Some form of heuristic, such as a metric for interpretation quality (as suggested in

the previous section), may be more e�ective in capturing these nuances. In my model,

deciding whether or not to explain (or elaborate) an observation depends on the number

of potential representations which could be generated from it: the greater the number

of choices, the less impetus there is to generate one of those representations. However,

the interaction between nodes which could be explained within the same tree causes the

model to make a decision between those representations, discounting some of them and

aÆrming others. This is described in detail in section 5.3.2 (page 110).
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3.2.5 Are Multiple Representations Maintained?

A �nal issue is the extent to which competing interpretations and/or representations are

maintained by comprehenders. In psychological research on syntactic ambiguity, it is

often suggested that multiple representations are maintained until ambiguity is resolved

[Just and Carpenter, 1992]. This is related to the issue of the previous section: an

alternative to not explaining an observation (as in the previous section) is to generate

and maintain all (or some) of the potential explanations, and collapse this set when some

de�nitive evidence for one explanation over the others is encountered.

In comprehension at the level I am describing, there may be alternative representations

for a text. As an illustration, consider a text consisting of a single sentence, `Mary was

walking to school', represented by proposition W . Imagine a comprehender who knows

two possible explanations for this sentence: (1) Mary is walking to school because she

is a schoolchild (S); (2) Mary is walking to school because she is a teacher (T ). There

are thus three possible explanations for the sentence; the propositional representations of

these explanations satisfy formula 3.4:4

1. Mary is walking to school (i.e. no explanatory relations are created).

This `explanation' can be expressed propositionally as

@W j= @W:

2. Mary's being a schoolchild causes her to walk to school.

This explanation can be expressed propositionally (assuming causal rules) as

#S; (#S �! @W ) j= @W:

3. Mary's being a teacher causes her to walk to school.

This explanation can be expressed propositionally as

#T; (#T �! @W ) j= @W:

The next question is how the comprehender stores one or more of these representations.

There are three possible strategies which could be employed:

1. Single best representation strategy

Maintain a single representation which is of a higher quality than any other derived

4Note that there are no possible elaborations, as there are rules which would facilitate construction of

a tree with only inferred children.
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representation. If a single representation is maintained, conicting information may

force a re-evaluation of the representation and require extensive modi�cation and

deletion of information. In cases where the best representation turns out to be

`correct', this strategy should be most eÆcient, as it requires less storage of elements

which eventually turn out to be irrelevant.

2. Multiple representations strategy

Maintain all competing representations as separate, discrete entities. By having

separate representations available, a comprehender has the bene�t of maintaining

ambiguity: for example, if an action has two possible explanations, a comprehender

may tentatively infer and store both; when further evidence supports one explana-

tion over the other, the incorrect explanation may be deleted from memory. All

representations may be maintained, or some criteria may be applied so that only

the best subset of the representations is kept.

In cases where a text is misleading or diÆcult (either accidentally or deliberately),

this strategy allows faster switching between representations: instead of deleting

irrelevant segments of a representation and constructing new ones, a comprehender

integrates information with representations which are best able to incorporate it.

The disadvantage is that multiple representations have to be stored, which may be

ineÆcient for easy and unambiguous texts.

3. Partitioned relations strategy

Maintain a single representation of the nodes, with multiple representations of

relations between them. In this condition, the nodes common to all alternatives are

stored without duplication. Each partition describes a set of relations connecting

certain of the common nodes. Each set of relations and the nodes they connect

is thus equivalent to a representation. (In some respects, this strategy is only an

eÆcient method for implementing strategy (2).)

In each case, the one or more representations constitute an `interpretation'. Diagrammatic

depictions of these strategies are shown in �gure 3.7.

How can these strategies be realised computationally? In the next section, I describe

one possible implementation technology.
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@W#S

#S @W

Single best representation

#S #T @W

@W#S

@W#T

empty

Partitioned relations

@W

@W#S

#T @W

@W#T

#S @W

Multiple representations

representation interpretation partitions

Figure 3.7: Possible structures for an interpretation

Assumption-Based Truth Maintenance

The Assumption-Based Truth Maintenance System (ATMS) provides support for multiple

representations in an abductive context [de Kleer, 1986], [Ng, 1992]. In an ATMS, each

node in the interpretation has a label describing the ways in which it could be explained

abductively. A label consists of one or more environments, with each environment itself

composed of assumptions. Assumptions are nodes which could explain the labelled node;

that is, an environment for a node N must satisfy the familiar formula E[K j= N , where

E is the environment and K is the knowledge base (see section 3.2). Additionally, other

criteria may be enforced, such as requiring that an environment be minimal (i.e. not be a

subset of another environment) and logically consistent [Brewka et al., 1997]. The format

of a label is fE1; : : : ; Ejg, where E1; : : : ; Ej are environments. Each environment has the

form fA1; : : : ; Akg, where A1; : : : ; Ak are assumptions. An example labelling of an ATMS

is shown in �gure 3.8.

In a comprehension context, the aim is to �nd the labels for the nodes representing
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{{Y,Z},{A,B,Y},{B,C,Y},{B,D,Z},{A,B,D},{B,C,D}}Interpretation = 

A B

Z

{{C}}

{{A},{C}} {{B}} {{D}}

{{Z},{A,B},{B,C}} {{Y},{B,D}}

C

Y

D

Figure 3.8: A labelling of an ATMS

the observations; the cross-product of these labels is the label for the whole text

[Ng and Mooney, 1992] (cross-products are explained in a moment). As an example,

consider a text consisting of two propositions, Y and Z. (I've dropped the @ and #

symbols temporarily to aid exposition.) These are represented in the ATMS as two nodes,

as shown in �gure 3.8. The aim is thus to �nd a labelling for Y and Z; the label for the

whole text (its interpretation, in the sense of the previous section) is the cross-product of

their labels.

The label of a node is a list of environments, and the �rst environment of any node

is itself: in other words, for the node Z, the node may simply be assumed, creating the

environment fZg. Each of the other environments in a node's label are determined by

backward chaining on rules which have that node as their consequent. The antecedents

of the rule are a possible explanation for the node, so the cross-product of their labels is

added to the existing label of Z. The cross-product of a pair of labels itself consists of

environments; each of these new environments is produced by �nding the set union of one

old environment from each antecedent. For example, if the node being labelled is Z and

there is a rule:

A ^ B �! Z

then the existing label of Z is appended to the cross-product of the labels of A and B. If A

and B cannot themselves be explained, they have the labels ffAgg and ffBgg respectively

(derived by the assumption that a node can always `explain itself'). The cross-product

of their labels is produced by �nding the set union of pairs of environments from A and
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B, such that each environment of A is crossed with each of B.5 For example, the only

environment in the cross-product of the labels on A and B = fAg [ fBg = fA;Bg. This

is added to the existing label of Z to give ffZg; fA;Bgg.

If there are rules which in turn provide possible explanations of an antecedent, the

label on the antecedent is more complex. For example, if there is a rule

C �! A

then the label on A becomes ffCg; fAgg, as C is a way of explaining A. This in turn

means that the cross-product of the labels of A and B = ffA;Bg; fC;Bgg, and the label

on Z = ffZg; fA;Bg; fC;Bgg (this is part of the example shown in �gure 3.8). Labels

are constructed by depth-�rst search, so that the root nodes of the ATMS are labelled

�rst then the labels below generated recursively.

Having outlined the ATMS, I am now in a position to show how this corresponds with

the possible structures for interpretations shown in �gure 3.7. In the ATMS of �gure 3.8,

the cross product of the labels on the observations Y and Z is:

ffY; Zg; fA;B; Y g; fB;C; Y g; fB;D;Zg; fA;B;Dg; fB;C;Dgg

This label is actually that of a `virtual node' (V ) added to the network by the ATMS,

where V is equivalent to a node implied by the conjunction of the observations. For

example, in this case, the virtual node V is implied by the conjunction of Y and Z; in

other words, a rule is added to the knowledge base of the form [Ng, 1992]:

Y ^ Z �! V

.

Each environment in the label for V is an abductive explanation for the text consisting

of Y and Z, in accord with formula 3.1. To create a full representation (as de�ned in

section 3.2), each environment could be extended with details of how it was derived and

each of its nodes marked with its origin (i.e. inferred or observed). For example, the

environment fA;B; Y g is derived by using A and B to prove Z, so this relation is added

to the environment; in addition, its nodes are marked appropriately. This gives:

5If there were three antecedents, each environment added to Z would be produced by �nding the union

of trios of environments, rather than pairs; and so on for four or more antecedents.
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Nodes:

@Y, @Z, #A, #B.

Relations:

(#A, #B) �! @Z.

Note that the `and' (^) between #A and #B has been replaced by a Prolog-style comma.

This `extended environment' can also be represented as a list:

[[@Y;@Z;#A;#B]; [((#A;#B) �! @Z)]] (3.5)

To implement the strategies described on page 46, a system could be supplied with a

heuristic for limiting the number of environments generated for each node. Ng employs

this method in ACCEL, truncating the label on each node as it is generated [Ng, 1992].

This is done by sorting the environments according to a quality metric (see chapter 5),

then keeping only the �rst n environments of the sorted list as the new label of the node.

This method is basically a form of beam search, where n is the width of the beam.

To demonstrate this, consider a heuristic labelling of �gure 3.8, based on sorting

environments according to a quality metric. The quality metric used here is based on

simplicity: quality is determined by dividing the number of observations explained by the

number of assumptions in an environment [Ng, 1992]. For example, the above environment

(labelled 3.5) has quality = 1
3
(@Z is explained, @Y;#A and #B are assumed). Each

environment is annotated with its simplicity rating.

Now, to implement maintenance of a single representation, the label of each node

is truncated so that only the highest quality environment is maintained. To implement

maintenance of multiple representations, the n (n > 1) best environments are kept in each

label (or one environment, if only one is derivable).

The table on the next page shows the di�erence between maintaining single or mul-

tiple representations. Each environment of �gure 3.8 has been extended as suggested

in formula 3.5 and annotated with its quality. The resulting format for an environment

is [Nodes;Relations;Quality], where Nodes and Relations are lists and Quality a real

number. Labelling is carried out as described previously. Environments discarded due to

truncation of labels are marked with `*' and are in italics; where there are two equally

good environments, the one with fewest nodes is maintained and the other discarded.
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ACCEL uses this method to control the construction of representations, storing a set

number of environments on each label (including the label representing the �nal interpre-

tation). It can thus simulate the single vs. multiple representations strategies. However,

labels are truncated according to the number of environments they contain, rather than

the quality of those environments; quality is merely used to sort the alternatives. If there

are many environments close in quality, some may be discarded simply on the basis of

quantity; if there are two environments, one of very high quality and one of low quality,

both may be maintained. This problem is caused because the criteria for truncating labels

are based on volume, rather than content, of labels.

In my own model, IDC, the mechanism for managing the interpretation is broadly

based on an ATMS architecture, though this is not particularly explicit (see chapter 6 for

details). More importantly, IDC incorporates a parameter which can be set to simulate

strategy (1) or (2) (strategy (3) is not directly implemented, only simulated - see sec-

tion 6.3.3 on page 143). However, decisions about which representations to maintain are

based on representation quality: any representations which are signi�cantly worse than the

best representation may be removed from consideration. Because the decisions are based

on quality di�erences (rather than maintenance of a �xed number of representations), in

cases where quality di�erences are small, all of the alternatives may be maintained; and in

cases where there are few representations with widely di�ering qualities, the poor quality

representations may be removed regardless of how `full' the stack is. The elements of my

model which handle representation choice are described in greater detail in section 6.4.2

(page 6.4.2).

IDC also uses ideas from the ATMS in calculating the incoherence of nodes in the

knowledge base. Very briey, the knowledge base is labelled in an ATMS-like way; the

occurrence of nodes in labels is then used to determine how often nodes are likely to occur

in representations. This process is described in more detail in section 5.3.3 (page 114).

There is an alternative view of comprehension which is related to the question of multiple

representations. This strand of research is currently important for text comprehension

psychologists, and can be broadly classi�ed as `symbolic-connectionist': a hybrid the-

ory whose models combine elements of propositional representation, production system

architectures, and connectionist algorithms for constraint satisfaction [Holyoak, 1991].

Proponents of these models often criticise `pure symbolic' models for the following reasons:

1. Their view of representations as discrete, distinct, symbolic structures in memory.
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2. Their lack of exibility in processing.

Point (2) is discussed in detail in chapter 4, and particularly in section 4.2.1.

I now discuss point (1), describing symbolic-connectionist theories of interpretation

and how these relate to traditional symbolic models.

Symbolic-Connectionism and Interpretation

A chief aspect of the symbolic-connectionist approach to comprehension is the rejection

of models which �nd the correct representation of a text using very `smart' processes,

such as models based on scripts or other schemas [Kintsch, 1988]. One problem with

smart models is that very little irrelevant information is produced during comprehension:

the representation evolves in an orderly, tidy fashion. This does not mean that the

wrong representation is never produced; often, a drastically poor representation may be

derived based on tiny amounts of irrelevant information. Rather, it is the fact that these

models only �nd one representation to which they cling tenaciously, even in the face of

contradictory or ambiguous information.

Kintsch contrasts this with a view of comprehension as the initial promiscuous con-

struction of inferences, some of which may be incorrect, irrelevant and/or contradictory,

followed by integration of this information into a stable representation (ibid.).6 Alternative

explanations or elaborations may loiter in memory for a while, but can gradually fade out

of the representation if they prove to be unhelpful in forming coherence. The resulting

representation is a network of nodes with attached activation levels; van den Broek et al.

suggest that the level of activation of a node corresponds with its recall probability, which

in turn corresponds to the strength of its encoding [van den Broek et al., 1996].

A couple of issues are raised by this viewpoint:

� How is a stable representation in memory maintained, given that the representation

for a text is characterised as a pattern of activation?

� How could several stable (though perhaps competing or contradictory) representa-

tions be maintained? For example, is there some way of indicating that one pattern

of activation denotes one representation, while a second pattern denotes another?

6Note that this characterisation of the inference cycle can be mapped onto �gure 2.2 of chapter 2,

with the only controls applied being of type (3) (the rules applied are chosen probabilistically) and type

(5) (a relaxation algorithm is used to settle on a new representation).
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In answer to the �rst point, Kintsch states that episodic network representations of

texts are separate from the semantic networks used to construct them [Kintsch, 1988] (I

return to this distinction in chapter 4). In a sense, episodic representations are constructed

by copying elements from semantic memory [Alterman and Bookman, 1992]. A (tiny)

example is shown in �gure 3.9.

inhibitory connections

excitatory connections

rivermoney bank_of_riverfinancial_bank

0.5 0.5

-0.5

-0.5

-10.5

Figure 3.9: A representation of the meaning of `river bank' (after [Kintsch, 1988])

This representation shows both nodes constructed as a result of encountering certain

words in an input, and inferred associates of those nodes. Each node is assigned an initial

activation value, according to whether it is part of the text or inferred. For example, if the

comprehender encounters the phrase `river bank', we could assume that river and both

�nancial bank and bank of river receive some activation. The network is then `relaxed'

by spreading activation between the nodes, according to the connections between them.

This causes the activation of some nodes to drop to zero, while others remain activated

(see [Kintsch, 1988] for full details of the algorithm). Those nodes which remain activated

constitute the `meaning' of the initial input. The program for performing relaxation of

the network is relatively simple; my own implementation produces an `activation pro�le'

for the four propositions of �gure 3.9 as shown in �gure 3.10:7

As can be seen from this pro�le, the propositions river and bank of river remain active,

while the activation of �nancial bank, initially above zero, is quickly inhibited until it

`drops out' of the representation.

7My own implementation of it is written in SICStus Prolog and based on Kintsch's presentation of

the Construction-Integration model in [Kintsch, 1988]; technical information on matrix multiplication

came from Pearl [Pearl, 1988]. I tested the implementation on Kintsch's examples to ensure that the

implementation was producing the correct results (it was).
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Figure 3.10: Activation pro�le for concepts involved in comprehending `river bank'

How does this relate to the issue of multiple representations? The activation pro�le

demonstrates how simultaneous meanings for a word, phrase or other cognitive unit which

are initially contradictory may be resolved to a single unambiguous representation. In this

case, the meanings of bank as `�nancial bank' and `bank of a river' initially compete for

activation; however, the extra activation a�orded the latter meaning by the presence of

the word `river' eventually proves decisive. The �nal episodic representation is therefore

a pattern of activation across a set of nodes; those nodes which carry no activation are

`absent' from the representation.

If the word `bank' is encountered in the context `the bank collapsed', the resulting

activation pro�le might look like �gure 3.11 (page 57). Here, the representation has not

settled on a single meaning of the word `bank', but instead maintains both alternatives.

This is because the word `collapsed' is equally connected to both the `�nancial institution'

and `river bank' meanings for `bank'. Distribution of activation over the alternatives

therefore corresponds to an ambiguous interpretation where alternative representations

are implicitly maintained.

The relaxation process produces activation pro�les which can be compared with psy-

chological data (for example, Kintsch compares the Construction Integration model with

reaction time data in [Kintsch, 1988]). However, while `relaxing' representations show the

time course of activation over concepts, there is no `meaning' within those activations
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Figure 3.11: Activation pro�le for concepts involved in comprehending `the bank collapsed'

beyond `concept A is activated more strongly than concept C'. There is no content in the

connections between concepts, and it is thus diÆcult for a report of comprehension to be

extracted from them. This lack of content arises from the treatment of nodes as `associ-

ations'; there is no explicit process of explanation, and the processes for reasoning about

texts are often absent. For example, Kintsch states that the basic construction-integration

model provides no account of strategic inference processes, such as the construction of

bridging inferences [Kintsch, 1988]:

...the generation of additional inferences [...] is necessary because not all

inferences that are required for comprehension will, in general, be obtained

by the random elaboration mechanism [that is, the promiscuous construction

phase described above]. In some cases more focused problem-solving activity

is necessary to generate the desired inferences. Exactly how this is to be done

is, however, beyond the scope of this article. [Kintsch, 1988]

Garnham notes this tendency in [Garnham, 1996]:

...the relation of association is not suÆcient to model links between pieces of

information conveyed by texts. One piece of information may be strongly (or

weakly) linked to other pieces in various ways.
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He also notes that relations of di�erent types cannot be expressed by associative links

alone. (Although my own model uses a single kind of `link', other types of relation can

be expressed by treating them as nodes (see chapter 6).)

In contrast to symbolic-connectionist models, pure-symbolic models explicitly describe

the processes which lead to a particular representation. In addition, the reasoning process

which constructs episodic representations is intimately coupled with the mechanism for de-

ciding which representations to maintain. This reasoning process is also implicitly encoded

into the representation: concepts are explicitly `bundled' into structures which reect their

derivation (c.f. phrase-structure trees or proofs). This gives far greater scope for retrieving

something akin to a verbal protocol from such systems [Trabasso and Magliano, 1996].

3.2.6 Chapter Summary

In this chapter, I have begun to address some of the issues I introduced in chapter 2:

� I have shown how comprehension can be characterised computationally.

� I have de�ned how interpretations and representations relate to one another: inter-

pretations can be described as sets of representations.

� I have established that representations may be constructed and manipulated com-

putationally, and that the resulting representations broadly qualify as an interpre-

tation.

� I have demonstrated that abductive explanation alone cannot be assumed to de�ne a

representation; instead, some form of heuristic is necessary to specify representation

quality. The quality ratings can then in turn be used to manage the interpretation.

In chapter 4, I turn to de�nitions of semantic representations (abstract representations

in long-term memory). This helps de�ne more accurately the sources of episodic repre-

sentations (i.e. representations which are part of an interpretation). This chapter and the

next are thus complementary: the episodic representations I have been concerned with

in this chapter are intricately connected to the semantic representations described in the

next.
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Semantic Representations

This chapter introduces some central theories about semantic representations in compu-

tational models of comprehension. The main themes are:

1. The role of semantic representations in comprehension.

2. Misconceptions about schemas and the distinction between declarative and opera-

tional aspects of comprehension.

3. An analysis of associative networks as a representational scheme, and an argument

for my use of structured schemas.

This chapter also continues the discussion of inference which underlies this thesis.

4.1 The Semantic/Episodic Distinction

The distinction between episodic and semantic representations was initially proposed by

[Tulving, 1985]. A principle di�erence between these forms of memory is their dependence

on context [McKoon et al., 1986]: episodic memory contains representations of speci�c

events, places, people etc., at particular times and in particular places, and is thus context-

dependent; semantic memory contains general abstractions from instances in episodic

memory which are context-independent and may be culturally shared [Hintzman, 1986],

[Tulving, 1986].

This is the standard paradigm for descriptions of memory in comprehension research.

However, there have inevitably been attempts to show that there is really no distinction

59
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between the two types of memory [McKoon et al., 1986]. As a small example: McKoon

et al. performed an experiment using recognition and lexical decision, hypothesising

that the former was a `prototypical' task for episodic information, and the latter a

`prototypical' task for semantic information [McKoon and Ratcli�, 1979]. They argued

that information from one memory store should not inuence performance on the task

which probes the other store. However, their experiments instead showed that episodic

information led to priming in the lexical decision task, and semantic information led to

priming in recognition.

The separation of semantic from episodic information is easier in computational mod-

els. This is because there is a sharper boundary between the rules which are used to

manipulate data (semantic memory content) and the data themselves (episodic memory

content). For example, in a language processing system, a structure derived by parsing a

sentence resides in episodic memory, while the rules used to produce the parse reside in

semantic memory.

Even here, though, recent research has sought to break down the boundary: for

example, the content of episodic memory is not extensively abstracted to form semantic

content (as in case-based reasoning [Kolodner, 1992]); or actual episodes may be used in

place of rules (as in instance-based reasoning [Aha et al., 1991] or example-based pars-

ing [Somers, 1992]). These approaches delay the need for abstraction until a pertinent

situation arises.

The approach I take is traditional, in that I assume a separation between semantic and

episodic memory. I assume representations in semantic memory which have been derived

by some learning process (such as abstraction from representations in episodic memory

[Mooney, 1990]). However, I do not concern myself with these learning processes.

The representations in episodic memory are constructed via inferences which employ

schemas (see below) in semantic memory. The basic mechanism behind this is copy-based

[Alterman and Bookman, 1992]. In e�ect, this means that the representations in episodic

memory are formed by copying representations from semantic memory; the central di�er-

ence is that the representations in episodic memory have instantiated variables.

The schema is a particularly important form of semantic representation. In chapter 2,

I briey introduced schemas and their computational manifestations. In the remainder

of this section, I describe schemas in more detail, as they form the basis of the semantic

knowledge representation of IDC. In particular, I describe the following aspects of schemas:

� Their general characteristics.
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� Criticisms which have been directed at schemas. I show how these criticisms are

based on a misleading conation of `top-down' processing with `predictive' process-

ing.

� By emphasising the declarative aspects of schemas, I can compare them to related

representational formalisms, such as associative networks. I then show how associa-

tive networks and schemas can be uniformly represented.

4.1.1 Overview of Schemas

A schema is a structure in semantic memory which represents a `cluster of concepts'

[Eysenck and Keane, 1995]. Although schemas are interpreted di�erently according to

the kinds of knowledge they are structuring, they have many common characteristics,

as described below (extended and generalised from Minsky's statements about frames in

[Minsky, 1975]).

Schemas Support Interpretation through Inference

The forms of inference supported by schemas include both forward- and backward-chaining

(see section 2.3.1). These can be implemented by assuming that a schema is equivalent

to a logical implication, and is thus a valid basis for logical inference (see section 4.1.2).

Schemas are Networks within Networks...

Minsky states that `We can think of a frame as a network of nodes and relations', obviously

inuenced by Quillian's theory of semantic networks [Quillian, 1968]. Similarly, schemas

can be conceived of as collections of nodes and relations; each node represents a concept,

and relations show connections between related concepts. Relations may be typed, to

represent di�erent kinds of connection: isa relations (read as `is a', as in `a dalmation is a

dog') and `has-part' (as in `car has-part steering wheel') are two examples. In addition, a

schema for one type of situation may be linked to a schema for another type of situation.

For example, the `living-room' schema may be connected to the `house' schema. So, a

schema is a network of related elements which can itself be a node in a larger network;

presumably, this larger network may be a node in another network, and so on...

The main di�erence between semantic networks and schemas is the bundle of links

inherent in schemas. In a semantic network, relations between nodes are accessed one
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at a time; in a schema, a bundle of links may be accessed en masse. This has led

some researchers to criticise schemas as being `too top-down'; however, they seem to

be confusing the declarative de�nition of scripts with their operational de�nition (see

section 4.2.1).

Schemas Contain Slots

Once a schema has been activated in response to an input, the nodes attached to the

schema become available for `�lling'. These nodes are slots: conceptual spaces into which

actual instances are inserted as they are encountered in the input. A slot can carry

constraints which specify the range of values with which the slot may be �lled; for example,

a slot for `human height' might carry a constraint like 'greater than 30cm and less than

270cm' (to accept both exceptionally short and tall people). A slot may also carry a

default which is used if no information is available to the contrary: for example, the

`human height' slot may carry a default like `180cm'. Defaults may be overridden if

actual values are speci�ed.

Schemas Can Bypass Logic

Minsky intended his theory of frames to allow types of inference which were unacceptable

in classical logic, such as making default assumptions based on incomplete evidence (see

above). However, since publication of Minsky's theory, logic has evolved to accommo-

date exactly these kinds of inference, e.g. Default Logic [Reiter, 1980] and Circumscrip-

tion [McCarthy, 1980]. In addition, others have demonstrated the correlations between

schemas and logic [Hayes, 1980]: as I show in section 4.1.2, both schemas and the forms

of inference associated with them can be represented in logical form. In some respects,

this makes redundant the claim that schemas can perform non-logical inference.

Schemas Can Be Implemented

Schemas are data-structures which can be implemented computationally in several ways,

for example, as production rules or declarative formulae. In the former case, the schema

contains information about how it is to be applied and how to construct representations;

in the latter, schemas contain only descriptive information, without any indication of how

it is to be applied. However they are implemented, perhaps the most important point is
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that schemas can be represented with enough precision to be manipulated consistently by

an algorithm.

As I have hinted here, schemas share similarities with several other representational for-

malisms. In particular, schemas may be expressed as pseudo-logical expressions, which can

in turn be implemented in a computer language such as Prolog. The next section clari�es

this as a background to my discussion of scripts and a justi�cation of the representation

of semantic information in IDC.

4.1.2 Schemas and Logic

One criticism faced by advocates of schema-based theories of representation, particularly

in the �eld of arti�cial intelligence, is that schemas have no well-de�ned semantics or

proper rules of inference [Bartsch, 1987]. In psychological accounts of schemas, there

is no real need for either, as abstract descriptions of frame content and the processes

are suÆcient to make predictions about behaviour (e.g. Haberlandt and Bingham's

anticipation of a processing advantage for events presented in `script' order, as opposed to

reverse order [Haberlandt and Bingham, 1984] - see section 4.2). In AI, though, systems

with ad hoc representations quickly become very messy and complicated, with algorithms

having to be tailored to the particular formalism [Norvig, 1989]. This is a problem in

traditional production systems, where semantic knowledge is mixed with instructions

which make changes to memory states [Laird et al., 1987].

An alternative is to represent semantic knowledge in some form which has a clear

semantics and associated inference rules. First-order predicate calculus (FOPC) is an

example of such a formalism. Although limited in its expressivity, it can easily encap-

sulate schema-type knowledge. These FOPC expressions contain no instructions about

what to do with concepts, instead just stating the static semantic relationships between

them. Several researchers have suggested how schemas may be represented in FOPC

([Hayes, 1980], [Hobbs et al., 1993], [Hongua, 1994]) and related formalisms such as Dis-

course Representation Theory ([Bartsch, 1987]). These suggestions can be merged to yield

a useful notation for schemas, as follows:1

Schema concept �! Slot concept1; : : : ; Slot conceptn:

1This is the notation I introduced briey in section 2.2.1.
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I assume that schemas express a relationship between a concept at one level of detail

and one or more other concepts at a lower level of detail (the researchers I referenced above

take the same tack). Concepts themselves are represented as predicates with associated ar-

guments, in line with standard FOPC and theories such as case grammar [Fillmore, 1968].

One major di�erence in my notation is the use of a Prolog-like representation for variables

which does not use explicit quanti�cation. Bringing these threads together yields schemas

such as:

shopping(shopper:S, store:T, thing bought:B) �!

go(agt:S, loc to:T), �nd(agt:S, obj:B), buy(agt:S, obj:B),

leave(agt:S, loc from:T), type(T, shopping place).

Here, the schema concept is a shopping event, and the slot concepts are the various

events which make up a shopping event, or the steps of the shopping schema. The slot

concepts are considered to be conjoined by the commas, which stand for ^. Each concept

has a list of roles: for example, a go event has an agent (agt) and a location which is the

destination of the event (loc to).

The most diÆcult thing to de�ne when writing schemas as logical expressions is the

exact meaning of �!. In logic, this is treated as an implication, specifying that `if the

antecedent of an expression is true, then its consequent is also true'. Note that the schema

is still declarative, as it doesn't specify how information is added to a representation (as

production rules do); instead it speci�es a relationship which can be employed in inferring

new information, e.g. by modus ponens [Copi, 1978].

Implication is quite restrictive when writing schemas for comprehension. We also want

to use schemas to infer the left-hand side elements, given the right-hand side elements, on

some occasions (see section 2.3.1). For this purpose, it is useful to read �! as specifying

a relationship like `associates with', so that a schema can be read as `the antecedent and

consequent elements of the schema frequently occur together'. The presence of a schema's

consequent elements in a representation can be used as evidence that the antecedent

elements may also be represented (and vice versa). However, the directionality of the arrow

is still important, denoting an asymmetry in the relationship: the antecedent elements

provide a more precise, more speci�c description of the consequent elements, or a reason

why they may co-occur in a representation (c.f. macrostructures [van Dijk, 1977]).

Although I started this section with the claim that logic provides a semantics and

inference rules for representing schemas, I proceeded to twist this claim to admit non-

logical behaviour. However, by maintaining the essentially declarative form of logical
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formulae, but allowing schemas to be used in various ways by inference processes, it is

possible to remove some of the procedural baggage of production rules. This emphasises

the separation between the content of schemas and the uses to which they may be put.

In the next section, I describe a particular class of schemas often implicated in studies

of comprehension: scripts. Throughout this discussion, I emphasise their status as

declarative structures, using notation I have introduced in this section, with the aim

of pointing out where they have been unfairly criticised by some researchers.

4.2 Scripts

Scripts have received much attention in studies of comprehension

[Schank and Abelson, 1977]. Although they are now rather unfashionable, some

researchers still covertly refer to them under other names, perhaps wary of appearing

out-of-touch (e.g. `causal schemes' in [Noordman and Vonk, 1998]).

Scripts can be thought of as schemas which possess all of the aforementioned schema

characteristics, but which additionally contain event order information; this is not

considered to be included in other types of schemas, such as those for categorisation

[Barsalou and Sewell, 1985]. In other words, scripts contain sequencing information

(normally causal) which facilitates integration of the input text into the representation

[Haberlandt and Bingham, 1984], [Schank and Abelson, 1977]. Sequencing information

has two e�ects:

� Comprehension speed-up: events presented in the text in same order as in the script

will be comprehended more quickly [Haberlandt and Bingham, 1984]. Presumably

this is because the initial activation of the script by an event A (its `triggering')

makes the consequent elements of the script (those ahead of A in the causal chain)

more available to the processor. Subsequent events which �t these consequent

elements can therefore be smoothly integrated into already-active slots, without the

requirement to retrieve knowledge structures for their integration. If the event order

is disrupted, as it is in [Haberlandt and Bingham, 1984], the `predicted' elements do

not occur and activation must be redistributed to account for the causal break.2

� Recall improvement: the ordering of the script's events allows them to be recalled

more readily and to be recalled in the correct order [Bower et al., 1979]. This is

2This point has never been explained to my satisfaction, so this is my own suggestion.
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because a representation produced using a script contains causal information which

can be utilised during recall: rather than having to recall events individually, causal

chains provide a means for linking events. Once an initial event has been recalled,

the other events connected to that event are also activated via these causal chains,

and are thus easier to retrieve from memory.

So, the important di�erence between scripts and other kinds of schema is the kind of

information that scripts contain which other types of schema do not. Other types of

schema generally take the form of frames, which typically represent objects, scenes or

`static' entities, and lack causal ordering information [Minsky, 1975].3 However, apart

from the presence of causal relations, scripts have much the same characteristics as other

types of schema (see section 4.1.1). Points made about scripts can thus be taken as being

applicable generally to schemas.

The reason for taking time to describe scripts separately is because they are typically

associated with a certain mode of processing, generally known as expectation-based or top-

down [Singer et al., 1994], [Trabasso and Magliano, 1996]. In the next section, I describe

how expectation-based processing has been criticised for its failure to account for human

comprehension. This failure has been taken to indicate the inviability of scripts as a

theory of representation. However, I show how this criticism is based on confusion of

de�nitions, and can be partially remedied by clarifying some key terms.

4.2.1 Are Scripts Too Top-Down?

According to Kintsch, systems based on scripts rely too heavily on top-down processing

[Kintsch, 1988]. Kintsch quotes Schank's statements about comprehension in relation to

this criticism [Schank, 1978]:

We would claim that in natural language understanding, a simple rule is

followed. Analysis proceeds in a top-down predictive manner. Understanding

is expectation-based. It is only when the expectations are useless or wrong

that bottom-up processing begins.

As Kintsch points out, expectation-based processing seems to be the exception rather

than the rule. If comprehension were expectation-based, one would expect the compre-

hender to be involved in so-called `predict-and-substantiate' processing [DeJong, 1979]. In

3Note that the term `frame' has again been modi�ed to describe script-like, frame-like and prototypical

structures which can be dynamically modi�ed in [Barsalou, 1992].
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predict-and-substantiate processing, the comprehender typically makes many predictions

about forthcoming text, which are either supported or denied by the text. However, the lit-

erature indicates that predictive inferencing is limited in scope, and highly constrained by

the content of the text read so far (see [Trabasso and Magliano, 1996], [Singer et al., 1994]

and section 2.3.1).

An important point is that Kintsch's criticism applies to the mode of processing associ-

ated with script-based systems, rather than the actual `static' structure of scripts. To use

a term from computer science, the criticism is directed at the operational interpretation

of scripts, rather than their declarative interpretation [Sterling and Shapiro, 1994]. To

make this point clearer, consider the following rulebase:

(1) rob(agent:X, place:Y) �!

go(agent:X, to:Y), hold up(agent:X, place:Y),

leave(agent:X, from:Y).

(2) visit(agent:X, place:Y) �! go(agent:X, to:Y)

(3) visit(agent:X, place:Y) �! explore(agent:X, place:Y)

(4) visit(agent:X, place:Y) �! leave(agent:X, from:Y).

If we treat these rules as declarative structures, there are several ways in which they

could be applied to an input text. For example, rule (1) could be treated as a script, in

the sense suggested in [Hobbs et al., 1993] (see section 4.1.2): if the event go(agent: jack,

to: wimpy) were observed, for instance, it would be possible to `trigger' the script and

infer rob(agent: jack, place: wimpy). This triggering could then be used as the basis for

a set of predictions: for example, forward-chaining from rob(agent: jack, place: wimpy)

(see section 2.3.1) would yield the two predictions hold up(agent: jack, place: wimpy) and

leave(agent: jack, from: wimpy). The comprehender's aim might then be to substantiate

these predictions, seeking con�rmation in the remaining text. This method for applying

a script treats it as a `cognitive unit': activating a script activates all of the elements it

contains [Walker and Yekovich, 1984].

However, it would also be possible to hold back from making any predictions, instead

ignoring the unmatched consequents of the rule. Here, the script is being partially applied,

and only selected elements are being activated. The inference that rob(agent: jack, place:

wimpy) could still be represented in memory, but the remaining component events left

unspeci�ed.

By comparison, rule (2) could be triggered to yield a single new inference, visit(agent:

jack, place: wimpy), based on the same go(agent: jack, to: wimpy) event. This time,
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there is no need to make predictions based on this rule, as its `slots' have been completely

�lled (see section 4). However, note that `top-down' predictions are possible using other

rules: even though the events are not gathered into a script, there are still other possible

consequences of visit(agent: jack, place: wimpy), namely explore(agent: jack, place:

wimpy) and leave(agent: jack, from: wimpy).

From this simple demonstration, we can see how structures which look like scripts (rule

(1)) and structures which look like links in an associative network (rules (2) - (4)) can be

expressed in a similar format. The point is that scripts in themselves are not top-down, in

the predictive sense; they can be used to perform expectation-driven comprehension, but

in some senses the triggering of a script is still bottom-up. By the same token, models

which employ rules representing associations between pairs of elements, like rules (2) - (4)

above, are still capable of top-down inference: they can be used to produce predictions,

if these kinds of inference are allowed by the algorithm. But because rules which connect

pairs of elements resemble an associative network (see section 4.3) when drawn on paper,

there is a tendency to forget the network's computational equivalence to a rulebase. There

is also a tendency when drawing such networks to remove the `arrows' which represent

the ow of information, so that there no longer appears to be a `top' and `bottom', only

`associations'. Figure 4.1 demonstrates how both script-type and associative rules may be

interpreted as a network. Note that the links in the diagram are non-directional, so that

inferences may be made (activation passed) in either direction; if bi-directional chaining

with the rules were allowed, their directionality could be overridden, yielding the same

behaviour as an associative network.

So, scripts are no more `top-down', in the predictive sense, than associative networks.

This is the usual interpretation of top-down in the context of scripts. However, another

possible meaning for the term top-down is `conceptually-driven', as opposed to `stimulus-

driven' (bottom-up) [Eysenck and Keane, 1995]. This is a more important criticism,

which I discuss in the next section.

4.2.2 Scripts and Information Accessibility

The conceptually-driven nature of scripts is derived from the way they struc-

ture information: they cluster concepts and make them accessible en masse

[Walker and Yekovich, 1984]. Scripts thus support conceptually-driven comprehension

by making large amounts of information available by application of a single rule. By

comparison, associative rules are more data-driven, in that new information is introduced
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visit(agent:X, place:Y)

explore(agent:X, place:Y) leave(agent:X, from:Y)go(agent:X, to:Y)

visit(agent:X, place:Y) ---> leave(agent:X, from:Y).

visit(agent:X, place:Y) ---> explore(agent:X, place:Y).

visit(agent:X, place:Y) ---> go(agent:X, to:Y).

Figure 4.1: Representing rules as a semantic network

slowly and in small amounts; there is more of a tendency to stay close to the `data' of the

text.

The `size' of a rule describes the amount of information it makes available: the greater

a rule's size, the more information it `makes accessible' when it is triggered. To make this

more concrete, consider some concepts related to robberies structured in two di�erent

ways: �rst, as a large script-like rule, relating a single higher-level element to several

subordinate elements; second, as a set of smaller rules, associating pairs of elements. This

yields two representations of the robbing concepts:

1. Script-like rule

rob(agent:X, place:Y) �!

go(agent:X, to:Y), hold up(agent:X, place:Y), leave(agent:X, from:Y).

2. Set of associative rules

(a) rob(agent:X, place:Y) �! go(agent:X, to:Y).

(b) rob(agent:X, place:Y) �! hold up(agent:X, place:Y).

(c) rob(agent:X, place:Y) �! leave(agent:X, from:Y).

Imagine also a comprehender who can forward- or backward-chain on rules, as de�ned

previously, and has the capability to instantiate unmatched elements of a rule once it has

been triggered (uninstantiated elements are thus made accessible by triggering).



Chapter 4. Semantic Representations 70

For example, if a comprehender with rule (1) matches it against the event

hold up(agent: jack, place: wimpy), they can infer rob(agent:jack, place:wimpy); the other

elements of the rule, go(agent: jack, place: wimpy) and leave(agent: jack, place: wimpy)

are made accessible, and may be instantiated immediately (or left uninstantiated).

Instead, if a comprehender had rules (2a) - (2c), they could also infer rob(agent:

jack, place: wimpy) from hold up(agent: jack, place: wimpy). However, no additional

elements are made accessible by triggering the rule, as both sides of the rule have been

fully instantiated. This could be remedied in subsequent inference generation cycles, by

applying rules (2b) and (2c); eventually this would access all of the information clustered

in rule (1).

Note that the predictiveness (in the temporal sense) of the inferences is not really the

issue here. Instead, the way the rules package information determines how they make the

comprehender aware of possible large-scale structures. Another way of thinking about

this is in terms of how the size of a semantic representation allows the comprehender

to exercise control over their comprehension. It is important to note that this doesn't

necessarily mean that temporally predictive inferences will be made, or that inferences

outside the scope of the schema will not be made. Rather, the clustering of information

makes it possible for the comprehender to predict which information is likely to be useful

for comprehension of the remaining text.

To clarify this, I discuss what I perceive as more telling di�erences between associative

networks and schemas in the next section.

4.3 Associative Networks

As I've shown in the previous sections, the usual criticism of scripts is that they are too

top-down and/or too predictive. This criticism is based on a confusion of how scripts

structure information (declarative de�nition) and how that information may be applied

(operational de�nition). I also showed how these issues could be separated out from one

another, and how complaints about the operational de�nition can be countered.

However, there remains the criticism that scripts are just `too big' and make too much

information accessible per processing cycle. As this also applies to schemas in general, I

will widen the discussion to encompass them.

An alternative to `bulky' structures (schemas) in semantic memory is provided by asso-

ciative networks. I use this term here to encompass a range of models with similar features,
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such as the semantic networks of [Quillian, 1968], the event concept coherence networks

of [Alterman and Bookman, 1992], and the numerous psychological models which contain

networks of propositions (e.g. [Kintsch, 1988], [Trabasso and Magliano, 1996]). In terms

of semantic representation, the di�erence between a schema and an associative network

is the arrangement of the links between memory nodes:

� In a schema, links may represent one-to-many relationships: a single link may attach

one schema-level node to several, grouped lower-level nodes.

� In an associative network, the links between nodes are one-to-one: each link connects

only a pair of nodes.

This is the only real di�erence between associative networks and schemas when decid-

ing which is the more viable decription of semantic memory structures. Kintsch claims

that the distinction between associative networks and schemas is that associative networks

contain no `prestored structures' [Kintsch, 1988]. I suggest that both contain prestored

structures, but that the size of these structures is reduced in an associative network to

pairs of nodes. The distinction is illustrated in �gure 4.2.

buy_ticket view_movie buy_ticket view_movie

movie_going movie_going

Associative networkSchema

Figure 4.2: Alternative semantic representations of the same knowledge

Both (a) and (b) represent the same knowledge, in the formats introduced

previously: a movie going event has a buy ticket event and a view movie event as

two of its subevents (other subevents have been omitted from the diagram) (after

[Alterman and Bookman, 1990]). However, the arc in the schema illustrates that the

concepts are clustered under the schema node: they are considered to be collectively

implied by the presence of that node in a representation. The arrows in the schema

indicate this clustering e�ect.
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In terms of processing, this gives the bene�ts described in section 4.2.2: the comprehen-

der potentially has immediate access to a bundle of related information. The declarative

di�erence thus yields a processing bene�t which may create operational di�erences between

schemas and associative rules: clustering of information can be utilised when exercising

control over comprehension, as described in the next section.

4.3.1 Control and Marker Passing

In section 4.2.1, I argued that di�erent declarative formulations of rules could produce the

same behaviour under the right kind of `controller'. The controller thus seems to dictate

the general operational interpretation of the knowledge base.

However, the fact that a schema makes a cluster of information available could be

exploited by the controller; in this way, the comprehender's behaviour is inuenced

operationally by schema structure. For example, the controller could use the currently-

active script to direct rule retrieval (see step 2 of �gure 2.2 on page 21): that is, the

currently active schema may be used to retrieve a set of potentially useful rules for

processing the remainder of the text. Or, the inferences allowed may be prescribed by the

content of the schema; any parts of the text which do not match slots of the schema are

discarded.

By contrast, if the comprehender has rules which contain minimal structure, there is a

greater tendency for irrelevant information to be inferred; often, exibility is achieved by

sacri�cing control. Irrelevant informationmay, of course, be pruned out of a representation

(for example, using the kind of integration process suggested in [Kintsch, 1988]; or by

using probabilistic retrieval rules for generating associates of text propositions to limit

the amount of associations made (ibid.)). However, in any realistic model which actually

has to construct representations, there are far too many pitfalls in allowing rampant

activation of associated nodes.

An example from AI illustrates this point. A particular class of comprehension mod-

els in AI is based on a theory of marker passing ([Alterman, 1985], [Charniak, 1983],

[Norvig, 1989]). Marker passing is a computational realisation of spreading activation

over an associative network; it has the following general features:

� The nodes and connections of the associative network are represented by appropriate

data structures, e.g.

{ node(shopping), node(store).
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{ connection(store of, shopping, store). This connection encodes the in-

formation that the shopping node and the store node are connected by a

store of relationship.

� When comprehending a text, each proposition initiates the passing of a mark from

the node representing the proposition to other nodes in the network.4 The markers

thus carry activation around the network.

� Marker passing involves copying a marker at one node to create a new marker at

another node of the associative network. Each marker has a level of activation and

a record of the path from its origin node to its current location. For example, if a

marker were passed between the two nodes described above, the path might be:

path(shopping, store of, store)

� Activation is degraded as a marker moves further away from its origin, and as its

age increases.

� Where two markers meet at a node, a path connecting the origins of the two nodes

is returned.

� Inferences are made either by using the returned paths directly, or by deriving a

representation from the most useful paths.

This is a generalised description of marker passing, mainly derived from [Charniak, 1986].

All marker passing models su�er from a variant of the promiscuity problem described

in section 2.3. Often, too many paths are returned, most of which prove to be worthless

(Norvig cites a �gure of 10% useful paths returned [Norvig, 1989]). One particular problem

occurs where concepts have a large number of links attached to them; for example, a class

like `mammal' is connected by isa relations to many animal classes, such as `dog', `human',

and `cat'. Marker passing has a tendency to �nd many paths between concepts which are

isa related, but this information is seldom useful: given the sentence `John walked his dog'

the information that both John and his dog are mammals is not particularly enlightening.

However, this is the kind of inference which unbounded marker passing can return.

What is causing this problem? Returning to the idea of information clustering, marker

passing su�ers from a lack of context recognition: because the marker passing mechanism

4In Charniak's formulation, markers can also be passed from individual words.
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treats each node in isolation from others in the representation, there are few clues as

to which groups of propositions from the text are likely to `belong together'. (This

problem also feeds into probabilistic methods for rating interpretations, as described in

section 5.1.5.)

By contrast, if schemas are used in a comprehension system, the retrieval of information

as a cluster suggests the kinds of relationships which may be found during comprehension

of subsequent text. In fact, scripts were initially developed as mechanism for controlling

the kind of promiscuity exhibited by marker passing systems: by suggesting the kinds

of information to be expected in the remaining text, inferences can be directed along

productive lines [Dyer et al., 1992]. However, the early realisations of these ideas were

too extreme, for the following reasons:

� Too much information was contained in a script and made inaccessible to the other

scripts (i.e. information about events could not be shared between scripts). The

MOP was developed as an antidote to this problem [Schank, 1982].

� Expectations about the remaining text were actually asserted into the text as

temporally-predictive inferences.

As an alternative to this extreme view of scripts, consider a case where the information

clustered by a schema is not necessarily asserted whenever the schema is accessed. Instead,

the amount of information clustered could direct inference generation: the volume of

information made available by the schema is used to estimate the utility of applying

it. Schemas which supply a few quality-increasing inferences should be asserted, while

schemas which would require many assumptive inferences (e.g. temporal predictions,

inferences about the types of entities involved in the schema's events) should not be

employed.

This is comparable to a form of control suggested for marker passing models, the

so-called anti-promiscuity rules suggested in [Norvig, 1989]. There are two forms of anti-

promiscuity rule, static and dynamic:

1. Static anti-promiscuity

Designate as `promiscuous' those nodes in the network which have more than n links

attached to them, where n is some constant set by the system designer. Promiscuous

nodes are barred from receiving markers.
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2. Dynamic anti-promiscuity

Run the system on a representative sample of texts; on each run, count the number

of markers on each node which received markers; next, total these counts for all runs;

then designate as promiscuous those nodes in the associative network which have

accumulated more than nmarkers, where n is again set by the designer. Promiscuous

nodes cannot be used as part of certain classes of inference.

In both cases, nodes which tend to occur frequently in representations are assumed to

denote less useful information; the metric used to measure promiscuity of a node is thus

being used to control the system's inference generation.

The extension of this idea to schemas (with some input from other formalisms) is be-

hind my own metric for decision making during inference generation. The main di�erences

are:

� I take advantage of the inherent structure of the knowledge base to determine the

`utility' of individual nodes. Utility measurement depends on analysis of the clusters

of knowledge associated with each node.

� The utility of making an inference using a schema depends on:

1. The utility of its component nodes.

2. How closely those nodes match elements of the current representation.

The utility of applying a given schema is measured in terms of the quality the resulting

inferences will add to the representation. The full realisation of this idea is left until

chapter 5.

This section has given reasons why clustering of concepts within a schema is advan-

tageous to the comprehender. Because the knowledge in a schema comes `pre-packaged',

the comprehender has an idea of the information it potentially entails. If the commitment

required to infer this information is too great, the comprehender can decide not to apply

the schema. In addition, if there are two or more schemas competing to represent a text,

their size may be used to settle the competition.

By contrast, when using an associative network to suggest or generate inferences the

controller has no knowledge about what other concepts are likely to be retrievable once a

particular node is activated; activation of subsequent nodes is not directed.
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However, this may not be the whole story. Is there any way in which associative

networks could produce the same kinds of e�ects as schemas? For example, are there psy-

chological e�ects associated with schema application which can be simulated by associated

networks? I turn to this issue in the next section.

4.3.2 Are Schemas Necessary?

The claim made by advocates of associative networks is that the weak method of

associative retrieval, coupled with an appropriate set of weights and a relaxation

algorithm, can produce the same e�ects as a schema-based approach. One testing ground

for this idea is given by [Kintsch and Mannes, 1987]. In their model, based on the

Construction-Integration framework previously discussed in section 3.2.5, they attempt to

show how experimental data attributed to schemas can be accounted for by a minimally-

organised associative network.

The particular data they are interested in are how people generate a list of a script's

subevents. They compare this task with performance on the generation of category

members. For example, when subjects are asked to generate members of categories, they

typically produce `an initial burst of typical exemplars for categories via superordinate

relations during unconstrained and typicality generation' [Barsalou and Sewell, 1985].

By contrast, when asked to generate script subevents, retrieval proceeds smoothly;

the number of items retrieved is linear in the amount of time spent on the task

[Kintsch and Mannes, 1987]. This phenomenon has been taken as evidence of the

existence of scripts: it is argued that a script contains temporal sequencing information

which is made available once it is activated; this then allows smooth retrieval of the

information encapsulated by the script [Barsalou and Sewell, 1985].

Kintsch and Mannes demonstrate how the linear retrieval e�ect can be replicated

by augmenting an associative network with nodes representing the temporal relation-

ships between pairs of event nodes. For example, they add a node representing be-

gin(grocery shopping, enter). The network is then manipulated by spreading activation

and the most highly-activated nodes are assumed to be retrieved. The resulting graph

shows retrieval of script subevents to be linear in the time spent on the task (see �gure 6

of [Kintsch and Mannes, 1987]).

While there is no organisation in this associative network in the sense I've suggested

previously (i.e. information clusters on a large scale), there is de�nitely structure inherent

in the network. Although there is no explicit hierarchy, the fact that some nodes repre-
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senting `script headers' are highly connected to many other nodes allows them to pass

activation quickly and eÆciently to relevant parts of the network. These groups of highly-

connected nodes are functionally equivalent to a schema, in the sense that once one element

of the group is activated and added to the representation (e.g. a node corresponding to a

script episode) the other elements of the group are virtually guaranteed to follow suit. The

weights attached to the nodes in the group are such that they quickly excite each other

and inhibit nodes outside the group. This model of script-like e�ects is closely related to

the `cluster of closely associated concepts' notion of [Walker and Yekovich, 1984] (despite

Kintsch's protestations to the contrary).

In a pure-symbolic model (see section 3.2.5), the same e�ect occurs but at a much

faster rate. Once a schema is selected, its `activation' is immediately maximised, while

that of other schemas is immediately dampened to zero. All of the items in the schema

may then be retrieved from the activated schema one after the other in order.5 What

may take several cycles to achieve in a symbolic-connectionist model is thus achieved in a

single cycle by the pure-symbolic model; this is not all good news, though, as the gradual

deactivation curve of irrelevant schemas is reduced to an immediate drop from `activated'

to `deactivated'.

It seems as though script-like retrieval e�ects can be reproduced without immediate,

equalised activation of whole groups of nodes in semantic memory (as is hypothesised

to occur in schemas). It also seems as though the graceful curves associated with hu-

man behaviour are much closer to the output of associative network models than the

steep, all-or-nothing activation pro�les of pure-symbolic models.6 This is a perennial

problem in trying to get pure-symbolic models to concur with human reaction-time data

[Garnham, 1996].

4.3.3 Bene�ts of Schemas

In this chapter, it may seem that I have tried to condemn associative networks. It

is important to note that this is not my aim; instead, I am reinforcing the comments

already made by those who employ these forms of representation: associative activation

5Walker and Yekovich criticise the assumption of equal activation across all of a script's

concepts by showing that peripheral script events receive less activation than central events

[Walker and Yekovich, 1984].
6Other models based on symbolic-connectionist frameworks show a similar correspondence with human

data (e.g. [Sharkey, 1990]).
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of concepts cannot cover all forms of inference, and provides a sparse model of strategic

inferences in particular (see section 3.2.5).

Some of my criticisms are based on computational criteria: for example, associative

networks tend to su�er from inferential promiscuity. It is diÆcult to see how this could

always be solved by a relaxation process which takes no account of structural information,

as provided by schemas.

I am also suspicious of hand-coding of the networks which are used to prove the eÆcacy

of the Construction-Integration model. Because the process which constructs the networks

is based on intuition, much of the mess which would be returned by a computational model

is removed. In some of Kintsch's examples, there seems to be no rational reason why some

inferences are included and others not. This is true of one case where Kintsch discusses

pronoun resolution for the following text:

The lawyer discussed the case with the judge. He said \I shall send the

defendant to prison".

Kintsch wants to show how the Construction-Integration model resolves the pronoun

`he' to the judge, rather than the lawyer. To this end, he constructs the network shown

in �gure 4.3.

Note that there is no association from send(lawyer, defendant, prison) to a corre-

sponding sentence(lawyer, defendant). Why is this the case? Kintsch states that it is

because `the process of associative elaboration generated some additional information for

SEND[JUDGE, DEFENDANT, PRISON] but not for SEND[LAWYER, DEFENDANT,

PRISON]' [Kintsch, 1988].

But, if a computational system generated the sentence(judge, defendant) inference

using a rule like

send(A;B;C) ! sentence(A;B):

why would the same rule not generate sentence(lawyer, defendant)? The reason for the

exclusion of the latter inference is because the intuitive rules applied by Kintsch constrain

the retrieval of associated nodes according to the types of entities involved in a proposition

(c.f. the role traditionally ascribed to scripts): sentence(lawyer, defendant) is not retrieved

because lawyers don't sentence people.

The computational rules which could actually automate this process are not as discrim-

inating as Kintsch, however. They would need explicit de�nition of the types of entities
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inferences 

inhibitory connections

excitatory connections

speech1 = "I shall send the defendant to prison"

discuss(lawyer, judge, case)

sentence(judge, defendant)

send(judge, defendant, prison)

say(judge, speech1)

send(lawyer, defendant, prison)

say(lawyer, speech1)

Figure 4.3: Pronoun resolution network (�gure 7 of [Kintsch, 1988])

that can be involved in events. This immediately complicates the rules and increases the

number required; this consequently increases the risk of inferential promiscuity.

Because I am interested in producing a computational model which both constructs

and evaluates representations, I am compelled to utilise the computational bene�ts of

schemas.7 This relies on using them to guide inference generation by exploiting the amount

of information they make available to the comprehender. Because concepts are clustered

into schemas the information which is common to concepts in the cluster is readily

distributed: for example, if the types of several entities in a text correspond to a cluster

of types de�ned in a schema, it is likely that the script is applicable. This commitment to

schemas does not necessarily mean a commitment to excessive elaborative and predictive

processing: this can be avoided by separating the operational and declarative de�nitions

7It is interesting to note that Kintsch seems to have recently admitted scripts as useful comprehension

tools [Kintsch, 1998]. He even seems to be suggesting that scripts make information available in the

manner I described in the section 4.3.1 (i.e. text statements processed after activation of a script can be

`slotted' into its structure).
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of schemas.

4.4 Chapter Summary

A central aim of this chapter and the previous one has been de�nition and separation

of several facets of comprehension which are often poorly de�ned or confused with one

another, namely:

1. The reasons why interpretations are constructed.

2. The form of the episodic representations and interpretations produced.

3. The processes by which episodic representations are constructed (i.e. inferences).

4. The semantic representations used as the basis of inference generation.

5. The distinction between the operational and declarative de�nitions of rules in se-

mantic memory.

Detailed descriptions of the mechanisms used to resolve these issues in my own model

are given in chapter 6.

I have deliberately avoided one main issue so far which binds together several facets

of comprehension: the issue of representation quality. In the discussion of schemas, I

outlined how the amount of information contained in a schema can be used to measure the

usefulness of an inference in terms of how it contributes to the quality of a representation.

In the next chapter, I de�ne how the utility of inferences can be determined by reference

to their impact on representation/interpretation quality. This includes descriptions of:

� Previous attempts to de�ne quality metrics for interpretations;

� Commonalities between those metrics;

� The role of coherence in comprehension;

� Computational models of coherence;

� A model of incoherence which attempts to unify themes from several other metrics.



Chapter 5

Metrics for Comprehension

In the previous chapters I have discussed the mechanisms underlying comprehension. An

important distinction made in those chapters was between the declarative aspects of the

comprehension system (e.g. static knowledge structures) and the operational aspects

of the system (e.g. how those knowledge structures are applied). The framework I've

developed so far depends on the following elements:

� A production system architecture based on cognitive principles.

� A knowledge base consisting of schemas.

� A characterisation of comprehension as reasoning with both forward- and backward-

chaining.

� An abstract characterisation of interpretations as sets of representations which

`compress' and structure the information in a text.

� A computational description of representations as episodic networks.

Throughout I have also described the inuence of control on comprehension; particularly

important are the roles of quality and quality monitoring. So far, I have resisted the

temptation to discuss what quality might actually be as this chapter is reserved for that

purpose.

Although quality is intricately tied to the processes of many models and is thus diÆcult

to separate out at times, I have attempted to do so in this thesis. The reasons for this

are:

81
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� Many AI systems actually have the same underlying model of comprehension

processes, di�ering instead in their characterisation of quality: for example,

abduction is the mechanism in both ACCEL [Ng and Mooney, 1992] and Wimp3

[Goldman, 1990], but the quality metrics used are coherence-based and probability-

based respectively.

� In cognitive psychological models of comprehension, the actual processes by which

representations are constructed vary from theoretical ([Kintsch, 1998]) to pseudo-

coded ([Fletcher et al., 1996]); very few of these models have a fully-edged inference

engine. However, the metric for comparison of representations, whether implicit

(see section 3.2.5) or explicit [Read and Marcus-Newhall, 1993], is often more fully

developed.

� For engineering reasons, isolation of the metric in a separate `module' makes program

modi�cation and testing easier. However, this can make metrics more open to

criticism. When reduced to their bare bones, many of them appear quite spartan;

if buried in code, they seem far more exotic and much more diÆcult to analyse. I

have attempted to isolate previous metrics from the processes which employ them.

This has a twofold e�ect:

1. It allows more accurate comparisons between and description of the metrics.

2. It allows discussion of metrics in isolation from inference processes. The ten-

dency in papers on AI text comprehension systems is to obfuscate metrics

by making them an adjunct to the description of the inference processes.

Sometimes, they are even treated as an aside, almost unworthy of comment.

In cognitive psychology, the tendency is more towards treatment of representa-

tions as a `given' input to a connectionist relaxation metric, with little attention

being given to how the structure of a representation a�ects how a network will

relax (a notable exception being [Read and Marcus-Newhall, 1993]).

This chapter therefore attempts to discuss quality metrics with respect to some `given'

representations; however, I hope the previous chapters have de�ned suÆciently how these

representations may arise.

One aim of the metric described in this chapter is to de�ne how gross-level structural

information may provide a more computationally attractive and simple model of quality

than other models (such as those based on probability). In addition, incoherence also
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provides an appealing account of quality monitoring which is lacking in AI models, and

seems necessary given psychological data.

5.1 Representation Quality

In section 3.1, I briey described how I view quality with respect to economy: the

comprehender is attempting to �nd an interpretation for a text which relates it to as

much previous knowledge as possible, allowing it to be usefully structured for recall and

learning. Economy can be described in terms of possible representations, where the �nal

interpretation compresses the text's potential entailments to within the comprehender's

threshold for incoherence. The quality of the �nal interpretation is therefore determined

by the quality of the representations of which it is composed.

This is a very general categorisation of interpretation, and one which some researchers

would dispute (for example, it makes no explicit use of probability in the world). The

following sections lead into a justi�cation of my concept of incoherence (that is, reduc-

tion of possible structural complexity) by �rst describing some previous approaches to

representation quality. Perhaps the most important and psychologically relevant of the

approaches is based on coherence, to which I devote more time. I tentatively link each

description to the later de�nition of incoherence, where the links become more explicit.

A brief aside: it may seem as though I have switched from talking about interpretation

quality to talking about representation quality. This is because most researchers do not

distinguish between an interpretation, possibly consisting of several representations, and

the representation as an entity in its own right. More often, the representation and the

interpretation map one-to-one onto each other; in many cases, a representation is reduced

even further, to the level of an explanation of a text (in the abductive sense of section 3.2).

For the purposes of this chapter, I initially talk about single representations, and assume

that an interpretation is composed of a lone representation. In the next chapter, I will

return to the distinction between interpretations and representations.

5.1.1 Speci�city

The �rst characteristic of a good representation is that it should represent as speci�c a fact

as it is possible to determine from a text [Wilensky, 1983]. Text propositions are speci�ed

by concretion, `a kind of inference in which a more speci�c interpretation of an utterance

is made than can be sustained on a strictly logical basis'. Concretion constitutes a
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mechanism of `default classi�cation': vague collections of text propositions are `concreted'

into more substantial, integrated structures [Jacobs, 1988], [Wilensky et al., 1988].

An example due to Jacobs is based on the sentence `John gave a kiss to Mary'

[Jacobs, 1988]. The word `gave' has a primitive semantic meaning akin to `transfer';

however, in this example, the more speci�c meaning `John kissed Mary' is more `useful'

or concrete.1 By re�ning the ambiguous representation `John transferred a kiss to Mary'

to `John kissed Mary', a more accurate representation is formed.

Speci�city is also an important element in the comprehension of texts. For example,

representations of the following text are possible at various levels of speci�city:

John went to the supermarket. He put on the uniform.

One possible representation could delineate the causal relationships between the sentences

of the text: in this case, John's travelling to the supermarket enables him to put on

the uniform [van den Broek, 1990b]. Alternatively, the comprehender could infer that

John went to the supermarket in order to work there [Ng and Mooney, 1990]. Another

possible representation may involve the inference about John's motivation, plus some

elaborative inferences which detail John's means of transport, what his uniform looked

like, what the supermarket looked like, and so on [Whitney et al., 1991]. Each of these

representations has a level of speci�city associated with it, though this may be diÆcult

to discern. Are representations describing causal interactions more or less speci�c than

those which describe motivations? Does elaboration make a representation more speci�c?

A �rst step towards de�ning representation speci�city may be to consider what is being

speci�ed. As I have stated before, a representation is composed both of observations

and inferred propositions which explain or elaborate those observations. The latter

may themselves be explained or elaborated. For example, given the text above, if a

comprehender knows that John's going to the supermarket (G) can be explained by his

goal to work there (W ), and his goal to work there explained by his desire to earn money

(D), then the following representation could be constructed:

D explains W explains G

Depending on whether the comprehender possesses other knowledge about earning

money, supermarkets, uniforms, etc., there may be other possible explanations. However,

1I'm using the idea of `primitive' semantics loosely here, in the sense suggested in

[Wilensky et al., 1988].
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if a proposition is an `end in itself' and cannot be further explained, it could be considered

completely explained. Similarly, if there are no other representable consequences of a

proposition, it could be considered completely elaborated.2 In the ideal (exhaustive)

situation where all the possible explanations and elaborations of a text are part of its

representation, the representation could be considered maximally speci�c. The speci�city

of a representation may therefore be de�ned as the level of completion of its potential

entailments and elaborations: the more missing information in a representation, the

greater its level of vagueness (see section 5.1.2), and the lower its speci�city.

However, in practice, a comprehender doesn't form maximally speci�c representations.

This would require exhaustive, time-consuming inference and memory-intensive storage.

Instead, representations are constructed to a particular level of speci�city. Previous

approaches have either ignored the possibility of varying the level of speci�city or as-

sumed that the instantiation of structures at a particular level of speci�city is the aim of

comprehension. By contrast, IDC is able to make more-or-less speci�c inferences according

to how its parameters are set; the measurement and tracking of speci�city is described in

section 5.3.

5.1.2 Simplicity

Simplicity is important in de�ning good explanations: the simpler an explanation, the

better the quality of that explanation. This criterion can be traced back to Occam's Razor,

which speci�es criteria for deciding between explanations on the basis that `entities are not

to be multiplied beyond necessity' [Carroll, 1998]. In other words, the best explanations

are those which require the fewest unique or new entities to be invented/assumed. This

criterion is important in �elds such as medical diagnosis, where an examiner will prefer

to infer the fewest diseases which could cause a set of symptoms. For example, given that

someone is gaining weight, has an upset stomach and is feeling tired, it may be better to

infer that they are pregnant, rather than inferring that they have have stopped exercising

(explains `gaining weight'), have a stomach virus (explains `upset stomach'), and have

mononucleosis (explains `feeling tired') [Read and Marcus-Newhall, 1993]. Simplicity is

also useful for assessing the quality of explanations whose a priori probabilities are not

known (e.g. competing scienti�c theories; see [Thagard, 1988] and section 5.1.5).

Simplicity is a popular criterion in AI, because it can be implemented by counting the

2In a computational model, `completely explained' usually means that no rule for explaining that

statement is present in the knowledge base; similarly for `completely elaborated'.
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number of assumptions required for a logical proof and comparing this with the number

of elements of the input which are explained. This returns us to equation 3.1 from the

last chapter, which is repeated here:

A [ L j= E

The simplest explanation is the one which maximises

j E j

j A j
(5.1)

where A is the set of assumptions and E is the set of things explained (L denotes the

set of rules (`laws') in the knowledge base). j X j denotes the cardinality of the set X.

Charniak uses a variant of this, where he requires that j E j � j A j be greater than 0

[Charniak, 1986].

One model which uses simplicity as a central criterion is Kautz's circumscriptive theory

of plan recognition [Kautz and Allen, 1986]. This model infers explanations for an agent's

actions by abduction, resulting in one or more plan hypotheses; the best plan hypothesis is

the one which provides a minimum covering model for the observations (i.e. an explanation

requiring the minimum number of inferred plans) [Kautz, 1990].

However, simplicity alone cannot decide on the most appropriate representation in

many cases. This is because the simplest representation in terms of equation 5.1 with

respect to a rulebase may not be best representation according to human intuitions

[Ng and Mooney, 1990]. This is because the equation doesn't consider the possibility

of increasing the number of assumptions if this better ties together elements of the

representation (i.e. increases coherence; see section 3.2.2).

If the number of assumptions (a measure of `complexity') is used in addition to other

criteria, it may allow ties produced by those criteria to be decided: given two representa-

tions which have equivalent quality by other criteria, prefer the one which requires fewest

assumptions. (This is done in ACCEL; see section 5.2.4.) This shifts the emphasis from

the relationship between explanation and assumption (central to equation 5.1) back to

Occam's original formulation (which focuses on assumption alone).

A �nal point worth mentioning concerns the de�nition of assumption: a node is

assumed if it is not explained by another node. Consider a comprehender with the

following rules (after [Read and Marcus-Newhall, 1993]):

(1) pregnant(A) �! feeling tired(A), gaining weight(A)
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upset stomach(A).

(2) stopped exercising(A) �! gaining weight(A).

Given the text fgaining weight(mary)g, there are two derivable representations, shown in

�gure 5.1.

(a)

(b)

#pregnant(mary)

#upset_stomach(mary)#feeling_tired(mary) @gaining_weight(mary)

@gaining_weight(mary)

#stopped_exercising(mary)

# (and shaded) = inferred@ = observed

Figure 5.1: Alternative explanations for `gaining weight'

The simplicity criterion cannot distinguish between these representations, as both use

a single assumption (each has one unexplained node); equation 5.1 assigns a simplicity

rating of 1 to both. However, in representation (a), two extra inferred nodes are required

to apply rule (1). The idea of assumption thus needs to be extended to cover both:

� Nodes which are not explained.

� Inferred nodes which are explained but which do not explain another node. These are

more like presumptions (uncertain propositions deduced from existing propositions)

than assumptions (propositions taken for granted). (The presumptions required in

a representation denote the missing information mentioned in section 5.1.1.)

The total count of these classes of nodes then gives a measure of a representation's

reliance on uncertain nodes, or its vagueness. This then means that representation (a) is

more vague than (b). The simplicity equation can now be rewritten as:
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j E j

j V j
(5.2)

where E is the set of explained observations and V = the set of assumptions and pre-

sumptions.

5.1.3 Breadth

`This principle states that, all other things being equal, an explana-

tory hypothesis that explains more facts is more coherent and therefore

viewed as a better explanation than an explanation that explains fewer

facts.'[Read and Marcus-Newhall, 1993]

In other words, if explanation E1 explains one observation fO1g and explanation E2

explains two observations fO1; O2g, then E2 has greater breadth than E1. Breadth may

thus be calculated by counting the number of explained observations in a representation.

Remember that this number was used in equation 5.1; that equation can thus now be

rewritten:

j B j

j V j
(5.3)

where B (breadth) = the set of explained observations in the representation, and V the

set of assumptions and presumptions. This equation calculates the overall simplicity of a

representation.

Equation 5.3 makes explicit the relationship between breadth and vagueness, some-

thing which is missing from the original equation 5.1. Applying this equation gives

representation (a) of �gure 5.1 a simplicity of 1
3
, and representation (b) a simplicity of

1
1
= 1. This seems closer to our intuitions than the result returned by the primitive

equation for simplicity (equation 5.1).

If the observation feeling tired(mary) is added to the representation, representation

(a)'s simplicity changes to 2
3
(the inference that mary is pregnant explains both her

feeling tired and gaining weight); while the simplicity of representation (b) changes to 1
2

(as the new observation has to be assumed because there is no rule which can explain it).

This is because pregnant(mary) is the broader explanation: it explains two observations

while stopped exercising(mary) explains only one. Read and Marcus-Newhall's work has
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experimentally con�rmed that comprehenders prefer a single broad explanation to the

conjunction of multiple narrow explanations [Read and Marcus-Newhall, 1993].

According to Thagard ([Thagard, 1988]), another area where breadth (which he terms

consilience) is important is in the evaluation of scienti�c theories. In general, he claims

that broad theories have a competitive edge over narrow theories. Thagard gives the ex-

ample of how the general theory of relativity is more consilient than Newtonian mechanics,

as the phenomena explained by the latter (the motions of planets, tides etc.) are a subset

of the phenomena explained by the former (which additionally explains the bending of

light by gravity, the perihelion of Mercury, etc.).

5.1.4 Competitiveness

Simplicity, derived from breadth and vagueness, is not suÆcient to capture all the qualities

of a good explanation. Consider the pair of representations shown in �gure 5.2 (page 90).

In (a), each of a patient's symptoms is explainable by a separate hypothesis, and there

is no hypothesis which can explain all three symptoms. In (b), the hypothesis that a

patient is pregnant can be used to explain all three symptoms, or individual causes may

still be used to explain individual symptoms. However, simplicity rates (a) and (b) with

equal quality.

Read and Marcus-Newhall experimentally manipulated the number of

hypotheses available to their subjects as explanations for story events

([Read and Marcus-Newhall, 1993]). They found that `explanatory goodness' ratings for

separate hypotheses were higher when no alternative, broader hypothesis was available.

In other words, the goodness ratings of the separate hypotheses in (a) were found to

be higher than those in (b). They attribute the discrepancy to the competition created

by the presence of the broad hypothesis. They compare this e�ect to Kelley's idea of

discounting: `the principle that the strength of a possible cause is reduced to the extent

that there are alternative plausible causes' [Kelley, 1973].

I thus hypothesise that the quality of a representation is improved to the extent that

there are few or no competing representations. From where does this e�ect arise? In

case (a), the comprehender is not aware that the pregnant hypothesis could explain all

three symptoms (though they probably could have come to this conclusion given suÆcient

time); in case (b), the comprehender is aware of the broader explanation.

The important di�erence here is in what the comprehender explicitly knows. Compu-

tationally, this could be represented by two knowledge bases. The pregnant rule could be
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(a)

(b)

#has_mononucleosis(mary) #virus(mary)#stopped_exercising(mary)

@gaining_weight(mary)@feeling_tired(mary) @upset_stomach(mary)

#has_mononucleosis(mary)

@feeling_tired(mary)

#virus(mary)#stopped_exercising(mary)

@upset_stomach(mary)@gaining_weight(mary)

@ = observed

= elements of competing explanation

# (and shaded) = inferred

pregnant(mary)

Figure 5.2: (a) Explanations without competition; (b) Explanations with competition

(after [Read and Marcus-Newhall, 1993])

represented as described in section 5.1.2; this rule would be present in case (b) but absent

in case (a). The system utilising the rulebase could then be given access to information

about the potential explanations for each type of eventuality. In cases where there

are several rules which could account for observations or previously inferred nodes, the

comprehender could use this information to degrade the quality of a representation which

employs one of those rules. In cases where there is only a single possible representation,

quality is not degraded.

This principle is used in IDC to penalise an explanation for a set of observations if

another explanation for the set of observations is possible. This is described in detail in

section 5.3.5.
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5.1.5 Probability

Probability theory, usually embodied in Bayesian Networks, is a popular tool for deter-

mining the quality of representations: it can be used to determine the probability that a

representation is appropriate for a given text. One particular area of application within

AI is plan recognition; here, the aim is `to choose the most likely interpretation for a

set of observed actions' [Charniak and Goldman, 1993]. The main di�erence between the

probabilistic approach and more traditional approaches (e.g. those of section 3.2 and

page 42) is that the rulebase is annotated with probabilistic information about relations

between concepts. Each rule requires addition of information about the probability of

its consequents, conditioned on the probability of its antecedents [Goldman, 1990]. For

example, consider the following rule:

(1) visit(agent:X, place:Y) �!

go(agent:X, to:Y), explore(agent:X, place:Y),

leave(agent:X, from:Y).

The rulebase is annotated with the following probabilities:

� The prior probabilities for antecedents which are not themselves the consequent of

a rule. In this case, this is:

P(visit(agent : X ; place : Y )):

Two values are required: the probability that visit(agent:X, place:Y) is true, given

no other information; and the probability that it is false. Charniak and Goldman

assume that the number of events of a given type is �nite with respect to the world

described by a story; they then use this to estimate the prior probability that a

particular type of event will occur [Charniak and Goldman, 1989]. Following their

lead, reasonable estimates are:

P(visit(agent:X, place:Y))

= (P(visit(agent:X, place:Y)=true), P(visit(agent:X, place:Y)=false))

= (10
�7; 1� 10

�7
).

Note that the probabilities sum to 1.
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� The conditional probabilities of consequents conditioned on their antecedents. In

this case, these are:

P(go(agent:X, to:Y) j visit(agent:X, place:Y)) = (0.9, 10�6).

P(explore(agent:X, place:Y) j visit(agent:X, place:Y)) = (0.8, 10�7).

P(leave(agent:X, from:Y) j visit(agent:X, place:Y)) = (0.9, 10�6).

The values are in the format:

(P (a = t j b = t); P (a = t j b = f)):

where t stands for `true' and f for `false'. The remaining probabilities, P (a = f j

b = t) and P (a = f j b = f), can be determined from the de�ned values:

P (a = f j b = t) = 1� P (a = t j b = t):

P (a = f j b = f) = 1� P (a = t j b = f):

The rulebase shown here is the most simple case. In cases where a node occurs in multiple

rules, the situation becomes more complicated. The rulebase is again visualised as a

network (see section 4.2.1), with each node being possibly connected to one or more

parents and/or children. Each node then has an entry in the rulebase, de�ning its

probability distribution conditional upon the probability distributions of its parents. For

example, if the following rule were added to the knowledge base containing rule (1):

(2) rob(agent:X, place:Y) �!

go(agent:X, to:Y), hold up(agent:X, place:Y),

leave(agent:X, from:Y).

the go(agent:X, to:Y) now has two possible parents. Its probability distribution is altered

to account for this and contains the following probabilities:

P(go(agent:X, to:Y)=t j visit(agent:X, place:Y)=t, rob(agent:X, place:Y)=t).

P(go(agent:X, to:Y)=t j visit(agent:X, place:Y)=t, rob(agent:X, place:Y)=f).

P(go(agent:X, to:Y)=t j visit(agent:X, place:Y)=f, rob(agent:X, place:Y)=t).

P(go(agent:X, to:Y)=t j visit(agent:X, place:Y)=f, rob(agent:X, place:Y)=f).

etc.
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As can be seen from this brief example, the number of probabilities which must be de�ned

for a node is exponential in the number of parents it has.

Other probabilities are also required:

� `Probability of equality' statements, which specify the probability that two objects

of the same type are actually the same object;

� Probabilities that `a word will be used given that the thing it denotes is of a

particular type' [Goldman, 1990], and probabilities relating to syntactic relations. I

will not be discussing these, as they only apply when the input to the program is

natural language.

In the next section, I describe how probability is applied to comprehension; I use

Goldman's Wimp3 program as the basis for the discussion [Goldman, 1990].

Applying Bayesian Networks to Comprehension

In systems which use probability to rate representations, comprehension is carried out

in the manner described in the previous chapters: rules are applied to observations

to construct representations. In this case, the representations are contained within a

Bayesian network which denotes relationships between plans and the types of events they

manifest. Given some observations which specify the probabilities of some of the nodes in

the network, the probabilities of the other nodes can be derived using various algorithms

(the one used by Goldman is Jensen's clustering algorithm [Goldman, 1990]). For example,

assuming a comprehender with rules (1) and (2) of the previous section, and the following

observation:

go(agent:burt, to:l)

the network of �gure 5.3 could be constructed.3 In the diagram, each node n has an

associated tuple of the form (P (n = t); P (n = f)).

I've used probability values from the previous section, plus some which I left unspeci�ed

earlier. It is easy enough to distinguish the two possible plan hypotheses which could

explain the observation, rob and visit. Each hypothesis may be inferred to explain the

go observation, but because the rob hypothesis has a lower a priori probability, it is

3The probabilities in the diagram were derived using a piece of software called JavaBayes, implemented

by Fabio Gagliardi Cozman and available from http://www.usp.br/ fgcozman/home.html.
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#leave(agent:burt, from:l) (0.429, 0.571)@go(agent:burt, to:l) (1, 0)

#hold_up(agent:burt, place:l) (0.004, 0.996)

#rob(agent:burt, place:l) (0.005, 0.995)

#explore(agent:burt, place:l) (0.424, 0.576)

#visit(agent:burt, place:l) (0.472, 0.528)

Figure 5.3: A Bayesian network representation of a text

discounted in favour of the visit hypothesis. However, note that multiple representations

are implicit in the network, which is thus comparable to an interpretation (in the sense of

section 3.2.5). Plan hypothesis nodes are privileged in Goldman's system and the preferred

representation may thus be designated as the plan hypothesis with the highest probability

of being true.4 (Although this example focuses on plan recognition, the principle can be

applied to other areas of language comprehension, such as resolution of ambiguity: see

[Goldman, 1990] for examples.)

It is interesting to compare probability with other methods for measuring quality. For

example, the competing explanations of �gure 5.3 cannot be discriminated by equation 5.3

(page 88). Because both have the same vagueness and breadth (see sections 5.1.2 and

5.1.3), they receive the same quality rating (= 1
3
). By comparison, the probabilistic

approach assigns a much higher probability to visit than rob by virtue of the facts that:

(1) visits are more probable a priori; (2) the most important evidence for robbing (i.e.

the hold up event) is absent.

Note that if a hold up event is observed, the approach based on breadth can make a

decision between the two plan hypotheses. The probabilistic approach can also make an

equivalent decision: observation of the hold up node changes the probability of rob being

true to 0.999, while the probability of visit being true falls to 0.0001.

Probability thus seems sensitive to both evidence which is present and evidence which

is absent; it also allows the system to weight evidence according to the frequency of its

4It would perhaps be interesting to combine the probabilistic approach with a relaxation algorithm

in the Kintsch style. The initial probabilities could then be subjected to spreading activation, so that

low-probability nodes are removed from the representation entirely. As Goldman's system stands, there

is no `pruning' of nodes from the representation, merely a lessening of their probability.
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manifestation. While this makes the probabilistic approach seem attractive and intuitive,

it rests on several assumptions with which I take issue below.

Problems with Probability as a Metric

In this section, I describe the assumptions upon which Goldman's Wimp3 program rests.

This involves a fairly technical exposition of his ideas, which is necessary for my objections

to become clear.

In the previous section I used various probabilities without justifying their origins.

I now attempt to remedy this omission. The �rst question, then, is `What do these

probabilities actually mean?' The answer for priors such as P (visit(agent : X; place :

Y )) is: the probability that a given entity is of type visit, given a universe of discourse

containing many entities of various types. This value is derived by dividing the total

number of visit events in the universe of discourse by the total number of entities in that

universe [Goldman, 1990]. A similar technique is used for all other entities, such as cars,

ropes, people etc.. The general equation is therefore:

P (type(X; Y )) =
j Y j

j U j
(5.4)

Where:

� X is some entity.

� Y is a type token.

� j Y j is the number of entities in the universe which are of type Y .

� j U j is the total number of entities in the universe.

For example, if there are 1020 entities in the world and 109 ropes, then the probability

that an entity is of type rope = 109

1020
= 10�11.

This becomes critical when trying to determine whether two entities mentioned in a

discourse are of a given type. Goldman's demonstration of this is based on the (rather

grisly) text:

Jack got a rope. He killed himself. [Charniak and Goldman, 1989]
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The obvious inferences are that: (1) Jack killed himself by hanging; (2) the rope which

Jack gets in the �rst sentence is the same rope with which he hangs himself. If the get

event is designated g and the inferred hang event h, the probability of equality between

the two ropes can be represented as:

P (pat of(g) == instr of(h) j type(pat of(g); rope); type(instr of(h); rope))

(i.e. the probability that the patient of (pat of) the get event is the same entity as

the instrument of (instr of) the hang event, given that they are of the same type rope).

Goldman sets the probability that two references to an entity of a single type actually

refer to the same entity as:

1

P (type(X; Y ))� j U j
(5.5)

where X; Y and j U j are de�ned as previously. Also note that if equation 5.4 is substituted

into this equation it becomes:

1

j Y j
(5.6)

For the case of whether two references to ropes refer to the same rope, this evaluates

to 1
10�11�1020

= 10�9. Given this evidence, the probability that a hang event did occur

is 0.001. These are obviously very small numbers indeed; though, intuitively, a human

comprehender makes this inference with little e�ort and considerable con�dence. The

problem is the system's ignorance of the fact that the events described by a text are part

of a coherent discourse; as Wilensky states, `The network treats the text as describing

completely unrelated events' [Wilensky, 1992].

To counter this, Charniak and Goldman distinguish between the size of the set of

things in the real world and the size of the set of things in the universe of discourse.

They do this by making an assumption about `spatio-temporal locality' which `raises the

probability that two things will be equal, because when restricted to a small part of space-

time there are fewer di�erent objects around' [Charniak and Goldman, 1990]. The e�ect

of this assumption is that the number of things of a particular type shrinks; Charniak and

Goldman suggest changing the number of ropes to 10, so that the probability that the

two references to ropes refer to the same rope becomes 1
10

= 0:1 (by equation 5.6). The

probability that a hang event occurred consequently rises to 0.3.

These techniques are further extended by a theory for modulating the probability

that two references to an entity of a single type are references to the same entity.
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Charniak and Goldman model this by setting a parameter which sets the level of

likelihood for equality (i.e. in e�ect it changes the `size of the universe of discourse')

[Charniak and Goldman, 1990]. They also incorporate a theory of mention which

increases equality probabilities: if an entity E of type T is speci�cally mentioned in

a text, rather than inferred, then the probability that other entities of type T in the

representation are E is increased (by some constant factor) (ibid.). My own theory of

Skepticism is similar to this idea, and is discussed in section 5.3.6.

Having unravelled the complexities of Wimp3 somewhat (and I haven't even touched

upon the algorithm for handling propagation of probabilities around the network), I am

now in a position to focus on the problems with probability as a quality metric.

Spatio-temporal locality is a bad assumption The spatio-temporal locality as-

sumption seems very odd and haphazard. As Wilensky notes, it also produces strange

predictions. For example, consider the following texts:

(1) Jack went out for a meal. There was a Wimpy restaurant not far from his

house.

(2) Jack went out for a meal. There was a McDonalds restaurant not far from

his house.

A fragment of a possible Wimp3 network for these texts is shown in �gure 5.4.

mcdonalds(r) wimpy(r) rest_visit(e)

rest(r) rest(rest_of(e))

r == rest_of(e)

Figure 5.4: Representation of equality between restaurants

In this �gure, rest(r) stands for `r is a restaurant'; rest of(e) is a function which returns

the restaurant visited during restaurant visit (rest visit) e.
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As there are more McDonalds restaurants in the world than Wimpy restaurants, it

seems reasonable to assume that the prior probability of the former is greater than that

of the latter. However, this results in discrepancies: because the Wimpy is less probable a

priori, the probability that r == rest of (e) is higher in text (1) than text (2). Similarly,

if two instances of a type are observed in a text, they are more likely to be the same entity

if there are fewer of them in the universe of discourse.

Some knowledge is not probabilistic Probability breaks down in situations where

the frequency of occurrence of entities cannot be de�ned. For example, in assessing the

comparative strengths of two scienti�c theories, there is no a priori way to de�ne which is

most probable [Thagard, 1989]: the scienti�c theories are actually determining probabili-

ties in the world. Consider the competition between the Copernican and Ptolemaic astro-

nomical theories: which is more probable, a priori? [Nowak and Thagard, 1992]. In the

context of a world where the Ptolemaic theory (Tp) provides the paradigm, P (Tp) = 0:99,

with competing theories each having a probability close to 0. But, once the Copernican

theory Tc becomes the paradigm, the probabilities may shift so that P (Tc) = 0:99.

The creativity of interpretation In the case of complex narrative texts, it seems

unlikely that one interpretation is more probable than another with respect to probabilities

in the real world. Narrative comprehension requires a relaxation or rejection of real-world

probability; more often than not, the improbable or impossible provides a narrative's topic.

A more acceptable view of interpretation allies it with the construction of scienti�c theories

(see previous paragraph). Comprehension of narratives similarly involves constructing a

world where the narrative's events become probable. An interpretation is a `theory of why

the observable world behaves the way it does'; it is not just a theory of why the author

wrote the text, but a theory of how it should be represented, how its parts interconnect,

how it attaches to the historical context, and so on.

Complexity and sensitivity Hopefully, the previous paragraphs will have convinced

the reader that the probabilistic approach is horrendously complicated and requires a large

amount of work in de�ning probabilities. Some of this work may be alleviated by automa-

tion, possibly by using a technique such as Latent Semantic Analysis [Kintsch, 1998].

However, Charniak and Goldman do not discuss this possibility.

Even once probabilities have been assigned, the model is very sensitive to slight under-

estimation of probabilities; in particular, a change to a single probability (of the order of
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0.009%) can cause massive changes in preference for one representation over another (see

above and [Ng, 1992] for details).

For these reasons, I feel that probability is not suÆcient as a measure of quality. It relies

on de�ning many seemingly obscure probabilities which depend on `how large the universe

is'. The probabilistic metric also ignores one important fact about texts: they contain

entities which are related to each other, if only by virtue of being present in the same

text. As a text reports on observations generated by someone (or something) other than

the comprehender, relevance must be inferred: the comprehender must determine why

objects and events are mentioned in the text, and provide reasons for their co-occurrence.

This di�ers from comprehension of the real world, where pointless events may occur and

irrelevant observations be made. The distinction can be summarised as:

Data in a text has been selected; data in the real world happens.

This highlights the importance of coherence in rating the quality of representations:

the comprehender's aim is to rationalise why the data have been chosen for inclusion

in the text. The representation which de�nes the relatedness and connectivity of text

observations must be a�orded a higher quality rating than one which ignores these factors.

Coherence of a representation increases as the rationale for why the data are in a text is

strengthened.

This is not to say that the quality metrics considered throughout this chapter are

irrelevant or wrong. Instead, I see these metrics as components which contribute to

coherence. For example, the simplicity of a text depends on its vagueness, which in turn

depends on the presence of unexplained nodes and inferred, explanatory nodes which

are not themselves explanatory (see section 5.1.2). This can be recast as follows: if a

node could be explained, but has not been, then it has potential explanation(s); in other

words, a connection to other nodes could be inferred but has not yet been. A coherent

representation is thus simultaneously one with a low level of vagueness, as the connections

which make it coherent also realise the potential connections which would otherwise make

it vague.

So far, I have discussed coherence in an intuitive fashion, by reference to connections,

potential explanations, relatedness, and so on. However, this is not precise enough if one

wishes to produce a computational model of coherence generation. To increase precision,

the following questions must be answered:
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� How is coherence judged by comprehenders and where does it originate? Is it `in'

the text, the representation, the comprehender, the author, or somewhere else?

� Can coherence be quanti�ed using a technique similar to that used for simplicity,

breadth etc.?

The next section tackles these questions.

5.2 Coherence

In this section, I describe several theories of coherence. Some of these theories emphasise

the psychological aspects of coherence, such as the levels and quantities of coherence estab-

lished during comprehension by human subjects. Others concentrate on the computation

of coherence in the service of resolving competition between representations.

My emphasis is on showing how coherence is dependent on the context of compre-

hension. Whether a particular representation is coherent depends both on the knowledge

available during comprehension, and the goals of the particular comprehension session.

To this end, I am interested in abstracting away from individual structures involved in

establishing coherence (e.g. causal and temporal relations), instead viewing all cognitive

structures as tools for connecting r-elts. The coherence of a representation depends on

which structures could be used to create a representation, and which structures are actually

used.

5.2.1 Coherence in the Text

Early characterisations of coherence treated it as a property of a text. According to

these theories, `a discourse is coherent because successive utterances are \about" the

same entities' [Hobbs, 1979]. An example of this characterisation of coherence can be

found in the early work of Kintsch and van Dijk [Kintsch and van Dijk, 1978]. In their

comprehension simulation, connections between successive clauses of a text are determined

by argument overlap. (An argument is usually taken to mean some discourse entity such

as a character or eventuality.) If two propositions derived from subsequent clauses of a

text share an argument, they can be connected in the memory representation of the text.

A text is coherent to the extent that it allows the formation of such links between its

clauses. Consider the following:
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John took a train to Paris. He arrived ten minutes late.

According to the argument overlap criterion, these two sentences are coherent because

they are `about' John.

However, as Hobbs points out, this characterisation of coherence does not a�ord

suÆcient explanatory power. He cites the following example in support of his claim:

John took a train from Paris to Istanbul. He likes spinach.

It is clear that this text is disjointed in some way, and would be regarded as incoherent

by most readers (barring the possibility that coherence could be supported by previous

text, or by `perverse' reader goals). Hobbs' alternative view is that coherence resides

in the relations established between text elements by the comprehender; in other words,

coherence is in the representation, rather than the text. I turn to this idea in the next

section.

5.2.2 Coherence in the Representation

Instead of argument overlap, Hobbs suggests that coherence depends on the relations

which obtain between pairs of text constituents, as inferred by the comprehender. The

relations include Elaboration, Contrast, and Parallel, which are common in the litera-

ture on relations. Such relations describe semantic connections between clauses, and

have been formalised by numerous writers ([Eberle, 1992], [Kehler, 1995], [Asher, 1993],

[Dahlgren, 1988]). A simpli�ed example is:

a elaborates b is true if event a describes event b in more detail. (after

[Eberle, 1992])

This relation could be established between the following sentences:

John went to Germany. He was stopped at the border.

(He was stopped at the border.) elaborates (John went to Germany.)

Note that viewing relations as central to coherence moves the emphasis from coherence

`in the text', to coherence in the comprehender's representation of the text. Relations `hold

the representation together'.
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The idea of relationships naturally extends to other forms of representational element,

such as those derived from a script or other type of schema. Scripts and schemas provide

a coherent, connecting explanation for the co-occurrence of representational elements

(including elements of the text), and so contribute to the overall coherence of the repre-

sentation.

Psychologists have catalogued the variety of structures which are important for estab-

lishing representational coherence. These are frequently divided into structures which form

local coherence and those which form global coherence [Graesser et al., 1994]. I discuss

these types of coherence in the next section.

5.2.3 Local and Global Coherence

Local coherence `refers to structures and processes that organize elements, constituents,

and referents of adjacent clauses, or short sequences of clauses' [Graesser et al., 1994]. To

paraphrase Alterman [Alterman, 1991], it could also be called coherence-in-the-small, as

it concentrates on the coherence of small amounts of low-level information.

Global coherence `is achieved to the extent that most or all of the constituents can

be linked together by one or more overarching themes.' [Graesser et al., 1994]. This

level of coherence depends on �nding `higher order chunks' which capture the higher-level

connections between already locally-coherent parts of the text (ibid.).

Much recent research has been concerned with ascertaining the amount of coherence

generated in representations. This has been done by examining the kinds of informa-

tion encoded into them. The classi�cation of structures as `local' or `global' is then

used to demonstrate the level of coherence sought by the subject: for example, Singer

used a question-answering task to determine whether causal knowledge had been ac-

tivated during comprehension under local coherence; he used this to demonstrate how

even globally-coherent representations are constructed under conditions of local coherence

[Singer and Halldorson, 1996]. This position is frequently referred to as constructionist.

By contrast, McKoon and Ratcli� wanted to demonstrate that global coherence is not es-

tablished except under conditions of local coherence breaks [McKoon and Ratcli�, 1992].

Their position is often referred to as minimalist.

In section 3.2.2, I made a passing comment about the functional importance of con-

structing certain types of representational element (r-elt): generation of associative and

predictive inferences is dependent on their contribution to coherence. I take the same

position as regards the local/global distinction. Rather than attempting to specify that
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certain types of structure produce local coherence, and others global, I instead treat all

kinds of coherence in the same manner, using the same notation etc. The main di�erence

between r-elts is the quantity of coherence they generate. This depends both on the level

of �t with the text (i.e. whether new r-elts have to be inferred) and the ratio of high-level

elements to low-level elements.

This approach has its basis in a syntactic treatment of coherence, inuenced by the

work of Ng and Mooney [Ng and Mooney, 1990], [Ng and Mooney, 1992]. Their approach

is detailed in the next section.

5.2.4 Quantifying Coherence in the Representation

ACCEL is an abductive plan recognition system which utilises coherence as a metric for

deciding between competing interpretations [Ng, 1992]. Coherence measures `how well

the various observations are \tied together" in the explanation' (ibid.).

Ng's ACCEL system directly uses the idea of coherence in its quality metric. The

actual content of the representational elements is of secondary signi�cance; what matters

instead are the explanatory relationships between elements.

The metric itself is implemented by computation over directed graphs. These graphs

are ACCEL's episodic representations; the arcs in the graph represent explanations and

the nodes represent propositions. The coherence of a representation is calculated by

dividing the number of actual connections between observations (A) by the number of

possible connections between observations (P ), i.e.

Coherence =
A

P
(5.7)

P is calculated as:

n� (n� 1)

2

where n is the number of nodes in the graph. For any graph, this equation returns the

number of possible connections between pairs of nodes, not counting connections from

a node back to itself. ACCEL uses this metric to rate representations. Examples of

coherence ratings are given in �gure 5.5 (page 105). In both (a) and (b), the #go �

step(S; go1) node creates a connection between the @inst(go1, going) and @goer(go1,

john1) nodes (observations), so A = 1. As the number of nodes in each representation =

5, P =
5�(5�1)

2
= 10. By equation 5.7, Coherence = A

P
= 1

10
= 0:1.

The coherence ratings are used to control comprehension in two ways:
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1. At the end of each processing cycle, the list of current representations is pruned

so that only x representations with highest coherence are maintained into the next

cycle (see section 3.2.5).

2. When no more-coherent representation is produced during a cycle, that cycle is

halted. Similarly, comprehension halts when the text has been fully observed and a

set of most-coherent representations has been constructed.

The approach taken by Ng seems to provide a good basis for computation of quality.

The metric acknowledges the importance of connectivity, yet avoids problems caused by

metrics such as simplicity or competitiveness. However, ACCEL misses some aspects of

coherence which I believe to be important. The central issues concern the comprehender's

context (see section 1.3):

1. Coherence is based purely on the representation, without reference to the knowledge

base from which it was constructed.

2. Coherence is determined without reference to the comprehender's quality assessment

mechanism. As representations are constructed, their coherence is rated according to

connectivity between observations. However, an inference's value depends wholly on

connecting observations; if there is a way to generate at least one connection between

a pair of observations, a connection is made, regardless of the existence of other

potential explanations and the amount of evidence missing from the interpretation.

These problems can be demonstrated by reference to �gure 5.5 (page 105) (based on

rules described in [Ng, 1992]).

In (a), ACCEL has linked two observations via an inferred shopping trip. However,

the greyed-out parts show an alternative interpretation, that a robbing is taking place.

ACCEL prefers to infer either of the interpretations shown, rather than hold o� from

explaining observations. Here this seems to reduce the coherence of interpretations, as

it introduces elements which have their basis in little evidence and thus seem slightly

spurious. In (b), a similar situation occurs when ACCEL creates an explanation which

has potential implications. Although the rules are not used deductively (as suggested by

the diagram), this is where important discriminating information resides. ACCEL doesn't

consider information which is possibly entailed by an explanation; if it did, it might decide

that there are too many unspeci�ed constraints to justify inference of a shopping trip (e.g.

the absence of a store as a destination of the `going' event).
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@ = observed parts of interpretation
# = inferred parts of interpretation

Alternative interpretation elements

#inst(S, shopping) #go-step(S, go1) #shopper(S, john1)

@inst(go1, going) @goer(go1, john1)

(a)

robber(R, john1)go-step(R, go1)inst(R, robbing)

Coherence = 0.1

# = inferred parts of interpretation
@ = observed parts of interpretation

Alternative interpretation elements

#inst(S, shopping) #go-step(S, go1) #shopper(S, john1)

(b)

@goer(go1, john1)

inst(SP, shopping-place) @inst(go1, going)

store(S, Str)

dest-go(go1, Str)

Coherence = 0.1

Figure 5.5: How ACCEL fails to account for potential implications

ACCEL's quality assessment mechanism is not coupled to knowledge of the kinds of

representations which are derivable. Human comprehenders do not necessarily generate

every inference which could form a connection between observations (elements of a text).

Instead, they are able to suppress inferences and bar them from a representation until

they become appropriate [Gernsbacher et al., 1990]. The coherence of the evolving repre-

sentation is not merely dependent on connections between elements, but also on `absent

connections' between them.

To make this more concrete, consider the following question:

Is the coherence of a representation independent of the context in which it was

produced?

In �gure 5.6 (on page 106), the same representation has been produced in two di�erent

contexts: in (a), the comprehender has two rules, one of which has been applied to connect

observations x and y; in (b), the comprehender has a single rule, which has also been used

to connect x and y.

ACCEL assigns each of these representations the same coherence rating (1
3
= 0:333);

yet representation (b) is as coherent as possible, given the rulebase, while representation

(a) potentially contains more structure, as another connection could be created. In a

similar vein, (a) may contain suÆcient coherence to satisfy the goals of the comprehender

of (a).

My answer to the above question thus runs as follows: the coherence of a representation

depends on the context in which it was generated. Deciding whether a representation
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@z

@y

@x

@z

@y

@x

Knowledge base:
x --> y

Knowledge base:
x --> y
y --> z

(a) (b)

Coherence = 0.333Coherence = 0.333

Figure 5.6: The role of the knowledge base in measuring coherence

is `coherent enough' in turn depends on knowing the quantity of coherence which is

potentially available; it is also reliant on an assessment mechanism which de�nes the

proportion of potential coherence which must be established. The latter is similar to the

notion of `coherence need' of van den Broek et al., which they summarise as follows:

...the reader proceeds step by step through the text, at each point ascertain-

ing whether the information that is being processed in that step has been

adequately comprehended. [...] The need for coherence drives the inferential

process. [van den Broek et al., 1995]

According to the `need for coherence' theory, inferences are made to satisfy the com-

prehender's criteria for `causal suÆciency'. Experimental support for the theory is given

in [van den Broek et al., 1995], and several other researchers have incorporated it, or a

version of it, into their own work (e.g. [Graesser et al., 1994]). These theories state that

comprehension only proceeds to the point where coherence need is satis�ed; this point

is not necessarily that of optimum coherence. However, these researchers do not specify

the terms in which this need is expressed. By viewing coherence need as the proportion

of potential coherence which must be established in a representation, as I'm suggesting

here, it is possible to give an abstract characterisation of the mechanisms which control

comprehension.
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In the next section, I describe in detail how I compute potential coherence in a

representation; I do this by employing a notion of incoherence. I also describe how IDC

decides when to make an inference based on the structure it adds to a representation; and

how the system recognises when suÆcient coherence has been established.

5.3 Incoherence

5.3.1 Basic Concepts

The basis of the incoherence metric is a fairly traditional set of knowledge sources,

consisting of production-rule-like schemas with case-grammar-style roles, e.g.

(1) event(dine, [diner:A, place:R, thing ordered:O, utensils:I]) �!

[

event(go, [agt:A, loc to:R]),

event(order, [agt:A, pat:O]),

event(ingest, [agt:A, pat:O, inst:I]),

event(pay, [agt:A, paid for:O]),

type(eating place, [exp:R])

].

(2) event(shop, [shopper:S, store:T, thing bought:B]) �!

[

event(go, [agt:S, loc to:T]),

event(find, [agt:S, pat:B]),

event(buy, [buyer:S, bought:B]),

type(shopping place, [exp:T])

].

(3) event(rob, [robber:A, weapon:W, place robbed:P, thing robbed:V,

victim:M]) �!

[

event(get, [agt:A, pat:W]),

event(go, [agt:A, loc to:P]),

event(point, [agt:A, pat:W, obj:M]),

event(get, [agt:A, pat:V, from:M]),

type(valuable, [exp:V]),

type(business, [exp:P]),

type(weapon, [exp:W]),



Chapter 5. Metrics for Comprehension 108

habit(in charge, [agt:M, pat:P])

].

The set of schemas constitutes a lattice comparable to a semantic network. The arrow

in a schema is treated as a `connects' relationship: the antecedent node connects the

consequent nodes; or, the antecedent node is a more speci�c way of describing, classifying,

or explaining the consequent node(s). Despite the arrows, schemas may be used for both

forward- and backward-chaining. I will have more to say about the justi�cation for and

details of schemas in the next chapter (chapter 6).

I approach coherence by examining the `absolute incoherence' of nodes in the schema

lattice, or their `unrealised potential entailments'; in other words, each time an instance

of a node is observed in a text, the schemas de�ne the set of potential entailments (not

in the strict logical sense) of that instance. Intuitively, incoherence corresponds to how

well speci�ed an r-elt is. For example, an r-elt representing the statement `Bill went to

the restaurant' is not completely speci�ed because there are schemas available which can

explain the event. Until Bill's going to the restaurant has been explained (e.g. `He went

because he was hungry'), the comprehender is not sure why it occurred; and until the

comprehender is sure of exactly which restaurant Bill is in, how he entered it, how he got

there, and so on, the `details' of the representation are blurry.

In terms of the schemas above, we can label each node with all the higher-level

nodes which can explain it. For example, the `Bill went to the restaurant' r-elt can

be explained by the node corresponding to `Bill was the agent of a dining event'; in other

words, each time instances of the event(go, [agt:bert, loc to:r]) and type(eating place,

[exp:r]) nodes occur in a representation, they abductively entail (or `can be explained

by') an instance of the event(dine, [...]) node.5 Alternatively, a comprehender could

elect to simply assume that those instances occurred, without inferring why. (This

distinction between assumption of a node and abduction of an explanation comes from

work on abductive reasoning, especially ideas from Truth Maintenance [Doyle, 1979,

de Kleer, 1986].) Simultaneously, instances of all of the nodes below the dine(...) node

also become possible; so, we can label that node with the nodes it potentially entails.

Thus, each node in the schema lattice can be thought of as having a `�eld of inuence':

all of the nodes which could potentially explain it, and all of the nodes it potentially

explains or `makes possible'. For each node n in the schema lattice, the size of the set of

potential forward entailments (nodes `explained by' n) and of the set of potential backward

5Where the details of role values are not important, I use the shorthand [...].



Chapter 5. Metrics for Comprehension 109

entailments (nodes n is `explained by') can be determined. The more other nodes n

explains, the higher the informativity of n (the more nodes n informs the comprehender

about); the more nodes which can explain n, the higher the ubiquity of n (the more

ubiquitous n is in representations). The chaining together of schemas also inuences

informativity and ubiquity: for example, if one of the forward entailments of n can itself

explain the node p, then n can also indirectly explain p.

At the lowest level of the schema lattice are leaf nodes which explain no other nodes;

these are the most `primitive' nodes, and have a low informativity coupled with high

ubiquity. They can often be explained by several higher-level events, but cannot be used

to explain any lower-level events. At the highest level of the schema lattice are nodes which

cannot be explained; in a sense, they require no justi�cation and just `happen'. (Basic

human motivations possibly fall into this class, c.f. the top-level acts of Kautz and Allen's

plan recognition system [Kautz and Allen, 1986].) These nodes have a low ubiquity, as

they require no explanation; however, they have a large capacity for explanation, and thus

make possible many lower-level nodes

The potential entailments of node instances in R, derived from their informativities

and ubiquities, together demarcate the `potential representations space' (PRS) of R. The

size of the PRS of R is proportional to the `incoherence' of R, or `the number of other

representations which R potentially entails'. An example of the PRS of a representation

is shown in �gure 5.7 on page 113.

The comprehender's aim can now be speci�ed as follows:

Given the observations, construct an interpretation which delineates the con-

nections between them, while at the same time introducing as few new r-elts

as possible. In addition:

1. Maintain an interpretation (I) which does not overload memory storage.

2. Cease making inferences when they fail to decrease the PRSs of the rep-

resentations of I.

This aim is basically a combination of the principles of coherence (connectivity) and

simplicity (minimum vagueness allied with maximum explanation). A central di�erence

is the emphasis on control: restriction of the size of the interpretation maintained, both

in the short-term and long-term stores; and halting the inference process once a set of op-

timally coherent representations has been produced. Note that the latter condition is not



Chapter 5. Metrics for Comprehension 110

dependent on a global, objective criterion but on a subjective calculation of incoherence

change (see section 5.3.7).

To show how these ideas work in practice, the next section gives an informal de-

scription of how IDC constructs representations, with the emphasis on incoherence. The

speci�c mechanisms for inference processing, integrating observations etc. are detailed in

chapter 6.

5.3.2 Incoherence in IDC

Comprehension in IDC proceeds as follows: statements from the text are observed and

integrated into one or more evolving representations, which together constitute IDC's

interpretation. For example, when comprehension begins IDC has no current representa-

tions. When the �rst observation is processed, a single new representation is generated,

containing only that observation. This representation may then be extended by inference,

to generate one or more new representations.

When the next observation is processed, it is initially integrated with each of the

current representations. Then, further inferences are made, producing further represen-

tations, and so on. IDC also discards representations whose incoherence exceeds the best

representations by a set amount (see section 6.4.3 on page 152).

For each representation Ri, integrating an observation introduces some new potential

representations into PRS(Ri). The new set of possible representations is also a PRS: this

is the case because even a representation composed of a single element has a PRS. So, the

new PRS of Ri can also be considered as the combined PRSs of its component elements.

As a simple example, consider the case when IDC observes the observation O1 =

event(go, [agt:burt, loc to:r]). As this is the start of comprehension, IDC produces a

single representation containing O1, which I'll call R1.

Next, the possible representations space of R1 is determined by examining the rep-

resentations which could be generated from R1. Using the rules of the previous section

yields a PRS composed of three potential representations:

� P1(R1): a representation where burt dines in the restaurant r.

� P2(R1): a representation where burt goes shopping in store r.

� P3(R1): a representation where burt robs the business r.
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where Pi(R1) is the ith representation which could potentially be generated from R1.

Note that the potential representations here depend only on O1, as this is the only

element in R1. The more potential representations introduced by an observation, the

greater the incoherence of that observation.

As more observations are incorporated into R1, PRS(R1) increases. Once the size

of PRS(R1) reaches some threshold, IDC is driven to generate inferences which reduce

PRS(R1). Inferences reduce the PRS of a representation by actualising one or more of

the potential representations and discounting the remaining potential representations; in

other words, part of the PRS is given extra credence, while the remainder is considered

less viable. In other words, IDC actualises one of the potential representations to generate

R2, which replaces R1. The decision of which possible representations to actualise and

which to discount depends on overlap between the possible representations introduced by

elements: the best structures to actualise are those which are introduced by the most

observations.

Continuing the example, imagine that the next observation O2 = event(order,

[agt:burt, pat:b]). This observation can be integrated into R1, increasing PRS(R1) by

introducing the potential representation:

� P4(R1): a representation where burt orders b in some restaurant.

The PRS of a representation is therefore considered to consist of the sum of the number

of potential representations introduced by each r-elt. In this case, the only r-elts to be

considered are observations, but inferred r-elts (if present) also increase the size of the

PRS.

IDC is now in a position to actualise a representation and reduce the PRS of R1. It

does this by comparing representations in the PRS. A new representation which uni�es

with the most representations in PRS(R1) is the best representation which can be derived

from R1. In this case, a new representation R2 which uni�es with both P1(R1) and P4(R1)

is considered the best representation to actualise; this is because there is no representation

which will unify with both P2(R1) and P3(R1). R2 has the form:

R2: burt dines in the restaurant r; he orders b.

The operation of actualising a representation from a PRS is shown diagrammatically in

�gure 5.7 on page 113. Inferred nodes are shaded and marked with `#'; observations are

marked with `@'. In each of the potential representations, only the parent node of each
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tree is shown; the other nodes implied by each parent are shown as a single shaded node

and are considered to be present in the representation. The roles of each event either

have a lower- or upper-case value: lower case values represent roles which have been

instantiated by observations, while upper-case values have been created by inferences.

Each potential representation is represented as a dotted box connected to an observa-

tion by a dotted arrow. In the lower part of the diagram, a representation made potential

by both observations has been accepted as a way of connecting those observations; in

other words, the structure which is common to both entering the restaurant and ordering

has been actualised to produce R2, while the other potential representations have been

discounted. The resulting representation thus integrates the observations by incorporating

them into a single structure; the representation also decrements the viability of the

remaining potential representations, while not necessarily removing them altogether from

consideration (note that P2(R1) has now become P1(R2), and P3(R1) has become P2(R2)).

As I stated earlier, the incoherence of a representation is proportional to the size of

the PRS; in turn, the size of the PRS is proportional to the entailments introduced

by individual r-elts; thus, each r-elt can be considered to have its own incoherence.

The absolute incoherence of r-elts is dependent on their informativity and ubiquity, as

stated before. However, this is not the whole story, as the comprehender's perceived

incoherence of a representation is not always equal to its absolute incoherence. The

perceived incoherence of a representation R is a function of the absolute incoherence

values of the elements of R (instances of nodes in the schema lattice) with respect to

the comprehender's Skepticism. Those representations which were not actualised are

considered `discounted' in proportion to Skepticism: the higher Skepticism is, the more

cautiously potential representations are discounted. Skepticism is described in greater

detail in section 5.3.6.

A point worth emphasising is that incoherence is a double-edged sword. On one hand,

elements of the text introduce incoherence which can be used to build new representa-

tions; they provide an impetus for the comprehension process. On the other hand, the

representation built should not rest on potential structure which comes from outside the

text (i.e. inferences and assumptions). As far as possible, the representation should be

constructed using the structure inherent in the text.

As an analogy, imagine some workmen who are told to build a house from a pile of

bricks. While it is possible to acquire more bricks and build a bigger house, it is most

economical to use the bricks provided; they are a resource, as are the elements of a text.
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ordergo

R2 dine3

go

shop

go

rob

1 2P (R ) 2 2P (R )

P (R )1 1

ordergo

R1

go = @event(go, [agt:burt, loc_to:r])

order = @event(order, [agt:burt, pat:b])

dine1 = #event(dine, [diner:burt, place:r, thing_ordered:T1, utensils:I1])

dine2 = #event(dine, [diner:burt, place:P1, thing_ordered:b, utensils:I2])

dine3 = #event(dine, [diner:burt, place:r, thing_ordered:b, utensils:I2])

shop = #event(shop, [shopper:burt, store:S, thing_bought:T2])

rob = #event(rob, [robber:burt, weapon:W, place_robbed:P2, thing_robbed:T3, victim:V])

go

dine1

go

shop

go

rob dine2

order

P (R )1 P (R )1 P (R )12 3 4

Figure 5.7: Actualising potential representations reduces the PRS



Chapter 5. Metrics for Comprehension 114

The manipulation of incoherence is thus similar to that of cognitive economy: represent

the text so that it remains as distinct from representations of other texts as possible, at

the same time avoiding inferences which rely on excessive assumption (c.f. [Rosch, 1978]).

This seems to connect to our intuitions about text comprehension: it is not so much that

we generate coherence, rather that we reduce incoherence by exploiting structure inherent

in the interaction between the text and our knowledge sources.

In the next section, I explain the technical details of how informativity and ubiquity

are calculated.

5.3.3 Computing Informativity and Ubiquity

In early versions of the system I used an Assumption-based Truth Maintenance Sys-

tem (ATMS) to perform calculation of informativity and ubiquity, modelled on ACCEL

[Ng and Mooney, 1992]. At each node n, the label at n is the set of environments which

would make n true, as de�ned in section 3.2.5. The length of the resulting label was then

used to calculate ubiquity. In the same manner, each node can be labelled with a list of

nodes which may be derived from it by deduction (forward-chaining); the length of this

label is then assigned as the node's informativity.

However, it turns out that this method is unnecessarily complicated. Instead, the same

measure can be derived by simply analysing how often nodes occur in the knowledge base.

I compute the informativity and ubiquity of nodes in the schema lattice by noting that

each node n can explain the set of nodes P and can be explained by a set of nodes Q.

That is, P is the set of nodes which occur in the consequent of a schema with n as its

antecedent; and Q is the set of nodes which occur as antecedents of schemas with n in

their consequent.

Using this information, the following equations recursively calculate informativity and

ubiquity:

informativity(n) = 1 +
X

p2P

informativity(p): (5.8)

ubiquity(n) = 1 +
X

q2Q

ubiquity(q): (5.9)

If a node cannot explain any other node, its informativity is 1; if a node cannot be

explained by any other node, its ubiquity is 1.

To illustrate this, consider the simple set of schemas shown below:
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z �! a, b, c.

a �! m, n.

These schemas can be represented diagrammatically as the schema lattice shown in

�gure 5.8.

nm

a b c

z

i(m) = [m]
u(m) = [z,a,m] u(n) = [z,a,n]

i(n) = [n]

i(b) = [b]
u(b) = [z,b]

i(c) = [c]
u(c) = [z,c]

u(x) = list of nodes by which x is potentially explained

i(x) = list of nodes potentially explained by x

i(a) = [a,m,n]
u(a) = [z,a]

i(z) = [z,a,b,c,m,n]
u(z) = [z]

Figure 5.8: A simple schema lattice with labels

In the diagram, each node has been labelled with a u-list and an i-list. The u-list of

node X represents those nodes which could explain X. The length of this list is used to

determine ubiquity; for example, the length of u(a) is 2, so the ubiquity of node a is 2.

Similarly, the i-list at node X represents the lower-level nodes that X could explain. The

length of this list is used to calculate informativity; for example, the informativity of a is

3.

These values have been determined using the ATMS method (see above), but the

simpler equations 5.8 and 5.9 give the same results. The equations are applied as follows:

1. Leaf nodes of the lattice are assigned informativity = 1.

2. Root nodes are assigned ubiquity = 1.

3. Internal nodes (not leaves or roots) are assigned informativity = 1 + informativity

of their immediate children, working from the leaf nodes upwards.

4. Internal nodes are assigned ubiquity = 1 + ubiquity of their immediate parents,

working from the root nodes downwards.
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The informativities and ubiquities of the schema nodes of section 5.3.1 are shown in

table 5.1 on page 117 (as derived using the IDC setup program).6

In the table, the variables associated with roles have been replaced by anonymous

Prolog variables. The variables are not important when determining informativity and

ubiquity, but the predicate of a node and the pattern of its roles are. If a node shares a

predicate and a role list with another node, then those two nodes are considered to be the

same node in the schema lattice. The role lists of the two nodes must have exactly the

same roles in exactly the same order for this to be true.

Having described how nodes are assigned their informativities and ubiquities, I can

now describe how perceived incoherence is derived from these values. The incoherence

of a representation is determined in two parts: (1) the incoherence of instances of nodes

(instances) in the representation; (2) the incoherence of trees which connect instances.

Both are described in the following sections.

5.3.4 Incoherence of Instances

The incoherence of instances depends on whether they are explained by another instance

and/or whether they explain another instance. An instance of a node which is not

explained by other instance(s) and which does not explain other instance(s) is considered

more incoherent than an instance of that node which is explained and/or does explain.

Incoherence also depends on whether an instance was observed or inferred: an observed

instance of a node is more incoherent than an inferred instance of that node, as the

presence of observed instances requires more justi�cation than the presence of inferred

instances. The latter are represented because of observations: they are explanations for or

elaborations of observed instances, so their presence is motivated by their role in reducing

incoherence. The calculation of instance incoherence (instance inc) is summarised in

table 5.2. Figure 5.9 on page 119 represents this information diagrammatically.

In the table, the Explained by?/Explainer? column denotes whether the instance

is explained by another instance/explains another instance. The S in the formulas stands

for Skepticism (see section 5.3.6 for more details). 0 < Skepticism < 1 is always true.

Note that the incoherence of observations is not a�ected by Skepticism. Also note that

ubiquity only a�ects incoherence if an instance is not explained by another instance, and

informativity only a�ects incoherence if an instance does not explain another instance.

6Note that these values are lower than those in the actual implementation, as other schemas employ

these nodes.
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Node Informativity Ubiquity

(inf) (ubi)

event(buy, [buyer: , bought: ]) 1 2

event(dine, [diner: , place: , 6 1

thing ordered: , utensils: ])

event(�nd, [agt: , pat: ]) 1 2

event(get, [agt: , pat: , from: ]) 1 2

event(get, [agt: , pat: ]) 1 2

event(go, [agt: , loc to: ]) 1 4

event(ingest, [agt: , pat: , inst: ]) 1 2

event(order, [agt: , pat: ]) 1 2

event(pay, [agt: , paid for: ]) 1 2

event(point, [agt: , pat: , obj: ]) 1 2

event(rob, [robber: , weapon: , 9 1

place robbed: , thing robbed: , victim: ])

event(shop, [shopper: , store: , 5 1

thing bought: ])

habit(in charge, [agt: , pat: ]) 1 2

type(business, [exp: ]) 1 2

type(eating place, [exp: ]) 1 2

type(shopping place, [exp: ]) 1 2

type(valuable, [exp: ]) 1 2

type(weapon, [exp: ]) 1 2

Table 5.1: Informativity and ubiquity example
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Case Type of instance I Explained by?/ Incoherence

Explainer?

1 I is observed no/no (ubi(I)� 1) + (inf (I)� 1)

2 I is observed no/yes (ubi(I)� 1)

3 I is observed yes/no (inf (I)� 1)

4 I is observed yes/yes 0

5 I is inferred no/no (ubi(I) � S) + (inf (I) � S)

6 I is inferred no/yes (ubi(I) � S)

7 I is inferred yes/no (inf (I) � S)

8 I is inferred yes/yes 0

Table 5.2: Incoherence of instances

5.3.5 Incoherence of Trees

A tree is a structured object consisting of a parent instance and one or more child instances.

Trees are constructed by either forward-chaining with a schema from a parent instance,

or backward-chaining with a schema from a child instance. Whenever a schema is used to

construct a tree, all of the elements in the tree must either be retrieved from the existing

representation or inferred as new instances.

For example, given the following observation and schema:

Observation:

@event(order, [agt:terry, pat:b]).

Schema:

(1) event(dine, [diner:A, place:R, thing ordered:O, utensils:I]) �!

[

event(go, [agt:A, loc to:R]),

event(order, [agt:A, pat:O]),

event(ingest, [agt:A, pat:O, inst:I]),

event(pay, [agt:A, paid for:O]),

type(eating place, [exp:R])

].

this tree could be constructed:
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@A@A @A @A

#A #A#A #A

inc(@A) = inc(@A) =
ubi(A) - 1inf(A) - 1

inc(@A) = 0

+ (ubi(A) - 1)
(inf(A) - 1)
inc(@A) =

inc(#A) = 0inc(#A) =
ubi(A) * S

inc(#A) =
inf(A) * S

inc(#A) =
(inf(A) * S)
+ (ubi(A) * S)

# = inferred node instance

S = Skepticism

@ = observed node instance

ubi(A) = ubiquity of node A

inf(A) = informivity of node A

Key:

inc(N) = incoherence of element N

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 5.9: Calculation of instance inc

Parent:

#event(dine, [diner:terry, place:R, thing ordered:b, utensils:I]).

Children:

#event(go, [agt:terry, loc to:R]),

@event(order, [agt:terry, pat:b]),

#event(ingest, [agt:terry, pat:b, inst:I]),

#event(pay, [agt:terry, paid for:b]),

#type(eating place, [exp:R]).

(The exact mechanism for tree construction is left for discussion in the next chapter.)

The incoherence of a tree is measured in two parts: altelabs inc and altexpls inc. Both

are described in the following paragraphs.

1. Incoherence caused by possible alternative elaboration sets (altelabs inc)

If a tree is created which has no observed children, the tree's children have no basis in the

text. The incoherence of such groundless trees is calculated as:

altelabs inc(Parent ;Children) = (informativity(Parent) �
X

c2Children

informativity(c)) � S � 0:8:
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Children is the set of inferred children of the tree; 0:8 is a constant which simulations have

shown to produce the most interesting results (i.e. it ensures that trees are constructed if

an instance has many possible sets of elaborations, but not if it has few sets: this prevents

excessive elaborative inferencing).

If a tree does have at least one observed child, it is suÆciently justi�ed by the text

and has no incoherence.

Both situations are shown in �gure 5.10.
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1alt_elabs_inc(T ) = 0 

2 [ ]ialt_elabs_inc(T ) =  inf(X) -       inf(a )  * S * 0.8 

Figure 5.10: Calculation of altelabs inc

2. Incoherence caused by possible alternative explanations (altexpls inc) This

form of incoherence is more important and complex than altelabs inc. The formulae are

summarised in �gure 5.11 on page 121.

This �gure demonstrates the four cases where altexpls inc is calculated. The equations

show the case where there is a single alternative explanation for the observed nodes of a

tree. In the case of several parents for the tree (AltParents), altexpls inc is calculated using

the total ubiquity of those parents. In all the equations below, the following shorthand is

used:

A =
X

a 2 AltParents

ubiquity(a)
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alt_expls_inc(T ) = ubi(Z) * (S / 2) * S alt_expls_inc(T ) = ubi(Z) * (S + 0.5) * S 

Figure 5.11: Calculation of altexpls inc

where A is the total ubiquity of all alternative parents of the children of a tree (not

including the tree's actual parent).

The details of the diagram are commented on below:

1. T1: a tree's parent is inferred, and all of its children are observed. In this case, if there

are any other possible parents for the observed children, their ubiquity is �gured

into the tree's incoherence. Other possible parents are determined by looking for

schemas (bar the schema used to create this tree) where all of the observed children

occur in the consequent.

altexpls inc(Parent ;Children) = A � (S + 0:5) � S:

2. T2: a tree's parent is observed, as are all of its children. Again, other possible parents

contribute incoherence according to their ubiquity, as described above; however, less

incoherence is caused than in case (1), because the schema is fully instantiated by

the text.

altexpls inc(Parent ;Children) = A �
S2

2
:

3. T3: a tree's parent is inferred, and some of its children are inferred (i.e. they are

not present in the text). This case causes the most incoherence as it rests on the



Chapter 5. Metrics for Comprehension 122

shakiest foundations: instantiation of the schema from the text is less complete than

in any of the other three cases.

altexpls inc(Parent ;Children) = A � (S + 0:5):

4. T4: a tree's parent is observed, and some of its children are inferred. This causes

less incoherence than T3, but more than T1 or T2.

altexpls inc(Parent ;Children) = A �
S

2
:

An important point to note here is that the more information missing from a tree (i.e.

the more inferred instances it contains), the greater its altexpls inc. This is because trees

based on inferred instances are more unstable than those based on observations. Note also

that altexpls inc only applies if the observed children of a tree could have been explained

by some other instance: if a tree contains only inferred children, there is a penalty for

altelabs inc (as de�ned above), but no penalty for alternative explanations, as the children

have been inferred for the purpose of constructing the tree. So, there is no need to consider

alternative ways for explaining them.

5.3.6 Skepticism

In the previous sections, I referred to the inuence of Skepticism on incoherence. Skepti-

cism is the main means by which IDC's subjectivity is embodied in the implementation.

Its role is to modulate the incoherence of r-elts produced by inference. Observations

are treated as having a �xed incoherence, which is derived from the knowledge base

alone; the assumption is that observations always carry a `cognitive load' which drives the

comprehender to form representations. By contrast, inferred r-elts are in a representation

as explanations or elaborations of observations; Skepticism governs the extent to which

these r-elts are considered spurious. The lower Skepticism is, the less cautious the

comprehender is, and the more willing they are to form full representations on the basis

of little evidence.

In one sense, Skepticism represents the comprehender's ability to make `imag-

inative leaps' or `jump to conclusions'. Most previous research examining this

kind of behaviour has concentrated on creativity [Johnson-Laird, 1988], analogy

[Forbus and Oblinger, 1990], or related areas. This work describes how existing concepts
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may be combined in novel ways to produce `new' ideas; often, the resulting behaviour can

appear imaginative. In story comprehension research, the ISAAC system uses creative

understanding to deal with new concepts in science �ction stories [Moorman, 1997].

Various control mechanisms decide when understanding has broken down and analogical

reasoning is required to form new concepts (ibid.). However, as in previous systems which

control comprehension (see section 2.4), the e�ort put into creating novel representations

remains constant across instances of comprehension.

Skepticism is intended as a more general cognitive ability, one which directs application

of schemas. Unlike ISAAC and its ilk, IDC cannot form new concepts, only apply old

ones. The central di�erence is that IDC applies its schemas at di�erent rates, depending

on how high Skepticism is: if Skepticism is high, IDC applies schemas sparingly, reserving

their use until relatively certain that it is warranted. It is thus closer to an idea like

Gernsbacher's General Comprehension Skill than it is to a `suite of techniques' for guiding

comprehension along novel avenues [Gernsbacher et al., 1990].

The initial impetus behind Skepticism was the idea of executive control in compre-

hension, inuenced by [Baddeley, 1992], [Shallice, 1982], and [Cooper and Shallice, 2000].

The central executive is a component of working memory which `coordinates activity

within working memory and controls the transmission of information between other parts

of the cognitive system' [Gathercole and Baddeley, 1993]. One model of the regulatory

functions of the central executive is provided by Shallice's supervisory attentional system

(SAS) [Shallice, 1982]. During normal cognitive functioning, various competing schemas

vie for control of behaviour. This routine competition is refereed by contention schedul-

ing, which selects for application those schemas whose activation passes some threshold

[Cooper et al., 1995]. In situations where competition cannot be resolved, the SAS may be

brought in to resolve the conict by modulating the activation of schemas, in proportion

to attention focused on the schemas involved. Attending to a particular task can excite

one or more schemas and inhibit their competitors.

Although the comparison between Skepticism and the SAS is perhaps slight, there are

some similarities. IDC's schemas receive `activation' from the text, to the extent that

they can be matched to observations: the closer the match, the better the activation of

the schema, and the lower its incoherence. Skepticism increases the probability that a

schema is deemed to match the text; in other words, it modulates activation of schemas

and causes selection of schemas which otherwise would not pass the `threshold'.

In this light, a further comparison with General Comprehension Skill is pertinent.
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Gernsbacher suggests that `Less-skilled comprehenders are less able to suppress contextu-

ally irrelevant information' [Gernsbacher et al., 1990]. Skepticism performs a similar role,

by setting standards for relevance and evidence: if Skepticism is low, irrelevant inferences

are made on the basis of little evidence, which consequently have to be replaced and/or

retracted. In one sense, the comprehender is unable to suppress inappropriate inferences.

Conversely, high Skepticism can also be a liability: it may set such exacting standards

that few inferences are made, with the result that the representation remains fragmentary.

Skepticism in Human Comprehenders

An important question is whether there is any evidence for a parameter such as Skepticism

in human comprehension, and whether it manifests in empirical data. Zwaan has carried

out a series of experiments which examine whether a control mechanism `tweaks' compre-

hension, depending on the context in which it is carried out [Zwaan, 1996]. He presented

the same texts to two sets of subjects, telling one set that they were news stories, and

the other that they were literary stories. In the literary condition, the representations

constructed, at the levels of both surface structure and textbase, were found to be richer

and more elaborated. It was also found that inconsistent information was maintained

more readily in the literary condition.

Zwaan infers that the di�erences were not caused by the texts (which were the same

in both conditions), but by the comprehenders' control systems. Using the Construction-

Integration model as a basis (see pages 54 and 77), Zwaan suggests a model which is able

to modulate the integration process. He describes two methods for implementing this:

1. Set a threshold at which integration is started. This threshold would be lower in

literary comprehension, allowing more of the products of the construction phase to

remain activated. This would also result in slower processing, as more irrelevancies

and inconsistencies are maintained in the hope that they will later become relevant

and be resolved.

2. Add a layer of nodes to the Construction-Integration model which is activated

according to the comprehension context. For example, in a literary comprehension

context, these nodes would activate those nodes in the representation which are more

relevant in literature, such as surface form and textbase, while inhibiting those of

lesser importance such as the situation model.
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While Zwaan sides with the latter approach, my own model is closer to the former.

Skepticism acts like a threshold for determining which elements remain activated and

even which elements become activated in the �rst place, as described in the previous

section. However, Skepticism only controls the `thoroughness' of the inference process

and not the types of products it produces (it does not discriminate between the textbase

and the situation model, for example).

How Skepticism Acts as a Coherence Threshold

More evidence for a Skepticism-like parameter is present in the coherence need theory

of van den Broek et al. (see section 5.2.4). It may seem that Skepticism is remote from

coherence need as it is not explicitly a threshold. However, it does mimic a threshold when

it is used to decide whether to produce more inferences or continue reading observations

from the text. This is because IDC monitors the incoherence change caused by inferences

and only accepts those which create a net decrease in incoherence. Because Skepticism

inuences the incoherence of inferred elements it also inuences whether an inference

produces a drop in incoherence or not.

Figure 5.12 gives an example of how Skepticism produces a threshold-like e�ect. The

diagram shows a decision point where IDC has a choice between inferring an explanation

(either #a or #b) for event @x, or leaving it unexplained.

The diagram is based on the following rules:7

(i) a �! x, y.

(ii) b �! x, z.

In representation (1), @x is not integrated into any kind of structure. This �ts case 1 of

table 5.2 (on page 118): an observed instance with no parents or children. Its incoherence

is calculated as the instance incoherence of @x:

inc(1) = (inf(x)� 1) + (ubi(x)� 1) (5.10)

In representations (2) and (3), x is explained by a single higher-level element (a and b

respectively). Both �t case T3 of �gure 5.11; the incoherence of these representations is

calculated as follows:

7I've used abstract rules to improve legibility; an example of incoherence calculation using full schemas

is shown in appendix A.
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#a

@x #y

(2) #b

@x #z

(3)

# = inferred instance @ = observed instance

(1)

@x

Figure 5.12: An incoherence decision point: Skepticism governs whether an explanation

is inferred

inc(2) = instance inc(@x) + instance inc(#a) + instance inc(#y) +

altexpls inc(#a; [@x;#y])

= (inf(x)� 1) + (ubi(a) � S) + (inf(y) � S) + (ubi(b) � (S + 0:5)) (5.11)

inc(3) = instance inc(@x) + instance inc(#b) + instance inc(#z) +

altexpls inc(#b; [@x;#z])

= (inf(x)� 1) + (ubi(b) � S) + (inf(z) � S) + (ubi(a) � (S + 0:5)) (5.12)

Note that in neither case is there any altelabs inc: this is because neither a nor b occurs

as the antecedent of any other schema.

If rules (i) and (ii) are the only rules available to IDC, the informativities and ubiquities

of the nodes in the knowledge base are as follows:

Node Informativity Ubiquity

(inf) (ubi)

a 3 1

b 3 1

x 1 3

y 1 2

z 1 2
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Using these �gures, it is now possible to calculate the incoherence of each representation,

as given in equations 5.10, 5.11 and 5.12.

inc(1) = 2 (5.13)

inc(2) = (1� 1) + 1S + 1S + (1 � (S + 0:5))

= 3S + 1:5 (5.14)

inc(3) = inc(2)

= 3S + 1:5 (5.15)

IDC is thus indiscriminate between representations (2) and (3), as both require the same

number of inferred nodes, at the same level of detail. However, there is a bene�t in

inferring representation (2) or (3) from representation (1) if such an inference produces a

bene�cial (i.e. negative) incoherence change. In other words, there is a bene�t if:

inc(2 ) or inc(3 ) < inc(1 )

(inc(2 ) or inc(3 ))� inc(1 ) < 0

Substituting the values from equation 5.11 or 5.12 and equation 5.10 gives:

(3S + 0:5)� 2 < 0

3S � 1:5 < 0

3S < 1:5

S < 0:5

When S < 0:5, choosing one of representations (2) or (3) is perceived as more productive

than simply maintaining representation (1); when S >= 0:5, representation (1) is per-

ceived as a safer bet than either of the other two. So, Skepticism is acting as a threshold

by determining when an inferred representation is perceived to be more coherent/less

incoherent than a current representation.

The next section explains why incoherence change is used to determine whether a new

representation should be constructed.
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5.3.7 Incoherence Change

Incoherence change is used as a criterion for halting inference generation, rather than sim-

ple comparison of the coherence of representations, for one main reason: IDC's perception

of incoherence is focused on the contents of its short-term store; thus, it is not measured

across the whole representation (including everything in the long-term store (LTS)), but

calculated only in terms of r-elts a�ected by an inference. The calculation may include

elements in LTS, but doesn't necessarily. It is worth nothing that this feature of IDC is

a departure from many other coherence metrics, which consider the whole representation

during evaluation (e.g. [Ng, 1992], [Thagard and Verbeurgt, 1998]). Because far fewer

elements have to be evaluated when the metric is applied, the calculation is considerably

faster.

Also, because incoherence in the short-term store (STS) is considered the main source

of `potential structure', it alone drives the inference process. Information which has

already been processed is no longer accessible for initiation of inferences, only as a store

from which elements may be `retrieved' [Trabasso and Magliano, 1996]. However, if an

inference incorporates r-elts in the LTS into a new tree, or causes LTS r-elts to become

redundant, this contributes to incoherence change. For example, if a tree in the LTS

is made redundant and removed, the incoherence of the r-elts unique to the tree is also

removed from the representation.

As a result, it is more eÆcient (from a computational perspective) to measure the

incoherence change of individual r-elts and sum them, rather than measure the incoherence

of the representation as a whole. In the case of representations (1) - (3) above, all elements

are considered equally accessible and all are a�ected by the inference, so changes to the

LTS do not impact on incoherence change. A more complete example, demonstrating

how LTS elements can impact on incoherence change, is given in appendix A; and more

details of how r-elts are maintained in the STS and transferred to the LTS are given

in section 6.4.1. Another factor is the number of representations maintained by IDC:

for example, IDC may infer both (2) and (3) and store both in the interpretation (see

section 3.2.5).

The description of incoherence has so far focused on its relationships with coherence.

In the next section, I return to the other types of quality metric with which I began this

chapter. In each case, I describe how the incoherence metric encapsulates parts of these

metrics.



Chapter 5. Metrics for Comprehension 129

5.3.8 Speci�city and Incoherence

As I stated in section 5.1.1, the speci�city of a representation depends on how completely

it has been explicated (i.e. explained and elaborated). In terms of the incoherence metric,

any representation whose potential structure has been fully utilised (i.e. whose incoherence

has been reduced to 0) is considered maximally speci�c. However, the only situation where

a representation can be considered fully speci�ed occurs when all of the elements of all

schemas which match a text are instantiated by that text. For example, consider these

two schemas (loosely based on [Ng and Mooney, 1989]):

(i) go to work(agt:A) �! go(agt:A, loc to:P), type(P, place of work),

put on(agt:A, pat:U), type(U, uniform).

(ii) type(P, super market) �! type(P, place of work).

If each of the seven nodes in these two schemas were observed in a text, both schemas

could be fully instantiated and incoherence would be zero. However, it is unlikely that a

text would explicitly contain all of these statements as this would become very tedious

for the comprehender. Thus, normal texts leave space for the comprehender to make

inferences and become engaged in representing them. Some texts leave large areas of

the representation unspeci�ed (e.g. allusive poetry [Eliot, 1958]), while others specify

to a �ne level of detail (e.g. the `nouveau roman' [Robbe-Grillet, 1959]). However, the

comprehender's own requirement for speci�city (the threshold set by their Skepticism,

as described on page 125) governs how much of this `space' is represented explicitly.

Incoherence thus measures speci�city implicitly, as incoherence is inversely proportional

to speci�city (more incoherent = less speci�c).

To show why this is the case, see �gure 5.13 (page 130).

In this �gure, there are three representations, (1)-(3), constructed by applying schemas

(i) and (ii). In (1), neither schema has been applied; in (2), schema (i) has been applied,

but schema (ii) has not; in (3), both schemas have been applied. As a rough measure,

I let speci�city = A=P , where A = the number of links between instances which have

actually been speci�ed in the representation and P = the number of links in the schema

lattice.8 This gives the following speci�cities:

speci�city(1 ) = 0

8No actual speci�city measure has been proposed, to my knowledge, so this is an approximate measure.
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@go(agt:sharon, loc_to:s) @type(s, supermarket)

@go(agt:sharon, loc_to:s)

@type(s, supermarket)

@go(agt:sharon, loc_to:s)

#go_to_work(agt:sharon)

#type(U, uniform)#put_on(agt:sharon, pat:U)#type(s, place_of_work)

(3) @type(s, supermarket)

#go_to_work(agt:sharon)

#type(U, uniform)#put_on(agt:sharon, pat:U)#type(s, place_of_work)

(2)

(1)

Figure 5.13: Three representations for `Sharon went to the supermarket'

speci�city(2 ) = 4=5

speci�city(3 ) = 1

In other words, representation (3) is the most speci�c. The incoherence metric assigns

the following values to the three representations:

inc(1 ) = 2

inc(2 ) = 4S + 1

inc(3 ) = 4S

Representation (3) is always perceived as less incoherent than representation (2). However,

unlike speci�city, it is not always the case that representation (3) will be chosen over
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representation (1). This is only the case when:

inc(3) < inc(1)

4S < 2

S < 0:5

Therefore, incoherence captures some aspects of speci�city, while at the same time

going beyond it in recognising the importance of the comprehender's desired level of

speci�city (as described in section 5.1.1).

5.3.9 Simplicity, Breadth and Incoherence

Recall that in section 5.1.3 I de�ned simplicity in terms of breadth and vagueness: sim-

plicity = breadth / vagueness. Looking again at �gure 5.13, the simplicity of the three

representations evaluates to:

simplicity(1) = 0=2

= 0

simplicity(2) = 0:5

simplicity(3) = 0:5

The greater the simplicity of a representation, the better its quality, so (2) and (3)

are recognised as being better representations than (1). However, simplicity cannot

distinguish between (2) and (3), relying as it does on the explanation of observations

for its numerator: unless more observations are explained, simplicity remains static. The

incoherence metric can distinguish between them, as it takes account of the number of

links in the representation.

A caveat: both simplicity and incoherence are reliant for their e�ects on the structure

of the knowledge base. In systems which use simplicity, the rules are usually Horn clauses

(i.e. they have multiple antecedents and a single consequent [Sterling and Shapiro, 1994]);

the schemas shown above are not Horn clauses, so the metric goes slightly awry. However,
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I think it is intuitively clear that representation (3) is better than representation (2), by

virtue of its greater connectivity; this failing provided the impetus for Ng's coherence

metric [Ng and Mooney, 1990]. I think incoherence thus provides a better measure in

these circumstances.

5.3.10 Competitiveness and Incoherence

As I've stated before, competitiveness is central to incoherence: the existence of competing

sets of explanations and/or elaborations increases the incoherence of a representation.

Referring back to �gure 5.2 (page 90), the incoherence metric takes account of the

di�erence between the knowledge bases of (a) and (b). In (a), there is no altexpls inc

to take into account, as there is no hypothesis which provides an alternative explanation

for the observations. The incoherence of (a) = 3S.

By contrast, in (b) there is a pregnant(mary) hypothesis available which can explain all

three observations. Thus, there is additional altexpls inc = ubi(pregnant( ))� (S+0:5)�S

(see �gure 5.11 on page 121). The total incoherence is therefore calculated as:

inc(b) = 3S + altexpls inc(b)

= 3S + (1 � (S + 0:5) � S)

= 3S + (S2 + S=2)

= S2 + 7S=2

Whatever the value of S, (a) has lower incoherence than (b) (i.e. 3S < S2 + 7S=2 is

always true for values of S such that 0 < S < 1). It is also generally true that whenever a

broad hypothesis for observations O1; : : : ; On is available, IDC prefers this over multiple

narrow hypotheses which together explain O1; : : : ; On.

5.4 Chapter Summary

In this chapter, I introduced the idea of representation quality: a measure of how well a

representation encapsulates a set of observations. Many previous metrics for quality have

been suggested in the literature, including:
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� Speci�city

� Simplicity

� Breadth

� Competitiveness

� Probability

� Coherence

I drew comparisons between the various metrics, showing how some could be seen as

components of others (e.g. breadth as part of simplicity). I also showed some drawbacks

associated with the most popular metrics, probability and coherence. The following points

are central to these criticisms:

1. Comprehension does not depend on probabilities in the real world, but on the

probability of a representation being satisfactory in the context of a given knowledge

base.

2. Comprehension control depends on acknowledging when an inference is productive.

In turn, this depends on acknowledging the existence of the possible representations

space. Without this, it is diÆcult to see how a comprehender can make a decision

about when inferences are appropriate.

3. Individual comprehenders produce inferences at varying rates, and at varying points

in comprehension. Without a mechanism for modulating the decision process (see

previous point), there is no way to model this.

I suggested a metric based on incoherence which attempts to resolve some of these

issues. The main inuences behind the metric are:

1. Incorporating into a single metric as many aspects of representation quality as

possible.

2. Incorporating the comprehender's knowledge base as a central determinant of qual-

ity.
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3. Incorporating parameters which allow inferences to be made with more or less

skepticism

Although coherence is a by-product of the management of incoherence, incoherence

is a more inclusive concept. Coherence is often viewed as being distinct from other

measures of representation quality (such as simplicity and competition) [Ng, 1992] or

as being entirely constituted by those measures [Thagard and Verbeurgt, 1998]. Very few

authors have tried to specify the importance of structure, abstracted away from other

measures of quality. Ideally, this is what a theory of coherence should be. However,

my reasons for employing incoherence were triggered by the realisation that coherence

is meaningless outside the context of potential structure. Speci�cation of `amount of

structure' is dependent on structure available.

The incoherence metric is a central part of the implementation of IDC. In the next

chapter, I describe the implementation and how the metric is integrated into it.



Chapter 6

The Incoherence-Driven

Comprehender

The Incoherence-Driven Comprehender (IDC) is a set of Prolog programs which together

implement the comprehension model described in this thesis. IDC has two core modules:

1. The IDC setup module sets up the external �les used by the IDC module. It �rst

produces indexes for the schemas in the knowledge base; then, it determines the

ubiquity and informativity of nodes in the set of schemas using those indexes. Its

output is a �le containing the indexes and a set of annotated nodes.

� Indexes are used to retrieve an appropriate schema from the knowledge base.

A schema is retrieved by matching node instances against either the second

or third argument of an index I; the �rst argument of I, representing an

appropriate schema ID, is then used to retrieve the schema proper. Indexes

are purely for computational convenience: Prolog can retrieve indexes far

more eÆciently than it can match a node instance against the consequents

of schemas.

� Annotated nodes are data structures which store the node's content (see sec-

tion 6.1) along with its informativity and ubiquity, determined as described in

the previous chapter.

2. The IDC module is the comprehension model which does the main processing. It

uses the indexes and annotated nodes produced by the IDC setup module.

135
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The IDC module is the main subject of this chapter. As a preamble to my explanation

of how the module produces interpretations, I describe the types of representation it

employs.

6.1 Semantic Representations: Schemas

IDC's schemas have a format familiar from the previous chapters.

26 : habit(care_about, [exp:A, exp:B]) / [A \== B] --->

[

habit(live, [exp:C, loc_in:D]) / [C ==> A],

habit(live, [exp:E, loc_in:D]) / [E ==> B]

].

This schema represents a relationship between three nodes. The number before the

antecedent (ID) is a unique identi�er for the schema. This is used to give fast access

to schemas through their indexes (see previous section).

Each node within the schema has the following form:

Eventuality type(Predicate, Roles)

Each element of a node's content is described below.

6.1.1 Eventuality Types

The eventuality types are based very loosely on the work of Moens and Steedman (among

others) [Moens and Steedman, 1988], and are limited to the following:

1. Event: this is used to represent eventualities which have a de�ned beginning and

end.

2. Habit: this is used to represent eventualities which are inde�nitely extending or

`habitual'. I used the word `habit' rather than `state' because `habit' has a broader

sense, encapsulating both traditional states and types. Types can be viewed as

habitual states which extend over the entire lifetime of an entity, in the sense

suggested in [Dalrymple, 1988].
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3. Relation: this represents relationships between eventualities (e.g. temporal, causal,

partonomic). Relations are themselves represented by instances. For example,

a causal relationship between going somewhere and being at that place may be

represented by the schema:

relation(physically_causes, [E1b, E2b]) / [] --->

[

event(E1a, go, [agt:A, loc_to:L]) / [E1a ==> E1b],

event(E2a, be, [agt:A, loc_at:L]) / [E2a ==> E2b],

relation(before, [E1b, E2b]) / []

].

The reason for this is that it allows relations to `explain' lower level eventualities.

4. Goal: this represents cognitive states of individuals and provides a very primitive

means of describing modal statements.

Events and goals are assigned unique tokens which can be used to refer to them in relations

(see section 6.1.2).

I have concentrated on events and habits as these are the easiest types of eventuality

to handle. Note that I treat events at the `script' level in the same way as events at

other levels, in the manner of [Kautz, 1990]. Types are separated out from the role list

so that information about their distribution through schemas can be used in calculating

informativity and ubiquity.

I make no claims about temporal/modal reasoning, though my original intention

was the incorporate both into the implementation. I quickly realised that tackling the

complexities of these topics in addition to those of inferential control was beyond the

scope of my thesis. As a result, the temporal ontology is very na��ve and restricted.

6.1.2 Roles

Roles is a list of roles involved in the eventuality. Each role consists of a name and a value;

for example, the role agt:A has name = agt and value = A. Role values in the schema

lattice are always variables; during comprehension, these variables are instantiated where

possible with values from the text, or from other inferred r-elts. The variable identi�ers

in a schema are important, as they inuence which elements of the text can be bound to
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roles, according to the schemas's constraints. The role names used in IDC are shown in

table 6.1 (page 139).

In cases where an entity may be represented by two or more roles the more speci�c

is used. For example, in `Karen went to the garage', `to the garage' is represented as

loc to:garage, rather than pat:garage.

In the case of relation nodes, the role list contains event tokens. For example:

relation(physically causes, [E1b, E2b])

This role list contains tokens for two eventualities, E1b and E2b.

It is worth mentioning that the role names of table 6.1 do not limit what can be in-

cluded in a schema (as the eventuality types do); rather, they merely provide a convenient

shorthand. Where propositions are diÆcult to express using these role names, there is

nothing to prevent the use of arbitrary new ones. This is especially true of script-like

eventualities, which are frequently inexpressible as a solitary proposition: for example,

the `restaurant script' schema has roles such as waiter, diner and meal.

6.1.3 Constraints

The [Value1 Op Value2] terms attached to each node in the schema are constraints on

the values taken by roles in the schema. Value1 and Value2 are two values in the schema,

and Op is an operator used to compare them. Occasionally, I have also used the built-in

Prolog procedure nonvar/1 as a constraint (see below).

It is important to note that constraints are attached to schemas, not nodes; they only

inuence binding of variables between nodes within that particular schema.

The four types of constraint are:

1. == works as the match operator in Prolog, i.e. the constraint only holds if Value1

and Value2 are literally identical.

2. \== holds when Value1 and Value2 are not literally identical.

3. nonvar(A) holds if A is an instantiated variable. This constraint is usually used in

conjunction with a node with eventuality type habit. This enforces strict conditions

for application of the schema, preventing its use except in cases where an instance

of the right `habit' has been previously instantiated.
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Role Role Meaning Example

type name

Agent agt The entity performing a

particular action.

`John' - agt:john

Patient pat The entity an action is per-

formed upon.

`John hates Mary' -

pat:mary

Experiencer exp An entity who/which pas-

sively experiences an even-

tuality.

`Tom sleeps' - exp:tom

Object obj A subsidiary entity involved

in an eventuality.

`Frank gave the knife to

Jane' - obj:knife

Instrument inst An object which assists an

entity in carrying out an

action.

`Pete ate with a fork' -

inst:fork

Location

from

loc from Physical location from

which a travelling action

originates.

`Paul left the house' -

loc from:house

Location to loc to Physical location at which a

travelling action terminates.

`Mike went to the city' -

loc to:city

Location at loc at Physical location where an

eventuality takes place.

`They met in the park' -

loc at:park

Time of when Time when an event took

place.

`He arrived at noon' -

when:noon

Theme thm An event which is the sub-

ject of another event.

`He worried about driving

home' - thm:driving home

Table 6.1: Basic roles used in IDC
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4. ==> is a constraint which enforces directed binding. This constraint is particularly

important as it both restricts schema application and infers bindings between role

values in a tree. A constraint like [A ==> B] has the following e�ects:

� If both A and B are uninstantiated variables, they are uni�ed with each other

and the constraint holds. If one of the two variables is instantiated later, the

binding thus propagates to the other variable.

� If A is an instantiated variable and B an uninstantiated variable, they are uni�ed

with each other (i.e. B takes on the same binding as A) and the constraint holds.

� If A and B are both instantiated and A == B is true, the constraint holds. Note

that no binding is performed here.

� If A is uninstantiated and B is instantiated, the constraint fails.

Constraints are tested in the order in which they occur in the schema as trees are

built. This means that construction of a tree may be halted if a constraint fails part way

through; hence, constraints limit inferences by preventing creation of trees which violate

them.

6.2 Semantic Representations: Texts

The texts processed by IDC are represented in the same format as nodes; the only di�er-

ence is that role values in text observations are either partially or completely instantiated.

For example, the text:

John was on his way to school.

He was worried about the maths lesson.

Last week he lost control of the class. (after [Sanford and Garrod, 1981])

is represented in IDC as a list of terms:

event(e1, go, [agt:john, loc to:s])

habit(school, [exp:s])

event(e2, worry about, [agt:john, pat:m1])

habit(teacher, [exp:john])

habit(math lesson, [exp:m1])
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relation(precedes, [e1, e2])

event(e3, lost control, [agt:john, pat:m2])

habit(math lesson, [exp:m2])

relation(precedes, [e3, e1])

relation(precedes, [e3, e2])

This is necessarily a compromised representation of the text: predicates like worry about

and lost control are not satisfactory in many respects, but dealing with the complexities of

eventualities embedded within each other would distract from my central goal. As far as

possible, I have tried to be consistent in my translations of texts, following the work of psy-

chologists such as [Fletcher et al., 1996], [Kintsch, 1998], and [van den Broek et al., 1999].

Roughly speaking, each sentence in a text is translated to a single event; types involved

in the sentence are speci�ed separately using `habit' eventualities; and temporal relations

between events are manually derived and added to the input representation. In the latter

case, it would be better if temporal relations were derived by inference from verb tenses,

aspect etc.. Again, this proved to be too impractical and time-consuming.

6.3 Episodic Representations

IDC distributes each of its representations over two memory stores, the short-term store

(STS) and the long-term store (LTS). These memory stores are common to most re-

cent comprehension models [Alterman and Bookman, 1992], [Graesser et al., 1994]; their

functions in IDC are described below.

6.3.1 The Short-Term Store (STS)

The STS contains the part of the representation which is currently under examination

or in `focus'; the part `that the system can currently access' [Anderson, 1983]. I have

avoided use of the term `working memory' as this is more often associated with a whole

system of attentional mechanisms and modality-speci�c stores (e.g. the visuo-spatial

sketch-pad, the phonological loop) [Baddeley, 1992]. Instead, I focus on the idea of a `con-

ceptual bu�er' which holds information produced by activated inferences, plus recently-

accessed parts of the text representation [Haberlandt and Graesser, 1990], [Jonides, 1995],

[Just and Carpenter, 1992]. The STS is constantly updated during comprehension: new
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r-elts are added to it from the text, new inferred r-elts are constructed in it, and r-elts

are continuously retrieved into it and transferred out of it.

The capacity of the STS is determined by a Tolerance parameter, chiey inuenced

by the work in [Just and Carpenter, 1992]. This parameter acts as a threshold against

which the incoherence of STS r-elts is compared: when incoherence passes the level of

Tolerance, the comprehender engages in reducing incoherence, either by creating inferences

which utilise it or by transferring information from the STS to the LTS. Tolerance thus

determines the amount of information the comprehender can keep in the STS from one

cycle to the next.

Tolerance can be used to model di�erent integration strategies: if Tolerance is low,

there is a drive to integrate new information as quickly as possible into trees; if it is

high, information is `bu�ered' (maintained) until it reaches some critical mass, at which

point integration is attempted [Haberlandt and Graesser, 1990]. Depending on the other

parameters in the system, a low Tolerance may drive the comprehender to make mistakes

which later have to be retracted; conversely, high Tolerance may disrupt the smooth

ow of comprehension: because information is being maintained for long periods of time,

when integration is eventually attempted there may be many possible extensions to the

representation to consider.

A model which is close to this in spirit is the Current State Selection model, devised by

Fletcher, Bloom and their colleagues [Fletcher et al., 1990], [Fletcher et al., 1996]. They

describe the short-term memory component of the most recent version of the model as

follows:

As propositions are added to short-term memory, the model focuses its at-

tention on the propositions that are essential to the causal role played by the

most recent clause that has causal antecedents, but no consequences, in the

preceding text. When a sentence boundary is reached, all propositions that are

not essential to this current state clause are dropped from short-term memory

to make room for the following sentence. [Fletcher et al., 1996]

In a comparable fashion, IDC `focuses' on those elements which are essential to the

`structuring' of the r-elts most recently added to the STS. It does this by centering its

inferential behaviour on r-elts which have not been connected to other r-elts. R-elts which

have been connected have little remaining incoherence and are purged from the STS, as

they have less potential for integrating new observations. These r-elts are `not essential'

for integrating new observations, as their potential connections have been realised.
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However, unlike the Fletcher et al. model, IDC's `breadth of focus' can be altered. If

Tolerance is low, the breadth of focus is low, and information which is not immediately

integrated may simply be passed into the LTS. If Tolerance is high, breadth of focus is high,

and r-elts which are not relevant to the causal role of recent clauses may be maintained,

simply because there is space for them in the STS. There is less of an emphasis on clausal

boundaries and causality than in their model: IDC treats the potential structure of r-elts

as the chief determinant of whether they should be maintained in the STS.

6.3.2 The Long-Term Store (LTS)

The LTS contains the parts of the representation which have already passed through

the STS. I have not implemented sophisticated retrieval algorithms, such as those sug-

gested in the current literature (e.g. [Myers and O'Brien, 1998]). When constructing

trees, IDC simply examines the r-elts in the LTS to determine: (1) whether any of the

instances there could be incorporated into the tree; (2) whether any trees have become

unnecessary as a result of the new tree's creation (see section 6.4.1). In some respects

this is a primitive model of retrieval from long-term memory as it ignores `forgetting'

in its most general sense (e.g. there is no facilitation for recently-comprehended r-elts

over those which were comprehended less recently, as is found in human comprehenders

[Myers and O'Brien, 1998]).

6.3.3 Interpretations and Representations

In computational terms, the comprehender's interpretation is a list of episodic repre-

sentations. IDC thus explicitly maintains multiple representations, using the multiple

representations strategy of �gure 3.7 (page 48). The number of representations maintained

depends on the Range parameter, as described in section 6.4.2. (N.B. it is also possible

to set the number of retained representations to 1.)

Each representation is a data structure of the following form:

repr(STS, LTS, Incoherence)

STS and LTS each consist of a set of instances and a forest (a set of trees), i.e.:

STS = STS_Instances ^ STS_Forest

LTS = LTS_Instances ^ LTS_Forest
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The ^ symbol is used to connect the instances to the forest so that they can be manipulated

together in the program.

The term r-elts is used to collectively refer to elements of the representation, which

may be either instances or trees. Instances and forests (sets of trees) are described below.

Instances

Instances are instantiated or partially-instantiated copies of nodes in the schema lattice.

Two types of instance are used:

1. Observed instances are marked with an @ symbol. They are initially derived from

the text, but may be modi�ed later if one or more of their roles have anonymous

values. For example, the observation `Jack was worried' may be represented by the

initial observed instance:

instance(@event(e2, worry about, [agt:john, pat: ]), n, n, 10)

Note that the patient role has an anonymous value ( ). The `n' ags denote

whether an instance has parents or children, in that order. The `10' represents

the incoherence of the instance. If a later observation speci�es that Jack's marriage

is in trouble, the value of the pat role may be instantiated:

instance(@event(e2, worry about, [agt:john, pat:m]), n, n, 10)

instance(@habit(marriage, [exp:m])

2. Inferred instances are marked with a # symbol. These are always derived by

inference of trees. For example, if the comprehender inferred `Jack was worried',

this might be represented as:

instance(#event( , worry about, [agt:john, pat: ]), y, n, 5)

If a later observation can be merged with an inferred instance, the symbol for the

instance is updated, as is its incoherence. Merging of a new observation with an

existing inferred instance uses the ==> constraint, speci�ed in section 6.1.3. This

ensures that bindings gravitate from observations to inferred instances: to merge

observation O with inferred instance I, the following constraints must hold:
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(a) If O and I are both of type `event' or both of type `goal', and the eventuality

token of O = tO and that of I = tI , tO ==> tI must be true. In addition, their

predicates and roles must unify (using Prolog's `=' operator).

(b) If both O and I are of type `relation', their predicates must unify and their

role lists match (i.e. the role list of O == the role list of I).

(c) If both O and I are of type `habit', their predicates and role lists must unify.

These constraints are necessary to prevent tokens being bound to the incorrect

events and goals. There is a good possibility that complex texts would require more

complex constraints, but these are suÆcient for my purposes.

The procedure can be demonstrated by showing how an inferred instance may be

merged with a new observation:

Inferred instance:

instance(#event( , worry about, [agt:john, pat: ]), y, n, 5)

Observation:

event(e3, worry about, [agt:john, pat:m])

New instance:

instance(@event(e3, worry about, [agt:john, pat:m]), y, n, 3)

Forests

A forest is a set of trees describing relationships between instances. An important point is

that instances in a forest in one memory store are not necessarily stored in that memory

store: for example, a tree in the STS forest may contain a reference to an instance which

currently resides in the LTS.

As described previously, a tree is a structured object representing the relationship

between a parent node and the child instances it subsumes (see section 5.3.5).

6.4 Comprehension Processes

The main comprehension process is described in this section. At the top level, this

procedure makes gross-level decisions about what action to take next: whether to halt

comprehension, read in the next observation, or process the current representations in an
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e�ort to lower incoherence. This decision is made at the beginning of each comprehension

cycle.

A cycle consists of two steps:

1. Creation of new extensions to the current representations. This may involve creation

of new r-elts or transfer of existing r-elts from the STS to the LTS (see section 6.4.1).

2. Sorting and trimming of the extensions. This involves deciding which representa-

tions to maintain in the interpretation and which to discard (see section 6.4.2).

6.4.1 Creating New Extensions

If all of the observations in the text have been observed and the incoherence of the best

representation is within Tolerance, IDC transfers the contents of the STS to the LTS and

halts comprehension, displaying its results. In this case, there is no need to sort and trim

representations.

If some statements remain to be observed and the current incoherence of the r-elts in

the STS is equal to or below the level of Tolerance, IDC reads in the next observation.

This may be merged with existing instances in either memory store, or a new observed

instance representing the observation may be generated.

If the current incoherence of the STS is above Tolerance, IDC creates new extensions

based on its current representations in an e�ort to lower incoherence. IDC has three

methods for creating extensions:

1. Create new trees

IDC connects instances into trees, inferring new instances where necessary. As this

procedure is the core of IDC, it is described in more detail in the next section.

2. Transfer trees from the STS to the LTS

IDC transfers a single tree from the STS to the LTS; simultaneously, any instances

which occur only in that tree and not in any other tree are transferred to the LTS.

This represents IDC's ability to prioritise the content of the STS when Tolerance is

exceeded. Instances which are already part of a tree have been integrated (at least

partially), so are less important than instances which are wholly isolated.

3. Transfer isolated instances from STS to LTS

If no trees can be transferred from STS, IDC can transfer isolated instances (i.e.
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those which occur in no tree) from the STS to the LTS. This is a last resort, as it

means that those instances are being `put aside' for integration at a later date. The

least incoherent instances are transferred �rst, as they have the least potential for

being connected to the remainder of the text.

IDC uses each method in turn, applying it several times to each of the representations

currently constituting the interpretation. Each application of the method to a represen-

tation R creates a new extension E; E contains both a new representation R0 derived

from R and a value representing the incoherence di�erence between R0 and R; this is the

incoherence change (inc change) of the extension. The format of an extension is thus:

ext(R0, inc change)

If the incoherence change is � 0, the extension is a viable way for IDC to lower the

incoherence of the STS; if the value > 0, the extension is immediately discarded. When

a new tree is created there is no guarantee that incoherence will fall; however, transfers

from the STS to the LTS guarantee a drop in incoherence.

Thus, each method either produces a batch of extensions whose (global) incoherence

is lower than the representations currently in the interpretation, or no extensions at all

(only possible in the case of new tree creation). (Some of the extensions may have a higher

incoherence than the original representations, but there is a general trend towards lower

incoherence across the interpretation.) If no viable extensions were produced, the next

method in the list is tried. This process ensures that transfers are not tried until creation

has failed to produce a viable extension; otherwise, information would pass through the

STS `without touching the sides'.

Once a set of viable extensions has been created, they are sorted with reference to the

Range parameter. As this has important psychological rami�cations, it is described in

detail in section 6.4.2.

In the next section, I cover in greater depth the process by which new trees are created.

Creating New Trees

The creation of new trees which connect and integrate nodes is IDC's principle method

for lowering incoherence. All possible extensions based on the creation of trees are tried

before r-elts are moved to LTS; this simulates the `drive for coherence' central to compre-

hension, which encourages integration of inputs over raw storage [Graesser et al., 1994],

[van den Broek et al., 1995].
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A tree can be constructed either top-down or bottom-up. In both cases, the process is

based on a production system style of programming [Frost, 1986]:

1. Select a `trigger instance' from the STS.

2. Match the trigger instance against an antecedent or consequent node of a schema.

(Instances are not literally matched against the data structures representing IDC's

schemas, but are matched against the indexes produced by the IDC setup module.)

3. Retrieve the matched schema.

4. Construct a tree using the schema, with the trigger instance as its �rst element.

The trigger instance may be the tree's parent or one of its children, depending on

the direction in which the tree is being constructed:

� If the trigger instance matched the antecedent of a schema, the tree is con-

structed top-down (by forward-chaining).

� If the trigger instance matched a consequent of a schema, the tree is constructed

bottom-up (by backward-chaining).

The rest of the tree is constructed by matching nodes in the schema with instances

in the STS; then by matching with instances in the LTS; then by creating new

instances to �ll any `blanks' in the tree. When an instance is matched with a node

in the schema, the constraints on that node are checked.

Note that all of the nodes speci�ed in the schema are added to the representation.

Thus, the schema's contents are being asserted as a single `cognitive unit' (see

section 4.2.1).

5. Update the incoherence of instances included in the tree, and/or determine the

incoherence of newly-introduced instances. These �gures are used to determine the

incoherence change generated by construction of the tree.

A detailed example of tree creation is given in appendix A.

When a new tree is added to a representation, IDC checks for r-elts (trees and

instances) which have become unnecessary as a consequence of the new tree. This

procedure is described in more detail in the next section.
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Detecting Unnecessary R-elts

Although IDC is capable of maintaining multiple representations (see section 6.3.3), it is

also capable of correcting existing representations. This approach di�ers slightly from

the traditional one in AI, where representations are not corrected; instead, they are

deleted when their quality falls too far behind the best representation's [Goldman, 1990],

[Hobbs et al., 1993], [Ng, 1992].

The model of representation correction in IDC has some similarities with Krems and

Johnson's model of anomalous data integration in abduction [Krems and Johnson, 1995].

In their model, inconsistent explanations are deliberately rejected and an attempt is made

to re-explain the data that they explained. After re-explanation, the best explanation is

retained, whether this is the original explanation or the re-explanation (in this case, the

best explanation is the one which `explains the most data with the fewest number of

explanatory components' (ibid.), c.f. simplicity). IDC is slightly di�erent, in that new

inferences are generated from a representation to produce new trees which may explain or

elaborate existing instances. There is no initial rejection of existing trees. Then the new

trees are compared with existing trees (in both memory stores) to determine whether any

of them have become (potentially) unnecessary. Whether potentially unnecessary trees

are removed depends on whether this causes a reduction in incoherence.

IDC marks existing trees as potentially unnecessary in three situations:

1. Redundancy by subsumption

Briey, an existing tree E may be made redundant by subsumption with respect to

a new tree N if the observations explained by E are also explained by N . In more

detail, subsumption occurs if the following conditions hold:

� The parent of E is not a child of N . (The reason for this condition is to allow

whole trees to be subsumed under a new tree.)

� The observed children of E are a subset or equal to the observed children of

N .

� E has higher incoherence than N .

2. Redundancy by replication

An existing tree E may be made redundant by replication with respect to a new

tree N if both E and N have the same parent but di�erent children. Replication

occurs if the following conditions hold:
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� The parent of E uni�es with the parent of N .1

� E has higher incoherence than N .

3. Spuriousness

Spurious trees tend to result from removal of a tree which has been produced by

elaboration from another tree. An existing tree E may be spurious if the following

conditions hold:

� E has an inferred parent and no observed children (i.e. E is groundless).

� The parent of E does not occur as a child in another tree and no child of E

occurs as a parent of another tree (i.e. E is isolated).

After removal of a tree, the instances in both memory stores are updated. Their parent

and child ags are set, according to whether the instance occurs as a parent or child of

any tree which remains in memory. This may result in some inferred instances being both

parent- and child-less (i.e. its parent and child ags set to `n'). IDC removes any such

instances from memory, which again contributes to incoherence change.

The removal of trees in IDC is psychologically unrealistic because IDC has full access

to all of the contents of memory. For example, if a tree formed early in comprehension

becomes redundant towards the end of comprehension, that tree may be removed with

relatively little e�ort. What is required is some limit on the distance over which necessity

checking operates. However, I have been unable to adequately decide this limit: for the

purpose of preventing endless useless inferences, the system must be allowed to retrieve

and remove trees which are superseded by better ones, and the process must be allowed

to occur over arbitrary distances. In versions of the system which do not incorporate tree

removal, the system is quickly overcome by multiple, often contradictory explanations

of the same events. As there is no mechanism in IDC for consistency checking beyond

incoherence change (e.g. no checking for contradictory types assigned to the same entity),

tree removal provides the only mechanism for enforcing consistency in representations.

Transferring R-elts to the LTS

As noted in section 6.4, IDC attempts to transfer r-elts from the STS to the LTS if no

viable extension(s) can be created by inference. Trees or isolated instances (i.e. instances

1Strictly speaking, if a copy of E uni�es with a copy of N . Copies are used to prevent erroneous

changes to the content of instances which are only being tested for redundancy.
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which do not participate in any tree) may be transferred.

IDC attempts to transfer trees �rst, along with their dependent instances. Dependent

instances are de�ned as follows:

An instance is dependent on a tree T in the STS if it occurs only in T and not

in any other tree in the STS.

If there are no trees in the STS, instances are transferred. Instances with low incoher-

ence are transferred �rst.

The transfer process itself is basic, simply involving removing r-elts from the STS of

a representation and appending them to the r-elts of the LTS of the same representation.

There is no possibility for errors in coding, forgetting, better encoding for more active

components [van den Broek et al., 1999], etc..

6.4.2 Updating the Interpretation

IDC's interpretation consists of one or more representations (see section 6.3). After each

cycle when comprehension processes are applied (see section 6.4), one or more extensions

are returned. IDC now has to decide which of those extensions to maintain as part of its

interpretation and which to discard.

To do this, IDC uses a type of beam search algorithm to `sort' and `trim' the list of

representations. The width of the beam employed is de�ned by IDC's Range parameter:

the greater the Range, the more representations will (generally) be maintained. If Range

is set to -1, only one representation is maintained at the end of each cycle.

The sort and trim algorithm is as follows:

1. Sort extensions in ascending order of incoherence: the extension with the lowest

incoherence is placed at the front of the list.

For example, if the extensions list were:

[ext(repr(STS1, LTS1, 10.2), -1), ext(repr(STS2, LTS2, 11), -1.5),

ext(repr(STS3, LTS3, 10), -1.2)]

The sorted extensions list would be:

[ext(repr(STS3, LTS3, 10), -1.2), ext(repr(STS1, LTS1, 10.2), -1),

ext(repr(STS2, LTS2, 11), -1.5)]
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Note that incoherence change is not used here, but is maintained for displaying on

screen.

2. Select the �rst extension as the `best' extension B.

3. Set the total width of the interpretation to 0.

4. Set the list of representations to be carried over to the next cycle, C, to [B].

5. For each remaining extension E in the list:

(a) Subtract inc(B) from inc(E). The resulting �gure is the divergence of E.

(b) Add the divergence of E to total width.

(c) If total width � Range, add E to C. Otherwise, discard E and return C.

For the example above, the divergence of the second extension in the list = 10:2�

10 = 0:2 and the divergence of the third extension is = 11� 10 = 1. If Range were

set to 0.2, only extensions one and two would be maintained; if it were set to 1.2 or

higher, all three extensions would be maintained.

If the divergence of a representation is 0 (with respect to the best representation),

it is maintained (even if Range is set to 0).

6.4.3 Psychological Correlates of Range

Range acts in tandem with Tolerance to manage inference generation. The role of

Tolerance is to determine when an inference should be attempted; it speci�es the amount

of information (`potential structure') IDC judges as being required before useful infer-

ences are likely to be produced. Range examines the results of inference generation and

decides how many alternatives to maintain. However, is there any evidence that human

comprehenders are able to perform the same feats?

Most previous work on multiple representations has focused on the sentence level. For

example, Just and Carpenter examined whether multiple representations of syntactically-

ambiguous sentences are maintained in short working memory span and high span subjects

[Just and Carpenter, 1992]. They found that high span subjects had slower reading

times on ambiguous sentences than on unambiguous sentences, while low span subjects

had equivalent reading times for both. Their hypothesis is that high span subjects
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have suÆcient capacity to maintain the alternative representations; however, while doing

this, they have to manage more information and so are unable to read as quickly as in

unambiguous contexts. By contrast, low span subjects maintain a single representation

in both the ambiguous and unambiguous contexts; they only have suÆcient capacity to

maintain one representation. However, Just and Carpenter did not examine alternative

representations at the schema level: for example, if presented with an eventuality which

could potentially be explained by two higher-level plans, do comprehenders maintain one,

both or neither of those plans?

There is little research on maintenance of multiple representations at the schema level.

As I showed in section 3.2.5, symbolic-connectionist implementations broach this subject,

as the simultaneous activation of nodes representing competing explanations can be viewed

as multiple representations. However, the problem is again the lack of executive function

in these models: it is diÆcult to take a single model and change its behaviour without

altering the inner workings of its relaxation algorithm (but see section 5.3.6 for Zwaan's

possible solution).

Range is intended as a representation of some aspect of the central executive re-

sponsible for monitoring the progress of the interpretation as a whole. This di�ers from

Skepticism, which monitors the progress of individual representations and de�nes the

comprehender's attitude towards the utility of inferences. Instead, Range is akin to

Skepticism at the level of the interpretation: it represents the comprehender's willingness

to explore alternative representations.

Range can be used to test hypotheses about how/if multiple representations are main-

tained by human comprehenders without having to change the details of the knowledge

base or the quality metric. In IDC, maintenance of a single representation is eÆcient for

texts which are not misleading, or even predictable: because comprehenders' inferences

tend to be con�rmed by future statements in the text, there is no need for retraction of

incorrect inferences. However, where texts are misleading or ambiguous, maintenance of

multiple representations may be more eÆcient: the comprehender may have a preference

for one representation over the others, but retain alternatives in case they are useful

later. If the preferred representation fails to account for a statement in the text, the

comprehender can switch it with one of the alternatives which is able to account for it.

However, as multiple representations may be maintained throughout comprehension, the

storage capacity required is higher than in the single representation condition.

One area where di�erences between maintenance of single and multiple representations
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may manifest is during comprehension of role-shift texts [Sanford and Garrod, 1981]. I

have carried out some experiments with IDC on such texts, and present some predictions

about human behaviour on the basis of these experiments in the next chapter.

6.5 Chapter Summary

This chapter gives a high level account of the processes used by IDC. The emphasis of the

system is the continual assessment and management of extensions to the interpretation.

The key inferential control processes can be divided into three groups:

1. Controls on which inferences are possible

These limits are largely due to technical details of the implementation:

(a) No inferences beyond the available schemas can be made.

(b) No inferences can be triggered by a relation node. There are technical reasons

for this: it prevents two events being accidentally assigned the same token, e.g.

it prevents two distinct events from both having the token e1.

(c) No inferences can be made which violate variable-binding restrictions. While

this is largely for technical reasons, there may also be a grain of psychological

truth in this: for example, this prevents inference of a stabbing event from a

single observation of someone holding a knife.

2. Controls on which inferences are useful

These constitute important theoretical limits, relying as they do on examining

Tolerance and the incoherence change created by inferences:

(a) Tolerance determines when to make inferences, and when enough have been

made.

(b) Skepticism determines which inferences are most useful by modulating the

incoherence change created by an inference.

3. Controls on which inferences are maintained

Range governs which representations are considered `good enough' to be retained

for further investigation.
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Of these three forms of control, the �rst type is the most psychologically suspect. The

other two types may approximate some mechanisms of human comprehension: Skepticism

(see section 5.3.6), Tolerance (see section 6.3.1), and Range (see section 6.4.3) have been

discussed in this capacity.

In the next chapter, I explore how these processes operate in various contexts.



Chapter 7

Examples of IDC's Behaviour

I have used IDC to model several types of text comprehension:

1. Plan Recognition

As the program was designed primarily as an abductive system, plan recognition is

naturally a suitable task for it. This strand of my work follows in the tradition of

[Ng and Mooney, 1990], [Ng, 1992], [Hobbs et al., 1993], and [Charniak and Goldman, 1993].

2. Inference Protocols

Much of the development of the implementation took place within the context of

a simulation of verbal protocols described in [Trabasso and Magliano, 1996]. As a

result, the metrics were designed to cope with this and similar texts, producing an

inference trace similar to that of human comprehenders.

3. Role-Shift Texts

The initial prototype of IDC only had facilities for maintenance of a single rep-

resentation. However, members of my thesis group suggested that multiple rep-

resentations may be necessary in cases where texts are ambiguous; I incorporated

this suggestion into the �nal version of the implementation. One useful aspect

of this is that hypotheses about the maintenance of multiple representations can

be generated on the basis of IDC's behaviour. The e�ect of multiple representa-

tions may be most pronounced and accessible during comprehension of particularly

awkward, deliberately-misleading texts, known as role-shift texts in the literature

[Sanford and Garrod, 1981]. Here, the comprehender may be led to make one

assumption about the roles of the characters involved in a text, only to �nd that

156
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these assumptions must be revised and replaced later in the text. IDC's behaviour

demonstrates two potential mechanisms for dealing with such corrections: assertion

of new trees and deletion of existing trees; or simultaneous maintenance of alterna-

tive representations until one becomes suÆciently more determined than the others,

at which point the others can be discarded.

In the rest of this chapter, I describe each of these three areas of application, giving

examples of IDC's comprehension of di�erent kinds of text.

7.1 Plan Recognition

IDC can be equipped with schemas in the style of traditional plan recognition systems;

many of the examples earlier in this thesis were based on such schemas. The schemas I

have used in IDC for plan recognition are based on those of ACCEL [Ng, 1992]. I have

used ACCEL as a basis, partly because the work is closest to my own intentions and partly

because the code is freely available for scrutiny.1 Ng's thesis also contains a de�nitive set

of plan recognition texts, some of which I have used for testing IDC.

The main di�erence between ACCEL's rules and IDC's schemas is that ACCEL uses

Horn clauses (rules with a single consequent node), while IDC uses schemas with a single

antecedent node. As a result, IDC's schemas are an amalgamation and merging of several

ACCEL rules. For example, consider the ACCEL rules:

(<- (inst ?g going) (inst ?s shopping) (go-step ?s ?g))

(<- (goer ?g ?p) (inst ?s shopping) (go-step ?s ?g) (shopper ?s ?p))

(<- (dest-go ?g ?str) (inst ?s shopping) (go-step ?s ?g)

(store ?s ?str))

(<- (inst ?sp shopping-place) (inst ?s shopping) (store ?s ?sp))

These rules have the form:

( consequent antecedent1; : : : ; antecedentn)

The rules may be manually converted into the partial schemas:

1from ftp://ftp.cs.utexas.edu/pub/mooney/accel.
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event(S, shopping, [shopper:P, store:S, ...]) / [] --->

[

event(G, going, [agt:P, loc_to:S, ...]) / [],

habit(shopping_place, [exp:S]) / [],

...

].

habit(store, [exp:S1]) / [S1 ==> S2] --->

[

habit(shopping_place, [exp:S2]) / []

].

`...' stands for other events and roles which could be added to a schema, as each schema

integrates information from several ACCEL rules into a single unit.

Note that a constraint has been added to the second schema: [S1 ==> S2]. This

ensures that a vague inference is not made from any kind of shopping place to the more

speci�c store. This technique is used throughout IDC's isa hierarchy to limit inferences

from less-speci�c to more speci�c nodes (remember that ---> represents a generalisation

relationship, with the antecedent node being a more speci�c description of the consequent

nodes). Such inferences are possible if instances of both nodes in the schema already exist

in the representation; however, if there is only an instance of the more general node (the

consequent), inference to the speci�c node is prevented.

(Also note that I have not retained the go-step of Ng's rule. This is because `step'

eventualities are not introduced unless they are required to discriminate two di�erent

means of instantiating a step within a plan. For example, if there were several di�erent

ways for go-step to be instantiated (e.g. going by bus, by taxi, on foot), the go-step node

would spawn a schema for each alternative. However, until the schemas which de�ne

these alternatives are added to the knowledge base, it is assumed that there is no need to

discriminate types of `going'.)

Using the conversion scheme described above, it is possible to derive a set of IDC

schemas capable of deriving results similar to those of ACCEL. A listing of the schemas

is given in section B.1.1 (page 222).

The texts analysed by these schemas are translations of those analysed by ACCEL,

such as:

Bill got a gun. He went to the supermarket.



Chapter 7. Examples of IDC's Behaviour 159

The translation of this text into a format readable by IDC is:

[event(e1, get, [agt:bill, pat:w, ]), habit(gun, [exp:w]), event(e2, go, [agt:bill,

loc to:sm]), habit(supermarket, [exp:sm])]

Note that no temporal information is used in plan descriptions or in texts. This is because

ACCEL does not use temporal relations, and because of unresolved issues concerning

relations in IDC (see section 8.2.1).

Evaluation of ACCEL compared the program's output with the author's intuitions

about the best interpretation for a text. In the case of IDC, I was more interested in

showing how interpretations could vary according to di�erent parameter settings and the

time-course of comprehension; this means that the correctness of interpretations is a less

important criterion. However, at `average' parameter settings, IDC's outputs at the end

of comprehension are close to those of ACCEL.

An example of IDC's performance on plan recognition texts is given in the following

section.

7.1.1 An Illustrative Example

Consider the following example, a `classic' in the plan recognition literature:

Bob went to the liquor-store. He pointed a gun at the owner.

The IDC version of this text is:

[event(e1, go, [agt:bob, loc to:ls]), habit(liquor store, [exp:ls]), event(e2, point,

[agt:bob, pat:w, obj:o]), habit(gun, [exp:w]), habit(owns, [agt:o, pat:ls])]

What kinds of behaviour are possible, given this text? According to both Goldman and

Ng [Goldman, 1990], [Ng, 1992], after reading the �rst sentence, the obvious explanation

is that Bob is going shopping for liquor. Then, after reading the second sentence, the

explanation shifts, so that Bob is robbing the liquor store. This is the order in which

these explanations are formed in both of their systems.

However, as I've tried to make clear throughout this thesis, it is not necessarily the case

that an explanation will be formed on the basis of `Bob went to the liquor-store' alone.

Comprehenders' construction of this explanation relies on several factors, including:
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1. The amount of attention they are focusing on the text.

2. The amount of control they have over their inference processes.

3. The capacity of their working memory.

These are the factors which are modelled in IDC, and which mean that the above

explanations are not necessarily inferred after comprehending the �rst sentence of the

text. On the next page, the results for various runs of IDC with di�erent parameter

settings are shown (table 7.1). The results are shown in English (rather than Prolog)

to make them more concise. For the sake of completeness, examples of the actual trees

constructed by IDC are included in section B.1.2 (page 229).

Table 7.1 shows the program's output for three settings of Tolerance, but not for

alternative settings of Skepticism and Range. This is because there are a limited number

of potential representations for this text, so the results are the same for any setting of

Range. Similarly, Skepticism makes no di�erence to the rate at which inferences are made,

as only one representation is possible; as a result, the above results are true for cases where

0 < Skepticism � 0:5. However, when Skepticism is over 0.5 no inferences are produced at

all. This is because the text supplies few cues (with respect to the schema lattice) which

uniquely determine an appropriate schema (with respect to Skepticism > 0:5).

The entries in the table show the particular operation for each comprehension cycle

(see section 6.4). `Observed' means that the next statement in the text was read into the

STS (possibly merged with existing parts of representations); `Inferred' means that a new

tree was inferred (see section B.1.2 for details of the exact content of trees); `Transferred'

means that a tree was moved from the STS to the LTS.

There are several interesting points to note:

� The initial inference of robbing in the �rst two cases (Tolerance = 1, Tolerance =

2) refers only to some location, not to the liquor-store. This is because the robbing

schema contains a ==> constraint which prevents ls being bound as the place

robbed when the schema is initially applied (shown in bold below):

event( , robbing, [robber:A, weapon used:W, place robbed:P2,

thing robbed:V, victim:M]) / [V \== W] --->

[

event( , get, [agt:A, pat:W, ]) / [],
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Tolerance Cycle(s) Operation

1 1 Observed: Bob going to ls.

2 Inferred: Bob's going isa go-step.

3 Transfer: Bob's going isa go-step.

4 Observed: ls is of type `liquor-store'.

5 Observed: Bob pointed w at o.

6 Inferred: `robbing' event - Bob robbed some place using the weapon w, with o

the victim.

7 Observed: w is of type `gun'.

8 Inferred: w is of type `weapon' (integrates w with `robbing' event).

9 Transfer: `robbing' event.

10 Observed: o owns ls.

11 Inferred: o is in charge of ls (integrates o's ownership of the store with the

robbing event, and binds ls as its location).

12-14 Transfer: trees in the STS transferred to the LTS.

2 1 Observed: Bob going to ls.

2 Observed: ls is of type `liquor-store'.

3 Inferred: Bob's going isa go-step.

4 Observed: Bob pointed w at o.

5 Inferred: `robbing' event - Bob robbed some place using the weapon w, with o

the victim.

6 Transfer: `robbing' event.

7 Observed: w is of type `gun'.

8 Inferred: w is of type `weapon' (integrates w with `robbing' event).

9 Observed: o owns ls.

10 Inferred: o is in charge of ls (integrates o's ownership of the store with the

robbing event, and binds ls as its location).

11-14 Transfer: remaining trees transferred to the LTS.

3 1 Observed: Bob going to ls.

2 Observed: ls is of type `liquor-store'.

3 Observed: Bob pointed w at o.

4 Observed: w is of type `gun'.

5 Inferred: w is of type `weapon'.

6 Observed: o owns ls.

7 Inferred: o is in charge of ls.

8 Inferred: Bob's going isa go-step.

9 Inferred: `robbing' event - Bob robbed ls using the weapon w, with o the victim.

10-14 Transfer: remaining trees transferred to the LTS.

Table 7.1: Plan recognition inferences: operations during comprehension of the liquor-

store text.
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event( , go step, [agt:A, loc to:P2]) / [],

event( , point, [agt:A, pat:W, obj:M]) / [],

event( , get, [agt:A, pat:V, from:M]) / [],

habit(valuable, [exp:V]) / [],

habit(business, [exp:P1]) / [P1 ==> P2],

habit(weapon, [exp:W]) / [],

habit(in charge, [agt:M, pat:P2]) / []

].

However, the constraint does ensure that if any of the elements later bind the location

to a constant, the changes are propagated throughout the tree. Thus, when the

inference is made that the owner of ls is in charge of ls (cycle 10 when Tolerance =

1, and cycle 11 when Tolerance = 2), the binding is propagated through all of the

trees, allowing the liquor-store ls to become the location where the robbing takes

place.

� When Tolerance < 3, the go step inferred from the going event is not recognised

as being the same go-step as that of the robbing event. This is because of the

constraint mentioned in the previous paragraph, which prevents the loc to of the

go step of robbing being bound before the business child's exp role.

However, when Tolerance = 3, the go step is inferred before the robbing event. This

means that the going event with Bob as its agent is recognised as constituting the

go step of the robbery.

This sequence of inferences is slightly arbitrary: the lack of integration between the

inferred go step and the robbing event is partly due to the way IDC compares and

matches events when building trees. However, there is the interesting possibility

that the failure to connect the events is due to the inaccessibility of the previous

inference. It may be that human comprehenders fail to revise inaccessible parts of

their representations due to a similar problem: once elements of the representation

are lost from the STS, they are less available for revision and possible connections

to them may be missed [Johnson and Seifert, 1999].

� A general point is that as Tolerance increases, the eÆciency of comprehension also

increases. At high Tolerance, there is less time wasted on moving r-elts between the
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two stores, as more can be maintained simultaneously in the STS. This means that

inferences are made in a continuous stream (cycles 7-9), eÆciently tying together

the r-elts in the STS without the need for retrieval and transfer.

One criticism might be the tendency for a large number of r-elts to be

maintained in the STS when Tolerance is greater than 1. This number far

exceeds the limits suggested by various researchers, e.g. [Fletcher et al., 1990],

[Trabasso and Magliano, 1996]. However, Ericsson and Kintsch's Long-Term

Working Memory (LT-WM) theory [Ericsson and Kintsch, 1995] suggests that the

number of elements readily available during comprehension is greater than the

relatively small 5-9 adhered to by many researchers (as a result of Miller's work

[Miller, 1956]):

...links between propositions currently in the focus of attention and propo-

sitions in the long-term episodic text memory, which are established inci-

dentally by the very nature of the comprehension process, make available

to the reader a large subset of the text memory in LTM, thus generating

what we call LT-WM. [Ericsson and Kintsch, 1995]

In addition, it is diÆcult to produce computational models with a very limited

capacity [Anderson, 1983]. The inferences suggested by psychologists are at a high

level of abstraction, and require various subsidiary inferences to make sense compu-

tationally (see section 7.2). With a very small STS capacity, it is hard to manipulate

suÆcient data for such detailed inferences.

Table 7.1 demonstrates how increasing Tolerance delays the inference process until more

information is in the STS. However, the end result is almost the same for all three settings

of Tolerance, as the inferences which are actually made and accepted depend not on

Tolerance, but on Skepticism and Range. In this case, as I explained previously, the

lack of alternative explanations means that Skepticism and Range exert no inuence over

comprehension of the text. In the next two sections, I describe some changes to the

knowledge base which do inuence comprehension.

Adding Other Schemas

The �rst alteration I made to the knowledge base was the addition of a new schema:
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event(_, mugging, [mugger:A, weapon_used:W, thing_robbed:V,

victim:M]) / [] --->

[

event(_, point, [agt:A, pat:W, obj:M]) / [],

event(_, get, [agt:A, pat:V, from:M]) / [],

habit(valuable, [exp:V]) / [],

habit(weapon, [exp:W]) / []

].

This changes comprehension because it provides an alternative explanation for Bob

pointing a gun at the owner of a liquor store (i.e. Bob is mugging the owner).

By adding a schema for mugging events which has a point node as one of its conse-

quents, IDC has two alternative representations for the text (assuming the constraint in

the liquor store shopping schema has not been removed):

1. A representation where Bob is mugging the owner of the liquor store.

2. A representation where Bob is robbing the liquor store.

Is inference of a mugging event valid in this context? If the robbing and mugging

schemas are compared, it is clear that robbing trees have more children than mugging

ones. Therefore, given that IDC prefers to assume as few new nodes as possible, the

mugging representation is preferred. More of the robbing schema's nodes are instantiated

by the text than are the mugging schema's nodes; however, there are fewer of the mugging

schema's nodes left uninstantiated by the text than there are of the robbing schema.

The addition of this schema changes the behaviour of IDC, depending on the settings

of the Skepticism and Range parameters. I will not go into any great detail, but merely

note the following:

� If Skepticism is low (� 0.1), the tendency is for two representations to be con-

structed, one representing the robbing explanation and one the mugging explanation.

Depending on the setting for Range, both may be maintained, or only the least

incoherent (the mugging explanation).

� If Skepticism is higher (� 0.5), IDC refuses to produce any inferences. This is

reasonable behaviour, given that the support for either representation with respect

to the knowledge base is fairly slim. However, there is a problem here, as pointing
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events in combination with the presence of objects of type gun should provide a good

cue about which schemas to apply. The fact that no inferences are made seems to

contradict our intuitions about the correct representation, that Bob is robbing the

liquor store.

A remaining question is whether the mugging representation is valid at all in an indoor

context. Do muggings occur indoors? Or, by de�nition, do muggings occur outside

buildings? Is there perhaps a way to block the mugging representation on this basis?

Perhaps if the conditions under which muggings take place were speci�ed more clearly in

the schema, the di�erence in incoherence between the representations derived from the

two schemas may be lessened; it may even be the case that the robbing representation

would have lower incoherence. However, without a subjective judgement of which schema

should `win' the competition, for every possible combination of conditions, it is impossible

to decide on these conditions.

Removing Constraints

The second change I made to the knowledge base was to remove the constraint which

prevents liquor store shopping being inferred. The unaltered schema is:

event( , liquor store shopping, [shopper:S, store:T2,

thing bought:B2]) / [] --->

[

event( , shopping, [shopper:S, store:T2,

thing bought:B2]) / [],

habit(liquor store, [exp:T1]) / [T1 ==> T2],

habit(liquor, [exp:B1]) / [nonvar(B1), B1 ==> B2]

].

I removed the constraint shown in bold. Normally, this prevents inference of a

liquor store shopping event unless there is an explicit mention of a liquor instance in

the representation. In other words, the instance instantiating the habit(liquor, [exp:B1])

node must bind the variable B1 to some constant, e.g. x; this binding is then passed to

the shopping event, and then up to the liquor store shopping event.

By removing the constraint, a liquor store shopping event may be inferred without

explicit mention of a liquor entity; the actual e�ect again depends on Skepticism.
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With low Skepticism, both the liquor store shopping and the robbing trees are added

to the representation. This is because the robbing tree makes no explicit reference to

a liquor store: any business can be instantiate the place robbed role value. By contrast,

the liquor store shopping tree incorporates the liquor store of the text directly, with no

intermediate inferences; it is thus a much `purer' method of integrating liquor store into

the representation than the robbing tree, which requires an inference from liquor store to

business.

If Skepticism is around 0.5, the representations will not change: the derived

representations are as those of table 7.1. The reason for this is that the constrained

liquor store shopping schema still exerts an inuence over whether a robbing event is

inferred, even though it will not be inferred itself. This is because the liquor store shopping

schema alters the informativity and ubiquity of the nodes in the robbing event, even though

there is no direct overlap. Instead, the e�ect occurs because both the shopping schema and

the robbing schema contain a go step node; and the liquor store shopping schema contains

a shopping node; thus, the ubiquity of the shopping node is increased; and this has the

knock-on e�ect of increasing the ubiquity of the go step node.

Consequently, if the constraint is removed, it makes no di�erence to whether IDC with

Skepticism = 0.5 infers a liquor store shopping event: the incoherence of any inference is

too high. This shows clearly how constraints exert control over inference generation (see

section 6.5).

7.1.2 General Discussion

IDC can simulate the plan recognition behaviour typical of abductive systems. However, it

is diÆcult to evaluate IDC using the evaluation criteria of these systems. IDC is inherently

unstable, in that changes to the knowledge base can irrevocably change the system's

behaviour. This makes measures such as precision and recall unreliable as indicators of

the system's capabilities [Ng, 1992].

This is not necessarily a damaging criticism. The strength in IDC is its demonstration

of how changes to the knowledge base have a profound e�ect on representation quality

measurement. This point is not often made in connection with quality metrics based on

structural criteria, such as simplicity (see section 5.1.2) and ACCEL's coherence metric

(see section 5.2.4). However, in such metrics, alterations to the knowledge base may shift a

representation's quality from `good' to `bad' (or vice versa). These metrics are successful

by virtue of the way the rules are structured; changes to these structures change the
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representations which are possible, and thus the measurement of quality.

In IDC, the instability of comprehension (with respect to the knowledge base) is

precisely what I intended to model when designing the metric. However, getting the

balance right between nodes which allow discrimination between schemas (i.e. nodes

which occur infrequently) and nodes which actually trigger tree construction (i.e. nodes

which occur frequently) is very complicated. Too often, a small change to the knowledge

base can have drastic (and/or disastrous) e�ects. In this respect, the metric is more

sensitive to slight changes (e.g. addition of a constraint) than I would have liked.

In other respects, if the knowledge base remains constant and is reasonably well-

designed (e.g. through extensive trial and error), it is possible to produce inference

protocols which resemble those of human comprehenders. In the next section, I describe

the inference protocol which IDC produces from longer texts which are not wholly plan-

based.

7.2 Inference Protocols

Verbal protocol methods have for several years been used to uncover the inference

processes of human comprehenders [Trabasso and Magliano, 1996]. Such protocols often

involve question answering and/or `think aloud' protocols. In the latter category is

the work described in [Trabasso and Magliano, 1996]. They analysed some think aloud

protocols gathered by Suh, where each protocol was produced by a comprehender

who was told to communicate their understanding of the text to the researcher (Suh)

[Suh and Trabasso, 1993]. Trabasso and Magliano's aim was to specify the memory

operations and inference processes of comprehension. To do this, they parsed the protocols

into clauses, and annotated each clause with the inference operation which produced it

and the memory operation it involved. As the clauses were produced during reading, they

could be aligned with the sentences which engendered them.

The resulting parsed protocols are some of the most detailed descriptions of

on-line inference behaviour I have discovered in the cognitive psychology literature.

For this reason, they proved useful when designing IDC: I took a protocol (from

[Trabasso and Magliano, 1996]) and devised a set of schemas which could conceivably

produce it. The text on which the protocol is based is the `Ivan Story':

S1. Ivan was a great warrior.

S2. Ivan was the best archer in his village.
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S3. Ivan heard that a giant was terrifying the people in his village.

S4. The giant came to the village at night and hurt people.

S5. Ivan was determined to kill the giant.

S6. Ivan waited until dark.

S7. The giant came and Ivan shot an arrow at him.

S8. Ivan hit the giant and the giant fell down.

S9. The people were overjoyed.

(adapted from Trabasso and Magliano [Trabasso and Magliano, 1996])

The protocol associated with this text is presented by Trabasso and Magliano sentence

by sentence, as follows:

Sentence Clauses Inference Memory

Operation Operation

S5. Ivan was determined c1. As expected

to kill the giant. c2. Ivan being a warrior explanation retrieval

c3. and caring about people explanation activation

c4. will want to kill the giant. paraphrase

Table 7.2: A fragment of a text comprehension protocol (from

[Trabasso and Magliano, 1996]).

They also represent the protocol using a causal network notation; my own adaptation

of this diagram, incorporating the actual content of each clause, is shown in �gure 7.2

(page 170).

To construct the schemas, I used the protocols in tandem with my translation of

the text into IDC-readable form. For each statement in the IDC-readable text, I looked

at the corresponding sentence in the protocol and the clauses it was aligned with; I then

attempted to translate the corresponding causes into IDC format; then I designed a schema

which would allow the clauses to be derived from the IDC statement. In addition, I used

Trabasso and Magliano's network representation of the protocol as a basis for determining

causal relations (see the next section). For example, the crux of the clauses in the above

protocol fragment is as follows:

� Ivan cares about people; speci�cally, he cares about the people being hurt by the

giant.
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� Ivan cares about the people being hurt by the giant because they are villagers from

his village.

� In itself, living in the same village as someone is not suÆcient motivation for caring

about them; presumably, the comprehender makes an inference about them being

friends or acquaintances as a result of living in the same village.

� Because Ivan cares about the people in his village, he wants to stop them being

hurt; one way of doing this is to disable the enemy which is hurting them.

� Because Ivan is a warrior, one way he has of disabling enemies is to kill the source

of the threat; in this case, the giant.

It is clear that the protocols do not contain the various micro-level inferences which are

necessary for even the most super�cial analysis. By this, I mean that the pair of clauses

`Ivan being a warrior' and `Ivan caring about people' do not explain `Ivan wants to kill

the giant'. If one were to construct a schema representing this relationship, it might look

something like:

great warrior(X), cares about(X, Y) �! goal(X, kill(Z)).

This is clearly inadequate as a computational description of the relationships between X

caring about some entity Y and wanting to kill some other entity Z as a result (reading

�! as a causal relationship).
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The human protocol is spartan because it was delivered to another human being;

therefore, the comprehender was engaging in a dialogue with the researcher and followed

Grice's conversational maxim of Quantity: they only communicated the minimum infor-

mation necessary about their understanding, expecting the researcher to make inferences

from this information [Grice, 1975]. In other words, the comprehender's understanding

is a narrative which they expect the researcher to comprehend, making inferences where

required. In this light, a reported inference such as `Ivan is going to try not to be seen

to try to kill the giant that way' should not be taken at face value. It is obvious that the

comprehender is trying to communicate the idea of surprise attack or ambush: there is no

direct causal connection between being hidden and being better able to attack an enemy.

What is required, then, is a chain of inference resembling the one given in the bullet

points above. This involves far more nodes than are suggested by Trabasso and Magliano:

for example, after adding the auxiliary nodes, the �nal representation produced by IDC

contains more instances than the representation given by Trabasso and Magliano (52

distinct instances (for Skept = 0.1, Range = -1) vs. 18 respectively).

In the next section, I describe the representational scheme used to design the schemas

to produce inferences at the required level of detail.

7.2.1 Making Sense of the Protocol

The representational scheme I required had to allow generation of the same types

of inference as the inference protocol, but at a level of detail that was sensible in

computational terms (see previous section). As the inference protocol contained many

causal descriptions, I chose as a starting point the causal network theories of van den

Broek and his co-workers [Trabasso and van den Broek, 1985], [Trabasso et al., 1989],

[Trabasso et al., 1995], [Trabasso and Magliano, 1996], [van den Broek, 1990b],

[van den Broek, 1990a], [van den Broek, 1994]. According to their scheme, a

comprehender's representation is dominated by causal relations between instances.

Four types of causal relation are speci�ed:

1. motivates

A motivates B if:

� A is temporally prior to B

� A is operative when B occurs (i.e. A exerts some inuence on events in the

text)
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� A is necessary for B (i.e. B would not have occurred in the circumstances of

the text if A had not occurred)

� A contains goal information

2. psychologically causes

A psychologically causes B if:

� A is temporally prior to B

� A is operative when B occurs

� A is necessary for B

� A implies emotion or a cognitive state

3. physically causes

A physically causes B if:

� A is temporally prior to B

� A is operative when B occurs

� A is necessary for B

� A is suÆcient for B (i.e. B is likely to occur in the circumstances of the story

if A occurs)

4. enables

A enables B if:

� A is temporally prior to B

� A is operative when B occurs

� A is necessary for B

Because of the structure of schemas in IDC and the emphasis on `encapsulation', I

decided to treat relations between nodes as nodes themselves. A causal relation then

becomes a method for specifying the possible representations space for a pair of events: a

representation where they occur as a pair is actualised, rather than one where they occur

as separate events (see section 5.3.1). (There are some problems with this approach, which

I will cover in section 8.2.1.)
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For the purpose of writing schemas, it was necessary to analyse the relationships

between elements of the protocol, and those between the protocol and the text. This

analysis was carried out by hand as consistently as possible, following the speci�cation of

causal relations given above and including the auxiliary inferences which would make sense

of the protocol. The resulting schemas include some which could be used to comprehend

the fragment in table 7.2:

habit(care_about, [exp:A2, exp:B2]) / [A2 \== B2] --->

[

habit(live, [exp:A1, loc_in:L]) / [A1 ==> A2],

habit(live, [exp:B1, loc_in:L]) / [B1 ==> B2]

].

relation(psycs, [E2, G2]) / [] --->

[

event(E1, terrorise, [agt:T, pat:P]) / [E1 ==> E2],

goal(G1, kill, [agt:A, pat:T]) / [G1 ==> G2],

habit(care_about, [exp:A, exp:P]) / [],

relation(overlaps, [E2, G2]) / []

].

In the second schema, psycs indicates a relation of type psychologically causes: in other

words, if T terrorises P, A cares about P, and A has the goal of killing T, then the

terrorise event psychologically causes the killing goal. Note that this schema de�nes a

relationship between four sub-nodes, and can thus be used in several ways: if one of the

sub-nodes occurs in the text, IDC can backward chain to infer a causal antecedent or

causal consequent (see �gure 3.4 on page 40); alternatively, if all four sub-nodes occur in

the text, the relation may be inferred as a means of connecting those nodes.

As well as the causal schemas shown above, IDC also has script-level schemas similar

to those of section 7.1. These de�ne larger event sequences, such as ambushes and heroes

protecting victims. The full set of schemas for the inference protocol is included in

appendix B.2.

In the following section, I compare the time course and content of IDC's comprehension

of the Ivan Story with the verbal protocol referred to in section 7.2.
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7.2.2 Time Course and Content of Comprehension

Table 7.3 (below and on the next two pages) shows the results of a run of IDC on the

Ivan Story. Each row represents a single comprehension cycle and shows the action taken

by IDC during the cycle. The results shown were produced with the parameters set

as follows: Skept = 0.5, Range = -1 (i.e. only one representation is maintained), and

Tolerance = 0 (i.e. no information is bu�ered and every observation prompts an attempt

to lower incoherence).

It might seem strange to set Tolerance to 0, as I've previously stated that Tolerance

embodies the capacity of the short-term store (see section 6.3.1 on page 141). With

Tolerance set to 2 and the other parameters at the same values, the same inferences are

produced, but the order in which they are generated is di�erent; they also tend to occur

in bunches, rather than in smooth progression as they do in the human protocol.

It may be that on-line inferences do occur in groups, at clause and/or sentence bound-

aries; however, this is not reected in the talk-aloud protocols because comprehenders

were speci�cally instructed to demonstrate their understanding. This goal actually alters

the comprehension process, meaning that the inferences produced do not necessarily

mirror inferences routinely produced on-line [Graesser et al., 1996]. As Tolerance is a

drive towards integration of r-elts, I simulated the requirement to show understanding by

setting Tolerance so that inferences are made at the end of each observation. In other

words, Tolerance is set to 0, which forces inferences to be tried after each observation is

added to the representation(s). The result is that any reductions in incoherence are tried

immediately, rather than observations being `stock-piled'.

Cycle Action

1 observed: habit(great warrior, [exp:ivan])

2 associative inference: Ivan is a great warrior because he is a good �ghter

3 transfer: tree from 2

4 observed: habit(best archer, [exp:ivan, loc in:village])

5 associative inference: Ivan is an archer

6 associative inference: Ivan uses armour, a bow and arrows, because he is an archer

7 associative inference: arrows are a kind of weapon

8 transfer: tree from 4

9 transfer: tree from 6

10 transfer: tree from 7

11 observed: habit(live, [exp:ivan, loc in:village])

12 predictive inference: Ivan cares about the others who live in his village

continued on next page
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Cycle Action

13 transfer: tree from 12

14 observed: event(e1, terrorise, [agt:giant, pat:people])

15 associative inference: the giant's terrorising the people constitutes an attack on the people

16 predictive inference: the giant's terrorising the people psychologically causes Ivan to be angry

17 transfer: tree from 15

18 transfer: tree from 16

19 observed: habit(live, [exp:people, loc in:village]) (merged with prediction from 12)

20 observed: event(e2, come, [agt:giant, loc to:village, when:night])

21 predictive inference: the giant's coming physically causes some hurting event, with the

villagers as its patient

22 transfer: tree from 21

23 observed: event(e3, hurt, [agt:giant, pat:people, inst: 712]) (merged with prediction from

21)

24 observed: relation(precedes, [e2,e3]) (merged with prediction from 21)

25 observed: goal(g1, kill, [agt:ivan, pat:giant])

26 explanatory inference: the giant's terrorising the people psychologically causes Ivan's goal to

kill the giant

27 transfer: tree from 26

28 observed: relation(overlaps, [e3, g1])

29 explanatory inference: the giant's hurting the people psychologically causes Ivan's goal to kill

the giant

30 transfer: tree from 29

31 observed: event(e4, wait for, [agt:ivan, pat:giant, loc at:village, when:night])

32 explanatory inference: the giant's coming to the village enables Ivan's waiting

33 transfer: tree from 32

34 observed: relation(overlaps, [g1, e4])

35 transfer: instance from 24

36 transfer: instance from 34

37 observed: event(e5, arrive, [agt:giant, loc at:village, when:night])

38 transfer: instance from 37

39 observed: relation(overlaps, [e4, e5])

40 transfer: instance from 39

41 observed: event(e6, shot, [agt:ivan, pat:giant, inst:a])

42 explanatory inference: Ivan's goal to kill the giant motivates his shooting the giant

43 transfer: tree from 42

44 observed: habit(arrows,[exp:a]) (merged with prediction from cycle 6)

45 observed: relation(precedes, [e5, e6])

46 transfer: instance from 44

continued on next page
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Cycle Action

47 transfer: instance from 45

48 observed: event(e7, hit, [agt:ivan, pat:giant, inst:a])

49 explanatory inference: shooting the giant physically causes hitting the giant

50 transfer: tree from 49

51 observed: relation(precedes, [e6, e7]) (merged with tree from cycle 49)

52 observed: event(e8, fall, [agt:giant, loc to:ground])

53 explanatory inference: Ivan killed the giant by shooting him and hitting him

54 transfer: tree from 53

55 observed: relation(precedes, [e7, e8]) (merged with tree from cycle 53)

56 observed: event(e9, overjoy, [agt:people])

57 transfer: instance from 55

58 transfer: instance from 56

59 observed: relation(precedes, [e8, e9])

60 transfer: instance from 59

Table 7.3: Protocol for IDC's comprehension of the Ivan Story

The Action column shows three types of action taken by IDC, corresponding to the

processes described in section 6.4 (page 145): observe actions take a text statement and

add it to the current representation(s); transfer actions move either (a) a tree and its

dependent instances; or (b) instances alone, from the STS to the LTS; inference actions

infer a new tree and instances on the basis of an instance in the STS. In the table, I

have marked each inference action according to whether it is explanatory, predictive, or

associative. IDC does not produce these categories, as it treats all inferences uniformly.

However, depending on the content of the resulting tree by comparison with existing parts

of the representation, it is possible to retrospectively assign a category (e.g. by following

the guidelines given in section 3.2.2 on page 36). For example, the tree inferred in cycle 21

is predictive, as it takes an existing come event and infers a hurt event, such that the come

event precedes the hurt event; whereas the tree inferred in cycle 42 is explanatory, as the

two instances connected (kill giant goal and shooting event) have already been observed

at this point in comprehension. (This distinction between predictive and explanatory

inferences is shown diagrammatically in �gure 3.4 on page 40.)

Some comments on IDC's protocol:

� There is not a strict one-to-one correspondence between elements of the human

protocol and IDC's protocol. The main reason for this is that some of the subtlety
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of the human protocol is lost in translation, partly due to the need to add auxiliary

inferences and partly due to my primitive modal notation.

� Some inferences which seem intuitively unavoidable and which are made in the

human protocol are missing from IDC's protocol: for example, the inference that

Ivan's waiting is part of an ambush. Some of these absences are due to the level of

Skepticism set: IDC does have a schema for connecting sub-nodes into an ambush

event, but this schema is too unreliable to be applied when Skepticism = 0.5. Simi-

larly, the human protocol contains a predictive inference that the people celebrated

because they were overjoyed; with Skepticism = 0.5, this inference is also missed.

However, both inferences are made when Skepticism is set to 0.1.

The rest of the absences are due to problems with mapping between the human

protocol and IDC schemas. For example, the human protocol includes the inference

`Ivan probably hopes that the giant is dead', which is very diÆcult to translate into

IDC's restrictive notation.

� Some inferences are part of IDC's protocol but not part of the human protocol.

These are generally inferences about causal relationships, e.g. cycle 32's action is

inference of an enablement relation between the giant's coming to the village and

Ivan's waiting in the village. In turn, this relation could be used to infer an ambush

plan (see previous point), though this is not done when Skepticism = 0.5.

These inferences do not manifest in the human protocol because they are only

implicit in the inferences reported. For example, the inference `Ivan shot an arrow

at him [the giant] and tried to kill him' does not explicitly mark the relation Ivan's

goal to kill the giant motivated his shooting the arrow; However, causal relations are

represented in Trabasso and Magliano's causal network for the story, which I used

as another source for IDC's schemas (see �gure 7.2).

Comparisons Between the Human Protocol and IDC's

Is there any meaningful correspondence between IDC's protocol and the human protocol,

in terms of the time course of comprehension? By comparing the observations in IDC's

text with the sentences in the English text, one can divide the propositions into groups,

each of which corresponds to a sentence in the English text. For example, the �rst three

statements in IDC's text can be mapped to the English text as follows:
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habit(great warrior, [exp:ivan]) = S1.`Ivan was a great warrior.'

habit(best archer, [exp:ivan, loc in:village]) = S2.`Ivan was the best archer'

habit(live, [exp:ivan, loc in:village]) = S2.`in his village.'

It is then possible to determine how IDC's inferences correspond to sentences in the

text, and compare this with inferences in the human protocol, as shown in table 7.4 (next

page). In the interests of clarity, the human clauses shown in the table are paraphrases

of the actual clauses from the protocol; I have also ignored paraphrases in the human

protocol and only included associations, explanations, and predictions (paraphrases are

simply repetitions of information in the text and not generated as inferences).

The various problems described earlier in this section mean that there is not a close

correspondence between the output produced by IDC and by the human comprehender.

The central diÆculty is in translating the ad-hoc protocol presented by Trabasso and

Magliano into a machine-readable form. As a rough and generous estimate, IDC makes

inferences which correspond with those of the human comprehender 40% of the time. For

the other 60% of the time, IDC's inferences either have no counterpart in the human

protocol, or have a counterpart which occurs earlier or later in the human protocol.

7.2.3 General Discussion

The monitoring and control of incoherence in IDC generates inference protocols which

bear some resemblance to those of a human comprehender. The important feature of

the human protocol is how inferences are made on-line to integrate the most-recently

comprehended sentence with the evolving representation. Once suÆcient coherence is

established, comprehension continues. This pattern seems to correspond with the idea

of establishing causal suÆciency suggested by van den Broek and colleagues (see sec-

tion 5.2.4). The protocol seems to support their idea of suÆcient causal explanation: an

observation is processed until suÆcient causal explanation has been established, then the

next sentence is read. Predictive inferences are explained as follows: `If the information

in the prior text is highly suÆcient for a consequence, then a speci�c inference is made.'

[van den Broek et al., 1995]. In other words, if the text strongly suggests a particular

continuation, that continuation may be inferred.

However, the idea of structural suÆciency embodied in IDC produces a protocol similar

to the human one. In addition, IDC explicitly quanti�es `coherence need' in terms of
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Sentence Human Inferences IDC Inferences

S1. Ivan is good at �ghting. Ivan is a great warrior because he is a good

�ghter.

S2. I have an image of a medieval archer. Ivan is an archer.

Ivan's �ghts with a bow and arrow. Ivan uses armour, a bow and arrows, because

he is an archer.

Arrows are a kind of weapon.

S3. Because Ivan is an archer he will try to kill the

giant.

Ivan will try to kill the giant to stop the

villagers being frightened.

The giant's terrorising the people constitutes

an attack on the people.

The giant's terrorising the people psychologi-

cally causes Ivan to be angry.

S4. Ivan is getting angry.

The giant's coming physically causes some

hurting event, with the villagers as its patient.

S5. Because Ivan cares about the villagers, he

wants to slay the giant.

The giant's terrorising the people psychologi-

cally causes Ivan's goal to kill him.

The giant's hurting the people psychologically

causes Ivan's goal to kill him.

S6. Ivan is going to try not to be seen.

Ivan is trying to ambush the giant.

The giant's coming to the village enables Ivan's

waiting.

S7. Ivan tried to kill the giant by shooting an arrow

at him.

Ivan's goal to kill the giant motivates his

shooting the giant.

S8. Ivan hopes that the giant is dead.

Shooting the giant physically causes hitting

him.

Ivan killed the giant by shooting him and

hitting him.

S9. The people were happy because the giant died.

The people were happy because they were no

longer frightened.

The people celebrated because they were

happy.

Table 7.4: Comparison of human and IDC protocols
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minimisation of incoherence, with respect to Tolerance and Skepticism, as follows:

1. The number and type of known representations which could explain/elaborate an

r-elt (i.e. absolute incoherence);

2. How thoroughly the comprehender requires those representations to be explicated

(i.e. Skepticism);

3. How much pressure is placed on the short-term store by r-elts currently maintained

(i.e. Tolerance).

Of course, this does not prove that the human comprehender produced their protocol

via the same or similar mechanisms (birds and planes both y, but employ radically

di�erent mechanisms). I'm not claiming that human comprehenders explicitly employ

incoherence criteria, merely that they are aware of the structural potential of the texts

they are comprehending and attempt to make e�ective use of this potential. This di�ers

from most previous models of coherence, where it is assumed that structure is added to

the representation by inference; instead, I am claiming that structure is automatically

inherent in the interaction between the text and a particular comprehension context. The

comprehender's goal is not to establish structure, but to dismiss irrelevant structures and

maintain relevant ones.

The distinction I'm making is subtle, but allows one to make sense (in the abstract)

of ideas like `causal suÆciency', `standards for coherence' [van den Broek et al., 1995],

`requirements for understanding', and `satisfaction of reader goals' [Graesser et al., 1994].

Without recognising their possible representations for a text, how can a comprehender

decide when their representation is adequate? (see section 5.2.4). For example, how could

a comprehender judge whether they had established suÆcient causes for an eventuality,

without knowing the range of causes available? As an analogy, consider quality control in

a factory which produces `widgets': without knowing the components which go together

to make a widget, how could the quality controller know whether a widget was defective

or not? Choosing one or more representations relies on a similar acknowledgement of the

space of possibilities.

How would one demonstrate that human comprehension involves `monitoring the pos-

sible representations space' rather than `�nding connections'? Super�cially, as discussed

above, the results/outputs of the two processes may be very similar, as incoherence and

coherence are two sides of the same coin (see section 134). This means that distinguishing
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incoherence-minimising from coherence-seeking may be diÆcult on the basis of outputs

alone. Another problem is that IDC only models a fragment of the complete comprehen-

sion process: it is possible that comprehension of unusual texts relies on far more creative

methods.

However, an interesting possibility suggested by IDC is that commonplace eventualities

do not engender signi�cant explanatory inferences, while the interaction between common-

place and less-common eventualities does.2 This is because commonplace eventualities

occur in many schemas, and so do not readily discriminate between them; IDC is thus

reticent to actualise one of the potential explanations. But, in tandem with a more

discriminating eventuality, a commonplace eventuality provides many opportunities for

building structure into the representation. As a consequence, IDC tends to avoid making

inferences on the basis of instances of the commonplace node, but quickly makes inferences

where they occur in the company of discriminating instances.

As an example, consider the following texts:

Text 1

1a. John entered a building.

1b. He went to the counter.

Text 2

2a. John entered a bank.

2b. He went to the counter.

Given text 1, it is unlikely that a comprehender would make signi�cant inferences from

sentence 1a alone. It is possible that some inferences would be generated after 1b, but

I'd expect their quantity and speci�city to be lower than those produced by text 2. Text

2 should produce more inferences on the basis of the sentence 2a, as the speci�city of the

building involved is much greater. Sentence 2b should also be easily processed, as it can

be readily incorporated into a representation based on a `bank visit' schema. In addition,

one would expect this sentence to be processed relatively more quickly (with respect to

sentence 2a) than sentence 1b (with respect to sentence 1a).3

2Here, I intend `commonplace' to mean nodes which have many possible explanations, and thus high

ubiquity (e.g. go events).
3Of course, Skepticism may allow generation of inferences on the basis of a commonplace eventuality

alone. For example, with a low enough Skepticism, the statement `John entered a building' may trigger

a large number of explanatory inferences (see next section for more details).
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Coherence theories cannot adequately account for comprehension time di�erences in

the above types of circumstance. While these theories could be used to make similar

predictions by invoking ideas of global coherence, availability of schemas and so forth,

they have never satisfactorily de�ned why/whether general texts should produce fewer

inferences than more speci�c ones; in particular, there are no computational theories in

this vein. Many coherence theories based on referential and/or causal connectivity would

fail to distinguish between the above texts, treating them as equally coherent. In each text,

both sentences can be connected causally, for example by an enables relation (entering

the building/bank enables John to go to the counter) (see section 7.2.1). They thus seem

to be equally coherent in the sense of allowing an equal number of direct causal relations.

However, it is still possible that they are not equally coherent in other ways: for

example, the strength of the causal relation may be greater in text 2, as the fact that

John enters a bank, rather than an arbitrary type of building, increases the likelihood of

his going to some counter. According to van den Broek's equation for causal strength,

the greater the suÆciency of a cause for its e�ect, the greater the causal strength between

them [van den Broek, 1990a]. This suggests that van den Broek is echoing the view that

coherence is tied to probability, following the lead of work such as [Smolensky, 1986] and

[Thagard, inpr]. A problem here is denoting what the probabilities represent: as I argued

earlier, the only way in which probabilities can make sense is with respect to the knowledge

base (see section 5.3 on page 94).

Coherence is often equated with how well-connected elements of a representation

are, but texts 1 and 2 hint that connectivity must be determined with respect to a

knowledge base. There has been little previous work on the processing load induced

by `number of alternative representations'. One notable exception is the work of Sanford

and Garrod, some of whose work is similar to (and has inuenced) my incoherence theory

[Sanford and Garrod, 1981]. In their 1981 book, they examine anaphora in discourse,

stating that each term which introduces a new entity into a discourse also `opens up [...]

a range of potential anaphors' (ibid.). Depending on the speci�city of the term, the range

of potential anaphors may be wide (e.g. `vehicle') or narrow (e.g. `tank'). Given some

subsequent, coreferential information, the time taken to integrate this information varies

with the number of potential anaphors introduced by the preceding term: for example,

if the word `tank' is followed by the word `vehicle', integration occurs more quickly than

when `vehicle' is followed by `tank'. The incoherence theory I have developed in this thesis

provides a computational slant on this idea, focused at the level of integrating eventualities
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into plan and goal structures rather than resolution of anaphors.

In the next section, I discuss another aspect of IDC's behaviour: maintenance of

multiple representations and representation revision.

7.3 Accounting for `Role-Shift' Texts

My work describes how a comprehender's interpretation may be changed in response to

new information. Although my original ideas didn't mention belief revision, I eventually

realised that this was my principle concern: deciding when to create a new interpretation,

and as a consequence delete all or some of a previous representation, according to the

information available at a given point in time.

A similar process occurs in sentence-level comprehension, when so-called garden path

sentences cause globally-incorrect interpretations to be constructed based on incomplete

information. A famous example:

The horse raced past the barn fell. [Crain and Steedman, 1985]

The syntactic processor may create a parse of the �rst part of this sentence, The horse

raced past the barn, which treats The horse as the subject of the sentence, raced as the

main verb, and past the barn as a prepositional phrase, with the barn as the sentence's

object.4 However, on reaching the end of the sentence, the reader has to `undo' their

interpretation, now treating fell as the main verb of the sentence.

In some garden path sentences, pragmatic information (e.g. world knowledge) allows

discrimination between competing interpretations. However, garden-path-like e�ects can

also occur at this pragmatic level. While the sentences of a text may be locally unam-

biguous, a text as a whole may encourage local interpretations which later turn out to be

incorrect. By analogy with the syntactic e�ect, I call these pragmatic garden path texts.

One example of pragmatic garden paths involves role-shifts

[Sanford and Garrod, 1981]. In such stories, `garden-path'-like e�ects are experienced by

comprehenders: they make default inferences about the roles of the characters in the

story, which later turn out to be incorrect and have to be retracted. One famous example

(adapted from (ibid.)) is:

4Various explanations of how this occurs have been put forward, such as attachment preferences

[Frazier and Fodor, 1978] and parser heuristics [Pereira, 1985].
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John was on his way to school.

He was worried about the maths lesson.

Last week he lost control of the class.

It was unfair of the maths teacher to leave him in charge.

After all, teaching wasn't part of a janitor's duties.

In this story, sentences 1 and 2 encourage the explanation that John is a schoolchild,

worried about a maths lesson.

Sentence 3 undoes the initial explanation: as John lost control of the class, he must

have been in control of the class; normally, teachers are in control of a class, not schoolchil-

dren; therefore, John must be a schoolteacher. His worry can then be explained retro-

spectively in terms of his fear of failure as a teacher.

Sentence 4 again upsets this explanation: John isn't a teacher, but someone unfairly

left in charge of the class. The previous explanation, that John is a schoolchild, may be

reactivated: schoolchildren may be left in charge of a class. The worry may again be

re-interpreted, as worry about the responsibility of being in charge of a class, and losing

control again.

Sentence 5 leaves some parts of the representation in place: John was still left in charge

of the class, but is no longer a schoolchild - instead, he is de�nitely a janitor. By a stretch

of the imagination, a janitor may be left in charge of a class, though this is unlikely.

This seems to intuitively reect a normal comprehender's behaviour when presented

with this text. In the next section, I compare IDC's behaviour with this intuitive

description.

7.3.1 Revision of Representations

This section describes IDC's behaviour when presented with the `Janitor Text' of the pre-

vious section and demonstrates how explanations are revised as comprehension proceeds.

Each of the tables below shows results for a particular class of inferences. The numbers

represent the processing cycle when an inference was �rst made, and the processing cycle

when it was retracted in response to a new tree. Retractions occur when a new tree

causes a previous one to become redundant or spurious, as discussed on page 149. The

resulting behaviour is akin to syntactic garden-path e�ects at the level of plan/motivation

recognition.

The results are shown for three di�erent settings of Skepticism. In all cases, Tolerance
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= 5.267 and Range = -1; on each run, IDC maintained a single representation throughout

and had to revise this representation to account for new observations. The behaviour un-

der these conditions di�ers from behaviour where multiple representations are maintained,

as described in section 7.3.2.

Inference Skept Skept Skept

= 0.1 = 0.5 = 0.9

John is a schoolchild going to school to learn. 3 3 3

Retracted 17 34 33

John is a teacher going to school to teach. 17 n/a n/a

Retracted n/a n/a n/a

John is a janitor going to school to earn a living. n/a 34 33

Retracted n/a n/a n/a

Table 7.5: Inferences about John's reason for going to school

The inferences in table 7.5 are based around the observation of John on his way to

school. IDC has three schemas which explain people going to school (others are obviously

possible). Initially, there is equal evidence to support all three; the schoolchild explanation

is selected (as it is the �rst schema matched, and the schemas are ordered so that the

most used will be matched �rst). In the multiple representations condition, one or both

of the alternatives may be explicitly represented (see next section).

Once IDC infers that John is a teacher (see next table), the inference that he is

a schoolchild becomes unnecessary to explain him being on his way to school - the

information that he is a teacher (supported by his worry about professional failure)

is used in two separate trees, enhancing connectivity and lowering incoherence. This

demonstrates how changes to trees can have a knock-on e�ect, causing the removal of

seemingly unrelated trees.

However, note that in the Skepticism = 0.1 case, the inference that John is going

to school to work as a janitor is not made, even though the text explicitly states that

John is a janitor. Here, IDC's lack of a consistency checking mechanism is demonstrated,

as John is assigned two roles, one as a teacher and one as a janitor. In the other two

cases (Skepticism = 0.5, Skepticism = 0.9), no inference is made about John's status as

a teacher, but the inference about him going to school to work as a janitor is made. The

reasons for this are complex but chiey due to maintenance of single, rather than multiple,
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representations. This important point is discussed in more detail in the next section.

Inference Skept Skept Skept

= 0.1 = 0.5 = 0.9

John is afraid of a test during the lesson. 6 n/a n/a

Retracted 15 n/a n/a

John is afraid of failing as a teacher. 15 n/a n/a

Retracted 29 n/a n/a

John is a replacement teacher and is afraid

of losing control of the class. 29 25 24

Retracted n/a n/a n/a

Table 7.6: Inferred explanations for John's worry

The interesting feature of table 7.6 is the relationship between Skepticism and the

speed with which conclusions are reached. For example, the explanations that John is

afraid of a test and that he is afraid of failing as a teacher are never generated when Skept

= 0.5 or 0.9; however, the explanation that he is a replacement teacher who can't control

the class is made earlier in these cases than in the Skepticism = 0.1 cases, mainly because

incorrect inferences are not made which must be retracted.

Lower Skepticism causes IDC to `jump to conclusions', which later may turn out to

be incorrect; lower Skepticism also causes IDC to make more predictive inferences than

high Skepticism. However, the higher Skepticism cases seem cognitively unrealistic as

IDC comprehends the majority of the text before making any inferences at all.

Inference Skept Skept Skept

= 0.1 = 0.5 = 0.9

The maths lesson m1 is a kind of lesson. 8 10 n/a

The maths lesson m2 is a kind of lesson. 23 26 27

John is a janitor who has been drafted in

as a replacement teacher. 33 35 32

Table 7.7: Auxiliary inferences which contribute to explanations

The �nal row of table 7.7 is the most interesting, as it shows how the Skepticism = 0.1

comprehender makes the connection between John being a janitor and being a replacement
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teacher, while not retracting the inference that John is a teacher (see table 7.5). The latter

inference is retracted in the other two cases, as the higher Skepticism comprehenders

revise their explanation of John's going to school which results in removal of the instance

corresponding to `John is a teacher'.

The result of retaining this instance in the Skepticism = 0.1 case is that John is rep-

resented both as a janitor and a teacher. This intuitively seems like a contradictory state

of a�airs for a human comprehender. However, it may shed some light on inconsistency

of representations in human comprehenders (see page 124).

Inference Skept Skept Skept

= 0.1 = 0.5 = 0.9

John is a child because he is a schoolchild. 9 4 4

The teacher t goes to school to teach. n/a 24 22

The teacher t is an adult. n/a 23 23

John attends the school because he is a janitor. 30 n/a n/a

John is an adult. 16 n/a n/a

Table 7.8: Irrelevant/elaborative inferences

Table 7.8 shows that some elaborative inferences (i.e. inferences which don't tie observa-

tions together) were made under all Skepticism conditions. A point of interest is how the

higher Skepticism settings require elaboration of the representation of the teacher t, as

teacher instances have several potential elaborations which are not speci�ed in the text.

In this case, the inferences are made to `specify' the details of the instance. In the lower

Skepticism setting, this is not required, as the potential elaborations are more readily

discounted.

7.3.2 Multiple Representations

The results of the previous section show how IDC behaves when maintaining a single

representation. One central feature of this behaviour is IDC's concentration on localised

inferences. If a new piece of information requires extensive revision of the representation

in both the STS and the LTS, IDC may not make all the necessary revisions. This is the

case where Skepticism = 0.5: this setting causes IDC to miss the inference that John is

afraid of professional failure as a teacher (see table 7.6 on page 186).
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However, if Range is adjusted (e.g. to 1) to allow multiple representations to be

maintained, this inference is made. The reason for this is that maintenance of multiple

representations gives greater scope for the integration of new observations as there are

more possible attachment points for them. The result is that the inference about John's

fear of professional failure is made in cycle 14 (note that the inference that he is worried

about a test is still not made) and retracted in cycle 24.

More accurately, the reason for this inference being made when Range = 1

and not made when Range = -1 is because of the limitations of gradient search

[Rich and Knight, 1991]. In this kind of search, all possible extensions to the current

problem state are generated, then the best of the new states selected as the new problem

state (c.f. IDC's behaviour when Range = -1). The problem with this type of search is

that it can settle on local maxima: states which are optimal locally (i.e. where there is no

better state within one `move') but which are are not globally optimal.

As an alternative, Range can be set to zero or greater, making IDC engage in beam

search. This means that it potentially maintains multiple states (representations) on

each cycle (depending on their divergence, as described in section 6.4.2). When new

information is observed, it can be added to each of the current representations; hopefully,

it will then be an easy matter to �nd a connection between the new observation and one

of the existing representations. (Of course, beam search is not infallible, and it is often

the case that IDC misses `correct' representations.)

Returning to the example above (making the `fear of professional failure' inference),

the progress of IDC's interpretation when Range = 1 proceeds as shown in �gure 7.2 on

page 189. It is important to note that the diagram only shows inferences about John's

role (schoolchild, teacher, janitor) and the reasons for his worry about the lesson (fear

of professional failure, fear of losing control again). The arrows show the progress of

comprehension; where there are multiple arrows leaving a cycle, this indicates a point

where multiple representations are either derived or maintained. Where multiple repre-

sentations are shown for a cycle, their quality (as determined by the incoherence metric)

decreases from left to right: the left-most representation has the lowest incoherence and

the highest quality, while the right-most representation has the greatest incoherence and

lowest quality.

As can be seen from the diagram, three representations are initially generated, each

of which assigns a di�erent role to John (in the Range = -1 case, only the representation

where John is a schoolchild is maintained). When the next two observations are processed,
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inferred: John is
schoolchild

inferred: John is
a janitor

inferred: John is
a teacher

inferred: John is afraid
John is a teacher

of professional failure

John is a teacher
inferred: John is a replacement
teacher; he is afraid of losing

control of the class again of professional failure
he is afraid

John is a teacher;

John is a replacement teacher;
he is afraid of losing control of the class again

inferred: John is a replacement teacher
because he is a janitor

Observations Inferred r-elts Retained r-elts

observed: ‘John was on his way to school.’

observed: ‘He was worried about the maths lesson.’
observed: ‘Last week he had lost control of the class.’

observed: ‘It was unfair of the teacher to put him in charge.’

observed: ‘After all, he was only a janitor.’

Figure 7.2: Multiple representations of the Janitor Story (Skepticism = 0.5, Range = 1)
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it is a small step from the representation where John is a teacher to the representation

where he is afraid of professional failure. However, an inference which increases incoher-

ence is required to get from either of the other two representations to the `professional

failure' representation. As IDC inhibits inferences which create a positive change in

incoherence (see section 6.4.1), it is unable to make either of these leaps. Range thus

plays an important role in which representations are generated, especially in situations

where there are several competing representations.

7.3.3 Implications for Human Comprehension?

In the two previous sections, I showed IDC's behaviour when maintaining a single vs.

multiple representations. The important di�erences between the two cases are:

� The multiple representation case (i.e. Range is not equal to -1) requires greater

storage capacity when a text prompts alternative representations (for example, the

role-shift stories prompt multiple representations as they are ambiguous as to the

role of the main character). Of course, storage capacity required is only greater

if maintaining many elements in the STS requires greater storage capacity than

maintaining fewer elements: hopefully, this is an uncontroversial point.

In general, this may cause the multiple representations comprehender to store al-

ternatives for unambiguous texts as well as ambiguous ones, which may lead to

ineÆciencies and longer reading times. But, in cases where a text strongly suggests a

single representation, the multiple representations comprehender may only maintain

a single representation anyway.

� Maintenance of multiple representations provides more possibilities for attaching

new observations to a representation (as there are more representations available).

Opportunities for integration may be missed in the single representation case due

to excessive distance from the current representation to a representation which can

incorporate an observation (see the comments on gradient search in the previous

section).

I have tested these predictions by comparing IDC's data for role-shift and non-role-

shift text comprehension to human data. Human data for these texts concentrates on the

reading time for sentences where the role-shift actually occurs [Sanford and Garrod, 1981].

For example, Sanford and Garrod asked readers to produce continuations of the sentence
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`John was on his way to school'; they found that those readers who mentioned John's

role `indicated that he was being thought of as a schoolboy' (ibid.). They then used this

information to produce two versions of a variant of the Janitor Text to ascertain the time

advantage for non-role-shift texts over role-shift texts:

1. Non-role-shift (John is assumed to be a teacher throughout comprehen-

sion)

1a. John was worried about teaching maths.

1b. He was on his way to school.

1c. Last week he lost control of the class.

2. Role-shift (from ambiguous role in �rst sentence to `teacher' role in �nal

sentence)

2a. John was on his way to school.

2b. He was worried about the maths lesson.

2c. Last week he lost control of the class. [Sanford and Garrod, 1981]

Their hypothesis is that when role changes occur (e.g. in sentence 2c), comprehension

time for that sentence is increased (ibid.). This is due to the need for mental reorganisa-

tion, as the assignment of a schoolboy role to John is found to be incorrect and must be

revised (e.g. by assigning John the role `teacher'). They found that the reading time for

sentence 2c was 10% greater than that for 1c, indicating that extra `work' was required for

revision of the representation and supporting their idea that representations are produced

very rapidly, even for short texts.

The Time-Course of (Non-)Role-Shift Text Comprehension

What can IDC tell us about representation revision of the sort described above? One

problem in answering this question is the diÆculty of precisely aligning human reading

times with IDC's comprehension cycles. Unlike models which limit the work done on each

cycle (e.g. Just and Carpenter's CAPs model [Just and Carpenter, 1992]), IDC cannot

be directly compared with measures such as gaze duration [Thibadeau et al., 1982] as its

cycles are not limited in the amount of work they can do. However, it is possible to look

at IDC's protocols on di�erent texts, under di�erent Range conditions (i.e. maintaining

single or multiple representations), and use these to determine the amount of time that

IDC spent comprehending the individual sentences of the two texts. Unlike Sanford and
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Garrod's data, this data is based on the relative amounts of time spent on all of the

sentences of a text; it thus suggests the kinds of results which may be expected if factors

such as Range and Skepticism are manipulated in human comprehenders, as described

in section 7.3.4; it does not predict the precise amount of time (e.g. in seconds) that

comprehenders will spend on individual sentences.

I produced some IDC protocols and calculated the length of time IDC spent on

comprehension of sentences in the two texts (role-shift and non-role-shift) as follows:

1. I ran IDC twice on each of the two texts, for a total of 8 runs, with the following

parameters:

(a) Text = 1, Skepticism = 0.1, Range = -1 (single representation)

(b) Text = 1, Skepticism = 0.1, Range = 1 (multiple representations)

(c) Text = 1, Skepticism = 0.5, Range = -1 (single representation)

(d) Text = 1, Skepticism = 0.5, Range = 1 (multiple representations)

(e) Text = 2, Skepticism = 0.1, Range = -1 (single representation)

(f) Text = 2, Skepticism = 0.1, Range = 1 (multiple representations)

(g) Text = 2, Skepticism = 0.5, Range = -1 (single representation)

(h) Text = 2, Skepticism = 0.5, Range = 1 (multiple representations)

In all cases, Tolerance was set at 2.

2. For each run, IDC calculates a load for each cycle. Load is equal to the incoherence

of the unique r-elts across all representations maintained on a cycle; it is thus a

measure of the total storage cost for the interpretation, or the amount of working

memory resources required to maintain the interpretation.

I used the total load for the whole run divided by the number of cycles in the run

to give average load per cycle, A.

3. The time spent on each cycle (T ) was calculated using A and the load for that cycle

(L):

T =
L

A
(7.1)
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4. The cycles in each run were then split depending on the sentence to which they

applied. The �rst step was to decide which observations in the input belonged to

which sentence of the text, e.g. for text 1 (sentences 1a to 1c):

1a. = event(e2, worry about, [agt:john, pat:m1]),

habit(teacher, [exp:john]),

habit(math lesson, [exp:m1]).

1b. = event(e1, go, [agt:john, loc to:s]),

habit(school, [exp:s]),

relation(precedes, [e2,e1]).

1c. = event(e3, lost control, [agt:john, pat:m2]),

habit(math lesson, [exp:m2]),

relation(precedes, [e3, e1]),

relation(precedes, [e3, e2]).

For each run, I used these groupings to split the cycles into groups, with each group

representing the set of cycles during which a single sentence was being compre-

hended. I did this by marking the output from each run: cycles occurring from

the �rst observation of a sentence Si to the �rst observation of sentence Si+1 were

treated as relating to sentence Si.

5. Given the cycles relating to each sentence, it is possible to calculate the total load

experienced during comprehension of that sentence.

The result of these calculations is a list of three numbers for each run, describing the

relative load during comprehension of each sentence of a text. For example, the loads for

each sentence of text 1 when Skepticism = 0.1 and Range = 1 are:

1a. 4.708

1b. 8.905

1c. 9.387

Figures 7.3 and 7.4 (on the next page) show the relative times spent by IDC on each of

the sentences of the non-role-shift (text 1) and role-shift (text 2) texts respectively; in

all four cases, Skepticism = 0.5. In each diagram, the results for a single representation
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(Range = -1) version of IDC and a multiple representations (Range = 1) version are

shown: the single representation comprehender with Skepticism = 0.5 is denoted C0:5
s

and

the multiple representation comprehender with Skepticism = 0.5 C0:5
m
.

The graphs have some interesting features:

� In �gure 7.3, C0:5
m

spends more time on sentence 1a than C0:5
s
. However, C0:5

m

spends relatively less time on comprehending the next two sentences. This is because

C0:5
m
's comprehension of the �rst sentence makes several alternative representations

available for when the second sentence is comprehended; the observations of those

sentences are thus `slotted' into whichever representation best accommodates them,

and other representations may be discounted. Although there are no striking am-

biguities, as there are in the role-shift text, there is still potential for alternative

representations, e.g. alternative elaborations.

� In �gure 7.4, the time spent on the second sentence by C0:5
m

is greater than that of

C0:5
s
. The reason for this is that C0:5

m
maintains several explanations for why John

might be worried about the maths lesson, e.g. he is a teacher worried about failing

professionally or a schoolchild worried about a test. However, by the third sentence,

the information that John lost control of the class in the previous week causes these

multiple representations to be collapsed to a single representation, that John is a

teacher afraid of failing professionally. C0:5
s
, meanwhile, ignores the new information

and retains the `John is a schoolboy' representation due to the myopia I described

in section 7.3.2: it is unable to integrate the information that John is worried about

the lesson, and as a result has to maintain isolated information, creating a higher

overall load and longer reading time.

If Skepticism is lowered to 0.1, the results are slightly di�erent but in some respects

more striking. These are shown in �gures 7.5 and 7.6; the single representation com-

prehender is denoted C0:1
s

and the multiple representations comprehender C0:1
m
. Some

comments on these graphs:

� C0:1
s

does not su�er the myopia of C0:5
s

(see previous bullet points): it is able to

integrate the observation `John lost control of the class in the previous week' as the

lower Skepticism allows it to pass the local maximum. As a result, C0:1
m

does not

gain an advantage on this text and spends more time on comprehending it. This

reects the prediction made in section 7.3.3, that comprehenders who maintain
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multiple representations are disadvantaged on unambiguous texts. This e�ect does

not manifest itself when Skepticism = 0.5, as most potential representations are

immediately discarded, being too incoherent for serious consideration.

� C0:1
s

and C0:1
m

spend more time on the role shift text than C0:5
s

and C0:5
m
. This is

because the lower Skepticism allows more unnecessary inferences to be made and re-

quires more revision when new information becomes available. However, C0:1
m

spends

less time on sentence 2c than C0:1
s
; again, the availability of multiple `attachment

points' (in various representations) results in more e�ort being expended on sentence

2b.

7.3.4 General Discussion

These results demonstrate the complexity of comprehension and the myriad factors which

inuence the length of time taken to comprehend a given sentence. To summarise:

� Interactions between Skepticism and the number of representations maintained can

complicate the reading time data, for example where maintenance of a single repre-

sentation results in inferential myopia.

� If multiple representations are maintained, reading time for the third sentence of the

role-shift text is lower than that for the second sentence. In the single representation

case, reading time for the third sentence is higher than for the second sentence.

� At low Skepticism values, the reading times for role-shift texts are higher than

those for non-role-shift texts, due to the need to revise representations. At higher

Skepticism values, there is a tendency for reading times to `level out', as there is

less of a tendency to make early inferences which later require correction.

While these are only tentative conclusions, they present some interesting avenues

for experiments involving human subjects. The important factors inuencing reading

time in IDC are Range and Skepticism, both of which could be manipulated in human

comprehenders. I have so far de�ned both of these parameters as aspects of the central

executive (see sections 6.4.3 and 5.3.6 respectively). Is there any reason to believe these

parameters are separable in human comprehenders?

As I've stated earlier, Range monitors the quality of the whole interpretation: it deter-

mines whether alternatives to the least incoherent representation should remain as part
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of the interpretation. Skepticism is responsible for monitoring the quality of individual

representations: it determines whether individual inferences should be made within a given

representation. In previous psychological accounts of strategic control of comprehension

(though they are few in number), these ideas (interpretation monitoring vs. representa-

tion/inference monitoring) have rarely been considered together. The issue of multiple rep-

resentations is not seen as important in accounts of interpretation revision: the emphasis

has been on revision of a single representation, rather than switching between alternative

ones (e.g. [Johnson and Seifert, 1999], [van Oostendorp and Bonebakker, 1999]). Where

switching is considered (e.g. [Gernsbacher et al., 1990]), switches go from a current

representation to a new one. At the same time, psychological accounts of inferential control

rarely mention the possibility of inferences occurring at di�erential rates, dependent on a

Skepticism-like parameter (with the exception of [van den Broek et al., 1995]). Instead,

there is a focus on particular types of goals which may drive comprehension, such as goals

engendered by reading literature [Graesser et al., 1994] or goals to maintain a certain class

of coherence structure (e.g. superordinate goals [Long et al., 1996]).

As a consequence of the failure to consider strategic monitoring of coherence, both

types of account are missing a description of its underlying `abstract' mechanisms. These

mechanisms can be thought of as the machinery which is employed while processing

particular types of goal; for example, both `literary' goals and `news' comprehension goals

may be implemented by running a single `thresholding machine' [Zwaan, 1996].

In IDC, the Skepticism and Range parameters play the role of these abstract mech-

anisms. To determine whether they bear any resemblance to the underlying machinery

in human comprehenders, it is necessary to speculate on what could a�ect one parameter

while leaving the other intact; or, from another perspective, how one parameter could be

manipulated without altering the other. This would then demonstrate that Skepticism

and Range are separable, and thus add weight to my previous suggestions about how these

factors a�ect human comprehension (i.e. how they control the generation of inferences

and maintenance of alternative representations). It may also shed some light on various

processing disorders, as described in section 8.3.2.

Because it is diÆcult to get at these abstract mechanisms directly, the only way to

access them is by changing the comprehender's goals. Two techniques for manipulating

Skepticism and Tolerance are given below:

� Skepticism: change the comprehender's goals by giving instructions to be more

or less imaginative/fanciful in making inferences. As Skepticism represents the
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comprehender's caution in jumping to conclusions, one possibility would be to

change the reading situation between groups of subjects. For example, both groups

could be presented with a text, with one group being told the text is a news story

(high Skepticism) and another told the text is a piece of �ction (low Skepticism)

[Zwaan, 1996].

� Range: change the comprehender's goals to encourage more or less alternatives to

be maintained. One possibility would be to encourage fast, skim-comprehension

in one group of subjects, and more leisurely, studied comprehension in the other.

As maintenance of multiple representations requires more e�ort, the pressure to

comprehend at a particular rate should inuence the amount of time available for

generating alternative representations; in the skim-comprehension condition, the

pressure would hopefully force maintenance of a single, most-coherent representa-

tion.

An alternative piece of evidence which may strengthen the argument for a separate

Range parameter can be found in research on children's recognition of alterna-

tive interpretations of texts. Bonitatibus and Beal found that older children were

more likely to report multiple interpretations of a text than were younger children

[Bonitatibus and Beal, 1996].5 However, in both the younger and older children,

the interpretation formed is `complete' in that it provides a reasonable account of

the text's events. This suggests that older children have a greater Range than the

younger children, while both could have equivalent Skepticism. Another interesting

point is that younger children are less able to repair interpretations in the face of

conicting information: perhaps they are su�ering from `inferential myopia', caused

by their inability to maintain multiple representations during comprehension (see

section 7.3.3)?

Some evidence which undoes this reading of the results comes from a variant on the

experiment, where children were informed that the text was either a narrative or an

expository text (c.f. previous bullet point). In this case, it was found that both the

younger and older children reported more alternative interpretations. However, in

situations where subjects are asked to report on their understanding it is always

diÆcult to avoid the possibility that the attempt to answer a question causes

construction of an alternative interpretation `on the y', rather than uncovering

5Interpretation is used here in the common sense of explanation for a story's events.
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a genuine multiplicity of representations. (Below, I suggest some tests for multiple

representations which can be carried out during comprehension.)

The reading times in the various circumstances (produced by varying Range and

Skepticism via goal manipulation, and text type) could be gathered using a technique

such as self-paced reading, where subjects push a button after completing each sentence

[Graesser et al., 1997]. However, this is a primitive technique at best. A technique such

as gaze duration analysis is a more advanced possibility [Thibadeau et al., 1982]. With

this technique, eye movements during comprehension are measured (usually for individual

words); the hypothesis is that the length of time spent processing individual words reects

the cognitive e�ort spent on processing those words (the `eye-mind' hypothesis (ibid.)).

Individual eye movements for words which trigger role-assignment in the comprehender

(such as `school', `teaching') could be measured to determine the amount of processing

carried out on reading these words. (However, it would be necessary to factor out e�ects

such as word length, word frequency, etc. [Graesser et al., 1997].) These reading times

could then be compared with IDC's to determine whether the e�ects mentioned at the

start of this section occur in human comprehenders. For example:

� Does the word `school' engender more processing in the multiple representations

condition than the single representation condition, because multiple roles may be

assigned to John?

� Does the word `worried' engender more processing in the role-shift text (where

John's role is ambiguous) than in the non-role-shift text (where it can only really

be interpreted in the context of John's concern about professional failure)?

� In the multiple representations condition, are reading times for the third sentence

of the role-shift text shorter than reading times for the second sentence?

IDC's reading times suggest positive answers to all of these questions.

A �nal point: it is perhaps controversial to claim that comprehenders maintain mul-

tiple representations at all. To support the above experiments, it would be necessary to

determine whether the multiple representations maintained by IDC are in fact mirrored

in human comprehenders; for example, by testing for activation of roles during compre-

hension of role-shift and non-role-shift texts. Otherwise, any similarities between human

reading times and IDC's may be attributable to other e�ects, such as lexical access, word

familiarity, etc.



Chapter 7. Examples of IDC's Behaviour 201

As I showed in section 7.2.2, IDC can be used to give some clues about the time-

course of concept activation. This information could be used alongside expert judgements

to determine where roles (and other concepts) are likely to be active during compre-

hension of the role-shift and non-role-shift texts. The resulting list of potential concept

activations, tied to sentences of a text, could be employed to carry out a lexical decision

task [Long et al., 1990].6 In this task, a subject is presented with a letter string during

comprehension and required to decide whether the word is a word or a nonword (ibid.).

If a concept is active in memory, judgements about words related to that concept should

be faster than judgements about words not attached to the concept.

To test whether multiple representations are generated during comprehension of the

role-shift (ambiguous) text, the �rst step would be to derive a list of letter strings relating

to the roles in the text (e.g. `teacher', `schoolchild', `janitor'). A comprehender would

then be asked to read the text. After reading a particular sentence, they could be probed

with a letter string from the list, such as `teacher'. The time to respond (i.e. to make

a decision about whether the word is a non-word or a word) is then recorded. These

results would have to be compared to those for the non-role-shift text, to ensure that

the text is causing multiple representations to be generated, rather any other factor (such

as the comprehender's world knowledge). For example, concepts hypothesised as being

activated in the role-shift condition but not in the non-role-shift condition could be probed

for during non-role-shift comprehension.

If the decision time for a probe relating to a role is faster than the decision time for

unrelated letter strings and non-words, this is taken as evidence that the role is encoded

into memory at the point when the probe is administered.

The results of these experiments could then give some idea of whether multiple rep-

resentations are indeed maintained by comprehenders who are confronted by ambiguous

texts. It would also be necessary to test for multiple representations under low and

high Range conditions, by manipulating the comprehender's interpretation monitoring

mechanisms (see page 198). Under the low Range condition, IDC predicts that only a

single role is likely to be activated, regardless of the ambiguity of the text; there should

thus only be a decision time advantage for the letter string relating to this role.

It is also important to point out that the explicit multiple representations maintained

by IDC may not be reected in the comprehender's interpretation. For example, if the

representation merely consists of a set of activations across nodes (as in the Construction-

6This idea was suggested to me by Mark Torrance.
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Integration Model), the results would be the same, without the interpretation being

explicitly divided across representations. The contrast is between the partitioned relations

strategy simulated by IDC (see �gure 3.7 on page 48) and the implicit representation of

alternatives in a symbolic-connectionist model (see �gure 3.11 on page 57). It is diÆcult to

say how one would test which of the possible ways of maintaining multiple representations

is actually implemented in human comprehenders; the advantage of making maintenance

explicit, as in IDC, is that the instances belonging to each representations can be separated

out from irrelevant ones and reported to the outside world.

7.4 Chapter Summary

In this chapter, I showed how I have experimented with IDC on various types of text

comprehension problem, from pure AI (plan recognition) to psychological (time course of

comprehension):

� Plan Recognition

At the very least, IDC is a reasonable plan recognition program, even though my

emphasis on hesitations and mistakes in comprehension makes quantitative judge-

ments diÆcult. This emphasis is the very feature of IDC which also distinguishes

it from previous research: although some researchers have designed quality metrics,

there have been few who have approached the time course of plan recognition in

this context. IDC demonstrates how decisions about whether to make inferences or

not (`weighing of evidence') can be founded on the notion of incoherence.

� Inference Protocols

IDC shows how inference protocols can be produced using the same incoherence

metric as is used for plan recognition. I feel that this work has been least successful,

as it is diÆcult to tie the output of the program directly to a human protocol. The

reasons behind this are manifold (see section 7.2), including factors such as:

{ DiÆculty in translation from a human protocol to a computable target repre-

sentation (i.e. something for IDC to aim at).

{ Restrictions of the ontology in IDC (e.g. lack of support for modal statements,

primitive temporal representation).
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{ Problems with uncovering the `micro-inferences' which would describe the hu-

man protocol at a �ne level of detail.

{ Unpredictable interactions between IDC's parameters which cause inferences

to be generated in the incorrect order or be missed (see section 8.5).

� Role-Shift Comprehension

Some of my most interesting results come from my work on role-shift comprehension.

I have used IDC as the basis for some predictions about text comprehension:

{ The kinds of processing likely to cause diÆculties for the comprehender (e.g.

maintaining single vs. multiple representations, low vs. high Skepticism).

{ Some experiments which could shed light on whether comprehenders maintain

single or multiple representations.

{ How some comprehenders may su�er `inferential myopia', where correct infer-

ences are missed because of an inability to maintain `bridging' representations

(bridging representations allow local maxima to be avoided).

In the next chapter, I discuss the more general achievements, problems and conclusions

resulting from my work.



Chapter 8

Conclusion

Early chapters described the theoretical basis of the incoherence model and its computa-

tional implementation in IDC. The previous chapter demonstrated how the implementa-

tion could be applied to various issues in text comprehension. In this chapter, I provide

an overview of the work as a whole, emphasising my achievements and the diÆculties

raised by the research.

8.1 Evaluation and Summary of Research

IDC represents one step towards a complete model of text comprehension. It covers only

a fragment of the work required to produce a complete model, something which has not

been satisfactorily achieved by any researcher in this �eld. Obvious shortcomings of my

work are its limitations as regards extent of the comprehension processes: for example,

there is no treatment of morphology, syntax, or semantics (in the normal sense of the

term). These are issues which I have deliberately avoided (though, in the �rst few months

of the thesis, I was convinced I could tackle all of these and more). Expenditure of more

time on these areas would have resulted in a broad but shallow model, perhaps capable

of super�cially understanding stories from English to `representation'; however, there are

dozens of programs with this kind of capability (e.g. [Lehnert et al., 1983], [Ram, 1991],

[Williams, 1992]).

Instead, I chose to carry out a deeper study of a single, relatively muddled and under-

explored area of comprehension: strategic control. Many previous psychological models

avoid this topic, instead concentrating on the relatively automatic, associative-network

style of processing [Kintsch, 1998]. Admittedly, these models work from individual words,

204
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rather than an arti�cial, computer-style language as IDC does; in this respect, they are

more `complete' than IDC. On the other hand, these models avoid discussion of strategic

inference.

As a way into the problem, I analysed comprehension systems (both psychological

models and implemented models) in terms of arti�cial intelligence architectures. This

resulted in a partitioning of the problem into several issues:

1. What kinds of semantic representation support comprehension?

2. What kinds of inference process are supported by those semantic representations?

3. What kinds of episodic representation are generated by those inferences?

4. How does a comprehender make decisions about which representations constitute

their �nal interpretation?

5. Are there any ways in which the results of these analyses could be slotted into a

computational model?

6. Can the output of such a model be compared with human behaviour in a meaningful

way?

I feel that the work presented in this thesis goes some way towards clarifying is-

sues 1 to 4: few other researchers have even recognised that these are issues. Issue 4

has been particularly neglected. Part of the reason for this oversight is the tendency

to rely on partly `black box' mechanisms, such as relaxation and spreading activation

in symbolic-connectionist networks. Where strategic control is discussed, such as in

[van den Broek et al., 1995] and [Graesser et al., 1994], there is often a diÆcult gap to

bridge between the idea of strategic control and symbolic-connectionism. Work such

as [Cooper and Shallice, 2000] and [Zwaan, 1996], along with implementations such as

WanderECHO [Hoadley et al., 1994], go some way towards addressing these problems,

but there is still much to do. Perhaps it is simply the case that connectionism does not

provide the right level of description for control processes [Eysenck and Keane, 1995].

I feel I have made less headway on issues 5 and 6. Even though IDC does `work', the

results are diÆcult to analyse and there are fundamental problems in the implementation.

As these are the main failings in my work, I describe them in more detail in the next

section.
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8.2 Evaluation of IDC

The theory of incoherence seems to me (intuitively) to be along the right lines. It corre-

sponds with my personal experience of text comprehension and theoretically encapsulates

coherence, while avoiding some problems such as how coherence and other quality metrics

can be integrated. It is at the same time a computational philosophy of comprehen-

sion which has been inuenced by recent work in literary theory (e.g. [Ronen, 1994],

[Ryan, 1985]). Theoretically, at least, it provides a framework for analysis of several

related, `structure-building' tasks.

Simultaneously, there is a chasm between my theory and its computational implemen-

tation. As is often the case, it is diÆcult to create a program which lives up to one's

expectations. Some major problems in the implementation are:

1. Limitations of relations. Because temporal and causal information is treated in the

same manner as categorisation information, certain types of reasoning are impossible

due to IDC's syntax for representing knowledge.

2. Lack of consistency checking.

3. Problems with comprehension management.

4. Problems with the metric.

Each of these areas is described below.

8.2.1 Limitations of Relations

A problem with treating causal relations as schemas is the impossibility of recursive

de�nitions. IDC's comprehension process is akin to categorisation, and so does not admit

recursive structures: the idea of ubiquity and informativity rests on this. However, in a

general reasoning system, relations of a certain type should be inferable on the basis of

other relationships of the same type. For example, a common form of reasoning utilises

the transitivity of temporal relations such as `before', `after', `during', etc. [Allen, 1984].

This requires rules of the following form:

before(A, B), before(B, C) �! before(A, C).
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In IDC, a schema such as this would break the informativity and ubiquity calculations: to

determine these values for before(A, B) and before(B, C), IDC would have to determine

them for before(A, C) (and vice versa). In one sense, this is because the rules make no

sense in terms of a partonomy (the basis of IDC's schema lattice); if the content of the

rule is changed, this becomes clearer:

sheep(A), sheep(B) �! sheep(C).

In other words, in IDC's terms the rule de�nes one category (before) in terms of itself,

which is as ridiculous conceptually as one sheep being composed of two other sheep. The

temporal reasoning rule is not partonomic and so cannot be handled sensibly by IDC.

Another problem with relations is the vague, ad hoc way in which they are handled.

Schemas simply de�ne causality in terms of the co-occurrence of two eventualities and a

pre-de�ned temporal relation between them. The temporal relation is not derived by IDC

but supplied in the texts it analyses. A complete system for causal and temporal reasoning

would need to derive temporal relations on the basis of verb tense and aspect, combined

with world knowledge (c.f. [Kamp and Reyle, 1993], [Moens and Steedman, 1988]).

These are major failings of the system; they are also inexcusable in some respects,

as causal and temporal reasoning are central to comprehension [Trabasso et al., 1995].

However, putting them right would require a research project to produce a complete

ontology for both partonomic and temporal reasoning (e.g. something in the style of the

CYC system, which has been in development for 16 years and currently uses 1,000,000

rules [Cycorp, 2000]).

8.2.2 Lack of Consistency Checking

If IDC's Skepticism is set low enough, there is no mechanism which prevents inference of

multiple, possibly competing explanations. Incoherence puts the `brake' on generation of

inferences: so long as an inference lowers incoherence change in the representation as a

whole, there is nothing to prevent that inference being made (assuming that the schema's

constraints have been met, as described in section 6.1.3 on page 138). As a result, IDC

will occasionally produce conicting explanations: for example, a story where John buys

a milkshake in a diner then points a gun at the owner can cause confusion, with both

robbing and restaurant visit plans being inferred.

This problem seems to stem from the lack of a consistency checking mechanism, such

as the one in ACCEL [Ng, 1992]. Such a mechanism would provide a list of `NOGOODS'
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after the fashion of the ATMS (see page 48). Each NOGOOD would specify a set of

instances which are inconsistent and must not co-occur in a representation; any extension

to a representations which included a NOGOOD would immediately be discarded.

While this sounds �ne in principle, it is hard to de�ne a list of NOGOODS which

is broad enough to allow multiple explanations or elaborations whilst simultaneously

excluding inconsistencies. In the example I gave above, is John actually dining in the

restaurant, or robbing it, or doing both? How many of the subevents associated with

restaurant dining would John have to be involved in for restaurant dining to become a

valid inference? On some occasions, someone may enter a diner with the intention of

having a meal then robbing the diner.

Some possible alternative solutions to this problem include:

� The NOGOODS approach, where either restaurant dining or robbing may be in-

ferred, but not both. The choice between the two would have to be based on a

criterion like simplicity (i.e. maintain the simplest explanation and assume the

other one is incorrect).

� The `di�erential activation' approach. If using a spreading-activation algorithm,

the alternatives are maintained if neither `falls out' of the representation during

network relaxation. If one explanation is suÆciently more activated than another it

is maintained while the other becomes deactivated.

In the symbolic-connectionist paradigm, there is the suggestion that the best inter-

pretations will result from such processes. However, as I showed in section 4.3.3

(page 77), this is sometimes because legitimate competitors have been pruned from

the competition, by the action of an unseen and undocumented strategic inference

processor: the researcher.

� The `compound schema' approach. A special schema describing robberies involving

decoys could be added to the knowledge base. This would allow both John's buying

the milkshake and pointing the gun to be seen as part of a robbery with decoy plan.

This partially works in IDC, as a tree based on the compound schema will have less

incoherence than two trees based on the restaurant dining and robbing schemas.

The problem here is the combinatorial explosion of the knowledge base. For every

likely combination of schemas, one would require a compound schema (visits to the

restaurant which are also birthday parties, trips to the beach which are also marriage

ceremonies, dinner parties which are also business meetings).
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� A mixture of the above strategies. However, even if one had combined schemas, it

might be the case that prohibition of representations based on a certain combined

schema and a certain simple schema would be required. For example, it would be

necessary to ensure that the robbery with decoy schema and the restaurant dining

schema are never used to create two trees in a single representation. The need for

prohibition may be lessened for models which employ representation quality metrics

such as coherence or simplicity.

This issue is a perennial problem in comprehension systems and not one I have solved.

I have attempted implementations of several of these methods but none have proven

satisfactory.

My own feeling is that explicit negation (NOGOODS) and compound schemas are

unworkable; di�erential activation seems to be the best alternative (to a certain extent,

this is the strategy IDC employs anyway).

8.2.3 Problems with Comprehension Management

IDC's comprehension management consists of the `meta-control' processes which guide

construction of the interpretation. Problems with these processes originate primarily

from technical aspects of the implementation, such as how existing trees are replaced by

new ones.

Some comments on technical problems with IDC:

1. Failure to maintain reasonable alternative representations

IDC's interpretation is composed of one or more alternative representations. If the

incoherence of the best representation is above Tolerance, IDC attempts to generate

a tree in each representation which lowers the incoherence of that representation.

The problem here is that representations tend to converge on a single, best repre-

sentation. If a new tree is generated in a representation, older trees may be replaced

where they become unnecessary (see page 149). So, for example, a hypothetical

tree T1, initially maintained as an alternative to another tree T2 and explaining

the same observations but with higher incoherence than T2, may be replaced by a

newly-inferred `replica' of T2. This is not to say that there will be multiple identical

representations: IDC ensures that duplicates are removed from the interpretation.

However, the diversity of the representations tends to disappear as alternative trees

are displaced by the trees for which they provide alternatives.
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2. IneÆcient use of search

When IDC constructs extensions to a representation R, it �nds all possible

extensions which lower the incoherence of R; these extensions are then sorted

and trimmed, as described in section 6.4.2 (page 151). However, this is a source

of ineÆciency: all possible extensions are generated before sorting and trimming

begin. A better policy would be to halt generation of extensions on the basis

of available resources, following the lead of Capacity Constrained Comprehension

[Just and Carpenter, 1992] or WanderECHO [Hoadley et al., 1994]. Using such a

control would prevent construction of extensions once the capacity for the cycle was

`consumed'. While this would in e�ect act as another kind of `beam search', the

point where control is applied is di�erent, corresponding (approximately) to step 4

of �gure 2.2 (page 21).

A heuristic based on schema size could be combined with this idea: matches against

the knowledge base could be ranked on the basis of schema size, with smaller schemas

being preferred. Then, schema applications could be applied in order of schema size,

smallest �rst, up to the capacity limits suggested in the previous paragraph. This

corresponds to step 3 of �gure 2.2 (page 21).

A solution to both problems would be better management of alternative representa-

tions. One possibility would be to allow either multiple representations or deletion of

unnecessary trees. It is clear that these processes are related: deletion of unnecessary

trees in a single representation equates with retracting alternatives in the multiple rep-

resentations case. However, in the current version of IDC, these processes co-exist. I

again feel that a symbolic-connectionist approach may provide answers to this problem:

multiple representations correspond to distribution of activation over nodes representing

alternative `trees', while deletion of unnecessary trees corresponds to deactivation of those

nodes (see section 3.2.5, page 46).

8.2.4 Problems with the Metric

Perhaps the main problems with IDC involve its incoherence metric. As the metric is the

core of my work, these problems are also the most serious.

One particular problem is the general arbitrariness of the metric. I had originally

intended the calculation of informativity and ubiquity to be based on a probabilistic

measure such as entropy, but still derived from the structure of the knowledge base (e.g.
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following the work in [Bar-Hillel and Carnap, 1964]). The idea was to determine the utility

of applying a particular schema in terms of how it reduced the entropy of the resulting

representation; entropy would be related to the number of alternative possible extensions

to the representation (ibid.). However, this approach depends on very unwieldy calcula-

tions and requires a de�nition of what the probabilities actually mean (see section 5.1.5

on page 91).

I then turned to logical methods for determining the utility of applying a schema,

following the work of Appelt on model preference default reasoning [Appelt, 1990]. This

formalism provides the semantics behind cost-based abduction.1 However, the problem

here was specifying how the comprehender's subjective control mechanisms (which even-

tually became Skepticism, Tolerance and Range) could inuence costs on abductive rules.

The solution on which I eventually settled has little resemblance to any of the pre-

vious comprehension metrics. Incoherence is largely heuristic and incorporates aspects

of coherence, similarity, competition and other metrics in a single measure. As a result

of inventing these concepts virtually from scratch, some of the terminology associated

with the metric is unfortunate, partly for historical reasons and partly due to the lack of a

suitable vocabulary. The philosophy behind the metric also means that the comprehension

process in IDC produces representations which are logically inconsistent, invalid and re-

dundant: because I was interested in how a `lazy' or `poor' comprehender could be realised

computationally, the system has loopholes which can undermine `normal' comprehension.

IDC really needs to be placed on �rmer ground to make it computationally sound. I

think the most fruitful direction would be to �nd a probabilistic rationale for the idea

of incoherence. I feel the idea of `possible representations' is helpful in this light, tied to

calculation of entropy with respect to a knowledge base. Some work which has already

been carried out in this vein includes [Goldszmidt and Pearl, 1996] and [Nagao, 1993].

These improvements also need to be tied to a learning mechanism. At present, the

hierarchy of knowledge in IDC is hand-coded; this makes its behaviour unstable and

unpredictable as changes to schemas alter the representations which are derivable and

their quality ratings. The e�ect is nonmonotonicity in IDC's behaviour: as the rulebase

changes, representations which were previously seen as high quality may be discarded,

while previously poor representations become more acceptable.

To remove these inuences from the incoherence metric and make the schemas more

1I have not explicitly discussed cost-based abduction, primarily because it has been shown to be a

variant of probabilistic abduction [Charniak and Shimony, 1990].
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`objective', one could write a program which derives the knowledge base automatically,

e.g. from some kind of corpus. This would of course require a suitable corpus; as IDC's

knowledge base is used to make inferences about `meaning', the corpus would also need to

contain this information. One possibility would be to use a corpus of inference protocols

and their associated texts: IDC could derive its rulebase by looking at the frequency

with which a particular inference and a particular text segment co-occur; the resulting

schemas could then be annotated with these frequencies, which could be used in the

entropy calculations mentioned earlier.

There is little current research in this area. The main area of current corpus analysis

research in text comprehension concerns the strength of associations between concepts,

based on Latent Semantic Analysis [Kintsch, 1998]. This technique is being used to derive

associative networks (used by researchers such as Kintsch) which can then be used in

symbolic-connectionist modelling.

8.3 Extensions

I have hinted at some of the more mundane extensions to the model in previous sections:

for example, adding other levels of processing (e.g. syntactic), improving the temporal on-

tology, and adding facilities such as question answering. However, I think these additions

are not particularly interesting.

Instead, I think any future work would �rst have to deal with the metric. There is

still much to do here and my formulation is by no means de�nitive. I describe some ways

to improve the metric in the next section.

A second area where improvements need to be made is in aligning IDC's protocols with

human data. Potentially, analysis of comprehenders su�ering executive function de�cits

could clarify the separation of various functions (e.g. whether Skepticism and Tolerance

are really two separate parameters, whether Range is psychologically instantiated). This

topic is covered in section 8.3.2.

8.3.1 Increasing the Formality of the Metric

As I hinted above, it would be interesting to overhaul the whole idea of incoherence using

more formal techniques such as probability and connectionist relaxation algorithms. For

example, the idea of potential representations obviously resembles possible worlds theory

[Nagao, 1993] and model preference default theories [Appelt, 1990].
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A possible technique for revamping the metric would be specifying the probability of a

representation in terms of the probabilities in the space of representations. The probability

that a particular representation is true could be based on frequency of occurrence of

the rules used to construct it (with respect to the knowledge base); this is similar to

my approach, but would require a more formal de�nition of frequency of occurrence.

For example, this could be based on something as simple as IDC's `number of times an

element occurs as a consequent or antecedent'; or on something more sophisticated, such

as the �rmness of rules in [Goldszmidt and Pearl, 1996]. The latter work ranks each

representation (worlds) on the basis of how many rules tolerate it.

Another approach could use actual protocols to determine the probability that a

particular representation is correct. I envisage a procedure similar to case-based parsing

here, although this is only a tentative suggestion.

8.3.2 Insights from Analysis of Executive Function

Skepticism and Range are two chief modulators of comprehension performance. As

I've already suggested, one can examine how and if similar parameters inuence human

comprehension by examining protocols gathered in varying circumstances.

Another approach may be to attempt to gather protocols from individuals with as-

sumed executive dysfunctions. In particular, individuals on the autistic spectrum and

those with frontal lobe disorders have both been suggested as su�ering from executive

dysfunction. Thus, it may be fruitful to use these groups as cases for comparison with

IDC. If their protocols are comparable to IDC's, this may give some support to the idea

of `using potential structure'. A corollary of this idea exists in the literature on autism in

the form of the weak drive for central coherence.

In the normal cognitive system there is a built-in propensity to form coherence

over as wide a range of contexts as possible. It is this drive that results in

grand systems of thought, and ultimately in the world's great religions. It is

this capacity for coherence that is diminished in autistic children. [Frith, 1989]

Frith seems to suggest that there is no drive in autistic individuals towards utilisation of

structure. It is not that autism impairs semantic knowledge; some autistic individuals can

have highly developed semantic knowledge bases while lacking the `control mechanisms'

which enable others to apply this knowledge:
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Some individuals with autism possess a large store of information, but

seem to have trouble applying or using this knowledge meaningfully.

[Ozono� et al., 1991]

This idea is comparable to aspects of my own model, where a rich knowledge base

may be thwarted by lack of a drive to integrate information, resulting in impoverished

representations. IDC's equivalent of central executive disorder is formed by increasing the

level of Skepticism so that schemas have to be thoroughly instantiated by a text before

an inference is made.

IDC may form the basis of a modularisation of the de�cits which occur as a result

of central executive dysfunction. For example, is the weak drive for central coherence

really a single `modulator', or are there component processes which together produce this

e�ect? Is the weak drive the result of a failure to admit inferences (due to an inuence

like Skepticism), or the result of a phenomenon like inferential myopia (see section 7.3.3),

caused by an inability to avoid local maxima? In addition to the model perhaps providing

a framework for analysing executive dysfunction, I think analysis of protocols from such

comprehenders could clarify issues in the model.

The main barrier to an analysis such as the one I've suggested is the failure to

communicate intelligibly which often accompanies central executive dysfunction. I have

not thoroughly examined ways to bypass this problem.

8.4 Achievements

From the beginning of my Ph.D. work I have been interested in the mechanisms which

allow comprehenders to make sense of texts. My focus has always been on the ways

in which representations can be compared with each other: this seems to me to be the

central problem. The complexity of this task is increased when one realises that it occurs

incrementally, based on a fragment of the comprehender's complete representation, and

in the context of a theoretically unbounded inference process.

An early realisation was that metrics could be divided into two camps: those based on

explicit annotation of rules, specifying an ordering on the desirability of their employment;

and implicit measurement of the `structure' and/or `quality' of representations. My aim

was to try to �nd a way to bring these two approaches together.

The novel parts of my thesis can be summarised as follows:
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� I have unravelled some of the tangle of previous work, where considerations of

metrics, representations (semantic and episodic) and processes are entangled. This

gives a clearer idea of where e�ort needs to be directed by future researchers.

� I have designed and implemented a theory of `potential structure'. This shows one

possible method for annotating a knowledge base without reference to the outside

world. There are issues to resolve here: for example, where do schemas come from

in the �rst place? Why are schemas organised the way they are?

� I have not sidestepped the (philosophical) issue of why comprehension occurs. My

model uses ideas inuenced by information theory to specify construction of repre-

sentations in terms of `reduction of uncertainty'.

� I have incorporated some psychological data on comprehension into a computational

model and suggested methods for comparing the model with human comprehenders.

A main result of my work is the �nding that reliance on the structure of the knowledge

base for rating representations makes a system very fragile and unpredictable. Ng claims

that his system (ACCEL) is resistant to changes to the knowledge base, but this is only

so if the rules are written in a particular way in the �rst place. The same is true of many

symbolic-connectionist systems: they only reach the correct conclusions if the networks

are designed correctly.

This is perhaps a slightly negative result, indicating that representation quality metrics

based on the structure of the representation are too arbitrary; once you start looking at

their underpinnings they seem to fall apart.

8.5 Last Words

I think a major criticism of my model may be its separation from `the real world'. As rep-

resentations are accepted/rejected on the basis of other representations (not with reference

to absolute probabilities outside the knowledge base), I may seem to be suggesting that

comprehension is hermetically-sealed. In one sense I am: comprehension is an entirely

subjective activity, governed by the vicissitudes of individual bias, error, ignorance, and

imagination. However, commonalities of experience arise because people develop in a

shared environment; it is the overlap in their experiences which gives rise to similar

schemas, and hence some crossover in their interpretations.
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My model su�ers from the complexity of the interactions between its parameters: there

are far too many of them, and slight adjustments to any one of them can cause havoc.

However, this perhaps demonstrates that `normal' comprehension exists along a relatively

slim boundary between complete refusal to form representations and wild abandon. If

nothing else, IDC gives an idea of the fragility and complexity of the comprehension

system and its dependence on subjective judgement.

We observe, we regard from one or more points of view, we choose them among

the millions that exist. [Tzara, 1918]
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Example of Tree Creation

Important note: the example given in this appendix was generated using IDC's

plan recognition schema set only. Note that the behaviour of the system changes

if the whole schema set is used (see section 7.1.1).

In this appendix I give a more detailed example of IDC's tree creation. The representations

shown are copied from the information produced by IDC during comprehension of a simple

text. The text used is based on one of Ng's and is as follows:

Bill took a bus to a restaurant. [Ng and Mooney, 1992]

IDC's representation of this story consists of �ve observations:

event(e1, get on, [agt:jack, loc at:bs, pat:v]),

habit(bus, [exp:v]),

habit(bus station, [exp:bs]),

event(e2, get o�, [agt:jack, loc at:r, pat:v]),

habit(restaurant, [exp:r]).

The example below shows the transition from a state where IDC has read the �rst four

observations but has not connected them together, to a state where it makes an inference

about John's high-level plan.

The schema used by IDC connects the �rst four observations with a go by bus node.

As IDC has a get o� and bus instances in focus, it uses this schema to create a new tree

from the bottom-up, as shown in the new representation. Although the inference actually
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increases the incoherence in the STS (as it introduces new r-elts and a new tree), it reduces

the overall incoherence of the representation.

Some points to note:

� The inference is initiated because the incoherence in the initial representation's

STS (= 4) is greater than IDC's tolerance (= 1.836). If no extension generated by

creating a new tree had lowered incoherence, a transfer from the STS to the LTS

would have been attempted (see section 6.4.1).

� All of the nodes in the schema which are not present in the representation are

inferred as new instances. The schema is thus acting as a unit for retrieval and

inference purposes and its activation is `all-or-nothing'.

� If Skepticism is lowered to 0.1 but the other parameters left the same, IDC makes a

high-level inference about a go by vehicle plan after reading only the �rst observation

of this text. In other words, it jumps to the conclusion that John is going by vehicle,

on the basis of him getting onto some thing v whose type is unknown. By contrast,

with Skepticism = 0.5, this evidence alone is not considered strong enough to warrant

inference of the high-level plan.

If Skepticism is raised to 0.9, IDC fails to make any high-level inferences: the

go by bus event requires too many subsidiary events to be inferred, so IDC considers

it safer to make none at all.
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Parameter settings:

Skepticism = 0.5

Tolerance = 1.836

Range = 0

Initial representation:

STS Instances:

instance(@event(e2, get off, [agt:jack, loc at:r, pat:v]), n, n, 3.0),

instance(@habit(bus, [exp:v]), n, n, 1.0).

STS Forest:

no trees

LTS Instances:

instance(@habit(bus station, [exp:bs]), n, n, 1.0),

instance(@event(e1, get on, [agt:jack, loc at:bs, pat:v]), n, n, 3.0).

LTS Forest:

no trees

Incoherence:

4 (STS); 4 (LTS)

Schema used to create new tree:

2: event( , go by bus, [goer:A, bus:B, driver:C,

token:D, loc from:E, loc to:F]) / [] �!

[event( , go, [agt:A, loc to:E]) / [],

event( , get on,[agt:A, loc at:E, pat:B]) / [],

event( , give, [agt:A, pat:C, obj:D]) / [],

event( , sit, [agt:A, pat:G]) / [],

event( , get off, [agt:A, loc at:F, pat:B]) / [F \== E],

habit(bus station, [exp:H]) / [H ==> E],

habit(bus, [exp:I]) / [nonvar(I), I ==> B],

habit(vehicle seat, [exp:G]) / [],

habit(bus driver, [exp:C]) / [],
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relation(part of, [G, B]) / [],

habit(token, [exp:D]) / [] ].

New representation:

STS Instances:

instance(@event(e2, get off, [agt:jack, loc at:r, pat:v]), y, n, 0.0),

instance(#event( 10719, go, [agt:jack, loc to:bs]), y, n, 1.0),

instance(#event( 10692, give, [agt:jack, pat: 10683,

obj: 10678]), y, n, 0.5),

instance(#event( 10660, sit, [agt:jack, pat: 10651]), y, n, 0.5),

instance(#habit(vehicle seat, [exp: 10651]), y, n, 0.5),

instance(#habit(bus driver, [exp: 10683]), y, n, 0.5),

instance(#relation(part of, [ 10651, v]), y, n, 0.5),

instance(#habit(token, [exp: 10678]), y, n, 0.5),

instance(#event( 10550, go by bus, [goer:jack, bus:v,

driver: 10683, token: 10678, loc from:bs, loc to:r]), n, y, 0.5),

instance(@habit(bus, [exp:v]), y, n, 0.0).

STS Forest:

tree(2, #event( 10550, go by bus, [goer:jack,

bus:v, driver: 10683, token: 10678, loc from:bs, loc to:r]),

[#event( 10719, go, [agt:jack, loc to:bs]),

@event(e1, get on, [agt:jack, loc at:bs, pat:v]),

#event( 10692, give, [agt:jack, pat: 10683, obj: 10678]),

#event( 10660, sit, [agt:jack, pat: 10651]),

@event(e2, get off, [agt:jack, loc at:r, pat:v]),

@habit(bus station, [exp:bs]),

@habit(bus, [exp:v]),

#habit(vehicle seat, [exp: 10651]),

#habit(bus driver, [exp: 10683]),

#relation(part of, [ 10651, v]),

#habit(token, [exp: 10678])], 0.0).

LTS Instances:

instance(@habit(bus station, [exp:bs]), y, n, 0.0),

instance(@event(e1, get on, [agt:jack, loc at:bs, pat:v]), y, n, 0.0).
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LTS Forest:

no trees

Incoherence:

4.5 (STS); 0 (LTS)

Incoherence change:

(4 + 4) - (4.5 + 0) = -3.5
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IDC Schema Code, Texts and

Examples

B.1 Plan Recognition

B.1.1 Plan Recognition Schemas

event(_, go_by_vehicle, [goer:A, vehicle:V, loc_from:P,

loc_to:D]) / [] --->

[

event(_, get_on, [agt:A, loc_at:P, pat:V]) / [],

event(_, sit, [agt:A, pat:S]) / [],

event(_, get_off, [agt:A, loc_at:D, pat:V]) / [],

habit(vehicle, [exp:V]) / [],

habit(vehicle_seat, [exp:S]) / [],

relation(part_of, [S, V]) / []

].

event(_, go_by_bus, [goer:A, bus:V2, driver:R, token:T,

loc_from:P2, loc_to:D]) / [] --->

[

event(_, go, [agt:A, loc_to:P2]) / [],

event(_, get_on, [agt:A, loc_at:P2, pat:V2]) / [],

event(_, give, [agt:A, pat:R, obj:T]) / [],
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event(_, sit, [agt:A, pat:S]) / [],

event(_, get_off, [agt:A, loc_at:D, pat:V2]) / [D \== P2],

habit(bus_station, [exp:P1]) / [P1 ==> P2],

habit(bus, [exp:V1]) / [nonvar(V1), V1 ==> V2],

habit(vehicle_seat, [exp:S]) / [],

habit(bus_driver, [exp:R]) / [],

relation(part_of, [S, V2]) / [],

habit(token, [exp:T]) / []

].

event(_, go_by_taxi, [goer:A, taxi:V2, driver:R,

loc_from:P, loc_to:D]) / [] --->

[

event(_, go, [agt:A, loc_to:P]) / [],

event(_, get_on, [agt:A, loc_at:P, pat:V2]) / [],

event(_, sit, [agt:A, pat:S]) / [],

event(_, pay_step, [payer:A, payee:R, _]) / [],

event(_, get_off, [agt:A, loc_at:D, pat:V2]) / [D \== P],

habit(vehicle_seat, [exp:S]) / [],

habit(taxi, [exp:V1]) / [nonvar(V1), V1 ==> V2],

habit(taxi_driver, [exp:R]) / [],

relation(part_of, [S, V2]) / []

].

event(_, supermarket_shopping, [shopper:S, store:T2,

thing_bought:B]) / [] --->

[

event(_, shopping, [shopper:S, store:T2,

thing_bought:B]) / [],

habit(super_market, [exp:T1]) / [T1 ==> T2],

habit(food, [exp:B]) / []

].

event(_, liquor_store_shopping, [shopper:S, store:T2,

thing_bought:B2]) / [] --->

[

event(_, shopping, [shopper:S, store:T2,
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thing_bought:B2]) / [],

habit(liquor_store, [exp:T1]) / [T1 ==> T2],

habit(liquor, [exp:B1]) / [nonvar(B1), B1 ==> B2]

].

/*

% Liquor-store shopping alternative schema

event(_, liquor_store_shopping, [shopper:S, store:T2,

thing_bought:B]) / [] --->

[

event(_, shopping, [shopper:S, store:T2,

thing_bought:B]) / [],

habit(liquor_store, [exp:T1]) / [T1 ==> T2],

habit(liquor, [exp:B]) / []

].

*/

event(_, shopping, [shopper:S, store:T,

thing_bought:B]) / [] --->

[

event(_, go_step, [agt:S, loc_to:T]) / [],

event(_, find, [agt:S, pat:B]) / [],

event(_, buy_step, [buyer:S, bought:B]) / [],

habit(shopping_place, [exp:T]) / []

].

event(_, rest_visit, [diner:A, restaurant:R2,

thing_ordered:O, utensils:I]) / [] --->

[

event(_, dining, [diner:A, place:R2,

thing_ordered:O, utensils:I]) / [],

habit(restaurant, [exp:R1]) / [R1 ==> R2]

].

event(_, dining, [diner:A, place:R, thing_ordered:O,

utensils:I]) / [] --->
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[

event(_, go_step, [agt:A, loc_to:R]) / [],

event(_, order, [agt:A, pat:O]) / [],

event(_, ingest_step, [agt:A, ingested:O, inst:I]) / [],

event(_, pay_step, [payer:A, _, paid_for:O]) / [],

habit(eating_place, [exp:R]) / []

].

event(_, robbing, [robber:A, weapon_used:W, place_robbed:P2,

thing_robbed:V, victim:M]) / [V \== W] --->

[

event(_, get, [agt:A, pat:W, _]) / [],

event(_, go_step, [agt:A, loc_to:P2]) / [],

event(_, point, [agt:A, pat:W, obj:M]) / [],

event(_, get, [agt:A, pat:V, from:M]) / [],

habit(valuable, [exp:V]) / [],

habit(business, [exp:P1]) / [P1 ==> P2],

habit(weapon, [exp:W]) / [],

habit(in_charge, [agt:M, pat:P2]) / []

].

/*

% Mugging schema

event(_, mugging, [mugger:A, weapon_used:W, thing_robbed:V,

victim:M]) / [] --->

[

event(_, point, [agt:A, pat:W, obj:M]) / [],

event(_, get, [agt:A, pat:V, from:M]) / [],

habit(valuable, [exp:V]) / [],

habit(weapon, [exp:W]) / []

].

*/

habit(owns, [agt:M, pat:P]) / [] --->

[habit(in_charge, [agt:M, pat:P]) / []].
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habit(runs, [agt:M, pat:P]) / [] --->

[habit(in_charge, [agt:M, pat:P]) / []].

event(_, pay, [agt:S, _, obj:B]) / [] --->

[event(_, buy_step, [buyer:S, bought:B]) / []].

event(_, pay, [agt:S, pat:P, obj:B]) / [] --->

[event(_, pay_step, [payer:S, payee:P, paid_for:B]) / []].

event(_, ingest_step, [agt:A, ingested:O, inst:I]) / [] --->

[

event(_, drink, [agt:A, pat:O, inst:I]) / [],

habit(beverage, [exp:O]) / []

].

event(_, ingest_step, [agt:A, ingested:O, inst:I]) / [] --->

[

event(_, eat, [agt:A, pat:O, inst:I]) / [],

habit(food, [exp:O]) / []

].

event(_, go_by_vehicle, [goer:A1, vehicle:_, loc_from:_,

loc_to:P1]) / [A1 ==> A2, P1 ==> P2] --->

[event(_, go_step, [agt:A2, loc_to:P2]) / []].

event(_, go_by_bus, [goer:A1, bus:_, driver:_, token:_,

loc_from:_, loc_to:P1]) / [A1 ==> A2, P1 ==> P2] --->

[event(_, go_step, [agt:A2, loc_to:P2]) / []].

event(_, go_by_taxi, [goer:A1, taxi:_, driver:_,

loc_from:_, loc_to:P1]) / [A1 ==> A2, P1 ==> P2] --->

[event(_, go_step, [agt:A2, loc_to:P2]) / []].

event(_, go, [agt:A, loc_to:P]) / [] --->

[event(_, go_step, [agt:A, loc_to:P]) / []].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% ISA HIERARCHY

habit(liquor-store, [exp:P1]) / [P1 ==> P2] --->

[habit(store, [exp:P2]) / []].

habit(supermarket, [exp:P1]) / [P1 ==> P2] --->

[habit(store, [exp:P2]) / []].

habit(store, [exp:P1]) / [P1 ==> P2] --->

[habit(shopping_place, [exp:P2]) / []].

habit(shopping_place, [exp:P1]) / [P1 ==> P2] --->

[habit(business, [exp:P2]) / []].

habit(restaurant, [exp:P1]) / [P1 ==> P2] --->

[habit(eating_place, [exp:P2]) / []].

habit(eating_place, [exp:P1]) / [P1 ==> P2] --->

[habit(business, [exp:P2]) / []].

habit(bank, [exp:P1]) / [P1 ==> P2] --->

[habit(business, [exp:P2]) / []].

habit(gun, [exp:W1]) / [W1 ==> W2] --->

[habit(weapon, [exp:W2]) / []].

habit(sword, [exp:W1]) / [W1 ==> W2] --->

[habit(weapon, [exp:W2]) / []].

habit(milkshake, [exp:A]) / [] --->

[habit(beverage, [exp:A]) / []].

habit(bread, [exp:E1]) / [E1 ==> E2] --->

[habit(food, [exp:E2]) / []].

habit(bourbon, [exp:E1]) / [E1 ==> E2] --->

[habit(liquor, [exp:E2]) / []].



Appendix B. IDC Schema Code and Examples 228

habit(knife, [exp:W1]) / [W1 ==> W2] --->

[habit(weapon, [exp:W2]) / []].

habit(razor, [exp:W1]) / [W1 ==> W2] --->

[habit(weapon, [exp:W2]) / []].

habit(knife, [exp:W1]) / [W1 ==> W2] --->

[habit(sharp_object, [exp:W2]) / []].

habit(razor, [exp:W1]) / [W1 ==> W2] --->

[habit(sharp_object, [exp:W2]) / []].

habit(sword, [exp:W1]) / [W1 ==> W2] --->

[habit(sharp_object, [exp:W2]) / []].

habit(money, [exp:V1]) / [V1 ==> V2] --->

[habit(valuable, [exp:V2]) / []].

habit(antique, [exp:V1]) / [V1 ==> V2] --->

[habit(valuable, [exp:V2]) / []].

habit(banana, [exp:F1]) / [F1 ==> F2] --->

[habit(food, [exp:F2]) / []].

habit(potato, [exp:F1]) / [F1 ==> F2] --->

[habit(food, [exp:F2]) / []].

habit(beef, [exp:F1]) / [F1 ==> F2] --->

[habit(food, [exp:F2]) / []].

habit(tomato, [exp:F1]) / [F1 ==> F2] --->

[habit(food, [exp:F2]) / []].

habit(chips, [exp:F1]) / [F1 ==> F2] --->

[habit(food, [exp:F2]) / []].
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B.1.2 Example Plan Recognition Trees

This section contains examples of trees constructed by IDC during comprehension of the

liquor-store text of section 7.1.1 (page 159). This text is repeated here for convenience:

[event(e1, go, [agt:bob, loc to:ls]), habit(liquor store, [exp:ls]), event(e2, point,

[agt:bob, pat:w, obj:o]), habit(gun, [exp:w]), habit(owns, [agt:o, pat:ls])]

A rough English version of each tree is given, then the Prolog structure generated by

IDC. The format of the trees follows the description given in section 5.3.5 (page 118); no

incoherence values are given for the trees, as this varies according to parameter settings.

I have replaced Prolog's obscure internal variables with uninstantiated variables (capital

letters); it is easy to track the embedding of one plan inside another by matching instances

in one tree with those of another tree.

The trees actually inferred by IDC under various parameter settings are shown in

section 7.1.1.

It is worth noting that IDC may infer certain instances which are not appropriately

merged with other instance. For example, when Skepticism is low (= 0.1), IDC infers

a robbing event without tying it to the go event. This results in the construction of a

go step instance which is distinct from the go step previously inferred from the go event.

An example of such a situation is shown in bullet point 5.

1. Bob went liquor-store shopping.

tree(5, #event(M, liquor_store_shopping, [shopper:bob, store:ls,

thing_bought:B]),

[#event(E, shopping, [shopper:bob, store:ls, thing_bought:B]),

@habit(liquor_store, [exp:ls]), #habit(liquor, [exp:B])])

2. Bob went shopping in a shopping place (the liquor-store).

tree(6, #event(E, shopping, [shopper:bob, store:ls, thing_bought:B]),

[#event(F, go_step, [agt:bob, loc_to:ls]),

#event(G, find, [agt:bob, pat:B]),

#event(A, buy_step, [buyer:bob, bought:B]),

#habit(shopping_place, [exp:ls])])

3. Bob's going isa go-step.
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tree(19, @event(e1, go, [agt:bob, loc_to:ls]),

[#event(F, go_step, [agt:bob, loc_to:ls])])

4. Bob robbed the liquor-store using the gun; the victim of the crime was the owner of the

store.

tree(9, #event(H, robbing, [robber:bob, weapon_used:w, place_robbed:ls,

thing_robbed:I, victim:o]),

[#event(J, get, [agt:bob, pat:w, from:K]),

#event(F, go_step, [agt:bob, loc_to:ls]),

@event(e2, point, [agt:bob, pat:w, obj:o]),

#event(L, get, [agt:bob, pat:I, from:o]),

#habit(valuable, [exp:I]), #habit(business, [exp:ls]),

#habit(weapon, [exp:w]), #habit(in_charge, [agt:o, pat:ls])])

5. Bob robbed the liquor-store using the gun; the victim of the crime was the owner of the

store.

tree(9, #event(M, robbing, [robber:bob, weapon_used:w, place_robbed:ls,

thing_robbed:I, victim:o]),

[#event(J, get, [agt:bob, pat:w, from:K]),

#event(N, go_step, [agt:bob, loc_to:ls]),

@event(e2, point, [agt:bob, pat:w, obj:o]),

#event(L, get, [agt:bob, pat:I, from:o]),

#habit(valuable, [exp:I]), #habit(business, [exp:ls]),

#habit(weapon, [exp:w]), #habit(in_charge, [agt:o, pat:ls])])

(Note that the go step here is distinct from the go step of bullet point 4.)

6. The shopping-place (the liquor-store) is a business.

tree(23, #habit(shopping_place, [exp:ls]),

[#habit(business, [exp:ls])])

7. The gun is a weapon.

tree(27, @habit(gun, [exp:w]),

[#habit(weapon, [exp:w])])

8. The owner of the liquor-store is in charge of it.
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tree(10, @habit(owns, [agt:o, pat:ls]),

[#habit(in_charge, [agt:o, pat:ls])])

N.B. The �rst two trees, while super�cially similar in their English translations, actually

depict two di�erent hypotheses: the second denotes a general shopping plan at some

`shopping place', while the �rst is a specialised shopping plan, speci�cally related to

liquor shopping.
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B.2 Inference Protocols

B.2.1 Ivan Story Text

This section contains the original text and the IDC version of `The Ivan Story' (based

on [Trabasso and Magliano, 1996]). IDC's comprehension of this text is described in

section 7.2.

Original text of `The Ivan Story'

S1. Ivan was a great warrior.

S2. Ivan was the best archer in his village.

S3. Ivan heard that a giant was terrifying the people in his village.

S4. The giant came to the village at night and hurt people.

S5. Ivan was determined to kill the giant.

S6. Ivan waited until dark.

S7. The giant came and Ivan shot an arrow at him.

S8. Ivan hit the giant and the giant fell down.

S9. The people were overjoyed.

(adapted from Trabasso and Magliano [Trabasso and Magliano, 1996])

IDC version of `The Ivan Story'

habit(great warrior, [exp:ivan]),

habit(best archer, [exp:ivan, loc in:village]),

habit(live, [exp:ivan, loc in:village]),

event(e1, terrorise, [agt:giant, pat:people]),

habit(live, [exp:people, loc in:village]),

event(e2, come, [agt:giant, loc to:village, when:night]),

event(e3, hurt, [agt:giant, pat:people, inst: ]),

relation(precedes, [e2,e3]),

goal(g1, kill, [agt:ivan, pat:giant]),

relation(overlaps, [e3,g1]),

event(e4, wait for, [agt:ivan, pat:giant, loc at:village, when:night]),

relation(overlaps, [g1,e4]),

event(e5, arrive, [agt:giant, loc at:village, when:night]),

relation(overlaps, [e4,e5]),

event(e6, shot, [agt:ivan, pat:giant, inst:a]),
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habit(arrows, [exp:a]),

relation(precedes, [e5,e6]),

event(e7, hit, [agt:ivan, pat:giant, inst:a]),

relation(precedes, [e6,e7]),

event(e8, fall, [agt:giant, loc to:ground]),

relation(precedes, [e7,e8]),

event(e9, overjoy, [agt:people]),

relation(precedes, [e8,e9]).

B.2.2 Ivan Story Schemas

habit(good_fighter, [exp:A]) / [] --->

[habit(great_warrior, [exp:A]) / []].

habit(archer, [exp:A]) / [X2 \== Y2, X2 \== Z2, Y2 \== Z2] --->

[

habit(armour, [exp:X1]) / [X1 ==> X2],

habit(bow, [exp:Y1]) / [Y1 ==> Y2],

habit(arrows, [exp:Z1]) / [Z1 ==> Z2],

habit(use, [agt:A, inst:X2]) / [],

habit(use, [agt:A, inst:Y2]) / [],

habit(use, [agt:A, inst:Z2]) / []

].

habit(best_archer, [exp:A1, _]) / [A1 ==> A2] --->

[habit(archer, [exp:A2]) / []].

event(E4a, protect, [agt:Champion1, pat:Villagers1, from:Threat]) /

[E4a ==> E4b, Champion1 ==> Champion2, Villagers1 ==> Villagers2] --->

[

event(E1a, come, [agt:Threat, loc_to:Place1, when:_]) /

[E1a ==> E1b, Place1 ==> Place2],

event(E2a, hurt, [agt:Threat, pat:Villagers1, inst:_]) /

[E2a ==> E2b],

goal(G1a, kill, [agt:Champion1, pat:Threat]) / [G1a ==> G1b],
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event(E3a, fight, [agt:Champion1, pat:Threat]) / [E3a ==> E3b],

habit(care_about, [exp:Champion2, exp:Villagers1]) / [],

habit(live, [exp:Villagers2, loc_in:Place2]) / [],

habit(good_fighter, [exp:Champion2]) / [],

relation(phycs, [E1b, E2b]) / [],

relation(phycs, [E2b, G1b]) / [],

relation(motivates, [G1b, E3b]) / [],

relation(includes, [E4b, [E1b, E2b, G1b, E3b]]) / []

].

relation(phycs, [E1b, E2b]) / [] --->

[

event(E1a, come, [agt:Threat, loc_to:Place1, when:_]) /

[E1a ==> E1b, Place1 ==> Place2],

event(E2a, hurt, [agt:Threat, pat:Villagers, inst:_]) /

[E2a ==> E2b],

habit(live, [exp:Villagers, loc_in:Place2]) / [],

relation(precedes, [E1b, E2b]) / []

].

relation(psycs, [E1b, G1b]) / [] --->

[

event(E1a, hurt, [agt:Threat, pat:People, inst:_]) /

[E1a ==> E1b],

goal(G1a, kill, [agt:Champion, pat:Threat]) / [G1a ==> G1b],

habit(care_about, [exp:Champion, exp:People]) / [],

relation(overlaps, [E1b, G1b]) / []

].

relation(motivates, [G1b, E1b]) / [] --->

[

goal(G1a, kill, [agt:Champion, pat:Threat]) / [G1a ==> G1b],

event(E1a, fight, [agt:Champion, pat:Threat]) / [E1a ==> E1b],

relation(overlaps, [G1b, E1b]) / []

].

habit(care_about, [exp:A2, exp:B2]) / [A2 \== B2] --->
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[

habit(live, [exp:A1, loc_in:L]) / [A1 ==> A2],

habit(live, [exp:B1, loc_in:L]) / [B1 ==> B2]

].

relation(psycs, [E1b, E2b]) / [] --->

[

event(E1a, terrorise, [agt:_, pat:Friend2a]) /

[E1a ==> E1b, Friend2a ==> Friend2b],

event(E2a, anger, [exp:Friend1a]) /

[E2a ==> E2b, Friend1a ==> Friend1b],

habit(care_about, [exp:Friend1b, exp:Friend2b]) / [],

relation(precedes, [E1b, E2b]) / []

].

relation(psycs, [E1b, G1b]) / [] --->

[

event(E1a, terrorise, [agt:Threat, pat:People]) /

[E1a ==> E1b],

goal(G1a, kill, [agt:Champion, pat:Threat]) / [G1a ==> G1b],

habit(care_about, [exp:Champion, exp:People]) / [],

relation(overlaps, [E1b, G1b]) / []

].

habit(villagers, [exp:P1]) / [] --->

[

habit(people, [exp:P1]) / [P1 ==> P2],

habit(village, [exp:V1]) / [V1 ==> V2],

habit(live, [exp:P2, loc_in:V2]) / []

].

event(E1, stab, [agt:A, pat:B, inst:K1]) / [K1 ==> K2] --->

[

event(E2, hurt, [agt:A, pat:B, inst:K2]) / [K1 ==> K2],

habit(knife, [exp:K1]) / [],

relation(simultaneous, [E1, E2]) / []

].
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relation(phycs, [E1b, E2b]) / [] --->

[

event(E1a, hit, [agt:_, pat:B]) / [E1a ==> E1b],

event(E2a, pain, [exp:B]) / [E2a ==> E2b],

relation(precedes, [E1b, E2b]) / []

].

relation(phycs, [E1b, E2b]) / [] --->

[

event(E1a, strike, [agt:A, pat:B1]) / [E1a ==> E1b],

event(E2a, light, [agt:A, exp:B1]) / [E2a ==> E2b],

habit(match, [exp:B2]) / [B1 ==> B2],

relation(precedes, [E1b, E2b]) / []

].

habit(care_about, [exp:A2, exp:B2]) / [] --->

[habit(at_uni_together, [exp:A1, exp:B1]) /

[A1 ==> A2, B1 ==> B2]].

habit(care_about, [exp:A2, exp:B2]) / [] --->

[habit(brothers, [exp:A1, exp:B1]) / [A1 ==> A2, B1 ==> B2]].

relation(phycs, [E1b, E2b]) / [] --->

[

event(E1a, in_trouble, [exp:B1]) / [E1a ==> E1b],

event(E2a, help, [agt:A1, pat:B1]) /

[E2a ==> E2b, A1 ==> A2, B1 ==> B2],

habit(care_about, [exp:A2, exp:B2]) / [],

relation(overlaps, [E1b, E2b]) / []

].

event(E1a, terrorise, [agt:Threat, pat:People]) / [E1a ==> E1b] --->

[

event(E2a, attack, [agt:Threat, pat:People, inst:_, when:_]) /

[E2a ==> E2b],

relation(simultaneous, [E1b, E2b]) / []
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].

relation(phycs, [E1b, E2b]) / [] --->

[

event(E1a, attack, [agt:_, pat:P, inst:_, when:_]) /

[E1a ==> E1b],

event(E2a, in_trouble, [exp:P]) / [E2a ==> E2b],

relation(precedes, [E1b, E2b]) / []

].

relation(enables, [E1b, E2b]) / [] --->

[

event(E1a, come, [agt:A, loc_to:P, when:_]) / [E1a ==> E1b],

event(E2a, at, [agt:A, loc:P]) / [E2a ==> E2b],

relation(precedes, [E1b, E2b]) / []

].

relation(psycs, [E1b, E2b]) / [] --->

[

event(E1a, terrorise, [agt:A, pat:P]) / [E1a ==> E1b],

event(E2a, fear, [agt:P, obj:A]) / [E2a ==> E2b],

relation(precedes, [E1b, E2b]) / []

].

habit(know, [agt:A2, pat:B2]) / [] --->

[

habit(live, [agt:A1, loc_in:L]) / [A1 ==> A2],

habit(live, [agt:B1, loc_in:L]) / [B1 ==> B2]

].

event(E1a, successful_goal, [agt:A]) / [E1a ==> E1b] --->

[

goal(G1a, kill, [agt:A, pat:P]) / [G1a ==> G1b],

event(E2a, kill, [agt:A, pat:P]) / [E2a ==> E2b],

relation(overlaps, [G1b, E2b]) / [],

relation(overlaps, [E2b, E1b]) / []

].
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relation(motivates, [G1b, E2b]) / [] --->

[

goal(G1a, hide_from, [agt:A, loc_at:L, pat:_]) / [G1a ==> G1b],

event(E2a, wait, [agt:A, loc_at:L, when:night]) / [E2a ==> E2b],

relation(overlaps, [G1b, E2b]) / []

].

relation(motivates, [G1b, G2b]) / [] --->

[

goal(G1a, kill, [agt:A, pat:P]) / [G1a ==> G1b],

goal(G2a, hide_from, [agt:A, pat:P]) / [G2a ==> G2b],

relation(overlaps, [G1b, G2b]) / []

].

relation(enables, [E1b, E2b]) / [] --->

[

event(E1a, come, [agt:A, loc_to:P, when:Time]) / [E1a ==> E1b],

event(E2a, wait_for, [agt:B, pat:A, loc_at:P, when:Time]) /

[E2a ==> E2b, B \== A],

relation(precedes, [E1b, E2b]) / []

].

event(E1a, fight, [agt:Champion, pat:Threat]) / [E1a ==> E1b] --->

[

event(E2a, shot, [agt:Champion, pat:Threat, inst:I1]) /

[E2a ==> E2b, I1 ==> I2],

habit(weapon, [exp:I2]) / [],

relation(simultaneous, [E1b, E2b]) / []

].

relation(motivates, [G1b, E1b]) / [] --->

[

goal(G1a, kill, [agt:A, pat:P]) / [G1a ==> G1b],

event(E1a, shot, [agt:A, pat:P, inst:I1]) /

[E1a ==> E1b, I1 ==> I2],

habit(weapon, [exp:I2]) / [],
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relation(overlaps, [G1b, E1b]) / []

].

event(E1a, ambush, [agt:A, pat:B]) / [E1a ==> E1b] --->

[

event(E2a, wait_for, [agt:A, pat:B, loc_at:P, when:Time]) /

[E2a ==> E2b],

event(E3a, arrive, [agt:B, loc_at:P, when:Time]) /

[E3a ==> E3b],

event(E4a, fight, [agt:A, pat:B, inst:I1]) /

[E4a ==> E4b, I1 ==> I2],

habit(weapon, [exp:I2]) / [],

relation(precedes, [E2b, E3b]) / [],

relation(precedes, [E3b, E4b]) / [],

relation(includes, [E1b, [E2b, E3b, E4b]]) / []

].

relation(phycs, [E1b, E2b]) / [] --->

[

event(E1a, shot, [agt:A, pat:P, inst:I]) / [E1a ==> E1b],

event(E2a, hit, [agt:A, pat:P, inst:I]) / [E2a ==> E2b],

relation(precedes, [E1b, E2b]) / []

].

event(E1a, kill, [agt:A, pat:P]) / [E1a ==> E1b] --->

[

event(E2a, shot, [agt:A, pat:P, inst:I]) / [E2a ==> E2b],

event(E3a, hit, [agt:A, pat:P, inst:I]) / [E3a ==> E3b],

event(E4a, fall, [agt:P, loc_to:_]) / [E4a ==> E4b],

relation(precedes, [E2b, E3b]) / [],

relation(precedes, [E3b, E4b]) / [],

relation(overlaps, [E4b, E1b]) / []

].

relation(enables, [E1b, E2b]) / [] --->

[

event(E1a, overjoy, [agt:A]) / [E1a ==> E1b],
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event(E2a, celebrate, [agt:A]) / [E2a ==> E2b],

relation(overlaps, [E1b, E2b]) / []

].

relation(phycs, [E2b, E3b]) / [] --->

[

event(E1a, fear, [agt:A, obj:P]) / [E1a ==> E1b],

event(E2a, kill, [agt:_, pat:P]) / [E2a ==> E2b],

event(E3a, no_fear, [agt:A, obj:P]) / [E3a ==> E3b],

relation(precedes, [E1b, E2b]) / [],

relation(precedes, [E2b, E3b]) / []

].

relation(psycs, [E2b, E3b]) / [] --->

[

event(E1a, fear, [agt:A, obj:P]) / [E1a ==> E1b],

event(E2a, no_fear, [agt:_, pat:P]) / [E2a ==> E2b],

event(E3a, overjoy, [agt:A]) / [E3a ==> E3b],

relation(precedes, [E1b, E2b]) / [],

relation(precedes, [E2b, E3b]) / []

].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ISA HIERARCHY

habit(gun, [exp:W1]) / [W1 ==> W2] --->

[habit(weapon, [exp:W2]) / []].

habit(sword, [exp:W1]) / [W1 ==> W2] --->

[habit(weapon, [exp:W2]) / []].

habit(arrows, [exp:A1]) / [A1 ==> A2] --->

[habit(weapon, [exp:A2]) / []].

habit(knife, [exp:W1]) / [W1 ==> W2] --->

[habit(weapon, [exp:W2]) / []].
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habit(razor, [exp:W1]) / [W1 ==> W2] --->

[habit(weapon, [exp:W2]) / []].
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B.3 Role Shift Texts

B.3.1 Janitor Story Text

This section contains the IDC versions of three Janitor Story texts (based on

[Sanford and Garrod, 1981]):

1. The full Janitor Story.

2. The shortened role-shift version of the Janitor Story.

3. The shortened non-role-shift version of the Janitor Story.

IDC's comprehension of these texts is described in section 7.3.

1. Full Janitor Story: English text

John was on his way to school.

He was worried about the maths lesson.

Last week he lost control of the class.

It was unfair of the maths teacher to leave him in charge.

After all, teaching wasn't part of a janitor's duties.

Full Janitor Story: IDC version

event(e1, go, [agt:john, loc to:s]),

habit(school, [exp:s]),

event(e2, worry about, [agt:john, pat:m1]),

habit(math lesson, [exp:m1]),

relation(precedes, [e1,e2]),

event(e3, lost control, [agt:john, pat:m2]),

habit(math lesson, [exp:m2]),

relation(precedes, [e3, e1]),

relation(precedes, [e3, e2]),

event(e4, put in charge, [agt:t, pat1:john, pat2:m2]),

habit(teacher, [exp:t]),

relation(precedes, [e4, e3]),

habit(janitor, [exp:john]).
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2. Non-role-shift Janitor Story: English text

John was worried about teaching maths.

He was on his way to school.

Last week he lost control of the class.

Non-role-shift Janitor Story: IDC version

event(e2, worry about, [agt:john, pat:m1]),

habit(teacher, [exp:john]),

habit(math lesson, [exp:m1]),

event(e1, go, [agt:john, loc to:s]),

habit(school, [exp:s]),

relation(precedes, [e2,e1]),

event(e3, lost control, [agt:john, pat:m2]),

habit(math lesson, [exp:m2]),

relation(precedes, [e3, e1]),

relation(precedes, [e3, e2]).

3. Role-shift Janitor Story: English text

John was on his way to school.

He was worried about the maths lesson.

Last week he lost control of the class.

Role-shift Janitor Story: IDC version

event(e1, go, [agt:john, loc to:s]),

habit(school, [exp:s]),

event(e2, worry about, [agt:john, pat:m1]),

habit(math lesson, [exp:m1]),

relation(precedes, [e1,e2]),

event(e3, lost control, [agt:john, pat:m2]),

habit(math lesson, [exp:m2]),

relation(precedes, [e3,e1]),

relation(precedes, [e3, e2]).

B.3.2 Janitor Story Schemas

relation(motivates, [G1b, E2b]) / [] --->

[
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goal(G1a, learn, [exp:A, loc_at:S2]) / [G1a ==> G1b],

event(E2a, go, [agt:A, loc_to:S2]) / [E2a ==> E2b],

habit(school, [exp:S1]) / [S1 ==> S2],

habit(schoolchild, [exp:A]) / []

].

relation(motivates, [G1b, E2b]) / [] --->

[

goal(G1a, teach, [exp:A, loc_at:S2]) / [G1a ==> G1b],

event(E2a, go, [agt:A, loc_to:S2]) / [E2a ==> E2b],

habit(school, [exp:S1]) / [S1 ==> S2],

habit(teacher, [exp:A]) / []

].

relation(motivates, [G1b, E2b]) / [] --->

[

goal(G1a, earn_living, [exp:A, loc_at:S2]) / [G1a ==> G1b],

event(E2a, go, [agt:A, loc_to:S2]) / [E2a ==> E2b],

habit(school, [exp:S1]) / [S1 ==> S2],

habit(janitor, [exp:A]) / []

].

habit(schoolchild, [exp:A]) / [] --->

[

habit(attend, [agt:A, exp:S]) / [],

habit(school, [exp:S]) / []

].

habit(teacher, [exp:A]) / [] --->

[

habit(attend, [agt:A, exp:S]) / [],

habit(school, [exp:S]) / []

].

habit(janitor, [exp:A]) / [] --->

[

habit(attend, [agt:A, exp:S]) / [],
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habit(school, [exp:S]) / []

].

event(E1a, afraid_of_professional_failure, [agt:A2]) / [E1a ==> E1b] --->

[

event(E2a, worry_about, [agt:A1, pat:M1]) /

[E2a ==> E2b, A1 ==> A2],

event(E3a, lost_control, [agt:A1, pat:M2]) /

[E3a ==> E3b, M2 \== M1],

habit(lesson, [exp:M1]) / [],

habit(lesson, [exp:M2]) / [],

habit(teacher, [exp:A2]) / [],

relation(precedes, [E3b, E2b]) / [],

relation(simultaneous, [E1b, E2b]) / []

].

event(E1a, afraid_of_test, [agt:A2, pat:T2]) / [E1a ==> E1b] --->

[

event(E2a, worry_about, [agt:A1, pat:M1]) /

[E2a ==> E2b, A1 ==> A2, M1 ==> M2],

event(E3a, fail, [agt:A1, thm:T1]) / [E3a ==> E3b, T1 ==> T2],

habit(lesson, [exp:M2]) / [],

habit(test, [exp:T2]) / [],

habit(schoolchild, [exp:A2]) / [],

relation(part_of, [T2, M2]) / [],

relation(simultaneous, [E1b, E2b]) / [],

relation(precedes, [E2b, E3b]) / []

].

event(E1a, afraid_of_losing_control_again, [agt:B2]) / [E1a ==> E1b] --->

[

event(E2a, put_in_charge, [agt:A1, pat1:B1, pat2:L1]) /

[E2a ==> E2b, A1 ==> A2, B1 ==> B2, L1 ==> L2],

event(E3a, lost_control, [agt:B1, pat:L1]) / [E3a ==> E3b],

event(E4a, worry_about, [agt:B1, pat:M1]) /

[E4a ==> E4b, M1 ==> M2],

habit(lesson, [exp:L2]) / [L2 \== M2],
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habit(lesson, [exp:M2]) / [L2 \== M2],

habit(teacher, [exp:A2]) / [],

habit(replacement_teacher, [exp:B2]) / [B2 \== A2],

relation(precedes, [E2b, E3b]) / [],

relation(precedes, [E3b, E4b]) / [],

relation(simultaneous, [E1b, E4b]) / []

].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ISA HIERARCHY

habit(english_lesson, [exp:M1]) / [M1 ==> M2] --->

[habit(lesson, [exp:M2]) / []].

habit(math_lesson, [exp:M1]) / [M1 ==> M2] --->

[habit(lesson, [exp:M2]) / []].

habit(geography_lesson, [exp:M1]) / [M1 ==> M2] --->

[habit(lesson, [exp:M2]) / []].

habit(history_lesson, [exp:M1]) / [M1 ==> M2] --->

[habit(lesson, [exp:M2]) / []].

habit(parent, [exp:A2]) / [] --->

[habit(replacement_teacher, [exp:A1]) / [A1 ==> A2]].

habit(schoolchild, [exp:A2]) / [] --->

[habit(replacement_teacher, [exp:A1]) / [A1 ==> A2]].

habit(janitor, [exp:A2]) / [] --->

[habit(replacement_teacher, [exp:A1]) / [A1 ==> A2]].

habit(teacher, [exp:A2]) / [] --->

[habit(replacement_teacher, [exp:A1]) / [A1 ==> A2]].

habit(teacher, [exp:A1]) / [A1 ==> A2] --->

[habit(adult, [exp:A2]) / []].
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habit(janitor, [exp:A1]) / [A1 ==> A2] --->

[habit(adult, [exp:A2]) / []].

habit(parent, [exp:A1]) / [A1 ==> A2] --->

[habit(adult, [exp:A2]) / []].

habit(schoolchild, [exp:A1]) / [A1 ==> A2] --->

[habit(child, [exp:A2]) / []].



Appendix C

IDC Program Code

C.1 Running IDC

IDC was implemented in SICStus Prolog, version 3.8; the code is available to interested

parties. Installation should be fairly simple, mainly involving copying the IDC �les into

a dedicated directory called `IDC dir'. This directory should contain a subdirectory

`Output dir' for storing �les produced by the �le comp procedure (see below).

On UNIX, this directory should be attached to the user's root directory, to minimise

problems caused by incorrect paths (e.g. when IDC setup writes informativities and

ubiquities to the knowledge base). If using IDC on a PC, changes will have to be made

across the various program �les: each occurrence of ~/IDC_dir should be replaced by

C:/IDC_dir/ (assuming IDC is installed on the C: drive. However, there should be no

compatibility problems caused by the operating system, and the code should probably

also run in older versions of SICStus Prolog. Compatibility with other avours of Prolog

has not been tested.

The �les necessary for running IDC are:

� IDC.pl: core program.

� IDC setup.pl: knowledge base derivation.

� schemas.pl: �le containing hand-coded schema de�nitions.

� texts.pl: �le of texts. Each text is encoded as a two place predicate of the form:

text(Identi�er, ListOfTextStatements)

248
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For example, a simple text representing `John goes to school' might be:

text(1, [event(e1, go, [agt:john, loc to:s]), habit(school, [exp:s])]).

The identi�er is used in the top-level call to IDC (see below).

� shared.pl: utility procedures, some of which are shared between IDC.pl and

IDC setup.pl.

� tests.pl: this is an optional �le which contains various test procedures: for exam-

ple, there is a facility which allows all extensions of a single representation to be

generated, regardless of their incoherence.

C.1.1 Preparing IDC's Knowledge Base

The �rst step in running IDC is to set up the knowledge base using the IDC setup.pl

�le. This program consults schemas.pl, creating indexes and assigning informativities and

ubiquities to the nodes in the schema lattice. The results are written to the �le kb.pl,

which is then used by the core program (see next section).

The program runs automatically once it is loaded into the interpreter. The only

adjustments the user may want to make may be changing the schema set accessed by

IDC.

C.1.2 Running the Comprehension Simulation

Once the knowledge base has been prepared, the main IDC.pl program can be loaded into

the Prolog interpreter. It is probably best to run the main program in a separate session

from the setup program.

IDC has three `modes' of operation:

1. comp(TextIdenti�er, Skepticism, Range, ToleranceFactor)

This is the normal method I've used. TextIdenti�er represents the �rst argument of

a text clause in texts.pl (see above).

2. �lecomp(FilePre�x, TextIdenti�er, Skepticism, Range, ToleranceFactor)

This call works exactly as a call to comp (see above), but writes the output to the �le

speci�ed by FilePre�x. FilePre�x is an atom consisting of alphanumeric characters

and underscores (usually). The actual output �lename is:
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`~/IDC dir/Output dir/' + FilePre�x + `.idc'

So, if FilePre�x == text2010101, the �le holding the output is called:

~/IDC dir/Output dir/text2010101.idc

3. text comp(Text, Skepticism, Range, ToleranceFactor)

This call allows a text to be input directly, bypassing the need for a texts.pl �le.

However, this is impractical for anything but very small texts.

In all cases, the other arguments are instantiated as follows: Skepticism is a value greater

than 0 but less than 1; Range is either a number � 0 (for multiple representations), or

-1 to maintain a single representation; Tolerance is any number � 0. (Note that the

actual Tolerance of the comprehender is equal to the average informativity of nodes in

the knowledge base multiplied by ToleranceFactor.)

IDC will always attempt to comprehend a text, regardless of the schemas in its

knowledge base. It is worth bearing this in mind if it seems to be do nothing at all;

however, it is worth pointing out that at high Skepticism settings, IDC can have a tendency

to simply move r-elts around without making any inferences.

If the �lecomp mode is used, the output �le is a plain text �le containing the entire

session's content. This can be cumbersome to analyse in a text editor, so I have imple-

mented a viewer for these �les (written in Python). This can also be supplied with the

rest of the program code.

The full code for the main IDC procedures constitutes the rest of this appendix.
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C.2 IDC setup.pl

/*********************************************************************

IDC_SETUP

FILENAME:

['~/IDC_dir/idc_setup.pl'].

FILES USED:

schemas.pl

lists.pl

PURPOSE:

Creates the files used by idc.pl, namely:

1. nodes.pl

File containing node definitions, listing informativity

and ubiquity.

2. indices.pl

File containing schema indexes.

METHOD:

Automatically creates files via a call of create_files/0.

*********************************************************************/

% set up a gensym for assigning ID numbers to schemas

:- dynamic(id/1).

id(1).

% declare operator for schema construction

:- op(600, xfx, --->).

% operator for schema constraints

:- op(700, xfx, ==>).

% declare operator for inferred nodes

:- op(100, fy, #).

% declare operator for observed nodes

:- op(100, fy, @).

% QUICK RELOAD

rl :- ['~/IDC_dir/idc_setup.pl'].
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% SHARED PROCEDURES

% (variable binding, constraint checking, output, lists)

:- ['~/IDC_dir/shared.pl'].

% FILE CONTAINING ALL SCHEMAS

:- ['~/IDC_dir/schemas.pl'].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% TOP-LEVEL SETUP PREDICATES %%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% create_kb/0

% Create the two files to be used by the main program, idc.pl

% Both of these programs rely on the data in schemas.pl

% NB it is necessary to load the kb.pl file once generated, as

% it is used by define/3

create_kb :-

process_raw_schemas(Indexes, AnnotatedSchemas),

open('~/IDC_dir/kb.pl', write, File1),

set_output(File1),

write_clauses_to_stream(Indexes),

nl, nl,

close(File1),

consult('~/IDC_dir/kb.pl'),

define(NodesList, TotalInformativity, AverageInformativity),

open('~/IDC_dir/kb.pl', append, File2),

set_output(File2),

write_clauses_to_stream(AnnotatedSchemas),

nl, nl,

write_clauses_to_stream([total_inf(TotalInformativity),

avg_inf(AverageInformativity) | NodesList]),

close(File2),

nl, nl,

write_nodes(NodesList),
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nl, nl,

write('Total informativity of network = '),

write(TotalInformativity), nl, nl,

write('Average node informativity = '),

write(AverageInformativity), nl, nl.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% INDEXING PREDICATES %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% process_raw_schemas/2

% arg1 = list of indexes of all schemas in knowledge base.

% arg2 = a list of annotated schemas, i.e. each schema of form

% LH ---> RH/Constraints becomes a schema of form

% ID:LH ---> RH/Constraints.

% NB first sets up the gensym used to number schemas.

process_raw_schemas(Indexes, AnnotatedSchemas) :-

retract(id(_)),

assert(id(1)),

findall(schema(ID, LH, RHs),

schema(ID, LH, RHs),

Schemas),

process_all(Schemas, Indexes, AnnotatedSchemas).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% schema(SchemaID, LH, RHs)

% Used to find the ID, left-hand and right-hand nodes of all

% schemas in the knowledge base.

schema(ID, LH, RHs) :-

LH ---> RHs,

make_id(ID).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% make_id(ID)
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% Looks up the value in the id/1 clause, retracts that value,

% and updates it. Creates an ID for a schema by attaching to ID

% value to the string 's'.

make_id(Val) :-

id(Val),

retract(id(Val1)),

Val2 is Val1 + 1,

assert(id(Val2)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% process_all(Schemas, Indexes, AnnotatedSchemas)

% arg1 = list of lists of all schemas in knowledge base; each

% sublist represents a schema and has form

% schema(ID, LH, [RH1,..., RHn], Annotated).

% arg2 = list of indexes of those schemas.

% arg3 = list of schemas annotated with ID numbers.

% Creates index/3 clauses for all schemas in knowledge base,

% and the list of all schemas annotated with their IDs

process_all([],[],[]).

process_all([schema(ID, LH/Cons, RHs) | RestSchemas], Indexes,

[ID:LH/Cons ---> RHs | RestAnnotated]) :-

index_one(RHs, ID, LH, IndexSchema),

process_all(RestSchemas, RestIndexes, RestAnnotated),

append(IndexSchema, RestIndexes, Indexes).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% index_one(RHs, SchemaID, LH, SchemaIndexes)

% where LH is the left-hand node of the schema,

% RHs is the set of right-hand nodes of that schema,

% and SchemaIndexes a list of index/3 clauses for that schema.

% Creates a new index of form index(SchemaID, LH, RH) for each

% member of RHs.

index_one([], _, _, []).

index_one([RH/_ | RestRHs], ID, LH, [index(ID, LH, RH) | RestIndexes]) :-

index_one(RestRHs, ID, LH, RestIndexes).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% NODE DEFINITION PREDICATES %%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% define(NodesList, TotInf, AvgInf)

% annotates nodes with their informativity and ubiquity,

% determines total_inf and avg_inf, then writes them to the screen.

define(NodesList, TotInf, AvgInf) :-

annotate_nodes(NodesList, TotInf),

length(NodesList, L),

AvgInf is TotInf / L.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% PREDICATES FOR INFORMATIVITY %%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% annotate_nodes(NodesList, TotInf)

% Collects each of the nodes in the set of schemas, annotates them

% with informativities, works out total informativity of all nodes,

% then determines ubiquities. Output is bound to the NodesList

% argument: it consists of all nodes.

% Informativities and Ubiquities are worked out separately,

% then joined into a single list using combine/3; it was too

% complicated to use the list of nodes with their informativities

% as an input to with_ubiquities

annotate_nodes(FinalNodesList, TotInf) :-

collect_nodes(Roots, Leaves, Others),

append(Roots, Others, NonLeaves),

with_informativities(Leaves, NonLeaves, NodesList1),

with_ubiquities(NodesList1, NodesList2),

flat(NodesList2, FinalNodesList),

total_inf(FinalNodesList, 0, TotInf). % 2nd arg is accumulator.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% collect_nodes/2

% arg1 = Leaves = list of all leaf nodes in all schemas, in

% list of form [Node1, ..., NodeN]; NB a leaf is a node which

% doesn't appear as a schema antecedent arg2 = Others = list of

% all non-leaf nodes in all schemas

collect_nodes(Roots, Leaves, Others) :-

findall(Node,

(index(_, Node, _); index(_, _, Node)),

AllNodes),

split(AllNodes, Roots, Leaves, Others).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% split(AllNodes, Roots, Leaves, Others)

% arg1 = list of all nodes (not including duplicates)

% arg2 = list of root nodes

% arg3 = list of all leaf nodes

% arg4 = list of all nodes which are not leaf or root nodes

% cuts prevent backtracking and reassignment of nodes to wrong lists

% 1 - all nodes processed

split([], [], [], []).

% 2 - when the node doesn't occur as a schema head, it is a leaf node

% and can immediately be assigned to Leaves

split([Node | RestNodes], Roots, [Node | RestLeaves], Others) :-

\+ index(_, Node, _), !,

split(RestNodes, Roots, RestLeaves, Others).

% 3 - when a node occurs as a schema head and in any consequent, assign

% it to Others

split([Node | RestNodes], Roots, Leaves, [Node | RestOthers]):-

index(_, Node, _),

index(_, _, Node), !,

split(RestNodes, Roots, Leaves, RestOthers).

% 4 - otherwise, assign to Roots

split([Node | RestNodes], [Node | RestRoots], Leaves, Others) :-

split(RestNodes, RestRoots, Leaves, Others).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% PREDICATES FOR INFORMATIVITIES %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% with_informativities(Leaves, Others, NodesList)

% Leaf nodes are assigned an informativity of 1;

% Others have an informativity = sum of child node informativities + 0.5

% NodesList is a list of form [node(Node1, Inf1),..., node(NodeN, InfN)]

with_informativities(Leaves, Others, NodesList) :-

leaf_informativities(Leaves, LeafList),

other_informativities(Others, LeafList, NodesList).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% leaf_informativities/2

% arg1 = Leaves = list of leaf nodes

% arg2 = NodesList = list of nodes of form node(Content, Informativity)

% 1 - terminating: all leaves assigned their informativity

leaf_informativities([], []).

% 2 - recursive: assign an informativity of 1 to next leaf node,

leaf_informativities([Node | T], [node(Node, 1) | NewT]) :-

leaf_informativities(T, NewT).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% other_informativities/3

% arg1 = list of all non-leaf nodes, not annotated with informativities

% arg2 = Sofar = list of nodes so far annotated with informativity

% arg3 = NodesList = list of nodes of form node(Content, Informativity)

% NB when first called, the list of leaves is used as the sofar list

% 1 - terminating

other_informativities([], Sofar, Sofar).

% 2 - recursive: process the next element, then recurse

other_informativities([Node | T], Sofar, NodesList) :-

node_informativity(Node, Sofar, NewSofar, _),

other_informativities(T, NewSofar, NodesList).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% node_informativity(Node, NodesSofar, NewSofar, Informativity)

% arg1 = a node to be processed, so far not assigned informativity

% arg2 = list of nodes processed so far, in format

% [node(N1, Inf1), ..., node(Nm, Infm)]

% arg3 = used to update the sofar list, depending on whether Node

% has already been processed: if it has, NewSofar is the same as Sofar;

% if not, then Sofar is passed to sum_inf_rhs and may be updated from there

% arg4 = informativity of Node

% if Node has already been assigned informativity, then Sofar

% doesn't change; if not assigned, then find the sum of its right-hand

% sides and add 1; the new Sofar list is updated with the informativity

% of Node, plus any other definitions found along the way

node_informativity(Node, Sofar, NewSofar, Informativity) :-

member(node(Node, Informativity), Sofar)

-> % if

(NewSofar = Sofar); % then

(findall(RH, % else

index(_, Node, RH),

RHs),

sum_inf_rhs(RHs, Sofar, Sofar2, InfRHs),

Informativity is InfRHs + 1,

NewSofar = [node(Node, Informativity) | Sofar2]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sum_inf_rhs(RHs, NodesSofar, NewNodesSofar, InfRHs)

% sums the informativity of a list of right-hand side nodes

% arg1 = list of all possible right-hands of a node

% arg2 = nodes so far assigned informativity

% arg3 = new list of nodes so far assigned

% arg4 = total informativity of all right-hand side nodes

% this calls sum_inf_rhs/5 - extra argument is an accumulator for keeping

% track of informativity so far

sum_inf_rhs(RHs, Sofar, NewSofar, InfRHs) :-

sum_inf_rhs(RHs, Sofar, NewSofar, 0, InfRHs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sum_inf_rhs(RHs, NodesSofar, NewNodesSofar, Accumulator, InfRHs)
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% find the informativity of the first consequent, add to accumulator,

% then recurse

% NB this calls node_informativity, which may update the Sofar list!

% These two procedures are embedded in each other: difficult to

% describe in English

sum_inf_rhs([], Sofar, Sofar, InfRHs, InfRHs).

sum_inf_rhs([Node | T], Sofar, NewSofar2, Acc, InfRHs) :-

node_informativity(Node, Sofar, NewSofar, Informativity),

NewAcc is Acc + Informativity,

sum_inf_rhs(T, NewSofar, NewSofar2, NewAcc, InfRHs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% TOTAL INFORMATIVITY OF ALL NODES %%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% total_inf/3

% determines the total informativity of all nodes

% arg1 = list of nodes of form node(Content, Inf)

% arg2 = accumulator

% arg3 = total informativity of all nodes

% 1 - terminating: informativity of all nodes has been summed

total_inf([], Sum, Sum).

% 2 - recursive: find the basic_i value of each consequent,

% then call recursively

total_inf([node(_, Inf, _) | T], Acc, Sum) :-

NewAcc is Acc + Inf,

total_inf(T, NewAcc, Sum).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% PREDICATES FOR UBIQUITY %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% with_ubiquities/2

% arg1 = NodeList1 = list of nodes of form node(NodeID, Informativity)

% arg2 = NodeList2 = the new list of nodes of form
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% node(NodeID, Informativity, Ubiquity)

% NB NodesList1 should not have any duplicates, as this is checked

% when assigning informativity

with_ubiquities(NodesWithInf, NodesWithInfAndUbi) :-

with_ubiquities(NodesWithInf, [], NodesWithInfAndUbi).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% with_ubiquities/3

% Each node is assigned a ubiquity rating, equal to

% sum of ubiquities of parents + 1

% arg1 = NodeList1 = list of nodes of form node(NodeID, Informativity)

% arg2 = accumulated list of node definitions of form

% node(NodeID, Informativity, Ubiquity)

% arg3 = NodeList2 = the new list of nodes of form

% node(NodeID, Informativity, Ubiquity)

with_ubiquities([], Sofar, Sofar).

with_ubiquities([node(Node, Inf) | RestWithInf], Sofar,

NodesWithInfAndUbi) :-

node_ubiquity(node(Node, Inf), Sofar, NewSofar, _),

with_ubiquities(RestWithInf, NewSofar, NodesWithInfAndUbi).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% node_ubiquity(Node, NodesSofar, NewSofar, Informativity)

% arg1 = a node to be processed, so far not assigned ubiquity

% arg2 = list of nodes processed so far, in format

% [node(N1, Inf1), ..., node(Nm, Infm)]

% arg3 = used to update the sofar list, depending on whether Node

% has already been processed: if it has, NewSofar is the same as Sofar;

% if not, then Sofar is passed to sum_ubi_parents and may be updated

% from there

% arg4 = ubiquity of Node (NB this is used by sum_ubi_parents)

% if Node has already been assigned ubiquity, Sofar isn't updated;

% else, find the ubiquity of all parents (updating Sofar simultaneously);

% NewSofar has the new node definition as a head and the updated Sofar

% as a tail

node_ubiquity(node(Node, Inf), Sofar, NewSofar, Ubiquity) :-
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member(node(Node, [Inf, Ubiquity]), Sofar) % if

->

(NewSofar = Sofar) % then

;

(findall(Parent, % else

index(_, Parent, Node),

Parents),

sum_ubi_parents(Parents, Sofar, Sofar2, UbiParents),

Ubiquity is UbiParents + 1,

NewSofar = [node(Node, [Inf, Ubiquity]) | Sofar2]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sum_ubi_parents(Parents, NodesSofar, NewNodesSofar, UbiParents)

% sums the ubiquity of a list of parents

% arg1 = list of parents of a node

% arg2 = nodes so far assigned ubiquity

% arg3 = new list of nodes so far assigned

% arg4 = total ubiquity of all parents

% this calls sum_ubi_parents/5 - extra argument is an accumulator

% for keeping track of ubiquity so far

sum_ubi_parents(Parents, Sofar, NewSofar, UbiParents) :-

sum_ubi_parents(Parents, Sofar, NewSofar, 0, UbiParents).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sum_ubi_parents(Parents, NodesSofar, NewNodesSofar, Accumulator,

% UbiParents)

% find the ubiquity of the first parent, add to accumulator, then recurse

% NB this calls node_ubiquity, which may update the Sofar list!

% These two procedures are embedded in each other: difficult to

% describe in English

% 1 - terminating: all parents processed

sum_ubi_parents([], Sofar, Sofar, UbiParents, UbiParents).

% 2 - recursive: Ubi = sum Ubi(parents) + 1

sum_ubi_parents([Node | T], Sofar, NewSofar2, Acc, UbiParents) :-

node_ubiquity(node(Node, _), Sofar, NewSofar, Ubiquity),

NewAcc is Acc + Ubiquity,

sum_ubi_parents(T, NewSofar, NewSofar2, NewAcc, UbiParents).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% flat(NodesList1, NodesList2)

% For matching purposes, NodesList1 has node definitions of the form

% node(Node, [Inf, Ubi])

% This procedure flattens these definitions into node/3 clauses of form

% node(Node, Inf, Ubi)

flat([], []).

flat([node(Node, [Inf, Ubi]) | RestNodes],

[node(Node, Inf, Ubi) | RestFlat]) :-

flat(RestNodes, RestFlat).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% AUTOMATIC SETUP CALL %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RUN ALL PROCEDURES WHICH CREATE FILES USED BY idc.pl

:- create_kb.
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C.3 IDC.pl

/*********************************************************************

IDC

(Incoherence-Driven Comprehender)

FILENAME:

['~/IDC_dir/idc.pl'].

FILES USED:

lists.pl

kb.pl

texts.pl

DATA STRUCTURES:

A representation has the form:

repr(STS, LTS, STSInc)

STS = short-term store

LTS = long-term store

Memory stores have the form

[Instance1, ..., InstanceN] ^ [Tree1, ..., TreeM]

where the first argument represents the instances, and the

second the forest (list of trees).

Each instance has the form

instance(Content, Parents, Children, Inc)

Parents (Par) is y if an instance occurs as a child in any tree

(i.e. it has parents);

Children (Chd) is y if an instance occurs as a parent of any tree

(i.e. it has children).

Content consists of raw content and a status marker

(# = inferred, @ = observed)

There are four types of instance content:
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1. event - something which begins and ends within the time

period of the story.

2. habit - something which is constant throughout the story

(e.g. types, habitual propositions).

3. goal - mental events.

4. relation - describes a relationship between two or

more instances.

There are a limited number of relation types, but unlimited habits,

events and goals (i.e. there are no primitives here).

Where the ---> is placed between an event E and its subevents S

(for example) this is taken to mean 'E explains S', where 'explains'

has the broad meaning 'conceptually encapsulates or connects'. So,

a relation can be used to explain the co-occurrence of two event instances.

Each tree has the form

tree(ID, Parent, Children, Inc)

where ID is the schema ID used in constructing the tree,

Parent the parent instance of the tree, and Children the child

instances list of the tree.

Instances and trees are collectively known as representational

elements (r-elts). An r-elt only occurs in LTS or STS; never both.

Extensions - an extension has the structure:

ext(Repr, IncChange)

where Repr is a representation, and IncChange a term in one

of the following forms:

obs(Message, IncChange)

% a string describing how observation was

% incorporated into representation; one of:

% 'by merging with STS'

% 'by merging with LTS'

% 'by creation of a new instance'
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infer(Method, Created, Removed)

% Method = top-down, bottom-up, Created =

% incchange due to tree

% creation, Removed = incchange due to tree removal

transfer(IncChange)

*********************************************************************/

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% ADMINISTRATION PROCEDURES %%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% quick reload

rl :- ['~/IDC_dir/idc.pl'].

% declare operator for inferred instances

:- op(100, fy, #).

% declare operator for observed instances

:- op(100, fy, @).

% declare operator for schema construction

% (so can load schemas.pl, with texts in it)

:- op(600, xfx, --->).

% operator for schema constraints

:- op(700, xfx, ==>).

% hack to allow direct output to a file

:- dynamic(output_mode/1).

output_mode(screen).

% SHARED PROCEDURES

% (variable binding, constraint checking, output, lists)

:- ['~/IDC_dir/shared.pl'].

% FILE CONTAINING INDICES, SCHEMAS AND NODE DEFINITIONS
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:- ['~/IDC_dir/kb.pl'].

% FILE CONTAINING TEXTS

:- ['~/IDC_dir/texts.pl'].

% FILE CONTAINING TESTS

:- ['~/IDC_dir/tests.pl'].

remind:-

nl,

write('Top-level call is:'),

nl, tab(10),

write('comp(Text, Skept, Range, ToleranceFactor)'), nl,

write('OR'),

nl, tab(10),

write('filecomp(Filename, Text, Skept, Range, ToleranceFactor)'),

nl, nl.

:- remind.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% TOLERANCE-DRIVEN COMPREHENSION TOP LEVEL %%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% text_comp(Text, Skept, Width, ToleranceFactor)

% Tolerance equals (AvgInf - 1) * ToleranceFactor

% Enter a text directly

text_comp(Text, Skept, Width, ToleranceFactor) :-

avg_inf(AvgInf),

Tolerance is ToleranceFactor * (AvgInf - 1),

comprehend(Text, [repr([]^[], []^[], 0)], Skept, Tolerance,

Width, 1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% comp(TextNum, Skept, Width, ToleranceFactor)
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% Tolerance equals (AvgInf - 1) * ToleranceFactor

comp(TextNum, Skept, Width, ToleranceFactor) :-

text(TextNum, Text),

avg_inf(AvgInf),

Tolerance is ToleranceFactor * (AvgInf - 1),

comprehend(Text, [repr([]^[], []^[], 0)], Skept, Tolerance,

Width, 1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% filecomp(Filename, TextNum, Skept, Width, ToleranceFactor)

% As comp/4, but outputs to a text file rather than screen.

% Filename is an atom; the procedure creates an absolute file path

% in the IDC_dir directory, to which output is written.

filecomp(Filename, TextNum, Skept, Width, ToleranceFactor) :-

retractall(output_mode(_)),

assert(output_mode(file)),

text(TextNum, Text),

avg_inf(AvgInf),

Tolerance is ToleranceFactor * (AvgInf - 1),

name('~/IDC_dir/Output_dir/', L1),

name(Filename, L2),

name('.idc', L3),

append(L1, L2, L4),

append(L4, L3, L5),

name(Outfile, L5),

open(Outfile, write, Output1),

set_output(Output1),

write('FILENAME = '), write(Outfile), nl,

write('TEXT = '), nl, write(Text), nl, nl,

write('SKEPTICISM = '), write(Skept), nl,

write('BEAM WIDTH = '), write(Width), nl,

write('TOLERANCE FACTOR = '), write(ToleranceFactor),

write(' TOLERANCE = '), write(Tolerance), nl, nl,

write_line, nl, nl,

comprehend(Text, [repr([]^[], []^[], 0)], Skept, Tolerance,

Width, 1),

retractall(output_mode(_)),

assert(output_mode(screen)),

close(Output1).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% comprehend(Text, CurrentReprs, Skept, Tolerance, BeamWidth, Cycle)

% CurrentReprs is sorted in ascending incoherence order, so the first

% representation should have the lowest incoherence (or equal lowest).

% 1 - recursive: text is not empty and incoherence is =< tolerance.

% OBSERVE NEXT STATEMENT

comprehend([Obs | RestObs], [Repr | RestCurrentReprs], Skept, Tolerance,

Range, Cycle1) :-

inc_too_high(Repr, Tolerance, no),

write_status(Cycle1, Skept, Tolerance, Range),

write('Incorporating observation'), nl,

tab(5), write(Obs), nl,

write('into current representations'), nl,

include_obs([Repr | RestCurrentReprs], Obs, Skept, NewExts),

sort_exts(NewExts, [BestExt | RestSorted]),

strip_exts([BestExt | RestSorted], NewReprs),

storage(NewReprs, Load),

write_storage(Load),

write_exts([BestExt | RestSorted]),

Cycle2 is Cycle1 + 1,

comprehend(RestObs, NewReprs, Skept, Tolerance, Range, Cycle2).

% 2 - recursive: Text can be empty or full.

% N.B. this also prunes the number of representations, according to Range

% and will only be called if at least one representation contains instances

% in STS

% This clause fails if no extensions are returned by action/4

% CREATE AND CHECK

comprehend(Text, [Repr | RestCurrentReprs], Skept, Tolerance, Range, Cycle1) :-

member(repr([_ | _] ^ _, _, _), [Repr | RestCurrentReprs]),

action([Repr | RestCurrentReprs], create_and_check, Skept, NewExts),

sort_and_trim_exts(Range, NewExts, [BestExt | RestSorted]),

write_status(Cycle1, Skept, Tolerance, Range),

write('Incoherence in STS too high, so creating new inferences'),

nl,

strip_exts([BestExt | RestSorted], NewReprs),

storage(NewReprs, Load),

write_storage(Load),

write_exts([BestExt | RestSorted]),
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Cycle2 is Cycle1 + 1,

comprehend(Text, NewReprs, Skept, Tolerance, Range, Cycle2).

% 3 - recursive: Text can be empty or full, but there must be

% something in the first representation

% TRANSFER

comprehend(Text, [Repr | RestReprs], Skept, Tolerance, Range, Cycle1) :-

\+ Repr = repr([]^[], _, _),

inc_too_high(Repr, Tolerance, yes),

clear_STS([Repr | RestReprs], Skept, Tolerance, Range, Cycle1,

NewReprs, Cycle2),

comprehend(Text, NewReprs, Skept, Tolerance, Range, Cycle2), !.

% 4 - terminating: text is empty and no further operations can lower

% incoherence

comprehend([], Reprs, _, _, _, _) :-

write('TEXT IS FULLY PROCESSED'), nl,

write('COHERENCE VALUES BELOW ARE ABSOLUTE, WRT SKEPTICISM =

0.5'), nl, nl,

write_final_reprs(Reprs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% clear_STS(Text, NewReprs, Skept, Tolerance, Range, Cycle, NewReprs2,

% Cycle2)

% Remove elements from STS until incoherence falls below Tolerance

% 1 - terminating: return if incoherence of first representation is

% below tolerance

clear_STS([Repr | RestReprs], _, Tolerance, _, Cycle, [Repr | RestReprs],

Cycle) :-

inc_too_high(Repr, Tolerance, no), !.

% 2 - recursive: do a transfer, then call recursively

clear_STS(Reprs, Skept, Tolerance, Range, Cycle1, NewReprs2, Cycle3) :-

do_transfer(Reprs, Skept, NewExts),

sort_exts(NewExts, [BestExt | RestSorted]),

write_status(Cycle1, Skept, Tolerance, Range),

write('Transferring elements from current representations

STS to LTS'),

nl,

strip_exts([BestExt | RestSorted], NewReprs),
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storage(NewReprs, Skept, Load),

write_storage(Load),

write_exts([BestExt | RestSorted]),

Cycle2 is Cycle1 + 1,

clear_STS(NewReprs, Skept, Tolerance, Range, Cycle2, NewReprs2,

Cycle3).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% inc_too_high(Repr, Tolerance, Answer)

% Returns 'no' if the incoherence of Repr =< Tolerance; otherwise, 'yes'

% (Saves some ugly code in comprehend)

inc_too_high(repr(_, _, Inc), Tolerance, Answer) :-

Inc =< Tolerance

->

Answer = no

;

Answer = yes.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% strip_exts(Extensions, Reprs)

% Strips the rating off each extension in Extensions to leave the

% corresponding representations Reprs

strip_exts([], []).

strip_exts([ext(Repr, _) | RestExts], [Repr | RestReprs]) :-

strip_exts(RestExts, RestReprs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% STORAGE BASED ON REPRESENTATIONS %%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% storage(Reprs, Load)

% Load = fixed incoherence of unique instances and trees in Reprs

% N.B. it uses a copy of current representations, to prevent

% untoward unification

storage(Reprs, Load) :-

copy_term(Reprs, ReprsCopy),
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storage(ReprsCopy, [], [], Load).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% storage(Reprs, InstancesSofar, TreesSofar, Load)

% Calculates storage cost for a list of representations (i.e. total

% fixed inc of unique Instances and Trees

% 1 - terminating: all unique instances and trees determined, so

% calculate

storage([], UniqueInstances, UniqueTrees, Load) :-

fixed_incoherence(UniqueInstances ^ UniqueTrees, Load).

% 2 - recursive: update current lists of instances and trees with

% next representation

storage([repr(STSInstances ^ STSTrees, LTSInstances ^ LTSTrees, _) |

RestReprs], InstancesSofar, TreesSofar, Load) :-

new_sofar(STSInstances, LTSInstances, InstancesSofar,

NewInstancesSofar),

new_sofar(STSTrees, LTSTrees, TreesSofar, NewTreesSofar),

storage(RestReprs, NewInstancesSofar, NewTreesSofar, Load).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% new_sofar(List1, List2, CurrentSofar, NewSofar)

% List1 and List2 are appended to each other, and to CurrentSofar to

% give List4; then duplicates are removed from List4 to leave NewSofar

% Used to find the number of unique instances or trees in a list of

% representations

new_sofar(List1, List2, CurrentSofar, NewSofar) :-

append(List1, List2, List3),

append(List3, CurrentSofar, List4),

loose_remove_duplicates(List4, NewSofar).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_storage(Load)

% Write the load to stream

write_storage(Load) :-

write('Load = '), write(Load), nl.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%% WRITING FINAL REPRESENTATIONS %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_final_reprs(Reprs)

% For each representation in Reprs, determines the fixed incoherence

% (wrt a Skepticism of 0.5) of the representation and writes it to the

% screen

% 1 - terminating: all final representations written

write_final_reprs([]) :-

write('ALL REPRESENTATIONS WRITTEN'), nl, nl.

% 2 - recursive: determine the fixed incoherence of the next

% representation and write to screen, then recurse

write_final_reprs([repr(STS, LTS, _) | RestReprs]) :-

fixed_incoherence(STS, STSInc),

fixed_incoherence(LTS, LTSInc),

FixedInc is STSInc + LTSInc,

write_repr(repr(STS, LTS, FixedInc)),

coherence(FixedInc, Cohr),

write('Coherence is '), write(Cohr), nl, nl,

continue(repr(STS, LTS, FixedInc)),

write_final_reprs(RestReprs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fixed_incoherence(Exgraph, FixedInc)

% Evaluates an exgraph with respect to a skepticism of 0.5;

% this gives the 'absolute' value of a exgraph

fixed_incoherence(Instances ^ Forest, FixedInc) :-

fixed_instances_inc(Instances, 0, FixedInstancesInc),

fixed_trees_inc(Forest, 0, FixedForestInc),

FixedInc is FixedInstancesInc + FixedForestInc.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fixed_instances_inc(Instances, Acc, FixedInstancesInc)

fixed_instances_inc([], Acc, Acc).

fixed_instances_inc([instance(Content, Par, Chd, _) | RestInstances],
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Acc, FixedInstancesInc) :-

instance_inc(instance(Content, Par, Chd), 0.5, _, OneInc),

NewAcc is Acc + OneInc,

fixed_instances_inc(RestInstances, NewAcc, FixedInstancesInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fixed_trees_inc(Forest, Acc, FixedTreesInc)

fixed_trees_inc([], Acc, Acc).

fixed_trees_inc([tree(ID, Parent, Children, _) | RestTrees], Acc,

FixedTreesInc) :-

tree_inc(tree(ID, Parent, Children), 0.5, _, OneInc),

NewAcc is Acc + OneInc,

fixed_trees_inc(RestTrees, NewAcc, FixedTreesInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% coherence(FixedInc, Cohr)

coherence(FixedInc, Cohr) :-

total_inf(TotInf),

findall(N, node(N, _, _), Nodes),

length(Nodes, TotalNoNodes),

MaxInc is ((TotInf - TotalNoNodes) * 2),

IncUsed is MaxInc - FixedInc,

Cohr is IncUsed / MaxInc.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% GENERATING NEW EXTENSIONS %%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% action(CurrentReprs, ActionType, Skept, NewReprs)

% Carries out ActionType on all reprs in CurrentReprs in turn.

% 1 - terminating

action([], _, _, []).
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% 2 - recursive: find extensions of first representation, then recurse.

action([Repr | RestReprs], Type, Skept, NewReprs) :-

action_narrative(Type, Repr, Skept, Goal, Output),

findall(Output,

Goal,

OneNewGen),

action(RestReprs, Type, Skept, RestNewGen),

append(OneNewGen, RestNewGen, NewReprs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% action_narrative(ActionType, ReprIn, Skept, Goal, ReprOut)

% ActionType =

% create_and_check (connect instances then remove redundancies

% and spuriousness in a single cycle)

% transfer_tree (move tree and dependent instances from STS to LTS)

% transfer_instance (move isolated instance from STS to LTS)

% Each action has the same input but a different set of procedure

% calls in Goal.

% 1 - create_and_check: extend the representation, then check whether the

% new tree used to extend the representation has made any others redundant.

% For reprs with at least one instance in STS

action_narrative(create_and_check, repr(STS1, LTS1, Inc), Skept,

((STS1 = [_ | _] ^ _), create_and_check(repr(STS1, LTS1, Inc),

Skept, repr(STS2, LTS2, NewInc), infer(Method, Created, Removed)),

Incchange is Created + Removed, Incchange < 0),

ext(repr(STS2, LTS2, NewInc), infer(Method, Created, Removed))).

% 2 - create_and_check for empty STS

action_narrative(create_and_check, repr(STS, LTS, Inc), _,

(STS = [] ^ _),

ext(repr(STS, LTS, Inc), infer('no inference', 0, 0))).

% 3 - transfer_tree: transfer a tree to LTS, along with its

% dependent instances.

% IncChange for a transfer = NewInc - InitialInc.

% This clause works when STS actually has something in it

action_narrative(transfer_tree, repr(STS, LTS, Inc), Skept,

(\+(STS = _ ^ []), transfer_tree(repr(STS, LTS, Inc),

Skept, repr(NewSTS, NewLTS, NewInc)), IncChange is NewInc - Inc,
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IncChange =< 0),

ext(repr(NewSTS, NewLTS, NewInc), transfer(IncChange))).

% 4 - transfer_tree for representations with empty STS forest

action_narrative(transfer_tree, repr(STS, LTS, Inc), _,

(STS = _ ^ []),

ext(repr(STS, LTS, Inc), transfer(0))).

% 5 - transfer_instance: transfer a parent- and child-less instance to LTS.

% For representations containing at least one instance

action_narrative(transfer_instance, repr(STS, LTS, Inc), _,

(\+ (STS = [] ^ _), transfer_instance(repr(STS, LTS, Inc),

repr(NewSTS, NewLTS, NewInc)), IncChange is NewInc - Inc,

IncChange =< 0),

ext(repr(NewSTS, NewLTS, NewInc), transfer(IncChange))).

% 6 - transfer_instance for representations with empty STS instances

action_narrative(transfer_instance, repr(STS, LTS, Inc), _,

(STS = [] ^ _),

ext(repr(STS, LTS, Inc), transfer(0))).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%% SORT AND TRIM %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sort_and_trim_exts(Range, Extensions, NewExts)

% NewExts consists of the best extension in Extensions1, plus other

% extensions whose inc is within Range * Inc of the best representation.

% The larger range is, the more extensions are acceptable.

% If Range = 1, all representations with the same incoherence are maintained.

% providing they consist of different trees.

% 1 - if Range = -1, only a single best extension is accepted

sort_and_trim_exts(-1, [ext(repr(STS1, LTS1, Inc), Rating) | RestExtensions],

[BestExt]) :-

find_best(RestExtensions, ext(repr(STS1, LTS1, Inc), Rating),
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BestExt), !.

% 2 - for Range >= 0; total incoherence of extensions kept, above

% the inc of standard (i.e. repr with lowest inc) must fall within Range

sort_and_trim_exts(Range, Extensions, NewExts) :-

Range >= 0,

sort_exts(Extensions, SortedExtensions),

range_trim(Range, SortedExtensions, NewExts).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find_best(Extensions, Sofar, BestExt)

% 1 - terminating: set the best ext to sofar

find_best([], BestRepr, BestRepr).

% 2 - recursive: if next extension has lower incchange than sofar, set it

% as the new sofar; otherwise, maintain current sofar.

find_best([ext(repr(STS1, LTS1, Inc1), Rating1) | RestExts],

ext(repr(STS2, LTS2, Inc2), Rating2), BestExt) :-

Inc1 < Inc2

->

find_best(RestExts, ext(repr(STS1, LTS1, Inc1), Rating1), BestExt)

;

find_best(RestExts, ext(repr(STS2, LTS2, Inc2), Rating2), BestExt).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CODE FOR TRIM, SORT_EXTENSIONS and SWAP modified from

% http://www-it.fmi.uni-sofia.bg/ai/search2.pl

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sort_exts(Extensions, SortedExtensions)

% Sorts the list of extensions so that the one with lowest inc is at the front.

sort_exts(Extensions, SortedExtensions) :-

swap_ext(Extensions, Extensions2), !,

sort_exts(Extensions2, SortedExtensions).

sort_exts(Extensions, Extensions).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% swap_ext(Extensions, Swapped)
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% If first extension in Extensions has higher inc than the second,

% swap them over; otherwise, leave first where it is, and move onto second.

% 1 - first extension has lower inc than second

swap_ext([ext(repr(STS1, LTS1, Inc1), Rating1),

ext(repr(STS2, LTS2, Inc2), Rating2) | RestExts],

[ext(repr(STS2, LTS2, Inc2), Rating2),

ext(repr(STS1, LTS1, Inc1), Rating1) | RestExts]) :-

Inc2 < Inc1.

% 2 - leave first two elements in same order

swap_ext([H | T1], [H | T2]) :-

swap_ext(T1,T2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% range_trim(Range, ListIn, ListOut)

% Use the first element of ListIn as the `standard'; each other

% representation whose inc is above the standard consumes part of

% that resource (so range acts like an 'activation pool' and thus

% more like 'capacity')

range_trim(Range, [ext(repr(STS1, LTS1, Inc1), Rating) | RestIn], ListOut) :-

range_trim(RestIn, Inc1, Range, 0,

[ext(repr(STS1, LTS1, Inc1), Rating)], ListOut).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% range_trim(ExtsIn, LowestInc, Range, EffortAcc, ExtsSofar, ExtsOut)

% LowestInc is the incoherence of the best repr found so far

% 1 - terminating: no more extensions to check, so set outputs to

% accumulators

range_trim([], _, _, _, ExtsOut, ExtsOut).

% 2 - check that next extension has a valid rating and won't

% exceed Range:

% if it doesn't, all usable exts have been checked, so call

% with empty list to terminate; if it does, call attempt_append,

% which tries to add the extension to the sofar list

range_trim([ext(repr(STS, LTS, Inc), Rating) | RestExts],

LowestInc, Range, Effort1, Sofar, ExtsOut) :-

EffortForExt is (Inc - LowestInc),



Appendix C. IDC Program Code 278

clip(EffortForExt, EffortForExt2),

Effort2 is Effort1 + EffortForExt2,

Effort2 =< Range

->

attempt_append(ext(repr(STS, LTS, Inc), Rating),

EffortForExt, Sofar, ActualEffort, NewSofar),

Effort3 is Effort1 + ActualEffort,

range_trim(RestExts, LowestInc, Range, Effort3, NewSofar, ExtsOut)

;

range_trim([], _, _, _, Sofar, ExtsOut).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% attempt_append(Extension, EffortForExt, Sofar, ActualEffort, NewSofar)

% If Extension in not duplicated in Sofar, add it to Sofar and set

% Effort3 to EffortForExt; else, NewSofar = Sofar and ActualEffort = 0

attempt_append(Extension, EffortForExt, Sofar, ActualEffort, NewSofar) :-

\+ duplicate_ext(Sofar, Extension)

->

ActualEffort = EffortForExt,

append(Sofar, [Extension], NewSofar)

;

ActualEffort = 0,

NewSofar = Sofar.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% duplicate_ext(OtherExtensions1, Extension)

% Extension is duplicated in OtherExtensions if its

% incoherence, STSF and LTSF match the Inc, STSF and LTSF of some extension

% in OtherExtensions.

% 1 - next extension is a duplicate of Extension as forests contain

% identical trees, not necessarily occurring in the same order.

duplicate_ext([ext(repr(_ ^ STSF1, _ ^ LTSF1, Inc), _) | _],

ext(repr(_ ^ STSF2, _ ^ LTSF2, Inc), _)) :-

identical_forests(STSF1, STSF2),

identical_forests(LTSF1, LTSF2), !.

% 2 - recursive: next extension is not a duplicate, try elsewhere in list

duplicate_ext([_ | T], Extension) :-

duplicate_ext(T, Extension).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% identical_forests(Forest1, Forest2)

% True if the set of trees in Forest1 = the set of trees in Forest2

% 1 - terminating: both forests empty, therefore identical

identical_forests([], []) :- !.

% 2 - terminating: non-empty but unifying forests are identical

identical_forests(Forest, Forest) :-

\+ Forest == [], !.

% 3 - recursive: the next tree of the first forest can be removed

% from the second forest

identical_forests([Tree | RestTrees], Forest2) :-

\+ [Tree | RestTrees] = Forest2,

tree_duplicated(Tree, Forest2, Forest3),

identical_forests(RestTrees, Forest3).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% MERGING NEW OBSERVATIONS %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% include_obs(CurrentReprs, Obs, Skept, NewExts)

% Adds a new observation's instance to the STS instances or LTS

% instances and updates trees in STS and in LTS for each current

% representation; each extension produced records the change to

% inc for sorting purposes.

% 1 - terminating: unify the output list with the sofar list

include_obs([], _, _, []).

% 2 - recursive: incorporate observation into first repr, then recurse.

include_obs([Repr | T], Obs, Skept, [NewExt | RestNewExts]) :-

integrate_obs_with_repr(Repr, Obs, Skept, NewExt), !,

include_obs(T, Obs, Skept, RestNewExts).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% integrate_obs_with_repr(Repr, Obs, Skept, NewExt)

% Repr = repr(STSExgraph, LTSExgraph, STSInc)

% Obs = a new observation, without any status token (no '@')

% NewExt = Repr with Obs integrated into it, plus message and incchange

% A new observation may be merged with an existing instance in

% STS or LTS, or added to STS or LTS without merging.

% If merged with an existing instance, updating of trees in STS and/or LTS is

% required (i.e. changing inferred instances to observed instances).

% Wherever structures are altered by the new observation, incoherence of

% those structures is updated; STSInc is also updated if STS is

% changed in any way.

% 1 - merge observation with an existing STS instance, and update trees.

integrate_obs_with_repr(repr(I1a ^ F1a, I2a ^ F2a, Inc), Obs, Skept,

ext(repr(I1c ^ F1c, I2a ^ F2b, NewInc), obs('merging with STS', IncChange))) :-

merge_obs_with_instance_list(I1a, Obs, Skept, NewInstance, I1b),

update_forest(F1a, NewInstance, Skept, F1b),

update_forest(F2a, NewInstance, Skept, F2b),

inc([NewInstance | I1b] ^ F1b, Skept, I1c ^ F1c, NewInc),

IncChange is NewInc - Inc, !.

% 2 - merge observation with an existing LTS instance, and update trees.

% Note that the LTS instance is considered to have been retrieved into STS -

% this allows new inferences based on the new observation to be made.

integrate_obs_with_repr(repr(I1a ^ F1a, I2a ^ F2a, Inc), Obs, Skept,

ext(repr(I1b ^ F1c, I2b ^ F2b, NewInc), obs('merging with LTS', IncChange))) :-

merge_obs_with_instance_list(I2a, Obs, Skept, NewInstance, I2b),

update_forest(F1a, NewInstance, Skept, F1b),

update_forest(F2a, NewInstance, Skept, F2b),

inc([NewInstance | I1a] ^ F1b, Skept, I1b ^ F1c, NewInc),

IncChange is Inc - NewInc, !.

% 3 - add observation to STS instances without updating any r-elts.

integrate_obs_with_repr(repr(I1 ^ F1, I2 ^ F2, Inc), Obs, Skept,

ext(repr([NewInstance | I1] ^ F1, I2 ^ F2, NewInc),

obs('creating new instance', InstanceInc))) :-

instance_inc(instance(@Obs, n, n), Skept, NewInstance, InstanceInc),

NewInc is Inc + InstanceInc.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% MERGING AN OBSERVATION WITH A INSTANCE %%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% merge_obs_with_instance_list(CurrentInstances, NewObs, Skept,

% NewInstance, CurrentInstancesLeft)

% Merges NewObs with an element of CurrentInstances to leave

% CurrentInstancesLeft; NewInstance is the instance created from

% NewObs (e.g. if an existing inferred instance has instantiated

% arguments which unify with arguments of NewObs).

% This is used to update the trees in STS and LTS.

% NewObs is not marked as an observation with '@' at this point.

% 1 - terminating: next elt can be merged with the next instance

% in the instance list.

merge_obs_with_instance_list([Instance1 | RestInstances1], NewObs,

Skept, instance(@Content, Par, Chd, Inc), RestInstances1) :-

combine_obs_with_instance(NewObs, Instance1, Skept,

instance(@Content, Par, Chd, Inc)), !.

% 2 - recursive: try next element of Instances1.

merge_obs_with_instance_list([Instance1 | RestInstances1], NewObs,

Skept, NewInstance, [Instance1 | RestInstances2]) :-

merge_obs_with_instance_list(RestInstances1, NewObs, Skept,

NewInstance, RestInstances2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% combine_obs_with_instance(NewObs, ExistingInstance, Skept, NewInstance)

% Combines a new obs with an existing instance (which may have unbound

% event tokens). This should bind the values in the new instance to

% unbound values in the existing instance. NewContent is the content

% of a new observation, while ExistingInstance has is an instance with

% inc assigned.

% NB a new observation cannot be combined with a previous observation.

% 1 - for all except relations

combine_obs_with_instance(C1, instance(C2, Par2, Chd2, _),

Skept, NewInstance) :-

\+ C2 = @_,

\+ C1 = relation(_, _),
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raw_content(C2, C2a),

combine_raw_content(C1, C2a),

instance_inc(instance(@C2a, Par2, Chd2), Skept, NewInstance, _).

% 2 - for relations: must unify from an existing relation to the new

% observation, otherwise relations can be instantiated with

% incorrect event tokens.

combine_obs_with_instance(C1, instance(C2, Par2, Chd2, _), Skept,

NewInstance) :-

\+ C2 = @_,

C1 = relation(_, _),

raw_content(C2, C2a),

combine_raw_content(C2a, C1),

instance_inc(instance(@C1, Par2, Chd2), Skept, NewInstance, _).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% UPDATING A FOREST %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% update_forest(Forest, NewInstance, Skept, NewForest)

% Updates any occurrence of NewInstance in Forest which exactly

% matches the content of NewInstance; updates inferred instances

% to observed ones.

% 1 - terminating: no more trees to update

update_forest([], _, _, []).

% 2 - recursive: if-then structure, which updates the next tree if

% possible, or just puts the next tree onto the output; then recurse

% with the rest of the forest.

update_forest([Tree | RestTrees], NewInstance, Skept,

[NewTree | NewRestTrees]) :-

update_tree(NewInstance, Tree, Skept, NewTree)

->

update_forest(RestTrees, NewInstance, Skept, NewRestTrees)

;

NewTree = Tree,

update_forest(RestTrees, NewInstance, Skept, NewRestTrees).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% update_tree(NewInstance, Tree, Skept, NewTree)

% Updates any instance in Tree whose content exactly matches the

% content of NewInstance. Inc is calculated for the updated tree.

% NB the checks on flag content ensure that the correct clause is called.

% 1 - update a tree's parent.

update_tree(instance(@Content, _, y, _), tree(ID, #Parent, Children, _),

Skept, NewTree) :-

Content == Parent,

tree_inc(tree(ID, @Content, Children), Skept, NewTree, _).

% 2 - update a tree's child.

update_tree(instance(@Content, y, _, _), tree(ID, Parent, Children1, _),

Skept, NewTree) :-

indexed(ID, _, @Content),

update_children(Content, Children1, Children2),

tree_inc(tree(ID, Parent, Children2), Skept, NewTree, _).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% update_children(Content, Children1, Children2)

% Updates the status of any child whose content matches Content

% (which is the content of an observed instance).

update_children(C1, [#C2 | Rest], [@C2 | Rest]) :-

C1 == C2, !.

update_children(C1, [C2 | Rest2], [C2 | Rest3]) :-

\+ loose_match(@C1, C2),

update_children(C1, Rest2, Rest3).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% CREATE_AND_CHECK PROCEDURES %%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% create_and_check(Repr, Skept, NewRepr, IncChange)

% Extends a repr, then removes from that repr any trees and
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% associated instances which have become redundant as a result (i.e.

% any trees which explain a subset of the observations explained by

% the new tree used to extend content of memory store).

create_and_check(repr(STS, LTS1, _), Skept, repr(STS4, LTS4, NewInc),

infer(Method, ClippedCreated, ClippedRemoved)) :-

create(repr(STS, LTS1, _), Skept,

repr(STSI1 ^ [NewTree | RestSTSF1], LTS2, _), Created, Method),

clip(Created, ClippedCreated),

remove_redundancies(NewTree, STSI1 ^ RestSTSF1, LTS2,

Skept, STSI2 ^ STSF2, LTS3, IncChange2),

remove_spurious(STSI2 ^ STSF2, LTS3, Skept,

STSI3 ^ STSF3, LTS4, IncChange3),

Removed is IncChange2 + IncChange3,

clip(Removed, ClippedRemoved),

inc(STSI3 ^ [NewTree | STSF3], Skept, STS4, NewInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% EXTENDING REPRESENTATIONS TOP-DOWN AND BOTTOM-UP %%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% create(Repr, Skept, NewRepr)

% Adds a new tree and associated instances to Repr (wrt Skept) to

% generate NewRepr. An instance in STS is used as the trigger for

% this process; one or more existing instances in STS or LTS are used

% to fill slots in a triggered schema; any slots which remain unfilled

% have instances created for them.

create(Repr, Skept, NewRepr, IncChange, top_down) :-

create_top_down(Repr, Skept, NewRepr, IncChange).

create(Repr, Skept, NewRepr, IncChange, bottom_up) :-

create_bottom_up(Repr, Skept, NewRepr, IncChange).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%% EXTEND_TOP_DOWN %%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% create_top_down(Repr, Skept, NewRepr, IncChange)

% Finds a possible top-down extension NewRepr of Repr.

% NB CANNOT INFER DOWNWARDS FROM A RELATION

% Keeps track of the change to incoherence caused by making the

% extension - both in STS, in terms of new instances created and

% instances which gain parents or children.

% IncChange is the change in incoherence of STS elts: if positive,

% incoherence has been increased and coherence reduced; if negative,

% incoherence has been reduced by that amount.

create_top_down(repr(STSI1 ^ STSF1, LTSI1 ^ LTSF, _), Skept,

repr(NewSTS, LTSI2 ^ LTSF, NewInc), IncChange2) :-

% select instance for parent

select_instance(any, STSI1, instance(P, Par, _, NInc1), STSI2),

raw_content(P, RawP),

% prevent inferring down from relations

\+ RawP = relation(_, _),

ID: RawP/Cons ---> RHs,

% prevent duplication

\+ tree_present(tree(ID, P, _, _), STSF1),

instance_inc(instance(P, Par, y), Skept, ParentInstance, NInc2),

Acc is NInc2 - NInc1,

construct_children(RHs, ID, STSI2, LTSI1, Skept, Acc,

STSI3, LTSI2, Children, IncChange1),

check(Cons),

tree_inc(tree(ID, P, Children), Skept, NewTree, TreeInc),

IncChange2 is IncChange1 + TreeInc,

inc([ParentInstance | STSI3] ^ [NewTree | STSF1], Skept,

NewSTS, NewInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% EXTEND_BOTTOM_UP %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% create_bottom_up(Repr, Skept, NewRepr, IncChange)

% Finds a possible bottom up extension NewRepr of Repr.

% NB CANNOT INFER UPWARDS FROM A RELATION



Appendix C. IDC Program Code 286

create_bottom_up(repr(STSI1 ^ STSF1, LTSI1 ^ LTSF, _), Skept,

repr(NewSTS, LTSI3 ^ LTSF, NewInc), IncChange4) :-

% select instance for first child

select_instance(any, STSI1, instance(C, _, Chd1, Inc1), STSI2),

raw_content(C, RawC),

% prevent inferring up from relations

\+ RawC = relation(_, _),

indexed(ID, #P, C),

ID: P/Cons ---> RHs,

% prevent duplication

\+ tree_present(tree(ID, #P, _, _), STSF1),

construct_parent(LTSI1, STSI2, P, ID, Skept, LTSI2, STSI3,

Parent, IncChange1),

construct_first_child(C, RHs, Children1),

instance_inc(instance(C, y, Chd1), Skept, NewInstance, Inc2),

IncChange2 is IncChange1 + (Inc2 - Inc1),

construct_children(Children1, ID, STSI3, LTSI2, Skept,

IncChange2, STSI4, LTSI3, Children2, IncChange3),

check(Cons),

tree_inc(tree(ID, Parent, Children2), Skept, NewTree, TreeInc),

IncChange4 is IncChange3 + TreeInc,

inc([NewInstance | STSI4] ^ [NewTree | STSF1], Skept,

NewSTS, NewInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% TREE AND INSTANCE CONSTRUCTION %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% construct_parent(LTSI1, STSI1, RawContent, ID, Skept, LTSI2, STSI2,

% Parent, IncChange)

% ParentInstance is either constructed by directed unification with

% an instance in LTS, or by creation of a new instance.

% 1 - RawContent doesn't match any instance in LTSI1, so create a

% new instance (providing it isn't already present in STSI)

construct_parent([], STSI, C, _, Skept, [], [NewInstance | STSI],

#C, IncChange) :-

\+ instance_duplicated(instance(#C, n, y, _), STSI),

instance_inc(instance(#C, n, y), Skept, NewInstance, IncChange).
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% 2 - RawContent matches the next instance in LTSN

construct_parent([instance(C2, Par, _, Inc1) | RestStore], STSI,

C1, ID, Skept, [NewInstance | RestStore], STSI, C2, IncChange) :-

indexed(ID, C2, #_),

raw_content(C2, RawC2),

combine_raw_content(RawC2, C1),

instance_inc(instance(C2, Par, y), Skept, NewInstance, Inc2),

IncChange is Inc2 - Inc1, !.

% 3 - try later instance in LTSN

construct_parent([Instance | RestInstances1], STSI1, C, ID, Skept,

[Instance | RestInstances2], STSI2, Parent, IncChange) :-

construct_parent(RestInstances1, STSI1, C, ID, Skept,

RestInstances2, STSI2, Parent, IncChange).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% construct_first_child(Content, RHs, Children)

% Takes the trigger instance's content and inserts it into the

% correct place in the RHs list to give Children1; this ensures

% that the instance which triggered the bottom-up extension is

% included in the resulting tree.

% 1 - terminating: next RHs instance matches Content.

construct_first_child(C, [RH/Cons | RestRHs], [C | RestRHs]) :-

raw_content(C, RawC),

combine_raw_content(RawC, RH),

check(Cons), !.

% 2 - recursive: check later RHs instances.

construct_first_child(C, [RH | RestRHs1], [RH | RestRHs2]) :-

construct_first_child(C, RestRHs1, RestRHs2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% construct_children(Children1, ID, STSI1, LTSI1, Skept, Acc, STSI2,

% LTSI2, Children2, IncChange)

% Children1 = list of RH nodes of a schema and possibly one

% already-inferred child; RH nodes have form Content/Constraints.

% ID = ID of schema used to construct new tree, used to speed processing.

% 1 - terminating: no more RH nodes to match.
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construct_children([], _, STSI, LTSI, _, IncChange, STSI, LTSI, [],

IncChange).

% 2 - recursive: next RH node can be matched with an instance in STS.

construct_children([C/Cons | RestChildren1], ID, STSI1, LTSI1, Skept,

Acc, STSI3, LTSI2, [Child | RestChildren2], IncChange) :-

unify_RH_with_instance(C/Cons, ID, STSI1, Skept, STSI2, Child,

SubIncChange),

NewAcc is Acc + SubIncChange,

construct_children(RestChildren1, ID, STSI2, LTSI1, Skept, NewAcc,

STSI3, LTSI2, RestChildren2, IncChange), !.

% 3 - recursive: next RH node can be matched with an instance in LTS.

construct_children([C/Cons | RestChildren1], ID, STSI1, LTSI1, Skept, Acc,

STSI2, LTSI3, [Child | RestChildren2], IncChange) :-

unify_RH_with_instance(C/Cons, ID, LTSI1, Skept, LTSI2, Child,

SubIncChange),

NewAcc is Acc + SubIncChange,

construct_children(RestChildren1, ID, STSI1, LTSI2, Skept,

NewAcc, STSI2, LTSI3, RestChildren2, IncChange), !.

% 4 - recursive: no match in STS or LTS, so infer new instance and add to STS.

construct_children([C/Cons | RestChildren1], ID, STSI1, LTSI1, Skept, Acc,

[NewInstance | STSI2], LTSI2, [#C | RestChildren2], IncChange) :-

check(Cons),

instance_inc(instance(#C, y, n), Skept, NewInstance,

NewInstanceInc),

NewAcc is Acc + NewInstanceInc,

construct_children(RestChildren1, ID, STSI1, LTSI1, Skept,

NewAcc, STSI2, LTSI2, RestChildren2, IncChange).

% 5 - recursive: next child has already been constructed

% (e.g. by construct_first_child)

construct_children([C | RestChildren1], ID, STSI1, LTSI1, Skept, Acc,

STSI2, LTSI2, [C | RestChildren2], IncChange) :-

raw_content(C, _),

construct_children(RestChildren1, ID, STSI1, LTSI1, Skept,

Acc, STSI2, LTSI2, RestChildren2, IncChange).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% unify_RH_with_instance(RH, ID, CurrentInstances, Skept, NewInstances,
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% Child, IncChange)

% RH = a right-hand node, complete with its constraints list.

% ID = ID of the schema being used to construct the tree.

% CurrentInstances = list of instances current in a store.

% NewInstances = updated list of instances.

% Child = a new child for a tree, based on the unification of RH and an

% instance in the store.

% IncChange = change to the incoherence of the instance which was matched.

% 1 - terminating: InstanceContent matches next RH node and constraints hold.

unify_RH_with_instance(RH/Cons, ID,

[instance(N, _, Chd, Inc1) | RestInstances], Skept,

[NewInstance | RestInstances], N, ChildIncChange) :-

indexed(ID, #_, N),

raw_content(N, RawN),

combine_raw_content(RawN, RH),

check(Cons),

instance_inc(instance(N, y, Chd), Skept, NewInstance, Inc2),

ChildIncChange is Inc2 - Inc1, !.

% 2 - recursive: try a later instance in the list.

unify_RH_with_instance(RH/Cons, ID, [Instance | RestInstances1], Skept,

[Instance | RestInstances2], Child, ChildIncChange) :-

unify_RH_with_instance(RH/Cons, ID, RestInstances1, Skept,

RestInstances2, Child, ChildIncChange).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% PROCEDURES FOR REMOVING REDUNDANT ELEMENTS %%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove_redundancies(Tree, STS1, LTS1, Skept, STS2, LTS2, IncChange)

% Removes all redundant trees and associated instances from STS1 and

% LTS1 to give STS2 and LTS2.

% 1. Check each tree in STS first - if made redundant by Tree,

% remove from STS then call update_repr on the remainder of

% STS and current LTS.
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% 2. Check each tree in LTS - do as 1 for each redundant tree.

remove_redundancies(Tree, STS1, LTS1, Skept, STS3, LTS3, IncChange2) :-

remove_redundant_trees(Tree, STS1, LTS1, Skept, 0, STS2, LTS2,

IncChange1),

remove_redundant_trees(Tree, LTS2, STS2, Skept, IncChange1,

LTS3, STS3, IncChange2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove_redundant_trees(Tree, Exgraph1a, Exgraph2a, Skept, Acc,

% Exgraph1b, Exgraph2b, IncChange)

% Checks each tree in Exgraph1a: if it is redundant wrt Tree,

% propagate the changes through both Exgraph1a and Exgraph2a to

% give new exgraphs which are passed to the recursive call; otherwise

% (the tree isn't redundant), make no changes.

% Acc keeps track of the changes to inc.

remove_redundant_trees(Tree, I1a ^ F1a, I2a ^ F2a, Skept, Acc,

I1b ^ F1b, I2b ^ F2a, IncChange) :-

append(F1a, F2a, AllTrees),

remove_redundant_trees1(F1a, Tree, AllTrees, I1a, I2a,

Skept, Acc, I1b, F1b, I2b, IncChange).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove_redundant_trees1(F1a, Tree, AllTrees, I1a, I2a, Skept, Acc,

% I1b, F1b, I2b, IncChange)

% Each tree in F1a is checked in turn; if redundant with respect to Tree,

% update the values of the instances in I1a and I2a to give I1b and

% I2b respectively to take account of removal of this tree.

% If a tree is not redundant, it can just be added to the output.

% 1 - terminating: all trees checked.

remove_redundant_trees1([], _, _, I1, I2, _, Acc, I1, [], I2, Acc).

% 2 - recursive: if next tree is redundant, update stores to account

% for this; otherwise, add it to the output.

remove_redundant_trees1([Tree1 | RestTrees], Tree2, AllTrees, I1a,

I2a, Skept, Acc, I1c, F1, I2c, IncChange) :-

redundant(Tree1, Tree2)

->

remove(Tree1, AllTrees, AllTrees2),
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update_stores(Tree1, [Tree2 | AllTrees2], I1a, I2a,

Skept, I1b, I2b, SubIncChange),

NewAcc is Acc + SubIncChange,

remove_redundant_trees1(RestTrees, Tree2, AllTrees2, I1b,

I2b, Skept, NewAcc, I1c, F1, I2c, IncChange)

;

remove_redundant_trees1(RestTrees, Tree2, AllTrees, I1a,

I2a, Skept, Acc, I1c, F1T, I2c, IncChange),

F1 = [Tree1 | F1T].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% REDUNDANCY CHECKING %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% redundant(Tree1, Tree2)

% Checks whether Tree1's observed children are a variant subset of

% the observed children of the second tree; if this is the case,

% the first tree is redundant (i.e. the first tree explains the

% same or fewer observations as second tree). The first tree is required

% to have at least one observed child, otherwise it cannot be considered

% redundant with respect to a second tree.

% (It could be considered spurious, though.)

% 1 - Tree1 is redundant wrt Tree2 if Tree1's observed children

% are a variant of Tree2's and Tree2 has lower inc than Tree1;

% also, the parent of Tree1 must not be a child of Tree2, and

% the trees must not unify.

redundant(tree(_, P1, C1, Inc1), tree(_, P2, C2, Inc2)) :-

\+ tree(_, P1, C1, Inc1) = tree(_, P2, C2, Inc2),

% ensure that Tree1 has at least one observed child

member(@_, C1),

\+ strict_child_present(P1, C2),

variant(C1, C2),

Inc1 >= Inc2, !.

% 2 - Tree1 is redundant wrt Tree2 if their parents and IDs exactly

% match, but Tree2 has equal or lower inc, e.g. if the same instance

% is used to construct two trees and one has more accurate

% `elaborations' (less incoherent).

redundant(tree(ID, P1, _, Inc1), tree(ID, P2, _, Inc2)) :-
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P1 == P2,

Inc1 >= Inc2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% variant(Children1, Children2)

% True if the first tree's observed children are a subset or equal to

% the observed members of Children2.

% 1 - terminating: all observed elements of Children1 are present

% in Children2.

variant([], _).

% 2 - recursive: next child of the first tree is observed and

% strictly present in Children2.

variant([@Child1 | Rest1], Children2) :-

strict_remove(@Child1, Children2, Children3),

variant(Rest1, Children3).

% 3 - recursive: next child of the first tree is inferred, so ignored.

variant([#_ | Rest1], Children2) :-

variant(Rest1, Children2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% PROCEDURES FOR REMOVING SPURIOUS ELEMENTS %%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% A potentially spurious tree is recognised by the fact that it

% contains no observations, either as its parent or among its

% observations; and its parent has no parent of its own (i.e.

% Parent flag set to 'n'); and its children have no children of their own.

% A spurious tree T1 generally comes about when a tree T2 is

% superceded by a new tree T3; if one of the children of T2 was

% inferred, and this child was the parent of T1, then T1 may

% become spurious (as its parent was dependent on a now-redundant tree).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove_spurious(Exgraph1, Exgraph2, Skept, NewExgraph1, NewExgraph2,
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% IncChange)

% If a spurious tree can be found and removed, along with its

% associated r-elts, then recurse with the remainder of the representation;

% otherwise, just return the current STS and LTS;

% Acc is the IncChange so far generated by removing spurious trees.

% NB this is quite complicated, as it first tries removing the tree and

% its instances; if this produces an improvement, the tree can be

% removed from the list of trees to be processed - however, it still

% has to be in AllTrees, for the purposes of updating other instances

% which may be in potentially spurious trees.

remove_spurious(STS1, LTS1, Skept, STS3, LTS3, IncChange2) :-

remove_spurious_trees(STS1, LTS1, Skept, 0, STS2, LTS2,

IncChange1),

remove_spurious_trees(LTS2, STS2, Skept, IncChange1, LTS3,

STS3, IncChange2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove_spurious_trees(Exgraph1a, Exgraph2a, Skept, Acc, Exgraph1b,

% Exgraph2b, IncChange)

remove_spurious_trees(I1a ^ F1a, I2a ^ F2a, Skept, Acc, I1b ^ F1b,

I2b ^ F2a, IncChange) :-

append(F1a, F2a, AllTrees),

remove_spurious_trees1(F1a, AllTrees, I1a, I2a, Skept,

Acc, I1b, F1b, I2b, IncChange).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove_spurious_trees1(F1a, AllTrees, I1a, I2a, Skept, Acc, I1b,

% F1b, I2b, IncChange)

% Check each tree in the forest F1a; if a tree is spurious,

% remove it and propagate the changes through I1a and I2a ^ F2a;

% if not spurious, add it to the output forest (F1b).

% 1 - terminating: all trees in forest checked.

remove_spurious_trees1([], _, I1, I2, _, IncChange, I1, [], I2,

IncChange).

% 2 - recursive: if first tree spurious, update instances and second

% forest; otherwise, just add to output forest.

remove_spurious_trees1([Tree1 | RestTrees], AllTrees, I1a, I2a,
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Skept, Acc, I1c, F1, I2c, IncChange) :-

spurious(Tree1, I1a, I2a)

->

remove(Tree1, AllTrees, AllTrees2),

update_stores(Tree1, AllTrees2, I1a, I2a, Skept, I1b, I2b,

SubIncChange),

NewAcc is Acc + SubIncChange,

remove_spurious_trees1(RestTrees, AllTrees2, I1b, I2b, Skept,

NewAcc, I1c, F1, I2c, IncChange)

;

remove_spurious_trees1(RestTrees, AllTrees, I1a, I2a, Skept,

Acc, I1c, F1T, I2c, IncChange),

F1 = [Tree1 | F1T].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% spurious(Tree, STSInstances, LTSInstances)

% Tree is spurious with respect to the instances of a representation

% if it is groundless (i.e. contains no observed elements) and isolated

% (i.e. parent and children do not occur in any other tree).

spurious(Tree, STSInstances, LTSInstances) :-

groundless(Tree),

isolated(Tree, STSInstances, LTSInstances).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% groundless(Tree)

% A tree is groundless if it contains no observed elements either

% as its parent or among its children

groundless(tree(_, #_, C, _)) :-

\+ member(@_, C).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% isolated(Tree, STSInstances, LTSInstances)

% Tree is isolated wrt Repr if the parent instance of Tree has its

% parent flag set to 'n' and all its child instances have their child

% flag set to 'n'

isolated(tree(_, P, C, _), STSI, LTSI) :-

orphan(P, STSI, LTSI),

childless(C, STSI, LTSI).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% orphan(Parent, STSInstances, LTSInstances)

% A tree's parent is an orphan if it has no parents of its own.

orphan(P, STSI, LTSI) :-

strict_retrieve_instance(P, STSI, instance(P, n, _, _), _)

;

strict_retrieve_instance(P, LTSI, instance(P, n, _, _), _).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% childless(Children, STSInstances, LTSInstances)

% True if all members of the list Children can be strictly retrieved

% from either STSInstances or LTSInstances, and all have 'n' in their

% child flag.

% 1 - terminating: all children retrieved successfully.

childless([], _, _).

% 2 - recursive: retrieve first child's instance from STS, recurse

% with remainder.

childless([H | T], STSInstances1, LTSInstances) :-

strict_retrieve_instance(H, STSInstances1, instance(H, _, n, _),

STSInstances2),

childless(T, STSInstances2, LTSInstances).

% 3 - recursive: retrieve first child's instance from STS, recurse

% with remainder.

childless([H | T], STSInstances, LTSInstances1) :-

strict_retrieve_instance(H, LTSInstances1, instance(H, _, n, _),

LTSInstances2),

childless(T, STSInstances, LTSInstances2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% PROPAGATING CHANGES CAUSED BY REDUNDANT OR SPURIOUS TREES %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Once a tree has been removed, some instances may be rendered redundant.

% These procedures update the parent and child flags of instances

% in the repr; any inferred instances which no longer have either

% parents or children are removed; observations remain in the repr

% with their new flag settings.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% update_stores(RemovedTree, AllTrees, STSI1, LTSI1, Skept, STSI2,

% LTSI2, IncChange)

% RemovedTree is a tree removed from a representation;

% OldSTS and OldLTS are updated to take account of the removal

% of the tree - parent and child flags are set, and any inferred

% instances with both flags set to 'n' are removed (not explicitly,

% but during the building of new instance lists in set_flags via

% rationalise_instances/3); IncChange tracks the incoherence change

% caused by switching of flags and removal of redundant instances;

% it also includes the IncChange caused by removing the redundant tree.

update_stores(tree(_, P, C, Inc), AllTrees, STSI1, LTSI1, Skept, STSI2,

LTSI2, ClippedIncChange) :-

set_instances([P | C], STSI1, LTSI1, AllTrees, Skept, 0,

STSI2, LTSI2, IncChange1),

IncChange2 is IncChange1 - Inc,

clip(IncChange2, ClippedIncChange).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% set_instances(RemovedTreeInstances, STSI1, LTSI1, AllTrees,

% Skept, Acc, STSI2, LTSI2, IncChange)

% For each instance in RemovedTreeInstances:

% 1. Retrieve that instance from either STSI1 or LTSI1;

% designate the remainder of the store of instances as RestStore;

% let the updated store (i.e. STSI2 or LTSI2)

% be called NewStore; let its original inc = Inc1.

% 2. Set the flags of instance wrt AllTrees.

% 3. Determine the inc of the new instance = Inc2.

% 4. Set IncChange for that instance to Inc2 - Inc1.

% 5. Recurse with the remainder of RemovedTreeInstances.

% 1 - terminating: all instances in RemovedTreeInstances have

% had their flags updated.

set_instances([], STSI, LTSI, _, _, IncChange, STSI, LTSI, IncChange).
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% 2 - recursive: retrieve the next instance in

% RemovedTreeInstances from STSN and update its flags; if not retrievable,

% it must be in LTS, so retrieve it from there and update its flags;

% once retrieved, recurse with remaining instances in RemovedTreeInstances.

set_instances([I | Rest], STSI1, LTSI1, AllTrees, Skept, Acc, STSI4,

LTSI4, IncChange) :-

strict_retrieve_instance(I, STSI1, instance(C, _, _, Inc), STSI2)

->

update_instance(AllTrees, instance(C, n, n), NewRawInstance),

rationalise_instances(NewRawInstance, STSI2, Inc, Skept,

STSI3, SubIncChange),

NewAcc is Acc + SubIncChange,

set_instances(Rest, STSI3, LTSI1, AllTrees, Skept, NewAcc,

STSI4, LTSI4, IncChange)

;

strict_retrieve_instance(I, LTSI1, instance(C, _, _, Inc),

LTSI2),

update_instance(AllTrees, instance(C, n, n), NewRawInstance),

rationalise_instances(NewRawInstance, LTSI2, Inc, Skept,

LTSI3, SubIncChange),

NewAcc is Acc + SubIncChange,

set_instances(Rest, STSI1, LTSI3, AllTrees, Skept, NewAcc,

STSI4, LTSI4, IncChange).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% update_instance(AllTrees, Instance, NewRawInstance)

% Updates the flags of Instance wrt Forest.

% 1 - both flags set to y, so halt

update_instance([_ | _], instance(N, Par, Chd), instance(N, y, y)) :-

Par == y,

Chd == y,

!.

% 2 - no more trees to check.

update_instance([], Instance, Instance) :- !.

% 3 - next tree's parent unifies with instance, so set children flag to y.

update_instance([tree(_, I1, _, _) | RestForest], instance(I2, Par, _),

UpdatedInstance) :-
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I1 == I2,

update_instance(RestForest, instance(I2, Par, y), UpdatedInstance), !.

% 4 - next tree contains instance as a child, so set parent flag to y.

update_instance([tree(ID, _, C, _) | RestForest], instance(N, _, Chd),

UpdatedInstance) :-

indexed(ID, #_, N),

strict_child_present(N, C),

update_instance(RestForest, instance(N, y, Chd),

UpdatedInstance), !.

% 5 - none of the above apply, so ignore the next tree

update_instance([_ | RestForest], Instance, UpdatedInstance) :-

update_instance(RestForest, Instance, UpdatedInstance).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% REMOVING UNNECESSARY INSTANCES %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% rationalise_instances(Instance, CurrentInstances, Inc, Skept,

% NewInstances, IncChange)

% If Instance is inferred and both flags set to 'n', it isn't added to

% NewInstances; otherwise, it is, providing it doesn't occur elsewhere

% in CurrentInstances; Inc is the original Inc of the instance;

% if it is removed, IncChange is - Inc; otherwise, IncChange is

% NewInc - Inc. Better to determine the inc of instances here,

% as it saves finding inc for instances which are going to be

% removed anyway.

% 1 - terminating: if instance is inferred and occurs in no trees, remove it.

rationalise_instances(instance(#_, n, n), Instances, Inc, _,

Instances, ClippedIncChange) :-

IncChange is 0 - Inc,

clip(IncChange, ClippedIncChange), !.

% 2 - terminating: instance has child or parent flag set to y,

% so add to output if it is not duplicated in the list of

% CurrentInstances; otherwise, return original list and incchange = 0

rationalise_instances(instance(C, Par, Chd), Instances, Inc, Skept,

NewInstances, ClippedIncChange) :-
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instance_duplicated(instance(C, Par, Chd, _), Instances)

->

Instances = NewInstances,

ClippedIncChange = 0

;

instance_inc(instance(C, Par, Chd), Skept, NewInstance, NewInc),

IncChange is NewInc - Inc,

clip(IncChange, ClippedIncChange),

NewInstances = [NewInstance | Instances], !.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% TRANSFER PROCEDURES %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% TRANSFERRING WHOLE TREES %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% do_transfer(Reprs, Skept, NewExts)

% Tries to do either a tree + instances, or instance only, transfer

% with the current set of representations; will fail if no

% representation in Reprs has a transferrable tree or instance

% 1 - try to transfer a tree: requires at least one representation

% to have at least one tree in STS

do_transfer([Repr | RestCurrentReprs], Skept, NewExts) :-

member(repr(_ ^ [_ | _], _, _), [Repr | RestCurrentReprs]),

action([Repr | RestCurrentReprs], transfer_tree, Skept, NewExts), !.

% 2 - try to transfer an instance: requires at least one

% representation to have at least one instance in STS

do_transfer([Repr | RestCurrentReprs], Skept, NewExts) :-

member(repr([_ | _] ^ _, _, _), [Repr | RestCurrentReprs]),

action([Repr | RestCurrentReprs], transfer_instance, Skept, NewExts).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% transfer_tree(repr(STSExgraph, LTSExgraph, Inc), Skept,

% repr(NewSTSExgraph, NewLTSExgraph, NewInc))

% Transfers elts from STS to LTS, reducing incoherence of STS

% in the process.

% Transfer is initially tree-based, and follows these steps:

% 1. Select the tree in STS with lowest incoherence;

% 2. Find all instances dependent on that tree;

% 3. Transfer the tree and its dependent instances to LTS.

% An instance is dependent on a tree T in STS if it is a child of

% T and the child of no other tree in STS.

transfer_tree(repr(STSI1 ^ STSF1, LTSI1 ^ LTSF1, _), Skept,

repr(NewSTS, LTSI2 ^ LTSF2, NewInc)) :-

select_transfer_tree(STSF1, Tree, STSF2),

dependent_instances(Tree, STSF2, STSI1, STSI2, Dependents),

move_to_LTS(Dependents, LTSI1, LTSI2),

move_to_LTS([Tree], LTSF1, LTSF2),

inc(STSI2 ^ STSF2, Skept, NewSTS, NewInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% select_transfer_tree(Forest1, Tree, Forest2)

% Selects the tree Tree from Forest1 with lowest inc, with Forest2

% as the remainder.

% Sets the first tree in Forest1 as the 'sofar', then attempts to

% find a tree with lower inc using an accumulator.

% N.B. have to select it then remove it to prevent forest ordering

% being disrupted

select_transfer_tree([Tree | Rest], Selected, Forest2) :-

select_transfer_tree1(Rest, Tree, Selected),

remove(Selected, [Tree | Rest], Forest2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% select_transfer_tree1(Forest, SelectedTreeSofar, SelectedTree)

% Selects the least incoherent tree as the tree to be transferred;

% if two trees have equal inc, the oldest one (i.e. created earliest) is

% selected as the transfer tree.

% 1 - terminating: Forest is empty, so best tree found Sofar is

% SelectedTree

select_transfer_tree1([], Sofar, Sofar).



Appendix C. IDC Program Code 301

% 2 - recursive: if next tree has equal to or lower inc than the

% current Sofar, make it the sofar; otherwise, retain the current sofar.

% This should ensure that if trees are equally incoherent, oldest is

% transferred first.

select_transfer_tree1([tree(ID1, P1, C1, Inc1) | Rest],

tree(ID2, P2, C2, Inc2), Selected) :-

Inc1 =< Inc2

->

select_transfer_tree1(Rest, tree(ID1, P1, C1, Inc1), Selected)

;

select_transfer_tree1(Rest, tree(ID2, P2, C2, Inc2), Selected).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% dependent_instances(Tree, Forest, Instances, RestInstances,

% DependentInstances)

% Tree = tree selected for transfer

% Forest = trees currently in STS (other than Tree)

% Instances = list of instances in STS

% DependentInstances = instances in Instances which occur in a

% parented tree and not anywhere else in Forest

% RestInstances = Instances with all DependentInstances removed

% (i.e. instances which will remain in STS after transfer).

dependent_instances(tree(_, Parent, Children, _), Forest, Instances1,

Instances2, Dependents) :-

dependent_on_tree([Parent | Children], Instances1, Forest, [],

Instances2, Dependents).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% dependent_on_tree(TreeInstances, Instances1, Forest, Sofar,

% Instances2, TreeDependents)

% TreeInstances = the parent and children of a tree to be transferred

% to LTS. Each element of TreeInstances is checked against Forest -

% If the element occurs in no other tree and the corresponding instance

% is in STS, it is removed from Instances1 and added to the sofar list;

% If the element occurs in no other tree and is not in STS, it is ignored;

% If it occurs in another tree, it is not dependent on the tree,

% and remains in Instances1.

% 1 - terminating: all elements of tree have been checked.
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dependent_on_tree([], Instances, _, Dependents, Instances, Dependents).

% 2 - recursive: if the next element's corresponding instance is in

% STS, then check whether it can be transferred (i.e. whether it

% occurs in another tree in STS); if the corresponding instance is

% not in STS, then that element is ignored, as it cannot be transferred

% (it's already in LTS).

dependent_on_tree([Elt | RestElts], Instances1, Forest, Sofar,

InstancesLeft, TreeDependents) :-

strict_retrieve_instance(Elt, Instances1, Retrieved, Instances2)

->

transferrable(Forest, Retrieved, Instances2, Instances3,

Sofar, NewSofar),

dependent_on_tree(RestElts, Instances3, Forest, NewSofar,

InstancesLeft, TreeDependents)

;

dependent_on_tree(RestElts, Instances1, Forest, Sofar,

InstancesLeft, TreeDependents).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% transferrable(Forest, Instance, CurrentInstances, NewInstances,

% DependentsSofar, NewDependentsSofar)

% If RetrievedInstance occurs in Forest, it is not transferrable, and the

% NewDependentsSofar = DependentsSofar

% and NewInstances = [RetrievedInstance | CurrentInstances];

% Else, RetrievedInstance is transferrable, and is added to the

% sofar list and NewInstances = CurrentInstances.

% So, once the instance has been retrieved, this procedure

% decides whether it can be added to the list of instances to be

% transferred, or whether it has to remain in STS.

% 1 - terminating: RetrievedInstance hasn't strictly matched a

% child of any tree in Forest, so can be added to the list of dependents.

transferrable([], instance(Content, Par, Chd, Inc), Instances,

Instances, Sofar, [instance(Content, Par, Chd, Inc) | Sofar]).

% 2 - terminating: RetrievedInstance strictly matches a child of

% the next tree in Forest, so isn't transferrable.

transferrable([tree(_, _, Children, _) | _], instance(Content, y, Chd, Inc),

Instances, [instance(Content, y, Chd, Inc) | Instances], Sofar, Sofar) :-

strict_child_present(Content, Children), !.



Appendix C. IDC Program Code 303

% 3 - terminating: RetrievedInstance strictly matches a parent

% of the next tree in Forest, so isn't transferrable.

transferrable([tree(_, Parent, _, _) | _], instance(Content, Par, y, Inc),

Instances, [instance(Content, Par, y, Inc) | Instances], Sofar, Sofar) :-

Content == Parent, !.

% 4 - recursive: RetrievedInstance doesn't strictly match a child

% or parent of the next tree, so recurse with the rest of Forest.

transferrable([_ | RestForest], Instance, Instances1, Instances2,

Sofar, NewSofar) :-

transferrable(RestForest, Instance, Instances1, Instances2,

Sofar, NewSofar).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% TRANSFERRING SINGLE INSTANCES %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% transfer_instance(Repr, NewRepr)

% NB When instances are transferred, all trees will already have gone;

% remaining instances will therefore have no parents or children.

transfer_instance(repr(STSI1 ^ STSF1, LTSI1 ^ LTSF1, Inc),

repr(STSI2 ^ STSF1, LTSI2 ^ LTSF1, ClippedNewInc)) :-

select_transfer_instance(STSI1, instance(C, Par, Chd, InstanceInc),

STSI2),

move_to_LTS([instance(C, Par, Chd, InstanceInc)], LTSI1, LTSI2),

NewInc is Inc - InstanceInc,

clip(NewInc, ClippedNewInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% select_transfer_instance(STSInstances, Selected, STSInstancesLeft)

% 1 - transfer out least incoherent instances first

select_transfer_instance(STSI1, instance(C, Par, Chd, InstanceInc), STSI2) :-

select_instance(least_inc, STSI1,

instance(C, Par, Chd, InstanceInc), STSI2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% MOVING R-ELTS TO LTS %%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% move_to_LTS(EltsToMove, LTSElts, NewLTSElts)

% Attaches a set of r-elts to the current LTS to produce NewLTSElts.

% Could make this more complicated, so that transfer is probabilistic,

% e.g.: Transfer failure probability = inc of elt/total inc of STS

% (This is a measure of relative incoherence.)

% As more elts are transferred out, the remaining elements occupy a

% larger portion of the remaining inc, so failure probability increases.

% Could also try bulk transfer, where the transfer success

% probability for a whole block of information = new inc / original inc, etc.

% Would be more complicated, as lost information would require updating

% of trees (similar to the updating process when unnecessary elements

% are removed).

move_to_LTS(Elts, LTSElts, NewLTSElts) :-

append(Elts, LTSElts, NewLTSElts).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% INCOHERENCE METRIC PROCEDURES %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% inc(ExgraphIn, Skepticism, ExgraphOut, TotalInc)

% The format for individual instances and trees is described in the

% head of the program.

inc(InstancesIn ^ TreesIn, Skept, InstancesOut ^ TreesOut, ClippedInc) :-

instances_inc(InstancesIn, Skept, InstancesOut, InstancesInc),

trees_inc(TreesIn, Skept, TreesOut, TreesInc),

Inc is InstancesInc + TreesInc,

clip(Inc, ClippedInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% instances_inc(InstancesIn, Skept, InstancesOut, InstancesInc)

% Adds together inc values of instances which have been assigned them;
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% otherwise, calculates inc and annotates the instance.

instances_inc(InstancesIn, Skept, InstancesOut, InstancesInc) :-

instances_inc(InstancesIn, Skept, InstancesOut, 0, InstancesInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% instances_inc(InstancesIn, Skept, InstancesOut, Acc, InstancesInc)

% 1 - terminating: no more trees to process

instances_inc([], _, [], InstancesInc, InstancesInc).

% 2 - recursive: next instance has already been assigned incoherence

instances_inc([instance(Content, Par, Chd, Inc) | RestInstances], Skept,

[instance(Content, Par, Chd, Inc) | RestOut], Acc, InstancesInc) :-

NewAcc is Acc + Inc,

instances_inc(RestInstances, Skept, RestOut, NewAcc, InstancesInc).

% 3 - recursive for 'raw' instances (i.e. those without incoherence calculated)

instances_inc([instance(Content, Par, Chd) | RestInstances], Skept,

[NewInstance | RestOut], Acc, InstancesInc) :-

instance_inc(instance(Content, Par, Chd), Skept, NewInstance, Inc),

NewAcc is Acc + Inc,

instances_inc(RestInstances, Skept, RestOut, NewAcc, InstancesInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% trees_inc(TreesIn, Skept, TreesOut, TreesInc)

% Determines the inc of a forest; each tree will already have been assigned

% its individual incoherence when it was created, so this just adds these

% values together. Alternatively, if a tree has no incoherence assigned,

% this procedure can assign it; the trees are output in annotated form.

trees_inc(TreesIn, Skept, TreesOut, TreesInc) :-

trees_inc(TreesIn, Skept, TreesOut, 0, TreesInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% trees_inc(Trees, Skept, TreesOut, Acc, TreesInc)

% 1 - terminating: no more trees to process

trees_inc([], _, [], TreesInc, TreesInc).

% 2 - recursive: next tree has already been assigned incoherence
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trees_inc([tree(ID, P, C, Inc) | RestTrees], Skept,

[tree(ID, P, C, Inc) | RestOut], Acc, TreesInc) :-

NewAcc is Acc + Inc,

trees_inc(RestTrees, Skept, RestOut, NewAcc, TreesInc).

% 3 - recursive for 'raw' trees (i.e. those without incoherence calculated)

trees_inc([tree(ID, P, C) | RestTrees], Skept, [NewTree | RestOut],

Acc, TreesInc) :-

tree_inc(tree(ID, P, C), Skept, NewTree, Inc),

NewAcc is Acc + Inc,

trees_inc(RestTrees, Skept, RestOut, NewAcc, TreesInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% ONE INSTANCE INC PROCEDURES %%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Used to determine inc caused by those instances which are at the

% roots or leaves of the exgraph; NB has nothing to do with alternative

% explanations, alternative elaborations, and so on - these are dealt

% with by processing the trees.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% instance_inc(Instance, Skept, AnnotatedInstance, InstanceInc)

instance_inc(instance(Instance, Parents, Children), Skept,

instance(Instance, Parents, Children, InstanceInc2), InstanceInc2) :-

lookup_node(Instance, Inf, Ubi),

value(Instance, Parents, Ubi, Skept, Xinc),

value(Instance, Children, Inf, Skept, Einc),

InstanceInc is Xinc + Einc,

clip(InstanceInc, InstanceInc2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% value(Instance, Present, Value, Skept, InstanceInc)

% Used to determine both types of inc (xinc and einc) for individual

% instances.

% Instance = @_ (observed) or #_ (inferred)

% Present is either a y or n, denoting whether an instance has

% parents or children, depending on context;

% Value is either inf or ubi, depending on context.
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% 1 - observed instance with parents or children not present

value(@_, n, Value, _Skept, InstanceInc) :-

InstanceInc is Value - 1.

% 2 - observed instance with parents or children present

value(@_, y, _, _, 0).

% 3 - inferred instance with parents or children not present

value(#_, n, Value, Skept, InstanceInc) :-

InstanceInc is Value * Skept.

% 4 - inferred instance with parents or children present

value(#_, y, _, _, 0).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% ONE TREE INC PROCEDURES %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% tree_inc(Tree, Skept, AnnotatedTree, TreeInc)

% Determines the incoherence caused by missing trees, based on

% which tree is present.

% Used to determine the incoherence of a tree of form

% tree(ID, Parent, Children, CurrentInc)

% Returns the tree unchanged except for its inc.

tree_inc(tree(ID, P, C), Skept, tree(ID, P, C, TreeInc2), TreeInc2) :-

alt_expls_inc(tree(ID, P, C), Skept, AltExplsInc),

alt_elabs_inc(tree(ID, P, C), Skept, AltElabsInc),

TreeInc is AltExplsInc + AltElabsInc,

clip(TreeInc, TreeInc2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% ALTERNATIVE EXPLANATIONS %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% alt_expls_inc(Tree, Skept, AltExplsInc)

% Finds all alternative explanations of the observed children of Tree

% 1 - if no inferred children, schema is completed, so other possible expls
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% have even less influence

alt_expls_inc(tree(ID, Parent, Children), Skept, AltExplsInc2) :-

member(#_, Children)

->

other_parents(Children, ID, OtherExpls),

other_parents_inc(OtherExpls, ID, Parent, Skept, AltExplsInc2)

;

other_parents(Children, ID, OtherExpls),

other_parents_inc(OtherExpls, ID, Parent, Skept, AltExplsInc1),

AltExplsInc2 is AltExplsInc1 * Skept, !.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% other_parents(Children, ID, OtherPossParents)

% OtherPossParents is the set of schema parents which could

% potentially explain the observed Children of a tree.

% Sets up the accumulator with all possible explanations of the

% first child and calls other_parents1/4.

% 1 - no children are observed, so OtherPossParents is empty

other_parents([], _, []).

% 2 - if the first child is observed, set up accumulator.

other_parents([@H | T], ID1, OtherExpls) :-

find_one_parents(H, ID1, OneParents),

other_parents1(T, OneParents, ID1, OtherExpls).

% 3 - if first child is inferred, ignore it.

other_parents([#_ | T], ID1, OtherExpls) :-

other_parents(T, ID1, OtherExpls).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% other_parents1(Children, Acc, ID, OtherPossParents)

% The accumulator initially contains the other possible parents

% of the first child, connected to the IDs of the schemas which

% could have been used.

% 1 - terminating: unify the list of other possible parents with

% the sofar list.

other_parents1([], PossParents, _, PossParents).

% 2 - recursive: find all possible parents of the next observed
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% child, and intersect this with the list of possible parents

% of previous children.

other_parents1([@H | T], Acc, ID1, OtherPossParents) :-

find_one_parents(H, ID1, OneParents),

intersection(OneParents, Acc, NewAcc),

other_parents1(T, NewAcc, ID1, OtherPossParents).

% 3 - recursive: next child inferred, so ignore it.

other_parents1([#_ | T], Acc, ID, OtherPossParents) :-

other_parents1(T, Acc, ID, OtherPossParents).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find_one_parents(Child, ParentID, ChildsOtherParents)

% Finds the other possible parents of child, given the actual ParentID

find_one_parents(H, ID1, OneParents) :-

findall([ID2, P],

(index(ID2, P, H), ID2 \== ID1),

OneParents).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% intersection(L1, L2, L3)

% L3 is the intersection between L1 and L2;

% Note that this also strips off the IDs of possible parents, leaving

% just the node.

% 1 - terminating: no more elts in first list

intersection([], _, []).

% 2 - terminating: no more elts in second list

intersection(_, [], []).

% 3 - next element of the first list occurs in the second list, so can be

% added to the list of intersections

intersection([[ID, P] | T1], [[ID, P] | T2], [[ID, P] | T3]) :-

intersection(T1, T2, T3), !.

% 4 - next element of first list doesn't match the next element of

% second list, and has a smaller id, so add it as a possible parent

intersection([[ID1, _] | T1], [[ID2, P2] | T2], L3) :-

ID1 < ID2,
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intersection(T1, [[ID2, P2] | T2], L3).

% 5 - next element of second list doesn't match the next element

% of first list, and has a smaller id

intersection([[ID1, P1] | T1], [[ID2, _] | T2], L3) :-

ID1 > ID2,

intersection([[ID1, P1] | T1], T2, L3).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% other_parents_inc(OtherExpls, ID, Parent, Skept, AltExplsInc)

% Sets up accumulator

other_parents_inc(OtherExpls, ID, Parent, Skept, AltExplsInc) :-

other_parents_inc(OtherExpls, ID, Parent, Skept, 0, AltExplsInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% other_parents_inc(OtherExpls, ID, Parent, Skept, Acc, AltExplsInc)

% For each member E of OtherExpls:

% If E is indexed to Parent

% inc(E) = 0

% Else

% Lookup ubi of E

% If Parent observed

% inc(E) = ubi(E) * Skept/2

% Else (Parent inferred)

% inc(E) = ubi(E) * (Skept + 0.5)

% Endif

% Endif

%

% OtherExpls = list of [PossID, Parent] pairs

% ID = ID of actual explanation

% 1 - terminating: no more other expls to add

other_parents_inc([], _, _, _, AltExplsInc, AltExplsInc).

% 2 - if next member of OtherExpls is indexed to Parent, inc = 0;

% otherwise, lookup the ubi of E wrt parent's type token (# or @)

other_parents_inc([[_, OtherExpl] | T], ID, Parent, Skept, Acc,

AltExplsInc) :-

indexed(ID, Parent, #OtherExpl)

->
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other_parents_inc(T, ID, Parent, Skept, Acc, AltExplsInc)

;

other_expl_inc(Parent, OtherExpl, Skept, OneInc),

NewAcc is Acc + OneInc,

other_parents_inc(T, ID, Parent, Skept, NewAcc, AltExplsInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% other_expl_inc(Parent, OtherExpl, Skept, OneInc)

% 1 - if actual Parent is observed

other_expl_inc(@_, OtherExpl, Skept, OneInc) :-

node(OtherExpl, _, Ubi),

OneInc is Ubi * Skept / 2.

% 2 - if actual Parent is inferred

other_expl_inc(#_, OtherExpl, Skept, OneInc) :-

node(OtherExpl, _, Ubi),

OneInc is Ubi * (Skept + 0.5).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% ALTERNATIVE ELABORATION SETS %%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% alt_elabs_inc(Tree, Skept, AltElabsInc)

% Determines the Inc caused by alternative elaborations:

% (NB this gives the informativity caused by possible elaborations that

% aren't under the schema ID used to create the exgraph)

alt_elabs_inc(tree(ID, Parent, Children), Skept, AltElabsInc) :-

poss_elabs(ID, Parent, PossElabs),

sum_informativity(PossElabs, PossElabsInf),

lookup_node(Parent, Inf, _),

BasicInc is Inf - PossElabsInf,

alt_elabs_inc1(Children, BasicInc, Skept, AltElabsInc).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% poss_elabs(ID, Parent, PossElabs)

% PossElabs is the set of possible elaborations of Parent, wrt schema

% identified by ID
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poss_elabs(ID, Parent, PossElabs) :-

raw_content(Parent, P),

ID: P / _ ---> PossElabs.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% alt_elabs_inc1(Children, BasicInc, Skept, AltElabsInc)

% Applies Skept to BasicInc, according to whether any member of Children

% has been observed (this gives lower AltElabsInc)

% The figure by which Skept is multiplied determines (generally) how

% eager the system is to make elaborative inferences: the closer it is

% to 1, the more reticent it is; when value = 1, elaborative inferences

% which aren't based on the presence of existing observations cease

% to be made, as the elaboration has the same inc as a childless

% inferred instance. Raising this value reduces the amount of top-down

% inference from inferred instances.

alt_elabs_inc1(Children, BasicInc, Skept, AltElabsInc) :-

member(@_, Children)

->

AltElabsInc is 0

;

AltElabsInc is BasicInc * Skept * 0.8.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sum_informativity(NodeList, SumInf)

% calls accumulator

sum_informativity(NodeList, SumInf) :-

sum_informativity(NodeList, 0, SumInf).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sum_informativity(NodeList, Acc, SumInf)

% NB these are raw nodes, not marked with # or @

% 1 - terminating: all nodes processed

sum_informativity([], SumInf, SumInf).

% 2 - recursive

sum_informativity([H/_ | T], Acc, SumInf) :-

node(H, Inf, _),

NewAcc is Acc + Inf,
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sum_informativity(T, NewAcc, SumInf).
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C.4 shared.pl

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% ADMINISTRATION AND SHARED PROCEDURES %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% CHECKING CONSTRAINTS %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% check(Constraints)

% Calls each constraint in turn to pass variable bindings along the rule.

% This ensures that relations are dependent on the events they connect, and

% prevents inferring event tokens from the presence of unrelated relations.

check([]).

check([H | T]) :-

call(H),

check(T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% X1 ==> X2

% Binds variables between two terms, from the term on the left of the

% arrow to the one on the right (directed unification).

% 1 - two variables

X1 ==> X2 :-

var(X1),

var(X2),

X1 = X2, !.

% 2 - atom and variable

X1 ==> X2 :-

\+ X1 == [],

atomic(X1),

var(X2),

X1 = X2, !.

% 3 - two non-variables

X1 ==> X2 :-
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X1 == X2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% combine_raw_content(InstanceRawContent1, InstanceRawContent2)

% Combines the raw content of two nodes, ensuring that bindings go

% only from InstanceContent1 to InstanceContent2.

% (Raw content means that the status symbols have

% been stripped from the content, i.e. the '@' and '#'.)

% InstanceContent2 contains the output, once unification has been checked.

combine_raw_content(event(T1, Pred, Args), event(T2, Pred, Args)) :-

T1 ==> T2.

combine_raw_content(goal(T1, Pred, Args), goal(T2, Pred, Args)) :-

T1 ==> T2.

combine_raw_content(relation(Pred, Args1), relation(Pred, Args2)) :-

Args1 == Args2.

combine_raw_content(habit(Pred, Args), habit(Pred, Args)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% STRUCTURE ACCESS %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% NB loose procedures combine the content of the instance to be

% retrieved with the content used for retrieval; strict procedures

% only match the content of two instances

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% loose_remove_duplicates(Items1, Items2)

% Items2 is Items1 with all duplicated items removed;

% 1 - terminating

loose_remove_duplicates([], []).

% 2 - recursive: FOR INSTANCES

% if next item is duplicated in the tail of the input instance list,

% remove it from consideration; else, add next item to the output

% and recurse with the tail of the first list

loose_remove_duplicates([instance(C, Par, Chd, Inc) | T], List2) :-
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instance_duplicated(instance(C, Par, Chd, Inc), T)

->

loose_remove_duplicates(T, List2)

;

loose_remove_duplicates(T, RestList2),

List2 = [instance(C, Par, Chd, Inc) | RestList2].

% 3 - recursive: FOR TREES

% if next item is duplicated in the tail of the input instance list,

% remove it from consideration; else, add next item to the output

% and recurse with the tail of the first list

loose_remove_duplicates([tree(ID, Par, Chd, Inc) | T], List2) :-

tree_duplicated(tree(ID, Par, Chd, Inc), T, _)

->

loose_remove_duplicates(T, List2)

;

loose_remove_duplicates(T, RestList2),

List2 = [tree(ID, Par, Chd, Inc) | RestList2].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% instance_duplicated(Instance, InstancesList)

% True when Instance is duplicated by another instance in InstancesList

% 1 - terminating:

% instance X is duplicated in list L if the raw content of X can

% be combined with the raw content of an instance Y in L, and X and

% Y have the same Parent and Children flag settings, and the same inc

instance_duplicated(instance(Content1, _, _, _),

[instance(Content2, _, _, _) | _]) :-

raw_content(Content1, Raw1),

raw_content(Content2, Raw2),

copy_term(Raw1, Raw1Copy),

copy_term(Raw2, Raw2Copy),

(combine_raw_content(Raw1Copy, Raw2Copy) ;

combine_raw_content(Raw2Copy, Raw1Copy)), !.

% 2 - recursive: try a later item in InstancesList1:

instance_duplicated(instance(C, Par, Chd, Inc), [_ | T]) :-

instance_duplicated(instance(C, Par, Chd, Inc), T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% tree_duplicated(Tree, Forest1, Forest2)

% Forest2 is Forest1 minus the duplication of Tree

% 1 - terminating

tree_duplicated(tree(ID, Parent1, _, Inc),

[tree(ID, Parent2, _, Inc) | Rem], Rem) :-

copy_term(Parent1, Parent1Copy),

copy_term(Parent2, Parent2Copy),

loose_match(Parent1Copy, Parent2Copy), !.

% 2 - recursive: try a later item in List1

tree_duplicated(Item, [H | T], [H | Rem]) :-

tree_duplicated(Item, T, Rem).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% strict_retrieve_instance(Content, Instances1, RetrievedInstance,

% Instances2)

% Instances2 is Instances1 minus RetrievedInstance; the content of

% RetrievedInstance exactly matches Content. Doesn't update

% status or variable bindings.

% 1 - terminating: next instance's content exactly matches Content

strict_retrieve_instance(Content1, [instance(Content2, Par, Chd, Inc) | Rest],

instance(Content2, Par, Chd, Inc), Rest) :-

Content1 == Content2, !.

% 2 - recursive: try later instances for exact match.

strict_retrieve_instance(Content1, [Instance | Rest1], Retrieved,

[Instance | Rest2]) :-

strict_retrieve_instance(Content1, Rest1, Retrieved, Rest2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% loose_retrieve_instance(ContentToRetrieve, Instances1,

% RetrievedInstance, Instances2),

% Instances2 is Instances1 minus RetrievedInstance; the content of

% RetrievedInstance can be combined with the content of ContentToRetrieve.

% Also note that this updates the status of the retrieved instance,

% e.g. from '#' to '@'.

% 1 - terminating: next instance in instance list is observed,

% and can be combined with Content1.
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loose_retrieve_instance(Content1,

[instance(@Content2, Par, Chd, Inc) | RestInstances],

instance(@Content1, Par, Chd, Inc), RestInstances) :-

combine_content(Content2, Content1), !.

% 2 - terminating: next instance in instance list is inferred,

% and can be combined with Content1.

loose_retrieve_instance(Content1,

[instance(#Content2, Par, Chd, Inc) | RestInstances],

instance(#Content1, Par, Chd, Inc), RestInstances) :-

combine_content(Content2, Content1), !.

% 3 - recursive: next instance doesn't combine, so recurse with rest

% of instance list.

loose_retrieve_instance(Content, [Instance | RestInstances1],

RetrievedInstance, [Instance | RestInstances2]) :-

loose_retrieve_instance(Content, RestInstances1,

RetrievedInstance, RestInstances2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% tree_present(Tree, Forest)

% 1 - terminating: Tree has same ID and matching parent as next tree in

% Forest.

tree_present(tree(ID, P1, _, _), [tree(ID, P2, _, _) | _]) :-

loose_match(P1, P2), !.

% 2 - terminating: as 1, but for trees not assigned incoherence yet

tree_present(tree(ID, P1, _, _), [tree(ID, P2, _) | _]) :-

loose_match(P1, P2), !.

% 3 - recursive

tree_present(Tree, [_ | T]) :-

tree_present(Tree, T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% strict_child_present(Child, Children)

% Child must exactly match a member of Children, i.e. have the same

% token and variable bindings

% 1 - terminating: next element of Children matches Child.
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strict_child_present(Child1, [Child2 | _]) :-

Child1 == Child2, !.

% 2 - recursive

strict_child_present(Child, [_ | T]) :-

strict_child_present(Child, T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% loose_child_present(Child, Children)

% Child is instance content annotated with @ or #; children is a

% list of the same format elements.

% 1 - terminating: next element of Children matches Child.

loose_child_present(Child1, [Child2 | _]) :-

loose_match(Child1, Child2), !.

% 2 - recursive

loose_child_present(Child, [_ | T]) :-

loose_child_present(Child, T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% loose_match(Instance1, Instance2)

% Matches two instances, which may or may not be inferred.

% NB the content of the instance must be the same, regardless of

% whether both or either are inferred.

% 1 - covers cases where both are observed, or both inferred

loose_match(I, I).

% 2 - first instance inferred

loose_match(#I, @I).

% 3 - second instance inferred

loose_match(@I, #I).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% select_instance(Which?, Instances, SelectedInstance, OtherInstances)

% Which? = 'least_inc' for the instance in Instances with lowest inc,

% or 'most_inc' for the instance with the highest inc, or 'any'.

% Calls accumulator with first instance as sofar.
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% 1a - any instance, so select the first one

select_instance(any, [Instance | Rest], Instance, Rest).

% 1b - any instance from further down the list

select_instance(any, [Instance | Rest1], Selected, [Instance | Rest2]) :-

select_instance(any, Rest1, Selected, Rest2).

% 2 - first instance in instance list

select_instance(first, [Instance | Rest], Instance, Rest).

% 3 - most or least inc: call sub-procedure

select_instance(Which, [Instance | Rest], Selected, OtherInstances) :-

(Which == most_inc; Which == least_inc),

select_instance(Rest, Which, Instance, Selected, OtherInstances).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% select_instance(Instances, Sofar, SelectedInstance, OtherInstances)

% 1 - terminating: no more instances, so set sofar instance to

% SelectedInstance

select_instance([], _, Selected, Selected, []).

% 2 - recursive: next instance has higher incoherence, so make

% it sofar and put current sofar onto output.

select_instance([NextInstance | Rest], Which, Sofar, Selected,

[Output | Other]) :-

compare_incs(Which, NextInstance, Sofar, Output, NewSofar),

select_instance(Rest, Which, NewSofar, Selected, Other).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compare_incs(Which, Instance1, Sofar, Output, NewSofar)

% Compares the inc of Instance1 and Sofar; depending on the instantiation

% of Which, will put the instance with lowest or highest inc into

% NewSofar, and the other instance into Output

compare_incs(least_inc, instance(C1, Par1, Chd1, Inc1),

instance(C2, Par2, Chd2, Inc2), instance(C1, Par1, Chd1, Inc1),

instance(C2, Par2, Chd2, Inc2)) :-

Inc2 =< Inc1, !.

compare_incs(least_inc, instance(C1, Par1, Chd1, Inc1),
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instance(C2, Par2, Chd2, Inc2), instance(C2, Par2, Chd2, Inc2),

instance(C1, Par1, Chd1, Inc1)).

compare_incs(most_inc, instance(C1, Par1, Chd1, Inc1),

instance(C2, Par2, Chd2, Inc2), instance(C1, Par1, Chd1, Inc1),

instance(C2, Par2, Chd2, Inc2)) :-

Inc2 >= Inc1, !.

compare_incs(most_inc, instance(C1, Par1, Chd1, Inc1),

instance(C2, Par2, Chd2, Inc2), instance(C2, Par2, Chd2, Inc2),

instance(C1, Par1, Chd1, Inc1)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% raw_content(Content, RawContent)

% Returns the raw content of an instance's content, i.e. strips off

% the # or @ symbol.

raw_content(#I, I).

raw_content(@I, I).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% indexed(ID, I1, I2)

% Determines whether there is an index that links instances I1 and I2,

% regardless of whether they are inferred or observed.

% 1

% Both instances inferred

indexed(ID, #I1, #I2) :-

index(ID, I1, I2).

% 2

% First instance inferred

indexed(ID, #I1, @I2) :-

index(ID, I1, I2).

% 3

% Second instance inferred

indexed(ID, @I1, #I2) :-

index(ID, I1, I2).
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% 4

% Both instances observed

indexed(ID, @I1, @I2) :-

index(ID, I1, I2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% lookup_node(Node, Inf, Ubi)

% Finds a node's definition (node/3 clause), or uses a default one for

% unknown nodes;

% Node may be prefixed with '#' or '@'.

% 1 - for known observed nodes:

% cut prevents backtracking incorrectly into second clause

lookup_node(@Node, Inf, Ubi) :-

node(Node, Inf, Ubi), !.

% 2 - for known inferred nodes:

% cut prevents backtracking incorrectly into second clause

lookup_node(#Node, Inf, Ubi) :-

node(Node, Inf, Ubi), !.

% 3 - for unknown nodes: set inf and ubi to 1

% As unknown nodes will not be processed, their inc always

% = inf - 1 + ubi - 1 = 1-1 + 1-1 = 0 (i.e. no potential structure)

lookup_node(_, 1, 1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% clip(Number, NumberClipped)

% Truncates Number to three decimal places to give NumberClipped

clip(N1, N2) :-

A is floor(N1),

B is N1 - A,

C is B * 10000,

D is round(C),

E is D / 10000,

N2 is A + E.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%% OUTPUT PROCEDURES %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% WRITING INDICES and NODES TO SCREEN %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% show nodes and indexes

show :-

shown,

showi.

% show nodes

shown :-

findall(node(Node, Inf, Ubi), node(Node, Inf, Ubi), AllNodes),

wl(AllNodes).

% show indexes

showi :-

findall(index(ID, LH, RH), index(ID, LH, RH), AllIndices),

wl(AllIndices).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% WRITING TO STREAM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_status(Cycle, Skept, Tolerance, Range)

% Writes the current status of comprehension process to screen.

write_status(Cycle, Skept, Tolerance, Range) :-

write('Cycle number = '), write(Cycle), nl,

write('Skepticism = '), write(Skept), tab(10),

write('Tolerance = '), write(Tolerance), nl,

write('Range = '), write(Range), nl, nl.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_exts(Extensions)

% An extension has the form
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% ext(Repr, Rating)

% where Rating is incoherence change.

write_exts([ext(Repr, IncChange)]) :-

write_extension(ext(Repr, IncChange)),

write('ALL EXTENSIONS WRITTEN'), nl,

write_line, nl, nl,

continue(Repr).

write_exts([ext(Repr, IncChange) | Rest]) :-

write_extension(ext(Repr, IncChange)),

write('PRESS RETURN FOR NEXT EXTENSION'), nl,

continue(Repr),

write_exts(Rest).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_extensions_to_file(Extensions)

% Same as write_extensions, but without prompts.

write_extensions_to_file([]).

write_extensions_to_file([ext(Repr, IncChange) | Rest]) :-

write_extension(ext(Repr, IncChange)),

write_extensions_to_file(Rest).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_extension(ext(Repr, Rating))

% Write a single extension to output stream.

write_extension(ext(Repr, Rating)) :-

write_repr(Repr),

write_rating(Rating), nl,

nl,

write('********************************************************'),

nl.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_rating(Rating)

% Rating is a number (i.e. reduction in incoherence) or a message

% describing how an observation has been added to the representation

% or which r-elt was transferred
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% 1 - if rating describes observation

write_rating(obs(Message, _IncChange)) :-

write('Observation incorporated by '), write(Message).

% 2 - if rating decribes transfer

write_rating(transfer(Rating)) :-

write('Transfer changed incoherence by '), write(Rating).

% 3 - if rating decribes inference

write_rating(infer(Method, Created, Removed)) :-

TotalIncChange is Created + Removed,

write('Inferred new elements'), nl,

write_method(Method), nl,

write('Total inc change = '), write(TotalIncChange), nl,

write('Incchange due to creation = '), write(Created), nl,

write('Incchange due to removal = '), write(Removed).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_method(Method)

% Method is either top_down or bottom_up, depending on the inference

% method used

write_method(top_down) :-

write('Elements created top-down').

write_method(bottom_up) :-

write('Elements created bottom-up').

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_repr(Repr)

% Writes a single representation to screen.

write_repr(repr(STSExgraph, LTSExgraph, Inc)) :-

nl,

write('----------- STS -----------'),

write_exgraph(STSExgraph),

nl,

write('---------- LTS ----------'),

write_exgraph(LTSExgraph),

nl, nl,
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write('-------- Incoherence = '), write(Inc), write(' --------'),

nl, nl.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_exgraph(Instances ^ Forest)

% Writes a single exgraph to screen.

write_exgraph(Instances ^ Forest) :-

nl,

write('Instances: '), write(Instances), nl, nl,

write('Forest: '), nl, nl,

write_forest(Forest).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_forest(Forest)

% Writes a list of trees to screen. If the list of trees is empty, writes

% NO TREES to screen.

write_forest([]) :-

write('NO TREES').

write_forest([H | T]) :-

write_forest1([H | T]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_forest1(Forest)

% Called by write_forest/1.

write_forest1([]).

write_forest1([H | T]) :-

write(H), nl, nl,

write_forest1(T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_line

% writes a line of asterisks to screen, to separate processing cycles

write_line :-

write('********************************************************'),

nl.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% BOOK-KEEPING AND TESTING %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% continue(Repr)

% If in file mode, just pass true; else prompts for user input if in

% screen mode: if 'r', output current best repr to file;

% otherwise, succeed and continue.

continue(CurrentBestRepr) :-

output_mode(screen), % declared in IDC.pl

get0(114) % 114 = ascii code for 'r'

->

next_number(N),

open('~/IDC_dir/tests.pl', append, Output1),

set_output(Output1),

Clause =.. [testrepr, N, CurrentBestRepr],

portray_clause(Clause),

nl, nl,

close(Output1)

;

true.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% next_number(N)

% Finds the highest numbered testrepr/2 clause, where the number of

% the clause is the first argument, and adds one to it; this is the

% number for the next testrepr/2 clause.

% 1 - find the largest numbered testrepr/2 clause if there is one;

% otherwise, set N to 1.

next_number(N) :-

findall(Num, testrepr(Num, _), Nums),

max_list(Nums, Max),

N is Max + 1.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% WRITING RESULTS TO FILE %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_exts_to_output(OriginalRepr, Extensions)

% Writes the original representation and its extensions to the output.

% USED FOR TESTING PURPOSES

write_exts_to_output(OriginalRepr, Extensions) :-

open('~/IDC_dir/output.pl', write, Output1),

set_output(Output1),

write('ORIGINAL REPRESENTATION:'), nl, nl,

write_repr(OriginalRepr),

nl, nl,

write('*********************************************************'),

nl, nl,

write('EXTENSIONS FOUND:'),

nl, nl,

write('*********************************************************'),

nl, nl,

write_extensions_to_file(Extensions),

close(Output1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% PREDICATES FOR WRITING NODES AND INDICES TO SCREEN %%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_nodes(NodesList)

% writes the set of nodes and their informativities and ubiquities to

% screen

% 1 - terminating: all nodes output

write_nodes([]).

% 2 - recursive: write one, then recurse

write_nodes([node(Node, Inf, Ubi) | RestNodes]) :-

write('Node: '), write(Node), nl,

write('has informativity = '), write(Inf), write(' and '),

write('ubiquity = '), write(Ubi), nl,

write_nodes(RestNodes).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%% PREDICATES FOR WRITING NODES AND INDICES TO FILE %%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% write_clauses_to_stream(TermList)

% writes a list of Prolog clauses to the current output stream

% 1 - terminating: all terms in the list have been written to the

% output stream

write_clauses_to_stream([]).

% 2 - recursive: write the first term in the list to the output stream

% then call write_clauses_to_file recursively on the rest of the terms

% in the list

write_clauses_to_stream([H | T]) :-

portray_clause(H),

write_clauses_to_stream(T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%% LIST PROCESSING %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% append(L1,L2,L3)

append([], L, L).

append([H | T], L2, [H | NewT]) :-

append(T, L2, NewT).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% member(Elt, List) : true if Elt occurs as an element of List

member(Elt, [Elt|_]) :- !.

member(Elt, [_|T]) :- member(Elt, T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% strict_member(Elt, List) : true if Elt matches an element of List

strict_member(Elt1, [Elt2|_]) :-

Elt1 == Elt2, !.

strict_member(Elt, [_|T]) :- strict_member(Elt, T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove_duplicates(Untidy_List, Tidy_List)
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% takes all duplicates out of a list

% e.g. remove_duplicates([a,a,b,b,c], Tidy)

% Tidy = [a,b,c]

remove_duplicates(List, Tidy_List) :-

remove_duplicates(List, [], Tidy_List).

% remove_duplicates/3

% second argument is an accumulator

remove_duplicates([], Sofar, Sofar).

remove_duplicates([H | T], Sofar, Tidy) :-

member(H, T)

->

remove_duplicates(T, Sofar, Tidy)

;

remove_duplicates(T, [H | Sofar], Tidy).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove(Elt, List, NewList)

% NewList is List with Elt removed

remove(Elt, [Elt | Tail], Tail).

remove(Elt, [H | Tail], [H | NewList]) :-

\+ Elt = H,

remove(Elt, Tail, NewList).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove_sublist(Sublist, List, Remainder)

% 1 - terminating: no more elements in Sublist

remove_sublist([Item], List, NewList) :-

remove(Item, List, NewList).

% 2 - recursive: remove first element of Sublist from List, then recurse

% with tail of Sublist

remove_sublist([Head | Tail], List, Remainder) :-

remove(Head, List, NewList),

remove_sublist(Tail, NewList, Remainder).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% wl(List)

% Writes each element of List onto a separate line

wl([]).

wl([H | T]) :-

write(H),

nl,

wl(T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% same_members(L1, L2)

% L1 has the same members as L2 (not necessarily in the same order).

same_members([], []).

same_members([H1 | T1], L2) :-

remove(H1, L2, L3),

same_members(T1, L3).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% strict_remove(Elt, List, NewList)

% NewList is List with Elt removed; Elt must strictly match a member

% of List

strict_remove(Elt1, [Elt2 | Tail], Tail) :-

Elt1 == Elt2.

strict_remove(Elt, [H | Tail], [H | NewList]) :-

Elt \== H,

strict_remove(Elt, Tail, NewList).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% max_list(NumList, Max)

% Max is the largest number in the list of numbers NumList

max_list([], 0).

max_list([H | T], Max) :-
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max_list(T, H, Max).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% max_list(NumList, Acc, Max)

% used by max_list/2

max_list([], Max, Max).

max_list([H | T], Acc, Max) :-

Acc > H

->

max_list(T, Acc, Max)

;

max_list(T, H, Max).
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