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Abstract 

 
The pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii are two of the main 
causes of life-threatening meningoencephalitis in immunocompromised and 
immunocompetent individuals respectively. Following inhalation, cryptococci are 
engulfed by phagocytic cells in the lung and previous studies by our group and others 
have demonstrated that they are then able to survive inside these cells (especially 
macrophages), thus acting as intracellular parasites. This intracellular phase is thought to 
underlie the ability of the pathogens to remain latent for long periods of time within 
infected individuals. Here, we demonstrate that cryptococci can also manipulate host 
macrophages in order to mediate an exquisitely controlled ‘escape’ process. This 
expulsive process, which we have termed ‘vomocytosis’, can occur either into the 
extracellular milieu or, remarkably, into neighbouring host cells, thus resulting in direct 
cell-to-cell transmission (‘lateral transfer’). After vomocytosis, both the host macrophages 
and the expelled cryptococci appear morphologically normal and continue to proliferate. 
Vomocytosis therefore represents an important mechanism by which pathogens are able 
to escape from phagocytic cells without triggering host cell death and thus inflammation. 
Moreover, direct cell-to-cell spread of cryptococci allows the pathogen to remain 
concealed from the immune system and protected from antifungal agents, thus achieving 
long-term latency. 
 
This project has also provided a possible explanation for the molecular cause of a recent C. 

gattii outbreak on Vancouver Island, Canada. We found that isolates from the outbreak 
have dramatically increased their ability to replicate within macrophages in comparison 
with other C. gattii strains, despite the fact that they are genetically very similar to each 
other. We further demonstrate that such enhanced intracellular parasitism is directly 
linked to virulence in a murine model of cryptococcosis, suggesting that this ability might 
be the cause of the outbreak. Finally, application of high-density whole genome tiled 
arrays, confocal microscopy and mating assays reveal regulation of mitochondrial activity 
to be a major driver of virulence in this pathogen group. Taken together, these data 
indicate that a recent change in mitochondrial regulation within the C. gattii lineage has 
led to an increased intracellular proliferative capacity, resulting in the hypervirulent 
phenotype that underlies the outbreak. Such shifts in intracellular replication capacity 
may be a widespread phenomenon in other human pathogens and could potentially 
underpin disease epidemics caused by otherwise unrelated pathogens. 
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Thesis overview 

 
As human beings, we live in a world where novel infectious diseases are appearing and 
old infectious diseases are spreading. Disease emergence is a routine event in the 
evolutionary ecology of pathogens, during which pathogen populations can become more 
virulent or shift arrays of host species. Recently, the increasing incidence of C. neoformans 
infection as a result of the AIDS epidemic, the outbreak of a hypervirulent C. gattii strain 
in Vancouver Island (Canada) and the fact that mortality from cryptococcal disease 
remains high have stimulated intensive research into these organisms.  
 
Cryptococcus has been found to live inside host cells for more than 40 years, but detailed 
studies on its intracellular behaviour only started about 10 years ago, mainly by several 
groups, including Arturo Casadevall, Stuart Levitz and others. To date, both in vitro and 
in vivo data have demonstrated that Cryptococcus belongs to the group of intracellular 
pathogens that can adapt inside various host cells including phagocytes like macrophages, 
dendritic cells, monocytes and neutrophils. Studies with macrophages have showed 
intracellular survival is not a consequence of active escape from the mature phagosome, 
but rather is associated with accumulation of intracellular capsular polysaccharides and 
possibly also the presence of other virulence factors, such as the synthesis of melanin-like 
pigment in the cell wall and secretion of proteinases and phospholipases. In this thesis, I 
review the recent advances in our understanding of C. neoformans and C. gattii, including 
intraspecific complexity, virulence factors, and key signalling pathways regulating 
virulence, along with the interaction between these pathogens and the host immune 
system. I then present my main findings on how Cryptococcus can manipulate 
macrophages in order to achieve efficient dissemination, and long term latency & 
persistence. Finally, I provide a short summary discussing the contribution of my work to 
the field and potential experiments can be carried out in future. 
 
The thesis is written in a conventional way with one Introduction section (Chapter I), one 
Materials & Methods section (Chapter II) and four Result chapters (Chapter III-VI). For 
each Result chapter, the discussion follows immediately in order to better explain the data. 
A general discussion (Chapter VII) is given at the end to summarise all the work. A brief 
description of each Result Chapter is given below.  
 
Chapter III focuses the phagocytosis of Cryptococcus by macrophages. This part of the 
work was carried out at the beginning of my PhD in order to optimise various parameters. 
It provides the basis for the later work discussed in chapter IV-VI.  
 
Chapter IV describes two phenomena that occur to Cryptococcus following phagocytosis 
by macrophages: ‘vomocytosis’ and ‘lateral transfer’. They are new observations which 
had never been reported with Cryptococcus at the time the work was carried out.  
 



Chapter V discusses my work on intracellular proliferation capacity of various clinical 
and environmental strains. This part of the PhD revealed that strains from the Vancouver 
Island outbreak (VIO) showed enhanced intracellular proliferation in comparison to many 
other C. gattii strains and that such enhanced intracellular parasitism was linked to 
virulence in the murine model of cryptococcosis. Subsequent microarray and confocal 
microscopy studies demonstrated that the enhanced virulence might be due to regulation 
of cryptococcal mitochondria to form a tubular morphology inside the host cells.  
 
Chapter VI depicts my attempts to verify the role of the mitochondrial genotype in 
virulence. To date, it seems that, although the presence of VIO mitochondrial genotype 
alone is not sufficient, it is required for virulence. Therefore, we propose that both 
mitochondrial genotype and the regulation of mitochondrial activity by nuclear-encoded 
proteins are important for the observed hypervirulence of the VIO strains. However, this 
part of project is still in its preliminary stage and needs more work to draw a solid 
conclusion.  
 
Several sections of the thesis have been published: Chapter I was published as a book 
chapter in Advanced in Applied Microbiology (2009); Much of the work in Chapter IV 
was published back to back with Arturo Casadevall’s group in Current Biology (2006) and 
BMC Immunology (2007); The work in Chapter V on intracellular proliferation was 
recently accepted by Proceedings of the National Academy of Sciences (2009). 
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1.1 Cryptococcus 

 

The genus Cryptococcus contains 40 heterobasidiomycetous fungal species characterised 

as variously encapsulated budding yeasts, of which only Cryptococcus neoformans and 

Cryptococcus gattii are commonly considered as the causative agents of cryptococcosis 

(Casadevall and Perfect 1998). C. neoformans was first identified as a human pathogen 

in the 1890s (Buschke 1895; Busse 1894). It exists predominantly as a vegetative haploid 

form and is heterothallic with each cell existing as one of two distinct mating types: 

MATa or MATα. In response to nutrient limitation, cells of opposite mating type mate 

to form the filamentous teleomorph and produce basidiospores (Kwon-Chung 1975; 

Kwon-Chung 1976). Under the microscope, most clinical isolates of C. neoformans 

appear as encapsulated spherical yeasts in both tissue and culture (Mitchell and Perfect 

1995). The capsule size varies according to the strain and culture conditions with most 

isolates having a medium-sized capsule resulting in a total diameter of 4-10µm (Figure 

1). Poorly encapsulated strains have diameters of only 2-5µm whereas heavily 

encapsulated isolates can have a cell diameter of up to 80µm (Casadevall and Perfect 

1998).  

 

C. neoformans can cause human infections following inhalation of the small airborne 

propagule (believed to be either basidiospores or poorly encapsulated yeast cells) 

originating from certain environments such as soil and avian habitats (Casadevall and 

Perfect 1998; Velagapudi et al. 2009). Therefore, the lung is invariably the portal of 

entry and initial site of infection. However, C. neoformans not only has the ability to 

simply colonise the host’s respiratory tract without causing disease (latency) in 

immunocompetent individuals (Garcia-Hermoso et al. 1999), but is also capable of 

disseminating to any organ of the human body, with a predilection for the central 

nervous system (CNS). The resulting meningoencephalitis represents the most severe 

form of the disease and is uniformly fatal if untreated (Casadevall and Perfect 1998).  
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Figure 1: India ink stained capsule (with various sizes) around budding C. neoformans 
cells.  
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Conventional nomenclature classified C. neoformans into five serotypes (A, B, C, D and 

AD) and three varieties: C. neoformans var. neoformans (serotype D), C. neoformans var. 

grubii (serotype A) and C. neoformans var. gattii (serotype B & C) (Franzot et al. 1999; 

Kwon-Chung et al. 1982). Each serotype is characterised by a specific structure of 

glucuronoxylomannan (GXM), the main capsule component (Cherniak et al. 1995). In 

the last decade, a number of DNA genetic typing techniques have been used to 

genotype and study the epidemiology of C. neoformans species. These techniques, 

including electrophoretic karyotyping by pulsed field gel electrophoresis (PFGE), 

random amplification of polymorphic DNA (RAPD), restriction fragment length 

polymorphism (RFLP), DNA hybridization studies, amplified fragment length 

polymorphism (AFLP), polymerase chain reaction (PCR) fingerprinting and multi 

locus sequence typing (MLST) (Boekhout et al. 2001; Boekhout et al. 1997; Brandt et al. 

1995; Currie et al. 1994; Litvintseva et al. 2006; Meyer et al. 1999; Ruma et al. 1996; 

Varma and Kwon-Chung 1992), have resulted in the elevation of C. neoformans var. 

gattii to the species level, based on genetic variability and lack of evidence for genetic 

recombination between C. neoformans and C. gattii (Kwon-Chung et al. 2002). Moreover, 

C. gattii differs from C. neoformans in phenotypic characters, natural habitats, 

epidemiology, clinical manifestations of disease and response to antifungal treatments 

(Casadevall and Perfect 1998; Chen et al. 2000; Sorrell 2001; Speed and Dunt 1995). The 

C. neoformans-C. gattii species complex is further divided into 9 major molecular types 

or genotypes (Figure 2) (Bovers et al. 2008; Ngamskulrungroj et al. 2009). C. neoformans 

var. grubii isolates correspond to molecular types VNI, VNII and VNB; C. neoformans 

var. neoformans corresponds to VNIV; and serotype AD isolates correspond to 

molecular type VNIII. C. gattii corresponds to four molecular types: VGI, VGII, VGIII 

and VGIV and a recent study by Bovers et al has proposed to treat these four molecular 

types as different taxa (varieties), just like var. neoformans and var. grubii (Bovers et al. 

2008). Further morphological and mating studies are required in order to draw final 

conclusions (Ngamskulrungroj et al. 2009). 
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Figure 2: A schematic phylogeny of C. neoformans-C. gattii species complex. For C. neoformans, two monophyletic lineages, corresponding 
to variety grubii and neoformans consistently present along with the hybrid population. Serotypes correspond to genotypes. For C. gattii, 
four monophyletic lineages corresponding to the previously described genotypic groups are consistently found. Serotypes and genotype 
do not necessary correlate to each other. The molecular type VNIV and VGII forms the basal clade within the C. neoformans and C. gattii 
branch of the phylogenetic tree respectively.   
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1.1.1 C. neoformans 

 

C. neoformans usually infects immunocompromised patients (although some exceptions 

have recently been reported, e.g., (Chen et al. 2008)). It can be found in the 

environment worldwide, and is commonly associated with pigeon guano or soil 

(Casadevall and Perfect 1998). Most C. neoformans isolates are either serotype A or 

serotype D. A and D serotypes diverged about 18 million years ago and have always 

been described as varieties, not as separate species (Fan et al. 1994; Xu et al. 2000b). 

Nevertheless, a recent proposal is that these two varieties should be described as 

different species (Bovers et al. 2008), because they have diverged to such an extent that 

normal mating is no longer possible (Sun and Xu 2007), and comparison of their 

genomes shows that there has not been any recent DNA exchange between these two 

varieties (Kavanaugh et al. 2006).  

 

Serotype A is the predominant serotype of C. neoformans isolated from infected patients, 

responsible for 95% of all C. neoformans infections (Hull and Heitman 2002). It is 

subdivided into three molecular types: VNI (AFLP1), VNII (AFLP1B) and VNB 

(AFLP1A) according to MLST and AFLP analysis (Boekhout et al. 2001; Bovers et al. 

2008; Litvintseva et al. 2006) (Figure 2). Such sub-classification is confirmed by recent 

comparative genome hybridisation (CGH) data (Hu et al. 2008). VNI is the most 

common molecule type, contributing 78% of C. neoformans isolates (Meyer et al. 1999). 

The VNB cluster can be further separated into three groups: VNB-A, VNB-B and VNB-

C (Litvintseva et al. 2006). Initially, VNB strains were found only in Botswana 

(Litvintseva et al. 2006), but more recently they have also been recovered from 

Brazilian pigeon droppings and patients in Rwanda, Portugal and Brazil (Bovers et al. 

2008).  

 

Serotype D strains are found globally, but they are more prevalent in areas with 

temperate climates, such as Europe, where 30% of isolates are serotype D (Dromer et al. 

1996). This restricted distribution may be due to the fact that serotype D strains are 
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more susceptible to high temperature than cells of serotype A (Martinez et al. 2001). 

The clinical manifestations of human infections caused by serotype A or D are similar, 

although differences in virulence potential in animal models have been reported 

(Barchiesi et al. 2005; Lin et al. 2008) 

 

Serotype AD is the result of a fusion event between a serotype A strain and serotype D 

strain followed by impaired meiosis due to genomic incompatibilities (Boekhout et al. 

2001; Cogliati et al. 2001; Lengeler et al. 2001; Xu et al. 2002). AD strains are therefore 

diploid (or aneuploid), containing two sets of chromosomes, and possessing two 

mating type alleles. Serotype AD strains are relatively common: a recent analysis of 

environmental and clinical populations of C. neoformans in North America revealed 

that approximately 7.5% of strains isolated from the environment are AD hybrids 

(Litvintseva et al. 2005a). Thus far, the majority of the globally isolated serotype AD 

strains originate in Africa (Litvintseva et al. 2007).  

 

1.1.2 C. gattii 

 

C. gattii was first described after being isolated from a leukemic patient in 1970 

(Vanbreuseghem and Takashio 1970). It mainly infects individuals with no 

immunological defects, although AIDS-associated C. gattii infections have also been 

reported (Chen et al. 2008; Chen et al. 2000; Litvintseva et al. 2005b). It has been 

consistently isolated from decaying wood of several tree species, especially the red 

gum group of Eucalyptus trees (Eucalyptus ser. Exsertae Blakely) (Ellis and Pfeiffer 1992; 

Ellis and Pfeiffer 1990; Fortes et al. 2001; Krockenberger et al. 2002; Lazera et al. 2000). 

The geographic distribution of C. gattii was originally thought to be limited to tropical 

and subtropical regions of the world (Kwon-Chung and Bennett 1984). However, 

recent studies have revealed its worldwide distribution: VGI (AFLP4) strains were 

found to be the most widely distributed (Campbell et al. 2005; Chen et al. 2008; Meyer 

et al. 2003); Strains of the VGII (AFLP6) type are found in areas like Australia and 

America (Fraser et al. 2005; Kidd et al. 2005; Kidd et al. 2004; Meyer et al. 2003); The 
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VGIII (AFLP5) type predominates IberoAmerican countries (Meyer et al. 2003) and can 

also be found in India (Bartlett et al. 2007), whilst the VGIV (AFLP7) type, which has 

been associated with infections in HIV-positive patients (Bovers et al. 2006; Litvintseva 

et al. 2005b), is found in South Africa (Meyer et al. 2003) and Central America (Bartlett 

et al. 2007) etc.  

 

Until recently, C. gattii has been under-studied because C. gattii infections comprise 

only 1% of cryptococcosis cases worldwide. Even in areas like Australia, where C. gattii 

is endemic, the rate of infection is 0.94 cases per million residents per year (Chen et al. 

2000; Sorrell 2001). However, a recent outbreak of cryptococcosis caused by C. gattii has 

stimulated detailed investigation of this organism. This ongoing outbreak was first 

noted in 1999 on Vancouver Island, British Columbia, Canada. Between 2002 and 2006, 

the average annual cryptococcosis incidence rate was 6.5 cases/million in British 

Columbia and 27.9 cases/million on Vancouver Island (Control 2007). In addition to 

human infections, cryptococcal disease has been diagnosed in animals such as dogs, 

cats, horses and even porpoises. In fact, veterinary cases have been diagnosed two to 

three times more frequently than human cases (Lester et al. 2004). So far, the fungus 

has infected more than 176 individuals and spread from Vancouver Island to other 

regions of Canada and the Pacific Northwest (Byrnes et al. 2009a; Byrnes et al. 2009b; 

MacDougall et al. 2007; Upton et al. 2007).  

 

Interestingly, the majority (~90%-95%) of cryptococcal isolates from the island have 

been found to belong to the VGII molecular type, with the rest being VGI (Kidd et al. 

2004). These VGII isolates have been further separated into two discrete subtypes: a 

major form common in environmental and clinical isolates (VGIIA/AFLP6A, 

hypervirulent, e.g., A1M-R265), and a rare minor form presented by one clinical and 

several environmental samples (VGIIB/AFLP6B, with attenuated virulence, e.g., A1M-

R272) (Fraser et al. 2005; Kidd et al. 2005; Kidd et al. 2004). So far, the VGIIA genotype 

has accounted for 78% of the examined veterinary cases and 87% of the human cases 

on Vancouver Island (Bartlett et al. 2007). Surprisingly, MLST (Kidd et al. 2005) and 
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gene genealogy analysis (Fraser et al. 2005) revealed that VGIIA and VGIIB strains 

found on Vancouver Island share similar or identical genotypes with isolates from 

other parts of world. For example, the VGIIA genotype was also shared by the NIH444 

strain (from a patient in Seattle, 1971, which is considered as the potential origin of the 

VGIIA subtype), CBS7750 (from a Eucalyptus tree in San Francisco, 1992), and isolates 

from other parts of the North America (e.g., KB10455). The VGIIB genotype was also 

observed among environmental and clinical isolates from Australia (e.g., Ram005, NT-

13), as well as a clinical isolate from Thailand (MC-S-115) (Fraser et al. 2005; Kidd et al. 

2005). More recent studies confirmed the global distribution of the outbreak genotypes 

(Byrnes et al. 2009a; Byrnes et al. 2009b; Meyer et al. 2007). The wide distribution of 

Vancouver genotypes in other geographical areas makes it difficult to accurately 

determine a specific origin. Current hypotheses are that the species is either a long-

term resident of British Columbia (ancient population), or represents a particularly 

virulent genotype that may be well-adapted to the local conditions and has been 

recently introduced to British Columbia. For instance, Fraser et al reported that the 

VGIIA and VGIIB strains from Vancouver Island shared 14 identical loci after 

examining 30 alleles, and hypothesised that VGIIA isolates might be the result of same-

sex mating (α/α) between a VGIIB isolate and a second unknown VGII isolate in 

Australia, in transit or in the Pacific Northwest (Fraser et al. 2005). However, Meyer et 

al revealed that there were VGIIA and VGIIB isolates recovered as early as in 1986 in 

South America, suggesting that these genotypes may have been present for a long time 

in the Americas rather than being a result of a recent recombination event as suggested 

by Fraser et al (Meyer et al. 2007). 

 

1.1.3 Other species 

 

Besides C. neoformans and C. gattii, there are at least 38 other cryptococcal species found 

in a wide variety of environmental locations, such as Antarctica, the Himalayas and 

saline water (Casadevall and Perfect 1998). However, since most of them are not able to 

survive in mammalian tissue due to the relatively high body temperature and host 
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immune system, infection caused by these species is rare (Kordossis et al. 1998; Krajden 

et al. 1991; Kunova and Krcmery 1999; Loison et al. 1996). Among those causing non-

neoformans cryptococcosis, C. laurentii (20 cases) and C. albidus (18 cases) are responsible 

for most (80%) of such infections (Khawcharoenporn et al. 2007). The transmission, 

virulence factors and host immune response to these species resembles that of C. 

neoformans (Ikeda et al. 2000; McCurdy and Morrow 2003). 

 

1.1.4 Genome sequencing project 

 

The genomes of five cryptococcal strains (JEC21, B3501A, H99, WM276 and A1M-R265) 

have been sequenced (Hu et al. 2008). The JEC21 genome (sequenced at TIGR) is 20Mb 

in size, containing approximately 6572 genes (Loftus et al. 2005), 10% of which are 

unique to C. neoformans (Idnurm et al. 2005). The intron-rich genome encodes a 

transcriptome abundant in alternatively spliced (4.2% of transcriptome) and antisense 

messages (53 genes). The genome is also rich in transposons (~5%), many of which 

cluster at centromeric regions. The presence of these transposons results in genetic 

plasticity and may be responsible for karyotype instability and phenotypic variation 

(Loftus et al. 2005). The sequence difference between JEC21 and B3501A (another 

serotype D isolate, sequenced at Stanford University) is restricted to 50% of their 

genomes, which overall are 99.5% identical at the sequence level (Loftus et al. 2005).  

 

As a basidiomycete fungus, Cryptococcus is evolutionarily distinct from ascomycete 

fungi such as Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and 

many common human fungal pathogens including Candida albicans and Aspergillus 

fumigatus (Hull and Heitman 2002). The completed C. neoformans and C. gattii genome 

sequences permit comparative genomics with fungi from other phyla, although a 

detailed comparison based on all five cryptococcal genomes has not yet been 

undertaken. In addition, the availability of these sequences has made the construction 

of tiling microarrays and CGH studies feasible. So far, CGH in combination with 

physical mapping and sequencing has been applied to study the genome variability 
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within C. neoformans species; and it potentially allows for detailed characterisation of 

the genome of emerging clinically significant strains (e.g., isolates from the VIO) in the 

future (Hu et al. 2008). These studies will provide important information on the 

mechanisms of genome microevolution in these pathogens.  

 

 

1.2 Cryptococcosis 

 

Following inhalation of the infectious particle, a primary pulmonary lymph-node 

complex is formed. In most cases, symptoms do not develop, indicating that most 

immunocompetent people either clear or control the infection before widespread 

symptomatic dissemination occurs (Casadevall and Perfect 1998). Yet frequently the 

yeast will reside in a dormant state, probably within the lymph-node complex (Baker 

1976). Among patients with significant alterations of immunity, including those with 

prolonged corticosteroid administration, haematological malignancies or HIV infection, 

however, disseminated disease is often seen. Cryptococcus can cause localised infections 

in any organ involving the skin, eyes, myocardium, bones, joints, lungs, prostate gland, 

urinary tract or CNS (Perfect 1989). Dissemination may occur from a primary infection; 

acute infection was reported to occur when immunocompromised individuals are 

exposed to large numbers of cryptococcal cells (Nosanchuk et al. 2000b). However, 

there is increasing evidence indicating that dissemination is the result of reactivation of 

dormant disease. For instance, patients coming from tropical areas can be diagnosed 

with C. gattii cryptococcosis long after they have left their countries of origin (Dromer 

et al. 1992). Similarly, Garcia-Hermoso and colleagues analysed cryptococcal clinical 

isolates recovered from patients diagnosed with cryptococcosis in France but born in 

Africa. The RAPD profiles of these isolates were significantly different from that of 

those from 17 European patients, suggesting that Cryptococcus can be acquired long 

before the infection develops, as these patients had been living in France for 
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approximately 10 years and had not been in contact with an African environment for 

as long as 13 years (Garcia-Hermoso et al. 1999).  

 

Cryptococcosis occurs in both animals and humans, but animal-to-human or human-

to-human transmission has not been documented, other than rare examples of 

iatrogenic transmission (Lin and Heitman 2006) and a mother-to-child transmission 

(Sirinavin et al. 2004). The clinical presentation of cryptococcosis can be acute or 

chronic, and manifestation varies depending on stage of the disease. Typical symptoms 

associated with meningoencephalitis are significantly raised cerebrospinal fluid (CSF) 

opening pressure (>25cm H2O) (occurs in more than 50% of patients with HIV-

associated cryptococcal meningitis) (Graybill et al. 2000), resulting in headache, fever, 

altered mental status, visual loss, dementia or even coma (Casadevall and Perfect 1998). 

For pulmonary cryptococcosis, symptoms range from asymptomatic pulmonary 

nodules to acute respiratory distress syndrome (Casadevall and Perfect 1998; Saag et al. 

2000). According to a recent study in 166 patients, symptoms including cough (58%), 

dyspnoea (46%), and fever (38%) are the most frequent manifestations of infection 

(Baddley et al. 2008). Both C. neoformans and C. gattii affect the lung and CNS, but the 

infections caused by the two species have important differences in epidemiology, 

clinical presentation, and therapeutic outcome (Kwon-Chung and Bennett 1984; Sorrell 

2001). For instance, C. gattii appears to invade the brain parenchyma more commonly 

than C. neoformans, and in C. gattii infected patients, pulmonary infections and 

pulmonary mass-like lesions are more common (Mitchell and Perfect 1995; Speed and 

Dunt 1995). 

 

Since 1981, infections due to Cryptococcus have been a major cause of morbidity and 

mortality in individuals with suppressed immune system as a consequence of the 

AIDS epidemic, as 5-10% of all individuals with CD4+ lymphopenia develop 

cryptococcosis (Steenbergen and Casadevall 2003). Nowadays, cryptococcosis ranks as 

one of the three common life-threatening opportunistic infections in people with AIDS 

worldwide (Levitz and Boekhout 2006). Even though the prevalence of cryptococcosis 
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in HIV-infected individuals has declined because of highly active antiretroviral therapy, 

it remains epidemic in Africa and Southeast Asia, where up to 30% of AIDS patients 

are affected (Bicanic and Harrison 2004; Idnurm et al. 2005). In fact, cryptococcosis has 

been recognised as an AIDS-defining illness in areas like Zimbabwe, where 91% of 

AIDS patients are infected (Mwaba et al. 2001). Although less common, cryptococcosis 

in HIV-negative patients also has a high mortality rate (Kiertiburanakul et al. 2006), 

particularly in areas such as northern Brazil, where C. gattii is endemic and accounts 

for 62.7% of all cryptococcosis cases (Nishikawa et al. 2003).  

 

1.2.1 Antifungal therapy 

 

Untreated cryptococcal meningitis is uniformly fatal, although survival can range from 

years to only a few weeks (Mwaba et al. 2001). There are several well-established 

antimicrobial reagents for treatment, and amphotericin B, a polyene introduced in the 

mid-1950s, was the first effective therapy developed. Amphotericin B binds to 

ergosterol in the fungal plasma membrane to cause increased permeability to protons 

and monovalent cations such as potassium (Brajtburg et al. 1990). It was also found to 

stimulate inflammatory cytokine production from innate immune cells through CD14 

and Toll-like receptors (TLRs) (Sau et al. 2003).  In many resource-poor areas where 

amphotericin B is not available, fluconazole, a triazole that inhibits fungal ergosterol 

synthesis is widely used (Jarvis and Harrison 2007). It has excellent absorption and CSF 

penetration and is widely available at low cost in generic form. However, the slow 

response to therapy with fluconazole means that it is better suited to long-term 

maintenance therapy than initial therapy (Bozzette et al. 1991; Powderly et al. 1992). 

Flucytosine (5-Fc) is another commonly used anticryptococcal drug. It is a synthetic 

antimycotic compound and was initially developed as an anticancer drug in the 1970s. 

It has no intrinsic antifungal capacity, but after it has been taken up by Cryptococcus, it 

is converted into 5-fluorouracil (5-Fu), a pyrimidine analogue that inhibits fungal RNA 

and DNA synthesis (Vermes et al., 2000). 5-Fc is commonly prescribed in combination 

with amphotericin B, because such combination has been shown to have higher 
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efficiency compared to amphotericin B alone in both non-HIV-associated and HIV-

associated infection (Bennett et al. 1979; Brouwer et al. 2004; van der Horst et al. 1997). 

The optimal current therapy is with amphotericin B 0.7-1mg/kg/day plus 5-Fc 

100mg/kg/day for two weeks, followed by fluconazole 400mg/day for 8 weeks and 

200mg/day thereafter (Bicanic and Harrison 2004). 

 

The emergence of antifungal drug resistance has not been a major problem to date in 

areas like Australia and New Zealand (Chen et al. 2000). However, in sub-Saharan 

Africa, resistance can be very high. In Nairobi Kenya, 5-Fc resistance was observed in 

21% of cryptococcal strains and only 23.8% of these strains were susceptible to 

fluconazole (65% susceptible in a dose-dependent manner and 11.2% resistant) (Bii et al. 

2007). Differences in the antifungal susceptibilities of the two species of Cryptococcus 

have also been reported. Trilles et al found that in vitro, C. gattii was less susceptible to 

seven antifungal compounds as compared with C. neoformans, although both showed 

equal susceptibility to amphotericin B and 5-Fc (Trilles et al. 2004). However, a more 

recent study did not detect serotype susceptibility differences after measuring 

antifungal activity against 128 cryptococcal isolates (86 of C. neoformans and 42 of C. 

gattii) (Thompson et al. 2009). Isavuconazole, posaconazole, and voriconazole 

demonstrated excellent potency against each isolate and serotype, including isolates 

with reduced fluconazole susceptibilities. In future, more controlled experiments are 

required in order to compare different studies.  

 

1.2.2 Immunotherapy 

 

Immunotherapeutic strategies, mainly based on introducing antibodies and cytokines, 

have been developed to restore and boost host defence mechanisms to Cryptococcus. 

Antibodies against capsule and cell wall have been demonstrated to provide protection 

in animal models of cryptococcal infection (Casadevall et al. 1998; Dromer et al. 1987; 

Mukherjee et al. 1992; Rachini et al. 2007; Sanford and Stollar 1990). However, 

adjunctive use of antibody therapy in mice with established cryptococcal infection was 
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also reported to cause cardiovascular collapse and death in some strains due to the 

release of platelet-activating factor (Lendvai et al. 2000; Savoy et al. 1997).  

Nevertheless, a murine IgG1 (mAb 18B7) has reached phase I trial in patients 

recovering from HIV-associated cryptococcal meningitis (Larsen et al. 2005) and 

radioimmunotherapy (radiation was delivered by specific radio-labelled antibodies 

leading to antibody-specific killing of Cryptococcus) is under evaluation in the murine 

model (Bryan et al. 2009; Dadachova et al. 2004). 

 

Several cytokines have been shown to augment the antifungal activity of effector cells 

against cryptococcal infection. In a murine cryptococcal infection, administration of IL-

12 resulted in up to 10-fold decreases in the cryptococcal burden in the CNS. 

Significantly, the combination of fluconazole with IL-12 showed synergetic effects on 

reducing organism burden (Clemons et al. 1994). Similarly, the importance of 

interferon-γ (IFNγ) in the clearance of cryptococci, especially from the CSF, has been 

demonstrated by several groups (Kawakami et al. 1996; Siddiqui et al. 2005; Zhou et al. 

2007). In addition, IFNγ can potentiate amphotericin B reduction of infection in the 

brain (Lutz et al. 2000). A recent phase II study to evaluate the safety and antifungal 

activity of adjuvant recombinant interferon (rIFN)-γ1b in HIV patients with acute 

cryptococcal meningitis showed a trend towards improved mycological and clinical 

success without adverse effects on CD4 count or HIV viral load (Pappas et al. 2004). 

However, studies also showed IFNγ treatment can reduce the ability of human alveolar 

and monocyte-derived macrophages to eliminate intracellular cryptocococci (Levitz 

and Farrell 1990; Reardon et al. 1996; Voelz et al. 2009). In future, more studies should 

be carried out to evaluate whether IFNγ treatment is an appropriate therapeutic 

approach.  

 

With the use of molecular biology, several genes and their encoded proteins have now 

been identified which may help elicit a protective immune response. One such group is 

the mannoproteins. Mannoproteins are a group of glycoproteins present in the capsule 

(discussed in detail in Chapter II). They are recognised by the mannose receptor and 
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presented to T cells by dendritic cells (Levitz and Specht 2006; Mansour et al. 2006). 

Recent in vivo and in vitro studies have reported that mannoproteins were the major T 

cell antigenic determinants from C. neoformans and both CBA/J and C57BL/6 mice 

benefited from immunisation with mannoproteins (Mansour et al. 2004; Specht et al. 

2007). Another molecule with therapeutic potential is a synthetic oligodeoxynucleotide 

containing an unmethylated CpG motif (CpG-ODN). CpG-ODN is a TLR ligand, which 

was found to protect mice from infection with C. neoformans by altering the Th1-Th2 

cytokine balance toward a Th1-biased immune response (Edwards et al. 2005; Miyagi 

et al. 2005). Combination of CpG-ODN with antifungal chemotherapy or with 

mannoproteins seems to provide a beneficial effect in a murine model of pulmonary 

and disseminated infection (Dan et al. 2008, Kinjo, 2007 #740), suggesting a rationale 

for vaccination strategies that combine mannosylated antigens with TLR ligands to 

achieve synergistic promotion of host defence against C. neoformans infection.   

 

1.2.3 Outcomes 

 

The mortality from cryptococcosis remains unacceptably high. The last US Mycoses 

Study Group treatment trial of HIV-associated cryptococcal meningitis showed the 

lowest mortality to date, which is still 9.4% at 10 weeks (Bicanic and Harrison 2004). In 

France, Dromer et al observed an overall mortality rate of 6.5% in the first two weeks 

and 11.5% over the next ten weeks (Dromer et al. 2007). In Southeast Asia, even in the 

context of amphotericin B based therapy, acute mortality has ranged from 22% to more 

than 40% (Brouwer et al. 2004; Imwidthaya and Poungvarin 2000). For instance, with 

amphotericin B plus 5-Fc, 34% of patients with C. gattii meningitis in Papua New 

Guinea died during their first admission, at a median of 8 days (Seaton et al. 1996). In 

African areas where amphotericin B is not available, results with fluconazole 

monotherapy at 200mg/day or fluconazole plus 5-Fc in combination showed 44% 

mortality at 8 weeks (Mayanja-Kizza et al. 1998; Mwaba et al. 2001). The main reasons 

for the ongoing high mortality of cryptococcal disease include the inadequacy of 

antifungal therapy, restricted access to some drugs in many areas and the problem of 
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raised CSF pressure (Antinori 2006; Bicanic and Harrison 2004; Jarvis and Harrison 

2007; Perfect 2007). 

 

 

1.3 Virulence factors  

 

C. neoformans and C. gattii have a number of well-defined virulence factors, which 

strongly influence the degree of pathogenicity of individual isolates. A recent study by 

Rodrigues et al demonstrated that C. neoformans was able to secrete vesicles containing 

many of its virulence factors, including GXM, laccase, urease and phospholipase B 

(Rodrigues et al. 2008). The extracellular vesicles manifested various sizes and 

morphologies, including electron-lucid membrane bodies and electron-dense vesicles. 

During disseminated cryptococcosis, measurable levels of cryptococcal products are 

detected in the body fluid of patients (Gordon and Vedder 1966), suggesting that these 

‘virulence factor delivery bags’ may represent an efficient and general way of 

delivering pathogenesis-related molecules to the extracellular environment by C. 

neoformans (Rodrigues et al. 2008). Below several well-characterised virulence factors 

are discussed in detail.  

 

1.3.1 Capsule 

 

The capsule is composed of 90-95% GXM and 5% galactoxylomannan (GalXM) (Rakesh 

et al. 2008). GXM is a large polymer with a repeating structure of α-1,3-mannose with 

β-D-xylopyranosyl, β-D-glucuronosyl and 6-O-acetyl branching. This structure 

determines the serotype of C. neoformans and C. gattii, because different capsule 

structures can be distinguished by antibodies. GalXM is an α-1,6 galactan that contains 

branches of β-1,3-galactose-α-1,4-mannose-α-1,3-mannose (Vaishnav et al. 1998). It has 

a much smaller mass than GXM: 1.01x105 g/mol versus 1.7-7.4x106 g/mol (McFadden et 

al. 2006). In addition to GXM and GalXM, several mannoproteins (<1%) such as MP-98 
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and MP-99 have been identified within the cryptococcal capsule (Huang et al. 2002; 

Levitz et al. 2001). To date, a total of 53 mannoproteins have been predicted by 

genomic databases (Levitz and Specht 2006). These mannoproteins share several 

structural features, including N-terminal signal sequences, serine/threonine (S/T)–rich 

C-terminal regions, and glycosylphosphatidylinositol anchor motifs. When 

mannosylated and glycosylated, they act as critical cryptococcal antigens responsible 

for stimulating T-cell responses by promoting dendritic cell maturation and activation 

(Mansour et al. 2004; Pietrella et al. 2005; Specht et al. 2007).  

 

Many C. neoformans genes in capsular synthesis and formation have been identified. 

Chang et al cloned and sequenced four genes (CAP10, CAP59, CAP60 and CAP64) 

responsible for capsule synthesis in serotype D isolates. These genes are all required for 

virulence in a murine model (Chang and Kwon-Chung 1994; Chang and Kwon-Chung 

1998; Chang and Kwon-Chung 1999; Chang et al. 1996). CAP59 encodes a 

transmembrane protein (Chang and Kwon-Chung 1994; Chang et al. 1995), which is 

involved in the process of GXM export (Garcia-Rivera et al. 2004). CAP64 was used to 

complement an acapsular strain (602), resulting in capsule production and a fatal 

infection in mice (Chang et al. 1997; Chang et al. 1996). CAP60 and CAP10 encode 

proteins localised to the nuclear membrane and cytoplasm respectively (Chang and 

Kwon-Chung 1998; Chang and Kwon-Chung 1999). All four CAP genes have been 

shown to be essential in capsule synthesis, but the biochemical function of their 

products is ill defined.  There are many other genes involved in, but not essential to, 

capsule formation. For instance CAS1 and CAS3 are involved in the acetylation of GXM 

(Janbon et al. 2001; Moyrand et al. 2004), whilst UXS1 and UGD1 along with CAS31, 

CAS32, CAS33, CAS34 and CAS35 are important for proper xylosylation of GXM (Bar-

Peled et al. 2001; Moyrand et al. 2004). Genome analysis identified more than 30 new 

genes that are likely to be involved in capsule biosynthesis, including a family 

containing seven members of the capsule-associated (CAP64) gene and a second family 

of six capsule-associated (CAP10) genes (Loftus et al. 2005). Interestingly, some of the 
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genes in the capsule biosynthesis pathway are also required for the processes of sexual 

development and sporulation (e.g., CAP10, CAP60, CAP64 & CAP67) (Botts et al. 2009).  

 

The capsule is important for C. neoformans survival in its host, where it increases the 

fitness of C. neoformans by providing direct protection for the yeast. For instance, the 

capsule inhibits phagocytosis of C. neoformans by professional phagocytes in the 

absence of opsonins (Kozel and Gotschlich 1982) and resists phagosome digestion 

(Tucker and Casadevall 2002). Capsular material also acts directly against the host. In 

macrophages, C. neoformans releases polysaccharide from its capsule into vesicles 

around the phagosome and accumulation of these vesicles in the cytoplasm of the host 

cell results in macrophage dysfunction and lysis (Feldmesser et al. 2000; Tucker and 

Casadevall 2002). High levels of capsular polysaccharide antigens in the CSF can 

change the osmolarity of the CSF, thereby affecting its outflow and leading to 

increased intracranial pressure, headaches and visual disturbance (Denning et al. 1991). 

In addition, capsular material was reported to repress the migration of host phagocytes 

(e.g., neutrophils) (Dong and Murphy 1995; Dong and Murphy 1997; Ellerbroek et al. 

2004), interfere with cytokine secretion (Retini et al. 1996; Villena et al. 2008), directly 

inhibit T-cell proliferation (Yauch et al. 2006), induce macrophage apoptosis mediated 

by Fas ligand (Villena et al. 2008) or nitric oxide generation (Chiapello et al. 2008), and 

delay maturation and activation of human dendritic cells (Lupo et al. 2008; Vecchiarelli 

et al. 1994).  

 

The cryptococcal capsule size varies depending on the environmental conditions and 

seems to be tightly regulated. In nature, cryptococcal cells rarely display the large 

capsule seen in clinical isolates. The infectious particles, in order to be inhaled and 

penetrate the small airway, have to be smaller than 4µm in diameter with little or no 

capsule (Casadevall and Perfect 1998). However, during infection, the capsule is 

dynamically enlarged and the size varies depending on the affected organ. The lung 

and brain environment appears to act as an active inducer of capsule growth (Rivera et 

al. 1998). Capsule size can also be experimentally modulated by growing C. neoformans 
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in diluted Sabouraud broth in the presence of serum, or in a CO2 rich atmosphere in 

Dulbecco’s Modified Eagle media (DMEM) with low iron concentration (Vartivarian et 

al. 1993; Zaragoza and Casadevall 2004). These conditions are present in the host 

environment and may thus promote capsule production during infection.  

 

Although the presence of capsule significantly contributes to the virulence of C. 

neoformans, it is not the only requirement. Many non-neoformans cryptococcal species 

possess a capsule, but are not pathogenic. Also, in one study acapsular C. neoformans 

was found to cause persistent infections in the brains of nude mice, but not in mice 

with defects only in innate immunity (Casadevall and Perfect 1998), suggesting that 

when mammalian immunity is sufficiently impaired, even non-capsular strains retain 

their virulence potential. 

 

1.3.2 Melanin 

 

The ability of C. neoformans to produce melanin (Figure 3) was discovered by Staib in 

the 1960s (Polacheck 1991). Melanin is a negatively charged, hydrophobic pigment of 

high molecular weight that is formed by the oxidative polymerisation of phenolic 

compounds (Casadevall et al. 2000). Melanin synthesis in C. neoformans is catalysed by 

laccase in the presence of certain o-diphenolic compounds, such as 3,4-

dihydroxyphenylalanine (L-DOPA) (Williamson 1997). In the environment, melanin 

protects yeast from UV light, high temperatures, freezing and thawing (Rosas and 

Casadevall 1997; Wang and Casadevall 1994). In hosts, C. neoformans cells recovered 

from human brain tissue are melanised (Nosanchuk et al. 2000a) and gene disruption 

studies indicate that wild type melanin-producing C. neoformans are more virulent 

(Casadevall et al. 2000). Compared to non-melanised C. neoformans cells, melanised 

cells are less susceptible to oxidants (Emery et al. 1994), and killing by antifungal drugs 

(e.g., caspofungin and amphotericin B) (Doering 1999; van Duin et al. 2002). Since 

production of an oxidative burst after phagocytosis is an important mechanism by 

which immune effector cells mediate antimicrobial action, these results suggest that 
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melanin may enhance virulence by protecting fungal cells against immune attack. This 

is further supported by the observation that melanised cells were more resistant to 

phagocytosis and cell death caused by phagocytic effector cells (Huffnagle et al. 1995). 

It is important to point out that some non-neoformans cryptococci are able to form 

melanin as well, such as Cryptococcus podzolicus (Petter et al. 2001), although they are 

not pathogenic.  

 

The importance of melanin production to the virulence has motivated studies to define 

components of this pathway. Two laccase genes: LAC1 (Torres-Guererro and Edman 

1994) and LAC2 (Missall et al. 2005; Zhu and Williamson 2004) were identified as 

central enzymes in melanin biosynthesis. Other genes including VPH1, CLC1, CCC2, 

ATX1 and MBF1 have also been found to be essential (Erickson et al. 2001; Walton et al. 

2005; Zhu and Williamson 2003), although in most cases the mode of action is not well 

characterised.  

 

 

Figure 3: Non-melanin and melanin forming colonies of C. gattii serotype B on L-
DOPA medium after 7 days at 25°C. 
 

 

1.3.3 Ability to grow at physiological temperature 

 

The ability to grow at physiological temperatures is essential for the virulence of C. 

neoformans and C. gattii. Some cryptococcal species also possess capsules and/or 

produce melanin (e.g., C. podzolicus), but only rarely are they capable of in vitro growth 

at 37°C, and thus none of them cause consistent infection in mammals (Perfect 2005). C. 

neoformans is enriched in bird guano, but birds do not become infected, probably 
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because C. neoformans does not live well at the avian body temperature of 40°C to 42°C 

(Mitchell and Perfect 1995). Therefore, this temperature restriction is an important 

determinant of C. neoformans pathogenicity.  

 

Early studies identified over a dozen genes as being necessary for high-temperature 

growth. One such gene, CNA1, encodes the C. neoformans calcineurin. When CNA1 was 

disrupted in H99, the resulting mutant strain was viable at 24°C but not at mammalian 

physiological temperature. Correspondingly, the mutant strain was avirulent in an 

immunocompromised rabbit model of cryptococcal meningitis (Odom et al. 1997). 

Therefore, a role for the regulation of growth at elevated temperatures by signalling 

cascades involving calcineurin has been proposed. Many cryptococcal genes are 

known to be regulated by temperature, although they are not necessarily required for 

high-temperature growth. A microarray transcriptional profiling of C. neoformans genes 

showing altered expression at 37°C versus 25°C described 49 genes induced at 37°C, 

including MGA2, which showed significantly higher expression during growth at 37°C, 

and was also important for normal growth at high temperature (Kraus et al. 2004). 

Similarly, a more recent study using an alternative approach called representational 

difference analysis has revealed 29 genes that are up-regulated at 37°C, with some 

overlaps with the genes identified by Kraus et al (Rosa et al. 2008). These newly-

defined genes seem to have a variety of functions, ranging from stress signalling, cell 

wall assembly, membrane integrity and basic metabolism (Kraus et al. 2004; Rosa et al. 

2008; Steen et al. 2002). Functional studies of genes identified in these work by targeted 

gene disruption followed by validation in animal models may contribute to a better 

understanding of their role in virulence and pathogen-host interactions.  

 

1.3.4 Degradative enzymes 

 

Proteinase: Both environmental and clinical isolates of C. neoformans have proteinase 

activity (Casadevall and Perfect 1998). They have been shown to degrade host proteins 

including collagen, elastin, fibrinogen, immunoglobulins and complement factors 



Chapter I: Introduction 

23 

(Chen et al. 1996). Tucker and Casadevall also proposed that replication of C. 

neoformans inside macrophages is accompanied by the production of enzymes 

including proteinases and phospholipases to damage the phagosomal membrane 

(Tucker and Casadevall 2002). Therefore, cryptococcal proteinases can cause tissue 

damage, provide nutrients to the pathogen and protection from the host.  

 

Phospholipase: Phospholipases are a heterogeneous group of enzymes that are able to 

hydrolyse one or more ester linkages in glycerophospholipids. The action of 

phospholipases can result in the destabilisation of membranes, cell lysis and release of 

lipid second messengers (Ghannoum 2000; Santangelo et al. 1999). C. neoformans 

secretes a phospholipase enzyme that demonstrates phospholipase B (PLB), 

lysophospholipase hydrolase and lysophospholipase transacylase activities. As with 

proteinases, phospholipases contribute to the degradation of phagosomal membrane 

and thus cell lysis. There is a correlation between phospholipase expression and 

virulence in a dose-dependent manner among the strains used to infect mice (Chen et 

al. 1997; Ghannoum 2000). Disruption of PLB1 gene led to reduced virulence in vivo 

and growth inhibition in macrophages (Cox et al. 2001). Phospholipase can also cleave 

dipalmitoyl phosphatidylcholine, one of the main components of lung surfactant, and 

thus assists fungal spread (Steenbergen and Casadevall 2003). Furthermore, recent 

studies demonstrated that phospholipase B of C. neoformans enhances adhesion of C. 

neoformans to a human lung epithelial cell line (Ganendren et al. 2006) and 

dissemination of cryptococcosis in a murine model (Santangelo et al. 2004).  

 

Urease: Urease catalyses the hydrolysis of urea to ammonia and carbamate and is an 

important pathogenic factor for certain bacteria (Steenbergen and Casadevall 2003). 

The cryptococcal urease, Ure1, is an important virulence factor and mice infected with 

a ure1 mutant strain live longer than those infected with the wild type strain H99 (Cox 

et al. 2000). Although Ure1 is not required for growth in the brain, the dissemination 

patterns in the brain, spleen, and other organs after intravenous inoculation differed 

from the wild type strain, leading to the proposal that Ure1 is important for the CNS 
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invasion by enhancing yeast sequestration within microcapillary beds (such as within 

the brain) during haematogenous spread, thereby facilitating blood-to-brain 

transmission (Olszewski et al. 2004). A more recent study also defines cryptococcal 

urease as a pulmonary virulence factor that promotes immature dendritic cell 

accumulation and a potent, yet non-protective, Th2 immune response (Osterholzer et al. 

2009).  

 

1.3.5 Mating type 

 

Most clinical and environmental cryptococcal isolates have been observed 

predominantly as vegetative haploid yeast. Like other basidiomycetes, traditional 

mating can occur in response to nutrition limitation, where opposite mating types (a 

and α) secretes peptide pheromones, which trigger cell to cell fusion to produce a 

filamentous dikaryon, resulting in a transient a/α diploid state that immediately 

undergoes meiosis and sporulation producing a and α haploid progeny (Kwon-Chung 

1975; Kwon-Chung 1976) (Figure 4). Cryptococcus, although less often, can also undergo 

same-sex mating (monokaryotic fruiting), especially between two α cells to form stable 

α/α diploids and also α haploid progeny (Lin et al. 2005) (Figure 4). Mating without a 

partner of the opposite mating type might provide a survival advantage, particular 

under harsh or changing conditions (Lin et al. 2007).  
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Figure 4: Mating between the opposite sex and the same sex. During opposite sex mating, there are five distinct stages: 1) Dikaryon 
formation, 2) nuclear fusion between two parental nuclei, 3) Meiosis to produce four meiotic products, 4) Basidiospores formation, and 5) 
Mitosis and basidiospore proliferation (sporulation). Spores will ultimately be released into the environment. During monokaryotic 
fruiting, diploidisation (nuclear fusion) occurs before the monokaryon formation, which is followed by meiosis and sporulation.  
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Several interesting observations implicate mating type as a virulence factor. Firstly, 

MATα cells are much more prevalent than MATa cells. In a survey of natural and 

clinical isolates, the MATα mating type was 40-fold more abundant in environmental 

isolates and 30-fold more abundant in clinical isolates than its MATa counterpart 

(Kwon-Chung and Bennett 1978). In addition, most of the Vancouver isolates are α 

mating type (Fraser et al. 2003). Secondly, when congenic α and a strains (JEC21) of 

serotype D (genetically identical except at the mating type locus) were studied in a 

murine model of cryptococcosis, the MATα strain was found to be significantly more 

virulent than the MATa strain (Kwon-Chung et al. 1992). Congenic α and a cells in the 

serotype A H99 background show the same pathogenicity level in various mammalian 

models (Nielsen et al. 2003), but α cells have an enhanced predilection to penetrate the 

CNS during coinfection with a cells, which provides an explanation for the prevalence 

of α strains in clinical isolates (Nielsen et al. 2005).  

 

The finding that MATα cells are more prevalent and virulent than MATa cells has 

promoted molecular analysis of the MATα mating type locus. Initially, an 

approximately 50kb region present only in MATα strains was defined as the MATα 

locus, and it contains many α-specific genes including STE12α (Karos et al. 2000). 

However, the actual size of the MAT locus appears to be much larger than that. It is 

more than 100kb for both C. neoformans and C. gattii, containing more than 20 genes, 

including those involved in pheromone production and sensing, establishing cell type 

identity, components of a MAP kinase pathway and those do not seem to have a 

function in mating (Fraser and Heitman 2004; Lengeler et al. 2002) (Figure 5). There is 

still much to be learned about the linkage of sex and pathogenesis, especially at the 

genetic level.  
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Figure 5: The mating type locus of C. neoformans (based on information from (Idnurm et al. 2005)). The locus (>100 kb for both mating type) 
is located on chromosome 4.  
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1.3.6 Phenotypic switching 

 

Phenotypic switching has been observed in both prokaryotes and eukaryotes and 

involves stochastic switching between two or more alternative and heritable 

phenotypes. It occurs by spontaneous tuning in gene expression in order to escape 

recognition by the immune system and to adapt to a new host environment. 

Phenotypic switching is reversible and readily detectable in a fraction of the cell 

population (D'Souza and Heitman 2001b).  

 

The first detection of phenotypic switching in C. neoformans was reported by Fries and 

Casadevall in 1998, in which they showed C. neoformans’s ability to undergo 

microevolution during chronic infection (Fries and Casadevall 1998). Subsequently, 

Fries et al showed that C. neoformans was able to undergo phenotypic switching in vivo 

during serial passage in mice (Fries et al. 2001). So far, phenotypic switching has been 

reported in serotype A, B and D strains (Guerrero et al. 2006; Jain et al. 2006) and 

always leads to changes in virulence by causing changes in capsule or cell wall 

morphology. For instance, a C. gattii strain was found to switch reversibly between two 

colony morphologies. Switching to mucoid colonies (with a thicker layer of capsule) 

was observed during pulmonary infection and resulted in enhanced intracellular 

survival due to a larger capsule. However, only smooth colonies (with a thin layer of 

capsule) could be grown from brain homogenates in infected mice, probably because 

the thin capsule permits better crossing of the blood-brain barrier (Jain et al. 2006). 

Phenotypic switching of C. neoformans was also shown to influence the outcome of the 

human immune response (Guerrero and Fries 2008). For example, the mucoid colony 

phenotype elicits a macrophage- and neutrophil-dominated immune response, while 

the smooth colony phenotype elicits a lymphocyte-dominated immune response 

(Pietrella et al. 2003). The ability of this organism to cause chronic infections even after 

prolonged antifungal therapy may be, in part, attributable to phenotypic switching 

(Guerrero et al. 2006).  
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1.3.7 The origin and maintenance of virulence factors 

 

C. neoformans and C. gattii are environmental saprophytes, mainly found in soil and 

trees, so humans probably represent an inadvertent host species rather than a primary 

niche. There is much evidence supporting the hypothesis that cryptococcal virulence 

originated due to environmental selective pressure. Firstly, many environmental 

isolates of C. neoformans are virulent in animals, indicating that these virulence factors 

have been developed without previous interaction with host animals. Secondly, a 

broad range of animals are susceptible to these organisms and the hosts are not 

required for replication or viability of the pathogen (Casadevall et al. 2003). Thirdly, 

many virulence factors appear to have ‘dual use’ capacities that allow survival 

advantages in both animal hosts and in the environment. For instance, in bird excreta, 

the primary role of urease probably is to enable C. neoformans to convert urea to the 

usable nitrogen source ammonia (Levitz 2001). Decaying wood contains large amount 

of the aromatic polymer lignin, a substrate of laccases. Thus it has been hypothesised 

that cryptococcal laccase helps the organism establish an ecological niche in rotting 

wood (Lazera et al. 2000). The capsule can protect the fungus against dehydration and 

thus provide a survival advantage in conditions of low humidity (Aksenov et al. 1973). 

Melanised C. neoformans cells, as mentioned earlier, are more resistant to UV radiation, 

temperature extremes and heavy metals (Rosas and Casadevall 1997). In addition, 

phospholipase and protease can serve important nutritional roles (Chen et al. 1996). 

Hence these virulence factors are not solely developed for survival inside mammalian 

cells and hosts.  

 

Finally, C. neoformans is a facultative intracellular parasite, surviving both inside and 

outside of phagocytes. Infection of macrophages and amoebae by C. neoformans was 

found to be very similar, and it has therefore been postulated that mammalian 

virulence factors in C. neoformans evolved as a defence mechanism against 

environmental predators (Malliaris et al. 2004; Steenbergen and Casadevall 2003; 

Steenbergen et al. 2001). The observation that C. neoformans can be ingested by living 
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amoebae was first reported by Bunting and colleagues nearly 30 years ago (Bunting et 

al. 1979). Subsequently, it was demonstrated that incubation of C. neoformans and the 

amoeba Acanthamoeba castellanii results in phagocytosis of yeast cells and intracellular 

proliferation in a phagocytic vacuole followed by killing of amoebae; a process that is 

identical to that seen to occur in mammalian macrophages infected with this pathogen 

(Steenbergen et al. 2001). Another amoeba, Dictyostelium discoideum, is also susceptible 

to infection with C. neoformans and the interactions are similar to those described 

previously for this fungus with macrophages. In addition, C. neoformans virulence was 

enhanced after growth in D. discoideum, and this enhancement correlated with 

increased capsule size and melanisation (Steenbergen et al. 2003). Both studies support 

the idea that pathogenicity of C. neoformans towards macrophages and vertebrate hosts 

may result from evolutionary pressure exerted by environmental predators. Similarly, 

Mylonakis et al have demonstrated that soil-dwelling nematodes may also exert strong 

selective pressure on cryptococcal species (Mylonakis et al. 2002). Whilst non-

pathogenic cryptococcal species (C. laurentii and C. kuetzingii) are killed by the 

nematode Caenorhabditis elegans, wild type strains of C. neoformans are lethal to the 

worms. Furthermore, the interaction involves a number of genes that are also 

important during the host pathogen interaction in mammals, including GPA1, PKA1, 

RAS1 and PKR1 (Mylonakis et al. 2002). Virulence might also be maintained through 

infection of small rodents or other mammals that, after death, re-introduce virulent 

strains back to the environment (Idnurm et al. 2005).  

 

In conclusion, it appears increasingly likely that many virulence factors in C. 

neoformans and C. gattii are ‘ready made’ (Casadevall et al. 2003) due to environmental 

selective pressure rather than ‘specially made’ in order to colonise mammalian hosts. 

There are many existing environmental reservoirs which are expected to affect the 

fitness of fungal cells in that environment and to provide selective pressures for 

virulence attributes leading to differences in fitness during mammalian infection.  
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1.4 Signalling pathways regulating pathogenicity 

 

Six major signalling pathways have been demonstrated to modulate morphological 

differentiation, virulence and stress responses. They are the cAMP-PKA pathway, three 

MAP kinase pathways involving Cpk1, Hog1 and Mpk1, the Ras specific pathway and 

the Ca2+-calcineurin pathway. These pathways are also responsible for regulating 

differentiation and pathogenicity in other fungi and are largely structurally and 

functionally conserved in serotype A and D strains, although there are serotype-

specific differences.  

 

1.4.1 cAMP-PKA 

 

There is conservation of function in cAMP signalling pathways in fungi since a large 

and diverse group of fungi (including C. albicans and A. fumigatus) employ similar 

signalling elements (Alspaugh et al. 1998; Liebmann et al. 2003; Rocha et al. 2001). In C. 

neoformans, cAMP signalling is triggered by environmental stimuli (mainly nutritional, 

such as starvation) through a G-protein-coupled receptor (e.g., Gpr4 (Xue et al. 2006)) 

and the Gα protein called Gpa1 (Alspaugh et al. 1997). Gpa1 activates a conserved 

cAMP pathway through the enzyme adenylyl cyclase (Cac1), which generates cAMP 

and leads to activation of protein kinase A (PKA)  by causing the release of the 

regulatory subunits (Pkr1) from the two catalytic units of PKA (Pka1 and Pka2) 

(Pukkila-Worley and Alspaugh 2004). In serotype A strains, Pka1 plays a major 

regulatory role, while in serotype D strains, Pka2 does so (Hicks et al. 2004).  

 

The cAMP-PKA pathway regulates several important processes in C. neoformans, 

including capsule production, melanin formation and mating. A gpa1 mutant, cac1 

mutant and pka1 mutant all display similar defects in mating, capsule and melanin 

production (Alspaugh et al. 1997; Alspaugh et al. 2002; D'Souza and Heitman 2001a). 

For instance, C. neoformans gpa1 mutant strains could not produce melanin, showed 
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markedly attenuated capsule production in response to the normal inducing condition 

of severe iron starvation, and were sterile. Correspondingly, in a rabbit model of 

cryptococcal meningitis, the mutant strain was markedly impaired in the ability to 

maintain the CNS infection compared to the isogenic wild type strain (Alspaugh et al. 

1997). Disruption of PKR1 suppresses the capsule and melanin defects of the gpa1 

mutant, causes cells to display an enlarged capsule phenotype, and results in 

hypervirulence (D'Souza and Heitman 2001a). In addition, a recent microarray study 

comparing the transcriptome of mutants (pka1 and pkr1) to a wild type strain revealed 

a novel relationship between cAMP signalling and the secretory pathway in C. 

neoformans (Hu et al. 2007). In the pka1 and pkr1 mutants, transcriptional changes 

occur to many key components important for the secretory pathway, such as those 

responsible for translocation (Sec61 and Hsp70/Kar2), vesicle formation and fusion 

(Bet1, syntaxin), Golgi transport (α-1,6-mannosyltransferase), and vesicle delivery to 

the plasma membrane (e.g., Ypt3). This study along with the observation that C. 

neoformans secretes vesicles containing many of its well-defined virulence factors, 

suggests a model in which PKA regulates the expression of secretory pathway 

components to control the elaboration of virulence factors at the cell surface (Hu et al. 

2007; Rodrigues et al. 2008).  

 

1.4.2 MAP kinase pathway 

 

The pheromone-activated MAP kinase pathway is another conserved pathway, in 

which the G protein β subunit (Gpb1) activates the transcriptional regulator Ste12α, 

whose downstream targets include STE20, STE11 and STE7 (Lengeler et al. 2000). gpb1 

mutants are sterile, defective in haploid fruiting and exhibit a severe defect in cell 

fusion assays (Wang et al. 2000). Although studies disrupting the STE12α found that in 

both serotype A and D, Ste12α is absolutely required for monokaryotic fruiting, it 

seems only to augment virulence in serotype D: in serotype D strains, Ste12α controls 

the expression of many virulence-associated genes, and disruption of STE12α resulted 

in significant reduction in virulence in a mouse model (Chang et al. 2000), whereas the 



Chapter I: Introduction 

33 

STE12α homolog is largely dispensable for virulence in a number of serotype A strains 

(Yue et al. 1999). 

 

More recently, the Pbs2-Hog1 MAP kinase pathway has been shown to have a 

significant impact on virulence of serotype A and some serotype D strains (Bahn et al. 

2005). The fungal Hog1 MAPK mediates responses to a plethora of environmental cues, 

including osmotic shock, UV irradiation, oxidative damage and high temperature. 

Intriguingly, Hog1 is regulated in an opposite fashion in a majority of C. neoformans 

strains (especially highly pathogenic isolates, e.g., H99), compared to some of the 

serotype D strains and other model yeasts. In S. cerevisiae, MAPK Hog1 is 

dephosphorylated in normal conditions and following osmotic shock, a two 

component system can activate MAPK kinase Pbs2 through activation of Ssk1, which 

subsequently phosphorylates the MAPK Hog1 (Bahn et al. 2006). Phosphorylated Hog1 

then translocates to the nucleus where it activates expression of target genes 

(Hohmann 2002). A similar pathway has been observed for some C. neoformans 

serotype D strains, such as JEC21. However, in most C. neoformans strains, the Hog1 

MAPK is constitutively phosphorylated by Pbs2 MAPK kinase under normal in vitro 

growth condition and, upon osmotic shock, Hog1 is rapidly activated by Hog1-

dependent dephosphorylation (Bahn et al. 2005). It was proposed that phosphorylated 

Hog1 under normal conditions is mainly responsible for negatively regulating 

virulence factors, including capsule and melanin, and sexual development. In addition, 

phosphorylated Hog1 concentrates in the nucleus, where it can interact with other 

transcription factors resulting in cross-talk with signalling cascades that regulate 

virulence factor expression in C. neoformans (Bahn et al. 2006). For example, 

experimental data demonstrated that Hog1 negatively regulates melanin production 

by acting on PKA downstream targets for melanin synthesis, whilst Hog1 also 

negatively regulates capsule production by acting upstream of Gpa1 or PKA itself 

(Bahn et al. 2005). Under stress conditions, Hog1 is rapidly dephosphorylated, and 

presumably then induces stress defence genes in C. neoformans. It was reported that 
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fludioxonil treatment can activate the Hog pathway by rapid dephosphorylation of the 

Hog1 MAPK in the majority of C. neoformans strains (Kojima et al. 2006).  

 

The Mpk1 MAP kinase pathway regulates cell-wall integrity and growth at high 

temperature. It is well studied in S. cerevisiae, and the function of Mpk1 in promoting 

growth at 37°C in S. cerevisiae is conserved in C. neoformans. In this pathway, upstream 

components such as membrane sensors that detect stresses to the cell wall (Gray et al. 

1997; Verna et al. 1997) and the Rho1 GTPase are responsible for activating protein 

kinase C, which in turn activates the Mpk1/Slt2 MAPK cascade (Kamada et al. 1996; 

Lee et al. 1993). C. neoformans mutants lacking Mpk1 are attenuated for virulence in the 

mouse model of cryptococcosis (Kraus et al. 2003) and become more sensitive to 

antifungal drugs like fludioxonil (Kojima et al. 2006).  

 

1.4.3 Ras pathway & the Ca2+-calcineurin pathway 

 

The Ras-Cdc24 pathway and Ca2+-calcineurin pathway independently control C. 

neoformans growth at high temperature. C. neoformans ras1 mutant strains are viable, 

but they are unable to grow at 37°C, and are thus less virulent in rabbit and murine 

models of cryptococcosis (Waugh et al. 2002), a phenotype associated with a failure of 

actin polarisation at elevated temperature (Waugh et al. 2002). Similarly, calcineurin 

mutant strains are found to be viable, but do not survive in vitro conditions that mimic 

the host environment and are no longer pathogenic in a murine model of cryptococcal 

meningitis (Odom et al. 1997).  

 

Ras also plays a dual role to activate a MAP kinase cascade and to regulate cAMP 

production in C. neoformans. Initial experiments defining the Ras pathway in a serotype 

A strain indicated that Ras1 mediates MAP kinase, cAMP and Ras-specific signal 

transduction pathways (Alspaugh et al. 2000). By northern blot analysis, Ras1 was 

demonstrated to play a major role in the transcriptional regulation of genes in the 

pheromone response pathway. It also controls pheromone-independent signalling 
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mechanisms which are essential for filamentation, development and pathogenicity 

(Waugh et al. 2003). Ras2 is expressed at a very low level compared to Ras1, and a ras2 

mutant showed no differences in vegetative growth rate, differentiation or virulence 

factor expression, nor was it attenuated in the murine inhalational model of 

cryptococcosis. However, when over-expressed, Ras2 was able to restore mating and 

high temperature growth of a ras1 mutant, indicating Ras1 and Ras2 may share 

overlapping functions (Waugh et al. 2002).   

 

The calcineurin pathway, in addition to its importance for growth at high temperature, 

is also essential for cell integrity, monokaryotic fruiting and mating (Cruz et al. 2001; 

Fox et al. 2001; Kraus et al. 2003; Kraus et al. 2005; Odom et al. 1997). In this pathway, 

both calcineurin A and B subunits were found to be essential for virulence (Fox et al. 

2001), by binding to calcineurin binding protein 1 (Gorlach et al. 2000) and activating 

as-yet unidentified downstream transcription factors. 

 

 

1.5 Cryptococcus and the host immune response 

 

Exposure to C. neoformans is thought to be common, but in a normal host the infection 

is usually self-limiting. In contrast, in immunocompromised individuals, the infection 

is not restricted to the primary site of infection, but frequently disseminates to the CNS. 

This suggests that phagocytes in vivo are able to dispose of C. neoformans effectively (or 

at least maintain the pathogen in a latent stage), only when T-cell defences are intact. 

This probably involves activation of macrophages by Th1 type cytokines (including 

TNFα, IFNγ, IL-2 and IL-12) and granuloma formation to contain replicating organisms. 

In other words, phagocytes are ‘temporary protectors’ until the acquired immune 

response is established. This part of the introduction will focus on the interaction 

between phagocytic effector cells and C. neoformans in the absence and presence of a 

secondary immune response.  
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1.5.1 Immunocompromised host 

 

In immunocompromised individuals, the innate immune response is the major barrier 

to cryptococcal infection. Although many studies have identified several innate factors 

such as serum, complement factors and saliva that discourage infections (Baum and 

Artis 1961; Baum and Artis 1963; Hendry and Bakerspigel 1969; Igel and Bolande 1966; 

Nassar et al. 1995; Szilagyi et al. 1966), the outcome of the infection is largely 

dependent on the interaction between the pathogen and phagocytic effector cells (Shao 

et al. 2005).  

1.5.1.1 Neutrophils 

An in vivo study on cryptococcal infection in mice by Feldmesser et al (2000) noted that 

macrophages and neutrophils are the only inflammatory cells in contact with C. 

neoformans in the lung. Many in vitro studies also demonstrated that neutrophils could 

phagocytose and kill C. neoformans (Chaturvedi et al. 1996; Kozel et al. 1984; Mambula 

et al. 2000; Miller and Mitchell 1991). However, in vivo, neutrophils were only found to 

occasionally ingest C. neoformans for the first few days after infection, indicating that 

they predominate only in the early stage of an experimental infection (Feldmesser et al. 

2000). Furthermore, neutrophil-depleted mice infected with Cryptococcus had 

significantly higher levels of IL-4/IL-10 (Th2 cytokines) and IL-12/TNFα (Th1 

cytokines), and they lived longer than wild type mice, suggesting neutrophil depletion 

is protective against C. neoformans pulmonary infection. The enhanced survival 

observed in neutrophil-depleted mice could be a result of a more effective killing of the 

pathogen triggered by IL-12 and TNFα, and reduced damage to the host moderated by 

IL-4 and IL-10 (Mednick et al. 2003). Therefore, neutrophils probably do not contribute 

significantly to direct killing of invading C. neoformans, but rather play an important 

role in balancing the Th1/Th2 cytokine profile in the late stage of infection. 
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1.5.1.2 Dendritic cells 

Recent studies also show that dendritic cells phagocyte C. neoformans both in vitro 

(Kelly et al. 2005; Syme et al. 2002) and in vivo (Wozniak et al. 2006). Intracellular yeast 

cells then enter the endolysosomal pathway of dendritic cells and can be killed by 

lysosomal components (Wozniak and Levitz 2008). Dendritic cells are antigen-

presenting cells that act as sentinels in the peripheral tissues, constantly sampling the 

antigens in their environment. During cryptococcal infection, dendritic cells are 

thought to be more important in the initial presentation of antigens to the naive T cells 

to induce an adaptive immune response. Indeed, they induce a stronger T-cell response 

to C. neoformans than alveolar macrophages or monocyte-derived macrophages 

(Mansour et al. 2006; Syme et al. 2002). Several major antigens (e.g., mannoproteins) 

known to drive T cell responses to C. neoformans were also found to be mainly 

presented by dendritic cells (Levitz and Specht 2006).  

1.5.1.3 Macrophages 

Macrophages, also involved in antigen presentation and cytokine production 

(Casadevall and Perfect 1998), have long been regarded as the phagocyte that initially 

encounters inhaled C. neoformans and act as the primary phagocytic cell at all times of 

infection in both murine and rat models of infection (Bolanos and Mitchell 1989; 

Feldmesser et al. 1998; Feldmesser et al. 2000; Goldman et al. 2000; Levitz 1994). 

Phagocytosis of C. neoformans by macrophages can be mediated by receptors such as 

the mannose receptor, β-glucan receptor, antibody receptors and complement 

receptors. Phagocytosis via the latter two receptors is efficient (Casadevall and Perfect 

1998). Depending on the environment they adapt to, C. neoformans cells can actively 

‘choose’ to avoid being phagocytosed to a certain extent by regulating their 

antiphagocytic factors. For example, C. neoformans was found to switch reversibly 

between two colony morphologies which were associated with changes in capsule (Jain 

et al. 2006). Capsule is a major anti-phagocytic factor in the absence of opsonins (Kozel 

and Gotschlich 1982; Kozel and Mastroianni 1976). It inhibits phagocytosis partly by 
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lessening presentation of phagocytic ligands to alveolar macrophages (Vecchiarelli et al. 

1994). In addition, encapsulated C. neoformans have a more negatively charged surface 

than acapsular cells, which causes electrostatic repulsion between the cryptococci and 

negatively charged phagocytic cells and thus reduces cell-cell interaction (Nosanchuk 

and Casadevall 1997). However, in the presence of opsonins including antibody and 

complement components (in vivo), the antiphagocytic property of the capsule is usually 

diminished (Feldmesser et al. 2000). App1 (antiphagocytic protein 1) is another factor 

found to regulate phagocytosis. It was first identified as a regulator of complement-

mediated phagocytosis and inhibits phagocytosis through a specific and novel 

mechanism without affecting other cryptococcal anti-phagocytosis factors, such as 

capsule and melanin (Luberto et al. 2003). Without App1, C. neoformans is more likely 

to be ingested by macrophages. Interestingly, the app1 mutant is less virulent than the 

wild type strain in A/J, CBA/J and C57BL/J mouse models, which are 

immunocompetent, whereas in a T-cell and natural killer (NK) cell deficient mouse 

model, the app1 mutant exacerbated the infection as compared with the infection 

caused by a wild type strain. These data suggest that when the cellular immune 

response is impaired, phagocytosis aids the spread of C. neoformans infection as the 

pathogen can be transported in a more efficient manner by macrophages from organ to 

organ (Del Poeta 2004; Luberto et al. 2003). Therefore, modulation of the expression of 

antiphagocytic factors by C. neoformans may play a key role in the outcome of infection. 

 

Following particle internalisation by macrophages, the resulting intracellular vacuole 

(known as the phagosome) is subsequently fused with lysosomes to form the 

phagolysosome. This process is called phagosome maturation and the newly formed 

phagolysosome possesses a number of complementary degradative properties 

including a very low pH, hydrolytic enzymes for particle digestion, bactericidal 

peptides, and the ability to generate toxic oxidative compounds (Vieira et al. 2002). 

Usually the phagolysosome is very efficient at digesting encased microorganisms. 

However, for C. neoformans, three outcomes have been observed after phagocytosis: 1) 

The yeast is killed by the macrophage (Brummer and Stevens 1994; Casadevall and 



Chapter I: Introduction 

39 

Perfect 1998); 2) the yeast remains latent inside the macrophage (Alvarez and 

Casadevall 2007; Del Poeta 2004; Ma et al. 2007); and 3) the yeast grows within the 

phagosome, eventually causing macrophage lysis (Feldmesser et al. 2001a; Feldmesser 

et al. 2000; Tucker and Casadevall 2002) (Figure 6). Currently it is unclear as to what 

decides the outcome of the intracellular yeast, but it is generally established that, in 

vitro, macrophages activated with Th1 cytokines are more efficient at eradicating 

intracellular cryptococci than those activated with Th2 cytokines (Brodie et al. 1994; 

Chen et al. 1994; Kawakami et al. 1995; Mody et al. 1991; Weinberg et al. 1987). In 

addition, the fate of intracellular cryptococci varies with strain (Ma et al. 2009; 

Zaragoza et al. 2007); and other local environmental stimuli (e.g., oxygen concentration) 

(Voelz et al. 2009, unpublished data).  

 

In the absence of a T-cell mediated immune response, intracellular survival and 

proliferation of Cryptococcus is very common. This intracellular behaviour is important 

for pathogenicity, because it provides a basis for dissemination and latency: 

intracellular cryptococci are carried by infected macrophages to different parts of the 

body without being exposed to any extracellular hazards, such as complement 

components or antifungal agents present in the blood. This so-called ‘Trojan Horse’ 

mechanism of dissemination (Figure 7) (Chretien et al. 2002; Santangelo et al. 2004) is 

supported by the observation that C. neoformans was found almost exclusively in 

macrophages in chronic and latent infection (Feldmesser et al. 2000; Goldman et al. 

2000) and macrophage depletion often leads to reduced clinical manifestations and 

fungal burden in many organs studied (Charlier et al. 2009; Shao et al. 2005).  

 

Intracellular parasitism of macrophages by C. neoformans was reported in the early 

1970s, when most ingested C neoformans were found to be resistant to intracellular 

killing by either peritoneal exudate cells from Lewis rats or monocyte-derived 

macrophages (Diamond and Bennett 1973; Mitchell and Friedman 1972). Unlike many 

other intracellular pathogens which persist within the phagosome by either affecting 

phagolysosome maturation (e.g., Legionella pneumophila) (Nguyen and Pieters 2005) or 



Chapter I: Introduction 

40 

by escaping from the phagosome and then proliferating in the host cytosol (e.g., Listeria 

monocytogenes) (Cossart et al. 2003), C. neoformans has been demonstrated to persist 

inside apparently normal mature phagosomes in human monocyte-derived 

macrophage (Levitz et al. 1999) (Table 1). The pH of C. neoformans-containing 

phagosomes was similar to that observed following uptake of dead fungi over 24h, and 

these phagosomes also co-localised with LAMP-1, a highly glycosylated protein found 

in endosomal and lysosomal compartments that is commonly used as a late mature 

phagosome marker, indicating that C. neoformans does not interfere with phagosome-

lysosome fusion. In fact, C. neoformans grows more rapidly in acidic media than in 

neutral or alkaline media and appears to be able to resist the action of the macrophage 

lysosomal enzymes, which function optimally at acid pH (Levitz et al. 1999). In vivo, 

intracellular persistence was associated with replication and residence in a membrane 

bound phagosome (Feldmesser et al. 2001a; Feldmesser et al. 2000). Recent electron 

microscopy studies by Tucker and Casadevall revealed that intracellular residence by 

C. neoformans is accompanied by the accumulation of polysaccharide-containing 

vesicles, which originated from the phagosome, followed by macrophage dysfunction 

and lysis (Tucker and Casadevall 2002) (Figure 6). Many virulence factors required for 

cryptococcal intracellular survival have already been identified, including capsule and 

melanin synthesis proteins, proteinases and phospholipases, an alternative oxidase 

(Aox1) (Akhter et al. 2003), inositol phosphosphingolipid- phospholipase C1 (Isc1) 

(Shea et al. 2006), Skn7 (Coenjaerts et al. 2006), and vacuole protein Vps41 (Liu et al. 

2006), most of which contribute to defence against exogenous oxidative stress. 

However, the detailed intracellular survival mechanism needs further investigation.  
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Figure 6: Macrophage parasitism by C. neoformans. Following phagocytosis, the internalised cryptococci can be killed by macrophages (1), 
or they remain latent (2). When the host becomes immunocompromised, some of the cryptococci or latent population can reactivate and 
proliferate intracellularly (3), followed by the lytic burst of the host cells and release of the intracellular yeast cells into the extracellular 
environment. The released yeast cells can then infect more macrophages or establish their extracellular dominance. 
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Figure 7: A schematic illustration of Trojan Horse mechanism, during which 
intracellular cryptococcal cells are delivered by macrophages to various tissues via the 
host circulatory system (modified from (Mitchell 2006)). 
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Table 1: A list of strategies used by selected pathogens to achieve intracellular survival and growth (Adapted from (Feldmesser et al. 
2001b)). 
 

Microorganism  Escape from phagosome Inhibition of phagosome maturation Destruction of mature phagolysosome membrane  

Listeria monocytogenes Yes  No  No  
Legionella pneumophila No  Yes  No  
Chlamydia psittaci No  Yes No  
Mycobaterium tuberculosis No  Yes  No 
Histoplasma capsulatum No  Yes  No 
Leishmania denovani No  Yes  No 
Toxoplasma gondii No Yes No 

Cryptococcus neoformans  No  No  Yes 
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1.5.2 Immunocompetent host 

 

The host defence against C. neoformans is critically regulated by cell-mediated 

immunity (Lim and Murphy 1980), especially T lymphocytes, which play a central role 

in eradicating this infection (Hill and Harmsen 1991; Huffnagle et al. 1991; Mody et al. 

1990). The mechanisms by which the lymphocytes facilitate elimination of cryptococci 

have not yet been elucidated. It is generally thought that lymphocyte clearance of C. 

neoformans acts indirectly through production of cytokines to enhance clearance of the 

organism by natural effector cells, particularly macrophages (Brodie et al. 1994; Chen et 

al. 1994; Kawakami et al. 2000; Kawakami et al. 1995; Lindell et al. 2005; Weinberg et al. 

1987; Zhang et al. 1997).  

 

Exposure to various pathogens can stimulate at least two patterns of cytokine 

production, mainly by CD4+ T cells: Th1 and Th2. For C. neoformans, the balance 

between Th1 and Th2 cytokines markedly influences the outcome of infection: the 

predominant synthesis of Th1 cytokines over Th2 protects mice from infection, 

whereas infection is exacerbated under Th2 dominant conditions (Hoag et al. 1995; 

Huffnagle 1996; Koguchi and Kawakami 2002; Snelgrove et al. 2006). Mice depleted of 

Th1 type cytokines are highly susceptible to cryptococcal infection (Huffnagle 1996; 

Kawakami et al. 1996), while the infection is less severe in mice lacking Th2 cytokines 

relative to control mice (Blackstock and Murphy 2004; Decken et al. 1998). A recent 

study shows the observed poor prognosis of a Th2 cytokine profile might be due to 

inhibition of anti-cryptococcal macrophage functions, such as phagocytosis and 

intracellular clearance by Th2 cytokines (Voelz et al. 2009). 

 

For cryptococcal infection, the Th1/Th2 balance is maintained mainly by phagocytic 

effector cells (e.g., dendritic cells and neutrophils as discussed earlier) (Mednick et al. 

2003, Wozniak et al. 2006) and some primary lymphocytes (e.g., natural killer T (NKT) 

cells and γδ antigen receptor-bearing T cells) (Kawakami 2004; Nanno et al. 2007; 

Zhang et al. 1997). A remarkable feature of NKT cells is the abundant production of 
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IFNγ and IL-4 upon stimulation via their antigen receptors. After cryptococcal infection, 

NKT cells were found to be recruited to the lung, and trigger a Th1-mediated, but not 

Th2-mediated, immune response (Kawakami et al. 2001). In contrast, γδ T cells play a 

down-modulatory role in the development of Th1 responses and host resistance 

against C. neoformans (Uezu et al. 2004). Therefore, γδ T cells may act to keep the 

balance of Th1-Th2 responses in a proper manner by suppressing the exaggerated Th1 

response caused by NKT cells (Kawakami 2004). The contrasting roles of NKT and γδ T 

cells, and the fact the neutrophil depletion can enhance both Th1 and Th2 cytokines 

(Mednick et al. 2003), suggest that these innate immune response are not only 

important for induction of proper host defence but also to balance the level of defence.  

1.5.2.1 Antifungal effect of activated macrophages 

When a T-cell mediated immune response is present, the majority of the intracellular 

cryptococci are eradicated. Properly activated macrophages have a variety of 

microbicidal mechanisms that are potentially active against C. neoformans, including 

both oxidative and nonoxidative mechanisms and granuloma formation. The oxidative 

microbicidal mechanism involves the generation of reactive oxygen- and nitrogen-

derived intermediates (ROI and RNI). ROI, such as superoxide anions, hydroxyl 

radicals, and hydrogen peroxide are generated as a result of the incomplete reduction 

of oxygen during respiratory metabolism (Turrens and Boveris 1980). Nessa et al 

showed that C. neoformans induced a markedly higher increase of oxidative metabolism 

in macrophages than did inert silica particles in an in vivo rabbit model of infection 

(Nessa et al. 1997a). Such an increase was also observed with rat alveolar macrophages 

and Candida and Aspergillus species in in vitro studies (Nessa et al. 1997b; Nessa et al. 

1997c), indicating that production of ROI is a general mechanism of intracellular killing 

employed by macrophages. Cryptococcal strains lacking proteins (e.g., Aox1 and Skn7) 

that protect against reactive oxygen species inside macrophages, show reduced 

intracellular survival of C. neoformans and thus reduced virulence in animal models of 

infection (Akhter et al. 2003; Coenjaerts et al. 2006). RNI, produced by several 
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mammalian cells, are also powerful antimicrobial molecules against intracellular C. 

neoformans. Nitric oxide, one of the key RNI molecules, is produced by macrophages 

through the action of inducible nitric oxide synthase on L-arginine (Tripathi et al. 2007) 

and acts to suppress cryptococcal growth (Tohyama et al. 1996). In addition, NK cells 

promote anticryptococcal activity of macrophages through enhancing nitric oxide 

activity (Kawakami et al. 2000). Resistance to oxygen- and nitrogen-derived oxidants 

has been found to be a major factor in determining the outcome of infection with C. 

neoformans (Xie et al. 1997), implying the importance of ROI and RNI in intracellular 

killing by macrophages.  

 

In the presence of intact T cell function, macrophages also often form a histiocytic ring 

around C. neoformans cells and may fuse to form giant multinucleated cells in order to 

engulf heavily encapsulated yeast. This is called granuloma formation and has been 

demonstrated to be the most effective host response to localise the infection and 

prevent dissemination (Casadevall and Perfect 1998; Hill 1992). Furthermore, 

resolution of infection, when it occurs, almost always follows granuloma formation. 

For instance, intratracheal infection of rats with C. neoformans was found to elicit a 

strong granulomatous response and resulted in minimal or no dissemination 

(Goldman et al. 1994; Goldman et al. 1996; Kobayashi et al. 2001). Granulomatous 

inflammation is more likely to be reported in non-HIV-associated cryptococcosis (Lee 

et al. 1996; Mohanty et al. 2003; Shibuya et al. 2005), and there is evidence that a strong 

granulomatous response is dependent on intact T cell function (Clemons et al. 1996; 

Hill 1992), indicating a mechanism by which abnormalities of cell-mediated immunity 

can translate into poor inflammatory responses.  

 

The fungistatic activity of macrophages can be enhanced by the presence of antibody; 

antibody against capsular GXM promoted nitric oxide production in macrophages 

(Rivera et al. 2002), and antibody-treated mice have a more intense granulomatous 

response than control mice (Casadevall and Perfect 1998). Nevertheless, a small 

number of cryptococci are able to survive and remain latent inside macrophages in 



Chapter I: Introduction 

47 

immunocompetent individuals, despite the presence of Th1 cytokines and antibody. 

This latency is probably due to the presence of cryptococcal anti-ROI/RNI factors and 

virulence factors (such as capsule, melanin, Aox1, Sod1, Ccp1, Isc1 and Skn7 (Akhter et 

al. 2003; Alvarez and Casadevall 2007; Coenjaerts et al. 2006; Cox et al. 2003; Giles et al. 

2005; Liu et al. 2006; Ma et al. 2007; Missall et al. 2004; Zaragoza et al. 2008)), rapid 

changes in virulence mediated by phenotypic switching and Th2-polarised responses 

later in infection to avoid tissue damage caused by the early Th1 response (Kawakami 

2004; Mednick et al. 2003). This latent population is then able to trigger cryptococcosis 

later on in life when the host immune system becomes compromised (Garcia-Hermoso 

et al. 1999).  

1.5.2.2 Direct antifungal effects of T lymphocytes 

Much evidence suggests that NK cells and T lymphocytes function as both regulators 

(by secreting cytokines, e.g., CD4+ T helper cell) and effectors (cytotoxic cells) during 

the immune response against C. neoformans. Hence, direct inhibition of cryptococcal 

cells by these host cells may be another important means of host defence against C. 

neoformans. Early studies by Levitz et al demonstrated the competence of freshly 

isolated human CD4+, CD8+ lymphocytes, and CD16/56+ NK cells (but not B cells) to 

directly bind and inhibit the growth of C. neoformans in the absence of MHC restriction 

(Levitz and Dupont 1993; Levitz et al. 1994). These findings are in agreement with 

several previous studies (Hidore et al. 1991; Murphy et al. 1991; Murphy et al. 1993; 

Nabavi and Murphy 1985). Recent studies have improved our understanding of the 

underlying detailed mechanisms. These studies found that direct anticryptococcal 

activities of CD4+ and CD8+ cytotoxic cells are dependent on the expression of 

granulysin after activation by CD4+ T helper cell (or IL-2/IL-15, which can substitute T 

cell helper) (Ma et al. 2002; Zheng et al. 2007), whereas NK cells used perforin instead 

(Ma et al. 2004) (Figure 8). Granulysin, a novel host defence protein, is able to increase 

membrane permeability of bacteria and fungi, and thus trigger osmotic lysis (Ernst et 

al. 2000). Granulysin expression in CD4+ cytotoxic T cells is controlled by PI3K and 
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STAT5 signalling pathways through promoting IL-2Rβ induction (Zheng et al. 2008). 

CD4+ cytotoxic T cells from HIV patients fail to induce granulysin expression due to 

defective PI3K and STAT5 pathways, resulting in inefficient killing (and growth 

inhibition) of C. neoformans (Zheng et al. 2007). Similarly, CD8+ T cells express 

granulysin in the presence of IL-15 and CD4+ T cells, and the up-regulation of 

granulysin correlated with the acquisition of anticryptococcal activity (Ma et al. 2002). 

Perforin, stored in secretory vesicles (granules) of T lymphocytes and NK cells, is 

another pore-forming effector molecule that acts by inserting into the target cell’s 

plasma membrane, triggering lysis (Voskoboinik et al. 2006). Perforin-mediated 

anticryptococcal killing is accompanied by activation of PI3K-ERK1/2 signalling 

pathway (Wiseman et al. 2007). It is essential for NK cells, although both granulysin 

and perforin are constitutively expressed by this cell type (Ma et al. 2004; Marr et al. 

2009)  
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Figure 8: Killing of C. neoformans by the immune response in immunocompetent 
individuals. Killing can occur either intracellularly when macrophages are activated by 
Th1 type cytokines or extracellularly by effector molecules secreted by cytotoxic T 
lymphocytes (CD4+ and CD8+) and NK cells. Many other cells from the immune 
system contribute to the elimination of cryptococci directly or indirectly by triggering 
and balancing Th1 type cytokine release. 
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1.5.3 Conclusion 

 

C. neoformans is a facultative intracellular pathogen, capable of living both outside and 

inside cells. The current model of cryptococcal infection is based on five steps: 

internalisation, dormancy, reactivation, proliferation and dissemination (Figure 6). In 

the initiation stage, C. neoformans interacts with and is engulfed by lung phagocytes 

(mainly macrophages). Normally, in an immunocompetent individual, a T-cell 

mediated immune response (driven especially by CD4+ cells) develops. This leads to 

activation of macrophages via cytokine release and granuloma formation, resulting in 

either destruction of the intracellular fungus or containment in a latent state. Direct 

antifungal activity of lymphocytes also improves the host defence (Figure 8). 

Subsequently, when the individual becomes immunocompromised, C. neoformans can 

start proliferating inside the macrophage, followed by macrophage lysis and release of 

C. neoformans. The released organism can then enter other phagocytes, causing 

dissemination and increased proliferation. Long-term growth inside macrophages and 

host often leads to enlargement of the capsule, which probably sequesters available 

complement proteins. The unopsonised organisms are poorly recognised by 

phagocytes and thus establish extracellular dominance. During prolonged infections, 

the yeast population can undergo microevolution, which results in both phenotypic 

and genotypic changes in order to be better adapted to local organs or environments 

(Lortholary et al. 1999). The identification of genes and factors that contribute to either 

extra or intracellular proliferation of this pathogen may lead to the development of 

novel prevention and treatment strategies for cryptococcosis. 
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1.6 Current understanding on how Cryptococcus crosses the blood-brain 

barrier (BBB) 

 

Cryptococcal meningoencephalitis develops as a result of haematogenous 

dissemination of inhaled Cryptococcus from the lung to the brain. In order to penetrate 

into the brain, the yeast must cross the endothelium of the BBB, which is composed of 

brain microvascular endothelial cells connected by tight junctions between the cells 

(Rubin and Staddon 1999).  

 

Although the mechanisms of entry into the CNS for the majority of 

meningoencephalitis-causing microorganisms are not clear, three potential models 

have been described. Pathogens may cross the BBB paracellularly (e.g., Trypanosoma 

species) (Grab et al. 2004), transcellularly (e.g., Streptococcus pneumoniae) (Ring et al. 

1998), and by means of infected immune cells (Trojan Horse mechanism, e.g., HIV) 

(Dallasta et al. 1999; Erlander 1995). In the case of Cryptococcus, several lines of 

evidence support the hypothesis that the yeast crosses the BBB transcellularly. In 1995, 

an in vitro study showed that C. neoformans (especially acapsular strains) were able to 

adhere to and then be internalised by endothelial cells, subsequently causing damage 

to the host cell. Furthermore, they found that internalisation required the presence of a 

heat-labile serum factor, which could be one of the components of the classical 

complement pathway (Ibrahim et al. 1995). Chretien and colleagues then reported that, 

in vivo, Cryptococcus was phagocytosed by endothelial cells of the leptomeningeal 

capillaries (Chretien et al. 2002). Subsequently, C. neoformans was found to alter the 

cytoskeletal morphology of human brain microvascular endothelial cell (HBMEC) 

through the ROCK-LIMK-cofilin pathway, and cross the HBMEC layer transcellularly 

without affecting the monolayer integrity (Chang et al. 2004; Chen et al. 2003). 

Importantly, the virulence factor Skn7 has been demonstrated to co-regulate the 

adaptive strategy of Cryptococcus, allowing intraphagocytic survival by conferring 

resistance to phagolysosomal killing in endothelial cells (Coenjaerts et al. 2006). 
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However, compared to C. albicans, the efficiency of adhesion and invasion is low 

(Chang et al. 2004; Chen et al. 2003; Jong et al. 2001).  

 

Concomitantly, several studies also demonstrated that phagocytes might act as a 

means of allowing Cryptococcus to invade the brain. For example, microscopy of the 

leptomeninges of a mouse with severe meningoencephalitis showed cryptococci 

internalised both within mononuclear cells circulating within meningeal capillaries 

and within host cells touching the outer membrane of the capillaries (Chretien et al. 

2002). In a murine model of cryptococcosis, a reproducible threefold increase in the 

fungal burden measured in the brain 24 hours after inoculation with bone marrow 

derived macrophage-associated yeasts were observed compared to the burden after 

inoculation with free yeasts, providing another piece of evidence for the Trojan Horse 

mechanism (Charlier et al. 2009).  

 

Furthermore, although direct transfer of C. neoformans from infected phagocytes to 

endothelial cells has not been demonstrated, such events have been observed between 

two macrophages (Alvarez and Casadevall 2007; Ma et al. 2007). When travelling 

throughout the host circulatory and lymphatic system, macrophage cells interact 

intimately with one another and with other cell types through transient contacts. It is 

possible that internalised C. neoformans may use such transient contact in order to cross 

the BBB by direct cell-to-cell spread from adherent infected macrophages to 

microvascular endothelial cells. In fact, spreading from macrophages to other cell types 

during dissemination has been demonstrated for other pathogens in vitro. For instance, 

L. monocytogenes can infect neurons by cell-to-cell spread from adherent macrophages, 

a more efficient process than direct invasion of neurons (Dramsi et al. 1998). More 

importantly, cell-to-cell spread of bacteria from adherent infected phagocytes to 

endothelial cells of the CNS has also been reported (Drevets and Leenen 2000) and it 

will clearly be of great interest to investigate whether a similar process may occur 

during cryptococcosis. 
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Since cryptococcosis is very common in HIV-infected patients, it is not implausible to 

suspect that the presence of HIV may enhance cryptococcal entry into the CNS. 

Numerous studies have demonstrated that HIV is able to cause damage to the 

endothelial cell layer and thus facilitate the entry of other microorganisms into the CNS 

(Dallasta et al. 1999; Ricardo-Dukelow et al. 2007; Toborek et al. 2005). The interaction 

between HIV and C. neoformans has not been well studied, but a recent study reported 

an interesting interplay between the yeast and the HIV-1 protein gp41. Jong et al 

demonstrated that the binding of C. neoformans to HBMEC could be enhanced by HIV-

1 gp41 in vitro and also in a murine model. Therefore, they speculated that HIV-1 gp41 

may play a role as a trans-predilection factor for C. neoformans invasion, thus resulting 

in a deteriorating meningoencephalitis in HIV-infected patients (Jong et al. 2007).  

 

In summary, there are three possible ways by which Cryptococcus can cross the BBB 

and enter the CNS (Figure 9). They are: 1) direct transcellular crossing, during which 

free cryptococci are internalised by endothelial cells and exit through the abluminal 

surface of the cells; 2) Trojan Horse mechanism, which proposes that cryptococci are 

engulfed by phagocytic cells at an early stage of infection and then trafficked by these 

host cells into the CNS; and 3) direct transfer from infected phagocytes into endothelial 

cells followed by exit at the abluminal surface of the cells. Moreover, the presence of 

HIV-1 may facilitate Cryptococcus to cross the blood-brain barrier by destroying the 

integrity of the blood-brain barrier and/or by acting as a trans-predilection factor.  
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Figure 9: Possible routes for cryptococci to cross the BBB: 1) Trojan mechanism; 2) Lateral transfer; and 3) Transcellular cross. 
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1.7 Project outline 

 

The AIDS pandemic has resulted in a new wave of research on C. neoformans over the 

last 30 years, and our understanding of the biology of this pathogen has improved 

dramatically. As a result of technical improvements, such as the development of 

transformation techniques (electroporation (Chang et al. 1996; Edman and Kwon-

Chung 1990), biolistic transformation (Alspaugh et al. 1997; Odom et al. 1997; Toffaletti 

et al. 1993), and Agrobacterium-mediated transformation (McClelland et al. 2005)) and 

the recent completion of several whole-genome sequences, many genes responsible for 

virulence in C. neoformans during infection have been identified and the mutants have 

been verified in robust animal models. Its clinical significance and well-defined 

virulence factors, along with advanced genome-wide analysis tools, have made C. 

neoformans an organism of choice for the study of fungal pathogenesis in general. To 

date, the clinical management of cryptococcosis is possible, but the morbidity and 

mortality remain high. A critical challenge will be to develop novel treatments based 

upon advances in genomics, proteomics and metabolomics. This requires a better 

understanding of host-pathogen interplay.  

 

C. neoformans and C. gattii can live and replicate inside phagocytes, but the long term 

latency and intracellular survival mechanism have not been investigated in detail. This 

project is aimed to understand the molecular basis of phagocyte parasitism during 

cryptococcosis. Since macrophages are the primary phagocytic cell at all time of 

infection, we have used J774 mouse macrophage-like cells as the main cell line to 

elucidate intracellular survival and replication of Cryptococcus. J774 was derived from a 

tumour in a female BALB/c mouse and has been shown to possess characteristics 

typical of macrophages, such as the expression of both Fc and complement receptors 

(Ralph and Nakoinz 1975). In recent years, J774 has been used extensively to study 

intracellular survival of pathogenic bacteria including Mycobaterium avium and 

Francisella tularensis (Hostetter et al. 2003; Telepnev et al. 2003). The similarities 
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between J774 and human peripheral blood monocytes have also been demonstrated 

(Alvarez et al. 2009), supporting the suitability of mouse cells for the study of 

intracellular pathogenesis mechanisms. The first part of the project asked whether 

different phagocytosis routes lead to different outcomes for intracellular cryptococci. 

During this part of work, we discovered and characterised a novel escape mechanism 

used by Cryptococcus. The second part of the project aimed to reveal how Cryptococcus 

achieves intracellular replication. By combining strain screening together with 

microarray analysis and mating assays, we identified factors promoting the 

intracellular proliferation of Cryptococcus. We hope that in the future, this improved 

understanding of cryptococcal virulence will aid in development of potential anti-

fungal compounds. 
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All the chemicals and solutions are purchased from Sigma-Aldrich unless otherwise 
stated.  
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2.1 Yeast culture techniques 

 

2.1.1 Strains and growth conditions 

 

All cryptococcal and yeast strains used in this project are listed in Appendix I. 

Cryptococcal strains and S. cerevisiae were grown overnight in antibiotic-containing 

yeast peptone dextrose (YPD) medium (2% D-glucose, 1% peptone and 1% yeast 

extract) with moderate shaking (240 rpm) at 25°C. Antibiotics were added to the media 

at the following concentrations: ampicillin 50µg/ml or kanamycin 25µg/ml. For 

experiments using S. pombe wild type 972, the strain was grown in YES medium (0.5% 

yeast extract, 3% glucose, 0.1g/L amino acid supplement containing adenine, uracil, 

leucine, histidine, lysine and arginine) overnight with moderate shaking (240 rpm) at 

25°C. Before use, the overnight yeast cells were collected by centrifugation at 2000 rpm 

for 2min, washed twice with PBS (pH=7.4) and resuspended in PBS.  

 

2.1.2 Freezing and defrosting cryptococcal strains 

 

To freeze down the strains, 1ml of 50% glycerol was added to each cryogenic vial and 

sterilised by autoclaving. 200µl of cryptococcal culture grown in YPD for 24h at 25°C 

were added to a glycerol vial and vortexed to make the glycerol suspension 

homogeneous. The vial was stored at -80°C immediately. When isolates were needed, a 

small piece of frozen culture was chipped and inoculated onto YPD plates. The vial 

was immediately returned to the -80°C freezer to prevent further thawing. Individual 

isolate was re-plated onto a new YPD plate every month.  

 

2.1.3 Micromanipulation of meiotic basidiospores and segregation analysis 

 

Mating reactions of the desired C. gattii strains were established by co-culturing the 

opposite mating-type cells on V8 plates (pH=5). Matings were conducted at room 

temperature in the dark for 3–4 weeks until robust filamentation and sporulation were 

observed by microscopy. Each basidium fruiting structure harbours a single diploid 

nucleus, which undergoes a single round of meiosis, and then repeated rounds of 

mitosis give rise to chains of >10 basidiospores (Figure 4). The filaments and the 
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basidiospores on the edges of a mating patch were removed on an agar plug taken 

with a glass Pasteur pipette and transferred to an YPD plate. The basidiospores were 

randomly selected with a 25μm microneedle and arranged in a grid on the surface of 

the YPD plate. Subsequently, random spore analysis was conducted. Isolated 

basidiospores were incubated at 30°C for 2–3 days to allow the spores to germinate, 

and the resulting yeast colonies were subcultured to fresh YPD medium. Each yeast 

colony was further purified by spreading the culture on to YPD plates for single colony 

selection.  

 

 

2.2 Cell culture techniques 

 

2.2.1 Defrosting cell lines 

 

The cells were thawed in a 37°C water bath immediately after taking from liquid 

nitrogen. The cells were then centrifuged at 1500 rpm for 5min in 9ml of warm 

complete media to remove dimethyl sulfoxide (DMSO). The cell pellets were then 

resuspended in 1ml complete media before transferring to flask with adequate amount 

of complete media. The dead cells were removed the next day and healthy cells were 

left to grow until they were ready to split.  

 

2.2.2 Passaging cell lines 

 

J774.16 cells (A murine macrophage-like cell line derived from a reticulum sarcoma) 

were grown in complete media, containing DMEM supplemented with 10% (v/v) heat-

inactivated foetal bovine serum (HI-FBS), 1% penicillin (100u/ml) /streptomycin 

(100μg/ml) and 2mM L-glutamine. Cells were kept in a humidified incubator at 37°C 

with 5.0% CO2. When cells reached 80%-90% confluence, they were split in the 

following manner. Old media were replaced with fresh media and cell scrapers were 

used to dislodge cells from the bottom of the flask. The cells were counted using a 

haemocytometer and then seeded at the appropriate density into a new flask. The cell 

line was used between 3-30 passages.  
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Cos-7 cells (African green monkey kidney fibroblast-like cell line) were incubated in 

DMEM supplemented with 10% (v/v) HI-FBS, 1% penicillin (100u/ml) /streptomycin 

(100μg/ml). Cells were grown in a humidified incubator at 37°C with 5.0% CO2. When 

cells reached 80-90% confluence, they were split using trypsin-EDTA at 1:4 ratio.  

 

2.2.3 Freezing cell lines 

 

When cells reached about 80% confluency, J774 cells were covered with 5ml fresh 

complete media and scraped from the flask. While Cos-7 cells were washed once with 

5ml PBS followed by trypsin/EDTA treatment. The dislodged cells were then mixed 

with 5-10ml complete media and centrifuged at 1500 rpm for 5min. After that, cell 

pellets were suspended in 1ml DMEM containing 10% DMSO and 20% HI-FBS. 

Subsequently, cells were transferred to -20°C freezers and then -80°C freezers and 

finally to liquid nitrogen for long-term storage.  

 

2.2.4 Transfection of Cos-7 

 

Cos-7 cells were transfected using Lipofectamine reagent (Invitrogen). The day before 

transfection, cells were split onto a 35mm plate to achieve 50%-70% confluency next 

day. Before transfection, the cells were washed once with serum-free DMEM (SFM) 

and covered with 1750µl SFM. After that, 10µl SFM was mixed with 3µl Lipofectamine 

reagent to form Lipofectamine-SFM, and the same time, 15µl SFM was mixed with 

0.7µg plasmid DNA to form DNA-SFM. Subsequently, Lipofectamine-SFM was added 

to DNA-SFM dropwise. The new mixture was incubated at room temperature for 

15min to allow DNA-Lipofectamine complex to form. Finally, 200µl of SFM was mixed 

with DNA-Lipofectamine complex, which was added to Cos-7 cells dropwise. The cells 

were incubated in lipofectamine containing SFM for six hours and then changed to 

complete DMEM. Expression was checked 24h after transfection.  

 

2.2.5 Generation and activation of human blood-derived macrophages (HPBMC)  
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 HPBMC were prepared as described previously (Fazal et al. 1995). Briefly, the cells 

were resuspended at 6x106 cells/ml in RPMI-1640 medium containing 2% FBS, 2mM L-

glutamine and 1% penicillin (100u/ml) /streptomycin (100μg/ml). The HPBMC were 

then seeded into T175 tissue culture flasks. Non-adherent cells were removed by 

extensive washes with PBS and adherent monocytes incubated overnight in RPMI 

media supplemented with 10% FBS and GM-CSF (100iu/ml). Following overnight 

incubation adherent cells were removed from flasks by incubation on ice in pre-chilled 

PBS and cultured for 1-2 days in RPMI + 10% FBS supplemented with GM-CSF 

(100iu/ml). The cells were adjusted to 1x106 cells/ml and aliquoted into 3cm plastic 

petri dishes or 24-well plates. The cell media were replenished on days 3 and 5 yielding 

adherent, confluent macrophage cultures at Day 7. When required the macrophages 

were activated with lipopolysaccharide (LPS) (1µg/ml) and human IFNγ (1000u/ml), 

which were added to the culture dishes 24h prior to infection with Cryptococcus. 

 

2.2.6 Drug treatment of macrophages  

 

Drugs used to treat macrophage include concanamycin A, chloroquine, cytochalasin D 

and nocodazole. They were used at the following concentrations: concanamycin A 

100nM to block the acidification of phagosome; chloroquine 10µM to increase the pH of 

the phagosome; cytochalasin D 2.5µM, 4µM and 10µM to block actin polymerisation; 

and nocodazole 2.5µg/ml to depolymerise microtubules. Chloroquine was added to 

J774 one hour prior the onset of phagocytosis assay, while concanamycin A, 

cytochalasin D, and nocodazole were added to J774 after two-hour phagocytosis assay 

because they affected uptake of Cryptococcus by J774. All these drugs were present 

thoroughly the intracellular proliferation measurement assay and timelapse filming. 

 

2.3 Phagocytosis assay 

 

J774 cells or HPBMC (4x105 cells/ml) were plated into a 35cm tissue-culture plate or 

1x105 cells/ml in 24-well dishes 16-24h before the assay. Shortly before use, cells were 

incubated for one hour in SFM containing 150ng/ml phorbol myristate acetate (PMA). 
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Similarly, the primary macrophage cells (which have been activated with LPS and IFNγ) 

were incubated for one hour in SFM. Meanwhile, cryptococcal cells were washed three 

times with PBS and counted in a haemocytometer. For experiments with opsonised 

Cryptococcus, both live and heat-killed fungal cells were incubated with 10µg/ml of the 

monoclonal antibody 18B7 or 20% human or guinea pig sera at 37°C for one hour. For 

some strains, the antibody titration is optimised (between 1µg/ml to 10µg/ml) in order 

to reduce the number of attached extracellular yeast cells after phagocytosis. For non-

opsonised cryptococci, S. cerevisiae and latex beads, opsonins were replaced with water. 

To commence the assay, the medium containing PMA was removed and replaced by 

normal SFM containing yeast cells at a ratio of yeast cell and macrophage from 10:1 to 

1:1 depending on the experiment. The phagocytosis was allowed to proceed for two 

hours at 37°C in 5.0% CO2 atmosphere. Non-internalised yeasts were then removed by 

4-5 successive washes with pre-warmed SFM or PBS. After that, the cells were fixed for 

further analysis, or timelapse imaging, or intracellular proliferation assay.  

 

 

2.4 Intracellular proliferation assay 

 

A proliferation assay was developed to monitor intracellular proliferation of individual 

strains for a 64-hour period following phagocytosis. For this assay, J774 macrophages, 

HPBMC or primary human alveolar macrophages (provided by David Lammas, 

University of Birmingham) were exposed to cryptococci opsonised with 18B7 antibody 

for two hours as described above. Each well was washed with PBS 4-5 times to remove 

as many extracellular yeast cells as possible and 1ml of fresh SFM was added. For time 

point T0, the 1ml SFM was discarded and 200µl of sterile dH2O was added into wells to 

lyse macrophage cells. After 30min, the released intracellular yeast cells were collected. 

Another 200µl dH2O was added to each well to collect the remaining yeast cells. The 

intracellular yeast was then mixed with Trypan Blue at a 1:1 ratio and the live yeast 

cells were counted. For the subsequent five time points T16, T24, T40, T48 and T64, both 

extracellular and intracellular cryptococci were collected and independently counted 

by haemocytometer in the same manner. For each strain tested, each time course was 
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repeated at least three times on different occasions and using different batches of 

macrophages. Intracellular proliferation ratio was calculated by dividing the maximum 

intracellular yeast number (which is T24 for most of the strains) by the initial 

intracellular yeast number at T0. Compared to conventional colony forming unit 

counting method, this assay is more sensitive in detecting the clustered yeast 

population or yeast cells undergoing budding.  

 

 

2.5 Measurement of cryptococcal growth rate in YPD and macrophage lysates  

 

In order to demonstrate that the high intracellular proliferation capacity of VIO strains 

was not due to a shorter generation time or better utilisation of nutrient sources 

available in the host cell, a selection of C. gattii strains with different IPR values was 

chosen to measure their growth rates in YPD at 25°C (shaking) and at 37°C (non-

shaking with 5.0% CO2), or in the presence of macrophage lysates (at 37°C, non-

shaking with 5.0% CO2) for 48h. To prepare the macrophage lysate, 5x106 J774 

macrophages were collected and lysed in 2 ml ice-cold H2O for 10min on ice. The lysate 

was then vigously vortexed for 1 min and mixed with 48 ml of SFM. Subsequently, 105 

cryptococcal cells of each strain were mixed with 1ml SFM-lysate mixture and 

incubated at 37°C with 5.0% CO2 for 48h. The number of yeast cell was counted using 

haemocytometer every 24h. All the experiments were repeated 3 times with different 

macrophage cultures.  

 

 

2.6 Microscopy  

 

2.6.1 Light microscopy 

2.6.1.1 Calculation of phagocytosis index 

Coverslips (13mm) were either treated with 20ml nitric acid for 10min followed by 2-3 

times 100% ethanol washes or autoclaved before being plated in 24-well dishes. Cells 
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were seeded in 24-well dishes at 1x105 cells/ml to carry out phagocytosis assay as 

described earlier. Afterwards, cells were washed twice with PBS and fixed by 

incubating in 4% PFA for 20min at 4°C. Following fixation, cells were washed three 

times with PBS and two times with water before being mounted in mowiol mounting 

media on slides. Phagocytosis Index (PI) was calculated as the percentage of the 

macrophages with internalised C. neoformans. For each PI calculation, more than 500 

cells were counted.  

2.6.1.2 Mitochondrial staining 

Yeast cells, grown overnight in YPD medium at 25°C at 240 rpm, or grown at 37°C in 

DMEM in a 5.0% CO2 incubator without shaking for 24h, or isolated from macrophages 

24h after infection, were harvested, washed with PBS twice and resuspended in PBS 

containing the MitoTracker Red CMXRos (Invitrogen) strain at a final concentration of 

40nM. Cells were incubated for 30min at 37°C. After staining, cells were washed three 

times and resuspended in PBS. For each condition, more than 60 yeast cells for each 

tested strains were randomly chosen and analysed in blind. For quantifying different 

mitochondrial morphologies, images were collected on a Nikon Eclipse E300 

microscope using 60x oil immersion 1.40NA plan apo objective lens. Both fluorescence 

images and bright-field images were collected simultaneously. Images were captured 

with identical settings on a Hamamatsu Orca C4745-12NRB with a 0.5x camera lens 

using Openlab (version 5.5.0; Improvision, Coventry, UK). All Images were processed 

identically in Photoshop CS2 and mitochondrial morphologies were analysed and 

counted blind. For confocal microscopy, images were collected on a Nikon Eclipse E600 

confocal microscope with BioRad Radiance 2000 MP laser scanning system using a 

100x oil immersion WD 0.20 objective lens. Images were processed using 

ZeissSharp2000 software (version 6.0).  

 

2.6.2 Timelapse microscopy  

 

Timelapse live imaging was carried out for all the strains in order to calculate 

vomocytosis rate and verify IPR values calculated using the proliferation assay 
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described above. Cells were maintained at 37°C and 5.0% CO2 using a temperature-

controlled chamber (Okolab) and imaged on a Nikon Eclipse TE2000-U microscope 

with 20x phase contrast objective and 1.5x optivar. The timelapse movies were made 

using the software NIS-Elements AR 3.0, capturing one frame every 90s for 24h on a 

Nikon Digital Sight DS-Qi1Mc camera. The vomocytosis rates (which equals to the 

number of vomocytosis occurred divided by the number of macrophages with 

intracellular Cryptococcus) and IPR values for various strains were scored manually by 

eye. All the experiments were repeated three or more times on different days using 

independent cultures of J774 macrophage and Cryptococcus.  

 

 

2.7 Microarray study 

 

2.7.1 RNA isolation from intracellular cryptococci after 24h 

 

Phagocytosis assay was carried out as mentioned earlier. After 24h, extracellular 

cryptococci were removed with pre-warmed PBS washes and macrophages containing 

intracellular cryptococci were lysed with 10ml ice-cold ddH2O for 30min before being 

scraped from T75 tissue flasks. The whole mixture was then centrifuged at 1500 rpm at 

4°C for 5min and the resulted pellet was washed twice with ice-cold ddH2O. 

Subsequently, the pellet was resuspended in 10ml of ddH2O supplemented with 0.05% 

sodium lauryl sulphate (SDS) for 5min to remove most of the macrophage RNA, 

because at this SDS concentration, the macrophages were lysed while cryptococci 

remained intact and viable (Fan et al. 2005). The remaining yeast cells were washed 

three times with ice-cold ddH2O by centrifugation and resuspension. The final pellet 

was then used for RNA isolation, or it was frozen at -80°C until RNA preparation.  

 

Yeast RNA was isolated using Micro-to-Midi Total RNA Purification System 

(Invitrogen). Basically, 3-9x107 yeast cells were suspended in 500µl of freshly prepared 

RNA lysis solution containing 5µl of 2-mercaptoethanol. The suspension was added 

dropwise onto the crushed dry ice and the mixture was ground until the dry ice had 

evaporated. The liquid was then transferred to a 4ml tube and homogenised at 6400 rcf 
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for 2x15s. After homogenisation, the homogenate was centrifuged at 12,000 rcf for 

2min and the supernatant was mixed with 500µl of 70% ethanol, added to the RNA 

Spin Cartridge and centrifuged at 12,000 rcf for 15s at 25°C. Subsequently, 700µl of 

Wash Buffer I was added to the cartridge and spin down at 12,000 rcf for 15s at 25°C, 

which was followed by washing the cartridge with 500µl of Wash Buffer II twice and 

spin down at 12,000 rcf for 15s at 25°C. Finally the cartridge membrane was dried by 

centrifugation at 12,000 rcf for 1min, and RNA was collected by adding 30-50µl of 

RNase-free water to the cartridge and centrifuged at 12,000 rcf for 2min at 25°C. The 

RNA was then quantified with Nanodrop-1000 and stored on ice for immediate use or 

-80°C for later use.  

 

2.7.2 Microarray experiment 

 

An Agilent printed whole genome tiling array with 242,003 probes generated against 

two genomes of C. gattii, A1M-R265 (Broad Institute) and WM276 (Jim Kronstad, 

personal communication), was designed by Oxford Gene Technology (OGT). Average 

interprobe distance was 140-nucleotide long, evenly distributed across both DNA 

strands. After round one of design, any gaps of over 1.5kb (due to repeat regions, etc) 

were then filled using suboptimal probes (700 probes in total) in the same manner. 

There are 20,212 probes (8.4%) that map onto both genomes. Using this design, 24 C. 

gattii RNA samples were used to determine differences in their gene expression 24h 

after internalisation by macrophages. For the array experiment, RNA samples from 

each strain were labelled with Cy3, whilst the control, consisting of a pooled sample 

containing equal quantities of RNA samples from all 24 strains (reference) was labelled 

with Cy5.  

 

The microarray experiment was performed by OGT. Briefly, the standard Agilent 

protocol for labelling, hybridisation and washing (Two-Colour Microarray-Based Gene 

Expression Analysis, Version 5.5, February 2007) was followed. The starting 

concentration of total RNA from each sample used was 2μg. For the control samples, 

2μg of each test sample was pooled together and then aliquoted into 24 sets of 2μg 

samples. Once the appropriate concentration of sample had been prepared, the 
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samples were reverse-transcribed for two hours at 40°C to produce cDNA. Following 

denaturation of the enzyme (15min, 65°C), the samples were then transcribed to 

produce cRNA (two hours, 40°C). During this transcription step, amplification of the 

sample occurs, as well as the incorporation of the fluorescent Cy dye molecules. 

Following purification of the cRNA (30μl), the concentration and dye incorporation of 

each sample was checked. The concentration that was required of each sample for 

hybridisation was 750ng. The samples were then made up to 190μl, using nuclease-free 

H2O. To this, 11μl 10x blocking agent and 2.2μl 25x fragmentation buffer was added 

and incubated at 60°C, for 30min, to fragment the RNA. Then 55μl of 2x gene 

expression hybridisation buffer was added to each sample. The samples were then 

hybridised to the microarray as follows. The microarray slide was hybridised at 65°C, 

for 17h. Once hybridised, the slides were washed and scanned according to the 

protocol outline in Agilent’s standard protocol for washing and scanning gene 

expression microarrays. Briefly, the microarray slides were disassembled in Gene 

Expression wash 1, and then washed in Gene Expression wash 1 for 1min. Next, the 

microarray slides were transferred to Gene Expression wash 2 and washed for 1min. 

The microarray slides were then carefully removed from the wash buffer and 

immediately scanned, at 5μm resolution, at 100% PMT (photo-multiplier tube). The 

microarray slides were then feature extracted using Agilent Feature Extraction 

software 9.5.3.1. 

 

2.7.3 Data analysis 

 

Data were background subtracted using Bayesian method, normalised using Loess 

normalisation (Stekel 2003) and analysed using the statistical package R (http://www.r-

project.org/) based on linear regression against IPR values. Data were corrected for 

false-discovery rate (Benjamini and Hochberg 1995) before candidates (from the A1M-

R265 genome) showing q-values smaller than 0.086 were BLASTed against both C. 

neoformans and C. gattii databases. All hits were also retained for statistical analysis of 

probe distribution. The main R scripts used for the data analysis can be found in 

Appendix IV.  
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2.8 PCR 

 

2.8.1 DNA isolation from Cryptococcus 

 

Yeast cells isolated from inside the macrophages or from overnight culture were 

centrifuged and washed with PBS twice before mixed with 750µl of lysis buffer (0.5% 

w/v SDS, 0.5% w/v Sarkosyl in TE buffer) and homogenised. The cells were then 

centrifuged at 13,000 rcf for 2min and mixed with 750µl of phenol-chloroform solution 

(1:1, pH=8.0) by strong vortex. Subsequently, the crude extract was spun down at 

17,000 rcf for 15min at 4°C. The top aqueous layer which contains the DNA was 

transferred to another tube and mixed with 750µl of 100% ethanol and 100µl of 3M ice 

cold sodium acetate. The samples were kept at -20°C for one hour in order to enhance 

DNA precipitation. After that, the genomic DNA was spun down at 17,000 rcf for 

15min at 4°C and dissolved in 30µl of pre-heated TE buffer. The concentration of 

genomic DNA was measured by Nanodrop-1000.  

 

2.8.2 PCR for profiling mitochondrial genotype 

 

Seven pairs of primers were designed to profile the mitochondrial genotype of C. gattii 

isolates. The primers are listed in Table 2A (primer pair 6 and 7 are from published 

work (Bovers et al. 2009)). Only primer pair 1 (ATP-1) was able to distinguish VGII 

mitochondrial genotype from the VGIII mitochondrial genotype. It was therefore 

chosen to analyse the mitochondrial genome of the progeny generated by crossing 

VGII and VGIII isolates. The PCR reactions were carried out with required DNA 

template, dNTPs and Taq polymerase with the appropriate buffers provided. Cycles 

for these PCR reactions are shown in Table 2B.  

 

2.8.3 Gel electrophoresis 

 

DNA was typically resolved on a 1% (w/v) TBE agarose gel containing 0.2μg/ml 

ethidium bromide. Before loading, DNA was mixed with approximately 0.2 volumes of 

5x DNA loading dye. DNA was run as standard at 60V for approximately 40-60min 
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along with 0.25μg 1kb ladder, or 0.2μg 100bp ladder for size and quantification. DNA 

fragments were visualised under UV light using Geneflow Syngene Bio Imaging. 

 

2.8.4 Real time PCR 

 

Real time PCR using the Sybr Green method was performed on the genomic DNA 

generated from newly isolated intracellular cryptococci to check the copy number of 

mtDNA in comparison to a nuclear region. For the reaction, four strains (ENV152, 

A1M-R271, CBS7750 and CBS8684) were chosen. Every reaction in the experiment was 

done in triplicate. The details of the candidates and primers are listed in Table 2C.  

 

 

2.9 Mouse survival assay 

 

The mouse survival experiments were performed by Edward Sionov and Rama Falk 

from Itzhack Polacheck’s lab at the Department of Clinical Microbiology and Infectious 

Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. Briefly, yeast 

inocula (106 yeast cells per mouse from a 48h culture of cryptococci on Sabouraud 

dextrose agar (SDA) at 30°C) were injected into the tail veins of male albino BALB/c 

mice (weight, 20-23g) by administration of a single bolus injection of a 0.2ml 

suspension in PBS. The yeast concentration was determined by counting with a 

haemocytometer. The viable count was measured as the number of CFU on SDA plates 

after 24-48h of incubation at 30°C. With these inocula, systemic infections are regularly 

produced in mice, and they cause total killing within 5 to 50 days. For each experiment 

10 mice were used, maintained in separate cages. The number of surviving animals in 

each group was recorded daily over a period of 45 days using a blinded experimental 

design such that animal handlers were unaware of the corresponding IPR value for the 

strains used. All procedures, care and treatment of mice were in accordance with the 

principles of humane treatment outlined by the Guide for the Care and Use of 

Laboratory Animals of the Hebrew University, and were approved by the Committee 

for Ethical Conduct in the Care and Use of Laboratory Animals (approval number 

OPRR-A01-5011). 
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Table 2: A) The list of primers used for profiling mitochondrial genotype; B) PCR cycles used for primers listed in A; C) Primers 
used to quantify mtDNA copy number in four C. gattii strains.  
 
A) 

 Region Primer 5’ Primer 3’ 

1 ATP6-1 ACTTGCGGCTGAATGATAAAATCTAA GTGGAGATGTAATAAAGTGTGTCATG 
2 Cytochrome C  TACTGTAGGTAATGTGAATAGCCGA AGATATAACCATCAGTAGCCCGAGT 
3 Intergenic-1 TAAGGACGAGCGGAATCGA TAACTCGCTGACGATGATTGC 
4 Intergenic-2 TGGGGAACACCAGGATACT TGCGTAAGGGGAGTTGAGTT 
5 Intergenic-3 TTCGTCTTGCTGGTCGACTT TGGGAGTTGTTGATCGTTG 
6 ATP6-2 ATTACATCTCCACTAGAACAATTC AGTTCAATGGCATCCTTGATATAG 
7 mtlrRNA GACCCTATGCAGCTTCTACTG TTATCCCTAGCGTAACTTTTATC 

 
B) 

Temperature (°C) Duration Number of cycles 

94 2min 1 
94 25s 30 
54-58 30s 30 
72 1min 30 
72 7min 1 
15 5min 1 

 
C) 

Candidate loci Primer 5’ Primer 3’ 

Nuclear locus (GADPH) GGTCGAATTGTTCTCAGG ACCGTCCTTAACCTCGAC 
Mitochondrial locus TTCGTCTTGCTGGTCGACTT TGGGAGTTGTTGATCGTTG 
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2.10 Phenotypic analysis of Cryptococcus  

 

2.10.1 Proteinase assay 

 

Proteinase activity was measured as described in (Braga et al. 1998). To make plates, 

900ml casein medium (pH=7.0) (7.5g casein, 5.0g glucose and 20.0g agar) was prepared 

and autoclaved. Meanwhile, yeast nitrogen base 10x medium was prepared by 

dissolving 6.7g yeast nitrogen base in 100ml of dH2O and autoclaved by filtering 

through a 0.22µm filter. The 100ml filter-sterilised yeast nitrogen base 10x medium was 

then added to the casein medium when the casein medium has cooled down to ~55°C. 

Once the plates were made, 2µl of overnight yeast culture was inoculated in the middle 

of the plates for 7 days at 37°C. The diameter of the colony and the zone around the 

colony were measured and Pz value was calculated by dividing the zone-diameter 

with the colony diameter. Each measurement was repeated three times. 

 

2.10.2 Phospholipase assay 

 

The method used to measure phospholipase activity was adapted from (Vidotto et al. 

1996). In order to make plates, 900ml of Sabourand dextrose medium (pH=7.0) (20.00g 

SDA, 58.44g NaCl and 0.74g CaCl2-2H2O) was prepared and autoclaved before 

supplemented with 100ml sterile BactoTM egg yolk enrichment 50%. Once the plates 

were made, 2µl of overnight yeast culture was inoculated in the middle of the plates 

for 7 days at 37°C. Subsequently, the diameter of the colony and the zone around the 

colony were measured. Pz value was calculated by dividing the zone-diameter with 

the colony diameter. Each measurement was repeated three times. 

 

2.10.3 Melanin production measurement 

 

To make plates for melanin production, 900ml dopamine medium (pH=7.0) was 

prepared (3.00g glucose monohydrate, 1.20g MgSO4, 3.50g KH2PO4, 0.98g glycine and 

20.00g agar) and autoclaved before being supplemented with 100ml sterile L-DOPA 

solution (0.20g L-DOPA, filtered through 0.22µm filter) and 1.0ml vitamin B1 solution 

(0.25g thiamine in 250ml dH2O and sterilise through a 0.22µm filter). Subsequently, 2µl 
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of overnight yeast culture was inoculated in the middle of the plates for 10 days at 

37°C. The melanin production was recorded every day as a score from 1 to 5. Each 

measurement was repeated three times. For the statistical analysis, melanin production 

was calculated as follows:  

Maximum score/the number of days required to achieve the maximum score 

 

2.10.4 Capsule size measurement 

 

Yeasts were grown overnight, shaking at 240 rpm in capsule medium (1% peptone, 1% 

glucose, 1.5% Ox-bile) at 37°C. On day two, 2µl of yeast culture was mixed with 2µl of 

Indian ink and examined under a microscope. For each sample, 60 yeast cells were 

chosen randomly measured for capsule size using ImageJ. The capsule index is 

calculated by the formula below:  

Capsule index = the actual cell size/ the total cell size (including the capsule).  

 

2.10.5 Statistical test 

 

Unless otherwise stated, statistical tests were performed by linear regression to test 

whether any of the tested phenotype was correlated with IPR values.  
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The fate of pathogens phagocytosed by macrophages depends on phagosome 

acidification and fusion with different intracellular vesicles (Bouvier et al. 1994). As 

phagosome-lysosome fusion is modulated by the mode of particle recognition by the 

phagocyte, phagosomes formed via the various receptor-ligand pairs may have 

divergent fates. For example, FcR-derived, but not CR3-derived phagosomes 

containing Salmonella typhimurium can fuse with secretory granules in neutrophils 

(Joiner et al. 1989). Similarly, phagosomes containing IgG-opsonised mycobacteria, but 

not those opsonised with complement components, can fuse with lysosomes (Vieira et 

al. 2002). Another example is Toxoplasma gondii. Normally, after entering phagocytic 

and nonphagocytic cells, live T. gondii inhibits phagosomal fusion with preexisting 

secondary lysosomes and thus the acidification process. Since T. gondii is highly 

susceptible to low pH conditions, blocking phagosome fusion and acidification is 

thought to be important for its intracellular survival. Interestingly, in macrophages or 

CHO cells transfected with FcR, the blocks in lysosome fusion and acidification can be 

overcome by opsonising live parasites with specific antibody before cell entry. This 

effect was not due to the antibody interfering with some critical parasite surface 

component and often results in efficient parasite killing even in the absence of an 

oxidative burst (Anderson et al. 1976; Joiner et al. 1990; Sibley et al. 1985).  Therefore, 

not all phagosomes fuse equally for the same pathogen.  

 

For intracellular C. neoformans, three outcomes have been observed following 

phagocytosis by macrophages (being killed, staying latent or proliferating 

intracellularly) as discussed in Chapter I. We were therefore interested to test whether 

phagocytosis mediated via different surface receptors can lead to different outcomes 

for intracellular yeast. It is possible that yeast phagocytosed entirely through FcR are 

prone to be killed, while those phagocytosed via mannose receptors (non-opsonised) 

are more likely to undergo proliferation, in an similar manner to that was observed 

with T. gondii. In order to address this question, we carried out phagocytosis assay on 

non-opsonised, complement-opsonised and antibody-opsonised cryptococci 

respectively. Phagocytosis index (PI) and intracellular proliferation of C. neoformans 

were measured for each route. We use proliferation rate as an indicator of intracellular 
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processing since it was difficult to tell the difference between latency and death of 

intracellular yeast cells within 10h of timelapse filming whereas proliferation was 

relatively easy to spot. 

 

 

3.1 The presence of opsonins enhances phagocytosis 

 

In order to obtain PI, yeast cells were opsonised with fresh human or rodent serum, Fc 

monoclonal antibody 18B7 (which recognises the capsule, provided by Arturo 

Casadevall) or left unopsonised before the phagocytosis assay. We found that the 

efficiency of antibody-mediated phagocytosis was the highest for all of the strains. In 

addition, there was an inverse correlation between the capsule volume and the efficacy 

of non-opsoninic and complement-mediated phagocytosis, but not for antibody-

mediated phagocytosis (JEC21, NIH-B4131 and CBS919) (Table 3). This result is 

consistent with previous findings that capsule inhibits phagocytosis in the absence of 

opsonins (Kozel and Gotschlich 1982; Nosanchuk and Casadevall 1997; Vecchiarelli et 

al. 1994).  

 

Fluorescence labelling was used to investigate the localisation of opsonins on the 

capsule after opsonisation. In strains with small capsule size (NIH-B4131), both 18B7 

and C3 localised to the outer capsule edge since the cell wall and outer edge of the 

capsule were very close to each other. In contrast, in strains with moderate (JEC21) or 

large capsules (CBS919), C3 was not able to reach the cell wall and thus most of 

deposition occurred at the budding site of the yeast cells where the capsule was absent. 

This leads to poor opsonisation of complement components and explains why 

complement-mediated phagocytosis has a relatively low PI. Interestingly, we found 

that uxs1  strain (NE178) was less resistant to complement-mediated phagocytosis, 

whereas the cas1  strain (NE150) was more resistant (Table 3, both of the PIs are 

significantly different to the PI of JEC21). NE178 is a strain that lacks xylose in its GXM 

and is avirulent in mouse (Kozel et al. 2003). NE150 strain lacks the CAS1 gene, which 

encodes a membrane protein necessary for the O-acetylation of capsular 



Chapter III: Phagocytosis of Cryptococcus 

76 

polysaccharide, and it is hypervirulent in mouse (Janbon et al. 2001). The molecular 

mechanisms causing differences in virulence are not yet known. It is likely that the 

ability to resist phagocytosis may have a great impact on the virulence of the strains.  

 

 

3.2 The fate of intracellular cryptococci is independent of phagocytosis route 

 

In order to quantify intracellular proliferation capacity, real time timelapse imaging of 

macrophage cells was carried out. For all the movies, macrophage cells were fed with 

cryptococcal cells for two hours and macrophage cells with internalised cryptococcal 

cells were filmed in the next 10-16 hours. The timelapse movie showed that 

intracellular proliferation occurred at a similar rate following the uptake of yeast via all 

phagocytosis routes (Table 4), suggesting that although the presence of opsonins 

enhances phagocytosis, cryptococcal proliferation rate inside J774 cells is independent 

of the phagocytosis route. Interestingly, intracellular proliferation was significantly 

reduced in J774 cells treated with concanamycin A (Table 4). Early studies have shown 

that C. neoformans grow much faster inside the acidic phagosome as compared with the 

neutral extracellular environment (Feldmesser et al. 2001b). Since concanamycin A is 

an inhibitor of the V-type ATPase, known to reduce phagosome maturation by block 

acidification of the phagolysosome (Drose and Altendorf 1997), it is therefore not 

surprising to observe decrease in intracellular proliferation of C. neoformans. Based on 

these two observations, we conclude that the fate of intracellular Cryptococcus is not 

determined by the entry route, but rather is altered by additional signals inside the 

phagosome. Alternatively, it is the organism surface (e.g., the presence of capsule) that 

decides its intracellular fate, as has been found in Salmonella montevideo (Pilsczek et al. 

2005). Since antibody opsonised Cryptococcus often yields the highest intracellular yeast 

number and phagocytosis route is unlikely to affect intracellular fate of this pathogen, 

we use antibody opsonised cryptococci for most of the experiments later on.  
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Table 3: The PI of six yeast strains and three phagocytosis routes. Data were generated 
by counting the number of macrophages with internalised Cryptococcus out of total 
1000 cells in each case. / indicates the PI was not studied for these strains.  
 

Strains Non-opsonised Serum opsonised Fc antibody opsonised 

JEC21  2.67%±0.24% 3.54%±0.68% 20.08%±2.72% 
CBS919(big capsule) <1% <1% 15.9%±3.44% 
NIH-B4131 (cap67) 39.45%±5.2% 47.60%±4.8% / 
NE178 (usx1 mutant) / 9.25%±0.73% / 
NE150 (cas1 mutant) / 1.96%±0.53% / 
S. cerevisiae (AH109) 63.78%±5.9% / / 

 

 

Table 4: Percentage of macrophages which contain intracellular particles that 
underwent proliferation. There is no significant difference in term of intracellular 
proliferation rate among cryptococci phagocytosed by different routes (P=0.895, 
ANOVA, n=3). However, JEC21 engulfed by concanamycin A-treated macrophages 
showed much lower intracellular proliferation capacity (P<0.001, t-test). S. cerevisiae 
was used as a control to verify the system. 
 

Particles Macrophages with 

intracellular particles 

Intracellular particles 

undergoing proliferation 

mAb18B7 opsonised JEC21 134 63 (47.0%) 
Complement opsonised JEC21 27 17 (63.0%) 
Non-opsonised JEC21 45 28 (62.2%) 
S. cerevisiae (AH109) 28 0 (0%) 
JEC21+mAb18B7+concanamycin A 68 5 (7.35%)*** 
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4.1 Vomocytosis: a novel way to exit 

 

Some bacteria and fungi have evolved strategies to survive within a phagocyte after 

uptake, but most of them must eventually kill the host cell if they are to escape and 

infect other tissues (Cossart and Sansonetti 2004; Nguyen and Pieters 2005). Lysis of 

Cryptococcus-infected macrophages is a general phenomenon that has been observed 

both in vivo (Feldmesser et al. 2000) and in vitro (Feldmesser et al. 2001a; Tucker and 

Casadevall 2002). As for most pathogens, it is assumed that Cryptococcus can only be 

released by lysing its host cells. However, during the investigation of cryptococcal 

intracellular proliferation, we made an observation that the fungal cell is able to escape 

from within macrophages without killing the host cell, by a novel mechanism that we 

have termed ‘reverse phagocytosis’ or ‘vomocytosis’. We observed vomocytosis in 

both cultured J774 cells and primary human macrophage cells (both alveolar and 

blood-monocyte derived macrophages) (Movie 1I and Movie 2II). 

 

 

                                                 
I  Movie 1: Quicktime movie showing an example of vomocytosis in J774 murine 

macrophages. J774 macrophages were exposed to C. neoformans JEC21 (opsonised with 
monoclonal antibody 18B7) for two hours. Extracellular yeast cells were then washed away 
before the dish was placed on an inverted microscope for imaging. The movie shows timelapse 
images (one frame per minute) over the course of almost 10h (time shown in bottom left).  After 
almost two hours of recording, the intracellular pathogen starts to produce a visible (phase 
bright) capsule (first seen at 1:59:58). This capsule grows dramatically over the next four hours 
until, between 6:38:01 and 6:40:01, the yeast cell is vomocytosed. Thereafter, both the 
macrophage and yeast cell remain in the field of view and appear morphologically normal. 
Indeed, the small daughter cell, present on the pathogen whilst it is intracellular, continues to 
grow after vomocytosis.  
 
II  Movie 2: Quicktime movie showing an example of vomocytosis in human primary 

macrophages. Macrophages were exposed to C. neoformans JEC21 (opsonised with fresh human 
serum) for two hours. Extracellular yeast cells were then washed away before the dish was 
placed on an inverted microscope for imaging. The movie shows timelapse images (one frame 
per minute) over the course of 10h (time shown in bottom left). Note that the primary 
macrophages are more dynamic than the J774 cells, which results in the intracellular C. 

neoformans cell moving up and down in the focal plane. Approximately three hours after 
recording commences, the intracellular yeast cell starts to bud, producing a distinct daughter 
cell by 04:54:57.  At 05:26:27 the original mother cell is suddenly expelled, leaving the daughter 
cell within the phagosome. The expelled C. neoformans cell remains attached to the macrophage 
surface for several hours, until it drifts off towards the end of the movie. 
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It appears to occur when a mature phagosome containing one or more C. neoformans 

cells fuses with the plasma membrane, releasing the yeast cell(s) into the extracellular 

medium (Figure 10). Neither the host macrophage nor the C. neoformans cell is killed by 

this event and both appear morphologically normal for the duration of the experiment 

thereafter (several hours). Indeed in several cases we were clearly able to observe 

cryptococcal cells that had been vomocytosed subsequently undergoing replication, 

demonstrating that the yeast cells were alive when expelled by the macrophage (Movie 

1 and Figure 10). The expelled yeast cells can either be phagocytosed by other 

macrophages, or proliferate extracellularly, or simply propagate.  

 

Vomocytosis can lead to expulsion of all the intracellular yeast cells simultaneously 

(known as complete phagosomal extrusion). Complete phagosomal extrusion requires 

fusion of cryptococcal-containing phagosomes, which often leads to the formation of a 

giant compartment (Alvarez and Casadevall 2006). However, complete phagosomal 

extrusion is just a special type of vomocytosis, as vomocytosis can also lead to release 

of only one or some of the intracellular yeast particles. During our study, we have 

observed numerous examples of vomocytosis occurring to only one cryptococci-

containing phagosome when there was more than one such phagosome present in the 

same macrophage. It was also common to see when there were several cryptococci in 

one phagosome, but only one of them underwent vomocytosis. Sometimes, the 

internalised Cryptococcus first underwent budding, and then only the mother cell in the 

same phagosome was expelled, leaving the daughter cell behind (Movie 2). This type 

of vomocytosis is rather intriguing as one would expect the fusion between phagosome 

membrane and plasma membrane will release all the particles within that phagosome. 

Possibly, the membrane fusion was shortly followed by membrane fission, so some of 

the yeast cells did not have chance to escape.  
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Figure 10: Vomocytosis in J774 cells. The internalised C. neoformans (large arrow) is initially contained within a ‘tight’ (phase-dark) 
phagosome. Two hours later the phagosome begins to swell – the yeast cell is surrounded by a phase-bright region between the cell wall 
and the phagosome membrane, which is believed to contain secreted capsular polysaccharide. By six hours into the time series, the 
phagosome has grown dramatically; note that the C. neoformans cell is proliferating and a small daughter bud can be clearly seen (small 
arrow). 400min after the onset of filming, the C. neoformans-containing phagosome suddenly fuses with the plasma membrane. The phase-
bright material is released and, 2min later, the yeast cell is clearly outside of the host macrophage. Importantly, both the macrophage and 
the yeast cell are still alive three hours later, by which time the C. neoformans daughter cell (small arrow) has clearly grown in size.   
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4.1.1 Vomocytosis rate 

 

Vomocytosis appears to occur independently of the initial route of phagocytic uptake, 

since both antibody/serum opsonised and non-opsonised yeast cells were capable of 

being expelled (Table 5). However, we never observed vomocytosis of dead (heat-

killed) C. neoformans cells nor of inert latex beads (2 different sizes), suggesting that 

vomocytosis requires the presence of a live organism within the phagosome (Table 5).   

 

Based on our observations with cultured J774 cells, for most of the strains, vomocytosis 

is a relatively rare event compared to intracellular proliferation, as the majority of 

phagocytosed C. neoformans either proliferates or remains latent within the host 

macrophage (Table 5). This probably explains why previous studies have not reported 

it. However, we are likely to underestimate the true frequency of reverse phagocytosis, 

as events that occur outside of the filming time (10-16 hours) will remain undetected in 

our experimental setup. Interestingly, the rate of vomocytosis in human primary 

macrophages is significantly (P<0.001, t-test) higher than that in J774 cells (Table 5) 

(also reported in (Voelz et al. 2009)), although the time-distribution (Figure 11) is the 

same for both cell types (P>0.2, t-test).  

 

Vomocytosis has been observed with both C. neoformans and C. gattii. However, the 

rate varies from 0% to up to 45% for different strains (Table 6). Such strain-to-strain 

differences were also reported in (Alvarez and Casadevall 2006), implying the 

specificity of Cryptococcus-macrophage interaction. It is worth noting that vomocytosis 

also occurred to acapsular mutants including CBS7931 & NIH-B4131, which lacks GXM 

in their capsule. Hence, GXM is not essential to trigger vomocytosis.  
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Table 5: Vomocytosis rate recorded for five particle types in J774 cells and for primary 
human macrophages over 10 hours of timelape filming. Each value represents the total 
number of recorded events from three or more independent timelapse experiments. 
mAb: monoclonal antibody; MØ: macrophage 

 

 
 
 

 

Figure 11: The distribution of vomocytosis events over the course of the timelapse 
recordings. Data are pooled from all timelapse recordings (15 independent 
experiments) of J774 macrophages (11 experiments, 1506 cells, 179 with internalised 
JEC21) and human primary macrophages (4 experiments, 661 cells, 177 with 
internalised JEC21). Although the rate of vomocytosis is higher in primary 
macrophages than in J774 cells, the distribution of vomocytosis events over the 10h 
timelapse recording does not differ between these cell types (P>0.2, two-tailed 
Student’s T-Test).   

Host cell Target particle Number of MØ 

observed 

MØ with 

internalised particle   

Vomocytosis 

rate 

J774 mAb(18B7) opsonised JEC21 603 134 (22.2%) 13 (9.7%) 
J774 Non-opsonised JEC21 903 45 (5.0%) 3 (6.7%) 
J774 Latex beads (3µm) 336 157 (46.7%) 0 
J774 Latex beads (12µm) 299 97 (32.4%) 0 
J774 Heat-killed JEC21 277 80 (28.8%) 0 
Primary  Serum opsonised JEC21 661 177 (26.8%) 47 (26.6%) 
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Table 6: Vomocytosis rate for various mAb (18B7)-opsonised cryptococcal strains after 
engulfed by J774 cells. *Vomocytosis rates were measured when macrophage culture 
was supplemented with HEPE buffer during the timelapse movie in the absence of CO2 
control. MØ: macrophage 
 

Strain name Genotype 

(AFLP) 

Number of MØ 

observed 

MØ with 

intracellular yeast 

Number of 

vomocytosis 

Vomocytosis 

rate (%) 

A1M-R271 6 487 50 0 0 
ENV131 6 789 73 4 0.055 
CBS10089 6 490 53 8 0.151 
CBS10090 6 562 22 1 0.045 
CBS10485 6 943 57 7 0.123 
A1M-F2866 6 680 50 1 0.020 
A1M-F3016 6 732 33 1 0.030 
A1M-R265 6 699 94 5 0.053 
CBS7750 6 872 39 3 0.077 
ENV152 6 1329 226 14 0.062 
RB14 6 391 72 3 0.042 
RB50 6 432 25 1 0.040 
CBS6956 6 544 19 2 0.105 
CBS8684 6 429 66 10 0.152 
A1M-R376 6 361 50 0 0 
A1M-R406 6 783 106 9 0.085 
ICB184 6 481 49 6 0.122 
A1M-R272 6 1004 114 13 0.114 
WM728* 5 114 17 2 0.118 

CBS1930 6 833 45 4 0.089 

LA362 6 652 44 1 0.023 

CBS7229 4 983 77 2 0.026 
WM276 4 733 48 2 0.042 
56A 4 1142 39 5 0.128 
CBS5467* 2 155 41 1 0.025 

JEC20* 2 260 54 6 0.111 

B3501* 2 192 25 9 0.360 

JEC21* 2 603 134 13 0.097 

H99* 1 267 98 24 0.245 
125.91* 1 186 45 8 0.178 
WM714* 1 585 141 18 0.128 
P152* 1 189 37 11 0.297 

ATCC90112* 1 456 85 37 0.435 

CBS8336* 1 390 144 24 0.167 

CBS996T* 1 176 65 16 0.246 

MT105* 1 115 46 0 0 
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4.1.2 Vomocytosis does not require phagosome maturation or presence of host actin, 

but is dependent on host microtubule 

 

Previous studies have demonstrated that C. neoformans is well adapted to survive 

within the acidic environment of the phagosome and, unlike many other pathogens, it 

does not inhibit phagolysosomal fusion (Levitz et al. 1999). We therefore wondered 

whether vomocytosis occurs only after maturation of the phagosome. By blocking 

phagosome maturation using both 100nM concanamycin A (a V-ATPase inhibitor that 

inhibits acidification of phagosome) (Drose and Altendorf 1997) and 10µM chloroquine 

(a weak base that accumulates within the phagosome by ion trapping) (Levitz et al. 

1997), we found that vomocytosis was not blocked in the presence of either drug (Table 

7A), suggesting that this process does not require phagosome maturation, although 

Alvarez et al showed that phagosome-lysosome fusion still occurred prior to 

vomocytosis (Alvarez and Casadevall 2006). Intriguingly, the rate of vomocytosis 

appears to be enhanced by the presence of chloroquine (Table 7A). This effect may 

explain the earlier finding of Levitz and colleagues that chloroquine suppresses 

intracellular growth of C. neoformans to a level that cannot be explained simply by its 

ability to inhibit phagosome acidification (Levitz et al. 1997).  

 

The molecular mechanism that drives cryptococcal expulsion remains to be elucidated. 

Given the speed with which expulsion occurs, we considered a possible role for the 

macrophage cytoskeleton in providing the required force. To test this, we exposed J774 

macrophages to 2.5μg/ml nocodazole, a drug that depolymerises microtubules 

(Samson et al. 1979). Such a treatment totally abolished vomocytosis (e.g., from 24.5% 

to 0 for H99) (Table 7B), suggesting that microtubules are essential for this process. 

Microtubule is known to be essential for vesicle transportation in many cells (Schroer 

and Sheetz 1991). Since vomocytosis is likely to be a consequence of phagosome and 

plasma membrane fusion, it is not surprising that disruption of microtubule 

depolymerisation led to the suppression of vomocytosis. We also treated J774 cells 

with cytochalasin D to block barbed-end growth of actin filaments (Urbanik and Ware 

1989). Cryptococcal expulsion was still observed even at concentrations of up to 10µM 
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of cytochalasin D (Movie 3 III  and Movie 4 IV ), suggesting that actin-filament 

polymerisation is not required for this process. In fact, Alvarez et al reported that 

cytochalasin D treatment increased vomocytosis event, suggesting a restraining role of 

actin polymerisation in vomocytosis (Alvarez and Casadevall 2006). Actin 

polymerisation has been reported to both inhibit and facilitate exocytosis in various 

systems (Becker and Hart 1999; Bi et al. 1997; Muallem et al. 1995; Poucell-Hatton et al. 

1997; Segawa and Yamashina 1989). As a negative regulator, sub-plasmalemmal actin 

can act as a physical barrier against exocytosis. For instance, increased actin 

polymerisation that occurs predominantly in the submembranous area is a key 

contributor to the osmotic inhibition of exocytosis in neutrophils (Rizoli et al. 2000). 

Based on our and others’ observations, actin polymerisation is more likely to play a 

negative role in the case of vomocytosis.  

                                                 
III Movie 3: Quicktime movie showing cryptococcal expulsion after treatment with 4 μM 

cytochalasin D. Macrophages were exposed to C. neoformans JEC21 (opsonised with 
monoclonal antibody 18B7) for two hours. Extracellular yeast cells were then washed away, and 
the medium was replaced with serum-free medium containing 4μM cytochalasin D before the 
dish was placed on an inverted microscope for imaging. The movie shows time-lapse images 
(one frame per 90s) over the course of 10h (time shown in bottom left). At this low dose of 
cytochalasin D, the cells are partially retracted (note the “spiky” appearance), but morphology 
and behaviour is otherwise unaffected. Expulsion of Cryptococcus cells (at 03:13) occurs in a 
manner very similar to that in untreated cells (compare with Movie 1), although it is rather less 
dramatic, probably because of rounding of the host cell. 
 
IVMovie 4: Quicktime movie showing cryptococcal expulsion after treatment with 10 μM 

cytochalasin D. Macrophages were exposed to C. neoformans JEC21 (opsonised with 
monoclonal antibody 18B7) for two hours. Extracellular yeast cells were then washed away, and 
the medium was replaced with serum-free medium containing 10μM cytochalasin D before the 
dish was placed on an inverted microscope for imaging. The movie shows time-lapse images 
(one frame per 90s) over the course of 10h (time shown in bottom left). At this dose of 
cytochalasin D, the macrophages are highly rounded and retracted, and substantial cell death 
starts to occur after approximately six hours of filming. Although it is difficult to score 
expulsion in these rounded cells with confidence, it appears that they remain capable of 
cryptococcal expulsion. One reasonably clear example is highlighted: The macrophage appears 
to expel a yeast cell (at 0:40), which initially remains attached to the cell surface, but by 05:19, 
the Cryptococcus cell is clearly extracellular and floats away. 
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Table 7: A) Vomocytosis rate of mAb (18B7)-opsonised JEC21 in J774 cells following 
treatment to block phagosome maturation. B) Vomocytosis rate of mAb (18B7)-
opsonised H99 in J774 with and without the nocodazole treatment. Each value 
represents the total number of recorded events from three or more independent 10h 
timelapse experiments. MØ: macrophage 
 

A) 

 
 

B) 

 
 

 

 

 

Cell type/treatment  Number of 

MØ observed 

MØ with 

internalised JEC21 

Occurrences of 

vomocytosis 

J774 untreated (data from Table 5) 603 134 (22.2%) 13 (9.7%) 
J774 with concanamycin A (100nM) 449 90 (20.0%) 3 (3.3%) 
J774 with chloroquine (10µµµµM) 408 68 (16.7%) 14 (20.6%) 

Cell type/treatment  Number of 

MØ observed 

MØ with 

internalised H99 

Occurrences of 

vomocytosis 

J774 untreated  267 98 (36.7%) 24 (24.5%) 
J774 with nocodazole (2.5μg/ml) 285 82 (29.8%) 0 
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4.1.3 Is vomocytosis Cryptococcus-specific? 

 

Although we did not observe vomocytosis in J774 with internalised S. cerevisiae 

(AH109) or S. pombe (972), currently, we still do not know whether it is unique to 

Cryptococcus or a more widespread cellular phenomenon. Recently, a similar process 

termed the ‘extrusion pathway’, has been reported in Chlamydia, an obligate 

intracellular pathogen causing sexually transmitted infections in humans, which is the 

leading cause of infectious blindness worldwide (Ryan and Ray 2003). The extrusion 

pathway involves a 'packaged release' mechanism, during which only a portion of the 

inclusion was released through a membranous protrusion, followed by the separation 

of the inclusion into compartments and tethering of the inclusion to the host cell 

membrane, leaving both the host cell and the residual inclusion intact (Hybiske and 

Stephens 2007) (Figure 12A). The extrusion pathway is not exactly the same as 

vomocytosis, because the process requires actin polymerisation and does not involve 

fusion between phagosome and plasma membranes (Hybiske and Stephens 2007). 

Another interesting non-lytic exit pathway was reported with Orientia tsutsugamushi, 

during which each single bacterium slowly extrudes from the cell membrane and buds 

from the host cell, leaving the host cell intact (Urakami et al. 1983; Yang et al. 2008) 

(Figure 12C). The released bacterium is enveloped with both the vacuole and plasma 

membranes, and can be subsequently phagocytosed by new host cells, after which both 

the vacuole and plasma membranes disintegrate by an unknown mechanism (Hybiske 

and Stephens 2008; Kadosaka and Kimura 2003). O. tsutsugamushi, a member of the 

scrub group of Rickettsia, causes tsutsugamushi disease or scrub typhus, which is a 

mite-borne acute febrile illness widely distributed through eastern and southern Asia, 

northern Australia and eastern Russia (Traub and Wisseman 1974; Watt and Parola 

2003). To date, the detailed mechanism on budding remains poorly understood. 

Nevertheless, it morphologically resembles Chlamydia extrusion: the released 

bacterium is surrounded by both vacuole and plasma membrane (Figure 12). 

Cryptococcal expulsion is thus unique in representing a non-destructive mechanism by 

which pathogens can remerge from infected host cells.  
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Figure 12: Non-lytic exit mechanism of A) Chlamydia (taken from (Hybiske and Stephens 2007)); B) Cryptococcus; and C) O. 

tsutsugamushi. 
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It is worth noting that the phagocytic amoeba D. discoideum has been observed to expel 

the remains of digested yeast cells in a process that is morphologically similar to 

cryptococcal expulsion (Clarke et al. 2002). The fact that we did not observe the 

expulsion of heat-killed C. neoformans or of inert latex beads (Table 5A) would argue 

against this process being a general mechanism for the expulsion of indigestible 

particles, although it is possible that such particles are expelled with a lower efficiency 

(and thus not detectable by our experimental setup). In addition, some retroviruses 

appear to be expelled from their host cell in vesicles termed “viral exosomes” (Pelchen-

Matthews et al. 2004), and poliovirus is known to escape host cells non-lytically via 

fusion between virus-induced double membrane vesicles and the plasma membrane in 

a host microtubule-dependent manner (Dales et al. 1965; Taylor et al. 2009). Although 

these vesicles are one to two orders of magnitude smaller than the “expulsive 

phagosomes” observed in our system, it is possible that expulsion of Cryptococcus 

occurs by a related mechanism and thus represents a previously unrecognised form of 

exocytosis. Nonetheless, to the best of our knowledge, this is the first report of such an 

expulsive process in a vertebrate phagocyte and the first direct demonstration that live 

pathogens can be expelled from phagocytic cells. 

 

4.1.4 Significance of vomocytosis 

 

The existence of an alternative escape pathway for Cryptococcus apart from lytic release, 

coupled with the high incidence of cryptococcal expulsion in primary macrophage cells, 

has significant implications in cryptococcal infection, as it represents a mechanism by 

which Cryptococcus may be trafficked between tissues without triggering the localised 

inflammation that would occur if the host phagocyte was lysed (Fadok 1999). In 

addition, it might be one of the main means for cryptococcal strains that are not very 

capable of proliferating inside macrophages, to leave host cells and establish their 

extracellular dominance. Our study with a fibroblast cell line (Cos-7) showed that 

expulsion does not occur to Cos-7 cells transfected to express Fc receptor, although 

Cryptococcus still replicated intracellularly (Figure 13), indicating this process is host 

cell specific. Nonetheless, vomocytosis may still occur in cells other than macrophages, 
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making this a plausible mechanism by which Cryptococcus may be released into the 

CNS after being phagocytosed by endothelial cells of the BBB (Chang et al. 2004). 

 

Vomocytosis was also reported by a second group at the same time (Alvarez and 

Casadevall 2006), who focused more on complete phagosomal extrusion. Later on, they 

proposed that although the expulsion event is independent of the initial route of the 

phagocytic uptake (Ma et al. 2006), the outcome of the complete phagosomal extrusion 

was affected by the mode of opsonisation (Alvarez et al. 2008). Extrusion of antibody-

opsonised C. gattii and C. neoformans resulted in the release of a clump of yeast cells 

that remained attached to one another and continue to replicate extracellularly as a 

biofilm. In contrast, complement-opsonised C. neoformans cells were released from 

macrophages dispersed as individual cells, which then continued to divide in the 

extracellular milieu as single cells. Therefore, the biofilm-like microcolony exit strategy 

of C. neoformans and C. gattii following antibody opsonisation reduced fungal cell 

dispersion, suggesting that antibody agglutination effects persist even inside the 

phagosome to attach nascent daughter cells together and may thus contribute to 

antibody-mediated protection (Alvarez and Casadevall 2007; Alvarez et al. 2008).  
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Figure 13: Representatitve timelapse images showing intracellular proliferation of H99 internalised by Cos-7 cells 
transfected to express Fc receptors. After monitoring more than 20 Cos-7 cells with internalised H99, no vomocytosis 
was observed (compared to 24.5% in J774 cells), but intracellular proliferation still occurs. 
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4.2 Lateral transfer: a novel way to disseminate 

 

We also observed direct transfer of cryptococci between macrophages in both cultured 

J774 cells and PHMBC. During this process cryptococcal cells contained within the 

phagosome of an infected macrophage are passed directly to a neighbouring 

(uninfected) macrophage (Figure 14 and Movie 5V). Compared to vomocytosis and 

intracellular proliferation, lateral transfer is a rare event (Table 8). In primary 

macrophages, we witnessed four events after monitoring 177 cells with internalised 

cryptococci. In immortalised J774 macrophages, the rate is even lower, since we 

observed only two events in more than 500 infected cells. However, again, we are 

likely to underestimate the rate of lateral transfer, since we only monitor infected cells 

for 10-16 h after phagocytosis.  

 

Like vomocytosis, lateral transfer is independent of the initial route of uptake: both 

serum-opsonised and antibody-opsonised C. neoformans are able to undergo direct cell-

to-cell transfer. We have also observed lateral transfer in both C. neoformans and C. 

gattii strains (including JEC21 (Serotype D), 125.91 (Serotype A); and CBS8684 

(serotype B)), suggesting that it is not serotype dependent. Lateral transfer appears to 

be a very rapid process; transfer always completes within 10min of the onset of cell 

membrane fusion between the donor and recipient macrophage cells (Figure 14). 

Interestingly, three out of four lateral transfer events observed in primary macrophages 

were followed by yeast expulsion, suggesting that the cryptococcal phagosome may be 

in a special, highly fusogenic state. 

 

 

 

                                                 
V

 Movie 5: Lateral transfer of JEC21 from an infected to an uninfected human primary 

macrophage. The infected (donor) cell is highlighted in the first frame. The donor cell moves 
underneath the recipient cell and, at 1:25, the recipient macrophage contacts the cryptococcal 
phagosome. About 160min after the onset of filming, membrane fusion starts to occur at the 
contact point of the two cells and initiates lateral transfer of the yeast from the donor cell to the 
recipient cell. The whole process takes only seven minutes. Upon completion, the cryptococcal 
cell is entirely in the recipient macrophage and the donor macrophage moves away. 
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Figure 14: Lateral transfer of JEC21 (white arrow) from infected (donor, rectangle) to 
uninfected (recipient, oval) human primary cells. (A to E) The donor cell moves 
underneath the recipient cell and, after 85min, the recipient macrophage contacts the 
cryptococcal phagosome. (F to I) About 160min after the onset of filming, membrane 
fusion starts to occur at the contact point of the two cells and initiates lateral transfer of 
the yeast from the donor cell to the recipient cell. The whole process takes only 7min. (J 
to M) Upon completion, the cryptococcal cell is entirely in the recipient macrophage 
and the donor macrophage moves away. 
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Table 8: The rate of expulsion and lateral transfer events recorded for JEC21 in 
PHMBC.   
 

 Primary human macrophages 

Total macrophage observed 661 
Macrophage with internalised yeast 177 (26.8%) 
Occurrence of vomocytosis 47 (26.6%) 
Occurrence of lateral transfer 4 (2.3%) 

 

 

4.2.1 Significance of lateral transfer 

 

Direct cell-to-cell spread has been described for some pathogenic bacteria, such as 

Listeria, Rickettsia and Shigella, and many viruses (e.g., poxvirus). Most of them undergo 

direct cell-to-cell spread via polarised actin polymerisation, which generates force to 

propel them through the cytoplasm of the infected cell and into uninfected 

neighbouring cells (Carlsson and Brown 2006; Johnson and Huber 2002; Tilney and 

Portnoy 1989). In contrast, it does not appear that a similar process occurs during the 

lateral transfer of Cryptococcus. Rather, we suggest that lateral transfer is related to 

vomocytosis, since both phenomena appear to be driven by rapid membrane fusion. 

Interestingly, the intracellular cryptococci shared by both macrophages were found to 

be surrounded by a high concentration of phalloidin-labeled actin from both 

macrophages (Alvarez and Casadevall 2007). However, since actin polymerisation is an 

extremely dynamic process, we do not know whether the observed actin ring was 

formed before or after the later transfer has been initiated. Therefore, at this stage, it is 

difficult to predict the role of actin polymerisation here.  

 

Despite the low rate of lateral transfer observed in vitro, we hypothesise that this 

process may have significant clinical implications since it allows C. neoformans to 

remain intracellular, thus avoiding immune recognition. Furthermore, it allows the 

pathogen to move from weak to healthy phagocytes, thus ensuring intracellular 

persistence of the pathogen even if the host cell starts to die. Finally, infected 

macrophage cells may travel widely throughout the host circulatory and lymphatic 

systems, where they interact intimately with one another and with other cell types 
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through transient contacts (Johnson and Huber 2002). We speculate that internalised 

cryptococci may use such transient contact in order to cross the BBB by direct cell-to-

cell spread from adherent infected macrophages to microvascular endothelial cells 

(Chang et al. 2004). In fact, spreading from macrophages to other cell types during 

dissemination has been demonstrated for other pathogens in vitro. For instance, the 

Gram-positive bacterium L. monocytogenes can infect neurons by cell-to-cell spread 

from adherent macrophages, a more efficient process than direct invasion of neurons 

(Dramsi et al. 1998). Intriguingly, cell-to-cell spread of bacteria from adherent infected 

phagocytes to endothelial cells of the CNS has also been reported (Drevets and Leenen 

2000). In conclusion, lateral transfer of Cryptococcus is likely to be an important step 

regulating phagocyte-facilitated latency and dissemination.  

 

 

4.3 Discussion 

 

Persistence is a key concept in Cryptococcus pathogenesis and indicates the ability of 

Cryptococcus to avoid elimination within the host (even in the presence of antifungal 

reagents) and thus cause chronic infections. Unfortunately, evidence for exactly how 

this occurs at the cellular level is not sufficient. The discovery of vomocytosis and 

lateral transfer provides a possible framework for how persistence may be achieved by 

Cryptococcus residing within host phagocytic cells for an extended time. A better 

understanding of both processes can be of considerable importance in developing new 

therapeutic strategies against cryptococcosis. For instance, what is the mechanism of 

vomocytosis? What triggers vomocytosis? Can any environmental stimuli like CO2 

concentration and cytokine prolife alter the frequency of vomocytosis? A more detailed 

discussion on future experiments to address the above questions is provided in 

Chapter VII.  
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 5.1 Development of a novel method to monitor intracellular proliferation for 

various cryptococcal strains  

 

In order to compare the ability of cryptococcal strains to replicate inside macrophages, 

I developed a method to quantify intracellular proliferation of cryptococci over 64 

hours without performing lengthy timelapse imaging. The method involves lysing 

macrophages and counting live intracellular yeast particles using a haemocytometer at 

fixed time points (0, 16, 24, 40, 48 and 64h post-phagocytosis, See chapter 2.4 for details) 

after phagocytosis. Compared to timelapse imaging and conventional colony forming 

unit (CFU) counting methods, this system allows multiple strains to be analysed over a 

large time scale and is more sensitive in detecting the clustered yeast population or 

yeast cells undergoing budding. Since the phagocytosis route does not affect the 

intracellular processing of C. neoformans (demonstrated in chapter III), antibody-

opsonised cryptococci were used for the whole experiment to maximise the initial 

intracellular yeast number. However, this method is not ideal for strains with low 

phagocytosis index (e.g., four C. gattii strains listed in Appendix I), as the intracellular 

yeast number for these strains remained low at all timepoints, and thus the number 

was very vulnerable to random variations. 

 

As the presence of any extracellular yeast cells would be counted as a part of 

intracellular population, it was important to remove as many extracellular yeast 

particles as possible at each time point. Initially, flucytosine (5-Fc) was used to kill 

extracellular cryptococci. 5-Fc has no intrinsic antifungal capacity, but after it has been 

taken up by Cryptococcus, it is converted into 5-fluorouracil (5-Fu), which is a 

pyrimidine analogue that inhibits fungal RNA and DNA synthesis. The reason we 

chose this specific antifungal compound is because mammalian cells do not have 

receptors for 5-Fc and thus only the extracellular yeast will be affected. Unfortunately, 

after 5-Fc treatment, we found both extracellular and intracellular growth of 

Cryptococcus was affected. That may due to the fact that 5-Fu, converted by 

extracellular yeast, was released from these dead extracellular yeast particles and then 

taken up by macrophages. Therefore, both macrophages and intracellular cryptococci 
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became sick. This was confirmed by real-time timelapse imaging. We therefore 

modified the protocol to include an extensive PBS wash step (instead of 5-Fc treatment) 

every time we collect intracellular population. This had the benefit of allowing us to 

simultaneously monitor both intracellular and extracellular growth.   

 

We found that for most of the strains tested, the intracellular and extracellular yeast 

numbers changed in a fixed pattern. Commonly, intracellular yeast numbers increased 

to a certain time point (usually T16 or T24, depends on the strains) and then started 

declining, whereas extracellular yeast number kept increasing from T0 to T64. The 

decline in intracellular number was caused mainly by excessive intracellular 

proliferation, which led to lysis of macrophages and thus release of intracellular 

particles into the extracellular environment. These released yeast cells were then 

counted as a part of the extracellular population. It is possible that for certain strains, 

significant vomocytosis may contribute to the decline in intracellular number, although 

we do not believe this to be a major factor. Figure 15 represents a typical growth curve 

for both intracellular and extracellular yeast. In this figure, value A and B stand for the 

maximum intracellular yeast number and initially internalised yeast number 

respectively. In order to measure how fast each strain proliferates intracellularly, we 

introduced a new parameter termed IPR (short for Intracellular Proliferation Ratio). 

IPR is calculated by dividing value A by value B (Figure 15) to represent the relative 

proliferation ratio. When IPR value is smaller than one, it usually suggests that the 

intracellular proliferation rate is overtaken by intracellular killing rate. So far, 77 

natural isolates have been studied (7 serotype A strains; 12 serotype D strains,  47 

serotype B strains, 5 serotype C strains and 4 hybrids) (Appendix I). Strains were 

chosen to ensure representation of all serotypes and both environmental and clinical 

isolates. Each analysis was repeated three times with different batches of J774 cells on 

different days.  
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Figure 15: An example growth curve for intracellular and extracellular cryptococci 
after phagocytosis assay. For this specific example, intracellular yeast number reaches 
the maximum at T24 after phagocytosis. A: the maximum number of intracellular 
cryptococci; B: the number of initially internalised yeast particle; IPR equals to value A 
divided by value B. The error bars stand for the standard deviation of three or more 
repeats.  
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Furthermore, IPR values for 24 C. gattii strains (used for the microarray study later on) 

were also verified by real time timelapse imaging (Figure 16, Movies 6-8VI). For each 

strain, more than three 16h-timelapse movies (with different culture of macrophages 

and yeast on different days) were made and analysed. In most of the case, IPR values 

agreed with the timelapse data, except for two strains (WM276 & CBS10089), which 

have low IPR values but moderate proliferation rates when checked with timelapse 

imaging. This is because with both strains there were a substantial number of 

extracellular yeast cells attaching to the macrophage surface at T0, which were 

extremely difficult to wash off and thus counted as intracellular population. Inevitably, 

the initial intracellular yeast numbers were over-estimated, which led to the 

underestimation of the IPR values.  

 

Although the whole IPR assay was conducted with J774 cells, we also tested some 

strains with HPBMC and primary human alveolar macrophages (Table 9). The IPR 

values with primary macrophages (although generally lower) correlate well with the 

ones found in J774 cells, demonstrating the reliability of J774 as a cell line for this study 

(Figure 17). 

 

                                                 
VI  Movie 6-8: Representative Quicktime movies showing the difference in intracellular 

proliferation rate (IPR) between 1) CBS8684 (IPR=0.90, Movie 6), 2) CBS6956 (IPR=1.35, 

Movie 7) and 3) A1M-F2932 (IPR=2.98, Movie 8). J774 cells were exposed to individual strains 
(opsonised with 18B7 antibody) for two hours. Extracellular yeast cells were washed away 
before the macrophages were placed on an inverted microscope for imaging. The movies show 
time-lapse images (one frame every 90s) over the course of 18h. Within 18h, the good 
proliferator A1M-F2932 can produce more than 10 daughter cells, whereas the poor proliferator 
CBS8684 hardly replicates. 
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Figure 16: Representative frameshots showing the difference in IPR values between a) CBS8684 (IPR=0.90), b) CBS6956 (IPR=1.35), and c) A1M-F2932 
(IPR=2.98). The panels show selected images at four hour intervals (4h, 8h, 12h and 18h after phagocytosis), derived from the Movie 6-8. Intracellular 
cryptococci (yellow arrows) can be seen to replicate rapidly in the good proliferator A1M-F2932, but less rapidly in CBS6956 and not at all in CBS8684.  
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Table 9: IPR values with HPBMC and primary human alveolar macrophages in 
comparison to mouse J774 macrophages. The IPR values obtained with HPBMC and 
alveolar macrophages are generally lower than those seen in J774 macrophages, which 
may be a result of the higher cryptococcal expulsion rates observed in primary cells, as 
reported in chapter IV. 
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Figure 17: IPR values of eight C. gattii strains in HPBMC correlate significantly with 
those observed in J774 (P=0.00044, Spearman’s test, n=8).  

Strains IPR in J774 IPR in PHBMC IPR in alveolar macrophages 

CBS7750 0.93±0.24 0.72±0.33 1.25±0.46 

ENV152 2.28±0.16 1.64±0.29 2.01±0.29 

A1M-F2932 2.98±0.40 1.88±0.68 1.73±0.45 

A1M-R271 2.04±0.48 1.59±0.37 1.42±0.28 

CBS1930 1.14±0.37 0.77±0.34 0.63±0.30 

CBS8684 0.90±0.37 0.42±0.52 0.37±0.17 

CBS10090 1.71±0.32 1.61±0.44 / 

CBS7229 0.56±0.42 0.44±0.27 / 
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5.2 IPR predicts virulence of cryptococcal strains in murine models of 

cryptococcosis 

 

Several early studies have highlighted the hypothesis that the presence of macrophages 

may exacerbate cryptococcal infection in mice because phagocytosis by macrophages 

can increase the dissemination capacity of Cryptococcus. For instance, alveolar 

macrophage depletion was associated with amelioration of disease in three murine 

strains as measured by lung fungal burden (Shao et al. 2005), and decreased the 

dissemination of a glucosylceramide-deficient mutant of C. neoformans in 

immunodeficient mice (Kechichian et al. 2007). We therefore went on to test whether 

high intracellular proliferation capacity is linked to the virulence. To do this, IPR 

values were compared with both published (Fraser et al. 2005) and newly-generated 

mouse median survival times (ST50) (provided by Itzhack Polacheck's lab, Hadassah 

University, Israel). Remarkably, IPR and murine ST50 are highly significantly correlated 

(Figure 18, P=0.00017, linear regression): a correlation that holds true for both C. 

neoformans and C. gattii and is independent of the mouse model used (BALB/c and 

A/Jrc strains). In other words, the ability to survive and proliferate inside a host 

macrophage contributes significantly to cryptococcal virulence in the murine model 

and presumably also in infected humans, as suggested by the human primary 

macrophage data (Table 9). Therefore, IPR values were used as a parameter to indicate 

virulence later on.  
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Figure 18: A significant correlation between mouse survival data (both previously 
published (Fraser et al. 2005) [  ] and newly-generated [  ]) and IPR values. Mice 
survived longer when infected with strains with low IPR values as compared with 
animals infected with high IPR strains (P=0.00017, linear regression, n=18). For the 
unpublished mouse survival assays, experiments were conducted with BALB/c mice as 
described in the materials and methods section. Published mouse survival data are 
taken from (Fraser et al. 2005), where A/Jcr mice were used. For strains that did not 
cause mortality of 50% or more within the 45-day timeframe of the experiment, we 
arbitrarily assigned an ST50 of 55 days.  
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5.3 Strains from Vancouver Island outbreak show enhanced intracellular 

proliferation capacity 

 

From appendix I, it is clear that IPR values vary from strain to strain. Generally 

speaking, the majority of C. neoformans strains show a great ability to proliferate 

intracellularly and the variation within this species is small: all the strains tested so far 

have IPR values larger than one. This is not surprising as C. neoformans isolates often 

only infect immunocompromised individuals and together with the prevalence of 

cryptococcosis caused by this species, one would expect it to be good at resisting the 

innate immune attack of host when the adaptive immune response is absent or 

compromised.  

 

In contrast, C. gattii strains vary dramatically in their intracellular proliferation ability, 

especially within the VGII/AFLP6 subgroup (Appendix I). Some of AFLP6 strains have 

very high IPR values, similar to those observed with C. neoformans; while some AFLP6 

isolates have an IPR value smaller than one, just like most of isolates belonging to the 

other C. gattii genotypes. Strikingly, all of the AFLP6A isolates from the Vancouver 

Island outbreak (VIO) exhibit much higher IPR values compared to other C. gattii 

strains, including AFLP6A strains isolated from other areas of the world (Figure 19). 

This is of particular interest because, as discussed in Chapter I, there is a high 

similarity (>88%) between the VIO strains and randomly chosen C. gattii strains from 

Australia and the US (Kidd et al. 2004). For instance, the Seattle strain NIH444, which 

was considered as the potential origin of the AFLP6A subtype, has an identical MLST 

profile to many isolates from Vancouver Island (e.g., A1M-R265), shores close to 

Vancouver Island (e.g., A1M-F3016) and other parts of North America (e.g., CBS7750) 

(Fraser et al. 2005; Kidd et al. 2005). However, it has a higher IPR value compared to 

CBS7750, but a lower IPR value compared to A1M-R265 and A1M-F3016, indicating 

that it cannot exploit the intracellular macrophage niche as successfully as the VIO 

isolates. The big variation in IPR values suggests that the IPR-value phenotype has 

evolved rapidly for AFLP6A isolates. Since we have linked IPR values to virulence in 

the murine model of cryptococcosis (Figure 18), the observed difference in IPR values 



Chapter V: Intracellular proliferation 

107 

provides a possible explanation for why “ancestral” AFLP6A strains share the VIO 

genotype and yet do not lead to disease outbreaks.  

 

Besides VIO strains, three Brazilian strains (LMM261, LMM265 and LMM645) tested in 

this project were also found to be capable of surviving inside macrophages (Figure 19). 

Currently, there are two theories on the origin of VIO strains: ‘newly made’ via same-

sex mating, and ‘already made’ and migrated from South America (see Chapter I for 

detail). As these randomly examined Brazilian strains are as virulent as VIO isolates, it 

seems possible that the migration theory is more likely. Another interesting piece of 

data comes from a recent study on the mitochondrial genome (mtDNA) of ALFP6 

strains. Xu et al found that mtDNA of three MATa strains (LA499, LA567 and LA584, 

all from Colombia) share identical mitochondrial alleles at five loci with each other and 

with strain A1M-R265. In contrast, none of the three Australian AFLP6 strains 

examined have the same mitochondrial genotype (Xu et al. 2009). Since early studies 

have shown LA499, LA567, LA584 and A1M-R265 share identical alleles at two of the 

three nuclear loci which are not associated with mating type locus (Kidd et al. 2005) 

and no MATa strains of the AFLP6 group have been found in North America, it is 

likely that the VIO lineage is a result of opposite-sex mating between strains in South 

America which then spread to North America (Xu et al. 2009). However, we still cannot 

eliminate the possibility of same-sex mating because only a small number of yeast 

isolates were tested in our study and in Xu et al’s study.  
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Figure 19: Significant inter-strain variation in IPR occurs within the C. gattii species (n=42). Black bars represent VIO isolates, which 
proliferate far better than other C. gattii strains (grey bars). The only exception was A1M-R272, which belongs to the minor (AFLP6B) 
group of the outbreak and has previously been shown to be less virulent than other VIO strains (Fraser et al. 2005). An asterisk (*) denotes 
strains (whose IPR values were verified by timelapse imaging) used for the microarray study.  



Chapter V: Intracellular proliferation 

109 

5.4 Molecular cause of hypervirulence associated with VIO strains 

 

5.4.1 The hypervirulence is not directly linked to any known virulence factors 

 

To study the cause of hypervirulence within the VIO isolates, we undertook a high-

throughput analysis of well-characterised virulence traits at 37°C (capsule size, 

melanin production, phospholipase activity, proteinase activity and other enzymatic 

activities) in 39 C. gattii strains representing both VIO and non-VIO isolates. However, 

there was no consistent difference between VIO and non-VIO isolates belonging to this 

genotype in any of the traits tested (Table 10), suggesting that the virulence of VIO 

strains does not simply result from over-expression of these individual cryptococcal 

pathogenicity factors. Such a finding is consistent with recent data suggesting that 

many cryptococcal virulence genes/factors remain to be discovered (Liu et al. 2008), 

and hypervirulence is likely to due to the combinational effect of these factors.  
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Table 10: Phenotypic analysis of 39 C. gattii stains with known IPRs. A) Activity of 19 enzymes measured by the API enzymatic assay; B) 
Proteinase and phospholipase activities, capsule and melanin productions were measured as described in Chapter 2.10. Linear regression 
analysis revealed that neither proteinase activity, phospholipase activity or capsule production showed a direct correlation with IPR. Melanin 
production correlated with IPR values when comparing all C. gattii strains, but this correlation was lost when only AFLP6 strains were studied. 
These data indicate that differential melanisation is an important virulence factor within the C. gattii species, but cannot explain the 
hypervirulence phenotype of the VIO isolates.  
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56A 4 0 0 1 1 0 1 0 0 0 0 2 1 0 0 0 0 1 0 0 0 
CBS6290 4 0 0 2 2 0 1 0 0 0 0 2 1 0 0 0 0 1 0 0 0 
CBS6992 4 0 1 2 2 0 2 0 0 0 0 3 3 0 0 0 1 2 0 0 0 
CBS7229T 4 0 0 2 1 0 2 0 0 0 0 4 2 0 0 1 0 1 0 0 0 
CBS919T 4 0 0 1 1 0 2 0 0 0 0 3 2 0 0 2 0 0 0 0 0 
WM179 4 0 0 2 2 0 2 0 0 0 0 4 3 0 0 1 0 1 0 0 0 
WM276 4 0 1 2 2 0 2 0 0 0 0 4 2 0 0 1 1 2 0 0 0 
384C 5 0 0 2 2 0 2 0 0 0 0 3 1 0 0 1 2 2 0 0 0 
CBS6993 5 0 0 1 2 0 1 0 0 0 0 2 1 0 0 1 2 1 0 0 0 
CBS8755 5 0 0 2 2 0 0 1 0 0 0 4 2 0 0 0 2 2 0 0 0 
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CN043 5 0 0 2 2 0 2 0 0 0 0 2 1 0 0 1 1 1 0 0 0 
WM728 5 0 0 2 2 0 2 0 0 0 0 3 1 0 1 0 1 2 0 0 0 
A1M-F2866 6 0 0 2 2 0 2 0 0 0 0 4 2 0 0 1 1 1 0 0 0 
A1M-F2932 6 0 1 2 2 0 2 0 1 0 0 3 2 0 0 1 2 1 0 0 0 
A1M-F3016 6 0 0 2 2 0 2 0 0 0 0 3 2 0 1 2 1 2 0 0 0 
A1M-R265 6 0 1 2 2 1 2 1 0 0 0 4 2 0 2 1 1 2 0 0 0 
A1M-R271 6 0 0 2 2 1 2 0 0 0 0 3 3 0 0 1 1 1 0 0 0 
A1M-R272 6 0 2 2 2 0 3 0 1 0 0 3 2 0 1 2 1 2 0 0 0 
A1M-R376 6 0 1 2 2 1 2 0 0 0 0 3 2 0 0 0 2 1 0 0 0 
A1M-R406 6 0 1 2 2 0 2 0 0 0 0 3 2 0 0 1 2 2 0 0 0 
CBS10089 6 0 0 2 2 0 2 0 0 0 0 3 1 0 0 3 1 1 0 0 0 
CBS10090 6 0 1 2 2 0 2 0 1 0 0 3 2 0 0 2 1 2 0 0 0 
CBS10485 6 0 1 2 2 0 2 0 0 0 0 3 1 0 0 1 1 1 0 0 0 
CBS1930 6 0 1 2 2 0 3 0 1 0 0 3 1 0 0 1 2 2 0 0 0 
CBS6956 6 0 0 2 2 0 1 0 0 0 0 3 1 0 0 0 1 1 0 0 0 
CBS7750 6 0 0 2 2 0 1 0 0 0 0 3 1 0 0 0 2 1 0 0 0 
CBS8684 6 0 1 2 2 1 2 0 0 0 0 3 2 0 0 3 2 2 0 0 0 
ENV131 6 0 1 2 2 0 2 0 0 0 0 4 3 0 0 1 2 2 0 0 0 
ENV152 6 0 0 2 2 0 2 0 1 0 0 4 2 0 0 1 1 1 0 0 0 
ICB180 6 0 1 2 2 0 2 0 0 0 0 3 2 1 0 0 1 0 0 0 0 
ICB184 6 0 1 2 2 0 3 0 0 0 0 3 2 0 0 3 1 1 0 0 0 
LA362 6 0 0 1 2 0 2 0 0 0 0 4 2 0 0 1 1 1 0 0 0 
RB14 6 0 1 2 2 0 2 0 1 0 0 4 2 0 0 1 1 1 0 0 0 
RB50 6 0 0 2 2 0 2 0 0 0 0 4 2 0 0 0 1 2 0 0 0 
RB59 6 0 0 2 2 0 2 1 0 0 0 5 2 0 0 1 2 2 0 0 0 
B5742 7 0 0 2 1 0 1 0 0 0 0 2 1 0 0 0 1 1 0 0 0 
B5748 7 0 0 2 1 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0 0 
CBS10101 7 0 0 1 1 0 2 0 0 0 0 3 2 0 0 1 1 2 0 0 0 
M27055 7 0 0 2 2 0 2 0 0 0 0 4 1 0 0 1 0 2 0 0 0 
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56A 4 0.197±0.010 1.000±0.000 0.591±0.073 0 0 0 0 0 0 0 1 1 1 
CBS6290 4 0.202±0.022 0.792±0.039 0.531±0.062 0 0 0 0 0 1 1 1 2 2 
CBS6992 4 0.152±0.018 0.957±0.067 0.804±0.090 0 0 0 0 0 0 0 0 0 1 
CBS7229T 4 0.190±0.019 0.751±0.055 0.663±0.081 0 0 0 0 0 0 0 1 2 3 
CBS919T 4 0.162±0.010 0.783±0.031 0.607±0.062 0 1 1 1 2 1 1 1 2 2 
WM179 4 0.239±0.018 0.826±0.191 0.611±0.138 0 0 0 0 1 1 1 1 2 3 
WM276 4 0.229±0.053 0.749±0.103 0.715±0.109 0 0 0 0 0 0 0 0 0 0 
384C 5 0.194±0.027 0.810±0.074 0.719±0.102 0 0 0 0 0 0 0 0 1 2 
CBS6993 5 0.201±0.053 0.733±0.086 0.746±0.094 0 0 0 0 0 0 0 1 2 2 
CBS8755 5 0.192±0.009 0.954±0.075 0.826±0.101 0 0 0 0 0 0 0 0 0 0 
CN043 5 0.180±0.013 0.746±0.065 0.776±0.113 0 0 0 0 0 0 0 0 0 0 
WM728 5 0.229±0.018 1.000±0.000 0.780±0.113 0 0 0 0 0 0 1 2 4 5 
A1M-F2866 6 0.210±0.009 0.706±0.035 0.644±0.071 0 2 2 3 4 4 5 5 5 5 
A1M-F2932 6 0.235±0.031 0.768±0.072 0.596±0.091 0 2 2 3 4 4 5 5 5 5 
A1M-F3016 6 0.200±0.040 0.770±0.035 0.631±0.062 0 1 1 2 3 5 5 5 5 5 
A1M-R265 6 0.187±0.022 0.739±0.031 0.665±0.080 0 1 2 2 5 5 5 5 5 5 
A1M-R271 6 0.188±0.015 0.690±0.066 0.659±0.081 0 2 3 4 4 5 5 5 5 5 
A1M-R272 6 0.176±0.012 0.681±0.028 0.588±0.069 0 2 3 3 4 4 4 5 5 5 
A1M-R376 6 0.186±0.021 0.702±0.097 0.667±0.057 0 3 3 3 4 4 5 5 5 5 
A1M-R406 6 0.217±0.023 0.751±0.082 0.698±0.071 0 4 4 4 4 4 5 5 5 5 
CBS10089 6 0.215±0.025 0.634±0.106 0.607±0.108 0 1 2 4 4 5 5 5 5 5 
CBS10090 6 0.207±0.016 0.707±0.077 0.644±0.094 0 1 1 4 4 5 5 5 5 5 
CBS10485 6 0.195±0.014 0.754±0.034 0.586±0.071 0 2 3 3 4 4 4 4 4 4 
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CBS1930 6 0.226±0.020 0.939±0.094 0.585±0.048 0 1 1 1 2 2 2 2 3 3 
CBS6956 6 0.204±0.047 0.753±0.079 0.584±0.065 0 2 3 5 5 5 5 5 5 5 
CBS7750 6 0.190±0.008 1.000±0.000 0.654±0.082 0 1 3 3 3 4 5 5 5 5 
CBS8684 6 0.288±0.026 1.000±0.000 0.621±0.101 0 0 1 1 1 1 1 1 1 1 
ENV131 6 0.179±0.013 0.689±0.124 0.607±0.102 0 1 1 3 4 4 4 5 5 5 
ENV152 6 0.167±0.031 0.894±0.088 0.627±0.048 0 2 2 3 4 4 4 4 4 4 
ICB180 6 0.211±0.031 0.719±0.032 0.595±0.074 0 2 2 2 3 3 4 5 5 5 
ICB184 6 0.189±0.012 0.728±0.101 0.615±0.064 0 1 2 2 3 4 5 5 5 5 
LA362 6 0.207±0.030 0.672±0.119 0.632±0.063 0 2 2 3 4 4 4 4 4 4 
RB14 6 0.196±0.019 0.676±0.028 0.642±0.122 0 1 1 2 3 4 5 5 5 5 
RB50 6 0.224±0.044 0.660±0.174 0.619±0.113 0 1 1 4 4 4 4 4 4 4 
RB59 6 0.204±0.023 0.630±0.157 0.674±0.063 0 2 3 4 4 5 5 5 5 5 
B5742 7 0.256±0.017 1.000±0.000 0.514±0.053 0 0 0 0 0 0 0 1 2 2 
B5748 7 0.207±0.038 0.898±0.080 0.617±0.076 0 0 0 0 0 2 3 5 5 5 
CBS10101 7 0.284±0.064 0.763±0.062 0.966±0.028 0 0 0 0 0 0 1 2 4 5 
M27055 7 0.208±0.018 0.739±0.076 0.602±0.117 0 0 0 0 0 1 1 2 3 3 
P value within C. gattii strains 0.985 0.085 0.657 0.000893*** 

P value within AFLP6 strains 0.954 0.577 0.057 0.1872 
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5.4.2 VIO hypervirulence is not due to shorter generation time or better utilisation of 

macrophage nutrition 

 

The growth rate of selected cryptococcal strains were measured over 48h in YPD (at 

both 25°C (shaking) and 37°C (non-shaking with 5.0% CO2)), and in the presence of 

macrophage lysate (at 37°C) in order to test whether the observed high IPR values are 

due to shorter generation time or better utilisation of intracellular nutrition by VIO 

strains. From Figure 20 and Table 11, it is clear that the growth rates for various isolates 

in YPD or in macrophage lysate do not correlate with IPR values. Strains that differ 

significantly in intracellular proliferation capacity showed similar growth rates in YPD 

and macrophage lysate (e.g., A1M-F2932 & CBS7750 in Table 11, and A1M-F2866 & 

A1M-R272 in Figure 20). We therefore conclude that the enhanced intracellular 

proliferation is not because VIO strains have a shorter generation time or can utilise 

intracellular macrophage nutrients in a better way.  

 

 

Table 11: CFU counting of eleven C. gattii VGII strains in macrophage lysates at 37°C 
over 48 hours.  

 

Strains Initial CFU 

(x1000) 

CFU 24h in macrophage 

lysate (x1000) 

CFU 48h in macrophage 

lysate (x1000) 

IPR 

ENV152 100 1660±280 3060±140 2.28 
A1M-F2932 100 1220±270 1760±420 2.98 
CBS7750 100 1040±110 1760±350 0.93 
A1M-R271 100 1030±200 1610±220 2.04 
CBS8684 100 990±130 1930±310 0.90 
CBS1930 100 1470±200 2430±270 1.14 
A1M-R265 100 1550±80 2520±150 1.74 
A1M-F2866 100 1580±80 1970±450 2.33 
CBS6956 100 890±270 1600±290 1.35 
RB14 100 1010±120 1340±280 1.60 
ICB184 100 1240±240 1360±130 0.54 
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Figure 20: Growth rates of four C. gattii strains in YPD: A) at 25°C (shaking) and; B) at 
37°C with 5.0% CO2 (non-shaking). Among these four isolates, two have high IPR and 
other two have low IPR values. Nevertheless, they grow at a very similar rate in YPD 
at both temperatures, so VIO and non-VIO strains do not differ significantly in terms of 
generation time.  
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5.4.3 Microarray study: Identification of genes associated with enhanced 

intracellular parasitism  

 

In order to investigate the molecular basis of enhanced intracellular proliferation (and 

thus hypervirulence) in the VIO isolates, we used custom-designed C. gattii whole-

genome tiling microarrays to conduct transcriptional profiling of 24 C. gattii strains (21 

AFLP6 and 3 AFLP4 isolates, listed in Figure 19) recovered from within J774 

macrophages. These strains are genetically very similar but show a wide range of IPR 

values (Appendix I and Figure 19). RNA samples from each strain were isolated from 

intracellular cryptococcal cells 24h after infection and competitively hybridised against 

a pooled sample containing equal quantities of RNA from all 24 strains (See chapter II 

for details on array design and experimental details). At this timepoint, the 

intracellular number reaches the peak for the majority of strains. Linear regression 

identified 1367 target loci in the genome of A1M-R265 strains whose expression 

showed a significant correlation with IPR values. 224 of these have predicted function 

annotations, most of which can be categorised into one of five groups: carbohydrate 

metabolism, stress response, vesicle/vacuole fusion and transport, protein degradation 

and synthesis, and nucleotide metabolism (Appendix II). Interestingly, although our 

phenotypic analysis demonstrated that no single known virulence factor was 

responsible for the hypervirulence of the VIO isolates, several of these genes (e.g., PLB1, 

CRG1, capsule related genes, genes on the mating type locus, components of signalling 

pathways that are known to regulate virulence) showed a significant expression 

correlation with IPR values, suggesting that they may synergistically contribute to 

virulence within the AFLP6 lineage.  

 

Due to poor annotation of the C. gattii genome, BLAST searching did not identify the 

function of most of the candidate genes we identified (Appendix II). We therefore 

mapped the genomic distribution of all the microarray hits by localising them on the 28 

supercontigs of A1M-R265 genome. The distribution was homogenous across all 

supercontigs, with the remarkable exception of supercontig 25, corresponding to the 

mitochondrial genome (mtDNA), which was ten-fold over-represented (Figure 21, 

P=10-24, Chi-square test). Initially, we suspected that the observed over-representation 
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of mitochondrial sequences could be due to an increase in mtDNA copy number, as a 

recent study showed that presence of reactive oxygen species is able to regulate 

mtDNA copy number in isolated yeast mitochondria by triggering recombination-

mediated replication (Hori et al. 2009). However, this is not the case here because 

quantitative PCR demonstrates that AFLP6 strains with different IPR values 

nonetheless have similar mtDNA/genomic DNA ratios (Table 12). In addition, mtDNA 

copy number does not change significantly following intracellular replication, 

eliminating this as a possible explanation for the overrepresentation of mitochondrial 

hits (Table 12). Furthermore, the expression of many nuclear-encoded proteins that 

function in mitochondria is also up-regulated in the VIO strains (e.g., respiratory genes 

and mitochondrial proteins as listed in Appendix II), which is particularly relevant 

given early in vivo transcriptional profiling showing the high expression of several 

respiratory genes by this yeast at the site of a central nervous system infection (Steen et 

al. 2003; Toffaletti et al. 2003). Taken together, we propose that mitochondrial function 

might be critical for the virulence of this lineage. 
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Figure 21: A1M-R265 Supercontig 25 is highly over-represented in the transcriptional analysis (P=10-24, Chi-square test). 1367 probes 
whose expression showed significant correlation with IPR values were mapped onto the 28 supercontigs of the A1M-R265 genome and 
compared to the expected hit rate (assuming a random probe distribution) using the Chi-square test. Supercontig 25 is ten-fold over-
represented.  
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Table 12: Real-time PCR to quantify mtDNA copy number per cell in C. gattii. 
Cryptococcal mtDNA copy number (ranging from 400-1600 copies per cell) does not 
vary among different AFLP6 strains (2 VIO isolates and 2 other AFLP6 strains) or 
change following intracellular replication within host macrophages.  
 

Strains RT-cycle difference between mitochondrial and nuclear loci 

Intracellular yeast cells Yeast cells grown in YPD at 25°C 

ENV152 9.75±1.01 9.77±0.61 
A1M-R271 8.74±0.38 10.68±1.04 
CBS7750 9.44±0.19 10.14±1.59 
CBS8684 10.71±0.63 10.44±0.53 

 

 

5.4.4 Mitochondrial morphology changes in VIO strains following phagocytosis 

 

Given the over-representation of mitochondrial genes in the VIO strains, we analysed 

the morphology of cryptococcal mitochondria both before and after phagocytosis. 

Surprisingly, we observed a striking difference in mitochondrial morphology between 

the VIO and non-VIO strains following intracellular parasitism. During in vitro growth 

at 25°C (in YPD shaking, normal growth condition) or 37°C (in DMEM + 5.0% CO2 in 

the absence of macrophages), more than 95% of cryptococcal cells have mitochondria 

with morphologies that we termed either “diffuse” or “globular” (Figure 22A), 

regardless of the strain tested. However, after growth inside J774 macrophages for a 

period of time, VIO strains developed a tubular mitochondrial morphology (Figure 22) 

that was rarely exhibited by non-VIO isolates (P<0.0001, chi-square test for VIO versus 

non-VIO strains). Remarkably the percentage of cryptococcal cells exhibiting tubular 

mitochondria shows a strong, linear correlation with IPR values (Table 13 & Figure 23, 

P=0.00021, linear regression), a relationship that raises the possibility of accurately 

predicting the virulence of novel cryptococcal genotypes based on a simple, one-step 

observation of mitochondrial morphology.  

 

Mitochondrial tubular morphology is generally thought to result from mitochondrial 

fusion, a phenomenon that allows mitochondria within a cell to cooperate with each 

other (Chen et al. 2003) and protects cells from the detrimental effect of mtDNA 

mutations by allowing functional complementation of mtDNA gene products (Chan 
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2006; Sato et al. 2006). Moreover, mitochondrial fusion has been found to protect cells 

from cell death (Karbowski et al. 2004; Sugioka et al. 2004). It therefore appears likely 

that the altered mitochondrial gene expression and morphology seen in the VIO strains 

is a protective response that facilitates rapid intracellular growth and thus enhanced 

virulence.  

 

In yeast and mammals, several factors including Drp1/Dnm1 and Mfn/Fzo1 are known 

to regulate mitochondrial morphology by controlling membrane fission or fusion 

(Okamoto and Shaw 2005). Interestingly, we find that FZO1 is up-regulated in the VIO 

strains (the gene appeared four times in the top 5000 candidates). Fzo (Fussy onion 

gene), isolated from a screen for genes involved in Drosophila spermatogenesis, is the 

first player identified in mitochondrial fusion (Hales and Fuller 1997). In mammals and 

yeast, it is known as mitofusin and Fzo1p respectively (Hermann et al. 1998; Santel and 

Fuller 2001). The protein contains a GTPase domain (exposed to the cytoplasm) at the 

N-terminus and a bipartite transmembrane domain (which spans the mitochondrial 

outer membrane twice) near the C-terminus (Fritz et al. 2001; Rojo et al. 2002). In S. 

cerevisiae, the fzo1Δ mutant is highly fragmented due to ongoing mitochondrial fisson 

(Hermann et al. 1998; Rapaport et al. 1998) and over-expression of Fzo1p alters the 

fusion/fission protein ratio and thus inhibits cell apoptosis (Sugioka et al. 2004). 

Therefore, higher amounts of Fzo1p in VIO strains could be responsible for the tubular 

formation of mitochondria and also lead to a higher fusion/fission protein ratio, which 

is essential to increase the resistance of mitochondria and cells to apoptotic stimulation. 

However, a recent study by systematic screening of C. elegans mitochondrial proteins 

demonstrated that most fundamental mitochondrial functions, including metabolism 

and oxidative phosphorylation, are also necessary for the maintenance of 

mitochondrial tubular networks: of 719 genes predicted to code for most of the 

mitochondrial proteins, knockdown of >80% of them caused abnormal mitochondrial 

morphology, especially fragmentation (Ichishita et al. 2008). Hence the tubular 

morphology observed in this scenario could be a result of up-regulation of many 

candidate genes listed in Appendix II.  
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Figure 22: A) Representative images of the three different mitochondrial morphologies observed (diffuse, globular and tubular); B) A three 
dimensional confocal projection showing the tubular mitochondrial morphology of a VIO strain. C. gattii strain ENV152 (IPR=2.28), isolated 
24h after growing within J774 macrophages and labeled with MitoTracker. 
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Table 13: The percentage of intracellular yeast cells with tubular mitochondria in six 
VGII strains (3 VIO and 3 non-VIO isolates). For each strain, a random selection of 
cryptococcal cells were scored blindly for the three different mitochondrial 
morphologies. Mitochondria with a tubular morphology were found only rarely in 
strains with low IPR values (non-VIO strains) or in strains (both VIO and non-VIO) 
that had been grown extracellularly.  
 

Strains Diffuse Globular Tubular Total Percentage of tubular IPR values 

CBS8684 15 46 0 61 0% 0.90 
CBS7750 9 58 4 71 6% 0.93 
CBS1930 10 44 6 60 10% 1.14 
A1M-R271 7 32 24 63 38% 2.04 
ENV152 11 28 39 78 50% 2.25 
A1M-F2932 14 21 54 89 61% 2.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: The percentage of intracellular yeast exhibiting a tubular mitochondrial 
morphology correlates significantly with IPR values (P=0.00021, linear regression, n=6). 
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5.5 Discussion 

 

This study demonstrates a link between the intracellular parasitism of phagocytes and 

the virulence of a facultative intracellular pathogen in a murine model of infection. 

Moreover, we propose that a recent change in mitochondrial regulation within the C. 

gattii lineage has led to an increased intracellular proliferative capacity, resulting in the 

hypervirulent phenotype that underlies the VIO. This change leads to a quantitative 

linear relationship between intracellular proliferation ratio, mitochondrial gene 

expression, mitochondrial morphology and virulence.  

 

The mitochondrion, as an essential organelle, has been linked to various cellular 

activities, such as intermediary metabolism and respiration, cell signalling, iron 

metabolism, apoptosis and aging (Cortopassi and Wong 1999; Green and Reed 1998). 

However, its role in modulating virulence of pathogens is unclear. Indeed such a role 

has been reported only once before, in Heterobasidion annosum, which, like Cryptococcus, 

is also a basidiomycete pathogen but of plants rather than animals (Olson and Stenlid 

2001). Nevertheless, mitochondria can represent a source of rapid evolution of 

virulence in emerging pathogens because the mutation rate for the mtDNA genome is 

much higher than the nuclear genome due to a) the high amount of reactive oxygen 

species within mitochondria that can severely damage DNA and, b) the lack of 

replication error repair mechanisms within mitochondria (Denver et al. 2000; Haag-

Liautard et al. 2008; Lynch et al. 2008). Within the Cryptococcus genus, mitochondrial 

genomes show conserved gene synteny but very different sizes (e.g., 34.7kb for C. gattii, 

32kb for C. neoformans var. neoformans, and 24kb for C. neoformans var. grubii) (Litter et 

al. 2005). Moreover, a significantly higher within-lineage divergence for the 

mitochondrial genes than those for the nuclear genes within both the VGI and VGII 

lineages has been observed, indicating that they are under intense selection (Xu et al. 

2009). This is further supported by the recent evidence of mitochondrial recombination 

in C. gattii (Bovers et al. 2009; Xu et al. 2009). For more information on the 

mitochondrial genome of Cryptococcus, see Chapter VI for detail. 
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Mitochondria are dynamic organelles that frequently divide and fuse with each other 

and it is thought that such behaviours are coordinated with their metabolic function 

(Chan 2006; Okamoto and Shaw 2005). Early studies on Cryptococcus have 

demonstrated the importance of mitochondria in responding to hypoxic conditions 

and oxidative stress (Ingavale et al. 2008; Narasipura et al. 2005). We therefore propose 

that after being engulfed by macrophages, the VIO strains are able to promote 

mitochondrial fusion to form long tubular mitochondria in order to more efficiently 

repair mtDNA damage caused by the oxidative stress and hypoxic conditions within 

the macrophage phagosome. Mitochondrially-regulated intracellular replication 

capacity may be a widespread phenomenon in other eukaryotic pathogens and hence 

an improved appreciation of this process is likely to have significant implications for 

our understanding of disease epidemics caused by a range of otherwise unrelated 

pathogens.  

 

 

5.6 Extra work  

 

After the above study, I further studied 8 VGIIC strains (kindly provided by the 

Heitman lab) for their virulence by measuring IPR values. VGIIC strains were only 

identified recently by Byrnes et al (Byrnes et al. 2009b). MLST analysis of 16 loci 

demonstrated that VGIIC strains have 7 novel alleles that are not seen in any of the 

other VGII genotypes. These isolates were recovered from both humans and animal in 

Oregon, but have never been found on Vancouver Island, in mainland British 

Columbia, or in Washington. It was speculated that they may have come from outside 

the region or may be recombined isolates (Byrnes et al. 2009b). The identification of the 

VGIIC genotype suggests the possibility of the emergence of a new VGII molecular 

type. Therefore, we were interested in studying their virulence. The IPR assay revealed 

that most of the VGIIC strains were as capable of exploring the intracellular niche as 

VIO strains with one exception (EJB52, Table 14). Mouse survival data also showed that 

VGIIC isolates were highly virulent (data from ongoing experiments, personal 

communication with Edmond Byrnes), further validating the IPR assay for predicting 
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virulence of cryptococcal strains in the mouse model of infection. It will be interesting 

to study more isolates of these subgroup and also test whether their mitochondria 

show the tubular morphology after phagocytosis, just like those of VIO strains. The IPR 

assay and mouse survival study suggest that the VGIIC population has the potential to 

cause another outbreak. In future, the surveillance of this subgroup should be 

increased for prevention purposes. 

 

 

Table 14: IPR values of eight VGIIC strains in comparison to VIO strains. 
 

Strains Mating-Serotype IPR values Origin 

A6M-R38 α-VGIIC 2.02±0.19 Oregon, United States 
EJB12 α-VGIIC 1.53±0.07 Oregon, United State 
EJB14 α-VGIIC 2.00±0.11 Oregon, United State 
EJB15 α-VGIIC 1.72±0.23 Oregon, United State 
EJB18 α-VGIIC 1.73±0.35 Oregon, United State 
EJB52 α-VGIIC 0.97±0.22 Oregon, United State 
EJB55 α-VGIIC 1.39±0.14 Oregon, United State 
EJB74 α-VGIIC 1.60±0.06 Oregon, United State 
Average VIO VGIIA α-VGIIA 1.92 Vancouver Island, Canada 
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6.1 Introduction 

 

6.1.1 Inheritance of mitochondria in Cryptococcus 

 

The inheritance of mtDNA has been examined in many fungal species and diverse 

patterns have been observed. In both S. cerevisiae and S. pombe, mtDNA inheritance is 

biparental and the initial zygotes are heteroplasmic (Birky 1995; Gillham 1994). This is 

expected because zygotes in these yeast cells are the products of simple fusions 

between cells of different mating types. For C. neoformans, the zygotes are formed in a 

similar way to that of the budding and fission yeasts, but the mtDNA examined so far 

shows a largely mating-type dependent uniparental inheritance: the offspring 

predominantly receive their mitochondria from the MATa parent, though a low level 

of leakage was also observed, where biparental inheritance and mitochondrial 

recombination occurs (Toffaletti et al. 2004; Xu 2005; Yan et al. 2007b). Early studies 

demonstrated that in C. neoformans, among 570 progeny examined from six 

independent crosses, no progeny were heteroplasmic or contained recombinant 

mtDNA (Xu et al. 2000a). Results from analysis of natural hybrids have been consistent 

with laboratory crosses (Xu 2002; Xu et al. 2002; Yan and Xu 2003).  

 

Uniparental inheritance of mtDNA has been observed in many filamentous fungi such 

as Neurospora, Aspergillus, Podospora species, Agaricus bisporus and Armillaria bulbosa. 

Most of these cases of uniparental inheritance can be explained by the significantly 

biased cytoplasm inputs of the mating partners, or due to migration of only nuclei but 

not mitochondria during mating (Belcour 1975; Birky 1995; Lee and Taylor 1993; 

Mannella et al. 1979; Mason and Turner 1975). To date, the uniparental mitochondrial 

inheritance in C. neoformans has been demonstrated to be coordinately controlled by 

SXI1α (located within the MATα mating type locus) and SXI2a (located within the 

MATa mating type locus) (Figure 5) (Yan et al. 2007a; Yan and Xu 2003). However, the 

exact mechanism remains unknown and there are two hypotheses. The first hypothesis 

proposes that during sexual mating, mitochondria and cytoplasm from the two mating 

partners were not mixed equally to form a homogeneous cytoplasm in the fused cell 

and that hyphal formation occurred preferentially on the MATa parent side, away 
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from the MATα. Therefore, it is possible that during zygote formation, only the MATα 

nucleus migrates through the conjugation tube into the MATa cell, while mitochondria 

from the MATα parent are left behind (Xu 2005). It is also possible that new daughter 

cells bud from the MATa parent side of the zygote, away from the site of initial 

conjugation (Yan and Xu 2003). This hypothesis is supported by the microscopic 

observations showing the nucleus of the MATα cell migrates into the conjugation tube 

whilst the recipient MATa cell generates a hypha (McClelland et al. 2004). The second 

hypothesis proposes that uniparental inheritance is due to the selective elimination of 

the mtDNA type from MATα after mating, similar to the current favoured mechanism 

to explain uniparental mitochondrial inheritance in the alga Chlamydomonas reinhardtii 

(Gillham 1994). When stable diploid yeast cells were synthesized directly from two 

mating partners without going through the filamentous stage, no mtDNA from the 

MATα parent was found, suggesting a possible selective elimination mechanism for 

mitochondrial inheritance in C. neoformans (Yan and Xu 2003).  

 

Although mitochondrial inheritance is mainly uniparental for C. neoformans, the 

patterns of mitochondrial inheritance in C. gattii are unknown. A recent study revealed 

that a high percentage of VGI isolates (more than 65%) possessed a recombined 

mitochondrial genome, suggesting that recombination occurs frequently in nature 

(Bovers et al. 2009). In addition, Yan et al demonstrated that both elevated temperature 

(up to 33°C) and UV irradiation can increase the leakage of the MATα mitochondrial 

genome and result in biparental mitochondrial inheritance and recombination between 

strains with functional Sxi1α and Sxi2a in C. neoformans (Yan et al. 2007b). As C. gattii is 

predominantly found in tropical and subtropical regions, they will very likely to 

experience high temperature environments and great UV exposure. Therefore, 

biparental inheritance is expected to be more common in nature for C. gattii. 

 

6.1.2 Mitochondrial genome of Cryptococcus 

 

It is known that mtDNA of different yeast species can be highly variable in terms of 

both size and organisation. For example, within the Saccharomyces genus, the mtDNA 

of S. cerevisiae is 3.5 times bigger (86kB) (Foury et al. 1998) than that of S. castellii (26kB) 
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(Groth et al. 2000; Langkjaer et al. 2003). Considerable size differences have been 

observed even within the same species: a 9kb difference was found between two 

laboratory strains of S. cerevisiae (85kb & 76kb respectively) (de Zamaroczy and 

Bernardi 1985). For C. neoformans, two C. neoformans var. neoformans strains (IFM5844 & 

JEC21) and two C. neoformans var. grubii strains (IFO410 & H99) have been studied in 

details for their mtDNA structures. It was found that the order of coding genes in the 

two varieties are the same, but C. neoformans var. neoformans have much larger mtDNA 

(e.g., 32.6kb for IFM5844 and 33.2kb for JEC21) in comparison to that of C. neoformans 

var. grubii (e.g., 24.1kb for IFO410 and 24.9kb for H99) (Figure 24) (Litter et al. 2005; 

Toffaletti et al. 2004). The length variability is attributed to the presence and/or absence 

of optional intronic opening reading frames and also to the length of intergenic regions. 

For example, five introns were found in the COX1 gene of IFM5844 and JEC21 strain, 

but no introns in IFO410 and H99. Similarly, IFO5844 and JEC21 have 2 introns in the 

COB gene, whereas IFO410 and H99 have only one (Litter et al. 2005; Toffaletti et al. 

2004). Nevertheless, mtDNAs within varieties are highly similar in sequence: they 

displayed >99% similarities in the examined coding and non-coding regions (Litter et al. 

2005). In comparison with other yeast species, the mtDNAs of C. neoformans are 

relatively compact and have short intergenic regions. This has been suggested to 

explain why all the mtDNAs have the same gene synteny since the variability in gene 

order might be connected with the presence of long intergenic regions (Litter et al. 

2005).  

 

For C. gattii, no detailed studies on mtDNA genome structure have been done, as the 

mtDNA has not been annotated for A1M-R265 (VGII) and WM276 (VGI) strains. We 

therefore used BLAST Open Reading Frame Software to predict the coding regions of 

A1M-R265 mtDNA. It seems that the mtDNA of this particular C. gattii strain has the 

same order of coding genes as that of both C. neoformans varieties, but it is intron-rich 

and resembles more var. neoformans in terms of size (Figure 24C). Simple alignment of 

A1M-R265 and WM276 mtDNA sequences (This was carried out under the guidance of 

Wenjun Li at Duke University) revealed most of the variations were found in gene-
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coding regions whereas intergenic regions are very well conserved (Figure 24E), 

suggesting they are under intensive selection.  

 

Recently, there have been two population genetic studies on the mitochondrial genome 

in C. gattii species. The first study revealed that the VGI genotype alone has five 

different mitochondrial genotypes based on the presence of ATP6 and MtLrRNA 

alleles, which did not form a monophyletic lineage (Bovers et al. 2009). The second 

study, by sequencing five mitochondrial DNA fragments of more than 50 VGI and 

VGII isolates, detected a significantly greater mtDNA divergence within VGI than that 

within VGII (Xu et al. 2009). Since studies on the nuclear genome showed VGII is basal 

to VGI and also VGIII & VGIV (Figure 2), the lower sequence diversity within VGII 

than those within VGI may reflect a recent bottleneck event, assuming the sampling is 

sufficient in this study (Xu et al. 2009). More importantly, both studies identified 

signatures of hybridisation between VGI and VGII lineages. For instance, about 65% 

VGI isolates studied possess mitochondrial genomes that consist completely of VGII 

sequence or that contain a combination of VGI and VGII sequences (Bovers et al. 2009). 

This is probably due to mating between VGI and VGII isolates, where mitochondrial 

inheritance is not uniparental, just as observed with C. neoformans (Toffaletti et al. 2004; 

Xu et al. 2000a), or mitochondrial recombination occurred (Bovers et al. 2009). 

Furthermore, Xu et al (2009) also found evidence for recombination in the 

mitochondrial genome within the VGII lineage. The recombination can be a 

consequence of biparental inheritance of mitochondrial genome in C. gattii or same-sex 

mating between strains of the MATα mating type (Xu et al. 2009).  
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Figure 24: mtDNA structure of Cryptococcus: all the mtDNAs show a conserved gene 
synteny but have different sizes. A) IFM5844 (var. neoformans) and B) IFO410 (var. grubii). 
These two mtDNA structures were drawn to scale based on information from (Litter et al. 
2005); C) mtDNA structure of A1M-265 (C. gattii, VGIIA). Sections with light blue colour 
are either introns or intergenic spaces. The open reading frames of A1M-R265 were 
predicted using Open Reading Frame Finder at NCBI at the following site: 
http://www.ncbi.nlm.nih.gov/gorf/gorf.html, in combination with alignment to the H99 
mtDNA (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=AY101381; 
D) Circular mtDNA structure of JEC21 (var. neoformans) and H99 (var. grubii) (taken from 
(Toffaletti et al. 2004)); E) Simple alignment of A1M-R265 and WM276 mtDNA using 
ClusterW. Before alignment, two repeat regions in both mtDNAs were removed (region 
one: 2434 nucleotides in COX1 gene; region two: 963 nucleotide at the end of the 
supercontig). Sections with white colour stand for the variations between two mtDNA 
sequences.  
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6.2 Verification of the role of mitochondrial genotype in intracellular 

proliferation and virulence for C. gattii 

 

The mitochondrion has been linked to fitness in the past, as the organelle plays a key 

role in energy production and response to stress. Therefore, possessing different 

mitochondrial genotypes may lead to different fitness in an organism. Indeed, in S. 

cerevisiae, when mitochondria of wine yeasts were transferred to a laboratory strain, the 

latter showed increased viability and increased tolerance towards ethanol and high 

temperature (Jimenez and Benitez 1988). Furthermore, a perfect correlation between 

the mitochondrial type acquired by the H. annosum isolates and their virulence was 

reported, where hybrids with mitochondria of different origin have different virulence 

(Olson and Stenlid 2001).  

 

For C. neoformans, a study conducted by creating stable AD hybrids to place serotype A 

and D mitochondria under different nuclear-genomic influences showed that either 

mitochondrial genotype was sufficient to support the full virulence of the H99 

virulence composite for growth in the CNS of immunocompromised rabbits, 

suggesting that the mitochondrial genome is unlikely to have a significant influence on 

the differences between serotypes in their virulence composite in C. neoformans 

(Toffaletti et al. 2004). However, mitochondrial function and its genetic regulation may 

still be important to the virulence of C. neoformans and C. gattii, because many of the 

mitochondrial genes are encoded by the nucleus. These nuclear-encoded proteins are 

synthesised in the cytoplasm and then imported into mitochondria. They interact with 

mitochondrially encoded proteins (e.g., in the electron transport system), control 

mitochondrial biogenesis, regulate mtDNA copy number, influence mtDNA stability 

and alter mitochondrial morphology in a sophisticated manner (Cannino et al. 2007; 

Okamoto and Shaw 2005; Osiewacz and Kimpel 1999; Poyton and McEwen 1996). In 

addition, there is direct evidence showing that mitochondria might be involved in 

regulating virulence of Cryptococcus. Global in vivo transcriptional profiling of C. 

neoformans cells at the site of a CNS infection showed that the several respiratory genes 

were highly expressed by this yeast (Steen et al. 2003); There were significant 
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differences between mitochondrial gene regulation between the serotype A and D 

strains (e.g., COX1) (Toffaletti et al. 2003); Several other studies on Cryptococcus have 

demonstrated the importance of mitochondria in responding to hypoxic conditions 

and oxidative stress (Ingavale et al. 2008; Narasipura et al. 2005) etc. We were therefore 

very interested in verifying the role of mitochondrial genotype in the hypervirulence of 

VIO strains.   

 

The ideal experiment to test the mitochondrial contribution towards intracellular 

proliferation in C. gattii would be to replace mitochondria of a poor proliferator with 

those from VIO strains or vice versa to see whether that alters the intracellular 

proliferation capacity of individual strains. However, such an experiment is practically 

difficult, as unlike S. cerevisiae, which can produce enough ATP by glycolysis, a 

pathway occurring in the cytoplasm that is independent of functional mitochondria 

(Osiewacz and Kimpel 1999), the presence of mitochondria seems to be essential to 

cryptococcal viability. Attempts to make petite (respiratory) mutants in strain H99 by 

standard methods using ethidium bromide or random mutagenesis with signature tags 

or to disrupt certain specific genes encoding proteins in the respiratory chain, such as 

COX15, have not been successful (Toffaletti et al. 2004). Nevertheless, the uniparental 

mitochondrial inheritance in C. neoformans means that it is possible to generate F1 

progeny that only contain mitochondria from their good or poor proliferator parent 

and thus test the effect of mitochondrial genotype independently of nuclear genotype. 

If the presence of VIO mtDNA is sufficient to boost intracellular proliferation, progeny 

possessing the VIO mitochondrial genotype should all have high IPR values. Following 

this idea, we tried to cross two strains with very different IPR values followed by 

phenotyping the progeny. Disappointingly, after various attempts, we and the others 

were unable to mate MATa-VGII (a-VGII) with MATα-VGII (α-VGII) strains in the lab, 

despite the fact the VGII strains are more fertile than the other C. gattii isolates (Fraser 

et al. 2003; Halliday and Carter 2003; Ngamskulrungroj et al. 2008). Instead, a-VGII/α-

VGII strains (good proliferators) were chosen to mate with α-VGIII/a-VGIII strains 

(poor proliferators) to generate viable progeny. Although the progeny contain some of 

the VGIII nuclear genome, such crosses may still provide clues as to the importance of 
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mitochondrial genotype in C. gattii. In collaboration with the Heitman lab (Duke 

University, USA), two crosses were constructed on plates with V8 mating media and 

basidiospores were isolated by microdissection to generate recombinant F1 lines (See 

Figure 25 for experimental design). Cross I, constructed between CBS10090 (a-VGII, 

IPR=1.71) and NIH312 (α-VGIII, IPR=0.98), generated 16 progeny. Cross II, conducted 

between A1M-R265 (α-VGII, IPR=1.74) and B4546 (a-VGIII, IPR=0.87), produced 18 

progeny. We then studied the IPR values of these 34 progeny. The whole experiment 

was based on one assumption, which is that in these two crosses, mitochondrial 

inheritance is uniparental: all the progeny only receive mitochondria from one of the 

parents.  
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 Parent MATa IPR  Parent MATα IPR  Number of 

progeny 

Cross I CBS10090 (VGII) 1.71 NIH312 (VGIII) 0.98 16 
Cross II B4546 (VGIII) 0.87 A1M-R265 (VGII) 1.74 18 

 

Figure 25: A schematic illustration of the experimental design for two crosses.  

Mitochondrion 

a/αααα 

a 

αααα αααα 

a 

Cross I: CBS10090 x NIH312 

Cross II: A1M-R265 x B4546 

a/αααα 

a 

αααα αααα 

a 

Good proliferator 

(VGII) 

Poor proliferator 

(VGIII) 

Poor proliferator 

(VGIII) 

Good proliferator 

(VGII) 



Chapter VI: Verification of mitochandrial role 

136 

6.2.1 All the progeny show the same mtDNA profile as their MATa parents  

 

In order to check whether uniparental inheritance occurred during these two crosses, 

PCR of mtDNA was performed to profile the mitochondrial genotype. Seven primer 

pairs were designed and tested, but only one (named ATP-1, see Materials and 

Methods for details on sequence) was able to distinguish the VGII from VGIII 

mitochondrial genotype (Figure 26A): mtDNA from VGII isolates produced a much 

shorter PCR product (227bp) in comparison to the one from VGIII strains (>500bp), 

suggesting either a deletion in the ATP6 region occurred in the VGII strain or an 

insertion in the ATP6 region occurred to VGIII strains during evolution. Using the 

ATP-1 primer pair, we demonstrated that all the 16 progeny from cross I had the same 

mitochondrial genome profile as their MATa parent (CBS10090) (Figure 26B). Identical 

results were obtained for the progeny generated from cross II (data not shown,  the 

PCR for these progeny were performed by Edmond Byrnes and Yoni Lewit at Duke 

University), suggesting that in these two crosses, the mitochondria were likely to be 

inherited uniparentally from MATa parents. Therefore, these progeny were used for 

the IPR study.  

 

We note that the described approach to identify mitochondrial genome is not sufficient 

to demonstrate that the progeny have the exactly the same mtDNA as their MATa 

parents. It is possible that DNA recombination occurred between two mitochondrial 

genomes after fusion of MATa and MATα cells and the region amplified by ATP-1 

primers happened not to be recombined. In future, full sequence of the mtDNA of all 

the progeny should be carried out in order to ensure the complete inheritance of 

mitochondrial genome from MATa parents.  
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Figure 26: A) The analysis of PCR products of mtDNA of 12 strains (six VGII and six 
VGIII) using primer set ATP-1. mtDNA from VGII isolates produced much shorter 
PCR products in comparison to those of VGIII strains; B) PCR products of 16 progeny 
generated from cross I. mtDNA of all the progeny showed the same length as their 
VGIIA parent (CBS10090). The DNA ladder used in this experiment is the 1kb ladder 
from the Invitrogen. 
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6.2.2 The presence of VIO mitochondrial genotype is required but not sufficient for 

the hypervirulence of VIO strains  

 

For progeny generated from crossing I, one would expect that all are good proliferators 

if the presence of the mitochondrial genotype from a good proliferator is sufficient to 

obtain high IPR values. However, this was not the case. The 16 progeny showed 

various IPR values, ranging from 0.57 to 1.78 (Appendix I & Figure 27A). Since the only 

difference between the progeny and CBS10090 is the content of the nuclear genome 

(due to recombination between the nuclear genome of the two parents during mating), 

the wide range of IPR values for the progeny suggests that possessing the “right” 

mitochondrial genotype does not guarantee the strains to be more virulent. The same 

study on progeny from cross II, however, showed that although mitochondrial 

genotype alone is not sufficient, it is absolutely required for virulence because none of 

the progeny are good proliferators when the right mitochondrial genotype is absent. 

All 18 progeny have a similar IPR values to their poor proliferator parent (Appendix I 

& Figure 27B). Taken together, these data imply that the presence of the 

‘right‘ mitochondrial genotype in the ‘right’ nuclear background is essential for the 

hypervirulence of VIO strains. Together with the recent demonstration regarding the 

importance of mitochondrial function in regulating survival of Cryptococcus (Ingavale et 

al. 2008), it is likely that mitochondrial activities (regulated by nuclear encoded 

proteins) determine the outcome of cryptococcal infection by protecting the pathogen 

from oxidative stress and hypoxic conditions in macrophage phagosomes and thus 

enhancing its survival.  
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Figure 27: IPR values of the progeny and their parents of the two crosses. A) The 
progeny from cross I (CBS10090 x NIH312) show heterogeneous IPR values; B) The 
progeny from cross II (A1M-R265 x B4546) all have low IPR values. The good 
proliferator parents are represented with red bars and the poor proliferator parent with 
green bars. The IPR values represent the mean of three or more repeats.  
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At this point, it is important to point out that the above data from the two crosses are 

not sufficient to draw a solid conclusion about the role of mitochondrial genotype in 

virulence for several reasons. Firstly, as discussed earlier, we cannot rule out the 

possibility of mitochondrial recombination based on PCR amplifying of a single region 

of mtDNA. According to the study by Bovers et al (2009), mitochondrial recombination 

is likely to occur at high frequency in nature between VGI and VGII isolates (Bovers et 

al. 2009). Therefore, it is necessary to sequence the mtDNA of all the progeny and 

compare the sequences to those of their MATa parent in order to eliminate the 

possibility of recombination. Secondly, although Cryptococcus is able to undergo inter-

genotype mating, this often result in a loss of viability in the basidiospores (<5%) and 

the generation of many diploid and even aneuploid progeny (Lengeler et al. 2001). 

Indeed, seven of the progeny from cross I were diploid and one might be aneuploid 

(Table 15, the FACS experiments were performed by Edmond Byrnes and Yoni Lewit 

at Duke University), indicating meiosis between the two genotypes was impaired 

because of their genomic divergence. This leads to the concern that progeny from such 

crosses may be generally less fit. Therefore, it will be necessary to study the normal 

growth rate of these progeny, especially ones from cross II, to make sure that the 

observed low IPR values are not due to longer generation time or growth deficiency at 

37°C. Thirdly, although the MLST study (performed by Edmond Byrnes and Yoni 

Lewit at Duke University, data not shown) confirmed nuclear genome recombination 

between VGII and VGIII in cross I, we did not study the level of nuclear recombination 

for the two crosses in details. Bovers et al proposed that mating between different C. 

gattii genotypic groups may not result in the formation of a hybrid nuclear genome, 

although transfer of mitochondria and mitochondrial recombination still occur (Bovers 

et al. 2009). Hence, it is possible that the 18 progeny from cross II inherited both 

nuclear and mitochondrial genomes from MATa parent, which is a poor proliferator 

and that is the main reason for them to act poorly inside macrophages rather than not 

having the right mitochondrial genotype. Studying the nuclear background of the 

progeny is important for another reason. Communication between mitochondria and 

nucleus is bi-directional: nuclear gene expression can be influenced by signals coming 

from mitochondria and vice versa (e.g., as shown in (Epstein et al. 2001)). It has been 
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demonstrated that the mitochondrial genotype can influence nuclear gene expression 

in yeast (Parikh et al. 1987). If the mitochondrial genotype is not compatible to the 

nuclear genotype, their communication is likely to be blocked, which may lead to 

growth deficiency in the progeny, especially when dealing with stresses. In the future, 

more detailed study on nuclear genome recombination should be carried out. Finally, it 

is possible that mitochondrially-regulated virulence trait is restricted to the VGII 

strains. As mentioned earlier, the VGII population has much lower within-lineage 

divergence in both the nuclear and mitochondrial genome in comparison with the VGI 

population, although VGII is considered to be basal for the C. gattii species. If a recent 

bottleneck event occurred within the VGII population, the whole population might be 

selected to be generally fitter. Given that VIO VGIIA is a clonal population, it is 

possible that the trait was evolved just before its divergence from the other VGII 

populations. In future, the mitochondrial morphology of other C. gattii genotypes 

should be studied to test the above hypothesis.  

 

 

Table 15: The ploidy of 16 progeny from cross I. These progeny were studied by FACS 
analysis. *Progeny 9 seems to contain both haploid and diploid populations despite 
numerous purifications of population by colony picking, suggesting it might be 
genetically unstable. 
 

Progeny Ploidy 

1 Diploid 
2 Haploid 
3 Haploid 
4 Diploid 
5 Haploid 
6 Haploid 
7 Diploid 
8 Diploid 
9* Haploid? Aneuploid? Diploid? 
10 Diploid 
11 Diploid 
12 Haploid 
13 Diploid 
14 Haploid 
15 Haploid 
16 Diploid 
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In this thesis, I have demonstrated a complex interaction between Cryptococcus and 

macrophages as illustrated in Figure 28. It seems that Cryptococcus is able to use the 

host macrophage as a resource centre for replication (intracellular proliferation) as well 

as a vehicle for efficient dissemination (vomocytosis and lateral transfer), and that the 

pathogen might have developed unique mechanisms to control the balance between 

latency and dissemination in response to changes in the environment. 

 

 

7.1 Vomocytosis and lateral transfer 

 

The exit of intracellular pathogens from host cells is an important step in the infectious 

cycle because of its connection with dissemination and transmission. The route and 

timing of exit may also determine whether the pathogen avoids or engages immune 

responses. Early studies with Cryptococcus have assumed the cellular exit to occur by 

lysis, mainly due to the mechanical burden that is put on infected cells. The discovery 

of vomocytosis and lateral transfer demonstrates this pathogen’s ability to escape in a 

more directed and organised way without killing of the host cell or the yeast itself. 

These two processes may represent the outcome of evolutionary pressure on 

intracellular cryptococci to be able to transmit between cells with minimal damage to 

the host cell and thus minimal immune response. Therefore, the pathogen can spread 

and infect new cells without altering the host response to its presence.  

 

Currently, the detailed mechanism of vomocytosis remains to be explored. We believe 

that the initiating signals for Cryptococcus release are more likely to come from the 

yeast rather than the host cell, as the phenomenon was not observed with heat-killed 

Cryptococcus, latex beads or other yeast species tested so far. One possibility is that 

Cryptococcus secretes molecules into the phagosome that can trigger vomocytosis, as 

the pathogen has been demonstrated to secrete vesicles containing various virulence 

factors (Rodrigues et al. 2008). However, it is unlikely that Cryptococcus provides all the 

components required for vomocytosis, as vomocytosis resembles exocytosis, which is a 
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process regulated by a large number of protein complexes responsible for membrane 

fusion (Sollner 2003). Therefore, we suspect the intracellular yeast cells may be able to 

hijack the host exocytosis machinary, for example by targetting the SNARE complex 

(known as the minimal machinery for membrane fusion (Weber et al. 1998)) to the 

phagosome membrane (Figure 12). The modified phagosomal membrance would thus 

become more fusigenic towards the plasma membrane. In fact, for the four lateral 

transfer events observed, three of them were followed by vomocytosis, suggesting that 

the phagosome membrane was highly fusible. Long-term live imaging of macrophages 

with fluorescent-labelled host proteins important for exocytosis could be performed to 

confirm the above hypothesis. Another interesting question is how much the 

cytoskeleton of the host cell is involved in the whole process. Alvarez et al showed that 

blocking actin polymerisation of the host cell led to an increase in vomocytosis rate 

(Alvarez and Casadevall 2006). Interestingly, timelapse imaging of GFP-labelled actin 

has revealed periodic accumulation of actin around the cryptococci-containing 

phagosome at various timepoints after phagocytosis (Johnston et al, 2009, submitted). 

This formation of an actin ring around the phagolysosome may represent a strategy 

used by the host cell to prevent pathogens from leaving. In the future, it will be 

interesting to study the host and pathogen factors that trigger actin re-organisation 

around the cryptococci-containing phagolysosome. 
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Figure 28: A summary of complex Cryptococcus-macrophage interaction, where both non-lytic and lytic escape pathways exist.   
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7.2 Intracellular proliferation and mitochondrial activity 

 

When the host environment is less hostile, intracellular proliferation is more important 

for the pathogen to achieve dominance, as it leads to the fast expansion of the 

population size and thus rapid colonisation of local tissue. Based on our study, it seems 

that being able to proliferate inside macrophages is a key determinant of virulence for 

Cryptococcus and a sudden ‘shift’ in this ability in a clonal population can lead to 

disease outbreaks (e.g., VIO). More interestingly, we linked hypervirulence of VIO 

strains with their mitochondrial activity regulated by nuclear-encoded proteins, which 

probably allows more efficient respiration under the hypoxic and oxidative conditions 

present inside a host macrophage phagosome. The important remaining questions are 

how nuclear-encoded proteins regulate mitochondrial activities and what external 

factors induce such regulation. To answer these questions, genes involving 

mitochondrial fusion and tubular formation (such as FZO1, MMM1, MDM10 and 

MDM12 (Okamoto and Shaw 2005)) can be knocked out to see whether they are the 

mediators between the nucleus and mitochondria. Moreove, it is possible that 

mitochondrial tubule formation inside the phagosome may be only triggered at a 

particular stage of phagosome maturation. In order to find out the factors that promote 

tubule formation of cryptococcal mitochondria, one possibility would be subject the 

pathogen to simple environmental stimuli which are commonly presently in 

phagosomes, such as osmotic shock (e.g., high salt concentration), hypoxia and the 

presence of oxidative molecules (e.g., H2O2) to reveal whether any of them is sufficient 

to trigger the morphological change in vitro. If so, then microarray experiments could 

be used to compare stimulated and non-stimulated cryptococci on different stimuli in 

order to identify common nuclear proteins with altered expression in the presence of 

all stimuli, as these proteins might be the mitochondrial-activity-regulators.  

 

Interestingly, C. neoformans and C. gattii preferentially infect immunocompromised and 

immunocompetent individuals respectively. Therefore, one would expect significant 

differences between these two species in how they deal with the host adaptive immune 
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response. By studying the intracellular proliferation of a large collection of C. gattii 

strains, I found that most of the isolates are less capable of proliferating inside 

macrophages in comparison with C. neoformans, indicating that although they may be 

better at avoiding adaptive immune response, they cannot deal with the initial innate 

immune response. This may explain why cryptococcosis caused by C. gattii is far less 

common than that caused by C. neoformans. Exceptionally, the VIO strains and a few 

other VGII isolates show the same intracellular parasitism capacity as C. neoformans, 

which means these strains not only have the ability to deal with adaptive immune 

attack but also the innate immune response. Hence, it is not surprising that such C. 

gattii strains have led to an outbreak of human disease. Understanding how 

Cryptococcus interacts with the innate immune response therefore has a wide impact on 

cryptococcosis caused by both C. neoformans and C. gattii.  

 

 

7.3 Which way to go: stay or leave 

 

The existence of both lytic and non-lytic escape pathways means the pathogen has a 

‘choice’. As discussed earlier, most disseminated infection is caused by reactivation of a 

dormant infection acquired earlier in life rather than a primary infection. Thus the 

latent stage of infection can easily transfer to the active stage, where intracellular 

proliferation probably overtakes lateral transfer and vomocytosis, resulting in the lytic 

release of vast numbers of intracellular cryptococci which then establish their 

extracellular dominance. Voelz et al have recently revealed that Th2 cytokine (IL-4 & 

IL-13) treatment, which led to an increase in intracellular proliferation ratio, 

significantly reduced vomocytosis rates in both C. neoformans and C. gattii (Voelz et al. 

2009). Interestingly, when studying C. gattii strains, I found a similar reverse 

correlation between vomocytosis and intracellular proliferation in 22 C. gattii isolates 

used for the microarray experiment (Figure 29, P=0.0004, linear regression). These data 

may suggest that if Cryptococcus is not ‘happy’ inside macrophages, it is able to trigger 

vomocytosis in order to find a more-‘friendly’ niche elsewhere in the host? Does this 
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mean that vomocytosis is beneficial for the pathogen but detrimental to the host? If the 

pathogen can actively choose one way over the other, what is involved in such 

“decision making”? During lytic exit, pro-inflammatory cell death facilitates pathogen 

escape, but also benefits the host by promoting pathogen clearance. However, some 

organisms have evolved to use inflammatory cell recruitment for dissemination, such 

as Mycobacterium marinum (Davis and Ramakrishnan 2009), and thus further encourage 

dissemination. Nevertheless, the ability to escape cells by multiple means may just 

present a way of ensuring efficient escape. Based on our IPR study, many cryptococcal 

strains are not good at proliferating inside macrophages, even in the absence of Th1 

cytokines, so the chance of them experiencing lytic escape should be fairly low. Even 

for many good proliferators, in our in vitro system, lytic and non-lytic escape pathways 

co-exist. This is probably also the case in vivo, although certain environmental cues 

such as cytokines, O2 availability or tissue specific molecules may favour one pathway 

over the other. 
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Figure 29: A reverse correlation between vomocytosis rates and IPR values of C. gattii 
strains used for microarray experiment (P=0.0004, linear regression, n=22). CBS10089 
and WM276 were not included in this analysis because the IPR values for these strains 
were underestimated as described earlier.  
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7.4 Conclusion 

 

Phagocytosis of Cryptococcus by macrophages is a necessary step for the elimination of 

the pathogen, but also increases the migratory capacity of Cryptococcus and promotes 

recrudescent infection, especially when the macrophages are not properly activated or 

the cryptococcal isolates are particularly virulent. Gaining an intracellular niche, even 

briefly, thus affords a window of opportunity for Cryptococcus to survive inside the 

host and promote disease. Various pieces of evidence have suggested that many 

virulence factors in C. neoformans and C. gattii are ‘ready made’, due to selective 

pressure from various existing environmental reservoirs, rather than ‘specially made’ 

in order to colonise mammalian hosts, so it is likely that being able to survive inside 

macrophage is an advertent feature of cryptococcal evolution. Nevertheless, co-

evolution between Cryptococcus and its hosts is an ongoing event. The VIO is one such 

example, showing that Cryptococcus has the potential to generate new variation in traits 

that determine interactions with their hosts. Yet many important questions remain 

about how Cryptococcus grows within its host. The development of new biochemical 

and genetic tools will facilitate studies to answer these questions. 
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Appendix I: A list of strains used and their intracellular proliferation ratio (IPR).  

 
Strain name Mating- 

Serotype 

Genotype 

(AFLP) 

IPR value Source/ 

Feature 

H99 αA 1 1.42±0.15 Clinical, United States 
125.91 aA 1 2.24±0.19 Clinical, Tanzania 
WM714 αA 1 1.60±0.43 Cat, Australia 
P152 αA 1 2.14±0.31 AIDS patient, Zimbabwe 
ATCC90112 αA 1 2.85±0.19 Clinical, United States 
CBS8336 αA 1 1.24±0.38 Wood of Cassia grandis tree, Brazil 
CBS996T αA 1 1.53±0.63 Blastomycosis, Argentina 
ICB105 αD 2 1.57±0.33 Non-AIDS patient, Brazil 
CBS5467 αD 2 2.88±0.80 Milk of cow with mastitis, Switzerland 
JEC21 αD 2 2.12±0.18 Clinical, United States 
CBS7816 aD 2 2.18±0.55 Pigeon droppings, Thailand 
JEC20 aD 2 1.93±0.27 HIV+ patient, United States 
CBS6995 aD 2 1.26±0.29 Clinical, United States 
B-3501 αD 2 1.42±0.40 Cross between NIH433 x NIH12 
B-3502 aD 2 1.50±0.49 Cross between NIH433 x NIH12 
BD5 αD 2 1.90±0.32 AIDS patient, France 
CBS132 AD 3 2.43±0.50 Environmental, Italy 
NY-40 AD 3 2.85±0.68 Clinical, United States 
LPSQ308 AD 3 2.67±0.94 Clinical, Canada 
CBS7229T aB 4 0.56±0.42 Meningitis, China 
WM179 αB 4 0.69±0.20 Clinical, Australia 
*WM276 αB 4 0.63±0.39 Environmental, Australia 
CBS6992 αB 4 0.59±0.21 Patient, United States 
CBS919T αB 4 0.72±0.22 Clinical, United States 
CBS6290 αB 4 1.20±0.65 Clinical, Republic of Congo 
56A αB 4 0.80±0.38 Gut of a goat, Spain 
CN043 αB 5 0.89±0.20 Clinical, New Zealand 
WM728 αB 5 0.73±0.19 Eucalyptus sp., San Diego, United States 
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CBS6993 αB 5 1.45±0.33 CSF, human, California, United States 
CBS8755 αB 5 1.32±0.31 Litter of Prunus dulcis tree, Colombia 
384C αC 5 1.08±0.47 Clinical, United States 
B4546 aB 5 0.87±0.33 Unknown 
NIH312 αB 5 0.98±0.12 Clinical 
CBS7750 αB 6 0.93±0.24 Eucalyptus camaldulensis, United States 
CBS6956 αB 6 1.35±0.35 Clincial, Seattle, United States 
A1M-R265 αB 6 1.74±0.40 Human isolate, Duncan, British Columbia, Canada 
CBS1930 aB 6 1.14±0.37 Sick goat, Aruba 
A1M-R271 αB 6 2.04±0.48 Immunocompetent male, Nanoose Bay, British Columbia, Canada 
A1M-R406 αB 6 1.77±0.43 Immunocompetent female, Nanaimo, British Columbia, Canada 
A1M-F2866 αB 6 2.33±0.19 Dead wild Dall's porpoise, shores island close to Vancouver Island, Canada 
A1M-F2932 αB 6 2.98±0.40 Immunocompetent patient, Kelowna, British Columbia, Canada 
A1M-R376 αB 6 2.05±0.36 Non-AIDS, Vancouver Island, Canada 
A1M-F3016 αB 6 1.47±0.03 Dead wild Dall's porpoise, shores island close to Vancouver Island, Canada 
RB50 αB 6 1.87±0.53 Alder tree, Rathrevor Beach Provincial Park, Vancouver Island, Canada 
CBS8684 αB 6 0.90±0.37 Wasp nest, Uruguay 
A1M-R272 αB 6 0.88±0.25 Immunocompetent female, Ladysmith, British Columbia, Canada 
RB14 αB 6 1.60±0.24 Douglas fir, Rathrevor Beach Provincial Park, Vancouver Island, Canada 
*CBS10089 αB 6 0.44±0.29 Clinical, Greece 
CBS10090 aB 6 1.71±0.42 Clinical, Greece 
ICB180 αB 6 0.42±0.26 Eucalyptus sp. tree, Brazil 
ICB184 αB 6 0.54±0.05 Tree, Brazil 
ENV152 αB 6 2.28±0.16 Alder tree, Rathrevor Beach Provincial Park, Vancouver Island, Canada 
ENV131 αB 6 1.46±0.32 Douglas fir, Rathrevor Beach Provincial Park, Vancouver Island, Canada 
RB59 αB 6 1.81±0.44 Douglas fir, Rathrevor Beach Provincial Park, Vancouver Island, Canada 
LA362 αB 6 1.39±0.21 Parrot liver, Jaboticabal, Brazil 
CBS10485 αB 6 1.78±0.22 Danish tourist visited Vancouver Island, Canada 
EJB12 αB 6 1.53±0.07 Clinical, Oregon State, United States, VGIIC subgroup 
EJB14 αB 6 2.00±0.11 Feline, Oregon State, United States, VGIIC subgroup 
EJB15 αB 6 1.72±0.23 Alpaca, Oregon State, United States, VGIIC subgroup 
EJB18 αB 6 1.73±0.35 Clinical, Oregon State, United States, VGIIC subgroup 
EJB52 αB 6 0.97±0.22 Oregon State, United States, VGIIC subgroup 
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EJB55 αB 6 1.39±0.14 Oregon State, United States, VGIIC subgroup 
EJB74 αB 6 1.60±0.06 Oregon State, United States, VGIIC subgroup 
A6M-R38 αB 6 2.02±0.19 Clinical, Oregon State, United States, VGIIC subgroup 
LMM261 aB 6 1.42±0.12 Clinical, Brazil 
LMM265 B 6 2.54±0.32 Clinical, Brazil 
LMM645 aB 6 2.37±0.10 Clinical, Brazil 
^M27055 αC 7 1.09±0.83 Clinical, South Africa 
^CBS10101 αC 7 1.00±0.46 King Cheetah, South Africa 
^B5748 αC 7 1.02±0.55 Clinical, India 
^B5742 αC 7 1.00±0.49 Clinical, India 
770616 BD 8 1.51±0.62 Clinical, the Netherlands 
Progeny from CROSS I 
C1-P1   1.22±0.22 Cross between CBS10090 x NIH312  
C1-P2   0.96±0.14 Cross between CBS10090 x NIH312 
C1-P3   1.67±0.41 Cross between CBS10090 x NIH312  
C1-P4   0.57±0.02 Cross between CBS10090 x NIH312 
C1-P5   0.87±0.21 Cross between CBS10090 x NIH312  
C1-P6   0.91±0.17 Cross between CBS10090 x NIH312 
C1-P7   1.60±0.33 Cross between CBS10090 x NIH312  
C1-P8   0.85±0.06 Cross between CBS10090 x NIH312 
C1-P9   1.50±0.26 Cross between CBS10090 x NIH312  
C1-P10   1.51±0.44 Cross between CBS10090 x NIH312 
C1-P11   1.78±0.37 Cross between CBS10090 x NIH312  
C1-P12   0.90±0.26 Cross between CBS10090 x NIH312 
C1-P13   1.22±0.39 Cross between CBS10090 x NIH312  
C1-P14   1.31±0.09 Cross between CBS10090 x NIH312 
C1-P15   1.24±0.22 Cross between CBS10090 x NIH312  
C1-P16   1.21±0.11 Cross between CBS10090 x NIH312 
Progeny from CROSS II 
C2-P1   0.62±0.15 Cross between A1M-R265 x B4546  
C2-P2   0.80±0.16 Cross between A1M-R265 x B4546 
C2-P3   0.98±0.16 Cross between A1M-R265 x B4546  
C2-P4   0.75±0.07 Cross between A1M-R265 x B4546 
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C2-P5   0.70±0.08 Cross between A1M-R265 x B4546  
C2-P6   0.74±0.08 Cross between A1M-R265 x B4546 
C2-P7   0.72±0.01 Cross between A1M-R265 x B4546  
C2-P8   0.90±0.06 Cross between A1M-R265 x B4546 
C2-P9   0.87±0.14 Cross between A1M-R265 x B4546  
C2-P10   1.00±0.20 Cross between A1M-R265 x B4546 
C2-P11   0.99±0.18 Cross between A1M-R265 x B4546  
C2-P12   0.70±0.06 Cross between A1M-R265 x B4546 
C2-P13   0.82±0.26 Cross between A1M-R265 x B4546  
C2-P14   0.96±0.03 Cross between A1M-R265 x B4546 
C2-P15   0.88±0.05 Cross between A1M-R265 x B4546  
C2-P16   0.79±0.19 Cross between A1M-R265 x B4546 
C2-P17   1.03±0.42 Cross between A1M-R265 x B4546  
C2-P18   0.81±0.07 Cross between A1M-R265 x B4546 
Mutants 
NE168d αD 2 1.15±0.28 Strain lacking O-acetylation (cas1Δ), dull colony 
NE168s αD 2 1.22±0.35 Strain lacking O-acetylation (cas1Δ), shiny colony 
KN433 αD 2 1.22 Generated by crossing NIH433a and JEC21  
NIH-B4131 αD 2  Acapsular mutant (cap67Δ) 
CBS7931 αD 2  Acapsular mutant (cap67Δ) 
NE178 αD 2  Strain lacking cas1Δ mutant 
NE150 αD 2  Strain lacking usx1Δ mutant 
Other yeast strains 
AH109    Saccharomyces cerevisiae 

YES972    Schizosaccharomyces pombe 

CCA224-??   0.40±0.20 C. laurentii 

*indicates strains (WM276 and CBS10089) with many extracellular yeast cells attaching to macrophage cell surface at timepoint 0, which were very difficult to wash 
off. Therefore, the initial intracellular yeast number for these strains was over-estimated, which leads to underestimation of IPR values. Timelapse experiment 
confirmed underestimation of IPR values for these two strains. Strains indicated with ^ are the ones with extremely low phagocytosis rate. Since the intracellular 
yeast number was always low, the IPR values were vulnerable to random variations.  
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Appendix II: A list of media used 

 
10% SDS, 1 litre 
 
Dissolve 100g sodium dodecyl sulpate crystals (SDS) in 900ml dH2O 
Heat to 68°C to dissolve the crystals 
Adjust pH to 7.2 with HCl (~50μl) 
Adjust volume to 1 litre with dH2O 
Store at room temperature 
 
 
1 x PBS, 1 litre 
 
Dissolve 8g NaCl, 0.2g KCl, 2.68g Na2HPO4-7H2O and 0.24g KH2PO4 in 800ml dH2O 
Adjust pH to 7.4 with HCl 
Adjust volume to 1 litre with dH2O 
Sterilse by autoclaving 
Store at room temperature 
 
 
10 x TBE, 1 litre 
 
Dissolve 108g Tris and 55g Boric acid in 900ml dH2O  
Add 40ml 0.5M Na2EDTA (pH=8.0) and adjust volume to 1 litre with dH2O 
Sterilise by autoclaving 
Store at room temperature 
10x TBE was diluted 1/10 when required with dH2O 
 
 
YPD liquid medium, 1 litre 
 
Dissolve 50g YPD powder in 1 litre dH2O 
Sterilise by autoclaving 
Store at room temperature 
 
 
YPD plate 
 
Dissolve 10g peptone, 10g yeast extract, 20g D-glucose and 15g agar in 1 litre dH2O 
Sterilise by autoclaving 
When the medium is around 55°C, add adequate amount of antibiotic (e.g., ampicillin and 
kanamycin) before pooling 
 
 
V8 mating plate for C. gattii (pH=5.0), 1 litre 
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Mix 50ml V8 juice (TESCO) and 0.5g KH2PO4 with 20g agar 
Agjust volume to 1 litre with dH2O 
Sterilse by autoclaving before pooling 
 

 

Medium for phenotypic analysis 
 
Medium to measure capsule size 
 
Dissolve10g peptone, 10g D-glucose and 15g Ox-bile to 1 litre of dH2O 
Sterilise by autoclaving 
Store at room temperature 
 
 
Medium to measure melanin production 
 
Vitamin B1 solution: Dissolve 0.253g thiamine in 250ml dH2O and sterilise through a 
0.22µm filter 
 
L-DOPA solution: Dissolve 0.1972g L-DOPA in 100ml dH2O by heating at 37°C and 
stirring. Sterilsing by filtering through 0.22µm filter. 
 
Dopamine medium: Dissolve 2.997g glucose monohydrate, 1.204g MgSO4, 3.501g KH2PO4, 
0.975g glycine and 20g agar in 500ml dH2O. Add dH2O to 900ml and sterilise by 
autoclaving.  
 
Add 1.0ml sterile B1 solution and 100ml L-DOPA medium when the Dopamine medium 
is cooled down to 50-60°C before making plates. 
 

 
Medium to measure proteinase activity 
 
Yeast nitrogen based 10x medium: dissolve 6.7g Yeast nitrogen base in 100ml of dH2O, heat if 
necessary, and autoclave by filtration (0.22µm). 
 
Casein medium 0.75%: dissolve 7.5g casein and 5.0g glucose in 750ml dH2O and adjust pH 
to 7.0 with 1.0M NaOH. Add a volume of dH2O to a final volume of 900ml. Add 20.0g 
agar and autoclave for 20min 
 
Add 100ml filter sterilised yeast nitrogen base 10x medium when the casein medium is 
cooled down to 50-60°C before making plates.  
 
 
Medium to measure phospholipase activity 
 



 

 182

Sabourand dextrose medium: dissolve 20g Sabourand dextrose agar in 500ml dH2O and add 
58.44g of NaCl and 0.7351g CaCl2-two hours2O to this solution. Adjust the pH to 7.0 with 
NaOH. Add dH2O to the volume of 900ml followed by autoclaving 
 
Add 100ml sterile Bacto TM egg yolk enrichment 50% when the Sabourand dextrose 
medium is cooled down to 50-60°C before making plates.  
 
 

Medium for DNA isolation 
 
Lysis buffer, 100ml 
 
TE Buffer: 10 mM Tris-Cl (pH 7.5) & 1 mM EDTA 

 

Mix 5ml 10% w/v SDS, 5ml 10% w/v Sarkosyl to 90ml of TE (pH=7.5) 
Store at room temperature 
 
 

Medium for cell fixation 
 
Moviowl 
 
Mix 6ml glycerol and 2.4g mowiol by vortexing 
Add 6ml dH2O to the mixture and vortex  
Rotate the glycerol-mowiol-dH2O mixture for two hours 
Add 12ml 10mM Tris-Cl (pH=7.5-8.5) and incubate at 50°C to dissolve 
Add several grains of p-phenylenediamine 
Centrifuge and aliquote the liquid layer  
Store at -80°C 
 
 
Permeabilisation/Wash solution: 0.1% Triton, 0.5 litre 
 
Mix 500ml PBS with 500μl Triton-X 100 
Stored at 4°C 
 
 
Fixation solution: 4.0% formaldehyde, 100ml 
 
Add 4g of PFA to 100ml of PBS 
Heat at 65°C in water bath for two hours 
Add drops of NaOH to enhance dissolving of PFA 
Keep in 65°C water bath with occasional agitation until all PFA was dissolved 
Cool down to room temperature 
Aliquot and store at -20°C 
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Appendix III: R scripts used for microarray data analysis  
 

1) Useful columns were extracted from individual microarray spreadsheets 
(provided by OGT) to generate smaller files (Written by Dov Stekel)  

 
# which columns to extract starting at 0: i.e. A=0, B=1 etc 

@wanted = (2,3,8,10,11,36,37,38,39,46,47,48,49,54,55); 

 

# need to do the glob first otherwise glob will recursively pick up  

# newly created _out files 

@filelist = <data/*.txt>; 

foreach $file (@filelist) { 

 print "$file\n"; 

 open(IN,$file) || die "problem reading $file: $!"; 

 $fileout = $file; 

 # create a new output file with _out appended to the original name just before the .txt 

 $fileout =~ s/\.txt/_out\.txt/; 

 open(OUT,">$fileout") || die "problem creating $fileout: $!"; 

  

 # first 9 lines are scanner bumph not data 

 for ($i=0; $i<9; $i++) { 

  $line = <IN>; 

 } 

 # 10th line contains the column headers - keep these 

 $header = <IN>; 

 chomp $header; 

 @headers = split(/\t/,$header); 

 $newheader = join("\t",@headers[@wanted]); 

 print OUT "$newheader\n"; 

  

 # this is the data 

 while (<IN>) { 

  chomp; 

  @fields = split(/\t/,$_); 

  $newline = join("\t",@fields[@wanted]); 

  print OUT "$newline\n"; 

 } 

 close OUT; 

 close IN; 

} 
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2) For individual files, the gsignal and rsignal was substracted to the 
backgroundsignal and and 24 new files were generated (written by Dov Stekel). 
 
 
// GSL stuff 

#include <gsl/gsl_cdf.h> 

#include <gsl/gsl_randist.h> 

 

// Some standard C++ headers 

 

#include <iostream> 

#include <fstream> 

#include <cmath> 

 

// and we use the C++ STL to allow some data structures so that I can  

// upload arbitrarily sized files. This is the first time I’m using STL 

// so we’ll see how I get on with it. 

#include <algorithm> 

#include <vector> 

#include <string> 

 

// we appear to need this on Linux implementation – even though it’s 

// supposed to be a windoze thing. Take a look at /usr/include/iostream,  

// for example,and you will see its declaration. 

// similarly, if you look at http://www.yrl.co.uk/phil/stl/stl.htmlx#Vector 

// you will see this line preceded by #ifdef _WIN32 

// oops! I spent a day sorting this out... don’t fall into the trap 

// again!!! 

 

Using namespace std;  

 

#define STRSIZE 100 

#define BIG 1000 

#define N 40 

#define NUM_COLS 58 // not nice...  but quick cludge until I get this sorted 

#define NUM_PARS 3 

#define DUMMY -9999 // dummy value for missing data 

#define sigma 0.1 

 

#define a_init 1.0 

#define b_init 1.0 

#define c_init 0.1 // avoids putting a singularity in the middle of the data! 

#define xmin 0.0 

#define xby 0.1 

 

 

/* 

class Data { 

 public: 

  vector<string> headers; 

  vector<Gene *> genes; 

  int num_cols; 

   

  int read_data(char *filename); 

 

}; 
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*/ 

 

 

double kooper(double mu, double xf, double sf, double xb, double sb, double sd) { 

   

  return (gsl_ran_ugaussian_pdf((xf-mu-xb)/sd)* gsl_cdf_ugaussian_P(((xf-

mu)*sb*sb+xb*sf*sf)/(sf*sb*sd))) ; 

} 

 

 

int postmedian(double xf, double sf, double xb, double sb) 

{ 

  double sd; 

  int low, hi; 

  double sum ; 

  int x ; 

  double z ; 

  static double y[200000]; 

 

   if (sf <= 0.0 || sb <= 0.0) { 

   // can’t compute with no standard deviation 

   return 0; 

 } 

    

  sd = sqrt(sf * sf + sb * sb); 

   

  low = max(0, (int)(xf-xb-3*sd)); 

  hi = (int) (xf-xb+3*sd+1); 

   

  // cout << low << ‘\t’ << hi << ‘\n’; 

  if (low > 0) { 

     return (int)(xf – xb); 

  } 

   

  sum = 0.0; 

  for (x = low; x <= hi; x++) { 

    y[x] = kooper(1.0 * x,xf,sf,xb,sb,sd);  

    sum += y[x]; 

  } 

       

  z = y[low] / sum; 

       

   

  for (x = low+1; x<=hi; x++) { 

    z += y[x] / sum; 

    if (z > 0.5) { 

      return x; 

    } 

  }  

}  

 

 

int normalize(string filename) 

{ 

  char outfilename[80]; 

   

  ifstream fin(filename.c_str()); 

  sprintf(outfilename,”%s.norm”,filename.c_str()); 
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  ofstream fout(outfilename); 

 

  vector<string> headers; 

  vector<string> data; 

   

  int num_cols; 

  int i; 

  char ch; 

  string s; 

  int normch1, normch2; 

   

  if (!fin) { 

    cout << “cannot open “ << filename << “: exiting\n”; 

    return 1; 

  } 

 

  if (!fout) { 

    cout << “cannot open “ << filename << “.norm: exiting\n”; 

    return 1; 

  } 

   

  

  do { 

    fin.get(ch); 

    if (ch == ‘\t’ || ch == ‘\n’) { 

      headers.push_back(s); 

      fout << s << ‘\t’; 

      s.clear();     

    } 

    else { 

      s.push_back(ch); 

    } 

  } while (ch != ‘\n’); 

 

  fout << “Normch1\tNormch2\n”; 

 

  num_cols = headers.size(); 

   

  // now read in the data 

 

  while (! Fin.eof()) { 

    fin.get(ch); 

    if (ch == ‘\t’ || ch == ‘\n’) { 

      //  cout << s << ch; 

      data.push_back(s); 

      s.clear(); 

      if (ch == ‘\n’ && ! fin.eof()) { 

  normch1 = 

postmedian(atof(data[5].c_str()),atof(data[7].c_str()),atof(data[9].c_str()),atof(data[11].c_str())); 

  normch2 = 

postmedian(atof(data[6].c_str()),atof(data[8].c_str()),atof(data[10].c_str()),atof(data[12].c_str())); 

  

  for (i=0; i<num_cols; i++) { 

    fout << data[i] << ‘\t’; 

  } 

  fout <<  normch1 << ‘\t’ << normch2 << ‘\n’ ; 

  data.clear(); 

       } 
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    } 

    else { 

      s.push_back(ch); 

    } 

   

  } 

  

  fin.close(); 

  fout.close(); 

   

  return 0; 

} 

 

int main(int argc, char *argv[]) 

{ 

  string s1, s2; 

//  char *c; 

  int err; 

   

  ifstream ftin(„filelist“); 

   

  if (!ftin) { 

    cout << “Error reading filelist\n”; 

    return 1; 

  } 

  

  while (!ftin.eof()) { 

    ftin >> s1; 

    cout << s1 << ‘\n’; 

   

    err = normalize(s1); 

    if (err != 0) { 

      cout << “Exiting with error code “ << err << ‘\n’; 

      return err; 

    } 

  } 

   

  ftin.close(); 

    

  return 0; 

} 



 

 188

3) The script used to normalise individual files using leoss (writeen by Dov Stekel) 
 

a1=read.table("0147-BUB_P100_251786310002_S01_GE2-

v5_95_Feb07_out.txt.norm",sep="\t",header=T) 

sum(a1$gIsSaturated) 

sum(a1$rIsSaturated) 

a1$lgnorm = log2(a1$Normch1) 

a1$lrnorm = log2(a1$Normch2) 

plot(a1$lgnorm,a1$lrnorm,pch=20) 

a1$av = (a1$lgnorm+a1$lrnorm)/2 

a1$diff = (a1$lgnorm-a1$lrnorm) 

plot(a1$av,a1$diff,pch=20) 

lines(c(0,20),c(0,0),col="red",lwd=2) 

lmodel1 = loess(a1$diff~a1$av) 

a1$loess = predict(lmodel1,a1$av) 

png("a1_koopernorm_mva.png")  

plot(a1$av,a1$diff,pch=20) 

lines(c(0,20),c(0,0),col="red",lwd=2) 

points(a1$av,a1$loess,pch=20,col="blue") 

dev.off() 

a1$loessnorm = a1$diff-a1$loess 

png("a1_kooperberg_final.png") 

plot(a1$av,a1$loessnorm,pch=20) 

lines(c(0,20),c(0,0),col="red",lwd=2) 

dev.off() 

write.table(a1,"a1.txt",sep="\t",col.names=T) 

rm(a1) 
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4) The script used to extract useful columns from 24 files and combine them into a 
single file (written by Dov Stekel) 

 
# which columns to extract starting at 0: i.e. A=0, B=1 etc 

@wanted = (1,2,3,4,5,18,19,23); 

for ($filenum = 1; $filenum<=24; $filenum++) { 

 $file = "data/a$filenum.txt";  

 print "$file\n"; 

 open(IN,$file) || die "problem reading $file: $!"; 

 $fileout = $file; 

 $header = <IN>; 

 if ($filenum == 1) {  

  # create a new header   

  chomp $header; 

  @headers = split(/\t/,$header); 

  $newheader = join("\t",@headers[0,1,2,3,4]); 

  for ($i=1; $i<=24; $i++) { 

   $newheader .= "\ta$i"; 

  } 

 } 

 # this is the data 

 $line = 0; 

 while (<IN>) { 

  chomp; 

  @fields = split(/\t/,$_); 

  if ($filenum == 1) { 

   $newline[$line] = join("\t",@fields[1,2,3,4,5]); 

  }     

  $green[$filenum][$line] = $fields[18]; 

  $red[$filenum][$line] = $fields[19]; 

  $norm[$filenum][$line] = $fields[23]; 

  $line++; 

 } 

 close IN; 

} 

open(OUTG,">data/green.txt") || die "problem creating data/green.txt"; 

open(OUTR,">data/red.txt") || die "problem creating data/red.txt"; 

open(OUTN,">data/norm.txt") || die "problem creating data/norm.txt"; 

 

print OUTG "$newheader\n"; 

print OUTR "$newheader\n"; 

print OUTN "$newheader\n"; 

 

for ($row=0; $row<$line; $row++) { 

 for ($array = 1; $array <= 24; $array++) { 

  if ($array == 1) { 

   print OUTG "$newline[$row]"; 

   print OUTR "$newline[$row]"; 

   print OUTN "$newline[$row]"; 

  }  

  print OUTG "\t$green[$array][$row]"; 

  print OUTR "\t$red[$array][$row]"; 

  print OUTN "\t$norm[$array][$row]"; 

 } 

 print OUTG "\n"; 

 print OUTR "\n"; 

 print OUTN "\n";  
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} 

 

close OUTG; 

close OUTR; 

close OUTN; 
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5) The script used to perform the linear regression and the Spearman’s test 
 

#linear_regression 

y = c(0.56, 1.74, 0.93, 2.28, 2.98, 0.54, 1.47, 2.18, 1.71, 2.05, 1.39, 0.80, 0.88, 1.14, 1.46, 2.04, 1.77, 

0.78, 1.60, 1.35, 0.63, 0.90, 2.33, 0.44) 

 

M=read.table("norm.txt",header=T,sep="\t") 

M=as.matrix(M) 

row=nrow(M) 

m=matrix(0, nrow=row,ncol=1) 

 

for (i in 1:row) 

{  

x=as.numeric(M[i,6:29]) 

z=lm(y~x) 

s=summary(z) 

f=s$fstatistic 

 

p_value=1-pf(f["value"],f["numdf"],f["dendf"]) 

m[i,1]=p_value 

} 

 

write.table(m, "single_linear_regression_p_alone.txt", append=T, col.name=F, row.name=F, quote=F, 

sep="\t") 

# add title to the single_linear_regression_p.txt 

M=read.table("norm.txt",header=T,sep="\t") 

m=read.table("single_linear_regression_p.txt", header=T, sep="\t") 

write.table(cbind(M,m), "single_linear_regression_p.txt", append=T, col.name=F, row.name=F, quote=F, 

sep="\t") 

 
 
 

#the_spearman_test 

y = c(0.56, 1.74, 0.93, 2.28, 2.98, 0.54, 1.47, 2.18, 1.71, 2.05, 1.39, 0.80, 0.88, 1.14, 1.46, 2.04, 1.77, 

0.78, 1.60, 1.35, 0.63, 0.90, 2.33, 0.44) 

M=read.table("norm.txt", header=T, sep="\t") 

M=as.matrix(M) 

row=nrow(M) 

m=matrix(0, nrow=row,ncol=1) 

for (i in 1:row) 

{  

x=as.numeric(M[i,6:29]) 

z=cor.test(x,y,method="spearman") 

p_value=z$p.value 

m[i,1]=p_value 

} 

 

write.table (m, "spearman_p_alone.txt", append=T, col.name=F, row.name=F, quote=F, sep="\t") 

# add title to the spearman_p_alone.txt 

M=read.table("norm.txt",header=T,sep="\t") 

m=read.table("spearman_p_alone.txt", header=T, sep="\t") 

write.table(cbind(M,m), "spearman_p.txt", append=T, col.name=F, row.name=F, quote=F, sep="\t") 
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6) The script for false positive for the p-values generated from linear regression 
analysis and the Spearman’s test 

 

#Linear regression:  

M=read.table ("both_analysis.txt", header=T, sep= "\t",) 

MM=order(M$linear_p) 

p=M[,30] 

pp=sort(p)*243486/1:243486 

q=pp 

for (i in 243485:1) {q[i]=min(q[i+1],pp(i))} 

#extract the first 1000 genes 

write.table(cbind(M[MM[1:1000],]),p[1:1000]), " linear_1000_genes.txt ", col.name=F, row.name=F, 

append=F, sep= "\t") 

 

#spearman:  

M=read.table ("both_analysis.txt", header=T, sep= "\t",) 

MM=order(M$spearman_p) 

p=M[,31] 

pp=sort(p)*243486/1:243486 

q=pp 

for (i in 243485:1) {q[i]=min(q[i+1],pp(i))} 

#extract the first 1000 genes 

write.table( cbind (M [MM[1:1000],]), p[1:1000]), "spearman_1000_genes.txt", col.name=F, 

row.name=F, append=F, sep= "\t") 
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