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Abstract

This thesis is an investigation into symmetric and semisymmetric graphs of prime valency.
Our approach is via amalgams of groups and coverings of such graphs by trees. We develop
theoretical and computational methods to inform this problem. In the case of symmetric
graphs of valency five we find that there are twenty five finite faithful amalgams, in the
case of semisymmetric graphs of valency five we find there are one hundred and five finite
faithful amalgams. We determine presentations for the universal completions of such

amalgams and find completions in finite groups.
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INTRODUCTION

Algebraic graph theory is the study of graphs with tools from algebra. In the context of
this thesis, those tools are group theoretic. Far from being an application of group theory
however, this also presents us with an ability to study groups by their action on graphs.
The benefit of the latter is that graphs are (or at least appear to be) simple objects, whilst
groups are inherently complex. The sharing of knowledge between these two areas has
influenced the development of both, and perhaps more importantly, has provided many
deep problems for study. An example is to classify the pairs (I, G) where I' is a graph
with certain properties and G is a group acting on I' in a certain fashion. In this thesis
our aim is to investigate such pairs when I' has prime valency and the action of G is
edge-transitive.

If a graph I' (with no isolated vertices) admits a group G acting transitively on edges,
then there are at most two orbits on the vertices of I'. In the case that there are exactly
two, we say that I is (G-)semisymmetric. If there is one orbit on the vertices, then we
consider the action on the arcs of I'. An arc is an ordered pair of adjacent vertices. If G

acts transitively on the arcs, then we say that I' is (G-)symmetric, otherwise, T" is called

1

1-arc transitive. A result of Tutte says that if ' is 3-arc transitive, then T' (which must be

regular) has even valency (see Proposition 2.1.1). Since the components of regular graphs
of valency one are just edges and the components of regular graphs of valency two are
circuits, it makes sense to concentrate on symmetric graphs with valency at least three.
More generally, for s > 2, an s-arc is an ordered sequence of vertices such that every
successive pair is an arc and every three successive vertices are all distinct. We say that

a graph I' is (G, s)-transitive (for G < Aut(I")) if s is the largest integer such that G acts



transitively on the set of s-arcs of I'. Thus G-symmetric graphs are (G, s)-transitive for
some s > 1, and every (G, s)-transitive graph with no vertices of valency 1 is G-symmetric.
For a semisymmetric graph I'; I' is bi-regular with valencies k£ and [ say. If [ = 1 then
the components of I' are k-stars. If & = [ = 2 then the components of I' are circuits.
Hence for semisymmetric graphs we usually assume that £ > 3 and [ > 2. A graph I' is
called locally (G, s)-transitive if s is the largest integer such that for each vertex z € T’
the stabiliser in G of x acts transitively on the set of s-arcs with initial vertex x. We will
see (Lemma 2.1.2) that locally (G, s)-transitive graphs with s > 1 are G-semisymmetric.

Finite semisymmetric graphs for which k& = 3 = [ were studied by Goldschmidt in
the seminal paper [17]. In this paper Goldschmidt developed a method to study this
problem using amalgams of groups and Serre’s [34] covering theory of graphs by trees.
This proceeds as follows (a full discussion can be found in Chapter 2). To a finite G-
semisymmetric graph I we associate an amalgam A formed by a pair of vertex stabilisers
G, and G, such that {z,y} is an edge of the graph. The degree of the amalgam is the pair
of indices (|G, : Guyl, |Gy : Gay|) Where G,y = G, N G,,. As we shall see in Lemma 2.1.2,
this is equal to (k, 1), the bi-valency of the graph. Furthermore, we see G = (G, G,) so G
is a completion for A (see Definition 1.6.2). For a completion X of A we can consider the
coset graph I'(A, X) of A with respect to X (see Definition 1.6.4). This has vertex set
X/G, U X/G, and edges between two cosets G,g and Gyh if and only if G,¢g N G,h # 0.
Lemma 2.1.6 shows that I' = I'(A4, G) and therefore implies that every semisymmetric
graph of bi-valency (k,1) is the coset graph of an amalgam of degree (k,[) with respect to
some completion. Thus our focus will be upon first classifying amalgams of degree (k,1)
and then to try and understand their completions. Our method involves considering the
coset graph I' = I'(A4, G(A)), where G(A) is the universal completion of the amalgam (see
Section 1.6). The graph Tisa tree, moreover the subgroup G(A) fixing a vertex of T is
equal to either G, or Gy, so G(A) is a locally finite subgroup of Aut(T). By studying
the action of G(A) on T, properties and structural information of the groups G, and

G, can be found. This is “local” information which, when combined with knowledge of



G(A), enables us to recover G and therefore I'. In this approach the “local actions” Go@
and GyA @) (the permutation groups induced by G, and G, on the neighbours of z and
y respectively) has considerable influence. We will see in Chapter 2 these are transitive
groups and for the particular valencies that we are interested in we understand their
structure very well (see Section 1.4). We gain information about the graph I' in this way
since the local action on the graph I' and on the tree are the same. For k = 3 = [ we have
|A(x)] = 3 for every z € I' and so the group G2 is either cyclic of order three or the
full symmetric group of degree 3.

One of the many interesting results from Goldschmidt’s paper is that the automor-
phism group of the amalgam A arising from a semisymmetric graph I" embeds into the
full automorphism group of the tree I'(A, G(A)). In fact, the image is the full normaliser
of G(A) in the automorphism group of the tree, a group which is considerably more com-
plex than G(A) (for example, it is uncountable). We offer a constructive proof of this
result in Section 2.2 in which we explicitly show how this embedding arises. Moreover our
approach allows us to make the process computational and we have designed computer
programs in MAGMA to facilitate this (see Sections A.1 and A.2). In particular, we are
able to calculate the possible extensions of the group G inside the automorphism group
of the tree using only local information, this is the Extension Theorem 2.2.25. Of course
this can only be done in this way, since we cannot compute with the automorphism group
of the tree itself. We also extend a result of Goldschmidt’s from the valency three case
to arbitrary primes. Theorem 2.4.2 shows that in the semisymmetric case there exists
a certain minimal simple amalgam. Together with the Extension Theorem, this would
allow us to compute all amalgams of degree (p, p) after finding the simple amalgams. We
use this in our investigation into semisymmetric graphs of valency five.

For semisymmetric graphs of valency three the main result of [17] is that, up to
isomorphism, there are precisely fifteen amalgams which arise from finite semisymmetric
graphs of valency three. Such an amalgam is called faithful and is finite in the sense that

it is formed of finite groups. The degree of the amalgam is the pair (k,1). Results prior



to Goldschmidt’s were of a more combinatorial flavour. Examples of this are results of
Tutte [49, 50] for amalgams of degree (3,2) (which arise from symmetric graphs of valency
three). In particular, here we have that the stabiliser in G of an edge has order dividing
16. Using Tutte’s results, Djokovi¢ and Miller [12] classified the possible amalgams that
arise and found that there are precisely seven. Perhaps motivated by these two results,

Goldschmidt made the following conjecture (for the terminology see Section 2.2).

Conjecture (Goldschmidt, 1980). Suppose that k and | are primes. Then (up to isomor-

phism) there are finitely many finite faithful amalgams of degree (k,1).
The graph theoretic version of this conjecture is the following.

Conjecture. Up to conjugacy in Aut('), there are finitely many locally finite edge-

transitive subgroups of Aut(I') where I" is a bi-reqular tree with prime valencies.

Results of Djokovic [11] and Bass, Kulkarni [3] show that there are infinitely many
isomorphism classes of amalgams with composite degree (that is, at least one of k or
[ composite). Conversely, evidence for the validity of above conjecture was provided
first by Rowley [33] and then by Fan [13]. Both of these results were proved under an
assumption which implies that the local action is either dihedral or Frobenius and that the
edge stabiliser is a p-group for some prime p with k # p # [. Using a different approach
Djokovi¢ [11] showed that for certain classes of primes there exists a bound on the number
of finite faithful amalgams (the methods involved permutation group theory). In the same
paper, he proposes the harder problem of classifying the actual isomorphism types of the
amalgams. In Section 1.4 we use the Aschbacher-O’Nan-Scott theorem together with
theorems of Burnside and Cameron to gain some control over the local action that can
occur in this situation. We find that the local action is either affine or on a list which is
delivered by Lemma 1.4.5. This list shows that in general the local action will be affine
or linear. Three exceptions occur, which are valency five, valency eleven and valency
twenty-three. In this thesis we consider the valency five symmetric and semisymmetric

cases. Briefly, our main theorems are below, consult Theorem 3.0.5, Theorem 4.0.1 and
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Theorem 4.0.2 for more technical statements. The following theorem is connected to the

symmetric case.

Theorem. Suppose that A is a finite faithful amalgam of degree (5,2). Then A is iso-

morphic to one of twenty-five such amalgams, the types of which are listed in Table 3.1.
The next theorem applies to the semisymmetric case.

Theorem. Suppose that A is a finite faithful amalgam of degree (5,5). Then A iso-
morphic to one of one hundred and five such amalgams, the types of which are listed in

Table 4.1 and Tables 4.3-4.7.

Our theorems are informed by two results which we now describe. The first concerns
(G, s)-transitive graphs. The earlier mentioned result of Tutte [49] shows that s < 5 when
I' is regular of valency three. Weiss extended this result to regular graphs of arbitrary
valency and showed s < 7 [52] (although this result depends on the Classification of Finite
Simple Groups (CFSG) by using Cameron’s classification of 2-transitive groups). For
graphs of small valency Weiss determined a presentation for the group G. The following
theorem is contained in Theorem 2 of [54] (and because of the restriction on the valency,

is independent of the CFSG).

Theorem (Weiss). Suppose that I is a graph of valency five and which is (G, s)-transitive

for s € {4,5}. Then G admits one of the presentations given in Table 3.3.

In Chapter 3 we explain the contribution of the above theorem to our investigation.
It remains to classify the groups which occur for s < 3 which we do in the remainder
of Chapter 3. A result of Gardiner [16] helps to show that the groups involved in the
amalgam must be “small”. After some careful analysis of the possible configurations, we
arrive at the list in Table 3.1. Having compiled the list, we derive presentations for the
universal completions of these amalgams which we present in Tables 3.2 and 3.3.

For the semisymmetric case we invoke the Thompson-Wielandt theorem (proved in

Section 2.5) to make a case division. In the first case we make use of a deep theorem of



Stellmacher and Delgado, the proof of which forms [10]. This technical result requires
several definitions, which we make in Section 1.6. Roughly speaking, the result tells us that
the amalgam resembles an amalgam which comes from a generalised n-gon. A generalised
n-gon is a graph with diameter n and girth 2n; a theorem of Feit and Higman [15] shows
that finite generalised n-gons exist only for n € {2,3,4,6,8}. Generalised n-gons can be
constructed from vector spaces. For an example let W be a 3-dimensional vector space
over the field with four elements. Let V' be the set of proper non-trivial subspaces of
W. Let £ consist of sets of the form {Vj, Vo} where V; has dimension i and V; < V5.
Then the graph I' = (V, ) has 42 vertices and each vertex has 5 neighbours. The group
G = PSL3(4) acts edge-transitively on I', so I is a semisymmetric graph of valency five.
The diameter of I' is 3 and the girth of I' is 6, so I" is an example of a generalised 3-gon.
The generalised n-gons that occur as examples of semisymmetric graphs of valency five
have n € {3,4,6}. The amalgam to which PSL3(4) gives rise is the amalgam we denote
by Si3 in Table 4.1.

The second case is similar to some of our work on the symmetric case in that the
groups involved in the amalgam are small, but there are more configurations here. The
third case shows how the amalgams arising from semisymmetric graphs differ from those
that come from symmetric graphs - the vertex stabilisers GG, and G, have rather different
structures and actions. The group G, acts faithfully on vertices at distance two from z,
whereas the group G, does not act faithfully on the vertices at distance two from y. To
make progress on this case we concentrate on the simple amalgam which we obtain from
Theorem 2.4.2. Then using information about GF(2)-modules for the group G2 we gain
control over G,. This allows us to determine G,. Having found the amalgams, we also
determine presentations for their universal completions. We expect these presentations
will be useful to anyone wanting to compute with semisymmetric graphs of valency five
or with the amalgams.

The tools that we have developed to deal with the case of valency five are certainly

applicable to the valency eleven and valency twenty-three cases. It is expected that the



amalgams which will appear will be similar to the amalgams &;-S1o, but that there will be
no analogue of the amalgams S;13-S15 since there are no groups of Lie type which produce
a valency eleven or valency twenty-three graph in the way that the generalised n-gons
arise for valency five. For the semisymmetric case of valency p with p ¢ {5,11,23} we
expect that this is a rather more difficult problem. The presence of local action which
involves a linear group considerably increases the complexity of the problem. Firstly,
this will force us to consider the pushing up problem for a large (rank greater than 3)
linear group (a problem unsolved in full generality). Secondly, the examples of generalised
3-gons of valency p = r% + --- + r + 1 show that one will eventually have to identify a
group such as PSLgy1(r). On the other hand, Stellmacher announced in Siena in 1996
that s <9 for locally (G, s)-transitive graphs. The proof of this bound will contribute to
our understanding of the situation. Considering the conjecture for semisymmetric graphs
of valency p and g with p # ¢ is again a more difficult problem, there is no minimal
simple amalgam present and the two local actions could be quite different. We expect
amalgams with similar properties to Ss5-Sio appear (indeed, considering these amalgams
one can already write down examples).

A generalisation of Goldschmidt’s conjecture is to replace the assumption of prime
valency with locally primitive action. For the symmetric case, this is the Weiss Conjecture

[53] which is still open. See [31] for recent progress.

Conjecture (Weiss, 1979). Let I' be a regular graph of valency k and G < Aut(I") be
vertez-transitive. Suppose that for every vertex x € ' the group Gf(x) 1s primitive. Then

there exists a function f: N — N such that |G,| < f(k) for all z € T.

A graph satisfying the hypothesis of the above conjecture is (G, s)-transitive for some
s > 1. Under the assumption that s > 2, the conjecture has been shown to be true. We
observe that a (G, s)-transitive graph I with s > 2 has the following property: for every
x € I the group G2 is 2-transitive. Therefore Cameron’s list of 2-transitive groups has
an impact on this problem, and draws attention to the locally linear case. Under this

assumption, a deep theorem of Trofimov shows that the conjecture holds. The proof of
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this theorem begins with [38] and [39], and is then continued in the two series [40, 41] and
[42, 43, 44, 45] and the summary [46]. For the general case with s > 2, Trofimov and Weiss
[47, 48] show that the above conjecture holds. It remains to see what can be said in the
s = 1 case, and indeed what can be said in the more general situation of semisymmetric
graphs. Therefore there are several interesting avenues for further research here, it would
be extremely interesting to see the development of this theory.

Notation. We write C,, (or just n) for the cyclic group of order n and if m > 1 we
write n™ for the direct product of m cyclic groups each of order n. We write Sym(n)
and Alt(n) for the symmetric and alternating groups of degree n. We write Dih(2n) for
the dihedral group of order 2n and Frob(nk) for the Frobenius group with Frobenius
kernel of order n and complement of order k (e.g. Frob(20) where it is clear that the
Frobenius kernel has order 5). For the finite simple groups we prefer to give them longer
names, for example we write PSL,,(¢) instead of L, (q). We write G ~ A.B for the shape
of G, so G has a normal subgroup A such that G/A is isomorphic to B, this does not
describe the isomorphism type of G. We write the semidirect product of A and B via the
homomorphism 7 : B — Aut(A) as A x, B (or just A : B if the homomorphism is clear).
Direct products we write as A x B and central products as Ao B. If H and K are two
subgroups with unique index two subgroups H; and K respectively, then by H A K we
denote the index two subgroup of H x K which contains H; x K; but neither H nor K.

We also follow standard notation as used in [9, 18].



CHAPTER 1

PRELIMINARIES

1.1 Group actions

This thesis is concerned with actions of groups on graphs. We begin therefore with the
definitions of group actions. Throughout this section G is an arbitrary finite group with
subgroups H and K and normal subgroups N and M. By 1 we denote the identity element
in G.

Definition 1.1.1. An action of G on a set 2 is a map 7 : Q2 x G — € such that for all

a € ) we have
(i) m(a,1) = a and
(ii) m(a,gh) =n(m(a,g),h) for all g,h € G.

We will suppress the map 7 and write af for the element 7(a,g). An action of G on a
graph I is an action on the vertex set of I' which preserves the edge set of I'. An action of
G on a group A is an action on the elements of A such that for all g € G and all a,b € A

we have (ab)? = a909.

There is an equivalence between actions of a group GG on a set €2, a graph I', a group
A and homomorphisms from G to Sym(€2), Aut(I') and Aut(A) respectively. We adopt

whichever viewpoint is convenient and if R is the kernel of the mentioned homomorphism,



we say that GG acts with kernel R. If G acts with kernel G we say the action is trivial and
if G acts with trivial kernel the action is called faithful. If G acts faithfully on a set €2,

we say that G is a permutation group on €. For w € () we write

Gy = Stabg(w) = {g € G | W = w}.

In the particular case of a group G acting on another group A, we can always view this

as occurring in the semidirect product A : G.

Example 1.1.2. The following are examples of actions of G,
(i) on the left/right cosets of H by left/right multiplication,
(ii) on the elements of N by conjugation,

(111) on the elements/subgroups of G in a conjugacy class of elements/subgroups of G by

conjugation.

Included in (ii) of the above is the example of G acting on G by conjugation. The
orbits of the action of GG are the equivalence classes of {2 under the relation a ~ b if and
only if there is g € G such that a? = b. The action of G is transitive if there is only one
orbit. The idea of the following proof is known as the Frattini argument and it will be

applied frequently in this thesis.

Proposition 1.1.3. Suppose that G acts transitively on 2. Then H 1is transitive on ) if

and only if G = HG,, for some w € €.

Proof. Suppose that H is transitive on €2 and let ¢ € G, w € . Since H is transitive,
there exists h € H such that w9 = w", whence hgfl € G, and g € HG,,.

Now suppose that G = HG,,. For each [ € () there exists g € GG such that w? = .
Writing g = xh for some h € H and x € G,, we have w9 = w" = 3, hence H is transitive

on ). O
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We refer to Proposition 1.1.3 as the Frattini Argument. Note that the finiteness of G
is not used in the proof and no assumption is made on the size of €2, thus we may use
the statement for infinite groups acting on infinite sets (and do in Theorem 2.4.2). Since
both G and N act transitively on the Sylow p-subgroups of NV, if S is a non-trivial Sylow
p-subgroup of N for some prime p we obtain the factorisation G = Ng(S)N (which is the
usual formulation of the Frattini argument). From now on we also fix a finite group A
on which G acts (perhaps A = G with the conjugation action). For a subgroup B of A
the normaliser in G of B is Ng(B) = {¢g € G | BY = B} and the centraliser in G of B is
Cq(B) ={9 € G|b =bforall be B}. Note that Ng(B) acts on B by conjugation with
kernel Cg(B).

For elements x, y of G the commutator [z, y] of x and y is 7'y~ zy. The group [H, K]

is the subgroup generated by the commutators [h, k| for h € H and k € K.
Proposition 1.1.4. Let B be a subgroup of A. The following hold,

(i) G normalises B if and only if [B,G] < B,

(ii) if A and G normalise B then A and G normalise B, G].
Proof. This follows from commutator relations (found in [1, pg.27] for example). O

This is an appropriate time to mention a consequence concerning commutators. The

following lemma is usually employed with N = 1.

Lemma 1.1.5 (Three subgroups lemma). Let X, Y and Z be subgroups of G. Suppose
that [X,Y,Z] < N and [Y,Z,X] < N. Then [Z,X,Y] = N.

Proof. See [36, pg.6]. ]

A section of G is a quotient H/L where L is a normal subgroup of H. The action of
G on A induces an action of G on the set of sections of A (naturally (B/C)? = B9/CY).
A section B/C is G-invariant if G normalises B and C' and in this case we can make G
act on B/C by defining (bC)9 = 09C for b € B, g € G. This action is well defined: if
bC = V'C then (b9)71(09) = (b7')9 € C9 = C, so (bC)9 = (V'C)I.

11



Proposition 1.1.6. Let B be a normal G-invariant subgroup of A. The following hold.
(i) G acts trivially on A/B if and only if [A,G] < B.
(ii) If G acts trivially on B then G acts trivially on A/ Cx(B).
(1i1) If G acts trivially on B and A/B then [A,G] < Z(B) and G’ centralises A.
Proof. For (i), we have (aB)? = aB if and only if a 'a? = [a, g] € B.
For part (ii), we have [B, G| = 1, and since B is normal in A, [B, A] < B so we have

[A,B,G] =1=[B,G, A]

and the three subgroups lemma implies that [G, A, B] = 1, i.e. that [G, A] < Ca(B).
Now part (i) implies that G centralises A/C4(B).

Suppose now that G acts trivially on B and on A/B. By part (i), we get [A, G] < B.
Part (ii) implies that G acts trivially on A/C4(B). Since C4(B) is an G-invariant normal

subgroup of A, we may apply part (i) to obtain [A, G] < C4(B). Hence
[A,G] < BN Ca(B) = Z(B).
Thus [A,G,G] = [G,A,G] = 1, and so [G,G,A] = [G';A] = 1 which implies G’ <
Ca(A). O
We say that the action of G on A is coprime (or G acts coprimely on A) if (|G|, |4|) = 1.

Lemma 1.1.7 (Coprime action). Suppose that G acts coprimely on A. The following
hold,

(i) if B is a G-invariant normal subgroup of A, then Ca/p(G) = Ca(G)B/B,
(ii)) A= Ca(G)[A,G] and if A is abelian then A = Ca(G) x [A, G|,

(iii) [A,G,G] = [A,q],

12



(iv) if B is a G-invariant normal subgroup of A and G acts trivially on B and A/ B then

G acts trivially on A.

Proof. For (i), see [23, pg.184]. For (ii), set B = [A, G| and then G acts trivially on
A/B so that A/B = C,/p(G). Now (i) implies that A/B = C4(G)B/B which gives
A =C4(G)B = Ca(G)[A, G] as required.

For part (iii), we apply (ii) to get [A, G] = [Ca(G)[A, G|, G]. Forc € CA(G), a € [A, G,
g € G we have [ca, g] = [c, 9]*[a, g] = [a, g] so that [A, G] = [A, G, G] as required. For part
(iv) we see that [A,G,G] < [B,G] =1 and then (iii) gives the result. O

At the opposite end of the spectrum from coprime action, we have the following.

Proposition 1.1.8. Suppose that G and 1 # A are non-trivial p-groups. Then A >
[A,G] > [A,G,G] > --->1 and C4(G) # 1.

Proof. Repeated applications of Proposition 1.1.4 (ii) shows that the subgroups [A, G, ..., G]
are normalised by G and A. It suffices therefore to show that [A, G] < A (note that the
final non-trivial term of this series is contained in C4(G)). We assume the result is false.
Considering the semidirect product X = AG, we see that [ X, A] = [A, A]|G, A] = A, and
so [A, X, X]| =[A, X] = A. This contradicts the nilpotency of X. O

Definition 1.1.9. We say that G acts quadratically on A if [A,G,G] =1 and [4, G| # 1.

Thus quadratic action of G on A means that G acts trivially on both [A, G| and
A/lA, G]. Quadratic action will show up in the proof of Theorem 1.5.6.
If we do not fully understand the action of G on A it is best to examine the action of

G on sections of A. The following concept provides the “best” set of sections to look at.

Definition 1.1.10. A normal series 1 = Ay < A; < ... < A, = A is a G-chief series
of Aif A;_1 is a maximal G-invariant subgroup of A; for 1 < ¢ < n. The factor groups

A;/A;_q are called G-chief factors of A.

If A;/A;_1 is a G-chief factor, we see that either [A;, G] < A, or [A;, G]A;_1 = A;.

We call a chief factor central in the former case and non-central in the latter.
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Lemma 1.1.11. Let 1 = Ay,..., A, = A be a G-chief series for A. Fori=1,...,n set
Xi = Ai/Ai—l; then
A/ CA(G)| = [ 1A/ C(G).
i=1

Proof. See [30, pg.27]. ]
With repeated applications of Lemma 1.1.7 (iv) we obtain the following.

Lemma 1.1.12. Suppose that G acts coprimely on A and every G-chief factor of A is

central. Then G centralises A.

1.2 Characteristic subgroups

In this section we recall some facts about certain characteristic subgroups that are related
to the structure of p-groups. Our aim is to show how the structure of normal p-subgroups

of G influences the structure of G itself.
Definition 1.2.1. If G is a p-group for i € Z, we define Q;(G) = (z € G | 2*' = 1) and
U'(G) = (x € G| z is a p'~th power).

We usually abbreviate Q;(G) and U'(G) to Q(G) and U(G) respectively. If G is abelian
then Q(G) and G/U(G) are elementary abelian. Note that the subgroups defined above

are characteristic.

Definition 1.2.2. Let G be a group and let ®(G) be the intersection of all the maximal

subgroups of G. The group ®(G) is called the Frattini subgroup of G.

Clearly the Frattini subgroup is characteristic. A useful property of the Frattini sub-

group is the following.

Lemma 1.2.3. Suppose that HP(G) = G. Then G = H.

Proof. Let H be as in the hypothesis and assume that H < G. Then we may choose M
maximal such that H < M. But ®(G) < M, so G = HP(G) < M < G, a contradiction.
m
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The following was the first application of the Frattini argument and hence the reason

for its name.

Proposition 1.2.4. The Frattini subgroup is nilpotent.

Proof. Let P be a Sylow subgroup of ®(G). The Frattini Argument gives G = ®(G)Ng(P)

and the previous lemma implies G = Ng(P). Thus P is normal in ®(G). O

If G is a p-group then another characterisation of ®(G) is the following: ®(G) is the
smallest normal subgroup of G such that G/®(G) is elementary abelian. This implies
that ®(G) = [G,G]U(G). Together with a factorisation of G we can calculate ®(G) in

the following way.
Proposition 1.2.5. If G = PQ then ®(G) = ®(P)P(Q)[P, Q).
The following two subgroups are central to the subject of “local” group theory.

Definition 1.2.6. Let 7 be a set of primes. A group H is a m-group if H is finite and every
prime divisor of |H| belongs to m. A m-subgroup is a subgroup which is a 7w-group. By
O.(G) we denote the largest normal 7-subgroup of G. By O™(G) we denote the smallest

normal subgroup of G such that G/O™(G) is a m-group.

Observe that O, (G) is the product of all the normal 7-subgroups of G and (if G is
finite) O™ (@) is generated by all the 7’-subgroups of G. Recall that a subgroup of G is
called p-local if it is the normaliser of some non-identity p-subgroup of G, so with the

above terminology if M is p-local then O,(M) # 1. Note that for any group G we have
O0,(G) = G if and only if O?(G) = 1.

Proposition 1.2.7. The following hold,

(i) O.(G)N H < O,(H) with equality if H < G,

(i) if O-(G) < H and H Q G then O,(G) = O,(H),
(i) O™(H) < HNO™(G).
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Note that (iii) still holds if replace the assumption that G is finite with the assumption

that H has finite inder in G. We use this in Lemma 1.3.5.

Remark 1.2.8. The above proposition is most useful when the conclusion of (ii) holds.
Observe that in part (i), if H is not normal in G then the containment can be strict. Take
G =Sym(3), H =((1,2)) and 7 = {2}. Then 1 = O,(G)NH < O,(H) = H.

Also, in the third part, even if H is a normal subgroup of G then we can have O™ (H) <
O™(G)NH. For example, take G = Sym(3), H = ((1,2,3)) and 7 = {3}. Then O"(H) =1
and O™(G) = G which gives O™(H) < O"(G) N H = H.

We write 7(G) for the set of prime divisors of |G]|.

Proposition 1.2.9. Let G be a group and let p, ¢ € w(G) be distinct primes. Then
[0,(G), 04(G)] = 1.

Proof. Note that O,(G) N Oy4(G) = 1 since p # ¢, and the order of the intersection must
be both a p- and g-group. Now since both O,(G) and O,(G) are normal in G, we have
[0p(G), 04(G)] < Op(G) N Oy (G) = 1. [

Definition 1.2.10. Let GG be a group, the Fitting subgroup of G is defined to be

F(G) = (0,(G) | p € 7(G)).

Lemma 1.2.11. Suppose that G is a group. Then F(G) is the largest (by containment)

normal nilpotent subgroup of G.

Proof. By Proposition 1.2.9, O,(G) € Syl,(F(G)) for a prime p € n(F(G)). Since O,(G)
is normal in G, it is normal in F(G), so F(G) is nilpotent.

Suppose now that N is a normal nilpotent subgroup of G. Then N = (O,(N) |
p € m(N)) and the normality of N in G together with Proposition 1.2.7 shows that
N <F(G). O

The importance of the Fitting subgroup is indicated by the following theorem. It says
that if G is soluble, G/Z(F(Q)) is a faithful group of automorphisms of F(G).
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Theorem 1.2.12. Let G be a soluble group. Then Cq(F(G)) < F(G).

Instead of proving the theorem here, we will later deduce it as a corollary to Theo-
rem 1.3.20. The following two theorems deliver results on the structure of G related to
structure of p-subgroups. We say that a group G splits over a normal subgroup N if
there is H < G such that G = HN and H N N = 1. The subgroup H is referred to as a

complement to N (in G), and G is isomorphic to the semidirect product N : H.

Theorem 1.2.13 (Gaschiitz’s Theorem). Let P € Syl (G) and suppose that V' is a normal

abelian p-subgroup of G. Then G splits over V' if and only if P splits over V.
Proof. See [1, pg.31]. O

Theorem 1.2.14 (Schur-Zassenhaus Theorem). Suppose that K is a normal subgroup of
G and (|G/K|,|K|) = 1. Then G splits over K. In addition, if one of G/K or K is

soluble then all complements to K in G are conjugate.

Proof. See [23, pg.125]. O

1.3 Subnormal subgroups

In the previous section we defined a characteristic subgroup of G which (when G is
soluble) “controls” the structure of G. The result of this section is the analogue for

insoluble groups.

Definition 1.3.1. Let G be a group. A subgroup H of G is called subnormal if there

exists subgroups H; of G such that
H:Hl<]Hl,1<]"'<]H1<]H0:G

and we write H <{<t G. The number of proper subgroups in the shortest possible chain

of subgroups is called the subnormal depth of H (in G).
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For example, if we take G = Dg = ((1,2,3,4),(2,4)), H; = ((1,3)(2,4), (2,4)), Hs =
((2,4)). Then H; < G, so Hy has subnormal depth 1, Hy <« H; but H, is not normal, so
Hy has subnormal depth 2 and (as always) G has subnormal depth 0.

Subnormality is a transitive relation on the set of subgroups of a group G. To see this,
let K <<t H and H <<1 GG, then there are subnormal series from K to H and from H to

G and by “gluing” one series to the other we obtain a subnormal series for K in G.
Proposition 1.3.2. Let G be a group with subgroups K and N.

(i) Suppose that K <<t G and N < G. Then K NN << N.
(ii) Suppose that K 1<t G and K < N < G. Then K << N.

(111) If K,N << G then KN N <1< G.

Proof. For (i), we let K = Ky < K7 < --- < K, = G be a subnormal series for K in G.
Then
KNN=KiNnN<KiNN<---<K,NN=GNN=N

is a subnormal series from K NN to N.
Now (ii) follows immediately from (i) since K = K NN 1< N.
For (iii) we first apply (i) to obtain K NN << N. But N << G and subnormality is

a transitive relation, thus K N N <1< G. O

Above we showed that the set of subnormal subgroups of G is closed under intersection.

One can show more, the set is also closed under products.

Theorem 1.3.3. Let G be a group with subnormal subgroups K and N. Then

(K,N) << G.

Proof. See [22, Theorem 2.5, pg.48]. O

The next three results intertwine subnormality and the subgroups O, (G) and O™(G)

defined in the previous sections.
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Lemma 1.3.4. Suppose that K is a w-subgroup of G and K is subnormal in G. Then
K < O,(G). In particular, the subgroup generated by two subnormal w-subgroups of G is

contained in O, (Q).

Proof. Let K be as in the statement, we apply induction on the subnormal depth [ of K
in G. If | =0, then K = G and G = O,(G), so we are done trivially. If [ =1 then K < G
and so K < O,(G) by definition.

Assume now that { > 1 and write K = U; < U;_; << G. Then since U; is a -
group, K < O,(U;_1) and O,(U;_1) < U,_5 since it is characteristic in U;_;. Therefore
O, (U;_1) has subnormal depth at most [ —1. By induction, O, (U;_1) < O,(G), and hence
K < 0,(G).

Suppose now that K and H are subnormal m-subgroups of G. Then K, H < O,(G)

by the above, which implies (K, H) < O,(G). O

The following lemma still holds if we drop the assumption that G is finite, we will use

this in Theorem 2.4.2.

Lemma 1.3.5. Suppose that K is subnormal in G and |G : K| is a w-number, then

O™(G) = O™(K). In particular, O™(G) = O™ (O™ (Q)).

Proof. Suppose that K is as in the statement of the lemma, by induction on the subnormal
depth of K it suffices to assume that K <1 G. Also, by Proposition 1.2.7 (iii) it suffices to
show that O™(G) < O™(K). Since O™(K) is characteristic in K, we have that O™ (K) < G,
and

G/K = (G/O™(K))/(K/O™(K)),
thus G/O™(K) is a m-group which implies O™(G) < O™(K) as required. O
Lemma 1.3.6. Suppose that H <<t G. Then O,(G) normalises O™ (H).

Proof. Let X = HO,(G) and note that H << X by Proposition 1.3.2(ii). Now |X :
O™(H)| = |X : H||H : O™(H)| is a m-number, so Lemma 1.3.5 implies that O™(X) =

O™(H). Since this is a normal subgroup of X and O,(G) < X, we are done. O
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Recall that a group K is said to be perfect if K = K'. We will call K quasisimple if K
is perfect and K/Z(K) is a non-abelian simple group. Note that the only proper normal

subgroups of quasisimple groups are contained in the centre.

Definition 1.3.7. A component of a group G is a subgroup K such that K is subnormal

in G and K is quasisimple.

The corollary to the next theorem shows that a pair of components of GG relate to each

other almost in the same way as the groups O,(G) and O,(G) for distinct primes p and

q.

Theorem 1.3.8. Suppose that K is a component of G and U <1<t G. Then either K < U

or [K,U] =1.

Proof. We assume that the theorem is false, and amongst counterexamples choose G such
that |G| is minimal, and then such that |G : U| is minimal. Thus K € U and [K, U] # 1.
Note that K £ U forbids U = G, also [K,U] # 1 forbids K = G since this would imply
U <Z(K).

Since U is subnormal in GG, we may choose a maximal normal subgroup U; of G
containing U. Now K < U; would imply that [K, U] = 1 since |U;| < |G|, so U; is not
a counterexample, but this contradicts our assumption. Thus K £ U; and 1 # [K,U] <
[K,U;]. The minimality of |G : U| now forces U = Uy, so U < G. This implies that
(K, U] <U.

Pick a maximal normal subgroup K; of G containing K (which exists since K < G).
Now [K, U] < [K;,U] < K. By the conclusion of the above paragraph therefore, [K, U] is
subnormal in G, and so is subnormal in K. But K £ U so K £ [K,U]. Since |K;| < |G|
therefore, [K,U, K| = 1. But 1 = [K,U,K| = [U, K, K] and so the three subgroups
lemma implies that [K, K,U] = 1. But K is a component, so 1 = [K, K, U] = [K,U], a

contradiction which delivers the result. O

Corollary 1.3.9. If H and K are distinct components of G, then [H, K] = 1.
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Observe that the set of components of G is invariant under automorphisms of G. This

leads us to the following characteristic subgroup.

Definition 1.3.10. Let G be a group, we define the layer of G, E(G), to be the subgroup

generated by all components of G.

The following is a second corollary to Theorem 1.3.8. It shows us that any subnormal
subgroup we have to hand is normalised by the layer. Thus for a component K of G we
have that K < E(G) < G, so remarkably, components of G have subnormal depth at

most 2.
Corollary 1.3.11. Let U <0 G for some group G. Then E(G) normalises U.

Proof. Let K be an arbitrary component of G, then either K < U or [K,U] = 1, so

certainly K < Ng(U). Since K was arbitrary, E(G) < Ng(U). O

Note that K being a component of G tells us two things. On one hand, K is a
quasisimple group, a property which is intrinsic to K, and on the other hand, K is
subnormal in G which tells us something about the subgroup structure of G. Thus the
two properties may seem to be considered independent from one another, and we exploit

this below.

Proposition 1.3.12. Suppose that N is a subnormal subgroup of G. Then the components
of N are components of G. In particular, if E(G) < N then E(G) = E(N).

Proof. Let K be a component of N. Since N is subnormal in G, K is also subnormal in
GG, and since K is quasisimple, K is therefore a component of G.

Now suppose that E(G) < N. If K is a component of G then K < N, and so by
Proposition 1.3.2 (ii) we have K <1<t N. Thus K < E(N), which gives E(G) < E(N).

But the reverse equality holds also, so we have E(G) = E(N). O

Lemma 1.3.13. Suppose that K and L are distinct components of G. Then K N L =
Z(K)NZ(L). Moreover, Z(K) = Z(E) N K where E = E(G).
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Proof. One inclusion holds trivially. By Corollary 1.3.9, [k,l] = 1 for all £ € K and all
[ € L. Therefore any element m € K N L commutes with all of L since it lies in K, but
on the other hand m commutes with all of K since m lies in L. Thus m € Z(K)N Z(L).

For the second part, if £ € Z(K), then k commutes with all of K, and since K, L] =1
for distinct components, k commutes with every element in the layer, so k € Z(E) N K.

Since the reverse inclusion also holds, we are done. O

The following lemma shows us that if G is a group with a soluble subnormal subgroup
U such that Cg(U) < U, then the layer of G is trivial. In particular, the statement

Ca(0,(G)) < O0,(G) gives this.
Lemma 1.3.14. Suppose U << G and Cg(U) < U. Then E(G) <U.

Proof. Let K be a component of G and assume that K < U. Then by Corollary 1.3.11
we have [U, K| =1 so that K < Cg(U) < U, a contradiction. Thus K < U and so E(G),

the product of all components of G, is contained in U. O]

Definition 1.3.15. We say that M is a minimal normal subgroup of G if the only non-

trivial normal subgroup of GG contained in M is M itself.

Proposition 1.3.16. Suppose that G is a group and M, N are minimal normal subgroups.

FEither M = N or [M,N] = 1.

Proof. Since M and N are normal in G, [M, N] < M N N. Thus if M # N, then M NN
is a normal subgroup of G properly contained in one of M or N, so M N N = 1 which
gives [M, N| = 1. O

If G is a group with a normal subgroup S such that S is simple, then clearly S is
a minimal normal subgroup. We give the class of groups which are generated by such

minimal normal subgroups a name.

Definition 1.3.17. A group is semisimple if it is a product of non-abelian simple normal

subgroups.
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Combining the above remark and Proposition 1.3.16, we see that a semisimple group is
isomorphic to a direct product of non-abelian simple groups. For any group G we are able
to show that there is a normal subgroup which is either an elementary abelian p-group or

semisimple.

Lemma 1.3.18. Let G be any group and let A be a minimal normal subgroup of G. Then

A is either an elementary abelian p-group for some prime p or A is semisimple.

Proof. Let G and A be as in the statement and pick a minimal normal subgroup S of A.
Let S be the subgroup of A generated by the minimal normal subgroups of A which are
isomorphic to S. Then § = S x --- x S by Proposition 1.3.16.

We claim that S is characteristic in A. Indeed, if ¢ is an automorphism of A and T
is a minimal normal subgroup of A isomorphic to S, then T is again a minimal normal
subgroup and 7% = T = S, so S® = S. But this gives S < G so A = S. We claim that S
is simple. Otherwise, there is a proper non-trivial subgroup N of A normal in S. Since
A = S then, we see that N <t A. But S was a minimal normal subgroup, so N = S.

If S is abelian then S is cyclic of order p for some prime p, and A is an elementary

abelian p-group. Otherwise, S is non-abelian and A is semisimple. n

The following subgroup is the analogue of the Fitting subgroup for an insoluble group.

We shall see that it controls the structure of G in the same way as F(G) when G is soluble.

Definition 1.3.19. The generalised Fitting subgroup of a group G is defined to be

where F(G) is the Fitting subgroup of G. The generalised Fitting subgroup is a charac-

teristic subgroup of G.
Theorem 1.3.20. Let G be any finite group. Then Cq(F*(G)) < F*(G).

This result can be found in [22, pg.276] for example. Before giving a proof, we prove
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two lemmas which allow us to recognise when subgroups of G are contained in either F(G)

or E(G). We state these two lemmas for an arbitrary finite group A.

Lemma 1.3.21. Let A be a finite group and let Z < Z(A). Then A is nilpotent if and

only if A/Z is nilpotent.

Proof. Let p be a prime divisor of [A| and let P € Syl (A). It follows that PZ/Z is normal
in A/Z if and only if PZ is normal in A. Thus if A is nilpotent, certainly A/Z is. On the
other hand, if A/Z is nilpotent, then PZ <1 A, and since P < PZ (and P € Syl,(PZ)),
we have P = O,(PZ) < A, so A is nilpotent. O

Lemma 1.3.22. Suppose that A is a finite group such that AJZ(A) is a non-abelian

simple group. Then A’ is perfect and A’ JZ(A") = AJZ(A) is non-abelian simple.

Proof. Suppose first that A := A/Z(A) is abelian. Then A is cyclic of prime order,
in particular, A is abelian which gives A = Z(A), a contradiction. Hence A is a non-
abelian simple group. Now A’ £ Z(A), but A is simple so we have A’ = A which implies
A = AZ(A). Now A" = [A'Z(A), AZ(A)] = [A,A'] = A” so A’ is perfect. Moreover,
Z(A") commutes with Z(A) and with A" so [Z(A"), A] = [Z(A"),A”Z(A)] = 1. Hence
Z(A") < A'NZ(A), but the reverse inclusion obviously holds, so we have Z(A") = A'NZ(A).
Via an isomorphism theorem therefore, A = A'Z(A)/Z(A) = A'JZ(A)NA" = A'/Z(A"). O

Proof of Theorem 1.3.20. Set F = F*(G) and C' = C¢(F*(G)) and suppose that C' € F.
Using the bar notation we set G = G/(C N F). Choose a normal subgroup A of G such
that A is minimal with respect to CNF < A< C but A ﬁ F (note that A exists since C'
satisfies this property). We claim that A is a minimal normal subgroup of G. Indeed, if
B <G and B < A then by our minimal choice of A we either have B = A so that B=A
or B < F which implies B = 1. Thus we may apply Lemma 1.3.18 to see that A is either
abelian or semisimple.

In both cases we observe that C N F < Z(C) and so C N F < Z(A). In the first case
then Lemma 1.3.21 implies that A is nilpotent and so by Lemma 1.2.11, A < F(G) < F,

a contradiction.
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Hence we may assume we are in the second case. Let T < A be such that T is a
minimal normal subgroup of A. Similar to above we see that CNF < Z(T'), but we chose
T such that T is a minimal normal subgroup of A. This implies that Z(T) = CNF. Thus
T = T/Z(T) is simple, so T" is perfect by Lemma 1.3.22 and T"/Z(T") = T/Z(T) is a
non-abelian simple group. Since T <1<1 G this implies that 7" is a component of G which

gives T' < E(G) < F. Hence T' < C'N F and so T is abelian, a contradiction. O
As promised, we now give the proof of Theorem 1.2.12.
Corollary 1.3.23. Suppose that G is a soluble group, then Cq(F(G)) < F(G).

Proof. Since G is soluble E(G) = 1 and so F*(G) = F(G). Hence Theorem 1.3.20 delivers

the result. O

Remark 1.3.24. If G # 1 then by examining a minimal normal subgroup of G' we conclude

that F*(G) # 1.

1.4 Permutation groups of prime degree

In this section we let G be a (non-trivial) transitive permutation group on a finite set 2. A
block is a non-empty subset B of € such that for all ¢ € G we have BYNB = () or BY = B.
We call G imprimitive if there exists a block B such that 1 # |B| # ||, and otherwise,
we call G primitive. Note that the orbits of G on () are blocks, so a primitive group must
be transitive. Note that G is transitive on the elements of B, thus |Gp : G| = |B| for

each w € B and so |B| divides || for any block B.

Proposition 1.4.1. Suppose that || is prime. Then G is primitive or acts trivially on

Q.
Primitive actions are characterised by the following property.

Lemma 1.4.2. A transitive action of G on  is primitive if and only if G, is a mazimal

subgroup for any o € €.
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If G is transitive but imprimitive on €2, with a block B, then G g (the setwise stabiliser
of B) is transitive on B and G is transitive on the set {BY | ¢ € G}. When one is trying to
understand the action of G on €2, this directs our attention towards primitive actions. By
the previous lemma, this is equivalent to G' acting on the cosets of a maximal subgroup of
G, so a description of maximal subgroups is required. This was delivered (independently)
by O’Nan and Scott. However there was a hole in both proofs and a case was missed. A

corrected version of the theorem was given by Aschbacher and Scott [2].

Theorem 1.4.3 (Aschbacher-O’Nan-Scott). Suppose that the action of G on Q is prim-

itive. Then exactly one of the following hold,
(i) F*(G) = F(Q) is the unique minimal normal subgroup of G,

(i) F(G) =1 and F*(G) is the direct product of the only two minimal normal subgroups

of G (which are isomorphic),
(i11) F(G) =1 and F*(G) is the unique minimal normal subgroup of G.

Proof. This follows from [23, 6.6.12] once we see that if N < G, for any w € €, then

G. = Ng(N), so Gy, is a primitive mazimal subgroup of G (as defined in [23]). O

The following theorem is more applicable to our situation, although it can now be seen

to be a consequence of the above.

Theorem 1.4.4 (Burnside). Suppose that || is a prime. Then either G is 2-transitive
and the unique minimal normal subgroup is non-abelian, or G is permutational isomorphic

to a subgroup of AGL4(p) acting on F,.

Proof. Burnside’s original proof used complex character theory [6, Theorem VII, Chapter

XVI]. Recently a short and elementary proof has been given by P. Miiller [27]. O

Note that if the second conclusion of the above theorem holds then G is 2-transitive
if and only if G = AGL;(p). The following lemma is a consequence of the classification

of 2-transitive groups due to Cameron, and therefore depends upon the GFSG. It is not
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required in any result in this thesis, we merely state it to direct our attention towards

certain interesting situations.

Lemma 1.4.5. Suppose that |Q2| = p is a prime and G acts 2-transitively on 2. Then
F*(G) and p appear in Table 1.1.

Proof. We apply the previous result to see that either the situation is as in line one of
Table 1.1, or F*(G) is a non-abelian simple group. The list of 2-transitive finite permu-

tation groups is contained in [8, (5.3)]. Assuming that F*(G) is on this list, we require

that the degree is prime. The only options are those appearing in Table 1.1. O
p F*(G) Point stabiliser in F*(G)
all C, Trivial
all Alt(p) Alt(p — 1)

¢+ ¢+ .- +1, q a prime power | PSLy(q), d > 2 @1 : PGLy_1(q)
11 PSLy(11) Alt(5)

Table 1.1: Generalised Fitting subgroups of 2-transitive permutation groups of prime
degree

Remark 1.4.6. In Table 1.1 we have only given the isomorphism shape of F*(G), we also
need to give the set 2 on which F*(G) is acting and how this action arises. For the cyclic
group, the alternating group and the Mathieu groups, the action is the natural action of
degree p. For G = PSLy(11) there are two inequivalent actions on 11 points, arising from
the two conjugacy classes of subgroups isomorphic to Alt(5) in G. For G = PSLy(q),
there are also two actions on p points (where p = ¢?~1 + ... + 1), these are on the sets
of points and hyperplanes of the natural d-dimensional module for G over F,, which are

inequivalent if d > 2.
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1.5 A pushing-up result

The main result of this section is Theorem 1.5.6. We expect that the result is well known,
but we were unable to find a reference. A pushing up problem is the following: We have
a group G, a p-subgroup @ and R = Ng(Q). We say that R can be pushed up if there
is a p-subgroup P of G such that R < Ng(P). Determining why R cannot be pushed up
is equally valuable and the general pushing up problem is to describe the obstructions to
pushing up. For a description of some of the important results in this area see [30, (24.2)].

We will need the following result.

Theorem 1.5.1. Let X be a finite group such that Cx (02(X)) < Oy(X). Let S € Syl,(X)
and set Z = (Q(Z(S))*). Suppose that X/Os(X) = PSLy(2") for some n € N, that no
non-trivial characteristic subgroup of S is normal in X and that there exists a subgroup
H < Aut(S) with |H : Ng(02(X))| odd. Then (Z1) is a normal subgroup of X which is

contained in Oq(X).
Proof. This is Corollary 3.14 in [29]. O

Definition 1.5.2. Let S be a p-group. Then A(S) is the set of abelian subgroups of
maximal order. We define

J(8) = (A A e A(9)),
the Thompson subgroup (of S).

The set A(S) is invariant under automorphisms of S, thus J(S) is a characteristic

subgroup of S. Here is one property of the Thompson subgroup.

Proposition 1.5.3. Let R be a group, let S € Syl,(R) and suppose Q is a subgroup of S
such that J(S) < Q. Then J(S) = J(Q).

Proof. We will show that A(S) = A(Q). Indeed, let A € A(S) and B € A(Q). Then
B is an abelian subgroup of maximal order in @, but B < @ < S, so |B| < |A|. Now

A < J(S) < @ so A is an abelian subgroup of @, and so |A| < |B| as B has the
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maximal order of an abelian subgroup of ). Thus |A| = |B| which gives B € A(S) and
A€ AQ). O

Another property of the elements of A(S) is the following.

Proposition 1.5.4. Let A € A(S). Then Cs(A) = A.

Proof. Let x € Cg(A). Then (z, A) is abelian, and since |A| is maximal amongst abelian
subgroups of S, we have |(x, A)| = |A| which implies z € A. Hence Cg(A) < A, but A is

abelian, so A < Cg(A) and we are done. O

Theorem 1.5.5 (Thompson Replacement Theorem). Let S be a p-group, A € A(S) and
let Z be an abelian p-subgroup of S. Assume A normalises Z but Z does not normalise

A. Then there exists an element A* € A(S) such that:
i) ANZ < A*NZ,
i1) A* normalises A.
Proof. See [18, Thm. 8.2.5, pg.273]. O

Let R = Sym(4) and let Q = Oy(R) = 22. Observe R/Q = Sym(3) = Dih(6) =
AGL;(3) and note that for any Sylow 2-subgroup S of R, we have S = Dih(8) and the
only characteristic subgroup of S which is normal in R is the trivial subgroup. This shows

that the conclusion p = 2 and r = 3 cannot be removed from the next theorem.

Theorem 1.5.6. Suppose that p and r are primes with r > 2. Let R be a group with
Q = Oy(R) = F'(R) and let S € Syl,(R). Suppose that R/Q is a normal subgroup
of AGLy(r). Then either p = 2 and r = 3, or there exists a non-trivial characteristic

subgroup C' of S which is normal in R.

Proof. We assume that no non-trivial characteristic subgroup of S is normal in R (in
particular, S < R). Set Z = Q;(Z(Q)) and X = ;(Z(S)). Since 1 # X char S, we see

that X is not a normal subgroup of R.
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(1) X <Zand Cr(2) = Q.

Since Cr(Q) = Z(Q) and [X,Z] < [Z(S),S] = 1 we get X < Z(Q) and since X is
elementary abelian, we get X < Z. We have () < Cg(Z) and if the containment is proper,
then since Cr(Z) < R, we see that 1 # Cg(Z)/Q < R/Q which implies that r | |Cr(Z)].
Then r | |[Cr(X)| also as Cg(Z) < Cg(X), but already S < Cg(Z) and for every other
prime [ dividing |R/Q| we can find a Sylow [-subgroup which normalises S and therefore
X, hence R = Ng(X), a contradiction.

By (1) we may consider a R/Q-chief series of Z.

(2) There are non-central R/Q-chief factors in Z.
Otherwise coprime action implies OP(R/Q) centralises Z. But then 1 # OP(R/Q) <

Cr/o(Z) =1, a contradiction.

(3) J(S) £ Q.

Otherwise Proposition 1.5.3 implies J(S) = J(Q) and provides a contradiction.
(4) Thereis A € A(S) with [Z, A, A]=1and A £ Q.

By the previous claim we may choose A € A(S) such that A £ Q. Amongst such A
we choose A with |[AN Z]| as large as possible and we claim that Z normalises A. If this is
not the case, Thompson’s Replacement Theorem gives A* € A(S) with ANZ < A*NZ
and A* normalises A. By the choice of A we must have A* < @) which gives [Z, A*] =1
and so Z < A* < Ng(A), a contradiction proving that Z normalises A. Hence [Z, A] < A

and so [Z, A, A] = 1.

(5) p=2.

Otherwise, the previous claim implies that AQ/Q and a conjugate act quadratically on
Z (since A £ Q we cannot have A < R), and so R/Q contains a subgroup isomorphic to
SLa(p) by [18, Theorem 3.8.1] (after considering an irreducible submodule and tensoring
with IF,). Since R/Q is soluble we have p = 3, but the Sylow 2-subgroups of SLy(3) are
non-cyclic as opposed to the Sylow 2-subgroups of AGL;(r) and this contradiction proves

the claim.
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(6) Forall A€ A(S) with A £ Q we have | Z/Cz(A)| < |A/Ca(Z)| = 2.

Since ZC4(Z) is elementary abelian, we have [ZC4(Z)| < |A| for all A € A(S).
Now |ZC4(2)| = |Z||Ca(2)|/1Z N Ca(Z)] and Z N Ca(Z) < Cz(A), s0 |Z/Cyr(A)] <
1Z/Z0Ca(Z)]. Hence |Z/C4(A)] < |A/Ca(Z)]. By (1) Ca(Z) = ANQ and |AQ/Q| = 2

since A is elementary abelian and the Sylow 2-subgroups of R/@ are cyclic.

(7) We have r = 3.

By (2) there is a non-central R/Q-chief-factor, W say, contained in Z. By (3) we may
choose A € A(S) such that A £ @ and we have Nz(A) # R (since AQ/Q is not normal in
R/Q). Since [W/Cw(A)| < |Z/Cz(A)] < 2, we see that AQ/Q centralises a hyperplane
of W. Let B = A9 for some g ¢ Nr(A) and note that R/Q = (AQ/Q, BQ/Q). Now
|W/Cw(B)| < 2 also and combined with Cy, (B)NCy (A) = Cy (R/Q) = 1 gives |W| < 4.
Since R/Q acts faithfully on W, we must have r = 3.

Statements (5) and (7) now give the conclusion of the theorem. O

1.6 Amalgams of groups

Definition 1.6.1. An amalgam A is a 5-tuple (Py, P>, B, 1, ) of three groups Pi, P,
and B and two monomorphisms 7; : B — P; (i = 1,2).

We say that two amalgams A and B = (Ry, R, D, ¢1, ¢2) have the same type if there
is a triple of isomorphisms §: D — B and «; : R; — P; (i = 1,2) such that for i = 1,2
we have «;(¢;(D)) = m;(B(D)).

The degree of an amalgam is the pair (|P; : m1(B)|, | P2 : ma(B)|). We say the amalgam

is finite if B is finite and the degree is a pair of integers.

Note that the amalgam (P, P, B, amy, 7s) has the same type as A for every pair of
automorphisms « and 3 of P; and P, respectively. Hence the type of an amalgam amounts
to a choice of an Aut(P;)-conjugacy class of subgroups of P, and an Aut(F;)-conjugacy

class of subgroups of P,.
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Amalgams of the same type can have different properties. For example, let

P = <<1’2)?(374>5)7<475)>>
P, = ((6,7),(8,9,10),(9,10)),

B = ((11,12),(13,14)),

(so P, = P, & Cy x Sym(3) and B = 2%). Define m, : B — P, by

m((11,12)) = (1,2) and 7,((13,14)) = (4,5).

Define 75 : B — P, by

m((11,12)) = (6,7) and m5((13, 14)) = (9, 10).

Set A = (P, P, B, 7, m). Notice that m;((11,12)) € Z(P;) for i = 1,2. Let v be the
automorphism of B which swaps (11,12) and (13,14) and set B = (Py, P, B, m17y, m2).

Then A and B have the same type, but B has the following property which A does not,

(my)~H(Z(P) Ny (Z(Pe)) = 1.

Thus amalgams of the same type can encode rather different behaviour.

Definition 1.6.2. A completion of A is a triple (G, p1, p2) of a group G and two homo-
morphisms p; : P, — G so that G = (p1(P1), p2(P)) and the subdiagram of Figure 1.1
consisting of GG, P, P,, B and the maps between them commutes.

A wuniversal completion of A is a completion (R, ¢1,¢2) such that if (G, p1,p2) is
any other completion then there exists a unique homomorphism  such that Figure 1.1

commutes.

If (G, p1,p2) is a completion of A (as above) we say that the completion is faithful if

the maps p; are monomorphisms. By an abuse of language, we will also refer to G as
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P, P1

T ¢1

2 (05
P p2

Figure 1.1: An amalgam with universal completion and completion

the completion, and as such, we call a completion finite if G is finite. Note that finite
completions of amalgams always exist, we can simply take G = 1 and py, p2 to be the
trivial maps. We remark that if the groups involved in an amalgam are finite, then a
faithful finite completion of the amalgam exists, see [28].

Every amalgam has a unique faithful completion. The uniqueness follows from the
uniqueness of the map x in Definition 1.6.2. We construct a universal completion in the
following way. Let X = P; * P, (the free product of P, and P;) and write «; for the
natural monomorphism from P; to X, we set N to be the normal closure in X of the
set {ay(m1(b))aa(ma(b™)) | b € B}. Then Y = X/N is a faithful universal completion
of A. In Appendix A.3 we give a program written in MAGMA that creates, as a finitely
presented group, the universal completion of an amalgam.

Given an amalgam A with a faithful completion G we may identify B, P; and P, with
their images in G (and then P, N P, > B). When we do this we may drop reference to

the maps, and in that case, we will write the amalgam as the triple (P, P, B).
Notation 1.6.3. We write G(.A) for the universal completion of the amalgam .A.
We have mentioned earlier the connection between amalgams and semisymmetric

graphs. Here we make this connection explicit.

Definition 1.6.4. Let A = (P, P, B, m,7) be an amalgam and suppose that G is a

faithful completion of A. The coset graph T'(A, G) of A with respect to G is the graph
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with vertex set

G/PUG/ Py
and edge set {{P1g, P,h} | Pig N Pyh # 0}
The next proposition shows that amalgams give rise to semisymmetric graphs.

Proposition 1.6.5. Let A be as above and let G be a faithful completion. Then I' =
I'(A,G) is a connected bi-reqular graph of bi-valency the degree of A. G acts edge-
transitively on I' and has two orbits 61 and 0y on the vertices of I'. A stabiliser of a
vertex in 0; is conjugate in G to P; and the stabiliser of an edge is conjugate in G to

P, N P,. The kernel of this action is the core in G of Py N Ps.

Since we are only aiming to deal with groups which act faithfully on graphs, in light

of the above proposition, we make the following definition.

Definition 1.6.6. An amalgam A = (P, P, B, m,m2) is called faithful if whenever K <
B and m;(K) < P, for i = 1,2 we have K = 1.

Later in the thesis we will encounter a certain class of amalgams which are defined in
[10]. Here we recall the definition and mention the relevant results which we will later

call upon.

Definition 1.6.7. Let p be a prime and let G be a group with a pair of finite subgroups
(Py, P») such that G = (P, P,) and no non-trivial normal subgroup is contained in P, N P;.
Then (P, P,) is a weak (B, N)-pair of characteristic p (with respect to G) if there exists
normal subgroups P} and Py of P, and P, respectively such that for {i,j} = {1,2} the

following hold
(i) O,(P) < Py and Py = PY(BN Py)
(i) C(0,(P)) < Oy(P).
(iii) P* N P; = Np«(S) for some S € Syl,(F;),
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(iv) Pr/O,(P;) = PSLa(p™), SLa(p™), PSU;s(p™), SUs(p™), Sz(2™) or Dih(10) (and
p =2), Ree(3™) or Ree(3)" (and p = 3) for some ny,ny € N.

Recall that Ree(3)" = PSLy(8) and Sz(2) = Frob(20). Note that if (P, P») is a weak
(B, N)-pair for G and N is a normal subgroup of G with P, NN =1 = N N P,, then
setting G = G//N we have that (P}, ) is a weak (B, N)-pair of G. From [10] we derive

the following theorem.

Theorem 1.6.8. Suppose that A = (Py, P», B, w1, m3) is an amalgam, G = G(A) and that
(P, P,) is a weak (B, N)-pair for G of characteristic 2 with |P, : B| =5 = |Py : B|. Then
there is a free normal subgroup N of G such that H = G /N s finite and F*(H) = PSL3(4),
Sp,(4) or Ga(4).

Proof. We apply [10, Theorem A, pg.100]. The index of B in P; and P; restricts to the

list above. O

The following was noted in [10, pg.97]. Let X be isomorphic to PSL3(4), Sp,(4) or
Go(4) and let S € Syl,(X). Setting Y = Nx(S) there is a unique pair of subgroups R;
and Ry such that Y = Ry N Ry and (Ry, Ry) is a weak (B, N)-pair for X.

Notation 1.6.9. We write Si3, S14 and Sy5 for the amalgams (Ry, Ry, Y, i1, 45) which come

from the groups PSL3(4), Sp,(4) and Go(4) so that (Ry, Rs) is a weak (B, N)-pair.

From the theorem we obtain the following.

Corollary 1.6.10. If the hypothesis of Theorem 1.6.8 holds then, fori = 1,2, P, = R;

and B =Y where (Ry, Ry, Y, i1,12) is one of the amalgams S13, S14 or Si5.
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CHAPTER 2

GROUPS AND GRAPHS

Recall that a graph I' = (V, E) is a pair of vertices V', and edges E, where F is a subset of
{{z,y} | z,y € V,x # y}. Therefore our graphs contain no loops and no multiple edges.
We also assume that all the graphs are connected and we use d(—, —) to denote the usual

distance metric. For a vertex x and an integer ¢ we define
Al(z) = {y e T d(x,y) = i}

and we write A(z) for Al(z), the neighbourhood of x. We say I' is a G-graph if G is a

group acting faithfully on I'. For x € I" we set
Gl ={ge G|y =yforall ye Al(z)}

and observe that for j > ¢ we have GY g GE We write G, for G, Moreover, if

(x,y,z,...)is a path then we write Gﬂ,z,,, for G N Gg} NGYN... and Gy, for ng.,,.

2.1 Edge-transitive groups of automorphisms

We distinguish three different actions of a group on a graph. We say that the action
of G is semisymmetric if G acts edge-transitively, but not vertex-transitively. We say

that the action of G is symmetric if G acts vertex-transitively, edge-transitively and

36



|Ga,p : Gapl = 2 for some (and therefore every) edge {«, 3}. We say that the action of

G is %—arc transitive if the action is not symmetric but is both vertex- and edge-transitive.

Proposition 2.1.1. Suppose that G is vertex- and edge-transitive on I' and that I has

odd valency. Then G acts symmetrically.

Proof. Let k be the valency of ', which is odd by assumption and let {a, } be an edge
of I'. Suppose that G, g = Gap and let m be the number of edges. By edge-transitivity
m = |G : Gupg|. On the other hand, m = w by the Hand Shaking Lemma. It follows

that k = 2|G,, : Gupl, a contradiction. O

It follows from the proposition that groups acting edge-transitively on graphs of odd
valency act either symmetrically or semisymmetrically. There is a unique smallest %—arc
transitive graph, Holt’s graph [20] with 27 vertices, 54 edges and valency four. All vertex

stabilisers have order two and all edge stabilisers are trivial.

Lemma 2.1.2. Suppose that T' is either G-symmetric or G-semisymmetric. Then G,

acts transitively on A(a). Moreover, |G, : Gop| = |A(a)| for each 5 € A(a).

Proof. Let B and 0 be neighbours of o and let g € G be such that {a, 5} = {«,d}. If T
is G-semisymmetric, then I' = o U 8¢, and so we have 49 = § and g € G,, as required.
If T is symmetric then after acting with Gy, sy (if necessary) we have 39 = § and g € G,

as above. The final statement of the lemma follows by the Orbit-Stabiliser theorem. []
The following follows from the connectivity of T'.

Lemma 2.1.3. Suppose that A < G, and B < Gz are transitive on A(a) and A(B)
respectively. Then X = (A, B) is edge-transitive. Moreover, if AN Gap € Gag N B then

B<X5.

With the notation of the above lemma, we may consider the question of when A = X,
and B = Xjg. The lemma suggests we might hope that it is enough to require AN G, =

GosN B. However, this is not the case. For example, let I' be the graph obtained from the
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incidence geometry associated to the vector space of three dimensions over GF(2). For
an edge {a, 8} we have G, = Sym(4) = G. A judicious choice of A < G, and B < G
with A = B = C; gives X = @, and so both A < X, and B < X hold. Note that
ANG.p = GopN B however. In the next section, we consider the case that I' is a tree and
we shall see that the condition A N Gu3 = Gos N B ensures that A = X, and B = X3.
The following result is one of the most powerful tools which we have at our disposal.
It shall be applied frequently in our investigation, so if it’s use is sufficiently clear we shall

omit reference.

Lemma 2.1.4. Suppose that {u,v} is an edge of I' and K < G, is such that Ng,(K)

and Ng,(K) are transitive on A(u) and A(v) respectively. Then K = 1.

Proof. Lemma 2.1.3 implies that X = (Ng, (K),Ng, (K)) < Ng(K) is edge-transitive.
It follows that for any z € I' there is ¢ € X such that either u9 = z or v9 = z. Then

K = K9 < (Gw)? <G,. Hence K fixes every vertex of I', so K = 1. O

We omit the proof of the following lemma as it merely serves to highlight the local

and global properties which motivate definitions in the next section.

Lemma 2.1.5. Suppose that G acts edge-transitively on I' and that H < G also acts

edge-transitively. For each edge {a, B} of T the following hold
(1) G=HG.p and H = (H,, Hp),
(2) Hy, = HNG,,
(3) HoGop = Ga,
(4) HoNHg = H, N Gag,
(5) if H is normal in G then H, < G,.

The following lemma shows that we may reduce the study of semisymmetric graphs of
bi-valency (k,[) to the problem of classifying faithful amalgams of degree (k,[) and their

completions.
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Lemma 2.1.6. Suppose that I is G-semisymmetric and let A be the amalgam formed
by the stabilisers of adjacent vertices. Then the graphs T' and T'(A, G) are isomorphic as

G-graphs.

Proof. Write A = (Ga, Gp, Gag, T, m5). Observe that every vertex of I' is conjugate to
precisely one of o or 5. We define 0 : I' — I'(A4, G) by

Gog if y= Y for some g € G
0:vy—

Ggh  if v = 3" for some h € G

and we claim that 6 is the required isomorphism. First we check that # commutes with
the action of G. Let v € I' and assume v = ¢ for some g € G (the other case being
similar). Let k € G, then 0(7*) = Gogk = (Gog)k = 6(7)* as required. We now check
that € is a graph homomorphism. If {~,d} is an edge of I, then by edge-transitivity there
is g € G such that v = a9 and 6 = (9 (after relabelling if necessary). Then 6(y) = G.g
and 0(5) = Ggg, so 0(y) ~ 0(0) as required.

It is clear that @ is surjective, so we need only check that 6 is well defined and injective.
If v = a9 = af then gk™! € G, so that G,g = Gk, similarly for vertices in the orbit of
B. Now if Gok = () = 0(u) = Gag say, then there are g,k € G such that v = o* and
= a?. Since kg~! € G, we have 79" = & so that p=ad = 79_19 = v which completes

the proof. O

For the symmetric case we follow a similar procedure to that for semisymmetric graphs.
We show that classifying symmetric graphs of valency k is equivalent to classifying faithful

amalgams of degree (k,2) and their completions.

Definition 2.1.7. Suppose that the action of G on I' is symmetric and let e = {a, 8}
be an edge of I Set A = (Ga, Ge, Gag, T, Te). We define II(A, G) to be the graph
with vertex set {Gog | ¢ € G}. Two vertices G,g and G,h are adjacent if and only if

gh™' € G,aG,, for some a € G, — G,p.
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In the above definition, we should check that the definition of the graph does not
depend on the choice of a € G, 5y — Gos. To our knowledge, this construction is due to

[24]. Note that the amalgam A has degree (k,2) where k is the valency of T'.

Lemma 2.1.8. Suppose that T is G-symmetric. Let e = {c, 8} be an edge and let A be
the amalgam formed by G, and G.. Then the graphs I' and 11(A, G) are isomorphic as

G-graphs. Furthermore, the amalgam A is faithful.

Proof. The required map is 6 : I' — II(A, G) given by 0 : v — G,g where g is such that
~v = . The details are similar to above. The amalgam is faithful since G acts faithfully

on I O

If T is a graph and B is a partition of the vertices of I', we can define the quotient
graph T'g of T' (with respect to B) as follows. The vertices of I'g are the parts comprising
B, and two vertices of I'g are adjacent if there is an edge between the respective parts
of I'. There is a canonical graph homomorphism 7 : I' — I'g given by taking a vertex
x to the part to which it belongs. We are interested in quotient graphs because of the

following.

Proposition 2.1.9. Suppose that B is a G-invariant partition of I'. Then G acts on I'p

and the action commutes with the map mp.

Note that the orbits of a normal subgroup form a partition of B which is G-invariant.
As an example of this, take I" to be the circuit of length six and G = Aut(I') =
((1,2,3,4,5,6),(1,2)(3,6)(4,5)). Then letting B be the orbits of N = ((1,4)(2,5)(3,6))
we see that ['p is a circuit of length three, and G/N = Dih(6) acts faithfully on I'p.

The so-called global approach to analysing symmetric or semisymmetric graphs is to
reveal the structure of G together with I' by considering quotients determined by orbits
of normal subgroups. More explicitly, suppose that /N is a normal subgroup of G' and let
B be the partition of I induced by the orbits of N on I'. Then the group G/N acts on

I'p and various properties of I'g are inherited from G and T'.
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2.2 The local viewpoint, amalgams and extensions

We now develop a local approach to analysing symmetric and semisymmetric graphs. We
defined amalgams in Section 1.6, we now develop a theory. Motivated by our need to
compute with amalgams, we seek to understand the foundations of the topic. The goal
is Theorem 2.2.25 which may be viewed as a constructive version of [17, (2.8)]. Indeed,
it is by studying the proof of this result and how it is applied in [17] that informed
our understanding of this topic. In particular, one consequence of our approach is a
computational implementation of Theorem 2.2.25 which can be found in Section A.2.
Throughout we fix an amalgam A = (Py, P, B, 7, m) and set G = G(A).

To develop the local viewpoint further, we introduce some terminology which aims to

mirror the terminology associated to the global approach.

Definition 2.2.1. Let A = (P, P, B, m,m) be an amalgam and suppose that Ry, R
and D are subgroups of P;, P, and B respectively. If properties (i) and (ii) below hold,

we say that B = (Ry, Re, D, m|p, m|p) is a subamalgam of A.
(i) For i =1,2 we have P, = R;m;(B).
(ii) For i = 1,2 we have R; N m;(B) = m;(D).

Lemma 2.2.2. Suppose that B is a subamalgam of A. Then the degree of A is equal to
the degree of B.

Proof. We adopt the notation of Definition 2.2.1. For i = 1,2 since P, = R;m;(B) it
follows that |P; : mi(B)| = |R; : R; N m(B)|. Now R; Nm(B) = m;(D) and the maps
involved are monomorphisms, so we obtain |P; : m;(B)| = |R; : mi|p(D)]. O
Definition 2.2.3. With A and B as in Definition 2.2.1 we say that B is a normal suba-

malgam of A if R; is a normal subgroup of P; for ¢ = 1,2. An amalgam is simple if it has

no proper normal subamalgams.

An immediate consequence of the definition of a normal subamalgam is that if A and

B are as above and B is a normal subamalgam of A, then D is a normal subgroup of B.
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Lemma 2.2.4. Suppose that A = (Py, Py, B, m,m2) is a faithful amalgam and that N =
(N1, No, D, 11| p, m|p) is a normal subamalgam. Then N is a faithful amalgam.

Proof. Suppose that 1 # K < D and m;|p(K) < N; for i = 1,2. Set L = (K?). Since m;
is a homomorphism we have 7;(L) = (m;(K)™®). Now P, = N;m;(B), N; is normalised
by m;(B) and normalises 7;(K), hence m;(L) = (m;(K)") is a normal subgroup of P;. Tt
follows then that 1 # m;(L) < P; and L < B, which contradicts the hypothesis that A is

a faithful amalgam. O]

It will be important for us to find normal subamalgams of a given amalgam. The next

proposition tells us how to go about this.

Proposition 2.2.5. Let A = (P, P>, B,m,m) be an amalgam. For i = 1,2 suppose

there are normal subgroups U; of P; such that U;m;(B) = P;. Set

C == 7T1_1<U1 N 7T1(B))7T2_1(7T2<B) N UQ)

and N; = U;ym;(C). Then N = (N1, N, C,m1|c, malc) is a normal subamalgam of A.

Proof. We have N;m;(B) > U;m;j(B) = P; for i = 1,2 and the Dedekind identity confirms
that N; Nm;(B) = m;(C). We also need to verify that N; is normal in P;, this follows from

the factorisation U;m;(B) = P; and that C' is a normal subgroup of B. O

Definition 2.2.6. If (U;, U,) is a pair of subgroups satisfying the hypothesis of Propo-
sition 2.2.5, we call the normal subamalgam constructed in Proposition 2.2.5 the normal

subamalgam generated by (Uy, Us).

Having defined normal subamalgams we also want to find a notion of a characteristic
subamalgam. For this, we need to define isomorphisms between amalgams. Once we
have established this, we can define the automorphism group of an amalgam, and the

characteristic subamalgams are those that are invariant under the automorphism group.

Definition 2.2.7. An amalgam homomorphism from B = (Ry, Ra, D, ¢1,¢2) to A is a

triple of homomorphisms © = («, 3,7) such that {i,j} = {1,2} and the diagram in
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Figure 2.1 commutes. The set of amalgam homomorphisms from B to A is denoted by

R = P,
B D i B A
R, i P,

Figure 2.1: An amalgam homomorphism

Hom(B, A). The amalgam homomorphism © is an amalgam monomorphism, respectively
amalgam isomorphism, if it is a triple of monomorphisms, respectively, isomorphisms. We
write Aut(A) for automorphism group of A, that is, the set of amalgam isomorphisms

©: A — A (which forms a group under composition).

Note that by our definition, the amalgams A and (P, Py, B, my, ™) are isomorphic.
Observe that Aut(.A) has a subgroup of index at most two which normalises Py and Ps.
We denote this subgroup by Aut®(A). We now introduce our approach to working with

Aut(A); we shall see shortly that Aut®(.A) is easier to deal with.

Example 2.2.8. Amalgams of type Q3. Let G = Sym(9) and choose elements a =
(1,2,3,4,5), b= (2,3,5,4) and ¢ = (2,6)(3,7)(5,8)(4,9) of G. Define A = (a,b,b) and
B = (b,c) and C = AN B. Let m and my be the identifications of C' as a subgroup of A
and B respectively. Note that the core in A and B of m;(C) is trivial for i =1,2.

Let v and & be the automorphisms of C induced by the maps v : b+ b, v : b > bb°
and § : b — b, 6 : b¢ — b3°. Let A = (A, B,C,m,m), A = (A, B,C,m,my) and
Ay = (A, B,C,m,m0) and set X = (b°). Now the three amalgams are all of the same

type, but the following commutators show that the amalgams are pairwise non-isomorphic

[m1(X), A] = [my(X), B] = 1, [md(X), B] = ((00°)%), [m2(X), B] = (bb°).
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Notation 2.2.9. We write each © € Aut(A) as a triple © = (ay, as,7y) where the do-
main of «; is P; and of vy is B. Since © acts on the set {1,2} via the map Aut(A) —
Aut(A)/Aut’(A), we may calculate ©(1) and ©(2) (and observe that these values deter-
mine whether © swaps P; and P or not).

With the notation for elements of Aut(A) introduced above, we have to understand
how composition works. For future reference, we summarise the rules below (these are

determined by drawing diagrams and evaluating the maps).

Proposition 2.2.10. The following hold for © = (a1, as,71), Q@ = (b1, B2, 72) € Aut(A).
(Z) 0! = (O‘éb)aaéé)fh)‘
(ii) ©Q = ()1, ane)B2, 172)-

(ii1) For Q € Aut®(A),
Q° = (a7 Boyour, a3 ' Bo)az, 11 a1

Determining Aut(.A) for a given amalgam requires knowledge of the automorphism
groups of P;, P, and B and information on Hom(P;, P,). The group Aut®(.A) is easier
to deal with then, since we do not need information on the latter set. We now explain
how we can calculate Aut®°(A) via another approach. Let © = («,3,7) € Aut®(A),
so the diagram in Figure 2.2 commutes. We have a(m(B)) = m(v(B)) which implies
a € Nayypy(m(B)). Similarly, we have 8 € Nayy(p,)(m2(B)) and since the diagram
commutes 7 am = = 7, | 7. For any pair (a, 8) € Nawp) (71(B)) X Naug(py) (m2(B))
such that 7, 'am; = 7, ! Bm, we define an automorphism © = (o, 3, ; 'am;) of A. In other

words, we have established an isomorphism:

Aut®(A) = {(a, B) € Naw(p)(m1(B)) X Nauyp)(m2(B)) | artam =yt By}

For the purpose of calculating Aut®(\A) it is beneficial to identify Aut®(A) as above. For

theoretical purposes it may be convenient to revert to the notation given in 2.2.9.
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P P
A B ! B A
P, 0 P,

Figure 2.2: The automorphism of A determined by ©

Definition 2.2.11. A subamalgam of A is characteristic if it is Aut(A)-invariant. We say
that an amalgam B is an eztension of A via © if © : A — B is an amalgam monomorphism

such that ©(.A) is a normal subamalgam of 5.

Given A as above we observe that there are infinitely many extensions of A. Indeed, set
R; = P;xC,,, D = BxC, and define ¢y, ¢ in the obvious way, then B = (Ry, Ry, D, ¢1, ¢2)
is an extension of A (which is not faithful). On the other hand, Theorem 2.2.25 at the
end of this section says that there are finitely many extensions which are faithful and a
(unique) largest such extension exists. Lemma 2.2.4 shows that every faithful amalgam
which is not simple is an extension of a faithful amalgam. Theorem 2.2.25 will allow us
to recover such an amalgam from the normal subamalgam.

Given a group G and only the knowledge that G has a normal subgroup /N of which one
knows the isomorphism type, it is usually a difficult task to determine the isomorphism
type of G, that is, to classify the possible extensions of N. We would like to know how
many of these extensions are central, split, non-split and so forth. If we are given the
additional information that N = F*(G) and that N is a non-abelian simple group, we then
know that G is isomorphic to a subgroup of Aut(/N), so we just have to determine Aut(V)
and amongst the subgroups of Aut(/N) which contain Inn(N') we find the possibilities for
G (and we only have to consider these subgroups up to conjugacy). We aim to obtain a
similar recipe for amalgams. In generality this is not possible of course, but in the class

of faithful amalgams, a similar trick works. First we need to set up some machinery.
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For the remainder of this section we fix an amalgam N = (N, Ny, D, ¢q,¢o). We
transport the automorphisms of N; and Ny which induce automorphisms of D into Aut(N)
as follows. Let Hy = Nauyny)(¢1(D)) and Hy = Nag(wvy) (92(D)) and set H = Hy x H,.
For a € H; we define a map 6;(a) : D — D by 6i(a) : d — ¢; (a(¢s(d))). Then
0; : H; — Aut(D) defined by 6; : @ — 0;(«) is a homomorphism. We set H = 0;(H,).
With this notation we state the amalgam counting lemma of Goldschmidt. This tells us

how many amalgams of a certain type there are, up to isomorphism.

Lemma 2.2.12 (Goldschmidt). The number of isomorphism classes of amalgams of the
same type as N is the number of (Hy, Hy)-double cosets in Aut(D). Moreover if y1,...,vn

are representatives for these double cosets then

{(N1, Na, D, g1, d2vi) | i € [1,n]}

is a complete set of representatives for the isomorphism classes of amalgams of this type

and contains no repetitions.
Proof. See [17, (2.7)]. O

Example 2.2.13. Let a = (1,2,3,4,5), b = (2,5)(3,4), ¢ = (6,7,8,9,10) and d =
(7,10)(8,9) and let P, = (a,b,d), P» = (b,c,d) and B = (b,d) so that P, = Dih(20) = P,
and B = 2%2. Set A = (P, P», B,idp,,idp,). Write x; = b, 19 = d and z3 = bd and view
Aut(B) as Sym(3) acting on subscripts. We see that Hf = ((1,3)) and Hy = ((2,3)).
The three cosets in Aut(B) of Hf are HY, H{(2,3) and H{(1,2) so Hy has two orbits on
the cosets of Hy in Aut(B). Hence there are exactly two amalgams of the same type as
A. The first we have written down above is faithful, the second is given by interchanging
b and d in the embedding of B in Py. The effect of this is that d is central in both P, and

Py, so the second amalgam is not faithful.

We have identified Aut®(N) with {(a,8) € H | 61(«a) = 62(F)}. This gives the
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following presentation of Aut®(N)

At ) — < (07 (1), 05 (1)) | @ € Ciry(62(D)), B € Oy (62(D)), >

(a, 1), (1,8) pe HiNH;

Recall that to determine Aut(N') we require knowledge of the isomorphisms between N;

and No. We give the following example which shows how one can determine Aut(N') after

finding Aut®(N).

Example 2.2.14. Take Ny = ((1,2,3)), Na = ((4,5,6)) and D = 1. Let ¢; : D — N; be
the inclusions and set N' = (N1, Na, D, ¢1, ¢2). We will write automorphisms of Ny and N
and maps between Ny and Ny as permutations. We have Aut(Ny) = ((1,2)), Aut(Ny) =
((4,5)) and, since D = 1, Aut(N;) = Nawny)(0i(D)). We define ©1 = ((1,2),1,1)
and ©y = (1,(4,5),1), which are clearly automorphisms of N'. Moreover Aut®(N) =
(01,09) (since it cannot be larger). Now the permutation x = (1,4)(2,5)(3,6) induces
the automorphism O3 = (z,x,1) ¢ Aut®(N) and (03)* = (1,1,1). Hence Aut(N) =
(01, 0,,03) = Dih(8).

From now on we assume that N is a faithful amalgam.

For i = 1,2 we regard H; as a subgroup of H. We define § : D — H by

6 :d— (c1(P1(d)), ca(92(d)))

where c;(b) is the automorphism of N; defined by a + a® for a, b € N;.

Lemma 2.2.15. The map 0 defined above is a monomorphism. Moreover 0(D) is a

normal subgroup of Aut(N') which is contained in Aut®(N).

Proof. We first check that # is a homomorphism. Let a,b € D and consider 0(a)f(b). Let
a; = ¢;(a) and b; = ¢;(b) for i = 1,2 (so that a1b; = ¢1(ab) and asby = ¢p2(ab)). Then we
find

0(a)0(b) = (c1(ar), ca(az))(c1(br), c2(b2)) = (c1(ar)ci(br), c2(az)ca(b2))
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and since ¢; and ¢; are monomorphisms for i = 1,2, we have 6(a)f(b) = 0(ab). Now
observe that [¢;(ker @), N;] = 1 for i = 1,2. Hence ker = 1 since N is faithful. It is clear
that 0(D) < Aut®(N).

Now let © € Aut(N) and (recalling 2.2.9) write © = (aq, as, 3). We need to show
that 0(a)® € 0(D). Writing 0(a) as a triple we have 8(a) = (¢i(a1), ca(az), cp(a)) (where

¢p : D — Inn(D) is the obvious map). Then Proposition 2.2.10 gives

0(a)® = (o7 'con)(aem))ar, oy cow)(aa@)as, B cp(a))B)

= (ci(ar (aem)), c2(ay ' (ae)), ep(v ™ (a))

Since O~ € Aut(N) the following diagram commutes

041_1

Noeq) Ny
%(1) %
-1
~
D D

hence a; ' (ae1)) = ¢1(77'(a)). Similarly, we obtain a; '(ag)) = ¢2(7 ' (a)) so setting
b=~"1(a) and b; = ¢;(b) for i = 1,2 we obtain §(a)® = (c1(b1), c2(bs), cp(b)) as required.
[

Notation 2.2.16. The inner automorphism group Inn(N') is the image of D under 6. The
outer automorphism Out(N) is the quotient Aut(N')/Inn(N) and we write Out®(N) for

the quotient Aut®(N)/Inn(N).

Example 2.2.17. Continuing with Example 2.2.14, the image of D under 0 is the trivial
subgroup, so trivially is a normal subgroup of Aut(N) and all automorphisms are outer.

Working in a bigger amalgam gives us a better example. Set P, = ((1,2,3),(1,2))
and Py = ((4,5,6),(4,5)) and let B = ((7,8)). Define m by m((7,8)) = (1,2) and my
by mo((7,8)) = (4,5) and set A = (P, Py, B, m,m2). Then identifying Aut(P;) with P,
we have that Inn(A) = (((1,2),(4,5),1)) and (the same as in Example 2.2.14) Aut(A) =
(01,02, 03) we see that Inn(A) = (©102) which is central in Aut(A).
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By the Correspondence Theorem, there is a bijection between the conjugacy classes
of subgroups of Aut(N) which contain Inn(N') and are contained in Aut®(N) and the
conjugacy classes of subgroups of Out(N') which are contained in Out®(N). We now
proceed to show how an extension of N' may be constructed from a subgroup of Aut®(N).

Let R be a subgroup of Aut®(N') which contains 6(D). Writing elements of Aut®(N)
as pairs (aq, an) where oy € H; (identified as a subgroup of H) we have homomorphisms
& 0 H — Aut(N;) defined by & : (ay, ) +— ;. Restricting these maps to R we
set U; = N; x¢, R. We identify N; and R with the subgroups {(n,1) | n € N;} and
{(1,7) | € R} of U, respectively. Define y; : D — U; by d — (¢;(d"),0(d)) and set
C; = (D) for i =1,2.

Lemma 2.2.18. The set C; is a normal subgroup of U;. Moreover, C;NN; =1 =C;NR.

Proof. We first claim that the map p; is an isomorphism, since ¢; is a monomorphism

this will follow once we show that pu; is a homomorphism. Let a, b € D and consider

pi(a)p;(b). We have

pi@)ps(b) = (¢i(a™),0(a))(di(b7),6(b))
= (@i(a ) (b)) 0(a)6(D))

and (bz’(b_l)gi(e(a))_l = ¢i(b_1)¢i(a_1) which gives
$i(a™) (@ (07D = gy(a ) i(a) i (b )pi(a) !

Since ¢; and 6 are homomorphisms then, we see that p; is a homomorphism. In particular,
C; is a subgroup of Us;.
Now let (x,y) € U; and b € D. We need to show p;(b)®¥ € y;(D). Observe that

a8) = = (@ ox(b )2 D, 0(B)) = (8:(67)4 0.

Now let a € Hy and 8 € Hy be such that y = («, 8). Since (o, 8) € Aut®(N) there is b’ €
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D such that ¢;(b') = b* and ¢o(b') = b° we have (b)Y = (c1(b)*, ca(b)?) = (c1(V), ca(V'))
and ¢; (b)) = ¢;((0')~"). Thus 4;(b)™¥ = p; (V') € (D) as required.

For the assertion about intersections, note that every element of N; is written as
(n,1) and so if pu(d) € N; N p;(D) we have 6(d) = 1 which gives d = 1. Similarly, if
p(d) € u;(D) N R then ¢;(d) = 1 whence d = 1. O

By Lemma 2.2.18 we may define the quotient V; = U;/C;. Set p; : N; — V; by
n— (n,1)C;. We let € = (Vi, Vo, R, 1, B2) where f5; : R — V; is defined by r — (1,7)C;.

Lemma 2.2.18 implies that the maps (3; are monomorphisms so £ is an amalgam.
Lemma 2.2.19. The amalgam & is faithful and is an extension of N.

Proof. We claim that the triple © = (py, p2,6) is an amalgam monomorphism © : N' — &
with ©(N) a normal subamalgam of £. It follows from the definition of V; as a quotient
of U; that the diagram in Figure 2.3 commutes. Set M; = p;(N;) and F' = 0(D). We need

to show that the triple (M;, Ms, F') defines a subamalgam of &.

N, P1 Vi
0
N D R &
y \%
N, P2 v,

Figure 2.3: The amalgam monomorphism © : N — &

By construction we have M;5;(R) = V; and M; N B;(R) = p;¢i(D) = B:0(D) = B;(F).
Also M; is a normal subgroup of V;, so ©(N) is indeed a normal subamalgam of £.

Let K < R and assume that (3;(K) is a normal subgroup of V; for ¢ = 1,2. Since
Bi(K) N M; < B;(R) N M; = B,0(D), setting Ky = K NO(D) we see that ¢,0~(Kp) is a

normal subgroup of N; for i = 1,2. Now N is a faithful amalgam so we obtain K, = 1,
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whence §;(K) commutes with M;. Letting (a1, ) € K it follows that n;* = n; for all

n; € N;, and so o; = 1 for 2 = 1,2. Hence K = 1 and we are done. O

Definition 2.2.20. With the notation as above, we write £(N, R) for the amalgam &

constructed in Lemma 2.2.19.

We now show that to find the isomorphism type of an extension such as E(N, R) we
only need to consider the Aut(N)-conjugacy class of subgroups of Aut®(N) to which R

belongs.

Lemma 2.2.21. Let © € Aut(N) and R < Aut®(N). Then E(N, R) is isomorphic to
E(N, RP).

Proof. We view both extensions as subamalgams of £(N, Aut®(N)). Then the result is

obvious. n

Example 2.2.22. Continuing with Example 2.2.14 we have Aut(N) = (O1,0,,03) =
Dih(8) and Aut®(N) = (O, 0,).

Let Ry = (©1), Ry = (03), R3 = (010,), Ry = Aut®(A) and let & = E(A, R;). Then
we see that the types of & are (Sym(3), Cg, Cz), (Cq, Sym(3),Cs), (Sym(3),Sym(3), Cy)
and (Cy x Sym(3), Cy x Sym(3),22). Note that the amalgams & and & are isomorphic,
and that Ry and Ry are conjugate in Aut(A). So in this case, Aut(N) conjugacy just

reminds us that the amalgams (N1, No, D, ¢1, ¢2) and (No, N1, D, ¢, ¢1) are isomorphic.

Fix now a faithful amalgam A = (P, P», B, 1, ) and assume that N is a normal
subamalgam of A (so that N; < P, D < B and ¢; = m|p for i = 1,2). We define
6 : B — Aut(N;) x Aut(N,) by

6 : b (c1(m1(D)), ca(ma(D)))

where the map ¢;(x) : N; — N; is conjugation induced by = € P;.

Lemma 2.2.23. The map 6 is a monomorphism and 6|, = 6. Moreover §(B) is contained

in Aut®(N).
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Proof. Since 0 is a composition of homomorphisms it is itself a homomorphism. Let
b € ker 0, then 7;(b) centralises N; and so 7; (ker 6) is a normal subgroup of P, for i € {1,2},
whence ker = 1. Let d € D, then 8(d) = (¢1(m1(d)), ca(m2(d))) = (c1(d1(d)), ca(2(d))) =
0(d) as required.

Finally, we need to verify that 6(B) is contained in Aut®(N'). This requires
(c1(m1(D)), c2(m2(b))) € Aut®(N)
for all b € B, so we need to verify that the following equality holds:

o1 e (mi(b))d1 = by ea(ma(b)) o

for all b € B. But these maps are both the automorphism of D induced by conjugation

by b, so the result follows. m

Lemma 2.2.23 shows that (D) = 6(D) < 6(B) < Aut’(N). Hence if N is a normal
subamalgam of A then 6§ defines a subgroup of Aut®(A') which contains 6(D). Let us
now drop the assumption that N is a normal subamalgam of A, and assume that A
is an extension of N. Therefore, there is an amalgam monomorphism © : N' — A
such that M := O(N) is a normal subamalgam of A. Then (abusing the language
we have introduced above) A determines a subgroup 8(B) of Aut®(M). Since Aut(M)
and Aut(N) are isomorphic (via ©) the extension A of N determines a subgroup of
Aut(N), but note the dependence on ©. The notation we introduce below highlights this

dependence.

Notation 2.2.24. We write E(N, A, ©) for the subgroup of Aut®(N) defined by a faithful

amalgam A which is an extension of N via ©.

By Lemma 2.2.19 we may construct the amalgam E(N, E(N, A, ©)), and naturally,
we ask if this differs from A. The following theorem answers this question “No”, and so

we conclude that all faithful extensions of N can be “seen” inside Aut(N).
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Theorem 2.2.25 (Extension theorem). The amalgams A and EN, E(N, A, ©)) are iso-

morphic.

Proof. Let © = (ay, as, ). We make two simplifications to the notation so that we will
not need to explicitly refer to ©. First we identify N with ©(N), so that N7, Ny and D are
identified with their images in P;, P, and B respectively. Then the map 0:B — Aut (N)is

defined. Note that our identifications mean that we may write 0(b) = (¢;(m1(b)), ca(m2(b)))
rather than having to write 6(b) = (a7 (Cas vy (m1 (D)) a1, a3 (Can(v) (m2(D))cra)). We ex-
pect therefore that this identification will simplify the following exposition. Now let
R = 6(B), & = EWN,R) and then matching notation with Lemma 2.2.19 we have
E =V, Vo, R, By, 52). We now identify Ny, Ny and D with their images in V;, V5 and R
respectively, that is N; is identified with the subgroup {(n,1)C; | n € N;} of V; and D

is identified with 0(D) = 6(D). We need to find isomorphisms which make the following

diagram commute.

N1 P1 ””””””””” *Vvl
$1
D B-—0(B) =R
y K )
Nl P1 ”””””””” *‘/2

There is an obvious choice for these maps. We have an isomorphism 0 : B — R and
we need to find maps from P; to V; for ¢ = 1,2. Using that P; admits the factorisation
P, = N;m;(B) we define v; : P, — V; by

v = ngmi(b) = (ng, 1)(1,60(0))C;.

53



Note that for b € B we have ~;(m;(b)) = (1,0(b))C; = 5;(0(b)). So with A = (1,72, 6)
the diagram above will commute. To ensure that A is an amalgam isomorphism then we
need to check that the maps ~; and v, are group isomorphisms.

First we will show that ~; is well-defined (since possibly N; N m;(B) = m;(D) is non-
trivial). So for ¢ € {1,2} suppose there are m,n € N; and a,b € B such that nm;(a) =
mm;(b). Then m~'n = m;(ba™') € N; N (B) = ¢;(D) = m;(D). So there is d € D such
that n = ma@;(d) and a = d~'b. Hence

vilnmi(a)) = (mei(d),0(d~'b))C;
= (may(d),0(d"H)0(b))C;
= (m, 1)Ci(i(d), 8(d~")Ci(L, (b)) C;

= (m,1)Ci(¢i((d™")™),0(d))Ci(1,0(b)C;

By the definition of C; we have (¢;((d~)™1),0(d~1))C; = C;, so we see the last equation
is equal to (m, 1)Cy(1,0(b))C; = (m, 8(b))C; = i (mm;(b)).

It is clear that ~; is surjective, so it remains to see that 7; is a monomorphism.
Let z,y € P; and pick m,n and a,b so that + = nm;(a), y = mm(b). Then zy =
nm™ (@ ,(ab). Let m' € N; be such that m’ = m™(™ ") so that zy = nm'm;(ab) and

vi(xy) = (nm/,0(ab))C;. Now it follows from the definition of the semidirect product U;

that

%(@)vily) = (n,0(a))Ci(m, 0(b))C;

s0 7; is a homomorphism. Note that 7; is a monomorphism (this follows from the definition
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of the subgroup C;). We now see A is an amalgam isomorphism A = £ since we observed

above that the diagram below commutes.

AT
D B d R
N X
Ny Va

P V2

\/

O

A question arises from considering Theorem 2.2.25 and Lemma 2.2.21 together. Sup-
pose that A and B are extensions of /, via ©1 and ©, respectively, such that the subgroups
E(N,A,0;) and E(N,B,©,) are conjugate in Aut®(N'), then Lemma 2.2.21 implies that
A = B. On the other hand, if A = B, we have been unable to show in general that
E(N,A,0) and E(N,B,0,) are Aut(N)-conjugate. Under an assumption on the de-
gree of the amalgam, we show in the next section that a converse to Lemma 2.2.21 holds.

A further question is the following. Given an amalgam Sy, for ¢ € N define §; =
E(Si—1, Aut’(S;_1)). Does there exist an n € N for which S, = §,,117 Or is this true
for a certain class of amalgams? This question is motivated by the related problem for
finite groups: If Gy is a finite group with Z(Gy) = 1, for i € N define G; = Aut(G;_1).
Then Wielandt’s Automorphism Tower Theorem says that (up to isomorphism) there
are finitely many groups in the sequence (Gy, G1, G, ... ). Although we expect that the
answer to this question for general amalgams is “no”, we shall prove in the next section

that this holds for amalgams of certain degrees.
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2.3 Edge-transitive groups of automorphisms of trees
The material in this section follows work of Serre [34] and Goldschmidt [17]. We establish
the connection between amalgams and the action of groups on trees.

Definition 2.3.1. A tree is a connected locally finite graph without circuits.

Recall that a graph is locally finite if and only if every vertex has finitely many

neighbours.

Example 2.3.2. In Figure 2.4 we have three trees. The first is non-reqular, the second
is regular of valency two (and the dashed lines indicate it carries on) and the third is

bi-reqular of valency (5, 2).

”'vn,.u“\
SR B B R

A
ot

Figure 2.4: Examples of trees

We will focus on edge-transitive groups of automorphisms of a tree I'. It follows that
I' is bi-regular, if the orbits of such a group are O; and O, there are integers k; and ko
so that every vertex in O; has valency k; (¢ = 1,2). As remarked in the introduction, we
may assume that k; > 3 and ky > 2. In particular, I' has infinitely many vertices. We
write I' = 'y, x, to indicate the valencies of I' (and just T'y, if k1 = kg). The connection

between trees and amalgams is given by the following theorem of Serre.

Theorem 2.3.3. Let X be a graph, {x,y} an edge of X and G an edge-transitive subgroup

of Aut(X). The following are equivalent.
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(i) X is a tree.
(i) G = G(A) where A= (Gy, Gy, Gyy, Ty, ).
Proof. This is Theorem 6 in [34, pg.32]. ]

With G = G(A) the theorem tells us that I'(A, G(A)) = Tk, x, where (ki, k2) is the
degree of the amalgam 4. Our motivation for considering trees is applications to finite

graphs, so we identify the following class of subgroups of Aut(T").

Definition 2.3.4. A subgroup G of Aut(I') is locally finite if for each vertex x of I' we

have |G| < oc.

Note that the group G being locally finite is equivalent to the finiteness of the amalgam
(Gac; Gy; G:cya 7rx> 7Ty)'

Lemma 2.3.5. Suppose that A and B are isomorphic amalgams. Then G(A) = G(B).
Proof. This follows from the universality property of the completions of the amalgams. [

Lemma 2.3.6. Suppose that A = (Py, Py, B, 7, m) and B = (Ry, Re, D, ¢1, ¢2) are finite
amalgams and let G = G(A) and H = G(B). If « : G — H is an isomorphism then
there is g € H such that (a(P1))? = Ry and (a(P))? = Re. In particular, A = B and
Aut(G) = Inn(G)Stabawe) ({ P, P}).

Proof. This follows from [5, Theorem 2.4.4]. ]

From now on we work under the following hypothesis.
Hypothesis: The group G is an edge-transitive locally finite subgroup of A = Aut(T").
We set A = (G, Gy, Gyy, T, ™) where {z,y} is an edge of I.

We wish to establish a dictionary between the local viewpoint and the global approach.

The next two lemmas show that we can detect edge-transitive subgroups locally.

Lemma 2.3.7. Let B be a (normal) subamalgam of A. Then G(B) is a (normal) edge-

transitive subgroup of G.
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Proof. See [34, Proposition 3, page 6]. ]

Lemma 2.3.8. Let H be a (normal) edge-transitive subgroup of G. Then
B = (Hxa Hya H:cha Tz 7Ty)

is a (normal) subamalgam of A.
Proof. See page 8 of [34]. O

Lemma 2.3.9. Suppose that © is an amalgam isomorphism © : A — B and let 6 be the
induced isomorphism 6 : G(A) — G(B). Then there is g € Aut(T") such that 6(h) = h?
for allh € G(A).

Proof. Write © = (ay, a9, ), B = (Ry, Ry, D) and G(B) = H. We have an isomorphism
' 2T(A,G) by Lemma 2.1.6. We define a graph homomorphism

pw:T(AG)—T(B,H)

p: Gyg— H,0(g), p: Gyh— H,0(h)

where a1 (G,) = 0(G,) = H, and as(G,) = 6(G,) = H,. It is easy to check that p is an
isomorphism, thus I'(B, H) is isomorphic to I' also. Let g € Aut(I") be the composition
of these isomorphisms.

Now let h € G(A) and let z be a vertex of I'. Identifying z with H,k for some k € H

and w € {u,v} we have the following for some r € {x,y}
M = (H, k) " = (G,07' (k)" = (G0~ (k)h)? = HukO(h) = 2°™.

It follows that h9(A(h))~! fixes every vertex of I'. Since Aut(I') acts faithfully on I we
have h9 = 0(h) and G(A)Y = G(B). O
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The following theorem captures the equivalence between the local and global view-

points.

Theorem 2.3.10. Let A and B be finite amalgams of degree (ky,ks). The following are

equivalent,
(i) B is isomorphic to A,
(ii) G(B) is isomorphic to G(A),
(111) G(B) and G(A) are Aut(L'y, ,)-conjugate.

Proof. Lemmas 2.3.5 and 2.3.6 show the equivalence of (i) and (ii). Lemma 2.3.9 shows

that (ii) implies (iii) and the reverse implication is immediate. O

The statement of the following lemma can be found in the proof of [17, (2.8)], we

provide more details.

Lemma 2.3.11. Let N = Nawm)(G). There is a canonical isomorphism Ny, ,n —

Aut(A).

Proof. Let g € Ngp,y and let of @ G — (Go)?, a3 : G, — (Gy)9 and of : G,y —
(Gy)? = G4y be the monomorphisms induced by conjugation by g. Clearly the diagram

in Figure 2.5 commutes so ©9 := (o, a§, a9) € Aut(A).

G, d G
Gy J Gy

a, g Gyo
Figure 2.5: The automorphism 0,
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Conversely, if © € Aut(A) then Lemma 2.3.9 gives ¢® € Aut(T') such that G® =
G(A)° = G(O(A)) = G(A), s0 ¢° € Ns(G). Moreover {297, 49"} = {z,y} s0 ¢° € Nizyy-
Let o : Aut(A) = Ny, be given by a : © — ¢© and 8 : Ny, — Aut(A) be given
by B : g — ©9. Then these maps (which are clearly homomorphisms) are inverses of each

other, so we have the desired isomorphism. O

2.4 'Trees of prime valency

In this section, we suppose that GG is an edge-transitive locally finite group of automor-
phisms of the tree I' = T, for some odd prime r. By Theorem 2.3.3, G = G(A) where
A is the amalgam formed by a pair (G, G,) where {z,y} is an edge of I'. Our aim is
to generalise some of the results from [17] which hold under the assumption r = 3 to the
case where r > 3. We will show that every such group is contained in the normaliser
of an edge-transitive subgroup of Aut(I',) which has no proper normal edge-transitive
subgroups. We call these groups simple edge-transitive groups. Then changing to the lo-
cal perspective, we will show precisely how to describe the normaliser and the conjugacy

classes of such groups. Set
7={p€N|p<randp a prime}.

If K is a group which is not necessarily finite, by O™(K) we mean the smallest normal

subgroup of finite index so that K/O™(K) is a m-group.
Lemma 2.4.1. The group G, is a w-group.

Proof. Let g € G, and suppose that g has prime order ¢ with ¢ > r. Since g fixes x and
y, g has acts trivially on A(z) and A(y), so g € el GZ[}]. By connectivity and induction

we see that g fixes every vertex of I'; so g = 1, a contradiction. m

It follows from the degree of A that |G| = 7|G.,| and so 0" (G,) = O™(G,,). Similarly

for G,. In particular, notice that O™ (G,) is generated by the r-subgroups of G, so it
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acts transitively on A(x).
Theorem 2.4.2. Let K = O™(G). Then K is a simple edge-transitive subgroup of G.

Proof. First note that K is an edge-transitive subgroup of G since K, and K, contain
r-elements which act transitively on A(x) and A(y) respectively. Now assume that H is
a normal edge-transitive subgroup of K. Then G = HG,, and the previous lemma shows
that |G : H| is a m-number. Since H is subnormal in G we may apply Lemma 1.3.5 which

yields O"(H) = O™(G) = K and therefore H = K. O
We have the following description of O™(G).

Lemma 2.4.3. Let K = O™(G). Then K = (0" (G,),0"(G,)). Moreover K = G(N)

where N is the normal subamalgam of A generated by the pair (0" (G,), 0" (G,)).

Proof. Set Y = (0" (G,),0"(G,)). Since O (G,) and O" (G,) contain r-elements and
Gy is an r'-group by Lemma 2.4.1, these groups are transitive on A(x) and A(y) respec-
tively. Hence for each z € I there is g € Y such that (without loss of generality) x9 = z.
Now Y > (0" (G,))? = 0" (Gu) = O"(G,), thus Y <1 G. We have Y < K by Lemma
1.2.7 and now the previous theorem gives Y = K as required.

Let NV be the normal subamalgam of A generated by the pair (0" (G,), 0" (G,))
(recall Definition 2.2.6). Then G(N) is a normal subgroup of G(A) = G and is edge-
transitive (reasoning as above). By the previous paragraph, we have G(N) < K and so

Theorem 2.4.2 implies that G(N) = K. O
Notation 2.4.4. We write O" (A) for the normal subamalgam generated by the pair
(07(Ga), 07 (Gy)).

Recalling Proposition 2.2.5, if A = (G, Gy, G4y, T, m,) then letting C = (0" (G,) N
Gay) (07 (G,) N Gyy) we have

/!

0" (A) = (0"(G,)C, 0" (G,)C, C, 7yl mylc)-

We can now establish the converse to Lemma 2.2.21 for amalgams of degree (7, 7).
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Theorem 2.4.5. The amalgam A is an extension of N := OT/(A). Moreover, up to
isomorphism, the number of extensions of N is the number of Aut(N)-conjugacy classes

of subgroups of Aut®(N') which contain Inn(N).

Proof. The first part follows from the previous lemma. For the second part, let B and
C be extensions of N’ by ©p and O respectively. Lemma 2.2.21 shows that B = C if
Ep:=EWN,B,0p) and E¢ := E(N,C,0O¢) are conjugate in E := Aut(N).

We now assume that B = C and we need to show that Fg and F¢ are conjugate in E.
Set Gg = G(B), G = G(C) and G = G(N). After conjugation and using Theorem 2.4.2
we have Gy = O (Gg) = O (H), Gp = Gn(GB)ay and Go = Gn(Ge)yy. Since B is
isomorphic to C there is ¢ € Aut(I") such that G% = G¢, and after composition with
an element of N we may assume that ¢ fixes {z,y} so that ((Gp)sy)? = (G¢)wy. Now
G% = 0" (Gp)? = O"(G%) = 0" (Ge) = Gy so that g € Nawr)(Gy)ey. Identifying g
with its image under the canonical isomorphism of Lemma 2.3.11 we obtain EY, = E¢, as

required. O

2.5 Thompson-Wielandt style theorems

In this section we prove a version of the Thompson-Wielandt theorem. Thompson’s
original theorem [37] implies that for a primitive permutation group G acting on a set €2,
|G : Op(Gy)| is bounded where o € Q. The intended application for the theorem was
the Sims Conjecture (see [7]). A completely reworked proof was given by Wielandt using
subnormality methods, and the theorem is now attributed to both. Many variations of
the theorem have appeared and the focus of these theorems is mostly upon the existence
of a prime p such that F*(G,) = O,(G,). For graph theoretic problems it has been widely
applied, see [16, (2.3)] and more recently [35]. The proof we give is a combination of ideas
from Fan’s proof [14] and from van Bon’s [51].
We work under the following hypothesis.

Hypothesis: I' is a graph on which G acts faithfully and edge-transitively.
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We fix a fundamental edge {z,y}. The diagram below shows the various inclusions of

the subgroups relevant to the statement of Theorem 2.5.1.

G, G,
Gy
Gg:l] G[yl]
GL
G Gy

Theorem 2.5.1 (Thompson-Wielandt). Suppose that the local action at x and y is prim-

itive. Then, up to interchanging x and y, one of the following holds.
(1) There exists a prime p such that all of F*(G,), F*(G,), F*(G,,) are p-groups.
(ii) G =GP and GP = 1.

Recall that the local action at a vertex x by a subgroup H of G, is the permuta-
tion group induced by H acting on A(z), for which we write H2(® . Clearly the proof
of the above theorem will involve considerations of the subgroup G% Note that when-
ever the hypothesis of the following lemma holds we can conclude that statement (ii) of
the Thompson-Wielandt theorem holds. Hence in our proof of the Thompson-Wielandt

theorem, we are done whenever we can apply the following lemma.

Lemma 2.5.2. Let z € T and let {z,w} be an edge of T'. Suppose that the local action at
z is primitive and C’GZ(G,[ZI]) % GY. Then the following hold.

(i) C’GZ(G[ZH) is transitive on A(z).

(i) G% = G2 and G = 1.
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Proof. Since CGZ(G[ZI]) is not contained in G, CGZ(G[Z”)A(Z) is a non-trivial normal sub-
group of G2, Since G£ is primitive we have that Cg_(G) is transitive on A(2)
which gives part (i).

By (i) for each y € A(z) there is g € CGZ(G[Z”) such that w9 = y. Now G}, =
(G[zll]u)g = G[Zﬂ, so we obtain Gy < G2 It follows that G2 = GI. Since G < G we
see that Gl is normalised by (G, CGZ(G[ZI]» which is an edge-transitive subgroup of G,
hence Gl = 1. O

Proof of 2.5.1. We may assume that GE; is non-trivial, otherwise (ii) holds. Our first

claim reduces the problem to considering Fitting subgroups.

(1) E(G,) = E(G,) = E(Gyy) = 1.

Set £, = E(G,), E, = E(G,). Suppose that there is a component K of G, not
contained in G;[,;1 I Since a component centralises a normal subgroup in which it is not
contained, we have CGI(GQ]) £ G and applying Lemma 2.5.2 with 2 = 2 and y = w
shows that (ii) holds. A similar argument applies to G, so we may assume that E(GE }) =
E, and E(Gg[}]) = E, (and note that both are contained in G,,). Suppose that E, £ E,,
so that there is a component K of G, with K £ GLH. Now Theorem 1.3.8 implies that
K, G?[}]] = 1, so we can apply Lemma 2.5.2 to see that (ii) holds. A symmetric argument

applies if E, £ E, so we have that E, = E, = 1. If there is a component K of G, then

Y
K £ G since E, =1, so (K, Gg]] = 1 and again Lemma 2.5.2 shows that (ii) holds. We
may assume therefore that E(G,,) = 1. Hence the claim.

Set m = W(F*(Gg])) = W(F(Gg})), where the last equality follows from (1).

(2) 7(F(G.) = n(F(G.))) = n(F(Gyy)) = n(F(Gy)) = n(F(G,)).

Let X € {G,, Gy, Gz[}]} and suppose that ¢ € 7. If O,(X) = 1 then we must have X =
G and O,(GIYNX = 1 and [04(GY), X] = 1 which allows us to apply Lemma 2.5.2 with
z =y and w = . So we obtain 7 C 7(F(X)). Now if ¢ € 7(F(X)) then O,(X) NG =
implies O,4(X) centralises GY, and Lemma 2.5.2 shows then that (i) holds. Otherwise,

O,(X) N e # 1,50 g € m and m = m(F(X)). This argument now applies to y to deliver
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the claim.
By (2) we see that (i) holds if |7| = 1. Assuming this is not the case then, we
pick distinct primes p,q € 7 and set P, = O (G ) P, =0 ( ) Q. = 0,(G U[cl]) and

Q,=0 (G ) Our assumption implies that these are all non-trivial groups.

(3) PP £1£Q.NQ,
Observe [P, G 1]] <P,NnGY =prn P,. Now P, is non-trivial, therefore P, N P, =1

would allow us to apply Lemma 2.5.2 with z = y and w = x, hence the claim.

(4) After swapping x and y if necessary, O,(G,) = Q, and O,(G,y) = P,. Moreover
Q, £ GY and P, £ GJ)'.

Note that Q,Q, < O4(G,y), hence if O, (Gy,) < G and Oy(Gyy) < G} then we have
Q) = @, and therefore (), = 1, which is against our assumption. Hence we may assume
that Oy(Gay) £ G If O,(Gyy) y G} also, then we would see that P, N P, is centralised
by ({Og(Gay)9), (Og(Guy))), which is against (3). Hence the claim holds for . Arguing
similarly, we have that at most one of O,(Gyy) £ G or Op(Gay) £ G holds. Assume
the former and set Ly = (Oy(G4y)9*), Ly = (0,(Gyy)°*), then L; normalises Oq(G;[,};) and
Oq(G ) since GL; is subnormal in the conjugates of O (G, ), and similarly L, normalises
or(GE)) and OP(GI). Tt follows that O¢(GY)) = 1 and OP(GP) = 1 whence G
Also we have that O7(GL}) < G and OP(GL)) < G which implies GI}/GE is both a
p- and a ¢-group, and therefore Ggl@], = G Thus (ii) holds. We can therefore conclude
that O,(G,y) £ Gl and this proves the claim.

Now set L = (O,(G.y)%) and note that L is transitive on A(z). Now L normalises
Oq(GZ[,Q]) so this implies GLQ] is a g-group. On the other hand, (4) implies that P, < P,
so B, < GE&. Since P, is normal in G, we have P, < GZ[JQ] and therefore P, = 1, a

contradiction which completes the proof. O]

Remark 2.5.3. The prime p asserted to exist by the Thompson-Wielandt theorem can-
not be guessed without further knowledge. We will see that the shape of G,/ GY and

knowledge of the prime divisors of |G| allows us to determine p in some applications.
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Note that if one of G& or GLQ} is trivial then we have succeeded in bounding the order
of G, and G,. In some applications this is sufficient, for example, verifying the Sims
Conjecture (see [7]). If one wants to determine the structure of G, and G, (as we will
need to do in the later sections) we shall require more information in the GE =1 case.

For the arc-transitive case we have the following corollary.

Corollary 2.5.4. Suppose the hypothesis of Theorem 2.5.1 holds and that G acts arc-

transitively on I'. Then one of the following holds:
(1) there exists a prime p such that F*(Gy), F*(Gayy) and F*(Gyy) are all p-groups,
(i) G =1.

Proof. If conclusion (ii) of Theorem 2.5.1 holds and G is arc-transitive, then we have
|G:[BZ]| = |G£,2}| = 1 and so G,[El?l = 1. Suppose that conclusion (i) of Theorem 2.5.1 holds
and note that since |G, : Gay| = 2, every component of G,y lies in G, and is therefore
trivial. Let ¢ be a prime distinct from p. If Oy(Gyyy) < Goy We are done, so we may
assume ¢ = 2. Now p is odd and Oy(Gy,,y) centralises F*(Gyy), 50 Oa(Gpyy) N Gay = 1
and O(Gys,yy) centralises G, It follows that G =G =1 and so (ii) holds. O
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CHAPTER 3

SYMMETRIC GRAPHS OF VALENCY FIVE

We begin by setting I' = I'5 (the regular tree of valency five) and we let G be a lo-
cally finite subgroup of Aut(T') such that T' is G-symmetric. We fix an edge {x,y}
of I' and we aim to determine the isomorphism type of the finite faithful amalgam
A = (G4, Gy, Gay, 1, m2) which has degree (5,2) (recall that G = G(A). We prove

the following theorem.

Theorem 3.0.5. Up to isomorphism, there are exactly twenty-five finite faithful amalgams
of degree (5,2). FEach is the unique faithful amalgam of its type. The types of the amalgams

are listed in Table 3.1.

The work of Weiss [54] and Zhou, Feng [55] is a contribution to the proof of Theo-
rem 3.0.5 which was included in the author’s MPhil(Qual) thesis [26]. Since that work
was completed [19] has appeared. Thus the isomorphism type of the group G, in the
amalgam A is known. The isomorphism types of the group Gy, ,; and the amalgam A
have not yet been determined, therefore we concentrate on the identification of the edge

stabilisers and the classification of the amalgam A.

Remark 3.0.6 (On Table 3.1). Let (P;, P) be one of the pairs in Table 3.1. One can easily
check there is a unique conjugacy class of index five subgroups in P, let B be one of these
subgroups. In P, there is a unique Aut(FP,)-conjugacy class of subgroups isomorphic to B.
Thus the pair (P;, P») does indeed determine the type of an amalgam. For each amalgam

we have provided a sample finite completion GG. In Section 3.3 we prove that the group
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Amalgam ‘ P Py G ‘ s
Q% Cs Co C51Cs 1
o’ Dih(10) 2 Alt(5) 1
[0 Dih(10) C, Alt(6) 1
of Dih(20) Dik(8) PSL,(11):2 |1
o} Frob(20) Cy x Cy Sym(6) 2
o3 Frob(20) Cyg My, 2
o Frob(20) Dih(8) Sym(5) 2
Q% FI‘Ob(QO) Qg M10 2
Q5 Frob(20) x C Nig Sym(9) 2
o5 Frob(20) x Cy Mg Aut(Alt(6)) | 2

! Alt(5) Sym(4) Alt(6) 2
o5 Alt(5) Alt(4) x Cy Sym(6) 2
Q) Sym(5) Sym(4) x Cy Sym(6) 2
o) Frob(20) x Cy4 C4 Gy Sym(9) 3
o3 Alt(5) x Alt(4) Alt(4) 1 Cy Alt(9) 3
o3 Sym(5) ASym(4) Ly Alt(9) 3
Q3 Sym(5) ASym(4) Ly Sym(9) 3
Q3 Sym(5) x Sym(4) Sym(4) 1 Cy Sym(9) 3
o 21 Alt(5) 21%2: Sym(3) PSL3(4).(g) |4
o1 24 Alt(5) 24%2: Gy PSL3(4).(gf) | 4
o3 2% Sym(5) 247211 Sym(3) PSL3(4).(f,g) | 4
o 211 (Alt(5) x C3) (2472: C3) : Sym(3) PGL3(4).{(g) |4
Q3 211 (Alt(5) x C3) (21721 C3) : C PGL3(4).(gf) | 4
o) 2% Sym(5) A Sym(3) 2472 . Sym(3)* Aut(PSLy4(4)) | 4
o | 20 Sym(5) ASym(3) | (29 : (Alt(4) x C3)) : C4 | Aut(Spy(4)) |5

Table 3.1: The types of finite, faithful amalgams of degree (5,2)

G is indeed a finite completion of the amalgam. The group Mg is the modular group of

order sixteen with presentation (u,v | u® = 1,0* = 1,u" = u®). The group Nig is the

subgroup ((1,2,3,4)(5,6,7,8), (5,7)(6,8), (1,5)(2,6)(3,7)(4,8)) of Sym(8). By L; and

Ly we denote the groups
Ly =((1,2,3),(2,3,4),(5,6,7),(6,7,8),(1,2)(5,6), (1,5)(2,6)(3,7)(4,8)),
Ly =((1,2,3),(2,3,4),(5,6,7),(6,7,8),(1,6,2,5)(3,7)(4,8)),

which are both extensions of Alt(4) x Alt(4).

68



3.1 Edge stabilisers

In this section we aim to classify the isomorphism type of the group Gy,,; and the
amalgam A. As remarked in the introduction, I' is (G, s)-transitive for some s < 5. If
s > 4 then [54] determines A up to isomorphism and we have A € {Q},..., 9%, O}, The
amalgams Q}-QS are visible in the group Aut(PSL3(4)) which acts on the generalised
triangle associated to PSL3(4). In Table 3.1 we have indicated which extension each
amalgam is visible in, where g and f are graph and field automorphisms respectively. The
amalgam Q3 is visible in Aut(Sp4(4)) which acts on the generalised quadrangle associated
to Sp,(4). We now turn to the case 1 < s < 3. The following two theorems are [55,

Theorem 4.1] and [19, Theorem 1.1] respectively.

Theorem 3.1.1. Suppose that G, is soluble and 1 < s < 3. Then G, is isomorphic
to one of Cs, Dih(10), Dih(20) if s = 1, one of Frob(20), Frob(20) x Cy if s = 2 or
Frob(20) x Cy if s = 3.

Theorem 3.1.2. Suppose that G, is insoluble and 1 < s < 3. Then s > 2 and G, is iso-
morphic to one of Alt(5) or Sym(5) if s = 2 and one of Alt(5) x Alt(4), Sym(4) ASym(5)
or Sym(5) x Sym(4) if s = 3.

Recalling Corollary 2.5.4 we know that the group GLl:L], is a p-group for some prime p
(the first proof of this fact seems to be [16, (2.3)]). For the small values of s under current

consideration, it is in fact trivial.

Proposition 3.1.3. Suppose that 1 < s < 3. Then GQZ], =1, GY ~ GQ}GE]/GLH <
Gay/GY and [GY G = 1.

Proof. The first assertion is contained in the proofs of [55, Theorem 4.1] and [19, Theorem

1.1]. The remaining assertions follow by a homomorphism theorem, the normality of el

and Gz[,l] in G, and the definition of GQQ. O

Recall that the kernel of the action of GG, on the vertices adjacent to z is the core in

G, of Gy. Since there is a unique class of index five subgroups, the group G s uniquely
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determined by Theorems 3.1.1 and 3.1.2.

Lemma 3.1.4. Suppose that GY) = 1. Then A has the same type as one of Q!- 3
Q3-91 or QI-0.

Proof. We use the fact that G, is uniquely determined by G, and we consider each of
the groups of order 2|G,,| which has a subgroup isomorphic to G,,. Each turns out to

be a candidate. ]
From now on we may assume that Gl # 1.

Lemma 3.1.5. Suppose that G, = Dih(20). Then Gy, 4,y = Dih(8) and A has the same

type as Q.

Proof. As G, = Dih(20) we see G has order 2 and Guy = 2%, Then Gy, is a non-
abelian group of order 8 with an elementary abelian subgroup of order 4. It follows that

Gayy = Dih(8). O

In the next lemma we find the relevant edge stabilisers have order sixteen. Recall
the definitions of M and Nyg from Remark 3.0.6. Observe that Nyg has a central cyclic

subgroup of order 4, modulo which it is elementary abelian of order 4.

Lemma 3.1.6. Suppose that G, = Frob(20) x Cy. Then Gy = Mig or Gghy = Nyg

and A has the same type as Q3 or Q5.

Proof. We have G, = C4 x Cy, fix notation G,, = (h, j) where h has order 4 and j has
order 2. Additionally, we may assume that (j) = G and (h?j) = Gg[}] since j is not a
square in Gy,. We know there is t € G,y such that j* = h?j, and we choose such a ¢
with order as small as possible. If ¢ has order 2, then we find that G, ) = Ny, otherwise
t has order 4 or 8. If ¢ has order 8, then (after changing notation if necessary) we have
t* = h and so j' = h?j = t*j implies that ¢/ = ¢° and we see Gy = M. It remains to
see that ¢ cannot have order 4.

There are exactly two cyclic subgroups of order 4 in G,, and these are generated by

h and hj respectively. We claim that ¢ centralises one of these subgroups. First assume
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that h* = hj or h* = h®j. Then t> € G,,, so h'" = h. On the other hand, both of h* = hj
and h' = h3j imply that h* = k3, whence h = h®, a contradiction. Hence either hf = h,
in which case t centralises (h) or h* = h3. Then we find that (hj)! = h3h%j = hj, so
t centralises (hj). In both cases, we find an element of order 4, k say, in G, which is
centralised by ¢. Hence t* = k? and so (tk)? = 1, but tk ¢ G,,, and this contradicts our

choice of ¢t with minimal order. Il

Lemma 3.1.7. Suppose that G = Frob(20) x Cy4. Then G,y = C42Cy and A has the

same type as Qé.

Proof. Since Gg}] = Cy, we have Gy = GE] GLI] = Oy x Cy. Choose q € G,y of least order
such that ¢ ¢ G, we claim ¢ has order 2. Writing Gl = (a), set b= a4, then Gz[,l] = (b)
and (a’)? = b for i € N. Since Gy, y is non-abelian, it follows that Z(Gy,,) = (ab). Now
¢* € G, which is abelian, so ¢* € Z(G,,y). If ¢ = 1 we are done. Suppose first that
¢* = a®V?. Then (qab)? = 1, and qab ¢ G, since ¢ ¢ G, this contradicts our choice of q.
Similarly, if ¢> = ab or ¢*> = a3b?, we find that ¢b3, respectively, ¢b, are involutions, and do

not lie in G,,,. Thus we may assume ¢ is an involution, and therefore Gy, ,, = C11Cy. [
From now on we may assume G,/ G is insoluble.

Lemma 3.1.8. We have Cq,, ,, (GY'GY) = Ca,, (GY'GY) = Co, (GHGY) = z(GYGY)).

Moreover, Gy, acts faithfully on GL}]GE] by conjugation.

Proof. Set C, = Cg Gl ]Gg[}]) and C, = CGZ(GE}GLH). The first equality will follow

an (
once we have shown C, < G,. If this were not the case, then C. acts transitively on
{z,y}. Also we see that [C’e,G;[,;l]] < [C’E,GQ]GZ[}}] = 1, hence GY is a normal subgroup
of (G, C,), which acts transitively on V(I'). It follows that G = 1, a contradiction.
Now Z(GE} Gg[,l]) < C, < (), so it remains to see that the latter subgroup is contained in
GG Since G, /G = Alt(5) or G,/GY = Sym(5), we see that normal subgroups of
Gay/ GY contain their centralisers in G, / GY, therefore

CxGE]/GLﬂ <C ol (GE]GE}/GL}]) < G:[BI]G:E}]/GJ[BI]

Ga/
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and so C, < (JajG;[L«1 ] < G;[,;1 ]GE] as required. The second assertion of the lemma now
follows from the isomorphisms GL Alt(4) or Gl = Sym(4) which follow from Theorem

3.1.2. U

We define A = Aut(GE}GE]) = Sym(4) ! Cy. This isomorphism follows from the
observation that there are exactly two normal subgroups isomorphic to Alt(4) in el ]Gz[}]-
Lemma 3.1.8 allows us to identify Gy,,; with a subgroup of A. Note that O?(A) =
Alt(4) x Alt(4) and by Lemma 3.1.8 02(4) < GHGY. Thus we see G,y /0%(A) in the

quotient A/O%*(A) = Dih(8). We use these observations below.

Lemma 3.1.9. Suppose that G, = Alt(5) x Alt(4). Then Gy, .y = Alt(4)1Cy and A has

the same type as Q3.

Proof. Theorem 3.1.2 gives GIJ 22 Alt(4). Now Gay = GG = Alt(4) x Alt(4). Since
G and GL” are conjugate in G, 4y, inspecting the possibilities for G, in A we must

have G{x7y} = Alt(4) 2 C,. ]

Lemma 3.1.10. Suppose that G, = Sym(5) x Sym(4). Then G, = Sym(4) 1 Cy and

A has the same type as Q3.
Proof. We have G, = GQ]GE] = Sym(4) x Sym(4) and so Gz, = Aut(Gyy). O

Finally, we have to deal with the possibility that G,/GY = Sym(5) and GH = Alt(4).
There are two types of amalgam which have this property.

For the final possibility for the shape of G, there are two different possibilities for
G(a,yy- These groups differ in the isomorphism type of Gy, 43/ el GE}], which has order 4,
but is either cyclic or elementary abelian. Recall the definitions of the groups L; and Lo

from Remark 3.0.6.

Lemma 3.1.11. Suppose that GI/G;[EI] =~ Sym(5) and Gl = Alt(4). Then Gy, is

isomorphic to one of Ly or Ly and A has the same type as one of Q3 or Qs.

Proof. Comparing orders, we see that |Gy, : GQ]GEH = 4. By Lemma 3.1.8 and the

remarks following, Gy, ,) can be identified with a subgroup of index two in A which
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contains the characteristic subgroup O?(A). There are precisely three of these, L; and Ly
above and L3 = Sym(4) x Sym(4). Identifying G with its image in A we see Gl 4 Ls,

so we must have Gy, 4 = Ly or Gy = Lo. O

Note that so far, even though we have shown that the amalgam A has the same type
as one of the amalgams in Table 3.1, we have not determined how many isomorphism

classes of amalgam of each type there are. This problem is addressed in the next section.

3.2 Uniqueness and presentations

The aim of this section is to verify that each of the finite faithful amalgams of degree
(5,2) is unique. We will use the notation established in Section 2.2. For an amalgam
A = (P, Py, B, 7y, m) we have H; = Ny (p,)(m:(B)) and H; is the image of this group in
Aut(B) (under the image H; — H;/Cawp,)(m(B))). Goldschmidt’s amalgam counting
lemma (Lemma 2.2.12) then says that the number of amalgams with the same type as .4

is the number of (Hy, Hj)-double cosets in Aut(B).

Lemma 3.2.1. There is a unique class of amalgams of type Q7 for (i, ) in the set {(1,1),

(1,2), (1,3), (2,1), (2,2), (2,3), (2,4)}.

Proof. 1f i = 1 then there is nothing to prove since Aut(B) = 1. For the remaining
amalgams Aut(B) = C,. Inspecting Aut(F») we find an element which inverts B in all

cases, so we are done. O]

Lemma 3.2.2. There are two isomorphism classes of amalgams of type Qf and precisely

one is faithful.

Proof. We see that Aut(B) = Sym(3). After choosing a labelling, one finds that H; is the
subgroup ((1,2)) and that H; = ((2,3)). Hence there are two (H;, H}) double cosets in
Aut(B). For both of these amalgams we have Z(P;)Z(P,) < B, but the faithful amalgam
has Z(P,) N Z(P,) = 1, and the non-faithful amalgam has Z(P,) = Z(P,). O
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Lemma 3.2.3. There is a unique class of amalgams of types Q3 and QS respectively.

Proof. We write B = (x,y) where x has order 4 and y has order 2, and consider the
action of the groups Aut(B), Nau(p)(B) and Nayyp,)(B) on Q@ = {z, 27, zy, 2 'y}, the
elements of order 4 in B. Since Aut(B) = Dih(8) acts faithfully on Q we may write
elements of H; and Hj as permutations of {1,2, 3,4} (acting on subscripts after labelling
T =1z, 19 =x ', 13 = xy, 14, = x 'y). In both cases we see Hi = ((1,3)(2,4)) and H}

contains the subgroup ((1,2)(3,4), (3,4)). Hence Aut(B) = H{Hj, so by the Goldschmidt

Lemma there is a unique class of amalgams. O
Lemma 3.2.4. There is a unique class of amalgams of type Qé with j € {7,8,9}.

Proof. Observe that Aut(B) = Sym(4) for each of these amalgams. Now Cayyp)(B) =1
and Nayyp)(B) = Sym(4), thus we find Aut(B) = Hf. It follows that there is a unique

class of amalgams. O]

Lemma 3.2.5. There are three isomorphism classes of amalgams of type Q3 and precisely

one is faithful.

Proof. We identify Aut(B) with the group GLy(Z/47). Using generators for the group
Aut(P;) = Frob(20) x Dih(8) and Aut(P,) = Dih(8) : 22, we find that H; = Dih(8) and

Hj = 23 and these groups are generated by the matrices

10 11 30 01 2 1
Hik: Y 7H;: Y ) °
03 0 1 03 10 1 2

Either by hand or with the aid of MAGMA or GAP one can verify that there are three
(H7, Hy) double cosets in Aut(B), and so there are three isomorphism classes of amalgams
with this type. In Example 2.2.8 we constructed three pairwise non-isomorphic amalgams

of this type and precisely one is faithful. O

Lemma 3.2.6. Let A be an amalgam of type Q‘Z with i = 3 and j = 2,3,4,5. Then A is

the unique amalgam of this type.
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Proof. 1t is clear that Aut(P;) = Sym(5) x Sym(4) and Aut(F,) = Sym(4) ¢ Cs for each
of the amalgams. Then the image of Nayyp)(B) in Aut(B) is the subgroup isomorphic
to Sym(4) x Sym(4). Since there is an inner automorphism of P, which normalises B and
swaps the factors, the image of this element in Aut(B) lies outside the Sym(4) x Sym(4)
subgroup. Hence Aut(B) = H{H;, so there is a unique amalgam of these types by the
Goldschmidt Lemma. O

In Table 3.2 we give presentations of the universal completions of the finite faithful
amalgams of degree (5,2). These presentations have the advantage that vertex and edge
stabilisers are relatively easy to identify. The presentations are perhaps not the most
efficient for computational purposes, however using the Simplify command in MAGMA
on these presentations returns the presentation unchanged, so the presentations are sat-
isfactory. The presentations will be available for download at [25].

For the final seven completions, we know that the universal completion satisfies one
of the nine presentations Rj 4y, R4, R§?4}+, Réi}q Réﬁ}+7 Réﬁ,, Réﬁi}, Rgﬁﬁ}, Rs5 due
to Weiss [54, Theorem (1.1)]. We have presented them here in an “uncompressed” form
so that the number of amalgams is clear, and to underline the point that the two pairs
of amalgams defined by the presentations Rg{)i}i and Réﬁi} are isomorphic (so to abuse
notation and language, we are saying Réi} = Réi}_ and Réﬁ’i} = Réf;"z}). We prove this

below.

Lemma 3.2.7. Suppose that X and X' are groups defined by the presentations Réf]4}+ and

Réi}; respectively. Then X = X'.
Suppose that Y and Y’ are groups defined by the presentations Réﬁ’i} and R{Q‘i} re-

spectively. ThenY =Y,

Proof. Since all the groups are defined by their presentations, we will show that X and
X’ admit the same presentation, and similarly for ¥ and Y’. From [54] we have that
X = {a,e,c,g). Since g = 1, {ag,e,c,g) = X. It is easy to check that the relations in

the subgroup (ag, e, ¢, g) are those that hold in X".
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Type \ Generators \ Relations

Qi |a,b a’, b?

Q? |a, b c a’, b*, ¢, (ac)?, (be)?

Q! |a,b a’, b*, (b*a)?

Qf |abc a’, bt 2, (be)?, (ab?)?, [a, ]

Qi |a b c a’, b*, c*, aa?, [b, ]

Q |ab as, b8, a¥ad

95 |abc a’, b?, ct, aca®, (cb)?

Q5 |abc a®, b1, ¢t aa?, cbe

Q5 |a b cd a’, b2, &t d?, aca®, [a,d], [b,d], [e,d], d°c*d

Q5 |abc as, b8, 2, a¥ a3, b, a, c]

Q) |abcd a®, b?, 3, d°, (de)?, (da)?, c*c2d, (bc)?, blbe

Q5 |a b cd ad, v?, 3, d3, (de)?, (da)?, c*c*d, [b, ], [b,d]

Q) |a b cd a’, b*, ct, d?, (cd)?, [b,cl, [b,d], a*cad

o labc a’, b?, c*, aca?’, [a,cb], c, ]

Q2 |a,b,c de, 3 b2 3, d3 e (fe)2, le,cl, [f, ], e, d], | f,d], (dc)?,
f [7 al, [f, ],( ) “c*d, e, f°d

Q3 |abcdoe | d e g (gf) [f. el lg.cl, [f.d], [g,d], (dc)?,
f. g ng,ngé)(zjf%ecea f.al. [g.a], (ad)?, ce®, b2,

&, g?d°, (e

Q3 |a,bcde |3 d e f3 (de)?, [c,el, [del, [c, f], |d, f], ( e)?, b,
f e’ df°, ec’, d’ef?, a®, [c,d], [d, a], (af)?, [0, q]

Q3 |a,bcde |t d% et f2 (cd)?, (ef)?, [c e, [c, fl, [d,e], [ fl, @®
f adcad, [a, €], [a, f], b2, e, d°f

Table 3.2: Presentations for the universal completions of finite faithful (5,2) amalgams
with s < 3.

Similarly we have Y = (a,e,c,g, f). Then Y = (ag,e,c,g, f') and it is again a
routine exercise to verify that the relations in the subgroup just constructed are those

that hold in Y. O

The universal completions for the amalgams Q}-QS are generated by elements a, e,

¢, f and g. For i € Z we define e; := a’epa™ and t = egeseg. The universal completion

)

of the amalgam Q} is generated by elements a, ey and ¢, and as before set e; := a’ega™

We also define t := egeqeq, f:= aca™' and g = (ta)?.
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Type \ Generators \ Relations

Q}L a, €g, € 637037(6063)37 tCt_lcv (600)37 (06063)57 tat_laa [60761]7
[eo, cerc™], [eo, ealer, [eo, ceac™ e ere, aca™ e
Q?L a, €, C 6(2J7 037 (6063)37 tCt_IC, (606)37 (66063>57 tat_laa [60761]7

[eo, cerc™], [eo, ealer, [eo, ceac™ e tee, [a, ]

93 la,en,c, [ | e, &3 2, (ee3)®, tet7le, (eoc)®, (cepes)’, tat'a,
[eo, e1], [eo, ceic™], [eq, ealer, [eo, ceac™ e e, [c,al,
e, f1. [e. f], af(cfa)”

Q1 |a, e, ¢, [ | ek 3 f3 (eoe3)?, tet e, (eoc)?, (cepes)®, tat™ta, [eq, e1],
[eg, cerc™], eo, ealer, [eo, ceac™ e tere, aca™te, [c, f],
le, f], afa”'fe!

Q5 |a,en,c,g |ed P g% (epes)?, tet e, (egc)?, (ceges)®, tat™ta, [eg, e1],
o, cerc™ ], [eo, ealer, [eo, ceac™ e ere, [a,c], [eo, gl,

[a, g], gege
Q% |a,en, c f,] ek &3 g% 3 (eoe3)?, tet e, (eoc)?, (cepes)?, tat'a,
g leo, e1], [eo, cerc™], eo, esler, [eo, ceac™ e e, [c,al,
[607g]7 [CL?g]a gcge, gfgf7 [07 f]? [67 f]> af(cfa)_l
O |a,ec A3, e, (eoeq)?, tet e, g%, [eo, 9], |a, g], ¢, (eoc)?, [ez, ],

(06064)5a e, f], af(cf@)fl, leo, e1], [€o, €2, [eo, es]eaeq

Table 3.3: Presentations for the universal completions of finite faithful (5,2) amalgams
with s > 4.

3.3 Finite Completions

In this section we provide examples of finite faithful completions for finite faithful amal-
gams of degree (5,2). We deal with the cases where s < 3. For the bigger values of s, we
have indicated in Table 3.1 how completions can be obtained in the groups Aut(PSL3(4))
and Aut(Sp,(4)). For the remaining amalgams, our target for completions are also almost
simple groups. Our reasoning for this is the following. If K is an almost simple group
with two proper subgroups M and N such that K = (M, N) and M NN < F*(K), then
the amalgam A = (M, N, M NN, iy, iy) is faithful since F*(K') has no non-trivial proper
normal subgroups and K is a faithful completion of A. Since there is a unique faithful
amalgam of each type Q{ if we can show that an almost simple group exhibits an amalgam
of type Q? , then this amalgam is the faithful one, and hence the group K is a completion.

The amalgam Q! has as a finite completion any group generated by an involution and

an element of order five. Thus G = C51Cy is indeed a finite completion of Q1. The graph
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I'(A, G) is isomorphic to the complete bipartite graph K 5. For the amalgam Qj3, consider
P =((1,2,3,4,5),(2,3,5,4)) = Frob(20) and ((2,3,5,4), (3,4)) = Dih(8). Then (P, P»)
contains a 5-cycle and a transposition, so (P, P,) = Sym(5) is a finite completion for the
amalgam Q3. Now P, contains a subgroup of index 2 isomorphic to Dih(10). In P there
is a subgroup of index 2 which is isomorphic to 2% and does not normalise Os(P;). The
intersection of these two subgroups has order two, thus we see that Alt(5) is a completion
for the amalgam of type Q3.

The group Aut(Alt(6)) provides us with completions for seven of our amalgams.
For the amalgams Q3 and Q}, this is readily seen by considering the subgroups P, =
((1,2,3,4,5), (1,2)(3,5)) and P» = ((1,3,2,5)(4,6)), and then in Sym(6) considering
Py ={((1,2,3,4,5), (1,3,2,5)) and Py = ((1,3,2,5), (4,6)). We see then that only a
point stabiliser contains P and P; in Alt(6) and Sym(6) respectively, so Alt(6) = (Py, P»)
and Sym(6) = (P;, Py). Appealing now to the non-split extension of Alt(6) by a cyclic
group of order 2, which is isomorphic to Mg, we see two maximal subgroups isomorphic
to Frob(20) and 3% : Qg. Choosing appropriate conjugacy class representatives, we obtain
groups isomorphic to Frob(20) and Qg which intersect in a subgroup isomorphic to Cy.
It follows that My, is a faithful completion of our amalgam Qi. Finally, we consider
the full automorphism group of Alt(6) which is isomorphic to PI'L,(9) and is a non-split
extension of Alt(6) by 22. Here, our subgroup isomorphic to Frob(20) becomes a group
isomorphic to Frob(20) x 2, and in the maximal subgroup of size 2°, we find an index two
subgroup which we denote by My with isomorphism shape (Cy x Cy).Cy. Again, we may
choose representatives of the conjugacy classes so that these groups intersect in a group
isomorphic to C4 x Cy, which gives us PT'Ly(9) as a faithful completion of our amalgam
Q.

Turning now to the amalgams Q3-QJ we choose Py = Stabaye)(1l) = Alt(5) and
P, = Stabaie)({1,2}) = Sym(4). Then P, N P, = Alt(4) and Alt(6) = (P, P).
Hence Alt(6) is a faithful completion of the amalgam QJ. We see that Sym(6) =

(Nsym(6)(P1); Nsym(6)(P2)), Nsym(e)(P1) = Sym(5) and Ngym)(FP2) = Sym(4) x Cy. Hence
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Sym(6) is a completion of the Q) amalgam. There is a unique subgroup P, < Pj <
Nsym()(F2) such that Py = Alt(4) x C,. Setting Pf = P;(Ngym)(P1) N P5) we have
Pl = Alt(5) and Py N Py = Alt(4). Since Py contains transpositions, we have that
(P;, Py) = Sym(6) so that Sym(6) is a completion for the amalgam Q5. For the amalgam

1, we consult the ATLAS [9, pg.7] to see that PSLy(11) : 2 has a maximal subgroup
isomorphic to Dih(20). We may choose representatives H and K of this conjugacy class
which are interchanged by the outer automorphism of order 2, and thus obtain a subgroup
L generated by H N K and the outer automorphism. Then L = Dih(8), and since H is
maximal, PSLy(11) : 2 is generated by H and L. Thus PSLy(11) : 2 is a finite faithful
completion of the amalgam Qf.

The Mathieu group M;; appears for us as a completion of our amalgam Q3. Inside
the maximal subgroups isomorphic to either Sym(5) or My, we see a subgroup which
we will call A; isomorphic to Frob(20). Choosing an element € A; of order 4, we let
Ay = Cypy, (2). The character table of Mj; shows us that |As| = 8, and since all elements
of order 4 in M;; are conjugate, and there are elements of order 8, A, is cyclic of order
8 (and A; N Ay = Cy). Suppose now that G = (A1, Ay) # My; and let N be a maximal
subgroup containing GG. Then 40 | |N|, and so N = Mjy or N = Sym(5). The second of
these is clearly impossible, and so possibly N = M;,. Now the derived subgroup of My,
has index 2 and is isomorphic to Alt(6), thus the unique subgroup in As of index 2 lies
in Alt(6). But the element of order 5 in A; must also lie in the derived subgroup, and
so this implies that Alt(6) contains a subgroup isomorphic to Frob(20), which is not the
case. Hence G = My;, and G is a completion of an amalgam of type Q3.

For the amalgams Q3, Q3-Q3 we claim that either Alt(9) or Sym(9) is a completion. In
G = Sym(9), let A; be the natural embedding of Sym(5) x Sym(4) viewed as the stabiliser
of the partition {{1,2,3,4,5},{6,7,8,9}}. Now take Ay to be the normaliser in G of the
stabiliser in A; of the point 1, then Ay = Sym(4) ! Cy, and B := A; N Ay = Sym(4)? and
|A1/B| =5, |Ay/B| = 2. Since A; is a maximal subgroup of G, we see that G = (A4;, Aj),
and since Alt(9) is simple (and Alt(9) £ B) we see that the triple (A;, Ay, B), together
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with the embeddings of B in A; and As, is a faithful amalgam of degree (5,2) which is
our amalgam Q3. Now A; and A, contain some obvious subgroups which give us our
amalgams listed at the beginning of this paragraph, and aside from the cases Q2 and Q3
where we dip into Alt(9), Sym(9) is a completion for these amalgams too. This is easy
to check, and simply requires knowledge of the maximal subgroups of Sym(9) and Alt(9),

which are delivered by the ATLAS [9].

80



CHAPTER 4

SEMISYMMETRIC GRAPHS OF VALENCY FIVE

In this chapter we focus on semisymmetric graphs of valency five and we aim to describe
the resulting amalgams. As we have seen, this is equivalent to classifying the finite
faithful amalgams of degree (5,5). Using Theorem 2.2.25 it is enough to classify the simple
amalgams, this we do in Sections 4.4-4.6. In Section 4.2 we show how the extensions of

the simple amalgams arise. We prove the following two theorems.

Theorem 4.0.1. Suppose that A is a simple finite faithful amalgam of degree (5,5). Then

the type of A is in Table 4.1. Moreover, A is the unique faithful amalgam of this type.

Theorem 4.0.2. Suppose that £ is a faithful extension of one of the faithful amalgams
S; fori € [1,15]. Then & has the same type as one of the amalgams in Tables 4.5-4.7. In

particular, there are ninety non-trivial extensions of the amalgams S1-Sys.

Remark 4.0.3 (On Table 4.1). We have given a sample finite completion G for each of the
amalgams. We will justify this in Section 4.7.

For the amalgams S7, Sg, S11 and Si2 we have only given the shape of G, which does
not identify the isomorphism type of the group. We will remedy this in Section 4.7 where

we give a permutation representation of the groups appearing in the amalgam.
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Amalgam ‘ G, ‘ Gy ‘ G

S Cs Cs 5
) Alt(5) Alt(5) Alt(6)
Sy Alt(5) x Alt(4) Alt(5) x Alt(4) Alt(9)
Ss 21 Cy 23 x Dih(10) Alt(21)
86 C44 : C5 C43 X FI'Ob(QO) Alt(21)
Sy 24 Alt(5) (Cs x 23).(Alt(4) x Cq) | Alt(21)
Ss Cyt 1 AlL(5) (Cs x C4%).(Alt(4) x Cy) | Alt(21)
So Alt(4) 1 Cs Alt(4)* x Alt(5) Alt(21)
Sio Alt(4) L Alt(4) Alt(4) 1 Alt(4) x Alt(5) | Alt(21)
S O?*(Sym(4) 1 Cs) Alt(5).Sym(4)* Alt(21)
Si2 O%(Sym(4) 1 Alt(5)) Alt(5).Sym(4) L Alt(4) | Alt(21)
813 24 . PSL2(4) 24 : PSL2(4) PSL3(4)
S 22741 GLy(4) 22711 GLy(4) Sp,(4)
Sis 2218 . (PSLa(4) x C3) | 2*16: (PSLy(4) x Cs) Ga(4)

Table 4.1: The types of faithful finite simple amalgams of degree (5,5)

4.1 Uniqueness of simple amalgams

In this short section we remove any ambiguity concerning the amalgams introduced in
Table 4.1, that is, we prove that there is a unique faithful amalgam of each type. After

this section then we may refer to “the faithful amalgam S;”.

Theorem 4.1.1. Let A = (P, P», B, m, ) be a faithful amalgam of type S; fori € [1,15].

Then there is a unique faithful amalgam of this type.

Proof. We use Lemma 2.2.12 and the notation introduced there. For & there is nothing to
prove. For both S, and S3 we have that Aut(B) = Sym(4) and Nawyp,)(m1(B)) = Sym(4)
which means there is a unique amalgam of this type. For S; we see that Aut(B) =
Sym(4) 1 Cy. Now Hi = Hj = Sym(4) x Sym(4) has index two in Aut(B), so there are
two isomorphism classes of amalgams of this type. Moreover Aut(B) shows how the two
classes differ; in one the image of an Alt(4) factor of B is normal in both P, and P,
whereas the other class of amalgams is faithful.

For the amalgams S13-S15 Theorem 1.6.8 shows that any amalgam has the same type

as an amalgam over a Sylow 2-subgroup of one of PSLj3(4), Sp,(4) or Go(4) (see the
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Amalgam \ No. of extensions
S1 11
So
Ss
Sy
Ss
Se
Sy
Ss
S
S1o
Su
Sz
Si3
Sua
Sis

= 00

[ —
otv Ot

N DN W[ Ot Ot CO Cofl Co OO

Table 4.2: The number of extensions of faithful finite simple amalgams of degree (5,5)

remark after Theorem 1.6.8). Since the Sylow 2-subgroups are conjugate, the conjugation
map defines an isomorphism between any two such amalgams. Hence there is a unique
faithful amalgam of this type.

For the amalgams S5-S15 we employ the computer program given in Section A.1 which

shows there is a unique faithful amalgam of these types. O

4.2 Extensions

Here we calculate the extensions of the simple amalgams using Theorem 2.2.25. We prove

the following theorem.

Theorem 4.2.1. For i € [1,15] the number of extensions of the faithful amalgam S; is

giwen in Table 4.2.

We begin with the smallest, recall Definition 2.2.7 of the automorphism group of an

amalgam.

Lemma 4.2.2. The group Aut(S;) is isomorphic to Cy Cy.
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Amalgam ‘ P ‘ b ‘ B

3 Dih(10) Cro C
&2 Dih(10) Dih(10) Cy
&3 Dih(20) Dih(20) 27
&l Frob(20) Cayo C,
& Frob(20) Frob(20) Cy
&b Frob(20) Frob(20) C,
&l Frob(20) Qa0 C,
818 Dlh(lO) X C4 Fl"Ob(ZO) X CQ C2 X C4
5? FI'Ob(QO) X Cg Fl"Ob(20) X C2 C4 X CQ
o Frob(20) x Cy4 | Frob(20) x C4 | Cy x Cy

Table 4.3: The types of the extensions of the faithful amalgam S;

Proof. Write &1 = (Py, P2, B, m,m) so that P, &2 P, = C5 and B = 1. We have that
Aut(Py) = Aut(P,) = Cy4. Since every automorphism of P, and P, normalises B we have
H{ x Hy = H. Since Aut(B) = 1, every automorphism of P, and P, has the same action

on B. Hence Aut®(A) = H. Clearly there is an automorphism of order two swapping Py
and P,, so we have Aut(A) = Cy, Cs. O

We may now calculate the extensions, recall Definition 2.2.20.

Lemma 4.2.3. There are ten non-trivial extensions of S;. The extensions have one of

the types (P, Ps, B) given in Table 4.5.

Proof. Write A = (Py, Py, B, m,m) with P, =2 P, = Cy and B = 1. First note that up to
Aut(A)-conjugacy there are eleven subgroups of Aut®(.4). We make the identifications
Aut®(A) = («a, B) with (o) = Hf and () = H;. Then representatives for these conjugacy
classes are Ry = (a?), Ry = (a?B%), Ry = (a? %), Ry = {(a), Rs = {(afB), Rg = (af3?),
R; = (af8?), Ry = (a2, B), Ry = (af3,a?) and Ry = (a, ).

For i € {1,...,10} the extension ! := £(S;, R;) has the same type as the amalgam
described in Table 4.3. The extensions £(S1, R5) and £(S1, Rg) have the same type, but

the amalgams are non-isomorphic (see Example 4.2.4). O

In the proof of the above lemma we saw that two extensions of S; have the same type,

but are non-isomorphic. We construct an explicit example to demonstrate this.
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Example 4.2.4. The amalgams &} and &Y. Let P, = (x,w), P, = (y,z) be so that
x and y have order 5, w and z have order 4 and x* = 2%, y* = y*. Let B = (u) be
cyclic of order 4. Definemy : B — P, by u — w and mo : B — Py by u — z. Let
A = (P, P, B,m,m). Then A has the same type as E. Applying Lemma 2.2.12 we
see that Nauwp,)(mi(B)) = Cauyp)(mi(B)) for i = 1,2. Therefore Hf = Hy = 1 and so
there are two (Hy, H) double cosets in Aut(B) = Cy. A representative of the second

isomorphism class is given by setting s : u — z>. This second amalgam is the extension

£o.

Lemma 4.2.5. Let & = (Sym(5), Sym(5), Sym(4)) be the (unique) faithful amalgam of

this type. Then E} is the unique non-trivial extension of Ss.

Proof. Note that Hy x Hy = Sym(4) x Sym(4) and Inn(S,) is the diagonal Alt(4) subgroup.
Then we find that Aut®(Ss) is the diagonal Sym(4) subgroup and Aut(S;) = Sym(4) x Cs.

Thus Out®(Sy) = Cy so there is a unique non-trivial extension. O
Lemma 4.2.6. We have Aut(S;) = Aut®(S;) = Sym(4) x Cy4 and Out®(S3) = Cqy x Cy.

Proof. Write S3 = (Py, P,, B) and note that Aut(S;) = Aut®(S3). We have Aut(P;) =
Sym(5) and Nauyp)(B) = Sym(4) and for P, we find that Aut(FP) = Sym(4) x Cy =
Naut(p)(B). Hence Hf x Hy = Sym(4) x Sym(4) x C4. Note that (1,2) € Aut®(Ss3) for
all x in the normal cyclic subgroup of order four in H; since B is centralised by these
elements. The rest of the automorphism group Aut(Ss3) is generated by the “diagonal”
Sym(4) subgroup. Hence we see Aut®(Ss)/Inn(S;3) = Cy x Cy. O

Lemma 4.2.7. There are seven non-trivial extensions of S3. The types of these amalgams

are given in Table 4.4.

Proof. Using the previous lemma we know that the number of extensions is the number
of subgroups of Cy x Cy. Writing Aut®(Ss) = (Inn(S;), a, 5) where a is an involution so

that (Inn(Ss3), @) = Sym(4) and S is an element of order four which commutes with the
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Amalgam ‘ P ‘ b ‘ B
& Sym(5) Sym(4) x Cs Sym(4)
&2 Sym(5) Sym(4) ADih(10) Sym(4)
& Alt(5) x Cy | Alt(4) x Dih(10) | Alt(4) x Cq

& Sym(5) x Cy | Sym(4) x Dih(10) | Sym(4) x Cs
& Alt(5) x Cy4 | Alt(4) x Frob(20) | Alt(4) x Cy
&S Alt(5) : 4 | Sym(4) AFrob(20) Alt(4) : 4

&l Sym(5) x Cy4 | Sym(4) x Frob(20) | Sym(4) x Cy4

Table 4.4: The types of the extensions of the faithful amalgam S

Sym(4) subgroup just constructed. The extensions by subgroups of order two in Out’(Ss;)

are given by

& = &(Ss, {Inn(S3),a)),
E2 = &(Ss, {Inn(S3),aB?)),

£ = &(Ss, (Inn(S3), B2)).

The three extensions corresponding to subgroups of order four in Out’(S3) are given by

E = &(Ss, {Inn(S3), a, 5?)),
E = E&(Ss, (Inn(Ss), B)),

ES = &(Ss, (Inn(S3), aB)).

The final extension is £ := £(S3, Aut®(A)). It is easy to verify that these amalgams have

types given in Table 4.4. O]

Lemma 4.2.8. We have Aut(S;) = Sym(4) ! Cy, Aut®(S;) = Sym(4) x Sym(4) and
Inn(Sy) = Alt(4) x Alt(4). There are 3 non-trivial extensions of Sy; their types are given
in Table 4.5.

Proof. Let Sy = (P, Py, B, m,m). We first determine the group H; X Hs. Note that
Aut(Py) = Sym(5) x Sym(4) = Aut(P) and H; = Sym(4) x Sym(4) = H,. Hence

H, x Hsy is the direct product of four copies of Sym(4). Make the identifications H; =
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Amalgam ‘ P ‘ b ‘ B
&L Alt(5) x Sym(4) | Alt(4) x Sym(b) | Alt(4) x Sym(4)
&2 Sym(5) ASym(4) | Sym(5)ASym(4) | Sym(4)ASym(4)
& Sym(5) x Sym(4) | Sym(4) x Sym(5) | Sym(4) x Sym(4)

Table 4.5: The types of the extensions of the faithful amalgam &,

((1,2),(1,2,3,4), (5,6), (5,6,7,8)) and Hy = ((9,10), (9,10, 11, 12), (13, 14), (13, 14, 15, 16))

and regard H; x Hs as a subgroup of Sym(16). We find that

Inn(Sy) = ((1,2,3)(9, 10, 11), (2,3,4)(10, 11, 12), (5,6, 7)(13, 14, 15), (6,7, 8)(14, 15, 16))

and Aut®(Sy) = ((1,2)(9,10), (5,6)(13,14),Inn(S,)). Since Out(Sy) = Dih(8) there are
three non-trivial extensions of S;. Here Out(S,) conjugacy implies the extensions defined

by the groups (Inn(S,), (1,2)(9,10)) and (Inn(S,), (5,6)(13,14)) are isomorphic. We de-

fine
El = E&(Sy, (Inn(Sy), (5,6)(13,14))),
E2 = &(84,{Inn(Sy),(1,2)(9,10)(5,6)(13, 14))),
E = &(84,{Inn(Sy),(1,2)(9,10), (5,6)(13,14))),
then it is easy to see that the amalgams &£;-E; have the types given in Table 4.5. O

Lemma 4.2.9. Fori € [5,12] we have Aut(S;) = Aut®(S;), and Out(S;) is described in
Table 4.6.

Proof. Since P, 2 P; for all of these amalgams we have Aut(S;) = Aut®(S;). Now we use

the computer program Ext given in Section A.2. O

Remark 4.2.10. We do not attempt to describe the shape of the groups appearing in the
extensions of the amalgams S5-Sp5 at this stage, since they are extensions by 2-groups this
would not provide much information. In Section 4.7 we will work with a fixed completion

of these amalgams, and then the extensions will become transparent.
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Amalgam \ Outer automorphism group

85 C4 X C4
86 C4 X C4
87 CQ X C4
Ss Cy x Gy
Sy Cy x Gy
810 CQ X C4
811 22

812 22

Table 4.6: The outer automorphism groups of the faithful amalgams S5-Sio

Amalgam \ P \ Py \ G
5113 24 GLy(4) 24 GL2(4) PSL3(4).(i)
5123 24 'Ly(4) 24 'Ly (4) PSL;(4) : (f)
& 211 (GLy(4) : Cy) 211 (GLy(4) : Cy) PSL3(4) : (f,1)
) 224 . Ly (4) 22+4 . TL,(4) Spa(4) : ()
5115 22+8 . (PSL2(4) X Cg) : CQ 24+6 . (PSL2(4) X Cg) : CQ Aut(G2(4))

Table 4.7: The types of the extensions of the faithful amalgam S;35-Si5

Lemma 4.2.11. There are 3 non-trivial extensions of the amalgam Si3. All are visible in
the group Aut(PSL3(4)). There is one non-trivial extension of the amalgam Sy4, visible in

Aut(Sp,(4)). There is one non-trivial extension of the amalgam Sy, visible in Aut(Ga(4)).
Proof. This follows from Theorem 1.6.8. [

We use similar notation for the extensions of the amalgams S;3-S15 as introduced for
the amalgams §1-S4. The types of the amalgams can be seen inside the groups described in
the above lemma, we record them in Table 4.7 and indicate which extension the amalgam
is present in (where f denotes a field automorphism and i is a diagonal automorphism of

order three).

Remark 4.2.12. We calculate that Aut(Si3) = 2 x Sym(3) and Aut’(Sy3) = Sym(3). We
have Aut(S14) = C4 and Aut®(Sy4) = Cy. Furthermore Aut(Si5) = Aut®(Sy5) = Co.

These calculations are in agreement with the lemma above.

Proof of Theorem 4.2.1. This is a combination of Lemmas 4.2.3, 4.2.5, 4.2.7, 4.2.8, 4.2.9
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and 4.2.11. O

4.3 Simple amalgams of degree (5,5)

Let us now fix S a simple finite faithful amalgam of degree (5,5). Let G = G(S)
and I' = I'(S,G) = TI'ss, a tree of valency five. Fix an edge {z,y} of I' and set
A= (G, Gy, Gyy, 1y, my). Now S = A and the aim is thus to determine A. Furthermore,
by Theorem 2.4.5 we have that A = O% (A), the normal subamalgam of A generated by

the pair (0% (G,), 0 (G,)). By Proposition 2.2.5, setting
B = (OBI(Gx) N G:cy)(OE]/(Gy) N Gay),
we have that

G, = 0%(G,)B,

Gy = 05/(Gy)Bv

Our first result concerns the edge stabiliser. It follows immediately from Lemma 2.4.1

and Burnside’s p?¢®-Theorem. We may use this lemma without reference.
Lemma 4.3.1. The group Gy is a {2,3}-group. In particular, G, is soluble.
Next we identify the local action.

Lemma 4.3.2. For z € T" the group G2 s isomorphic to one of Cs, Dih(10), Frob(20),
Alt(5) or Sym(5).

Proof. By Lemma 2.1.2, G2 is a transitive subgroup of Sym(A(z)) = Sym(5). The
result is then an easy calculation in Sym(5). O

Our second result shows that |F(G,)| and |F(G,)| have restricted prime divisors.
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Lemma 4.3.3. Suppose that z € {x,y} and p is a prime such that O,(G,) # 1. Then
p € {2,5}. Moreover, Os(G,) = OQ(G,[ZI]).

Proof. We prove the statement for z = x, a symmetric argument yields the assertion for
z =y. Let p be as in the statement and set Q = O,(G,). If Q £ G[wl], then G2 is p-local,
and so p = 5 by Lemma 4.3.2. We may assume then that @) < G;[El]. IfQ £ G?[,” then we see
that QGLH / Gg[,u is a normal subgroup of G,/ G’L”, so p = 2 (again by the previous lemma).
Since Q) = Op(G[yl]) allows us to apply Lemma 2.1.4 and obtain () = 1, we may assume
that Q < Op(GLH). Now we have Op(G[yH) y GY, and so now by considering Gry/Gg] we

see p = 2. The final statement follows since G2™ has no normal 2-subgroup. m

We now make a case division according to Theorem 2.5.1 which delivers two cases.
The second of these with G’% = G is more easily considered as two cases, where G%} is

trivial or not. For z € I we define

Q. = Oy(Gl),

F, = 05G,).
With this notation Lemma 4.3.3 says that for z € I' we have

F*(Gz) - FzQzE(Gz) and

F(GY) = Q.

z

Note that Lemma 4.3.1 shows that 5% does not divide |G.| so that either F, = 1 or

E(G,) = 1.
Theorem 4.3.4. Exactly one of the following holds.
(i) The group GY is trivial.
(ii) The group Gg@], = GZ[JQ] is non-trivial, G2 = 1, F(G,) = Q, and F*(Gy) # Q,.

(iii) For z = z,y we have F*(G,) = F*(GY) = Q. and F'(Gyy) = O2(Gay).
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Proof. Since G2® and Gy @ are primitive, we may apply Theorem 2.5.1. This shows
that either GI) = G and G = 1 or there is a prime p such that F*(G,) = 0,(G,) for
z = x,y. If the latter holds then the previous lemma shows that p € {2,5}. If p = 2 then
(iii) holds and if p = 5 then for F*(G,,) = O,(G4,) to hold, Lemma 4.3.1 shows that
F*(G.y) = 1, hence (i) holds. Suppose now that G% = GE] and G2 = 1 hold. We may
assume that (i) doesn’t hold so that GEQ, is a non-trivial subnormal subgroup of G,. If
F, # 1 or E(G,) # 1 then Lemma 4.3.1 implies that F, NG =1 or E(G,) £ G holds.
It follows that [F}, ng],] =1 or [E(G,), Gg] = 1. Since G% = GLQ] is a normal subgroup
of G, this would imply G% = 1, which is against our assumption. Thus we may conclude
F*(G,;) = Qu. Now O3(G,y) centralises Q,, so O3(Gyy) = 1 and F*(Gyy) = O2(Gyy).
Now either (iii) holds, or F*(G)) # @, and (ii) holds. O

In the next three sections we consider the cases delivered by Theorem 4.3.4 in turn.

We establish some notation which will be used in the next three sections.

Notation 4.3.5. We will use the bar notation to denote subgroups of G2 and GyA(y) in
the following way. Recall that G = @q, / GY. For a subgroup H of G, we write H for
the group HGLH/GQ] = HA®@_ Similarly GyA(y) = G’y/G:E,” and for a subgroup K of G, we

write K for KGE]/GQ] = KAW),

44 Gl =

In this section we assume that G[zl; = 1, the case delivered by Theorem 4.3.4(i). It follows

that [Q., Q,] = 1 and so Cq, (Q.) £ Q. for z = x,y. Since Q, = F*(G[Z”) Theorem 1.3.20
gives F*(G,) # F*(G[Z”) and we draw two conclusions from this. The first is that G,
either has components or F, # 1. The second is that Cg_(Q.) is transitive on A(z) (since

G2 is primitive and Ce.(Q.)2®) is a normal subgroup).

Lemma 4.4.1. Suppose that K is a component of G, for z € {x,y}. Then K = Alt(5)
and K = E(G.,).
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Proof. Without loss, suppose that K is a component of G, and let L = K N G, and
Z = Z(K) = Z(L). By Lemma 4.3.2 we see that KG;[,;I]/G;[EI] must be isomorphic to
Alt(5) and so it follows that K N G = Z and K/Z = Alt(5). Looking at the projection
of L over GL” we see that Z < GL”. Hence Z is a subnormal 2-subgroup of G, and so is
contained in @,. Since Cg, (Q,) is transitive on A(y) we have Z < (K, Cg,(Q,)) which
gives Z = 1. We now have that E(G,) is a direct product of Alt(5) subgroups and so

E(G,) N G = 1. Tt follows that there can be at most one component. O

For z € " we set

H. = 0%(G.).

As remarked above we now have H, = C;5 or Alt(5). Our assumption from the beginning

of Section 4.3 is that
A= (Hx(Hy n G:vy)v Hy(Hx n Gzy)a (Hx N G:vy)<Hy n Gzy))

and we may now proceed to identify A. We may assume we have labelled so that |H,| <

|H,| and we have three cases to consider.

Lemma 4.4.2. Suppose that H, = Cs. Then A= (Cs5,Cs,1) or
A = (Alt(4) x Cs, Alt(5), Alt(4)).

Proof. We arrive at the first conclusion if H, = Cs;. This is clear since in this case
H,NG,y, =1= H,NG,,. Suppose now that H, = Alt(5). As H, NG, = 1 it remains to
determine the isomorphism type of H,(H, N G,,). Since H, N G,, = Alt(4) has no cyclic

quotients of order 2 or 4, we see that [H,, (H, N G,,)] = 1. O

Lemma 4.4.3. Suppose that H, = H, = Alt(5). Then A = (Alt(5), Alt(5), Alt(4)) or

A = (Alt(5) x Alt(4), Alt(4) x Alt(5), Alt(4) x Alt(4)).
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Proof. It follows from the isomorphism types of H, and H, that H, NG, = H,N G, or
(H, NGyy) N (H, N Gyy) is elementary abelian of order four or trivial. The first and last
possibilities give the first and second conclusions of the lemma respectively, so we may
assume that (H,NGyy)N(H,NG,,) = 22. Then we find (H,NG,,)(H,NGy,) = C3x Alt(4)
and we can choose t to be a central element of order 3. Considering the projection of this
subgroup over GY and GE] respectively, we find that ¢ € G and t € G?[J”. Hence t € GQJ

which implies (t) = 1, a contradiction which completes the lemma. O

4.5 Mixed Type

In this section we work under the following hypothesis.
Hypothesis (M): Conclusion (ii) of Theorem 4.3.4 holds.
First we recall some of the statements from Theorem 4.3.4 and add some details

concerning the structure of G, and G,,.
Lemma 4.5.1. The following hold:
(i) Gi =GP £1, F/(G,) = Q. and G2 is trivial,

(ii) Ca,(Qy) is transitive on A(y). Moreover, if U < Q, N Qy is normal in G, then

U=1,
(ii1) Q. is abelian. Moreover Q, is elementary abelian zfa; 2 Frob(20).

Proof. Part (i) is part of (ii) of Theorem 4.3.4.

By part (ii) of Theorem 4.3.4 we have F*(G,) # Q, so that C¢,(Q,) £ @, Now
Ce, (Qy) £ G since F*(GY)) = Q, which gives CG[yl](Qy) < @, Hence the primitivity
of Gﬁ @) implies that Cg, (Q,) is transitive on A(y). Now assume that U < Q, N Q, and
U < G, Then U < (Gy,Cg, (Qy)) which acts transitively on I' and U < Gy, hence
U=1

For (iii), first we observe that (i) and (ii) imply @, € Q,. Thus Q, N Q, < Q, and
Q:NQy = Q.NGY). Hence Q./(Q:NQy) = Qu/(Q:NGY)) = Q, gives 1 # Q, <1 Gy and
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by considering the various isomorphism shapes of (/}’;/y we see that @vx is abelian. Hence
Q) < Q,NQ, and again using (ii) we have @), = 1, so that (), is abelian. Suppose now
that évy 2 Frob(20). Then @vx is elementary abelian, hence ®(Q,) < @, N Q, and again

(ii) gives ®(Q,) = 1 so @, is elementary abelian. This completes the lemma. O
We require some knowledge of the structure of G, to make further progress.
Lemma 4.5.2. Suppose that K is a component of G,,. Then K = Alt(5) and K = E(G,).

Proof. Note that 5 | |K| since 7(G,) = {2,3,5} and {2, 3}-groups are soluble. If L is
another component and K # L, then |KL| = |K||L|/|K N L|. Since KN L < Z(K) which
has order at most 2, we see that 5% divides | K L| which divides |G,|. This is incompatible
with the order of G,. Thus K is the unique component and, since K GE] / Gg[}] is a subgroup
of Sym(5), we know that K is a component of type Alt(5), so we may assume for a
contradiction that K = SLy(5). Now SLy(3) = U := KNGy < Gy, and so UNQ, Q U.
Since (), is abelian and there is a unique abelian normal 2-subgroup of U, we have
UNQ, = Z(U). Then for T € Syl;(U) we see [Q,,T] < [Q.,U] < Q.NU = Z(U) and
50 [Qz, T, T] < [Z(U),T] = 1. By coprime action (Lemma 1.1.7) we obtain [Q,,7] = 1,

which contradicts @, = F*(G,). Hence K = Alt(5). O
Theorem 4.5.3. The following hold:

(i) Gy % Cs,

(1) F*(G,) = Cs x Qy if and only zfa; is isomorphic to Dih(10) or Frob(20), and
(1i1) F*(G,) = Alt(5) x Q, if and only Zfa; is isomorphic to Alt(5) or Sym(5).

Proof. 1f @; = C; we would have G, = Gg[,l} which gives ), < @, and this implies
Q). = 1, a contradiction to Lemma 4.5.1(i). To see (ii), assume that CA?; has the required
shape, then G, is soluble, and so E(G,) = 1. Since O,(G,) = 1 for p > 5 and p = 3,
if O5(Gy) = 1 also, then F*(G) = @Q, and since Cg, (F*(G,)) < F*(G,) we would have
Cq,(Qy) < @y, contradicting our assumption. Hence O5(G,) # 1, and so Os(G,) = Cs.

The reverse direction is immediate with O5(G,) # 1.
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For (iii), first assume that CTy has the required shape. Then O5(G,) = 1 and so we
must have E(G,) # 1 (similarly to above). Hence there is a component K. By Lemma
4.5.2 there is a unique component and it is isomorphic to Alt(5). Then K N Q, =1 and
so F*(G,) = E(G,)F(G,) = KQ, = Alt(5) x ). The reverse direction is obvious. O

The previous theorem shows that O (G,) = C5 or Alt(5).

4.5.1 Mixed type where G, is soluble
In this section we assume that G, is soluble. We prove the following theorem.

Theorem 4.5.4. Assume Hypothesis (M) holds and that G, is soluble. Then A is iso-
morphic to one of S; fori € {5,6,7,8}.

As in the previous section we set

H, = 0O%(G,),

H, = 0%(G,).

Then H, = F, = O”(G,) by Theorem 4.5.3 and this group is isomorphic to Cs.
Proposition 4.5.5. We have G, = H, and @), = Gg].

Proof. Our assumption on the simplicity of A implies that G, = H,(H,NG,,) and clearly
H,NGyy = 1.

For S € Sy13(G£51}) the Frattini argument gives G, = GQ]NGQC (S) so that Ng, (5) is
transitive on A(x). Now G,/ G s a 2-group, so we see that S < GI = G Tt follows
that S € Sylg(Gg[f}) and so G, = G’LQ}Ngy(S) implies that Ng, (S) is transitive on A(y).
Hence S =1 by Lemma 2.1.4. O]

Since G, = H,(H, N G,,) we have |H, NGy : H, N Gg[}]] < 4. Thus the majority of
the work remaining is to determine the group H,.

Proposition 4.5.6. The group G,/Q. is isomorphic to Cs or Alt(5).
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Proof. For all sets of primes 7 we have O™(G) = O™(0O™(G)). Since G, = H, = OY(G,)
by Proposition 4.5.5 it follows that O%(G,) = G, (taking 7 = {2,3}). In particular, this
tells us that G, has no non-trivial images in a 2-group, and so G,/Q, = G,/ GL} ! has no

normal subgroup of index a power of 2. Inspecting the possibilities of Lemma 4.3.2 we

see G, /Q. = Cs or G,/Q, = Alt(5). O

The subgroup R, := [Q., G,] will be important. We determine some properties in the

following proposition.

Proposition 4.5.7. The following hold,
(i) [Rs, Nl = R, for any N < G, such that N £ Q,,
(ii) if U < G, and then [R,/U, G| = R,/U.

Proof. Since G, /Q, is simple, if N is a normal subgroup not contained in @), we have
Q.N = G,. Hence [R,,N] = [R,,Q.N] = [R;,G,]. Now G, = O”(G,), so coprime
action gives [Qu, Gz, Gz| = [Qx, G4, that is [R,, G,] = R,. This is (i).

Part (ii) follows from the properties of commutators. O
Lemma 4.5.8. One of G./R, = C;, G,/R, = Alt(5) or G,/R, = SLy(5) holds.

Proof. Set L = G,./R,, Z = Q,/R, and K = G,/Q, = L/Z. Using Proposition 4.5.6 we
have O% (L) = L. By the definition of R, we have Z < Z(L). In particular if K = Cs,
then L is the direct product of a group of order 5 and a 2-group which therefore gives
L = C5. We may assume therefore that K = Alt(5) and Z # 1.

We claim that L is perfect. It suffices to prove that G, is perfect. Since G, /Q, is non-
abelian, G, £ Q,, and so Proposition 4.5.6 gives G, = G/,Q,. Then G, /G, is a 2-group,
and so it follows that G, = G’,. Now L is a perfect group such that L/Z(L) = Alt(5) and
Z(L) = Oy(L). A well known result now implies L = SLy(5) (for a reference see [21, Satz

5.25.7]). 0

In the final stages of the identification of GG, we will use the following lemma to rule

out the third possibility in the lemma above.
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Lemma 4.5.9. G, does not contain a subgroup isomorphic to SLy(5).

Proof. Suppose that L < G, is such a subgroup, set Z := Z(L) and pick z € Z so that
(z) = Z (and note Z = Cy). Then LN Q, = (z) (since otherwise LQ,/Q. = SLa(5),
which cannot hold). We can choose P € Syl,(L) such that P < G, and pick r,s € P
such that [r,s] = z. Now Gzy/GL” is abelian, so z € GE]. Hence z € @, N Gg[,l] <@y, In
particular Z < (L, H,) which forces Z to be trivial. This is a contradiction which proves

that such a subgroup does not occur. O

We now aim to find the isomorphism type of R,. The subgroup P, = Qy(R,) of R, is
useful. By W we will denote the 4-dimensional GF(2)-module for Alt(5) obtained from
the isomorphism Alt(5) = P, (2) (sometimes referred to as the deleted permutation

module).
Proposition 4.5.10. Viewed as a module for G, /Q., P. Z2& W or W.

Proof. Since P, is elementary abelian, P,Q,/Q, = 2. Thus P, N @, is a hyperplane of
P,. The stabiliser in G, of P,NQ, is G,,, and so there are five G, conjugates of P, NQ)y,
let them be P, ..., Ps. Note that ﬂie[m] P; is normal in G, and is contained in @)y, thus
ﬂie[m] P, =1. Let V be the dual of P, and consider the action of G,/Q, on V. Then V
is generated by five 1-spaces which form an orbit under the action of G, /Q,. Hence V is
a quotient of the permutation module. By [1, (24.3)], an element of order 5 acts faithfully
on P,, so 2* < |P,|. Hence V is isomorphic to W or 2@ W. Since the orthogonal module
is self-dual, the result holds for P,. n

Lemma 4.5.11. Suppose that ®(R,) = 1. Then R, =W as a G,/Q.-module.

Proof. We have R, = P, and by the previous proposition, P, =Z2® W or P, 2 W as a
G./Q, module. By Proposition 4.5.7 (ii), [Ry, G| = R, and so P, = W. ]

We may now assume that ®(R,) # 1. Since R, is abelian, ®(R,) is contained in P,.

The subgroups are also related in the following way:.
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Proposition 4.5.12. Suppose ®(R,) # 1. Then as G, -modules, R,/ P, is isomorphic to
d(R,).

Proof. Define amap ¢ : R, — R, by ¢ : r — r?. Since R, is abelian, ¢ is a homomorphism
and moreover, ¢ commutes with the action of G,.. Now (ker ¢)# consists of the involutions
in R,, so ker¢ = P,. Also, im¢ consists of the squares in R,, so im¢ = ®(R,). Hence
R./P, = ®(R,). O

Proposition 4.5.13. Suppose that ®(R,) # 1. Then there are G-module isomorphisms
R,/P, = ®(R,) =W.

Proof. The first isomorphism is the previous proposition. By Proposition 4.5.10 we see
that R, /P, is one of the modules 2, 2@ W, W. On the other hand, Proposition 4.5.7 (ii)
gives [R,/P,,G.] = R,/P,. Hence R, /P, = W. O

Lemma 4.5.14. Suppose that ®(R,) # 1. Then P, = ®(R,).

Proof. By Proposition 4.5.13, R, /P, = W and ®(R,) = W. Since P, = W or P, ¥ 2&W,
we are done unless P, = 2@ W. In which case, R,/®(R,) = 2® W (since the orthogonal
module is projective), but Proposition 4.5.7 (ii) implies [R,/®(R,), G| = R,/®(R,), a

contradiction. ]
Theorem 4.5.15. R, = 2* or R, = C,*.

Proof. 1f ®(R,) = 1 then we are done by Lemma 4.5.11. When ®(R,) # 1, Lemma 4.5.14
implies ®(R,) = P,. Since R, is abelian and has exponent 4, R, is the direct product of

log, (| P;|) = 4 copies of a cyclic group of order 4. O
In the following lemma we see how the structure of R, influences the structure of G,.
Lemma 4.5.16. G, splits over ), and R, = Q.

Proof. By Lemma 4.5.8 the result is trivial if G,/Q, = 5 so we may assume G,/Q, =
Alt(5). If G, /R, = Alt(5) then we use the following argument from [32, Lemma 4.1]. For

the duration of this proof only, we write G, = G, /R, and let t and s be elements such
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that ¢ is an involution, s an element of order three and ¢s has order five. We know there is
an element of order five @ € G, such that 7 inverts @, and we choose a pre-image v € G,
of order five. Now Cg,(u) = (u) and Ng, ({(u)) = Dih(10). So we may choose t to have
order two and we choose s to have order three. Then (t,s) = Alt(5), so the extension
splits. Now we may assume that G,/R, = SLy(5) (and Q./R, = Cs). If G, does split
over (., then a complement is isomorphic to SLg(5), which is a contradiction to Lemma
4.5.9. So below we just need to prove the splitting occurs.

First assume that ®(R,) = 1 so that R, = P,. We claim that @, is elementary
abelian. Otherwise, there is an element of order four in Q,, ¢ say. Then ¢? € P,. Since
Q. = P, U P,q and Q, is abelian, for each r € Q, we have r?> = 1 or r? = ¢%. It follows
that ¢? is the unique square in @, and is therefore G -invariant. Now 1 # {¢*) < P,, and
P, is irreducible by Lemma 4.5.11, a contradiction. Hence ®(Q,) = 1.

Since [Q, G| = P, is the orthogonal module for Alt(5), we see that @, = 2 & W.
Let Z be the unique normal subgroup of G, of order two. Considering GG,./Z we see that
this is an extension of W by Alt(5), and therefore splits. It follows that G, contains a
subgroup isomorphic to SLy(5), a contradiction.

Now assume that ®(R,) # 1 so that ®(R,) = P, and we have 1 < P, < R, < @), with
successive quotients 24, 2% C,. First we consider G, /P, and apply the same argument
as in the previous paragraph to see a subgroup L of G, such that L/P, = SLy(5). Then
considering L we apply the argument from the previous paragraph (with L in place of

() to see that L contains a subgroup isomorphic to SLo(5), the final contradiction. [

We summarise the results of this section in the theorem below. Note that after speci-
fying the action of G, on O(G,), the groups below are uniquely determined. The group
for which we write C,* : Alt(5) is isomorphic to O%(Cy ¢ Alt(5)).

Theorem 4.5.17. G, is one of the four groups, 2* : 5, C,* : 5, 2* - Alt(5), C,* : Alt(5)
(where the action on the sections of Oq(Gy) is the action of G/O2(G,) on W ).

We now proceed to identify the isomorphism type of G,. Recall that G, = F,G,y,

and essentially it suffices to determine the centraliser in G, of F),.
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Proposition 4.5.18. Suppose that G,/R, = Cs. Then G, = 23 x Dih(10) or G, =
C4* x Frob(20).

Proof. Note Cg,,(F,) = Gg[}] (by considering é’vy) Now G, = 2* or C,*, and R,/R, N
Qy = 2 or 4. So in the first case an element of order 2 inverts F,, and we see G, =

Dih(10) x Frob(20). In the second case, an element of order 4 acts as the square map on

F,, and so G, = Frob(20) x C,°. O

Proposition 4.5.19. Suppose that G, = 2* : Alt(5). Then Gl = O2(Gy,) = 23 : Alt(4)
and Gy has isomorphism shape 2°.Alt(4).Dih(10).

Proof. As G,/ G = 2 we have that 0%(Gyy) < G, Examining the isomorphism type
of G, we see that O*(G,,) has index two, so equality holds. Note that G, splits over
O?%(Gyy) since R, is elementary abelian, thus G, contains a Dih(10) subgroup which

complements GE] . O

Proposition 4.5.20. Suppose that G, = C,* : Alt(5). Then Gl = 02(Gyy) = C°
Alt(4) and G, has isomorphism shape (Cs x C,*).(Alt(4) x Cy).

Proof. As in the proof of the previous proposition we see that G,/ Gz[}] = (C4 so that
0%(Gay) < GLI] and considering the isomorphism type of G, we see that |Gy, : O*(Gy,)| =
4 so we have equality. Thus Fsz[,l] ~ (5 x C,* and Gy/(Fsz[,l]) = ny/GE] =~ Oy X
Alt(4). O

We can now prove the theorem stated at the beginning of this section.

Proof of Theorem 4.5.4. We have seen that A has the same type as the amalgams listed in
the statement. Since each §; is the unique faithful amalgam of its type by Theorem 4.1.1,

the amalgams are isomorphic. ]

4.5.2 Mixed type where GG, non-soluble

In this section we assume that G, is insoluble. We prove the following theorem.

100



Theorem 4.5.21. Assume Hypothesis (M) holds and that G, is non-soluble. Then A is

isomorphic to one of S; fori € {9,10,11,12}.
Since G, is non-soluble, we have F*(G,) = E(G,)Q, by Theorem 4.5.3. We set

Ey = E(Gy>a

E,, = E,NG,,

and similarly for all vertices which are in the same orbit as y. We let

H, = 0%*G,),

H, = E,(H,NG,).

Both H, and H, are transitive on A(x), so |H, : H, N Gyy| =5 = |H, : H, N Gyyl.
The first goal of this section is to show that B = (H,,H,, H, N H,) is a normal

subamalgam of A. It then follows that A = B so we will classify B.
Lemma 4.5.22. We have E,, < H, and H, NGy = H, N Hy = G, N H,.

Proof. Since E,, = Alt(4) we have E,, = (S,T) for some cyclic subgroups S and T of
order 3. Then E,, < O*(G,) = H,. Since H,NH, fixes the edge {z,y} we have H,NH, <
G'zy. Also it follows from the definition of H, that H, N Gy, < H,, so it remains to see
that G, N H, < H,. By the Dedekind identity, Hy N G,y = (Hy N Goy)Ery = Hy N Gyy,

as required. N

Now without any ambiguity we may set

H,, = H,N H,.

By the previous lemma, the amalgam B = (H,, H,, H,,) is a faithful (5,5) amalgam.
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Lemma 4.5.23. The amalgam B is a normal subamalgam of A. In particular, B = A.

Proof. By definition H, is a normal subgroup of G,. It follows that H,, is a normal
subgroup of G, and so H, = E,H,, is a normal subgroup of £,G,, = G,. Since G, is
maximal in both G, and G, it is immediate that G, = H,G,, and G, = H,G,,. Finally
we need to check that H, N G, = H, N H, = G, N H,, which is the content of Lemma

4.5.22. Our assumption on the simplicity of A gives the second part. H
We now continue to work with B.
Proposition 4.5.24. We have H,/H, N G =~ Cs or Alt(5).

Proof. This follows from the isomorphism H,/H, N G;[Bl] = HJ;G;[,}]/GQ], the structure of
G,/GY and that O*(H,) = H,. O

The following lemma is useful.
Lemma 4.5.25. We have Cg,(E,,) = Gy = Cq, (E,).

Proof. First we see that [Ey,GLH] <E,N GE] = 1 so that Gg] < Cg, (Ezy) N Cg, (Ey).
Now we consider the quotient G,/ Gy[}] and see that the images of E, and E,, (which are
Alt(5) and Alt(4) subgroups respectively) have trivial centralisers. This gives the reverse

inclusion and completes the proof. O
We now set L = (E[l*). We will see that this subgroup controls the structure of H,.
Theorem 4.5.26. The group L is isomorphic to Alt(4) x Alt(4) x Alt(4) x Alt(4) x Alt(4).

Proof. We proceed with a number of claims.

(1) Let t € E,y, have order 3, then Q, = Cq, (t) x [t,Q.] and [Q,, E.,)] = [t, Q] = 22.
First note that ), and E,, normalise each other since both are normal in G,,. The

first assertion is immediate using coprime action (recall that @, is elementary abelian by

Lemma 4.5.1). For the second assertion, observe that E,, N Q, = 1 would give E,, <

Cq,(Qz) = Q., a contradiction, so E,y N Q. = O2(Eyy) = 2%, and 1 # [Eyy, Q] < Eyy,
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80 By, Qz) = Euy N Q. = 22. Now let T € Syl;(E,,) and let t € T#. If [Q,, t] = Cy then
[@Qz,t,t] = 1 and coprime action gives [Q.,t] = 1, contradiction. Thus [@,,t] = Cy and

50 (@, t] < [Qq, Eyy| implies the result.

1
(2) E,, <Gl

Otherwise, E,, N Gl — E., NQ, = 2? and so C3 & E,, < G,y = Alt(4), a contradic-
tion.

We now set A(z) = {y, y1, Y2, Y3, ya} so that E,, and E,,, are the conjugates of E, and
Egy under G,.

(3) E,yNE,, =1

By (2), E,y, < Gy so that E,,, normalises E,, and vice versa. Thus (3) holds unless
E,, = Eyy, or E,, N E,, = 22 Assume the former first, then E,, < (G, Gyy,) = Ga.
By the Frattini Argument, for 7' € Syly(E,,) we get G, = Ng, (T')Eyy, hence Ng, (T) is

transitive on A(z). Note that Cg,(T') <t Ng,(7T') and Cq,(T) < Cg,,(T) which we see

is equal to TCGE}] (T) = TGL” since Cg,, (1) < Car (T) = T. Thus Co,(T) < G?[,l] and
so [Ey,Cq,(T)] = 1. But now Cq,(T) < (Ng,(T), E,) which is transitive on I', and so
Cq, (T) = 1. Now (1) gives Q, = [t,Q,] = 2%, which is impossible. Hence E,, # E,,,.

We may now assume E,, N E,,, = O3(E,,) = O3(E,,,). By (1) we have 22 = [Q,,t] <
E,,, so that [Q,t] = Os(E,,) = O2(Eyy,) for any t of order 3 in E,,. Let R = E, E,,,
and observe |R| = 2232, and a Sylow 3-subgroup S is elementary abelian (there are two
elements of order 3 in E,, which are not in E,y,, so S 2 Cg). Hence Cg, 4(S) # 1, from
which we deduce R = C3 x Alt(4) (and Z(R) = Cs). Now [Q,, R] = [Qu, Euyl[Qs, Ery] <
R. Choose 1 # z € Z(R), then [Q.,2,2] < [Q., R, z] < [R,z] = 1. But then coprime
action implies [@,, z] = 1 which implies z = 1, a contradiction which proves (3).
(4) By < Gyl

Since [Eyy, E,,,| = 1 by the previous claim the result follows by Lemma 4.5.25.

We can now complete the proof. We have L = E, F,,, Eyy, Eyyy Iy, Since Eyy < Gz[,ll]
we have E, E,,, = E,, x Eg,. Similarly £, E,,, N E,, =1 and [E;yE,,,, Eyy,] = 1.

Repeating this process we have the result. O
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Lemma 4.5.27. H, acts faithfully by conjugation on L.

Proof. Let C' = Cg, (L) and note C' is a normal subgroup of H, since L is normal in
H,. Suppose that C' is not contained in G4’. Then C is transitive on A(x) and, since
E,, centralises E,, and acts transitively on A(y), we have E,, = 1 by Lemma 2.14, a
contradiction. Thus C' < GE]. Now C' < G so Lemma 4.5.25 implies C' < GLI]. By the

same reasoning applied to the vertices vy, ...,ys we get C < GZ =1 as required. O

With the previous lemma, H, has the following normal series, L < HIHGQ} < H,. We
have identified the subgroup L and the quotient H,/H, N G We now need to determine
the structure of H, N Gl /L and how the group fits together. To achieve both of these

goals we use the following.
Proposition 4.5.28. L embeds into Aut(L) = Sym(4) ! Sym(5).

Proof. The embedding follows from Lemma 4.5.27. The isomorphism type of Aut(L)

follows from [4, Theorem 3.1]. O

Let A = Aut(L) and under the embedding of Proposition 4.5.28 we identify H, and
its subgroups with their images in A. Let B = [, Ay N A(FEyy) which is isomorphic to
Sym(4) x Sym(4) x Sym(4) x Sym(4) x Sym(4). We see that L = B’ = Inn(A) and B/L
is elementary abelian of order 2°.

In the next theorem we identify H,. Note that Sym(4) ¢ Cs has isomorphism shape
Alt(4)5.25.C5, and modulo the Alt(4)® subgroup has isomorphism shape 2 x 2% : C5. Thus
O?%(Sym(4) 1 Cs) is a subgroup of index 2 and has isomorphism shape Alt(4)*.24.C5. The

group O?(Sym(4) ? Alt(5)) can be described similarly.

Theorem 4.5.29. The group H, is isomorphic to one of the following groups
(i) Alt(4)Cs,
(11) Alt(4) ¢t Alt(5),

(iii) O?(Sym(4)1Cs),
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(iv) O(Sym(4) 1 Alt(5)).

Proof. By the preceding discussion it suffices to work in A/L = 2 Sym(5) which we may
take to be generated by the permutations (1,2), (1,3,5,7,9)(2,4,6,8,10), and (1, 3)(2,4).
Since L < H, N Gy < B we have H, N G'Lcl] < BH,. In particular, the image in A/L of
H,n GV s a subgroup normalised by an element of order 5 and so is either the trivial
subgroup, Z(A/L) = ((1,2)(3,4)(5,6)(7,8)(9,10)), [A/L, B/L] = {(1,2)(3,4), (3,4)(5,6),
(5,6)(7,8), (7,8)(9,10)) or B/L.

We claim that |[H, N GQ}/L| € {1,2'}. Otherwise we have |H, N GQ]/L| = 2or
|H, NGY/L| = 25 In both cases, we consider S = (A/L)/[A/L, B/L] = 2 x Sym(5) and
we see that T'= (H,/L)[A/L, B/L]/[A/L, B/L] is a homomorphic image of H,. By our
assumption, |Z(T)| =2 and T/Z(T) = C5 or T/Z(T) = Alt(5) holds. Thus T splits over
Z(T) and so T has a 2-quotient, which contradicts the assumption that O*(H,) = H,.

Assume first that |H, N GE]/L| = 1. Then H,/L = C; or H,/L = Alt(5). In the first
case we see that H, is conjugate to LF = Alt(4) ! C5; where F' € Syl;(A). In the second
case, we have H,/L < 20 Alt(5) (by considering the quotient A/B for example) and so
H,/L is a complement to B/L in this subgroup. Since there is a unique conjugacy class
of complements, we find that H, is conjugate to a subgroup isomorphic to Alt(4) ¢ Alt(5).
Hence the isomorphism of (i) or (ii) holds.

Now we assume that |H, N GY/L| = 2* and so H, N GY/L = [A/L, B/L]. We now
consider the quotient (A/L)/[A/L,B/L] = 2 x Sym(5) and we see there is a unique
conjugacy class of subgroups isomorphic to Cs or isomorphic to Alt(5). Hence H,/L is
conjugate to a member of one of these classes, and therefore H, is isomorphic to one of

(iii) or (iv). O
We may now identify H, based upon the four cases specified in Theorem 4.5.29
Theorem 4.5.30. With respect to the cases in Theorem 4.5.29, H, is isomorphic to
(i) Alt(5) x Alt(4) x Alt(4) x Alt(4) x Alt(4),
(11) Alt(5) x Alt(4) ¢ Alt(4),
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(111) Alt(5) : (Sym(4) x Sym(4) x Sym(4) x Sym(4)) or
(i) Alt(5) : Sym(4) 2 Alt(4).

Proof. Recall that H, = E,H,,. We proceed by analysing the cases delivered by Theorem
4.5.29. Lemma 4.5.25 gives Cp, (E,,) = Hyy N GE], which allows us in all cases to
determine the struture of H,.

In case (i) we have H,, = E, Eqy Fpy By Fry, and By Epyy Ery Ery,, By = 1.
Thus H, = E,E,,, By, Eyy, By, and by Lemma 4.5.25 we have Cp, (E,) = Cpg, (E,,) so
that H, = £, X E,y, Fyy, By, By, which gives the result in this case.

In case (ii) we have H,, = Alt(4) x Alt(4) Alt(4). Thus H,, = E,,Cp,,(E,,) and so
H, = E,Cy,(B,) = Alt(5) x Alt(4) 2 Alt(4).

For (iii) we see that Cp,,(E,,) has isomorphism shape Alt(4)* : 2%, and has index 24
in H,,. Note that H,, splits over E,, and a complement is isomorphic to Sym(4)*. Thus
H, = E,H,, = Alt(5) : Sym(4)*. Note that there are multiple split extensions which
may be described as such, but having specified the subgroup Cpg, (£,) we have fixed the
isomorphism class to which this group belongs.

In case (iv) we again see that H,, splits over E,, and that a complement, C say,
is isomorphic to Sym(4) ¢ Alt(4). Thus Cg,,(E.y) = Cco(Eyy) has isomorphism shape
Alt(4)*.2°. Alt(4). Hence Cp,,(E,,) is the unique index 2 subgroup in C, and so H, =
E,H,, = H,C = Alt(5) : Sym(4) ¢ Alt(4) is the unique split extension which is not a

direct product. O

We can now prove Theorem 4.5.21.

Proof of Theorem 4.5.21. We have seen that A = B and Theorems 4.5.29 and 4.5.30
show that B has the same type as S; for some i € [9,12]. The result now follows from our

assumption that A is faithful and Theorem 4.1.1. H
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4.6 Cg.(Q.) Q. for z =1,y

In this section we work towards proving Theorem 4.6.8. This is the final case that is
delivered by Theorem 4.3.4 and it’s proof will complete the classification of simple finite
faithful amalgams of degree (5,5). We will show that (G, G,) is a weak (B, N)-pair for
G. Recalling Definition 1.6.7, we need to show that for z = z,y there exists a normal

subgroup G of G, containing @, such that G%/Q, € A where
A := {Dih(10), Frob(20), Alt(5)},

and G} N G,y = Ng:(P) for some P € Syly(G%). If this holds, then Corollary 1.6.10

identifies the amalgam as one of Si3, S14, S15. We first prove the following theorem.
Theorem 4.6.1. For z = x,y we have Q, N Qy # Q..

Proof. We will establish the proof of the theorem after a number of steps.
We assume for a contradiction that @), < @), and set L = <QyGZ) Note that L £ Gl

or this would give @, < @, hence G,/ GQ l o Cs cannot occur in the following.

(1) For any J < G, such that J is transitive on A(z) we have L = (Qy).

We see that L = Q,[Qy, G.] = Qy[Qy, JGuy| < [Qy, Guyl[Qy, J] < Qy[Qy, J] = <Q5>a

but the reverse containment is automatic.

2) LnGY =q,

Set M = LN GY and choose T € Syly(Gyay) such that Q, < T. Then Ty :=T N M €
Syly(M) and Ty < T since M <0 G,y. Then @, < Ny (7)) and by the Frattini argument
L = Np(To)M, so we see that Np(Tp) is transitive on A(z). Hence L > Ny (Tp) >
(@)Y = (QS+) = L, so Ty < L which implies Ty = Q, (as Q, < M). For the duration
of this claim set G, = G,/Q,. Then M is a 2-group. Also, [Q,, Gg]] <Q@QyN Gl = Qu,
s [L, G = [(QS=), G = ([Q,, GM]6=) < Q,, that is [T, GY] = 1. Then [L, ] = 1,
however L/M is isomorphic to one of Dih(10), Frob(20), Alt(5) or Sym(5) and none of

these groups has a non-trivial extension by a 3-group, so we see that L =2 K x M where
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K is one of the previous mentioned groups. Then @, < K which implies L = Q) <K,

hence L = K and M = 1. Hence LN GQ] = (), as required.

(3) After replacing L with one of its subgroups, the following hold,
(a) L/Oq9(L) = Dih(10), Frob(20), Alt(5),
(b) L is transitive on A(x),

(c) Qy € Syly(L),
(d) No non-trivial characteristic subgroup of ), is normal in L.

Note that once we have that L which satisfies (a), (b) and (c) then (d) is immediate.
Indeed, if 1 # C < L and C char @, then C' < G, also, and so C < (L,G,) which is
transitive on I'. This would imply C' = 1, a contradiction.

For the duration of this claim we set G, = G, /O(L). Note that Oy(L) = Q, = LNGY
so that L is isomorphic to one of Dih(10), Frob(20), Alt(5) or Sym(5). Thus 51 |G, : L]
$0|L:LNGyyl=5and |L:LNG,,| =5 also.

Firstly, if L = Dih(10) we see @, = Cy and so @, € Syl,(L) and L itself is our desired
subgroup. If L 2 Frob(20), either |Q,| = 4 or |@,| = 2. In the second case we would see
a unique index two normal subgroup K of L containing (),, but then we would obtain
L = (QS*) < K, a contradiction. Hence L itself satisfies (a)-(c).

When L 2 Alt(5) or Sym(5), the normality of @, in L N G,, implies that Q, = 22
and @, < L~ Alt(5). Thus we obtain the desired conclusion after replacing L with the
pre-image of T’ here.

We now assemble some pushing up results which deliver our conclusion.

(4) If L/Oy(L) = Dih(10) or Frob(20), Oy(L) = F*(L) and S € Syl,(L) then there exists
C char S such that 1 # C < L.

To see this apply Theorem 1.5.6 with » =5 and p = 2.

We are now ready for the contradiction.

(5) Qu £ Q.
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Let L be the subgroup of G, delivered by (3). In the instance L/Oo(L) = Dih(10)
or Frob(20) we apply (4) with @), = S and obtain a non-trivial characteristic subgroup
C of Q,. But this contradicts (3) (d). In the second instance, we need (3) (d) to invoke
Theorem 1.5.1 and we set H = Q, P where P € Syl;(G}). Then Q, < H implies @, = 1
since H is transitive on A(y). Thus since Q, < @Q,, we see @, = Nz(Q;). Now let
H = f[/Cﬁ(Qy) be viewed as a subgroup of Aut(Q,). Now we apply Theorem 1.5.1 with
Qy =195, Z =Q(Z(9)) and the subgroup H just constructed, so that |H : Ny(Q.)| = 5.
This implies (Z) < Q, and (Z#) < L. But (Z#) is normalised by H, that is, it is
invariant under all the conjugation maps induced by H , so certainly (ZH) < H. Then

1+ Z < (Z"Y) < (L, H) which is transitive on I, a contradiction. O

With the proof of Theorem 4.6.1 completed, we may assume the following hypothesis
for the rest of this section.

Hypothesis (A): The group Q, N Q, is a proper subgroup of both @, and @Q,,.

Note that (A) immediately implies that GI/GE] € {Dih(10), Frob(20), Alt(5), Sym(5)}.

Lemma 4.6.2. Let u,v € A(z) with w # v. Then the group L = (GE},QU,QU) is

transitive on A(x).

Proof. Set G, = G,/ GY and observe that Q. and Q, are distinct 2-subgroups of G,. It
is easy to check from the list above that L contains a subgroup isomorphic to Dih(10), as

required. O]
Recall that Ggl@], =6l n G?[Jl].
Lemma 4.6.3. The group G_[Ely] 1S a 2-group.

Proof. Let u # y be a vertex adjacent to x and let v # = be a vertex adjacent to
y. Note that Gg}; is a subnormal subgroup of G,, and so Lemma 1.3.6 implies that
O2(G,y,) normalises OQ(G%), hence @, normalises GLly}. The same argument shows that
Qu < No, (0%(GH))). Thus 0%(GE)) < (G, Qu, Qy) and O*(GE)) < (G, Qu, Qu). Since
these two groups are transitive on A(z) and A(y) by the previous lemma, we find that
0(GH) = 1. O
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With the previous lemma we are able to limit the structure of GG, as follows. Since
Gl < G'zy we find that GQ}/G% = G;[EI]GLH/GE] < chy/GqE,l]. The latter subgroup being
isomorphic to one of {Cy, Cy, Alt(4), Sym(4)} we see that either G is a 2-group and G =
Q., or possibly Gl /Q. € {C3,Sym(3)}. Before considering these cases, we determine

how much of a problem the Sylow 3-subgroups of G, could pose.
Proposition 4.6.4. Let T € Syly(G,). Then |T| < 32 and T is elementary abelian.

Proof. We may assume that 7' < G,,. The previous lemma gives that G% is a 2-group,
and so T' = TG%} / GEJ < Gay/ Ggy] Since this group is a permutation group acting on the
set (A(z) UA(y)) \ {z,y} preserving the partition, it is a subgroup Sym(4) x Sym(4) and

the assertion is immediate. O

Proposition 4.6.5. Suppose that Gl = Q.. Then there exists G < G, such that

Gr/Qqr € A

Proof. Let G, = G,/GY = G,/Q,. We have already seen that G, € {Dih(10), Frob(20),
Alt(5), Sym(5)} and so we may take G = G, unless the final isomorphism holds, in which

case we take G* to be the preimage of the derived subgroup of G,. m

Lemma 4.6.6. Suppose that GL}]/QI = Sym(3). Then there exists G < G such that
G/Qz € A

Proof. Set G, = G,/Q,. We first observe that this situation can only arise if Gy/ G[yl] i
Sym(5) and GUGY = G,,. Thus G,,/Gl = GV /Gl x G /G where GG =~
Sym(4) and GJ1/GL) =~ ny/GQ]. Hence G,,/Q, = Sym(3) x Gzy/GQ]. In particular,
any Sylow 2-subgroup P of G, splits over PN G_E}

Now the assumption implies that G, has a normal subgroup T' of order 3. Proposi-
tion 4.6.4 on the Sylow 3-subgroups of G, shows that either T' € Syl;(G,) or the Sylow
3-subgroups of G, split over T. In the former case we may apply the Schur-Zassenhaus

Theorem and in the latter case we apply Gaschiitz’s Theorem to obtain K, a complement

to T in G,. Observe that K has a normal, and therefore central, subgroup S of order 2.
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We claim that the Sylow 2-subgroups of G, split over S. To see this, we choose a subgroup
SO € Syl,(G,,) which contains S (note that S° € Syl,(G.)). But now S°nN G_Q] =S, and
so the previous paragraph implies that S° does indeed split over S. Invoking Gaschiitz’s
Theorem again, we find L, a complement in K to S, and since S < Z(K) we see that
K=LxS.

We claim now that [L,T] = 1. Of course, L normalises T so L/Cr(T) — Aut(T") = C,.
Thus it suffices to show that a Sylow 2-subgroup of L centralises T. We may take S°N L
to be this subgroup, and since S° = S x SN L, looking in G,,/Q. we indeed see that
S%N L centralises T. Thus L <1 G, and we have shown that G, = L x G_E}

Choosing G* as the preimage of L (or L' if L = Sym(5)), we see that G%/Q, € A as

required. O]

Lemma 4.6.7. Suppose that Gg]/Qx = Cs. Then there exists G < G, such that
Gy/Q. € A

Proof. Again we set G, = G,/Q, and observe that there exists a normal subgroup T
isomorphic to Cs. Hence Gaschiitz’s Theorem or the theorem of Schur-Zassenhaus gives
a complement K to T in G. As before, we see that |K/Cx(T)| < 2 and K = G, /G

Let us first consider the case that K = Dih(10) and K/Cg(T) = C,. Then we
find that ]Gzy/Gg]] =2 If Gy/GE] =~ Sym(5), then we would have \Gwy/GQ}Gg{}” = 2
which forces GL”G;[C” = G;[Ul], and so @, < @, a contradiction to (A). Hence we have
G,/GH =~ Alt(5) and G,y = GG, But now we see that G,,/Gly 22 Alt(4) x Dih(10)
and so G, = C3 x Dih(10), a contradiction to Cg—(T') = C;.

We return now to the general situation where |K/Cg(T)| < 2. If K = Cg(T) then
K < G, and we let G be the preimage of K (or K’ if K 2 Sym(5)) in G,. Otherwise,
K/Ck(T) = Cy and Cg(T) is isomorphic to one of {Dih(10), Frob(20), Alt(5)} (since
the case K = Dih(10) and Cg(T) = C; was ruled out above) so here we let G be the

preimage of Cx (7). Thus G%/Q, € A as required. O

Theorem 4.6.8. The pair (G, G,) is a weak (B, N)-pair of characteristic two for G.
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Proof. The previous results guarantee the existence of the normal subgroup G required.
Note that |G%/G: N G,y| = 5 in all cases, so we may choose a Sylow 2-subgroup P of G
contained in G,,. But now P/Q, € Syl,(G,,/Q.) and this group is isomorphic to one of
{Cy,Cy, Alt(4)}. Hence P <1 Gy NG, Since P # @, we conclude Gy NG = Ng: (P) as
required. After relabelling, the results in this section hold for G, also (since all we have

used to prove the statement for G, is that 5 | |G,|), so we are done. O

4.7 Finite completions

Here we construct finite faithful completions for the simple amalgams &;-Sp5. Recall
that the amalgams S;3-S15 and their extensions have completions inside Aut(PSL3(4)),
Aut(Sp,(4)) and Aut(Gz(4)), respectively. We will construct the completions in certain
groups which make the extensions visible. In particular, this is beneficial for the amalgams

S5-S12 as we have not concretely constructed the extensions of these amalgams yet.

Lemma 4.7.1. Let G = Sym(9) and set P, = ((1,2,3,4,5)), P» = ((5,6,7,8,9)) and
B = P, N P,. Then the amalgam (Py, Py, B) is isomorphic to S and G' is a completion
of 8;. Moreover, Ng(P1) N Ng(P,) = Cy x Cy and each of the extensions E{-E]Y is visible

m G.

Proof. 1t is clear that the amalgam ( Py, P, B) is isomorphic to §;. Inspecting the maximal
subgroups of Alt(9) we see that G’ = (Py, P»), so G’ is a faithful completion of S;. We have
that Ne(P) N Ng(P) = ((1,2,4,3), (6,7,9,8)), writing o = (6,7,9,8) and 8 = (1,2,4,3)
we set Ry = (a?), Ry = (a?$?%), Rz = (a?, %), Ry = (o), Rs = (af), Rg = (aB?),
R; = (af?), Ry = (a?,B), Ry = {af3,a?) and Ry = (a, ).

Set A; = (P\R;, P,R;, R;) and we claim that A; is isomorphic to &}. Since A; is a
faithful amalgam that is an extension of &7, it is isomorphic to Ef for some j. Considering
the isomorphism type of P, R; our claim holds unless ¢ = 5 or ¢« = 6. The amalgams
As and Ag both have type (Frob(20), Frob(20),C4). Suppose for a contradiction that

© = (f1, fo, f3) is an amalgam isomorphism between A; and Ag (recall Definition 2.2.7 of
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an amalgam isomorphism and Proposition 2.2.10). Observe that fi(af8) = f3(af) = a3?
or fi(aB) = a®B = fo(af). There are four cases to consider in total, depending on the
value of ©(1).

Assume that ©(1) = 2 and let ¢ be an integer such that fi(z) = y* where z =
(1,2,3,4,5) and y = (5,6,7,8,9). Assume also that fi(aB) = aB3, then fi(z*%) =
fi(z®) = y¥. Since f; is a homomorphism, we have f;(z*%) = fy(z)/1(@F) = (y?)of® = y=2i,
This implies y* = y~2, a clear contradiction. The other cases yield contradictions with
similar arguments. This shows that no isomorphism © can exist, hence A5 and Ag belong
to distinct isomorphism classes of amalgams. With the notation we’'ve set up, we see A;
is isomorphic to & for i € [1,10].

Also note that G' < (P R;, P2R;) < G, so either Alt(9) or Sym(9) is a faithful com-

pletion for the amalgam &} where i € [1,10]. O

Lemma 4.7.2. Let G = Alt(6) and let P, = Stabg(1), P, = Stabg(2) (in the usual
action on siz points). Then (P, Po) = G is a faithful completion of the amalgam Ss.

Moreover the extension Ey is visible in Sym(6).

Proof. We have that P, N P, = Alt(4) and since |G : Pi| = 5 we have G = (P, P»). Since
G is simple, the amalgam formed by P;, P, and P, N P, is faithful, hence is isomorphic

to Sz. The rest of the lemma follows immediately. O]

Lemma 4.7.3. Let G = Sym(9), Pi = ((1,2,3), (3,4,5)) and P, = ((1,2,3), (2,3,4),
(5,6,7,8,9)). Then Alt(9) is a faithful completion of S3 and all extensions are visible in
G.

Proof. 1t is easy to check that Alt(9) = (P, P,). Set B = P, N P,. Since Alt(9) is simple,

the amalgam formed by P, P, and B is faithful and is therefore isomorphic to &5. We
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find that Ng(P1) N Ng(P,) = (B, a, f) where a = (3,4) and § = (6,7,9,8). Set

R, = (B,a)
Ry = (B,aB?
Ry = (B,f?)
Ri = (B,a,)
Rs = (B,p)
Ry = (B,ap)

R; = (B,o,[)

then the group (PiR;, P,R;) is a faithful completion for £ where i € [1,7]. Note that
(PiR;, P,R;) = Alt(9) for i = 3,6 only, and (PR;, P»R;) = Sym(9) in the remaining
cases. O]
Lemma 4.7.4. Let G = Sym(9), P, = ((1,2,3), (3,4,5), (6,7,8), (7,8,9)) and P, =
((1,2,3), (2,3,4), (6,7,8), (8,9,10)). Then Alt(9) is a faithful completion of Sy and all

extensions are visible in G.

Proof. Here we compute that Ng(P) "\Ng(P,) = (PLN Py, (1,2),(5,6)). The calculations

are similar to the previous lemma. O]

For the remaining amalgams we set G = Sym(21) and show that either G or G’ =

Alt(21) is a faithful completion for the amalgams S5-Sj2 and their extensions. We define

X1 = ((1,3)(2,4)(5,7)(6,8), (5,7)(6,8)(9,11)(10, 12),
(9,11)(10,12)(13, 15)(14, 16), (14, 16)(13, 15)(17, 19)(18, 20)),
X, = ((1,2,3,4)(5,8,7,6),(5,6,7,8)(9,12, 11, 10),

(9,10,11,12)(13,16, 15, 14), (13,14, 15, 16)(17, 20, 19, 18)),

and note that X, = C,* and Q(X,) = X; = 2*. We also need some permutations which
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act on the orbits of X; and Xs;

o= (1,5,9,13,17)(2,6, 10,14, 18)(3,7,11,15,19)(4, 8,12, 16, 20),
s = (1,5,9)(2,6,10)(3,7,11)(4,8,12),

t = (9,13,17)(10, 14, 18)(11, 15,19)(12, 16, 20),

ro= (17,20,18,19,21)

Observe that (f) = (r) = Cs. Also note that s and t have order three and (s,t) is
isomorphic to Alt(5) acting primitively on the set [1,20] with block system [1, 4] U [5, 8] U
[9, 12]U[13, 16]U[17,20]. We define the following subgroups of G (recall the shape notation

from the notation introduced in the introduction),

P1’5 = <X1, f> [ad 25.C5,
PI,G = <X27 f> ~ 44'057
P1’7 = <X1, S,t) ~ 24A1t(5),

Pl’g = <X2, S,t) ~ 44A1t(5),
and, for i = 5,6,7,8, we set B; = Stabp, ,({17,18,19,20}) and P,; = (B;,r). Now let A;
be the amalgam formed by (P, P, B;) for i =5,6,7,8.

Lemma 4.7.5. Fori = 5,6,7,8 the amalgams S; and A; are isomorphic. Moreover, G’

18 a faithful completion of S;.

Proof. Let i € {5,6,7,8} and observe that P, ; acts transitively on the blocks [1,4]U---U
[17, 20], so that |P1,i : Bz| = 5. Also we have B5 = Xl, B6 = XQ, B7 = <X1,S,t/> and
Bs = (X5, s,t') where

t' = (5,9,13)(6,10,14)(7,11,15)(8, 12, 16).

Thus B; normalises (r) which gives |P,; : B;| = 5 and we see that the amalgam A; is of
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degree (5,5). We have to show that G' = (P, ;, ;) for i = 5,6,7,8. Note the inclusions
P5s < Pg<Pgand Py < P g Similarly, Po5 < Pog < Pog and Py < Ppg. Hence
we simply need to observe that G' = (P 5, Paj5) (this can be shown using MAGMA for
example). Also, since G’ is simple, we have shown that the amalgam A; is a faithful
amalgam of degree (5,5). Using Theorems 4.0.1 and 4.0.2 and the isomorphism type of

P, ;, we conclude that A; is isomorphic to S;. O
Lemma 4.7.6. Fori € {5,6} the extensions of S; are visible in G.

Proof. Let i € {5,6,7,8} and set N = Ng(P1;) N Ng(P,;). Now let R be a subgroup of

N which contains B;. Observe that

G' = (P, P2;) < (P, P2;)R= (PR, P,;R) <G

and therefore G’ or G is a completion of the amalgam A; := (P;R, P»,;R, R). Since
P ;N R = B; = P,; N R this amalgam has degree (5,5) and is therefore an extension of
S;. Moreover N is a split extension of B by a subgroup isomorphic to C4 x Cy4, therefore
there are 15 amalgams which are extensions of §; visible in G. We use MAGMA to see
that if S is a subgroup of N containing B; such that S # R, then P,;R and P,;S are
non-isomorphic, except in two specific cases which we discuss below.

Let R = (B;,z) and S = (B;,y) where

r = (1,12,15,6)(2,9,16,7)(3,10,13,8)(4, 11, 14,5)(17, 20, 19, 18),

y = (1,8,15,10)(2,5,16,11)(3,6,13,12)(4,7,14,9)(17,20, 19, 18).

Then P ;R = P ;S and Py;R = P,;S, which implies (because of the degree) that the
amalgams A = (P;R, P;R, R) and B := (P;5, P»;S,5) are of the same type. We
claim they are non-isomorphic. Suppose for a contradiction that © = (fi, fo, f3) is an
amalgam isomorphism from A to B (recall Definition 2.2.7 of an amalgam isomorphism).

The following argument is similar to the argument showing that the amalgams A5 and Ag
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are non-isomorphic in the proof of Lemma 4.7.1, but requires slightly more work. Note
that ©(1) =1 and ©(2) = 2 since PR and P»S are non-isomorphic.

Now f1(f) = f° for some b € B; (since P, = (f)B; is a normal subgroup of P,S). Now
(r) is a normal Sylow 5-subgroup of both P»;R and P,;S, therefore fy(r) = r* for some
i. Note that neither x nor y centralise r, so we have that f3(x) ¢ Cg(r). Now S/Cg(r)
is cyclic of order four and f3(z) is an element of order four which does not square into
Cs(r), so we see that f3(z) = yz or y*z for some z € Cg(r). Since fy is a homomorphism

we have that

= ) = Falr7) = Far)) = (1))

since r°% = =2 we find that f3(x) = yz must hold. Now we consider

AU = R = L) = ()"

On the other hand, this is equal to (f°)¥* = f%* = (f¥)"*. Now fY = f? and so
b(bYz)™t € N, ({f)) = Cp,(f) = 1, whence b = b¥z which implies (f2)*"* = (f*)""# and
therefore f2 = 3, a clear contradiction.

It follows then that the amalgams arising in G' as described above are all distinct and

therefore all extensions of S; are visible in G. O
Lemma 4.7.7. Fori € {7,8} the extensions of S; are visible in G.

Proof. Let i € {7,8}. Then N := N¢g(P;;) NNg(Py;) is a split extension of B; by a group
isomorphic to Cy x C4. There are therefore 8 extensions of S; visible in GG, and considering
the isomorphism types of P,;R for B; < R < N we see these extensions are all distinct.

Hence every extension of S; is visible in G. O

To construct completions for the amalgams Sy - S12 we define the following permuta-
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tions,

a = (1,2,3),
b = (2,3,4),

c = (1,2)(5,6),

and note that (a,b) = Alt(4) and (a,b,c) = Sym(4). We define the following subgroups
of ¢,

Py = (a,b, f) = Alt(4)1Cs,
Pl,lO = <(I, b> C, f> = OQ(Alt(4) ! CS))
Pl,ll = <Cl, b, S, t> = A1t<4) l Alt(5>,

P1,12 = <a7 b7 ¢ S, t> = OQ(Sym(4) ! Alt(5))7

and as above, for i = 9,10, 11,12, we set B; = Stabp, ,({17,18,19,20}) and P,; = (B;, 1)

and define A; to be the amalgam formed by P, ; and P» ;.

Lemma 4.7.8. Fori=9,10,11,12 the amalgams A; and S; are isomorphic. Moreover,

G’ is a faithful completion of S;.

Proof. Let i € {9,10,11,12}. First observe that P, 5 < P;; and Py5 < P,; hence G' =
(P14, Py;). It follows that the amalgam A4; is faithful. For the same reason as in the proof

of Lemma 4.7.5 we have |P;; : B;| = 5. For j € {0,1,2,3,4} we set
a; = afj, b, = bfj, cj = e’

Observe that 1 = [a;,r] = [bj,r] = [¢j,r] for j # 4. Now (a4,bs,7) = Alt(5) and
(a4, by, cq,7) = Sym(5). It follows that B; = Stabp,,(21) and |Py; : B;| = 5. Hence A; is
a faithful (5,5) amalgam. Considering the isomorphism type of P;; and Theorems 4.0.1

and 4.0.2 we conclude that A; is isomorphic to S;. O
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Lemma 4.7.9. Fori=9,10,11,12 the extensions of S; are visible in G.

Proof. Let i € {9,10,11,12} and let N = Ng(P1;) NNg(P;). We calculate that N splits
over B; with a complement isomorphic to Cy x Cy, for i € {9,10}, and a complement is
isomorphic to 22, for i € {11,12}. Let R be a subgroup of G such that B; < R < N.
Then

G' = (P, Po;) < (P, P2;)R= (PR, P,;R) <G

so either G' or G is a completion of the amalgam (P ;R, P»;R, R), which is therefore
faithful. A MAGMA calculation shows that if S < N is such that B < S and R # S then
the groups P, ;S and P, ;R are non-isomorphic. Hence for each choice of R we obtain a
distinct isomorphism class of amalgam. For ¢ € {9,10} then, all eight extensions of S; are

visible in G and, for ¢ € {11,12}, all five extensions of S; are visible in G. ]

4.8 Presentations

In this section we give presentations for the universal completions of the simple finite
faithful amalgams of degree (5,5), with the exception of Sj3. We have provided a pre-
sentation for the universal completions of the amalgam Sj» for download at [25]. The
forbidding length of this presentation (which has six generators and 143 relations) means
that it is unsuitable for display. To obtain these presentations, we employ the function

AP described in Section A.3 and use the finite completions from Section 4.7.
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Type \ Generators \ Relations

S |a,b a’, b’

S, |a b c a, v*, (ba)?, &, ('), (c7'o~te )2 bePbicPhe !,
(cb~tcta)?

S |a bocd ad, v3.c3, d° (eb™ )2, [b,d], (ab™)?) [c,d], (ac)?,
(be)?

Sy |abede | A ad b, f3 & (bd)?, (b, f],

f be], [de], [a,d, [d,f], [bc, ab ta"tbd?,

(eftef)?, (efte tf=1)2 ctdtbd ted 1 bd 1,
a b~ tad tbd~tba='b, cftefe teeftef,
(c ' fefe ), a ' ftefetaef e, ([f,e7M])?,
fled tfe tbd tef~tetd "t fbd!

Table 4.8: Presentations for simple finite faithful (5,5) amalgams.

Type \ Generators \ Relations

Ss |a, b c

a’, aclac, v, ¢, (bab~'a)?, bab 'ctbab~lc,

(b~tabc™1)2, (ba)®, (ab*ab2)?, b*ab~2c 'h*ab2c

S¢ |a, b c

at, la,c], v°, &, a~b~ta"tbab~tab, b~1a"tbc b abc,
(a™'0)>,  a 'B*a v 2ab’ab™?, b 2a 'b*c b 2ab’c,
ab=2c W ath2c21?

S; |a b d

v, at, [bd], la,d], &, d° (b 'c?)? (a'b71)3,
a tctbabte, b tedlelbed, alctalbab~lac,
atca e rabab™!, cla7ted e acd (b~tc7 v 1e)?,
b=lcta"tea " be ac, a tc2a tebab e tac?,
c3b e e e e 1b_1cbab_1, c2actd e 2a " Pd?

Ss |a,bcd

a?, b3, [b,d], ad”tad, ¢, d°, (b~'a), b~ labclac,
(b~1c™?)% cac”'d  cac™d, cb~ted tebe M,
(cb 1 *lb 2, beac tab tcac™, (¢ tbabch™1)?,
(o tabed™)?, (ac™'b abc)?, cac™?b~ abctabcabe

Table 4.9: Presentations for simple finite faithful (5,5) amalgams.
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Type \ Generators \ Relations

Sy |abec b3, (1), c, a’, b~lacatbac a1,
[[0,a71],07Y], ctaba tcab™'a™t, a~2b7'a*ba2ba*b~!,
a’ba=2ca’b'a2c! b='a’ca2ba’c'a"2?,

Y
ac’bcatcac b e 2a e, bebcPb e b ebe 207,
a ttb e tacta the b e 2ac,
(a"tebe 2abe™1)?, Abteta 2 a’cbe a2 ca?,
b leb ta t?b e tac ta iebe2a, a?cta " 2cbe2a%ca”
abc?b~te b ta " Pbeabebe2b ta e b2,
bc2a?bc*b e ta2c2b talcbe 2 b a2,
a et e 2a?c e 2a 2 Pbea’ Pbea
bebe2a=tbebe b Lac?bebabebe2ba,
a’b?b e b a2 e b ta?bebe 2 ta 2 b e Y

2 2

cbc™=,

Table 4.10: Presentations for simple finite faithful (5,5) amalgams.
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APPENDIX A

COMPUTER PROGRAMS

A.1 Counting isomorphism classes of amalgams of a
certain type

The following function is a computer implementation of Goldschmidt’s counting lemma
(Lemma 2.2.12) in MAGMA. If A = (P, P», B,m,m) then the function AC accepts
as input the tuple (Py, Py, 7 (B), mm ). The function returns a list de=(7yi,...,7,) of
double coset representatives of Hy and Hj in Aut(B) (see Lemma 2.2.12 for notation). A

complete set of representatives for the isomorphism classes of amalgams of the same type

as A is then {(PI,PQ,B,’YH,TFQ’)/Z') ‘ 1€ []., e 771,]}

function AC(pl,p2,bl,isom);

// The first part of the function computes the holomorphs
// of pl, p2 and bl

abl:=AutomorphismGroup (bl );

phi ,P:=PermutationRepresentation (abl);
phii:=Inverse (phi);
al:=AutomorphismGroup (pl);
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phil ,perml:=PermutationRepresentation(al);

phili:=Inverse (phil);

el ,pltoel ,permltoel:=SemidirectProduct (pl,perml, phili);

cl:=sub<el|{x@permltoel : x in Generators(perml)}>;

a2:=AutomorphismGroup (p2);
phi2  perm2:=PermutationRepresentation (a2);

phi2i:=Inverse (phi2);

e2 ,p2toe2 ,perm2toe2:=SemidirectProduct (p2,perm2, phi2i);

c2:=sub<e2|{x @perm2toe2 : x in Generators(perm2)} >;

// This part finds the normalisers of bl in the automorphism

// groups of pl and p2

nl:=Normaliser (el ,bl@pltoel) meet cl;

n2:=Normaliser (e2,(bl@isom)@p2toe2) meet c2;

// This pulls nl and n2 back into the automorphism groups

// of pl and p2 respectively

alnl:={ ( ( x@@permltoel ) @phili ) : x in Generators(nl)};

a2n2:={ ( ( x@@perm2toe2 ) @phi2i ) : x in Generators(n2)};
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// Next we define images in aut(bl)

astar:= { abl!lhom<bl—>bl | x:—=> x@Qy > : y in alnl };
cstar:={ abl!hom<bl—>bl |

x:—> ((x@isom)@y)@@Qisom > : y in a2n2 };

// Now we move astar and cstar into the permutation

// representation of aut(bl)

astarP:=sub<P|{ x@ phi : x in astar}>;

cstarP:=sub<P|{ x@ phi : x in cstar}>;

// In the permutation representation of aut(bl) we can
// compute the double coset reps quickly
dblc:=DoubleCosetRepresentatives (P, astarP ,cstarP);

dc:=[x@phii : x in dblc |;
// the function returns a list of these double coset
// representatives

return dc;

end function;

A.2 Computing extensions of an amalgam

The MAGMA function Ext computes extensions of amalgams. If A = (P, P, B, 7, m2)

is an amalgam, the function accepts as input the tuple (P, Py, 7, (B), mom ).
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function Ext(pl,p2,bl, isom);

// The first part of the program constructs the holomorphs
// of pl, p2 and bl.

abl:=AutomorphismGroup (b1l);
phi ,P:=PermutationRepresentation (abl);

phii:=Inverse(phi);
al:=AutomorphismGroup (pl);
phil ,perml:=PermutationRepresentation(al);

phili:=Inverse (phil);

el ,pltoel ,permltoel:=SemidirectProduct (pl,perml, phili);

cl:=sub<el|{x@permltoel : x in Generators(perml)}>;
permltoeli:=Inverse (permltoel );
a2:=AutomorphismGroup (p2);

phi2 ,perm2:=PermutationRepresentation (a2 );

phi2i:=Inverse (phi2);

e2 ,p2toe2 ,perm2toe2:=SemidirectProduct (p2,perm2, phi2i);

c2:=sub<e2|{x @perm2toe2 : x in Generators(perm2)} >;

perm2toe2i:=Inverse (perm2toe2);

// Now we calculate the normalisers of bl in the automorphism
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// groups of pl and p2

nl:=Normaliser (el ,bl@pltoel) meet cl;

n2:=Normaliser (e2,(bl@isom ) @p2toe2) meet c2;

// The following part finds the centralisers of bl in the
// automorphism groups of pl and p2 and defines the image

// of the normalisers in the automorphism group of bl

mul:=hom<nl— P | { x—>
(abl!hom<bl—>bl | y:—>y@Q((x@@permltoel)@phili)>)@phi
x in Generators(nl) }>;
mu2:=hom<n2—> P | {x—> (abl!
hom<bl—>bl | y:—>((yQisom )Q((x@@perm2toe2)@phi2i))Q@Qisom>
)@phi : x in Generators(n2) }>;
kl:=Kernel (mul);
k2:=Kernel (mu2);
genskl:=Generators (kl);

gensk2:=Generators (k2);

// The group A below is just the direct product of the

// mormalisers of bl in the automorphism groups of pl and p2

A injs ,projs:=DirectProduct (nl ,n2);

// By taking the intersection of the images in the automorphism
// group of bl we locate the elements of aut(pl) and aut(p2)

// which induce the same automorphisms on bl
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ast:=nl@mul ;
cst:=n2@Qmu2;
acst:=ast meet cst;

gensacst:=Generators (acst );

// Here nstar is the automorphism group of the amalgam

nstar:=sub<A | {x@injs[1] : x in genskl},
{x@injs [2] : x in gensk2},

{ (x@@mul)@injs[1] * (xQ@mu2)@injs[2] : x in gensacst } >;

nul:=hom<bl-—>nl | {x— ( (al!

hom<pl—>pl | {y—=y"x : y in Generators(pl) }>
)@phil)@permltoel : x in Generators(bl) } >;
nu2:=hom<bl-—>n2 | {x— ( (a2!

hom<p2—>p2 | {y—y (xQ@Qisom) : y in Generators(p2) }>

) @phi2)@perm2toe2 : x in Generators(bl) }>;
nu:=hom<bl—>A | {x— ((x@Qnul)@injs[1])*( (x@Qnu2)@injs[2])

x in Generators(bl) } >;

// Here dstar is the image of bl in the automorphism group

// of the amalgam

dstar:=bl@nu;

// We need to find all the subgroups of the automorphism

// group which contain dstar
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q, f:=quo<nstar | dstar >;

subs:=Subgroups(q);

subs2:=] sub<nstar | dstar , subs[i] ‘subgroup@@f> :
i in [1..#subs] |;

// We can now define the extensions by the subgroups in subs2

gx:=[];gy:=[];exy:=[];pil :=[]; pi2 :=[];

// The following code creates a list of the extensions of the

// amalgam by the subgroups in subs2

for i in [l..#subs2] do

gxy:=gxy cat [subs2[i]];

11 ,f1 ,f2:=SemidirectProduct (

pl, subs2[i], projs|[l]*permltoelixphili );

k:=sub<ll| { x@flx((x"—1)@Qnu@f2) : x in Generators(bl) } >;
12 ;map:=quo<ll |k>;

gx:=gx cat [12];

b2:=sub<l2 |{ xQ@Q(f2xmap) : x in Generators(subs2[i])}>;
pil:=pil cat [ hom<subs2[i]->b2 |

{x —>xQ(f2xmap) : x in Generators(subs2[i])} > |;

11 ,f1 f2:=SemidirectProduct (

p2, subs2[i], projs|[2]xperm2toe2ixphi2i );

k:=sub<ll| {(x@isom)@fl«((x"—1)@Qnu@f2)

x in Generators(bl) } >;

12 ,map:=quo<l1 |k>;
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gy:=gy cat [12];

b2:=sub<l12 |{ xQ@Q(f2+map) : x in Generators(subs2[i])} >;
pi2:=pi2 cat [hom<subs2|[i]—>b2]|

{x = x@(f2xmap) : x in Generators(subs2[i])} > ];

end for;

return gx,gy,gxy,pil,pi2;

end function;

A.3 Amalgamated products

Finally we provide details of the MAGMA function AP which computes the universal
completion of an amalgam A = (P, P2, B,m,m). The function accepts as input the
tuple (P, Py, m (B), mem; '), This function is built around the existing MAGMA function
FreeProduct. The function FPGroupStrong is used to convert the groups P, and P,
into finitely presented groups. This appears to be more effective than using FPGroup,

with permutation groups for example.

function AP(g,h,b,iso);

// input is g,h, b, b a subgroup of g, iso a map b—> h
// output is Y, the free amalgamated product of g and h

// with amalgamation over b and the maps g—=Y,h—>Y

x, phil:=FPGroupStrong(g);
phili:=Inverse (phil);

y ,mul:=FPGroupStrong (h);
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muli:=Inverse (mul);

X:=FreeProduct (x,y);

gensX:=Generators (X);

gensxinX:=[ X.i : 1 in [l..# Generators(x)| |;
gensyinX:=[X.i : i in [#Generators(x)+1..# Generators(X)] ]|;

phi2:=hom<x—>X | {x.i—>gensxinX|[i]
i in [1..# Generators(x)] } >;
mu2:=hom<y—>X | {y.i—>gensyinX|[i]

i in [1..# Generators(y)] } >;

R:i= { (d@phili@phi2)x((((d@iso)@muli)@mu2)”—1)
d in Generators(b)};

Y, quo:=quo<X|R>;

return Y, philixphi2xquo,mulixmu2*quo;

end function;
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