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Abstract

This thesis is an investigation into symmetric and semisymmetric graphs of prime valency.

Our approach is via amalgams of groups and coverings of such graphs by trees. We develop

theoretical and computational methods to inform this problem. In the case of symmetric

graphs of valency five we find that there are twenty five finite faithful amalgams, in the

case of semisymmetric graphs of valency five we find there are one hundred and five finite

faithful amalgams. We determine presentations for the universal completions of such

amalgams and find completions in finite groups.
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INTRODUCTION

Algebraic graph theory is the study of graphs with tools from algebra. In the context of

this thesis, those tools are group theoretic. Far from being an application of group theory

however, this also presents us with an ability to study groups by their action on graphs.

The benefit of the latter is that graphs are (or at least appear to be) simple objects, whilst

groups are inherently complex. The sharing of knowledge between these two areas has

influenced the development of both, and perhaps more importantly, has provided many

deep problems for study. An example is to classify the pairs (Γ, G) where Γ is a graph

with certain properties and G is a group acting on Γ in a certain fashion. In this thesis

our aim is to investigate such pairs when Γ has prime valency and the action of G is

edge-transitive.

If a graph Γ (with no isolated vertices) admits a group G acting transitively on edges,

then there are at most two orbits on the vertices of Γ. In the case that there are exactly

two, we say that Γ is (G-)semisymmetric. If there is one orbit on the vertices, then we

consider the action on the arcs of Γ. An arc is an ordered pair of adjacent vertices. If G

acts transitively on the arcs, then we say that Γ is (G-)symmetric, otherwise, Γ is called

1
2
-arc transitive. A result of Tutte says that if Γ is 1

2
-arc transitive, then Γ (which must be

regular) has even valency (see Proposition 2.1.1). Since the components of regular graphs

of valency one are just edges and the components of regular graphs of valency two are

circuits, it makes sense to concentrate on symmetric graphs with valency at least three.

More generally, for s ≥ 2, an s-arc is an ordered sequence of vertices such that every

successive pair is an arc and every three successive vertices are all distinct. We say that

a graph Γ is (G, s)-transitive (for G ≤ Aut(Γ)) if s is the largest integer such that G acts
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transitively on the set of s-arcs of Γ. Thus G-symmetric graphs are (G, s)-transitive for

some s ≥ 1, and every (G, s)-transitive graph with no vertices of valency 1 is G-symmetric.

For a semisymmetric graph Γ, Γ is bi-regular with valencies k and l say. If l = 1 then

the components of Γ are k-stars. If k = l = 2 then the components of Γ are circuits.

Hence for semisymmetric graphs we usually assume that k ≥ 3 and l ≥ 2. A graph Γ is

called locally (G, s)-transitive if s is the largest integer such that for each vertex x ∈ Γ

the stabiliser in G of x acts transitively on the set of s-arcs with initial vertex x. We will

see (Lemma 2.1.2) that locally (G, s)-transitive graphs with s ≥ 1 are G-semisymmetric.

Finite semisymmetric graphs for which k = 3 = l were studied by Goldschmidt in

the seminal paper [17]. In this paper Goldschmidt developed a method to study this

problem using amalgams of groups and Serre’s [34] covering theory of graphs by trees.

This proceeds as follows (a full discussion can be found in Chapter 2). To a finite G-

semisymmetric graph Γ we associate an amalgam A formed by a pair of vertex stabilisers

Gx and Gy such that {x, y} is an edge of the graph. The degree of the amalgam is the pair

of indices (|Gx : Gxy|, |Gy : Gxy|) where Gxy = Gx ∩Gy. As we shall see in Lemma 2.1.2,

this is equal to (k, l), the bi-valency of the graph. Furthermore, we see G = 〈Gx, Gy〉 so G

is a completion for A (see Definition 1.6.2). For a completion X of A we can consider the

coset graph Γ(A, X) of A with respect to X (see Definition 1.6.4). This has vertex set

X/Gx ∪X/Gy and edges between two cosets Gxg and Gyh if and only if Gxg ∩Gyh 6= ∅.

Lemma 2.1.6 shows that Γ ∼= Γ(A, G) and therefore implies that every semisymmetric

graph of bi-valency (k, l) is the coset graph of an amalgam of degree (k, l) with respect to

some completion. Thus our focus will be upon first classifying amalgams of degree (k, l)

and then to try and understand their completions. Our method involves considering the

coset graph Γ̃ = Γ(A,G(A)), where G(A) is the universal completion of the amalgam (see

Section 1.6). The graph Γ̃ is a tree, moreover the subgroup G(A) fixing a vertex of Γ̃ is

equal to either Gx or Gy, so G(A) is a locally finite subgroup of Aut(Γ̃). By studying

the action of G(A) on Γ̃, properties and structural information of the groups Gx and

Gy can be found. This is “local” information which, when combined with knowledge of
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G(A), enables us to recover G and therefore Γ. In this approach the “local actions” G
∆(x)
x

and G
∆(y)
y (the permutation groups induced by Gx and Gy on the neighbours of x and

y respectively) has considerable influence. We will see in Chapter 2 these are transitive

groups and for the particular valencies that we are interested in we understand their

structure very well (see Section 1.4). We gain information about the graph Γ in this way

since the local action on the graph Γ and on the tree are the same. For k = 3 = l we have

|∆(x)| = 3 for every x ∈ Γ and so the group G
∆(x)
x is either cyclic of order three or the

full symmetric group of degree 3.

One of the many interesting results from Goldschmidt’s paper is that the automor-

phism group of the amalgam A arising from a semisymmetric graph Γ embeds into the

full automorphism group of the tree Γ(A,G(A)). In fact, the image is the full normaliser

of G(A) in the automorphism group of the tree, a group which is considerably more com-

plex than G(A) (for example, it is uncountable). We offer a constructive proof of this

result in Section 2.2 in which we explicitly show how this embedding arises. Moreover our

approach allows us to make the process computational and we have designed computer

programs in Magma to facilitate this (see Sections A.1 and A.2). In particular, we are

able to calculate the possible extensions of the group G inside the automorphism group

of the tree using only local information, this is the Extension Theorem 2.2.25. Of course

this can only be done in this way, since we cannot compute with the automorphism group

of the tree itself. We also extend a result of Goldschmidt’s from the valency three case

to arbitrary primes. Theorem 2.4.2 shows that in the semisymmetric case there exists

a certain minimal simple amalgam. Together with the Extension Theorem, this would

allow us to compute all amalgams of degree (p, p) after finding the simple amalgams. We

use this in our investigation into semisymmetric graphs of valency five.

For semisymmetric graphs of valency three the main result of [17] is that, up to

isomorphism, there are precisely fifteen amalgams which arise from finite semisymmetric

graphs of valency three. Such an amalgam is called faithful and is finite in the sense that

it is formed of finite groups. The degree of the amalgam is the pair (k, l). Results prior
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to Goldschmidt’s were of a more combinatorial flavour. Examples of this are results of

Tutte [49, 50] for amalgams of degree (3, 2) (which arise from symmetric graphs of valency

three). In particular, here we have that the stabiliser in G of an edge has order dividing

16. Using Tutte’s results, Djoković and Miller [12] classified the possible amalgams that

arise and found that there are precisely seven. Perhaps motivated by these two results,

Goldschmidt made the following conjecture (for the terminology see Section 2.2).

Conjecture (Goldschmidt, 1980). Suppose that k and l are primes. Then (up to isomor-

phism) there are finitely many finite faithful amalgams of degree (k, l).

The graph theoretic version of this conjecture is the following.

Conjecture. Up to conjugacy in Aut(Γ), there are finitely many locally finite edge-

transitive subgroups of Aut(Γ) where Γ is a bi-regular tree with prime valencies.

Results of Djokovic [11] and Bass, Kulkarni [3] show that there are infinitely many

isomorphism classes of amalgams with composite degree (that is, at least one of k or

l composite). Conversely, evidence for the validity of above conjecture was provided

first by Rowley [33] and then by Fan [13]. Both of these results were proved under an

assumption which implies that the local action is either dihedral or Frobenius and that the

edge stabiliser is a p-group for some prime p with k 6= p 6= l. Using a different approach

Djoković [11] showed that for certain classes of primes there exists a bound on the number

of finite faithful amalgams (the methods involved permutation group theory). In the same

paper, he proposes the harder problem of classifying the actual isomorphism types of the

amalgams. In Section 1.4 we use the Aschbacher-O’Nan-Scott theorem together with

theorems of Burnside and Cameron to gain some control over the local action that can

occur in this situation. We find that the local action is either affine or on a list which is

delivered by Lemma 1.4.5. This list shows that in general the local action will be affine

or linear. Three exceptions occur, which are valency five, valency eleven and valency

twenty-three. In this thesis we consider the valency five symmetric and semisymmetric

cases. Briefly, our main theorems are below, consult Theorem 3.0.5, Theorem 4.0.1 and
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Theorem 4.0.2 for more technical statements. The following theorem is connected to the

symmetric case.

Theorem. Suppose that A is a finite faithful amalgam of degree (5, 2). Then A is iso-

morphic to one of twenty-five such amalgams, the types of which are listed in Table 3.1.

The next theorem applies to the semisymmetric case.

Theorem. Suppose that A is a finite faithful amalgam of degree (5, 5). Then A iso-

morphic to one of one hundred and five such amalgams, the types of which are listed in

Table 4.1 and Tables 4.3-4.7.

Our theorems are informed by two results which we now describe. The first concerns

(G, s)-transitive graphs. The earlier mentioned result of Tutte [49] shows that s ≤ 5 when

Γ is regular of valency three. Weiss extended this result to regular graphs of arbitrary

valency and showed s ≤ 7 [52] (although this result depends on the Classification of Finite

Simple Groups (CFSG) by using Cameron’s classification of 2-transitive groups). For

graphs of small valency Weiss determined a presentation for the group G. The following

theorem is contained in Theorem 2 of [54] (and because of the restriction on the valency,

is independent of the CFSG).

Theorem (Weiss). Suppose that Γ is a graph of valency five and which is (G, s)-transitive

for s ∈ {4, 5}. Then G admits one of the presentations given in Table 3.3.

In Chapter 3 we explain the contribution of the above theorem to our investigation.

It remains to classify the groups which occur for s ≤ 3 which we do in the remainder

of Chapter 3. A result of Gardiner [16] helps to show that the groups involved in the

amalgam must be “small”. After some careful analysis of the possible configurations, we

arrive at the list in Table 3.1. Having compiled the list, we derive presentations for the

universal completions of these amalgams which we present in Tables 3.2 and 3.3.

For the semisymmetric case we invoke the Thompson-Wielandt theorem (proved in

Section 2.5) to make a case division. In the first case we make use of a deep theorem of
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Stellmacher and Delgado, the proof of which forms [10]. This technical result requires

several definitions, which we make in Section 1.6. Roughly speaking, the result tells us that

the amalgam resembles an amalgam which comes from a generalised n-gon. A generalised

n-gon is a graph with diameter n and girth 2n; a theorem of Feit and Higman [15] shows

that finite generalised n-gons exist only for n ∈ {2, 3, 4, 6, 8}. Generalised n-gons can be

constructed from vector spaces. For an example let W be a 3-dimensional vector space

over the field with four elements. Let V be the set of proper non-trivial subspaces of

W . Let E consist of sets of the form {V1, V2} where Vi has dimension i and V1 ≤ V2.

Then the graph Γ = (V , E) has 42 vertices and each vertex has 5 neighbours. The group

G = PSL3(4) acts edge-transitively on Γ, so Γ is a semisymmetric graph of valency five.

The diameter of Γ is 3 and the girth of Γ is 6, so Γ is an example of a generalised 3-gon.

The generalised n-gons that occur as examples of semisymmetric graphs of valency five

have n ∈ {3, 4, 6}. The amalgam to which PSL3(4) gives rise is the amalgam we denote

by S13 in Table 4.1.

The second case is similar to some of our work on the symmetric case in that the

groups involved in the amalgam are small, but there are more configurations here. The

third case shows how the amalgams arising from semisymmetric graphs differ from those

that come from symmetric graphs - the vertex stabilisers Gx and Gy have rather different

structures and actions. The group Gx acts faithfully on vertices at distance two from x,

whereas the group Gy does not act faithfully on the vertices at distance two from y. To

make progress on this case we concentrate on the simple amalgam which we obtain from

Theorem 2.4.2. Then using information about GF(2)-modules for the group G
∆(x)
x we gain

control over Gx. This allows us to determine Gy. Having found the amalgams, we also

determine presentations for their universal completions. We expect these presentations

will be useful to anyone wanting to compute with semisymmetric graphs of valency five

or with the amalgams.

The tools that we have developed to deal with the case of valency five are certainly

applicable to the valency eleven and valency twenty-three cases. It is expected that the
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amalgams which will appear will be similar to the amalgams S1-S12, but that there will be

no analogue of the amalgams S13-S15 since there are no groups of Lie type which produce

a valency eleven or valency twenty-three graph in the way that the generalised n-gons

arise for valency five. For the semisymmetric case of valency p with p /∈ {5, 11, 23} we

expect that this is a rather more difficult problem. The presence of local action which

involves a linear group considerably increases the complexity of the problem. Firstly,

this will force us to consider the pushing up problem for a large (rank greater than 3)

linear group (a problem unsolved in full generality). Secondly, the examples of generalised

3-gons of valency p = rd + · · · + r + 1 show that one will eventually have to identify a

group such as PSLd+1(r). On the other hand, Stellmacher announced in Siena in 1996

that s ≤ 9 for locally (G, s)-transitive graphs. The proof of this bound will contribute to

our understanding of the situation. Considering the conjecture for semisymmetric graphs

of valency p and q with p 6= q is again a more difficult problem, there is no minimal

simple amalgam present and the two local actions could be quite different. We expect

amalgams with similar properties to S5-S12 appear (indeed, considering these amalgams

one can already write down examples).

A generalisation of Goldschmidt’s conjecture is to replace the assumption of prime

valency with locally primitive action. For the symmetric case, this is the Weiss Conjecture

[53] which is still open. See [31] for recent progress.

Conjecture (Weiss, 1979). Let Γ be a regular graph of valency k and G ≤ Aut(Γ) be

vertex-transitive. Suppose that for every vertex x ∈ Γ the group G
∆(x)
x is primitive. Then

there exists a function f : N→ N such that |Gx| ≤ f(k) for all x ∈ Γ.

A graph satisfying the hypothesis of the above conjecture is (G, s)-transitive for some

s ≥ 1. Under the assumption that s ≥ 2, the conjecture has been shown to be true. We

observe that a (G, s)-transitive graph Γ with s ≥ 2 has the following property: for every

x ∈ Γ the group G
∆(x)
x is 2-transitive. Therefore Cameron’s list of 2-transitive groups has

an impact on this problem, and draws attention to the locally linear case. Under this

assumption, a deep theorem of Trofimov shows that the conjecture holds. The proof of
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this theorem begins with [38] and [39], and is then continued in the two series [40, 41] and

[42, 43, 44, 45] and the summary [46]. For the general case with s ≥ 2, Trofimov and Weiss

[47, 48] show that the above conjecture holds. It remains to see what can be said in the

s = 1 case, and indeed what can be said in the more general situation of semisymmetric

graphs. Therefore there are several interesting avenues for further research here, it would

be extremely interesting to see the development of this theory.

Notation. We write Cn (or just n) for the cyclic group of order n and if m > 1 we

write nm for the direct product of m cyclic groups each of order n. We write Sym(n)

and Alt(n) for the symmetric and alternating groups of degree n. We write Dih(2n) for

the dihedral group of order 2n and Frob(nk) for the Frobenius group with Frobenius

kernel of order n and complement of order k (e.g. Frob(20) where it is clear that the

Frobenius kernel has order 5). For the finite simple groups we prefer to give them longer

names, for example we write PSLn(q) instead of Ln(q). We write G ∼ A.B for the shape

of G, so G has a normal subgroup A such that G/A is isomorphic to B, this does not

describe the isomorphism type of G. We write the semidirect product of A and B via the

homomorphism π : B → Aut(A) as Aoπ B (or just A : B if the homomorphism is clear).

Direct products we write as A × B and central products as A ◦ B. If H and K are two

subgroups with unique index two subgroups H1 and K1 respectively, then by H K we

denote the index two subgroup of H ×K which contains H1 ×K1 but neither H nor K.

We also follow standard notation as used in [9, 18].
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CHAPTER 1

PRELIMINARIES

1.1 Group actions

This thesis is concerned with actions of groups on graphs. We begin therefore with the

definitions of group actions. Throughout this section G is an arbitrary finite group with

subgroups H and K and normal subgroups N and M . By 1 we denote the identity element

in G.

Definition 1.1.1. An action of G on a set Ω is a map π : Ω × G → Ω such that for all

a ∈ Ω we have

(i) π(a, 1) = a and

(ii) π(a, gh) = π(π(a, g), h) for all g, h ∈ G.

We will suppress the map π and write ag for the element π(a, g). An action of G on a

graph Γ is an action on the vertex set of Γ which preserves the edge set of Γ. An action of

G on a group A is an action on the elements of A such that for all g ∈ G and all a, b ∈ A

we have (ab)g = agbg.

There is an equivalence between actions of a group G on a set Ω, a graph Γ, a group

A and homomorphisms from G to Sym(Ω), Aut(Γ) and Aut(A) respectively. We adopt

whichever viewpoint is convenient and if R is the kernel of the mentioned homomorphism,
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we say that G acts with kernel R. If G acts with kernel G we say the action is trivial and

if G acts with trivial kernel the action is called faithful. If G acts faithfully on a set Ω,

we say that G is a permutation group on Ω. For ω ∈ Ω we write

Gw = StabG(ω) = {g ∈ G | ωg = ω}.

In the particular case of a group G acting on another group A, we can always view this

as occurring in the semidirect product A : G.

Example 1.1.2. The following are examples of actions of G,

(i) on the left/right cosets of H by left/right multiplication,

(ii) on the elements of N by conjugation,

(iii) on the elements/subgroups of G in a conjugacy class of elements/subgroups of G by

conjugation.

Included in (ii) of the above is the example of G acting on G by conjugation. The

orbits of the action of G are the equivalence classes of Ω under the relation a ∼ b if and

only if there is g ∈ G such that ag = b. The action of G is transitive if there is only one

orbit. The idea of the following proof is known as the Frattini argument and it will be

applied frequently in this thesis.

Proposition 1.1.3. Suppose that G acts transitively on Ω. Then H is transitive on Ω if

and only if G = HGω for some ω ∈ Ω.

Proof. Suppose that H is transitive on Ω and let g ∈ G, ω ∈ Ω. Since H is transitive,

there exists h ∈ H such that ωg = ωh, whence hg
−1 ∈ Gω and g ∈ HGω.

Now suppose that G = HGω. For each β ∈ Ω there exists g ∈ G such that ωg = β.

Writing g = xh for some h ∈ H and x ∈ Gω we have ωg = ωh = β, hence H is transitive

on Ω.
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We refer to Proposition 1.1.3 as the Frattini Argument. Note that the finiteness of G

is not used in the proof and no assumption is made on the size of Ω, thus we may use

the statement for infinite groups acting on infinite sets (and do in Theorem 2.4.2). Since

both G and N act transitively on the Sylow p-subgroups of N , if S is a non-trivial Sylow

p-subgroup of N for some prime p we obtain the factorisation G = NG(S)N (which is the

usual formulation of the Frattini argument). From now on we also fix a finite group A

on which G acts (perhaps A = G with the conjugation action). For a subgroup B of A

the normaliser in G of B is NG(B) = {g ∈ G | Bg = B} and the centraliser in G of B is

CG(B) = {g ∈ G | bg = b for all b ∈ B}. Note that NG(B) acts on B by conjugation with

kernel CG(B).

For elements x, y of G the commutator [x, y] of x and y is x−1y−1xy. The group [H,K]

is the subgroup generated by the commutators [h, k] for h ∈ H and k ∈ K.

Proposition 1.1.4. Let B be a subgroup of A. The following hold,

(i) G normalises B if and only if [B,G] ≤ B,

(ii) if A and G normalise B then A and G normalise [B,G].

Proof. This follows from commutator relations (found in [1, pg.27] for example).

This is an appropriate time to mention a consequence concerning commutators. The

following lemma is usually employed with N = 1.

Lemma 1.1.5 (Three subgroups lemma). Let X, Y and Z be subgroups of G. Suppose

that [X, Y, Z] ≤ N and [Y, Z,X] ≤ N . Then [Z,X, Y ] = N .

Proof. See [36, pg.6].

A section of G is a quotient H/L where L is a normal subgroup of H. The action of

G on A induces an action of G on the set of sections of A (naturally (B/C)g = Bg/Cg).

A section B/C is G-invariant if G normalises B and C and in this case we can make G

act on B/C by defining (bC)g = bgC for b ∈ B, g ∈ G. This action is well defined: if

bC = b′C then (bg)−1(b′g) = (b−1b′)g ∈ Cg = C, so (bC)g = (b′C)g.
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Proposition 1.1.6. Let B be a normal G-invariant subgroup of A. The following hold.

(i) G acts trivially on A/B if and only if [A,G] ≤ B.

(ii) If G acts trivially on B then G acts trivially on A/CA(B).

(iii) If G acts trivially on B and A/B then [A,G] ≤ Z(B) and G′ centralises A.

Proof. For (i), we have (aB)g = aB if and only if a−1ag = [a, g] ∈ B.

For part (ii), we have [B,G] = 1, and since B is normal in A, [B,A] ≤ B so we have

[A,B,G] = 1 = [B,G,A]

and the three subgroups lemma implies that [G,A,B] = 1, i.e. that [G,A] ≤ CA(B).

Now part (i) implies that G centralises A/CA(B).

Suppose now that G acts trivially on B and on A/B. By part (i), we get [A,G] ≤ B.

Part (ii) implies that G acts trivially on A/CA(B). Since CA(B) is an G-invariant normal

subgroup of A, we may apply part (i) to obtain [A,G] ≤ CA(B). Hence

[A,G] ≤ B ∩ CA(B) = Z(B).

Thus [A,G,G] = [G,A,G] = 1, and so [G,G,A] = [G′, A] = 1 which implies G′ ≤

CG(A).

We say that the action of G on A is coprime (or G acts coprimely on A) if (|G|, |A|) = 1.

Lemma 1.1.7 (Coprime action). Suppose that G acts coprimely on A. The following

hold,

(i) if B is a G-invariant normal subgroup of A, then CA/B(G) = CA(G)B/B,

(ii) A = CA(G)[A,G] and if A is abelian then A = CA(G)× [A,G],

(iii) [A,G,G] = [A,G],

12



(iv) if B is a G-invariant normal subgroup of A and G acts trivially on B and A/B then

G acts trivially on A.

Proof. For (i), see [23, pg.184]. For (ii), set B = [A,G] and then G acts trivially on

A/B so that A/B = CA/B(G). Now (i) implies that A/B = CA(G)B/B which gives

A = CA(G)B = CA(G)[A,G] as required.

For part (iii), we apply (ii) to get [A,G] = [CA(G)[A,G], G]. For c ∈ CA(G), a ∈ [A,G],

g ∈ G we have [ca, g] = [c, g]a[a, g] = [a, g] so that [A,G] = [A,G,G] as required. For part

(iv) we see that [A,G,G] ≤ [B,G] = 1 and then (iii) gives the result.

At the opposite end of the spectrum from coprime action, we have the following.

Proposition 1.1.8. Suppose that G and 1 6= A are non-trivial p-groups. Then A >

[A,G] > [A,G,G] > · · · > 1 and CA(G) 6= 1.

Proof. Repeated applications of Proposition 1.1.4 (ii) shows that the subgroups [A,G, . . . , G]

are normalised by G and A. It suffices therefore to show that [A,G] < A (note that the

final non-trivial term of this series is contained in CA(G)). We assume the result is false.

Considering the semidirect product X = AG, we see that [X,A] = [A,A][G,A] = A, and

so [A,X,X] = [A,X] = A. This contradicts the nilpotency of X.

Definition 1.1.9. We say that G acts quadratically on A if [A,G,G] = 1 and [A,G] 6= 1.

Thus quadratic action of G on A means that G acts trivially on both [A,G] and

A/[A,G]. Quadratic action will show up in the proof of Theorem 1.5.6.

If we do not fully understand the action of G on A it is best to examine the action of

G on sections of A. The following concept provides the “best” set of sections to look at.

Definition 1.1.10. A normal series 1 = A0 C A1 C . . . C An = A is a G-chief series

of A if Ai−1 is a maximal G-invariant subgroup of Ai for 1 ≤ i ≤ n. The factor groups

Ai/Ai−1 are called G-chief factors of A.

If Ai/Ai−1 is a G-chief factor, we see that either [Ai, G] ≤ Ai−1 or [Ai, G]Ai−1 = Ai.

We call a chief factor central in the former case and non-central in the latter.
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Lemma 1.1.11. Let 1 = A0, . . . , An = A be a G-chief series for A. For i = 1, . . . , n set

Ai = Ai/Ai−1, then

|A/CA(G)| ≥
n∏
i=1

|Ai/CAi
(G)|.

Proof. See [30, pg.27].

With repeated applications of Lemma 1.1.7 (iv) we obtain the following.

Lemma 1.1.12. Suppose that G acts coprimely on A and every G-chief factor of A is

central. Then G centralises A.

1.2 Characteristic subgroups

In this section we recall some facts about certain characteristic subgroups that are related

to the structure of p-groups. Our aim is to show how the structure of normal p-subgroups

of G influences the structure of G itself.

Definition 1.2.1. If G is a p-group for i ∈ Z, we define Ωi(G) = 〈x ∈ G | xpi = 1〉 and

fi(G) = 〈x ∈ G | x is a pi-th power〉.

We usually abbreviate Ω1(G) and f1(G) to Ω(G) and f(G) respectively. If G is abelian

then Ω(G) and G/f(G) are elementary abelian. Note that the subgroups defined above

are characteristic.

Definition 1.2.2. Let G be a group and let Φ(G) be the intersection of all the maximal

subgroups of G. The group Φ(G) is called the Frattini subgroup of G.

Clearly the Frattini subgroup is characteristic. A useful property of the Frattini sub-

group is the following.

Lemma 1.2.3. Suppose that HΦ(G) = G. Then G = H.

Proof. Let H be as in the hypothesis and assume that H < G. Then we may choose M

maximal such that H ≤ M . But Φ(G) ≤ M , so G = HΦ(G) ≤ M < G, a contradiction.
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The following was the first application of the Frattini argument and hence the reason

for its name.

Proposition 1.2.4. The Frattini subgroup is nilpotent.

Proof. Let P be a Sylow subgroup of Φ(G). The Frattini Argument gives G = Φ(G)NG(P )

and the previous lemma implies G = NG(P ). Thus P is normal in Φ(G).

If G is a p-group then another characterisation of Φ(G) is the following: Φ(G) is the

smallest normal subgroup of G such that G/Φ(G) is elementary abelian. This implies

that Φ(G) = [G,G]f(G). Together with a factorisation of G we can calculate Φ(G) in

the following way.

Proposition 1.2.5. If G = PQ then Φ(G) = Φ(P )Φ(Q)[P,Q].

The following two subgroups are central to the subject of “local” group theory.

Definition 1.2.6. Let π be a set of primes. A group H is a π-group if H is finite and every

prime divisor of |H| belongs to π. A π-subgroup is a subgroup which is a π-group. By

Oπ(G) we denote the largest normal π-subgroup of G. By Oπ(G) we denote the smallest

normal subgroup of G such that G/Oπ(G) is a π-group.

Observe that Oπ(G) is the product of all the normal π-subgroups of G and (if G is

finite) Oπ(G) is generated by all the π′-subgroups of G. Recall that a subgroup of G is

called p-local if it is the normaliser of some non-identity p-subgroup of G, so with the

above terminology if M is p-local then Op(M) 6= 1. Note that for any group G we have

Op(G) = G if and only if Op(G) = 1.

Proposition 1.2.7. The following hold,

(i) Oπ(G) ∩H ≤ Oπ(H) with equality if H C G,

(ii) if Oπ(G) ≤ H and H C G then Oπ(G) = Oπ(H),

(iii) Oπ(H) ≤ H ∩Oπ(G).
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Note that (iii) still holds if replace the assumption that G is finite with the assumption

that H has finite index in G. We use this in Lemma 1.3.5.

Remark 1.2.8. The above proposition is most useful when the conclusion of (ii) holds.

Observe that in part (i), if H is not normal in G then the containment can be strict. Take

G = Sym(3), H = 〈(1, 2)〉 and π = {2}. Then 1 = Oπ(G) ∩H < Oπ(H) = H.

Also, in the third part, even if H is a normal subgroup of G then we can have Oπ(H) <

Oπ(G)∩H. For example, take G = Sym(3), H = 〈(1, 2, 3)〉 and π = {3}. Then Oπ(H) = 1

and Oπ(G) = G which gives Oπ(H) < Oπ(G) ∩H = H.

We write π(G) for the set of prime divisors of |G|.

Proposition 1.2.9. Let G be a group and let p, q ∈ π(G) be distinct primes. Then

[Op(G),Oq(G)] = 1.

Proof. Note that Op(G) ∩ Oq(G) = 1 since p 6= q, and the order of the intersection must

be both a p- and q-group. Now since both Op(G) and Oq(G) are normal in G, we have

[Op(G),Oq(G)] ≤ Op(G) ∩Oq(G) = 1.

Definition 1.2.10. Let G be a group, the Fitting subgroup of G is defined to be

F(G) = 〈Op(G) | p ∈ π(G)〉.

Lemma 1.2.11. Suppose that G is a group. Then F(G) is the largest (by containment)

normal nilpotent subgroup of G.

Proof. By Proposition 1.2.9, Op(G) ∈ Sylp(F(G)) for a prime p ∈ π(F(G)). Since Op(G)

is normal in G, it is normal in F(G), so F(G) is nilpotent.

Suppose now that N is a normal nilpotent subgroup of G. Then N = 〈Op(N) |

p ∈ π(N)〉 and the normality of N in G together with Proposition 1.2.7 shows that

N ≤ F(G).

The importance of the Fitting subgroup is indicated by the following theorem. It says

that if G is soluble, G/Z(F(G)) is a faithful group of automorphisms of F(G).
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Theorem 1.2.12. Let G be a soluble group. Then CG(F(G)) ≤ F(G).

Instead of proving the theorem here, we will later deduce it as a corollary to Theo-

rem 1.3.20. The following two theorems deliver results on the structure of G related to

structure of p-subgroups. We say that a group G splits over a normal subgroup N if

there is H ≤ G such that G = HN and H ∩N = 1. The subgroup H is referred to as a

complement to N (in G), and G is isomorphic to the semidirect product N : H.

Theorem 1.2.13 (Gaschütz’s Theorem). Let P ∈ Sylp(G) and suppose that V is a normal

abelian p-subgroup of G. Then G splits over V if and only if P splits over V .

Proof. See [1, pg.31].

Theorem 1.2.14 (Schur-Zassenhaus Theorem). Suppose that K is a normal subgroup of

G and (|G/K|, |K|) = 1. Then G splits over K. In addition, if one of G/K or K is

soluble then all complements to K in G are conjugate.

Proof. See [23, pg.125].

1.3 Subnormal subgroups

In the previous section we defined a characteristic subgroup of G which (when G is

soluble) “controls” the structure of G. The result of this section is the analogue for

insoluble groups.

Definition 1.3.1. Let G be a group. A subgroup H of G is called subnormal if there

exists subgroups Hi of G such that

H = Hl C Hl−1 C · · · C H1 C H0 = G

and we write H CC G. The number of proper subgroups in the shortest possible chain

of subgroups is called the subnormal depth of H (in G).
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For example, if we take G ∼= D8 = 〈(1, 2, 3, 4), (2, 4)〉, H1 = 〈(1, 3)(2, 4), (2, 4)〉, H2 =

〈(2, 4)〉. Then H1 C G, so H1 has subnormal depth 1, H2 C H1 but H2 is not normal, so

H2 has subnormal depth 2 and (as always) G has subnormal depth 0.

Subnormality is a transitive relation on the set of subgroups of a group G. To see this,

let K CC H and H CC G, then there are subnormal series from K to H and from H to

G and by “gluing” one series to the other we obtain a subnormal series for K in G.

Proposition 1.3.2. Let G be a group with subgroups K and N .

(i) Suppose that K CC G and N ≤ G. Then K ∩N CC N .

(ii) Suppose that K CC G and K ≤ N ≤ G. Then K CC N .

(iii) If K,N CC G then K ∩N CC G.

Proof. For (i), we let K = K0 C K1 C · · · C Kr = G be a subnormal series for K in G.

Then

K ∩N = K0 ∩N C K1 ∩N C · · · C Kr ∩N = G ∩N = N

is a subnormal series from K ∩N to N .

Now (ii) follows immediately from (i) since K = K ∩N CC N .

For (iii) we first apply (i) to obtain K ∩N CC N . But N CC G and subnormality is

a transitive relation, thus K ∩N CC G.

Above we showed that the set of subnormal subgroups of G is closed under intersection.

One can show more, the set is also closed under products.

Theorem 1.3.3. Let G be a group with subnormal subgroups K and N . Then

〈K,N〉 CC G.

Proof. See [22, Theorem 2.5, pg.48].

The next three results intertwine subnormality and the subgroups Oπ(G) and Oπ(G)

defined in the previous sections.
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Lemma 1.3.4. Suppose that K is a π-subgroup of G and K is subnormal in G. Then

K ≤ Oπ(G). In particular, the subgroup generated by two subnormal π-subgroups of G is

contained in Oπ(G).

Proof. Let K be as in the statement, we apply induction on the subnormal depth l of K

in G. If l = 0, then K = G and G = Oπ(G), so we are done trivially. If l = 1 then K C G

and so K ≤ Oπ(G) by definition.

Assume now that l > 1 and write K = Ul C Ul−1 CC G. Then since Ul is a π-

group, K ≤ Oπ(Ul−1) and Oπ(Ul−1) C Ul−2 since it is characteristic in Ul−1. Therefore

Oπ(Ul−1) has subnormal depth at most l−1. By induction, Oπ(Ul−1) ≤ Oπ(G), and hence

K ≤ Oπ(G).

Suppose now that K and H are subnormal π-subgroups of G. Then K,H ≤ Oπ(G)

by the above, which implies 〈K,H〉 ≤ Oπ(G).

The following lemma still holds if we drop the assumption that G is finite, we will use

this in Theorem 2.4.2.

Lemma 1.3.5. Suppose that K is subnormal in G and |G : K| is a π-number, then

Oπ(G) = Oπ(K). In particular, Oπ(G) = Oπ(Oπ(G)).

Proof. Suppose that K is as in the statement of the lemma, by induction on the subnormal

depth of K it suffices to assume that K C G. Also, by Proposition 1.2.7 (iii) it suffices to

show that Oπ(G) ≤ Oπ(K). Since Oπ(K) is characteristic in K, we have that Oπ(K) C G,

and

G/K ∼= (G/Oπ(K))/(K/Oπ(K)),

thus G/Oπ(K) is a π-group which implies Oπ(G) ≤ Oπ(K) as required.

Lemma 1.3.6. Suppose that H CC G. Then Oπ(G) normalises Oπ(H).

Proof. Let X = HOπ(G) and note that H CC X by Proposition 1.3.2(ii). Now |X :

Oπ(H)| = |X : H||H : Oπ(H)| is a π-number, so Lemma 1.3.5 implies that Oπ(X) =

Oπ(H). Since this is a normal subgroup of X and Oπ(G) ≤ X, we are done.
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Recall that a group K is said to be perfect if K = K ′. We will call K quasisimple if K

is perfect and K/Z(K) is a non-abelian simple group. Note that the only proper normal

subgroups of quasisimple groups are contained in the centre.

Definition 1.3.7. A component of a group G is a subgroup K such that K is subnormal

in G and K is quasisimple.

The corollary to the next theorem shows that a pair of components of G relate to each

other almost in the same way as the groups Op(G) and Oq(G) for distinct primes p and

q.

Theorem 1.3.8. Suppose that K is a component of G and U CC G. Then either K ≤ U

or [K,U ] = 1.

Proof. We assume that the theorem is false, and amongst counterexamples choose G such

that |G| is minimal, and then such that |G : U | is minimal. Thus K � U and [K,U ] 6= 1.

Note that K � U forbids U = G, also [K,U ] 6= 1 forbids K = G since this would imply

U ≤ Z(K).

Since U is subnormal in G, we may choose a maximal normal subgroup U1 of G

containing U . Now K ≤ U1 would imply that [K,U ] = 1 since |U1| < |G|, so U1 is not

a counterexample, but this contradicts our assumption. Thus K � U1 and 1 6= [K,U ] ≤

[K,U1]. The minimality of |G : U | now forces U = U1, so U C G. This implies that

[K,U ] C U .

Pick a maximal normal subgroup K1 of G containing K (which exists since K < G).

Now [K,U ] ≤ [K1, U ] ≤ K1. By the conclusion of the above paragraph therefore, [K,U ] is

subnormal in G, and so is subnormal in K1. But K � U so K � [K,U ]. Since |K1| < |G|

therefore, [K,U,K] = 1. But 1 = [K,U,K] = [U,K,K] and so the three subgroups

lemma implies that [K,K,U ] = 1. But K is a component, so 1 = [K,K,U ] = [K,U ], a

contradiction which delivers the result.

Corollary 1.3.9. If H and K are distinct components of G, then [H,K] = 1.

20



Observe that the set of components of G is invariant under automorphisms of G. This

leads us to the following characteristic subgroup.

Definition 1.3.10. Let G be a group, we define the layer of G, E(G), to be the subgroup

generated by all components of G.

The following is a second corollary to Theorem 1.3.8. It shows us that any subnormal

subgroup we have to hand is normalised by the layer. Thus for a component K of G we

have that K C E(G) C G, so remarkably, components of G have subnormal depth at

most 2.

Corollary 1.3.11. Let U CC G for some group G. Then E(G) normalises U .

Proof. Let K be an arbitrary component of G, then either K ≤ U or [K,U ] = 1, so

certainly K ≤ NG(U). Since K was arbitrary, E(G) ≤ NG(U).

Note that K being a component of G tells us two things. On one hand, K is a

quasisimple group, a property which is intrinsic to K, and on the other hand, K is

subnormal in G which tells us something about the subgroup structure of G. Thus the

two properties may seem to be considered independent from one another, and we exploit

this below.

Proposition 1.3.12. Suppose that N is a subnormal subgroup of G. Then the components

of N are components of G. In particular, if E(G) ≤ N then E(G) = E(N).

Proof. Let K be a component of N . Since N is subnormal in G, K is also subnormal in

G, and since K is quasisimple, K is therefore a component of G.

Now suppose that E(G) ≤ N . If K is a component of G then K ≤ N , and so by

Proposition 1.3.2 (ii) we have K CC N . Thus K ≤ E(N), which gives E(G) ≤ E(N).

But the reverse equality holds also, so we have E(G) = E(N).

Lemma 1.3.13. Suppose that K and L are distinct components of G. Then K ∩ L =

Z(K) ∩ Z(L). Moreover, Z(K) = Z(E) ∩K where E = E(G).
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Proof. One inclusion holds trivially. By Corollary 1.3.9, [k, l] = 1 for all k ∈ K and all

l ∈ L. Therefore any element m ∈ K ∩ L commutes with all of L since it lies in K, but

on the other hand m commutes with all of K since m lies in L. Thus m ∈ Z(K) ∩ Z(L).

For the second part, if k ∈ Z(K), then k commutes with all of K, and since [K,L] = 1

for distinct components, k commutes with every element in the layer, so k ∈ Z(E) ∩K.

Since the reverse inclusion also holds, we are done.

The following lemma shows us that if G is a group with a soluble subnormal subgroup

U such that CG(U) ≤ U , then the layer of G is trivial. In particular, the statement

CG(Op(G)) ≤ Op(G) gives this.

Lemma 1.3.14. Suppose U CC G and CG(U) ≤ U . Then E(G) ≤ U .

Proof. Let K be a component of G and assume that K � U . Then by Corollary 1.3.11

we have [U,K] = 1 so that K ≤ CG(U) ≤ U , a contradiction. Thus K ≤ U and so E(G),

the product of all components of G, is contained in U .

Definition 1.3.15. We say that M is a minimal normal subgroup of G if the only non-

trivial normal subgroup of G contained in M is M itself.

Proposition 1.3.16. Suppose that G is a group and M , N are minimal normal subgroups.

Either M = N or [M,N ] = 1.

Proof. Since M and N are normal in G, [M,N ] ≤M ∩N . Thus if M 6= N , then M ∩N

is a normal subgroup of G properly contained in one of M or N , so M ∩ N = 1 which

gives [M,N ] = 1.

If G is a group with a normal subgroup S such that S is simple, then clearly S is

a minimal normal subgroup. We give the class of groups which are generated by such

minimal normal subgroups a name.

Definition 1.3.17. A group is semisimple if it is a product of non-abelian simple normal

subgroups.
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Combining the above remark and Proposition 1.3.16, we see that a semisimple group is

isomorphic to a direct product of non-abelian simple groups. For any group G we are able

to show that there is a normal subgroup which is either an elementary abelian p-group or

semisimple.

Lemma 1.3.18. Let G be any group and let A be a minimal normal subgroup of G. Then

A is either an elementary abelian p-group for some prime p or A is semisimple.

Proof. Let G and A be as in the statement and pick a minimal normal subgroup S of A.

Let S be the subgroup of A generated by the minimal normal subgroups of A which are

isomorphic to S. Then S ∼= S × · · · × S by Proposition 1.3.16.

We claim that S is characteristic in A. Indeed, if φ is an automorphism of A and T

is a minimal normal subgroup of A isomorphic to S, then T φ is again a minimal normal

subgroup and T φ ∼= T ∼= S, so Sφ = S. But this gives S C G so A = S. We claim that S

is simple. Otherwise, there is a proper non-trivial subgroup N of A normal in S. Since

A = S then, we see that N C A. But S was a minimal normal subgroup, so N = S.

If S is abelian then S is cyclic of order p for some prime p, and A is an elementary

abelian p-group. Otherwise, S is non-abelian and A is semisimple.

The following subgroup is the analogue of the Fitting subgroup for an insoluble group.

We shall see that it controls the structure of G in the same way as F(G) when G is soluble.

Definition 1.3.19. The generalised Fitting subgroup of a group G is defined to be

F∗(G) = E(G)F(G)

where F(G) is the Fitting subgroup of G. The generalised Fitting subgroup is a charac-

teristic subgroup of G.

Theorem 1.3.20. Let G be any finite group. Then CG(F∗(G)) ≤ F∗(G).

This result can be found in [22, pg.276] for example. Before giving a proof, we prove
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two lemmas which allow us to recognise when subgroups of G are contained in either F(G)

or E(G). We state these two lemmas for an arbitrary finite group A.

Lemma 1.3.21. Let A be a finite group and let Z ≤ Z(A). Then A is nilpotent if and

only if A/Z is nilpotent.

Proof. Let p be a prime divisor of |A| and let P ∈ Sylp(A). It follows that PZ/Z is normal

in A/Z if and only if PZ is normal in A. Thus if A is nilpotent, certainly A/Z is. On the

other hand, if A/Z is nilpotent, then PZ C A, and since P C PZ (and P ∈ Sylp(PZ)),

we have P = Op(PZ) C A, so A is nilpotent.

Lemma 1.3.22. Suppose that A is a finite group such that A/Z(A) is a non-abelian

simple group. Then A′ is perfect and A′/Z(A′) ∼= A/Z(A) is non-abelian simple.

Proof. Suppose first that A := A/Z(A) is abelian. Then A is cyclic of prime order,

in particular, A is abelian which gives A = Z(A), a contradiction. Hence A is a non-

abelian simple group. Now A′ � Z(A), but A is simple so we have A′ = A which implies

A = A′Z(A). Now A′ = [A′Z(A), A′Z(A)] = [A′, A′] = A′′ so A′ is perfect. Moreover,

Z(A′) commutes with Z(A) and with A′ so [Z(A′), A] = [Z(A′), A′Z(A)] = 1. Hence

Z(A′) ≤ A′∩Z(A), but the reverse inclusion obviously holds, so we have Z(A′) = A′∩Z(A).

Via an isomorphism theorem therefore, A = A′Z(A)/Z(A) ∼= A′/Z(A)∩A′ = A′/Z(A′).

Proof of Theorem 1.3.20. Set F = F∗(G) and C = CG(F∗(G)) and suppose that C � F .

Using the bar notation we set G = G/(C ∩ F ). Choose a normal subgroup A of G such

that A is minimal with respect to C ∩F ≤ A ≤ C but A � F (note that A exists since C

satisfies this property). We claim that A is a minimal normal subgroup of G. Indeed, if

B C G and B ≤ A then by our minimal choice of A we either have B = A so that B = A

or B ≤ F which implies B = 1. Thus we may apply Lemma 1.3.18 to see that A is either

abelian or semisimple.

In both cases we observe that C ∩ F ≤ Z(C) and so C ∩ F ≤ Z(A). In the first case

then Lemma 1.3.21 implies that A is nilpotent and so by Lemma 1.2.11, A ≤ F(G) ≤ F ,

a contradiction.
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Hence we may assume we are in the second case. Let T ≤ A be such that T is a

minimal normal subgroup of A. Similar to above we see that C ∩F ≤ Z(T ), but we chose

T such that T is a minimal normal subgroup of A. This implies that Z(T ) = C ∩F . Thus

T = T/Z(T ) is simple, so T ′ is perfect by Lemma 1.3.22 and T ′/Z(T ′) ∼= T/Z(T ) is a

non-abelian simple group. Since T ′ CC G this implies that T ′ is a component of G which

gives T ′ ≤ E(G) ≤ F . Hence T ′ ≤ C ∩ F and so T is abelian, a contradiction.

As promised, we now give the proof of Theorem 1.2.12.

Corollary 1.3.23. Suppose that G is a soluble group, then CG(F(G)) ≤ F(G).

Proof. Since G is soluble E(G) = 1 and so F∗(G) = F(G). Hence Theorem 1.3.20 delivers

the result.

Remark 1.3.24. If G 6= 1 then by examining a minimal normal subgroup of G we conclude

that F∗(G) 6= 1.

1.4 Permutation groups of prime degree

In this section we let G be a (non-trivial) transitive permutation group on a finite set Ω. A

block is a non-empty subset B of Ω such that for all g ∈ G we have Bg∩B = ∅ or Bg = B.

We call G imprimitive if there exists a block B such that 1 6= |B| 6= |Ω|, and otherwise,

we call G primitive. Note that the orbits of G on Ω are blocks, so a primitive group must

be transitive. Note that GB is transitive on the elements of B, thus |GB : Gω| = |B| for

each ω ∈ B and so |B| divides |Ω| for any block B.

Proposition 1.4.1. Suppose that |Ω| is prime. Then G is primitive or acts trivially on

Ω.

Primitive actions are characterised by the following property.

Lemma 1.4.2. A transitive action of G on Ω is primitive if and only if Gα is a maximal

subgroup for any α ∈ Ω.
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If G is transitive but imprimitive on Ω, with a block B, then GB (the setwise stabiliser

of B) is transitive on B and G is transitive on the set {Bg | g ∈ G}. When one is trying to

understand the action of G on Ω, this directs our attention towards primitive actions. By

the previous lemma, this is equivalent to G acting on the cosets of a maximal subgroup of

G, so a description of maximal subgroups is required. This was delivered (independently)

by O’Nan and Scott. However there was a hole in both proofs and a case was missed. A

corrected version of the theorem was given by Aschbacher and Scott [2].

Theorem 1.4.3 (Aschbacher-O’Nan-Scott). Suppose that the action of G on Ω is prim-

itive. Then exactly one of the following hold,

(i) F∗(G) = F(G) is the unique minimal normal subgroup of G,

(ii) F(G) = 1 and F∗(G) is the direct product of the only two minimal normal subgroups

of G (which are isomorphic),

(iii) F(G) = 1 and F∗(G) is the unique minimal normal subgroup of G.

Proof. This follows from [23, 6.6.12] once we see that if N C Gω for any ω ∈ Ω, then

Gω = NG(N), so Gω is a primitive maximal subgroup of G (as defined in [23]).

The following theorem is more applicable to our situation, although it can now be seen

to be a consequence of the above.

Theorem 1.4.4 (Burnside). Suppose that |Ω| is a prime. Then either G is 2-transitive

and the unique minimal normal subgroup is non-abelian, or G is permutational isomorphic

to a subgroup of AGL1(p) acting on Fp.

Proof. Burnside’s original proof used complex character theory [6, Theorem VII, Chapter

XVI]. Recently a short and elementary proof has been given by P. Müller [27].

Note that if the second conclusion of the above theorem holds then G is 2-transitive

if and only if G = AGL1(p). The following lemma is a consequence of the classification

of 2-transitive groups due to Cameron, and therefore depends upon the GFSG. It is not
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required in any result in this thesis, we merely state it to direct our attention towards

certain interesting situations.

Lemma 1.4.5. Suppose that |Ω| = p is a prime and G acts 2-transitively on Ω. Then

F∗(G) and p appear in Table 1.1.

Proof. We apply the previous result to see that either the situation is as in line one of

Table 1.1, or F∗(G) is a non-abelian simple group. The list of 2-transitive finite permu-

tation groups is contained in [8, (5.3)]. Assuming that F∗(G) is on this list, we require

that the degree is prime. The only options are those appearing in Table 1.1.

p F∗(G) Point stabiliser in F∗(G)
all Cp Trivial
all Alt(p) Alt(p− 1)

qd−1 + qd−2 + · · ·+ 1, q a prime power PSLd(q), d ≥ 2 qd−1 : PGLd−1(q)
11 PSL2(11) Alt(5)
11 M11 M10

23 M23 M22

Table 1.1: Generalised Fitting subgroups of 2-transitive permutation groups of prime
degree

Remark 1.4.6. In Table 1.1 we have only given the isomorphism shape of F∗(G), we also

need to give the set Ω on which F∗(G) is acting and how this action arises. For the cyclic

group, the alternating group and the Mathieu groups, the action is the natural action of

degree p. For G = PSL2(11) there are two inequivalent actions on 11 points, arising from

the two conjugacy classes of subgroups isomorphic to Alt(5) in G. For G = PSLd(q),

there are also two actions on p points (where p = qd−1 + · · · + 1), these are on the sets

of points and hyperplanes of the natural d-dimensional module for G over Fq, which are

inequivalent if d > 2.
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1.5 A pushing-up result

The main result of this section is Theorem 1.5.6. We expect that the result is well known,

but we were unable to find a reference. A pushing up problem is the following: We have

a group G, a p-subgroup Q and R = NG(Q). We say that R can be pushed up if there

is a p-subgroup P of G such that R < NG(P ). Determining why R cannot be pushed up

is equally valuable and the general pushing up problem is to describe the obstructions to

pushing up. For a description of some of the important results in this area see [30, (24.2)].

We will need the following result.

Theorem 1.5.1. Let X be a finite group such that CX(O2(X)) ≤ O2(X). Let S ∈ Syl2(X)

and set Z = 〈Ω1(Z(S))X〉. Suppose that X/O2(X) ∼= PSL2(2n) for some n ∈ N, that no

non-trivial characteristic subgroup of S is normal in X and that there exists a subgroup

H ≤ Aut(S) with |H : NH(O2(X))| odd. Then 〈ZH〉 is a normal subgroup of X which is

contained in O2(X).

Proof. This is Corollary 3.14 in [29].

Definition 1.5.2. Let S be a p-group. Then A(S) is the set of abelian subgroups of

maximal order. We define

J(S) = 〈A | A ∈ A(S)〉,

the Thompson subgroup (of S).

The set A(S) is invariant under automorphisms of S, thus J(S) is a characteristic

subgroup of S. Here is one property of the Thompson subgroup.

Proposition 1.5.3. Let R be a group, let S ∈ Sylp(R) and suppose Q is a subgroup of S

such that J(S) ≤ Q. Then J(S) = J(Q).

Proof. We will show that A(S) = A(Q). Indeed, let A ∈ A(S) and B ∈ A(Q). Then

B is an abelian subgroup of maximal order in Q, but B ≤ Q ≤ S, so |B| ≤ |A|. Now

A ≤ J(S) ≤ Q so A is an abelian subgroup of Q, and so |A| ≤ |B| as B has the
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maximal order of an abelian subgroup of Q. Thus |A| = |B| which gives B ∈ A(S) and

A ∈ A(Q).

Another property of the elements of A(S) is the following.

Proposition 1.5.4. Let A ∈ A(S). Then CS(A) = A.

Proof. Let x ∈ CS(A). Then 〈x,A〉 is abelian, and since |A| is maximal amongst abelian

subgroups of S, we have |〈x,A〉| = |A| which implies x ∈ A. Hence CS(A) ≤ A, but A is

abelian, so A ≤ CS(A) and we are done.

Theorem 1.5.5 (Thompson Replacement Theorem). Let S be a p-group, A ∈ A(S) and

let Z be an abelian p-subgroup of S. Assume A normalises Z but Z does not normalise

A. Then there exists an element A∗ ∈ A(S) such that:

i) A ∩ Z < A∗ ∩ Z,

ii) A∗ normalises A.

Proof. See [18, Thm. 8.2.5, pg.273].

Let R = Sym(4) and let Q = O2(R) ∼= 22. Observe R/Q ∼= Sym(3) ∼= Dih(6) ∼=

AGL1(3) and note that for any Sylow 2-subgroup S of R, we have S ∼= Dih(8) and the

only characteristic subgroup of S which is normal in R is the trivial subgroup. This shows

that the conclusion p = 2 and r = 3 cannot be removed from the next theorem.

Theorem 1.5.6. Suppose that p and r are primes with r > 2. Let R be a group with

Q = Op(R) = F∗(R) and let S ∈ Sylp(R). Suppose that R/Q is a normal subgroup

of AGL1(r). Then either p = 2 and r = 3, or there exists a non-trivial characteristic

subgroup C of S which is normal in R.

Proof. We assume that no non-trivial characteristic subgroup of S is normal in R (in

particular, S < R). Set Z = Ω1(Z(Q)) and X = Ω1(Z(S)). Since 1 6= X char S, we see

that X is not a normal subgroup of R.
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(1) X ≤ Z and CR(Z) = Q.

Since CR(Q) = Z(Q) and [X,Z] ≤ [Z(S), S] = 1 we get X ≤ Z(Q) and since X is

elementary abelian, we get X ≤ Z. We have Q ≤ CR(Z) and if the containment is proper,

then since CR(Z) C R, we see that 1 6= CR(Z)/Q C R/Q which implies that r | |CR(Z)|.

Then r | |CR(X)| also as CR(Z) ≤ CR(X), but already S ≤ CR(Z) and for every other

prime l dividing |R/Q| we can find a Sylow l-subgroup which normalises S and therefore

X, hence R = NR(X), a contradiction.

By (1) we may consider a R/Q-chief series of Z.

(2) There are non-central R/Q-chief factors in Z.

Otherwise coprime action implies Op(R/Q) centralises Z. But then 1 6= Op(R/Q) ≤

CR/Q(Z) = 1, a contradiction.

(3) J(S) � Q.

Otherwise Proposition 1.5.3 implies J(S) = J(Q) and provides a contradiction.

(4) There is A ∈ A(S) with [Z,A,A] = 1 and A � Q.

By the previous claim we may choose A ∈ A(S) such that A � Q. Amongst such A

we choose A with |A∩Z| as large as possible and we claim that Z normalises A. If this is

not the case, Thompson’s Replacement Theorem gives A∗ ∈ A(S) with A ∩ Z < A∗ ∩ Z

and A∗ normalises A. By the choice of A we must have A∗ ≤ Q which gives [Z,A∗] = 1

and so Z ≤ A∗ ≤ NR(A), a contradiction proving that Z normalises A. Hence [Z,A] ≤ A

and so [Z,A,A] = 1.

(5) p = 2.

Otherwise, the previous claim implies that AQ/Q and a conjugate act quadratically on

Z (since A � Q we cannot have A C R), and so R/Q contains a subgroup isomorphic to

SL2(p) by [18, Theorem 3.8.1] (after considering an irreducible submodule and tensoring

with Fp). Since R/Q is soluble we have p = 3, but the Sylow 2-subgroups of SL2(3) are

non-cyclic as opposed to the Sylow 2-subgroups of AGL1(r) and this contradiction proves

the claim.
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(6) For all A ∈ A(S) with A � Q we have |Z/CZ(A)| ≤ |A/CA(Z)| = 2.

Since ZCA(Z) is elementary abelian, we have |ZCA(Z)| ≤ |A| for all A ∈ A(S).

Now |ZCA(Z)| = |Z||CA(Z)|/|Z ∩ CA(Z)| and Z ∩ CA(Z) ≤ CZ(A), so |Z/CZ(A)| ≤

|Z/Z ∩CA(Z)|. Hence |Z/CZ(A)| ≤ |A/CA(Z)|. By (1) CA(Z) = A∩Q and |AQ/Q| = 2

since A is elementary abelian and the Sylow 2-subgroups of R/Q are cyclic.

(7) We have r = 3.

By (2) there is a non-central R/Q-chief-factor, W say, contained in Z. By (3) we may

choose A ∈ A(S) such that A � Q and we have NR(A) 6= R (since AQ/Q is not normal in

R/Q). Since |W/CW (A)| ≤ |Z/CZ(A)| ≤ 2, we see that AQ/Q centralises a hyperplane

of W . Let B = Ag for some g /∈ NR(A) and note that R/Q = 〈AQ/Q,BQ/Q〉. Now

|W/CW (B)| ≤ 2 also and combined with CW (B)∩CW (A) = CW (R/Q) = 1 gives |W | ≤ 4.

Since R/Q acts faithfully on W , we must have r = 3.

Statements (5) and (7) now give the conclusion of the theorem.

1.6 Amalgams of groups

Definition 1.6.1. An amalgam A is a 5-tuple (P1, P2, B, π1, π2) of three groups P1, P2

and B and two monomorphisms πi : B → Pi (i = 1, 2).

We say that two amalgams A and B = (R1, R2, D, φ1, φ2) have the same type if there

is a triple of isomorphisms β : D → B and αi : Ri → Pi (i = 1, 2) such that for i = 1, 2

we have αi(φi(D)) = πi(β(D)).

The degree of an amalgam is the pair (|P1 : π1(B)|, |P2 : π2(B)|). We say the amalgam

is finite if B is finite and the degree is a pair of integers.

Note that the amalgam (P1, P2, B, απ1, βπ2) has the same type as A for every pair of

automorphisms α and β of P1 and P2 respectively. Hence the type of an amalgam amounts

to a choice of an Aut(P1)-conjugacy class of subgroups of P1 and an Aut(P2)-conjugacy

class of subgroups of P2.
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Amalgams of the same type can have different properties. For example, let

P1 = 〈(1, 2), (3, 4, 5), (4, 5)〉,

P2 = 〈(6, 7), (8, 9, 10), (9, 10)〉,

B = 〈(11, 12), (13, 14)〉,

(so P1
∼= P2

∼= C2 × Sym(3) and B ∼= 22). Define π1 : B → P1 by

π1((11, 12)) = (1, 2) and π1((13, 14)) = (4, 5).

Define π2 : B → P2 by

π2((11, 12)) = (6, 7) and π2((13, 14)) = (9, 10).

Set A = (P1, P2, B, π1, π2). Notice that πi((11, 12)) ∈ Z(Pi) for i = 1, 2. Let γ be the

automorphism of B which swaps (11, 12) and (13, 14) and set B = (P1, P2, B, π1γ, π2).

Then A and B have the same type, but B has the following property which A does not,

(π1γ)−1(Z(P1)) ∩ π−1
2 (Z(P2)) = 1.

Thus amalgams of the same type can encode rather different behaviour.

Definition 1.6.2. A completion of A is a triple (G, ρ1, ρ2) of a group G and two homo-

morphisms ρi : Pi → G so that G = 〈ρ1(P1), ρ2(P2)〉 and the subdiagram of Figure 1.1

consisting of G, P1, P2, B and the maps between them commutes.

A universal completion of A is a completion (R, φ1, φ2) such that if (G, ρ1, ρ2) is

any other completion then there exists a unique homomorphism κ such that Figure 1.1

commutes.

If (G, ρ1, ρ2) is a completion of A (as above) we say that the completion is faithful if

the maps ρi are monomorphisms. By an abuse of language, we will also refer to G as
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B

P1

P2

R G

π1

π2 φ2

φ1

ρ1

ρ2

κ

Figure 1.1: An amalgam with universal completion and completion

the completion, and as such, we call a completion finite if G is finite. Note that finite

completions of amalgams always exist, we can simply take G = 1 and ρ1, ρ2 to be the

trivial maps. We remark that if the groups involved in an amalgam are finite, then a

faithful finite completion of the amalgam exists, see [28].

Every amalgam has a unique faithful completion. The uniqueness follows from the

uniqueness of the map κ in Definition 1.6.2. We construct a universal completion in the

following way. Let X = P1 ∗ P2 (the free product of P1 and P2) and write αi for the

natural monomorphism from Pi to X, we set N to be the normal closure in X of the

set {α1(π1(b))α2(π2(b−1)) | b ∈ B}. Then Y = X/N is a faithful universal completion

of A. In Appendix A.3 we give a program written in Magma that creates, as a finitely

presented group, the universal completion of an amalgam.

Given an amalgam A with a faithful completion G we may identify B, P1 and P2 with

their images in G (and then P1 ∩ P2 ≥ B). When we do this we may drop reference to

the maps, and in that case, we will write the amalgam as the triple (P1, P2, B).

Notation 1.6.3. We write G(A) for the universal completion of the amalgam A.

We have mentioned earlier the connection between amalgams and semisymmetric

graphs. Here we make this connection explicit.

Definition 1.6.4. Let A = (P1, P2, B, π1, π1) be an amalgam and suppose that G is a

faithful completion of A. The coset graph Γ(A, G) of A with respect to G is the graph
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with vertex set

G/P1∪̇G/P2

and edge set {{P1g, P2h} | P1g ∩ P2h 6= ∅}.

The next proposition shows that amalgams give rise to semisymmetric graphs.

Proposition 1.6.5. Let A be as above and let G be a faithful completion. Then Γ =

Γ(A, G) is a connected bi-regular graph of bi-valency the degree of A. G acts edge-

transitively on Γ and has two orbits θ1 and θ2 on the vertices of Γ. A stabiliser of a

vertex in θi is conjugate in G to Pi and the stabiliser of an edge is conjugate in G to

P1 ∩ P2. The kernel of this action is the core in G of P1 ∩ P2.

Since we are only aiming to deal with groups which act faithfully on graphs, in light

of the above proposition, we make the following definition.

Definition 1.6.6. An amalgam A = (P1, P2, B, π1, π2) is called faithful if whenever K ≤

B and πi(K) C Pi for i = 1, 2 we have K = 1.

Later in the thesis we will encounter a certain class of amalgams which are defined in

[10]. Here we recall the definition and mention the relevant results which we will later

call upon.

Definition 1.6.7. Let p be a prime and let G be a group with a pair of finite subgroups

(P1, P2) such that G = 〈P1, P2〉 and no non-trivial normal subgroup is contained in P1∩P2.

Then (P1, P2) is a weak (B,N)-pair of characteristic p (with respect to G) if there exists

normal subgroups P ∗1 and P ∗2 of P1 and P2 respectively such that for {i, j} = {1, 2} the

following hold

(i) Op(Pi) ≤ P ∗i and Pi = P ∗i (P1 ∩ P2),

(ii) CPi(Op(Pi)) ≤ Op(Pi),

(iii) P ∗i ∩ Pj = NP ∗i
(S) for some S ∈ Sylp(P

∗
i ),
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(iv) P ∗i /Op(Pi) ∼= PSL2(pni), SL2(pni), PSU3(pni), SU3(pni), Sz(2ni) or Dih(10) (and

p = 2), Ree(3ni) or Ree(3)′ (and p = 3) for some n1, n2 ∈ N.

Recall that Ree(3)′ ∼= PSL2(8) and Sz(2) ∼= Frob(20). Note that if (P1, P2) is a weak

(B,N)-pair for G and N is a normal subgroup of G with P1 ∩ N = 1 = N ∩ P2, then

setting G = G/N we have that (P1, P2) is a weak (B,N)-pair of G. From [10] we derive

the following theorem.

Theorem 1.6.8. Suppose that A = (P1, P2, B, π1, π2) is an amalgam, G = G(A) and that

(P1, P2) is a weak (B,N)-pair for G of characteristic 2 with |P1 : B| = 5 = |P2 : B|. Then

there is a free normal subgroup N of G such that H = G/N is finite and F∗(H) ∼= PSL3(4),

Sp4(4) or G2(4).

Proof. We apply [10, Theorem A, pg.100]. The index of B in P1 and P2 restricts to the

list above.

The following was noted in [10, pg.97]. Let X be isomorphic to PSL3(4), Sp4(4) or

G2(4) and let S ∈ Syl2(X). Setting Y = NX(S) there is a unique pair of subgroups R1

and R2 such that Y = R1 ∩R2 and (R1, R2) is a weak (B,N)-pair for X.

Notation 1.6.9. We write S13, S14 and S15 for the amalgams (R1, R2, Y, i1, i2) which come

from the groups PSL3(4), Sp4(4) and G2(4) so that (R1, R2) is a weak (B,N)-pair.

From the theorem we obtain the following.

Corollary 1.6.10. If the hypothesis of Theorem 1.6.8 holds then, for i = 1, 2, Pi ∼= Ri

and B ∼= Y where (R1, R2, Y, i1, i2) is one of the amalgams S13, S14 or S15.
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CHAPTER 2

GROUPS AND GRAPHS

Recall that a graph Γ = (V,E) is a pair of vertices V , and edges E, where E is a subset of

{{x, y} | x, y ∈ V, x 6= y}. Therefore our graphs contain no loops and no multiple edges.

We also assume that all the graphs are connected and we use d(−,−) to denote the usual

distance metric. For a vertex x and an integer i we define

∆[i](x) = {y ∈ Γ | d(x, y) = i}

and we write ∆(x) for ∆[1](x), the neighbourhood of x. We say Γ is a G-graph if G is a

group acting faithfully on Γ. For x ∈ Γ we set

G[i]
x = {g ∈ G | yg = y for all y ∈ ∆[i](x)}

and observe that for j ≥ i we have G
[j]
x C G

[i]
x . We write Gx for G

[0]
x . Moreover, if

(x, y, z, . . . ) is a path then we write G
[i]
xyz... for G

[i]
x ∩G[i]

y ∩G[i]
z ∩ . . . and Gxyz... for G

[0]
xyz....

2.1 Edge-transitive groups of automorphisms

We distinguish three different actions of a group on a graph. We say that the action

of G is semisymmetric if G acts edge-transitively, but not vertex-transitively. We say

that the action of G is symmetric if G acts vertex-transitively, edge-transitively and
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|G{α,β} : Gαβ| = 2 for some (and therefore every) edge {α, β}. We say that the action of

G is 1
2
-arc transitive if the action is not symmetric but is both vertex- and edge-transitive.

Proposition 2.1.1. Suppose that G is vertex- and edge-transitive on Γ and that Γ has

odd valency. Then G acts symmetrically.

Proof. Let k be the valency of Γ, which is odd by assumption and let {α, β} be an edge

of Γ. Suppose that G{α,β} = Gαβ and let m be the number of edges. By edge-transitivity

m = |G : Gαβ|. On the other hand, m = k|G:Gα|
2

by the Hand Shaking Lemma. It follows

that k = 2|Gα : Gαβ|, a contradiction.

It follows from the proposition that groups acting edge-transitively on graphs of odd

valency act either symmetrically or semisymmetrically. There is a unique smallest 1
2
-arc

transitive graph, Holt’s graph [20] with 27 vertices, 54 edges and valency four. All vertex

stabilisers have order two and all edge stabilisers are trivial.

Lemma 2.1.2. Suppose that Γ is either G-symmetric or G-semisymmetric. Then Gα

acts transitively on ∆(α). Moreover, |Gα : Gαβ| = |∆(α)| for each β ∈ ∆(α).

Proof. Let β and δ be neighbours of α and let g ∈ G be such that {α, β}g = {α, δ}. If Γ

is G-semisymmetric, then Γ = αG ∪ βG, and so we have βg = δ and g ∈ Gα as required.

If Γ is symmetric then after acting with G{α,δ} (if necessary) we have βg = δ and g ∈ Gα

as above. The final statement of the lemma follows by the Orbit-Stabiliser theorem.

The following follows from the connectivity of Γ.

Lemma 2.1.3. Suppose that A ≤ Gα and B ≤ Gβ are transitive on ∆(α) and ∆(β)

respectively. Then X = 〈A,B〉 is edge-transitive. Moreover, if A ∩ Gαβ � Gαβ ∩ B then

B < Xβ.

With the notation of the above lemma, we may consider the question of when A = Xα

and B = Xβ. The lemma suggests we might hope that it is enough to require A∩Gαβ =

Gαβ∩B. However, this is not the case. For example, let Γ be the graph obtained from the
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incidence geometry associated to the vector space of three dimensions over GF(2). For

an edge {α, β} we have Gα
∼= Sym(4) ∼= Gβ. A judicious choice of A ≤ Gα and B ≤ Gβ

with A ∼= B ∼= C3 gives X = G, and so both A < Xα and B < Xβ hold. Note that

A∩Gαβ = Gαβ ∩B however. In the next section, we consider the case that Γ is a tree and

we shall see that the condition A ∩Gαβ = Gαβ ∩B ensures that A = Xα and B = Xβ.

The following result is one of the most powerful tools which we have at our disposal.

It shall be applied frequently in our investigation, so if it’s use is sufficiently clear we shall

omit reference.

Lemma 2.1.4. Suppose that {u, v} is an edge of Γ and K ≤ Guv is such that NGu(K)

and NGv(K) are transitive on ∆(u) and ∆(v) respectively. Then K = 1.

Proof. Lemma 2.1.3 implies that X = 〈NGu(K),NGv(K)〉 ≤ NG(K) is edge-transitive.

It follows that for any z ∈ Γ there is g ∈ X such that either ug = z or vg = z. Then

K = Kg ≤ (Guv)
g ≤ Gz. Hence K fixes every vertex of Γ, so K = 1.

We omit the proof of the following lemma as it merely serves to highlight the local

and global properties which motivate definitions in the next section.

Lemma 2.1.5. Suppose that G acts edge-transitively on Γ and that H ≤ G also acts

edge-transitively. For each edge {α, β} of Γ the following hold

(1) G = HGαβ and H = 〈Hα, Hβ〉,

(2) Hα = H ∩Gα,

(3) HαGαβ = Gα,

(4) Hα ∩Hβ = Hα ∩Gαβ,

(5) if H is normal in G then Hα C Gα.

The following lemma shows that we may reduce the study of semisymmetric graphs of

bi-valency (k, l) to the problem of classifying faithful amalgams of degree (k, l) and their

completions.
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Lemma 2.1.6. Suppose that Γ is G-semisymmetric and let A be the amalgam formed

by the stabilisers of adjacent vertices. Then the graphs Γ and Γ(A, G) are isomorphic as

G-graphs.

Proof. Write A = (Gα, Gβ, Gαβ, πα, πβ). Observe that every vertex of Γ is conjugate to

precisely one of α or β. We define θ : Γ→ Γ(A, G) by

θ : γ 7→


Gαg if γ = αg for some g ∈ G

Gβh if γ = βh for some h ∈ G

and we claim that θ is the required isomorphism. First we check that θ commutes with

the action of G. Let γ ∈ Γ and assume γ = αg for some g ∈ G (the other case being

similar). Let k ∈ G, then θ(γk) = Gαgk = (Gαg)k = θ(γ)k as required. We now check

that θ is a graph homomorphism. If {γ, δ} is an edge of Γ, then by edge-transitivity there

is g ∈ G such that γ = αg and δ = βg (after relabelling if necessary). Then θ(γ) = Gαg

and θ(δ) = Gβg, so θ(γ) ∼ θ(δ) as required.

It is clear that θ is surjective, so we need only check that θ is well defined and injective.

If γ = αg = αk then gk−1 ∈ Gα so that Gαg = Gαk, similarly for vertices in the orbit of

β. Now if Gαk = θ(γ) = θ(µ) = Gαg say, then there are g, k ∈ G such that γ = αk and

µ = αg. Since kg−1 ∈ Gα we have γg
−1

= α so that µ = αg = γg
−1g = γ which completes

the proof.

For the symmetric case we follow a similar procedure to that for semisymmetric graphs.

We show that classifying symmetric graphs of valency k is equivalent to classifying faithful

amalgams of degree (k, 2) and their completions.

Definition 2.1.7. Suppose that the action of G on Γ is symmetric and let e = {α, β}

be an edge of Γ. Set A = (Gα, Ge, Gαβ, πα, πe). We define Π(A, G) to be the graph

with vertex set {Gαg | g ∈ G}. Two vertices Gαg and Gαh are adjacent if and only if

gh−1 ∈ GαaGα for some a ∈ Ge −Gαβ.
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In the above definition, we should check that the definition of the graph does not

depend on the choice of a ∈ G{α,β} −Gαβ. To our knowledge, this construction is due to

[24]. Note that the amalgam A has degree (k, 2) where k is the valency of Γ.

Lemma 2.1.8. Suppose that Γ is G-symmetric. Let e = {α, β} be an edge and let A be

the amalgam formed by Gα and Ge. Then the graphs Γ and Π(A, G) are isomorphic as

G-graphs. Furthermore, the amalgam A is faithful.

Proof. The required map is θ : Γ → Π(A, G) given by θ : γ 7→ Gαg where g is such that

γ = αg. The details are similar to above. The amalgam is faithful since G acts faithfully

on Γ.

If Γ is a graph and B is a partition of the vertices of Γ, we can define the quotient

graph ΓB of Γ (with respect to B) as follows. The vertices of ΓB are the parts comprising

B, and two vertices of ΓB are adjacent if there is an edge between the respective parts

of Γ. There is a canonical graph homomorphism πB : Γ → ΓB given by taking a vertex

x to the part to which it belongs. We are interested in quotient graphs because of the

following.

Proposition 2.1.9. Suppose that B is a G-invariant partition of Γ. Then G acts on ΓB

and the action commutes with the map πB.

Note that the orbits of a normal subgroup form a partition of B which is G-invariant.

As an example of this, take Γ to be the circuit of length six and G = Aut(Γ) ∼=

〈(1, 2, 3, 4, 5, 6), (1, 2)(3, 6)(4, 5)〉. Then letting B be the orbits of N = 〈(1, 4)(2, 5)(3, 6)〉

we see that ΓB is a circuit of length three, and G/N ∼= Dih(6) acts faithfully on ΓB.

The so-called global approach to analysing symmetric or semisymmetric graphs is to

reveal the structure of G together with Γ by considering quotients determined by orbits

of normal subgroups. More explicitly, suppose that N is a normal subgroup of G and let

B be the partition of Γ induced by the orbits of N on Γ. Then the group G/N acts on

ΓB and various properties of ΓB are inherited from G and Γ.
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2.2 The local viewpoint, amalgams and extensions

We now develop a local approach to analysing symmetric and semisymmetric graphs. We

defined amalgams in Section 1.6, we now develop a theory. Motivated by our need to

compute with amalgams, we seek to understand the foundations of the topic. The goal

is Theorem 2.2.25 which may be viewed as a constructive version of [17, (2.8)]. Indeed,

it is by studying the proof of this result and how it is applied in [17] that informed

our understanding of this topic. In particular, one consequence of our approach is a

computational implementation of Theorem 2.2.25 which can be found in Section A.2.

Throughout we fix an amalgam A = (P1, P2, B, π1, π2) and set G = G(A).

To develop the local viewpoint further, we introduce some terminology which aims to

mirror the terminology associated to the global approach.

Definition 2.2.1. Let A = (P1, P2, B, π1, π2) be an amalgam and suppose that R1, R2

and D are subgroups of P1, P2 and B respectively. If properties (i) and (ii) below hold,

we say that B = (R1, R2, D, π1|D, π2|D) is a subamalgam of A.

(i) For i = 1, 2 we have Pi = Riπi(B).

(ii) For i = 1, 2 we have Ri ∩ πi(B) = πi(D).

Lemma 2.2.2. Suppose that B is a subamalgam of A. Then the degree of A is equal to

the degree of B.

Proof. We adopt the notation of Definition 2.2.1. For i = 1, 2 since Pi = Riπi(B) it

follows that |Pi : πi(B)| = |Ri : Ri ∩ πi(B)|. Now Ri ∩ πi(B) = πi(D) and the maps

involved are monomorphisms, so we obtain |Pi : πi(B)| = |Ri : πi|D(D)|.

Definition 2.2.3. With A and B as in Definition 2.2.1 we say that B is a normal suba-

malgam of A if Ri is a normal subgroup of Pi for i = 1, 2. An amalgam is simple if it has

no proper normal subamalgams.

An immediate consequence of the definition of a normal subamalgam is that if A and

B are as above and B is a normal subamalgam of A, then D is a normal subgroup of B.
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Lemma 2.2.4. Suppose that A = (P1, P2, B, π1, π2) is a faithful amalgam and that N =

(N1, N2, D, π1|D, π2|D) is a normal subamalgam. Then N is a faithful amalgam.

Proof. Suppose that 1 6= K ≤ D and πi|D(K) C Ni for i = 1, 2. Set L = 〈KB〉. Since πi

is a homomorphism we have πi(L) = 〈πi(K)πi(B)〉. Now Pi = Niπi(B), Ni is normalised

by πi(B) and normalises πi(K), hence πi(L) = 〈πi(K)Pi〉 is a normal subgroup of Pi. It

follows then that 1 6= πi(L) C Pi and L ≤ B, which contradicts the hypothesis that A is

a faithful amalgam.

It will be important for us to find normal subamalgams of a given amalgam. The next

proposition tells us how to go about this.

Proposition 2.2.5. Let A = (P1, P2, B, π1, π2) be an amalgam. For i = 1, 2 suppose

there are normal subgroups Ui of Pi such that Uiπi(B) = Pi. Set

C = π−1
1 (U1 ∩ π1(B))π−1

2 (π2(B) ∩ U2)

and Ni = Uiπi(C). Then N = (N1, N2, C, π1|C , π2|C) is a normal subamalgam of A.

Proof. We have Niπi(B) ≥ Uiπi(B) = Pi for i = 1, 2 and the Dedekind identity confirms

that Ni∩πi(B) = πi(C). We also need to verify that Ni is normal in Pi, this follows from

the factorisation Uiπi(B) = Pi and that C is a normal subgroup of B.

Definition 2.2.6. If (U1, U2) is a pair of subgroups satisfying the hypothesis of Propo-

sition 2.2.5, we call the normal subamalgam constructed in Proposition 2.2.5 the normal

subamalgam generated by (U1, U2).

Having defined normal subamalgams we also want to find a notion of a characteristic

subamalgam. For this, we need to define isomorphisms between amalgams. Once we

have established this, we can define the automorphism group of an amalgam, and the

characteristic subamalgams are those that are invariant under the automorphism group.

Definition 2.2.7. An amalgam homomorphism from B = (R1, R2, D, φ1, φ2) to A is a

triple of homomorphisms Θ = (α, β, γ) such that {i, j} = {1, 2} and the diagram in
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Figure 2.1 commutes. The set of amalgam homomorphisms from B to A is denoted by

D

R1

R2

φ1

φ2

B

Pi

Pj

πi

πj

γ

α

β

B A

Figure 2.1: An amalgam homomorphism

Hom(B,A). The amalgam homomorphism Θ is an amalgam monomorphism, respectively

amalgam isomorphism, if it is a triple of monomorphisms, respectively, isomorphisms. We

write Aut(A) for automorphism group of A, that is, the set of amalgam isomorphisms

Θ : A → A (which forms a group under composition).

Note that by our definition, the amalgams A and (P2, P1, B, π2, π1) are isomorphic.

Observe that Aut(A) has a subgroup of index at most two which normalises P1 and P2.

We denote this subgroup by Aut◦(A). We now introduce our approach to working with

Aut(A); we shall see shortly that Aut◦(A) is easier to deal with.

Example 2.2.8. Amalgams of type Q1
3. Let G = Sym(9) and choose elements a =

(1, 2, 3, 4, 5), b = (2, 3, 5, 4) and c = (2, 6)(3, 7)(5, 8)(4, 9) of G. Define A = 〈a, b, bc〉 and

B = 〈b, c〉 and C = A ∩ B. Let π1 and π2 be the identifications of C as a subgroup of A

and B respectively. Note that the core in A and B of πi(C) is trivial for i = 1, 2.

Let γ and δ be the automorphisms of C induced by the maps γ : b 7→ b, γ : bc 7→ bbc

and δ : b 7→ b, δ : bc 7→ b3bc. Let A = (A,B,C, π1, π2), A1 = (A,B,C, π1, π2γ) and

A2 = (A,B,C, π1, π2δ) and set X = 〈bc〉. Now the three amalgams are all of the same

type, but the following commutators show that the amalgams are pairwise non-isomorphic

[π1(X), A] = [π2γ(X), B] = 1, [π2δ(X), B] = 〈(bbc)2〉, [π2(X), B] = 〈bbc〉.
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Notation 2.2.9. We write each Θ ∈ Aut(A) as a triple Θ = (α1, α2, γ) where the do-

main of αi is Pi and of γ is B. Since Θ acts on the set {1, 2} via the map Aut(A) 7→

Aut(A)/Aut◦(A), we may calculate Θ(1) and Θ(2) (and observe that these values deter-

mine whether Θ swaps P1 and P2 or not).

With the notation for elements of Aut(A) introduced above, we have to understand

how composition works. For future reference, we summarise the rules below (these are

determined by drawing diagrams and evaluating the maps).

Proposition 2.2.10. The following hold for Θ = (α1, α2, γ1), Ω = (β1, β2, γ2) ∈ Aut(A).

(i) Θ−1 = (α−1
Θ(1), α

−1
Θ(2), γ1).

(ii) ΘΩ = (αΩ(1)β1, αΩ(2)β2, γ1γ2).

(iii) For Ω ∈ Aut◦(A),

ΩΘ = (α−1
1 βΘ(1)α1, α

−1
2 βΘ(2)α2, γ

−1
1 γ2γ1).

Determining Aut(A) for a given amalgam requires knowledge of the automorphism

groups of P1, P2 and B and information on Hom(P1, P2). The group Aut◦(A) is easier

to deal with then, since we do not need information on the latter set. We now explain

how we can calculate Aut◦(A) via another approach. Let Θ = (α, β, γ) ∈ Aut◦(A),

so the diagram in Figure 2.2 commutes. We have α(π1(B)) = π1(γ(B)) which implies

α ∈ NAut(P1)(π1(B)). Similarly, we have β ∈ NAut(P2)(π2(B)) and since the diagram

commutes π−1
1 απ1 = γ = π−1

2 βπ2. For any pair (α, β) ∈ NAut(P1)(π1(B))×NAut(P2)(π2(B))

such that π−1
1 απ1 = π−1

2 βπ2 we define an automorphism Θ = (α, β, π−1
1 απ1) of A. In other

words, we have established an isomorphism:

Aut◦(A) ∼= {(α, β) ∈ NAut(P1)(π1(B))× NAut(P2)(π2(B)) | π−1
1 απ1 = π−1

2 βπ2}.

For the purpose of calculating Aut◦(A) it is beneficial to identify Aut◦(A) as above. For

theoretical purposes it may be convenient to revert to the notation given in 2.2.9.
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P1

P2
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π2
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π1

π2

γ

α

β

A A

Figure 2.2: The automorphism of A determined by Θ

Definition 2.2.11. A subamalgam of A is characteristic if it is Aut(A)-invariant. We say

that an amalgam B is an extension of A via Θ if Θ : A → B is an amalgam monomorphism

such that Θ(A) is a normal subamalgam of B.

GivenA as above we observe that there are infinitely many extensions ofA. Indeed, set

Ri = Pi×Cn, D = B×Cn and define φ1, φ2 in the obvious way, then B = (R1, R2, D, φ1, φ2)

is an extension of A (which is not faithful). On the other hand, Theorem 2.2.25 at the

end of this section says that there are finitely many extensions which are faithful and a

(unique) largest such extension exists. Lemma 2.2.4 shows that every faithful amalgam

which is not simple is an extension of a faithful amalgam. Theorem 2.2.25 will allow us

to recover such an amalgam from the normal subamalgam.

Given a group G and only the knowledge that G has a normal subgroup N of which one

knows the isomorphism type, it is usually a difficult task to determine the isomorphism

type of G, that is, to classify the possible extensions of N . We would like to know how

many of these extensions are central, split, non-split and so forth. If we are given the

additional information that N = F ∗(G) and that N is a non-abelian simple group, we then

know that G is isomorphic to a subgroup of Aut(N), so we just have to determine Aut(N)

and amongst the subgroups of Aut(N) which contain Inn(N) we find the possibilities for

G (and we only have to consider these subgroups up to conjugacy). We aim to obtain a

similar recipe for amalgams. In generality this is not possible of course, but in the class

of faithful amalgams, a similar trick works. First we need to set up some machinery.
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For the remainder of this section we fix an amalgam N = (N1, N2, D, φ1, φ2). We

transport the automorphisms ofN1 andN2 which induce automorphisms ofD into Aut(N )

as follows. Let H1 = NAut(N1)(φ1(D)) and H2 = NAut(N2)(φ2(D)) and set H = H1 × H2.

For α ∈ Hi we define a map θi(α) : D → D by θi(α) : d 7→ φ−1
i (α(φi(d))). Then

θi : Hi → Aut(D) defined by θi : α 7→ θi(α) is a homomorphism. We set H∗i = θi(Hi).

With this notation we state the amalgam counting lemma of Goldschmidt. This tells us

how many amalgams of a certain type there are, up to isomorphism.

Lemma 2.2.12 (Goldschmidt). The number of isomorphism classes of amalgams of the

same type as N is the number of (H∗1 , H
∗
2 )-double cosets in Aut(D). Moreover if γ1, . . . , γn

are representatives for these double cosets then

{(N1, N2, D, φ1, φ2γi) | i ∈ [1, n]}

is a complete set of representatives for the isomorphism classes of amalgams of this type

and contains no repetitions.

Proof. See [17, (2.7)].

Example 2.2.13. Let a = (1, 2, 3, 4, 5), b = (2, 5)(3, 4), c = (6, 7, 8, 9, 10) and d =

(7, 10)(8, 9) and let P1 = 〈a, b, d〉, P2 = 〈b, c, d〉 and B = 〈b, d〉 so that P1
∼= Dih(20) ∼= P2

and B ∼= 22. Set A = (P1, P2, B, idP1 , idP2). Write x1 = b, x2 = d and x3 = bd and view

Aut(B) as Sym(3) acting on subscripts. We see that H∗1 = 〈(1, 3)〉 and H∗2 = 〈(2, 3)〉.

The three cosets in Aut(B) of H∗1 are H∗1 , H∗1 (2, 3) and H∗1 (1, 2) so H∗2 has two orbits on

the cosets of H∗1 in Aut(B). Hence there are exactly two amalgams of the same type as

A. The first we have written down above is faithful, the second is given by interchanging

b and d in the embedding of B in P2. The effect of this is that d is central in both P1 and

P2, so the second amalgam is not faithful.

We have identified Aut◦(N ) with {(α, β) ∈ H | θ1(α) = θ2(β)}. This gives the
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following presentation of Aut◦(N )

Aut◦(N ) =

〈
(θ−1

1 (µ), θ−1
2 (µ)) α ∈ CH1(φ1(D)), β ∈ CH2(φ2(D)),

(α, 1), (1, β) µ ∈ H∗1 ∩H∗2

〉
.

Recall that to determine Aut(N ) we require knowledge of the isomorphisms between N1

and N2. We give the following example which shows how one can determine Aut(N ) after

finding Aut◦(N ).

Example 2.2.14. Take N1 = 〈(1, 2, 3)〉, N2 = 〈(4, 5, 6)〉 and D = 1. Let φi : D → Ni be

the inclusions and set N = (N1, N2, D, φ1, φ2). We will write automorphisms of N1 and N2

and maps between N1 and N2 as permutations. We have Aut(N1) = 〈(1, 2)〉, Aut(N2) =

〈(4, 5)〉 and, since D = 1, Aut(Ni) = NAut(Ni)(φi(D)). We define Θ1 = ((1, 2), 1, 1)

and Θ2 = (1, (4, 5), 1), which are clearly automorphisms of N . Moreover Aut◦(N ) =

〈Θ1,Θ2〉 (since it cannot be larger). Now the permutation x = (1, 4)(2, 5)(3, 6) induces

the automorphism Θ3 = (x, x, 1) /∈ Aut◦(N ) and (Θ3)2 = (1, 1, 1). Hence Aut(N ) =

〈Θ1,Θ2,Θ3〉 ∼= Dih(8).

From now on we assume that N is a faithful amalgam.

For i = 1, 2 we regard Hi as a subgroup of H. We define θ : D → H by

θ : d 7→ (c1(φ1(d)), c2(φ2(d)))

where ci(b) is the automorphism of Ni defined by a 7→ ab for a, b ∈ Ni.

Lemma 2.2.15. The map θ defined above is a monomorphism. Moreover θ(D) is a

normal subgroup of Aut(N ) which is contained in Aut◦(N ).

Proof. We first check that θ is a homomorphism. Let a, b ∈ D and consider θ(a)θ(b). Let

ai = φi(a) and bi = φi(b) for i = 1, 2 (so that a1b1 = φ1(ab) and a2b2 = φ2(ab)). Then we

find

θ(a)θ(b) = (c1(a1), c2(a2))(c1(b1), c2(b2)) = (c1(a1)c1(b1), c2(a2)c2(b2))
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and since ci and φi are monomorphisms for i = 1, 2, we have θ(a)θ(b) = θ(ab). Now

observe that [φi(ker θ), Ni] = 1 for i = 1, 2. Hence ker θ = 1 since N is faithful. It is clear

that θ(D) ≤ Aut◦(N ).

Now let Θ ∈ Aut(N ) and (recalling 2.2.9) write Θ = (α1, α2, β). We need to show

that θ(a)Θ ∈ θ(D). Writing θ(a) as a triple we have θ(a) = (c1(a1), c2(a2), cD(a)) (where

cD : D → Inn(D) is the obvious map). Then Proposition 2.2.10 gives

θ(a)Θ = (α−1
1 cΘ(1)(aΘ(1))α1, α

−1
2 cΘ(2)(aΘ(2))α2, β

−1cD(a))β)

= (c1(α−1
1 (aΘ(1))), c2(α−1

2 (aΘ(2))), cD(γ−1(a)))

Since Θ−1 ∈ Aut(N ) the following diagram commutes

D

NΘ(1)

φΘ(1)

D

N1

φ1

γ−1

α−1
1

hence α−1
1 (aΘ(1)) = φ1(γ−1(a)). Similarly, we obtain α−1

2 (aΘ(2)) = φ2(γ−1(a)) so setting

b = γ−1(a) and bi = φi(b) for i = 1, 2 we obtain θ(a)Θ = (c1(b1), c2(b2), cD(b)) as required.

Notation 2.2.16. The inner automorphism group Inn(N ) is the image of D under θ. The

outer automorphism Out(N ) is the quotient Aut(N )/Inn(N ) and we write Out◦(N ) for

the quotient Aut◦(N )/Inn(N ).

Example 2.2.17. Continuing with Example 2.2.14, the image of D under θ is the trivial

subgroup, so trivially is a normal subgroup of Aut(N ) and all automorphisms are outer.

Working in a bigger amalgam gives us a better example. Set P1 = 〈(1, 2, 3), (1, 2)〉

and P2 = 〈(4, 5, 6), (4, 5)〉 and let B = 〈(7, 8)〉. Define π1 by π1((7, 8)) = (1, 2) and π2

by π2((7, 8)) = (4, 5) and set A = (P1, P2, B, π1, π2). Then identifying Aut(Pi) with Pi

we have that Inn(A) = 〈((1, 2), (4, 5), 1)〉 and (the same as in Example 2.2.14) Aut(A) =

〈Θ1,Θ2,Θ3〉 we see that Inn(A) = 〈Θ1Θ2〉 which is central in Aut(A).
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By the Correspondence Theorem, there is a bijection between the conjugacy classes

of subgroups of Aut(N ) which contain Inn(N ) and are contained in Aut◦(N ) and the

conjugacy classes of subgroups of Out(N ) which are contained in Out◦(N ). We now

proceed to show how an extension of N may be constructed from a subgroup of Aut◦(N ).

Let R be a subgroup of Aut◦(N ) which contains θ(D). Writing elements of Aut◦(N )

as pairs (α1, α2) where αi ∈ Hi (identified as a subgroup of H) we have homomorphisms

ξi : H → Aut(Ni) defined by ξi : (α1, α2) 7→ αi. Restricting these maps to R we

set Ui = Ni oξi R. We identify Ni and R with the subgroups {(n, 1) | n ∈ Ni} and

{(1, r) | r ∈ R} of Ui respectively. Define µi : D → Ui by d 7→ (φi(d
−1), θ(d)) and set

Ci = µi(D) for i = 1, 2.

Lemma 2.2.18. The set Ci is a normal subgroup of Ui. Moreover, Ci∩Ni = 1 = Ci∩R.

Proof. We first claim that the map µi is an isomorphism, since φi is a monomorphism

this will follow once we show that µi is a homomorphism. Let a, b ∈ D and consider

µi(a)µi(b). We have

µi(a)µi(b) = (φi(a
−1), θ(a))(φi(b

−1), θ(b))

= (φi(a
−1)(φi(b

−1))ξi(θ(a))−1

, θ(a)θ(b))

and φi(b
−1)ξi(θ(a))−1

= φi(b
−1)φi(a

−1) which gives

φi(a
−1)(φi(b

−1))ξi(θ(a))−1

= φi(a
−1)φi(a)φi(b

−1)φi(a)−1.

Since φi and θ are homomorphisms then, we see that µi is a homomorphism. In particular,

Ci is a subgroup of Ui.

Now let (x, y) ∈ Ui and b ∈ D. We need to show µi(b)
(x,y) ∈ µi(D). Observe that

µi(b)
(x,y) = ((x−1φi(b

−1)xφi(b
−1))ξi(y), θ(b)y) = (φi(b

−1)ξi(y), θ(b)y).

Now let α ∈ H1 and β ∈ H2 be such that y = (α, β). Since (α, β) ∈ Aut◦(N ) there is b′ ∈
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D such that φ1(b′) = bα and φ2(b′) = bβ we have θ(b)y = (c1(b)α, c2(b)β) = (c1(b′), c2(b′))

and φi(b
−1)ξi(y) = φi((b

′)−1). Thus µi(b)
(x,y) = µi(b

′) ∈ µi(D) as required.

For the assertion about intersections, note that every element of Ni is written as

(n, 1) and so if µ(d) ∈ Ni ∩ µi(D) we have θ(d) = 1 which gives d = 1. Similarly, if

µ(d) ∈ µi(D) ∩R then φi(d) = 1 whence d = 1.

By Lemma 2.2.18 we may define the quotient Vi = Ui/Ci. Set ρi : Ni → Vi by

n 7→ (n, 1)Ci. We let E = (V1, V2, R, β1, β2) where βi : R → Vi is defined by r 7→ (1, r)Ci.

Lemma 2.2.18 implies that the maps βi are monomorphisms so E is an amalgam.

Lemma 2.2.19. The amalgam E is faithful and is an extension of N .

Proof. We claim that the triple Θ = (ρ1, ρ2, θ) is an amalgam monomorphism Θ : N → E

with Θ(N ) a normal subamalgam of E . It follows from the definition of Vi as a quotient

of Ui that the diagram in Figure 2.3 commutes. Set Mi = ρi(Ni) and F = θ(D). We need

to show that the triple (M1,M2, F ) defines a subamalgam of E .

D

N1

N2

φ1

φ2

R

V1

V2

β1

β2

θ

ρ1

ρ2

N E

Figure 2.3: The amalgam monomorphism Θ : N → E

By construction we have Miβi(R) = Vi and Mi ∩ βi(R) = ρiφi(D) = βiθ(D) = βi(F ).

Also Mi is a normal subgroup of Vi, so Θ(N ) is indeed a normal subamalgam of E .

Let K ≤ R and assume that βi(K) is a normal subgroup of Vi for i = 1, 2. Since

βi(K) ∩Mi ≤ βi(R) ∩Mi = βiθ(D), setting K0 = K ∩ θ(D) we see that φiθ
−1(K0) is a

normal subgroup of Ni for i = 1, 2. Now N is a faithful amalgam so we obtain K0 = 1,
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whence βi(K) commutes with Mi. Letting (α1, α2) ∈ K it follows that nαii = ni for all

ni ∈ Ni, and so αi = 1 for i = 1, 2. Hence K = 1 and we are done.

Definition 2.2.20. With the notation as above, we write E(N , R) for the amalgam E

constructed in Lemma 2.2.19.

We now show that to find the isomorphism type of an extension such as E(N , R) we

only need to consider the Aut(N )-conjugacy class of subgroups of Aut◦(N ) to which R

belongs.

Lemma 2.2.21. Let Θ ∈ Aut(N ) and R ≤ Aut◦(N ). Then E(N , R) is isomorphic to

E(N , RΘ).

Proof. We view both extensions as subamalgams of E(N ,Aut◦(N )). Then the result is

obvious.

Example 2.2.22. Continuing with Example 2.2.14 we have Aut(N ) = 〈Θ1,Θ2,Θ3〉 ∼=

Dih(8) and Aut◦(N ) = 〈Θ1,Θ2〉.

Let R1 = 〈Θ1〉, R2 = 〈Θ2〉, R3 = 〈Θ1Θ2〉, R4 = Aut◦(A) and let Ei = E(A, Ri). Then

we see that the types of Ei are (Sym(3),C6,C2), (C6, Sym(3),C2), (Sym(3), Sym(3),C2)

and (C2 × Sym(3),C2 × Sym(3), 22). Note that the amalgams E1 and E2 are isomorphic,

and that R1 and R2 are conjugate in Aut(A). So in this case, Aut(N ) conjugacy just

reminds us that the amalgams (N1, N2, D, φ1, φ2) and (N2, N1, D, φ2, φ1) are isomorphic.

Fix now a faithful amalgam A = (P1, P2, B, π1, π2) and assume that N is a normal

subamalgam of A (so that Ni C Pi, D C B and φi = πi|D for i = 1, 2). We define

θ̃ : B → Aut(N1)× Aut(N2) by

θ̃ : b 7→ (c1(π1(b)), c2(π2(b)))

where the map ci(x) : Ni → Ni is conjugation induced by x ∈ Pi.

Lemma 2.2.23. The map θ̃ is a monomorphism and θ̃|D = θ. Moreover θ̃(B) is contained

in Aut◦(N ).
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Proof. Since θ̃ is a composition of homomorphisms it is itself a homomorphism. Let

b ∈ ker θ̃, then πi(b) centralises Ni and so πi(ker θ̃) is a normal subgroup of Pi for i ∈ {1, 2},

whence ker θ̃ = 1. Let d ∈ D, then θ̃(d) = (c1(π1(d)), c2(π2(d))) = (c1(φ1(d)), c2(φ2(d))) =

θ(d) as required.

Finally, we need to verify that θ̃(B) is contained in Aut◦(N ). This requires

(c1(π1(b)), c2(π2(b))) ∈ Aut◦(N )

for all b ∈ B, so we need to verify that the following equality holds:

φ−1
1 c1(π1(b))φ1 = φ−1

2 c2(π2(b))φ2

for all b ∈ B. But these maps are both the automorphism of D induced by conjugation

by b, so the result follows.

Lemma 2.2.23 shows that θ(D) = θ̃(D) ≤ θ̃(B) ≤ Aut◦(N ). Hence if N is a normal

subamalgam of A then θ̃ defines a subgroup of Aut◦(N ) which contains θ(D). Let us

now drop the assumption that N is a normal subamalgam of A, and assume that A

is an extension of N . Therefore, there is an amalgam monomorphism Θ : N → A

such that M := Θ(N ) is a normal subamalgam of A. Then (abusing the language

we have introduced above) A determines a subgroup θ̃(B) of Aut◦(M). Since Aut(M)

and Aut(N ) are isomorphic (via Θ) the extension A of N determines a subgroup of

Aut(N ), but note the dependence on Θ. The notation we introduce below highlights this

dependence.

Notation 2.2.24. We write E(N ,A,Θ) for the subgroup of Aut◦(N ) defined by a faithful

amalgam A which is an extension of N via Θ.

By Lemma 2.2.19 we may construct the amalgam E(N , E(N ,A,Θ)), and naturally,

we ask if this differs from A. The following theorem answers this question “No”, and so

we conclude that all faithful extensions of N can be “seen” inside Aut(N ).
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Theorem 2.2.25 (Extension theorem). The amalgams A and E(N , E(N ,A,Θ)) are iso-

morphic.

Proof. Let Θ = (α1, α2, β). We make two simplifications to the notation so that we will

not need to explicitly refer to Θ. First we identify N with Θ(N ), so that N1, N2 and D are

identified with their images in P1, P2 and B respectively. Then the map θ̃ : B → Aut(N ) is

defined. Note that our identifications mean that we may write θ̃(b) = (c1(π1(b)), c2(π2(b)))

rather than having to write θ̃(b) = (α−1
1 (cα1(N1)(π1(b))α1, α

−1
2 (cα2(N2)(π2(b))α2)). We ex-

pect therefore that this identification will simplify the following exposition. Now let

R = θ̃(B), E = E(N , R) and then matching notation with Lemma 2.2.19 we have

E = (V1, V2, R, β1, β2). We now identify N1, N2 and D with their images in V1, V2 and R

respectively, that is Ni is identified with the subgroup {(n, 1)Ci | n ∈ Ni} of Vi and D

is identified with θ̃(D) = θ(D). We need to find isomorphisms which make the following

diagram commute.

D

N1

N1

φ1

φ2

B θ̃(B) = R

V1

V2

P1

P1

π1

π2

β1

β2

There is an obvious choice for these maps. We have an isomorphism θ̃ : B → R and

we need to find maps from Pi to Vi for i = 1, 2. Using that Pi admits the factorisation

Pi = Niπi(B) we define γi : Pi → Vi by

γi : niπi(b) 7→ (ni, 1)(1, θ̃(b))Ci.
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Note that for b ∈ B we have γi(πi(b)) = (1, θ̃(b))Ci = βi(θ̃(b)). So with ∆ = (γ1, γ2, θ̃)

the diagram above will commute. To ensure that ∆ is an amalgam isomorphism then we

need to check that the maps γ1 and γ2 are group isomorphisms.

First we will show that γi is well-defined (since possibly Ni ∩ πi(B) = πi(D) is non-

trivial). So for i ∈ {1, 2} suppose there are m,n ∈ Ni and a, b ∈ B such that nπi(a) =

mπi(b). Then m−1n = πi(ba
−1) ∈ Ni ∩ πi(B) = φi(D) = πi(D). So there is d ∈ D such

that n = mφi(d) and a = d−1b. Hence

γi(nπi(a)) = (mφi(d), θ̃(d−1b))Ci

= (mφi(d), θ̃(d−1)θ̃(b))Ci

= (m, 1)Ci(φi(d), θ̃(d−1)Ci(1, θ̃(b))Ci

= (m, 1)Ci(φi((d
−1)−1), θ̃(d−1))Ci(1, θ̃(b))Ci

By the definition of Ci we have (φi((d
−1)−1), θ̃(d−1))Ci = Ci, so we see the last equation

is equal to (m, 1)Ci(1, θ̃(b))Ci = (m, θ̃(b))Ci = γi(mπi(b)).

It is clear that γi is surjective, so it remains to see that γi is a monomorphism.

Let x, y ∈ Pi and pick m,n and a, b so that x = nπi(a), y = mπi(b). Then xy =

nmπi(a
−1)πi(ab). Let m′ ∈ Ni be such that m′ = mπi(a

−1) so that xy = nm′πi(ab) and

γi(xy) = (nm′, θ̃(ab))Ci. Now it follows from the definition of the semidirect product Ui

that

γi(x)γi(y) = (n, θ̃(a))Ci(m, θ̃(b))Ci

= (nmξi(θ̃(a
−1)), θ̃(a)θ̃(b))Ci

= (nmπi(a
−1), θ̃(ab))Ci

= (nm′, θ̃(ab))Ci

= γi(xy)

so γi is a homomorphism. Note that γi is a monomorphism (this follows from the definition
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of the subgroup Ci). We now see ∆ is an amalgam isomorphism A ∼= E since we observed

above that the diagram below commutes.

D

N1

N1

φ1

φ2

B R

V1

V2

P1

P1

θ̃

π1

π2

β1

β2

γ1

γ2

A question arises from considering Theorem 2.2.25 and Lemma 2.2.21 together. Sup-

pose thatA and B are extensions ofN , via Θ1 and Θ2 respectively, such that the subgroups

E(N ,A,Θ1) and E(N ,B,Θ2) are conjugate in Aut◦(N ), then Lemma 2.2.21 implies that

A ∼= B. On the other hand, if A ∼= B, we have been unable to show in general that

E(N ,A,Θ1) and E(N ,B,Θ2) are Aut(N )-conjugate. Under an assumption on the de-

gree of the amalgam, we show in the next section that a converse to Lemma 2.2.21 holds.

A further question is the following. Given an amalgam S0, for i ∈ N define Si =

E(Si−1,Aut◦(Si−1)). Does there exist an n ∈ N for which Sn ∼= Sn+1? Or is this true

for a certain class of amalgams? This question is motivated by the related problem for

finite groups: If G0 is a finite group with Z(G0) = 1, for i ∈ N define Gi = Aut(Gi−1).

Then Wielandt’s Automorphism Tower Theorem says that (up to isomorphism) there

are finitely many groups in the sequence (G0, G1, G2, . . . ). Although we expect that the

answer to this question for general amalgams is “no”, we shall prove in the next section

that this holds for amalgams of certain degrees.
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2.3 Edge-transitive groups of automorphisms of trees

The material in this section follows work of Serre [34] and Goldschmidt [17]. We establish

the connection between amalgams and the action of groups on trees.

Definition 2.3.1. A tree is a connected locally finite graph without circuits.

Recall that a graph is locally finite if and only if every vertex has finitely many

neighbours.

Example 2.3.2. In Figure 2.4 we have three trees. The first is non-regular, the second

is regular of valency two (and the dashed lines indicate it carries on) and the third is

bi-regular of valency (5, 2).

Figure 2.4: Examples of trees

We will focus on edge-transitive groups of automorphisms of a tree Γ. It follows that

Γ is bi-regular, if the orbits of such a group are O1 and O2 there are integers k1 and k2

so that every vertex in Oi has valency ki (i = 1, 2). As remarked in the introduction, we

may assume that k1 ≥ 3 and k2 ≥ 2. In particular, Γ has infinitely many vertices. We

write Γ = Γk1,k2 to indicate the valencies of Γ (and just Γk1 if k1 = k2). The connection

between trees and amalgams is given by the following theorem of Serre.

Theorem 2.3.3. Let X be a graph, {x, y} an edge of X and G an edge-transitive subgroup

of Aut(X). The following are equivalent.
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(i) X is a tree.

(ii) G = G(A) where A = (Gx, Gy, Gxy, πx, πy).

Proof. This is Theorem 6 in [34, pg.32].

With G = G(A) the theorem tells us that Γ(A,G(A)) ∼= Γk1,k2 where (k1, k2) is the

degree of the amalgam A. Our motivation for considering trees is applications to finite

graphs, so we identify the following class of subgroups of Aut(Γ).

Definition 2.3.4. A subgroup G of Aut(Γ) is locally finite if for each vertex x of Γ we

have |Gx| <∞.

Note that the group G being locally finite is equivalent to the finiteness of the amalgam

(Gx, Gy, Gxy, πx, πy).

Lemma 2.3.5. Suppose that A and B are isomorphic amalgams. Then G(A) ∼= G(B).

Proof. This follows from the universality property of the completions of the amalgams.

Lemma 2.3.6. Suppose that A = (P1, P2, B, π1, π2) and B = (R1, R2, D, φ1, φ2) are finite

amalgams and let G = G(A) and H = G(B). If α : G → H is an isomorphism then

there is g ∈ H such that (α(P1))g = R1 and (α(P2))g = R2. In particular, A ∼= B and

Aut(G) = Inn(G)StabAut(G)({P1, P2}).

Proof. This follows from [5, Theorem 2.4.4].

From now on we work under the following hypothesis.

Hypothesis: The group G is an edge-transitive locally finite subgroup of A = Aut(Γ).

We set A = (Gx, Gy, Gxy, πx, πy) where {x, y} is an edge of Γ.

We wish to establish a dictionary between the local viewpoint and the global approach.

The next two lemmas show that we can detect edge-transitive subgroups locally.

Lemma 2.3.7. Let B be a (normal) subamalgam of A. Then G(B) is a (normal) edge-

transitive subgroup of G.
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Proof. See [34, Proposition 3, page 6].

Lemma 2.3.8. Let H be a (normal) edge-transitive subgroup of G. Then

B = (Hx, Hy, Hxy, πx, πy)

is a (normal) subamalgam of A.

Proof. See page 8 of [34].

Lemma 2.3.9. Suppose that Θ is an amalgam isomorphism Θ : A → B and let θ be the

induced isomorphism θ : G(A) → G(B). Then there is g ∈ Aut(Γ) such that θ(h) = hg

for all h ∈ G(A).

Proof. Write Θ = (α1, α2, α), B = (R1, R2, D) and G(B) = H. We have an isomorphism

Γ ∼= Γ(A, G) by Lemma 2.1.6. We define a graph homomorphism

µ : Γ(A, G)→ Γ(B, H)

by

µ : Gxg 7→ Huθ(g), µ : Gyh 7→ Hvθ(h)

where α1(Gx) = θ(Gx) = Hu and α2(Gy) = θ(Gy) = Hv. It is easy to check that µ is an

isomorphism, thus Γ(B, H) is isomorphic to Γ also. Let g ∈ Aut(Γ) be the composition

of these isomorphisms.

Now let h ∈ G(A) and let z be a vertex of Γ. Identifying z with Hwk for some k ∈ H

and w ∈ {u, v} we have the following for some r ∈ {x, y}

zh
g

= (Hwk)g
−1hg = (Grθ

−1(k))hg = (Grθ
−1(k)h)g = Hwkθ(h) = zθ(h).

It follows that hg(θ(h))−1 fixes every vertex of Γ. Since Aut(Γ) acts faithfully on Γ we

have hg = θ(h) and G(A)g = G(B).
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The following theorem captures the equivalence between the local and global view-

points.

Theorem 2.3.10. Let A and B be finite amalgams of degree (k1, k2). The following are

equivalent,

(i) B is isomorphic to A,

(ii) G(B) is isomorphic to G(A),

(iii) G(B) and G(A) are Aut(Γk1,k2)-conjugate.

Proof. Lemmas 2.3.5 and 2.3.6 show the equivalence of (i) and (ii). Lemma 2.3.9 shows

that (ii) implies (iii) and the reverse implication is immediate.

The statement of the following lemma can be found in the proof of [17, (2.8)], we

provide more details.

Lemma 2.3.11. Let N = NAut(Γ)(G). There is a canonical isomorphism N{x,y} →

Aut(A).

Proof. Let g ∈ N{x,y} and let αg1 : Gx → (Gx)
g, αg2 : Gy 7→ (Gy)

g and αg : Gxy →

(Gxy)
g = Gxy be the monomorphisms induced by conjugation by g. Clearly the diagram

in Figure 2.5 commutes so Θg := (αg1, α
g
2, α

g) ∈ Aut(A).

Gxy

Gx

Gy

πx

πy

Gxy

Gxg

Gyg

πxg

πyg

g

g

g

Figure 2.5: The automorphism Θg
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Conversely, if Θ ∈ Aut(A) then Lemma 2.3.9 gives gΘ ∈ Aut(Γ) such that GΘ =

G(A)g
Θ

= G(Θ(A)) = G(A), so gΘ ∈ NA(G). Moreover {xgΘ
, yg

Θ} = {x, y} so gΘ ∈ N{x,y}.

Let α : Aut(A) → N{x,y} be given by α : Θ 7→ gΘ and β : N{x,y} → Aut(A) be given

by β : g 7→ Θg. Then these maps (which are clearly homomorphisms) are inverses of each

other, so we have the desired isomorphism.

2.4 Trees of prime valency

In this section, we suppose that G is an edge-transitive locally finite group of automor-

phisms of the tree Γ = Γr for some odd prime r. By Theorem 2.3.3, G = G(A) where

A is the amalgam formed by a pair (Gx, Gy) where {x, y} is an edge of Γ. Our aim is

to generalise some of the results from [17] which hold under the assumption r = 3 to the

case where r ≥ 3. We will show that every such group is contained in the normaliser

of an edge-transitive subgroup of Aut(Γr) which has no proper normal edge-transitive

subgroups. We call these groups simple edge-transitive groups. Then changing to the lo-

cal perspective, we will show precisely how to describe the normaliser and the conjugacy

classes of such groups. Set

π = {p ∈ N | p < r and p a prime}.

If K is a group which is not necessarily finite, by Oπ(K) we mean the smallest normal

subgroup of finite index so that K/Oπ(K) is a π-group.

Lemma 2.4.1. The group Gxy is a π-group.

Proof. Let g ∈ Gxy and suppose that g has prime order q with q ≥ r. Since g fixes x and

y, g has acts trivially on ∆(x) and ∆(y), so g ∈ G[1]
x ∩G[1]

y . By connectivity and induction

we see that g fixes every vertex of Γ, so g = 1, a contradiction.

It follows from the degree of A that |Gx| = r|Gxy| and so Or′(Gx) = Oπ(Gx). Similarly

for Gy. In particular, notice that Or′(Gx) is generated by the r-subgroups of Gx, so it
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acts transitively on ∆(x).

Theorem 2.4.2. Let K = Oπ(G). Then K is a simple edge-transitive subgroup of G.

Proof. First note that K is an edge-transitive subgroup of G since Kx and Ky contain

r-elements which act transitively on ∆(x) and ∆(y) respectively. Now assume that H is

a normal edge-transitive subgroup of K. Then G = HGxy and the previous lemma shows

that |G : H| is a π-number. Since H is subnormal in G we may apply Lemma 1.3.5 which

yields Oπ(H) = Oπ(G) = K and therefore H = K.

We have the following description of Oπ(G).

Lemma 2.4.3. Let K = Oπ(G). Then K = 〈Or′(Gx),O
r′(Gy)〉. Moreover K = G(N )

where N is the normal subamalgam of A generated by the pair (Or′(Gx),O
r′(Gy)).

Proof. Set Y = 〈Or′(Gx),O
r′(Gy)〉. Since Or′(Gx) and Or′(Gy) contain r-elements and

Gxy is an r′-group by Lemma 2.4.1, these groups are transitive on ∆(x) and ∆(y) respec-

tively. Hence for each z ∈ Γ there is g ∈ Y such that (without loss of generality) xg = z.

Now Y ≥ (Or′(Gx))
g = Or′(Gxg) = Or′(Gz), thus Y C G. We have Y ≤ K by Lemma

1.2.7 and now the previous theorem gives Y = K as required.

Let N be the normal subamalgam of A generated by the pair (Or′(Gx),O
r′(Gy))

(recall Definition 2.2.6). Then G(N ) is a normal subgroup of G(A) = G and is edge-

transitive (reasoning as above). By the previous paragraph, we have G(N ) ≤ K and so

Theorem 2.4.2 implies that G(N ) = K.

Notation 2.4.4. We write Or′(A) for the normal subamalgam generated by the pair

(Or′(Gx),O
r′(Gy)).

Recalling Proposition 2.2.5, if A = (Gx, Gy, Gxy, πx, πy) then letting C = (Or′(Gx) ∩

Gxy)(O
r′(Gy) ∩Gxy) we have

Or′(A) = (Or′(Gx)C,O
r′(Gy)C,C, πx|C , πy|C).

We can now establish the converse to Lemma 2.2.21 for amalgams of degree (r, r).

61



Theorem 2.4.5. The amalgam A is an extension of N := Or′(A). Moreover, up to

isomorphism, the number of extensions of N is the number of Aut(N )-conjugacy classes

of subgroups of Aut◦(N ) which contain Inn(N ).

Proof. The first part follows from the previous lemma. For the second part, let B and

C be extensions of N by ΘB and ΘC respectively. Lemma 2.2.21 shows that B ∼= C if

EB := E(N ,B,ΘB) and EC := E(N , C,ΘC) are conjugate in E := Aut(N ).

We now assume that B ∼= C and we need to show that EB and EC are conjugate in E.

Set GB = G(B), GC = G(C) and GN = G(N ). After conjugation and using Theorem 2.4.2

we have GN = Or′(GB) = Or′(H), GB = GN(GB)xy and GC = GN(GC)xy. Since B is

isomorphic to C there is g ∈ Aut(Γ) such that Gg
B = GC , and after composition with

an element of N we may assume that g fixes {x, y} so that ((GB)xy)
g = (GC)xy. Now

Gg
N = Or′(GB)g = Or′(Gg

B) = Or′(GC) = GN so that g ∈ NAut(Γ)(GN)xy. Identifying g

with its image under the canonical isomorphism of Lemma 2.3.11 we obtain Eg
B = EC , as

required.

2.5 Thompson-Wielandt style theorems

In this section we prove a version of the Thompson-Wielandt theorem. Thompson’s

original theorem [37] implies that for a primitive permutation group G acting on a set Ω,

|Gα : Op(Gα)| is bounded where α ∈ Ω. The intended application for the theorem was

the Sims Conjecture (see [7]). A completely reworked proof was given by Wielandt using

subnormality methods, and the theorem is now attributed to both. Many variations of

the theorem have appeared and the focus of these theorems is mostly upon the existence

of a prime p such that F∗(Gα) = Op(Gα). For graph theoretic problems it has been widely

applied, see [16, (2.3)] and more recently [35]. The proof we give is a combination of ideas

from Fan’s proof [14] and from van Bon’s [51].

We work under the following hypothesis.

Hypothesis: Γ is a graph on which G acts faithfully and edge-transitively.
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We fix a fundamental edge {x, y}. The diagram below shows the various inclusions of

the subgroups relevant to the statement of Theorem 2.5.1.

Gxy

Gx Gy

G
[1]
yG

[1]
x

G
[1]
xy

G
[2]
yG

[2]
x

Theorem 2.5.1 (Thompson-Wielandt). Suppose that the local action at x and y is prim-

itive. Then, up to interchanging x and y, one of the following holds.

(i) There exists a prime p such that all of F∗(Gx), F∗(Gy), F∗(Gxy) are p-groups.

(ii) G
[1]
xy = G

[2]
y and G

[2]
x = 1.

Recall that the local action at a vertex x by a subgroup H of Gx is the permuta-

tion group induced by H acting on ∆(x), for which we write H∆(x). Clearly the proof

of the above theorem will involve considerations of the subgroup G
[1]
xy. Note that when-

ever the hypothesis of the following lemma holds we can conclude that statement (ii) of

the Thompson-Wielandt theorem holds. Hence in our proof of the Thompson-Wielandt

theorem, we are done whenever we can apply the following lemma.

Lemma 2.5.2. Let z ∈ Γ and let {z, w} be an edge of Γ. Suppose that the local action at

z is primitive and CGz(G
[1]
z ) � G

[1]
z . Then the following hold.

(i) CGz(G
[1]
z ) is transitive on ∆(z).

(ii) G
[1]
zw = G

[2]
z and G

[2]
w = 1.
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Proof. Since CGz(G
[1]
z ) is not contained in G

[1]
z , CGz(G

[1]
z )∆(z) is a non-trivial normal sub-

group of G
∆(z)
z . Since G

∆(z)
z is primitive we have that CGz(G

[1]
z ) is transitive on ∆(z)

which gives part (i).

By (i) for each y ∈ ∆(z) there is g ∈ CGz(G
[1]
z ) such that wg = y. Now G

[1]
zw =

(G
[1]
zw)g = G

[1]
zy , so we obtain G

[1]
zw ≤ G

[2]
z . It follows that G

[2]
z = G

[1]
zw. Since G

[2]
w ≤ G

[1]
z we

see that G
[2]
w is normalised by 〈Gw,CGz(G

[1]
z )〉 which is an edge-transitive subgroup of G,

hence G
[2]
w = 1.

Proof of 2.5.1. We may assume that G
[1]
xy is non-trivial, otherwise (ii) holds. Our first

claim reduces the problem to considering Fitting subgroups.

(1) E(Gx) = E(Gy) = E(Gxy) = 1.

Set Ex = E(Gx), Ey = E(Gy). Suppose that there is a component K of Gx not

contained in G
[1]
x . Since a component centralises a normal subgroup in which it is not

contained, we have CGx(G
[1]
x ) � G

[1]
x and applying Lemma 2.5.2 with z = x and y = w

shows that (ii) holds. A similar argument applies to Gy so we may assume that E(G
[1]
x ) =

Ex and E(G
[1]
y ) = Ey (and note that both are contained in Gxy). Suppose that Ex � Ey,

so that there is a component K of Gx with K � G
[1]
y . Now Theorem 1.3.8 implies that

[K,G
[1]
y ] = 1, so we can apply Lemma 2.5.2 to see that (ii) holds. A symmetric argument

applies if Ey � Ex so we have that Ex = Ey = 1. If there is a component K of Gxy, then

K � G
[1]
x since Ex = 1, so [K,G

[1]
x ] = 1 and again Lemma 2.5.2 shows that (ii) holds. We

may assume therefore that E(Gxy) = 1. Hence the claim.

Set π = π(F∗(G
[1]
x )) = π(F(G

[1]
x )), where the last equality follows from (1).

(2) π(F(Gx)) = π(F(G
[1]
x )) = π(F(Gxy)) = π(F(G

[1]
y )) = π(F(Gy)).

Let X ∈ {Gx, Gxy, G
[1]
y } and suppose that q ∈ π. If Oq(X) = 1 then we must have X =

G
[1]
y and Oq(G

[1]
x )∩X = 1 and [Oq(G

[1]
x ), X] = 1 which allows us to apply Lemma 2.5.2 with

z = y and w = x. So we obtain π ⊆ π(F(X)). Now if q ∈ π(F(X)) then Oq(X)∩G[1]
x = 1

implies Oq(X) centralises G
[1]
x , and Lemma 2.5.2 shows then that (ii) holds. Otherwise,

Oq(X) ∩G[1]
x 6= 1, so q ∈ π and π = π(F(X)). This argument now applies to y to deliver
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the claim.

By (2) we see that (i) holds if |π| = 1. Assuming this is not the case then, we

pick distinct primes p, q ∈ π and set Px = Op(G
[1]
x ), Py = Op(G

[1]
y ), Qx = Oq(G

[1]
x ) and

Qy = Oq(G
[1]
y ). Our assumption implies that these are all non-trivial groups.

(3) Px ∩ Py 6= 1 6= Qx ∩Qy.

Observe [Px, G
[1]
y ] ≤ Px ∩G[1]

y = Px ∩ Py. Now Px is non-trivial, therefore Px ∩ Py = 1

would allow us to apply Lemma 2.5.2 with z = y and w = x, hence the claim.

(4) After swapping x and y if necessary, Oq(Gxy) = Qy and Op(Gxy) = Px. Moreover

Qy � G
[1]
x and Px � G

[1]
y .

Note that QxQy ≤ Oq(Gxy), hence if Oq(Gxy) ≤ G
[1]
x and Oq(Gxy) ≤ G

[1]
y then we have

Qx = Qy and therefore Qx = 1, which is against our assumption. Hence we may assume

that Oq(Gxy) � G
[1]
x . If Oq(Gxy) � G

[1]
y also, then we would see that Px∩Py is centralised

by 〈〈Oq(Gxy)
Gx〉, 〈Oq(Gxy)

Gy〉〉, which is against (3). Hence the claim holds for q. Arguing

similarly, we have that at most one of Op(Gxy) � G
[1]
x or Op(Gxy) � G

[1]
y holds. Assume

the former and set L1 = 〈Oq(Gxy)
Gx〉, L2 = 〈Op(Gxy)

Gx〉, then L1 normalises Oq(G
[1]
xy) and

Oq(G
[2]
y ) since G

[1]
xy is subnormal in the conjugates of Oq(Gxy), and similarly L2 normalises

Op(G
[1]
xy) and Op(G

[2]
y ). It follows that Oq(G

[2]
y ) = 1 and Op(G

[2]
y ) = 1 whence G

[2]
y = 1.

Also we have that Oq(G
[1]
xy) ≤ G

[2]
x and Op(G

[1]
xy) ≤ G

[2]
x which implies G

[1]
xy/G

[2]
x is both a

p- and a q-group, and therefore G
[1]
xy = G

[2]
x . Thus (ii) holds. We can therefore conclude

that Op(Gxy) � G
[1]
y and this proves the claim.

Now set L = 〈Oq(Gxy)
Gx〉 and note that L is transitive on ∆(x). Now L normalises

Oq(G
[2]
y ) so this implies G

[2]
y is a q-group. On the other hand, (4) implies that Py ≤ Px

so Py ≤ G
[1]
xy. Since Py is normal in Gy we have Py ≤ G

[2]
y and therefore Py = 1, a

contradiction which completes the proof.

Remark 2.5.3. The prime p asserted to exist by the Thompson-Wielandt theorem can-

not be guessed without further knowledge. We will see that the shape of Gx/G
[1]
x and

knowledge of the prime divisors of |Gx| allows us to determine p in some applications.

65



Note that if one of G
[2]
x or G

[2]
y is trivial then we have succeeded in bounding the order

of Gx and Gy. In some applications this is sufficient, for example, verifying the Sims

Conjecture (see [7]). If one wants to determine the structure of Gx and Gy (as we will

need to do in the later sections) we shall require more information in the G
[2]
x = 1 case.

For the arc-transitive case we have the following corollary.

Corollary 2.5.4. Suppose the hypothesis of Theorem 2.5.1 holds and that G acts arc-

transitively on Γ. Then one of the following holds:

(i) there exists a prime p such that F∗(Gx), F∗(G{x,y}) and F∗(Gxy) are all p-groups,

(ii) G
[1]
xy = 1.

Proof. If conclusion (ii) of Theorem 2.5.1 holds and G is arc-transitive, then we have

|G[2]
x | = |G[2]

y | = 1 and so G
[1]
xy = 1. Suppose that conclusion (i) of Theorem 2.5.1 holds

and note that since |G{x,y} : Gxy| = 2, every component ofG{x,y} lies inGxy and is therefore

trivial. Let q be a prime distinct from p. If Oq(G{x,y}) ≤ Gxy we are done, so we may

assume q = 2. Now p is odd and O2(G{x,y}) centralises F∗(Gxy), so O2(G{x,y}) ∩Gxy = 1

and O2(G{x,y}) centralises Gxy. It follows that G
[1]
x = G

[1]
y = 1 and so (ii) holds.
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CHAPTER 3

SYMMETRIC GRAPHS OF VALENCY FIVE

We begin by setting Γ = Γ5 (the regular tree of valency five) and we let G be a lo-

cally finite subgroup of Aut(Γ) such that Γ is G-symmetric. We fix an edge {x, y}

of Γ and we aim to determine the isomorphism type of the finite faithful amalgam

A = (Gx, G{x,y}, Gxy, π1, π2) which has degree (5, 2) (recall that G = G(A). We prove

the following theorem.

Theorem 3.0.5. Up to isomorphism, there are exactly twenty-five finite faithful amalgams

of degree (5, 2). Each is the unique faithful amalgam of its type. The types of the amalgams

are listed in Table 3.1.

The work of Weiss [54] and Zhou, Feng [55] is a contribution to the proof of Theo-

rem 3.0.5 which was included in the author’s MPhil(Qual) thesis [26]. Since that work

was completed [19] has appeared. Thus the isomorphism type of the group Gx in the

amalgam A is known. The isomorphism types of the group G{x,y} and the amalgam A

have not yet been determined, therefore we concentrate on the identification of the edge

stabilisers and the classification of the amalgam A.

Remark 3.0.6 (On Table 3.1). Let (P1, P2) be one of the pairs in Table 3.1. One can easily

check there is a unique conjugacy class of index five subgroups in P1, let B be one of these

subgroups. In P2 there is a unique Aut(P2)-conjugacy class of subgroups isomorphic to B.

Thus the pair (P1, P2) does indeed determine the type of an amalgam. For each amalgam

we have provided a sample finite completion G. In Section 3.3 we prove that the group
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Amalgam P1 P2 G s

Q1
1 C5 C2 C5 o C2 1
Q2

1 Dih(10) 22 Alt(5) 1
Q3

1 Dih(10) C4 Alt(6) 1
Q4

1 Dih(20) Dih(8) PSL2(11) : 2 1

Q1
2 Frob(20) C4 × C2 Sym(6) 2
Q2

2 Frob(20) C8 M11 2
Q3

2 Frob(20) Dih(8) Sym(5) 2
Q4

2 Frob(20) Q8 M10 2
Q5

2 Frob(20)× C2 N16 Sym(9) 2
Q6

2 Frob(20)× C2 M16 Aut(Alt(6)) 2
Q7

2 Alt(5) Sym(4) Alt(6) 2
Q8

2 Alt(5) Alt(4)× C2 Sym(6) 2
Q9

2 Sym(5) Sym(4)× C2 Sym(6) 2

Q1
3 Frob(20)× C4 C4 o C2 Sym(9) 3
Q2

3 Alt(5)× Alt(4) Alt(4) o C2 Alt(9) 3
Q3

3 Sym(5) Sym(4) L1 Alt(9) 3
Q4

3 Sym(5) Sym(4) L2 Sym(9) 3
Q5

3 Sym(5)× Sym(4) Sym(4) o C2 Sym(9) 3

Q1
4 24 : Alt(5) 24+2 : Sym(3) PSL3(4).〈g〉 4
Q2

4 24 : Alt(5) 24+2 : C6 PSL3(4).〈gf〉 4
Q3

4 24 : Sym(5) 24+2+1 : Sym(3) PSL3(4).〈f, g〉 4
Q4

4 24 : (Alt(5)× C3) (24+2 : C3) : Sym(3) PGL3(4).〈g〉 4
Q5

4 24 : (Alt(5)× C3) (24+2 : C3) : C6 PGL3(4).〈gf〉 4
Q6

4 24 : Sym(5) Sym(3) 24+2 : Sym(3)2 Aut(PSL4(4)) 4

Q1
5 26 : Sym(5) Sym(3) (26 : (Alt(4)× C3)) : C4 Aut(Sp4(4)) 5

Table 3.1: The types of finite, faithful amalgams of degree (5,2)

G is indeed a finite completion of the amalgam. The group M16 is the modular group of

order sixteen with presentation 〈u, v | u8 = 1, v2 = 1, uv = u5〉. The group N16 is the

subgroup 〈(1, 2, 3, 4)(5, 6, 7, 8), (5, 7)(6, 8), (1, 5)(2, 6)(3, 7)(4, 8)〉 of Sym(8). By L1 and

L2 we denote the groups

L1 = 〈(1, 2, 3), (2, 3, 4), (5, 6, 7), (6, 7, 8), (1, 2)(5, 6), (1, 5)(2, 6)(3, 7)(4, 8)〉,

L2 = 〈(1, 2, 3), (2, 3, 4), (5, 6, 7), (6, 7, 8), (1, 6, 2, 5)(3, 7)(4, 8)〉,

which are both extensions of Alt(4)× Alt(4).
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3.1 Edge stabilisers

In this section we aim to classify the isomorphism type of the group G{x,y} and the

amalgam A. As remarked in the introduction, Γ is (G, s)-transitive for some s ≤ 5. If

s ≥ 4 then [54] determines A up to isomorphism and we have A ∈ {Q1
4, . . . ,Q6

4,Q1
5}. The

amalgams Q1
4-Q6

4 are visible in the group Aut(PSL3(4)) which acts on the generalised

triangle associated to PSL3(4). In Table 3.1 we have indicated which extension each

amalgam is visible in, where g and f are graph and field automorphisms respectively. The

amalgam Q1
5 is visible in Aut(Sp4(4)) which acts on the generalised quadrangle associated

to Sp4(4). We now turn to the case 1 ≤ s ≤ 3. The following two theorems are [55,

Theorem 4.1] and [19, Theorem 1.1] respectively.

Theorem 3.1.1. Suppose that Gx is soluble and 1 ≤ s ≤ 3. Then Gx is isomorphic

to one of C5, Dih(10), Dih(20) if s = 1, one of Frob(20), Frob(20) × C2 if s = 2 or

Frob(20)× C4 if s = 3.

Theorem 3.1.2. Suppose that Gx is insoluble and 1 ≤ s ≤ 3. Then s ≥ 2 and Gx is iso-

morphic to one of Alt(5) or Sym(5) if s = 2 and one of Alt(5)×Alt(4), Sym(4) Sym(5)

or Sym(5)× Sym(4) if s = 3.

Recalling Corollary 2.5.4 we know that the group G
[1]
xy is a p-group for some prime p

(the first proof of this fact seems to be [16, (2.3)]). For the small values of s under current

consideration, it is in fact trivial.

Proposition 3.1.3. Suppose that 1 ≤ s ≤ 3. Then G
[1]
xy = 1, G

[1]
x
∼= G

[1]
x G

[1]
y /G

[1]
y C

Gxy/G
[1]
y and [G

[1]
x , G

[1]
y ] = 1.

Proof. The first assertion is contained in the proofs of [55, Theorem 4.1] and [19, Theorem

1.1]. The remaining assertions follow by a homomorphism theorem, the normality of G
[1]
x

and G
[1]
y in Gxy and the definition of G

[1]
xy.

Recall that the kernel of the action of Gx on the vertices adjacent to x is the core in

Gx of Gxy. Since there is a unique class of index five subgroups, the group G
[1]
x is uniquely
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determined by Theorems 3.1.1 and 3.1.2.

Lemma 3.1.4. Suppose that G
[1]
x = 1. Then A has the same type as one of Q1

1- Q3
1,

Q1
2-Q4

2 or Q7
2-Q9

2.

Proof. We use the fact that Gxy is uniquely determined by Gx, and we consider each of

the groups of order 2|Gxy| which has a subgroup isomorphic to Gxy. Each turns out to

be a candidate.

From now on we may assume that G
[1]
x 6= 1.

Lemma 3.1.5. Suppose that Gx
∼= Dih(20). Then G{x,y} ∼= Dih(8) and A has the same

type as Q4
1.

Proof. As Gx
∼= Dih(20) we see G

[1]
x has order 2 and Gxy

∼= 22. Then G{x,y} is a non-

abelian group of order 8 with an elementary abelian subgroup of order 4. It follows that

G{x,y} ∼= Dih(8).

In the next lemma we find the relevant edge stabilisers have order sixteen. Recall

the definitions of M16 and N16 from Remark 3.0.6. Observe that N16 has a central cyclic

subgroup of order 4, modulo which it is elementary abelian of order 4.

Lemma 3.1.6. Suppose that Gx
∼= Frob(20) × C2. Then G{x,y} ∼= M16 or G{x,y} ∼= N16

and A has the same type as Q5
2 or Q6

2.

Proof. We have Gxy
∼= C4 × C2, fix notation Gxy = 〈h, j〉 where h has order 4 and j has

order 2. Additionally, we may assume that 〈j〉 = G
[1]
x and 〈h2j〉 = G

[1]
y since j is not a

square in Gxy. We know there is t ∈ G{x,y} such that jt = h2j, and we choose such a t

with order as small as possible. If t has order 2, then we find that G{x,y} ∼= N16, otherwise

t has order 4 or 8. If t has order 8, then (after changing notation if necessary) we have

t2 = h and so jt = h2j = t4j implies that tj = t5 and we see G{x,y} ∼= M16. It remains to

see that t cannot have order 4.

There are exactly two cyclic subgroups of order 4 in Gxy and these are generated by

h and hj respectively. We claim that t centralises one of these subgroups. First assume
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that ht = hj or ht = h3j. Then t2 ∈ Gxy, so ht
2

= h. On the other hand, both of ht = hj

and ht = h3j imply that ht
2

= h3, whence h = h3, a contradiction. Hence either ht = h,

in which case t centralises 〈h〉 or ht = h3. Then we find that (hj)t = h3h2j = hj, so

t centralises 〈hj〉. In both cases, we find an element of order 4, k say, in Gxy which is

centralised by t. Hence t2 = k2 and so (tk)2 = 1, but tk /∈ Gxy, and this contradicts our

choice of t with minimal order.

Lemma 3.1.7. Suppose that Gx
∼= Frob(20)× C4. Then G{x,y} ∼= C4 o C2 and A has the

same type as Q1
3.

Proof. Since G
[1]
x
∼= C4, we have Gxy = G

[1]
x G

[1]
y
∼= C4×C4. Choose q ∈ G{x,y} of least order

such that q /∈ Gxy, we claim q has order 2. Writing G
[1]
x = 〈a〉, set b = aq, then G

[1]
y = 〈b〉

and (ai)q = bi for i ∈ N. Since G{x,y} is non-abelian, it follows that Z(G{x,y}) = 〈ab〉. Now

q2 ∈ Gxy which is abelian, so q2 ∈ Z(G{x,y}). If q2 = 1 we are done. Suppose first that

q2 = a2b2. Then (qab)2 = 1, and qab /∈ Gxy since q /∈ Gxy, this contradicts our choice of q.

Similarly, if q2 = ab or q2 = a3b3, we find that qb3, respectively, qb, are involutions, and do

not lie in Gxy. Thus we may assume q is an involution, and therefore G{x,y} ∼= C4 oC2.

From now on we may assume Gx/G
[1]
x is insoluble.

Lemma 3.1.8. We have CG{x,y}(G
[1]
x G

[1]
y ) = CGxy(G

[1]
x G

[1]
y ) = CGx(G

[1]
x G

[1]
y ) = Z(G

[1]
x G

[1]
y ).

Moreover, G{x,y} acts faithfully on G
[1]
x G

[1]
y by conjugation.

Proof. Set Ce = CG{x,y}(G
[1]
x G

[1]
y ) and Cx = CGx(G

[1]
x G

[1]
y ). The first equality will follow

once we have shown Ce ≤ Gxy. If this were not the case, then Ce acts transitively on

{x, y}. Also we see that [Ce, G
[1]
x ] ≤ [Ce, G

[1]
x G

[1]
y ] = 1, hence G

[1]
x is a normal subgroup

of 〈Gx, Ce〉, which acts transitively on V (Γ). It follows that G
[1]
x = 1, a contradiction.

Now Z(G
[1]
x G

[1]
y ) ≤ Ce ≤ Cx, so it remains to see that the latter subgroup is contained in

G
[1]
x G

[1]
y . Since Gx/G

[1]
x
∼= Alt(5) or Gx/G

[1]
x
∼= Sym(5), we see that normal subgroups of

Gxy/G
[1]
x contain their centralisers in Gx/G

[1]
x , therefore

CxG
[1]
x /G

[1]
x ≤ C

Gx/G
[1]
x

(G[1]
x G

[1]
y /G

[1]
x ) ≤ G[1]

x G
[1]
y /G

[1]
x
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and so Cx ≤ CxG
[1]
x ≤ G

[1]
x G

[1]
y as required. The second assertion of the lemma now

follows from the isomorphisms G
[1]
x
∼= Alt(4) or G

[1]
x
∼= Sym(4) which follow from Theorem

3.1.2.

We define A = Aut(G
[1]
x G

[1]
y ) ∼= Sym(4) o C2. This isomorphism follows from the

observation that there are exactly two normal subgroups isomorphic to Alt(4) in G
[1]
x G

[1]
y .

Lemma 3.1.8 allows us to identify G{x,y} with a subgroup of A. Note that O2(A) ∼=

Alt(4)× Alt(4) and by Lemma 3.1.8 O2(A) ≤ G
[1]
x G

[1]
y . Thus we see G{x,y}/O

2(A) in the

quotient A/O2(A) ∼= Dih(8). We use these observations below.

Lemma 3.1.9. Suppose that Gx
∼= Alt(5)×Alt(4). Then G{x,y} ∼= Alt(4) oC2 and A has

the same type as Q2
3.

Proof. Theorem 3.1.2 gives G
[1]
x
∼= Alt(4). Now Gxy = G

[1]
x G

[1]
y
∼= Alt(4) × Alt(4). Since

G
[1]
x and G

[1]
y are conjugate in G{x,y}, inspecting the possibilities for G{x,y} in A we must

have G{x,y} ∼= Alt(4) o C2.

Lemma 3.1.10. Suppose that Gx
∼= Sym(5) × Sym(4). Then G{x,y} ∼= Sym(4) o C2 and

A has the same type as Q5
3.

Proof. We have Gxy = G
[1]
x G

[1]
y
∼= Sym(4)× Sym(4) and so G{x,y} ∼= Aut(Gxy).

Finally, we have to deal with the possibility that Gx/G
[1]
x
∼= Sym(5) and G

[1]
x
∼= Alt(4).

There are two types of amalgam which have this property.

For the final possibility for the shape of Gx there are two different possibilities for

G{x,y}. These groups differ in the isomorphism type of G{x,y}/G
[1]
x G

[1]
y , which has order 4,

but is either cyclic or elementary abelian. Recall the definitions of the groups L1 and L2

from Remark 3.0.6.

Lemma 3.1.11. Suppose that Gx/G
[1]
x
∼= Sym(5) and G

[1]
x
∼= Alt(4). Then G{x,y} is

isomorphic to one of L1 or L2 and A has the same type as one of Q3
3 or Q4

3.

Proof. Comparing orders, we see that |G{x,y} : G
[1]
x G

[1]
y | = 4. By Lemma 3.1.8 and the

remarks following, G{x,y} can be identified with a subgroup of index two in A which
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contains the characteristic subgroup O2(A). There are precisely three of these, L1 and L2

above and L3
∼= Sym(4)× Sym(4). Identifying G

[1]
x with its image in A we see G

[1]
x C L3,

so we must have G{x,y} ∼= L1 or G{x,y} ∼= L2.

Note that so far, even though we have shown that the amalgam A has the same type

as one of the amalgams in Table 3.1, we have not determined how many isomorphism

classes of amalgam of each type there are. This problem is addressed in the next section.

3.2 Uniqueness and presentations

The aim of this section is to verify that each of the finite faithful amalgams of degree

(5, 2) is unique. We will use the notation established in Section 2.2. For an amalgam

A = (P1, P2, B, π1, π2) we have Hi = NAut(Pi)(πi(B)) and H∗i is the image of this group in

Aut(B) (under the image Hi 7→ Hi/CAut(Pi)(πi(B))). Goldschmidt’s amalgam counting

lemma (Lemma 2.2.12) then says that the number of amalgams with the same type as A

is the number of (H∗1 , H
∗
2 )-double cosets in Aut(B).

Lemma 3.2.1. There is a unique class of amalgams of type Qji for (i, j) in the set {(1, 1),

(1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4)}.

Proof. If i = 1 then there is nothing to prove since Aut(B) = 1. For the remaining

amalgams Aut(B) ∼= C2. Inspecting Aut(P2) we find an element which inverts B in all

cases, so we are done.

Lemma 3.2.2. There are two isomorphism classes of amalgams of type Q4
1 and precisely

one is faithful.

Proof. We see that Aut(B) ∼= Sym(3). After choosing a labelling, one finds that H∗1 is the

subgroup 〈(1, 2)〉 and that H∗2 = 〈(2, 3)〉. Hence there are two (H∗1 , H
∗
2 ) double cosets in

Aut(B). For both of these amalgams we have Z(P1)Z(P2) ≤ B, but the faithful amalgam

has Z(P1) ∩ Z(P2) = 1, and the non-faithful amalgam has Z(P1) = Z(P2).
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Lemma 3.2.3. There is a unique class of amalgams of types Q5
2 and Q6

2 respectively.

Proof. We write B = 〈x, y〉 where x has order 4 and y has order 2, and consider the

action of the groups Aut(B), NAut(P1)(B) and NAut(P2)(B) on Ω = {x, x−1, xy, x−1y}, the

elements of order 4 in B. Since Aut(B) ∼= Dih(8) acts faithfully on Ω we may write

elements of H∗1 and H∗2 as permutations of {1, 2, 3, 4} (acting on subscripts after labelling

x1 = x, x2 = x−1, x3 = xy, x4 = x−1y). In both cases we see H∗1 = 〈(1, 3)(2, 4)〉 and H∗2

contains the subgroup 〈(1, 2)(3, 4), (3, 4)〉. Hence Aut(B) = H∗1H
∗
2 , so by the Goldschmidt

Lemma there is a unique class of amalgams.

Lemma 3.2.4. There is a unique class of amalgams of type Qj2 with j ∈ {7, 8, 9}.

Proof. Observe that Aut(B) ∼= Sym(4) for each of these amalgams. Now CAut(P1)(B) = 1

and NAut(P1)(B) ∼= Sym(4), thus we find Aut(B) = H∗1 . It follows that there is a unique

class of amalgams.

Lemma 3.2.5. There are three isomorphism classes of amalgams of type Q1
3 and precisely

one is faithful.

Proof. We identify Aut(B) with the group GL2(Z/4Z). Using generators for the group

Aut(P1) ∼= Frob(20) × Dih(8) and Aut(P2) ∼= Dih(8) : 22, we find that H∗1
∼= Dih(8) and

H∗2
∼= 23 and these groups are generated by the matrices

H∗1 =

〈 1 0

0 3

 ,
 1 1

0 1

〉 , H∗2 =

〈 3 0

0 3

 ,
 0 1

1 0

 ,
 2 1

1 2

〉 .

Either by hand or with the aid of Magma or Gap one can verify that there are three

(H∗1 , H
∗
2 ) double cosets in Aut(B), and so there are three isomorphism classes of amalgams

with this type. In Example 2.2.8 we constructed three pairwise non-isomorphic amalgams

of this type and precisely one is faithful.

Lemma 3.2.6. Let A be an amalgam of type Qji with i = 3 and j = 2, 3, 4, 5. Then A is

the unique amalgam of this type.
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Proof. It is clear that Aut(P1) ∼= Sym(5) × Sym(4) and Aut(P2) ∼= Sym(4) o C2 for each

of the amalgams. Then the image of NAut(P1)(B) in Aut(B) is the subgroup isomorphic

to Sym(4)×Sym(4). Since there is an inner automorphism of P2 which normalises B and

swaps the factors, the image of this element in Aut(B) lies outside the Sym(4)× Sym(4)

subgroup. Hence Aut(B) = H∗1H
∗
2 , so there is a unique amalgam of these types by the

Goldschmidt Lemma.

In Table 3.2 we give presentations of the universal completions of the finite faithful

amalgams of degree (5,2). These presentations have the advantage that vertex and edge

stabilisers are relatively easy to identify. The presentations are perhaps not the most

efficient for computational purposes, however using the Simplify command in Magma

on these presentations returns the presentation unchanged, so the presentations are sat-

isfactory. The presentations will be available for download at [25].

For the final seven completions, we know that the universal completion satisfies one

of the nine presentations R5,4+, R5,4−, R
{g}
5,4+, R

{g}
5,4−, R

{f}
5,4+, R

{f}
5,4−, R

{f,g}
5,4+ , R

{f,g}
5,4− , R5,5 due

to Weiss [54, Theorem (1.1)]. We have presented them here in an “uncompressed” form

so that the number of amalgams is clear, and to underline the point that the two pairs

of amalgams defined by the presentations R
{g}
5,4± and R

{f,g}
5,4± are isomorphic (so to abuse

notation and language, we are saying R
{g}
5,4+
∼= R

{g}
5,4− and R

{f,g}
5,4+

∼= R
{f,g}
5,4− ). We prove this

below.

Lemma 3.2.7. Suppose that X and X ′ are groups defined by the presentations R
{g}
5,4+ and

R
{g}
5,4− respectively. Then X ∼= X ′.

Suppose that Y and Y ′ are groups defined by the presentations R
{f,g}
5,4+ and R

{f,g}
5,4− re-

spectively. Then Y ∼= Y ′.

Proof. Since all the groups are defined by their presentations, we will show that X and

X ′ admit the same presentation, and similarly for Y and Y ′. From [54] we have that

X = 〈a, e, c, g〉. Since g2 = 1, 〈ag, e, c, g〉 = X. It is easy to check that the relations in

the subgroup 〈ag, e, c, g〉 are those that hold in X ′.
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Type Generators Relations

Q1
1 a, b a5, b2

Q2
1 a, b, c a5, b2, c2, (ac)2, (bc)2

Q3
1 a, b a5, b4, (b2a)2

Q4
1 a, b, c a5, b4, c2, (bc)2, (ab2)2, [a, c]

Q1
2 a, b, c a5, b2, c4, aca3, [b, c]

Q2
2 a, b a5, b8, ab

2
a3

Q3
2 a, b, c a5, b2, c4, aca3, (cb)2

Q4
2 a, b, c a5, b4, c4 aca3, cbc
Q5

2 a, b, c, d a5, b2, c4, d2, aca3, [a, d], [b, c], [c, d], dbc2d

Q6
2 a, b, c a5, b8, c2, ab

2
a3, bcb3, [a, c]

Q7
2 a, b, c, d a3, b2, c3, d3, (dc)2, (da)2, cac2d, (bc)2, bdbc
Q8

2 a, b, c, d a3, b2, c3, d3, (dc)2, (da)2, cac2d, [b, c], [b, d]
Q9

2 a, b, c, d a5, b2, c4, d2, (cd)3, [b, c], [b, d], a3cad

Q1
3 a, b, c a5, b2, c4, aca3, [a, cb], [c, cb]
Q2

3 a, b, c, d, e,
f

a3, b2, c3, d3, e3, f 3, (fe)2, [e, c], [f, c], [e, d], [f, d], (dc)2,
[e, a], [f, a], (ad)2, cac2d, ebc, f bd

Q3
3 a, b, c, d, e,

f , g
c3, d3, e2, f 3, g3, (gf)2, [f, c], [g, c], [f, d], [g, d], (dc)2,
(ef)2, (ec)2, egf 2e, edc2e, a3, [f, a], [g, a], (ad)2, eea, b2,
f 2cb, g2db, (eb)2

Q4
3 a, b, c, d, e,

f
c3, d3, e3, f 3, (dc)2, [c, e], [d, e], [c, f ], [d, f ], (fe)2, b4,
c2eb, d2f b, ecb, dbef 2, a3, [c, a], [d, a], (af)2, [b2, a]

Q5
3 a, b, c, d, e,

f
c4, d2, e4, f 2, (cd)3, (ef)3, [c, e], [c, f ], [d, e], [d, f ], a5,
a3cad, [a, e], [a, f ], b2, cbe3, dbf

Table 3.2: Presentations for the universal completions of finite faithful (5,2) amalgams
with s ≤ 3.

Similarly we have Y = 〈a, e, c, g, f〉. Then Y = 〈ag, e, c, g, f−1〉 and it is again a

routine exercise to verify that the relations in the subgroup just constructed are those

that hold in Y ′.

The universal completions for the amalgams Q1
4-Q6

4 are generated by elements a, e0,

c, f and g. For i ∈ Z we define ei := aie0a
−i and t = e0e3e0. The universal completion

of the amalgam Q1
5 is generated by elements a, e0 and c, and as before set ei := aie0a

−i.

We also define t := e0e4e0, f := aca−1 and g = (ta)2.
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Type Generators Relations

Q1
4 a, e0, c e2

0,c3,(e0e3)3, tct−1c, (e0c)
3, (ce0e3)5, tat−1a, [e0, e1],

[e0, ce1c
−1], [e0, e2]e1, [e0, ce2c

−1]c−1e1c, aca
−1c

Q2
4 a, e0, c e2

0, c
3, (e0e3)3, tct−1c, (e0c)

3, (ce0e3)5, tat−1a, [e0, e1],
[e0, ce1c

−1], [e0, e2]e1, [e0, ce2c
−1]c−1e1c, [a, c]

Q3
4 a, e0, c, f e2

0, c3, f 3, (e0e3)3, tct−1c, (e0c)
3, (ce0e3)5, tat−1a,

[e0, e1], [e0, ce1c
−1], [e0, e2]e1, [e0, ce2c

−1]c−1e1c, [c, a],
[c, f ], [e, f ], af(cfa)−1

Q4
4 a, e0, c, f e2

0, c
3, f 3, (e0e3)3, tct−1c, (e0c)

3, (ce0e3)5, tat−1a, [e0, e1],
[e0, ce1c

−1], [e0, e2]e1, [e0, ce2c
−1]c−1e1c, aca

−1c, [c, f ],
[e, f ], afa−1fc−1

Q5
4 a, e0, c, g e2

0, c
3, g2, (e0e3)3, tct−1c, (e0c)

3, (ce0e3)5, tat−1a, [e0, e1],
[e0, ce1c

−1], [e0, e2]e1, [e0, ce2c
−1]c−1e1c, [a, c], [e0, g],

[a, g], gcgc
Q6

4 a, e0, c, f ,
g

e2
0, c

3, g2, f 3, (e0e3)3, tct−1c, (e0c)
3, (ce0e3)5, tat−1a,

[e0, e1], [e0, ce1c
−1], [e0, e2]e1, [e0, ce2c

−1]c−1e1c, [c, a],
[e0, g], [a, g], gcgc, gfgf, [c, f ], [e, f ], af(cfa)−1

Q1
5 a, e0, c c3, e2

0, (e0e4)3, tct−1c, g2, [e0, g], [a, g], cgc, (e0c)
3, [e2, c],

(ce0e4)5, [c, f ], af(cfa)−1, [e0, e1], [e0, e2], [e0, e3]e2e1

Table 3.3: Presentations for the universal completions of finite faithful (5,2) amalgams
with s ≥ 4.

3.3 Finite Completions

In this section we provide examples of finite faithful completions for finite faithful amal-

gams of degree (5,2). We deal with the cases where s ≤ 3. For the bigger values of s, we

have indicated in Table 3.1 how completions can be obtained in the groups Aut(PSL3(4))

and Aut(Sp4(4)). For the remaining amalgams, our target for completions are also almost

simple groups. Our reasoning for this is the following. If K is an almost simple group

with two proper subgroups M and N such that K = 〈M,N〉 and M ∩N < F∗(K), then

the amalgam A = (M,N,M ∩N, iM , iN) is faithful since F∗(K) has no non-trivial proper

normal subgroups and K is a faithful completion of A. Since there is a unique faithful

amalgam of each type Qji if we can show that an almost simple group exhibits an amalgam

of type Qji , then this amalgam is the faithful one, and hence the group K is a completion.

The amalgam Q1
1 has as a finite completion any group generated by an involution and

an element of order five. Thus G = C5 oC2 is indeed a finite completion of Q1
1. The graph

77



Γ(A, G) is isomorphic to the complete bipartite graph K5,5. For the amalgam Q3
2, consider

P1 = 〈(1, 2, 3, 4, 5), (2, 3, 5, 4)〉 ∼= Frob(20) and 〈(2, 3, 5, 4), (3, 4)〉 ∼= Dih(8). Then 〈P1, P2〉

contains a 5-cycle and a transposition, so 〈P1, P2〉 = Sym(5) is a finite completion for the

amalgam Q3
2. Now P1 contains a subgroup of index 2 isomorphic to Dih(10). In P2 there

is a subgroup of index 2 which is isomorphic to 22 and does not normalise O5(P1). The

intersection of these two subgroups has order two, thus we see that Alt(5) is a completion

for the amalgam of type Q2
1.

The group Aut(Alt(6)) provides us with completions for seven of our amalgams.

For the amalgams Q3
1 and Q1

2, this is readily seen by considering the subgroups P1 =

〈(1, 2, 3, 4, 5), (1, 2)(3, 5)〉 and P2 = 〈(1, 3, 2, 5)(4, 6)〉, and then in Sym(6) considering

P ∗1 = 〈(1, 2, 3, 4, 5), (1, 3, 2, 5)〉 and P ∗2 = 〈(1, 3, 2, 5), (4, 6)〉. We see then that only a

point stabiliser contains P1 and P ∗1 in Alt(6) and Sym(6) respectively, so Alt(6) = 〈P1, P2〉

and Sym(6) = 〈P ∗1 , P ∗2 〉. Appealing now to the non-split extension of Alt(6) by a cyclic

group of order 2, which is isomorphic to M10, we see two maximal subgroups isomorphic

to Frob(20) and 32 : Q8. Choosing appropriate conjugacy class representatives, we obtain

groups isomorphic to Frob(20) and Q8 which intersect in a subgroup isomorphic to C4.

It follows that M10 is a faithful completion of our amalgam Q4
2. Finally, we consider

the full automorphism group of Alt(6) which is isomorphic to PΓL2(9) and is a non-split

extension of Alt(6) by 22. Here, our subgroup isomorphic to Frob(20) becomes a group

isomorphic to Frob(20)× 2, and in the maximal subgroup of size 25, we find an index two

subgroup which we denote by M16 with isomorphism shape (C4×C2).C2. Again, we may

choose representatives of the conjugacy classes so that these groups intersect in a group

isomorphic to C4 × C2, which gives us PΓL2(9) as a faithful completion of our amalgam

Q6
2.

Turning now to the amalgams Q7
2-Q9

2 we choose P1 = StabAlt(6)(1) ∼= Alt(5) and

P2 = StabAlt(6)({1, 2}) ∼= Sym(4). Then P1 ∩ P2
∼= Alt(4) and Alt(6) = 〈P1, P2〉.

Hence Alt(6) is a faithful completion of the amalgam Q7
2. We see that Sym(6) =

〈NSym(6)(P1),NSym(6)(P2)〉, NSym(6)(P1) ∼= Sym(5) and NSym(6)(P2) ∼= Sym(4)× C2. Hence
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Sym(6) is a completion of the Q9
2 amalgam. There is a unique subgroup P2 ≤ P ∗2 ≤

NSym(6)(P2) such that P ∗2
∼= Alt(4) × C2. Setting P ∗1 = P1(NSym(6)(P1) ∩ P ∗2 ) we have

P ∗1
∼= Alt(5) and P ∗1 ∩ P ∗2 ∼= Alt(4). Since P ∗2 contains transpositions, we have that

〈P ∗1 , P ∗2 〉 = Sym(6) so that Sym(6) is a completion for the amalgam Q8
2. For the amalgam

Q4
1, we consult the Atlas [9, pg.7] to see that PSL2(11) : 2 has a maximal subgroup

isomorphic to Dih(20). We may choose representatives H and K of this conjugacy class

which are interchanged by the outer automorphism of order 2, and thus obtain a subgroup

L generated by H ∩K and the outer automorphism. Then L ∼= Dih(8), and since H is

maximal, PSL2(11) : 2 is generated by H and L. Thus PSL2(11) : 2 is a finite faithful

completion of the amalgam Q4
1.

The Mathieu group M11 appears for us as a completion of our amalgam Q2
2. Inside

the maximal subgroups isomorphic to either Sym(5) or M10, we see a subgroup which

we will call A1 isomorphic to Frob(20). Choosing an element x ∈ A1 of order 4, we let

A2 = CM11(x). The character table of M11 shows us that |A2| = 8, and since all elements

of order 4 in M11 are conjugate, and there are elements of order 8, A2 is cyclic of order

8 (and A1 ∩ A2
∼= C4). Suppose now that G = 〈A1, A2〉 6= M11 and let N be a maximal

subgroup containing G. Then 40 | |N |, and so N ∼= M10 or N ∼= Sym(5). The second of

these is clearly impossible, and so possibly N ∼= M10. Now the derived subgroup of M10

has index 2 and is isomorphic to Alt(6), thus the unique subgroup in A2 of index 2 lies

in Alt(6). But the element of order 5 in A1 must also lie in the derived subgroup, and

so this implies that Alt(6) contains a subgroup isomorphic to Frob(20), which is not the

case. Hence G = M11, and G is a completion of an amalgam of type Q2
2.

For the amalgams Q5
2, Q1

3-Q5
3 we claim that either Alt(9) or Sym(9) is a completion. In

G = Sym(9), let A1 be the natural embedding of Sym(5)×Sym(4) viewed as the stabiliser

of the partition {{1, 2, 3, 4, 5}, {6, 7, 8, 9}}. Now take A2 to be the normaliser in G of the

stabiliser in A1 of the point 1, then A2
∼= Sym(4) o C2, and B := A1 ∩ A2

∼= Sym(4)2 and

|A1/B| = 5, |A2/B| = 2. Since A1 is a maximal subgroup of G, we see that G = 〈A1, A2〉,

and since Alt(9) is simple (and Alt(9) � B) we see that the triple (A1, A2, B), together
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with the embeddings of B in A1 and A2, is a faithful amalgam of degree (5, 2) which is

our amalgam Q5
3. Now A1 and A2 contain some obvious subgroups which give us our

amalgams listed at the beginning of this paragraph, and aside from the cases Q2
3 and Q4

3

where we dip into Alt(9), Sym(9) is a completion for these amalgams too. This is easy

to check, and simply requires knowledge of the maximal subgroups of Sym(9) and Alt(9),

which are delivered by the Atlas [9].

80



CHAPTER 4

SEMISYMMETRIC GRAPHS OF VALENCY FIVE

In this chapter we focus on semisymmetric graphs of valency five and we aim to describe

the resulting amalgams. As we have seen, this is equivalent to classifying the finite

faithful amalgams of degree (5,5). Using Theorem 2.2.25 it is enough to classify the simple

amalgams, this we do in Sections 4.4-4.6. In Section 4.2 we show how the extensions of

the simple amalgams arise. We prove the following two theorems.

Theorem 4.0.1. Suppose that A is a simple finite faithful amalgam of degree (5, 5). Then

the type of A is in Table 4.1. Moreover, A is the unique faithful amalgam of this type.

Theorem 4.0.2. Suppose that E is a faithful extension of one of the faithful amalgams

Si for i ∈ [1, 15]. Then E has the same type as one of the amalgams in Tables 4.3-4.7. In

particular, there are ninety non-trivial extensions of the amalgams S1-S15.

Remark 4.0.3 (On Table 4.1). We have given a sample finite completion G for each of the

amalgams. We will justify this in Section 4.7.

For the amalgams S7, S8, S11 and S12 we have only given the shape of Gy which does

not identify the isomorphism type of the group. We will remedy this in Section 4.7 where

we give a permutation representation of the groups appearing in the amalgam.
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Amalgam Gx Gy G

S1 C5 C5 52

S2 Alt(5) Alt(5) Alt(6)
S3 Alt(5) Alt(4)× C5 Alt(9)
S4 Alt(5)× Alt(4) Alt(5)× Alt(4) Alt(9)

S5 24 : C5 23 ×Dih(10) Alt(21)
S6 C4

4 : C5 C4
3 × Frob(20) Alt(21)

S7 24 : Alt(5) (C5 × 23).(Alt(4)× C2) Alt(21)
S8 C4

4 : Alt(5) (C5 × C4
3).(Alt(4)× C4) Alt(21)

S9 Alt(4) o C5 Alt(4)4 × Alt(5) Alt(21)
S10 Alt(4) o Alt(4) Alt(4) o Alt(4)× Alt(5) Alt(21)
S11 O2(Sym(4) o C5) Alt(5).Sym(4)4 Alt(21)
S12 O2(Sym(4) o Alt(5)) Alt(5).Sym(4) o Alt(4) Alt(21)

S13 24 : PSL2(4) 24 : PSL2(4) PSL3(4)
S14 22+4 : GL2(4) 22+4 : GL2(4) Sp4(4)
S15 22+8 : (PSL2(4)× C3) 24+6 : (PSL2(4)× C3) G2(4)

Table 4.1: The types of faithful finite simple amalgams of degree (5,5)

4.1 Uniqueness of simple amalgams

In this short section we remove any ambiguity concerning the amalgams introduced in

Table 4.1, that is, we prove that there is a unique faithful amalgam of each type. After

this section then we may refer to “the faithful amalgam Si”.

Theorem 4.1.1. Let A = (P1, P2, B, π1, π2) be a faithful amalgam of type Si for i ∈ [1, 15].

Then there is a unique faithful amalgam of this type.

Proof. We use Lemma 2.2.12 and the notation introduced there. For S1 there is nothing to

prove. For both S2 and S3 we have that Aut(B) ∼= Sym(4) and NAut(P1)(π1(B)) ∼= Sym(4)

which means there is a unique amalgam of this type. For S4 we see that Aut(B) ∼=

Sym(4) o C2. Now H∗1 = H∗2
∼= Sym(4) × Sym(4) has index two in Aut(B), so there are

two isomorphism classes of amalgams of this type. Moreover Aut(B) shows how the two

classes differ; in one the image of an Alt(4) factor of B is normal in both P1 and P2,

whereas the other class of amalgams is faithful.

For the amalgams S13-S15 Theorem 1.6.8 shows that any amalgam has the same type

as an amalgam over a Sylow 2-subgroup of one of PSL3(4), Sp4(4) or G2(4) (see the
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Amalgam No. of extensions

S1 11
S2 2
S3 8
S4 4

S5 15
S6 15
S7 8
S8 8

S9 8
S10 8
S11 5
S12 5

S13 4
S14 2
S15 2

Table 4.2: The number of extensions of faithful finite simple amalgams of degree (5,5)

remark after Theorem 1.6.8). Since the Sylow 2-subgroups are conjugate, the conjugation

map defines an isomorphism between any two such amalgams. Hence there is a unique

faithful amalgam of this type.

For the amalgams S5-S12 we employ the computer program given in Section A.1 which

shows there is a unique faithful amalgam of these types.

4.2 Extensions

Here we calculate the extensions of the simple amalgams using Theorem 2.2.25. We prove

the following theorem.

Theorem 4.2.1. For i ∈ [1, 15] the number of extensions of the faithful amalgam Si is

given in Table 4.2.

We begin with the smallest, recall Definition 2.2.7 of the automorphism group of an

amalgam.

Lemma 4.2.2. The group Aut(S1) is isomorphic to C4 o C2.
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Amalgam P1 P2 B

E1
1 Dih(10) C10 C2

E2
1 Dih(10) Dih(10) C2

E3
1 Dih(20) Dih(20) 22

E4
1 Frob(20) C20 C4

E5
1 Frob(20) Frob(20) C4

E6
1 Frob(20) Frob(20) C4

E7
1 Frob(20) Q20 C4

E8
1 Dih(10)× C4 Frob(20)× C2 C2 × C4

E9
1 Frob(20)× C2 Frob(20)× C2 C4 × C2

E10
1 Frob(20)× C4 Frob(20)× C4 C4 × C4

Table 4.3: The types of the extensions of the faithful amalgam S1

Proof. Write S1 = (P1, P2, B, π1, π2) so that P1
∼= P2

∼= C5 and B ∼= 1. We have that

Aut(P1) ∼= Aut(P2) ∼= C4. Since every automorphism of P1 and P2 normalises B we have

H∗1 ×H∗2 = H. Since Aut(B) = 1, every automorphism of P1 and P2 has the same action

on B. Hence Aut◦(A) = H. Clearly there is an automorphism of order two swapping P1

and P2, so we have Aut(A) ∼= C4 o C2.

We may now calculate the extensions, recall Definition 2.2.20.

Lemma 4.2.3. There are ten non-trivial extensions of S1. The extensions have one of

the types (P1, P2, B) given in Table 4.3.

Proof. Write A = (P1, P2, B, π1, π2) with P1
∼= P2

∼= C5 and B ∼= 1. First note that up to

Aut(A)-conjugacy there are eleven subgroups of Aut◦(A). We make the identifications

Aut◦(A) = 〈α, β〉 with 〈α〉 = H∗1 and 〈β〉 = H∗2 . Then representatives for these conjugacy

classes are R1 = 〈α2〉, R2 = 〈α2β2〉, R3 = 〈α2, β2〉, R4 = 〈α〉, R5 = 〈αβ〉, R6 = 〈αβ3〉,

R7 = 〈αβ2〉, R8 = 〈α2, β〉, R9 = 〈αβ, α2〉 and R10 = 〈α, β〉.

For i ∈ {1, . . . , 10} the extension E i1 := E(S1, Ri) has the same type as the amalgam

described in Table 4.3. The extensions E(S1, R5) and E(S1, R6) have the same type, but

the amalgams are non-isomorphic (see Example 4.2.4).

In the proof of the above lemma we saw that two extensions of S1 have the same type,

but are non-isomorphic. We construct an explicit example to demonstrate this.
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Example 4.2.4. The amalgams E5
1 and E6

1 . Let P1 = 〈x,w〉, P2 = 〈y, z〉 be so that

x and y have order 5, w and z have order 4 and xw = x2, yz = y2. Let B = 〈u〉 be

cyclic of order 4. Define π1 : B → P1 by u 7→ w and π2 : B → P2 by u 7→ z. Let

A = (P1, P2, B, π1, π2). Then A has the same type as E5
1 . Applying Lemma 2.2.12 we

see that NAut(Pi)(πi(B)) = CAut(Pi)(πi(B)) for i = 1, 2. Therefore H∗1 = H∗2 = 1 and so

there are two (H∗1 , H
∗
2 ) double cosets in Aut(B) ∼= C2. A representative of the second

isomorphism class is given by setting π3 : u 7→ z3. This second amalgam is the extension

E6
1 .

Lemma 4.2.5. Let E1
2 = (Sym(5), Sym(5), Sym(4)) be the (unique) faithful amalgam of

this type. Then E1
2 is the unique non-trivial extension of S2.

Proof. Note that H1×H2
∼= Sym(4)×Sym(4) and Inn(S2) is the diagonal Alt(4) subgroup.

Then we find that Aut◦(S2) is the diagonal Sym(4) subgroup and Aut(S2) ∼= Sym(4)×C2.

Thus Out◦(S2) ∼= C2 so there is a unique non-trivial extension.

Lemma 4.2.6. We have Aut(S3) = Aut◦(S3) ∼= Sym(4)× C4 and Out◦(S3) ∼= C2 × C4.

Proof. Write S3 = (P1, P2, B) and note that Aut(S3) = Aut◦(S3). We have Aut(P1) ∼=

Sym(5) and NAut(P1)(B) ∼= Sym(4) and for P2 we find that Aut(P2) ∼= Sym(4) × C4 =

NAut(P2)(B). Hence H∗1 ×H∗2 ∼= Sym(4) × Sym(4) × C4. Note that (1, x) ∈ Aut◦(S3) for

all x in the normal cyclic subgroup of order four in H∗2 since B is centralised by these

elements. The rest of the automorphism group Aut(S3) is generated by the “diagonal”

Sym(4) subgroup. Hence we see Aut◦(S3)/Inn(S3) ∼= C2 × C4.

Lemma 4.2.7. There are seven non-trivial extensions of S3. The types of these amalgams

are given in Table 4.4.

Proof. Using the previous lemma we know that the number of extensions is the number

of subgroups of C2 ×C4. Writing Aut◦(S3) = 〈Inn(S3), α, β〉 where α is an involution so

that 〈Inn(S3), α〉 ∼= Sym(4) and β is an element of order four which commutes with the
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Amalgam P1 P2 B

E1
3 Sym(5) Sym(4)× C5 Sym(4)
E2

3 Sym(5) Sym(4) Dih(10) Sym(4)
E3

3 Alt(5)× C2 Alt(4)×Dih(10) Alt(4)× C2

E4
3 Sym(5)× C2 Sym(4)×Dih(10) Sym(4)× C2

E5
3 Alt(5)× C4 Alt(4)× Frob(20) Alt(4)× C4

E6
3 Alt(5) : 4 Sym(4) Frob(20) Alt(4) : 4
E7

3 Sym(5)× C4 Sym(4)× Frob(20) Sym(4)× C4

Table 4.4: The types of the extensions of the faithful amalgam S3

Sym(4) subgroup just constructed. The extensions by subgroups of order two in Out◦(S3)

are given by

E1
3 := E(S3, 〈Inn(S3), α〉),

E2
3 := E(S3, 〈Inn(S3), αβ2〉),

E3
3 := E(S3, 〈Inn(S3), β2〉).

The three extensions corresponding to subgroups of order four in Out◦(S3) are given by

E4
3 := E(S3, 〈Inn(S3), α, β2〉),

E5
3 := E(S3, 〈Inn(S3), β〉),

E6
3 := E(S3, 〈Inn(S3), αβ〉).

The final extension is E7
3 := E(S3,Aut◦(A)). It is easy to verify that these amalgams have

types given in Table 4.4.

Lemma 4.2.8. We have Aut(S4) ∼= Sym(4) o C2, Aut◦(S4) ∼= Sym(4) × Sym(4) and

Inn(S4) ∼= Alt(4)×Alt(4). There are 3 non-trivial extensions of S4; their types are given

in Table 4.5.

Proof. Let S4 = (P1, P2, B, π1, π2). We first determine the group H1 × H2. Note that

Aut(P1) ∼= Sym(5) × Sym(4) ∼= Aut(P2) and H1
∼= Sym(4) × Sym(4) ∼= H2. Hence

H1 × H2 is the direct product of four copies of Sym(4). Make the identifications H1 =
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Amalgam P1 P2 B

E1
4 Alt(5)× Sym(4) Alt(4)× Sym(5) Alt(4)× Sym(4)
E2

4 Sym(5) Sym(4) Sym(5) Sym(4) Sym(4) Sym(4)
E3

4 Sym(5)× Sym(4) Sym(4)× Sym(5) Sym(4)× Sym(4)

Table 4.5: The types of the extensions of the faithful amalgam S4

〈(1, 2), (1, 2, 3, 4), (5, 6), (5, 6, 7, 8)〉 andH2 = 〈(9, 10), (9, 10, 11, 12), (13, 14), (13, 14, 15, 16)〉

and regard H1 ×H2 as a subgroup of Sym(16). We find that

Inn(S4) = 〈(1, 2, 3)(9, 10, 11), (2, 3, 4)(10, 11, 12), (5, 6, 7)(13, 14, 15), (6, 7, 8)(14, 15, 16)〉

and Aut◦(S4) = 〈(1, 2)(9, 10), (5, 6)(13, 14), Inn(S4)〉. Since Out(S4) ∼= Dih(8) there are

three non-trivial extensions of S4. Here Out(S4) conjugacy implies the extensions defined

by the groups 〈Inn(S4), (1, 2)(9, 10)〉 and 〈Inn(S4), (5, 6)(13, 14)〉 are isomorphic. We de-

fine

E1
4 := E(S4, 〈Inn(S4), (5, 6)(13, 14)〉),

E2
4 := E(S4, 〈Inn(S4), (1, 2)(9, 10)(5, 6)(13, 14)〉),

E3
4 := E(S4, 〈Inn(S4), (1, 2)(9, 10), (5, 6)(13, 14)〉),

then it is easy to see that the amalgams E1
4 -E3

4 have the types given in Table 4.5.

Lemma 4.2.9. For i ∈ [5, 12] we have Aut(Si) = Aut◦(Si), and Out(Si) is described in

Table 4.6.

Proof. Since P1 � P2 for all of these amalgams we have Aut(Si) = Aut◦(Si). Now we use

the computer program Ext given in Section A.2.

Remark 4.2.10. We do not attempt to describe the shape of the groups appearing in the

extensions of the amalgams S5-S12 at this stage, since they are extensions by 2-groups this

would not provide much information. In Section 4.7 we will work with a fixed completion

of these amalgams, and then the extensions will become transparent.
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Amalgam Outer automorphism group

S5 C4 × C4

S6 C4 × C4

S7 C2 × C4

S8 C2 × C4

S9 C2 × C4

S10 C2 × C4

S11 22

S12 22

Table 4.6: The outer automorphism groups of the faithful amalgams S5-S12

Amalgam P1 P2 G

E1
13 24 : GL2(4) 24 : GL2(4) PSL3(4).〈i〉
E2

13 24 : ΓL2(4) 24 : ΓL2(4) PSL3(4) : 〈f〉
E3

13 24 : (GL2(4) : C2) 24 : (GL2(4) : C2) PSL3(4) : 〈f, i〉
E1

14 22+4 : ΓL2(4) 22+4 : ΓL2(4) Sp4(4) : 〈f〉
E1

15 22+8 : (PSL2(4)× C3) : C2 24+6 : (PSL2(4)× C3) : C2 Aut(G2(4))

Table 4.7: The types of the extensions of the faithful amalgam S13-S15

Lemma 4.2.11. There are 3 non-trivial extensions of the amalgam S13. All are visible in

the group Aut(PSL3(4)). There is one non-trivial extension of the amalgam S14, visible in

Aut(Sp4(4)). There is one non-trivial extension of the amalgam S15, visible in Aut(G2(4)).

Proof. This follows from Theorem 1.6.8.

We use similar notation for the extensions of the amalgams S13-S15 as introduced for

the amalgams S1-S4. The types of the amalgams can be seen inside the groups described in

the above lemma, we record them in Table 4.7 and indicate which extension the amalgam

is present in (where f denotes a field automorphism and i is a diagonal automorphism of

order three).

Remark 4.2.12. We calculate that Aut(S13) ∼= 2× Sym(3) and Aut◦(S13) ∼= Sym(3). We

have Aut(S14) ∼= C4 and Aut◦(S14) ∼= C2. Furthermore Aut(S15) = Aut◦(S15) ∼= C2.

These calculations are in agreement with the lemma above.

Proof of Theorem 4.2.1. This is a combination of Lemmas 4.2.3, 4.2.5, 4.2.7, 4.2.8, 4.2.9
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and 4.2.11.

4.3 Simple amalgams of degree (5,5)

Let us now fix S a simple finite faithful amalgam of degree (5, 5). Let G = G(S)

and Γ = Γ(S, G) ∼= Γ5,5, a tree of valency five. Fix an edge {x, y} of Γ and set

A = (Gx, Gy, Gxy, πx, πy). Now S ∼= A and the aim is thus to determine A. Furthermore,

by Theorem 2.4.5 we have that A = O5′(A), the normal subamalgam of A generated by

the pair (O5′(Gx),O
5′(Gy)). By Proposition 2.2.5, setting

B = (O5′(Gx) ∩Gxy)(O
5′(Gy) ∩Gxy),

we have that

Gx = O5′(Gx)B,

Gy = O5′(Gy)B,

Gxy = B.

Our first result concerns the edge stabiliser. It follows immediately from Lemma 2.4.1

and Burnside’s paqb-Theorem. We may use this lemma without reference.

Lemma 4.3.1. The group Gxy is a {2, 3}-group. In particular, Gxy is soluble.

Next we identify the local action.

Lemma 4.3.2. For z ∈ Γ the group G
∆(z)
z is isomorphic to one of C5, Dih(10), Frob(20),

Alt(5) or Sym(5).

Proof. By Lemma 2.1.2, G
∆(z)
z is a transitive subgroup of Sym(∆(z)) ∼= Sym(5). The

result is then an easy calculation in Sym(5).

Our second result shows that |F(Gx)| and |F(Gy)| have restricted prime divisors.
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Lemma 4.3.3. Suppose that z ∈ {x, y} and p is a prime such that Op(Gz) 6= 1. Then

p ∈ {2, 5}. Moreover, O2(Gz) = O2(G
[1]
z ).

Proof. We prove the statement for z = x, a symmetric argument yields the assertion for

z = y. Let p be as in the statement and set Q = Op(Gx). If Q � G
[1]
x , then G

∆(x)
x is p-local,

and so p = 5 by Lemma 4.3.2. We may assume then that Q ≤ G
[1]
x . If Q � G

[1]
y then we see

that QG
[1]
y /G

[1]
y is a normal subgroup of Gxy/G

[1]
y , so p = 2 (again by the previous lemma).

Since Q = Op(G
[1]
y ) allows us to apply Lemma 2.1.4 and obtain Q = 1, we may assume

that Q < Op(G
[1]
y ). Now we have Op(G

[1]
y ) � G

[1]
x , and so now by considering Gxy/G

[1]
x we

see p = 2. The final statement follows since G
∆(x)
x has no normal 2-subgroup.

We now make a case division according to Theorem 2.5.1 which delivers two cases.

The second of these with G
[1]
xy = G

[2]
x is more easily considered as two cases, where G

[1]
xy is

trivial or not. For z ∈ Γ we define

Qz = O2(G[1]
z ),

Fz = O5(Gz).

With this notation Lemma 4.3.3 says that for z ∈ Γ we have

F∗(Gz) = FzQzE(Gz) and

F∗(G[1]
z ) = Qz.

Note that Lemma 4.3.1 shows that 52 does not divide |Gz| so that either Fz = 1 or

E(Gz) = 1.

Theorem 4.3.4. Exactly one of the following holds.

(i) The group G
[1]
xy is trivial.

(ii) The group G
[1]
xy = G

[2]
y is non-trivial, G

[2]
x = 1, F∗(Gx) = Qx and F∗(Gy) 6= Qy.

(iii) For z = x, y we have F∗(Gz) = F∗(G
[1]
z ) = Qz and F∗(Gxy) = O2(Gxy).
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Proof. Since G
∆(x)
x and G

∆(y)
y are primitive, we may apply Theorem 2.5.1. This shows

that either G
[1]
xy = G

[2]
y and G

[2]
x = 1 or there is a prime p such that F∗(Gz) = Op(Gz) for

z = x, y. If the latter holds then the previous lemma shows that p ∈ {2, 5}. If p = 2 then

(iii) holds and if p = 5 then for F∗(Gxy) = Op(Gxy) to hold, Lemma 4.3.1 shows that

F∗(Gxy) = 1, hence (i) holds. Suppose now that G
[1]
xy = G

[2]
y and G

[2]
x = 1 hold. We may

assume that (i) doesn’t hold so that G
[1]
xy is a non-trivial subnormal subgroup of Gx. If

Fx 6= 1 or E(Gx) 6= 1 then Lemma 4.3.1 implies that Fx ∩G[1]
x = 1 or E(Gx) � G

[1]
x holds.

It follows that [Fx, G
[1]
xy] = 1 or [E(Gx), G

[1]
xy] = 1. Since G

[1]
xy = G

[2]
y is a normal subgroup

of Gy, this would imply G
[1]
xy = 1, which is against our assumption. Thus we may conclude

F∗(Gx) = Qx. Now O3(Gxy) centralises Qx, so O3(Gxy) = 1 and F∗(Gxy) = O2(Gxy).

Now either (iii) holds, or F∗(Gy) 6= Qy and (ii) holds.

In the next three sections we consider the cases delivered by Theorem 4.3.4 in turn.

We establish some notation which will be used in the next three sections.

Notation 4.3.5. We will use the bar notation to denote subgroups of G
∆(x)
x and G

∆(y)
y in

the following way. Recall that G
∆(x)
x = Gx/G

[1]
x . For a subgroup H of Gx we write H for

the group HG
[1]
x /G

[1]
x = H∆(x). Similarly G

∆(y)
y = Gy/G

[1]
y and for a subgroup K of Gy we

write K̃ for KG
[1]
y /G

[1]
y = K∆(y).

4.4 G
[1]
xy = 1

In this section we assume that G
[1]
xy = 1, the case delivered by Theorem 4.3.4(i). It follows

that [Qx, Qy] = 1 and so CGz(Qz) � Qz for z = x, y. Since Qz = F∗(G
[1]
z ) Theorem 1.3.20

gives F∗(Gz) 6= F∗(G
[1]
z ) and we draw two conclusions from this. The first is that Gz

either has components or Fz 6= 1. The second is that CGz(Qz) is transitive on ∆(z) (since

G
∆(z)
z is primitive and CGz(Qz)

∆(z) is a normal subgroup).

Lemma 4.4.1. Suppose that K is a component of Gz for z ∈ {x, y}. Then K ∼= Alt(5)

and K = E(Gz).
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Proof. Without loss, suppose that K is a component of Gx and let L = K ∩ Gxy and

Z = Z(K) = Z(L). By Lemma 4.3.2 we see that KG
[1]
x /G

[1]
x must be isomorphic to

Alt(5) and so it follows that K ∩G[1]
x = Z and K/Z ∼= Alt(5). Looking at the projection

of L over G
[1]
y we see that Z ≤ G

[1]
y . Hence Z is a subnormal 2-subgroup of Gy and so is

contained in Qy. Since CGy(Qy) is transitive on ∆(y) we have Z C 〈K,CGy(Qy)〉 which

gives Z = 1. We now have that E(Gx) is a direct product of Alt(5) subgroups and so

E(Gx) ∩G[1]
x = 1. It follows that there can be at most one component.

For z ∈ Γ we set

Hz = O5′(Gz).

As remarked above we now have Hz
∼= C5 or Alt(5). Our assumption from the beginning

of Section 4.3 is that

A = (Hx(Hy ∩Gxy), Hy(Hx ∩Gxy), (Hx ∩Gxy)(Hy ∩Gxy))

and we may now proceed to identify A. We may assume we have labelled so that |Hx| ≤

|Hy| and we have three cases to consider.

Lemma 4.4.2. Suppose that Hx
∼= C5. Then A = (C5,C5, 1) or

A = (Alt(4)× C5,Alt(5),Alt(4)).

Proof. We arrive at the first conclusion if Hy
∼= C5. This is clear since in this case

Hx∩Gxy = 1 = Hy ∩Gxy. Suppose now that Hy
∼= Alt(5). As Hx∩Gxy = 1 it remains to

determine the isomorphism type of Hx(Hy ∩Gxy). Since Hy ∩Gxy
∼= Alt(4) has no cyclic

quotients of order 2 or 4, we see that [Hx, (Hy ∩Gxy)] = 1.

Lemma 4.4.3. Suppose that Hx
∼= Hy

∼= Alt(5). Then A = (Alt(5),Alt(5),Alt(4)) or

A = (Alt(5)× Alt(4),Alt(4)× Alt(5),Alt(4)× Alt(4)).
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Proof. It follows from the isomorphism types of Hx and Hy that Hx∩Gxy = Hy ∩Gxy, or

(Hx ∩Gxy) ∩ (Hy ∩Gxy) is elementary abelian of order four or trivial. The first and last

possibilities give the first and second conclusions of the lemma respectively, so we may

assume that (Hx∩Gxy)∩(Hy∩Gxy) ∼= 22. Then we find (Hx∩Gxy)(Hy∩Gxy) ∼= C3×Alt(4)

and we can choose t to be a central element of order 3. Considering the projection of this

subgroup over G
[1]
x and G

[1]
y respectively, we find that t ∈ G[1]

x and t ∈ G[1]
y . Hence t ∈ G[1]

xy

which implies 〈t〉 = 1, a contradiction which completes the lemma.

4.5 Mixed Type

In this section we work under the following hypothesis.

Hypothesis (M): Conclusion (ii) of Theorem 4.3.4 holds.

First we recall some of the statements from Theorem 4.3.4 and add some details

concerning the structure of Gx and Gy.

Lemma 4.5.1. The following hold:

(i) G
[1]
xy = G

[2]
y 6= 1, F∗(Gx) = Qx and G

[2]
x is trivial,

(ii) CGy(Qy) is transitive on ∆(y). Moreover, if U ≤ Qx ∩ Qy is normal in Gx then

U = 1,

(iii) Qx is abelian. Moreover Qx is elementary abelian if G̃y � Frob(20).

Proof. Part (i) is part of (ii) of Theorem 4.3.4.

By part (ii) of Theorem 4.3.4 we have F∗(Gy) 6= Qy so that CGy(Qy) � Qy. Now

CGy(Qy) � G
[1]
y since F∗(G

[1]
y ) = Qy which gives C

G
[1]
y

(Qy) ≤ Qy. Hence the primitivity

of G
∆(y)
y implies that CGy(Qy) is transitive on ∆(y). Now assume that U ≤ Qx ∩Qy and

U C Gx. Then U C 〈Gx,CGy(Qy)〉 which acts transitively on Γ and U ≤ Gxy, hence

U = 1.

For (iii), first we observe that (i) and (ii) imply Qx � Qy. Thus Qx ∩ Qy < Qx and

Qx∩Qy = Qx∩G[1]
y . Hence Qx/(Qx∩Qy) = Qx/(Qx∩G[1]

y ) ∼= Q̃x gives 1 6= Q̃x C G̃xy and
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by considering the various isomorphism shapes of G̃xy we see that Q̃x is abelian. Hence

Q′x ≤ Qx ∩Qy and again using (ii) we have Q′x = 1, so that Qx is abelian. Suppose now

that G̃y � Frob(20). Then Q̃x is elementary abelian, hence Φ(Qx) ≤ Qx ∩ Qy and again

(ii) gives Φ(Qx) = 1 so Qx is elementary abelian. This completes the lemma.

We require some knowledge of the structure of Gy to make further progress.

Lemma 4.5.2. Suppose that K is a component of Gy. Then K ∼= Alt(5) and K = E(Gy).

Proof. Note that 5 | |K| since π(Gy) = {2, 3, 5} and {2, 3}-groups are soluble. If L is

another component and K 6= L, then |KL| = |K||L|/|K ∩L|. Since K ∩L ≤ Z(K) which

has order at most 2, we see that 52 divides |KL| which divides |Gy|. This is incompatible

with the order of Gy. Thus K is the unique component and, since KG
[1]
y /G

[1]
y is a subgroup

of Sym(5), we know that K is a component of type Alt(5), so we may assume for a

contradiction that K ∼= SL2(5). Now SL2(3) ∼= U := K ∩Gxy C Gxy, and so U ∩Qx C U .

Since Qx is abelian and there is a unique abelian normal 2-subgroup of U , we have

U ∩ Qx = Z(U). Then for T ∈ Syl3(U) we see [Qx, T ] ≤ [Qx, U ] ≤ Qx ∩ U = Z(U) and

so [Qx, T, T ] ≤ [Z(U), T ] = 1. By coprime action (Lemma 1.1.7) we obtain [Qx, T ] = 1,

which contradicts Qx = F∗(Gx). Hence K ∼= Alt(5).

Theorem 4.5.3. The following hold:

(i) G̃y � C5,

(ii) F∗(Gy) ∼= C5 ×Qy if and only if G̃y is isomorphic to Dih(10) or Frob(20), and

(iii) F∗(Gy) ∼= Alt(5)×Qy if and only if G̃y is isomorphic to Alt(5) or Sym(5).

Proof. If G̃y
∼= C5 we would have Gxy = G

[1]
y which gives Qx ≤ Qy and this implies

Qx = 1, a contradiction to Lemma 4.5.1(i). To see (ii), assume that G̃y has the required

shape, then Gy is soluble, and so E(Gy) = 1. Since Op(Gy) = 1 for p > 5 and p = 3,

if O5(Gy) = 1 also, then F∗(Gy) = Qy and since CGy(F
∗(Gy)) ≤ F∗(Gy) we would have

CGy(Qy) ≤ Qy, contradicting our assumption. Hence O5(Gy) 6= 1, and so O5(Gy) ∼= C5.

The reverse direction is immediate with O5(Gy) 6= 1.
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For (iii), first assume that G̃y has the required shape. Then O5(Gy) = 1 and so we

must have E(Gy) 6= 1 (similarly to above). Hence there is a component K. By Lemma

4.5.2 there is a unique component and it is isomorphic to Alt(5). Then K ∩Qy = 1 and

so F∗(Gy) = E(Gy)F(Gy) = KQy
∼= Alt(5)×Qy. The reverse direction is obvious.

The previous theorem shows that O5′(Gy) ∼= C5 or Alt(5).

4.5.1 Mixed type where Gy is soluble

In this section we assume that Gy is soluble. We prove the following theorem.

Theorem 4.5.4. Assume Hypothesis (M) holds and that Gy is soluble. Then A is iso-

morphic to one of Si for i ∈ {5, 6, 7, 8}.

As in the previous section we set

Hx = O5′(Gx),

Hy = O5′(Gy).

Then Hy = Fy = O5′(Gy) by Theorem 4.5.3 and this group is isomorphic to C5.

Proposition 4.5.5. We have Gx = Hx and Qx = G
[1]
x .

Proof. Our assumption on the simplicity of A implies that Gx = Hx(Hy∩Gxy) and clearly

Hy ∩Gxy = 1.

For S ∈ Syl3(G
[1]
x ) the Frattini argument gives Gx = G

[1]
x NGx(S) so that NGx(S) is

transitive on ∆(x). Now Gxy/G
[1]
y is a 2-group, so we see that S ≤ G

[1]
xy = G

[2]
y . It follows

that S ∈ Syl3(G
[2]
y ) and so Gy = G

[2]
y NGy(S) implies that NGy(S) is transitive on ∆(y).

Hence S = 1 by Lemma 2.1.4.

Since Gy = Hy(Hx ∩ Gxy) we have |Hx ∩ Gxy : Hx ∩ G[1]
y | ≤ 4. Thus the majority of

the work remaining is to determine the group Hx.

Proposition 4.5.6. The group Gx/Qx is isomorphic to C5 or Alt(5).
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Proof. For all sets of primes π we have Oπ(G) = Oπ(Oπ(G)). Since Gx = Hx = O5′(Gx)

by Proposition 4.5.5 it follows that O5′(Gx) = Gx (taking π = {2, 3}). In particular, this

tells us that Gx has no non-trivial images in a 2-group, and so Gx/Qx = Gx/G
[1]
x has no

normal subgroup of index a power of 2. Inspecting the possibilities of Lemma 4.3.2 we

see Gx/Qx
∼= C5 or Gx/Qx

∼= Alt(5).

The subgroup Rx := [Qx, Gx] will be important. We determine some properties in the

following proposition.

Proposition 4.5.7. The following hold,

(i) [Rx, N ] = Rx for any N C Gx such that N � Qx,

(ii) if U C Gx and then [Rx/U,Gx] = Rx/U .

Proof. Since Gx/Qx is simple, if N is a normal subgroup not contained in Qx we have

QxN = Gx. Hence [Rx, N ] = [Rx, QxN ] = [Rx, Gx]. Now Gx = O5′(Gx), so coprime

action gives [Qx, Gx, Gx] = [Qx, Gx], that is [Rx, Gx] = Rx. This is (i).

Part (ii) follows from the properties of commutators.

Lemma 4.5.8. One of Gx/Rx
∼= C5, Gx/Rx

∼= Alt(5) or Gx/Rx
∼= SL2(5) holds.

Proof. Set L = Gx/Rx, Z = Qx/Rx and K = Gx/Qx
∼= L/Z. Using Proposition 4.5.6 we

have O5′(L) = L. By the definition of Rx we have Z ≤ Z(L). In particular if K ∼= C5,

then L is the direct product of a group of order 5 and a 2-group which therefore gives

L ∼= C5. We may assume therefore that K ∼= Alt(5) and Z 6= 1.

We claim that L is perfect. It suffices to prove that Gx is perfect. Since Gx/Qx is non-

abelian, G′x � Qx, and so Proposition 4.5.6 gives Gx = G′xQx. Then Gx/G
′
x is a 2-group,

and so it follows that Gx = G′x. Now L is a perfect group such that L/Z(L) ∼= Alt(5) and

Z(L) = O2(L). A well known result now implies L ∼= SL2(5) (for a reference see [21, Satz

5.25.7]).

In the final stages of the identification of Gx we will use the following lemma to rule

out the third possibility in the lemma above.
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Lemma 4.5.9. Gx does not contain a subgroup isomorphic to SL2(5).

Proof. Suppose that L ≤ Gx is such a subgroup, set Z := Z(L) and pick z ∈ Z so that

〈z〉 = Z (and note Z ∼= C2). Then L ∩ Qx = 〈z〉 (since otherwise LQx/Qx
∼= SL2(5),

which cannot hold). We can choose P ∈ Syl2(L) such that P ≤ Gxy and pick r, s ∈ P

such that [r, s] = z. Now Gxy/G
[1]
y is abelian, so z ∈ G[1]

y . Hence z ∈ Qx ∩ G[1]
y ≤ Qy. In

particular Z C 〈L,Hy〉 which forces Z to be trivial. This is a contradiction which proves

that such a subgroup does not occur.

We now aim to find the isomorphism type of Rx. The subgroup Px = Ω1(Rx) of Rx is

useful. By W we will denote the 4-dimensional GF(2)-module for Alt(5) obtained from

the isomorphism Alt(5) ∼= PΩ−4 (2) (sometimes referred to as the deleted permutation

module).

Proposition 4.5.10. Viewed as a module for Gx/Qx, Px ∼= 2⊕W or W .

Proof. Since Px is elementary abelian, PxQy/Qy
∼= 2. Thus Px ∩ Qy is a hyperplane of

Px. The stabiliser in Gx of Px∩Qy is Gxy, and so there are five Gx conjugates of Px∩Qy,

let them be P1, . . . , P5. Note that
⋂
i∈[1,5] Pi is normal in Gx and is contained in Qy, thus⋂

i∈[1,5] Pi = 1. Let V be the dual of Px and consider the action of Gx/Qx on V . Then V

is generated by five 1-spaces which form an orbit under the action of Gx/Qx. Hence V is

a quotient of the permutation module. By [1, (24.3)], an element of order 5 acts faithfully

on Px, so 24 ≤ |Px|. Hence V is isomorphic to W or 2⊕W . Since the orthogonal module

is self-dual, the result holds for Px.

Lemma 4.5.11. Suppose that Φ(Rx) = 1. Then Rx
∼= W as a Gx/Qx-module.

Proof. We have Rx = Px and by the previous proposition, Px ∼= 2 ⊕W or Px ∼= W as a

Gx/Qx module. By Proposition 4.5.7 (ii), [Rx, Gx] = Rx, and so Px ∼= W .

We may now assume that Φ(Rx) 6= 1. Since Rx is abelian, Φ(Rx) is contained in Px.

The subgroups are also related in the following way.
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Proposition 4.5.12. Suppose Φ(Rx) 6= 1. Then as Gx-modules, Rx/Px is isomorphic to

Φ(Rx).

Proof. Define a map φ : Rx → Rx by φ : r 7→ r2. Since Rx is abelian, φ is a homomorphism

and moreover, φ commutes with the action of Gx. Now (kerφ)# consists of the involutions

in Rx, so kerφ = Px. Also, imφ consists of the squares in Rx, so imφ = Φ(Rx). Hence

Rx/Px ∼= Φ(Rx).

Proposition 4.5.13. Suppose that Φ(Rx) 6= 1. Then there are Gx-module isomorphisms

Rx/Px ∼= Φ(Rx) ∼= W .

Proof. The first isomorphism is the previous proposition. By Proposition 4.5.10 we see

that Rx/Px is one of the modules 2, 2⊕W , W . On the other hand, Proposition 4.5.7 (ii)

gives [Rx/Px, Gx] = Rx/Px. Hence Rx/Px ∼= W .

Lemma 4.5.14. Suppose that Φ(Rx) 6= 1. Then Px = Φ(Rx).

Proof. By Proposition 4.5.13, Rx/Px ∼= W and Φ(Rx) ∼= W . Since Px ∼= W or Px ∼= 2⊕W ,

we are done unless Px ∼= 2⊕W . In which case, Rx/Φ(Rx) ∼= 2⊕W (since the orthogonal

module is projective), but Proposition 4.5.7 (ii) implies [Rx/Φ(Rx), Gx] = Rx/Φ(Rx), a

contradiction.

Theorem 4.5.15. Rx
∼= 24 or Rx

∼= C4
4.

Proof. If Φ(Rx) = 1 then we are done by Lemma 4.5.11. When Φ(Rx) 6= 1, Lemma 4.5.14

implies Φ(Rx) = Px. Since Rx is abelian and has exponent 4, Rx is the direct product of

log2(|Px|) = 4 copies of a cyclic group of order 4.

In the following lemma we see how the structure of Rx influences the structure of Gx.

Lemma 4.5.16. Gx splits over Qx and Rx = Qx.

Proof. By Lemma 4.5.8 the result is trivial if Gx/Qx
∼= 5 so we may assume Gx/Qx

∼=

Alt(5). If Gx/Rx
∼= Alt(5) then we use the following argument from [32, Lemma 4.1]. For

the duration of this proof only, we write Gx = Gx/Rx and let t and s be elements such
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that t is an involution, s an element of order three and ts has order five. We know there is

an element of order five u ∈ Gx such that t inverts u, and we choose a pre-image u ∈ Gx

of order five. Now CGx(u) = 〈u〉 and NGx(〈u〉) ∼= Dih(10). So we may choose t to have

order two and we choose s to have order three. Then 〈t, s〉 ∼= Alt(5), so the extension

splits. Now we may assume that Gx/Rx
∼= SL2(5) (and Qx/Rx

∼= C2). If Gx does split

over Qx, then a complement is isomorphic to SL2(5), which is a contradiction to Lemma

4.5.9. So below we just need to prove the splitting occurs.

First assume that Φ(Rx) = 1 so that Rx = Px. We claim that Qx is elementary

abelian. Otherwise, there is an element of order four in Qx, q say. Then q2 ∈ Px. Since

Qx = Px ∪ Pxq and Qx is abelian, for each r ∈ Qx we have r2 = 1 or r2 = q2. It follows

that q2 is the unique square in Qx, and is therefore Gx-invariant. Now 1 6= 〈q2〉 < Px, and

Px is irreducible by Lemma 4.5.11, a contradiction. Hence Φ(Qx) = 1.

Since [Qx, Gx] = Px is the orthogonal module for Alt(5), we see that Qx = 2 ⊕W .

Let Z be the unique normal subgroup of Gx of order two. Considering Gx/Z we see that

this is an extension of W by Alt(5), and therefore splits. It follows that Gx contains a

subgroup isomorphic to SL2(5), a contradiction.

Now assume that Φ(Rx) 6= 1 so that Φ(Rx) = Px and we have 1 < Px < Rx < Qx with

successive quotients 24, 24, C2. First we consider Gx/Px and apply the same argument

as in the previous paragraph to see a subgroup L of Gx such that L/Px ∼= SL2(5). Then

considering L we apply the argument from the previous paragraph (with L in place of

Gx) to see that L contains a subgroup isomorphic to SL2(5), the final contradiction.

We summarise the results of this section in the theorem below. Note that after speci-

fying the action of Gx on O2(Gx), the groups below are uniquely determined. The group

for which we write C4
4 : Alt(5) is isomorphic to O2(C4 o Alt(5)).

Theorem 4.5.17. Gx is one of the four groups, 24 : 5, C4
4 : 5, 24 : Alt(5), C4

4 : Alt(5)

(where the action on the sections of O2(Gx) is the action of Gx/O2(Gx) on W ).

We now proceed to identify the isomorphism type of Gy. Recall that Gy = FyGxy,

and essentially it suffices to determine the centraliser in Gxy of Fy.
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Proposition 4.5.18. Suppose that Gx/Rx
∼= C5. Then Gy

∼= 23 × Dih(10) or Gy
∼=

C4
3 × Frob(20).

Proof. Note CGxy(Fy) = G
[1]
y (by considering G̃y). Now Gxy

∼= 24 or C4
4, and Rx/Rx ∩

Qy
∼= 2 or 4. So in the first case an element of order 2 inverts Fy, and we see Gy

∼=

Dih(10)× Frob(20). In the second case, an element of order 4 acts as the square map on

Fy, and so Gy
∼= Frob(20)× C4

3.

Proposition 4.5.19. Suppose that Gx
∼= 24 : Alt(5). Then G

[1]
y = O2(Gxy) ∼= 23 : Alt(4)

and Gy has isomorphism shape 23.Alt(4).Dih(10).

Proof. As Gxy/G
[1]
y
∼= 2 we have that O2(Gxy) ≤ G

[1]
y . Examining the isomorphism type

of Gxy we see that O2(Gxy) has index two, so equality holds. Note that Gxy splits over

O2(Gxy) since Rx is elementary abelian, thus Gy contains a Dih(10) subgroup which

complements G
[1]
y .

Proposition 4.5.20. Suppose that Gx
∼= C4

4 : Alt(5). Then G
[1]
y = O2(Gxy) ∼= C4

3 :

Alt(4) and Gy has isomorphism shape (C5 × C4
3).(Alt(4)× C4).

Proof. As in the proof of the previous proposition we see that Gxy/G
[1]
y
∼= C4 so that

O2(Gxy) ≤ G
[1]
y and considering the isomorphism type ofGxy, we see that |Gxy : O2(Gxy)| =

4 so we have equality. Thus FyG
[1]
y
∼= C5 × C4

3 and Gy/(FyG
[1]
y ) = Gxy/G

[1]
y
∼= C4 ×

Alt(4).

We can now prove the theorem stated at the beginning of this section.

Proof of Theorem 4.5.4. We have seen that A has the same type as the amalgams listed in

the statement. Since each Si is the unique faithful amalgam of its type by Theorem 4.1.1,

the amalgams are isomorphic.

4.5.2 Mixed type where Gy non-soluble

In this section we assume that Gy is insoluble. We prove the following theorem.
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Theorem 4.5.21. Assume Hypothesis (M) holds and that Gy is non-soluble. Then A is

isomorphic to one of Si for i ∈ {9, 10, 11, 12}.

Since Gy is non-soluble, we have F∗(Gy) = E(Gy)Qy by Theorem 4.5.3. We set

Ey = E(Gy),

Exy = Ey ∩Gx,

and similarly for all vertices which are in the same orbit as y. We let

Hx = O2(Gx),

Hy = Ey(Hx ∩Gxy).

Both Hx and Hy are transitive on ∆(x), so |Hx : Hx ∩Gxy| = 5 = |Hy : Hy ∩Gxy|.

The first goal of this section is to show that B = (Hx, Hy, Hx ∩ Hy) is a normal

subamalgam of A. It then follows that A = B so we will classify B.

Lemma 4.5.22. We have Exy ≤ Hx and Hx ∩Gxy = Hx ∩Hy = Gxy ∩Hy.

Proof. Since Exy ∼= Alt(4) we have Exy = 〈S, T 〉 for some cyclic subgroups S and T of

order 3. Then Exy ≤ O2(Gx) = Hx. Since Hx∩Hy fixes the edge {x, y} we have Hx∩Hy ≤

Gxy. Also it follows from the definition of Hy that Hx ∩ Gxy ≤ Hy, so it remains to see

that Gxy ∩Hy ≤ Hx. By the Dedekind identity, Hy ∩Gxy = (Hx ∩Gxy)Exy = Hx ∩Gxy,

as required.

Now without any ambiguity we may set

Hxy = Hx ∩Hy.

By the previous lemma, the amalgam B = (Hx, Hy, Hxy) is a faithful (5,5) amalgam.

101



Lemma 4.5.23. The amalgam B is a normal subamalgam of A. In particular, B = A.

Proof. By definition Hx is a normal subgroup of Gx. It follows that Hxy is a normal

subgroup of Gxy and so Hy = EyHxy is a normal subgroup of EyGxy = Gy. Since Gxy is

maximal in both Gy and Gx, it is immediate that Gx = HxGxy and Gy = HyGxy. Finally

we need to check that Hx ∩ Gxy = Hx ∩Hy = Gxy ∩Hy, which is the content of Lemma

4.5.22. Our assumption on the simplicity of A gives the second part.

We now continue to work with B.

Proposition 4.5.24. We have Hx/Hx ∩G[1]
x
∼= C5 or Alt(5).

Proof. This follows from the isomorphism Hx/Hx ∩ G[1]
x
∼= HxG

[1]
x /G

[1]
x , the structure of

Gx/G
[1]
x and that O2(Hx) = Hx.

The following lemma is useful.

Lemma 4.5.25. We have CGy(Exy) = G
[1]
y = CGy(Ey).

Proof. First we see that [Ey, G
[1]
y ] ≤ Ey ∩ G[1]

y = 1 so that G
[1]
y ≤ CGy(Exy) ∩ CGy(Ey).

Now we consider the quotient Gy/G
[1]
y and see that the images of Ey and Exy (which are

Alt(5) and Alt(4) subgroups respectively) have trivial centralisers. This gives the reverse

inclusion and completes the proof.

We now set L = 〈EHx
xy 〉. We will see that this subgroup controls the structure of Hx.

Theorem 4.5.26. The group L is isomorphic to Alt(4)×Alt(4)×Alt(4)×Alt(4)×Alt(4).

Proof. We proceed with a number of claims.

(1) Let t ∈ Exy have order 3, then Qx = CQx(t)× [t, Qx] and [Qx, Exy] = [t, Qx] ∼= 22.

First note that Qx and Exy normalise each other since both are normal in Gxy. The

first assertion is immediate using coprime action (recall that Qx is elementary abelian by

Lemma 4.5.1). For the second assertion, observe that Exy ∩ Qx = 1 would give Exy ≤

CGx(Qx) = Qx, a contradiction, so Exy ∩ Qx = O2(Exy) ∼= 22, and 1 6= [Exy, Qx] C Exy,
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so [Exy, Qx] = Exy ∩Qx
∼= 22. Now let T ∈ Syl3(Exy) and let t ∈ T#. If [Qx, t] ∼= C2 then

[Qx, t, t] = 1 and coprime action gives [Qx, t] = 1, contradiction. Thus [Qx, t] ∼= C2 and

so [Qx, t] ≤ [Qx, Exy] implies the result.

(2) Exy ≤ G
[1]
x .

Otherwise, Exy ∩G[1]
x = Exy ∩Qx

∼= 22 and so C3
∼= Exy C Gxy

∼= Alt(4), a contradic-

tion.

We now set ∆(x) = {y, y1, y2, y3, y4} so that Eyi and Exyi are the conjugates of Ey and

Exy under Gx.

(3) Exy ∩ Exy1 = 1.

By (2), Exy1 ≤ Gxy so that Exy1 normalises Exy and vice versa. Thus (3) holds unless

Exy = Exy1 or Exy ∩ Exy1
∼= 22. Assume the former first, then Exy C 〈Gxy, Gxy1〉 = Gx.

By the Frattini Argument, for T ∈ Syl3(Exy) we get Gx = NGx(T )Exy, hence NGx(T ) is

transitive on ∆(x). Note that CQx(T ) C NGx(T ) and CQx(T ) ≤ CGxy(T ) which we see

is equal to TC
G

[1]
y

(T ) = TG
[1]
y since C̃Gxy(T ) ≤ CG̃xy

(T̃ ) = T̃ . Thus CQx(T ) ≤ G
[1]
y and

so [Ey,CQx(T )] = 1. But now CQx(T ) C 〈NGx(T ), Ey〉 which is transitive on Γ, and so

CGx(T ) = 1. Now (1) gives Qx = [t, Qx] ∼= 22, which is impossible. Hence Exy 6= Exy1 .

We may now assume Exy ∩Exy1 = O2(Exy) = O2(Exy1). By (1) we have 22 ∼= [Qx, t] ≤

Exy, so that [Qx, t] = O2(Exy) = O2(Exy1) for any t of order 3 in Exy. Let R = ExyExy1

and observe |R| = 2232, and a Sylow 3-subgroup S is elementary abelian (there are two

elements of order 3 in Exy which are not in Exy1 , so S � C9). Hence C[Qx,t](S) 6= 1, from

which we deduce R ∼= C3×Alt(4) (and Z(R) ∼= C3). Now [Qx, R] = [Qx, Exy][Qx, Exy1 ] ≤

R. Choose 1 6= z ∈ Z(R), then [Qx, z, z] ≤ [Qx, R, z] ≤ [R, z] = 1. But then coprime

action implies [Qx, z] = 1 which implies z = 1, a contradiction which proves (3).

(4) Exy ≤ G
[1]
y1 .

Since [Exy, Exy1 ] = 1 by the previous claim the result follows by Lemma 4.5.25.

We can now complete the proof. We have L = ExyExy1Exy2Exy3Exy4 . Since Exy ≤ G
[1]
y1

we have ExyExy1
∼= Exy × Exy1 . Similarly ExyExy1 ∩ Exy2 = 1 and [ExyExy1 , Exy2 ] = 1.

Repeating this process we have the result.
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Lemma 4.5.27. Hx acts faithfully by conjugation on L.

Proof. Let C = CHx(L) and note C is a normal subgroup of Hx since L is normal in

Hx. Suppose that C is not contained in G
[1]
x . Then C is transitive on ∆(x) and, since

Ey1 centralises Exy and acts transitively on ∆(y), we have Exy = 1 by Lemma 2.1.4, a

contradiction. Thus C ≤ G
[1]
x . Now C ≤ Gy so Lemma 4.5.25 implies C ≤ G

[1]
y . By the

same reasoning applied to the vertices y1, . . . , y4 we get C ≤ G
[2]
x = 1 as required.

With the previous lemma, Hx has the following normal series, L C Hx∩G[1]
x C Hx. We

have identified the subgroup L and the quotient Hx/Hx∩G[1]
x . We now need to determine

the structure of Hx ∩ G[1]
x /L and how the group fits together. To achieve both of these

goals we use the following.

Proposition 4.5.28. L embeds into Aut(L) ∼= Sym(4) o Sym(5).

Proof. The embedding follows from Lemma 4.5.27. The isomorphism type of Aut(L)

follows from [4, Theorem 3.1].

Let A = Aut(L) and under the embedding of Proposition 4.5.28 we identify Hx and

its subgroups with their images in A. Let B =
⋂
u∈∆(x) NA(Exu) which is isomorphic to

Sym(4)× Sym(4)× Sym(4)× Sym(4)× Sym(4). We see that L = B′ = Inn(A) and B/L

is elementary abelian of order 25.

In the next theorem we identify Hx. Note that Sym(4) o C5 has isomorphism shape

Alt(4)5.25.C5, and modulo the Alt(4)5 subgroup has isomorphism shape 2×24 : C5. Thus

O2(Sym(4) o C5) is a subgroup of index 2 and has isomorphism shape Alt(4)4.24.C5. The

group O2(Sym(4) o Alt(5)) can be described similarly.

Theorem 4.5.29. The group Hx is isomorphic to one of the following groups

(i) Alt(4) o C5,

(ii) Alt(4) o Alt(5),

(iii) O2(Sym(4) o C5),
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(iv) O2(Sym(4) o Alt(5)).

Proof. By the preceding discussion it suffices to work in A/L ∼= 2 o Sym(5) which we may

take to be generated by the permutations (1, 2), (1, 3, 5, 7, 9)(2, 4, 6, 8, 10), and (1, 3)(2, 4).

Since L ≤ Hx ∩ G[1]
x ≤ B we have Hx ∩ G[1]

x C BHx. In particular, the image in A/L of

Hx ∩ G[1]
x is a subgroup normalised by an element of order 5 and so is either the trivial

subgroup, Z(A/L) = 〈(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)〉, [A/L,B/L] = 〈(1, 2)(3, 4), (3, 4)(5, 6),

(5, 6)(7, 8), (7, 8)(9, 10)〉 or B/L.

We claim that |Hx ∩ G[1]
x /L| ∈ {1, 24}. Otherwise we have |Hx ∩ G[1]

x /L| = 2 or

|Hx ∩G[1]
x /L| = 25. In both cases, we consider S = (A/L)/[A/L,B/L] ∼= 2× Sym(5) and

we see that T = (Hx/L)[A/L,B/L]/[A/L,B/L] is a homomorphic image of Hx. By our

assumption, |Z(T )| = 2 and T/Z(T ) ∼= C5 or T/Z(T ) ∼= Alt(5) holds. Thus T splits over

Z(T ) and so T has a 2-quotient, which contradicts the assumption that O2(Hx) = Hx.

Assume first that |Hx ∩G[1]
x /L| = 1. Then Hx/L ∼= C5 or Hx/L ∼= Alt(5). In the first

case we see that Hx is conjugate to LF ∼= Alt(4) o C5 where F ∈ Syl5(A). In the second

case, we have Hx/L ≤ 2 o Alt(5) (by considering the quotient A/B for example) and so

Hx/L is a complement to B/L in this subgroup. Since there is a unique conjugacy class

of complements, we find that Hx is conjugate to a subgroup isomorphic to Alt(4) oAlt(5).

Hence the isomorphism of (i) or (ii) holds.

Now we assume that |Hx ∩ G[1]
x /L| = 24 and so Hx ∩ G[1]

x /L = [A/L,B/L]. We now

consider the quotient (A/L)/[A/L,B/L] ∼= 2 × Sym(5) and we see there is a unique

conjugacy class of subgroups isomorphic to C5 or isomorphic to Alt(5). Hence Hx/L is

conjugate to a member of one of these classes, and therefore Hx is isomorphic to one of

(iii) or (iv).

We may now identify Hy based upon the four cases specified in Theorem 4.5.29

Theorem 4.5.30. With respect to the cases in Theorem 4.5.29, Hy is isomorphic to

(i) Alt(5)× Alt(4)× Alt(4)× Alt(4)× Alt(4),

(ii) Alt(5)× Alt(4) o Alt(4),
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(iii) Alt(5) : (Sym(4)× Sym(4)× Sym(4)× Sym(4)) or

(iv) Alt(5) : Sym(4) o Alt(4).

Proof. Recall that Hy = EyHxy. We proceed by analysing the cases delivered by Theorem

4.5.29. Lemma 4.5.25 gives CHxy(Exy) = Hxy ∩ G[1]
y , which allows us in all cases to

determine the struture of Hy.

In case (i) we have Hxy = ExyExy1Exy2Exy3Exy4 and [Exy1Exy2Exy3Exy4 , Exy] = 1.

Thus Hy = EyExy1Exy2Exy3Exy4 and by Lemma 4.5.25 we have CHy(Ey) = CHy(Exy) so

that Hy
∼= Ey × Exy1Exy2Exy3Exy4 which gives the result in this case.

In case (ii) we have Hxy
∼= Alt(4)×Alt(4) oAlt(4). Thus Hxy = ExyCHxy(Exy) and so

Hy = EyCHy(Ey)
∼= Alt(5)× Alt(4) o Alt(4).

For (iii) we see that CHxy(Exy) has isomorphism shape Alt(4)4 : 23, and has index 24

in Hxy. Note that Hxy splits over Exy and a complement is isomorphic to Sym(4)4. Thus

Hy = EyHxy
∼= Alt(5) : Sym(4)4. Note that there are multiple split extensions which

may be described as such, but having specified the subgroup CHy(Ey) we have fixed the

isomorphism class to which this group belongs.

In case (iv) we again see that Hxy splits over Exy and that a complement, C say,

is isomorphic to Sym(4) o Alt(4). Thus CHxy(Exy) = CC(Exy) has isomorphism shape

Alt(4)4.23.Alt(4). Hence CHxy(Exy) is the unique index 2 subgroup in C, and so Hy =

EyHxy = HyC ∼= Alt(5) : Sym(4) o Alt(4) is the unique split extension which is not a

direct product.

We can now prove Theorem 4.5.21.

Proof of Theorem 4.5.21. We have seen that A = B and Theorems 4.5.29 and 4.5.30

show that B has the same type as Si for some i ∈ [9, 12]. The result now follows from our

assumption that A is faithful and Theorem 4.1.1.
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4.6 CGz(Qz) ≤ Qz for z = x, y

In this section we work towards proving Theorem 4.6.8. This is the final case that is

delivered by Theorem 4.3.4 and it’s proof will complete the classification of simple finite

faithful amalgams of degree (5, 5). We will show that (Gx, Gy) is a weak (B,N)-pair for

G. Recalling Definition 1.6.7, we need to show that for z = x, y there exists a normal

subgroup G∗z of Gz containing Qz such that G∗z/Qz ∈ Λ where

Λ := {Dih(10),Frob(20),Alt(5)},

and G∗z ∩ Gxy = NG∗z(P ) for some P ∈ Syl2(G∗z). If this holds, then Corollary 1.6.10

identifies the amalgam as one of S13, S14, S15. We first prove the following theorem.

Theorem 4.6.1. For z = x, y we have Qx ∩Qy 6= Qz.

Proof. We will establish the proof of the theorem after a number of steps.

We assume for a contradiction that Qx ≤ Qy and set L = 〈QGx
y 〉. Note that L � G

[1]
x

or this would give Qy ≤ Qx, hence Gx/G
[1]
x
∼= C5 cannot occur in the following.

(1) For any J ≤ Gx such that J is transitive on ∆(x) we have L = 〈QJ
y 〉.

We see that L = Qy[Qy, Gx] = Qy[Qy, JGxy] ≤ [Qy, Gxy][Qy, J ] ≤ Qy[Qy, J ] = 〈QJ
y 〉,

but the reverse containment is automatic.

(2) L ∩G[1]
x = Qx

Set M = L ∩G[1]
x and choose T ∈ Syl2(Gxy) such that Qy ≤ T . Then T0 := T ∩M ∈

Syl2(M) and T0 C T since M C Gxy. Then Qy ≤ NL(T0) and by the Frattini argument

L = NL(T0)M , so we see that NL(T0) is transitive on ∆(x). Hence L ≥ NL(T0) ≥

〈QNL(T0)
y 〉 = 〈QGx

y 〉 = L, so T0 C L which implies T0 = Qx (as Qx ≤M). For the duration

of this claim set Gx = Gx/Qx. Then M is a 2′-group. Also, [Qy, G
[1]
x ] ≤ Qy ∩ G[1]

x = Qx,

so [L,G
[1]
x ] = [〈QGx

y 〉, G
[1]
x ] = 〈[Qy, G

[1]
x ]Gx〉 ≤ Qx, that is [L,G

[1]
x ] = 1. Then [L,M ] = 1,

however L/M is isomorphic to one of Dih(10),Frob(20), Alt(5) or Sym(5) and none of

these groups has a non-trivial extension by a 3-group, so we see that L ∼= K ×M where
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K is one of the previous mentioned groups. Then Qy ≤ K which implies L = 〈QL
y 〉 ≤ K,

hence L = K and M = 1. Hence L ∩G[1]
x = Qx as required.

(3) After replacing L with one of its subgroups, the following hold,

(a) L/O2(L) ∼= Dih(10), Frob(20), Alt(5),

(b) L is transitive on ∆(x),

(c) Qy ∈ Syl2(L),

(d) No non-trivial characteristic subgroup of Qy is normal in L.

Note that once we have that L which satisfies (a), (b) and (c) then (d) is immediate.

Indeed, if 1 6= C C L and C char Qy, then C C Gy also, and so C C 〈L,Gy〉 which is

transitive on Γ. This would imply C = 1, a contradiction.

For the duration of this claim we set Gx = Gx/O2(L). Note that O2(L) = Qx = L∩G[1]
x

so that L is isomorphic to one of Dih(10), Frob(20), Alt(5) or Sym(5). Thus 5 - |Gx : L|

so |L : L ∩Gxy| = 5 and |L : L ∩Gxy| = 5 also.

Firstly, if L ∼= Dih(10) we see Qy
∼= C2 and so Qy ∈ Syl2(L) and L itself is our desired

subgroup. If L ∼= Frob(20), either |Qy| = 4 or |Qy| = 2. In the second case we would see

a unique index two normal subgroup K of L containing Qy, but then we would obtain

L = 〈QGx
y 〉 ≤ K, a contradiction. Hence L itself satisfies (a)-(c).

When L ∼= Alt(5) or Sym(5), the normality of Qy in L ∩Gxy implies that Qy
∼= 22

and Qy ≤ L
′ ∼= Alt(5). Thus we obtain the desired conclusion after replacing L with the

pre-image of L
′

here.

We now assemble some pushing up results which deliver our conclusion.

(4) If L/O2(L) ∼= Dih(10) or Frob(20), O2(L) = F∗(L) and S ∈ Syl2(L) then there exists

C char S such that 1 6= C C L.

To see this apply Theorem 1.5.6 with r = 5 and p = 2.

We are now ready for the contradiction.

(5) Qx � Qy.
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Let L be the subgroup of Gx delivered by (3). In the instance L/O2(L) ∼= Dih(10)

or Frob(20) we apply (4) with Qy = S and obtain a non-trivial characteristic subgroup

C of Qy. But this contradicts (3) (d). In the second instance, we need (3) (d) to invoke

Theorem 1.5.1 and we set H̃ = QyP where P ∈ Syl5(Gy). Then Qx C H̃ implies Qx = 1

since H̃ is transitive on ∆(y). Thus since Qx C Qy, we see Qy = NH̃(Qx). Now let

H = H̃/CH̃(Qy) be viewed as a subgroup of Aut(Qy). Now we apply Theorem 1.5.1 with

Qy = S, Z = Ω1(Z(S)) and the subgroup H just constructed, so that |H : NH(Qx)| = 5.

This implies 〈ZH〉 ≤ Qx and 〈ZH〉 C L. But 〈ZH〉 is normalised by H, that is, it is

invariant under all the conjugation maps induced by H̃, so certainly 〈ZH〉 C H̃. Then

1 6= Z ≤ 〈ZH〉 C 〈L, H̃〉 which is transitive on Γ, a contradiction.

With the proof of Theorem 4.6.1 completed, we may assume the following hypothesis

for the rest of this section.

Hypothesis (A): The group Qx ∩Qy is a proper subgroup of both Qx and Qy.

Note that (A) immediately implies thatGx/G
[1]
x ∈ {Dih(10),Frob(20),Alt(5), Sym(5)}.

Lemma 4.6.2. Let u, v ∈ ∆(x) with u 6= v. Then the group L = 〈G[1]
x , Qu, Qv〉 is

transitive on ∆(x).

Proof. Set Gx = Gx/G
[1]
x and observe that Qu and Qv are distinct 2-subgroups of Gx. It

is easy to check from the list above that L contains a subgroup isomorphic to Dih(10), as

required.

Recall that G
[1]
xy = G

[1]
x ∩G[1]

y .

Lemma 4.6.3. The group G
[1]
xy is a 2-group.

Proof. Let u 6= y be a vertex adjacent to x and let v 6= x be a vertex adjacent to

y. Note that G
[1]
xy is a subnormal subgroup of Gxu and so Lemma 1.3.6 implies that

O2(Gxu) normalises O2(G
[1]
xy), hence Qu normalises G

[1]
xy. The same argument shows that

Qv ≤ NGy(O
2(G

[1]
xy)). Thus O2(G

[1]
xy) C 〈G[1]

x , Qu, Qy〉 and O2(G
[1]
xy) C 〈G[1]

y , Qv, Qx〉. Since

these two groups are transitive on ∆(x) and ∆(y) by the previous lemma, we find that

O2(G
[1]
xy) = 1.
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With the previous lemma we are able to limit the structure of Gx as follows. Since

G
[1]
x C Gxy we find that G

[1]
x /G

[1]
xy
∼= G

[1]
x G

[1]
y /G

[1]
y C Gxy/G

[1]
y . The latter subgroup being

isomorphic to one of {C2,C4,Alt(4), Sym(4)} we see that eitherG
[1]
x is a 2-group andG

[1]
x =

Qx, or possibly G
[1]
x /Qx ∈ {C3, Sym(3)}. Before considering these cases, we determine

how much of a problem the Sylow 3-subgroups of Gx could pose.

Proposition 4.6.4. Let T ∈ Syl3(Gx). Then |T | ≤ 32 and T is elementary abelian.

Proof. We may assume that T ≤ Gxy. The previous lemma gives that G
[1]
xy is a 2-group,

and so T ∼= TG
[1]
xy/G

[1]
xy ≤ Gxy/G

[1]
xy. Since this group is a permutation group acting on the

set (∆(x)∪∆(y)) \ {x, y} preserving the partition, it is a subgroup Sym(4)× Sym(4) and

the assertion is immediate.

Proposition 4.6.5. Suppose that G
[1]
x = Qx. Then there exists G∗x C Gx such that

G∗x/Qx ∈ Λ.

Proof. Let Gx = Gx/G
[1]
x = Gx/Qx. We have already seen that Gx ∈ {Dih(10),Frob(20),

Alt(5), Sym(5)} and so we may take G∗x = Gx unless the final isomorphism holds, in which

case we take G∗x to be the preimage of the derived subgroup of Gx.

Lemma 4.6.6. Suppose that G
[1]
x /Qx

∼= Sym(3). Then there exists G∗x C Gx such that

G∗x/Qx ∈ Λ.

Proof. Set Gx = Gx/Qx. We first observe that this situation can only arise if Gy/G
[1]
y
∼=

Sym(5) and G
[1]
x G

[1]
y = Gxy. Thus Gxy/G

[1]
xy
∼= G

[1]
x /G

[1]
xy × G

[1]
y /G

[1]
xy where G

[1]
x /G

[1]
xy
∼=

Sym(4) and G
[1]
y /G

[1]
xy
∼= Gxy/G

[1]
x . Hence Gxy/Qx

∼= Sym(3) × Gxy/G
[1]
x . In particular,

any Sylow 2-subgroup P of Gxy splits over P ∩G[1]
x .

Now the assumption implies that Gx has a normal subgroup T of order 3. Proposi-

tion 4.6.4 on the Sylow 3-subgroups of Gx shows that either T ∈ Syl3(Gx) or the Sylow

3-subgroups of Gx split over T . In the former case we may apply the Schur-Zassenhaus

Theorem and in the latter case we apply Gaschütz’s Theorem to obtain K, a complement

to T in Gx. Observe that K has a normal, and therefore central, subgroup S of order 2.
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We claim that the Sylow 2-subgroups of Gx split over S. To see this, we choose a subgroup

S0 ∈ Syl2(Gxy) which contains S (note that S0 ∈ Syl2(Gx)). But now S0 ∩G[1]
x = S, and

so the previous paragraph implies that S0 does indeed split over S. Invoking Gaschütz’s

Theorem again, we find L, a complement in K to S, and since S ≤ Z(K) we see that

K ∼= L× S.

We claim now that [L, T ] = 1. Of course, L normalises T so L/CL(T ) ↪→ Aut(T ) ∼= C2.

Thus it suffices to show that a Sylow 2-subgroup of L centralises T . We may take S0 ∩L

to be this subgroup, and since S0 ∼= S × S0 ∩ L, looking in Gxy/Qx we indeed see that

S0 ∩ L centralises T . Thus L C Gx and we have shown that Gx
∼= L×G[1]

x .

Choosing G∗x as the preimage of L (or L′ if L ∼= Sym(5)), we see that G∗x/Qx ∈ Λ as

required.

Lemma 4.6.7. Suppose that G
[1]
x /Qx

∼= C3. Then there exists G∗x C Gx such that

G∗x/Qx ∈ Λ.

Proof. Again we set Gx = Gx/Qx and observe that there exists a normal subgroup T

isomorphic to C3. Hence Gaschütz’s Theorem or the theorem of Schur-Zassenhaus gives

a complement K to T in Gx. As before, we see that |K/CK(T )| ≤ 2 and K ∼= Gx/G
[1]
x .

Let us first consider the case that K ∼= Dih(10) and K/CK(T ) ∼= C2. Then we

find that |Gxy/G
[1]
x | = 2. If Gy/G

[1]
y
∼= Sym(5), then we would have |Gxy/G

[1]
x G

[1]
y | = 2

which forces G
[1]
y G

[1]
x = G

[1]
x , and so Qy ≤ Qx, a contradiction to (A). Hence we have

Gy/G
[1]
y
∼= Alt(5) and Gxy = G

[1]
x G

[1]
y . But now we see that Gxy/G

[1]
xy
∼= Alt(4) × Dih(10)

and so Gxy
∼= C3 ×Dih(10), a contradiction to CGx

(T ) ∼= C5.

We return now to the general situation where |K/CK(T )| ≤ 2. If K = CK(T ) then

K C Gx and we let G∗x be the preimage of K (or K ′ if K ∼= Sym(5)) in Gx. Otherwise,

K/CK(T ) ∼= C2 and CK(T ) is isomorphic to one of {Dih(10),Frob(20),Alt(5)} (since

the case K ∼= Dih(10) and CK(T ) ∼= C5 was ruled out above) so here we let G∗x be the

preimage of CK(T ). Thus G∗x/Qx ∈ Λ as required.

Theorem 4.6.8. The pair (Gx, Gy) is a weak (B,N)-pair of characteristic two for G.
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Proof. The previous results guarantee the existence of the normal subgroup G∗x required.

Note that |G∗x/G∗x ∩Gxy| = 5 in all cases, so we may choose a Sylow 2-subgroup P of G∗x

contained in Gxy. But now P/Qx ∈ Syl2(Gxy/Qx) and this group is isomorphic to one of

{C2,C4,Alt(4)}. Hence P C Gxy∩G∗x. Since P 6= Qx, we conclude Gxy∩G∗x = NG∗x(P ) as

required. After relabelling, the results in this section hold for Gy also (since all we have

used to prove the statement for Gx is that 5 | |Gy|), so we are done.

4.7 Finite completions

Here we construct finite faithful completions for the simple amalgams S1-S12. Recall

that the amalgams S13-S15 and their extensions have completions inside Aut(PSL3(4)),

Aut(Sp4(4)) and Aut(G2(4)), respectively. We will construct the completions in certain

groups which make the extensions visible. In particular, this is beneficial for the amalgams

S5-S12 as we have not concretely constructed the extensions of these amalgams yet.

Lemma 4.7.1. Let G = Sym(9) and set P1 = 〈(1, 2, 3, 4, 5)〉, P2 = 〈(5, 6, 7, 8, 9)〉 and

B = P1 ∩ P2. Then the amalgam (P1, P2, B) is isomorphic to S1 and G′ is a completion

of S1. Moreover, NG(P1)∩NG(P2) ∼= C4×C4 and each of the extensions E1
1 -E10

1 is visible

in G.

Proof. It is clear that the amalgam (P1, P2, B) is isomorphic to S1. Inspecting the maximal

subgroups of Alt(9) we see that G′ = 〈P1, P2〉, so G′ is a faithful completion of S1. We have

that NG(P1)∩NG(P2) = 〈(1, 2, 4, 3), (6, 7, 9, 8)〉, writing α = (6, 7, 9, 8) and β = (1, 2, 4, 3)

we set R1 = 〈α2〉, R2 = 〈α2β2〉, R3 = 〈α2, β2〉, R4 = 〈α〉, R5 = 〈αβ〉, R6 = 〈αβ3〉,

R7 = 〈αβ2〉, R8 = 〈α2, β〉, R9 = 〈αβ, α2〉 and R10 = 〈α, β〉.

Set Ai = (P1Ri, P2Ri, Ri) and we claim that Ai is isomorphic to E i1. Since Ai is a

faithful amalgam that is an extension of S1, it is isomorphic to E j1 for some j. Considering

the isomorphism type of P1Ri our claim holds unless i = 5 or i = 6. The amalgams

A5 and A6 both have type (Frob(20),Frob(20),C4). Suppose for a contradiction that

Θ = (f1, f2, f3) is an amalgam isomorphism between A5 and A6 (recall Definition 2.2.7 of
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an amalgam isomorphism and Proposition 2.2.10). Observe that f1(αβ) = f3(αβ) = αβ3

or f1(αβ) = α3β = f2(αβ). There are four cases to consider in total, depending on the

value of Θ(1).

Assume that Θ(1) = 2 and let i be an integer such that f1(x) = yi where x =

(1, 2, 3, 4, 5) and y = (5, 6, 7, 8, 9). Assume also that f1(αβ) = αβ3, then f1(xαβ) =

f1(x2) = y2i. Since f1 is a homomorphism, we have f1(xαβ) = f1(x)f1(αβ) = (yi)αβ
3

= y−2i.

This implies y2i = y−2i, a clear contradiction. The other cases yield contradictions with

similar arguments. This shows that no isomorphism Θ can exist, hence A5 and A6 belong

to distinct isomorphism classes of amalgams. With the notation we’ve set up, we see Ai

is isomorphic to E i1 for i ∈ [1, 10].

Also note that G′ ≤ 〈P1Ri, P2Ri〉 ≤ G, so either Alt(9) or Sym(9) is a faithful com-

pletion for the amalgam E i1 where i ∈ [1, 10].

Lemma 4.7.2. Let G = Alt(6) and let P1 = StabG(1), P2 = StabG(2) (in the usual

action on six points). Then 〈P1, P2〉 = G is a faithful completion of the amalgam S2.

Moreover the extension E1
2 is visible in Sym(6).

Proof. We have that P1 ∩P2
∼= Alt(4) and since |G : P1| = 5 we have G = 〈P1, P2〉. Since

G is simple, the amalgam formed by P1, P2 and P1 ∩ P2 is faithful, hence is isomorphic

to S2. The rest of the lemma follows immediately.

Lemma 4.7.3. Let G = Sym(9), P1 = 〈(1, 2, 3), (3, 4, 5)〉 and P2 = 〈(1, 2, 3), (2, 3, 4),

(5, 6, 7, 8, 9)〉. Then Alt(9) is a faithful completion of S3 and all extensions are visible in

G.

Proof. It is easy to check that Alt(9) = 〈P1, P2〉. Set B = P1 ∩P2. Since Alt(9) is simple,

the amalgam formed by P1, P2 and B is faithful and is therefore isomorphic to S3. We
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find that NG(P1) ∩ NG(P2) = 〈B,α, β〉 where α = (3, 4) and β = (6, 7, 9, 8). Set

R1 := 〈B,α〉

R2 := 〈B,αβ2〉

R3 := 〈B, β2〉

R4 := 〈B,α, β2〉

R5 := 〈B, β〉

R6 := 〈B,αβ〉

R7 := 〈B,α, β〉

then the group 〈P1Ri, P2Ri〉 is a faithful completion for E i3 where i ∈ [1, 7]. Note that

〈P1Ri, P2Ri〉 = Alt(9) for i = 3, 6 only, and 〈P1Ri, P2Ri〉 = Sym(9) in the remaining

cases.

Lemma 4.7.4. Let G = Sym(9), P1 = 〈(1, 2, 3), (3, 4, 5), (6, 7, 8), (7, 8, 9)〉 and P2 =

〈(1, 2, 3), (2, 3, 4), (6, 7, 8), (8, 9, 10)〉. Then Alt(9) is a faithful completion of S4 and all

extensions are visible in G.

Proof. Here we compute that NG(P1)∩NG(P2) = 〈P1∩P2, (1, 2), (5, 6)〉. The calculations

are similar to the previous lemma.

For the remaining amalgams we set G = Sym(21) and show that either G or G′ =

Alt(21) is a faithful completion for the amalgams S5-S12 and their extensions. We define

X1 := 〈(1, 3)(2, 4)(5, 7)(6, 8), (5, 7)(6, 8)(9, 11)(10, 12),

(9, 11)(10, 12)(13, 15)(14, 16), (14, 16)(13, 15)(17, 19)(18, 20)〉,

X2 := 〈(1, 2, 3, 4)(5, 8, 7, 6), (5, 6, 7, 8)(9, 12, 11, 10),

(9, 10, 11, 12)(13, 16, 15, 14), (13, 14, 15, 16)(17, 20, 19, 18)〉,

and note that X2
∼= C4

4 and Ω1(X2) = X1
∼= 24. We also need some permutations which
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act on the orbits of X1 and X2;

f := (1, 5, 9, 13, 17)(2, 6, 10, 14, 18)(3, 7, 11, 15, 19)(4, 8, 12, 16, 20),

s := (1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12),

t := (9, 13, 17)(10, 14, 18)(11, 15, 19)(12, 16, 20),

r := (17, 20, 18, 19, 21)

Observe that 〈f〉 ∼= 〈r〉 ∼= C5. Also note that s and t have order three and 〈s, t〉 is

isomorphic to Alt(5) acting primitively on the set [1, 20] with block system [1, 4]∪ [5, 8]∪

[9, 12]∪[13, 16]∪[17, 20]. We define the following subgroups of G (recall the shape notation

from the notation introduced in the introduction),

P1,5 = 〈X1, f〉 ∼ 25.C5,

P1,6 = 〈X2, f〉 ∼ 44.C5,

P1,7 = 〈X1, s, t〉 ∼ 24.Alt(5),

P1,8 = 〈X2, s, t〉 ∼ 44.Alt(5),

and, for i = 5, 6, 7, 8, we set Bi = StabP1,i
({17, 18, 19, 20}) and P2,i = 〈Bi, r〉. Now let Ai

be the amalgam formed by (P1,i, P2,i, Bi) for i = 5, 6, 7, 8.

Lemma 4.7.5. For i = 5, 6, 7, 8 the amalgams Si and Ai are isomorphic. Moreover, G′

is a faithful completion of Si.

Proof. Let i ∈ {5, 6, 7, 8} and observe that P1,i acts transitively on the blocks [1, 4]∪ · · ·∪

[17, 20], so that |P1,i : Bi| = 5. Also we have B5 = X1, B6 = X2, B7 = 〈X1, s, t
′〉 and

B8 = 〈X2, s, t
′〉 where

t′ = (5, 9, 13)(6, 10, 14)(7, 11, 15)(8, 12, 16).

Thus Bi normalises 〈r〉 which gives |P2,i : Bi| = 5 and we see that the amalgam Ai is of
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degree (5, 5). We have to show that G′ = 〈P1,i, P2,i〉 for i = 5, 6, 7, 8. Note the inclusions

P1,5 ≤ P1,6 ≤ P1,8 and P1,7 ≤ P1,8. Similarly, P2,5 ≤ P2,6 ≤ P2,8 and P2,7 ≤ P2,8. Hence

we simply need to observe that G′ = 〈P1,5, P2,5〉 (this can be shown using Magma for

example). Also, since G′ is simple, we have shown that the amalgam Ai is a faithful

amalgam of degree (5, 5). Using Theorems 4.0.1 and 4.0.2 and the isomorphism type of

P1,i, we conclude that Ai is isomorphic to Si.

Lemma 4.7.6. For i ∈ {5, 6} the extensions of Si are visible in G.

Proof. Let i ∈ {5, 6, 7, 8} and set N = NG(P1,i) ∩ NG(P2,i). Now let R be a subgroup of

N which contains Bi. Observe that

G′ = 〈P1,i, P2,i〉 ≤ 〈P1,i, P2,i〉R = 〈P1,iR,P2,iR〉 ≤ G

and therefore G′ or G is a completion of the amalgam Ai := (P1,iR,P2,iR,R). Since

P1,i ∩ R = Bi = P2,i ∩ R this amalgam has degree (5,5) and is therefore an extension of

Si. Moreover N is a split extension of B by a subgroup isomorphic to C4 ×C4, therefore

there are 15 amalgams which are extensions of Si visible in G. We use Magma to see

that if S is a subgroup of N containing Bi such that S 6= R, then P2,iR and P2,iS are

non-isomorphic, except in two specific cases which we discuss below.

Let R = 〈Bi, x〉 and S = 〈Bi, y〉 where

x := (1, 12, 15, 6)(2, 9, 16, 7)(3, 10, 13, 8)(4, 11, 14, 5)(17, 20, 19, 18),

y := (1, 8, 15, 10)(2, 5, 16, 11)(3, 6, 13, 12)(4, 7, 14, 9)(17, 20, 19, 18).

Then P1,iR ∼= P1,iS and P2,iR ∼= P2,iS, which implies (because of the degree) that the

amalgams A := (P1,iR,P2,iR,R) and B := (P1,iS, P2,iS, S) are of the same type. We

claim they are non-isomorphic. Suppose for a contradiction that Θ = (f1, f2, f3) is an

amalgam isomorphism from A to B (recall Definition 2.2.7 of an amalgam isomorphism).

The following argument is similar to the argument showing that the amalgams A5 and A6

116



are non-isomorphic in the proof of Lemma 4.7.1, but requires slightly more work. Note

that Θ(1) = 1 and Θ(2) = 2 since P1R and P2S are non-isomorphic.

Now f1(f) = f b for some b ∈ Bi (since P1 = 〈f〉Bi is a normal subgroup of P1S). Now

〈r〉 is a normal Sylow 5-subgroup of both P2,iR and P2,iS, therefore f2(r) = ri for some

i. Note that neither x nor y centralise r, so we have that f3(x) /∈ CS(r). Now S/CS(r)

is cyclic of order four and f3(x) is an element of order four which does not square into

CS(r), so we see that f3(x) = yz or y3z for some z ∈ CS(r). Since f2 is a homomorphism

we have that

r2i = f2(r2) = f2(rx) = f2(r)f2(x) = (ri)f3(x)

since ry
3z = r−2 we find that f3(x) = yz must hold. Now we consider

f1(fx) = f1(f 3) = f1(f)3 = (f 3)b.

On the other hand, this is equal to (f b)yz = f byz = (f y)b
yz. Now f y = f 2 and so

b(byz)−1 ∈ NBi(〈f〉) = CBi(f) = 1, whence b = byz which implies (f 2)b
yz = (f 3)b

yz and

therefore f 2 = f 3, a clear contradiction.

It follows then that the amalgams arising in G as described above are all distinct and

therefore all extensions of Si are visible in G.

Lemma 4.7.7. For i ∈ {7, 8} the extensions of Si are visible in G.

Proof. Let i ∈ {7, 8}. Then N := NG(P1,i)∩NG(P2,i) is a split extension of Bi by a group

isomorphic to C2×C4. There are therefore 8 extensions of Si visible in G, and considering

the isomorphism types of P2,iR for Bi ≤ R ≤ N we see these extensions are all distinct.

Hence every extension of Si is visible in G.

To construct completions for the amalgams S9 - S12 we define the following permuta-
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tions,

a := (1, 2, 3),

b := (2, 3, 4),

c := (1, 2)(5, 6),

and note that 〈a, b〉 ∼= Alt(4) and 〈a, b, c〉 ∼= Sym(4). We define the following subgroups

of G′,

P1,9 = 〈a, b, f〉 ∼= Alt(4) o C5,

P1,10 = 〈a, b, c, f〉 ∼= O2(Alt(4) o C5),

P1,11 = 〈a, b, s, t〉 ∼= Alt(4) o Alt(5),

P1,12 = 〈a, b, c, s, t〉 ∼= O2(Sym(4) o Alt(5)),

and as above, for i = 9, 10, 11, 12, we set Bi = StabP1,i
({17, 18, 19, 20}) and P2,i = 〈Bi, r〉

and define Ai to be the amalgam formed by P1,i and P2,i.

Lemma 4.7.8. For i = 9, 10, 11, 12 the amalgams Ai and Si are isomorphic. Moreover,

G′ is a faithful completion of Si.

Proof. Let i ∈ {9, 10, 11, 12}. First observe that P1,5 ≤ P1,i and P2,5 ≤ P2,i hence G′ =

〈P1,i, P2,i〉. It follows that the amalgam Ai is faithful. For the same reason as in the proof

of Lemma 4.7.5 we have |P1,i : Bi| = 5. For j ∈ {0, 1, 2, 3, 4} we set

aj = af
j

, bj = bf
j

, cj = cf
j

.

Observe that 1 = [aj, r] = [bj, r] = [cj, r] for j 6= 4. Now 〈a4, b4, r〉 ∼= Alt(5) and

〈a4, b4, c4, r〉 ∼= Sym(5). It follows that Bi = StabP2,i
(21) and |P2,i : Bi| = 5. Hence Ai is

a faithful (5,5) amalgam. Considering the isomorphism type of P1,i and Theorems 4.0.1

and 4.0.2 we conclude that Ai is isomorphic to Si.
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Lemma 4.7.9. For i = 9, 10, 11, 12 the extensions of Si are visible in G.

Proof. Let i ∈ {9, 10, 11, 12} and let N = NG(P1,i)∩NG(P2,i). We calculate that N splits

over Bi with a complement isomorphic to C2 × C4, for i ∈ {9, 10}, and a complement is

isomorphic to 22, for i ∈ {11, 12}. Let R be a subgroup of G such that Bi ≤ R ≤ N .

Then

G′ = 〈P1,i, P2,i〉 ≤ 〈P1,i, P2,i〉R = 〈P1,iR,P2,iR〉 ≤ G

so either G′ or G is a completion of the amalgam (P1,iR,P2,iR,R), which is therefore

faithful. A Magma calculation shows that if S ≤ N is such that B ≤ S and R 6= S then

the groups P2,iS and P2,iR are non-isomorphic. Hence for each choice of R we obtain a

distinct isomorphism class of amalgam. For i ∈ {9, 10} then, all eight extensions of Si are

visible in G and, for i ∈ {11, 12}, all five extensions of Si are visible in G.

4.8 Presentations

In this section we give presentations for the universal completions of the simple finite

faithful amalgams of degree (5, 5), with the exception of S12. We have provided a pre-

sentation for the universal completions of the amalgam S12 for download at [25]. The

forbidding length of this presentation (which has six generators and 143 relations) means

that it is unsuitable for display. To obtain these presentations, we employ the function

AP described in Section A.3 and use the finite completions from Section 4.7.
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Type Generators Relations

S1 a, b a5, b5

S2 a, b, c a2, b3, (ba)2, c5, (c−1b)3, (c−1b−1c−1)2, bc2b−1c2bc−1,
(cb−1c−1a)3

S3 a, b, c, d a3, b3,c3, d5, (cb−1)2, [b, d], (ab−1)2, [c, d], (ac)2,
(bc)3

S4 a, b, c, d, e,
f

e3, c3, a3, b3, f 3, d3, (bd)2, [b, f ],
[b, e], [d, e], [a, c], [d, f ], [b, c], ab−1a−1bd2,
(ef−1ef)2, (ef−1e−1f−1)2, c−1d−1bd−1cd−1bd−1,
a−1b−1ad−1bd−1ba−1b, cf−1efe−1cef−1ef ,
(c−1f−1efe−1)2, a−1f−1efe−1aef−1e−1f , ([f, e−1])3,
f−1ed−1fe−1bd−1ef−1e−1d−1fbd−1

Table 4.8: Presentations for simple finite faithful (5,5) amalgams.

Type Generators Relations

S5 a, b, c a2, ac−1ac, b5, c5, (bab−1a)2, bab−1c−1bab−1c,
(b−1abc−1)2, (ba)5, (ab2ab−2)2, b2ab−2c−1b2ab−2c

S6 a, b, c a4, [a, c], b5, c5, a−1b−1a−1bab−1ab, b−1a−1bc−1b−1abc,
(a−1b)5, a−1b2a−1b−2ab2ab−2, b−2a−1b2c−1b−2ab2c,
ab−2c−1b2a−1b−2c−2b2

S7 a, b, c, d b3, a4, [b, d], [a, d], c5, d5, (b−1c−2)2, (a−1b−1)3,
a−1c−1bab−1c, c−1b−1cd−1c−1bcd, a−1c−1a−1bab−1ac,
a−1ca−1c−1abab−1, c−1a−1cd−1c−1acd, (b−1c−1b−1c)2,
b−1c−1a−1ca−1bc−1ac, a−1c−2a−1cbab−1c−1ac2,
c−3b−1a−1c−1a−1c−1b−1cbab−1, c−2ac2d−1c−2a−1c2d−2

S8 a, b, c, d a2, b3, [b, d], ad−1ad, c5, d5, (b−1a)3, b−1abc−1ac,
(b−1c−2)2, cac−1d−1cac−1d, cb−1c−1d−1cbc−1d,
(cb−1c−1b−1)2, bcac−1ab−1cac−1, (c−1babcb−1)2,
(c−1b−1abcd−1)2, (ac−1b−1abc)2, cac−2b−1abc2abc2abc

Table 4.9: Presentations for simple finite faithful (5,5) amalgams.
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Type Generators Relations

S9 a, b, c b3, (cb−1)2, c5, a5, b−1aca−1bac−1a−1,
[[b, a−1], b−1], c−1aba−1cab−1a−1, a−2b−1a2ba−2ba2b−1,
a2ba−2ca2b−1a−2c−1, b−1a2ca−2ba2c−1a−2,
ac2bca−1cac−1b−1c−2a−1c−1, c2bcbc2b−1c−1b−1cbc−2b−1,
a−1c2b−1c−1ac−1a−1bc−1b−1c−2ac,
(a−1cbc−2abc−1)2, c2b−1c−1a−2c−1a2cbc−2a−2ca2,
c2b−1cb−1a−1c2b−1c−1ac−1a−1cbc−2a, a2c−1a−2cbc−2a2ca−2cbc−2,
abc2b−1c−1b−1a−1c2bcabcbc−2b−1a−1c−1b−1c−2,
bc2a2bc2b−1c−1a−2c−2b−1a2cbc−2b−1a−2,
a−1c−1b−1c−2a2c−1b−1c−2a−2c2bca2c2bca−1,
bcbc−2a−1bcbc−2b−1ac2bcba−1bcbc−2b−1a,
a2bc2b−1c−1b−1a−2b−1c−1b−1a2bcbc−2b−1a−2b−1c−1b−1

Table 4.10: Presentations for simple finite faithful (5,5) amalgams.
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APPENDIX A

COMPUTER PROGRAMS

A.1 Counting isomorphism classes of amalgams of a

certain type

The following function is a computer implementation of Goldschmidt’s counting lemma

(Lemma 2.2.12) in Magma. If A = (P1, P2, B, π1, π2) then the function AC accepts

as input the tuple (P1, P2, π1(B), π2π
−1
1 ). The function returns a list dc=(γ1, . . . , γn) of

double coset representatives of H∗1 and H∗2 in Aut(B) (see Lemma 2.2.12 for notation). A

complete set of representatives for the isomorphism classes of amalgams of the same type

as A is then {(P1, P2, B, π1, π2γi) | i ∈ [1, . . . , n]}.

f unc t i on AC( p1 , p2 , b1 , isom ) ;

// The f i r s t part o f the func t i on computes the holomorphs

// o f p1 , p2 and b1

ab1:=AutomorphismGroup ( b1 ) ;

phi ,P:= Permutat ionRepresentat ion ( ab1 ) ;

p h i i := Inve r s e ( phi ) ;

a1 :=AutomorphismGroup ( p1 ) ;
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phi1 , perm1:= Permutat ionRepresentat ion ( a1 ) ;

ph i 1 i := Inve r s e ( phi1 ) ;

e1 , p1toe1 , perm1toe1 := SemidirectProduct ( p1 , perm1 , ph i 1 i ) ;

c1 :=sub<e1 | { x@perm1toe1 : x in Generators ( perm1)}>;

a2 :=AutomorphismGroup ( p2 ) ;

phi2 , perm2:= Permutat ionRepresentat ion ( a2 ) ;

ph i 2 i := Inve r s e ( phi2 ) ;

e2 , p2toe2 , perm2toe2 := SemidirectProduct ( p2 , perm2 , ph i 2 i ) ;

c2 :=sub<e2 | { x @perm2toe2 : x in Generators ( perm2 )} >;

// This part f i n d s the no rma l i s e r s o f b1 in the automorphism

// groups o f p1 and p2

n1:= Normal i ser ( e1 , b1@p1toe1 ) meet c1 ;

n2:= Normal i ser ( e2 , ( b1@isom ) @p2toe2 ) meet c2 ;

// This p u l l s n1 and n2 back in to the automorphism groups

// o f p1 and p2 r e s p e c t i v e l y

a1n1 :={ ( ( x@@perm1toe1 ) @phi1i ) : x in Generators ( n1 ) } ;

a2n2 :={ ( ( x@@perm2toe2 ) @phi2i ) : x in Generators ( n2 ) } ;
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// Next we d e f i n e images in aut ( b1 )

a s t a r := { ab1 ! hom<b1−>b1 | x:−> x@y > : y in a1n1 } ;

c s t a r :={ ab1 ! hom<b1−>b1 |

x:−> ( ( x@isom )@y)@@isom > : y in a2n2 } ;

// Now we move a s t a r and c s t a r in to the permutation

// r e p r e s e n t a t i o n o f aut ( b1 )

astarP :=sub<P | { x@ phi : x in a s t a r }>;

c s tarP :=sub<P | { x@ phi : x in c s t a r }>;

// In the permutation r e p r e s e n t a t i o n o f aut ( b1 ) we can

// compute the double co s e t reps qu i ck ly

dblc := DoubleCosetRepresentat ives (P, astarP , cstarP ) ;

dc :=[ x@phii : x in dblc ] ;

// the func t i on r e tu rn s a l i s t o f the se double co s e t

// r e p r e s e n t a t i v e s

re turn dc ;

end func t i on ;

A.2 Computing extensions of an amalgam

The Magma function Ext computes extensions of amalgams. If A = (P1, P2, B, π1, π2)

is an amalgam, the function accepts as input the tuple (P1, P2, π1(B), π2π
−1
1 ).
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f unc t i on Ext ( p1 , p2 , b1 , isom ) ;

// The f i r s t part o f the program c o n s t r u c t s the holomorphs

// o f p1 , p2 and b1 .

ab1:=AutomorphismGroup ( b1 ) ;

phi ,P:= Permutat ionRepresentat ion ( ab1 ) ;

p h i i := Inve r s e ( phi ) ;

a1 :=AutomorphismGroup ( p1 ) ;

phi1 , perm1:= Permutat ionRepresentat ion ( a1 ) ;

ph i 1 i := Inve r s e ( phi1 ) ;

e1 , p1toe1 , perm1toe1 := SemidirectProduct ( p1 , perm1 , ph i 1 i ) ;

c1 :=sub<e1 | { x@perm1toe1 : x in Generators ( perm1)}>;

perm1toe1i := Inve r s e ( perm1toe1 ) ;

a2 :=AutomorphismGroup ( p2 ) ;

phi2 , perm2:= Permutat ionRepresentat ion ( a2 ) ;

ph i 2 i := Inve r s e ( phi2 ) ;

e2 , p2toe2 , perm2toe2 := SemidirectProduct ( p2 , perm2 , ph i 2 i ) ;

c2 :=sub<e2 | { x @perm2toe2 : x in Generators ( perm2 )} >;

perm2toe2i := Inve r s e ( perm2toe2 ) ;

// Now we c a l c u l a t e the no rma l i s e r s o f b1 in the automorphism
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// groups o f p1 and p2

n1:= Normal i ser ( e1 , b1@p1toe1 ) meet c1 ;

n2:= Normal i ser ( e2 , ( b1@isom ) @p2toe2 ) meet c2 ;

// The f o l l o w i n g part f i n d s the c e n t r a l i s e r s o f b1 in the

// automorphism groups o f p1 and p2 and d e f i n e s the image

// o f the no rma l i s e r s in the automorphism group o f b1

mu1:=hom<n1−> P | { x−>

( ab1 ! hom<b1−>b1 | y:−>y@( ( x@@perm1toe1 ) @phi1i )>)@phi

: x in Generators ( n1 ) }>;

mu2:=hom<n2−> P | {x−> ( ab1 !

hom<b1−>b1 | y:−>((y@isom )@( ( x@@perm2toe2 ) @phi2i ) ) @@isom>

) @phi : x in Generators ( n2 ) }>;

k1:= Kernel (mu1 ) ;

k2:= Kernel (mu2 ) ;

gensk1 := Generators ( k1 ) ;

gensk2 := Generators ( k2 ) ;

// The group A below i s j u s t the d i r e c t product o f the

// no rma l i s e r s o f b1 in the automorphism groups o f p1 and p2

A, i n j s , p r o j s := DirectProduct ( n1 , n2 ) ;

// By tak ing the i n t e r s e c t i o n o f the images in the automorphism

// group o f b1 we l o c a t e the e lements o f aut ( p1 ) and aut ( p2 )

// which induce the same automorphisms on b1
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as t :=n1@mu1 ;

c s t :=n2@mu2 ;

ac s t := as t meet c s t ;

g ensac s t := Generators ( a c s t ) ;

// Here ns ta r i s the automorphism group o f the amalgam

nstar :=sub<A | {x@injs [ 1 ] : x in gensk1 } ,

{x@injs [ 2 ] : x in gensk2 } ,

{ (x@@mu1) @injs [ 1 ] ∗ (x@@mu2) @injs [ 2 ] : x in gensac s t } >;

nu1:=hom<b1−>n1 | {x−> ( ( a1 !

hom<p1−>p1 | {y−>yˆx : y in Generators ( p1 ) }>

) @phi1 ) @perm1toe1 : x in Generators ( b1 ) } >;

nu2:=hom<b1−>n2 | {x−> ( ( a2 !

hom<p2−>p2 | {y−>y ˆ( x@isom ) : y in Generators ( p2 ) }>

) @phi2 ) @perm2toe2 : x in Generators ( b1 ) }>;

nu:=hom<b1−>A | {x−> ( ( x@nu1) @injs [ 1 ] ) ∗ ( (x@nu2) @injs [ 2 ] )

: x in Generators ( b1 ) } >;

// Here ds ta r i s the image o f b1 in the automorphism group

// o f the amalgam

dstar :=b1@nu ;

// We need to f i n d a l l the subgroups o f the automorphism

// group which conta in ds ta r
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q , f :=quo<nsta r | dstar >;

subs :=Subgroups ( q ) ;

subs2 :=[ sub<nsta r | dstar , subs [ i ] ‘ subgroup@@f> :

i in [ 1 . .# subs ] ] ;

// We can now d e f i n e the ex t en s i on s by the subgroups in subs2

gx : = [ ] ; gy : = [ ] ; gxy : = [ ] ; p i1 : = [ ] ; p i2 : = [ ] ;

// The f o l l o w i n g code c r e a t e s a l i s t o f the ex t en s i on s o f the

// amalgam by the subgroups in subs2

f o r i in [ 1 . .# subs2 ] do

gxy:=gxy cat [ subs2 [ i ] ] ;

l1 , f1 , f 2 := SemidirectProduct (

p1 , subs2 [ i ] , p r o j s [ 1 ] ∗ perm1toe1i∗ ph i 1 i ) ;

k:=sub<l 1 | { x@f1 ∗ ( ( xˆ−1)@nu@f2) : x in Generators ( b1 ) } >;

l2 ,map:=quo<l 1 | k>;

gx:=gx cat [ l 2 ] ;

b2:=sub<l 2 | { x@( f2 ∗map) : x in Generators ( subs2 [ i ] )}> ;

p i1 := pi1 cat [ hom<subs2 [ i ]−>b2 |

{x −>x@( f2 ∗map) : x in Generators ( subs2 [ i ] ) } > ] ;

l1 , f1 , f 2 := SemidirectProduct (

p2 , subs2 [ i ] , p r o j s [ 2 ] ∗ perm2toe2i∗ ph i 2 i ) ;

k:=sub<l 1 | {( x@isom ) @f1 ∗ ( ( xˆ−1)@nu@f2) :

x in Generators ( b1 ) } >;

l2 ,map:=quo<l 1 | k>;
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gy:=gy cat [ l 2 ] ;

b2:=sub<l 2 | { x@( f2 ∗map) : x in Generators ( subs2 [ i ] ) } >;

p i2 := pi2 cat [ hom<subs2 [ i ]−>b2 |

{x −> x@( f2 ∗map) : x in Generators ( subs2 [ i ] ) } > ] ;

end f o r ;

r e turn gx , gy , gxy , pi1 , p i2 ;

end func t i on ;

A.3 Amalgamated products

Finally we provide details of the Magma function AP which computes the universal

completion of an amalgam A = (P1, P2, B, π1, π2). The function accepts as input the

tuple (P1, P2, π1(B), π2π
−1
1 ). This function is built around the existing Magma function

FreeProduct. The function FPGroupStrong is used to convert the groups P1 and P2

into finitely presented groups. This appears to be more effective than using FPGroup,

with permutation groups for example.

f unc t i on AP(g , h , b , i s o ) ;

// input i s g , h , b , b a subgroup o f g , i s o a map b−> h

// output i s Y, the f r e e amalgamated product o f g and h

// with amalgamation over b and the maps g−>Y, h−>Y

x , phi1 :=FPGroupStrong ( g ) ;

ph i 1 i := Inve r s e ( phi1 ) ;

y ,mu1:=FPGroupStrong (h ) ;
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mu1i:= Inve r s e (mu1 ) ;

X:= FreeProduct (x , y ) ;

gensX:= Generators (X) ;

gensxinX :=[ X. i : i in [ 1 . .# Generators ( x ) ] ] ;

gensyinX :=[X. i : i in [# Generators ( x)+1..# Generators (X) ] ] ;

phi2 :=hom<x−>X | {x . i−>gensxinX [ i ] :

i in [ 1 . .# Generators ( x ) ] } >;

mu2:=hom<y−>X | {y . i−>gensyinX [ i ] :

i in [ 1 . .# Generators ( y ) ] } >;

R:= { ( d@phi1i@phi2 ) ∗ ( ( ( ( d@iso )@mu1i)@mu2)ˆ−1)

: d in Generators (b ) } ;

Y, quo:=quo<X|R>;

r e turn Y, ph i 1 i ∗phi2∗quo , mu1i∗mu2∗quo ;

end func t i on ;
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