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ABSTRACT

In the first half of this thesis we determine the connectivity of commuting graphs of
conjugacy classes of semisimple and some unipotent elements in GL(n,¢q). In the second
half we prove that the degree of an irreducible character of a finite simple group divides

the size of some conjugacy class of the group.



To Tom



ACKNOWLEDGEMENTS

I would like to thank my supervisor Chris Parker for supporting me throughout my PhD.
I am also grateful to Luke Morgan for being a good friend. I thank my family for the love
and support they have provided throughout the years. Finally, I acknowledge EPSRC for

funding this work.



CONTENTS

Introduction
Commuting Graphs

Commuting Graphs of Semisimple Elements in GL(n, q)

3.1 Preliminary Results . . . . . . . .. ..o
3.2 Centralizers . . . . . . . . . e
3.3 Commuting Class Graphs . . . . . . . . .. ... ... .. .. .. ... .

Commuting Graphs of Unipotent Elements of GL(n,q)

4.1 Preliminary Results . . . . . . . . . .. .. .
4.2 Regular Unipotent Classes . . . . . . . . . . . .. ... ... .. ...
4.3 Classes where the Jordan block sizes differ by 2 or more . . . . . . . . . ..
4.4 Components of Commuting Graphs Stabilized by Irreducible Subgroups . .
4.5 Classes of Type (m,m —1) . . . . . . .. .
4.6 Classes of Type (m,m) . . . .. . ..

Conjugacy Classes and Character Degrees

The Symmetric Group

6.1 Conjugacy Classes . . . . . . . . . .
6.2 Representations and Character Degrees . . . . . . . . ... ... ... ...
6.3 The Alternating Group . . . . . . . . . . ...
6.4 Sh
6.5 A, .o

Combinatorial Results

Algebraic Groups and Finite Groups of Lie Type

8.1 Root Systems . . . . . . ..
8.2 Algebraic Groups . . . . . . . ..
8.3 Finite Groups of Lie Type . . . . . . . . . . . . ...
8.4 Dual Groups . . . . . . .
8.5 Centralizers . . . . . . . . . . e

13
17

28
29
41
44
46
51
61

80

82
82
84
87
91
98

104



8.6 Regular Unipotent Conjugacy Classes . . . . . . . . . . .. ... .. .... 129

8.7 Regular Semisimple Elements . . . . . . . . . ... ... ... ... ... 132
Character degrees of Finite groups of Lie Type 134
9.1 Characters . . . . . . . . e 134
9.2 The Steinberg Character . . . . . . . . . . . ... ... 137
9.3 Unipotent Characters . . . . . . . . . . . . ... ... .. ... .. 140
9.4 The Simple Groups . . . . . . . . . .. 145

List of References 148



CHAPTER 1

INTRODUCTION

In this thesis we consider two problems relating to conjugacy classes in finite groups. In
this short introduction we state our main theorems. Fuller introductions will be provided
for each part.

In the first half we consider commuting graphs of conjugacy classes in GL(n,q). Let
G = GL(n,q), x € G and let I' be the commuting graph for the conjugacy class of z. We
use clg(z) to denote the conjugacy class of x in G.

In Chapter 3, we assume z is a semisimple element in G, with characteristic polynomial
fo = fi'... f7r, where each f; is irreducible over GF\(q), deg f; = d; and f; # f; for i # j.

Let A, be the graph with vertex set {f,..., f,} and edge set
{{fi,fi} |i#j,dia=d;b for some 1<a<z,1<b< 2}
We say an edge {f;, f;} is exact if and only if d;z; = d;z; and d;a # d;b for all 1 < a < z,

1 <b< z. Note A, is a much smaller graph than I'. The result is as follows.

Theorem 1.0.1 Let x € G be semisimple with characteristic polynomial f = fi* ... f7,

where f; is irreducible for 1 < i <r and f; # f; for i # j.

(i) If r =1 and zy = 1, then I' is disconnected.
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(i) If r =1 and z; > 2, then I" is connected.

(11i) If r > 1 then I' is connected if and only if A, is connected, with at least one non-

exact edge.

In Chapter 4, we consider various unipotent elements of G. As we will see, this turns
into a very complicated problem. If SL(n,q) is contained in the stabilizer of a connected
component in I we say I is S-connected. Let € be the exponent of PGL(2,q). We prove

the following.
Theorem 1.0.2 Suppose x € G is unipotent.
(i) If x is of Jordan block type (n), then I is disconnected.

(i1) If x is of Jordan block type type (mq,...,my), with m; = m; + 2 for 1 <i < k,

then I' is disconnected.
(111) If x is of Jordan block type (m,m — 1), then I is connected if and only if m < €.

() If x is of Jordan block type (m,m), then I' is S-connected if and only if (m,e) = m.

Further, if (m,q — 1) =1 then I" is connected.

In the second half of the thesis we consider a conjecture from [26] which states that if
(G is a finite group and y is a primitive irreducible character of GG, then there exists g € G

such that y(1) divides |clg(g)|. Our contribution is the following theorem.

Theorem 1.0.3 In a finite simple group the degree of any irreducible character divides

the size of some conjugacy class of the group.



CHAPTER 2

COMMUTING (GRAPHS

Definition 2.0.1 Let G be a group and X a subset of the elements in G. The commuting
graph I'(G, X) = I" for X is the graph with vertex set V(I') = X and edge set E(I") =

{z,ylz,ye X,z #y, [z, y] =1}

Given a group G, there are various possibilities for the set X and a number of questions
that can be asked about I'. We mention some here.

In [6], G is taken to be a finite simple group and X to be the set of elements of odd
prime order and the authors discuss the connectivity of I'. In [37], G is a finite minimal
nonsolvable group and X = G\ {1}, and it is shown that the diameter of I" is at least
3. In [25], G is taken to be either Sym(n) or Alt(n) and X = G \ {1}. It is shown that
either I' is disconnected, or has diameter at most 5.

In [4], [3] and [5], X is taken to be a conjugacy class of involutions and G is the
symmetric group, a finite Coxeter group or the special linear group respectively. Questions
are answered about the connectivity, disc size and diameter of I'.

A result which is particularly relevant for us is [8], where G = Sym(n) and X is any
conjugacy class. In order to state the result we need some definitions and notation.

Let # € Sym(n) have cycle type e]'...elm. Define A to be a graph with vertex set



V(A) ={1,...,m} and edge set
E(A) = {{Z,j} ‘ 7 # j, eihi = ejhj for some 1 < hl é fi, 1 < hj < f]}

An edge {i,j} € E(A) is exact if e;h; # ejh; for 1 < h; < f;,1 < h; < f;, and e;f; = e; f;.

Further, for 1 <7 < m, let

€;

b(i) =
(3) lem{d | d divides e;,d < f;}’

and say an edge {7,j} € E(A) is special with source i if e;f; = e; and b(i) = e;. The

following two theorems are proved.

Theorem 2.0.2 (Bundy) Let G = Sym(n), * € G have cycle type e/ and set X =
clg(x). Then I'(G, X)) is connected if and only if b(1) =1 ore < 3 and f = 1.

Theorem 2.0.3 (Bundy) Let G = Sym(n), x € G have cycle type ej* ...elm form > 2,

and set X = clg(x). Then I'(G, X) is connected if and only if
(i) A is connected with at least one edge non-exact;
(11) ged{b(i) |1 <i<m}=1;
(ii1) the vertex set of A is not of the form EUY , with ENY =0 and E,Y # 0 such that

(a) for alli,j € E withi# j, {i,j} is an exact edge,

(b) there exists a vertex y € Y such that for all i € E, {i,y} is a special edge with

source vy,
(¢) no vertex of E is joined to a vertex of Y \ {y},

(d) ged{b(i) | i€ Y} =e,.



We note that these theorems are similar to our result for semisimple conjugacy classes
in GL(n, q) in Chapter 3 and indeed our results were inspired by his work. Since conjugacy
classes in Sym(n) and semisimple conjugacy classes in GL(n, q) are both determined by
partitions, perhaps this is not surprising. Further, in [2], the diameter and disc structure
of commuting graphs for conjugacy classes of Sym(n) is considered.

A related problem is considered in [7]. There the authors let C' and D be similarity
classes of matrices in M, (¢q) and say C' and D commute if there exist X € C', Y € D such
that X and Y commute. They reduce the problem to the nilpotent classes and provide
a solution when the Jordan form corresponding to the similarity classes has two blocks.
In Chapter 4 we use some similar techniques when we are considering conjugacy classes
of unipotent elements. The difficulties that they encounter in the general case are similar
to the difficulties that we uncover.

We now include some general results which will be useful in our study of commuting
graphs. Let G be a finite group, z € G, I' = I'(G, clg(x)) and let I, be the connected

component of I" containing x.

Lemma 2.0.4 Let x € G and suppose g, h € G with x9 = a". Then g = kh for some
ke Cg(x)

Proof. Since 29 = 2", we have 29" " = z and hence gh™! € Cg(x). Then g € Cg(z)h and

the result follows. 0
Lemma 2.0.5 Let G be a group, x € G and set H = Cg(x). Then Cq(H) = Z(H).

Proof. As x € H, we have Cg(H) < Cg(x) = H. Therefore Co(H) = HNCg(H) =
Z(H). O

We see GG acts transitively on the vertices of I' by conjugation, and so the connected

components of I" are conjugate.



Lemma 2.0.6 Let x,g € G. Then e = (I,)9.

Proof. We have x € I', and so 29 € (I,)9. Therefore Io = (I7)9. O
Lemma 2.0.7 Let x € G. Then Cg(z) < Stabg(I}).

Proof. Let g € Cg(z). Then I, = I',e = (I)¢ by Lemma 2.0.6, and so g € Stabg(I7). O

Lemma 2.0.8 Let x,9g € G. Then x and z9 are connected in I' if and only if g €
Stabg(]}).

Proof. Suppose g € Stabg([). Then 29 € I', and so, since x € [, and I, is connected,
x and 29 are connected in I'.

Now suppose x and z¢ are connected in I'. Then I, = I,y = (I;)? by Lemma 2.0.6,
and hence g € Stabg (). O

Lemma 2.0.9 Let v € G and suppose Cg(x) is abelian. Then I, has diameter 1.

Proof. 1ty € Cg(x)Nclg(x) we have Cq(x) C Cq(y) as Cq(x) is abelian. Also, since Cg(y)
is conjugate to Cg(x), Cgs(y) is abelian and hence x € Cg(y) implies Cq(y) C Cgo(x).
Thus Cg(z) = Ce(y).

Now if y € I}, there is a sequence of elements y,...,y, € I, such that y; € Cg(x),
yi € Ca(yi—1), for 1 <i < r,and y € Ce(y,). Then Cu(z) = Ca(yn) = ... = Ca(y,) =
Ce(y). Therefore we have y € Cg(x) for all y € I, and so, as C(x) is abelian, the result
follows. U

We finish this chapter with a result which gives some justification for our strategy of
considering semisimple and unipotent elements separately.

Let G = GL(n,q), where ¢q is a power of the prime p. Recall an element in G is
semisimple if it is a p’-element and wunipotent if it is a p-element. Suppose g € G. Then
g can be written uniquely as g = xy where x is semisimple, y is unipotent and [z, y] = 1.

This is known as the Jordan decomposition, [9, p.11].
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Lemma 2.0.10 Let g € G have Jordan decomposition xy where x is semisimple and y is

unipotent. Suppose h € G is such that [g,g"] = 1. Then [z, 2" = [y,y"] = 1.

Proof. Suppose o(z) = m and o(y) = p®. Then as (m,p”) = 1, we have (27") = (z)

and (y™) = (y). Since (g,¢") is an abelian group, [g,¢"] = 1 implies [¢*", (¢")""]

[g™,(¢")™] = 1 and hence [z*", (z")P"] = [y™, (y")™] = 1. Therefore (z*", (z")P") =
1

h]_

(z,2") and (y™, (y")™) = (y,y") are abelian groups and so [z,z"] = [y,y"] =

claimed. ]

Theorem 2.0.11 Suppose g € G has Jordan decomposition xy with x semisimple and y

unipotent. If I'(G, clg(g)) is connected, then I'(G, clg(x)) and I'(G, cl(y)) are connected.

Proof. Let z € clg(x). Then z = z" for some h € G. We have g" € clg(g) and so,
since I'(G, clg(g)) is connected, there exists a path ¢g"t, ¢g"2, ... ¢" in I'(G, clg(g)), where
hi =1, h, = hand g" € Cg(ghi-1) for 2 < i < r. We note g™ = z"iyhi and [ghi-1, g"] = 1
for 2 < i < r. Therefore by Lemma 2.0.10 we have [z"-1 2] = 1 for 2 < i < r and hence
x, a2 .. 2" = 2 is a path between x and z in I'(G, clg(x)). Therefore I'(G, clg(z)) is

connected. The proof for I'(G, clg(y)) is similar. O

Sadly the converse of this result is not true as the following example shows.

Example 2.0.12 Let G = GL(4,2) and let x,y € G with

1 010 1 000

01 01 11 00
T = and y =

1 000 0010

0100 0011

We see x has order 3 so is semisimple and y has order 2 so is unipotent. The characteristic

polynomial of x is f,(t) = (t* + ¢ + 1)* hence, by Theorem 1.0.1(i), I'(G,clg(x)) is

7



connected. The type of y is (2,2) and so I'(G, clg(y)) is connected by Theorem 1.0.2(iv).

Now
1 01 0
1111

Y = )
1 000

1 100

and the centralizer of xy in G is abelian. Therefore I, has diameter 1 by 2.0.9, and

hence every element of I, commutes with xvy. Finally note

-1

0 001 1 010 0 001 0011
0010 1111 0010 0001
0100 1000 0100 - 1111 7
1 000 1 100 1 000 0101

which does not commute with xy and therefore I'(G, clg(xy)) is disconnected.



CHAPTER 3
COMMUTING (GRAPHS OF SEMISIMPLE

ELEMENTS IN GL(n, q)

In this chapter we determine the connectedness of commuting graphs for conjugacy classes
of semisimple elements in GL(n, q).

Let F be any field and V' a finite dimensional vector space over F.

Definition 3.0.1 An element X € GL(n,FF) is semisimple if there exists a field extension

E of F over which X is diagonalizable.

3.1 Preliminary Results

Lemma 3.1.1 Suppose X,Y € GL(n,F) are conjugate. Then X and Y have the same

characteristic polynomaual.

Proof. Suppose Y = T'XT for some T € GL(n,F). Then the characteristic polynomial



of Y is given by

det(Y —tI,) = det(T'XT —tI,)
= det(T'XT — T ' (t1,)T)
= det(T (X —tI,)T)
= det(T 1) det(X —tI,)det T

= det(X —tI,).

So X and Y have the same characteristic polynomial. 0

Definition 3.1.2 Let f(t) = Z?:o a;t' be a monic polynomial in F[t]. Then the compan-

ion matrix of f is

0 1 0 0
c(f) =
0 1
—Qayp —ap ... ... —Qg—1

Note f is the characteristic polynomial of C(f).

We write diag(ay, . . ., a;,) for the matrix in GL(n,F) with diagonal entries ay, ..., a;, €
F, and write diag(Ay, ..., A,) for the block diagonal matrix with blocks A; € GL(m;,TF),
1 < ¢ < r, where 22:1 m; = n. We also use this notation to describe subgroups
of GL(n,F) consisting of block diagonal matrices e.g. diag(GL(m4,F),...,GL(m,,F)),
> i_ym; = n, is the subgroup of GL(n,F) consisting of all matrices of the form
diag(Ay,..., A,) with A; € GL(m;,F), 1 < i < r. So diag(GL(m4,F),...,GL(m,,F))

is a subgroup of GL(n,F) which preserves a decomposition of V' into a direct sum
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V=Vi®...®&V, with dimV; = m; and an element diag(Ay, ..., A,) maps (vy,...,v,) to
(11 Ay, ...,v,.A,) where v; € V.

Suppose X € GL(n,F) is semisimple with characteristic polynomial

fx(t) = L) )7,

where the f;(t) are distinct irreducible polynomials in F[t] of degree d;, for i € {1,...,r}.

Then X is conjugate to a matrix

diag(?(fl)v s 7C(f127 s ag(fr)u s 7C(fr))7

where C'(f;) occurs z; times. See [21, p.262-270] for details. Note the minimal polynomial

mx of X is fi... f.. Together with Lemma 3.1.1 we have the following lemma.

Lemma 3.1.3 Assume X,Y € GL(n,F) are semisimple. Then X and Y are conjugate

if and only if they have the same characteristic polynomial.
We finish this section with a collection of results which will be used in Section 3.3.

Lemma 3.1.4 Let f(t) = Z?:o a;t’ be a monic irreducible polynomial over GF(q) and

suppose € is a root of f. Then the set of roots of f is {5,5‘1,...,5‘1d_1} and f(t) =
d—1 i
[Tico (t —&7).

Proof. Let a be any root of f so f(a) = 0. Since a? = a for all a € GF(q), we have



and thus a? is also a root of f. Therefore €,£9,...,29° " are roots of f. Note e € GF(q%),
and no proper subfield, so these roots are distinct.

Now let g(t) = H?:_Ol (t — ). Then g(t) is a polynomial of degree d which is a factor
of f(t). Therefore since both f(t) and g(¢) are monic, f(t) = g(t) as claimed. O

Lemma 3.1.5 Suppose k,m € N with k,m <n and k+m > n. Let

H= Ae GL(m,q) ¢,
0| In-m

and

K = B e GL(k,q)

Then (H,K) = GL(n,q).

Proof. Let E; ; be the elementary matrix that is the same as the identity, but has a 1 in
the 7, jth position. For 1 <a <mandb=m+jwithl1 <j<n—m,let X = E,,
andY = E,,,,. Then X € K, Y € H and E,;, = X 'Y XY, Likewise we can write any
Eypwitha=m+iforl <i:<n—m,1<b<m,as a product of matrices from H and
K. Therefore any elementary matrix in GL(n, ¢q) can be written as a product of matrices

from H and K and so from [31, p.541], we have SL(n,q) C (H, K). Now note, for any

a € GF(q)",
a 0 0
0 1
€,
0
0 0 1
and hence GL(n,q) C (H, K). O

Definition 3.1.6 A Singer cycle is an element of GL(n,q) of order ¢" — 1.

12



Theorem 3.1.7 (Kantor) Assume G is a subgroup of GL(n,q) that contains a Singer

cycle. Then GL(n/s,q°) < G for some s € Z, and embeds naturally into GL(n,q).
Proof. See [29]. O

Lemma 3.1.8 Let A be a finite connected graph with |V (A)| > 2, and fiz an edge E in

E(A). Then A contains a spanning tree with edge set containing E.

Proof. Let A be a counterexample with |E(A)| minimal. Since A is not a tree, it contains
a circuit. Let E’ be an edge in the circuit such that £’ # E. Then A\ E’ is a connected
graph with £ € A\ E’. As A does not contain a spanning tree with edge set containing
E, A\ E' is a counterexample with |[E(A \ E)| < |E(A)], contradicting the minimality
of |[E(A)]. O

Corollary 3.1.9 Let A be a finite connected graph, with at least three vertices, and fix
an edge E in E(A). Then there exists a vertex v € V(A) such that A\ {v} is a connected

graph with edge set containing E.

Proof. By Lemma 3.1.8, A contains a spanning tree with edge set containing E. A finite
tree has at least two vertices with valency 1, so as A has at least three vertices, there
exists v € V(A) which is not incident to E. Then A\ {v} is a connected graph with edge

set containing F/. 0

3.2 Centralizers

In this section we discuss the centralizers of semisimple elements in GL(V') and GL(n, F).

Lemma 3.2.1 Let X € GL(V) be semisimple with minimal polynomial mx. Assume
that mx is irreducible over F. Then F (X) = F[t]/(mx) is a field, where (my) is the ideal

of F[t] generated by mx.
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Proof. We can define an algebra homomorphism ¢ : F[t] — F(X) by setting t¢p = X
and extending linearly. Clearly ¢ is onto and has kernel (mx). Then F[t]/(mx) = F (X).
Now, by hypothesis, my is irreducible over F so F[t]/(mx) is a field [17, Th.29.4, Th.31.6],
and hence F (X) is a field. O

Keeping the conditions in Lemma 3.2.1, we let E = F(X) and degmy = d. Note
{1,X,..., X% !} is a basis for E over F and so |E : F| = d. We can make V into a vector
space V over E by defining g - v = vg for ¢ € E, v € V. Then we see dimV = n/d. Note

X acts as a scalar matrix on V.

Lemma 3.2.2 Let X € GL(V) be semisimple with minimal polynomial myx, and assume

my s irreducible over F. Then Caroy(X) = GL(V).
Proof. For any h € Cgrv)(X), g € E, v,w € V, we have
(g-v+w)h = (vg+w)h = (vg)h + wh = (vh)g +wh = g - (vh) + wh.

So h is a E-linear map on V and hence h € GL(V). Thus we can define a map

Y : Carwvy)(X) = GL(V), hp = h,

for all h € CG’L(V) (X)

Now suppose h € GL(V'). Then for v € V,

v(Xh)=(vX)h= (X -v)h=X"-(vh) = (vh)X =v(hX),

as h is an E-linear map. Therefore Xh = hX so h € Cgrvy(X) and hence 1 is onto. So

we have Carv)(X) = GL(V). O

14



Corollary 3.2.3 Let X € GL(n,q) be semisimple with characteristic polynomial fx =
f7, where f is irreducible over F and deg f = d. Then Cgrp,qg(X) = GL(z,¢%)

Proof. The minimal polynomial of X is mx = f, so by Lemma 3.2.2, Cqr)(X) =
GL(V), where V is a vector space of dimension z over GF(q) (X). Now GF(q) (X) =

GF(q%) and so the result is clear. 0

Corollary 3.2.4 Suppose X € GL(n,q) is semisimple and has characteristic polynomial
fx = fit .. f7, with f; irreducible, f; # f; fori # 7, and deg f; = d; for 1 <i <r. Then
Carng(X) = diag(GL(z1,¢™), ..., GL(2,¢™)).

Proof. Let V' be an n-dimensional vector space over GF(q). Then V|x = W, & ... &
W, where each W; is a direct sum of isomorphic irreducible (X)-modules and X |y, has
characteristic polynomial f*. Let T" € Cgroy(X). It is clear that T preserves the
decomposition V.= Wy & ... & W, and so T|w, € GL(W;) for 1 < i < r. Therefore
T

w;, € Carowy)(X|w,), so T' € diag(Corwy)(X|w,), - Carow,) (X|w,)).
Now, for 1 < i < r, X|w, has characteristic polynomial IXlw, = f and by Corollary

3.2.3, Caorwy(X|w,) = GL(z, ¢%). Therefore

CGL(n,q)(X) = CGL(V) (X)
= diag(Carowy)(X[wy)s - - Conw, (X|w,))
>~ diag(GL(z,q™),...,GL(2,q")). U

Corollary 3.2.5 Let X = diag(Ay,...,A,) € GL(n,F) be semisimple, where for 1 < i <
r, A; € GL(d;z;, F) has characteristic polynomial fa, = f7*, with f; irreducible. Then

Ca(X) = diag(Cerig, -7 (A1), - -, Caridy =1 (Ar)).
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Proof. This follows directly from Corollary 3.2.4. O

Lemma 3.2.6 Suppose A, B € GL(n,q) are semisimple, commute and have characteris-
tic polynomials fo = % and fp = g{” ... gl respectively, where f and g; are irreducible

over GF(q), for 1 <i<r. Then for 1 <i < r, degf divides h; deg g;.

Proof. There exists D € GL(n, q) such that

BD = diag(c(gl>7 tr C(gl)a tee 70(97‘)7 ce 70(97‘)1)'

[\ J

vV Vv
h1 times h, times

Then AP and B” commute, and f4p = fa, fgp = fg, so it is no loss to assume B =

diag(By, ..., B,) with B; = diag(C(¢g:),...,C(g:)), for 1 <i < r.
hi ;iTnes

Now A € Cgrng(B) and so by Corollary 3.2.5, A = diag(A,...,A,) where A4; €

CGL(h; deg gig)(Bi). Now note for 1 < @ < r, fa, = f* for some 1 < w; < 2, as f is

irreducible. Then w; deg f = h; deg g; and hence deg f divides h; deg g; as claimed. O

Lemma 3.2.7 Assume A, B € GL(n,q) are semisimple, commute and have characteris-

z1 hs

tic polynomials fo = f{* ... f7, fg = g™ ... g" respectively. Then for eachi € {1,..., s},

there exists k € {1,...,r} such that adegg; = bdeg fy for some 1 <a < h;, 1 <b< z.

Proof. As in Lemma 3.2.6 we may assume B = diag(By, ..., Bs) with
B; = diag(C(gi),--.,C(g:)), for 1 <i < 5. We have A € Cgrn,q)(B) and so by Corollary

N

TV
h; times

3.2.5, A = diag(A,, ..., As) where A; € Car(h,deggs)(Bi). Now for 1 <@ < 5, A; and
B; commute, fa, = f;"" ... f} for some 0 < w;; < zj, and fp, = gzh’ Therefore by
Lemma 3.2.6, degg; divides w;jdeg f; for 1 < j < r, so there exists a; € Z such that
a;degg; = wijdeg f;. Also h;degg; = ) i, wijdeg f;, so there exists k € {1,...,7}
such that w;, # 0. Hence a;degg; = w;, deg fr, with 1 < a; < h; and 1 < wy, < 2, as

claimed. O
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3.3 Commuting Class Graphs

In this section we assume F = GF(q) and set G = GL(n,q). We denote the class graph
we are considering by I" and let I'y be the connected component of I" containing X.
First suppose n = 1. As GL(1,q) is an abelian group, all conjugacy classes have
size one and therefore the commuting class graph for each conjugacy class is trivially
connected.
Next we consider GL(2,2). The only conjugacy class of semisimple elements contains
two elements of order 3. These commute and hence the class graph is connected.

From now on we assume n > 2 and GL(n, q) # GL(2,2).

Lemma 3.3.1 Suppose X € GL(n,q) is semisimple with characteristic polynomial fx =

f, where f is irreducible over GF(q). Then the class graph of X is disconnected.

Proof. By Corollary 3.2.3, Cg(X) = GL(1,¢"), so is a cyclic group of order ¢" — 1.
Suppose Y € Cq(X) Nelg(X). Then Cu(X) C Ca(Y), as Ce(X) is abelian, and hence
Cg(X) = Cg(Y). Suppose I is connected. Let A € GL(n,q). Then X4 € clg(X) and
there exist Y3,...,Y) € clg(X) such that V] € Cq(X), Vi € Ca(Yi—1) for 2 < i <k, and
X4 € Cq(Yy). By above we have Cg(X) = Cg(Yy) = -+ = Cq(Yi) = Ca(X4) and so
Co(X)* = Ca(X?) = Cg(X). Therefore Ca(X) < GL(n,q).

Next we note Cg(X) contains a Singer cycle, so Ng(C(X))/Ca(X) = G/Cq(X)
is a cyclic group of order n [23, p.187], and hence |clg(X)| = n. Suppose n > 2 or
q > 3. Then Cg(X) < GL(n,q) implies either C(X) is central or SL(n,q) C Cq(X) [23,
p.185]. We have |Cq(X)| =q¢"— 1> q¢—1 = |Z(GL(n,q))|, so Ca(X) # Z(GL(n,q)).
Therefore SL(n,q) C Cg(X) and hence, as Z(GL(n,q)) C Cq(X), Ca(X) = GL(n,q), a
contradiction. Now suppose n = 2, ¢ = 3. Then |Cg(X)| = 3% — 1 and so |clg(X)| = 6,

contradicting |clg(X)| = n. Therefore the class graph is disconnected. O

17



Lemma 3.3.2 Assume X € GL(n,q) is semisimple with characteristic polynomial fx =

f7, where f is irreducible of degree d. Then Chyng)(Carng (X)) = GF(q¢*) and hence
Cring) (Carmg (X)) = GF(q) (X).

Proof. By Corollary 3.2.3, Cgrn,qg(X) = GL(z,¢%), and so acts irreducibly on V. There-
fore by Schur’s Lemma [27, p.4], Chi(n,g)(Carn,g (X)) is a division algebra and hence, as
it is finite, a field [21, p.319]. It is sufficient to determine the multiplicative group of
Cr(n,g)(CaLin,g(X)). By Lemma 2.0.5,

Cormna(Carma (X)) = Z(Cormg (X)) = Z(GL(2,q") = GF(q")".

Also, by Lemma 3.2.1, GF(q) (X) is a field isomorphic to GF(¢q?) and so since
GF(q) (X) < Crn,g)(Caring (X)) we have the result. O

Lemma 3.3.3 Assume A € GL(n,q) is semisimple with characteristic polynomial fa =

12, where f is irreducible of degree d. Then the class graph of A is connected.

Proof. Let C be the companion matrix for f and let

Note if € is an eigenvalue of C', £7 is an eigenvalue of C'?. Therefore the characteristic
polynomial of C'? is the same as the characteristic polynomial of C' by Lemma 3.1.4. Then
X and Y commute and are in the same conjugacy class as A by Lemma 3.1.3.

From Lemma 3.2.1, GF(q) (X) and GF(q) (Y) are fields isomorphic to GF(¢?). Sup-
pose w € GF(q) (X)NGF(q) (Y). Then w = Y0 a; X" = S0 b;Y?, for some a;,b; €
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GF(q), and so

YieaCt| 0 S biCt 0

0 Zf:o a;C" 0 Z?:o bi(qu

We have 3¢ a;C* = 2% 5;C, which implies a; = b; for 0 < i < d, as {1, X,..., X471}

is a linearly independent set and hence so is {1,C,...,C%'}. Then

d d d q
Zaici = Z a,qu = (Z (IZCZ) 5
1=0

=0 =0

as a; € GF(q), which means E?:o a;C" € GF(q) and hence w € GF(q). Therefore
GF(q)(X)NGF(q)(Y) = GF(q) and is the subalgebra of scalar matrices.
Let H=(Cg(X),Cs(Y)). Then

Cring)(H) = Cri(n,0)(Ca(X)) N Cing) (Ca(Y)) = GF(g) (X) NGF(g) (V) ,

by Lemma 3.3.2, and so Cyyn,q)(H) = GF(q).
Since C(X) contains a Singer cycle we have, by Theorem 3.1.7, GL(n/s,q*) < H for

some s € Z. First suppose H = GL(n/s,q*). Then
GF(q")" = Z(H) < Cormg(H) = GF(q)",

so s = 1 and hence H = GL(n,q).

Now suppose GL(n/s,q°) < H for some s > 1. The normalizer of GL(n/s,q®) in
GL(n,q) is I'L(n/s,q®) and I'L(n/s,q°)/GL(n/s,q°) is cyclic. So [H, H] < GL(n/s,q").
As GL(2,¢%) = Cq(X) we have SL(2,¢%) = [Ca(X),Ca(X)]. So [Ca(X),Ca(X)] acts ir-
reducibly on V' and hence by Schur’s Lemma, Cis(5,,4)(C (X)) = Chri(n,g) ([Ca(X), Ca(X)]).
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Then

GF(¢") < Cumg([H, H])
< Cupng (([Ca(X), Ca(X)], [Ca(Y), Ca(Y)]))
= Cung([Ca(X), Ca(X)]) N Crng ([Ca(Y), Ca(Y)])
= Cu(ng(Ca(X)) N Crng) (Ca(Y))
= GF(q) (X)NGF(q)(Y)
= GF(q),

a contradiction.
Therefore we have H = GL(n, q), so GL(n, q) stabilizes I'x and hence the class graph

is connected. U

Corollary 3.3.4 Suppose A has characteristic polynomial f4 = f?, where f is irreducible

and z > 2. Then the class graph of A is connected.

Proof. We proceed by induction on z. The initial case is Lemma 3.3.3, so now suppose

z > 2. Let X, = diag(C,...,C), where C' = C(f), so X, is conjugate to A. Now note
———

z times

X, = diag(C, X,_1) = diag(X,_1,C).

So by induction, the stabilizer of I'x, contains diag(C, GL(d(z — 1),q)) and
diag(GL(d(z —1),q),C), and so by Lemma 3.1.5 the stabilizer of I'y_ is GL(n,q). There-

fore the class graph is connected. ([l

Let X € GL(n,q) be semisimple with characteristic polynomial fy = fi*... f?, with
each f; irreducible over GF'(q), deg f; = d; and f; # f; for i # j. Following [8] we let Ax
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be the graph with vertex set {fi,..., f.} and edge set
H{fi, fit i #j,dia=d;b forsome 1<a<z,1<b< 2}

We say an edge {f;, f;} is exact if and only if d;z; = d;z; and d;a # d;b for all 1 < a < z,
1< b < Zj.

We have the following theorem, whose proof will follow by a sequence of lemmas.

Theorem 3.3.5 Suppose T € GL(n,q) is semisimple with characteristic polynomial fr =
o fF forr > 2, where f; is irreducible over GF(q) for 1 < i < r and f; # f; for
1 # 7. Then the class graph of T is connected if and only if Ar is connected with at least

one edge non-exact.

Example 3.3.6 Let X € GL(36,q) be semisimple.

(i) Suppose fx = fLf3f2 where deg f; = 3, deg fo = 4 and deg f3 = 6. Then E(Ax) =
S fo b {fs f3) { fas f3} ), where {f1, fo} and {fs, f3} are exact edges and {f1, f3}

s non-exact. Therefore by Theorem 3.3.5, I' is connected.

(ii) Suppose fx = fififs where degfi = 4, degfo = 6 and deg f3 = 12. Then
E(Ax) ={{fi, f2},{f1, [}, {[f2, f3}} where all edges are exact. By Theorem 3.3.5,

I is disconnected.

(iii) Suppose fx = fif2f2f? where deg f; = 2, deg fo = 3, deg f3 = 5 and deg f, = 6.
Then E(Ax) = {{f1, fo},{f1, fa},{f2, fa}}. So by Theorem 3.5.5, I' is discon-

nected.

We now describe a technique for producing conjugates of certain matrices. Let f; be
a monic irreducible polynomial over GF(q) of degree d, and let f = ff. Set m = dz

and fix a generator € of GF(¢™)*. Let g.(t) = [[/,'(t — 7). The coefficient of ¢ for
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0 <7< m—11is asymmetric polynomial in {e,¢?, ... ,6’1%1} and hence is fixed under
the map a — «a?. Therefore each coefficient of g. is in GF(q), so g.(t) € GF(q)[t] and
C(g:) € GL(n,q).

Note the roots of f; lie in GF(q?), and GF(q?) is a subfield of GF(¢™), so we can find
k € N such that £* is a root of f;. The eigenvalues of C(g.) are ¢,¢9, .. 7" and so
the eigenvalues of C/(g.)* are ¥, ek, .. k™' Since e¥ € GF(¢%), ¥" = % and hence

k"' with each eigenvalue having multiplicity z.

the eigenvalues of C'(g.)* are ¥ &%, .. ¢
Therefore C'(g.)* has characteristic polynomial <H?:_01 (t — 5kqi)> = ff, by Lemma 3.1.4,
and hence C/(g.)* is conjugate to

dlag(C(ﬁ), BRI C(fl))a

(. S

Vv
z times

by Lemma 3.1.3.

Lemma 3.3.7 Assume A € GL(n,q) is semisimple and has characteristic polynomial
fa = f{' 152, where fi and fy are irreducible and fi # fo. Assume Ay is connected with

a non-ezxact edge. Then the class graph of A is connected.

Proof. Set dy = deg f1, dy = deg fo and let m = lem(dy,dy). The edge {fi, f2} is non-
exact so either diz; > m or dyzs > m. We may assume without loss of generality that
diz > m. Let € be a generator for GF(¢™)* and let g.(t) = (t —e)(t —e?) ... (t —e?" )
with companion matrix C'(g.). Choose ki, ks such that ef and € are roots of f; and f,
respectively.

First suppose dyzo = m. Let

X = diag<c(95)k17 C(fl)v AR C(f1)= C(QE)k2)

S

NV
z21— % times
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and

Y = diag(C(g.)*,C(f1), ..., C(f1),Clg:)"™).

vV
21— % times

Then X and Y commute and are in the conjugacy class of A by the discussion before
the lemma. By Corollary 3.3.4, the stabilizer of I'y contains diag(GL(d;z21,q), (C(g:)))
and the stabilizer of I'y contains diag({C(g.)),GL(d1z1,q)). Therefore by Lemma 3.1.5
the stabilizer of the connected component containing X and Y is GL(n,q). So the class
graph is connected in this case.

Now suppose dyzo > m. This time let

,C(f2)),

/

X = diag(C(g.)",C(f1) 7C(f127 C(Qa)k2ag(f2)’ e

21— dmi times 29— % times

so the stabilizer of Iy contains diag(GL(d;z1,q), GL(d222,q)), and let

Y = diag(C(gg)k2,§'<f1), M) C(fl)/a C(ge)klv C(f2)v M) C(fZ)/)u

TV TV
zl—% times 22—% times

so the stabilizer of Iy contains

dlag(<0(gs)> 7GL(dlzla Q>7 <C(f2)> LA <C<f2>>)

Again X and Y commute and are in the conjugacy class of A so 'y = I'y. Therefore the

stabilizer of I'x is GL(n, q) by two applications of Lemma 3.1.5. O

Lemma 3.3.8 Assume A € GL(n,q) is semisimple with characteristic polynomial fa =

o fE, where f; is drreducible for 1 < i < v, and f; # f; for i # j. Assume Ay is

r o

connected with at least one non-exact edge. Then the class graph of A is connected.

Proof. Set d; = deg f;, for 1 < i < r. We proceed by induction on r. The case r = 2 is

23



Lemma 3.3.7, so assume r > 2.

By Corollary 3.1.9, we can choose a vertex e in Ay such that the graph A, \ {e}
is connected with at least one non-exact edge. Without lose of generality suppose e =
fro Then Ay \ {f,} is connected with at least one non-exact edge and so the class in
GL(n — d,z,,q) corresponding to f* = f{*... f7]" is connected by induction.

In Ay, f. is connected to another vertex, say fi. Let m = lem(dy,d,) and let

be a generator of GF(¢q™)*. Choose ki, k. such that ¥ and &* are roots of f; and f,

respectively. Set

Ci = (CU)..CUR).

i

vV
z; times

for 2 <7 <r—1. There are three cases to consider.

First suppose the edge {fi, f-} is exact. Then let
X = diag(C(g.)*, Oy, ..., Cr_1, C(go)™)

and

Y = diag(C(g.)%, Cy, ..., Cry, Cgo)™).

Then by induction I'x is stabilized by diag(GL(n — d,z.,q), (C(g:))) and I'y is stabilized
by diag((C(g:)),GL(n —d,z,q)). Since X and Y commute we have I'x = 'y so ['x is
stabilized by GL(n,q) by Lemma 3.1.5, and hence the class graph is connected.

Next suppose { f1, f} is non-exact and d,z, = m. We let

X = diag(c(gf)h?g(fl)? sy C(fl)j 027 s 707“—17 C<g€)kr)7

vV
z1— c% times
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and

Y = diag(C(g.)", C(f1), -, C(1), Car o, Crr, C(ge))).

~~

z1— % times

Then Iy is stabilized by

dlag(GL(n - dTZr, Q)7 <C(ge)>)a

and [y is stabilized by
diag((C(g.)) , GL(n — dy 2, q)).

So again by Lemma 3.1.5 we see GL(n, q) stabilizes I'y = I'y and so the class graph is
connected.

Finally suppose {fi, f.} is non-exact and d,z, > m. This time we let

X = dlag(c(ga)h?g(fl)? R O(fl)/a 027 s 707“—17 O(ga)kr7g(f7“)7 ) C(frl)a

Vv Vv
z1— % times Zr— % times

and

Y = diag<0(ga)kra C(fl)a cty C(f1>, 027 ey O’I‘—h C(ge)k17 C(fr)v cee ’C(fr)l)

S

—~ ~~

z1f% times zrf% times

Then by Lemma 3.3.4, the stabilizer of I'x contains diag(GL(n — d,.z,,q), GL(d,2:,q))

and the stabilizer of 'y contains

diag((C(g:)) , GL(n — dyzr,q), (C(fr)) , - -, {C(fr)))-

So by Lemma 3.1.5, I'y = Iy is stabilized by GL(n,q) and hence the class graph is

connected. 0
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We now consider when the class graph " is disconnected.

Lemma 3.3.9 Suppose T € GL(n,q) is semisimple with characteristic polynomial fr =
o fF, where f; is drreducible for 1 < i < r, and f; # f; for i # j. Suppose also that

Ar is connected, but all edges are exact. Then the class graph of T is disconnected.

Proof. For 1 <1 < r, set d; = deg f;. Since all the edges of Ar are exact, we have dy2z; =
co. = dpzp = m. Let X = diag(Ay,..., A,), where A; € GL(m,q) has characteristic
polynomial f;*. Then X is conjugate to T. Suppose Y € Cer(n,g)(X) N clarmg(X). By
Corollary 3.2.5, Y = diag(By,...,B,), where B; € GL(m,q) for 1 < i < r. Since Y €
clg(X), Y also has characteristic polynomial fr and so for 1 < i < r, fg, = fi"" ... fr
with 0 < w;; < 2;.

Suppose there exists ¢ € {1,...,r} such that wy, w; # 0 for 1 < k, 1 < r with k& # [.
We may assume without loss of generality that & # ¢. Then as A; and B; commute, d;
divides dw;, by Lemma 3.2.6. Then ad; = dyw;;, for some a € 7Z and since w;, < 2, the
vertices f;, fr in A are connected with a non-exact edge, a contradiction. Therefore for
each ¢ € {1,...,r}, there exists j € {1,...,r} such that fz = f".

Now suppose Z € I'x. Then there exist Yj,...,Y; € I'x such that Y} € Cg(X),
Y; € Cq(Y;q) for 2 < i < t, and Z € Cg(Y;). By using the above result on each of the
pairs (X,Y7),(Y;—1,Y;) for 2 <i <t and (Y, Z), we see Z has the form diag(By, ..., B,)
with B; € GL(m,q) and fg, = f;” for some j.

Suppose I' is connected. Then (clg(X)) C diag(GL(m,q),...,GL(m,q)) and so
SL(n,q) £ (clg(X)). Therefore as (clg(X)) < GL(n,q), (clg(X)) is central [Huppert

p.185], a contradiction. Thus the class graph is disconnected. O

Lemma 3.3.10 Suppose T' € GL(n,q) is semisimple and Ay is disconnected. Then the

class graph of T s disconnected.
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Proof. Let fr = fi*... f7 be the characteristic polynomial of T, where each f; is irre-
ducible over GF(q) and f; # f; for i # j. Since Ar is disconnected, we may choose d; ,

2 such that {f;, f;} is not an edge of Ay for all f; € 61, f; € d2. Relabelling if necessary,

suppose &1 = {f1,..., fs} and 0y = {fss1,..., fr}-

Let X = , where A and B have characteristic polynomials f4 = fi* ... fZ
0|B

and fp = fii'... f7 respectively. We have X and T are conjugate. Suppose Y €

clo
CaLing (X) Nclgrn,g(X). By Corollary 3.2.5, Y = , where C' € GL(dyz +
0D

...+ dszs,q). Now C has characteristic polynomial fo = fi™ ... f*r for 0 < w; < z; with
Yoryzideg fi = >0 w;deg fi. Suppose w; # 0 for some s+ 1 < i < r, then by Lemma
3.2.7, there exists k € {1, ..., s} such that adeg f; = bdeg fr with 1 < a < w;, 1 <b < 2.
Therefore there is an edge between f; and f; in Ap, a contradiction.

So we have w; = 0 for s +1 < ¢ < r and hence fo = f4. Therefore the only elements

in the connected component of the class graph containing X have the same shape as Y

B|0
and fo = fa, fo = fp. Let Z = and note Z is conjugate to X, but fg # fa.

0]A

Therefore Z is not connected to X and hence I is disconnected.

We can now prove Theorem 3.3.5.

Proof (of Theorem 3.3.5). By Lemma 3.3.8, we have the class graph of T" is connected if
Ar is connected with at least one edge non-exact, and in Lemmas 3.3.9 and 3.3.10, we

showed the class graph of T is disconnected otherwise. O
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CHAPTER 4
COMMUTING GRAPHS OF UNIPOTENT

ELEMENTS OF GL(n,q)

In this chapter we discuss the connectedness of commuting graphs for conjugacy classes
of unipotent elements in GL(n,q), where ¢ = p® for some prime p and a € N. Recall an
element € GL(n, q) is unipotent if it has order a power of p. Equivalently x is unipotent
if all of its eigenvalues are 1.

A Jordan block of size m is an m X m matrix of the form

1 0 O 00
1 1 0 0 0
01 1 0 0
B, =
0 0 . 1 0
0 0 . 1 1
A matrix z = diag(Bm,,- .-, Bm,), where each B, is a Jordan block of size m;, is in

Jordan normal form. Every unipotent element in GL(n,q) is conjugate to a matrix in

Jordan normal form, and we say y € GL(n,q) has type (mq,...,m,) if it is conjugate to
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diag(Bm,, - - -, Bm,). Note >/ m; =n.
Throughout this chapter we denote the class graph we are considering by I" and let
I, be the connected component of I' containing x. In Sections 4.5 and 4.6 we will need

the exponent ¢ of PGL(2,q). We note here that if p is even, € = p(¢® — 1) and if p is odd,

e=p(q®—1)/2.

4.1 Preliminary Results

In this section we record some standard results and definitions that will be used later in

the chapter. We start with some easy lemmas about matrices.

Lemma 4.1.1 Suppose M € GL(2,q) is a non-scalar matriz. There exists a conjugate

of M with non-zero top right entry.

Proof. Let

and suppose all elements in the conjugacy class of M also have a zero for their top right

entry. Conjugating M by

0 1
10
gives b = 0, and then conjugating by
11
0 1
gives a = c¢. Therefore M is a scalar matrix. 0

Lemma 4.1.2 Suppose M € GL(2,q) is a non-scalar matriz with projective order c.
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Then for any k € Z with k #Z 0 mod «, there is a conjugate of M with non-zero top right

entries in both itself and its kth power.

Proof. Let N = M*. Since N is non-scalar, some conjugate N*, with L € GL(2,q), must
have non-zero top right entry by Lemma 4.1.1. Then (M%)* = (M*)Et = NL. So ML is a
conjugate of M with a non-zero entry in the top right of its k&th power. Since any power

of a lower triangular matrix is lower triangular, M’ also has a non-zero top right entry.[]

Lemma 4.1.3 Suppose M € GL(2,q) has non-zero top right entry, but zero top right
entry in its mth power. Let o be the projective order of M and set | = (o, m). Then the

top right entry of M' is zero.
Proof. As (a,m) = [, there exist s,r € Z such that ar + ms = [. Then
M! = MoTtms = ¢(M™)*
for some scalar t. Therefore M is a scalar multiple of a power of a lower triangular matrix

and so has top right entry zero. 0

Lemma 4.1.4 Let M € GL(2,q) have top right entry non-zero and suppose M™ has top

right entry equal zero, where m € Z. Then M™ € Z(GL(2,q)).

Proof. Let

b
M = and M™ =

30



Hence

at,, + be,, bd,, alm, ba,,
ca,y, + de,, dd,, acy, + cd,, bey, + dd,,
So since b # 0, we have a,, = d,,, and ¢, = 0. [

Lemma 4.1.5 Let a € GF(q)* and suppose m € Zg is even. There exists A € GL(2,q)
such that A ¢ Z(GL(2,q)), A™ € Z(GL(2,q)) and det A = a.

Proof. Let

pym (—a)z 0
A" = (A%)2 = € Z(GL(2,q)). OJ
0 (—a)?
Lemma 4.1.6 Suppose g,, € GL(2m, q) with
aq 0 0 bl 0 0
* Qo * by
0 0
* x Q@ K x by,
Im =
&1 0 0 d1 0 0
¥ Cy *  dy
0 0
* X Gy X x  dy

Then det g, = [~ (aid; — bic;).
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Proof. We proceed by induction. The result is clear for m = 1, so now consider m = k

for £ > 1.

aq 0
*
* *

det gp =ardet | ¢ 0

+ (=1)*¢cy det

*

:(akdk — bkck) det Jk—1

k
= H(azdz — biCi),
=1

by induction.

Lemma 4.1.7 Let « be a generator of GF(q)* and let m be even. Then <am, o}

(a%).

32
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Proof. Let K = <am,am(n5_1)> and L = <oﬁ>. It is clear K < L. Also note, as m i

by,




even, msz € GF(q)*, and

Therefore L < K. O

Let V' be an n-dimensional vector space over GF(q) and set G = GL(n,q). Our
strategy in this chapter will be to consider whether there are any subspaces fixed by
all elements in I,. If not we will then show the stabilizer in GL(n, q) of the connected
component [, is irreducible. In Section 4.4 we show if Stabg(I) is irreducible, then

SL(n,q) C Stabg(I;). The leads to the following definition.

Definition 4.1.8 A graph I" is S-connected if SL(n, q) C Stabg(I) for some x € V(I').

Once we have determined a graph is S-connected, we will consider whether it is connected.

We now introduce the subspaces of V' we will be using.

Definition 4.1.9 Let x € G. For anyv € V, let [v,z] = v(z — 1) and [V, z] = {[v, 2] |
veV}. Set [V,x; 1] = [V, x|, and for k > 1, write [V, z; k] = [[V,z; k — 1], z].

Lemma 4.1.10 Let x € G. For any k € Zwo, [V, z; k| is a Cg(z)-invariant subspace.

Proof. Let y € Cg(x). Then for any v € V,

(v, 2; kly = v(z — 1)*y
— vy(z — 1"
= [vy, z; k]

€ [V, x; k]. O

Lemma 4.1.11 Suppose y € Cg(x) and [V, z| = [V,y]. Then [V,x;k] = [V,y; k| for any
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Proof. We proceed by induction on k. Suppose [V, x;i] = [V, y;i] for all 1 <i < k. Then

[Vz; k] = [[V.2; k — 1], ]
=[[V,y; k — 1], ]
= [[V,a],y;k — 1],as y € Cg(x),
=[Voul gk = 1]

= [V y; k]. H

Definition 4.1.12 Let x € G. Then Soc(x) = {v € V | [v,2] = 0}, and for k € Z > 0,
Soc"(x) = {v € V | [v,x;k] = 0}. When we want to emphasize the space rather than the

element of G we use the notation Soc(V') instead of Soc(x).
Lemma 4.1.13 Forx € G and k € Z > 0, Soc*(x) is a Cq(z)-invariant space.

Proof. Let y € Cg(x), v € Sock(z). Then

vy, @3 k] = vy(z — 1)*

=v(z — 1)ty
= [v, z; K]y
= 0.
So vy € Soc*(x). O

Lemma 4.1.14 Suppose y € Cg(x) and Soc(x) = Soc(y). Then Soc*(x) = Soc*(y) for
all k € Zey.
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Proof. Suppose v € Soc¥(z). Then [v,2;k — 1] € Soc(z) = Soc(y), and so [[v, z;k —
1,y] = 0. But [[v,z;k — 1],y] = [[v,y],z;k — 1] so [v,y] € Soc*"*(x). Inductively,
SocF!(x) = Soc* ! (y), hence [v,y] € Soc**(y). Then [v,y; k] = 0, therefore v € Soc*(y)

and so Soc®(z) C Soc*(y). The opposite containment is similar. O

Definition 4.1.15 A cyclic basis for x is a basis B of V' such that [v,x] € B or [v,z] =0
for allv € B. Let B be a cyclic basis for x, and B = {v € B | [u,z] # v for all u € B}.

Then B is a cyclic basis generating set for B.

Lemma 4.1.16 Let x € G be unipotent. An element in the centralizer of x is completely

determined by its action on a cyclic basis generating set for x.
Proof. This is Lemma 3.6 in [7]. O

Lemma 4.1.17 Suppose © € G is unipotent of type (m,m). Then any two linearly

independent vectors in V' \ [V, z| can be used to generate a cyclic basis of V' for x.

Proof. Let vi,u; € V' \ [V,z] be linearly independent and set v; = [vy, ;i — 1],u; =
[uy, x;0 — 1] for 2 <i < m. Let B={v;,u; | 1 <i<m}. Asvy,u; € V' \ [V, 2], we have
|B| < 2m. Suppose B is not linearly independent. For each i, v;,u; € [V, ;i — 1]\ [V, z;1].
Let ¢ be minimal such that v;, u; are not linearly independent. Then there exist A\, u €

GF(q)* such that \v; + pu; € [V, x;i]. This implies

Mg + pi—y + [V, xyi — 1] € Soc (V/[V, x;i]) = [V, 20 — 1]/[V, x; 1].

Then Av;_y + pu;—q € [V, x;7 — 1], contradicting the minimality of i. O

Definition 4.1.18 An element x € GL(n,q) is regular unipotent if it is unipotent of

type (n).
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We consider the class graph of a regular unipotent element in Section 4.2, but, as the
following lemma suggests, regular unipotent elements are also useful in some of the other

cases we consider.

Lemma 4.1.19 A regular unipotent element fizes precisely one subspace of V' of each

dimension 1,...,n.

Proof. Let x € G be regular unipotent and B be a cyclic basis for . Then with respect
to B, x is in Jordan normal form and it is clear [V, z;i] is the unique subspace of V' of

dimension n — i fixed by x, for 0 < i < n. O

We now consider centralizers of general unipotent elements in G.

Definition 4.1.20 A matriz over GF(q) is triangularly striped if it has the form

(i)

aiz 0 ... O
as ap
0 )
ar ... Q3 @
(i)
0O ... ... 0
0O ... ... 0
a 0 ... 0 , Or
as ay
0

a, as aq
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(iii)

a2 Q7
Ay a9 aq 0 0
with a; € GF(q) for 1 <i<r.
Lemma 4.1.21 Suppose x € GL(n,q) is unipotent of type (mq,ma, ..., my), written in
Jordan normal form. Then
011 Clt
Ca(x) = : : € G | Cjj is a triangularly striped m; x m; matriz
Cu ... Cy
Proof. This is [38, p.28]. O
Example 4.1.22 Let
10000
11000
r=| 0110 0 | €GL(5,9).
00010
0 0011
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Then

az 0 O O O
o QA 0 bl 0
Colx) =91 a3 as a3 by b ay,dy € GF(q)", az,a3,b1,by,c1,c2,dy € GF(q)

C1 0 0 d1 0

Cy C 0 dg dl

We have the following corollaries to Lemma 4.1.21.

Corollary 4.1.23 Let x € G be regular unipotent. Then |Cq(z)| = (¢ — 1)g" .

Proof. Choose a basis of V' so x is written in Jordan normal form. Then

aq 0 RN 0
as a; .
Co(z) = a1 € GF(q)*,a; € GF(q) for2<i<n y,
L an ... Qo Qi )
by Lemma 4.1.21, and the result is clear. U

Corollary 4.1.24 Suppose z € GL(2m, q) is unipotent of type (m, m). Then every ele-

ment in Ce(z) has determinant an mth power.

Proof. Choose a basis of V' so z is written in Jordan normal form and let g € Cg(z).
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Then ¢t = 2 so by Lemma 4.1.21,

a b
. *
Ci1 Cig * x a x *x b
S PPN RN I d ’
* *
*x x c x *x d
for some a,b,¢,d € GF(q). Therefore by Lemma 4.1.6, det g = (ad — bc)™. O

Definition 4.1.25 Let V' be an n-dimensional vector space over GF(q), withn > 2. A
transvection is an element of GL(V') such that dim[V,t] = 1, dimCy(t) = n — 1 and
[V, t] C Cy(t). An n — 1-dimensional subspace of V is a hyperplane and a 1-dimensional
subspace of V' is a point. For a hyperplane H C V and a point P C H, let R(H,P) =
(te GL(V)| H=Cy(t),P=1V,t]). We say R(H, P) is a subgroup of root type and

elements of R(H, P) are root elements.

We note for any g € G, R(H, P)9 = R(HY, Pg), so the conjugate of a root subgroup
is a root subgroup.
The following two results of McLaughlin [34, 35], about groups generated by subgroups

of root type, will be used in Section 4.4.

Theorem 4.1.26 Suppose F # GF(2), V is a vector space over F with dimV > 2, and
G is a subgroup of SL(V') which is generated by subgroups of root type. Also suppose the

wdentity subgroup 1 is the only normal unipotent subgroup of G. Then for some s > 1,

V=VodViad...®&V, and G = G; X ... x G, where

(i) The V; are stable for the Gj;
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(ii) Gily, = 1if i # j;

(iii) G

v, = SL(V;) or Sp(Vi).

Theorem 4.1.27 Suppose F = GF(2), V is a vector space over F of dimension n > 2,
and G is an irreducible subgroup of SL(V') which is generated by transvections. Then

either G = SL(V) orn >4 and G is a subgroup of Sp(V).

We conclude this section with a few results about vector spaces with forms which will
also be used in Section 4.4. Let [V,T] = {[v,t] | v € V,t € T} and Isom (V') be the group

of isometries of V.

Lemma 4.1.28 Let V be a finite dimensional vector space over F which supports a non-

degenerate symmetric or symplectic form, and let U be a subspace of V.. Then

dmU* =dimV — dim U.

Proof. See [1, 19.2]. O

Lemma 4.1.29 Let V be a finite dimensional vector space over the field F. Suppose
(, ) is a nondegenerate symmetric or symplectic form on V and T" < Isom(V'). Then

[V, T]* = Cy(T).

Proof. Let v,w € V and t € T'. Then

([v. 1], w) = (vt — 1), w)
= (vt,w) — (v,w)
— (v, wt™) — (v,w)
— (v,w(t™ ~ 1))

= (U7 [wv t_l])'
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So if w € Cy(T) then [w,t7!] =0 for all t € T and so ([v,t],w) =0forallv e V,t € T.
Therefore w € [V, T]*. Conversely, if w € [V,T]*, then ([v,t],w) = 0 for all v € V,
t € T and so (v, [w,t™!]) =0 for all v € V, ¢ € T. Then since the form is nondegenerate,

[w,t7] =0 for all t € T and hence w € Cy(T). O

Lemma 4.1.30 Suppose V is a vector space over F and T < Sp(V') with dim[V,T] = 1.

Then |T| < |F|.

Proof. Let 0 # w € [V,T]. Then as dim[V,T] = 1, for any v € V, t € T, there exists
A € F such that [v,t] = Adw. So there are at most |F| elements in [V, 7.

Now, by Lemma 4.1.29, [V, T]* = Cy(T), and by Lemma 4.1.28,
dim[V, T]* = dim V — dim[V, T).

So dimCy(T) = dimV — 1 and we can choose u € V' \ Cy(T). Suppose there exist
t1,t € T such that [u,t;] = [u,t]. Then ut; = uty and hence u € Cy(t1t;"). Clearly
Cy(T) C Cy(tity') and so since u ¢ Cy(T) and dim Cy(T) = dimV — 1, we have
V = Cy(tityY). As tit;! € Aut(V), we have t; = t5 and hence [u,t1] = [u, 5] if and only

if t4 = t3. Then [{[u,t] | w € V}| < |F| implies |T| < |F|. O

4.2 Regular Unipotent Classes

In this section we consider the commuting graph of a regular unipotent element in G =

GL(n,q).
Lemma 4.2.1 Let x € G be regular unipotent. Then Cq(x) is abelian.

Proof. Let {v,,v,_1,...,v1} be a cyclic basis for z. Then for 1 < i < n, v,_; = [v,, x;i] =

vp(r — 1)". Let y € Cg(z). By Lemma 4.1.16, the action of every element in Cg(x) is
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completely given by its action on v, so for some \; € GF(q) we have

UnlY = Zn: AiV;
i=1

Let z=y—>"  Ni(z —1)"". Then v,z =0 and for 1 < i < n,

Un—iz = vp(x — 1)'2 = vp2(z — 1)" = 0,

as z € Cg(x). Therefore z = 0 and hence y = > | A\j(x — 1)"". So every element of

Ce(z) can be written as a polynomial in x — 1 and hence Cg(z) is abelian. O
Corollary 4.2.2 The connected component I, has diameter 1.
Proof. This follows from Lemma 2.0.9 as Cg(z) is abelian by Lemma 4.2.1. O

Since, from Lemma 2.0.9 we see the elements in [, are precisely the regular unipotent
elements in Cg(z), we can count them and hence determine how many components I’

has.

Lemma 4.2.3 Let x € GL(n,q) be a reqular unipotent element in Jordan normal form.

Then
([ 1 0 0 \
A1
Co(z)Nclg(x) = o N . el N €GF(q) for1<i<n—1,A#0
0
AN R PR VI | J
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Proof. Since all unipotent elements have characteristic polynomial f(¢) = (t — 1)", the
unipotent elements in Cg(x) are those with 1’s on the leading diagonal.
Recall, a regular unipotent element fixes a unique 1-space. Let {v,,..., v} be a cyclic

basis for x and let

1 0 0
A1
Y= AN ;
0
A1 oo A2 A1

with \; € GF(q), 1 <i<n—1. If Ay =0 then both (v;) and (vs) are fixed by y, and if
A1 # 0, the only space fixed by y is (v1). Therefore y is regular unipotent if and only if
A # 0. O

Corollary 4.2.4 The number of elements in I, is ¢"*(q — 1).

Proof. We have seen above that the elements in I, are precisely the conjugates of x in

Cg(z), and from Lemma 4.2.3 we see |Cq(z) Nclg(z)] = ¢"%(q — 1). O

Theorem 4.2.5 Let x € GL(n,q) be regular unipotent. Then the commuting class graph

(n=2)(n—3)
2

(¢ + 1) J]_s(q" — 1) components, each of which is a complete

of © consists of q s

graph with ¢"*(q — 1) wvertices.

Proof. We have |Cg(z)| = ¢" (¢ — 1) by Corollary 4.1.23, so the number of conjugates

(n—1)(n—2)

of zin Gisq 2  [[i,(¢" —1). Each component contains ¢" (¢ — 1) vertices, by

Corollary 4.2.4, and is a complete graph by Corollary 4.2.2. So the number of components

(n—=2)(n—3)

isqg 2 (¢g+1) H?:S(qi — 1) as claimed. O
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4.3 Classes where the Jordan block sizes differ by 2

or more

In this section we let x be unipotent of type z = (my, mo, ..., my) with m; > mj; + 2,
for 1 <j < k. Let

be a cyclic basis for V' with respect to x, where

Vi—1,5 ifi>1
[Uim JZ] =
0 if i = 1.

So we can think as the basis as an array, where commutating any basis element with z

moves it down one row.

Uml,l

Umi—1,1

Umg,l Umg ,2

Umk,l Umk,2 Ce Umk,k

Ul,l ’UL2 .o /ULk

Forl<a<my,let W,=(v;; |i+j<a+1).

The next result requires our hypothesis on the structure of Jordan blocks of x.

Lemma 4.3.1 Lety € Cg(x)Nclg(x). Forl < a<my, W, is a y-invariant subspace of

V' and further, for 2 < a < my, we have [W,,y] C W,_4.
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Proof. First note, as my > mo, Wi = (v11) = [V,2;m; — 1], and so is y-invariant and,
furthermore, [Wy,y] = 0.
We now proceed by induction. Assume W, ; is y-invariant. It suffices to show

(Wa,y] € W, for 2 < a < my, or equivalently, since

BﬂWa\Wa,lz{vmGB\i—i—j:a—i-l}:{vaﬂ,mEB\mj>CL—j},

[Ua+1fj,ja y] € W,_q for all Vat1—j,j € B, with m; > a— 7.
Suppose vgy1-j5; € B with m; 4+ j > a. Let
o Soc* 7tz )N [V, x;mj — (a — ) — 1], ifm; —a>0
a,j — ]
Soc® (), if m; —a <O0.
Since a + 1 — j is the smallest 1 € Z such that v,41-;; € Soch(ac)7 we see Ugy1-11 &
Soc It (z) for I < j,as a+1—1> a+1—j. Similarly, for any Var1-10 € BNW\ W1,
my — (a — 1) — 1 is the largest h € Z such that v,41-4; € [V, 2;h|. Now, for I > j, since

m; = mipq + 2 for 1 <@ < k, we have m; > my +2(l — j). Then

m—(a—1)—1<m; —2(l—j)—(a—1)—1
=m;j—(a—j)—1+j—1

<mj_<a_j)_17

and hence v,41-1; € [V, 2;m; — (a — ) — 1]. Therefore vg41_;; is the only member of
BN W, \ W,_; which is also in U, ;.
S0 (U j+Wy—1)/W,—1 is a y-invariant 1-space generated by v,11—;;+W,_1 and hence,

since y is unipotent, [v,11-j;,y] € W,_1 as required. O
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Corollary 4.3.2 With x and y as in Lemma 4.3.1, Wy = [V,x;mq — 1] = [V, y;mq — 1]

and so is (x,y) invariant.

Proof. By repeated applications of Lemma 4.3.1, [V y;m; — 1] = [Wy,,,y;mq — 1] C
Wy = [V,x;mq — 1]. Therefore, since dim[V,y; m; — 1] = dim[V, 2;m; — 1] = 1, we have

[V,y;mqy — 1] = [V, 2;mq — 1], as required. Hence W is (x,y) invariant. O

Theorem 4.3.3 Suppose x is unipotent of type x = (mq, ma, ..., my) with m; = m;y1+2,

for1 <1 < k. Then the commuting graph for the conjugacy class in G of x is disconnected.

Proof. Let I, be the connected component of the commuting graph containing x. From
Corollary 4.3.2 it is clear for any y € I, we have [V, y;m; — 1] = [V, x;my — 1]. Therefore
since we can find z € clg(x) such that [V, z;my — 1] # [V, x; m; — 1], the commuting graph

is disconnected. U

4.4 Components of Commuting Graphs Stabilized by

Irreducible Subgroups

Let « € GL(n,q) be unipotent and H = (Ca(y) | y € V(I})), where I, is the connected
component containing x. In this section we show that if H acts irreducibly on V', then

SL(V) < H. This result will be used in the following sections.

Lemma 4.4.1 There is a subgroup of root type in Cg(x).

Proof. Let B be a cyclic basis for z, so x is in Jordan normal form with respect to B. For
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any A\ € GF(q), let

1 0 0
0 1

= ;
0 SO
A0 ... 0 1

and let R = (tx\|]\ € GF(q)). Then R = R(K, P), where
K = ((1,0,...,0),(0,1,...,0),...,(0,...,1,0)) and P = {((1,0,...,0)). By Lemma
4121, R < Cgla). O

For X C GL(V) let R(X) be the set of subgroups of root type in X and set

Hy = (R(H)) .

Suppose H is irreducible. Recall for any group G, O,(G) is the largest normal p-subgroup
of G.

Lemma 4.4.2 We have Hy < H and O,(H,) = 1.

Proof. The conjugate of a root subgroup is a root subgroup, so for h € H and R € R(H),
R" is a root subgroup of H and hence is in R(H). Since R(H) generates Hy we have
Hy < H.

Since O,(Hy) is a characteristic subgroup of Hy and Hy < H, we have O,(H,) < H
and hence O,(Hy) < O,(H). Suppose O,(H) # 1. For v € Cy(O,(H)), h € H and
g € O,(H), we have vhg = vhgh™'h = vh, and so Cy(O,(H)) is a H-invariant subspace
of V. Therefore Cy(O,(H)) = 0 or V as H is irreducible. Since O,(H) is a p-group we
cannot have Cy(O,(H)) = 0, and since O,(H) is a group of automorphisms of V' we also

cannot have Cy (O,(H)) = V. Therefore O,(H) = 1 and hence O,(H,) = 1 as required.[]
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We can now use Clifford’s Theorem [27, Thm 6.5, p.80] to write

Vigg=W1&--- & W,

where the W; are irreducible conjugate Hy-modules, i.e. W; = Wih for some h € H.

Lemma 4.4.3 Let t be a root element in H. Then there is a unique i € {1,...,s} such

that [W;,t] # 0.

Proof. As t is a root element, dimCy () = dimV — 1. So since V=W, & --- & Wi, ¢
cannot centralize all of the W;’s else V' C Cy (t). Now suppose W;, W; < Cy(t), for some
i,j €{l,...,s},i# j,and let U = W; @ Wj,. Since t is in a root subgroup of H, t € Hy,
then as W;, W, are Hy-invariant, we have [W;,t] # [W;,t]. Now [U,t] = [W;,t] + [W;, 1],

and hence dim[U, t] = dim[W;, t] + dim[WW;, t] = 2, a contradiction. O
Lemma 4.4.4 For somei € {1,...,s}, W; is z-invariant.

Proof. There is a root element t € Cg(z), by Lemma 4.4.1. This ¢ is in a subgroup of root
type and so t € Hy. We may suppose, without loss of generality, WW; is not centralized by
t. We claim W is z-invariant. Suppose not. Note Wiz is an irreducible Hy-module and
so we have Wiz = W, for some i € {2,...,s}. Then, by Lemma 4.4.3, ¢t centralizes W;

and hence Wix. So

0= [Wlﬂf,t]
= Wy, tja ™
= Wiz(t — o™

= Wit — Dax ' ast € Cy(x)

= [let]v
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a contradiction. O

Relabeling if necessary, assume from now on that W is z-invariant and t € C ()N H,
is a root element which doesn’t centralize W;. We set U = Wy ® ... ® W,. Note U is
centralized by t and, since x € H, Ux is a Hy-module. Suppose U is not z-invariant, so
Uz +U > U. Now, V/U = W is irreducible as a Hy-module, and therefore Ux +U = V.

Then

V,t] = [Uz + U, ]
= Uz, t] + [U, 1]

= [Ux,t] as [U,t] = 0.

So, since [V,t] = [Wi,t] # 0, and W is an irreducible Hy-module, W; C Uz. Then, as

W, is a-invariant W, = Wiaz~! C U, a contradiction.

Lemma 4.4.5 We have s =1 and so Hy is irreducible.

Proof. Suppose s > 1. Let By be a cyclic basis of W for z, let By be a cyclic basis of U
for x and let B = {B;, Bo}. Then with respect to B, x is written in Jordan normal form.

Since Wi and U are Hyp-invariant, with respect to B, any h € Hy can be written

where Hy € GL(W;), Hy € GL(U). Let Q be the set of matrices in M atgim w, xdim v (q)
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with non-zero bottom left entry and zeros everywhere else and let

I, 0O
T = cely,

C I
where I; and I, are appropriately sized identity matrices. Then T is a root subgroup in
Cq(z), by Lemma 4.1.21, but is not contained in Hy, a contradiction. Therefore s = 1

and hence Hj is irreducible. O

Now, by Lemma 4.4.5, Hy is an irreducible subgroup generated by subgroups of root
type such that O,(Hy) = 1, so we can apply Theorems 4.1.26, 4.1.27 by McLaughlin to
see Hy is either SL(V'), Sp(V) or, if ¢ = 2, a subgroup of Sp(V').

Suppose Hy = Sp(V') or is a subgroup of Sp(V). Assume x has type (mq,...,mg),
with £ > 1, and choose a basis of V' so z is written in Jordan normal form. For any

A€ GF(q) let

I, 0 0
By In, ... 0
S\ = )
0 I
and
I, 0 0
0 I, 0
t)\: ’ )
< T

where By and C'y have the entry A in their bottom left corners and zero everywhere else.
Then for all A\ € GF(q), sx and t) are transvections contained in Cg(x) and hence Hy. Let

T = (s\,tx | A € GF(q)), so |T| = ¢*. We have [V,s,] = [V,t,] for all \,u € GF(g) and
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hence dim[V,T] = 1. Then, by Lemma 4.1.30, we see T' £ Sp(V') and hence Hy £ SP(V).
Thus Hy = SL(V).

We have shown the following.

Theorem 4.4.6 Let © € GL(n,q) be unipotent and H = (Cg(y) |y € V(IL)). If H is
irreducible, then SL(V) < H.

Proof. Let Hy = (R(H)). Then by Lemma 4.4.2 we have Hy < H and O,(H,) = 1, and
by Lemma 4.4.5, Hy is irreducible on V. Therefore we can apply Theorems 4.1.26 and
4.1.27 to see Hy is either SL(V'), Sp(V') or a subgroup of Sp(V'). Then by Lemma 4.1.30
and the discussion afterwards, we have Hy = SL(V'). Therefore SL(V') < H as claimed.[J

4.5 Classes of Type (m,m — 1)

Suppose x € G is unipotent of type (m, m — 1). Let
B, ={vi1,vj2 |1 <i<m,1<j<m—1}
be a cyclic basis for x where, for k € {1,2},

Vi—1.k ifi>1
[Ui,k> .Z'] =
0 ifi=1.

Again we can think of the basis as an array as follows.

Um—1,1 Um—1,2

Um—2,1 Um—22

V1,1 V1,2
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where commutating a basis vector with x moves it down a row.
Forl1<k<m-—1,

SOCk($) = <Uz',17 Ui 2 | 1 < ) < /{Z> s

and

[V,a:,k]:<vl,1,vj72|1<z<m—k,1<]<m—k—1>

Lemma 4.5.1 There exists a reqular unipotent element in Cg(x).

Proof. Let
0 ... 0
1
J(m)
Ym = 1 )
1 0
J(m —1)
110

where J(i) is a Jordan block of size i. By Lemma 4.1.21, y,,, € Cg(z). We show y,, is a
regular unipotent element.

We have

so the characteristic polynomial of ys is f,,(t) = (1 — ¢)*. Now, proceeding by induction

and taking determinants along row 1 and then row m + 1 in y,, — I2,,_11 We see

fom @) = (1 = t)* det(ym_1 — Tom_3t) = (1 —t)*"
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where [ is the k£ by k identity matrix. Therefore all of the eigenvalues of y,, are 1 and
hence y,, is unipotent.
Next we observe that the only 1-space of V fixed by vy, is ((1,0,...,0)). So yn, is a

unipotent element which fixes a single 1-space and therefore v, is regular unipotent. [J

Corollary 4.5.2 There is exactly one Cg(x)-invariant subspace of dimension d for d €

{1,...,n}.

Proof. First note that if d is even, d = 2k for some k € {1,...,m—1} and dim Soc*(z) = d.
If d is odd, d = 2k — 1 for some k € {1,...,m — 1} and dim[V,x;m — k] = d. Therefore,
since the spaces Soc®(z) and [V, z; k] are Cg(z)-invariant for & € {1,...,m} by Lemmas
4.1.10 and 4.1.13, there is at least one Cg(z)-invariant subspace of V' of each dimension.
By Lemma 4.5.1 there is a regular unipotent element z € Cg(z) and, by Lemma 4.1.19,

z leaves invariant exactly one subspace of each dimension. The result follows. O

First we consider the case m = 2. Choose a basis of V' such that z is given in Jordan

normal form, and let

1 00 1 00
y=10 11 andz=1] 0 1 0
00 1 10 1

Then y,z € Cg(z) by Lemma 4.1.21, and y,z € clg(z). Then only proper non-trivial
subspace of V' are [V,z] and Soc(z) by Corollary 4.5.2. We have [V z] = ((1,0,0))
and Soc(x) = ((1,0,0),(0,0,1)). Now note [V,y] = ((0,0,1)) # [V,z] and Soc(z) =
((1,0,0),(0,1,0)) # Soc(z). Let H = (Cq(y) |y € I,). We have z,y,z € H and so H
acts irreducibly on V.

We now assume m > 2. Let y € Cg(x) N clg(z). Then the action of y on V is
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completely given by its action on v, ; and v,,_12 by Lemma 4.1.16, so let

m—1 m—1
[Um.1,Yy] = E AiUm—i1 + E HiVUm—i 2,
i=1 =1

and
m—1 m—2
[Vm—12,Y] = E TiUm—i,1 + E OiVm—1-i2-
i—1 i=1

Now we note that [V, y] is a Cg(z)-invariant subspace by Lemma 4.1.10, and V/[V, ]
is a 2-space. Therefore as z is unipotent, [V, x;2] C [V,y]. Since V/[V,x;2] is a 4-space,

we can look at the 2-space [V, y]/[V, x;2]. We have
[om, 1, 4] + [V, 23 2], om0, 4] + [V, 25 2], [vm—12, 9] + Vo 25.2] € [V, g/ [V, 25 2],
and therefore these vectors must be linearly dependent. That is,
MUm—1,1 + f1Um—12 + foUm—22 + [V, 2; 2],

p1Um—22 + [V, x; 2]

and

T1Um—1,1 + O1Um—22 + [V, ;2]

are linearly dependent and so we see that either
7 =0or u =0. (4.5.3)

We first consider the case 7, = 0.

Lemma 4.5.4 If 7, = 0, then we have Soc*(z) = Soc*(y) for all k € {1,...,m}.
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Proof. Suppose u € Soc(z). Then u = awvy ; + Py 9, for some «, f € GF(q). Then

[u,y] = a[Ul,bZ/] + 5[7)1,27 y| = Briviy =0,

so u € Soc(y). The lemma now follows from Lemma 4.1.14. O

Next we consider the case 71 # 0. Then p; = 0.

Lemma 4.5.5 If 4 # 0 and py = 0, then for all k € {1,...,m}, we have [V, x;k] =

V. y; k].
Proof. Note
Umly ZAvm 21+Z,uzvm 226 Vﬁ]
and
Um 1,2, Y ZTzvm zl+zgzvmlz2e V:L‘]
Therefore [V,y] C [V,z], and hence [V,y] = [V, z]. The result now follows from Lemma
4.1.11. 0

Continuing the assumption 71 # 0, ;3 = 0, for 0 < k£ < m — 2 we restrict the map

defined by the commutator of y to

Ui Voo k| [V,a k4 1] — [V, k 4+ 1)/[V, z; k + 2.

So

(Um—k1 + [V, z k4 1))k = MUm—k—11 + poVm—k—22 + [V, 2 k + 2],

(Um—k—12+ [V z bk + 1))k = T1Um—k—11 + O1Um—k—22 + [V, z; k + 2].
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For each k, the map v, is given by the matrix

A Al e

n 01

Lemma 4.5.6 The matriz A is in GL(2,q).

Proof. First note [vq1,y] = 0 and

[711)2,1 - >\1@1,2>y] =T [02,1724] - )\1[111,2,9] = 71)\1"0171 - )\1711)1,1 = 0.

Therefore (vy 1, 71021 — Av12) C Soc(y) and, as 7y # 0, we have dim (vq 1, T1v21 — Av12) =

2. Now suppose A is not invertible, so we have A\jo; — mus = 0. Let

U= T1U31 — AMV22 + Tal21 — Ag¥1 2.

Then

[, y] = Ti[vs 1, Y] — Mfvag, y] + T[va1, Y] — Aofvi2,9]
= 71 (Mv21 + Aav11 + f1ov12) — A1 (Tive1 + Tov11 + 0101 2) + ToA1U1,1 — AeTiv1
= (Tipta — A101)v12

=0.

Therefore u € Soc(y). As 71 # 0, u € (v11, V21 — A\v12) and hence dim Soc(y) > 2, a

contradiction. O
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Let e be the exponent of PGL(2,q), and write

Ak — ap by
ek dy

Lemma 4.5.7 Fiz k € {1,...,m} and suppose ¢ divides k. Then Soc*(y) = Soc*(x).

Proof. First note [V,z;m — k] = [V,y;m — k], by Lemma 4.5.5, and so [V, z;m — k] C
Sock(y). Now B, NSoc®(x) \ [V,z;m — k] = {vp2}, and [vko,y; k] = cxv11. By Lemma
4.5.6, A € GL(2,q), and so as ¢ divides k, A* is scalar and hence ¢, = 0. Therefore

Vg2 € Soc®(y) and hence Soc* () C Soc*(y). So we have Soc*(y) = Soc*(z) as required.]
Theorem 4.5.8 Suppose m > e. Then Soc®(x) = Soc*(y), for all y € Cg(x) Nclg(z).

Proof. By 4.5.3, either ;7 =0 or 73 # 0 and uy = 0. If ; = 0, then Lemma 4.5.4 gives

the result, and if 7 # 0 and p; = 0, Lemma 4.5.7 does. U

We now consider what happens when m < ¢.

Lemma 4.5.9 Fiz k€ {1,...,m— 1} and assume € does not divide k. Then there exists

y € Ca(z) Nclg(x) such that [V, z; k] # [V, y; k.

Proof. By Lemma 4.1.2, we can find A € GL(2,q) with non-zero entries in the top right
of both A and A*. Write

so b,by # 0. We define an element y € Cg(x) by [Um1,y] = avm-11 + bvy,_12 and
[Vm—1,2, Y] = CVUm—21+dVp_29. First note [vm 1, ;4] = @;Vm—i1+biVm—i2 and [Vy,_1,2, y; 1] =

CiUm—i—11 + diUm—i—12. SO [Um1,y;m] = [Um—_12,y; m] = 0 and hence the largest Jordan
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block of y has size at most m. Now observe {vy1,v12} € Soc(y) so dimSoc(y) > 2.

Suppose u € Soc(y), where u =Y " | a;v;1 + Z:r:ll Bivi 2. Then

0

[, y]

m—1

Z a;lvi1,y) + Z Bilviz2, Y]
i=1

i=1

M

||
I\

1
=2

-1

= O (AVm—1,1 + DUy 2) + ((via + Bic)vi—i1 + (b + Bid)vi—1,2).
1

a;(avi_yg + bui_12) + Z Bi(cvi—11 + dvi_12)

7

3

(2

Then a,,b =0 and for 2 <i <m—1, q;a+ fic = a;b+ ;d =0. So as b # 0, o, = 0 and

0 = aa + Bic = ayab + Bibe = —pfiad + B;be = Bi(—ad + be).

Then A invertible implies §; = 0 and hence «; = 0, for 2 < 7 < m — 1. Therefore
u = vy + P1v12 € (v11,v19) so dimSoc(y) = 2. Thus y has two Jordan blocks so we
see y has type (m, m — 1) and hence is conjugate to x.

Now, [Um1,y;k] = apUm—p1 + bkVm—k2 € [V,y; k|, but since by, # 0, [vp1,y; k] &
[V, x; k]. Therefore [V, x; k| # [V, y; k] as required.

Lemma 4.5.10 Fiz k € {1,...,m — 1} such that ¢ does not divide k. Then there exists

y € Cq(z) Nclg(z) such that Soc™(x) # Soc®(y).

Proof. By Lemma 4.1.2, there exists M € GL(2,q) with non-zero entries in the top right

of both itself and its kth power. Let
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be the transpose of M and write

fori € Z~o. We use A to define an element y € Cg(x). Let [Uy1, Y] = avp—11+b0p—22 and
[Um-12,Y] = CUm—11 + dVm_22. NOW, [Un1,Y; 7] = QjUm—i1 + biVm—1-i2 and [Uy,—19,Y;1] =
CiUm—i1 + diVm—1-i2, SO [Um1,Y;m| = [Uym—12,y;m] = 0. Therefore the largest Jordan
block of y has size at most m.

Note (vy1,cve1 —avia) C Soc(y), so since ¢ # 0, dimSoc(y) > 2. Now suppose

u € Soc(y), where u = Y"1" av;1 + Z?:ll Bivi2. Then

0= [u,y]
m m—1
= Z a;lvi1, yl + Z Bilviz, y]
i=1 i=1

m m—1
= awavy 1 + Picvr + Z a;(avi_11 + bvi_a9) + Z Bi(cviq + dvi_q2)

=3 =2

= (aga + pric)v g + Z a;(avi—1q + bvi_ao) + Z Bi—1(cvi—11 + dvi_a9)

1=3 =3

= (wa + Bic)vig + Z((aia + Bic10)vic1 1 + (b + Bim1d)via2),
i=3

s0 asa + Pic = 0 and for 3 < i < m, oya+ Bi_1c = a;b+ f;_1d = 0. Now ¢ # 0, so for

3Lt < m,
0= a;b+ Bi_1d = ajbe + Bi_1cd = a;be — cvad = a;(be — ad).
We have A invertible, so o; = 0 and hence 3;_; = 0. Then

_ _ -1
U= V11 + QoUa + Prv12 = Q111 + aoc (cvgy — avy 2),
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as aga + frc = 0. So u € (vy1,cv21 —avys) and hence Soc(y) = (vy1,cve1 — avy ).
Therefore y has two Jordan blocks, so is of type (m,m — 1) and hence is conjugate to
x. Further, [vg2,y; k] = cxv1 1 and ¢ # 0, S0 v & Soc*(y). But Uk € Soc®(x), and so

Sock(z) # Sock(y) as required. O

Theorem 4.5.11 Suppose m < ¢ and set H = (Cq(y) |y € I.). Then H is an irre-

ducible subgroup of G.

Proof. For any k € {1,...,m — 1} we can find y € Cg(z) Nclg(x) such that [V, x; k] #
[V, yi; k] by Lemma 4.5.9 and z;, € C(x)Nelg(z) such that Soc®(x) # Soc*(2;) by Lemma
4.5.10. Now Cq(yx), Ca(zx) C H, for each k € {1,...,m—1}, and so H does not stabilize
[V, 2; k] or Soc¥(z) for any 1 < k < m — 1. These are all of the Cg(z)-invariant subspaces

of V' by Corollary 4.5.2, and hence H is irreducible. O

We now have the main result of this section.

Theorem 4.5.12 Let x € GL(n,q) be unipotent of type (m,m — 1) and let € be the

exponent of PGL(2,q). The class graph of x is connected if and only if m < e.

Proof. By Theorem 4.5.8, if there exists k € {1,...,m —1} such that ¢ divides k, we have
Sock(z) = Sock(y) for all y € Cu(x)Nclg(x). Therefore for any y € I, Sock(z) = Sock(y),
as x is arbitrary. Then, since there exists z € clg(z) with Soc®(z) # Soc®(z), the class
graph is disconnected.

Now suppose € does not divide k for any k € {1,...,m—1}. Then H = (Cq(y) |y € I)
is irreducible by Theorem 4.5.11. So by Theorem 4.4.6, SL(n,q) C H. Let g € clg(x)
be in Jordan normal form, so there exists h € GL(n,q) such that x = h~'gh. For
any a € GF(q)*, r = diag(a,...,a,a7t,...,a™ ') € Cg(g) by Lemma 4.1.21, and so
h='rh € Cg(x). Note det h~'rh = detr = a, so for any element a € GF(q)*, H contains
an element with determinant a. Therefore H = GL(n, q), thus GL(n, q) stabilizes I', and

so the class graph is connected. 0
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4.6 Classes of Type (m,m)

Throughout this section let € GL(2m, ¢) be unipotent of type (m,m). We proceed just

as in the last section.

Lemma 4.6.1 There ezists a reqular unipotent element in Cg(x).

Proof. Let
0 ... 010
J(m) 0
Ym = [mfl ’
0
I, J(m)

where J(m) is a Jordan block of size m and I,,, is the m x m identity. We have y,, € Cg(x)
by Lemma 4.1.21 and now show v, is unipotent by induction on m.

First note

Y2

—_
—_
—_

o o O

and so the characteristic polynomial of y, is

fin(t) = det = (1—1t)%
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Now consider f,, , the characteristic polynomial of y,,. Taking determinants along

row 1 and then row m + 1 in y,, — I5,,t we have

fom @) = (1 —t)? det(ym_1 — Tom_ot) = (1 —)*" 2

by induction. Therefore y,, is unipotent. Next we note the only 1-space of V fixed by y,,

is ((1,0,...,0)). Therefore y,, is regular unipotent as claimed. O

Lemma 4.6.2 The only Cq(z)-invariant spaces of V are Soc*(z) = [V,z;m — k] for

1<k<m-1.

Proof. Let
4 )
a b
0 0
0 0 a O O D
K = a,b,c,d € GF(q),ad — bc # 0
c d
0 0
0 0 ¢ 0 0 d
\ /

By Lemma 4.1.21 K < Cg(z) and it is easy to see K acts on [V,x;i — 1]/[V,2;i] as
GL(2,q), for 1 < i < m. Therefore [V, z;i— 1]/[V, x;i] has no non-trivial C¢(z)-invariant
subspaces for 1 < i < m.

Suppose the lemma is false. Let U be a minimal dimensional C¢(x)-invariant subspace
of V such that U is not a commutator of x. Consider [U,z]. This is a Cg(z)-invariant
subspace of V', as U is, and we have dim[U, 2] < dim U as x is unipotent. So by minimality
of U, [U,z] = [V,x; 7] for some j. Now [U,z| = [V, z;j] implies U C [V,z;j — 1] and

since U is not a commutator, this containment is proper. Therefore [V, z;j] C U C
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[V, x; 7 — 1] and hence U/[V, z; j| is a non-trivial C(z)-invariant subspace of the 2-space

[V, z; 5 —1]/[V, x; j], a contradiction. O

If m = 1, x is the identity so the class graph is trivially connected. Suppose m = 2 so

x is unipotent of type (2,2). Let

B, = {U2,1>Ul,1, V2,2, V1,2 ’ [712,1, flf] = V1,1, [U2,2, 5U] = 01,2}

be a cyclic basis for x, so with respect to B,, x is written in Jordan normal form. Let

and note y € Cg(z) Nclg(z). We have Soc(x) = (v11,v12) and Soc(y) = (v1,1,v2,71) SO
Soc(z) # Soc(y). Therefore H = (Cq(z) | z € I,) = (Ca(z), Ca(y)) acts irreducibly on
V' by Lemma 4.6.2 and hence by Theorem 4.4.6, SL(4,q) C H C Stabg(I7).

Now let r, = diag(a, 1,1,1) for a € GF(q)*, and note

1 00 O
a 1l 0 0
rglxra = € Cg(x) Nelg(x),
0 010
0 011

and detr = a. So for any a € GF(q)*, r, stabilizes I, and so there are elements in
Stabg(I;) with determinant a. Therefore GL(4, q) stabilizes I, and the class graph is

connected.
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From now on assume m > 3. Let y € Cg(z) Nelg(z). We know [V x] is y-invariant by
Lemma 4.1.10 and so we can consider the action of y on V/[V, z]. First suppose y acts as
the identity on V/[V, x]. Then for any v € V we have v+[V, z| = (v+[V, z])y = vy+[V, 2]
giving [v,y| € [V, z|. Therefore [V,y] C [V, z] and hence, as dim[V, y] = dim[V] z|, we have
[V,y] = [V, z]. Tt follows from Lemma 4.1.11 that [V, z; k] = [V, y; k] for any k € Z~,.

Now suppose y does not act as the identity on V/[V, x]. Then, since dim V/[V, z] = 2,
we can choose linearly independent vectors v, 1,vm2 in V' \ [V, 2] such that y acts on

V/[V, x| as

with respect to the basis {v,1 + [V, 2], vma + [V, 2]}. By Lemma 4.1.17, {vy.1,Um2}
generates a cyclic basis B, of V' with respect to x. As usual we think of this basis as an

array

Um,l vm,Q

Um—-1,1 Um—1,2

V1,1 V1,2,

where commutating any basis element with x moves it down one row.

Note dimV/[V,y] = 2 and, since x and y commute, [V,y| is z-invariant. There-
fore [V,z;2] C [V,y] as x is unipotent. From the dimensions of the spaces we see
dim([V, y|/[V, x; 2] = 2, and so

[vm,la y] + [V7 xZ, 2]7

[Um,Qa y] + [V7 €, 2]
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and

Um—l,l) y] + [‘/’ xZ; 2]

are linearly dependent. Now

[Um,b ?/] + [‘/7 T, 2] = Um,2 + avmfl,l + bvmfl,Q + [V7 €, 2]7

[Um,Qv y] + [V7 x; 2] = evmfl,l + dvmfl,Q + [V7 Z; 2]

and

[Umfl,la y] + [V7 €, 2] = Um—1,2 + [‘/7 Z; 2]7

for some a,b,d, e € Z. It follows that e = 0.

Let Vi, =V, Vo = (v12) and for 1 <k <m —1let Vi = (vi1,0it12,012 | 1 <0 < k).
Then [vpm1,y] € aUm—11 + Uma + Vo and [Um2,y] € cm_o1 + dvp_12 + Vip_s, with
a,c,d € GF(q), and we see [Vi,y] C Vi forall k € {1,...,m}.

For 1 < k < m we restrict the map defined by the commutator of y to

o Vi) Vi1 = Vie1 /Vie—a,

where

(Vg1 + V1) = avg—11 + ko + Vi

and

(Ukg1,2 + Vie1) Ok = cvp—11 + dug o + Vi,

65



Then for each k the map ¢y is given by the matrix

a 1
A=
c d
Write
g [ bk
Cp dk

for k € Z, where a, by.cp,d, € GF(q), and note [vp,1,y; k] € apUm—r1 + DkUm—kt12 +

Vin—k—1 and [Um 2, y; k| € ckUm—k—11 + dpUm—it12 + Vin—p—2.
Lemma 4.6.3 The matriz A is invertible and b,, = 0.
Proof. First note (vgs — dvy1,v12) C Soc(y). Suppose A is not invertible, so ad — ¢ = 0.

As vy 1,v39 € Vo, we have [vg1,y] = avi 1 + Va2 + ev1 2 and [vs2,y] = cv11 + dvas + foy o,

for some e, f € GF(q). Let u = w35 — dvgy + evao — fv11. Then

[U, y] = [03,27 y] - d[”?,lv y] + 6[’0272, y] - f[vl,b y]
= cvy1 + dvgg + fvr2 — d(avy 1 4 vag + evi o) + devi o — furo
= (¢ —ad)vy,

=0.

So u € Soc(y), and hence dim Soc(y) > 3, a contradiction. Therefore A is invertible.
Clearly [v;1,y;m] =0 for 1 <i < m—1, and [v;2,y;m] = 0 for 1 < ¢ < m, however

[Um.1, y; m] = byv1 2. Therefore b, = 0. O

Let ¢ be the exponent of PGL(2,q) and I, be the connected component of the com-

muting graph containing z.
Lemma 4.6.4 Let (m,e) = k. Then [V,x; k] = [V,y; k] for all y € Ce(z) Nclg(x).
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Proof. Let y € Co(x)Nclg(x). We have already shown if y acts as the identity on V/[V, ]
then [V, z;i] = [V, y;i] for alli € Z > 0. Now suppose y acts as a regular unipotent element
on V/[V,z] and let A be the matrix described above. We have A invertible and b, = 0,
by Lemma 4.6.3. Let v be the projective order of A, [ = (m,«) and apply Lemma 4.1.3
to see b; = 0. Since [ divides k, A* is a power of a lower triangular matrix and so b, = 0.

We have [v;1,y; k] € [V,z; k] for 1 <i<m—1,and [v,2,y; k] € [V,x; k] for 1 <i < m,
and [vp1,y; k] € bpvm—kr12 + [V, 2;k] = [V x;k] as b, = 0. So [V,y; k] C [V, x;k] and
hence [V, z; k] = [V, y; k. O

Theorem 4.6.5 Let x € GL(2m, q) have type (m,m) and suppose (m,e) < m. Then the

commuting graph of x is disconnected.

Proof. Suppose y € I,. Then there is a sequence yy, ..., vy, of conjugates of x such that
y1 € Cg(x), y; € Cgly;—1) for 1 <i < r and y € Ce(y,). We now apply Lemma 4.6.4 to

each of the pairs (7, 11), (4192, -, (4, y), o sce

Vias k] = [Viyiskl = ... = [V y; k] = [V, y; K.

Therefore [V, x; k] = [V, y; k] for all y € I',. Since there are conjugates of  with different

k-th commutators, the graph is disconnected. 0

We now consider what happens when (m,e) = m. Suppose A € GL(2,q) with top

right entry non-zero, and A™ € Z(GL(2,q). Write

and for 1 <7 < m,
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Note b # 0, b,, = ¢, = 0 and a,, = d,,. We use A to define y € Cg(z) N clg(x).

By Lemma 4.1.16, we only need to specify the action of y on {vy, 1, Um2}, a cyclic basis
generating set for B,. So let [Uy,1,Y] = aUm—11 + bUp 2 and [V 2, Y] = cUp_21 + dUpm_1 2.
We have y € Cg(x) by construction, but we need to check it is conjugate to .

First note [vm1,9;1] = @iUm—i1 + biUm—it12 and [Um 2, Y; 1] = ¢;Um—i—11 + d;VUm_; 2, for
1 <i<mso [Um1,y;m] = bypvio = 0 as by, = 0, and [v,2,y;m] = 0. Therefore the
largest Jordan block of y has size at most m. We have (vy2,bvgs — dvy1) C Soc(y), so

dim Soc(y) > 2. Now suppose u € Soc(y), where u = > """ (ov;1 + Bivi2). Then

0= [u,y]

m

Z &%) Uzl; +5Z[U127 ])

m—1

—a15012+52dv12+zaz avi—11 + bv;2) +Zﬁz+1 cvi—11 + dv;2)
=2 1=2

m—1

= (b + Bad)v1 2 + Qo (QVm-11 + bm2) + (i@ + Birac)viorg + (b + Bipad)v; ),

1=2

s0 a1b + Pod = 0, apa = b =0, and for 2 < i <m — 1, aa + Biy1c = a;b+ B 1d = 0.
Then as b # 0, a,,, = 0 and

0 = aja + Bijic = azab + Biy1be = —Bipad + Bip1be = Biyi(—ad + be).
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So since A is invertible, 8;;1 = 0 and hence a; = 0. Then

U= 1011 + P12 + Povas = Frvie + 52571(5112,2 —dvy1) € (v12,bug0 —duyq) .

Therefore Soc(y) = (v12,bva2 —dvy ;1) and so dimSoc(y) = 2. Thus y has two Jordan

blocks so is of type (m,m) and hence is conjugate to x.

Lemma 4.6.6 Fiz 1 <k <m—1. There exists an element y € Cq(x)Nclg(x) such that

[V y; k] # [V, z; K].

Proof. Since m divides the exponent of PGL(2,q), there exists M € GL(2,q) such that
M™ e Z(GL(2,q)) but M* ¢ Z(GL(2,q)). Then by Lemma 4.1.2, there is a conjugate A
of M with non-zero entries in the top right corner of both itself and its k-th power. We use
A to define y as above. We have shown y € Ce(z) Nelg(z). Now [vp,1,y; k] = apvm—k1 +
biUm—k+1.2 With by # 0. Therefore [vp, 1, y; k] € [V, x; k] and hence [V, y; k] € [V, x;k]. O

Theorem 4.6.7 Let © € GL(n,q) be unipotent of type (m,m) and suppose (m,e) = m.
Let H=(Cq(y) |y € I;). Then H is an irreducible subgroup of GL(n,q). Furthermore,
SL(n,q) C H.

Proof. For any k € {1,...,m — 1}, we can find y; € Cx(z) N clg(x) such that [V, x; k] #
[V, yx; k] by Lemma 4.6.6. Each y, € H and so H cannot stabilize [V, xz;k] for any
k € {1,...,m — 1}. Therefore, since these are all of the C¢(x)-invariant subspaces by

Lemma 4.6.2, we have H irreducible. We now apply Theorem 4.4.6 to see SL(n,q) C H.OO

Recall a class graph I" is S-connected if SL(n,q) C Stabg(I) for all z € V(I').

Theorem 4.6.8 Let © € GL(n,q) be unipotent of type (m,m). The class graph of x is

S-connected if and only if (m,e) = m. In particular, if I' is connected, then m < €.

Proof. This follows directly from Theorems 4.6.5 and 4.6.7 and the definition of S-connected.[]
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We now consider how many components there are in a graph which is S-connected and
hence determine when the class graph is connected. Recall the number of components in
I'is given by |G : Stabg(I,)| for any x € V(I"). If I' is S-connected, SL(n, q) C Stabe (1)
and so to work out |G : Stabg(I;)| we need to determine what values the determinants
of elements in Stabg([) take.

Let g € Stabg(I}). Then 29 € I, and so there exist yi,...,y, € I, with y; = =z,
y, = a9, such that y;.1 € Cg(y;) for 1 <i < r. For each pair (y;,yi11), 1 <i <7, we can

work out a change of basis matrix B; from By, to B,,,,, where B, is a cyclic basis for z.

419
Then 29 = 2P and therefore, by Lemma 2.0.4, g = kB; ... B,_; for some k € Co(z).
Then det g = det kdet By ...det B,_;.

Let x € GL(n, q) be unipotent of type (m,m) and let vy, 1, v, 2 generate a cyclic basis

B, for x. First suppose y € Cg(z) N clg(x) acts as the identity on V/[V,x]. Then the

action of y is completely given by

m—1
[V, Y] = (ANiVm—i1 + HiUm—i2),
i=1
and
m—1
[Vim.2, Y] = (TiVm—i1 + OiUm—i2),
i=1
where
Al
M = ,
T 01

is invertible.

The matrix of y with respect to the basis B, is

70



1 0 .0 0 0
)\1 1 M1
0
/\m—l )\1 1 Mm—-1 .- .. M1 0
0 0 1 0 0
T1 g1 1
0
Tm—1 -+ -+ T1 0 Om—1 -+ ... O1 1

Now let U, 1 = U1, Um,2 = U2 and use these to generate a cyclic basis B, for y. For

convenience we let Ay =a, u; =b, 7 = c and 07 = d. So

a b
M = ,
c d
and write
. a; bl
M = ,
C; dl
for ¢ € Z~y.

The change of basis matrix from B, to B, is given by
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pm—1 0 ... ... 0 bpy ... ... ... 0
* " *
as . : by
a 0 b
* x 1 % * 0
B =
Cme1 ~ve wee oo 0 dpy 0 .o .00
* *
Co : : L dy
c d 0
* * 0 x * 1

Using Lemma 4.1.6 we see

det B = (Clel — b101)<a2d2 — bQCQ) Ce (amfldmfl — bmflcmfl)
= det M det M? ... det M™*

m(m—1)

= (det M) =z .

We have shown the following.

Lemma 4.6.9 Supposey € Ce(x)Ncla(x) acts as the identity on V/[V, z]. Then det B, =

m(m—1)

a2, for some a € GF(q)*.
We also have the following converse.

Lemma 4.6.10 Given o € GF(q)*, there exists y € Ca(x) N clg(x) such that det B, =

m(m—1)

o~ 2
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Proof. Let M € GL(2,q) be such that det M = a. We use M to determine an element

y € Cg(x) as follows. Write

and let [Um1,y] = aVm_11 + bVm_12, [Um2, Y] = CVpm_11 + dVp_12. It is clear [vy,1,y;m] =

[Um.2, y;m] = 0 and Soc(y) = (v1.1,v1,2), and therefore y is conjugate to 2. Now by Lemma

m(m—1) m(m—1)

4.6.9, det B, = (det M)z =a 2z . O

Now suppose y € Ca(z) Nclg(x) acts as a regular unipotent element on V/[V, x]. As
earlier in this section we choose linearly independent vectors v,, 1, vme € V' \ [V, ] such

that y acts on V/[V, z] as

with respect to the basis {vy,1 + [V, z],vm2 + [V, z]|}. Let B, be the cyclic basis for

generated by vy,.1, Um2. Then we know the action of y on V' is completely determined by

m—1
[Um.1,Y] = aUm—11 + Uma + E (ANiUm—i1 + HiVm—it12) + [mV12,
i=2
and
m—1
[Um.2,y] = CUm—21 + dvp_12 + E (TiVm—i1 + OiUm—it12) + OmU12,
i=3
where
a 1
A= ,
c d

is invertible with the top right entry in its m-th power zero, and \;, p;, 75, 0; € GF(q) for
2< 1< m.

The matrix of y with respect to the basis B, is
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1 0 0 1 0
a 1 o
A2
0

Ar—1 Aooa 1 iy, e 1
0 0 1 0 0
0 d 1
c 03

0
Tm-1 ... ¢ 0 0 o, ... o3 d 1

Now let w1 = U1, Um,2 = Um—1,2 and use these to generate a cyclic basis B, for y.

Again write

for ¢ € Z~y.

The change of basis matrix from B, to B, is given by

74



am—1 0 0 * b, 0
*
ag oot by
* * a 0 % * b
B_ 0 0o 1 0 0 0
0 0 bp1 O 0
Q2 *
x0T Do by
* x a * x 1 0
0 0 1 0 0 0
So using Lemma 4.1.6 we see
A1 bim—1
* *
det B = —b,,_1 det i o £ b
Apm—2 bin—o
* *
* x a * x 1

= —bm—l(GQ - abQ)(a3b2 - a253) e (am—lbm—Q - am—Qbm—l)'
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Now we note

A= ATTA
aj—1 bi—1 a 1
Ci1 dimq c d

aa; 1 + Cbz;l bai,l + db¢,1

ac;—1 + Cdi_l bCi_l + ddi_l

So a; = aa;_1 + ¢b;_; and b; = ba;,_; + db;_1. Then for i > 2,

aibi—1 — a;_1b; = (aa;_1 + cbi_1)(bai—o + dbi_2) — (aai—o + cbi_2)(ba;—1 + db;i_1)
= (Gd - C)(aiflbi72 - 01725171)-
Also ay — aby = (a* +¢) — ala+ d) = —(ad — ¢). So a;b;_1 — a;_1b; = —(ad — )"~ and
(m—1)(m—2) (m—1)(m—2)

det B= (=1)""'b,,_1(ad — c)~ 2 = (=1)" b, (det A)" 2

Now AA™™! = A™ = q,,] by Lemma 4.1.4. So

and hence b,,_1 = —a,,/ det A. Thus

m(m—3)

det B = (—1)"a,,(det A)™ 2

Also note a2, = det(A™) = (det A)™.
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Suppose m is odd. Then m — 3 is even and so

—3

det B = (—=1)"a,((det A)™) =

= (~1)mag?
(—1)"a,

Now suppose m is even. Then a,, = +(det A)=. So

m(m—2)

det B=+(—1)"(det A) ™ =

= +((det A)"z)™.

We have shown the following

Lemma 4.6.11 Suppose y € Cg(z) N clg(x) acts as a regular unipotent element on

V/IV,z|. If m is odd, det B, = a™ for some a € GF(q)*, and if m is even, det B, =

m(m—2)

+a= 2z for some a € GF(q)*.
We consider the cases for m even and m odd separately.

Lemma 4.6.12 Suppose m is odd and divides €. The number of components in the class

graph is (m,q —1).

Proof. Suppose g € Cg(x). Then det g is an mth power by Lemma 4.1.24 and further it is
clear for any o € GF(q)*, there exists g € Cg(x) such that det g = a™. Also by Lemmas

4.6.9 and 4.6.11 we see for any y, z € V(I,) such that [y, z] = 1, a change of basis matrix
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from B, to B, has determinant an mth power in GF(q)*. Therefore the determinant map

det : Stabe(I,) — GF(q)*, g — det g,

has image set {a | « € GF(q)*}, and hence |G : Stabg(I,)| = (m,q —1). O

Lemma 4.6.13 Suppose m is even and divides €. The number of components in the class

graph is at most (%§,q — 1).

Proof. If g € Cg(x) then det g is an mth power by Lemma 4.1.24 and for any o € GF'(q)*,

there exists g € Cg(x) such that detg = a™. By Lemmas 4.6.9 and 4.6.10, if y acts

m(m—1)

as the identity on V/[V,z| we have det B, = a~ 2z and if a € GF(q)* there exists

m(m—1)

y € Cg(z) Nclg(x) such that det B, = o™ 2

Therefore by Lemma 4.1.7 the determinant map
det : Staba(I:) — GF(q)*, g — det g,

is onto {a% | & € GF(q)*}. Thus |G : Stabe(I})| < (%,q9 — 1). O

Example 4.6.14 First note the exponent of PGL(2,5) is 60 and the exponent of PGL(2,7)
15 168.

(1) Let x € GL(6,5) be of type (3,3). Then (m,e) = (3,120) = 3 so the class graph is

S-connected. Further (m,q— 1) = (3,4) =1 and so the class graph is connected.

(2) Let v € GL(6,7) be of type (3,3). Then (m,e) = (3,168) = 3 so the class graph is

S-connected. However, (m,q—1) = (3,6) = 3 and so the graph has three components.

(3) Let x € GL(12,5) be of type (6,6). Then (m,e) = (6,120) = 6 so the class graph is
S-connected. Now note (m,q — 1) = (6,4) = 2, but (m/2,q — 1) = (3,4) =1, so in

this case the graph is connected.
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(4) Let x € GL(12,7) be of type (6,6). Then (m,e) = (6,168) = 6 so the class graph
is S-connected. Now, (m/2,q — 1) = (3,6) = 3. So the graph has at most three

components.
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CHAPTER 5
CONJUGACY CLASSES AND CHARACTER

DEGREES

The aim of the second half of this thesis is to prove the following theorem.

Theorem 5.0.1 In a finite simple group the degree of any irreducible character divides

the size of some conjugacy class of the group.

This problem is considered in [26] where the authors say they have verified this for all
groups in the Atlas, [12]. It would be nice if Theorem 5.0.1 could be extended to all finite
groups, however the extraspecial groups provide a counterexample. If we have F = p'*2»
then the set of character degrees of F is {1,p"} and the set of conjugacy class degrees is
{1,p}.

A character of a finite group G is imprimitive if it is induced from a proper subgroup

of G, otherwise it is primitive. In the extraspecial group E = p'*2" those characters of

degree p" are imprimitive. This leads to the following conjecture in [26].

Conjecture 5.0.2 Let G be a finite group and let x be a primitive irreducible character

of G. Then there exists g € G such that x(1) divides |clg(g)|.

In [26] this is considered for solvable groups and the following is proved.
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Lemma 5.0.3 Let G be a finite solvable group and let x be a primitive irreducible char-
acter of G. Then there exists g € G such that (x(1)), divides |cla(g)|* for any prime

dwisor p of |G|, where (x(1)), is the p-part of x(1).
This has been improved in [20] to the following.

Lemma 5.0.4 Let G be a finite solvable group, let x be a primitive irreducible character
of G and p a prime divisor of |G|. Then the number of g € G such that (x(1)), divides

cla(g)|? is at least - Also if x(1), > 1 there exists a p'-element g € G such that

2p IGI

p*x(1), divides \clg(g)\g’.

Similar problems have been also been considered. In [15] Dolfi showed if G is a solvable
group and distinct primes p and ¢ divide the degree of an irreducible character then they
also divide the size of a conjugacy class of G. In [11] it was shown that the same result
holds without the condition that G is solvable.

In Chapter 6 we prove the result for both the symmetric groups and the alternating
groups and also for their double covers. Chapter 7 considers some combinatorial results
which will be used in Chapter 9. In Chapter 8 we introduce algebraic groups and go on
to discuss the finite groups of Lie type. Towards the end we concentrate on the conjugacy
classes of two particular types of element - regular unipotent and regular semisimple.
Finally in Chapter 9 we briefly discuss characters in the finite groups of Lie type and
go on to prove the result for groups of adjoint type. We then prove the theorem for the
simple groups of Lie type. Note the result for the sporadic groups has been checked from
the Atlas [12]. Our main theorem then follows from the classification of finite simple

groups.
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CHAPTER 6

THE SYMMETRIC (GROUP

6.1 Conjugacy Classes

The symmetric group .S, is the set of permutations of the set Q@ = {1,2,...,n}. We start
with some basic properties of elements in S,,.
Any element of S,, can be written as a product of disjoint cycles, uniquely up to the

order of the cycles.

Definition 6.1.1 Let m = (21, %2, ..., T ) (Y1, Y25 - - - Yry) - - (21, 22, - -+, 2 ), bE AN

element of S, written as a product of disjoint cycles. The cycle shape of 7 is (r1,79,...,7%).
Lemma 6.1.2 Suppose m = (x1,9,...,2,) € S, and 7 is any element of S,. Then
T = (21T, w7, ., T T).

Proof. For i <r, (z;7)7 ‘77 = xy77 = wy17. Fori=r, (x,7)7 'nr = x,nr =27, O

Lemma 6.1.3 Conjugate elements of S, have the same cycle shape.

Proof. Let m = (21,22, .., %) (Y1, Y2, - -, Yry) - - - (21,22, ..., 2,) € Sy and let 7 € 5,.
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Then

Tl = w0 ) (W Yoy Urg) - (21, 22, ey 2 )T
=7 w1, T )TT YL, Yoy Yo )T oo T (20, 22y 20 )T
= (217, Ty .o T) (T YTy o ooy Yy T) oo (21T, 20T, o oy 20, T)

by Lemma 6.1.2.

O

Lemma 6.1.4 Let m,0 € S,,. Then © and o are conjugate in S, if and only if they have

the same cycle shape.

Proof. Suppose 7 and ¢ have the same cycle shape. Let

T=(T1,%2 -, Ty ) (Y1, Y2, - -, Yry) - - - (21, 22, ..., 2, ) and
o= (ay,as,...,a;)(b1,ba, ..., b)) ... (c1,Coy... ¢ ), and let
1 T2 .. Ty Y1 Y2 oo Ypy .. 21 22
T =
ap Gz ... Qp b1 bg br2 .. C1 Gy

Then o = 7~ '77. The converse is Lemma 6.1.3.

Zry

k

O

Definition 6.1.5 A partition of n is a set of positive integers A = (A1, Ag, ..., \g) such

that Zle Ai =n. Write A= n to show X\ is a partition of n. We will assume \; = X\j11

for all 1 < i < k, unless otherwise stated. We say A = (A1, Az, - . .

partition of \; > \joq for all 1 <i < k.

,Ak) F nois a strict

From Lemma 6.1.4 we see that each conjugacy class of S, corresponds uniquely to a

partition of n.

Lemma 6.1.6 The size of the conjugacy class in S, corresponding to the partition X\ - n
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18

n!
|cls,, (A)]

- 1mimy12memy! . nmem, !’

where m; is the number of cycles in X of length 1.

Proof. See [36, p.3]. O

6.2 Representations and Character Degrees

In this section we follow the development in [36].

Definition 6.2.1 Let A = (A, A2, ..., A\x) be a partition of n. A Young diagram for A
consists of n nodes placed in k left-justified rows with |\;| nodes in row i. Label the nodes
(1,7) where i is the row number and j is the column number. We also use A for the name

of the diagram.

Example 6.2.2 For \ = (6,4,3,1) the Young diagram for \ is

Definition 6.2.3 Let A = (A1, Ag,..., \x) be a partition of n. A Young tableau for A is

a Young diagram for \ with the nodes replaced by the integers 1,...,n in some order.

Let t* denote a Young tableau for A\, and label the entries t(i,5) for 1 < i < |\,

1<j<k

Definition 6.2.4 Two Young tableauz for A are equivalent if they contain the same num-
bers in each row. A Young tabloid for A\ is an equivalence class for this equivalence

relation. We write {t}}.
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For a Young tableau t, let

R, = {m € S, | 7 stabilizes each row in ¢}

and

Cy = {m € S, | m stabilizes each column in ¢}.

Define Rf =3 _p mand C;7 = Y . (sgnm)7w, and note R and C; are in the group

ring of .S,,.
Definition 6.2.5 Lett be a Young tableau. The polytabloid of t ise; = C; Rft = C; {t}.

Definition 6.2.6 The Specht module corresponding to the partition A is the module gen-

erated by the polytabloids e;, where t runs over the tableaux for ).

It can be shown that the Specht modules form a complete set of irreducible modules
for S, see [36, Th. 2.4.6, p.66]. Therefore we have a 1-1 correspondence between the
partitions of n and the irreducible modules, and hence characters, of S,,.

We now state a useful result which enables the character degree corresponding to the

partition A to be calculated from the Young diagram for \.

Definition 6.2.7 The hook length of a node in the Young diagram is the sum of the
number of nodes directly to the right of the node and the number of nodes directly beneath

the node, plus 1 for the node itself. Let h(i,j) be the hook number of the node (i, j).

Definition 6.2.8 The hook length diagram, H (), for a partition A consists of the Young

diagram for X\ with each node replaced by the hook length at that node.

Example 6.2.9 The hook length diagram for A = (6,4,3,1) is

85



9 7 6 4 2 1

6 4 3 1
4 2 1
1

Theorem 6.2.10 The degree of the character x, corresponding to the partition X is given

by
n!
X(1) = —=——

T nG.5)

(4,9)EX
Proof. See [36, Th. 3.10.2, p.124]. O

Example 6.2.11 Let A = (6,4,3,1) - 14. The degree of the character corresponding to
A s
14!

TN TXOXAX X I X6 Ax3xIndx2xixt V090

x(1)

Our result for the symmetric group is as follows.

Theorem 6.2.12 The degree of an irreducible character of S, divides the size of some

conjugacy class of S,,.

Proof. Let A be a partition of n corresponding to the irreducible character x of .S,,. The
set of hook lengths on the diagonal of H(\) is {h(1,1),h(2,2),...,h(r,r)}. Each node
in H(\) is counted by exactly one hook in the above set and therefore . h(i,7) = n.
Also h(i,i) > h(i+ 1,0+ 1) for 1 <i<r. So pu= (h(1,1),h(2,2),...,h(r,r)) is a strict
partition of n with

n!
|cls, (1) = ——,



from Lemma 6.1.6. By Theorem 6.2.10,

x(1) = b T 7
(21:[@ (2, 7) [1r6.9 [ n6.9)
J i=1 (4,5)ENiA£]

which clearly divides |clg, (1)]. So x(1) divides the size of the conjugacy class correspond-

ing to the partition u. ([l

We finish this section by considering a related question. Given a non-trivial conjugacy
class K in S, can we find a non-linear irreducible character whose degree divides |K|? It

turns out that we cannot, as the following example shows.

Example 6.2.13 Let G = Syg. Let K; = clg((12)) and Ky = clg((123)). Then | K| =
171 and |Ky| = 1938 and there do not exist any non-linear irreducible characters of G

whose degrees divide the order of these classes.

6.3 The Alternating Group

Any element in S,, can be written as a product of transpositions. This product is not
unique, but either always contains an even number of transpositions, or always contains
an odd number of transpositions. We say an element of S, is even if it can be written as
a product of an even number of transpositions. The alternating group A, consists of all
the even permutations in S,,. The conjugacy classes and irreducible character degrees in

A,, can be calculated from those in 5,,.

Lemma 6.3.1 Let 7 € A,. The conjugacy class of w in S, splits into two conjugacy
classes of equal size in A, if and only if ™ does not commute with an odd element of S,,.

Otherwise it remains the same.
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Proof. First suppose m commutes with an odd element of S,,, say 7. Let o be any conjugate
of m in S,. Then for some § € S,, we have 0 = §~'7d = (70) " 'n7d. Now, since T is an
odd element, one of § and 76 must be even and so o € cly, (7).

Now suppose 7 does not commute with any odd elements of S,,. Then Cy4, (1) = Cg, (1)

and so |cly, (7)] = 2ol = 15

= G = Al = tlcls, (7)|. Let v € cls, (m) \ cla,(m). Then v

cannot commute with any odd element, so by the same argument, |cla, (7)| = 3|cls, (7).

Then clg, (7) = cla, (m) Ucla, (), where |cla, (7)| = |cla, (7)]- O

Lemma 6.3.2 Let x be an irreducible character of S,,. If x is non-zero somewhere outside
of A,, x restricted to A,, is irreducible. If x is zero everywhere outside of A,,, it restricts to
the sum of two distinct irreducible characters of the same degree in A,. All the irreducible
characters of A, come from restrictions of irreducible characters of S,, in one of these

ways.
Proof. See [28, 20.13, p.219]. O

Definition 6.3.3 Let \ be a partition of n. The conjugate partition N is the partition
obtained by reflecting along the diagonal in the Young diagram for \. The Young diagram

for X is symmetric if X = N

Example 6.3.4 Let A = (6,4,3,1). Then N = (4,3,3,2,1,1) and so X is not symmetric.

Let = (5,4,2,2,1). Then pu = ' and so p is symmetric.
Now we come to the result for the alternating groups.

Theorem 6.3.5 The degree of an irreducible character of A, divides the size of some

conjugacy class of A,,.

Proof. Let X be a partition of n corresponding to the irreducible character x of S,,. Again

we consider the strict partition p = (pq, fto, - .., tt) given by the set of hook lengths on
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the diagonal of H(\). Let m be an element of S, of shape pu and write 7 = mmy ... 7, as
a product of disjoint cycles. There are several cases to deal with.

First suppose 7 is an even element of S, which commutes with an odd element.
By Lemma 6.3.1, the conjugacy class of m in S, does not split in A,. Therefore x(1)
divides |cly, (7)| by Theorem 6.2.12, and so the degree of the irreducible characters of A,
corresponding to x divides |cla, (7)| by Lemma 6.3.2.

Now suppose 7 is an even element of .S,, which does not commute with an odd element.
By Lemma 6.3.1 this means the conjugacy class of 7 in 5, splits into two classes of equal
size in A,,. Also, h(i,7) must be odd for 1 <7 < r.

If the Young diagram of A is symmetric, x restricts to A,, as a sum of two irreducible
characters, each of degree 3x(1) by [14]. These character degrees clearly divide |cl4, (7).

If the Young diagram is not symmetric we must have h(z,y) = 2 for some (z,y) € A,

x # y. Then
n!
lcla, (7)] = ——,
2] [ ni. 1)
i=1
and
n! n!
(2W) . o
211~ h
(i,)€A 11 (&) . H ()
= (Z,j)E)\,Z#],(Z,])#(ZE,y)

So again we have (1) divides |cla, (7)| and hence by Lemma 6.3.2 so does the corre-
sponding irreducible character degrees in A,,.

Next we consider what happens when 7 is an odd element of S,,. In this case, when 7
is written as a product of disjoint cycles, 7 must have a cycle of even length. Let 7, be
the smallest such cycle. Suppose m = 7, and let 7* = 7, ...m,_72,. This corresponds to
the partition p* = (p1, ..., ftr—1, 3 flm, 3m). We have p* = n and 7* € A,,. There are two

cycles of the same length in 7* so its conjugacy class in .S,, does not split in A,,. The size
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of the conjugacy class of 7* is

n! n!
ela, (7)) = lels, ()] = —
2M%WM@WIM@Q-K?JHMM)

It is clear that 1h(m,m) occurs somewhere on the hook of (m,m), say at (a,b). Then

n! n!

| RGO o AP | BT

ij)EX 2
(i.5)€ i=1 (i,3) €N, (1,5)#(a,b)

Therefore x(1) divides |cla, (7*)|, and by Lemma 6.3.2, so will its irreducible constituents
in A,,.
Finally, suppose 7 is an odd element of S,, and 7, is the smallest cycle of even length,

but m # r. The hook diagram of A has the form

l k+d+1 By+d+1 - Bi+d+1 d - 1
k+c+1 k By - B

a, +c+1 Qg

ar+c+1 aq

C

1

where k and all entries on the diagonal below k are odd, and [ = h(m,m) is even. From
the diagram we see | = k+c+d+2 = (k+c+ 1)+ (k+d+1) —k. So since [ is
even and k is odd, we have k +c+ 1 # k + d + 1. Without loss of generality assume
k+d+1>k+c+1. Then d > ¢ and hence d > ¢+ 1. So we have a hook number of

¢+ 1 on the hook through (m,m). Note (k+d+ 1)+ (c+1) =1l and so k+d+ 1 and
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¢+ 1 have the same parity. Let u* = (i1, ..., -1,k +d+ 1, ¢+ 1ty - oy fir).

If k4+d+1iseven, then k+d+ 1,¢c+ 1 # p; for 1 < i < r and p* commutes with
an odd element of S,,. Therefore the conjugacy class corresponding to p* in S,, does not
split in A,,. We may rearrange p* into a strict partition so this is like the first case we
considered.

Ifk+d+1isodd, pyy1 > k+d+1> 1, but we may have ¢ + 1 = p; for some
m+1<i<r Ife+1# p; form+1<i<r, u* can be rearranged to a strict partition,
so the conjugacy class of p* in S, splits in A,,. If c+1 = p; for some ¢, u* commutes with

an odd permutation, so the conjugacy class does not split in A,,. Either way we have

n!

T IR TIN § B

1<i<ri#m

The hook diagram has an even number on its diagonal so it cannot be symmetric. There-
fore we must have a hook number equal 2 and so this is like the second case we considered.

This completes the investigation of all cases. 0

6.4 5,

In this section we assume n > 4 and consider the double covers of the symmetric group.

Definition 6.4.1 We define S, to be the group generated by z,t1, ..., t,_1, with the fol-

lowing relations.

(i) 22 =1.

(i1) zt; =t;z, for 1 <i<n—1.
(iii) 12 =z, for 1 <i<n—1.

(w) (titi1)® =z, for1 <i<n—2.
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(v) tit; = ztjt;, for |i—j| >1,1<4,j<n—1
Lemma 6.4.2 The group S, satisfies the following.
(i) |Sn| = 2|S,| = 2n!.
(ii) Z ={1,2} C Z(S,) and S,/Z = S,,.
Proof. See [22, Th. 2.8, p19]. O

Let 0:S, = S, t;,0 = (1,1 + 1) for 1 < i < n. Suppose C' is a conjugacy class in .S,,.
Then 0~1(C) is either a conjugacy class in S, or a union of two conjugacy classes in S,

[22, Th. 3.6, p.28]. We can calculate the sizes of conjugacy classes in S,, from those in

Sh.

Lemma 6.4.3 Let A € S,, be written as a product of disjoint cycles and let A bea preimage
of X in S,. Let m; be the number of cycles in \ of length i, for 1 <i < n. If X is an even

permutation,

- clg (A if mo; =0, for1 <i< in,
e, () = (=0 :
2|cls, (N)|  otherwise.

If X is an odd permutation,

- lcls, (N if m; =0 or 1, for1 <i<n,
lcls, (M) =
2|cls, (N)|  otherwise.

Proof. See [22, Th. 3.8, p29]. O

There are two types of irreducible representations in S,, positive and negative. The
positive representations are the same as those for S,, and so have been dealt with in the

previous chapter. The negative representations come from projective representations of
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Sp. It is the characters of these we are interested in here. For each strict partition X of n we
have an irreducible character 6, of Sn If X is an odd partition, there is another irreducible
character 6%, but 6%(1) = 6,(1), [22, p.77], so we don’t need to consider these characters.
These are all the irreducible characters of S, from the negative representations, [22, Th.
8.6, p.115].

Let A = {\1,..., A} be a strict partition of n. We form the shifted diagram S(\) of
A by placing A; nodes in the first row and A; nodes in the ith row, starting from the ith

column.

Example 6.4.4 Let A = (6,4,3,1). Then S(X) is

We then form the shift symmetric diagram, Y (\) of A, by placing A; nodes in the Oth
column and \; nodes in the (i — 1)th column beneath the i nodes already there. This is

a Young diagram for Sy,.

Example 6.4.5 Let A = (6,4,3,1). Then Y (\) is

o ([ ] [ ] [ ] [ ] [ [ ]
o (0] [ ] [ ] [ ] [

@) @) O [ ] [ ] [ J

We can now form the hook diagram of Y'(\) as in the case for S,,. Finally we delete

the nodes in the hook diagram of Y () which are not in S(\). This leaves H(\).

93



Example 6.4.6 Let A = (6,4,3,1). The hook diagram of Y () is

12 10 9 7 6 4 1
10 8 7 5 4 2
9 7 6 4 3 1
7T 5 4 2 1
4 2 1
1
and H(\) is
10 9 7 6 4 1
7T 5 4 2
4 3 1
1

Recall A = {\y, ..., A\x}. We can divide S(A) into nodes of three types. The nodes in
column £ are type 2. The nodes to the right of column k are type 1 and the nodes to the

left of column k are type 3.

Example 6.4.7 For \ = (6,4,3,1) we have

type 3 type 2 type 1
[ J [ ] [ ] [ ] ® [ J
° ° ° °
° ° °
®

Lemma 6.4.8 Let A = (\y,...,\) be a strict partition of n. There are ezactly 5(n —r)

even numbers in H(X), where r is the number of even parts in \.

Proof. Consider the entries in H(\) in row i. The type 2 node of row i has hook length
Ai. The type 3 nodes have hook lengths A\; + A\j11,..., A\ + Ax. The type 1 nodes have

hook lengths A\; — 1, \; — 2,...,2,1 with A\; — \jyq,..., Ay — A\x removed, see [22, p190].
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Clearly for ¢ < j < k either \; + A; and \; — A; are both even or they are both odd. Let
x be the number of even hook lengths at type 3 nodes in row 1.
If \; is an even number we have 1()\; — 2) — = even hook lengths of type 1. So the

total number of even numbers in row 7 is

i —2 i
—x+1+x:§

If \; is an odd number we have $(\; — 1) — « even hook lengths of type 1. So the total

number of even numbers in row i is

Ai—1 Ai—1
—r+0+x= .

Therefore the total number of even hook lengths in H(\) is

/\—1 Z_:n—r 5

A;odd Aieven

Recall 6, is the character corresponding to the strict partition A\. We have the following

Theorem from [22, Th. 10.7, p191].
Theorem 6.4.9 Let \ be a strict partition of n with length k. Then

93 (n—k—e(N)
9 1 = -
where

0 if X is an even partition
e(\) =
1 if X is an odd partition

and h(X\) is the product of the hook numbers in H()\).
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Let A = (A1, Ag, ..., Ax) be a strict partition of n. Reordering X if necessary, write A\ =
(Ao A Aty - -, Aprs), Where Aq, ...\, are cycles of odd length and A\, iq,..., Aris
are cycles of even length, with \y > Ay > ... > A and Ay > Ao > 000 > A,

We use A to define another partition, u, of n. For r > s, let

w = ()‘1 + )‘T+17 . '7>\s + )\r+sa)‘s+17 . '7)‘7“)7

for r < s and s — r even, let

= (A4 Nty A Aoy At F Ao, - Arps1 + Args),s

and for r < s with s — r odd, let

n= (/\1 + )\T+17 s 7/\7' + >\2T7 )\2r+1 + )\2r+27 ceey >\r+572 + )\rJrsflu )\r+s)-

Then u can be rearranged to a strict partition of n. Let p = (u1, o, - - ., ).

Example 6.4.10 If A = (6,4,3,1), then u = (9,5). If A = (10,9,6,5,4,2), then p =
(19,11,6).

Theorem 6.4.11 Let A and pu be as above and let ji be a preimage of p in S,. Then
0x(1) divides |clg (f1)|.

Proof. By Lemma 6.4.3, |clg (f1)| = |cls, ()| or 2|cls, ()|, so it is sufficient to show 6,(1)
divides |clg, (u)|. That is
2%(”7]675()‘))”' n'

————— divides .
h(A) M-
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This is equivalent to
h(A)

93 (n—k—e(\) divides .
M-

We know i1, ..., -1 appear as type 3 hook numbers in H(\). Also, g is a hook number
in H(X) of type 3 or type 2. So if we can show there are at least (n — k — €(\)) even
numbers left in H(\) after uq, ..., have been removed, we are done.

Let K () be the set of hook numbers in H(\) without gy, s, . . ., ;. There are several
cases to consider.

First suppose 0 < s < r. Then k£ > r and

,u:()\1+)\T+1,...,)\S+)\r+s,)\3+1,...,)\7«>I(/,Ll,...,/,bl).

For all 1 < <, p1; is an odd number, so the number of even numbers in K (X) is £(n—r)

by Lemma 6.4.8. Therefore we have

n—k—e) _n-—r
<
2 2

as required.

Next suppose 0 < r < s and s — r is even. Then k£ > s and

H = ()\1 + )\7"—1—17 <. 7)\7" + >\27‘7 >\27"+1 + >\27‘+2a S 7)\7"+s—1 + >\r+s) = (ﬂla o nul)-

We have (s — r) even numbers in y and so we have
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even numbers in K (), by Lemma 6.4.8. Then

n—k—e(\) gn—s—e()\) -8
2 2 2

Finally we suppose 0 <7 < s and s — r is odd. Then k£ > s and
n = ()‘1 + /\r+17 s ’)‘r + >\2r7 /\2r+1 + )\2fr+27 s ,/\r+s—2 + /\r-l—s—la >\r+s) = (,Ml, s 7,ul)'

We have %(s — 17 —1) 4+ 1 even numbers in x4 and so we have

n—r s—r—l_l_l _n—s—l
2 2 N 2

even numbers in K (\).

If s is even, then A is an even permutation so £(A) = 0. Also, r > 0 since s — r is odd,

so k > s and hence k£ > s+ 1. Then

n—k—¢e(\) n—k<n—s—1
2 2 -2

If s is odd, then A is an odd permutation so £(\) = 1. Then

n—k—s()\)_n—k‘—1<n—s—1
2 2 T2

~

6.5 A,

Again throughout this section we assume n > 4.

Definition 6.5.1 In Lemma 6.4.2 we stated that there is a projection of S, onto S,. We

define A, to be the inverse image of A, under this projection.
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We can calculate the sizes of the conjugacy classes in A, from those in A, and the

degrees of the irreducible negative representations from those in S,,.

Lemma 6.5.2 Let A\ € A, written as a product of disjoint cycles, and let A be a preimage

of X in A,,. Let m; be the number of cycles in \ of length i, for 1 <i < n.

el (5\>| lcla,(N)|  if mo; =0, for1<i< gn, orifm; =0 orl, forl<i<n,
cly, =
2|cla, (N)|  otherwise.

Proof. See [22, Th. 3.9, p30]. O

Lemma 6.5.3 Let A\ be a strict partition of n and let 6y be the corresponding character
in Sn. If X is an even partition, the restriction of 0y to A, is the sum of two distinct
wrreducible characters, each of degree %9,\(1). If X is an odd partition, the restriction
of Oy to A, is irreducible. This gives us all the characters of the irreducible negative

representation of A,,.
Proof. See [22, Th. 8.6, p114]. O

Theorem 6.5.4 The degree of an irreducible character of A, divides the size of some

conjugacy class of A,

Proof. Let X\ be a strict partition of n and let 85 be the corresponding character in
S.. Let é,\ be an irreducible constituent of the restriction of 6y to A,. Write A =
Ay ooy A Aty - -, Apgs), Where Aq, ...\, are cycles of odd length and A\ iq,..., Ais
are cycles of even length, with A\;y > Ao > ... > A and A\, g > Ao > ... > Ay, Let

be as in the case for S,,.

1. Suppose 0 < s < r. Then pu is an even partition with only odd length cycles.

1 1

Therefore we have |cl; (f1)| = |cla, (1) = 3lcls, (1) = 5|clg, (it)]. If s is even, then
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A is an even partition and so 6 (1) = 50(1). We know from Theorem 6.4.11, 6,(1)
divides |clg (j1)|, so clearly 05(1) divides clz ()] If s is odd, then A is an odd

partition and so f5(1) = 6,(1). So we need to show

93 (n—k—e(X)) ) 1
=" divides ————
h(A) 201
Therefore if we can show there are at least 2(n — k — &()\)) + 1 even numbers in

K()), we are done. Now, s is odd so s > 1 and thus k£ > r + 1. Also, A is odd so

g(A) = 1. Therefore we have

n—k—a(A)+1:n—k+1 gn—’r’.
2 2 2

So by Lemma 6.4.8 this case is complete.

. Suppose 0 < r < s and p is an even partition. We can rearrange u to be a strict
partition and it has at least one even length cycle. Therefore [cl; (1) = |cla, ()| =
|cls, ()] We know, from Theorem 6.4.11, 0,(1) divides |clg, (11)]. So 65(1) divides

clz ()], and therefore 0,(1) divides |l i, ()| as required.

. Suppose 0 < r < s, s—riseven, Aiseven and pisodd. Let u* = (p1, .., fi—1, Arrs—15 Arts)-
Then p* can be rearranged to a strict partition of n, u* € A,, and el (u*)| =

lela, ()] = |els, (1*)| = n! . Let K*(\) be the set of hook numbers

M1 =1 A s—1Arts

1

in H(\) with g1, ..., fti—1, Arys—1, Arys Temoved. We have 3

(n — ) even numbers in

1

H(X), (s —7)+ 1 even numbers in x*, and so 3

(n — s —2) even numbers in K*(\).
Since \ is even,

~ 2%(n_k)n'

1) = %6*(1) ~2h(N)
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We have

so 0(1) divides el z ().

. Suppose 0 < r < s, s—riseven, Aisodd and g is odd. Let p* = (ft1, .-, fhi—1, Arts—1, Apis)-

Then, following the previous case we have 3(n — s — 2) even numbers in K*()). As

A is odd,

We have k > s, so k > s+ 1. Therefore

n—k—1 n—s—2
< ;
2 2

so 0(1) divides lclz (1))

. Suppose 0 < r < s, s —ris odd, A is even and p is odd.

Let p* = (1, -y fhi—2, Arrs—2, Arys—1, Arrs). Then p* can be rearranged to a strict

|
mn:
Bl —2Ar s —2Arps—1 Arts

partition of n, pi* € A,, and ez (1*)] = |cla, ()] = |els, ()] =
Let K*(\) be the set of hook numbers in H(X) with g1, ..., -2, Mys—2, Arrs—1, Adrts
removed. We have (n —r) even numbers in H(\), (s —r + 1) + 1 even numbers
in p*, and so 1(n — s — 3) even numbers in K*(X). Since A is even,

_ 1 23(n=k)p)
0x(1) = §9A(1) = 0
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We have k > s, so k > s+ 1. Therefore

and so 0,(1) divides lclz (1*)]-

. Suppose 0 <r < s, s —ris odd, A is odd and p is odd.

Let p* = (1, ..oy f—2, Arrs—2, Arys—1, Ars). Then, as in the previous case we have

2(n — s — 3) even numbers in K*(\). Note A is odd so

We have s odd so must have r even and hence, since r > 0, k > s + 2. Therefore

n—k—1 n—s—3
< )
2 2

and so 6 (1) divides lclz ().

. Finally suppose r = 0, A is an odd permutation and p is an odd permutation. Then

é/\(l) = 9)\(1) Let lu* = (:ulv"'a,ul—b%,ula%:ul)' Then [Z* € An and ‘ClAn(/Z*)‘ =

2|cla, (1*)| = 2|cls, (1*)] = #”('%M) We show 6 (1) divides el i (1))
5 2%(n—k—1)n!

n—k—1)—1

so we need 23 fi1 - () divides h(X). Clearly 34y is the hook number

of a node in row k of H(X), so p1 ... () divides h(X). Let K*(X) be the set of
hook numbers in H(\) with 1, . .., tu, 3/ removed. There are $n even numbers in
H(X) so there are at least in — 3(s + 1) =

$(n — s — 2) even numbers in K*(X).
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Then,
n—k—1 _n—s—3 n—s—1

as required.
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CHAPTER 7

COMBINATORIAL RESULTS

In this short technical chapter we consider some results which we will use in the following

chapters.

Lemma 7.0.1 Let m € Z, m > 2 and let L,, = (mgl) + (m;2) +... 4+ (;) Then

Proof. We proceed by induction on m. Suppose m = 3. Then

Lpn=03)=1= 52 (3 —14)(i — 1). Now, by induction, we have

-

_ n;(m -+ M=
= i(m—i)(z’—l)—kiz
= Z(m—@)(i—l)—i—Z(z—l)
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as required. O

Let a = (aq, ag, ..., ) be a sequence of length m. For such an «, define
No=>» (m—i)(s+i—1)—L,,

where L,, is as in Lemma 7.0.1.

Lemma 7.0.2 Let! be a positive integer and o = (v, . . ., auy,) be a partition of 4+ 1 with
ag L as < ... < ay andm <+ 1. Then there exists a partition 8 = (B, ..., Bms1) of

L+ 1, with 1 < ... < Bmg1, such that N, < Npg.

Proof. Let j be minimal such that o; # 1. Let 5= (1,...,1,05 — 1,41, ..., ), Where

Bj+1 = aj — 1. Note B; = o1 for i # j + 1. Then by Lemma 7.0.1

Ng—N, = Z(m—l—l—i)(ﬁﬂri—1)—Z(m+1—i)(i—l)—i(m—i)(aﬁ—i—l)
—l—‘_(m—i)(i—l)
= > (m+1-i)p; - _(m—i)ozi

1 1

-
I

-
Il

M

s
||
N

M

=1

= mpr+ Z(m +1—14)(B — ai—1)
i—2

= m+(m+1—(+1)(Bj1 —ay)
= J

> 0. O

Definition 7.0.3 Let | € Z, | > 2. An l-sequence of length m is a sequence a =
(o1, o, ..., () satisfying
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(i) a; € Zxo for all 1 < i < my
(1) on < g < ... < Qs
(iii) ap # 0;
(iv) ci # Qiga;
(v) o0 =1+ [(mT_l)Q], where [z] is the largest integer less than or equal to z.

Let a = (aq, ag, ..., ap) be a sequence of length m. For such an «, define

Ao =31 (m = )i — My, where My, = (%) + ("5%) + ...+ (), with z = 2 if m is

even and x = 3 if m is odd.

Lemma 7.0.4 Let m > 5 be odd and suppose o = (0,1,1,...,’”—_3,"‘—_3,”‘7_1,0, with

m—1 : _ (m=1)\2
[ > #5=. Then a is an l-sequence and Ay = (T) .

Proof. 1t is clear « satisfies Definition 7.0.3(i)-(iv). We have
m—3
i N o om—1
Z o = 2 Z i+ — +1
i=1 i=1
_(m—=3 m—1 n m—1 Ll
B 2 2 2
_(m-—1 2 ny
- 5 ,

Therefore « satisfies Definition 7.0.3(v) and so is an [-sequence.

We prove the second claim by induction on k = 21, For k =2, a = (0,1,1,2,1) and

A, = Zf:1(5 —i)ay — (g) = 4 as required. Now let § = (0’1,1’”.’%—5’771_—5’771_—3,[)_
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Inductively we have Ag = (*52)%. Then

m—3
-2
Aa = Aﬂ + Z 20(2' + 20[m_2 + Qup—1 — (m )

, 2
=1
m—3 (m —2)(m — 3)
— (== 4 -
( ) ¥ ZH !
— (m_—l) , 0
2
Lemma 7.0.5 Let m > 4 be even and suppose o = (0’1’17“"%—2’%—2’1)7 with | >

m=2 Then « is an l-sequence and A, = (752) (2).

Proof. Clearly « satisfies Definition 7.0.3(i)-(iv). We have

m—2
i=1 i=1
m— 2 m
= (T) (3)+!
2

Therefore « satisfies 7.0.3(v), so is an [-sequence.

The second claim is proved by induction on k = . For k=1 a=1(0,1,1,1) and

A, = 2?21(4 —i)ay; — (3) =2. Now let 8= (0,1,1,..., msz;’ mT’, [). Inductively we have

107



As = ("37) (*3%). Then

m—3

m— 2
A5+22ai+2am_2+am_1—( )

A,
, 2
1=1

m—4

B <m2_4) (mg_z) +4iz‘+3(m2_2) _ <m—2)2(m—3)
(255 (252) w2 (5) (257) waleg 2 - o2y
- (27 &)

This proves the claim.

Lemma 7.0.6 Let o = (v, (g, ..., vy,) be an l-sequence and let

ﬁ: (041,...,0@',1,0[]‘ + 1,ozj+1,...,ozk,1,ozk — 1,0ék+1,...,06m) = (ﬁl,ﬁz,...,ﬁm).

Then Ag = Ay +k — 7.

Proof. We compute

=1 i=j+1
m—1

Hm = k) (ag = 1)+ Y (m—i)a; — M,
i=k+1

m—1

as claimed.
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Let m be odd and [ > mT’l Set

m—3 m—3 m—1
= 1,1,... = .
o (07 ) L ) 9 ) 9 ) 9 7l) (017 Jam)

Note o is an [-sequence by Lemma 7.0.4. Let 5 = (51, ..., Sm) be an l-sequence of length
m. By Definition 7.0.3(v), >, 8; = >, 04, and by Definition 7.0.3(ii),(iii),(iv), we see
Bm < 0, and B; = o; for 1 < ¢ < m. Therefore any [-sequence (3 of length m can be
obtained from ¢ by subtracting a positive integer from o, and distributing it among the

other o;’s to obtain the given (;’s.

Lemma 7.0.7 With o and B as above, we have A, < Ag.
Proof. This follows by Lemma 7.0.6. 0

Lemma 7.0.8 Let B be an l-sequence of length m, with m odd. Then either m < 2l + 1

and Ag < (1—1)%, orm =21+1 and Az = [*.

Proof. Let = (f,...,0m). First suppose m < 20+ 1. In order for 5 to be an [-sequence,

m+1

we must have §,, > #5=. Each time we subtract 1 from o, and add it to another o;, we

increase A, by at most (m — 1) by Lemma 7.0.6. Therefore, by Lemma 7.0.4,

m—1\?2 m-+1

Az < _ —1 - —

e () v (-7
m—+1

= 1+3—|—...+(m—2)+(m—1)(l—T)
< 14+34+...+m—2)+m+...+(2(1—-1)—-1)

= (I—-1)>
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Now suppose m = 2] + 1. By Definition 7.0.3, we must have

20+1 2
Y Bi=1+ (—(2l+21)_1> = I(1+1).

Therefore the only I-sequence of length 20 + 1 is § = (0,1,1,...,1,1). Then, by Lemma
7.0.4,

4, ((21+21) — 1)2 e

Finally suppose we have m > 2l + 1. Then

iﬁi > QZi
=1 '

B m—1 m+1
- (") (")
~ (m-—1 > m-—1
- (T) L
N (m_—1)2+(2l+1)—1

2 2

m—1\"
- (T) *+h
so [ does not satisfy Definition 7.0.3. O

Now let m be even and [ > 3. Set

-2 m-2
o= (0,1,1,...,mT,mT,l> = (015, 0m).

By Lemma 7.0.5, o is an [-sequence. We can obtain any [-sequence 3 of length m as in

th case when m is odd.

Lemma 7.0.9 For any l-sequence of length m, we have A, < Ap.

Proof. This follows by Lemma 7.0.6. U
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Lemma 7.0.10 Let 5 be an l-sequence of length m, with m even. Then either m < 2l

and Ag < Il —2) orm =2l and Ag =1(l —1).

Proof. Let 8 = (p1,...,0Bn) be an l-sequence. First suppose m < 2[. In order to satisfy
the conditions in Definition 7.0.3, we must have 3,, > 7. Each time we subtract 1 from
om and add it to another o;, we increase A, by at most (m —1) by Lemma 7.0.6. If 5 # o,

Bm—1 = 0m_1 + 1. Therefore, by Lemma 7.0.5,

m
< _ _
Ay < Ag+1+(m—1) (1 . 1)
= 2+4+...+(m—2)+1+(m—1)(l—%—l)
< 2444+...+4m=2)+m+...+2(1-1)—2)+1

= (-2 -1)+1

N

I(1—2).

Now suppose m = 2[. Then by Definition 7.0.3,

(Y

So we must have = (0,1,1,...,0l — 1,1 — 1,1). Then by Lemma 7.0.5 we have

e (252 (B)

1
= 2— — :2
—l%-{l l+4} =

2
Zﬁi =1+
i=1
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Finally suppose m > 2[. Then

m » m
Zzlﬁz > 2224‘5

so [ does not satisfy Definition 7.0.3.
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CHAPTER 8
ALGEBRAIC GROUPS AND FINITE

(GGROUPS OF LIE TYPE

8.1 Root Systems

Let V' be a finite-dimensional vector space over R, with an inner product (-,-). Let

(o, B) = 2((5’5)), and define

Then r, is a reflection in the hyperplane perpendicular to «.

Definition 8.1.1 A root system is a finite subset X of V' such that, for all o, € X,

ro(X) C X, (o, B) € Z, and ca € 3 implies ¢ = £1. The elements of ¥ are called roots.

Lemma 8.1.2 Let 3 be a root system. If a, 5 € X2, with o # £, then

(a, B) (B, ) € {0,1,2,3}.

Proof. We have («, ) (5, a) = % = 4 cos? §, where 0 is the angle between v and §3.

So since (v, B) € Z, we must have («, ) (8, a) € {0,1,2,3,4}. Suppose (a, ) (3, a) = 4.
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Then cosf = +£1, which implies § = 0 or 7, so @ = £[3, a contradiction. Therefore we

have {a B) {8, ) € {0.1,2,3}. .
Corollary 8.1.3 Suppose («, 5) < 0. Then either (o, ) = —1 or (5,a) = —1.

Proof. Clearly (o, ) < 0 implies both («, 5) < 0 and (3,a) < 0. So the result follows
from Lemma 8.1.2. 0

Definition 8.1.4 A fundamental system of a root system ¥ is a linearly independent
subset 11, such that every element of ¥ is either a non-negative or non-positive linear

combination of elements of 11.

For a fixed IT C 3, let X be the subset of X consisting of those elements which can
be written as a non-negative linear combination of II, and let ¥~ be the subset of X

consisting of those elements which can be written as a non-positive linear combination of

II. Note X =Xt UX~.

Lemma 8.1.5 Suppose o, B € Il with o # B. Then («, 8) < 0 and hence {(«, ) < 0.
Proof. See [33, p.270]. O

The root system X is irreducible if there do not exist non-empty disjoint subsets 31, >

in ¥ such that ¥ =%, U, and (o, ) =0 for all a € ¥y, f € 3.

Definition 8.1.6 A Dynkin diagram is a graph with vertex set Il and {a, B) (5, «) edges
connecting the vertices o, 5 € Il. If a and [ are joined by at least one edge then, by
Corollary 8.1.3, at least one of (o, ) = —1 or (B,a) = —1 holds. If {(a, ) # —1 the

edges between o and B are labelled with an arrow.

A complete set of connected Dynkin diagrams is given in Table 8.1.
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Table 8.1: Dynkin Diagrams

—o—o
aq a2 Qn n 2 1
———o—0o— ——»
(3} a2 Qn n 2 2
————o—o— ———=»
(3} a2 Qn n 2 2
Qn—1
———o—0o—
. < n >4
Qn
P —
aq a2 as as Qnp n = 67 77 8
Qq
———e——> o —o
[e%} a2 a3 Qg
—
aq (e}
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Theorem 8.1.7 The irreducible root systems correspond to the connected Dynkin dia-

grams.

Proof. [33, Th. 9.6]. O

Lemma 8.1.8 Suppose 11 is a fundamental system of the root system X, with a connected
Dynkin diagram. Let o € 1 and 6 = Y ;7. Then there ewist positive roots fy =

a,...,0 =9 such that B; = Bi—1 + p, where p € I1. In particular, § is a root.

Proof. We use induction on |II|. The case |II| = 1 is clear so assume |II| > 1. Let A be a
subset of II such that a € A, |A| = |II| — 1 and A has a connected diagram. Inductively
there exist positive roots 81 = o, ..., B1—1 = > A 7, spanned by A. Now let w € IT'\ A.
Since A is connected and the Dynkin diagram corresponding to I is a tree, w is joined to

a unique node A € A. Then (\,w) # 0 and (u,w) =0 for all p € A\ {A}, so we have

(Bi—1,w) = Z(T,w) = (\w) < 0.

TEA

Therefore, by Corollary 8.1.3, either (f;_1,w) = —1 or (w, fi—1) = —1. If (Gj_1,w) = —1,
then

Tw(ﬁl—ﬁ = -1 — <51—1,w> w =29,

and if (w, §;_1) = —1, then

Tﬁl—l(w) =W <W7 5l—1> b1 = 0.

So ¢ is a positive root and the lemma holds. O

Let IT = {ay,...,q} be a set of simple roots for the root system ¥. Let f € X.

Then we can write § = Zﬁzl m;a;, with m; € Z and either all m; non-negative, or all m;

116



non-positive. We define the height of 5 by ht(5) = Z§=1 m;. The highest root is the root

with the greatest height, and is unique.

Example 8.1.9 Let II = {ay,..., a7} be the set of fundamental roots in E;. Let a* be

the highest root. Then by [19, p.12], o = 21 + 3 + 4dag + 20 + 3as + 206 + 7.
Lemma 8.1.10 In E;, o — aq is a root.

Proof. The only node in the Dynkin diagram of type E7 which «; is joined to is aw, so by
Corollary 8.1.3, either (ay, ) = —1 or (a2, aq) = —1, and (a;,q) = 0 for j > 2. First

suppose (a1, as) = —1. Then

*

ror(e1) = a3 — {ag,a") «
= o — (3{ag,a0) +2{ay,a))a”

= o —(=3+4)a"

= o —a’.
So oy — «* is a root and hence so is a* — a;. Now suppose (s, a;) = —1. Then
Y
* * *
Tal(a> = « _<057041>051

= Oé* — (3 <042,061> +2<061,C¥1>)061
= a" —(-3+4)m
= o —o.

So again a* — a4 is a root. ([l

Example 8.1.11 LetIl = {ay,...,as} be the set of fundamental roots in Eg. The highest

root is given by o = 201 + 4ag + 6ag + 3ay + bas + dag + 3ar + 2as, see [19, p.12].
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Lemma 8.1.12 In Eg, o — ag is a root.

Proof. The proof is similar to that of Lemma 8.1.10, using ag in place of a;. 0J

8.2 Algebraic Groups

Let K be an algebraically closed field and let A = Kz, ..., xz,]| be the ring of polynomials
in n independent commuting variables over K. For any S C A, we define an algebraic set

to be the set of common zeros of S. That is, algebraic sets have the form
V(S)={x e K"| f(z) =0 for all fe S}.

The sets V(S) for S C A form the closed sets of the Zariski topology on K™.

Let X C K™ be an algebraic set. The vanishing ideal of X is
I(X)={feA| f(x)=0forall z € X}.

Let K[X] = A/Z(X). This is the coordinate ring of X. Since K is algebraically closed,
Z(X) is a radical ideal. If X is irreducible, Z(X) is a prime ideal and hence K[X] is an

integral domain, see [18] for details.

Definition 8.2.1 An affine variety is a pair (X, K[X]) as defined above. Generally we

just say X is an affine variety.

Definition 8.2.2 Let K(X) be the quotient field of K[X]. The dimension of X is the

transcendence degree of K(X) over K.

Definition 8.2.3 Let K be an algebraically closed field. A linear algebraic group G over
K s a group which is also an affine variety over K. Let G and H be linear algebraic
groups. A map ¢ : G — H is an algebraic group homomorphism if ¢ is both a group

homomorphism and a morphism of affine varieties.
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Lemma 8.2.4 A group G is a linear algebraic group over K if and only if it is isomorphic

to a closed subgroup of GL,(K), for some n.
Proof. See [18, Cor. 2.4.4, p.135]. O

Definition 8.2.5 A topological space X is connected if it cannot be written as the union

of two disjoint non-empty open subsets.

Let G be a linear algebraic group. We denote the closed connected component con-
taining the identity by G°, and note it has finite index in G, see [18, Prop. 1.3.13, p.31].

The dimension of G is defined to be the dimension of G° as an affine variety.

Definition 8.2.6 Let G be a connected linear algebraic group. The radical R(G) of G is
the largest closed connected solvable normal subgroup of G. The unipotent radical R,(G)

18 the largest closed connected unipotent normal subgroup of G. We say GG is semisimple

if and only if R(G) =1 and reductive if and only if R,(G) = 1.
We have R,(G) C R(G), so a semisimple group is reductive.

Definition 8.2.7 A connected linear algebraic group G is simple if any proper normal

subgroup of G is finite and contained in Z(QG).

Definition 8.2.8 Let G be a linear algebraic group. A Borel subgroup of G is a maximal

closed connected solvable subgroup of G.

If G is a linear algebraic group, every element of G lies in some Borel subgroup of G,

and any two Borel subgroups of G are conjugate, see [18, Thm. 3.4.3, p.198].

Definition 8.2.9 Let GG,, be the multiplicative group of K. A torus is isomorphic to a
direct product of finitely many copies of G,,. A torus is maximal in G if it is not properly

contained in any other torus in G. Suppose T is a torus in G with T'= Gy, X ... X Gy,

TV
k times

Then the dimension of T" s k.
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If G is a linear algebraic group, any two maximal tori in G are conjugate and every

torus is contained in some Borel subgroup of G.

Definition 8.2.10 Let G be an algebraic group with mazimal torus T'. The rank of G
is the dimension of T. Let S be a mazximal torus in G', the derived subgroup of G. The

semisimple rank of G is the dimension of S.

Let G be a linear algebraic group and let B be a Borel subgroup of G. Since B is
solvable and connected, we can write B = R, (B)T, where R,(B) is the unipotent radical
of B and T is any maximal torus of B, see [19]. We say b € B is unipotent if b € R, (B),

and semisimple if b € T.

Definition 8.2.11 Let G be a linear algebraic group and x € G. As above, x must lie in
some Borel subgroup B of G. Then x is unipotent in G if it is unipotent in B and x is

semisimple in G if it is semisimple in B. Also, x is regular if dim Cg(x) = rank G.

Let T be a maximal torus of the connected reductive group G. The character group
X of T is the set of algebraic group homomorphisms from 7" to G,,, with multiplication
(x1 + x2)(t) = x1(t)x2(t) for all x1,x2 € X, t € T. We define the cocharacter group
Y to be the set of algebraic group homomorphisms from G, to T, with multiplication
(1 + 72)(A) = (AN for all v,7 € Y, X € G,,,. Write X = Hom(T,G,,) and

Y = Hom(G,,,T) to denote these entities.

Lemma 8.2.12 Hom(Gy,, Gp,) = Z.

Proof. Clearly f(x) = 2/ € Hom(G,,G,,) for all j € Z. Conversely, suppose f €
Hom(Gp,,Gy). Then since Hom(G,,,Gy,) C Klz,z7'], f(z) = 3 ,c, e’ with all but
a finite number of als zero. Let j be the smallest i such that a; # 0. Then g(z) =
f(x)x™7 € Hom(G,,,G,,) has non-zero constant term and no negative powers. Suppose

g has degree r. Define h(z) = g(2?) — g(z)*. As h has degree at most 2r, either h has 2r

120



roots in K or h = 0. Since g is a homomorphism, we have hA(\) = 0 for all A € G,,,, and

hence h = 0. Let g(z) = b.z" + ... 4+ byx + by, where by # 0. Then

h(z):br$2r+---+bll’2+bo—(erTT—{—...—l—bll‘—Fbo)Q:0.

So by equating coefficients we have by = 1 and b; = 0 for all i # 1. Therefore g = 1 and
hence f(z)r™/ =1, that is f(x) = 27. O

Let x € X be a character, and 7 € Y be a cocharacter. Then the composition y o~ is
a homomorphism from G,, to G,,, so there exists n € Z such that (x oy)(\) = A" for all
A € K, by Lemma 8.2.12. Define (y,~y) = n. We can then define a map ¢ : X x Y — Z

by ¥((x,7)) = (x,7), for x € X,y €Y.

Lemma 8.2.13 We have X = Hom(Y,Z) and Y = Hom(X,Z).

Proof. For x € X, define ¢, : Y — Z by ¥, (y) = (x,7) for v € Y. Similarly for v € YV’
define ¢, : X — Z by ¢,(x) = (x,7) for x € X. By [33, p.23, Prop. 3.6], the maps
X — ¢y and v — 1, are isomorphisms from X to Hom(Y,Z) and Y to Hom(X,Z)

respectively. 0

Again, fix a maximal torus 7" of G. Let G, be the additive group of the field K.
Any subgroup of GG which is isomorphic to G, is called a one-parameter subgroup. A
root subgroup is a one-parameter subgroup of G which is normalized by 7. Let H be a
root subgroup of G. Then T acts on H by conjugation, giving a homomorphism ¢ : T" —
Aut G,. So, since Aut (G, is isomorphic to G,,, we have ¢ € X. Any such homomorphism
¢ is called a root, and we let ® denote the set of roots. We have ® is a finite set and, up
to isomorphism, is independent of the choice of T. We say & is the root system of G. By

9, p.77], @ is a root system in the sense of Section 8.1.
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Theorem 8.2.14 Let X, be the root subgroup corresponding to the root v € ®. Then
G=(T,X,|aecd).

Proof. See [9, p.19]. O

Let G be a connected reductive group with maximal torus 7" and character and cochar-
acter groups X and Y respectively. Let ® be the root system of G with respect to T,
with fundamental system A. For any 8 € @, there exists Y € Y such that, for all & € @,
(a, B) = (o, BY), where («, 3) is as in Section 8.1 and (a, V) is as above, [9, p.19]. Let
OY = {BY | 5 € ®}. This is the set of coroots of G and is a finite subset of Y. Clearly,
] = [V,

Definition 8.2.15 Define (X, ®,Y,®Y) to be the root datum for G.

Let G be a connected semisimple group. Given root datum (X, ®,Y, ®Y), we have
Z® < X and Z®Y < Y, with both subgroups having finite index [9, p.23]. Let Q =
Hom(Z®V,Z). By restriction we have an injection Hom(Y,Z) — €, so since X =
Hom(Y,Z), by Lemma 8.2.13, we may identify X with a subgroup of Q. By [9, p.23],
|0: X| =Y :ZdY|, and so |X : ZD||Y : ZDV| = | : ZD|.

Let G be a connected reductive group with root system ®. Let A be the set of
fundamental roots of ®. If A has a connected Dynkin diagram, G is a simple group.
However, there is normally more than one linear algebraic group with a particular Dynkin
diagram. From a given Dynkin diagram, ® and ®" can be determined up to isomorphism
and hence so can (). Given G corresponding to a certain Dynkin diagram, there is a

subgroup X such that Z® C X C Q) which determines G' up to isomorphism.

Definition 8.2.16 With G and X as above, G is called adjoint if X = Z® and simply
connected if X = ().

Definition 8.2.17 Let G and H be linear algebraic groups. An isogeny is a surjective

homomorphism i : G — H such that ker v is finite.

122



Let G,q and G, be the adjoint and simply connected groups corresponding to a given
Dynkin diagram. There is an isogeny Gg. — G4, with kernel Hom(Q/Z®,G,,). The

centre of G, is isomorphic to this kernel. Note Z(Gyq) = 1.

Definition 8.2.18 Let G be a simple linear algebraic group and assume A = {ay, ..., o}
s a set of fundamental roots. Let h = 22:1 m;a; be the highest root. A prime p is bad

for G if p divides m; for some 1 <1 < 1. A prime is good for G if it is not bad.

The bad primes for the simple algebraic groups are as follows, [33, p.117].

Group Type | Bad Primes

A; none

B 2

C 2

D, 2

Go 2,3

Fy 2,3

Es 2,3

E; 2,3

Ex 2,3,5

8.3 Finite Groups of Lie Type

In this section we discuss how the finite groups of Lie type can be obtained from the linear

algebraic groups.

Definition 8.3.1 /9, p.31] Let K be an algebraically closed field of characteristic p and
q some positive power of p. Define Iy : GLy(K) — GLn(K) by Fy((ai;)) = (af;). Now

let G be a linear algebraic group over K and F a homomorphism of G. Suppose there

exists an injective map i : G — GL,(K) such that io F' = F,o0i. Then F is a standard
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Frobenius map. A Frobenius map on G is a homomorphism F : G — G such that there
is some integer m > 0 with F™ a standard Frobenius map. Following [19], we say F is a

Frobenius map of level qi.

Definition 8.3.2 Let G be a linear algebraic group and F' be a Frobenius map on G. The

fized point set of F on G is

G"'={geG|F(g) =g}

Lemma 8.3.3 If G is a linear algebraic group and F is a Frobenius map on G, then G¥
s a finite group.

Proof. See [18, Prop. 4.1.4, p.228]. O

Definition 8.3.4 Let G be a connected reductive group and F be a Frobenius map on G.

Then G* is called a finite group of Lie type.

Proposition 8.3.5 Let F' be a Frobenius map on G, of level qo and let H be a closed

subgroup of G. Then the restriction of F' to H is a Frobenius map on H of level qq.
Proof. See [19, Prop. 2.1.10, p.34]. O

The following is the Lang-Steinberg Theorem.

Theorem 8.3.6 (Lang-Steinberg) Let G be a connected linear algebraic group over K,

with Frobenius map F. Then the map L : G — G, L(g) = g~ F(g), is surjective.
Proof. See [9, p.32]. O

Definition 8.3.7 Let G be a connected linear algebraic group over K, with Frobenius

map F. A subgroup H of G is F-stable if F(H) = H.
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The following result is a standard application of the Lang-Steinberg Theorem.

Lemma 8.3.8 Let G be a connected reductive group with Frobenius map F. Then G

contains an F'-stable Borel subgroup, and an F-stable maximal torus.

Proof. Let B be a Borel subgroup in G. Then F(B) is also a Borel subgroup and so, as
all Borel subgroups of G are conjugate in G, there exists g € G such that F'(B) = ¢! Bg.

Now by the Lang-Steinberg Theorem, g = x~'F(x) for some z € G. Then

F(xBz™') = F(z)F(B)F () ' = 2gF(B)g 'a™' = xBx™".

So xBxz~ ! is an F-stable Borel subgroup in GG. The proof is the same for maximal tori.[]

Definition 8.3.9 Let G be a connected reductive group with Frobenius map F. Let B be
an F-stable Borel subgroup and T an F-stable mazimal torus of G. Then we say BY is a

Borel subgroup and T* is a maximal torus of G*".

Definition 8.3.10 Let G be a connected reductive group with Frobenius map F. A max-
imally split torus of G is an F-stable maximal torus T which is contained in an F'-stable

Borel subgroup. Then TT is a maximally split torus of GT'.

Lemma 8.3.11 Let G be a simple linear algebraic group with Frobenius map F'. Let H be
the preimage of (G/Z(G))F in G under the natural homomorphism. Then : H — Z(G),

W(h) = h=LF(h), is a surjective homomorphism with kernel GT.

Proof. Let g,h € H. Then

w(gh) = (gh) " F(gh) = h™'g ' F(g)F(h) = h™ ¥ (g) F(h) = 1(g)h ™" F(h) = 1 (g)v(h),

since ¢(g) € Z(G). So v is a homomorphism. Now let 7" be an F-stable maximal torus

of G. Note T is connected and Z(G) < T, see [19, Th. 1.9.5, p.14], so for any z € Z(G)

125



there is a t € T such that z = t71F(t), by the Lang-Steinberg Theorem. For any g € G,
g € H if and only if g1 F(g) € Z(G). Therefore t € H and hence 1) is surjective. Finally,
k € ker ¢ if and only if k=1 F(k) = 1. So, since GI" < H, we have ker ¢ = GF'. O

8.4 Dual Groups

Let G be a connected reductive group with root datum (X, ®,Y,®"). Then (Y, d", X, D)
is also the root datum for a connected reductive group G*, [9, Prop 4.2.1, p.112]. We call
G* the dual group of G and note it is unique up to isomorphism.

Suppose F' is a Frobenius map on G. We can define an action of F' on X and Y as
follows. Let T be a maximally split torus of G with respect to F'. For y € X, t € T,
let (F(x))(t) = x(F(t)), and for v € Y, A € G, let (F(7))(A) = F(y(A)). We have the
following definition from [9, Prop. 4.3.1, p.114].

Definition 8.4.1 Suppose G and G* are connected reductive groups with Frobenius maps
F and F* respectively, and let T < G and T* < G* be mazimally split tori. Let the
corresponding root datum for G be (X, ®,Y,®V) and for G* be (X*,®* Y* &), Then

(G, F) and (G*, F*) are in duality if there exists an isomorphism § : X — Y™ such that
(i) 6(2) = &
(11) {x,a) = {a*d(x)) for all x € X, a € ®, where 6(a) = (a*)Y;
(11i) §(F(x)) = F*(0(x)) for all x € X.
Parts (7) and (i7) of this definition show G and G* are dual groups.

Definition 8.4.2 Suppose (G, F) and (G*, F*) are in duality. Then GF and G**" are

dual groups.

Lemma 8.4.3 Suppose G¥ and G**" are dual groups. Then |GF| = |G**"
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Proof. See [9, Prop. 4.4.4, p.118]. O

Let G be a simple algebraic group with Frobenius map F. Generally, if G¥ is of
adjoint type, the dual group G*¥" is the corresponding simply connected group with the
same root system. The only exceptions are G¥ = (B))aq(q), where G**" = (C}),c(q), and

GF = (C))aa(q), where G*I = (B)).(q), 9, p.120].

8.5 Centralizers

For this section let G be a connected reductive group and fix a maximal torus 7" of G. Let
X be the character group of T" and ® the corresponding root system, with fundamental

system A. Recall every semisimple element in G is conjugate to an element of T'.

Theorem 8.5.1 Let s be a semisimple element of T. Then s € Cg(s)° and Cg(s)° is
reductive with root system ®; = {a € ® : «as) = 1}, where Cg(s)° is the connected

component of Cg(s).
Proof. See [9, section 3.5]. O

Lemma 8.5.2 Suppose a € A with a(x) # 1, for v € T. Then for any € D, if
at+8ed, (a+P)(x) # 1.

Proof. From the definition of multiplication in X, we have (a + §)(z) = a(z)5(z) # 1.0

Let s € T be a non-central semisimple element of G and let C(s)° have root system
®;. If A C &y, we have & C P&y and hence & = &;. This implies Cg(s)° = G, a
contradiction. Therefore there exists & € A such that o ¢ ®,. So by Lemma 8.1.8 there

are at least |A| roots in ®* which are not in ®;. This gives us the following lemma.

Lemma 8.5.3 With the above conditions, we have |®F| < |®F] — |A].
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Corollary 8.5.4 If the root system of G is not of type A;, we have |®F| < || —|A|-1.

Further, if the oot system of G is of type E; or Eg, |®] < |®T| — |A] — 2.

Proof. The highest root o* is a positive root including « in its sum. Therefore, by Lemma
8.5.2, a*(s) # 1 and so a* ¢ ®;. For groups of type other than A;, the root o* is not one
of the £;, 1 <14 < [, in Lemma 8.1.8, so we are done. For groups of type F; and Eg we

also have the roots given by Lemmas 8.1.10 and 8.1.12. U

We have the following lemma from [9, p.27].

Lemma 8.5.5 Let © be an element of an algebraic group G. Then Cg(x) is a closed

subgroup of G.

Lemma 8.5.6 Let F' be a Frobenius map on G and let x be an element in G¥. Then

Ce(x) is F-stable.

Proof. Let g € Cg(x). Then

F(9)"'aF(g) = F(g ")F(z)F(g) = F(9 'zg) = F(z) = =,

and so F'(g) € Cg(x). O

Corollary 8.5.7 Let F' be a Frobenius map on G and let s be a semisimple element in

GF. Then F is a Frobenius map on Cg(s).
Proof. This follows from Lemmas 8.3.5, 8.5.5 and 8.5.6. O

Lemma 8.5.8 Let I be a Frobenius map on G, let g € G and v € G. Then ¢g*° € G¥ if
and only if tF(z7') € Cg(g).

Proof. Suppose ¢° € G¥. Then F(g*) = ¢ and hence F(g)"® = ¢®. Therefore, since
g € GF, gF@ = g% and so xF(27') € Cq(g). Conversely, if zF(z7') € Calg), ¢° =

g"'@ = F(g)F® = F(g%) as required. U
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Lemma 8.5.9 Let G be a connected reductive group with root system ® and let F' be a

Frobenius map on G. Then a Sylow p-subgroup of G* has order ¢/®"!.
Proof. See [9, p.74]. O

Corollary 8.5.10 Let G be a connected reductive group with Frobenius map F', and let
s € G be semisimple. Assume Cg(s) is connected with root system ®1. Then |Cgr(s)], <
¢ I=IAD - Further, if G is not of type A, |Car(s)], < ¢UETIHIASY and if G is of type Fr

or Es, |Car(s)], < q1*71718172),

Proof. By Corollary 8.5.7, F is a Frobenius map on Cg(s). Therefore Ci(s) is a connected
reductive group with Frobenius map F, so by Lemma 8.5.9 |Cgr(s)|, = ¢/®'!. Hence by

F|-|A])

Lemma 8.5.3 we have |Cgr(s)|, < ¢l as required. The remainder follows from

Corollary 8.5.4. 0

8.6 Regular Unipotent Conjugacy Classes

In this section, we assume G is a connected reductive group with a connected centre and

F' is a Frobenius map on G.

Lemma 8.6.1 There exist reqular unipotent elements in GY. The number of them is

—|Z(|g;w|‘qz, where 1 is the semisimple rank of G.
Proof. See [9, Prop. 5.1.7, p.130, Prop. 5.1.9, p.131]. 0

Lemma 8.6.2 Let u be a regular unipotent element in G. Then Cg(u) is abelian.
Proof. See [16, Cor. 1.16, p.220]. O

Definition 8.6.3 Let H be an F'-invariant subgroup of G. Define an equivalence relation
on H by x ~ y if and only if there exists g € H such that y = goF(g™'). Let H'(F, H)

denote the equivalence classes of this relation.
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Lemma 8.6.4 Let H be a closed F-invariant subgroup of G. There is a bijection from

H'(F, H) to H'(F, H/H°).
Proof. See [19, Thm. 2.1.4, p.32]. O

Corollary 8.6.5 Let u be a regqular unipotent element in G¥'. Then there is a bijection

from HY(F,Cq(u)) to H'(F,Cg(u)/Ca(u)°).

Proof. We see Cg(u) is closed and F-stable by Lemmas 8.5.5 and 8.5.6, so this follows by
Lemma 8.6.4. 0

Lemma 8.6.6 Let u be an element in GY'. Suppose u*,u¥ € G for x,y € G. Then u*

and u¥ are conjugate in G¥ if and only if xF(x7Y) ~ yF(y™1) in Cq(u).

Proof. Suppose there exists ¢ € GF such that u* = (u¥)?. Then u = u** " and so
ygr—! € Cg(u). Let h € Cg(u) be such that ygz=' = h. Then g = y~'hz and since
g € G, F(y 'hx) = y~'hx. This means yF(y~') = haF(z~)F(h™!), and so z F(z7!) ~
yF(y™).

Conversely, suppose zF(x7!) ~ yF(y~1). Then since 2 F(z7 ), yF(y~) € Cq(u) by
Lemma 8.5.8, there exists h € Cg(u) such that yF(y~') = haF(z ')F(h™'). Then
y 'hx = F(y~'hz) and so y~'he € GF. Now, (u¥)¥ " = u"* = 4* and so u* and u¥ are

conjugate in G*'. O

Lemma 8.6.7 Let u be a reqular unipotent element in G¥'. There is a bijection between

the set of reqular unipotent conjugacy classes in G*' and H*(F,Ca(u)/Ca(u)°).

Proof. By the Lang-Steinberg Theorem, every element of Cz(u) can be written as 2 F'(z71),
for some x € G. From Lemmas 8.5.8 and 8.6.6, we have u® is conjugate to u¥ in G if
and only if zF(271) ~ yF(y~!) where ~ is an the equivalence relation with equivalence

classes H*(F,Cg(u)). The result now follows from Corollary 8.6.5. O

130



Corollary 8.6.8 The number of conjugacy classes of reqular unipotent elements in G¥

is |H'(F, Ca(u)/Ce(u)°)].
Proof. This follows directly from Lemma 8.6.7. O

Now let gy,...,gs be representatives of the distinct classes of H'(F,Cg(u)). By the
Lang-Steinberg Theorem, there exist h; € G such that g; = h;F'(h; ') for 1 <i < s. For
each 7, let w; = u. Then {wy,...,w,} is a set of conjugacy class representatives for the

regular unipotent conjugacy classes of G¥'. Let F; = Fe -1, where ¢, is conjugation by g.

Lemma 8.6.9 For 1 <i < s, the action of F' on Cg(w;) is equivalent to the action of F;

on Ce(u).

Proof. Let x € Cg(u). Then F(zh) = F(z)"") = (F(x)% )M = (Fj(z))", since g; =
hiF(h;1). O

Corollary 8.6.10 For 1< i <s, |Cgr(w;)| = |Cqri(u)].
Lemma 8.6.11 We have Cgr, (u) = Cgr(u) for 1 <i < s.

Proof. x € Cgr,(u) if and only if 2 € Cg(u) and F;(x) = z. So by Lemma 8.6.2, this is if
and only if z € Cgr(u). O

Corollary 8.6.12 The centralizers of all reqular unipotent elements in G¥ have the same

size.

Proof. For 1 <i < s, |Cqr(w;)| = |Cgqr; (u)| = |Cgr(u)|, by Corollary 8.6.10 and Lemma
8.6.11. -

Lemma 8.6.13 Let x be a reqular unipotent element in G¥. Then there is a unique
maximal connected unipotent subgroup U of G containing x. Furthermore we have the

following results.
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(i) Ca(x) = Z(G)Cy(x). Soif G is of adjoint type, Cg(x) = Cy(z).
(i) Cy(x) is connected if and only if p is a good prime for G.

(111) If G is simple and p is bad for G, the order of Cy(x)/Cy(x)° is p unless G is of type

E; or Eg and p = 2. In these cases Cy(x)/Cy(x)° has order 4.

(i) If G is simple and adjoint, the number of G conjugacy classes of reqular unipotent

elements is |Cy(z)/Cu(x)°|.
Proof. See [16, p.220]. O

Theorem 8.6.14 Let G be a simple algebraic group of adjoint type. If p is a good prime

for G, there is only one conjugacy class of reqular unipotent elements in G¥' and its order

18 |Gq#. If p is a bad prime for G, every reqular unipotent conjugacy class in G¥ has size
% unless G is of type E7 or Eg and p = 2, in which case it has size %Ij"

Proof. Since G is of adjoint type, Z(G) = 1. The result is clear for good primes from
Lemmas 8.6.1 and 8.6.13. Now suppose p is a bad prime for G. From Lemma 8.6.13
there are p conjugacy classes of regular unipotent elements in G¥', except if G is of type
E; or Eg and p = 2, when there are four such classes. So, since by Corollary 8.6.12, the
centralizers of regular unipotent elements in G all have the same order, we have the

result. O

8.7 Regular Semisimple Elements

Let G be a connected semisimple group with Frobenius map F'.

Definition 8.7.1 Let x € G be semisimple. Then x is regular if and only if
[Car ()], = 1.

Lemma 8.7.2 There exist reqular semisimple elements in GL,.
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Proof. This follows from [32, Th. 3.3]. O

Lemma 8.7.3 Suppose x € G, is reqular semisimple. Let Z = Z(GE) and K = G,/ Z.

Then xZ is reqular semisimple in K.

Proof. Let X = (z,7), so Cx(xZ) = Cx(X/Z). Suppose xZ is not regular semisimple.
Then p divides |Cx(X/Z)| and so there exists cZ € Cx(X/Z) which has order p. We have
(|1Z],p) = 1, so | (¢, Z)| = p|Z], and hence we may assume ¢ has order p. Let C' = (c).
Then (|C],|X]|) = 1 and so the action of C' on X is coprime. Hence, by [30, 8.2.7, p.187],
[X,C] = [X,C,C] < [Z,C] = 1. Therefore C centralizes X and in particular ¢ € Cgr ()

which implies p divides |Cgr (2)], a contradiction. O
Corollary 8.7.4 There exist reqular semisimple elements in GE,.

Proof. We have K 2 (GE,)" and so by Lemma 8.7.3, there is a regular unipotent element
z € (GE)). Now note GE, /(GE)) is a p/-group, so |Car (2)p = |C(gr v (2)], = 1. Therefore

z is a regular unipotent element in GZ,. O
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CHAPTER 9
CHARACTER DEGREES OF FINITE

GROUPS OF LIE TYPE

9.1 Characters

The aim of this section is to provide the character theoretic background needed to prove

our theorem. The theory is known as Deligne-Lusztig theory and is developed in [9].

Definition 9.1.1 Let x1,...,xx be all the irreducible characters of a finite group G. A

generalized character of G is any function x = Zle nixi, withn; € Z for 1 <1 < k.

From now on, let G be a connected reductive group with a Frobenius map F. For any
maximal torus 7% in G¥, let T = Hom(T*,C*) be the set of complex characters of T*.
In [9], Carter defines an equivalence relation on the pairs (7,6), where T is a maximal
F-stable torus of G and 6 € T. This is known as geometric conjugacy, see [9, p.107] for

details.

Lemma 9.1.2 Let G* be a connected reductive group with Frobenius map F* and as-
sume (G, F) and (G*, F*) are in duality. Then there is a bijection between the geometric

conjugacy classes in G and the F*-stable semisimple conjugacy classes in G*.
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Proof. See [9, Thm. 4.4.6, p.119]. O

In [13], Deligne and Lusztig defined a generalized character Rry for each F-stable
maximal torus 7 and each § € TF. The theory is very complicated, and includes coho-
mology groups, so we shall just state a couple of facts about these characters, without

including the details.

Lemma 9.1.3 Let x be an irreducible character of G¥. Then x is a constituent of Rrg

for some F-stable mazximal torus T and 6 € TF.

Proof. See [9, Cor. 7.5.7, p.236]. O

Lemma 9.1.4 Suppose T' and T are F-stable mazximal tori of G and let 6 € TF and
~F
¢ €T . If (T,0) and (T",0") are not in the same geometric conjugacy class, then Rr g

and Ry g have no common irreducible constituents.
Proof. See [9, Th. 7.3.8, p.220]. O

Now suppose for some irreducible character x of G, we have (Rpg,x) # 0 and
(Ryr g, x) # 0, where T', T, 6 and ¢’ are as before. Then by Lemma 9.1.4, (7,6) and
(T",0") must be in the same geometric conjugacy class. Thus, by Lemma 9.1.3, each

irreducible character of G¥* determines some geometric conjugacy class.

Definition 9.1.5 Let x; and x; be irreducible characters of G. We say x; and x; are

geometrically conjugate if they determine the same geometric conjugacy class.

We now need to assume our connected reductive group G has a connected centre.

Definition 9.1.6 Let x be an irreducible character of GY'. If its average value on the

reqular unipotent elements of G is nonzero then we say that x is semisimple.
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Every geometric conjugacy class, x, of irreducible characters of G* contains exactly

one semisimple character. This character is defined by

RT9
k=% : )
X Z (Rryg, Rr)

(T,0)€r,modG¥

where the sum is taken over one representative of each G'-orbit on x and the sign is
chosen to make x,(1) positive, [9, p.288].

An important result for us is the following.

Lemma 9.1.7 The degree of any semisimple character is coprime to p.
Proof. See [9, Th. 8.4.8, p.288]. O

The geometric conjugacy class containing the principal character is the one corre-

sponding to (T, 1), where T is any F-stable maximal torus of G.

Definition 9.1.8 Let x be an irreducible character of G¥. If x is a constituent of Ry,

for any F-stable maximal torus of G then it is called unipotent.

Lists of the degrees of the unipotent characters of G¥', for G simple, are given in [9,
Ch. 13].
There is the following Jordan decomposition for characters, see [9, 12.9, p.391]. This

will be very useful to us.

Lemma 9.1.9 Let x be an irreducible character of GF'. Then there exists a pair (Xs, Xu)
such that x(1) = xs(1)xu.(1), where x4 is a semisimple character of G* and x. is a
unipotent character of Cg.r=(s*), where s* is a semisimple element in the conjugacy class

of G*I determined by x, as in Lemma 9.1.2.

At last our first concrete result.
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Lemma 9.1.10 Let G be a simple connected reductive group of adjoint type and let F' be
a Frobenius map on G. Let x be an irreducible character of GF which is not unipotent.

Then x(1) divides |clgr(u)|, where u is any regular unipotent element in G*.

Proof. First, let p be a good prime for G. Then |clgr(u)| = ‘Gq#, by Theorem 8.6.14. We
know x(1) divides |G*|, so we only need to consider the p-part of x(1). Let (x4, xu) be the
Jordan decomposition of x. By Lemma 9.1.7, (xs(1)), = 1 and since x is not unipotent,
Ys is not the principal character. Then s* is a non-central element of G*. Now, x,
is a character of Cgur+(s*), 80 x4(1) divides |Cg.r+(s*)|. Therefore by Corollary 8.5.10,
(xu(1)), < ¢*"171 and so since |GF|, = ¢/®"!, x(1) divides |Gq—ﬂ as required.

Now we consider the situation for bad primes. Let p be a bad prime for G, but assume

we do not have p = 2 and G of type E7 or Eg. Then we have |clgr(u)| = f—;‘ by Theorem

8.6.14. Clearly lﬁfl‘ divides %. So, since we have |Cp.r+ (s%)], < ¢/® =1 by Corollary
8.5.10, the result follows as above.

Finally we consider the case p = 2 and G of type E; or Eg. By Theorem 8.6.14,

lclgr(u)| = % and so the result follows from Corollary 8.5.10 as before. O

9.2 The Steinberg Character

Definition 9.2.1 A group G, with subgroups B and N, is said to have a BN-pair if the

following are satisfied.
(i) G = (B,N).
(ii) H=BNNIN.
(iii) W = N'/H is generated by a set S = {s; |i € I,s? =1},
(iv) Fori € I, n;Bn; # B, where n; € N is any preimage of s;.

(v) n;Bn C Bn;nB U Bn;B for n € N and n; as before.
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Definition 9.2.2 Let G be a group with a BN -pair, B,N. Then G has a split BN -pair

if there exists a unipotent subgroup U < B such that:
(i) B=UH andU "H ={1};
(1) Npen nBn™' =M.

Example 9.2.3 Set G = GL(n, K). Let B be the subgroup of lower triangular matrices,
N be the subgroup of monomial matrices and U be the subgroup of lower unitriangular
matrices. Then B,N is a split BN-pair for G. Note H is the subgroup of diagonal

matrices.

Let G be a group with a BN-pair, B,N. For any J C I let W; = (s; : 1 € J), and
N be such that Nj/H = W;. Define P; = BN;B. This is a subgroup by [9, Prop 2.1.4,
p.43].

Definition 9.2.4 We say P; is a standard parabolic subgroup of G.

Definition 9.2.5 Let G be a finite group with a BN -pair. The Steinberg character of G
s given by

St=> (=1)MI(15,)",

JCI

where (1p,)9 is the principal character of Py induced up to G.
Lemma 9.2.6 The Steinberg character is irreducible.
Proof. See [9, Cor. 6.2.4, p.190]. O
Theorem 9.2.7 Let G be a connected reductive group with Frobenius map F'. Then
(i) G has a split BN -pair;
(ii) G¥ has a split BN -pair.
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Proof. Let B be an F-stable Borel subgroup in G and let T be an F-stable maximal torus
of G contained in B. Let N = Ng(T') and U = R, (B), the unipotent radical of B. Note
N and U are also F-stable and BN N = T. Then B, N is a split BN-pair for G and
BY N is a split BN-pair for GF'. See [9, p.22,23,34] for details. O

From now on suppose G is a finite group of Lie type and P; is a standard parabolic
subgroup of G. Then Pj is a semidirect product P; = L;U; where L; NU; =1 and Uy
is the largest normal unipotent subgroup of P;. This is known as the Levi decomposition
of Py and Ly is called a standard Levi subgroup. Furthermore, L; is a finite group of Lie
type. See [10, p.119] for details.

The following lemma gives us a way to calculate the values of the Steinberg character

on G.

Lemma 9.2.8 Let Stg and Sty, be the Steinberg characters of G and L respectively.
Then StG \Lp] StL, TP‘]

Proof. See [9, p.191]. O
Lemma 9.2.9 Let G be a finite group of Lie type. Then Ste(1) = |Ry(B)|.

Proof. From Lemma 9.2.8 we have Stg(1) = St 117 (1). Let J = 0. Then Py = L;U; =
TRy(B) = B. So

B ( B
Ste(1) = Str 1 |T|z€§;35tT |T|StT<) |Ru(B)|,

since T is abelian. O

Theorem 9.2.10 Let G be a connected reductive group with a Frobenius map F. Let g

be a reqular semisimple element in G¥'. Then St(1) divides |clgr(g)].

Proof. From Lemma 9.2.9, St(1) = |G¥|,. So since |Cgr(g)|, = 1, the result clearly
follows. U
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9.3 Unipotent Characters

The aim of this section is to prove the following result.

Theorem 9.3.1 Let G be a simple algebraic group of adjoint type, with Frobenius map I,
and let x be any irreducible unipotent character of GF, other than the Steinberg character.

Then x(1) divides |clgr(u)| for any reqular unipotent element u € G¥.

To prove this lemma, we need to consider the different types of root system separately.
We rely heavily on the results in [9, 13.8].

Suppose G is of type A;. Then the unipotent characters are parameterized by partitions
of [ +1. Let @ = (aq,...,apm) Fl+1, withoy <as<...<ay,andlet \; =a; +i—1,

for 1 < i < m. Let y, be the character corresponding to «. Then from [9, p.465]

+1
[T =0 I @ =)
k=1 4,7, <t

Xa(l) = )

1 f[(qk -1

i k=1

where

Lemma 9.3.2 Let x, be the irreducible unipotent character of G¥' corresponding to

at L+ 1. Then (xa(1)), = ¢=i1 (m=iai_

Proof. We have
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from Lemma 7.0.1. [
Lemma 9.3.3 Theorem 9.5.1 holds for G of type A,.

Proof. From Lemma 7.0.2 we know the unipotent character with the largest p-part is given
by the partition (1,1,...,1) F 1+ 1. This corresponds to the Steinberg character. By the
same lemma, the character with the next largest p-part corresponds to o = (1,...,1,2)

I+ 1. By Lemma 9.3.2, for this a we have
(Ya(1)), = ¢Zimi0-) = g5

There are no bad primes for A;, so for all p and regular unipotent u € G, |clgr (u)| =

1(1-1)

%, by Theorem 8.6.14, and hence |clgr(u)|, = ¢ 2z . So the result follows. O

Now suppose G is of type 24;(¢?). The irreducible unipotent characters of G* are
parameterized by partitions of [ + 1 as for A;. Let x, be the character corresponding to

a. Then from [9, p.465],

I+1

[T + 08 IT @ = (1)
Xal1) = = ,
o[ [T = (=1)")

where L,, is as above.
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Lemma 9.3.4 Theorem 9.5.1 holds for G of type 2A;.

Proof. Both the p-parts of the unipotent character degrees and the regular unipotent
conjugacy class sizes are the same as in the A; case. Therefore the proof is the same as

that of Lemma 9.3.3. O

Now suppose G is of type By or C;. Let A = (A1,...,; ) with 0 < Ap < ... < A,
and g = (p1,...,1p) with 0 < gy < ... < pp. We consider pairs (A, ) such that

a — b is odd and positive and A; and p; are not both 0. The rank of (A, u) is given by

S )\i—i-zszl [Li— (“*g’l)Z. Suppose G* is of rank [, then the unipotent characters of G¥
correspond to the pairs of sequences with rank /. Let 6, ,) be the character corresponding
to the pair (A, u).

First assume p is a good prime for G. Then from [9, p.467],

IR IR

1,44 <5 3,9",3'<3j %]
(O (1)) = s

atb—2 at+b—4 3
whereMm:( ) )—I—( S )+...+(2).

Since we are only interested in the p-part of the character degrees, we may combine
the pair (A, 1) to form an l-sequence a = (ay, ..., ay,), where m = a + b, as in Definition

7.0.3.

Lemma 9.3.5 Let a be an l-sequence corresponding to the pair (A, u). Then

where A, = 7N (m — i)y — M.
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Proof. We have

Z Air Z 1L +me{)\z,uj = Z aj = Z i)ay,

1,14/ <1 3,3".3'<J 4,7, <t

and so the result follows. O

From Lemma 7.0.8, we see that if m = 2l + 1 we have the unique pair (A, u) with
A=1(0,1,2,...,0) and p = (1,2,...,1). It follows from Lemma 7.0.8 and Lemma 9.3.5
that (0,)(1)), = ¢" and so this is the Steinberg character. By the same lemmas, if

m < 20+ 1 we have (6 ), < ¢V

Now, since p is a good prime for G, we have from Theorem 8.6.14, |clgr(u)| = %

{I=1) " where u is any regular unipotent element in G¥. Therefore for

so |clgr(u)], = ¢
a+b<20+1, 0, (1) divides |clgr(u)| as required.

The only bad prime for G = B, is p = 2. In this case we have

IT o H ¢ qum{wj

6 1 _ 4,4 i’ <1 7.37.9'<J
( (A,,u)( ))p 2(a+127 1)qu

where M, = (“J“g_g) + (a+l2)—4) +..+ (g)

By Theorem 8.6.14, for any regular unipotent element u € G, we have |clgr(u)| =

|GF‘ ql(l—l)

S and hence |clgr(u)]y = ——. Then for any unipotent character 6, ,, except the
Steinberg character, we have
O (1)2 < ¢
< o
1(1-1)
< q
2
= |elgr(u)la.
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Therefore we have proved the following.

Lemma 9.3.6 Theorem 9.5.1 holds for G of type B, or C].

Now suppose G is of type D;. Let A = (A1,...,\,) with 0 < A\ < ... < A, and
= (ph1, -, pp) with0 < py < ... < . We consider pairs (A, ) such that a—b is divisible
by 4 and Ay and g are not both 0. The rank of (A, p) is > 7 A + 23:1 i — [(%17—1)2}
Suppose G* is of rank [, then the unipotent characters of G¥" correspond to the pairs of
sequences with rank [, where (u, \) corresponds to the same character as (A, u), and if
A = u, there are two characters of the same degree. Let 0, ,) be a character corresponding
to the pair (A, u).

Let p be a good prime for G. Then we have, from [9, p.471],

T I ¢ qum{xz !

3,4’ 1 <i 7.3%,3'<J
(Q(A,u)(l))p = qu

where M, = (“+g_2) + (“+12’_4) +...+ (g)

Again we may combine the pair (A, u) to form an l-sequence o = (avy, . .., auy), where
m = a + b, as in Definition 7.0.3. Lemma 9.3.5 also holds here and so we have
(O (1)p = g

From Lemma 7.0.10, if m = 2] we have A = (0,1,...,l—1) and p = (1,...,1 — 1,1)
and 50 (x,)(1)), = ¢, hence this is the Steinberg character. Also from Lemma 7.0.10,
if m < 21 we have (6, (1)), < ¢'"?. So, since by Theorem 8.6.14 we have |clgr(u)|, =
¢"=? for any regular unipotent u € G, the result follows.

Now suppose p = 2. Then from [9, p.471],

IT o H o qumm s}

4,4 i’ <i 7.37.9'<J
(O (1) = 2e g
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where
221 it £
a=0b ifA=p

and M,, is as before.

Let u be any regular unipotent element in G¥. Then by Theorem 8.6.14

g1=2

lelgr ()| = 45— > ¢

. Then for any unipotent character, except the Steinberg

character, by Lemma 7.0.10 we have
(Opa)2 < 20T gD elgr ().

Therefore we have proved the following lemma.

Lemma 9.3.7 If G has type D; then Theorem 9.5.1 holds.

We can now complete the proof of Theorem 9.3.1.

Proof (Theorem 9.3.1). Lemmas 9.3.3, 9.3.4. 9.3.6 and 9.3.7 show the result for G of
types A;, 2A;, B;, C; and D;. For G of type 2D; the proof is similar to that of D; except
we have a — b = 2 mod 4. Finally, if GT is one of G3(q), 3D4(¢®), Fi(q), Es(q), *Es(q?),
E:(q), Es(q), 2Bx(q), 2Go(q) or 2Fy(q), we can check the unipotent character degrees

directly from [9, Ch. 13] to see the theorem holds, including for bad primes. O

9.4 The Simple Groups

Let G be a simple algebraic group with Frobenius map F. Then
K = (Gg) = G /Z2(Gy)

is a finite simple group, except in a few small cases. In this section we prove the following.
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Theorem 9.4.1 Let K be as above. Then for any irreducible character x of K there

erists v € K such that x(1) divides |clg(z)].

In fact we prove the following corollary.

Corollary 9.4.2 There exist two conjugacy classes in K such that the degree of any

wrreducible character of K divides the order one of them.

Lemma 9.4.3 Let z be any regular unipotent element in GE,. Then

(12(G*")] | Car, (2)]) = 1.

Proof. By Lemma 8.6.1 [Cgr (z)| = ¢'. The order of |Z(G*!")| = |Z(GE)| is p-prime by

19, p.19). O
Lemma 9.4.4 Let u € G, be unipotent. Then u € K.

Proof. A unipotent element in G has order a power of p, see [16]. Therefore, since

|G, K| = |Z(GE)| has p-prime order we have the result. O
Lemma 9.4.5 Let z be a reqular unipotent element in G*'. Then Ck(z) = Cgr(z).

Proof. By Lemma 8.6.13, Cg(x) = Cy(z) where U is a maximal connected unipotent
subgroup of G containing x. Therefore all the elements in G which centralize x are

unipotent and so the same must be true in GF. Hence Cgr(z) < K, and we have

Ck(z) = Cgr(z). O
Lemma 9.4.6 Let z be a reqular unipotent element in G*'. Then |cly(z)| = |';l(%i§i))'l

_ K _ IG*] _ ldgr(@)]
Proof. We have |clk(x)| = O] = 2@ T @] — 126 O

Lemma 9.4.7 Let x be an irreducible unipotent character of G¥ which is not the Stein-

berg character, and let x be a reqular unipotent element of K. Then x(1) divides |clk(x)|.
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Proof. If y is a unipotent character of G¥, then it is also a unipotent character of G**. So

x(1) divides | Z c F*‘ by [24, Th. 6.5, p.68]. We also have x(1) divides 7~ by Theorem

« F* _ G| —
9.3.1. Therefore, since (|Z(G*" )|, |Cgr(x)|) = 1, we have x(1) d1v1des ZGTCar @)

|clk (x)| by Lemma 9.4.6. O

The following lemma is from [9, p.288].

Lemma 9.4.8 Let x, be a semisimple character of GI'. Let s* be a semisimple element

in the conjugacy class of the dual group determined by xs, as in Lemma 9.1.2. Then

X(1) =[G Chur (57| -

Lemma 9.4.9 Let x be an irreducible character of G which is not unipotent and let =

be a regular unipotent element of K. Then x(1) divides |clxk(x)|.

Proof. By Lemma 9.1.9, we have x(1) = xs(1)xu(1), where y, is a semisimple char-
acter of G¥ and x, a unipotent character of Cg.r-(s*) for s* a semisimple element of

G*'" in the conjugacy class determined by y,. Then y,(1) divides M by [24,
G*

Th. 6.5, p.68], and y,(1) divides |C|GF by Lemma 9.4.8. So xs(1)x.(1) divides
G*
« F* -
IZ(C‘GG*ﬁ and hence Z |(GG*F*‘)‘ By Lemma 9.1.10, xs(1)x.(1) divides |clgr(x)| and so,
* .. F
since (lZ(G*F ) 7‘CGF<x>D = 17 Xs(l)Xu(l) divides \Z(G*FLG)HC"GF(mﬂ = |CZK<x>’ [

Lemma 9.4.10 Let x be the Steinberg character of GE,. The there exists x € K such

that x(1) divides |clk(x)|.

Proof. By Lemma 8.7.3 there exists a regular semisimple element x in K. Then |clk(x)|, =

| C'}ilp = |K|, = |G|, since |Z(GE)| is p-prime. Therefore the result follows by Theorem

9.2.10. 0

Proof (Theorem 9.4.1). Since K is a normal subgroup of GF, the degree of any irreducible

character of K must divide the degree of some irreducible character of GZ,. By Lemmas
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9.4.7,9.4.9 and 9.4.10 we have shown the degree of any irreducible character of GZ, divides

the size of some conjugacy class of K. Therefore the result follows. U
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