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Abstract 

Polybrominated diphenyl ethers (PBDEs) were found to be present in substantial quantities in 

the raw sinter mix (RSM) used in iron ore sintering during the steel making process. 

Measurement of corresponding output samples (electrostatic precipitator (ESP) dust, sinter 

product and stack emissions) permitted a mass balance calculation. This revealed that there is 

a net reduction of PBDEs as a result of the sintering process. Polybrominated dibenzo-p-

dioxins and furans (PBDD/Fs) were also detected in stack emission samples. PBDEs and 

PBDD/Fs were also investigated using a sinter pot (SP) – a laboratory scale version of the 

sintering process – under various conditions. Whilst evidence was found to suggest that de 

novo synthesis of PBDD/Fs occurs within the sintering process, there was also evidence 

suggesting that this was not due to the PBDE contamination in the RSM. Furthermore, the 

results from the SP suggested that PBDEs are not formed within the sintering process. 

Temporal and spatial trends of PBDEs were investigated in air and soil from the UK. Whilst 

there is strong evidence to suggest that PBDEs have decreased since the implementation of 

legislative use restrictions, their persistence was highlighted by their continued detection. 

Furthermore ∑PBDE concentrations in both air and soil decreased with increasing distance 

from the centre of Birmingham, highlighting the higher density of PBDE sources in urban 

areas. 

Soils from Australia were considerably less contaminated with PBDEs than those taken at a 

similar time in the UK. However, similar spatial patterns were found in both countries, with 

industrial and urban locations showing an increased likelihood of elevated ∑PBDE 

concentrations, with an increased contribution from Penta-BDE based congeners compared to 

remote sites. Agricultural sites in Australia were the only samples found to show an influence 

of Octa-BDE based congeners. 

Sediment core samples from Port Jackson, New South Wales, Australia demonstrated that 

PBDEs were still rising at the end of the 20
th

 Century with the highest levels in the uppermost 

layers. Industrial processes were highlighted as sources to the harbour as three cores from the 

more industrialised western side of the harbour contained higher ∑PBDE concentrations than 

the core measured in the north-east of Port Jackson, which is classified as urban rather than 

industrial.  
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Chapter I 

Introduction 

 

1.1 Background of PBDEs and PBDD/Fs 

PBDEs 

Polybrominated diphenyl ethers (PBDEs) are hydrophobic chemicals consisting of two 

brominated aromatic rings linked by an oxygen atom (Figure 1.1). They are structurally 

similar to polychlorinated biphenyls (PCBs) and share many of their physicochemical 

properties, such as the aforementioned hydrophobicity and resistance to physical, chemical 

and biological degradation (Borghesi et al., 2009). They are used to reduce the flammability 

of both commercial and household products by being mixed additively with synthetic 

polymers such as polystyrene foams, polyurethane foams and epoxy resins (Birnbaum and 

Staskal, 2004, Toms et al., 2009b), computers, electrical and electronic equipment, textiles, 

foam furniture and building materials (Birnbaum and Staskal, 2004). There are three principal 

commercial formulations of PBDEs with a wide range of uses discussed further in Section 

1.3; PentaBDE (e.g. foam mattresses and cushioning); OctaBDE (e.g. plastics for computer 

cases and monitors); DecaBDE (e.g. high impact polystyrene and other materials for 

electronic and electrical appliances, vehicles, construction, building applications and textiles) 

(Harrad et al., 2004).However, recent research suggests they are toxic to the environment as 

well as to animals and humans (Ren et al., 2009). The most recent data available (2001) states 

that a global demand of 67000 tonnes (t) of PBDEs per annum exists (Bromine Science and 

Environmental Forum (BSEF), 2003) 

 

Figure 1.1 The chemical structure of a) PBDEs; b) PBDDs; and c) PBDFs 
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PBDD/Fs 

Polybrominated dibenzo-p-dioxins and polybrominated dibenzo-p-furans (PBDD/Fs) are also 

toxic environmental contaminants with comparable physicochemical properties to their 

chlorinated analogues – PCDD/Fs (Ren et al., 2009). The main form of release of PBDD/Fs is 

believed to be as by-products associated with the use, manufacture and recycling of 

brominated flame retardant (BFR) containing products. They are thought to be formed via by 

thermolysis of PBDE containing BFRs, for example when combusting plastics (Hayakawa et 

al., 2004) as well as other combustion processes, such as incineration of BFR-containing 

waste (e.g. circuit boards and electronics goods (Li et al., 2007, Söderström and Marklund, 

2002) metallurgical processes such as those in the steel industry, which are discussed further 

in Section 1.6  (e.g. sintering and electronic arc furnaces (Wang et al., 2010b)). 

1.1.1 Environmental Levels and Exposure 

Both PBDEs and PBDD/Fs are persistent in the environment upon their release. Figure 1.2 

highlights the principal transfer processes in the environment for persistent compounds like 

PBDEs and PBDD/Fs. Due to their physicochemical properties (as outlined in Section 1.2) 

they preferentially reside in substances high in fat or organic carbon giving them the ability to 

accumulate in some environmental compartments, including soil and biota.  

It is therefore unsurprising, based on the processes in Figure 1.2 that they have also been 

detected in various biota: birds and bird eggs – Crosse et al. (2012) found ∑PBDE 

concentrations of 382-54972 ng/g lipid weight in UK sparrowhawk eggs, whilst Chinese 

Kingfishers contained 2030-26400 ng/g lipid weight (Mo et al., 2012); animals  (marine – 

Klosterhaus et al. (2012) measured median ∑PBDE concentrations in white croaker, shiner 

surfperch and adult harbour seal blubber of 1670, 1860 and 770 ng/g lipid weight 

respectively in San Francisco Bay, USA; and terrestrial – Belgian and Dutch hedgehogs 

contained muscle ∑PBDE concentrations of 7-24212 ng/g lipid weight (D'Have et al., 2005)); 

and food (cow’s milk from the UK was found to contain up to 960 ng ∑PBDEs / kg lipid 

weight (Lake et al., 2013), whilst Fernandes et al. (2009) detected both PBDEs and PBDD/Fs 

in all of eggs, chicken, beef fat, beef liver, pigs, sheep and other poultry).  
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Figure 1.2 A schematic diagram showing the movement/transfer of PBDEs (and other POPs) 

to various environmental compartments along with human exposure – modified from UNEP 

(1999) 

With PBDEs and PBDD/Fs being found in biota, along with air, soil and dust, there are also 

human exposure concerns (Costa, 2008). Figure 1.3 highlights the principal pathways of 

exposure to humans, and a summary of both internal and external exposure is given below. 

 

Figure 1.3 Principal pathways of exposure for humans to PBDEs and other POPs 

(Frederiksen et al., 2009) 
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The indoor environment has been highlighted as a source of exposure for PBDEs and, to a 

lesser extent, PBDD/Fs in both home and occupational settings (Suzuki et al., 2006) as well 

as cars (Frederiksen et al., 2009, Mandalakis et al., 2008). It was originally believed that diet 

and inhalation were the principal pathways of exposure to PBDEs with diet contributing more 

than 90% to human PBDE exposure (Harrad et al., 2004). However, Jones-Otazo et al. (2005) 

carried out extensive research on PBDE exposure and found that in humans older than 6 

months dust ingestion was a key contributor to overall exposure, whilst for babies under 6 

months, although dust ingestion remained at least as high, consumption of breast milk was 

the most significant pathway of exposure. Jones-Otazo et al. (2005) also stated that for 

toddlers, up to 90% of their total PBDE exposure is likely to come from dust ingestion. 

However, they state thatfor children, teenagers and adults, whilst dust ingestion is still the 

major pathway of exposure; diet (especially dairy, meat and eggs) also makes a significant 

contribution. Further studies have continued to show how important a role dust plays with 

regards to exposure with estimated exposures for children of 120-6000 ng/day based on a 50 

mg/day dust ingestion rate for children (Stapleton et al., 2005). Harrad et al. (2006) re-

evaluated pathways of exposure for the UK population and calculated that dust ingestion can 

contribute up to 37% and 69% of daily PBDE intake for adults and toddlers respectively in 

the UK. The same research group (Harrad et al., 2008a) later reported that, when also 

measuring BDE-209, PBDE concentrations in indoor dust are increased by a factor of 1000 

(260000 ng/g in Harrad et al. (2008a) where tri-hepta PBDEs and BDE-209 were measured; 

215 ng/g in Harrad et al. (2006) where only tri-hexa PBDEs were measured). 

PBDEs are found in dust at high levels worldwide, with that from North America and the UK 

containing the highest concentrations: Stapleton et al. (2005) found median ∑PBDE 

concentrations of 4250 ng/g (n=16, range = 780-30100 ng/g), whilst median USA 

concentrations were found to be 1910 ng/g (n=11, range = 590-34400 ng/g) (Wu et al., 2007). 

Levels in the UK were found to be higher still by Greenpeace (2003) at 7290 ng/g (n=10, 

range = 3850-25000 ng/g) with BDE-209 making up 97% of the 80 BDE congeners 

measured. Harrad et al. (2008b) also found an overwhelming contribution of BDE-209 in UK 

dust making up 99.5% of the average concentration of 45000 ng/g (range: 360-520000 ng/g) 

in Birmingham. European and Australian PBDE levels in dust appear to be much lower than 

those in the UK and North America with median German concentrations at 70 ng/g (n=10, 

range not given, (Sjodin, 2004)); Spanish at 356 ng/g (n=6, range = 316-1855 (Regueiro et 

al., 2007)) and dust from Australia containing median concentrations of 571 ng/g (n=30, 
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range = 60-84000 ng/g (Stasinska et al., 2013)). The UK’s increased levels in comparison 

with the rest of Europe, are attributed to a greater usage of the commercial DecaBDE 

formulations to meet more stringent flame retardancy legislation in furniture (Thomas et al., 

2006). Suzuki et al. (2006) measured both PBDEs and PBDD/Fs in home and office dust in 

Japan with mean PBDE concentrations of 1000 and 3300 ng/g respectively and PBDD/F 

concentrations of 2.1 and 3.8 ng/g – although TEQ concentrations were not provided, this 

still represents a high exposure to both PBDEs and PBDD/Fs through dust ingestion.  

The debate about the relative contributions of dust and diet to overall exposure has continued 

and it appears to vary based on a number of factors, such as location, occupation, diet and 

habits. For example, Norwegian fish and seafood consumers are exposed to high levels of 

PBDEs with cod liver and halibut containing approximately 9.5 and 6.5 ng/g wet weight 

respectively and a daily intake of around 1.5 ng/kg body weight/day (kg/bw/day) based on a 

70 kg adult (Knutsen et al., 2008). This is higher than the intake of an average Belgian, which 

was estimated to be 0.54 ng/kg bw/day (Voorspoels et al., 2007) and German – 1.2 ng/kg 

bw/day (Fromme et al., 2009) based on the same bodyweight, with fish and seafood 

containing the highest concentrations of all food groups at 0.46 ng/g wet weight (Voorspoels 

et al., 2007). It would appear in many other cases that fish and seafood contain the highest 

PBDE levels with concentrations of 0.56 ng/g wet weight in Catalonia, Spain (Domingo et 

al., 2008), although this study did not measure BDE-209. Schecter et al. (2006) found 

average fish concentrations to be 1.1 ng/g wet weight with herring, salmon and sardines to 

particularly contaminated (2.8, 1.7-3.1 and 3.7 ng/g wet weight respectively), with meat 

concentrations being lower at 0.38 ng/g wet weight. The same study calculated that the 

average U.S adult male and female are exposed to 1.3 and 0.9 ng/kg bw/day (Schecter et al., 

2006), whilst Webster et al. (2005) estimated that adults are exposed to 0.6 ng/kg bw/day for 

just BDE-47. An interesting study by Ni et al. (2012) suggested that adults in Shenzhen, 

China, are exposed to PBDEs mainly by food, soil and dust (2, 0.21, 0.093 ng/kg bw/day 

respectively. However, Dirtu and Covaci (2010) estimated that a 70 kg Romanian adult is 

exposed to 0.57 ng/kg bw/day from diet and 0.43-1.2 ng/kg bw/day from dust (based on the 

rate of dust ingestion used). Sjodin et al. (2008) highlighted that simply location can alter the 

principal pathway to exposure by measuring PBDE levels in dust from Germany, Australia, 

UK and USA, which had substantially different median concentrations of 74, 1200, 10000 

and 4200 ng/g respectively. These studies show that the principal pathways of human 

exposure to PBDEs can vary based on multiple factors, but diet and dust ingestion (especially 

the latter when BDE-209 is measured) appear to be the most significant. 
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Whilst dust ingestion and diet are now considered the principal pathways of exposure to 

PBDEs, inhalation of both indoor and outdoor air must not be ignored. As with indoor dust, 

PBDEs are found in measurable concentrations worldwide in the home (Sweden - 192 pg/m
3
 

(Karlsson et al., 2007); UK – 24 pg/m
3
 (only tri-hexa BDE congeners measured (Harrad et 

al., 2006));  Canada – 100 pg/m
3
 (only tri-hexa BDE congeners measured (Wilford et al., 

2004)).  

With such a wide range of concentrations within different media, it is clear that individuals 

can suffer a variety of different exposure levels with respect to PBDEs depending on the 

microenvironments they spend time in. Harrad and Abdallah (2011) found median dust levels 

in UK and American cars to be in excess of 100000 and 50000 ng/g respectively) whilst 

outdoor air and soil close to e-waste sites, has been found to contain significantly elevated 

levels as shown in Tables 1.5 and 1.6. The following inhalation exposure equation taken from 

Harrad et al. (2004) shows that it is clear that a number of factors can increase human 

exposure to PBDEs, PBDD/Fs and related pollutants.  

                )       )       ))   

Where           is daily exposure via inhalation (ng PBDE/day),        is the 

concentration of PBDEs (or other pollutants) in work, home or outdoor air;        is the time 

spent at work, home or outdoors;    is the respiration rate. The same equation can be applied 

to dust by using ingestion rate instead of   , and the two can be summed together, along with 

daily intake via diet to show total exposure. This therefore demonstrates that an individual’s 

exposure can be influenced by many factors including their occupation, lifestyle and diet. 

As discussed in Section 1.5 there is a wide range of PBDE concentrations in outdoor air both 

within and between countries worldwide. In even particularly remote locations, some PBDE 

congeners have still been detected and measured. For example, congeners from the 

commercial PentaBDE formulation have been found at concentrations of 2.2 pg/m
3
 (∑BDEs- 

47; 99; 100; 153; 154) near Galway on the west coast of Ireland (Lee et al., 2003), whilst 

Birgul et al. (2012) found outdoor air in Manchester to contain concentrations as high as 47 

pg/m
3
 for the same congeners in 2003. PBDEs have also been detected in a variety of 

concentrations in other outdoor compartments such as soil, sediment and sludge. A summary 

of these concentrations in a global context is discussed in more detail in Section 1.5, 

highlighting urban and industrial areas as sources of PBDEs to the environment. 
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1.1.2 Levels of PBDEs and PBDD/Fs in Humans 

With so many sources of external exposure, it is unsurprising that both PBDEs and, to a 

lesser extent, PBDD/Fs have been found in human samples. A wide range of adult human 

body burdens of PBDEs have been found in various parts of the world. Choi et al. (2003b) 

measured PBDEs (BDE28:183) and PBDD/Fs in adipose tissue from Japanese adults in 1970 

and 2000. Median concentrations for 1970 (n=10) were 29 and 5.1 pg/g lipid weight for 

PBDEs and PBDD/Fs respectively, whilst in 2000 (n=10) they were 1300 and 4 pg/g lipid 

weight showing that samples from 2000 contained significantly more PBDEs than those from 

1970 with BDE-47 always the dominant PBDE congener (although BDE-209 was not 

measured). 2,3,7,8-TBDF was detected in all samples, whilst 2,3,7,8-TBDD was found in 

most 1970 samples but only 2 from 2000. Other studies for comparison of PBDD/F body 

burdens are scarce. From within Asia, breast milk from the Phillippines was found to contain 

significantly higher PBDE concentrations from adults living close to a waste disposal site 

(3.9 ng/g lipid weight) than those living in the control site (2.2 ng/g lipid weight), with the 

highest concentration of 11 ng/g lipid weight found in a mother residing in the vicinity of the 

waste disposal site (Malarvannan et al., 2013). Other studies have shown similar levels for 

both milk and blood serum with mean concentrations of 3.93 ng/g lipid weight in Taiwanese 

milk (Chao et al., 2007) whilst a South Chinese population contained 3.9, 4.4 and 3.5 ng/g 

lipid weight for fetal serum, maternal serum and maternal milk respectively (Bi et al., 2006). 

The highest concentrations appear to be consistently found in North America, particularly 

USA, where several studies have shown body burdens to exceed those elsewhere. Daniels et 

al. (2010) reported mean BDE28:183 concentrations of 89 ng/g lipid weight (range: 1-2010 

ng/g lipid weight) amongst women from North Carolina, with BDE-47 the most dominant 

congener found. They also noted that PBDEs were higher in women aged 25-29 than those 

over 34. In Canada, breast milk concentrations were found to be lower for BDE47:153 in 

Ontario (22 ng/g lipid weight) and Quebec (23 ng/g lipid weight). However, BDE-209 was 

also present at relatively high concentrations at 17 and 13 ng/g lipid weight for Ontario and 

Quebec respectively, which is somewhat surprising given the general consensus about the 

low bioavailability of BDE-209. Other than this, BDE-47 was the dominant congener in 

Canadian breast milk (Siddique et al., 2012). Similar levels have also been found in other 

regions of North America, such as maternal and foetal blood from volunteers in Indiana 

which contained median levels of 37 and 39 ng/g lipid weight respectively for BDE47:183 

(Mazdai et al., 2003) and mothers’ milk from Texas which measured 34 ng/g lipid weight for 

BDE47:209 with BDE-209 found in 6 out of 47 samples (Schecter et al., 2003). In both cases, 
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BDE-47 was the principal congener. Furthermore, Hites (2004) demonstrated that the 

increased usage from the 1980s to 2001 has caused a substantial rise in blood serum 

concentrations from 1.47 ng/g lipid weight in 1988 (Sjödin et al., 2001) to 41.1 ng/g lipid 

weight in 2001 (Mazdai et al., 2003) when examining the same congeners in both cases. 

Figure 1.4 also shows this trend in Sweden at lower concentrations which saw an exponential 

increase between the 1970s and 1999 in breast milk, whilst Thomsen et al. (2002) measured 

an increase in blood serum concentrations from 0.44 ng/g lipid weight to 3.10 ng/g lipid 

weight between 1977 and 1999 in Norway; and Schroter-Kermani et al. (2000) showed 

similar findings in Germany. 

 

Figure 1.4 PBDE concentrations in breast milk from Swedish mothers between 1972 and 

1999 (Meironyte et al., 1999) 

Other studies in Scandinavia have found similar levels in both blood and breast milk such as 

those of Glynn et al. (2011) and Lind et al. (2003), whilst Sjodin et al. (1999) demonstrated 

that occupational exposure to PBDEs can lead to a much higher body burden with median 

BDE47:209 concentrations of 26 ng/g lipid weight for electronics dismantlers compared with 

4.1 and 3.3 ng/g lipid weight for hospital cleaners and computer clerks in Sweden. 

PBDEs have also been found in human samples from the UK. Thomas et al. (2006) measured 

PBDEs in blood from 154 adults across 13 cities of various ages, backgrounds and 

occupations finding median levels of 5.6 ng/g lipid weight with the highest concentration 

measuring 420 ng/g lipid weight. BDE-47 was the main congener found, whilst they also 

found BDE-209 in 11 samples and small amounts of BDE-183, prompting the suggestion that 

subjects had been exposed to primarily the Penta-BDE formulation, but also to some Deca- 

and Octa-BDE.  Similar median levels (6.6 ng/g lipid weight) were found in London and 
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Lancaster breast milk, which was dominated by BDE-47, although BDEs -183 and -209 were 

not measured in this study (Kalantzi et al., 2004). 

More recently, Garí and Grimalt (2013) measured PBDE concentrations in blood from 731 

adults from Catalonia, Spain. BDE-209 was found with a median concentration of 3.3 ng/g 

lipid weight, whilst BDE-47 and -99 were 2.6 and 1.2 ng/g lipid weight respectively. Median 

∑PBDE concentrations were 15.4 ng/g – one of the highest outside of Asia and North 

America. They also noted that the highest concentrations were found in adults aged under 30 

years, a common trend seen. They attribute this to the increased usage since the 1980s, 

meaning that those under 30 have been exposed for a greater proportion of their lifetime. 

Australian human blood and milk falls within a similar range to that of the UK and Europe 

with median milk concentrations of 10.2 ng/g lipid weight (Toms et al., 2007) and 7.0-8.7 

ng/g lipid weight in blood (Hearn et al., 2013). Interestingly, whilst BDE-209 was not 

measured in the milk samples (and so no comparison is available) (Toms et al., 2007), it was 

measured in blood, but was not detected in a single sample (Hearn et al., 2013). Surprisingly, 

a small study of blood in 23 New Zealanders revealed median BDE47:183 concentrations of 

6.12 ng/g lipid weight – similar to Australia and Europe and higher than Scandinavia. This is 

surprising due to the absence of any known PBDE production within New Zealand, and was 

attributed by the authors to imported consumer goods and food (Harrad and Porter, 2007). 

Given the extensive use of PBDEs, the above sources of exposure and body burdens found in 

previous work (including both the UK and Australia), coupled with their potential to behave 

as pre-cursors for conversion to PBDD/Fs, it is important that further understanding is gained 

of the environmental sources, fate and impacts of both compound groups. 

1.2 Physicochemical Properties, Biochemistry and Environmental Fate 

PBDEs 

There are 209 different BDE congeners, containing any number of bromine atoms from 1 

(mono-BDEs) through to 10 (deca-BDE). The physicochemical properties of PBDEs vary 

between congeners (D'Silva et al., 2004).  The octanol-water partition coefficient (KOW) is 

used as an indicator of their environmental behaviour. Chemicals with high KOW are 

hydrophobic and therefore are potentially bioaccumulative. PBDEs have a high KOW (Table 

1.1) and will accumulate in fatty tissues and oils (D'Silva et al., 2004). This combined with 

resistance to being metabolised can give them the ability to biomagnify up the food chain as 
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demonstrated by Figure 1.5 which shows the bioaccumulation of PBDEs in fish from Lakes 

Huron and Erie, USA. 

 

 

Note – Vol = Lipid Volume; LF = Lipid Fraction Dietary preference is shown by fractions at the end of arrows 

= e.g. 80% of Mysid diet comes from Plankton and 20% from Diporeia. 

Figure 1.5 Schematic diagram of Lake Heron and Lake Erie, USA, demonstrating the 

biomagnification of PBDEs along the food chain in the two lake. Taken from Lim and 

Lastoskie (2011) and sources within.  

It is generally believed that the lower brominated PBDEs, such as those from the Penta- and 

Octa- formulations are fairly mobile and are able to undergo long distance transport in air as 

they partition to at least some degree to the vapour phase, whilst the higher brominated 

molecules, such as BDE-209, are heavier with substantially lower vapour pressures and so 

have a tendency to sorb to soil and dust and are therefore far less amenable to long range 

atmospheric transport (Schenker et al., 2008). However, the data from the literature presented 

in Section 1.5, along with other studies, has shown that many PBDE congeners, including 

BDE-209 have been found in extremely remote locations, such as the Norwegian and 

Canadian Arctic, despite the absence of any local sources of PBDEs, suggesting that long 

range transport of all PBDEs occurs. A potential explanation for this was offered by de Wit et 

al. (2010) who stated that “periods of stable air conditions and high winds, such as during 

Arctic haze events will lead to episodes of long range transport for particulate-bound 

contaminants”.  

The physicochemical properties of PBDEs govern the way they behave in all environmental 

compartments. Whilst, on the whole PBDEs are persistent and resistant to degradation, their 
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differing properties with increased bromination mean that those with a higher molecular  

weight (e.g. octa- to deca- brominated) can behave differently in various environmental 

compartments.Studies such as that of Schenker et al. (2008) have suggested that BDE-209 

and other highly brominated congeners undergo photolysis to form lower brominated 

congeners with an estimation that 13% of penta- and 2% of tetra-brominated PDBE 

congeners in the environment arise from the degradation of BDE-209. Stapleton et al. (2006) 

found that BDE-209 can also undergo debromination via metabolisation in rainbow trout and 

carp – a possible contributory factor to the highly variable human body burdens of BDE-209, 

despite the substantial use of DecaBDE in some regions. 

The fate of PBDEs in the environment is still relatively unknown, but it has been proven that 

they can undergo significant degradation in the presence of anaerobic microorganisms 

(Gerecke et al. 2005) as well as photolytic degradation in the presence of ultraviolet light 

(Soderstrom et al. 2004).  

Gerecke et al. 2005 were the first to show the microbial degradation of BDE-209, with a 30% 

loss in its content after 238 days in an anaerobic inoculation (with increases in octa- and 

nona- brominated congeners), whilst there was no significant loss in sterile conditions over 

the same time period. He et al. (2006) demonstrated that BDE-209 and some octa-brominated 

congeners undergo debromination in the presence of bacteria (Sulfurospirillum mutivorans 

and Debalococcoides). They found that BDE-209 degraded to form hepta- and octa- 

brominated congeners, whilst octa-brominated congeners degraded to form di- through to 

hepta-brominated congeners including BDEs -154 (hexa-), -99 (penta-), -49 and -47 (both 

toxic) which are considered to be more toxic (He et al. 2006). Microbial degradation of 

PBDEs has been demonstrated by several others in soil as well as sediment. The majority of 

evidence suggests that BDE-209 undergoes the most rapid degradation through 

debromination; however, Yen et al. 2009 has also shown that BDE-47 can undergo rapid 

degradation in the presence of anaerobic microbes with concentrations declining from  100 

ng/mL of culture medium to the detection limit (not reported) after 63 days when the same 

concentrations of BDEs -99, -100, -153 and -154 had decreased by less than 20% over the 

same time period with estimated half-lives of 220-950 days. The more facile degradation of 

BDE-47 has been attributed to a higher bioavailability for anaerobic microbes whereby they 

are able to source their entire carbon requirements from BDE-47 (Vonderheide et al. 2006, 

Yen et al. 2009). Whilst these studies have demonstrated that microbial degradation of 

PBDEs is possible in laboratory conditions, it is likely that the persistence of PBDEs is 
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underestimated, given the overwhelming evidence of their detection in deep layers of 

sediment, such as Marvin et al. (2007), Kohler et al. (2008) and others. 

Wong et al. 2012 demonstrated that the ability of anaerobic bacteria to degrade PBDEs in 

soils decreases with time. The air soil partition coefficient (KSA) for BDEs -17, -28, -47 and -

99 (was measured as an indicator of volatility) at regular intervals from spiked urban soil 

under incubated laboratory conditions. It was found that the KSA increased over time, 

meaning that the likelihood of their volatilisation from the soil decreased with the aging of 

the soil. 

Nyholm et al. (2010) also stated that the persistence of PBDEs appears to increase in aging 

soil, with a high bioavailability to earthworms for the first 30 days of exposure (seen by 

increasing accumulation of lower brominated congeners in the earthworms). However, after 

30 days, the accumulation rates slowed to that of the higher brominated congeners as the 

congeners became less bioavailable attributed by the authors to a stronger affinity to pores in 

the soils that earthworms and microbes were unable to feed on (Nyholm et al. 2010). 

BDE-209 has also been found to undergo degradation to form hydroxylated and 

methoxylated PBDEs. Huang et al. 2010 examined BDE-209 in several plant species in order 

to observe its accumulation in their roots in a laboratory soil-plant system. There was a 

significant correlation of BDE-209 uptake and lipid content in roots, unsurprising given its 

high Kow. The soil was also measured at different stages and was found to have developed 

increased concentrations in di- through to nona- brominated congeners as well as five 

different hydroxylated PBDEs. PBDEs were also further brominated within plants as di- 

through to penta- brominated congeners increased steadily. Finally a significant negative 

correlation was found between residual BDE-209 concentration in the soil and microbial 

biomass, again highlighting the ability of microbes to degrade BDE-209.  

As previously mentioned, higher brominated congeners (particularly BDE-209) can undergo 

photolytic debromination in air (Schenker et al. 2008). Soderstrom et al. (2004) found that 

this was also the case in air, but also that PBDFs could be formed via the same mechanism. 

This has led to the postulation that erratic levels of BDE-209 in air, along with potential 

summer decreases are due to its photolytic degradation (Gevao et al. 2013). 

Overall, there is clear evidence that PBDEs can undergo degradation via a variety of 

pathways and mechanisms. However, typical of first order decay, such degradation slows 

over time, related in part to increased binding to soil and sediment organic matter over time. 
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Moreover, where such degradation occurs it results primarily in the formation of lower 

brominated congeners, as well as hydroxylated and methoxylated PBDEs. As a result it 

would appear that they can display substantial persistence in soils and sediments, with one 

study reporting half-lives of 12.7 years for BDEs -47 and 99; and 22.8 years for BDE-209 

(Andrade et al. 2010).  

PBDD/Fs 

PBDD/Fs are structurally identical to their chlorinated homologues (PCDD/Fs), which are 

well known. However, due to the heavier bromine atoms in PBDD/Fs (with C-Br being a 

weaker bond than C-Cl with bond dissociation energies of 330-350  and 368-393 KJ/mol 

respectively (Chen et al., 1989)) replacing the chlorine in PCDD/Fs, their behaviour in the 

environment is thought to differ slightly (Schecter, 2012). 

The high KOW values for PBDD/Fs (Table 1.2) means that, like PBDEs, they are likely to 

accumulate in fats and organic matter; this combined with their resistance to degradation and 

metabolism makes them bioaccumulative and persistent in the environment.  

Experimentally derived data on the physicochemical properties of PBDD/Fs are scarce due to 

the expense and difficulty in obtaining appropriate standards. However Buser (1988) and 

Neupert et al. (1988) have both shown that all PBDD/Fs are unstable as they undergo photo-

decomposition to form lower brominated PBDD/Fs and benzyl substitutes.



14 
 

Chemical Nomenclature Common 

Name 

Chemical 

Formula 

Molecular 

Weight 

Melting Point Vp 

at 298.15 K (Pa) 

Log KOW 

2,4,4’-Tribromodiphenyl ether BDE-28 C12H7Br3O 406.9 64 °C
a
 2.19 x 10

-3 d 
5.94

f 

2,2’,4,4’-Tetrabromodihenyl ether BDE-47 C12H6Br4O 485.8 79-82 ºC
b
 1.86 x 10

-4 d 
6.81

f 

2,2’,3,4,4’-Pentabromodiphenyl ether BDE-85 C12H5Br5O 564.7 N/A 9.86 x 10
-6 d 

7.37
f 

2,2’,4,4’,5-Pentabromodiphenyl ether BDE-99 C12H5Br5O 564.7 93 ºC
b 

1.76 x 10
-5 d 

7.32
f 

2,2’,4,4’,6-Pentabromodiphenyl ether BDE-100 C12H5Br5O 564.7 97-98 ºC
b
 2.86 x 10

-5 d
 7.24

f 

2,2’,4,4’,5,5’-Hexabromodiphenyl ether BDE-153 C12H4Br6O 643.6 183 ºC
c
 2.09 x 10

-6 d 
7.90

f 

2,2’4,4’5,6’-Hexabromodiphenyl ether BDE-154 C12H4Br6O 643.6 N/A 3.80 x 10
-6 d 

7.82
f 

2,2’,3,4,4’,5’,6-Heptabromodiphenyl ether BDE-183 C12H3Br7O 722.5 172 °C
a
 4.68 x 10

-7 d 
8.27

f 

Decabromodiphenyl ether BDE-209 C12Br10O 959.2 290-306ºC
b
 9.02 x 10

-13 e
 9.97

a
 

NB – Vp = Vapour pressure; Melting point not available in literature for BDEs -85 and -154 
a 
Wania and Dugani (2003)

b 
Darnerud et al. (2001); 

c 
U.S.EPA (2008); 

d 
Tittlemier et al. 

(2002); 
e
 Fu and Suuberg (2011); 

 f
 D'Silva et al. (2004);  

Table 1.1 Physicochemical properties of selected PBDE congeners
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Homologue Group Molecular 

Formula 

Molecular 

Weight 

Log 

KOW
a
 

Log 

KOA
a
 

Melting 

Point
b
 

Vp at 298.15 

K (Pa)
b
 

Water Solubility (log S) 

(mol/Litre)
b
 

Mono-BDD C12H7Br1O2 262.9 5.08 8.33 93-106 °C 3.5-4.0 x 10
-3

 -6.12 

Di-BDD C12H6Br2O2 341.8 5.65 9.23 150-194 °C 1.5-1.7 x 10
-3

 -6.9 

Tri-BDD C12H5Br3O2 420.7 6.16 10.2 N/A N/A N/A 

Tetra-BDD C12H4Br4O2 499.6 6.69 11.1 334-336 °C 6.4 x 10
-7

 -8.72 

Penta-BDD C12H3Br5O2 578.5 7.19 12.1 N/A N/A -9.45 

Hexa-BDD C12H2Br6O2 657.4 7.69 13.0 N/A N/A N/A 

Hepta-BDD C12H1Br7O2 736.3 8.13 14 N/A N/A -10.89 

Octa-BDD C12Br8O2 815.2 8.6 15 376 4.1 x 10
-11

 -11.69 

Mono-BDF C12H7Br1O 246.9 4.83 7.66 N/A 5.5-12 x 10
-4 

-5.42 

Di-BDF C12H7Br1O 325.8 5.35 8.58 N/A 3.5-4.5 x 10
-5

 -6.25 

Tri-BDF C12H7Br1O 404.7 5.87 9.51 144-148 °C 3.4-4.4 x 10
-6

 -7.26 

Tetra-BDF C12H7Br1O 483.6 6.38 10.5 240-302 °C 3.9-4.5 x 10
-7 

-7.99 

Penta-BDF C12H7Br1O 562.5 6.88 11.4 N/A 3.6-5.6 x 10
-8 

-8.71 

Hexa-BDF C12H7Br1O 641.4 7.36 12.4 N/A 4.6 x 10
-8 

-9.43 

Hepta-BDF C12H7Br1O 720.3 7.79 13.4 N/A 9 x 10
-11

 N/A 

Octa-BDF C12H7Br1O 799.2 8.26 14.4 N/A N/A N/A 

NB – Due to a lack of literature some values are unavailable, whilst other values presented in this table are calculated/predicted 
a calculated by Schecter (2012) from Puzyn et al. 

(2008); 
b 
World Health Organization (WHO) (1998) 

Table 1.2 – Summary of some physicochemical properties of PBDD/Fs  
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1.3 Applications and uses 

PBDEs 

PBDEs have been used to flame retard many household and commercial goods with a UK 

annual usage of 1500 t in upholstered furniture, 85 t in electrical goods (such as casing for 

plugs, wiring and televisions), and 25 t in DIY products (such as polyurethane foams (PUF) 

pipes and sealants) (D'Silva et al., 2004, Bromine Science Environmental Forum (BSEF), 

2007).  

There are 3 commercial PBDE formulations (the proportions of which are shown in Figure 

1.10 in Section 1.7); however in 2004, the Penta- and Octa- formulations were banned in the 

EU (Birnbaum and Staskal, 2004) and Australia in 2005 (Toms et al., 2009b), whilst 

voluntary bans of these have occurred in the U.S. (Lagalante et al., 2009). As of July 2008, 

the DecaBDE formulation has been significantly restricted after the European Union 

restriction-of-hazardous-substances (EU ROHS) exemption ended on 1
st
 July 2008 (Deffree, 

2008). Moreover, in 2009, the Penta- and Octa- formulations were listed as 2 of 9 new 

persistent organic pollutants (POPs) recognised under the Stockholm Convention (Stockholm 

Convention, 2009). Yet in many parts of Asia, PBDEs are still used commercially without 

any regulations (Li et al., 2009). Although these substances are now widely restricted, such 

restrictions apply to their manufacture and new use, meaning that products already 

manufactured containing PBDEs will remain in use for the foreseeable future. 

The exact proportions attributed to individual formulations are unavailable in the literature, 

but it is believed to be primarily DecaBDE – a demand of 150 t of PentaBDE was required 

for the entire usage of Europe in 2001 (Bromine Science and Environmental Forum (BSEF), 

2003) PBDEs are incorporated additively into products as opposed to being chemically bound 

as in the case of reactive flame retardants such as tetrabromobisphenol A (TBBP-A). As a 

result PBDEs are more susceptible to migration from their original products into the 

environment (World Health Organization (WHO), 1994). The wide range of uses for the 

three principal commercial formulations of PBDEs are shown in Table 1.3. RPA Ltd. (2000) 

report that approximately 95% of PentaBDE used in the EU is in the furniture, automotive 

and packaging industries. Small amounts of Penta-BDE are also used in solid polyurethane 

applications such as housing for electronic goods. The RPA report also states PentaBDE may 

also have been used in specialised applications such as treatment of textiles and safety wear 

which is required to be fire-resistant such as industrial tyres and conveyor belts. It has also 

been reported that curtains and carpets have been treated with both Penta- and DecaBDE at  
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concentrations of between 5-30% by weight (European Food Safety Authority (EFSA), 

2011).  

 

The use of each commercial formulation varies widely across the globe – for example, from 

the most recently available figures (for 2001), 95% of the global PentaBDE demand (7100 t) 

comes from the Americas, whilst Europe uses 7500 t DecaBDE compared with 24000 t for 

each of Asia and the Americas (Bromine Science and Environmental Forum (BSEF), 2003). 

Resins and Polymers DecaBDE OctaBDE PentaBDE 

Acrylonitrile–butadiene–styrene  ✔  

Epoxy-resins 

 
✔   

Phenolic resins 

 
✔  ✔ 

Polyacrylonitrile 

 
✔   

Polyamide 

 
✔ ✔  

Polybutadiene terephthalate 

 
✔ ✔  

Polyethylene 

 
✔   

Polyethylene terephthalate 

 
✔   

Polypropylene 

 
✔   

Polystyrene (high impact) 

 
✔ ✔  

Polyvinyl chloride 

 
✔  ✔ 

Polurethane 

 
  ✔ 

Polyesters 

 
✔  ✔ 

Rubber 

 
✔  ✔ 

Paints/lacquers 

 
✔  ✔ 

Textiles ✔  ✔ 

Table 1.3 Applications of commercial PBDE mixtures (EBFRIP, 1990, D'Silva et al., 2004) 

PBDD/Fs 

PBDD/Fs have never been intentionally manufactured, and it is not known exactly how they 

are formed, although there is evidence to suggest that they are formed during processes 
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involving high temperatures and brominated precursors, such as BFRs like PBDEs and 

TBBP-A (Schecter, 2012). Weber and Kuch (2003) state that PBDF formation from PBDEs 

requires “only an intra-molecular elimination of Br2 or HBr” which normally occur during 

thermal degradation of the polybrominated aromatic rings at temperatures above 500 °C. 

Once, this thermolysis has occurred, the remainder of the PBDE molecule can then self-

condense to form a PBDF. Alternatively, the molecule can undergo oxidation to form a 

bromophenate ion, which then undergoes self-condensation to form a PBDD molecule, 

although PBDD formation from PBDEs thermolysis is thought to occur to a much lesser 

extent than that of PBDFs (Weber and Kuch, 2003). Figure 1.6 demonstrates examples of 

how BDE-209 can undergo thermal degradation to form other PBDE congeners as well as 

PBDD/Fs. 

 

Figure 1.6 Formation pathways of PBDD/Fs during thermal degradation of BDE-209. Taken 

from Weber and Kuch (2003) 

In addition, considering their identical structure to their chlorinated analogues, it cannot be 

ruled out that the mechanism of PBDD/F formation is the same – i.e. via de novo synthesis, 

formation from the basic elemental components (carbon, oxygen, hydrogen and bromine) 

under appropriate conditions (Bumb et al., 1980).  Such conditions occur during combustion 
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processes like waste incineration (Li et al., 2007) various industrial processes such as steel 

manufacture (Wang et al., 2008) and accidental fires such as 9/11 (Litten et al., 2003).  

Buser (1986) also discovered that PBDEs act as precursors to PBDD/Fs at temperatures of 

510-630 °C in the presence of air, as they undergo thermolysis. This was backed up by 

Weber and Kuch (2003), however they also state that under “controlled combustion 

conditions” PBDEs can be destroyed without the formation of PBDD/Fs. There is evidence 

that PBDEs are converted to PBDD/Fs in industrial processes, such as steel manufacture, as 

the presence of both compounds has been shown in emissions from steel manufacturing 

(Wang et al., 2010b) as well as in environments close to incineration and recycling of e-waste 

as mentioned above (Leung et al. 2007, Li et al. 2008). The presence of PBDEs and PBDD/Fs 

in the steel industry is discussed in more detail in Section 1.6. 

 

Figure 1.7 Potential mechanism for natural formation of PBDDs by cyanobacteria 

(Arnoldsson et al., 2012) 

There is also evidence to suggest natural formation of PBDDs by marine biota. Specifically 

Haglund et al. (2007) detected them in Baltic marine environments where there were no 

known anthropogenic sources, whilst they were absent from freshwater environments in close 

proximity, leading the authors to postulate that they must be released into the environment 
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naturally via excretion by algae and/or cyanobacteria. This was investigated further, where it 

was proposed that PBDDs are formed naturally via enzymatic coupling of bromophenols – a 

two stage process shown fully in Figure 1.7 – the coupling of a C-O bromophenoxy radical 

with another radical to form a bromophenoxyphenol; followed by ring closure to form a 

PBDD. However, it could not be concluded whether this was the principal formation pathway 

of PBDD/Fs in biota or whether there was an alternative exposure pathway (Arnoldsson et 

al., 2012).  

1.4 Toxicology and Health Effects 

PBDEs 

PBDEs can be highly toxic to humans and animals. They are thought to disrupt levels of sex 

hormones, such as LH and FSH, in men (Meeker et al., 2009) and may be detrimental to 

human and animal health both through chronic and acute exposure, causing disruption to the 

liver, kidneys and thyroid gland; neurodevelopmental problems; various cancers; and 

inhibition of foetal and infant development (Costa, 2008). PBDEs are not completely resistant 

to metabolism and the liver has been found to oxidise congeners to form hydroxylated 

PBDEs (OH-PBDEs) such as the study by Erratico et al. (2012) who showed that human liver 

microsomes can metabolise BDE-99 into several different OH-PBDEs. 

It is difficult to define the toxicity of PBDEs as one group as it is congener-specific – each 

congener has its own biological and toxicological consequences (D'Silva et al., 2004). The 

different commercial formulations of PBDE contain different congeners and thus different 

toxicities. For example, PentaBDE contains ca. 60% penta-, 30% tetra- and 5% hexa- 

brominated congeners, whilst OctaBDE contains ca. 80% hepta- and octa- (La Guardia et al., 

2006). The Penta- formulation can activate the aryl hydrocarbon (Ah) -receptor (Gu et al., 

2012), cause a reduction in hepatic vitamin A levels and induce various cancers as well as 

inhibit foetal and neonatal neurodevelopment (D'Silva et al., 2004, Hornung et al., 1996) . 

The OctaBDE formulation causes developmental toxicity, whilst the DecaBDE formulation is 

believed to be the least toxic as it contains higher molecular weight congeners that cross 

membranes less easily and are broken down more readily (D'Silva et al., 2004). However, 

Schreiber et al. (2010) report that BDE-209 is toxic to human HepG2 hepatoma cells, whilst 

the higher brominated PBDEs are thought to be broken down readily in photolytic reactions 

to yield more toxic and bioaccumulative penta- and tetra- congeners as well as PBDD/Fs 

(D'Silva et al., 2004). Using modified chicken DT40 cells, Ji et al. (2011) investigated the 
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genotoxic potential of congeners from all three commercial formulations, along with some 

OH-PBDEs. They found that tetra-brominated PBDEs were the most potent in causing DNA 

damage, whilst penta- and hexa-brominated congeners required significantly larger 

concentrations to cause the same effects. It was also noted that BDE-209 caused no effect on 

cell growth, concluding that PBDE toxicity decreases with bromination. Interestingly, it was 

also discovered that OH-PBDEs are more toxic than their parent PBDEs – for example the 

lowest concentration of 6-OH-BDE-47 required to induce apoptosis of cells after 24 hours 

was approximately 5 µM compared with 41.2 µM for BDE-47. 

The WHO state that there is limited “experimental” evidence of carcinogenicity from BDE-

209 and none for any other PBDE mixtures, whilst limited studies have shown that PBDE 

mixtures are not genotoxic (Joint FAO/WHO Expert Committee on Food Additives (JECFA), 

2006). The same authors went on to conclude that for multiple reasons, such as the 

complexity of PBDEs as a group, along with the limited data on human toxicity that they 

could not allocate tolerable daily intake (TDI) figures for PBDEs. However some health 

based limit values do exist. The U.S. EPA has set references doses (RfD) for BDEs -47, -99, -

153 and -209 (Table 1.4) whilst Bakker et al. (2008) calculated “No adverse effect levels” 

(NAEL) for reproductive toxicity (0.23-0.30 ng/kg bw/day) and neurodevelopmental toxicity 

(18.8 ng/kg bw/ day) for BDE-99. They stated, that whilst the Dutch population were 

receiving approximately 100 times lower than the NAEL for neurodevelopmental toxicity, 

individuals exposed via the diet at the 99
th
 percentile, 0.24 ng/kg bw/day, were likely to be at 

risk of reproductive inhibition as a result of dietary exposure to PBDEs. In the UK Harrad et 

al. (2010) carried out an exposure assessment for school children based on concentrations of 

dust they had measured and found that those with a high-end exposure (a dust ingestion rate 

of 200 mg/day contaminated at the 95
th

 percentile concentration) would be exposed to 4.3 ng 

BDE-99/kg bw/day and 13000 ng BDE-209/kg bw/day – both considerably over the NAEL 

and RfD for BDEs -99 and -209 respectively. 
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Congener Reference Dose (µg/kg bw/day) 

BDE-47 0.1
a 

BDE-99 0.1
b 

BDE-153 0.2
c 

BDE-209 0.7
d 

a 
U.S. EPA. (2008b);

 b 
U.S. EPA. (2008c);

 c 
U.S. EPA. (2008d)

; d 
U.S. EPA. (2008a)

 

Table 1.4 U.S. EPA reference doses for a selection of PBDE congeners 

Henny et al. (2009) found PBDE residues in the muscle tissue of ospreys in Sweden and 

discovered that they can be embryotoxic and cause eggshell thinning. More recently, Lee et 

al. (2012) found that PBDEs and UV-treated PBDEs reduce the hatching rates of grass 

shrimp embryos, with BDE-47 reducing by up to 50%. Koenig et al. (2012) further 

highlighted the effect of BDE-47 on neurodevelopment when they found that mice exposed 

to the compound take longer to find the escape hole in a maze at higher exposure levels.  

With these effects observed in animal studies, it is unsurprising that, whilst more research is 

needed, studies have shown that PBDEs, along with their metabolites can cause adverse 

effects in humans. It has been suggested that children and young adults are more prone to 

developmental dysfunctions as a direct result of PBDE exposure (Siddique et al., 2012). Low 

concentrations of PentaBDE (10 µg/mL) have been found to stimulate the release of 
3
H-

arachidonic acid (
3
H-AA; a signalling molecule found in the brain)  leading to learning and 

memory impairment, whilst OctaBDE was required in concentrations five times higher to 

cause similar effects, demonstrating the decreased toxicity with increased bromination 

(Siddiqi et al., 2003). Furthermore, Bradner et al. (2013) evaluated how a PentaBDE 

formulation (DE-71) affected the nigrostriatal dopamine system. Using HEK293 cells, 

designed to express human-VMAT2 constructs, they were able to show that exposure to the 

DE-71 formulation over a 24 hour period can cause a dose-dependent increase in the release 

of lactate dehydrogenase – an indicator for cytotoxicity – leading to the conclusion that DE-

71 is “an efficient neurotoxicant in a dopaminergic cell line”.  

Gascon et al. (2012) found a statistically significant association between an increase in 

maternal PBDE body burdens and a decrease in mental development scores. On the other 

hand, in Californian post-mortem brain samples, there was no significant difference in 

concentrations of any PBDE congener measured across control brain samples and those from 
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persons with Autism Spectrum Disorders or Genetic Neurodevelopment Disorders (Mitchell 

et al., 2012). 

Ren and Guo (2013) stated that OH-PBDEs are highly similar in structure to several thyroid 

hormones, meaning that when humans are exposed to and have metabolised PBDEs there is 

the potential for various hormone receptor inhibitions leading to reduced thyroid activity. In a 

different study, out of 35 workers exposed to DecaBDE in a manufacturing plant, 4 exhibited 

clinical hypothyroidism, whilst none of the 89 unexposed workers had any known issues 

(Bahn et al., 1980). This is consistent with findings that at doses of 80 mg/kg bw of BDE-

209, negative changes to thyroid, liver and kidney morphology in adult animals can occur 

(Darnerud, 2003). Furthermore, in human T47D breast cancer cells, 11 cells showed 

oestrogenic potencies, with BDE-100 (which makes up approximately 10% of PentaBDE 

formulations) the most potent. PBDEs can produce toxic pseudoestrogens upon metabolism  

that can inhibit T4 enzymes from binding to transthyretin causing reduced thyroid activity, 

whilst they have also been found to affect testes development, hepatic enzyme activity and 

neurobehaviour (Siddiqi et al., 2003). 

PBDEs have also been found to cause disruption to the oestrogen receptor pathway (Ren and 

Guo, 2013) – the inhibition of which has been found to correlate with various diseases 

including cancer and obesity (Boswell et al., 2012). Sexual development can also be 

adversely affected as both the androgen and progesterone receptors, vital for the regulation of 

genes needed for the development and maintenance of the male sexual phenotype, can be 

inhibited as Stoker et al. (2005) saw that male pre-pubescent rats exposed to PentaBDE had 

delayed onset of puberty after several PBDE congeners bound to the androgen receptor.  

PBDD/Fs 

Like PBDEs, PBDD/Fs are also toxic to humans with similar effects, such as 

neurodevelopment inhibition and endocrine disruption (Ren et al., 2009). However, there are 

far fewer studies addressing PBDD/F emissions, exposure pathways and toxicology. 

Furthermore there is just a handful of studies based on humans (Ericson Jogsten et al., 2010). 

There is a distinct gap in the knowledge of toxicity of PBDD/Fs, especially when compared 

to their chlorinated analogues (PCDD/Fs) (Birnbaum et al., 2003). There is a limited amount 

known on various PBDD/Fs, particularly 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) which 

is absorbed readily into the body through oral or pulmonary exposure (Birnbaum and Staskal, 

2004). PBDD/Fs are metabolised extremely slowly – data suggests a half-life of 2,3,7,8-
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TBDD in humans of approximately 5-10 years (Birnbaum et al., 2003). It is known that 

PBDD/Fs have similar health impacts to PCDD/Fs, which are lethality, wasting, thymic 

atrophy, teratogenesis, reproductive disturbance, chloracne, immunotoxicity, enzyme 

induction, T4 vitamin A reduction, and increased hepatic porphyrins – based on experiments 

in mammalian and amphibian species (Birnbaum et al., 2003). There is little to no published 

literature on how PBDD/Fs affect humans, but most of the evidence suggests that their 

mechanisms (and thus toxic effects) are analogous with those of PCDD/Fs (Birnbaum and 

Staskal, 2004, DeVito et al., 1998). The investigation of the toxicity of PBDD/Fs is now of 

growing concern as they have been detected in adipose tissue from the Japanese (Choi et al., 

2003b) and Swedish public as well as mothers’ milk in various countries (Ericson Jogsten et 

al., 2010). Hornung et al. (1996) performed a study of the toxicity of PBDD/Fs, PBDEs and 

PBBs based on the early life stage mortality of rainbow trout. Whilst PBDEs did not display 

acute effects, it was found that PBDD/Fs with bromine atoms substituted in at least 3 of the 

2,3,7 and 8 positions caused mortality in rainbow sac fry due to problems including yolk sac 

edema, pericardial edema, subcutaneous haemorrhages, reduced growth and craniofacial 

malformations (Hornung et al., 1996). Ericson Jogsten et al. (2010) recently examined the 

presence of PBDD/Fs in human adipose tissue and plasma from 10 people in comparison to 

other well-known POPs such as PBDEs and PCDD/Fs. They did not detect PBDDs, but 

PBDFs such as 2,3,7,8-TeBDF (0.27-2.4 pg g
-1

 lipid) and 1,2,3,7,8-PeBDF (0.23-0.89 pg g
-1

 

lipid) amongst others were found. It was discovered using a rainbow trout early life stage 

mortality bioassay that whilst PBDDs were of equal or lower potency than 2,3,7,8-TCDD 

(the most toxic PCDD), PBDFs – particularly 2,3,7,8-TBDF – were more toxic than their 

chlorinated equivalents by up to 9 times (Hornung et al., 1996). This has since been backed 

up by Matsuda et al. (2010) who found using CALUX
®
 assays for expression of Ah-receptor 

ligand activity that 2,3,7,8 TBDF had a relative equivalent potency (REP) of 0.83 compared 

with 0.021 for 2,3,7,8-TCDF. It was also seen that PBDDs are of similar to much lower 

potencies than equivalent PCDD homologues – the REPs for 2,3,7,8-TBDD and TCDD were 

0.8 and 1 respectively, whilst for 1,2,3,7,8- PeBDD and PeCDD they were 0.28 and 0.73 

(Matsuda et al., 2010). However, Olsman et al. (2007) stated that PBDD/Fs were overall of 

similar potencies to PCDD/Fs, although the REP for 2,3,7,8-TBDF was not given. 

1.4.1 Toxic Equivalency Factors (TEFs) 

The TEF is a method employed by WHO to “facilitate the evaluation of complex mixtures of 

related chemicals” (World Health Organization (WHO), 1998). It allows a figure to be 
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assigned to a particular chemical or set of chemicals based on its relative toxicity (i.e. the 

higher its toxicity, the higher its TEF value). This figure is multiplied by the actual 

concentration of a specific congener to give its toxic equivalent (WHO-TEQ (formerly I-TEQ 

before updated TEFs)) value, which can be summed with TEQs from other compounds to 

give a total WHO-TEQ concentration for a given medium – e.g. ng WHO-TEQ m
-3

 for air 

samples. The World Health Organization (WHO) (1998) state that there are currently no 

agreed TEFs for PBDD/Fs and so those from their chlorinated homologues (PCDD/Fs) 

should be used in the mean time. Since then, a joint WHO and United Nations Environment 

Program (UNEP) consultation occurred that attempted to determine TEFs for PBDD/Fs. It 

was concluded that due to the limited experimental data in fish, mammals and humans, new 

TEFs for PBDD/Fs could not be calculated and that the same TEFs as applied to equivalent 

PCDD/F homologues should continue to be used (van den Berg et al., 2013). 

 

1.5. Environmental levels, behaviour and sources 

PBDEs 

1.5.1 Outdoor Air 

In the last 5-10 years there has been an increasing number of studies measuring PBDEs in 

outdoor air, especially with regards to BDEs -183 and -209. Table 1.5 summarises a broad 

selection of the available data for some PBDE congeners in ambient air. Whilst other 

congeners have been measured (such as BDEs -17; -28; -49; -66; -71; -77; -85; -119; -126; -

138; -153; -154; -156; -183; -184; -191; -196; -197; -206; -207; -208) they make up a very 

small proportion of the total PBDE content, so only those most common in the environment 

are presented here. Whilst there have been several studies looking at PBDEs in outdoor air, 

there is a lack of recent data, with the most recent study dating back to measurements made in 

2008, whilst there have been many changes in legislation over the last decade, suggesting that 

updated data on ambient air concentrations are required.  

There are no obvious differences between continents with respect to PBDE concentrations 

and congener patterns; although with the deficiency in BDE-209 measurements in many 

studies this is extremely difficult to judge. This distinct gap in published data on the higher 

brominated BDE congeners, emphasises the requirement for updated studies, especially in the 

UK, where more stringent flame retardancy legislation for furniture has led to substantially 
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greater use of the DecaBDE commercial formulation (Bromine Science Environmental 

Forum (BSEF), 2007), so it is expected that BDE-209 levels should be higher for the UK than 

elsewhere. 

Data from Asia shows the importance of industry as a source of PBDEs to the environment 

with mean ∑PBDE concentrations of 3300 pg/m
3
 in outdoor air close to industrial sources, 

compared with 570 pg/m
3
 at a control site, whilst sites close to steel production sites in Korea 

appear to be on average twice those of rural and suburban locations at 25(9-62) pg/m
3
 and 12 

(7.3-21) pg/m
3
 respectively (Choi et al., 2008). 

The role of other anthropogenic activities is highlighted by Strandberg et al. (2001) who 

found average ambient air concentrations of 55 pg/m
3
 in Chicago, compared to 11 pg/m

3
 at 

rural sites close to Lake Michigan and 5.6 pg/m
3
 at a remote site close to Lake Erie in the 

USA. 
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UK & Ireland 

Study 

Location 
Year Land type N BDE 47 BDE 99 BDE 100 BDE 153 BDE 154 

BDE 

183 
BDE 209 

Lee et al. (2003) 

UK 
2001 Rural/Semi-Rural 86 

3.9 (0.72-

15) 

3.1 (0.53-

15) 

0.68 (0.46-

2.90) 

0.35 (0.09-

1.5) 

0.24 (0.09-

0.90) 
N/A N/A 

Lee et al. (2003) 

Ireland 
2000 Remote 25 

1.1 (0.16-

1.9) 

0.75 

(0.28-1.9) 

0.20 (0.07-

0.43) 

0.10 (0.04-

0.18) 

0.08 (0.05-

0.10) 
N/A N/A 

Harrad et al. (2004) 

UK 
2002-3 Urban 6 

9.4 (3.4-

18) 

5 (1.6-

7.5) 

1.3 (0.17-

2.8) 
2.9 (1.1-6) 

1.8 (1.3-

2.5) 
N/A N/A 

Gioia et al. (2006) 

UK 
2002-4 Rural/remote 5 

1.5 (0.54-

2.0) 

0.48 

(0.16-1.0) 

0.13 

(0.021-

0.23) 

0.051 

(0.011-

0.042) 

0.058 

(0.031-

0.091) 

N/A N/A 

Harrad and Hunter 

(2006a) 

UK 

2003-4 Urban/Suburban 66 
9.0 (3.1-

17) 

2.9 (1.2-

5.6) 

0.84 (0.25-

2.7) 

0.5 (0.14-

2.11) 

0.31 

(<0.05-

0.72) 

N/A N/A 

Harrad and Hunter (2006) 

UK 
2003-4 Rural 55 

3.1 (0.29-

8.0) 

1.0 (0.34-

2.57) 

0.47 (0.07-

1.15) 

0.15 (0.11-

0.2) 

0.13 

(<0.05-

0.64) 

N/A N/A 

Wilford et al. (2008) 

UK 
2004 Semi-Rural 28 

0.14 

(<0.19-

1.3) 

0.31 

(<0.33-

1.8) 

0.050 

(<0.3-

0.32) 

1.2 (<0.3-

15) 

0.21 (<0.3-

2.5) 

4.6 

(<0.5-

92) 

20 (<0.5-

100) 

Birgul et al. (2012) 

UK 
1999-2010 Urban 33 

6.6 (0.51-

34) 

2.7 

(<0.05-

9.2) 

0.72 

(<0.05-

3.1) 

0.42 (<0.3-

3.1) 

0.40 (<0.1-

2.2) 

0.45 

(<0.1-

2.2) 

N/A 

Birgul et al. (2012) 

UK 
1999-2010 Rural 40 

3.1 (0.12-

28) 

1.4 (<0.3-

7.2) 

0.38 (<0.3-

1.9) 

0.21 (<0.3-

0.83) 

0.18 (<0.1-

1.2) 

0.21 

(<0.1-

0.9) 

N/A 

Schuster et al. (2010) 

UK 
2004-8 Rural/Remote 10 

33 (<0.2-

130) 

25 (<0.3-

86) 

4.7 (<0.3-

19) 

7.9 (<.3-

24) 

1.4 (<0.3-

18) 
N/A N/A 

Table 1.5 Mean (range) PBDE concentrations (pg/m
3
) in outdoor air around the world from previous studies 
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Europe & Scandinavia 

Study 

Location 
Year Land type n BDE 47 BDE 99 BDE 100 BDE 153 BDE 154 

BDE 

183 
BDE 209 

Gioia et al. (2006) 

Norway 
2002-4 Rural/remote 7 

0.025 

(<0.05-

0.27) 

0.32 (0.059-

0.75) 

0.069 

(<0.05-

0.26) 

0.036 

(0.011-

0.081) 

0.24 (<dl-

0.082) 
N/A N/A 

Schuster et al. (2010) 

Norway 
2004-8 Rural 12 

240 

(<0.05-

550) 

130 (<0.05-

500) 

36 (<0.05-

130) 

81 (<0.1-

150) 

6.8 (<0.1-

81) N.A N.A 

Agrell et al. (2004) 

Sweden 
2001-2 Industrial 17 

2.3 (1.2-

4.5) 
3 (0.5-9.7) 

1.4 (<0.05-

5.1) 

0.29 (0.05-

1) 

0.2 (0.05-

0.6) 

0.16 

(.05-

1.1) 

20 (<0.05-

118.7) 

Agrell et al. (2004) 

Sweden 
2001-2 Urban 19 

1.6 (0.05-

5.7) 

2.1 (0.05-

13.1) 

0.83 (0.05-

6) 

0.12 

(<0.05-0.8) 

0.15 (0.05-

6) 
0.05 

40 (<0.05-

191 

ter Schure et al. (2004) 

Baltic 
2001 Remote 19 

1.8 (0.2-

5.6) 

1.2 (0.2-

4.3) 

0.7 (0.1-

1.7) 
N/A N/A N/A 

6.1 (1.1-

74.5) 

Vives et al. (2007) 

Italy 
2005 Industrial 1 152 15.7 7.2 1 1 2 16 

Castro-Jiménez et al. (2011) 

France 
2007-8 Urban/Industrial 13 

89 (70-

103) 
77 (62-90) 20 (16-23) 

4.9 (4.1-

5.7) 

4.7 (3.9-

5.5) 

0.13 

(0.09-

0.2) 

1.2 (0.78-

1.4) 

Jaward et al. (2003) 

Europe 
2002 Urban 25 

16 (2.4-

79) 

16 (4.3-

120) 

2.9 (0.82-

20) 

1.8 (0.24-

14) 

1.2 (0.29-

9.1) 
N/A N/A 

Jaward et al. (2003) 

Europe 
2002 Rural/remote 46 

7.5 (2.4-

43) 
11 (4.4-72) 

2.0 (0.82-

13) 

1.2 (0.23-

7.8) 

0.84 (0.29-

5.1) 
N/A N/A 

Iacovidou et al. (2009) 

Greece 
2006 Remote 26 

1.8 (<0.1-

4.2) 

0.8 (<0.1-

4.5) 

0.2 (<0.1-

0.7) 

0.2 (<0.1-

0.6) 

0.1 (<0.1-

0.9) 
N/A N/A 

Mandalakis et al. (2009) 

Greece 
2006 Urban 8 8.3 (2-24) 

6.1  (0.8-

11.6) 

1.4 (0.5-

2.4) 

0.65 (0.2-

0.8) 

0.60 (0.1-

1.0) 

0.46 

(<0.1-

0.9) 

N/A 

Table 1.5 Mean (range) PBDE concentrations (pg/m
3
) in outdoor air around the world from previous studies 

  



29 
 

Asia 

Study 

Location 
Year Land type n BDE 47 BDE 99 BDE 100 BDE 153 BDE 154 BDE 183 BDE 209 

Takigami et al. (2009) 

Japan 
2006 Suburban 2 2.8 1.1 0.27 0.15 <0.15 N/A N/A 

Chen et al. (2006) 

China 
2004 Industrial 16 82 570 120 23 18 8.9 2500 

Chen et al. (2006) 

China 
2004 Urban 8 29 21 3 6 3 4.5 260 

Chen et al. (2006) 

China 
2004 

Backgrou

nd 
8 30 35 5.5 7.2 3.9 4.3 480 

Zhang et al. (2009a) 

China 
2006-7 Rural 2 

1.9 (<20-

0.9) 

2.8 (0.6-

7.9) 

0.8 (<20-

4.7) 

2.5 (0.5-

6.5) 

1.5 (0.3-

6.6) 

5.9 (2.2-

18) 

330 (49-

1158) 

Gevao et al. (2006) 

Kuwait 
2005 

Backgrou

nd 
14 

4.6 (1.3-

17) 

3.3 (0.9-

11.4) 

0.7 (<0.1-

2.3) 

0.3 (<0.1-

0.92) 

0.3 (<0.6-

0.96) 

0.1 (<0.6-

0.89) 
<0.6 

Muenhor et al. (2010) 

Thailand 
2007-8 E-Waste 10 

17 (2.9-

46) 
19 (1.4-73) 

4.8 (0.17-

12) 

4.6 (<0.05-

20) 

0.24 (< 

0.05-0.082) 
N/A N/A 

Xiao et al. (2012) 

Tibet 

2006-

2008 
Remote 15 

0.69 (0.32-

1.2) 

0.61 (0.21-

1.2) 

0.13 (0.049-

0.24) 

0.058 

(0.011-

0.16) 

0.034 

(0.0073-

0.091) 

0.14 

(0.011-

0.60) 

0.15 

(0.0021-

0.51) 

Choi et al. (2008) 

South Korea 
2006 

Industrial/

Steel 
6 

10 (4.7-

18) 
7.8 (1.6-21) 

1,8 (0.6-

4.7) 

1.5 (0.3-

5.4) 

0.78 (0.2-

2.6) 

2.4 (0.4-

7.2) 
N/A 

Choi et al. (2008) 

South Korea 
2006 

Rural/sub

urban 
12 

6.3 (3.3-

11) 

2.6 (1.6-

7.5) 

0.88 (0.6-

1.8) 

0.32 (0.1-

1.0) 

0.30 (0.10-

0.90) 

0.39 

(0.10-

1.20) 

N/A 

Table 1.5 Mean (range) PBDE concentrations (pg/m
3
) in outdoor air around the world from previous studies 
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North America  

Study 

Location 
Year Land type n BDE 47 BDE 99 

BDE 

100 
BDE 153 

BDE 

154 
BDE 183 BDE 209 

Strandberg et al. (2001) 

USA 
1997-1999 Urban 12 33 16 2.0 0.53 0.41 N/A 0.3 

Strandberg et al. (2001) 

USA 
1997-1999 Rural 24 6.1 4.1 0.6 0.22 0.13 N/A <0.10 

Strandberg et al. (2001) 

USA 
1997-1999 Remote 12 2.9 2.1 0.29 0.13 0.088 N/A <0.10 

Hoh and Hites (2005) 

USA 
2002-3 Urban/suburban 66 

11  

(1-42) 

6.1  

(0.3-15) 

1.3  

(0.15-

3.6) 

N/A N/A N/A 
27 

(0.14-878) 

Hoh and Hites (2005) 

USA 
2002-3 Remote 61 

6.5  

(0.51-27) 

4.2  

(0.25-23) 

1.6  

(0.03-

41) 

N/A N/A N/A 
2.0  

(0.05-21) 

Hoh and Hites (2005) 

USA 
2002-3 Agricultural 30 

9.2  

(1.2-42) 

5.4  

(0.87-35) 

1.2  

(0.17-

6.1) 

N/A N/A N/A 
9.0  

(0.05-135) 

Schecter et al. (2010) 

USA 
2006 Urban 2 43 15 4.1 2.8 2.0 3.1 42 

Wilford et al. (2004) 

Canada 
2002-3 Urban 7 

0.87  

(<0.1-1.9) 

1.1  

(<0.3-1.9) 

0.11  

(<0.3-

0.38) 

N/A <0.5 N/A N/A 

Harner et al. (2006) 

Canada 
2000-1 Urban/rural 23 

7.7  

(1.5-16) 

3.4  

(0.53-7.3) 

0.94  

(0.17-

2.36) 

0.27  

(<dl-0.61) 

0.21  

(0.03-

0.5) 

0.19  

(0.06-0.58) 
N/A 

Xiao et al. (2012) 

Canada 
1992-2008 Remote 78 

2.7  

(0.25-12) 

0.65  

(0.060-5.3) 

3.2  

(0.20-

31) 

0.21  

(0.05-1.8) 

0.22  

(0.03-

1.9) 

0.11  

(0.04-1.5) 
N/A 

Table 1.5 Mean (range) PBDE concentrations (pg/m
3
) in outdoor air around the world from previous studies 

 

file:///C:/Users/dsdrage/Google%20Drive/Daniel%20Drage%20-%20PhD/Thesis/Chapter%20I%20-%20Introduction/Chapter%201%20-%20Introduction-%20Final%20Version.docx%23_ENREF_27
file:///C:/Users/dsdrage/Google%20Drive/Daniel%20Drage%20-%20PhD/Thesis/Chapter%20I%20-%20Introduction/Chapter%201%20-%20Introduction-%20Final%20Version.docx%23_ENREF_27


31 
 

 

Rest of the World 

Study 

Location 
Year Land type n BDE 47 

BDE 

99 

BDE 

100 

BDE 

153 

BDE 

154 

BDE 

183 

BDE 

209 

Cetin and Odabasi (2008) 

Turkey 
2004-5 Industrial 13 14 3.8 18 2 2.8 N/A 43 

Cetin and Odabasi (2008) 

Turkey 
2004-5 Urban/suburban 47 10 12 2.9 2.1 1.5 N/A 28 

Toms et al. (2009b) 

Australia 
2005 Urban 2 <3.2 <1.4 <0.4 <0.1 <0.1 0.1 3.6 

Wurl et al. (2006) 

Indian Ocean 
2004-5 Remote 10 

4.3  

(1.1-

12.7) 

2.3  

(0.2-

5.4) 

0.4 

 (0.1-

0.7) 

0.13  

(<dl-

1.3) 

N/A <0.1 <0.1 

Table 1.5 Mean (range) PBDE concentrations (pg/m
3
) in outdoor air around the world from previous studies 
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1.5.2 Soils 

As with outdoor air, data on PBDEs in soil has increased over the last 5 years. However, 

there is a gap of nearly 10 years since the last report of UK concentrations (Harrad and 

Hunter, 2006a) with no UK data for BDE-209 at all. Table 1.6 summarises a selection of 

studies that have investigated the concentrations of PBDEs in soils – only those giving 

specific congener concentrations are included. This summary highlights a huge range of 

concentrations for each measured congener with Eljarrat et al. (2008) demonstrating that 

sludge treated agricultural soils are more contaminated than those that go untreated – this is 

further backed up by Swedish data (Sellstrom et al., 2005). 

PBDE levels from China demonstrate that e-waste treatment sites can increase local soil 

concentrations more than 100-fold, although it must be noted that there was a 5 year period 

between sampling of e-waste soils and those from a remote location (Wang et al., 2005, Chen 

et al., 2012, Labunska et al., 2013). Moreover, a single soil sample taken from a landfill site 

in  Beiyang Bridge, Wuhan, China was measured for BDE congeners -47; -99 and -100 and 

was found to contain 300000 pg/g highlighting how easy it is for PBDEs to migrate from 

their original products into the environment (Xiao et al., 2007). Harrad and Hunter (2006a) 

also found that concentrations of PBDEs in urban soils (1150 pg/g) can be five times those 

detected in rural location (230 pg/g).  

Given the above, it is clear that there are various sources of PBDEs to the outdoor 

environment, and with a high organic carbon:water partition coefficient (KOC) PBDEs are 

likely to accumulate in soils. Also, taking into account the increased UK usage of BDE-209, 

it is vital that some data is obtained to see what effect this has had on its environmental 

levels. 

Cetin and Odabasi (2007) highlighted the effect that the steel industry can have on PBDE 

levels in soil when they found concentrations of 2200 pg/g within the vicinity of a steel-

works in Izmir, Turkey compared with an average of 840 pg/g in soil from a nearby suburban 

site. Further studies by the same group found ∑PBDE concentrations to be 4 times higher 

when including BDE-209 measurements in soil close to steel production (37000 pg/g) than in 

suburban locations (9900 pg/g) (Odabasi et al., 2010). These studies highlight the steel 

industry as a potential source of PBDEs to the environment, but there is still a lack of data, 

especially in the UK, which is discussed below in Section 1.6.  
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Study 

Location 
Year 

Sample Site 

Description 
N BDE 47 BDE 99 BDE 100 BDE 153 BDE 154 BDE 183 BDE 209 

Eljarrat et al. 
(2008) 

Spain 

2005 
Sludge 

Treated Soils 
6 

1300 (590-

33000) 

1400 (540-

27000) 

1500 (570-

6300) 

1200 (<dl-

3700) 

1,200 (770-

3400) 

5,900 
(2700-

30000) 

250000 (2.5 x 
10

4
 -10.8 x 

10
5
) 

Eljarrat et al. 

(2008) 

Spain 

2005 

Untreated 

Agricultural 

Soil 

1 690 630 1080 940 930 1870 14600 

Chen et al. (2012) 

China 
2008 

Rural/Remot

e 
22 2.1 2.3 2.1 2 0.68 2.1 290 

Hassanin et al. 

(2003) 

UK 

2003 
Rural/Remot

e 
42 

280 (7-

1400) 

590 (78-

3200) 
73 (8-470) 

141 (19-

1200) 

100 

(8-940) 

48 (10-

7000) 
N/A 

Hassanin et al. 

(2003) 

Norway 

2003 
Rural/Remot

e 
24 

250 (12-

860) 

360 (63-

1400) 

58 (18-

230) 

51 (11-

270) 
47 (9-170) 25 (9-130) N/A 

Harrad and Hunter 

(2006)
a
 

UK 

2003-

4 

Urban/Subur

ban 
66 

270 (60-

909) 

520 (100-

1700) 

120 (25-

390) 

130 (25-

410) 

110 (<0.5-

410) 
N/A N/A 

Harrad and Hunter 

(2006)
a
 

UK 

2003-

4 
Rural 55 60 (35-70) 

110 (88-

130) 
20 (17-25) 22 (13-30) 

15.1 (<0.5-

38) 
N/A N/A 

Wang et al. (2005)
a
 

China 
2003 E-Waste 2 130 310 45 130 40 420 N/A 

Leung et al. (2007) 

China 
2005 E-waste 4 38000 75000 11000 25000 11000 45000 420000 

Yun et al. (2008) 

USA
a
 

2002-

4 

Floodplain 

Soils 
26 

590 (<10-

270) 

530 (<10-

270) 

120 (<10-

60) 

50 (<10-

20) 

150 (<0.5-

520) 
N/A 

4700 (<10-

48000) 
a 
mean (median not given); 

b
 n = 12; 

c
 n = 3; 

d
 <10 = below detection limit of 10 pg/g 

Table 1.6 – Median (range) PBDE concentrations (pg/g) of soils from previous studies 
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Sellstrom et al. 
(2005)

a
 

Sweden 

2000 
Sludge 

Treated Soils 
5 120 170 33 28 16 <10 530

b
 

Sellstrom et al. 

(2005)
a
 

Sweden 

2000 

Untreated 

Agricultural 

Soil 

5 35 44 12 3.5 4.9 <6 480b 

Odabasi et al. 

(2010)
a
 

Turkey 

2008 
Industrial/Ste

el 
17 220 400 70 150 110 N/A 36000 

Odabasi et al. 

(2010)
a
 

Turkey 

2008 Suburban 3 90 120 30 50 60 N/A 9500 

Xiao et al. (2007) 

China 
2007 Landfill Site 1 170000 19000 100000 N/A N/A N/A N/A 

Ma et al. (2009)
a
 

China 

2006-

7 
e-waste 10 

27000 (610-

165000) 

46000 (660-

23000) 

5100 (90-

25000) 

8700 

(<0.5-

25,000) 

3300 (<0.5-

11000) 
N/A 

1800000 

(72000-

5700000) 

Ma et al. (2009)
a
 

China 

2006-

7 
Urban/rural 5 30 34 (<0.1-90) 0 (<0.1-10) <0.5 <0.5 N/A 380 (<5-790) 

Ma et al. (2009)
a
 

China 

2006-

7 

Chemical 

Complex 
12 70 (<0.1-20) 

90 (<0.1-

240) 
10 (<dl-50) 

50 (<0.5-

580) 
<0.5 N/A 

40,000 (1900-

270000) 

Parolini et al. 

(2013) 

Tanzania 

2011 Background 20 
200 (27-

510) 
42 (13-170) 24 (7-110) 

3.9 (1.1-

32) 
3.3 (0.8-38) 7.5 (1.2-65) N/A 

Labunska et al. 

(2013) 

China 

2005 E-waste 6 

89000 

(8000-

350000) 

155000 

(4000-

360000) 

14000 

(14000-

360000) 

54000 

(6500-

1400000) 

18000 (200-

380000) 

47000 

(3400-

2800000) 

6900000 

(530000-

150000000) 
a 
mean (median not given); 

b
 n = 12; 

c
 n = 3;

 d
 <10 = below detection limit of 10 pg/g 

Table 1.6 – Median (range) PBDE concentrations (pg/g) of soils from previous studies 
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1.5.3 Sediments & Sludge 

Sediments are both an important sink and source of PBDEs within the aquatic environment as 

their hydrophobic physicochemical properties cause PBDEs released into aquatic/marine 

environments to partition into sediments. Once in the sediment they can bioaccumulate in 

fatty tissues of benthic filter-feeders, such as bivalves, and magnify up the food chain (Moon 

et al., 2007). It is therefore important to monitor PBDEs in sediments as a non-invasive 

indicator of their fate in other biota. PBDEs have been found in sediments for some time, 

with Nylund et al. (1992) finding concentrations in sediment cores dated from 1946-1987 in 

concentrations of 0.03-2.9 ng/g of ignitable content (IG) for just 3 PBDE congeners (BDEs-

47, BDE-99 and an unknown penta-BDE). Since then, more studies have taken place 

investigating PBDEs in sediments, whilst also investigating their concentrations in biota from 

the same sites. Eljarrat et al. (2004) found sediment ∑40PBDE concentrations from 4 sites in 

Spain to be 2.4, 2.6, 41.7 and 39.8 ng/g dry weight respectively. Both in fish muscle and liver 

tissue, they found the mean PBDE concentrations to be highest in the sites 3 and 4 (muscle: 

280 and 96 ng/g wet weight; liver: 260 and 75 ng/g wet weight respectively) whilst sites 1 

and 2 were comparatively low (muscle: 1.3 and 4.5 ng/g wet weight; liver: 0.2 and 0.4 ng/g 

wet weight respectively). Sellström et al. (1998) found the same general trend in Sweden, 

with sediment concentrations of <3-28 ng/g IG with a general increase in PBDE 

concentration in fish tissue with sediment concentrations (43-1500 ng/g lipid weight). The 

UK has seen some of the highest sediment concentrations with an average of 287 ng/g (range: 

1-2,337 ng/g) found in the Clyde Estuary (Vane et al., 2010). Allchin et al. (1999) measured 

sediment samples in the north of England between 1995-1996, along with fish and shellfish 

samples. Sampling locations were close to known point sources of PBDEs. They found mean 

∑tetra-pentaPBDE concentrations in sediments of 120 ng/g dry weight, whilst muscle tissues of 

fish and shellfish were all found to contain up to 27 ng/g wet weight further emphasizing 

sediment as an indicator of the presence of PBDEs within aquatic ecosystems. This is not 

limited to Europe and PBDEs have been detected in sediments and consequently biota 

worldwide. Liu et al. (2005) measured PBDEs in sediment (2.4-53.6 ng/g dry weight) and 

mussels (33.8-83.7 ng/g dry weight) from Hong Kong and whilst the same trend was not 

found, the PBDE congener profiles were found to be similar in sediments and mussels at sites 

where both were taken. Median sediment concentrations from 16 samples across China were 

found to be 2.45 ng/g dry weight, although one site contained 2800 ng PBDE /g dry weight 

(Wang et al., 2009), whilst Wang et al. (2005) found 27 ng PBDE /g dry weight in sediment 

close to an e-waste recycling facility in Guangdong, China. BDE-209 was detected in 
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sediments in concentrations from <25-11600 ng/g dry weight between 1988-89, stated to be 

the highest concentration known at that time (Environmental Agency Japan, 1991). Several 

other studies from other countries have also measured PBDEs in sediments such as from 

North America close to a PUF manufacturing plant (up to 132 ng/g dry weight (Hale et al., 

2002)); and Australia (median 1.1 ng/g dry weight (Toms et al., 2008)), where sediment 

concentrations were used to highlight how urban and industrial areas are more vulnerable to 

PBDE contamination with concentrations of 2.2-61000 ng/g dry weight in Port Phillip 

(industrial/urban) as well as the potential of sewage sludge as a source (sediment upstream of 

a sewage treatment plant was 0.36 ng/g dry weight compared with downstream, where it was 

7.7 ng/g dry weight).   

The effect of sewage sludge has also been highlighted by others. For example, Table 1.5 

demonstrates that sludge treated soils can contain PBDE concentrations that are more than 10 

times higher than those from untreated soils from a similar area – in Spain ∑PBDEs were 260 

ng/g dry weight in treated soils compared with 20 ng/g dry weight in untreated, whilst mean 

sludge samples measured 580 ng/g dry weight for PBDEs (Eljarrat et al., 2008). As with 

other media, PBDEs have been consistently found in sludge from many countries, such as the 

USA (up to 1400 ng/g (North, 2004)) and Kuwait (up to 1600 ng/g (Gevao et al., 2008)). 

These studies highlight not only the effect of sewage sludge on agriculture, but also that 

sewage treatment plants are likely to be a source of PBDEs to aquatic environments, through 

the discharge of sewage effluent into rivers, where PBDEs will preferentially accumulate in 

substances high in organic carbon (sediment) or fat (biota). 

1.5.4 Long-term Temporal Trends in PBDE levels 

Between 1970 and 2000, PBDE concentrations increased significantly in human tissue, serum 

and breast milk with Noren and Meironyte (2000) finding concentrations in Swedish breast 

milk samples to be their lowest (0.07 ng/g lipid) in 1972 and at their highest in the last 

sample taken in 1997 (4.01 ng/g lipid). This study was enhanced by the meta-analysis of 

Hites (2004) who compiled data from studies between 1970-2002 and stated that over 30 

years there was an exponential increase in human PBDE concentrations with a doubling time 

of 5 years. More recent studies have suggested a decline in human PBDE exposure with 

Fangstrom et al. (2008) finding that, whilst there has been an overall increase in human 

PBDE concentrations since 1980, these concentrations peaked between 1995-2001 and there 

has been a gradual decline since. This theory is supported by Ma et al. (2012) who found 

median concentrations of 0.54 ng/g lipid in 130 Chinese placenta samples taken between 
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2005-2007. There has also been a decline in PBDE contamination of human breast milk 

samples in the Philippines between 2004 and 2008 with median concentrations of 7.2 ng/g 

lipid (Malarvannan et al., 2009) and 1.8 ng/g lipid respectively (Malarvannan et al., 2013). 

Several studies have looked at long-term time-trends for tri-hepta PBDEs in various 

environmental media, in the last 5-10 years, which have seen similar patterns that coincide 

with historical increased/decreased PDBE usage and legislation.  Hassanin et al. (2005) 

looked at semi-rural grassland samples from the UK (40 km north of London) and found that 

until the mid-1970s, concentrations were negligible but increased from around 500 pg/g dry 

weight to 2500 pg/g dry weight during the 1980s and 90s, before decreasing again to around 

500 pg/g dry weight between 2001-2004. However, again, BDE-209 was not measured in this 

study. Similar trends were found in Canadian suspended sediment samples in which there 

was a slow increase from low ppb concentrations in 1980-1988 before a rapid increase post-

1988 where concentrations reached as high as 35 ng/g dry weight (BDE-209 the dominant 

congener), before a small decrease between 2001-2 (15-24 ng/g dry weight) (Marvin et al., 

2007); whilst Hale et al. (2012) found an almost identical pattern for tri-decaBDE congeners 

in Chicago sewage sludges and biosolids. Finally Kohler et al. (2008) saw similar patterns, 

again in sediment cores taken from a lake close to Zurich, Switzerland, which found that 

BDE-209 increased steadily from 1.1 ng/g dry weight in the 1970s to 7.2 ng/g dry weight in 

1999-2001, with Penta- congeners following the same trend at lower concentrations. 

In areas where PBDE time-trends have been studied, the patterns of PBDE concentration has 

reflected the local patterns of usage and legislation as outlined in Section 1.3. However, for 

BDE-209 there is still a lack of data in more than one location with no temporal trends 

recorded for BDE-209 in the UK, and no temporal trends recorded for any PBDEs in 

Australia, showing that understanding of the environmental fate and behaviour of PBDEs 

remains incomplete. 

1.5.4.1 Investigating historical trends in PBDEs using sediment cores 

As mentioned in 1.5.3, monitoring the concentrations of PBDEs in sediments can be a useful 

indicator for their levels in biota and the food chain, and possibly human exposure. 

Therefore, measuring the concentrations in dated layers from sediment cores can show 

important historical trends in PBDE levels. Over the last 10-15 years, there have been many 

studies looking at temporal trends of PBDEs using sediment cores. These can be important in 

areas of known sources of PBDEs to see how these sources affect nearby aquatic and marine 
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ecosystems over time, but also in areas away from these sources in order to investigate long-

distance transport of PBDEs since their introduction in the 1970s. These papers have shown 

that, due to the high rates of sediment formation in rivers, estuaries, lakes and harbours, their 

concentrations in sediments can be reflective of their usage at a particular time.  

In Switzerland, sediment cores taken from Lake Thun close to wastewater treatment plants 

showed a linear increase in PBDE concentrations from minimal levels in 1980 to 

approximately 100 ng/g organic carbon (OC) in 2005 (Bogdal et al., 2008), whilst Lake 

Greifen close to the city of urban Zurich showed a similar trend with levels of 1.1 ng/g dry 

weight in 1975 to 7.2 ng/g dry weight in 2000 for BDE-209, and 0.36 and 1.6 ng/g dry weight 

for tri-hepta BDEs in the same years respectively (Kohler et al., 2008). 

The Clyde Estuary, UK has also been investigated, again with BDE-209 being the dominant 

congener (Vane et al., 2010, Webster et al., 2008). However, these two studies that took cores 

within the same year found differing results in terms of sediment concentrations. Both sets of 

cores were taken from the Clyde Estuary, in 2003, with the highest concentrations being 

found in the top layer of sediment. Vane et al. (2010) found concentrations of of 1-2645 ng/g 

dry weight for ∑PBDEs, whilst Webster et al. (2008) detected concentrations for BDE-209 at 

a range of 33000-98000 ng/g dry weight, whilst both found a linear increase in both tri-hepta 

PBDEs and BDE-209 from the deepest layers to the surface, which is to be expected given 

the peak usage of PBDEs towards the end of the 1990s/early 2000s. These two differing 

figures in the top layers of sediments from the two studies in similar locations highlight the 

spatial variation of PBDE concentrations even within short distances. Other European studies 

have also followed this trend of a linear increase in PBDEs from 1973 onwards, with BDE-

209 first appearing in samples from Norway, Holland and Germany in 1975 and becoming 

the dominant congener in 1978 (Zegers et al., 2003) and peak PBDE concentrations being 

detected in the top 3 cm in cores from the Scheldt River, Antwerp, Belgium (7,600 and 5,800 

ng/g dry weight) (Covaci et al., 2005). 

These trends are not limited to the UK and Europe, and Asia has seen some of the highest 

sediment concentrations in the world with ∑PBDE concentrations increasing exponentially 

from 2200 ng/g dry weight in 1953-55 to almost 80000 ng/g dry weight in 1992-1999 in 

Tokyo Bay, with BDE-209 again dominant (Choi et al., 2003a). Again spatial variation is 

seen within Tokyo Bay as Minh et al. (2007) found similar temporal trends as above, with 

BDE-209 making up around 50% of the total PBDE content, but ∑PBDE concentrations 
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peaked at 40-200 ng/g dry weight in 1998. Elsewhere in Asia sediment cores have been taken 

from areas of the Pearl River Delta, China on multiple occasions (Mai et al., 2005, Zhang et 

al., 2009b, Chen et al., 2007). Chen et al. (2007) found that whilst the mean ∑PBDE 

concentration increased from 3.9 to 13 and then to 21 ng/g dry weight for core slices dating 

from the pre-1990s, 1990s and 2000s respectively; the tri-hepta PBDE concentrations 

decreased and levelled from 2.51 to 1.31 and 1.48 ng/g dry weight, whilst the BDE-209 

contribution rose from 36% pre-1990s to 90% and 90% in the 1990s and 2000s respectively. 

Although their cores were not dated, Mai et al. (2005) found that tri-hepta PBDEs were 

present at 2-6 ng/g dry weight in the deeper layers, but typically <1 ng/g in the top 20 cm, 

whilst BDE-209 concentrations were 1-2 ng/g dry weight in the deeper layers of the core, and 

2.5-34 ng/g dry weight in the top 14 cm. Zhang et al. (2009b) took two sediment cores 2-3 

years later than the previous two studies in 2006. They found that BDE-209 levels were much 

higher in the bottom layers of the cores with peak concentrations of approximately 500 and 

900 ng/g dry weight, before levels tailed off to around 200 and 600 ng/g dry weight towards 

the top layers. The tri-hepta PBDE concentrations are similar to those previously reported, 

suggesting that the previous studies possibly underestimated BDE-209 concentrations in 

sediment cores. Sediment cores have also been taken from South China (Jin et al., 2008), 

India (Binelli et al., 2007) and Masan Bay, Korea in 2005, where tidal currents in the inner 

section of the bay are weak meaning a long residence time for pollutants (Hong et al., 2010). 

Increases in PBDEs in the lower layers of sediment cores are attributed to their use shortly 

after the PCB ban in the 1980 where they increase from <1 ng/g dry weight to 15 ng/g dry 

weight in 1990. In 2003 the levels increased dramatically to 72 ng/g shortly after a typhoon, 

“Maemi” is thought to have brought a large amount of industrial and urban waste into the bay 

(Hong et al., 2010). Johannessen et al. (2008) also found that PBDEs in sediment cores were 

reflective of their usage trends in the Strait of Georgia, an inland sea subject to discharge of 

industrial and urban waste such as municipal wastewater. They found that PBDEs were first 

elevated in sediments corresponding to 1978, close to when PBDEs were first introduced as 

PCBs were banned, whilst there was a linear increase to 0.27-13 ng/g in surface sediments 

representative of 2002-3. 

North America has been studied fairly extensively, in terms of vertical distribution of PBDEs 

in sediments, with the Great Lakes being paid particular attention (Song et al., 2004, Song et 

al., 2005a, Song et al., 2005b, Zhu and Hites, 2005, Qiu et al., 2007). Concentrations of both 

tri-hepta PBDEs and BDE-209 were found to increase from low levels in sediment from the 
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10 cm layer to 0.5-3 and 6-18 ng/g dry weight respectively in the top 2 cm in Lake Superior, 

where samples were taken away from known point sources of PBDEs (Song et al., 2004), 

whilst Lakes Ontario and Erie showed a similar but more erratic pattern with an overall rise 

of minimal tri-hepta PBDEs at 16-18 cm depth to 2-7 ng/g dry weight at the surface; whilst 

BDE-209 rose from non-detectable at 6-8 cm to 50-250 ng/g dry weight in surface sediments. 

The irregular changes in concentrations with core depth is attributed to the lower water 

retention of the lakes, combined with an increased flow through them (Song et al., 2005a). 

Zhu and Hites (2005) calculated doubling times for PBDEs in Lakes Michigan and Erie. Tri-

hepta PBDEs doubled every 11 and 6.4 years, whilst BDE-209 doubled every 7.5 and 5.3 

years in sediments in Lakes Michigan and Erie respectively, which is similar to the doubling 

time for tri-hepta PBDEs found in the Rocky Mountains of 5.4 years (Usenko et al., 2007) – 

showing the more recent dominance of the DecaBDE technical mix compared to Penta- and 

Octa- is also true of North America.  

Whilst PBDE levels in the Arctic are much lower than in populated and industrial cities and 

countries, they are still found in sediment cores (Stern et al., 2005), indicating that long 

distance transport of PBDEs continues. Even BDE-209, which is thought to be less capable of 

long-distance transport has been found in the top layers of Arctic lakes, such as AX-AJ Lake 

(0.075 ng/g dry weight) and Char Lake (0.042 ng/g dry weight), whilst the overall fluxes in 

PBDEs have shown an increased input into these lakes over time (De Wit and Muir, 2004), 

whilst sediment cores taken in 2001 from Ellasjøen in the Norwegian Arctic contained 0.73 

ng/g dry weight in surface layers with concentrations estimated to have increased 10-fold 

over 50 years (Evenset et al., 2007). 

This section shows that in all areas of the world that PBDEs have been measured in sediment 

cores from different water-based environments, they have shown a historical trend of 

increased input from the late 1970s/early 1980s, with a peak in the mid-late 1990s/early 

2000s. Whilst sediment cores have been investigated for PBDEs in many countries across 

multiple continents, they have not been examined in Australia and many other Southern 

Hemisphere countries, showing a lack of understanding of temporal trends of PBDEs in those 

countries. Furthermore, it is evident from the above studies that long-distance transport of 

PBDEs has been taking place since their introduction, based on the detection of PBDEs in 

Arctic areas, where sources of PBDEs are scarce/non-existent.  
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1.5.5 The Role of Cities as Sources of PBDEs 

It has previously been suggested, that with the vast amount of urbanization, cities themselves 

can be considered sources of PBDEs due to the huge number of flame retarded items, such as 

office carpets, furniture and computers as well as the actual building materials themselves 

(Butt et al., 2003). In spite of this theory, there are still only a handful of studies that have 

examined this possibility. Butt et al. (2003) measured the PBDE concentrations in organic 

films from window surfaces in Ontario, Canada and found that ∑PBDE concentrations in 

urban sites (9 ng/m
2 

mean concentration (n=6)) were 10-fold those in suburban (1.1 ng/m
2
) 

and rural sites (0.56 ng/m
2
). Off the back of this study Gouin et al. (2005) discovered that 

PBDE concentrations in ambient air in Ontario were of a similar pattern at five times those of 

rural locations. Harrad et al. (2006) also found evidence of an “urban pulse” for PBDEs in the 

West Midlands, UK in both air and soil with the highest concentrations being in the three 

sampling sites closest to the centre of Birmingham. However, to the author’s knowledge, the 

only urban pulse study to have measured BDE-209 is that of Gevao et al. (2011) who 

examined an urban-rural transect across Kuwait for PBDEs in soils. They found a total range 

of ∑PBDE concentrations of 290-8,000 pg/g dry weight with concentrations in Kuwait City 

significantly higher than those in sites outside the city.  In every sample, BDE-209 was the 

dominant congener making up 84-99% of ∑PBDEs (BDEs -28; -47; -100; -99; -154; -153; 

183; -209).  

PBDD/Fs 

Studies on environmental levels of PBDD/Fs are extremely limited, with only a very small 

number published on their background concentrations. Wang et al. (2008) measured air 

concentrations of PBDD/Fs in rural, urban and industrial areas as well as a science park. The 

rural areas were at the lowest at 11 fg m
-3

 whilst the highest was the Science Park at 95 fg m
-

3
. However, Li et al. (2008) found mean ambient concentrations for 2,3,7,8-PBDD/Fs to be as 

high as 8,031 fg m
-3

 in Shanghai, China.  Ma et al. (2009) detected average PBDD/F 

concentrations of 799 (range: 46-3700) pg TEQ /g in soil from an e-waste site (n=10), but 

they did not detect PBDD/Fs in soils from urban, rural and agricultural reference sites (n=11), 

highlighting e-waste sites as important point sources of PBDD/Fs. There are no other studies 

which appear to have monitored background concentrations. This is probably due to expense 

and limitations with regards to their measurement. Table 1.7 shows a selection of 

concentrations from various compartments taken from available literature.  



42 
 

Study (Location) Year n Sample Description PBDD/F 

Concentration 

Units 

Takigami et al. (2008) (Japan) 2005 5 Dust from inside Japanese TVs 0.9 ng WHO-TEQ/g 

Suzuki et al. (2007) (Japan) 2005 19 Household dust 0.19 ng CALUX-TEQ/g 

Suzuki et al. (2007) (Japan) 2005 14 Office dust 0.37 ng CALUX-TEQ/g 

Takigami et al. (2009) (Japan) 2006 8 Hotel dust 0.034 ng WHO-TEQ/g 

Tue et al. (2013) (Vietnam) 2008 20 Household dust close to e-waste site 0.13 ng WHO-TEQ/g 

Tue et al. (2013) (Vietnam) 2008 11 Urban household dust 0.011 ng WHO-TEQ/g 

Ma et al. (2009) (China) 2007 5 Dust from e-waste Site 1.5 ng WHO-TEQ/g 

Litten et al. (2003) USA 2001 2 Urban run-off in New York City following 9/11 

disaster 

0.54 ng WHO-TEQ/L 

Terauchi et al. (2009) (Hong Kong) 2004 6 Marine sediments from urban locations 0.0039 ng WHO-TEQ/g 

Terauchi et al. (2009) (Korea) 2005 8 Marine sediments from industrial locations 0.0039 ng WHO-TEQ/g 

Wang et al. (2008) (Taiwan) 2005 5 Rural outdoor air 2.7 fg WHO-TEQ/m
3
 

Wang et al. (2008) (Taiwan) 2005 7 Urban outdoor air 6.4 fg WHO-TEQ/m
3
 

Wang et al. (2008) (Taiwan) 2005 5 Industrial outdoor air 12 fg WHO-TEQ/m
3
 

Wang et al. (2008) (Taiwan) 2005 2 Outdoor air from vicinity of science park 31 fg WHO-TEQ/m
3
 

Li et al. (2008) (China) N/A 25 Outdoor air from various locations across city of 

Shanghai 

214 fg WHO-TEQ/m
3
 

Ma et al. (2009) (China) 2007 10 soils from e-waste Site 0.8 ng WHO-TEQ/g 

Ma et al. (2009) (China) 2007 12 soils from chemical complex 0.00048 ng WHO-TEQ/g 

Ma et al. (2009) (China) 2007 4 Soils from close to copper mine 0.018 ng WHO-TEQ/g 

Table 1.7 Environmental Levels of PBDD/Fs in various media from available literature
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Li et al. (2007) highlighted the role of the treatment of waste electrical and electronic 

materials as a source PBDD/F emissions by collecting air samples in an electrical waste 

dismantling site in Guiyu, China as well as at sites 9 km away (Chendian) and 450 km away 

(Guangzhou). The highest PBDD/F concentrations were in Guiyu with 2,3,7,8-PBDD/F 

concentrations of 8.1-461 pg m
-3

. This was 12-18 times higher than concentrations from 

Chendian and 37-133 times higher than those from Guangzhou and it was concluded that 

Guiyu has the highest PBDD/F concentrations reported globally to date (Li et al., 2007). It 

was also found, in the same study, that there were seasonal variations in PBDD/F air 

concentrations that may be due to their susceptibility to photolysis. So in an area of high 

emission such as Guiyu, concentrations in the winter are significantly higher than in summer 

(Li et al., 2007).  

 

1.6 The Integrated Steel Industry as a source of PBDEs and PBDD/Fs 

1.6.1. Processes in the Integrated Steel Industry 

The steel industry consists of several processes, which involve extremely high temperatures. 

There are currently four routes used globally for steel production. These are the integrated 

route (blast furnace/basic oxygen), direct melting and extraction of liquid iron and scrap in 

electric arc furnaces (EAFs), smelting reduction, and direct reduction (European 

Commission, 2010). These processes all involve huge amounts of energy, and materials can 

reach temperatures close to 1500 ºC for extended periods of time (Ooi et al., 2008).  

The most complex route is the integrated steelmaking route. It occurs in large industrial 

complexes covering areas of several square kilometres. Integrated steelworks are made up of 

large networks of interdependent production units, with huge flows of energy both within and 

between them. These production units are sinter plants, pelletisation plants, coke oven plants, 

blast furnaces and basic oxygen steelmaking plants (European Commission, 2010). The 

routes of these processes are shown in Figure 1.8. In all of these process, many different 

materials are used (350 Mt of input materials will produce 200 Mt of crude steel, along with 

150 Mt of waste outputs, such as off-gases and solid residues), whilst extremely high inputs 

and outputs of energy are involved. 

A vital part of the integrated steel making process is iron-ore sintering. Coke is produced via 

the dry distillation of coal in the coke ovens. Next, three components: coke, iron ore and 
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fluxes (limestone), plus recycled iron-containing materials from the blast furnace are ground, 

mixed and pelletised via means of a large rotating “balling drum” along with the addition of 

water, drying and re-watering to obtain “pellets” of iron ore, approximately 9-16 mm in size. 

Following this, a 400-600 mm layer of pellets is loaded onto a large cast iron grate, on top of 

 

Figure 1.8 An overview of the process routes of an integrated steelworks. Reproduced from 

European Commission (2010) 
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a 30-50 mm deep layer of recycled sinter to prevent pellets falling through the grate, before 

coke breeze is added for ignition. Once ignited temperatures of 1300-1480 °C are attained 

during combustion which causes reduction of the iron ores to form metallic iron particles. 

The sinter is then cooled by forcing air through the sinter layer, producing up to 1500 m
3
 of 

waste gas per tonne of sinter at a temperature of up to 300 °C. Finally, the cooled sinter is 

transferred to screens to separate the pieces used in the blast furnace (approximately 4-50 mm 

in size) (European Commission, 2010).  

The sintering process is alreadya known source of POPs such as PCDD/Fs and PCBs (Aries 

et al., 2008). Considering the fact that both PBDEs and PCBs have found use as flame 

retardants (potentially in the conveyor belts used in the steelmaking process) and chemically 

behave in a very similar way, it is plausible that they would be present in the steel industry 

too, and at the temperatures experienced, could represent precursors of PBDD/Fs. There are 

many other processes within the steel industry that have already been documented as 

potential sources of PBDEs and PBDD/Fs (such as EAFs) however the sintering process 

remains relatively unstudied. Hence this section focuses on iron ore sintering as a potential 

source of PBDEs and PBDD/Fs. 

1.6.2. PBDEs in the steel industry 

Although to date, literature is still limited as to whether the steel industry is a source of 

PBDEs to the environment, there is strong, growing evidence to suggest that this is the case. 

Choi et al. (2008) investigated atmospheric concentrations of PBDEs and found a gradient 

with its peak in and around a steel complex and decreasing with distance away from the 

complex. Concentrations of PBDEs within the complex were at least double those anywhere 

else in the study. Further exploration showed that EAFs may well be a source of PBDEs as 

scrap metal from manufacturing equipment such as automobiles containing technical PBDE 

mixtures is sometimes utilised. However the authors noted that the sites within the steel 

complex with the highest PBDE concentration were those downwind from thermal processes 

i.e. – sintering, coke production and the blast furnace (Choi et al., 2008). Odabasi et al. 

(2009) support this hypothesis by stating that 32% of the world’s steel requirement is 

produced from ferrous scrap metals in EAFs. They state EAFs are a source of various 

particle-bound pollutants and that the quantity and composition of emissions is dependent on 

the composition of the scrap used as feedstock and the type of furnace activity. Ferrous scrap 

contains impurities such as plastic and polyurethane foam that will contain significant 

concentrations of PBDE which will then be released into the atmosphere when heated in the 
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furnace, and can also undergo thermolysis and form PBDD/Fs in de novo reactions (Odabasi 

et al., 2009). 

Cetin and Odabasi (2007) measured PBDE concentrations in both ambient air and soil of 

PBDEs in various areas around Izmir, Turkey. The air samples were taken from 3 sites, 

which the authors labelled suburban, urban and industrial. The soil samples were taken from 

13 different sites falling under the same categories and a bag filter dust sample from an EAF 

was taken from a steel works. Ambient air concentrations of PBDEs ranged from 6.2 pg m
-3

 

(suburban) to 148.8 pg m
-3

 (industrial) with a clear dominance of BDE-209. With respect to 

soil the 3 most contaminated sites were from the electronic industry site, Bozkoy industrial 

site and the steel plant, which had concentrations of 2.84 x 10
6
, 9.83 x 10

4
 and 4.41 x 10

4
 ng 

PBDE kg
-1

 dry weight respectively. The bag filter dust was also found to contain 2.05 x 10
5
 

ng PBDE kg
-1

 dry weight (Cetin and Odabasi, 2007). 

Odabasi et al. (2009) investigated this further by measuring stack gas emissions for various 

POPs including PBDEs from steel plants with EAFs in Aliaga, Izmir, Turkey. They measured 

stack gas concentrations from 4 plants without scrap pre-heating and of 1 with scrap pre-

heating as well as ambient air samples from the surrounding area of Aliaga. Mean PBDE 

concentrations of the plants without pre-heating were found to be 33 ng/m
3
 whilst the one 

with pre-heating was almost three times higher at 91 ng/m
3
. The ambient PBDE 

concentrations in Aliaga were considered significantly elevated 1.45 ng/m
3
. The authors 

concluded that steel plants with EAFs are “hot spots” for PBDEs as well as other POPs and 

even more so if the scrap metal receives pre-heating too (Odabasi et al., 2009). 

Wang et al. (2010b) investigated emissions of PBDEs and PBDD/Fs in metallurgical 

facilities and found that raw scrap materials in an aluminium recycling plant had PBDE 

concentrations of 245-67450 ng/g. They also found that BDE-209 was the most abundant 

congener across the metallurgical facilities and was dominant in air and soil samples, whilst 

Fang et al. (2012) also found BDE-209 to comprise up to 91% of PBDEs in dry deposition 

samples within the vicinity of a Korean steel complex (up to 110 ng PBDE m
-2

 day
-1

 

compared with upwind rural areas 7.9 ng PBDE m
-2

 day
-1

).  

1.6.3. PBDD/F emissions from the steel industry 

A large number of studies have taken place examining PCDD/Fs within the steel industry 

with Rappe (1992) ranking iron and steel production as the most significant source of 

PCDD/Fs in Sweden. Before the introduction of ESPs, waste gas concentrations in German 
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sinter plants were as high as 68 ng I-TEQ/m
3
 (see Section 1.4.1 for definition of I-TEQ), but 

it was suggested that ESPs could reduce this to 5-10 ng I-TEQ/m
3
 (Lahl, 1994). More 

recently, Buekens et al. (2001) stated that huge flows of flue-gases are generated in iron ore 

sintering which can contain up to 30 ng/I-TEQ generated via de novo formation. They stated 

that although measured PCDD/F formation rates are relatively low, the vast throughput of 

flue gas (500000 m
3
/h) means a large amount of PCDD/Fs may be emitted from the sintering 

process. However, around a similar time, Anderson and Fisher (2002) stated that mean waste 

stack gas emissions from UK-based sintering plants are much lower at 1.2 ng I-TEQ/m
3
 

(n=94) resulting in the annual release to the UK atmosphere of 38 g I-TEQ per annum, which 

they equate to a similar mass released by bonfire night alone based on a study by Dyke et al. 

(1997). However, they also state that the iron-ore sintering process is the “only noteworthy 

source of PCDD/Fs in the UK”. Working on the theory that PBDD/Fs are formed and 

released into the environment via similar mechanisms to PCDD/Fs then it could be suggested 

that they too could be emitted significantly from the steel industry through de novo reactions 

at high temperatures (such as in EAFs) (Choi et al., 2008). Considering the evidence 

mentioned in 1.6.2 that precursors such as PBDEs have been detected in significantly high 

levels within a steel-works, and the high temperatures involved in various processes (such as 

sintering and EAF) there is strong evidence to suggest that PBDD/Fs could be formed within 

the steel-manufacturing process. Wang et al. (2010b) provided further evidence to 

consolidate this theory when they found PBDD/F concentrations to be 4 times higher around 

a steel complex, when compared to rural areas nearby. Despite these early indicators that the 

steel industry could be a source of PBDD/Fs to the environment, this hypothesis has yet to be 

explored fully. It is important that the formation of PBDD/Fs within the steel-manufacturing 

process is investigated further, due to the above concerns regarding toxicity, combined with 

the logic that they should behave in a similar way to their chlorinated analogues and therefore 

the steel-making process could also provide conditions for their formation. 
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1.7 PBDE Congener Profiles 

As previously stated, the different commercial formulations produced for PBDEs contain 

very different proportions of each congener. As a result, the way they behave and affect the 

environment is highly variable. For example, the lower vapour pressures of the higher 

brominated compounds such as BDE-209 mean that they preferentially partition to the 

particle phase. This combined with a higher KOC means that they are more persistent in 

particle phase compartments such as soils, sediments and dusts, with respect to the lower 

brominated congeners (Wania and Dugani, 2003). 

Harrad et al. (2008b) demonstrated via a principal component analysis (PCA) how different 

commercial formulations can affect the congener profiles of PBDEs using dust from North 

America (Canada and USA) and the UK (Figure 1.9). Two principal components (PC) were 

used. A negative score for PC1 in the majority of UK samples demonstrated a strong 

influence 

 

Figure 1.9 PCA results for UK, US & Canadian dust samples along with the different 

commercial formulations – taken from Harrad et al. (2008b) 

of Deca-BDE based congeners, whilst a negative score in PC2 demonstrated little influence 

of Octa-BDE based congeners. North American samples also all had negative scores for PC2, 
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whilst samples were distributed from partially negative to partially positive scores for PC1, 

implying an influence of both DecaBDE and PentaBDE formulations (Harrad et al., 2008b).  

Whilst the congener profiles of environmental samples are primarily influenced by the 

specific commercial formulations used to treat their original source of release into the 

environment, there are various factors that can lead to distinguishable changes in congener 

profile once released. For example, Hassanin et al. (2003) found that in soils from the UK 

and Norway measured for BDEs17:190 the congener profile was very similar to that of the 

PentaBDE formulation. They claimed this to be evidence that PentaBDE based congeners 

undergo efficient “source-air-soil transfer” with little weathering or degradation during either 

atmospheric transport, or movement through soil. However, higher brominated congeners 

have been found to undergo degradation in the presence of UV light to form PentaBDE based 

congeners BDEs -47, -99 , -100, -153 and -154 as well as other higher brominated congeners 

typical of OctaBDE and PBDFs  (Söderström et al., 2003). 

Furthermore, Gouin et al. (2005) found that atmospheric concentrations of lower brominated 

congeners (particularly BDE-47) are likely to be higher in spring and summer than winter and 

autumn, due to increased temperatures. This was also demonstrated by Shi et al. (2013) in 

Beijing, China. The authors showed that the contribution to total PBDEs of BDEs -28 and -47 

was higher during the spring and summer than in the autumn and winter. Conversely, BDE-

209 was found to be far more variable with overall lower concentrations in the spring and 

summer and increases in the autumn and winter. This is consistent with the aforementioned 

potential of BDE-209 to undergo photolytic degradation.  

It is clear from these studies that the PBDE congener profiles are likely to be extremely 

variable both spatially and temporally due to a number of factors. Firstly, there are 

discernible differences between different commercial formulations (Figure 1.10) – both 

between Penta-, Octa- and DecaBDE, as well as between variations of the specific product 

itself – DE-79 and Bromkal 79-8DE were found to have considerably different congener 

profiles despite both being labelled as OctaBDE (La Guardia et al., 2006). Secondly, there is 

evidence to suggest that different congeners will behave differently under various conditions 

such as weathering and degradation of higher brominated congeners, as well as clear 

differences in physicochemical properties leading to differing levels of persistence and 

partitioning into vapour or particle phase.        
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Figure 1.10 Congener profiles of commercial formulations for penta (DE-71 & Bromkal 70-5DE); octa (DE-79 & Bromkal 79-8DE); and deca 

(Saytex 102E & Bromkal 82-0DE) taken from La Guardia et al. (2006)



51 
 

1.8 Aims and Objectives 

It is clear from the above that there are several research gaps with respect to the 

environmental presence, fate and behaviour of PBDEs and PBDD/Fs both in the background 

environment and the steel industry. It is important to try to place into context the 

environmental impacts of PBDE emissions from the steel industry. Moreover, international 

variations in PBDE usage volumes and patterns render international comparisons of 

environmental contamination vital, with a distinct lack of data available for the Australian 

environment. Furthermore, continuing monitoring of UK levels are needed to evaluate the 

efficacy of recent actions to restrict PBDE manufacture and new use. Moreover, there are 

currently no published data for BDE-209 in UK soil or outdoor air – a significant omission 

given the widespread use of the DecaBDE commercial formulation of which BDE-209 is the 

principal constituent. In order to try and address these gaps, this project will: 

1. Test the hypothesis that the steel industry (specifically the iron ore sintering process) 

in the UK is a source of PBDEs to the environment via measuring them in emissions 

such as stack gas and electrostatic precipitator (ESP) dust samples. 

2. Attempt to identify the source of PBDEs within the iron ore sintering process to the 

environment by measuring them in raw input materials (such as iron ores and coke) as 

well as outputs. This will be conducted both on a production plant and controlled 

laboratory experiment scale. 

3. Measure ambient air PBDE concentrations within the integrated steel-making process 

to make a preliminary occupational exposure assessment. 

4. Test the hypothesis that the iron ore sintering process is a source of PBDD/Fs  

5. Test the hypothesis that PBDEs act as precursors to PBDD/F formation within the 

iron ore sintering process. 

6. Evaluate the impact of the steel industry on contamination of outdoor air with PBDEs. 

This will be achieved by comparing concentrations in samples from the vicinity of a 

steel-making plant, with those from the West Midlands of the UK. 

7. To examine the role of cities as sources of PBDEs (particularly BDE-209). This will 

be achieved by comparing ambient air and soil concentrations along an urban-rural 

transect from 8 sites across the West Midlands, UK from Worcester to Tamworth, 

passing through Birmingham. 

8. To evaluate whether any temporal trends in PBDE levels have occurred in response to 

recent legislation to reduce PBDE usage. This will be achieved by comparing the 
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concentrations of PBDEs in ambient air and soil samples obtained in 2012/13 at 

various UK locations those measured in similar locations taken between 2003-2005. 

Sediment cores taken in 1999 from Port Jackson, Sydney Harbour, Australia will also 

be measured for PBDEs to monitor temporal trends in Australia up until a time close 

to legislative action. 

9. To evaluate the effects of land-use on environmental levels of PBDEs in Australia. 

This will be done by comparing concentrations of soil samples taken in 2003 across 

the entire country according to land-use (urban, agricultural, industrial, and remote). 
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Chapter II 

Sampling and Analytical Methodology 

This study required determination of PBDEs in several different classes of sample matrices: 

iron ores, fluxes (i.e. limestone), fuels, reverts (flue dust from blast furnace re-used in the 

sintering process), sinter products, sinter plant emissions, electrostatic precipitator (ESP) 

dusts, passive air samples and soils. The four main stages of measurement for all samples 

were: sampling, extraction, clean-up and analysis. For all classes, except for soil the same 

overall analytical methodology was used, whilst soils underwent simultaneous in-cell 

extraction and clean up. These methods were validated against stringent quality 

assurance/quality control measures that are outlined in this chapter. 

2.1 Sampling. 

2.1.1. Sinter Plant Raw Material Sampling 

Sintering is an “agglomeration process” of iron ores to provide feedstock for the blast furnace 

in the manufacture of steel (Ooi et al., 2008). The full process is shown in Figure 2.1. Raw 

material samples were collected at various stages at the beginning and end of the sintering 

process.. Samples consisted of a combination of several sub-samples taken from different 

areas of their containers in attempt to create a representative sample accounting for any 

heterogeneous distribution of contaminents. Samples were thoroughly mixed in a rotating 

drum before being stored in amber jars below 5 °C. These samples consisted of iron ores (n = 

29), reverts (n = 20), fluxes (n = 5), fuels (n = 4), raw sinter mix (RSM) – the final 

combination of iron ores, reverts, fluxes and fuels used for sintering (n = 6), sinter product (n 

= 6), and ESP dusts (n = 8).  

 

Figure 2.1 – Schematic diagram of a typical sinter plant (Ooi et al., 2008) 
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All raw materials - except for sinter product - were collected as coarse dusts and were 

transferred straight to amber jars ready for extraction and clean-up. Sinter product samples 

were taken from the centre of the sinter and crushed into dusts using a Tema T750 k 

laboratory disc mill, prior to collection in sealed amber glass jars. 

2.1.2. Sinter Plant Stack Emission Sampling 

Stack emission samples were taken by Tata Steel using the “filter/condenser method” (Figure 

2.2) according to their own sampling protocol, which is in accordance with British and 

European standards (BS EN 1948). Samples (gas and particle phase) were taken 

isokinetically (i.e. at a flow rate where the velocity and direction of the gas entering the 

sampling nozzle matches those of the gas in the duct at the sampling point) using pre-

extracted glass fibre filters, adsorbent traps containing pre-cleaned XAD-2 resin (Supelpak-2, 

Supelco, Sigma Aldrich, USA) and solvent washings of sample probes (toluene and acetone). 

The filter is placed downstream of the sampling nozzle (in the stack) and probe (outside the 

stack) and kept at below 125 °C (in order to avoid chemical reactions on activated surfaces). 

If there is a high dust load expected then a quartz wool filter (not analyzed) is incorporated 

into the “sampling train” before the sample collection filter to prevent overloading of dust. 

Particulate phase analytes are retained on the glass fibre sample collection filter. A condenser 

is attached to cool the sampled gas to below 20 °C, followed by the XAD-2 resin adsorbent 

traps which retain the gaseous phase analytes. The glass fibre sample collection filters and 

resin traps were all stored in pre-cleaned amber jars until extraction. 

 

Figure 2.2 Schematic representation of the “filter/condenser” method used for stack emission 

sampling 
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2.1.3. Sinter Pot Samples 

The Sinter Pot (SP) is an apparatus designed to mimic the sintering process on a laboratory 

scale. Approximately 1 kg of RSM is produced and sintered with a total emission sample 

being collected allowing for a complete mass balance of the sintering process to be 

calculated. Details of this method are outlined below. RSM samples were collected (using the 

same methods as in 2.1.1.) before pelletizing into pre-cleaned amber jars. Sinter product was 

sampled from the centre and crushed as in 2.1.1 before collection in amber jars. Volatile 

emissions from the sinter pot were collected on pre-extracted PUF plugs fitted on the SP 

“exit” line along with solvent washings from within the sinter pot. 

 

Figure 2.3 – Schematic diagram of the sinter pot apparatus (Ooi et al., 2008) 

2.1.3.1. Sinter Pot Methodology 

A “base case” of all the components of a typical RSM was produced, containing ores, coke, 

fluxes and reverts. This was mixed thoroughly in a rotating drum. Different – additional – 

components, depending on the required experimental conditions were added afterwards in the 

same manner (i.e. potassium chloride, potassium bromide, PBDE technical solutions). For 

those containing PBDE technical solutions, the two solutions – Penta- (Bromkal 70-5DE), 

and Deca- (Bromkal 82-0DE) (Cambridge Isotope Laboratories (CIL), Andover, MA, USA)  

– were each diluted into 25 mL methanol and added, drop by drop, to the base case mixture in 

a rotating drum, before being left covered overnight to allow solvent to evaporate, before 
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mixing again for 2 hours in the rotating drum to attempt complete homogenization of the 

PBDEs throughout the RSM. Moisture content and total mass were then determined before 

the mixture was returned to the mixing drum which was turned very slowly whilst the correct 

volume of distilled water was added slowly (2-3 mL every 30 seconds) to pelletize the 

mixture with a moisture content of ~6.5% (±0.2%). The volume of water was calculated 

using Equation 2.1 assuming a density of 1 g/mL of water at atmospheric pressure and 

temperature. The moisture content was then measured 3 times to ensure it was correct. 

           ) (Equation 2.1) 

Where V is the volume of distilled water to be added (mL); M is the total mass of the RSM 

(g); mT is the target moisture content (%); mI is the initial moisture content (%) 

Approximately 1 kg of the required RSM was packed into the cylindrical vessel of the SP and 

was surrounded by Mount Wright ore (which does not oxidise and therefore will not sinter in 

the process) and a layer of coke breeze over the top. The coke breeze was then ignited using 

propane gas that was fed into the vessel for 3 minutes. The propane supply was stopped 

whilst the RSM sintered. Pipes surrounded by condensers (fed by an external water pump 

circulating ice cold water through them) channelled all emissions through to the PUF plug. 

The apparatus was left to cool for an hour before being dismantled. The PUF was collected 

and stored in a sealed jar whilst all individual parts and pipes were rinsed with solvent 

(toluene and acetone) that was collected in large pre-cleaned amber jars. The outer layer of 

the sinter was “chiselled” and discarded, whilst samples were taken from the centre before 

being crushed ready for extraction and clean-up as in 2.1.1.  

2.1.4 Passive Air Sampling 

Passive air samples (PAS) were taken from eight locations across the West Midlands 

conurbation as well as at five locations within the Scunthorpe Sinter Plant site and one at 

Swinden Technology Centre in Rotherham. Whilst PBDD/Fs would ideally have been 

measured in outdoor air samples, this was not possible during the life-span of the project, as 

high volume active samplers are required in order to gain a large enough sample volume to 

overcome instrumental detection limits. All passive air samples were collected with the same 

basic configuration using a PUF disc (140 mm diameter, 12 mm thickness, 360.6 cm
2
 surface 

area, 0.07 g cm
-3

 density, PACS, Leicester, UK) and a glass fibre filter ((GFF) 125 mm 

diameter, 1 µm pore size, Whatman, UK) as the sampling media. The configuration (Figure 
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2.4) is the same as that developed by (Abdallah et al., 2009) as it samples both gaseous and 

particulate phase allowing for detection of higher molecular weight congeners such as BDE-

209. The PUF disc(s) and filter are sheltered between two stainless steel housings (top 

housing - 23 cm diameter, two litre volume; and bottom housing - 18 cm diameter, one litre 

volume). The inner surface of the top housing was coated with aluminium foil and washed 

with hexane and dichloromethane to try to minimize its particle-scavenging potential 

(Abdallah et al. 2010). The GFF is suspended in the middle of the sampler, supported by a 

wire mesh. The sampler was designed so that air would flow over the GFF and the particulate 

phase would be sampled by the upper facing side of the GFF by a combination of 

gravitational settling and turbulent deposition. 

For samples taken at the Scunthorpe Sinter Plant site, PUF discs were pre-extracted via 

soxhlet extraction with hexane for 6-8 hours. PLE would have been preferred. However at the 

time of sampling at Scunthorpe, a pre-extraction method was not in place that maintained the 

shape of the PUF discs. A method was later developed using PLE (pressurised liquid 

extraction) (ASE-350 (Dionex)) with 3:2 dichloromethane (DCM):hexane (90°C and 1500 

psi; flush time – 5 minutes; static cycle – 4 minutes; purge time – 120 s; 1 static cycle) that 

did not damage the PUFs and so this was used for all samples taken in the West Midlands 

transect study. GFFs were baked for 5 hours at 500 °C before the samplers were assembled 

and deployed. Shelters were also thoroughly rinsed with hexane and acetone before each 

sampling period to avoid potential cross-contamination. 

 

Figure 2.4 Configuration of Passive Air Samplers used to sample PBDEs in outdoor ambient 

air (Abdallah and Harrad, 2010) 
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2.1.4.1 Calibration of passive air samplers. 

As this configuration had not hitherto been used to sample outdoor air, the sampling rate was 

unknown. PAS were calibrated against active samplers to determine the volume of air 

sampled and therefore the actual concentrations (pg PBDE m
-3 

air). 

2.1.4.1.1 Experimental conditions. 

The calibration used the same basic method as that used by (Abdallah and Harrad, 2010) for 

indoor air. PBDEs were monitored in outdoor air using the PAS over five different exposure 

times, whilst also being monitored in low volume active air samples from a known volume of 

air (approximately 100 m
3
, n=5). PAS were deployed (n=8) for 50 days at the Elms Road 

Observatory Site (EROS, University of Birmingham, Edgbaston, UK). Samplers were then 

collected at 10 day intervals over the 50 days with three samplers being collected after 10 

days and two after 20 days and combined to ensure detectable masses at both sampling 

intervals.  

2.1.4.1.2 Passive samplers’ uptake rates 

The following equation (2.2) was used to calculate estimated volumes of air sampled for each 

PAS used in the calibration study. 

    
    

  
  (Equation 2.2) 

Where Ve is the effective total volume of air sampled, MPAS is the mass of the compound 

detected in the passive sample (pg) CA is the concentration of the compound in the active air 

sample (pg m
-3

). Ve was then plotted against sampling period (days) and the sampling rate 

calculated from the slope of the line. 

Figures 2.5 a, b and c show the correlation between the estimated air volume sampled and 

time for BDEs -99, -100 and -209 respectively. Good correlations were found for BDE-209 

and BDE-100 (both >0.99), and for BDE-99 (0.984). The average sampling rate was 

calculated from these graphs by calculating the slope of the trend line providing estimated 

sampling rates of 2.26 m
3
/day, 3.92 m

3
/day and 3.92 m

3
/day for BDEs -209, -99 and -100 

respectively. Therefore a sampling rate of 2.26 m
3
/day was applied to all PAS for BDE-209. 

A sampling rate of 3.92 m
3
/day was applied for all tri-hepta BDE congeners from BDE-99 

and BDE-100 data. Theoretically there should be no differences between sampling rates for 

different congeners as the same sample (and therefore volume of air) is used for the analysis 
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of all congeners. However, as with other studies (Shoeib and Harner, 2002; Hazrati and 

Harrad, 2007) differences were seen between congener-specific sampling rates in the present 

study. Hazrati and Harrad (2007) attribute these differences to the “the combined effect of 

environmental conditions, the physicochemical properties and the passive sampler design”. 

For example, if the air sampled contains low levels of particulate matter, then there will be a 

lower rate of deposition of particles on the GFF. Congeners such as BDE-209, which are 

 

 

 

Figure 2.5 Calculated volume of air sampled in PAS used in calibration study from a) BDE-

209; b) BDE-99; and c) BDE-100 

found almost entirely in the particulate phase (due to their low vapour pressures) will have a 

lower effective volume than those found primarily in the vapour phase like BDEs -99 and -
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100 (Hazrati and Harrad, 2007), thus explaining their lower sampling rate..BDE-47 was not 

monitored in the PAS calibration study as there were sensitivity issues with the LC-APPI-

MS/MS at the time of analysis meaning that it was not detected in all samples. 

2.1.5  Soil Sampling 

2.1.5.1 – Australian Soil Samples 

Australian soil samples were originally taken for the National Dioxin Program in 2003. The 

sampling strategy was based on that of Buckland et al. (2005) where each sample was made 

up of 18 soil cores from three sub-sampling sites. A triangular sampling configuration was 

employed at each sub-sampling site with each core taken to 10 cm depth, and wrapped in foil. 

All 18 cores were then combined, homogenised and freeze-dried in the laboratory. Samples 

were stored in glass jars in a dark, dry area. 

2.1.5.2 – UK Soil Samples 

New UK soil samples were taken using the same method as archived UK soils initially taken 

as part of a different study in 2005 (Evans, 2007). Three sub-samples were taken at each 

location, at least 1 m apart, within a 1 m
2
 area. Sub-samples were from the top 5 cm of 

surface soil and taking the soil immediately beneath the surface and storing in sealed amber 

jars. The three sub-samples were combined and homogenised for analysis. Ideally the 

archived samples would have been spiked with a C
13

-labelled standard to monitor any loss of 

target analytes during storage. However this was not possible and it was assumed that there 

was 100% recovery up until extraction. 

2.1.6 – Sediment Core Samples 

Sediment core samples were initially taken in 1998/99 as part of another study (Taylor et al., 

2004). Cores were taken in shallow-water areas (<8 m) in locations close to stormwater 

drains, which have been identified previously as a major source of contaminants (Birch and 

Taylor, 1999), using a piston corer (up to 1.5 m) designed to reduce compaction, provide 

good core recovery and to avoid physical disturbance. Each core was then cut into 2 cm 

layers up to 10 cm, and then another 2 cm was taken every 10 cm. Samples were freeze-dried 

and sieved to particle sizes of less than 62.5 µm (Taylor et al., 2004). Sedimentation rates 

were determined by Taylor et al. (2004) based on previously used methods using the 

exponential decay of 
210

Pb to levels supported by 
226

Ra (Goldberg, 1963, Nriagu et al., 1979). 
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2.2 Extraction 

2.2.1 Extraction for PBDE analysis 

2.2.1.1 Raw material and sinter pot samples 

Raw material and sinter pot (SP) samples were all provided as dusts ready for PLE as 

previously used by others for extraction of soils, sediments and dusts (de la Cal et al., 2003, 

Lagalante and Oswald, 2008). Approximately 10 g sample was mixed with pre-extracted 

hydromatrix (Varian inc., UK) and added to pre-cleaned 66 mL extraction cells. Hydromatrix 

was added to fill the remaining volume of the cells. They were then spiked with 60 ng of 

internal standard (IS, 
13

C12-labelled BDEs -28, -47, -99, -153 and -209 (BDE-28 was used for 

analysis via GC/MS only, whilst BDE-209 was only analysed on LC-MS/MS). The cells 

were then extracted with dichloromethane (DCM):hexane (3:2 v/v) at 90°C and 1500 psi 

(heating time 5 minutes, static time 4 minutes, 3 static cycles, purge time 120 s, flush volume 

50%) 

2.2.1.2 Passive Air Samples 

2.2.1.2.1 PAS from Tata Steel 

Although PLE was generally preferred, at the time of sampling, PUFs could not be pre-

extracted via PLE without being damaged and were extracted via Soxhlet. Therefore the same 

method was used for extraction of samples to avoid any extraction of interfering compounds 

that were not pre-extracted before sampling. PUFs and GFFs were loaded into a Soxhlet 

apparatus and spiked with internal standards (as in 2.2.1.1). They were then extracted with 

hexane for 8 hours as reported previously (Harrad et al., 2006). 

2.2.1.2.2 PAS from West Midlands Locations and Calibration Study 

PUFs and GFFs were loaded into 66 mL extraction cells and spiked with internal standards 

and extracted as described in 2.2.1.1. 

2.2.1.3 Soil & Sediment Samples  

Soil and sediment samples underwent simultaneous in-cell extraction and clean-up as 

outlined in 2.3.1.2. 

2.2.2 Extraction for PBDD/F analysis 

The sample extraction and clean-up methods for PBDD/Fs were based on methods used in 

accordance with ENV PES 100 v12 (an in-house clean-up method developed by Tata Steel 
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Environmental Laboratories for the analysis of PCDD/Fs). The methods were the same for 

QC5 (Tata steel internal quality control ESP dust samples) and for all emission samples 

analysed in this study. 

The sample was spiked with internal standards (
13

C12-2,3,7,8-TBDD, 
13

C12-1,2,3,7,8-PeBDD, 

13
C12-1,2,3,7,8,9-HxBDD, 

13
C12-2,3,7,8-TeBDF and 

13
C12-1,2,3,7,8-PeBDF), loaded into 

Dionex ASE extraction cells and subjected to PLE on either an ASE 200 or an ASE 100 with 

toluene (90°C, 1500 psi, heating time 5 minutes, static time 4 minutes, 3 static cycles, purge 

time 120 s, flush volume 50%). 

 

2.3 Clean-up 

2.3.1 Clean-up for PBDE analysis 

All samples except for soil samples underwent the same clean-up methods for PBDE 

analysis, (based on US EPA method 1614 (EPA, 2007)) adapted from previous work within 

the group (Harrad et al., 2006, Harrad et al., 2004).The extract was concentrated to 0.5 mL 

under a gentle stream of nitrogen using a Zymark Turbovap® II concentration workstation 

(Hopkinton, MA, USA) then transferred to 10 mL conical test tubes containing 2 mL 95% 

concentrated sulfuric acid and mixed thoroughly. The two layers were left for 24 hours to 

separate. The top (hexane) layer and three subsequent washings were collected and passed 

through to a column containing 1 g florisil (60-100 mesh, Sigma Aldrich, UK) and 1 g 

sodium sulfate. The acid layer was discarded. 20 mL hexane was also passed through, the 

total eluate collected in 50 mL Turbovap® tubes and concentrated under nitrogen to near-

dryness using a Turbovap® II (Biotage, Uppsala, Sweden). 60 ng 
13

C12-BDE-100 was added 

as a recovery determination standard and the sample made up to 50 µL with either nonane 

(GC/MS) or methanol (LC-MS/MS). Final sample extracts were sonicated for 30 s and 

transferred into autosampler vials using an Eppendorf 100 µL micropipette. 
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2.3.1.2 Soil & Sediment Samples 

The method in this section was developed based on the above methods for clean-up of 

extracts for PBDE analysis. The aim was to carry out all clean-up within the cell at the same 

time as PLE, thereby reducing the number of glassware transfers to only 2, increasing sample 

recovery and reducing the risk of contamination during clean-up.  

UK samples had not been freeze dried and so 10 g aliquots from homogenised soil samples 

were mixed with 5-10 g sodium sulphate in a pre-cleaned beaker (acetone and hexane) to 

remove water content. Australian samples had been freeze dried so a 10 g aliquot from 

homogenized samples were weighed in disposable measuring boats. Samples were added to 

either 66 mL or 100 mL Dionium® (A zirconium alloy able to tolerate highly acidic and 

basic conditions) ASE cells that had been pre-cleaned and loaded with the following 

components from the bottom upwards (Figure 2.6): two microfibre filters (Dionex, UK), 

silica gel (Sigma Aldrich, UK), 5 g florisil (60-100 mesh, Sigma Aldrich, UK), 3 g 

diatomaceous earth (Sigma Aldrich, UK), microfibre filter, 10 g acid impregnated silica (44% 

sulfuric acid), microfibre filter, 5 g copper powder, 2 g hydromatrix, 2-10 g sample mixed 

with hydromatrix. The remaining volume of the cell was filled with hydromatrix and internal 

standards (as in 2.2.1.1). The ASE cells were extracted with DCM and hexane (1:1 v/v) at 

90°C and 1500 psi (heating time 5 minutes, static time 5 mins, 3 static cycles, flush volume – 

50%, purge time – 120 s). The extract was concentrated to near-dryness using a Zymark 

Turbovap® II concentration workstation (Hopkinton, MA, USA). 60 ng 
13

C12-BDE-100 

(recovery determination standard) was added and the final volume adjusted to 100 µL with 

methanol. The sample was sonicated for 30 s and transferred to autosampler vials using an 

Eppendorf 100 µL micropipette.  
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Figure 2.6 – Schematic of a Dionium ASE cell used for in-cell clean-up of soils and 

sediments for PBDEs 

2.3.2 Clean-up for PBDD/F Analysis 

The extracts were concentrated using nitrogen gas and a water bath to ca. 0.5-1.0 mL before 

being passed through a multi-layered silica column (380 mm x 24 mm i.d. (York Glassware 

Services) containing silica gel (Davisil, grade 633, 200-425 mesh (Sigma Aldrich) and then 

through an activated florisil column (containing pre-extracted florisil (Sigma Aldrich) and 

anhydrous sodium sulfate – Analar (VWR or Farenheit) to remove interfering compounds. 

The eluate was then transferred, along with washings, into turbovap tubes and concentrated 

under a stream of nitrogen gas to dryness. Nonane and recovery standards (
13

C12-2,3,4,7,8 -

PeBDF) were added up to a volume of 50 µL and mixed using a micropipette. The tips of the 

tube were then sonicated before the solution was transferred into a 1.0 mL glass vial and 

capped with a crimp seal. 

 

 

 



65 
 

2.4 Analysis 

2.4.1 GC/MS analysis of PBDEs 

2.4.1.1 Sinter Plant Raw Materials 

Tri-hexa PBDEs were measured in the sinter plant raw materials (RSM, ESP dust, sinter 

product and emission sample) at the University of Birmingham using the following method. 

Samples were analysed on an Agilent 5975 MS coupled with an Agilent 6850 GC.  

Time (min) 
Analyte Quantifier Qualifier 

7.00-9.80 Tri-brominated diphenyl ether 405.9 407.9 

13
C12 Tri-brominated diphenyl ether 417.9 419.9 

9.80-11.00 Tetra-brominated diphenyl ether 325.9 327.9 

13
C12 Tetra-brominated diphenyl ether 337.9 339.9 

11.00-15.00 Penta-brominated diphenyl ether 403.9 405.9 

13
C12 Penta-brominated diphenyl ether 415.9 417.9 

11.00-15.00 Hexa-brominated diphenyl ether 483.9 481.9 

13
C12 Hexa-brominated diphenyl ether 495.9 493.9 

Table 2.1 – Target masses and retention times for the identification and quantification of 

PBDEs via GC/MS with a DB-XLB column 

An Agilent DB-XLB column (30 m x 0.25 mm internal diameter x 0.10 µm film thickness) 

was used for GC/MS analysis of PBDEs. Helium was used as the carrier gas with a constant 

flow of 1.0 mL/min. The inlet was run in splitless mode. The GC oven had an initial 

temperature of 100°C and held for 5 minutes. The temperature was then increased by 

20°C/min to 310°C and held for 15 minutes. PBDE calibration solutions (CS1-CS5, 

Cambridge Isotope Laboratories (CIL)) were injected and the GC/MS was run in total ion 

chromatogram (TIC) mode to determine retention time windows and target ion masses to be 

monitored. An acquisition file was then created based on those retention times and ion 

masses (Table 2.1) and the calibration solutions were injected in single ion monitoring (SIM) 
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mode. A full 5-point calibration showed good response factors with a low relative standard 

deviation.  

2.4.1.2 Other UK samples 

All other GC/MS analyses of UK samples (SP, outdoor air and soils) took place on the same 

instrument as above to measure tri-hepta PBDEs. An Agilent DB-5ms column was used, 30 

m (length) x 0.25 mm (internal diameter) x 0.25 µm (film thickness). Helium was used as the 

carrier gas with a constant flow of 1.0 mL/min. The inlet was run in splitless mode. The GC 

oven had an initial temperature of 70°C which was held for 2 minutes and then increased by 

20°C/min to 270°C and held at this temperature for 53 minutes. The MS was run in SIM 

mode scanning for the masses show in Table 2.2.  

Time (min) Analyte Quantifier Qualifier 

0.00-27.00 Tri-brominated diphenyl ethers 405.8 407.8 

13
C12 Tri-brominated diphenyl ether 417.8 419.8 

27.00-37.00 Tetra-brominated diphenyl ethers 485.8 483.8 

13
C12 Tetra-brominated diphenyl ether 497.8 495.8 

37.00-45.80 Penta-brominated diphenyl ethers 403.9 405.9 

13
C12 Penta-brominated diphenyl ether 415.9 417.9 

45.80-63.50 Hexa-brominated diphenyl ethers 483.9 481.9 

13
C12 Hexa-brominated diphenyl ether 495.9 493.9 

Hepta-brominated diphenyl ethers 723.8 721.8 

Table 2.2 – Target masses and retention times for the identification and quantification of 

PBDEs via GC/MS with a DB5-ms column 

2.4.1.3 HRGC/HRMS analysis of Australian Soil and sediment samples  

Australian soil samples were analysed for BDE-47 at the National Research Centre for 

Environmental Toxicology (EnTox), University of Queensland, Australia using 

HRGC/HRMS with an HP 5890 II GC coupled to a Micromass Autospec HRMS. A Zebron 

ZB-5ms column was used, 10 m (length) x 0.18 mm (internal diameter) x 0.18 µm (film 
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thickness). The inlet was run in splitless mode at a temperature of 280 °C. Ultra-high purity 

helium was used as the carrier gas with a constant flow of 1.0 mL/min. The GC oven was 

held at an initial temperature of 110 °C for 3 mins and increased by 30 °C/min to 200 °C and 

then 20 °C/min to 330 °C and held for 1 min. BDE-47 was measured using ions 485.8 

(quantifier) and 483.8 (qualifier), whilst 
13

C12- BDE-47 was measured using ions 497.8 

(quantifier) and 495.8 (qualifier). 

2.4.2. Analysis of PBDEs via LC-MS/MS 

2.4.2.1 LC-APPI-MS/MS analysis of PBDEs in UK Samples 

Sinter plant outdoor air samples and RSM components were measured for all target analytes 

(BDEs – 47, 85, 99, 100, 153, 154, 183, 209) at the University of Birmingham using LC-

APPI-MS/MS. Analytes were separated using a dual pump Shimadzu LC-20AB Prominence 

liquid chromatograph (Shimadzu, Kyoto, Japan) with a SIL-209A autosampler, a DGU-20A3 

vacuum degasser, and a Varian Pursuit XRS3 C18 reversed phase analytical column at room 

temperature (250 mm x 4.6 mm i.d., 3 µm particle size).  

A 10 µL injection volume was used. A mobile phase program based upon 1:1 methanol/water 

(mobile phase A) and 1:4 toluene/methanol at a flow rate of 0.4 mL/min was used for the 

elution of target compounds, starting at 85% mobile phase B and increased gradually to 

100% over 15 minutes. Mobile phase B is held at 100% for another 15 minutes. After 30 

minutes mobile phase B is reduced sharply to 85% and held for 5 minutes to equilibrate the 

column for the next sample.  The LC-APPI-MS/MS parameters are detailed in Table 2.3. 

The elution order of PBDEs was already known (Abdallah et al., 2009). Therefore calibration 

solutions were made from dilutions of pure standards (Wellington Laboratories), the most 

concentrated (1000 ng/mL) were injected and the instrument operated in multiple reaction 

monitoring (MRM) mode. The retention times were recorded for the appropriate mass to 

charge (m/z) ratios (Table 2.4). A full 5-point calibration of standards ranging from 50-1000 

ng/mL was performed producing response factors close to 1.0 with a low relative standard 

deviation in accordance with quality assurance protocol detailed in Section 2.5. An excellent 

range of linearity was seen between the relationship between peak area and concentration 

with R
2
 values above 0.99 for all congeners. 
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Parameter Value 

Curtain Gas 25 psi 

Collision Gas (CAD) 11 psi 

Ion Transfer Voltage (IS) 1250 V 

APPI Temperature 400 °C 

Probe nebulizer gas 60 psi 

Auxillary Gas 30 psi 

Declustering Potential -8.0 V 

Focussing Potential -365.0 V 

Entrance Potential -12.0 V 

Collision Energy -75.0 eV 

Collision Cell Exit Potential -8.0 V 

Table 2.3 – LC-APPI-MS/MS Parameters 
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BDE Congener Precursor (m/z) Fragment (m/z) 

BDE-47 420.9 78.6 

13
C12 BDE-47 432.9 78.6 

BDEs -85, -99, -100 500.8 78.6 

13
C12 BDEs -99, -100 512.8 78.6 

BDEs -153, -154 578.8 78.6 

13
C12 BDE-153 590.8 78.6 

BDE-183 658.6 78.6 

BDE-209 486.6 78.8 

13
C12 BDE-209 498.6 78.8 

Table 2.4 MRM values for LC-APPI-MS/MS analysis of PBDEs 

2.4.2.2 LC-APCI-MS/MS analysis of PBDEs in Australian soil and sediment samples 

Penta-deca-BDEs were determined in Australian soils and sediments at EnTox by HPLC-

MS/MS using an AB/Sciex API5500Q mass spectrometer (ABSciex, Concord, Ontario, 

Canada) equipped with an atmospheric pressure chemical ionisation (APCI) source coupled 

to a Shimadzu Prominence HPLC system (Shimadzu Corp., Kyoto, Japan).  

Separation was achieved using a 3 micron 50 mm x 2.0 mm Phenomenex Gemini NX C18 

column (Phenomenex, Torrance, CA) run at 45
o
C, and a flow rate of 0.3 mL/min

 
with a linear 

gradient starting at 85% B, ramped to 100% B in 6 minutes then held at 100% for 4.0 minutes 

followed by equilibration at 85% B for 4 minutes. (A = 5% methanol in HPLC grade water, B 

= 95% methanol in HPLC grade water). The mass spectrometer was operated in the negative 

ion, multiple reaction-monitoring mode using nitrogen as the collision gas. Mass 

spectrometer parameters were as Table 2.5. 
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Analyte 
Precursor 

(m/z) 

Fragment 

(m/z) 

Declustering 

Potential 

Entrance 

Potential 

Collision 

Energy 

Cell Exit 

Potential 

Penta-

BDE 

500.7 78.9 

-40 V -8 V -100 eV -10 V 

500.7 80.9 

13
C12 

Penta-

BDE 

512.7 78.9 

-40 V -8 V -100 eV -10 V 

512.7 80.9 

Hexa-

BDE 

578.6 78.9 

-60 V -7 V -100 eV -10 V 

578.6 80.9 

13
C12 

Hexa-

BDE 

590.6 78.9 

-60 V -7 V -100 eV -10 V 

590.6 80.9 

Hepta-

BDE 

658.5 78.9 

-40 V -8 V -120 eV -10 V 

658.5 80.9 

13
C12 

Hepta-

BDE 

670.5 78.9 

-40 V -8 V -120 eV -10 V 

670.5 80.9 

Deca-

BDE 

894.2 78.9 

-40 V -8 V -132 eV -10 V 

894.2 80.9 

13
C12 

Deca 

BDE 

908.2 78.9 

-40 V -8 V -132 eV -10 V 
908.2 80.9 

Table 2.5 – MRM values and LC-APCI-MS/MS parameters for PBDE analysis in Australian 

soils and sediments. 

2.4.3 HRGC/HRMS analysis of PBDD/Fs 

This was conducted at the Swinden Technology Centre (Tata Steel, Moorgate, Rotherham, 

UK). Samples were analysed using an Autospec Ultima (Waters). Using the calibration 
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solution (CS4) from a set of PBDD/F calibration solutions CS1-CS5 (CIL), several runs were 

carried out to monitor primary and secondary ions for tetra- through to hepta- PBDD/Fs (see 

Table 2.6) using an Agilent DB-5MS column 30 m (length) x 0.25 mm (in diameter) x 0.1 

µm (film thickness). Helium was used as the carrier gas with a constant flow of 1.0 mL/min. 

The inlet was run in splitless mode. The GC oven was held at an initial temperature of 140 °C 

for 1 minute. The temperature was then increased to 200 °C at a rate of 20 °C/min and held 

for 6 minutes. It was then increased to 280 °C at 5 °C/min and held for 4 minutes.  

 

Time 

(min)  

Quantifier Qualifier 

Analyte Mass Ion Mass Ion 

 

 

13.0 – 17.0 

Tetrabromodibenzofurans 483.6954 M+4 481.6974 M+2 

13
C12 tetrabromodibenzofuran 495.7357 M+4 493.7377 M+2 

Tetrabromodibenzo-p-dioxins 499.6903 M+4 497.6923 M+2 

13
C12 tetrabromodibenzo-p-dioxin 511.7306 M+4 509.7326 M+2 

 PFK Lock Mass 492.9697 
 

 

 

17.0 – 21.0 

Pentabromodibenzofurans 561.6059 M+4 563.6039 M+6 

13
C12Pentabromodibenzofuran 573.6462 M+4 575.6442 M+6 

Pentabromodibenzo-p-dioxins 577.6008 M+4 579.5988 M+6 

13
C12 Pentabromodibenzo-p-dioxin 589.6411 M+4 591.6391 M+6 

 PFK Lock Mass 566.9665 
 

 

 

21.0 – 26.0 

Hexabromodibenzofurans 641.5144 M+6 639.5164 M+4 

13
C12 Hexabromodibenzofuran 653.5546 M+6 651.5566 M+4 

Hexabromodibenzo-p-dioxins 657.5093 M+6 653.5113 M+4 

13
C12 Hexabromodibenzo-p-dioxin 669.5495 M+6 667.5515 M+4 

 PFK Lock Mass 654.9601 
 

Table 2.6 Ions monitored for PBDD/F determination 

The retention times for each compound are listed in Table 2.5. After having identified the 

retention times of all the PBDD/F compounds present in CS4 calibration solution, each group 
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of compounds was separated into 4 functions (F1- tetraBDD/Fs; F2- pentaBDD/Fs; F3-

hexaBDD/Fs; F4-heptaBDD/Fs). Although heptaBDD/Fs were detected, the peaks were 

extremely small and close to the limits of detection. A single HpBDF peak was detected in an 

emission sample with high concentrations, but it was unquantifiable. Therefore, in other 

samples no attempt was made to quantify HpBDF. Once the correct retention time windows 

were determined, a full 5-point calibration was performed using CS1-CS5. The calibration 

(See Figure 2.4) showed good response factors with a very low relative standard deviation. 

 

2.5 Validation and QA/QC Criteria 

There is a set QA/QC protocol within our research group, which was used to form the basis 

of QA/QC for this project (Appendix 5). Ideally, for all samples, 2 replicates would have 

been analysed and the average figures used. However, due to time restrictions on this project, 

one sample was used for each analysis presented.  

2.5.1 Analyte identification and Quantification criteria 

The elution orders for both sets of compounds for GC/MS, LC-APPI-MS/MS, LC-APCI-

MS/MS and HRGC/HRMS were already known from previous work within the relevant  

research groups at which these analyses were conducted. Therefore, mixtures of solutions 

containing each individual target compound, were injected to perform a full 5-point 

calibration with a concentration range of 50-1000 ng/mL to determine exact retention times 

and the linearity of the MS response. Calibration curves (and standards) were only accepted if 

R
2
 values were more than 0.99.The same 

13
C-labelled isomers added to samples prior to 

extraction were used as internal standards. The peak areas from the 5-point calibration were 

used to determine relative response factors (RRFs) for each target compound. The RRF is 

defined as the instrument response for a unit amount of target pollutant relative to the 

instrument response obtained for the same amount of the internal standard (IS). RRFs were 

calculated using Equation 2.3. 

      
    

   
   

   

    
  (Equation 2.3) 

Where ANAT is the peak area for the “native” (naturally occurring 
12

C) compound in the 

standard; AIS is the peak area of the 
13

C-labelled internal standard in the standard; CNAT is the 

concentration of the “native” compound in the standard; and CIS is the concentration of the 

internal standard in the standard. The relative standard deviation (RSD) of the RRFs 
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calculated for each target compound at the 5 points of its calibration curve did not exceed 

5%.  

A single calibration standard was injected before and after each batch of samples and the 

average RRFs were calculated. To be acceptable these had to be within ±25% of the average 

RRFs from the initial 5-point calibration and were used for calculating the concentrations of 

target compounds in samples using Equation 2.4. 

               
    

   
   

 

   
   

   

  
  (Equation 2.4) 

Where AIS is the peak area of the internal standard in the sample; ANAT is the peak area of the 

target compound in the sample; RRF is the relative response factor for the target compound; 

MIS is the mass of internal standards (ng) added to the sample; and SS is the sample size (g or 

m
-3

). 

The following criteria had to be met to ensure that a given peak was a target pollutant in a 

sample: 

1. The signal to noise ratio (S/N) must exceed 3:1. 

2. The relative retention time (RRT) of the peak in the sample must be within ±0.2% of 

the average value determined for the same congener in the 2 calibration standards ran 

before and after each batch of samples. 

3. The bromine isotope ratios must be within ±20% of the average for the 2 calibration 

standards run before and after each sample batch.  

2.5.2 Recovery Determination Standard 

The recoveries of internal standards during sample extraction and clean-up were determined 

relative to the recovery determination standard (RDS) added to the samples prior to MS 

analysis – 
13

C12-BDE 100, whilst for HRGC/HRMS analysis of PBDD/Fs the standard used 

was 2,3,4,7,8-PeBDF. The IS recoveries for each sample were calculated using Equation 2.5 

                [(
   

    
)
 
  (

    

   
)
   

 (
   

    
)
   

 (
    

   
)
 
]       (Equation 2.5) 

where (AIS/ARDS)S = ratio of internal standard peak area to recovery determination standard 

peak area in the sample; (ARDS/AIS)STD = ratio of recovery determination standard peak area 

to internal standard peak area in the calibration standard (the average of values obtained for 

both calibration standards run for a batch of samples is used); (CIS/CRDS)STD = ratio of 
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concentration of internal standard to concentration of recovery determination standard in the 

calibration standard; and (CRDS/CIS)S = ratio of concentration of recovery determination 

standard to concentration of internal standard in the sample. Table 2.7 shows a summary of 

internal standard recoveries across all samples analysed in this study. Samples were only 

accepted if they had a recovery within the range of 35-150% as stated in our research group’s 

quality assurance document (Appendix 5). 

PBDD/F Emissions (n=25) Mean SD Median Min. Max. 
13

C12-1,2,3,7,8-PeBDF 90 19 81 69 118 
13

C12-2,3,7,8-TeBDF  60 19 60 36 87 
13

C12-2,3,7,8-TBDD 59 13 58 41 83 
13

C12-1,2,3,7,8-PeBDD 96 25 85 69 130 
13

C12-1,2,3,7,8,9-HxBDD 103 26 91 80 145 

            

PBDE Raw Materials (n=102) Mean SD Median Min. Max. 
13

C-BDE 47 94 33 101 37 141 
13

C-BDE 99 89 26 88 39 127 
13

C-BDE 153 103 37 95 36 149 
13

C-BDE 209 74 29 64 42 124 

            

PBDE Soils & Sediments (n=80) Mean SD Median Min. Max. 
13

C-BDE 47 93 26 92 48 132 
13

C-BDE 99 86 20 85 52 125 
13

C-BDE 153 85 19 86 49 114 
13

C-BDE 209 81 20 82 47 110 

            

PBDE Ambient Air (n=48) Mean SD Median Min. Max. 
13

C-BDE 28 55 15 52 36 110 
13

C-BDE 47 68 16 68 42 110 
13

C-BDE 99 79 23 73 42 137 
13

C-BDE 153 53 17 48 35 118 
13

C-BDE 209 87 29 91 38 133 
a 

SD = Standard Deviation; Min. = minimum; Max. = maximum 

Table 2.7 – Descriptive statistics of IS recoveries (%) across all studied samples 

 

2.5.3 Accuracy and Precision 

The accuracy and precision of PBDE analysis conducted at Birmingham and EnTox was 

assessed via replicate analysis (n=12) of a standard reference material (SRM 2585, organic 

contaminants in house dust, NIST). The results (Table 2.8) were consistent (indicated by low 

relative standard deviation) and comparable to the certified values for PBDEs. 
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There is no reference material for PBDD/Fs, but internal quality control samples (QC5, an 

electrostatic precipitator dust certified for PCDD/Fs, n=5) from Tata Steel were used to 

evaluate reproducibility (Table 2.9). 

 Average ± standard deviation (n=12) Relative Standard 

Deviation (RSD) (%) of 

measured values 
Measured Certified 

BDE-47 464 ± 10.5 497 ± 46 2.3 

BDE-85 42.5 ± 1.4 43.8 ± 1.6 3.3 

BDE-99 783 ± 68.8 892 ± 53 8.8 

BDE-100 138 ± 38.2 145 ± 11 27.7 

BDE-153 124 ± 11.7 119 ± 1 9.4 

BDE-154 75.1 ± 7.7 83.5 ± 2.0 10.2 

BDE-183 44.3 ± 2.2 43.0 ± 3.5 5.0 

BDE-209 2410 ± 189 2510 ± 190 7.8 

Table 2.8 Concentrations (ng g
-1

) of PBDEs measured in NIST SRM 2585 compared to 

certified values 

 

 Measured value ± SD RSD (%) 

Tetra-furans 790 ± 108.9 13.8 

Penta-furans 2923 ± 1304 44.6 

Hexa-furans 2899 ± 1095 37.8 

Tetra-dioxins 14.9 ± 2.9 19.7 

Penta-dioxins 14.9 ± 4.7 31.3 

Hexa-dioxins 34.4 ± 12.1 35.2 

Table 2.9 – Measured PBDD/F concentrations (pg g
-1

) in QC5 samples from Tata Steel 
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2.5.4 Analysis of blanks, LODs and LOQs 

Instrumental limits of detection (LODs) were calculated for all studied compounds based on a 

3:1 signal to noise ratio. The sample limits of quantification (LOQ) were then calculated 

using Equation 2.6: 

    
        

        
  

   

             
  (Equation 2.6) 

Where FEV is the final extract volume (µL); VFEI is the volume of final extract injected (µL); 

SS = sample size (g or m
3
); % IS Recovery = percentage recovery of the internal standard 

used to quantify the target pollutant in a particular sample. None of the target compounds 

were found in method blanks for soils, or raw materials. However, BDE-209 was detected in 

field blanks for passive air samples. Field blanks were used as a control for air samples and 

consisted of a pre-extracted PUF and baked glass fibre filter.  

 

UK Soil 

& Sinter 

Pot 

Australian 

Soil/Sediment 

UK 

Air 

Iron Ore 

Sintering Raw 

Materials Stack Emission Samples 

Compound pg/g pg/g pg/m
3
 pg/g Compound pg/m

3
 

BDE 17 2.6 - 0.21 
- 2,3,7,8-TBDF 2.1 

BDE 28 2.7 - 0.23 - 1,2,3,7,8-PeBDF 2.9 

BDE 49 3 - 0.25 - 2,3,4,7,8-PeBDF 2.8 

BDE 47 3.6 1.4 0.3 20 1,2,3,4,7,8-HxBDF 9.9 

BDE 66 5.4 - 0.45 - 2,3,7,8-TBDD 2.2 

BDE 100 5.4 2.6 0.45 3.4 1,2,3,7,8-PeBDD 2.4 

BDE 99 5.9 2.1 0.49 2.7 

1,2,3,4,7,8/1,2,3,6,7,8-

HxBDD 7.6 

BDE 85 8.9 2.6 0.74 6 1,2,3,7,8,9-HxBDD 8.3 

BDE 154 11 2.1 0.89 5     

BDE 153 14 1.6 1.1 4.3     

BDE 183 18 1 1.5 3.8     

BDE 209 14 5 2.2 21     

Table 2.10 – Limits of quantification (LOQs) for various sample matrices 



77 
 

The level of BDE-209 detected in these samples was usually less than 5% of the amount 

found in samples from the same batch and thus no action was taken. However, on two 

occasions (sampling months two and three for PAS at Scunthorpe sintering plant, Tata Steel) 

field blank concentrations for BDE-209 were 10% and 11% respectively of the lowest 

concentration in the sample batch. In these cases, the mass of BDE-209 was subtracted from 

the mass detected in those particular samples, prior to the calculation of concentrations. Table 

2.10 shows the LODs and LOQs for sample matrices based on typical sample sizes, internal 

standard recoveries and volume of final extract injected. 

2.6 Statistical Analysis 

A variety of statistical analyses were used to examine the data produced from the various 

studies in this project. Where it was possible individual data (as opposed to averages) were 

used for data comparison. For example, PBDE concentrations of the individual components 

of raw sinter mix were transformed to percentage contributions to total PBDE content and 

ranked to highlight any components contributing any significant PBDE contamination 

towards the raw sinter mix (Chapter 3). However, in some cases arithmetic mean values were 

used for ease of comparison with data both from within this thesis and the previous literature. 

When datasets are highly skewed, arithmetic averages can be misleading. When this is a 

potential issue in the thesis, a more robust measure of the central tendency, the median (as 

well as the interquartile ranges) are also reported. 

In the majority of cases, variability within and between datasets was such that parametric 

statistical tests were unsuccessful/inappropriate. As a result, graphical (e.g. scatter plots, bar 

charts and box plots) and tabulated presentation of data was used extensively to demonstrate 

the results of this study, whilst principal component analysis and mass balances were used 

where appropriate. 

Air samples are presented as mean concentrations for each location, with the ranges also 

presented. This is not the most statistically robust way to represent the central tendency and 

spread of a dataset, but is in line with practice in the discipline. For skewed distributions of 

the kind presented below it is more appropriate to use the interquartile range, or 5
th
 and 95

th
 

percentiles for comparison, the absolute minimum and maximum values were usually used to 

demonstrate the large spatial and temporal variations of concentrations found in samples – 

especially those close to industrial and urban sources. Attempts were made to compare 
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samples with any previous data on a like-for-like basis. For example, air samples from the 

same months were compared when investigating long-term temporal trends (thereby 

minimising comparability issues due to any potential seasonal variations in concentrations), 

whilst soils were compared based on organic carbon content when this was possible to do so.  

Where possible, mean values were used for comparison, with t-tests and analysis of variance 

(ANOVA) applied to data to test for any significant differences between means. Non-

parametric tests were also used to compare datasets (e.g. Mann-Whitney U Test) in cases 

where parametric tests were not appropriate. However, comparisons were also made using 

individual data for each sample as Pearson product-moment correlations were used to test for 

any linear trends that were indicated by graphical data.  

Statistical analysis of data was carried out using a combination of Microsoft Excel (Microsoft 

Office versions 2007 and 2010) and SPSS for Windows (version 19.0). All confidence limits 

were set to 95% (i.e. significance (p) level of 0.05) for all statistical tests (t-test, ANOVA and 

Pearson product-moment correlation).  
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Chapter III 

PBDEs and PBDD/Fs in the Sintering Process 

3.1 Synopsis 

In this chapter, concentrations of tri-hexa PBDEs were measured in raw material samples in 5 

sinter beds from either Scunthorpe (SSP) or Port Talbot (PTSP) sinter plants (both in the 

UK). For each sinter bed, PBDEs were measured in input samples (raw sinter mix (RSM) 

n=6), as well as in output samples (Electrostatic Precipitator (ESP) dust (n=8) and Sinter 

Product (n=5). A single stack emission sample was also taken from sinter bed 719. The 

individual components of the raw sinter mix (input samples comprising 29 iron ores, 20 

reverts, 4 fuels and 5 fluxes) are reported for tetra-deca PBDEs, along with ambient outdoor 

air samples from various locations around SSP. PBDD/Fs (tetra-hexa) are also reported in 15 

stack emission samples (8 from SSP and 7 from PTSP) to investigate their presence within 

the iron-ore sintering process. The overall presence of PBDEs within the steel industry will 

be studied based upon mass balance measurements to quantify total PBDE inputs and outputs 

to and from the sintering process. The ambient air samples (using PAS) are designed to 

evaluate the impact of PBDE outputs from the Scunthorpe plant. Finally, the presence of 

PBDD/Fs will be studied in an effort to study the potential for their formation during the 

sintering process. 

3.2 Sampling Strategy 

3.2.1 Raw Material Sampling 

Raw material samples were taken between 2009-2011 from either SSP or PTSP. The full 

sampling process of raw materials is outlined in 2.1.1. RSM samples were taken after all 

materials required for sintering had been homogenized, but before moisture had been added 

for pelletizing. ESP dust samples were taken directly from the ESP collection bags. The raw 

materials were sampled again after being sintered (sinter product was ground and 

homogenized). All samples were taken by Tata Steel and sent to the University of 

Birmingham for extraction, clean-up and analysis. Individual RSM component samples were 

also taken by Tata Steel just before mixture and homogenization.  
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3.2.2 Stack Emission Sampling 

3.2.2.1 PBDEs 

The stack emission sample was taken (as outlined in 2.1.2) in 2010 by Tata Steel at SSP and 

its raw extract (in toluene) was sent to the University of Birmingham for clean-up and 

analysis. 

3.2.2.2 PBDD/Fs 

Stack emission samples were taken in 2009-10 and had already been extracted and cleaned up 

(as described in 2.3.2) by the laboratories at Tata Steel and measured for PCDD/Fs via 

HRGC/HRMS. The PBDD/F results in this chapter are therefore semi-quantitative as internal 

standards (as in section 2.2.2) were added directly to the already cleaned extracts, meaning a 

potential underestimation of concentrations as internal standard recovery throughout the 

clean-up method is not taken into account. The method was checked for precision by using 

the steel company’s internal quality control sample (QC5) which produced acceptably 

reproducible results for 5 replicate analyses (Table 2.9 in Section 2.5.3).  

3.2.3 Outdoor Air Sampling of PBDEs 

PAS were used (as outlined section in 2.1.4) to sample PBDEs in outdoor air within the 

vicinity of SSP. Five locations were chosen (Figure 3.5 in Section 3.4) both up- and 

downwind of SSP within the entire steel manufacturing plant along with a control site 

(Swinden Technology Centre, Rotherham) – a typical urban environment approximately 70 

km southwest from SSP.  

 

3.3 Concentrations of PBDEs in Raw Materials 

3.3.1 Inputs and Output of PBDEs in Sintering Process 

Raw material samples were classed into either input (RSM) or output (ESP dust, sinter 

product, stack emission) samples. Table 3.1 shows the concentrations of PBDEs in each 

sample. The concentrations of the input samples show that there is a clear contamination in 

the RSM before the sintering process has begun with a mean ∑PBDE concentration of 10,500 

ng/kg. This finding contrasts with that of Wang et al. (2010b) who stated that PBDEs were 

formed in the sintering process based on there being no PBDE contamination in the raw 

materials.  To further investigate this, a complete mass balance was carried out for all sinter 



81 
 

beds to see whether the total mass for ∑PBDEs was higher before or after the process had 

taken place (N.B. as a stack emission sample was procured only for Bed 2272, an estimated 

∑PBDE output via stack emission was estimated for all other beds using Equation 3.1)  

                ) (Equation 3.1) 

Where Oe = Estimated output via stack emission; CE2272 = ∑PBDE concentration of stack 

emission sample from bed 719 (142.8 ng/m
3
); t = duration of sintering process in the bed in 

question (s); and S = stack emission sampling rate (348 m
3
/s). 

Mass balance calculations (Figure 3.1) showed that in all cases there was a reduction in the 

total amount of ∑PBDEs after the sintering process had taken place, with a mean percentage 

reduction of 86% (range: 69-96%). These figures suggest that PBDEs are destroyed in the 

sintering process. However in view of the evidence mentioned in section 1.3.3 that PBDEs 

could act as precursors of PBDD/Fs  within the sintering process, it cannot be ruled out that 

the PBDE reduction leads to an increase in PBDD/F formation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 PBDE Inputs and Outputs for each sinter bed based on mass balance calculations  
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Input Samples 

  Bed 2258 Bed 2259 Bed 2265 Bed 2272 Bed 719     

Congener RSM 1 RSM 2 RSM 3 RSM 4 RSM 5 RSM 6     

BDE-17 150 69 83 21 9.9 13     

BDE-28 390 190 230 180 35 42     

BDE-49 2000 940 1100 940 170 191     

BDE-47 3800 1900 2300 2300 240 770     

BDE-85 1000 570 540 710 0 0     

BDE-100 1400 760 200 710 200 340     

BDE-99 10000 5100 6500 5600 920 1100     

BDE-153 2600 1300 1700 1400 330 400     

BDE-154 500 270 390 620 97 110     

∑PBDEs 22000 11000 13000 12000 2000 3000 

  
 Output Samples 

  Bed 2258 Bed 2259 Bed 2265 Bed 2272 Bed 719 

  ESP 1 ESP 2 ESP 3 ESP 4 ESP 5 ESP 6 ESP 7 ESP 8 

BDE-17 89 78 120 230 89 29 22 80 

BDE-28 250 250 330 790 360 86 67 80 

BDE-49 1300 1400 1500 5000 2200 460 510 530 

BDE-47 2400 2500 2700 11000 4800 1600 1400 2200 

BDE-85 850 980 820 5500 2700 530 90 0 

BDE-100 1600 1700 1300 5000 3100 1600 1400 1600 

BDE-99 9300 11000 7700 53000 25000 4200 2600 2900 

BDE-153 5300 4900 4300 23000 12000 2400 1600 2000 

BDE-154 1100 1200 1000 5200 2500 500 500 660 

∑PBDEs 22000 24000 20000 110000 53000 11000 8200 10000 

   Bed 2258 Bed 2259 Bed 2265 Bed 2272 Bed 719     Bed 719 

  

Sinter 

Product 

1 

Sinter 

Product 

2 

Sinter 

Product 

3 

Sinter 

Product 

4 

Sinter 

Product 

5     

Stack 

Emission
b 

BDE-17 1.6 20 6.1 0 13     2.3 

BDE-28 3.7 27 7.8 24 14     1.9 

BDE-49 14 54 16 260 20     0 

BDE-47 78 760 190 270 280     31 

BDE-85 160 160 13 250 9.3     5.9 

BDE-100 130 260 130 0 33     11 

BDE-99 130 310 80 86 86     39 

BDE-153 0 270 83 240 67     13 

BDE-154 0 300 53 93 61     39 

∑PBDEs 520 2200 580 1200 580 

  

140 
a 
all values are to 2 significant figures and therefore ∑PBDEs may not be the same value as 

the sum of the above congeners;
 b 

stack emission sample is in ng/m
3
; all others are ng/kg 

Table 3.1 – Concentrations of PBDEs in input and output samples of the sintering process 
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3.3.2 Raw Sinter Mix Components 

As a result of identifying substantial PBDE contamination in all RSM input samples, it was 

important to attempt to identify which RSM component(s) contribute towards this 

contamination. All components of the mixture were analysed for PBDEs (BDEs -47, -85, -99, 

-100, -153, -154, -183 and -209). RSM is made up of four main component groups – iron 

ores; reverts (recycled sinter mix from the blast furnace); fuels (coke); and fluxes (limestone). 

Specific proportions of materials from each of these are used to create a homogenised RSM, 

an example of which is shown in Table 3.2. 

Bed 2275 Tonnes Contribution (%) 

Ore 4 18320 29.7 

Ore 9 10534 17.1 

Ore 13 5453 8.8 

Revert 3 1267 2.1 

Revert 7 1797 2.9 

Revert 8 1414 2.3 

Revert 12 2254 3.7 

Revert 14 3010 4.9 

Revert 15 2498 4.1 

Revert 17 8024 13.0 

Fluxes 1 250 0.4 

Fluxes 4 2760 4.5 

Fluxes 2 1602 2.6 

Fuel 2 2437 4.0 

TOTAL 61620 100.0 

Table 3.2 – The complete make up of RSM used for Sinter Bed 2275 at PTSP 

Every component used by the UK based steel company (as in Section 3.1) was analysed for 

PBDEs. In the majority of cases, BDE-209 was the dominant congener. All components were 

ranked within their component groups by both their ∑PBDE concentration and BDE-209 

concentration (Table 3.3). There is a clear variation in the levels of contamination within each 

component group with extremely wide ranges (iron ores – 19-120000 ng/kg, reverts – 110-

32000 ng/kg, fuels – 840-18000 ng/kg, fluxes – 87-1500 ng/kg), meaning that the level of 

contamination within a specific sinter bed is highly dependent on which specific components 

are used from each group.  
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Figure 3.2 The percentage contribution of each component group to PBDE input in different 

sinter beds. 

The proportions shown in Figure 3.2 demonstrate the variability of the original source of 

PBDEs within the RSM, with only fluxes contributing comparatively insignificant amounts 

of PBDEs.  

With reverts being the only component that is sourced internally, this study shows that up to 

60% of the ∑PBDE content in RSM can come from externally sourced materials (iron ores 

and fuels). When comparing the iron ore ∑PBDE concentrations (19-120000 ng/kg) to those 

reported for soils as cited in Chapter 1, in locations as diverse as Spain (Eljarrat et al., 2008), 

China (Chen et al., 2012), USA (Yun et al., 2008) and Sweden (Sellstrom et al., 2005) it was 

found that all 29 ores fall within the range of concentrations reported previously for soils 

(140-260000 ng/kg), as do the fuels and fluxes. Moreover, as the reverts are recycled metallic 

flue dusts from the blast furnace (which only uses the materials prepared by the sintering 

process), this contamination must also originate from the same external sources suggesting 

that the majority of PBDE contamination within the sintering process comes from external 

sources, before the process has even begun. The higher concentrations of reverts is, at this 

stage, unexplained, however it could be due to the concentration of contaminated particulate 

matter as the flue dust is extracted from the blast furnace. However, more tests are required as 
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formation or another source of contamination within the blast furnace has neither been 

identified nor eliminated. 

Input 

Component 

∑PBDE 

Conc. 

Rank BDE-

209 

Conc. 

Rank Input 

Component 

∑PBDE 

Conc. 

Rank BDE-

209 

Conc. 

Rank 

Ore 1 3800 4 2800 4 Revert 1 1817 12 770 15 

Ore 2 670 15 267 17 Revert 2 1037 16 1600 12 

Ore 3 250 25 61 25 Revert 3 1800 13 1000 13 

Ore 4 1090 12 900 8 Revert 4 2300 11 2000 11 

Ore 5 81 27 39 27 Revert 5 17000 3 6200 8 

Ore 6 470 18 390 14 Revert 6 660 17 310 17 

Ore 7 520 16 120 21 Revert 7 17000 4 15000 3 

Ore 8 260 24 130 20 Revert 8 110 20 80 20 

Ore 9 1800 9 540 11 Revert 9 11000 7 8500 6 

Ore 10 290 22 79 23 Revert 10 3800 10 3400 10 

Ore 11 350 21 100 22 Revert 11 6100 9 4900 9 

Ore 12 2900 5 2600 5 Revert 12 7900 8 7600 7 

Ore 13 390 20 200 18 Revert 13 32000 1 30000 1 

Ore 14 720 14 670 10 Revert 14 32000 2 22000 2 

Ore 15 1900 7 370 15 Revert 15 1300 14 900 14 

Ore 16 420 19 320 16 Revert 16 14000 5 14000 4 

Ore 17 77 28 46 26 Revert 17 12000 6 12000 5 

Ore 18 107 26 65 24 Revert 18 530 18 214 18 

Ore 19 2700 6 1700 6 Revert 19 370 19 157 19 

Ore 20 19 29 19 29 Revert 20 1100 15 680 16 

Ore 21 4500 3 2800 3 Fuel 1 18000 2 9800 2 

Ore 22 1900 8 1100 7 Fuel 2 9000 3 4100 3 

Ore 23 280 23 190 19 Fuel 3 22000 1 20000 1 

Ore 24 1200 10 780 9 Fuel 4 840 4 800 4 

Ore 25 830 13 390 13 Fluxes 1 240 3 190 2 

Ore 26 1100 11 25 28 Fluxes 2 1500 1 580 1 

Ore 27 22000 2 12000 2 Fluxes 3 87 5 74 5 

Ore 28 120000 1 94000 1 Fluxes 4 270 2 82 3= 

Ore 29 480 17 480 12 Fluxes 5 104 4 82 3= 

Table 3.3 – Concentrations of ∑PBDEs and BDE-209 (ng/kg) in all input components along 

with their rank from highest to lowest for each value. 

3.3.3 Congener profile of raw material components 

The mean congener profiles in each group of RSM components used in the beds mentioned in 

Figure 3.2 was calculated. In reverts, fluxes and fuels BDE-209 was the predominant 
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congener (comprising 97%, 44%, 54% of ∑PBDE respectively), whilst it made up only 39% 

of ∑PBDEs in ores, albeit second only to BDE-47 (46%).  Figure 3.3 shows the mean 

congener profiles of all groups with BDE-209 excluded (∑PBDE47:183). The profile suggests 

that there is an input of congeners prevalent in all three commercial formulations present in 

all 4 components of the RSM, with Deca-BDE-like contamination predominant, followed 

very closely by that akin to Penta-BDE dominating ∑PBDE input. Moreover, the presence – 

albeit at low levels – of BDEs -153, -154 and -183 suggests a small minor input of Octa-

BDE. Considering the raw materials for the sintering process are sourced from all continents, 

this very much reflects the global usage of PBDEs mentioned in Chapter 1, whilst it further 

suggests that PBDEs are present in the inputs to the sintering process and are thus perhaps not 

formed as a result of it. The source of this PBDE contamination to the sintering process is 

currently unknown, although it is assumed that the contamination occurs at some point 

between the mining of iron ore and coal, storage, transportation and preparation for the 

commercial sintering process. However, with almost 30 different sources of iron ore sourced 

and transported across the world from many different countries and continents (along with a 

similar setting for coal), locating this source was not feasible during the lifespan of this study. 

 

Figure 3.3 Mean ∑PBDE47:183 congener profile in RSM component groups 

Using data on tonnages provided by Tata Steel such as that in Table 3.2, the congener profile 

of the total PBDE input was calculated for each sintering bed. Whilst BDE-209 was the most 
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commonly detected congener in the 5 beds monitored (60-96% contribution), there was also a 

noticeable contribution from congeners typical of the Penta-BDE formulation with BDEs -47 

and -99 contributing 6.8-15% and 7.8-18% of the total PBDE input into the sintering process. 

Figure 3.4 demonstrates the contribution of Penta-BDE congeners to total PBDE input within 

the sintering process. The figure also demonstrates that there is a variation in congener 

profiles between each sinter bed, with BDE-209 making up 96% of total PBDE content for 

Bed 2294. This is due to the large number of different ores, fuel, reverts and fluxes used to 

create different RSMs meaning that the congener profile is completely dependent upon the 

tonnages and PBDE concentrations of each RSM component used for each sintering bed.  

 

Figure 3.4 Contribution of BDEs 47:183 to total PBDE input in various sinter beds 

3.4 Ambient Air Concentrations in the vicinity of a sinter plant 

The average PBDE concentrations in PAS were calculated (Table 3.4) based on the PBDE 

masses detected in each sampler and the air sampling rates derived from the calibration 

experiment described in Chapter 2. 

Ambient air samples all contained detectable levels of BDE-209, including the control site 

away from the sinter plant. However, ∑PBDE concentrations increased from background 

levels upwind of the sinter plant (Broughton Substation – 550 pg/m
3
) to more than 6 times 
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higher downwind (DLCO – 3,400 pg/m
3
).  A t-test showed that the mean ∑PBDE 

concentration downwind of the sinter plant ((LTOO, LPLT, ESR, DLCO) 2800 pg/m
3
) was 

significantly higher than that of the control site (AT (Swinden Technology Centre, 

Rotherham), p = 0.009) and of the upwind sampling site (BS, p = 0.003). 

  

Yellow pins = sampling locations. BS = Broughton Substation; LTOO = Lighting Tower Opposite Office; 

LPLT = Lorry Park Lighting Tower; ESR = Environmental Services Roof; DLCO = Dawes Lane Coke Ovens; 

Red markers show locations of key processes around the steel works 

Figure 3.5 PAS locations up and downwind of SSP in Scunthorpe Integrated Steelworks. 

The PBDE concentrations in Table 3.4 indicate that there would be an increased daily intake 

of PBDEs by employees working in and around sinter plants, especially directly downwind 

from the sinter plant itself. Using the following equation, adapted from that used by many 

other authors over the past decade (Besis and Samara, 2012, Harrad et al., 2004, Harrad et al., 

2006, Gevao et al., 2006, Mandalakis et al., 2008), the estimated occupational exposure for 

PBDEs can be estimated as 

                  )        )     

where RR is the average respiration rate;  Cw is the concentration of air from the work place; 

Fw is the time spent in the work place (to get an hourly rate a value of 1 is applied here). An 
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adult based RR of 0.67 m
3
/hour was calculated based on a recommended figure of 16 m

3
/day 

by the US Environmental Protection Agency (U.S. EPA (2011)). 
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 PBDE concentrations - mean (range) pg/m
3
 

Sample Site 

Broughton 

Substation (BS) 

Lighting Tower 

opposite Office 

(LTOO) 

Lorry Park 

Lighting 

Tower 

(LPLT) 

Environmental 

Services Roof (ESR) 

Dawes Lane Coke 

Ovens (DLCO) 

Swinden Technology 

Centre (Control) 

n 5 3 1 2 5 3 

BDE-47 12 (0-26) 51 (24-93) 8.5 59 (48-70) 860 (184-1500) 6.5 (2.0-11) 

BDE-85 1.4 (0.30-3.0) 7.2 (3.5-15) <0.7 4.1 (0.5-7.7) 69 (6.6-180) 1.0 (0.37-2.1) 

BDE-99 8.1 (4.0-11)) 85 (65-110) 7.3 60 (26-94) 1000 (300-2100) 2.7 (0.15-6.23) 

BDE-100 3 (0.4-9.9) 6.3 (3.3-8.0) 0.77 6.2 (2.3-10) 70 (12-170) 0.17 (<0.5-1.0) 

BDE-153 2.1 (1.7-3.0) 8.8 (4.2-13) 1.3 9.5 (2.0-17) 160 (47-360) 0.57 (<1.1-1.0) 

BDE-154 0.66 (<0.5-1.0) 1.7 (1.1-2.0) 1.5 1.3 (1.3-1.4) 34 (4.0-86) 0.42 (<0.5-0.65) 

BDE-183 1.3 (<0.5-2.79) 1.4 (0.26-2.1) 1.2 0.71 (0.16-1.3) 6 (2.6-14.6) 0.58 (<0.5 -1.7) 

BDE-209 520 (170-870) 2300 (1600-3000) 2200 2500 (800-4100) 1100 (290-2200) 770 (340-1400) 

∑PBDEs 530 (180-890) 2400 (1800-3200) 2200 2600 (880-4300) 3400 (1200-6600) 780 (400-1400) 

Table 3.4 – Concentrations of PBDEs in ambient air within the vicinity of SSP and at a control location 
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Using an average concentration of 2,800 pg/m
3
 downwind from the sinter plant, the exposure 

rate through inhalation of air was calculated as 1,900 pg/hour, which is 4.3 times higher than 

the average exposure from inhalation at upwind or control sites (470 pg/hour). Using data for 

the same congeners in ambient air in the West Midlands (presented in Chapter 5), an 

exposure of 170 pg/hour was calculated, which is more 10 times lower than downwind of the 

sinter plant. One-sample t-tests confirmed that the PBDE intake through air is significantly 

raised compared to that upwind (p = 0.003), at the control site (p = 0.009) or in the West 

Midlands (p=0.001), confirming increased occupational exposure to PBDEs for those 

working around the sinter plant. 

3.4.1 Congener profile of ambient air samples 

With the exception of DLCO, mean congener profiles of PAS in the sinter plant are all very 

similar to that of the control site with BDE-209 constituting in excess of 95% of the total 

PBDE content. DLCO, however has a very high proportion of BDEs -47 and -99 along with 

more elevated levels of BDE-100, which is very typical of a commercial PentaBDE source. 

There are also marginally increased levels of BDEs -153, -154 and -183, which is also an 

indicator of potential Octa-BDE usage. Whilst the BDE-209 dominance is lower, its 

concentration remains similar, although slightly lower (1100 pg/m
3
), than the other sites at 

SSP. DLCO samples appear to have a congener profile similar to those of the raw material 

components in 3.3.1. where there was a mixture of congeners from all three commercial 

formulations, with a dominance of BDEs -47, -99 and-209. The relatively high levels of 

BDEs -47, -99 and -153 in RSM demonstrated by Figure 3.4, appear to contribute to the 

ambient air concentrations at DLCO. A principal component analysis (PCA) was conducted 

for all measured congeners in all ambient air samples (Figure 3.6). Principal Components 1 

and 2 accounted for 80.6 and 12.8 % of the total variance in the data. The rotated component 

matrix shows the relative contribution of each congener to each principal component score 

(Table. 3.5). A high score for principal component 1 (PC1) indicated relatively high 

contributions of the lower brominated PBDE congeners (i.e. BDEs -47, -85, -99, -100 which 

are indicative of usage of the Penta-BDE formulations), whilst a low or negative score meant 

a higher proportion of BDE-209 (indicative of Deca-BDE formulations). Principal 

component 2 (PC2) was driven in a positive direction by higher levels of BDE-183 (dominant 

of the Octa-BDE formulations (La Guardia et al., 2006)). 
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 Component 

1 2 

47 .908 .153 

85 .966 -.070 

99 .973 .076 

100 .895 .156 

153 .984 .072 

154 .983 -.034 

183 .064 .996 

209 -.979 -.115 

Table 3.5 Rotated component matrix score table – reproduced from SPSS output file 

As expected, DLCO samples displayed much higher scores for PC1 than all other samples 

taken within the vicinity of SSP and at the control site, reflecting the dominance of tetra- and 

penta- brominated PBDE congener in DLCO samples. DLCO also had markedly more 

positive scores for 3 out of 5 samples PC2, reflecting a greater contribution of BDE-183 to 

total PBDE content in the DLCO samples than observed in others. The combination of PC1 

and PC2 demonstrates the influence of Penta-BDE and perhaps Octa-BDE congeners within 

the ambient air surrounding DLCO. In contrast, all other samples more upwind of the coke 

ovens and away from the prevailing wind direction with respect to the sinter plant and coke 

ovens had negative scores for both PC1 and PC2 reflecting the pre-dominant contribution of 

BDE-209 to the total PBDE content, very similar to the control site, suggesting ambient air, 

away from the coke ovens and sinter plant was more in line with background air found in 

urban locations. Whilst the (log) mean PBDE concentrations in ambient air surrounding SSP 

are significantly higher than those in the West Midlands outdoor air concentrations presented 

in Chapter 5 (t-test, p < 0.05); the mean congener profile of all SSP samples except DLCO 

appear to have a similar mean congener profile to that in the West Midlands which is 

dominated by BDE-209 (97 and 82 % BDE-209 in the SSP (except DLCO) and the West 

Midlands sample respectively).  

These differences in congener profile provide evidence that there is a source of PBDEs within 

the integrated steel works other than normal diffuse urban sources. This, combined with the 

increased concentrations downwind of SSP, provides strong evidence to suggest that the iron 

ore sintering process is the source of elevated PBDEs found in the vicinity of SSP. The 

differences in congener profile and ∑PBDE concentration at DLCO could possibly be due to 

one or more of the following reasons: i) LPLT and LTOO are too close to be impacted fully 



93 
 

by emissions from the sinter plant ii) ESR is not in line with the typical wind direction from 

the sinter plant and therefore is less impacted by sinter plant emissions; and iii) DLCO is 

close to the coke ovens (where the fuels measured in 3.3 are prepared), which may represent 

the actual source of Penta-BDE like congeners into the atmosphere. 

 

Figure 3.6 Principal component analysis for PBDEs in ambient air samples around SSP and 

control 

Ideally, ambient air concentrations would also have been measured in residential areas close 

to the integrated steel works. However, this was not feasible during this study. Li et al. (2011) 

examined the concentrations of PBDEs in ambient air from areas around an integrated steel 

works in China. They used passive samplers similar to those deployed in this study, however 

they only employed PUF disks in their samplers and not glass fibre filters, and therefore 

primarily sampled PBDEs in the gaseous phase, thereby potentially severely underestimating 

concentrations of BDE-209 and other higher brominated congeners that partition 

preferentially into the particulate phase. They concluded that there was no significant 

difference between the concentrations of PBDEs in air from areas around the steel plant 

(including a sinter plant) and at their control site, meaning that the high levels of PBDEs 

within the sintering process appeared unlikely to affect local residents. This could be 
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confirmed in future work at our monitoring locations, by measuring PBDE concentrations in 

passive air samples from residential areas close to SSP to evaluate the existence of increment 

in concentrations. 

3.5 Concentrations of PBDD/Fs in Stack Emission Samples 

Table 3.6 shows that PBDD/Fs were detected in all emission samples with PBDFs ten-fold 

higher than PBDDs (0.12-1.3 ng/m
3
 and 0.0052-0.13 ng/m

3
 respectively), confirming that 

PBDDs and PBDFs are emitted in the sintering process, particularly PBDFs. 

The mean PBDD/F WHO-TEQ (0.14 ng WHO-TEQ/m
3
) concentrations were on average 10 

times lower than those for PCDD/Fs, based on the same congeners (range: 3.4-37). These 

higher concentrations of the chlorinated analogues (shown in Figure 3.7) could be due to the 

addition of potassium chloride for enhanced sinter densification in “activated sintering”, 

which is designed to make the sintering process more efficient by providing a lower 

activation energy for diffusion (Nzihou et al., 2005). It is possible, that if bromide was added 

in this way, that PBDD/Fs would be formed at a similar rate to PCDD/Fs. 

The highest PBDD/F TEQ concentration in this study was 0.39 ng WHO-TEQ/m
3 

which is 

approximately a third of that found by Du et al. (2010a) in stack emissions from a sinter plant 

in China (1.1 ng WHO-TEQ/m
3
). However, they also measured stack emission samples from 

several other combustion processes (hazardous waste incineration, municipal waste 

incineration, crematoriums, electric arc furnaces, lead smelting, aluminium smelting, copper 

smelting and zinc smelting), of which only zinc smelting (1.5 ng WHO-TEQ/m
3
) produced 

higher concentrations than their own measurement of emissions from the sintering process. 

However, PBDD/F concentrations in stack emissions from lead smelting (0.7 ng WHO-

TEQ/m
3
) were approximately four times higher than the mean concentration found in this 

study for iron ore sintering (0.17 ng WHO-TEQ/m
3
), whilst EAF and copper smelting were 

more than double (0.35 and 0.39 ng WHO-TEQ/m
3
 respectively). 
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Figure 3.7 WHO-TEQ concentrations (ng/m
3
) for PBDD/Fs and PCDD/Fs in sinter plant stack emission samples. 
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SSP Emission Samples 

 

Concentration (ng/m
3
) 

Compound TD395 TD396 TD397 TD389 TD390 TD391 TD500 TD501 

2378-TBDF 0.28 0.037 0.21 0.077 0.079 0.073 0.11 0.093 

12378-PeBDF 0.38 0.048 0.22 0.073 0.065 0.064 0.071 0.075 

23478-PeBDF 0.31 0.037 0.19 0.063 0.053 0.069 0.062 0.070 

123478-HxBDF <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 

∑PBDF 0.97 0.12 0.62 0.21 0.20 0.21 0.24 0.24 

2378-TBDD 0.038 0.0026 0.018 0.016 0.021 0.017 0.012 0.013 

12378-PeBDD 0.019 0.0026 0.015 0.0047 0.0046 <dl 0.0042 0.0044 

123478/123678-HxBDD <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

123789-HxBDD <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 

∑PBDD 0.057 0.0052 0.033 0.021 0.026 0.017 0.016 0.017 

WHO-TEQ 0.26 0.030 0.16 0.064 0.063 0.062 0.062 0.066 

 

PTSP Emission Samples 

 

 

Concentration (ng/m
3
) 

 Compound TD557 TD556 TD555 TD473 TD507 TD508 TD509 

 2378-TBDF 0.16 0.15 0.14 0.57 0.23 0.17 0.40 

 12378-PeBDF 0.14 0.16 0.14 0.39 0.30 0.16 0.16 

 23478-PeBDF 0.12 0.21 0.17 0.34 0.22 0.14 0.14 

 123478-HxBDF <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 

 ∑PBDF 0.42 0.52 0.45 1.3 0.75 0.47 0.70  

2378-TBDD 0.12 0.011 0.013 0.12 0.064 0.014 0.021 

 12378-PeBDD 0.0090 0.0072 0.0096 0.020 0.017 0.0091 0.0084 

 123478/123678-HxBDD <0.002 <0.002 0.0032 <0.002 0.017 <0.002 <0.002 

 123789-HxBDD <0.003 <0.003 <0.003 <0.003 0.0056 <0.003 <0.003 

 ∑PBDD 0.13 0.018 0.026 0.032 0.10 0.023 0.029  

WHO-TEQ 0.10 0.15 0.13 0.39 0.23 0.12 0.15  

Table 3.6 – PBDD/F concentrations (ng/m
3
) in emission samples from SSP and PTSP 
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Figure 3.8 demonstrates that on average PBDFs contributed 93% to the total PBDD/F 

concentration in stack emission samples with 35, 31 and 28% from 2,3,7,8-TBDF, 1,2,3,7,8 

PeBDF and 2,3,4,7,8-PeBDF respectively. Du et al. (2010a) found a similar pattern with 

PBDFs contributing an average of 75% of total PBDD/F content in a sinter plant stack 

emission sample. Whilst they detected measurable levels of 1,2,3,4,7,8-HxBDF, the same 

congener was always below the limits of detection in this study. The overall pattern observed 

by Du et al. (2010a) appeared to be that PBDFs were formed preferentially to PBDDs with 

PBDFs comprising up to 92% of total PBDD/F concentrations (Figure 3.9) in the various 

combustion processes in which they have been measured.  

 

Figure 3.8 Mean % Contribution of each congener to total PBDD/F concentration in stack 

emissions from the sintering process 

This congener pattern has also been observed in air (Figure 3.10) with 44%, 24% and 27% of 

∑PBDD/Fs in ambient air from Shanghai coming from 2,3,7,8-TBDF, 1,2,3,7,8-PeBDF and 

2,3,4,7,8-PeBDF respectively (Li et al., 2008). Similar patterns have also been observed in 

Taiwan in air from a mixture of rural, urban and industrial locations  (Wang et al., 2008) as 

well as in Guiyu, China in areas close to e-waste recycling sites (Li et al., 2007). To our 

knowledge there are no available data on PBDD/Fs in UK air for comparison.  
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HWI = Hazardous Waste Incineration; MWI = Municipal Waste Incineration; Cre = Cremation; SNT = Iron Ore 

Sintering; EAF = Electric Arc Furnace; SPb = Lead Smelting; SAl = Aluminium Smelting; SCu = Copper 

Smelting; SZn = Zinc Smelting 

Figure 3.9 Mean % Contribution of PBDFs and PBDDs to total PBDD/F concentration in 

various processes measured by Du et al. (2010a) 

The evidence of this chapter suggests strongly that there is definite contamination by PBDEs 

within the steel-manufacturing process. However, their overall presence appears to be 

dramatically reduced as a result of the sintering process as revealed by the mass balance 

calculations conducted. Whilst the mass of PBDEs decreased on passing through the sintering 

process, concentrations of PBDD/Fs were detected in stack emission samples. Although these 

PBDD/F concentrations are much lower than those of their chlorinated analogues, this may 

indicate their potential formation within the iron ore sintering process. Furthermore, with the 

PBDD/F congener profile revealing that PBDFs are substantially more abundant than PBDDs 

in sinter plant emission samples, it is possible that the decrease observed in PBDE levels 

during sintering is related to PBDD/F formation; as it has been shown previously that PBDFs 

are preferentially formed over PBDDs during thermal degradation of PBDEs (Weber and 

Kuch, 2003).
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Figure 3.10 Mean PBDD/F congener profiles in air from Guiyu, China (Li et al., 2007), Shanghai (Li et al., 2008) and Taiwan (Wang et al., 

2008) along with those from sinter plant stack emissions in this study.
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Chapter IV 

An investigation into PBDE and PBDD/F formation within the sintering process 

4.1 Synopsis 

After providing evidence in Chapter 3 that PBDEs and PBDD/Fs are both emitted from the 

sintering process, this chapter attempts to determine whether they undergo formation within 

the sintering process. This is investigated by using the sinter pot (SP) which is a laboratory 

scale apparatus designed to mimic the sintering process, described in full in Section 2.1.3. In 

this chapter, the SP was used to measure ∑tri-decaPBDE and ∑tetra-hexaPBDD/F concentrations 

in five different SP experiments involving various input levels and combinations of 

potassium bromide (KBr) and PBDEs (Table 4.1) to see whether it affected the output 

concentrations of PBDEs and PBDD/Fs.  

Experiment # Summary of Conditions 

Experiment 1 "Base Case" – Standard Raw Sinter Mix / no KBr / no PBDE technical 

mixture  

Experiment 2 Standard Raw Sinter Mix  + 74.5 mg/kg KBr 

Experiment 3 Standard Raw Sinter Mix  + 224 mg/kg KBr 

Experiment 4 Standard Raw Sinter Mix  + 50 µg/kg RSM of each of the Penta-BDE 

(Bromkal 70-5DE),  and Deca-BDE (Bromkal 82-0DE) commercial 

formulations 

Experiment 5 Standard Raw Sinter Mix  + 224 mg/kg KBr + 50 µg/kg RSM of each 

of the Penta-BDE and Deca-BDE commercial formulations 

Table 4.1 – SP experimental conditions to study PBDE and PBDD/F formation in iron ore 

sintering. 

The above experiments are designed to achieve objectives 1, 2, 4 and 5 (section 1.7). 

Measuring the PBDE and PBDD/F concentrations in Experiments 2 and 3 will help 

determine whether PBDEs and/or PBDD/Fs are formed during the sintering process, whilst 

Experiments 4 and 5 will help investigate whether PBDEs act as precursors for the formation 

of PBDD/Fs during the sintering process. 

To our knowledge, this will be the first time that the fate and behaviour of PBDEs (including 

the formation of PBDD/Fs) within the iron ore sintering process has been examined on a 
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controlled laboratory scale basis, with previous studies having only studied individual aspects 

of the production scale process. 

4.2 Sampling Strategy 

4.2.1 PBDEs in Input Samples 

Input samples were taken after the final mixing stage, before the addition of water for 

pelletizing for the sintering process and measured for PBDEs as in 2.2.1.1. 

4.2.2 PBDEs and PBDD/Fs in Output Samples 

The SP was run twice for each experimental scenario listed in Table 4.1 thereby generating 

one input sample and two output samples for each experiment. All output compounds were 

either collected using a clean PUF plug (6 cm diameter x 7.6 cm x length, Supelco, UK) 

which collects total volatilised emissions from the SP, or remained in the residual sinter 

product. Although there was no PBDD/F sampling evaluation standard available to verify 

that there was minimal breakthrough, Tata Steel monitor PCDD/F breakthrough in all SP 

experiments by spiking with a labelled PCDD/F standard (
13

C12-1,2,3,7,8-PeCDF) and 

confirmed that recoveries were between 70-100% thus confirming that any breakthrough was 

negligible. This was considered an acceptable indicator due to the vapour pressure of PeCDF 

(2.5 x 10
-4

 Pa (Eitzer and Hites, 1998)) exceeding the predicted PBDD/F vapour pressures 

listed in Table 1.2 (section 1.2). All samples were extracted as in 2.2.1.1, with 10% of the 

extract from the PUFs used for PBDE analysis and the remainder for the determination of 

PBDD/Fs. The entire extract from the sinter products was used to determine PBDEs.  

4.3 Formation of PBDEs in SP Experiments 

Table 4.2 demonstrates that while there is a clear presence of PBDEs in the RSM that did not 

have any PBDE commercial formulations added to it (Experiments 1-3), the addition of the 

commercial formulations in experiments 4 and 5 increased the ∑PBDE concentrations by an 

order of magnitude. Whilst, a combined total of 100 µg of Penta- and Deca-BDE were added 

for every kg of RSM, values of 43 and 44 µg/kg were measured for experiments 4 and 5 

respectively. This is probably due to the difficulty in homogenisation of the mixture, whilst 

avoiding spoiling the raw materials as the commercial formulations were only available as 

solutions at the time of conducting the experiment. Moisture content had to be within 0.2% of 

the target value (6.5%) for effective sintering to take place. 
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A ∑PBDE mass balance calculation showed that ∑PBDE inputs are 77-97% higher than 

outputs in the various SP experiments – similar to the mass balance findings in Chapter 3 that 

examined the production-scale sintering process. Moreover, in Experiments 2 and 3 where 

KBr was added to the RSM to investigate PBDE formation there is no noticeable difference 

between ∑PBDE output values and those of Experiment 1. This shows that increasing the 

availability of bromine (i.e. higher KBr) in the sintering process does not cause an increase in 

PBDE concentrations, suggesting that net formation of PBDEs in the sintering process does 

not occur. 

 

Figure 4.1 – Mean Inputs and Outputs of ∑PBDEs (ng) per kg of RSM sintered in each SP 

experiment 
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Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

  Input Output Input Output Input Output Input Output Input Output 

BDE-17 120 8.3  (6.2-10) 75 14 (4.4-23) 320 56 (47-65) 39 50 (5.9-94) 41 23 (19-27) 

BDE-28 85 5.7 (0-11) 49 13 (4.2-21) 210 48 (40-55) 120 33 (6.8-59) 120 29 (22-36) 

BDE-49 100 17 (0-34) 71 8 (0-16) <0.001 28 (1.8-54) 54 39 (0-79) 55 19 (17-21) 

BDE-47 680 91 (68-110) 300 42 (32-52) 1300 
130 (100-

150) 9900 350 (300-420) 10000 520  (400-630) 

BDE-100 190 3 (0-5.9) 260 0.59 (0-1.2) <0.001 
110 (110-

110) 4500 89 (56-120) 2400 150 (81-230) 

BDE-99 460 98 (69-130) 790 8.5 (0-17) 390 88 (77-100) 8700 250 (200-310) 12000 470 (290-650) 

BDE-85 <0.003 <0.003 <0.003 0.48 (0-1) <0.003 31 (9.7-52) 790 1.2 (0-2.4) 680 0.53 (0-1.1) 

BDE-154 110 6.4 (0-13) 110 11 (0-21) 420 39 (3.4-74) 1200 52 (0-100) 1200 30 (28-33) 

BDE-153 <0.004 <0.004 <0.004 <0.004 <0.004 45 (0-89) 1700 83 (0-170) 1800 33 (31-36) 

BDE-183 <0.006 <0.006 <0.006 <0.006 <0.006 20 (0-39) 470 23 (0-47) 510 <0.006 

BDE-209 350 
180 (140-

220) 32 120 (67-180) 11 18 (13-24) 16000 290 (58-530) 15000 85 (12-160) 

∑PBDEs17:183 1700 
230 (140-

315) 1700 96 (42-150) 2600 
600 (410-

760) 27000 970 (540-1400) 29000 1300 (910-1600) 

∑PBDEs 2100 
410 (360-

460) 1700 
220 (220-

220) 2700 
610 (440-

780) 43000 
1300 (1100-

1500) 44000 
1400 (1100-

1600) 
a – NB all values are to 2 significant figures so ∑PBDE values may not correspond to exact totals of above congeners  

Table 4.2 PBDE concentrations (ng/kg) in RSM inputs and outputs in each SP experiment
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4.4 PBDD/Fs in SP Experiment 

4.4.1 Formation of PBDD/Fs 

PBDD/Fs were detected in all SP emission samples (Figure 4.2) implying that PBDD/F 

formation does occur during the sintering process (assuming that they are not present in the 

RSM), with similar PBDF:PBDD ratios as in Chapter 3 (mean = 25:1).  

 

Figure 4.2 – Mass (ng-WHO-TEQ) of PBDD/F formed per kg of RSM in each SP experiment.  

The results from Experiments 2 and 3 further reinforced this theory by showing an increase in 

PBDD/F output with increasing KBr levels in the RSM (Figure 4.3) that is akin to the increases 

seen in PCDD/F emissions when KCl is added for “activated sintering” (Nzihou et al., 2005). 

 
a
 only experiments without PBDE addition are used 

Figure 4.3 – Amount of PBDD/F formation (ng WHO-TEQ) against bromide addition (mg Br
-
/kg 

RSM) in SP Experiments 1-3. 
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However, the output results from Experiment 1 (which best reflects conditions experienced 

within production-scale iron ore sintering) demonstrate that PBDD/F formation is less facile than 

PCDD/F formation. 

4.4.2 PBDEs as precursors of PBDD/Fs 

As mentioned above, PBDEs were added to the RSM in Experiment 4 at a notional concentration 

of 100 µg PBDE per kg RSM (measured concentration = 43 µg/kg). This was designed to 

investigate whether increased PBDE input would enhance PBDD/F formation. A marginal 

increase was seen in PBDD/F formation (mean concentration 0.09 ng WHO-TEQ / kg) in 

Experiment 4, but this was not proportional to the amount of PBDEs added to the RSM and 

therefore suggests that the presence of PBDEs in the sintering process does not enhance 

formation of PBDD/Fs. Moreover, the similar PBDD/F concentrations found in Experiment 5 

(where 100 µg PBDEs and 224 mg KBr were added per kg RSM) and Experiment 3 (where 224 

mg KBr was added per kg RSM) (i.e. 1.6 and 2.6 ng WHO-TEQ /kg respectively), provide 

further evidence that PBDD/F formation is not driven by the presence of PBDEs within the 

sintering process. Finally, given that up to 96% of PBDEs are destroyed within the sintering 

process, the evidence from this chapter and Chapter 3 suggests that it is plausible that the 

sintering process causes the destruction of PBDEs without substantial conversion to PBDD/Fs. 

4.4.3 Congener Profiles of PBDD/F output in SP 

In all cases, PBDFs made up the majority of PBDD/F content. An average of 89 % (range: 55-

98%) of ∑PBDD/Fs were PBDFs with 2,3,7,8-TBDF the dominant congener in 7 out of 10 SP 

runs. In the first of the two runs of Experiment 4 (where PBDE commercial formulations were 

added without any bromide addition) 1,2,3,7,8-PeBDF was dominant comprising 28% of the 

total measured ∑PBDD/F content, whilst in the second was dominated by 1,2,3,4,7,8-HxBDF 

(40%). Interestingly, Experiment 1 saw much higher proportions of 2,3,7,8-TBDD detected (30 

and 26.5 %) than all other experiments (range: 1.1-4%), although the average concentration of 

0.38 ng PBDD/F is the lowest of all experiments, suggesting that this is reflective of a lower rate 

of formation of PBDFs, rather than an increase in that of PBDDs. 

The congener profile of PBDD/Fs found in the SP study is similar to the emission profile seen in 

the full scale process in Chapter 3. The average PBDF content in commercial scale emission 
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samples was very similar to the SP at 93%, whilst an average of 39% of PBDD/F content in the 

SP came from 2,3,7,8-TBDF, compared to 35% in the full-scale study.  

 

Figure 4.4 – Mean PBDD/F profile in SP and stack emission samples 

One difference between the SP study and the full-scale study was that 1,2,3,4,7,8-HxBDF was 

detected in all measured SP samples with an average contribution of 14% to the total PBDD/F 

content, but was not detected in any samples in the full-scale study. However, Du et al. (2010a) 

detected 1,2,3,4,7,8-HxBDF in a stack emission sample from a sinter plant in China, suggesting 

that its detection in the SP may not be inconsistent with the full-scale sintering process. 

The similarities in congener profiles indicate the reliability of the SP as a tool to investigate total 

PBDE and PBDD/F inputs and outputs in the full-scale sintering process.  

4.5 Comparison with previous studies 

A key reason for conducting the above experiments was the clear absence of information relating 

to the formation of both PBDEs and PBDD/Fs within the sintering process. However, there are a 

small number of previous studies on this subject. Wang et al. (2010b) attempted to characterise 

emissions of both sets of compounds in (amongst many other metallurgical processes) iron ore 

sintering. They found PBDEs and PBDD/Fs in stack emission samples from sinter plants and as 

a result calculated emission factors of 79 µg/tonne produced and 0.0094 µg TEQ/tonne produced 
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of steel respectively. However, these calculations were based on the premise that as no recycled 

BFR-containing wastes are used in the process, the only input is from the raw materials that the 

authors assumed did not contain PBDEs. However, the raw materials were not analysed for 

PBDEs, which have been shown by this study to contain concentrations that exceed those 

determined in soils. Furthermore, the mass balance equations in both chapters show there is an 

overall reduction in PBDEs, even with the addition of KBr in Experiments 2 and 3 from the SP 

study. This suggests that PBDEs are not formed by de novo synthesis within the iron ore 

sintering process. 

Whilst there are other studies that have examined PBDEs and PBDD/Fs in various outputs from 

iron ore sintering, such as stack flue gas and fly ash (Wang et al., 2010a, Wang et al., 2010b) as 

well as ambient air concentrations within the vicinity of integrated steel works (Li et al., 2011, 

Choi et al., 2008); this study appears to be the first of its kind as it investigates the formation of 

these compounds under controlled conditions, and conducts complete mass balances for PBDEs.  

Weaknesses of this study are as follows: whilst it was found that PBDD/Fs were present in much 

lower concentrations than PCDD/Fs, their concentrations were not measured in an experiment 

where equimolar amounts of KCl and KBr were added. As a result it is unknown as to which 

group of compound would be preferentially formed under these conditions. Furthermore, Du et 

al. (2010a) have shown that mixed polybrominated/chlorinated dibenzo-p-dioxins and 

dibenzofurans (PXDD/Fs) are formed in many thermal processes including iron ore sintering. 

These were not measured in this study due to the difficulty and expense of the analytical 

procedures involved, and therefore it cannot be ruled out that PXDD/Fs may be formed. 

Moreover, PBDD/Fs were not measured in the RSM nor in the residual sinter mix at the end of 

each experiment, thereby precluding full mass balance calculations. Therefore, improvements to 

future studies on this subject with the SP would be to measure all inputs and outputs for 

PBDD/Fs as well as PCDD/Fs and PXDD/Fs, along with investigations into the impact of 

equimolar additions of KCl and KBr across various conditions to try to obtain a more complete 

mass balance, and therefore understanding of their behaviour within the iron ore sintering 

process.  
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Chapter V 

Concentrations of PBDEs in air and soil across an urban rural transect and in soil 

from various UK locations in 2004-05 

5.1 Synopsis 

This chapter reports the concentrations of PBDEs in ambient air and soil from an urban rural 

transect across the West Midlands, UK between June 2012 and January 2013. Over this period, 

passive air samples (PAS) were taken every month from 8 sites along with a single soil sample 

from each site. PBDEs were also measured in archived soil samples taken in 2004-5 from a 

number of UK locations. All samples were measured for tri-hepta PBDEs via GC/MS and BDE-

209 via LC-APPI-MS/MS.  

5.2 Sampling Strategy 

5.2.1 West Midlands Samples 

Ambient air samples were taken using PAS (as outlined in Section 2.1.4) between June 2012 and 

January 2013 from 8 locations along a 39 mile transect along the prevailing wind direction from 

the south-west to the north-east of the West Midlands (Table 5.1; Figure 5.1) with a varying 

degree of urbanisation. A soil sample was taken for each site in January 2013 from either the 

same location or from open spaces in very close proximity.  

5.2.2 Other UK Samples 

Archived soil samples taken from 17 towns and cities across the UK (Table 5.3; Figure 5.2) were 

analysed to determine the background environmental levels of PBDEs. These samples were 

taken in 2004-05, shortly after the 2004 EU bans on the Penta- and Octa- formulations but 3 

years prior to significant EU restriction of the Deca- formulation. With this in mind these 

archived soil samples were taken shortly after the peak of PBDE usage and are expected to 

reflect that in their concentrations. However, due to the persistence of PBDEs and the very slow 

mixing time of soils (Gouin and Harner, 2003), the concentrations of the soils taken in 2013 are 

not expected to be significantly lower. 
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Figure 5.1 – PAS and soil sampling locations for urban-rural transect (Google Maps
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Figure 5.2 – 2005 UK soil sampling locations (Google Maps) 
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5.3 Concentrations of PBDEs across an urban-rural transect in the West 

Midlands 

5.3.1 Ambient Air Concentrations 

BDE-209 was detected in measurable concentrations in the majority of samples (39 out of 48), 

highlighting its extensive use in the UK. At each site BDE-209 made up an average of 61-92% of 

total PBDE content. Surprisingly, the highest PBDE concentrations were found in Bromsgrove (a 

suburban site 20 km southwest of Birmingham city centre) with an average of 490 pg/m
3 

(92% 

BDE-209), at more than double that of the most urban sites of Digbeth and Edgbaston (180 and 

210 pg/m
3
 respectively). However, the average concentration is skewed by one sample (June-

July which contained 1500 pg BDE-209/m
3
). There are no known sources of PBDEs close to the 

Bromsgrove sampling site, such as chemical companies or industries using thermal processes 

such as steel manufacturing or waste incineration. However, the site is located between two 

major UK motorways (approximately 1 mile south of the M5 and 1 mile North of the M42) as 

well as in close proximity to the M5-M42 junction, meaning an extremely high throughput of 

traffic close to the sampling site. This could explain the elevated PBDE levels, when taking into 

account the extremely high levels of PBDEs detected in dust from UK cars (average 360,000 

ng/g) (Harrad et al., 2008a). After Bromsgrove, the highest concentrations found were close to 

Birmingham city centre in Digbeth, Edgbaston and Bournville (219, 180 and 180 pg/m
3
) which 

are approximately 0, 6 and 8 km from the city centre respectively. The concentrations of all 

congeners were highly variable from month to month (Appendix 3), whilst BDE-209 was not 

sampled at Edgbaston during the third sampling period (August-October 2012) due to the loss of 

the glass fibre filter required to sample the particulate phase.  

Figure 5.3 indicates that (with Bromsgrove excluded) concentrations of BDE-209 and 

∑PBDEs17:183 are more elevated close to the city centre than they are further away. However, a 

Pearson product-moment correlation shows that this is not statistically significant for BDE-209 

(R = -0.073p =0.412) and only moderately significant for ∑PBDEs (R = -0.136, p = 0.078) and 

∑PBDEs17:183 (R = -0.265, p = 0.069). This is likely due to the wide month-to-month variation 

seen (see section 5.3.1.2 on seasonal variation). When the concentrations for each sampling 

period are summed (excluding Bromsgrove and August-October) a Pearson product-moment 

correlation shows a significant negative correlation between PBDE concentration and distance 
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from Birmingham city centre (R= -0.93, -0.84, -0.69; p = 0.001, 0.01 and 0.04 for ∑PBDEs, 

BDE17:183 and BDE-209 respectively). 

 
Figure 5.3 Concentrations of a) BDE-209 b) ∑PBDEs and c) ∑PBDEs28:154 in ambient air 

according to distance from Birmingham City Centre (Bromsgrove excluded) 
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1 
WOR = Worcester; DRO = Droitwich; BRO = Bromsgrove; BOU = Bournville; EDG = Edgbaston; DIG = 

Digbeth; SUT = Sutton Coldfield; TAM = Tamworth.
 2 

<0.1 = below detection limit; 
3
Average 47:99 ratios 

calculated only for samples from that location where both congeners were detected. Number of samples used for 

calculation in parentheses 

Table 5.1 Mean (range) PBDE Concentration (pg/m
3
) in ambient air along a rural-urban 

transect across the West Midlands of the UK 

 

Sampling Location 

 Congener WOR DRO BRO BOU 

Sample Size (n) 6 6 6 6 

BDE 17 0.47 (<0.2-1.5) 0.68 (<0.2-2.4) 1.7 (<0.2-7.9) 1.9 (0.4-6.4) 

BDE 28 1.2 (<0.2-4.2) 2 (0.5-6.3) 3.6 (1.3-9.4) 3.7 (1.4-6.8) 

BDE 47 1.9 (0.8-4.5) 1.6 (0.6-6.2) 4.9 (<0.3-3.6) 5.2 (0.5-11) 

BDE 66 <0.08 <0.04 1.1 (<0.4-4.4) 2.6 (<0.4-6.6) 

BDE 100 0.53 (<0.4-2.2) <0.4 2.5 (<0.4-15) 1.9 (<0.4-10) 

BDE 99 0.62 (<0.5-3.5) 0.22 (<0.5-1.3) 6 (<0.5-36) 3.5 (<0.5-13) 

BDE 85 <0.7 <0.7 1.1 (<0.7-6.7) 2.5 (<0.7-11) 

BDE 154 0.92 (<0.9-2.6) 1.5 (<0.9-8.7) 4.1 (<0.9-20) 3.8 (<0.9-18) 

BDE 153 0.67 (<1-2.3) 1.6 (<1-9.5) 6.5 (<1-31) 5.9 (<1-26) 

BDE 183 <1.4  1.8 (<1.4-11) 4.8 (<1.4-29) 4.9 (<1.4-21) 

BDE 209 94 (<2.2-300) 92 (<2.2-380) 370 (63-1500) 140 (<2.2-510) 

∑PBDEs 100 (6.3-300) 100 (1.8-380) 410 (6.2-1700) 180 (34-510) 

∑PBDE17:183 6.8 (2.4-12) 11 (1.8-46) 37 (1.2-180) 38 (2-130) 

Average 47:99 

ratio (N)
 3

 

0.68 (1) 0.46 (1) 0.5 (1) 0.99 (3) 

 Congener EDG DIG SUT TAM 

n 6 6 6 6 

BDE 17 7.3 (<0.2-42) 4.8 (<0.2-25) 0.93 (<0.2-3.7) 3 (<0.2-15) 

BDE 28 5.4 (<0.2-26) 5.9 (0.5-26) 1.7 (<0.2-3.9) 2.8 (<0.2-9.9) 

BDE 47 7.5 (0.4-31) 7.9 (1.3-27) 3.1 (0.6-8.3) 5.1 (0.5-14) 

BDE 66 0.9 (<0.4-4.5) 3.2 (<0.4-16) 0.35 (<0.4-2.1) 0.35 (<0.4-1.9) 

BDE 100 5.2 (<0.4-30) 2.4 (<0.4-14) 0.53 (<0.4-1.9) 2 (<0.4-8.1) 

BDE 99 7.5 (<0.5-43) 6 (<0.5-27) 3 (<0.5-11) 3.9 (<0.5-11) 

BDE 85 <0.7 <0.7  0.75 (<0.7-4.5) <0.7 

BDE 154 12 (<0.9-57) 8.4 (<0.9-42) 4.5 (<0.9-11) 0.37 (<0.9-2.2) 

BDE 153 11 (<1-62) 14 (<1-70) 2.5 (<1-11) 3 (<1-14) 

BDE 183 <1.4 11 (<1.4-57) 2.8 (<1.4-17) <1.4 

BDE 209 110 (<2.2-270) 140 (<2.2-360) 130 (16-370) 110 (<2.2-440) 

∑PBDEs 170 (31-300) 210 (50-380) 150 (29-410) 130 (40-440) 

∑PBDE17:183 60 (1.9-300) 66 (4.5-300) 21 (1.7-63) 21 (1.8-58) 

Average 47:99 

ratio (N) 
3 

0.92 (2) 1.8 (4) 0.89 (3) 1.2 (4) 
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This provides strong evidence that cities are sources of PBDEs to the environment creating an 

urban pulse of high concentrations in Birmingham city centre, decreasing with distance away 

from the city centre. The strength of this pulse, calculated in a similar way as Harrad and Hunter 

(2006b) (by the ratio of the sum of concentrations in Birmingham City Centre to the average sum 

of concentration of all sites), was 1.1 for ∑PBDEs, 0.87 for BDE-209 and 2.2 for BDEs17:183. 

With Bromsgrove excluded, the urban pulse is stronger still (1.4, 1.2 and 2.1) for ∑PBDEs, 

BDE-209 and BDEs17:183 respectively. Using the same congeners as Harrad and Hunter (2006b) a 

value of 2.0 was found for ∑PBDEs28:154. This was similar to the value of 2.2 calculated in an 

earlier study along a similar (but not identical) transect (Harrad and Hunter, 2006b). The strength 

of the pulse for BDE-209 (along with the above R and p values) was lower than it was for the 

lower brominated congeners. This is likely to be due to the more widespread use of Deca-BDE 

within the UK to meet its fire-regulations in upholstered furniture (Harrad et al., 2008b, The 

Furniture Industry Research Association (FIRA), 2011). Taking this into account along with the 

fact that all PAS other than DIG and EDG were taken from gardens in domestic homes, it is 

likely that BDE-209 represents a larger proportion of PBDE content outside of the city, whilst 

lower brominated congeners are likely to contribute more substantially to the overall PBDE 

concentrations inside the city (where there is a more diverse range of sources), thus meaning a 

lower “urban pulse” for BDE-209 than for BDEs47:183. 

5.3.1.2 Seasonal Variation of PBDEs 

Whilst only one sample was measured for PDBEs in each sampling month, Worcester, 

Droitwich, Bournville, Edgbaston, Digbeth, and Tamworth appear to show a negative association 

for BDE-209 levels in air and average daily high temperatures supplied by the Met Office for the 

specific sampling months – i.e. concentrations of BDE-209 are lower in warmer periods. This 

pattern was also observed recently in Beijing by Shi et al. (2013) who found BDE-209 

concentrations in outdoor air to be more variable and overall lower in the spring and summer 

than autumn and winter. A potential explanation for this could be the photolytic debromination 

of BDE-209 as shown by Da Rosa et al. (2003) under laboratory conditions, although the 

degradation products of BDE-209 (nona- and octa- congeners) were not measured in this study to 

confirm whether this is the case. Furthermore, Pearson product moment correlation calculations 

suggest that this trend is only statistically significant for Digbeth (p = 0.013), whilst the opposite 
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appears to have occurred at Bromsgrove. This suggests that further investigation into the 

seasonal variation of BDE-209, along with its potential photolytic degradation is required. This 

could be achieved by measuring monthly samples at a range of sites, over the course of a full 

year or more, monitoring temperature as well as measuring BDE-209 and its known degradation 

products – i.e. octa- and nona- brominated BDE congeners (such as BDEs -202, 203, -205, -206, 

-207 and -208 (Eriksson et al., 2004, Söderström et al., 2003). 

At all sampling sites, there appears to be a positive trend with respect to ∑PBDE17:183 and 

average temperature with the highest concentrations appearing in the summer samples, and the 

lowest towards the end of the sampling campaign in November 2012-January 2013. This 

statement contradicts the previous findings in the West Midlands of Harrad and Hunter (2006b) 

who observed this pattern at only 2 out of 10 sampling sites monitored. However, again likely 

due to the low number of samples, these trends are not statistically significant. As with the 

potential seasonal variation of BDE-209, it would be recommended to measure BDEs17:183 in 

multiple monthly samples along with average temperature data from each site. This would go 

some distance to confirming or rejecting the hypothesis that PBDEs17::183
  

concentrations are 

higher in the spring and summer. These elevated levels are expected due to increases in 

volatilisation of PBDEs from indoor sources combined with increased ventilation as a result of 

the higher temperatures (Harrad and Hunter, 2006b).  

5.3.1.3 Comparison with previous studies from available literature 

The concentrations detected in this study are higher than previous measurements by Wilford et 

al. (2004) who found mean ∑PBDEs47:209 (BDEs -47; -99; -100; -153; -154; -183; -209) of 27 

pg/m
3
 in Hazelrigg (a semi-rural site in north-west England) compared with 99 pg/m

3
 for the 

same congeners in DRO (a rural sampling site in this study). This difference in PBDE 

concentration is accounted for by increased BDE-209 levels in DRO (92 pg/m
3
) compared to that 

detected at Hazelrigg (20 pg/m
3
).  

Using the congeners consistent between both studies (BDEs -47; -99; -100; -153; -154 and -183) 

it would appear that PBDE concentrations detected in this study were similar to peak 

concentrations from between 2000-2003 by Birgul et al. (2012). For example, PBDE 

concentrations peaked in Manchester (a highly urban city) in 2002-03 at 48 pg/m
3
, which is 
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comparable to the two most urban sites in this study (54 and 50 pg/m
3
 for Edgbaston and 

Digbeth respectively). Concentrations in Europe were of a similar magnitude in 2002 when 

average levels of ∑PBDE47:154 were reported – urban = 38 pg/m
3
; rural = 23 pg/m

3 
(Jaward et al., 

2003). Moreover, a study conducted in 2003-04 at 10 sites on a rural-urban sampling transect 

across the West Midlands (with all sampling sites except for Edgbaston different to this study) 

measured PBDEs (BDEs -28, -47, -99, -100, -153, -154), finding average concentrations of 

∑PBDE28:154 of 5.4 pg/m
3
 in rural areas and 15 pg/m

3
 in urban/suburban areas (Harrad and 

Hunter, 2006b). In the current study, average concentrations of the same congeners a decade 

later were 14, 12 and 43 pg/m
3 

for rural, suburban and urban areas respectively. Whilst these 

levels appear to suggest there has been no decline in PBDE concentrations over the last decade, 

it must be taken into account that only the vapour phase was measured in the previous study. By 

comparison, in this study both vapour and particle phases were measured, rendering objective 

comparison between the two studies difficult.  

Despite this, comparison of the July-January samples from Harrad and Hunter (2006b) with 

those from July-January from Edgbaston in the current study (the same location in both studies) 

shows the average concentrations of ∑PBDE28:154 to be 17 and 8.5 pg/m
3
 in 2004-05 and 2012-

13 respectively. A paired t-test shows the concentrations in 2012-13 to be significantly lower 

(p<0.05), despite the fact that the current study monitored both phases. This suggests that there 

has been a significant decrease in atmospheric PBDE concentrations at the EDG site over the last 

decade. This finding is consistent with the findings of Birgul et al. (2012) who reported a fall in 

PBDE concentrations in outdoor air at four sites across the UK between 2000 and 2010, with the 

most recent (2010) concentrations 8.2, 1.3, 1.9 and 2.7 pg/m
3
 in Manchester, London, Hazelrigg 

and High Muffles respectively for ∑PBDE47:183 being lower than averages of 26, 8.5, 2.5 and 17 

pg/m
3
 recorded in the same sites in 2000-04. The combination of data from these three studies 

suggests that whilst PBDE concentrations remain of vital concern with a wide amount of spatial 

variation both within and between towns and cities, concentrations of Penta- and OctaBDE based 

congeners measured at the same sites, appear to have decreased significantly in the UK since 

their bans. 

On a global scale, the concentrations of PBDEs in ambient air in this study appear to be 

approximately in the middle of the range of those measured in various different countries, based 
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on studies that have measured BDE-209 (Figure 5.4). The highest concentrations have been 

reported in China (Chen et al., 2006, Zhang et al., 2009a), whilst concentrations reported for the 

UK exceed marginally those reported for urban sites from the USA (Strandberg et al., 2001, Hoh 

and Hites, 2005, Schecter et al., 2010). 

 

Whilst the concentrations of tri-hexa PBDEs in this study appear to be similar to mainland 

Europe, there is no comparative data available for BDE-209 concentrations in other European 

countries, which are expected to be much higher in the UK due to the greater UK usage of the 

DecaBDE formulation comply with more stringent flame retardancy standards in UK furniture  

(BSEF, 2010). 

 

Although the overall concentrations of tri- through hexa-PBDEs in the West Midlands do not 

appear to have decreased since the bans of Penta- and OctaBDE formulations in 2004, 

concentrations in Edgbaston have halved since their measurement in 2003-04 at the same 

location (Harrad and Hunter, 2006b), whilst they remain of a similar magnitude in the rest of the 

West Midlands despite the additional measurement of the particle phase since the previous study 

(Harrad and Hunter, 2006b). This reduction in PBDEs in UK ambient air is in line with a 

previously larger study by Birgul et al. (2012) who found concentrations to have fallen by more 

than half in three of four sites across the UK. 
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1
Chen et al. (2006); 

2
Zhang et al. (2009a); 

3
Gevao et al. (2006)

; 4
Strandberg et al. (2001); 

5
Schecter et al. (2010); 

6
Cetin and Odabasi (2008); 

7
Toms et al. (2009a) 

a 
BDE-183 not measured 

Figure 5.4 Average Concentration of a) ∑6PBDEs (-47; -99; -100; -153; -154; -183) and b) 

BDE-209 in ambient air from this study, compared with non-European countries in similar 

location types 
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5.3.2 Concentrations of PBDEs in soils 

The concentrations of PBDEs in soils appear to follow a similar, but not identical, pattern to 

those in ambient air. The lowest ∑PBDE concentrations are found in the site furthest from 

Birmingham city centre (Worcester (3600 pg/g OC) and Droitwich (2300 pg/g OC)), however, 

the highest (except for Bromsgrove) was found in Digbeth (21000 pg/g – in the centre of 

Birmingham).  

The elevated ∑PBDE concentration found in soil from Bromsgrove (49000 pg/g OC) is 

consistent with the ambient air concentrations from the same location presented above, with a 

similar proportion coming from BDE-209, with a slight increase in the contribution of BDE-47 

and BDE-99 towards total PBDE content. This increase in key PentaBDE congeners appears to 

be consistent across all samples (Figure 5.5)  

 

Figure 5.5 Average PBDE congener profile of Soil and Air along the rural-urban transect in the 

West Midlands 

 

Andrade et al. (2009) estimated half-lives (t1/2) in soil of 12.7 years for BDEs -47 and 99; and 

22.8 years for BDE-209. Furthermore, Wong et al. (2012) estimated a t1/2 of 5.1 years for BDE-

17, whilst they stated that they could not estimate t1/2 of BDEs -28, -47 and -99 as there wa no 

significant degradation over a 1 year period in soil. Palm et al. (2002), demonstrated(using 

estimation software) that t1/2 in air are considerably shorter forlower brominated congeners(10.7 

and 19.5 days for BDEs -47 and -99 respectively)than for the higher brominated congeners 
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(BDE-209 t1/2 = 318 days). This is reflected by air concentrations from this study where BDE-

209 contributed an average of 77% to total PBDE content, with only 2.4 and 2 % coming from 

BDE-47 and BDE-99 respectively. In soil, the BDE-209 contribution is lower at 72%, whilst 

BDEs -47 and -99 contribute 7.9 and 8.1% respectively, indicating a legacy contamination of the 

PentaBDE formulation since its ban. This is likely to be due to the longer mixing time of soil 

compared to air meaning that the soil concentrations are reflective of an exposure to PBDEs over 

a longer time period – i.e. congeners from the PentaBDE formulation, such as BDEs -47 and -99 

are likely to be found in soil for a longer time period in soil as a result of this longer mixing time 

when compared with air (Palm et al., 2002, Andrade et al. 2010). 

 

 

Figure 5.6 PBDEs in soil samples (pg/g OC) according to their distance from Birmingham city 

centre (Bromsgrove excluded) 

 

Furthermore the overall data expressed on an organic carbon-normalised basis gives a similar 

result of a negative association between PBDE concentration in soil and distance from 

Birmingham City Centre (Figure 5.6) as observed for air, although, likely due to the small 

sample set (n=1 for each site), R coefficient values were only moderately significant (p = 0.09). 
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  WOR DRO BRO BOU 

BDE 17 13 (130) 12 (62) <1.5 19 (150) 

BDE 28 18 (180) 16 (85) <1.5 120 (260) 

BDE 47 33 (680) 76 (580) 230 (2100) 190 (950) 

BDE 66 <2.5 <2.5 <2.5 <2.5 

BDE 100 19 (190) 22 (120) 56 (450) 61 (260) 

BDE 99 57 (580) 110 (550) 200 (1600) 180 (770) 

BDE 85 <4.5 <4.5 <4.5 <4.5 

BDE 154 <5 <5 <5 360 (1600) 

BDE 153 <7 <7 <7 69 (300) 

BDE 183 <9 <9 <9 <9 

BDE 209 140 (1500) 170 (940) 4100 (45000) 370 (1700) 

∑PBDEs 280 (3600) 410 (2300) 4600 (49000) 1400 (6200) 

∑ PBDEs17:183 140 (2100) 240 (1400) 490 (4200) 1000 (4400) 

47:99 ratio 0.57 0.69 1.15 1.1 

  EDG DIG SUT TAM 

BDE 17 29 (150) 22 (120) <1.5 <1.5 

BDE 28 50 (260) 56 (310) <1.5 35 (140) 

BDE 47 130 (840) 240 (1400) 340 (760) 440 (1900) 

BDE 66 <2.5 <2.5 <2.5 <2.5 

BDE 100 60 (310) 56 (310) 240 (510) 37 (150) 

BDE 99 180 (950) 190 (1100) 420 (880) 370 (1500) 

BDE 85 <4.5 96 (520) <4.5 <4.5 

BDE 154 52 (280) <5 <5 68 (280) 

BDE 153 53 (280) 80 (440) <7 43 (180) 

BDE 183 120 (620) 280 (1600) <9 190 (760) 

BDE 209 1100 (5700) 2700 (15000) 4100 (8700) 2500 (10000) 

∑PBDEs 1800 (9400) 3700 (21000) 5100 (11000) 3700 (15000) 

∑ PBDEs17:183 670 (3700) 1000 (5800) 1000 (2200) 1200 (4900) 

47:99 ratio 0.72 1.26 0.8 1.2 

Table 5.2 PBDE concentrations in pg/g dry wt (pg/g OC) in West Midlands soils (to 2 significant 

figures) 

 However, this trend combined with the ambient air concentrations from the previous section are 

consistent with earlier observations that there is an “urban pulse” of PBDEs with higher 

concentrations in cities than in rural and suburban areas (Harrad and Hunter, 2006b, Harner et 

al., 2006). The strength of this urban pulse, based on organic carbon concentrations (calculated in 

the same way as for air) was 1.6 for ∑PBDEs17:183 and 1.4 for BDE-209, which was similar to 

those calculated for air. Interestingly, using the same congeners as studied in 2003-04 
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(PBDEs28:154) a figure of 1.2 was calculated which is a quarter of that calculated by Harrad and 

Hunter (2006). Soil taken from Edgbaston was also more than five times less contaminated in 

this study than soil taken from the same location in 2004 (Harrad and Hunter, 2006b). Whilst the 

sample set in the present study was comparatively small, these figures suggest that soils in urban 

areas are less exposed to PBDE congeners from the PentaBDE formulation than they were 10 

years ago. This is consistent with the theory that since the ban of PBDEs in the UK there has 

been a gradual removal of PBDE-containing items from indoor environments (of which there 

would have been a far greater density in city centres) and their replacement with newer items that 

do not contain PBDEs. However, as previously stated, the present study is based on a very small 

sample set (1 soil sample per location). Moreover, given the heterogeneous nature of soil, more 

data is required to draw firm conclusions. 

5.3.2.1 BDE 47:99 ratios in air and soil 

In the study conducted by Harrad and Hunter (2006) the average BDE 47:99 ratios in air for each 

site ranged from 2.95 to 3.62 (mean = 3.3), with the highest found in the centre of Birmingham, 

whilst the lowest were at upwind sites. In this study, the same spatial trend was found, however, 

average 47:99 ratios ranged from 0.46-1.8 (mean = 0.93) (calculated using only samples that 

detected both congeners). This is likely due to the difference in PAS used. In the previous study 

only the gaseous phase was measured for PBDEs. However, in this study glass fibre filters were 

also used to measure the particulate phase. Due to the higher octanol-air coefficient (KOA) of 

BDE-99 with respect to BDE-47 (Harner and Shoeib, 2002) it is likely that there would be a 

greater partitioning to the particulate phase for BDE-99 than BDE-47, meaning that by 

measuring the concentration of both gas and airborne particulate matter, the BDE 47:99 ratio in 

this study is likely to be lower than if only the vapour phase is monitored. 

The 47:99 ratios in soil were similar in this study as previously reported for the West Midlands 

with a mean of 0.94 (range 0.57-1.26) compared to an average of 0.6 (range 0.51-0.88) in 2004 

(Harrad and Hunter, 2006). The 47:99 ratios in both air and soil are similar to that found in both 

PentaBDE commercial mixtures, DE-71 and Bromkal 70-5DE (0.79 and 0.96). This suggests 

that, whilst there is evidence to show that there has been a decrease of PentaBDE based 

congeners in UK air and soil since the introduction of preventative legislation in the UK in 2004, 
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there is still a legacy of PentaBDE commercial formulations in the environment as their principal 

congeners are detected in both air and soil in rural and urban samples in the West Midlands. 

 

5.4 Concentrations of PBDEs in UK soil samples archived from 2004-05 

A wide range of concentrations (130-8100 pg/g dry wt) of PBDEs was found in UK samples 

taken in 2004-5 (Table 5.4) with the majority coming from BDE-209 which made up an average 

of 73% (range: 24-99 %) of the total PBDE content in each sample. The lowest levels were 

found in Helston, Cornwall which contained 120 pg/g dry wt BDE-209 and 4.5 pg/g BDE-47 

The only other congener detected in this sample was BDE-99 but this was below the limits of 

quantification (5.9 pg/g dry wt).  

Usage of the DecaBDE formulation would be expected to be high at the time of sampling, which 

would explain the high proportion of BDE-209 in the majority of samples. Use of PentaBDE was 

very much evident also with BDE-47 and BDE-99 found in all samples in measurable 

concentrations (except for Helston as mentioned above).  

5.4.1 Comparison of PBDEs in 2004-5 with 2013 samples 

PBDE levels in UK soil samples taken in 2004-5 (Table 5.4) are similar to those taken in 2013 

with mean ∑PBDE concentrations of 2400 and 2600 pg/g dry weight in 2004-05 and 2013 

respectively suggesting that PBDEs in soils have not decreased since 2005 despite the 

restrictions on PBDE manufacture and use that have occurred in the interim). However due to a 

varying amount of organic carbon (OC) in each soil sample as well as the spatial differences 

between the sample sets, it is more appropriate to compare sample sets normalised to pg/g OC 

content. This comparison reveals a significant difference in PBDE levels in UK soil between 

2004 and 2013 (Figure 5.7) with mean ∑PBDE concentrations of 103000 and 15000 pg/g OC 

respectively (Man-Whitney U Test, p < 0.01). A Man-Whitney U Test also confirms that these 

significant differences apply when treating BDE-209 (p = 0.001) and PBDEs28:183 (p = 0.00) 

separately. This suggests that since restrictions on PBDE usage were put in place, there has been 

a significant decrease in concentrations of PBDEs to UK soils. 
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As with the 2013 soil samples, the urban and suburban samples have a higher 47:99 ratio than 

those from rural areas. Whilst this is the opposite to what is seen by Harrad and Hunter (2006b) 

it is not statistically significant. The average 47:99 ratios of 0.78 and 0.94 for 2004-05 and 2013 

respectively were not found to be significantly different (t-test, p = 0.265). This suggests that 

BDE-47 and BDE-99 have changed concentrations at a similar rate, suggesting that they are of 

very similar persistence to one another.  

 

Figure 5.7 Boxplot diagrams showing minimum, maximum and interquartile ranges of a) 

PBDEs17:183 and b) BDE-209 in soils (pg/g OC) taken in 2004-05 and 2013 in the UK. 
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This section of the study has its limitations, which mean that absolute conclusions regarding 

temporal changes in PBDE levels in soils cannot be drawn. Both sample sets are small (2004-05 

n = 17; 2013 n = 8) and soil samples were not taken from the same locations.
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Norfolk Rugby York Keele Suffolk Helston Worcester Saffron Walden  

BDE 17 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 

 BDE 28 <1.4 <1.4 <1.4 <1.4 190 (29) <1.4 <1.4 <1.4 

 BDE 47 51 (3.4) 86 (3.4) 79 (2.8) 150 (5.4) 100 (15) 4.5 (0.03) 88 (4) 25 (2) 

 BDE-85 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 

 BDE-99 53 (3.5) 180 (7.2) 130 (4.6) 300 (11) 240 (37) <2.7 71 (3.2) 23 (1.9) 

 BDE-100 <2.7 <2.7 <2.7 <2.7 <2.7 <2.7 <2.7 <4.7 

 BDE-153 <7 <7 <7 <7 <7 <7 <7 <7 

 BDE-154 <5 <5 <5 <5 <5 <5 <5 <5 

 BDE-183 <6 <6 <6 <6 <6 <6 <6 <6 

 BDE-209 1900 (130) 1800 (72) 2500 (89) 5300 (190) 190 (29) 120 (0.8) 3600 (160) 200 (16) 

 ∑PBDEs 2000 (133) 1900 (78) 2600 (94) 5600 (200) 720 (110) 130 (0.81) 3800 (170) 250 (20) 

 ∑PBDEs17:183 96 (7) 170 (10) 140 (7.2) 280 (16) 530 (71) 7.2 (0.03) 160 (7.2) 53 (3.9) 

 47:99 ratio 0.96 0.48 0.61 0.5 0.42 N/A 1.2 1.1 

 

 
Wales Essex Norwich Lancaster Scoat Tarn Aberdeen Preston Southampton Daventry 

BDE 17 23 (1.4) <1.3 <1.3 <1.3 <1.3 <1.3 14 (0.7) 47 (3.4) 49 (2.7) 

BDE 28 41 (2.6) <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 68 (4.9) 62 (3.4) 

BDE-47 120 (7.5) 140 (14) 25 (1) 120 (11) 38 (4) 400 (31) 86 (4.3) 140 (10) 130 (7.2) 

BDE-85 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 

BDE-99 120 (7.5) 180 (18) 47 (1.9) 160 (15) 54 (5.7) 680 (52) 190 (9.5) 190 (14) 220 (12) 

BDE-100 53 (3.3) 52 (5.2) <2.7 <2.7 14 (1.5) 300 (23) 51 (2.6) 58 (4.1) 68 (3.8) 

BDE-153 <7 100 (10) <7 <7 <7 <7 <7 <7 44 (2.4) 

BDE-154 <5 100 (10) <5 68 (6.2) <5 <5 <5 <5 70 (3.9) 

BDE-183 <6 <6 <6 690 (62) <6 <6 <6 <6 <6 

BDE-209 5800 (360) 500 (50) 8100 (324) 310 (28) 150 (16) 1500 (120) 380 (19) 1700 (120) 290 (16) 

∑PBDEs 6200 (380) 1100 (110) 8200 (330) 1300 (120) 260 (27) 2900 (220) 820 (36) 2200 (160) 930 (52) 

∑PBDEs17:183 360 (28) 580 (69) 72 (2.9) 1000 (90) 110 (20) 1400 (110) 440 (17) 500 (35) 640 (36) 

47:99 ratio 1 0.78 0.53 0.75 0.70 0.59 0.45 0.74 0.59 

Table 5.3 PBDE Concentrations in pg/g dry wt (ng/g OC) in 2005 UK soil sample (to 2 significant figures). 
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Despite this, although the archived 2004-05 soils were from a range of locations across the whole 

of the UK (in contrast to the West Midlands rural-urban soils), the ratio of urban/suburban to 

rural sites are similar in both (2.4 in 2004-05 and 3 in 2013) suggesting that the overall land-use 

classification distribution in each sample set is similar. A second limitation is that samples were 

not taken or measured between 2005 and 2013, so the overall temporal trend of PBDEs cannot 

be determined due to a lack of data in between these dates. Ideally, samples would have been 

taken in the same locations, annually between the two actual sampling years to get a more 

detailed account of PBDE levels in UK soil since the bans of commercial PBDE formulations. 

5.4.2 Comparison with previous studies 

As with ambient air, mean PBDE concentrations in soil from the UK are in the middle of those 

found in a range of studies from other countries (Figure 5.8 – only those that measured BDE-209 

were included). Soil in Spain (Eljarrat et al., 2008), USA (Ma et al., 2009) and Turkey  (Odabasi 

et al., 2010) had higher mean concentrations (21000; 6100; 9900 pg/g dry wt respectively) than 

those in the current study; whilst a mixture of rural/remote and urban/rural soils from China and 

agricultural soils from Sweden were 5-10 times lower than those reported here for the UK (Chen 

et al., 2012, Ma et al., 2009, Sellstrom et al., 2005). More appropriate comparisons would be on 

an OC-normalised basis, however OC data was not available for many (4 of 6) of the studies. 

 

To the knowledge of the author this is the first study to measure BDE-209 in soil from the UK 

meaning that no comparisons can be made from within the country. With regards to other 

countries, the mean levels reported here are not the highest for similar land-use types, with 

suburban BDE-209 concentrations in Turkish soils at a mean concentration of 9500 pg/g dry wt 

(Odabasi et al., 2010) whilst both 2004-5 and 2013 samples have higher mean concentrations 

than in Chinese soils from a mixture of urban and rural environments (380 pg/g dry wt (Ma et al., 

2009)). 

Whilst it is apparent that urban areas behave as sources of PBDEs to the environment, the 

evidence suggests that they are by no means the only sources. Much higher concentrations were 

detected in soils taken from the vicinity of sources such as: informal e-waste treatment 

(Labunska et al., 2013), industrial sites (Odabasi et al., 2010)) and sewage sludge treatment 

(Eljarrat et al., 2008)).  
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1
Eljarrat et al. (2008); 

2
Chen et al. (2012); 

3
Ma et al. (2009); 

4
Yun et al. (2008);

 5
Sellstrom et al. (2005); 

6
Odabasi et 

al. (2010). 
a 
Median  

Figure 5.8 Concentrations (pg/g dry wt) of a) ∑6PBDEs (BDEs -47; -99; -100; -153; -154;-183) 

and b) BDE-209 in soils from this study and other countries from available literature 

5.5 Conclusion 

The concentrations of PBDEs detected in both the air and soil samples taken on the West 

Midlands urban-rural transect have highlighted the city of Birmingham as a source of PBDEs to 

the environment, with an urban pulse of elevated concentrations in sites closest to the city centre. 
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The strength of the urban pulse found in this study appears to be similar in ambient air as it was 

almost 10 years ago, whilst there appears to have been a decrease in the same ratio in soil 

(Harrad and Hunter, 2006). The overall ∑PBDE28:154 concentrations in both soil and ambient air 

appeared to have decreased significantly in Edgbaston since they were previously measured in 

2003-04 (Harrad and Hunter, 2006).  

Although, not proven to be statistically significant (likely due to a small sample set), there are 

indications of two seasonal trends in PBDEs, with PBDEs17:183 appearing to be higher in the 

summer months and lower in the winter, whilst the reverse is seen for BDE-209, likely due to its 

photolytic degradation in the summer due to increased exposure to higher temperatures and UV 

light. 

Whilst there are no available comparisons on a site-by-site basis for total PBDE content in air 

and soil in the UK, the concentrations of both BDE-209 and ∑PBDEs28:183 in the archived 2004-

05 soil samples are significantly higher than those from 2013, which is not inconsistent with an 

overall decrease in environmental levels of PBDEs in the UK (as seen in air by Birgul et al. 

(2012)). However, congeners from the Penta- formulation are still being detected in the 

environment 10 years post-restriction, highlighting their persistence in the environment and the 

legacy left by their previous intensive use. 
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Chapter VI 

Concentrations of PBDEs in Australian Soils and Sediments 

6.1 Synopsis 

This chapter reports the concentrations of PBDEs in soils and sediments in Australia. PBDEs 

were measured in 64 soil samples taken throughout Australia from a mixture of land-type 

classifications (urban; industrial; remote; agricultural). Concentrations of PBDEs were also 

measured in radiometrically-dated slices from 4 sediment cores taken in 1999 from various 

locations in Sydney Harbour, NSW. These data were interpreted in the context of temporal 

trends in PBDE contamination up to the end of the 20
th

 century. BDE-47 was measured using 

HRGC/HRMS whilst penta-hepta PBDEs and BDE-209 were measured via LC-APCI-MS/MS.  

6.2 Sampling Strategy 

6.2.1 Australian Soil Samples 

Soil samples in Australia were taken in 2003 by volunteers in accordance with the full protocol 

outlined in section 2.1.5.1 as part of the Australian National Dioxin Program. Areas were 

selected based on their land-use category as mentioned above and samples were taken from 

public open spaces within the area specified. Figure 6.1 outlines the large proportion of the 

country sampled, whilst Table 6.1 lists all the sampling locations, along with their land-use 

category. 
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Urban Industrial Agricultural Remote 

Darwin 1, NT Darwin 2, NT Katherine, NT Alice Springs, NT 

Brisbane 1, QLD Brisbane 2, QLD Gympie, QLD Cooloola National Park, QLD 

Gold Coast, QLD Brisbane 3, QLD Emerald, QLD Carnarvon Gorge National Park, QLD 

Cairns, QLD Gladstone, QLD Eastern ACT, ACT Namadgi National Park, ACT 

Canberra, ACT Sydney 4, NSW Lismore, NSW Royal National Park, NSW 

Newcastle, NSW Sydney 5, NSW Bombala, NSW Sturt National Park, NSW 

Sydney 1, NSW Wollongong 2, NSW Wagga Wagga, NSW Hay Plains, NSW 

Sydney 2, NSW Adelaide 2, SA Kuitpo Peninsula, SA Cape Grim, TAS 

Sydney 3, NSW Whyalla, SA Yorke Peninsula, SA Central Tasmania, TAS 

Wollongong 1, NSW Port Pirie, SA Flinders Ranges, SA Canarvon, WA 

Adelaide 1, SA Hobart, TAS Murray, SA Mt Buller, VIC 

Launceston, TAS Melbourne 3, VIC Lower Derwent, TAS   

Melbourne 1, VIC Melbourne 4, VIC Elliott, TAS   

Melbourne 2, VIC Latrobe, VIC Huon Valley, TAS   

Geelong, VIC Geelong, VIC Dandenong, VIC   

Bendigo, VIC Perth 3, WA Warracknabeal, VIC   

Perth 1, WA Perth 4, WA Bunbury, WA   

Perth 2,  WA   Northam, WA   

Table 6.1 Soil sampling locations across Australia categorised by land-use type
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Figure 6.1 – Locations of sampling sites for Australian soil samples (n=64). 
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6.2.2 Sediment Core Samples 

Sediment core samples were taken in 1999 from Port Jackson, Sydney, New South Wales 

(Figure 6.2) at sites close to storm water drains in Iron Cove (cores IC3 and IC5), Burns Bay 

(core BB) and North Harbour (core NH) as part of a study looking at temporal changes of 

trace metals and organochlorine pesticides in sediments from around the area, in line with its 

historical records of industrialisation and urbanisation (Taylor et al., 2004). Freeze dried 

samples were stored in sealed glass jars and kept in a dark area until clean-up and analysis. 

 

Figure 6.2 – Port Jackson Sediment Core sample names and locations – adapted from 

(Taylor et al., 2004) 

6.3 Concentrations of PBDEs in Australian Soils 

A wide range of PBDEs were detected across Australian soil samples with a mean ∑PBDE 

concentration of 320 (range = 10-3000) pg/g dry wt, with the highest concentrations coming 

from urban and industrial locations in the South and East of Australia (3000 pg/g (Whyalla, 

SA), 2800 pg/g (Wollongong, NSW) and 2400 pg/g (Melbourne, VIC)). Table 6.2 shows the 

concentrations of individual congeners for each sample, organized by land-use. 
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PBDE
 
Congener  

-47 -85 -99 -100 -153 -154 -183 -191 -196 -197 -206 -207 -209 ∑PBDE 

47:183 
∑PBDEs 

Location Urban 

Darwin 1, NT 15 <2.6 9.5 5.4 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 43 30 73 

Brisbane 1, QLD 15 <2.6 7.8 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 33 23 56 

Gold Coast, QLD 14 <2.6 11.7 3.8 <1.6 <2.1 <1 <1.5 <1.5 <1.5 5.2 3.2 74 30 110 

Cairns, QLD 8.1 <2.6 4.3 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 2.7 5.8 91 15 110 

Canberra, ACT 12 <2.6 11 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 50 23 73 

Newcastle, NSW 51 <2.60 54 7.1 3.5 <2.1 <1 <1.5 <1.5 2.4 2.9 6.7 77 120 200 

Sydney 1, NSW 39 <2.6 41 7.9 3.2 2.1 2.6 2.3 2 3.1 6.4 7.2 180 96 300 

Sydney 2, NSW 52 <2.6 47 33 8.9 6.7 8.1 <1.5 3.2 7.5 24 28 480 160 700 

Sydney 3, NSW 27 <2.6 24 6.9 <1.6 <2.1 2.2 <1.5 <1.5 <1.5 <2.6 4.3 81 60 150 

Wollongong 1, NSW 110 <2.6 120 30 22 18 26 2.8 33 32 77 84 2200 330 2800 

Adelaide 1, SA 24 <2.6 17 4.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 6.7 8.4 80 46 140 

Launceston, TAS 28 <2.6 39 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 47 69 120 

Melbourne 1, VIC 91 <2.6 92 <2.6 <1.6 5.2 66 <1.5 5.9 16 2.7 35 87 260 400 

Melbourne 2, VIC <1.4 <2.6 46 6.5 4.2 3 12 <1.5 <1.5 4.3 5.1 7.5 170 72 260 

Geelong, VIC 41 <2.6 40 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 38 82 120 

Bendigo, VIC 8.5 <2.6 8.3 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 26 17 43 

Perth 1, WA 12 <2.6 13 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 34 25 59 

Perth 2,  WA 11 <2.6 10 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 53 7.3 21 82 
a
All concentrations given to 2 significant figures so totals may not equal sums of individual congeners; 

b
 <0.1 = not detected or below detection 

limit of 0.1 pg/g 

Table 6.2 Concentrations of PBDEs (pg/g dry wt) in Australian Soils
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PBDE
 
Congener  

-47 -85 -99 -100 -153 -154 -183 -191 -196 -197 -206 -207 -209 ∑PBDE 

47:183 
∑PBDEs 

Location Industrial 

Darwin 2, NT 7.7 <2.6 6.3 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 13 8.1 14 35 

Brisbane 2, QLD 78 <2.6 71.4 8.8 6.5 3.2 12 <1.5 <1.5 7.6 10.4 12 530 180 740 

Brisbane 3, QLD 66 <2.6 61 3.9 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 18 130 150 

Gladstone, QLD 12 <2.6 12 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 31 25 56 

Sydney 4, NSW 740 <2.6 590 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 99 1300 1400 

Sydney 5, NSW 13 <2.6 12 4.1 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 88 29 120 

Wollongong 2, NSW 30 3 50 7.3 3.8 <2.1 <1 <1.5 <1.5 <1.5 6.5 4.1 95 94 200 

Adelaide 2, SA 20 <2.6 7.6 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 3.8 24 30 57 

Whyalla, SA 1000 59 1400 260 98 94 2.1 <1.5 <1.5 <1.5 <2.6 <2.6 37 2900 3000 

Port Pirie, SA 57 <2.6 20 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 53 78 130 

Hobart, TAS 12 <2.6 13 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 68 26 94 

Melbourne 3, VIC 30 <2.6 33 <2.6 <1.6 <2.1 2.8 <1.5 <1.5 <1.5 44 19 2300 66 2400 

Melbourne 4, VIC 26 <2.6 60 <2.6 9 5 37 <1.5 8.1 15.6 11 20 300 140 500 

Latrobe, VIC 11 <2.6 8.8 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 2.7 <2.6 40 21 65 

Geelong, VIC 12 <2.6 12 <2.6 <1.6 <2.1 2.2 <1.5 <1.5 <1.5 <2.6 <2.6 61 27 88 

Perth 3, WA 9.4 <2.6 11 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 67 22 89 

Perth 4, WA 6.8 <2.6 7 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 16 14 30 
a
All concentrations given to 2 significant figures so totals may not equal sums of individual congeners; 

b
 <0.1 = not detected or below detection 

limit of 0.1 pg/g 

Table 6.2 Concentrations of PBDEs (pg/g dry wt) in Australian Soils
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PBDE
 
Congener  

-47 -85 -99 -100 -153 -154 -183 -191 -196 -197 -206 -207 -209 ∑PBDE 

47:183 
∑PBDEs 

Location Agricultural 

Katherine, NT 6 <2.6 9 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 10 15 25 

Gympie, QLD 5 <2.6 10 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 8.7 8.8 190 15 220 

Emerald Region, QLD 11 <2.6 11 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 9.3 23 32 

Eastern, ACT 8.5 <2.6 6 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 <5 15 15 

Lismore, NSW 39 <2.6 57 3.4 120 27 420 9.6 34 130 3.5 56 17 670 920 

Bombala, NSW 15 <2.6 5.6 <2.6 <1.6 <2.1 3.3 <1.5 <1.5 <1.5 <2.6 <2.6 46 25 71 

Wagga Wagga, NSW 7.1 <2.6 3 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 <5 10 10 

Kuitpo Peninsula, SA 12 <2.6 4.5 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 200 17 220 

York Peninsula, SA <1.3 <2.6 <2.1 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 54 0.28 54 

Flinders Ranges, SA 9.5 <2.6 9.7 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 10 19 29 

Murray, SA <1.3 <2.6 <2.1 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 4.6 79 0 84 

Lower Derwent, TAS 11 <2.6 9.4 <2.6 <1.6 <2.1 2.3 <1.5 <1.5 3.9 <2.6 <2.6 31 23 58 

Elliott, TAS <1.3 <2.6 <2.1 <2.6 3.2 <2.1 15 <1.5 <1.5 4.8 <2.6 <2.6 48 18 71 

Huon Valley, TAS 8.9 <2.6 17 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 18 26 44 

Dandenongs, VIC 18 <2.6 22 <2.6 <1.6 <2.1 11 <1.5 <1.5 3 <2.6 <2.6 87 51 140 

Warracknabeal, VIC <1.3 <2.6 <2.1 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 5.8 5.1 180 0 190 

Bunbury, WA <1.3 <2.6 <2.1 9.7 <1.6 <2.1 <1 <1.5 <1.5 <1.5 5.9 5 280 9.7 300 

Northam Region, WA <1.3 <2.6 <2.1 <2.6 <1.6 <2.1 3.8 <1.5 <1.5 <1.5 4.9 5.1 170 3.8 180 
a
All concentrations given to 2 significant figures so totals may not equal sums of individual congeners; 

b
 <0.1 = not detected or below detection 

limit of 0.1 pg/g 

Table 6.2 Concentrations of PBDEs (pg/g dry wt) in Australian Soils
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PBDE
 
Congener  

-47 -85 -99 -100 -153 -154 -183 -191 -196 -197 -206 -207 -209 ∑PBDE 

47:183 
∑PBDEs 

Location Remote 

Alice Springs, NT 5.2 <2.6 3.2 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 12 3.5 600 8.4 620 

Cooloola National Park, QLD <1.3 <2.6 <2.1 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 3.2 2.9 170 0 180 

Carnarvon Gorge, QLD 10 4.5 92 9 11 4.9 <1 <1.5 <1.5 <1.5 9.2 8.8 230 130 380 

Namadgi National Park, ACT <1.3 <2.6 <2.1 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 13 4.2 710 0 730 

Royal National Park, NSW 7.2 <2.6 13 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 80 20 100 

Stuart National Park, NSW 6.7 <2.6 4.1 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 15 11 26 

Hay Plains, NSW <1.3 <2.6 <2.1 14 4.4 3.2 <1 <1.5 <1.5 <1.5 <2.6 <2.6 15 22 37 

Cape Grim, TAS 8.7 8.2 44 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 90 61 150 

Central Tasmania, TAS 4.6 <2.6 36 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 79 41 120 

Canarvon, WA 21 <2.6 34 <2.6 <1.6 <2.1 2.9 <1.5 <1.5 <1.5 <2.6 4.4 52 58 110 

Mt Buller, VIC 14 <2.6 22 <2.6 <1.6 <2.1 <1 <1.5 <1.5 <1.5 <2.6 <2.6 <5 36 36 
a
All concentrations given to 2 significant figures so totals may not equal sums of individual congeners; 

b
 <0.1 = not detected or below detection 

limit of 0.1 pg/g 

Table 6.2 Concentrations of PBDEs (pg/g dry wt) in Australian Soils
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Overall, PBDEs are present in Australian soil in comparatively low concentrations with a 

median ∑PBDE concentration of 120 pg/g dry wt. On a dry weight basis, the mean ∑PBDE 

concentrations in soils from industrial and urban areas (430 and 290 pg/g dry wt respectively) 

are more than double that from soils in a remote area (130 pg/g dry wt), however a Mann-

Whitney U test shows that these differences are insignificant (p=0.210 and 0.605 

respectively). Figure 6.3 demonstrates that when soils are normalised to organic carbon 

content (pg/g OC), soils from industrial areas are the most contaminated with a mean 

concentration of 27000 pg/g OC. 

 

Figure 6.3 Mean concentrations of PBDEs in Australian soils (pg/g OC) according to 

different land-uses 

Whilst it appears that industrial areas are more contaminated with PBDEs, such is the 

variability of concentrations within each category that an ANOVA test shows that there is no 

significant statistical difference between the mean concentrations between each group for 

∑PBDEs and ∑PBDEs47:183 (p = 0.194 and 0.434) as well individual BDE congeners -47, -99 

and -209 (p = 0.194, -0.277 and 0.257). 

Whilst there is no statistical difference between the average concentrations of soil samples in 

areas of different land-use, the ranges for each group indicate that there is an increased 

likelihood of elevated PBDE concentrations in areas close to industrial activity. The 

minimum ∑PBDE concentrations are of similar magnitude across all categories (urban = 1000 
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pg/g OC; industrial = 540 pg/g OC, agricultural = 710 pg/g OC, remote = 430 pg/g OC), 

however the maximum concentrations were much higher in industrial areas (230000 pg/g 

OC) than in urban, agricultural and remote areas (39000, 33000 and 58000 pg/g dry wt 

respectively).  

 

 

Figure 6.4 – Boxplot diagram for a) ∑PBDEs47:183 and b) BDE-209 in different land-uses 

showing inter-quartile range, minimum and maximum (÷10) concentrations in soil (pg/g 

OC). 
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Figure 6.4 suggests that this increased contamination is sourced from lower-brominated 

PBDE congeners with a much wider range of ∑PBDE47:183
  

concentrations in soils from 

industrial locations than in those from other land-use categories (discussed further in the next 

section), whilst BDE-209 concentrations appear to be similar across all categories. 

 

Figure 6.5 Boxplot diagram of a) ∑PBDE47:183 and b)BDE-209 concentrations in Australian 

soils, from different states showing the interquartile range, minimum and maximum values 

for each region (pg/g dry wt) 
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As with their concentrations according to land-use, ∑PBDE levels in soils do not appear to 

show any particular trends (Figure 6.5). Overall, in all states the concentrations are low; 85% 

of soils across all regions are <350 pg/g dry wt), with the 3 soil samples that display elevated 

concentrations originating from urban and industrial environments. 

6.3.1 Congener Profiles 

BDE-209 is the dominant congener of the mean PBDE profile in soils across all land-use 

categories, (urban = 66%, industrial = 42%, agricultural = 54%, remote = 82%) implying that 

the primary commercial formulation used would have been Deca-BDE – although the higher 

KOA of BDE-209 meaning that it should have higher affinity for accumulation in soil than 

lower brominated congeners will also be a factor. Whilst this dominance of BDE-209 exists, 

there are a few samples which indicate that some areas have been exposed to other 

commercial formulations. Specific examples are the samples from: (a) an industrial site in 

Whyalla, SA which shows a congener profile similar to that of a commercial PentaBDE 

mixture, and (b) an agricultural site in Lismore, NSW that displays a very similar profile to 

that of OctaBDE, suggesting that different formulations have influenced these locations 

(Figure 6.4). 

The average congener profiles found in soils from each land-use category (Figure 6.5) 

suggest that industrial soils contain a greater proportion of congeners from the PentaBDE 

formulation than soils from other land-use categories. Whilst BDE-209 still contributes 42% 

to the average total PBDE content in industrial soils, BDEs -47 and -99 contribute a 

combined total of 49% (23% and 26% respectively) suggesting that industrial soils have been 

equally influenced by both the Penta-BDE and Deca-BDE commercial mixtures. The profile 

for urban soil also suggests an influence (to a lesser extent) of the Penta-BDE formulation 

with 20% of the average congener profile attributed to BDEs -47 and -99. 

Whilst Penta-BDE based congeners are prominent in urban and industrial soils and those 

from Deca-BDE prominent in all soils, soils from an agricultural background appear to have 

been more influenced by congeners indicative of Octa-BDE formulations (BDEs -153 = 5%, 

-183 = 17%, -197 = 5.3%). Studies from other countries such as Spain (Eljarrat et al., 2008) 

and Sweden (Sellstrom et al., 2005) have shown how agricultural soils are contaminated with 

PBDEs, although they have not necessarily been attributed to the Octa-BDE formulations.  
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Figure 6.4 A Comparison of the PBDE congener profile in soil from a) Whyalla, SA 

(industrial site) from this study, compared with the proportions in the commercial PentaBDE 

mixture and b) Lismore, NSW (Agricultural site) compared with those from commercial 

OctaBDE  (La Guardia et al., 2006) 

The abundance of key congeners from both formulations such as BDEs -47, -99 and -100 for 

PentaBDE and BDEs -183; -197, -196, -207 and -206 for OctaBDE (based on technical 

mixtures analysed by La Guardia et al. (2006), along with the aforementioned overall 

Whyalla, SA

0

10

20

30

40

50

%
 

Congener 

Whyalla, SA

PentaBDE

a) 

Lismore

0

10

20

30

40

50

%
 

Congener 

Lismore

OctaBDE

b) 



 

143 
 

dominance of BDE-209 suggests that all three commercial formulations have been used fairly 

heavily within Australia.  

Whilst the statistical evidence (ANOVA) suggests that there are no significant differences in 

the concentrations of PBDEs in different land-use categories, there is evidence from the 

above data to suggest that whilst DecaBDE has been the principal PBDE formulation used, 

the different commercial PBDE formulations have all been used widely in Australia. 

Industrial and, to a lesser extent, urban soils appear more heavily contaminated with lower 

brominated PBDEs indicative of the PentaBDE formulation, whilst agricultural soils are the 

only samples to show raised levels of congeners typical of OctaBDE, while the congener 

profiles of remote sites are dominated by BDE-209 (82%).
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Figure 6.5 Mean congener profile of soils from different land-uses 
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6.3.2 Comparisons with PBDEs in Australian soil and those from other countries 

The soil concentrations presented in this paper are at the lower end of the range of soils found 

in other literature presented and UK data from Chapter V of this study (Table 6.5) with the 

concentrations from all land-use categories lower than in other countries. The most similar 

concentrations found were those in rural/remote areas in China (Chen et al., 2012, Ma et al., 

2009) and agricultural soils in Sweden (Sellstrom et al., 2005). It should be noted that 

measurements from known sources, such as e-waste sites, landfill or treated soils were not 

used for comparison, whilst studies that did not measure BDE-209 were also not used.   

When comparing Australian samples with UK samples based on organic carbon (OC) content 

it would appear that soils from the UK sampled at a similar time (2004-05) contain at least 20 

times the amount of PBDEs as Australian soils, while urban and remote samples from 

Australia display similar average concentrations to those detected in the UK 2013 rural-urban 

transect samples. Similarly, the concentrations in these Australian soils are approximately 5-

10 times lower than in those taken at a similar time in both the USA (Yun et al., 2008) and 

from Spain (Eljarrat et al., 2008). This indicates that concentrations of PBDEs in soil from 

Australia during the peak period for PBDE usage were 5-20 times lower than North America, 

UK (both on an OC basis), and continental Europe (on a dry weight basis). Furthermore, what 

are expected to be the peak concentrations in Australia are at a similar level to those in UK 

soils measured in 2013, which were considered to be significantly lower than previously 

(several years after restrictions on the various PBDE commercial formulations). This would 

suggest that PBDE levels in Australia are relatively low in comparison to other countries.
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n Land-use BDE 47 BDE 99 BDE 100 BDE 153 BDE 154 BDE 183 BDE 209 ∑7PBDE 

Australia (this study) 18 Urban 31 (870) 12 (8900) 6.3 (1300) 2.3 (47) 1.8 (35) 6.9 (130) 210 (4300) 270 (16000) 

Australia (this study) 17 Industrial 130 (7500) 39 (8900) 17 (1300) 6.9 (520) 6 (460) 3.3 (150) 230 (7900) 430 (27000) 

Australia (this study) 18 Agricultural 8.4 (440) 234 (440) 0.86 (23) 1.4 (120) 0.74 (23) 0.26 (470)  190 (5200) 120 (6800) 

Australia (this study) 11 Remote 7 (2400) 6.2 (3200) 2.1 (210) 1.4 (170) 0.74 (85) 2.9 (140) 190 (11000) 210 (17000) 

 

 

         UK 2013 Soil 
(this study) 

 
8 Urban/Rural 210 (1200) 210 (990) 69 (290) 31 (150) 60 (270) 74 (370) 1900 (11000) 2600 (14000) 

UK 2004 Soil 

(this study) 

 

17 Urban/Rural 100 (7400) 

170 

(11000) 

33 

(12000) 8 (2500) 13 (690) 36 (3400) 1700 (100000) 2100 (140000) 

China 

Chen et al. (2012)
a 

 

20 Rural/Remote 2.1 3.4 3.3 2.6 1.6 4.3 300 320 

Sweden 

Sellstrom et al. (2005) 

 

11 Agricultural 86 (1900) 120 (2700) 25 (620) 11 (200) 9.7 (230) <6 560 (16000) 810 (21000) 

China 

Ma et al. (2009) 

 

5 Urban/Rural 30 90 10 50 <dl not measured 380 560 

China 

Ma et al. (2009) 

 

12 

Industrial 

(Chemical 

complex) 70 90 10 50 <dl not measured 40000 40000 

Turkey 

Odabasi et al. (2010) 

 

10 Suburban 90 120 30 50 60 not measured 9500 9900 

Turkey 

Odabasi et al. (2010) 

 

7 Industrial 220 400 70 150 110 not measured 36000 37000 

Spain 

Eljarrat et al. (2008)
a 

 

6 Agricultural 690 630 1,080 940 930 1870 14600 20740 

USA 

Yun et al. (2008) 

 

55 Floodplain 400 (11000) 350 (9400) 80 (2200) 45 (1400) 38 (1000) not measured 3900 (130000) 4800 (150000) 
1
Only studies that measured BDE-209 are included in this table. 

a
 median (mean not given or available in supplementary data) 

Table 6.3 Comparisons of average PBDE concentrations (dry wt and OC-normalised where available) in soils from Australia and other 

countries (pg/g dry wt (pg/g OC))
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6.4 Concentrations of PBDEs in Archived Sediment Cores from Port 

Jackson 

Using the sedimentation rates measured in the initial study, dates were estimated for each 

layer in each sediment core Taylor et al. (2004). The total PBDE concentrations for each 

layer along with their estimated dates are presented in Table 6.7. Doubling times were also 

calculated if an increase in concentrations occurred in 3 or more consecutive layers. This was 

calculated using Equation 6.1. In this section BDE-209 is reported separately from tetra-hepta 

PBDEs as it contributes an average of 82% of total PBDE content across all 4 sediment cores. 

Other than in 2 samples (NH 9-11 cm = 29%; IC5 40 cm = not detected) BDE-209 was the 

dominant congener in sediment. This is in line with other countries, such as Switzerland 

(Kohler et al., 2008), UK (Vane et al., 2010, Webster et al., 2008), Japan (Choi et al., 2003a) 

as well as others.  

              
    )

 
    Equation 6.1 

where k = the 1
st
 order rate constant for the increase in concentration 

With the exception of the upper-most layers, sediment concentrations from Port Jackson, 

Australia appear to contain much lower levels of PBDEs than the majority of other countries. 

The upper-most layers suggest that PBDEs (in particular DecaBDE) were used most 

intensively during the mid-late 1990s, with average ∑PBDE concentrations from the 1990s of 

3400 pg/g dry wt (range: 560-14000 pg/g dry wt). The concentrations were highest in the top 

layer of all cores except for IC3, suggesting that PBDE usage levels were still rising at the 

end of the 1990s. The mean 1990s concentrations are similar to those detected in 46 surface 

sediments from around Australia in 2002-03, which had a mean value of 4200 pg/g dry wt 

(range: <dl-41000 pg/g dry wt) for the same congeners (Toms et al., 2006). From the same 

study, two surface sediment samples were measured from Port Jackson, with concentrations 

in the west at 23000 pg/g dry wt and 850 pg/g in the east. Such spatial variation is consistent 

with the current study, in which concentrations from the top layer of sediment cores gave 

mean values of 6600 pg/g dry wt for sites on the west of Port Jackson (IC3, IC5 and BB), 

whilst NH on the east of Port Jackson had a concentration of 650 pg/g dry wt. Interestingly, 

whilst organochlorine data is not available for the same cores, the sharp rise in PBDE levels 

coincides with the decline in PCB levels in 2 cores taken at the same time in very close 

proximity to IC3 and IC5 in Iron Cove. In these two cores, PCBs peak in the early 1970s at 
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approximately 150 ng/g dry wt each before a sharp decline in the 1980-1990s – the opposite 

that is found for PBDEs. This is unsurprising given that PCBs were phased out following 

their ban in the USA in 1977, and PBDEs were introduced around a similar time (Usenko et 

al., 2007). The concentrations from Port Jackson are of a similar magnitude in the two studies 

but slightly higher in 2002-3 than in this study, suggesting that PBDE concentrations were 

still increasing between 1999 and 2003, although given the known spatial variations in PBDE 

concentrations in sediments, this conclusion is not absolute without measurement from the 

exact locations for both studies. Ideally, comparisons would have been made based on OC 

content, however, there was insufficient sample remaining for measurement of OC in this 

study. 

The historical changes of PBDE concentrations in sediment from Port Jackson (Figure 6.6) 

appear to be of a similar pattern to those seen elsewhere, with concentrations being minimal 

before the 1970s, with sharp increases (primarily in BDE-209) between 1980 and 1999. This 

pattern has also been seen in Switzerland where PBDEs were found in sediments from 1975-

1980 rising sharply to 8.8 ng/g dry wt in 2000 (Kohler et al., 2008); UK and Europe (Vane et 

al., 2010, Zegers et al., 2003), China (Chen et al., 2007) and North America (Song et al., 

2005a) as well as the Arctic (Evenset et al., 2007) and others.  

Port Jackson is primarily an industrial area, particularly to the west in Iron Cove (IC3, IC5) 

and Burns Bay (BB), whilst towards the east the land is a mixture of industrial and urban use, 

whilst sampling sites were chosen in the original study due to their known proximity to 

sources of industrial contamination (Taylor et al., 2004). It is therefore surprising that the 

PBDE concentrations are lower than those of sites elsewhere in the world located away from 

point sources, such as Lake Superior, North America where the top 2 cm measured 6.5-21 

ng/g dry wt (Song et al., 2004) compared with 0.65-14.1 ng/g dry wt from samples in this 

study. Furthermore, the top layer of NH, representative of sediment from around 1996 (0.65 

ng/g dry wt) is of a similar concentration to Ellasjøen surface sediment from 2001 (0.73 ng/g 

dry wt) – a remote freshwater lake in the Norwegian Arctic (Evenset et al., 2007). The 

concentrations found in this study appear to be substantially lower than those found in urban 

and industrialised areas such as the Scheldt river in Antwerp where Covaci et al. (2005) 

found that even the lower layers of sediment cores have concentrations around 20 times 

higher (320 ng/g dry wt) than the highest levels in Port Jackson (14 ng/g dry wt), whilst the 

highest concentrations found in the Scheldt were more than 500 times the highest found in 

this study. 
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Figure 6.6 – Historical trends of PBDEs sediment cores from Port Jackson, Sydney, NSW (pg/g dry wt) 
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Core Depth (cm) Year BDE-

47 

BDE-

99 

BDE-

100 

BDE-

153 

BDE-

183 

BDE-

191 

BDE-

196 

BDE-

197 

BDE-

207 

BDE-

206 

BDE-

209 

PBDE47:183 ∑PBDEs 

IC3 2 1997 154 160 <2.6 14.5 11 7.8 <2 <2 22 28 1200 340 1600 

 10 1990 78 91 <2.6 <1.6 16 <2 <2 <2 95 50 1400 180 1700 

 30 1971 <25 <13 <2.6 <1.6 <1 <2 <2 <2 <5 <5 97 0 97 

 50 1953 <25 <11 <2.6 <1.6 <1 <2 <2 <2 <2 <2 <5 0 0 

 70 1935 <25 <15 <2.6 <1.6 <1 <2 <2 <2 <2 <2 <5 0 0 

IC5 1 1998 100 79 <2.6 <1.6 <1 <2 <2 29 81 155 14000 179 14000 

 9 1990 73 59 <2.6 <1.6 <1 <2 7.5 5.5 10 10 400 130 560 

 20 1980 54 51 <2.6 <1.6 <1 <2 <2 3.8 5.4 9 320 110 450 

 30 1970 50 49 <2.6 <1.6 <1 <2 <2 12 13 8.6 380 99 510 

 40 1960 30 52 <2.6 <1.6 <1 <2 <2 18 18 <4 <5 82 82 

 60 1943 <25 <4.4 <2.6 <1.6 <1 <2 <2 7.52 <4 <4 <5 0 0 

 80 1925 <25 <2.5 <2.6 <1.6 <1 <2 <2 <2 <5 <5 <5 0 0 

 99 1910 <25 <2.5 <2.6 <1.6 <1 <2 <2 <2 <5 <5 <5 0 0 

BB 4-6 1997 120 67 <2.6 <1.6 <1 <2 <2 <2 15 130 4300 190 4600 

 9.5-10.5 1990 4 25 <2.6 <1.6 <1 <2 <2 <2 28 17 860 29 930 

 19.5-20.5 1985 5 20 <2.6 <1.6 <1 <2 <2 <2 <5 <5 290 25 320 

 38.5-40.5 1975 <25 19 <2.6 <1.6 <1 <2 <2 <2 <5 <5 270 19 290 

 58-60 1960 <25 <10 <2.6 <1.6 <1 <2 <2 <2 <5 <5 <50 0 0 

 88-90 1950 <20 <20 <2.6 <1.6 <1 <2 <2 <2 <5 <5 <90 0 0 

NH 2-4 1996 65 180 19 9.2 21 <2 <2 <2 25 27 500 290 850 

 9-11 1988 260 270 26 <1.6 7.7 <2 <2 <2 16 <5 230 560 810 

 19-21 1975 25 24 <2.6 <1.6 <1 <2 <2 <2 11 <5 120 49 180 

 29-31 1963 <35 <24 <2.6 <1.6 <1 <2 <2 <2 12 <5 170 0 180 

 59-61 1926 <20 <40 <6 <1.6 <20 <2 <2 <2 <5 <5 <50 0 0 

 89-91 1901 <20 <40 <2.6 <1.6 <1 <2 <2 <2 <5 <5 <98 0 0 

 115-118 1859 <20 <30 <2.6 <1.6 <1 <2 <2 <2 <5 <5 <120 0 0 

Table 6.4 Concentrations (pg/g dry wt) of PBDEs in 4 sediment cores from Port Jackson, Sydney, Australia (values to 2 significant figures) 

`
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Of the congeners measured, only 10 congeners were detected in measurable quantities (BDEs 

-47; -99; 100; -153; -183; -191; -197; -206; -207; -209). As already mentioned, BDE-209 was 

the most common BDE congener present. In 13 of the 15 samples containing BDE-209 the 

BDEs -206 and 207 were also detected at 2-10% of the concentration of BDE-209 (a very 

similar ratio to the commercial DecaBDE formulations, (the average congener proportions of 

Saytex 102E and Bromkal 82-0DE are approximately 94% BDE-209, 5.8% BDEs 206 + 207 

(La Guardia et al., 2006)). The dominance of BDE-209 in the majority of samples suggests 

that primarily the DecaBDE technical mix was used in the area surrounding Port Jackson. 

The short BDE-209 doubling times (Table 6.8) between 1970-75 and 1996-98 (mean = 6.5 

years; range = 3.1-10.2 years), particularly on the western side of Port Jackson show the rapid 

increase in BDE-209, with a further indication that the concentrations were still rising at the 

end of the 20
th

 Century and into the 21
st
 Century.  

 

 
Doubling time (years) 

Core Timeframe PBDE47:183 

BDE-

209 

IC3 1971-1997  - 6.5 

IC5 1970-1998 34 6.2 

BB 1985-1997 4 3.1 

NH 1975-1996 -  10 

Table 6.5 Doubling times for PBDE47:183 and BDE-209 

The proportions of BDEs -47, -99, -100 and to a lesser extent -153 and -183 were higher in 

layers corresponding to the 1980s and 1990s in cores IC3 (10 cm (1990) = 7.7% 2 cm (1997) 

= 15% BDE47:183) and NH (9-11 cm (1988) = 62%, 2-4 cm (1996) = 23% BDE47:183) 

suggesting that there was also modest usage of the PentaBDE formulation in the 1980s and 

1990s. However, the concentrations, for the most part, are substantially lower than BDE-209, 

whilst it was only possible to calculate a doubling time for BDE47:183 for IC5 between 1970 

and 1998 (34 years) and BB from 1985-1997 (4 years) as levels did not increase by 

depth/year in any other sediment core as they did for BDE-209, suggesting that any use of 

either the PentaBDE and OctaBDE formulations was not extensive. 

Overall, the pattern in Port Jackson observed over time with respect to PBDEs, particularly 

BDE-209, is very similar to that seen across the world, with sharp increases between the 

1970s and 2000s and similar doubling times to elsewhere, such as in the Great Lakes (Zhu 

and Hites, 2005). Furthermore, the peak levels were found in the top layers of sediment cores, 

whilst surface sediments from 2002-3 in similar areas of Port Jackson were higher still (Toms 
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et al., 2006) strongly suggesting that PBDE levels were still increasing past 2000, assuming 

little spatial variation between sampling locations in this study and the later study of Toms et 

al. (2006). However, in order to assert this theory with more confidence, it would be ideal to 

take new sediment cores to measure PBDE levels in layers from later dates with any spatial 

variation eliminated. However, considering the land-use in the vicinity of Port Jackson the 

levels are comparatively low in comparison with other countries in areas of similar land-use 

such as in China, Japan and the UK. This, coupled with the overall low PBDE levels in soils 

from 2002-3 suggests that the usage of PBDEs in Australia has been considerably lower than 

in other areas of the globe. 
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Chapter 7 

Summary & Conclusions 

PBDEs were used extensively across the world towards the end of the 20
th

 century and very 

early 21
st
 century to flame retard a wide range of products, such as upholstered furniture, 

electrical goods (circuit boards, and products casings), polyurethane foam in furniture, pipes 

and sealants (D'Silva et al., 2004, BSEF, 2003, BSEF, 2007) . 

There has been extensive scientific study to show that the additive nature of the incorporation 

of PBDEs into these products means that they can easily migrate from their products into a 

wide range of environmental compartments, such as dust (Stapleton et al., 2005, Harrad et al., 

2006), indoor (Fromme et al., 2009, Toms et al., 2009b) and outdoor air (Harrad and Hunter, 

2006, Birgul et al., 2012, Hoh and Hites, 2005), soil (Harrad and Hunter, 2006, Hassanin et 

al., 2003, Chen et al., 2012) and sediment (Nylund et al., 1992, Liu et al., 2005, Webster et 

al., 2008). This contamination along with their hydrophobicity and resistance to metabolism 

has led to bioaccumulation in biota and their biomagnification along the food chain (Lim and 

Lastoskie, 2011), with the result that they have been detected in humans (Hearn et al., 2013, 

Toms et al., 2009b) with exponential increases found in breast milk concentrations between 

1972-1999 (Meironyte et al., 1999). 

PBDD/Fs are unintentionally produced, with their main form of release believed to be as by-

products from the manufacture, use and recycling of BFR-containing products, such as 

PBDEs (Hayakawa et al., 2004). A limited number of studies have investigated the presence 

of PBDD/Fs in the environment, which show their presence in dust (Suzuki et al. 2007, Tue 

et al. 2013) and from inside consumer products (Takigami et al. 2008) as well as in air (Wang 

et al. 2008) and soil surrounding industrial areas (Ma et al. 2009). PBDD/Fs have also been 

found in human adipose tissue since the 1970s (Choi et al. 2003b). 

Concerns over this environmental and human exposure to PBDEs and PBDD/Fs has led to an 

increased knowledge of their toxicology with evidence to suggest that both can cause a wide 

range of health problems in humans and animals such as inhibition of neurodevelopment, 

endocrine disruption, estrogenic toxicity, immune system disruption as well as various 

cancers (D'Silva et al., 2004) 



 

154 
 

This evidence led to legislative action where Penta- and Octa-BDE were banned within the 

EU in 2004 (Birnbaum and Staskal, 2004), and Australia in 2005 (Toms et al., 2009b) with 

voluntary bans in the U.S (Lagalante et al., 2009) to prevent the new use and manufacture of 

these commercial formulations as well as being named as persistent organic pollutants 

(POPs) under the Stockholm Convention (Stockholm Convention, 2009). Restrictions were 

also placed on Deca-BDE in the EU in 2008 (Deffree, 2008). 

Due to their addition to so many consumer goods, PBDE-containing products are more 

densely populated in urban areas, leading to evidence to suggest that cities themselves are 

sources to the environment (Wilford et al., 2004, Harrad and Hunter, 2006b). Studies have 

also shown that various chemical and thermal industrial processes are sources of their release 

into the environment (Cetin and Odabasi, 2008, Chen et al., 2006), whilst there is also much 

evidence to suggest that PBDEs can be converted to PBDD/Fs during these thermal processes 

(Weber and Kuch, 2003, Duan et al., 2011). The recent legislative restrictions of PBDEs 

mean their use and application as flame retardants is likely to diminish. This suggests that the 

significance of combustion process as sources of PBDD/Fs is likely to increase as a result. 

In light of the above evidence, the principal aim of this thesis was to gain a greater 

understanding of the behaviour of PBDEs and PBDD/Fs within the integrated steel-making 

process – specifically the iron ore sintering process – as well as investigating the spatial and 

temporal distribution of PBDEs in the environment.  

The aims and objectives of this thesis were achieved as summarised below: 

 Measurement of PBDEs in a stack gas emission sample along with electrostatic 

precipitator (ESP) dust samples from the iron ore sintering process revealed high 

levels of PBDE emissions. The stack emission gas sample contained 140 ng/m
3
 of 

∑PBDEs17:154 whilst ESP dust contained an average of 32000 ng/kg ∑PBDEs17:154 

(range 8200-110000 ng/kg). Further analysis of the raw sinter mix (RSM) and its 

individual components revealed substantial contamination of the raw materials used 

within the sintering process with average ∑PBDEs17:154 concentrations in RSM of 

11000 ng/kg. Analysis of the individual components, combined with calculations 

based on tonnages provided by Tata Steel demonstrated that PBDE contamination in 

the RSM came from one or more of the following: iron ores, reverts and fuels. This 
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demonstrated a substantial PBDE input in from the raw materials that had previously 

been assumed to be negligible (Wang et al., 2010b). 

 Mass balance calculations of the total PBDE input and output into various sinter beds 

revealed that PBDE outputs were up to 96% lower than inputs, suggesting that PBDEs 

were destroyed in the sintering process. However, the measurement of PBDD/Fs in 15 

stack gas emission samples confirmed the sintering process in the UK as a source to 

the environment, with an average concentration of 0.14 ng WHO-TEQ/m
3
 meaning 

that conversion of PBDEs to PBDD/Fs during the sintering process was a possibility. 

PBDD/F concentrations in all samples were lower than those found by Du et al. 

(2010a), although the congener profiles were very similar with PBDFs predominating 

over PBDDs. 

 Experiments were conducted using a sinter pot (SP) apparatus designed to mimic the 

sintering process on a laboratory scale basis. These revealed that formation of PBDEs 

within the sintering process is unlikely as the increase of availability of bromine 

produced no noticeable increase in PBDE concentrations, and moreover mass balance 

calculations revealed similar reductions in overall PBDE content for experiments 1, 2 

(50 mg Br
-
 /kg RSM), 3 and 5 (both 150 mg Br

-
 /kg RSM) at 81%, 87%, 77% and 

97% respectively. Furthermore, addition of a 100 µg mixture of Penta- and Deca-

BDE commercial formulations to the RSM (experiment 4) produced no significant 

increases in PBDD/F output indicating that PBDEs are not precursors of PBDD/Fs in 

the sintering process. 

 However, the exponential increase of PBDD/F output through experiments 1, 2 and 3 

(0.04, 0.14, 2.6 ng WHO-TEQ/kg RSM sintered) as a result of increasing levels of Br
-
 

suggests strongly that de novo synthesis of PBDD/Fs occurs in the sintering process, 

most likely through the same “trace chemistry of fire” pathway as is hypothesised for 

PCDD/Fs (Bumb et al., 1980). This also offers a likely explanation for the 

consistently lower PBDD/F concentrations in comparison to PCDD/Fs in the 

production-scale process, where KCl is added in “activated sintering” (Nzihou et al., 

2005) whilst only natural levels of Br
-
 are present.  

 Using passive air samplers (PAS), measurements of PBDEs were made in ambient air 

at 5 locations surrounding Scunthorpe Sinter Plant (SSP). The resulting data 

highlighted a source of PBDEs to the atmosphere within the integrated steel works. 

The concentrations of PBDEs in air downwind from SSP indicated a significantly 
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higher occupational exposure through inhalation of air (1.9 ng/hour) than in the 

upwind and control sites (0.47 ng/hour) as well as ambient air from the West 

Midlands (0.17 ng/hour). Principal component analysis of all samples in this section 

of the study showed that ambient air concentrations in the site directly downwind 

from SSP were dominated by congeners indicative of the Penta-BDE formulation. 

This, combined with the elevated concentrations at all sites downwind from various 

integrated steel-making processes, highlighted (in spite of the overall PBDE reduction 

seen in the sintering process) the steel-making process to be a source of PBDEs to the 

atmosphere.  

 The deployment of six monthly PAS at 8 sites along a transect through Birmingham 

city centre, UK showed that there is an “urban pulse” with concentrations generally 

higher in the city centre than in the more rural locations. This pulse was of a similar 

strength to that measured by Harrad and Hunter (2006) approximately 10 years earlier 

for PBDEs28:154. Whilst atmospheric BDE-209 concentrations were elevated in the 

city centre, the “urban pulse” was less pronounced than for the lower brominated 

congeners. This may to be due to the greater proportion of domestic sources of BDE-

209 in suburban as opposed to city centre sites (where industrial/commercial 

buildings are more prevalent), as BDE-209 was used widely in upholstered furniture. 

Moreover cities contain a wider range of consumer products likely to have been flame 

retarded by a variety of options. The measurement of PBDEs in a soil sample from 

each site also demonstrated the role of cities as a source of PBDEs with Digbeth 

containing 21000 pg ∑PBDEs/g OC whilst levels at sites further away were 3600 

pg/g OC (Worcester) and 2300 pg/g OC (Droitwich). 

 Temporal trends in ambient air concentrations since the ban of the Penta-BDE 

formulation were investigated at an urban monitoring site in Edgbaston, Birmingham. 

Average concentrations in this study were found to be significantly lower than those 

detected by Harrad and Hunter (2006) at the same site. This suggested that at this 

location, Penta-BDE based congener levels have decreased since their ban in the UK. 

These findings were in agreement with those of Birgul et al. (2012) who found a 

similar trend in other urban (but not rural) locations around the UK.  

 The evidence for an overall decrease in UK concentrations of PBDEs associated with 

the Penta-BDE formulation was even more pronounced in a comparison of 

concentrations between soil samples taken in 2013 (average: 3600 pg ∑PBDEs17:183/g 
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OC) and archived soil samples from 2004-05 (average: 31000 pg ∑PBDE/g OC). This 

was true for BDE-209 also whose average levels were 100000 pg/g OC in 2004-05 

and 11000 pg/g OC in 2013. Although samples were taken from different UK 

locations in both studies, the relative proportion of urban and rural locations in each 

sample set was similar. Combined, these data add to the weight of evidence that 

points to a decline in environmental levels of PBDEs since recent restrictions in the 

UK for all congeners measured.  

 Measurement of PBDEs in both soil and sediment cores from Australia revealed that 

PBDE levels in the Australian environment are much lower than other countries. Soil 

samples taken in 2003 were more comparable to those 2013 UK samples than those 

from 2004-05. Measurement of radiometrically dated sediment cores from Port 

Jackson, Sydney suggested that PBDE levels were still rising at the end of the 20
th

 

century (supported by measurements of surface sediments from similar locations in 

2003 which were found to be higher (Toms et al., 2006)). This meant that Australian 

soils were expected to have been taken around the time of peak environmental 

contamination with PBDEs, indicating that PBDE usage (and therefore its presence in 

the environment) is less pronounced than in the UK, Europe, Asia and North America.  

 Concentrations in Australian soil revealed elevated levels in urban and industrial 

areas. Urban, industrial, agricultural and remote soils appeared to be influenced by 

different congener profiles. In soils from industrial locations, BDEs -47 and -99 

contributed 49% of ∑PBDE concentrations on average, with a further 42% 

contributed by BDE-209, showing an equal influence of Penta- and Deca-BDE at 

such locations. Urban soils demonstrated a similar pattern, although with a greater 

influence of BDE-209. Remote soils were almost completely dominated by BDE-209. 

This pattern was also seen in the UK, with urban samples influenced by both Penta- 

and Deca-BDE, whilst samples away from the city were dominated by BDE-209. 

Agricultural soils from Australia were the only samples to show an influence of the 

Octa-BDE formulation perhaps as a result of sludge-treatent or some alternative 

unknown source activity.  
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7.2 Research gaps and future perspectives 

Whilst understanding of the environmental sources, fate, and behaviour of PBDD/Fs and (in 

particular) PBDEs has improved over the last fifteen years, there remain significant research 

gaps. With this in mind, further research is required to: 

a) Attempt to locate the source(s) of PBDE contamination within the iron ore sintering 

process. There remains substantial uncertainty about where the contamination of raw 

materials originates. Each individual RSM component should be traced back to its 

point of origin to attempt to determine at what stage(s) the contamination occurs. 

b) Gain a fuller understanding of the source of PBDD/F emissions within the sintering 

process as well as investigating emissions of mixed bromo- chloro- dioxins and furans 

(PXDD/Fs). The SP should be utilised for further experiments whereby different 

levels of both Br
-
 and Cl

- 
are added to the inputs to examine the relative formation of 

PCDD/Fs, PBDD/Fs and PXDD/Fs. 

c) Elucidate if urban and suburban areas closest to the steel works are affected by PBDE 

emissions from the SSP. Ambient air in the proximity of the SSP displays elevated 

concentrations of PBDEs when compared to the West Midlands. However no work 

has been done to determine whether this is true of towns closer to SSP, and thus 

ambient air and soils from populated areas close to SSP should also be monitored. 

d) Gain an understanding on the impact of PBDD/F emissions on the exposure of both 

workers and the public. PBDD/Fs should be monitored both within the vicinity of the 

steel-works and in populated areas in close proximity. This would be more difficult to 

do than for PBDEs and would require high volume samplers in order to provide 

sufficient sample volumes for analysis. 

e) Improve understanding of temporal trends in concentrations of PBDEs in ambient air 

and soil within the UK. Regular, on-going monitoring of PBDE concentrations in 

ambient air should be made at urban and rural locations to evaluate whether PBDEs 

are continuing to decrease in response to legislative restrictions. Such monitoring 

should also study seasonal variations in atmospheric concentrations of PBDEs. Of 

particular interest is the potential photolytic degradation of BDE-209 in spring and 

summer, as well as increased concentrations of lower brominated congeners in 

warmer periods as a result of volatilisation from products/environmental surfaces.. 

Regular monitoring of soils from the same locations would provide additional 

evidence of temporal trends.  
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f) Determine whether PBDE levels in Port Jackson, Sydney are still increasing. Fresh 

sediment cores should be taken in a variety of locations to determine recent temporal 

trends in response to legislative restrictions. 

g) Determine whether PBDE levels in Australian soils have decreased in the same 

manner as in the UK. A sampling campaign of a similar nature should be undertaken 

to determine how PBDE levels have changed since the Australian soils were taken – 

one year before the ban of Penta- and Octa-BDE. 
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Appendix 1. Concentrations of PBDEs within the vicinity of 

Scunthorpe Sinter Plant 

Concentration OF PBDEs in SSP in pg/m
3
 

BS BS1 BS2 BS3 BS4 

BDE47 17 26 <0.3 2.7 

BDE85 0.33 3 1.9 <0.74 

BDE99 8.1 4 8.9 11 

BDE100 0.4 9.9 0.84 0.83 

BDE153 1.7 2.1 1.7 3 

BDE154 <0.89 1 <0.89 0.9 

BDE183 <0.5 2.2 <1.5 2.8 

BDE209 700 340 170 870 

∑PBDEs 730 390 180 890 

LTOO LTOO1 LTOO2 LTOO4  

BDE47 93 36 24  

BDE85 3.6 15 3.5  

BDE99 110 65 81  

BDE100 7.7 8 3.3  

BDE153 13.3 9 4.2  

BDE154 2.0 1.9 1.1  

BDE183 <1.5 2 2.1  

BDE209 3000 2200 1600  

∑PBDEs 3200 2300 1700  

SLT SLT2    

BDE47 8.5    

BDE85 <0.74    

BDE99 7.3    

BDE100 0.77    

BDE153 1.3    

BDE154 1.5    

BDE183 1.2    

BDE209 2200    

∑PBDEs 2200    

ESR ESR1 ESR2   

BDE47 48 70   

BDE85 <0.75 7.7   

BDE99 26 94   

BDE100 2.3 10   

BDE153 2 17   

BDE154 1.4 1.3   

BDE183 <1.5 1.3   

BDE209 800 4100   

∑PBDEs 880 4300   
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DLCO DLCOO1 DLCOO2 DLCOO3 DLCOO4 

BDE47 1200 1500 520 180 

BDE85 72 180 23 6.5 

BDE99 1300 2100 300 310 

BDE100 84 170 17 12 

BDE153 170 360 51 47 

BDE154 35 86 12 4 

BDE183 2.8 2.6 4 15 

BDE209 970 2200 290 1100 

∑PBDEs 3800 6600 1200 1700 

AT AT1 AT2 AT3  

BDE47 11 6.1 2  

BDE85 2.1 0.37 0.64  

BDE99 1.8 0.15 6.2  

BDE100 <0.45 <0.45 0.51  

BDE153 <0.9 1 0.67  

BDE154 <1.1 0.61 0.65  

BDE183 <0.5 <0.5 1.74  

BDE209 530 390 1400  

∑PBDEs 550 400 1400  
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Appendix 2: PBDD/Fs chromatograms from Sinterpot Study, 

Experiment 1
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Appendix 3. Concentrations of PBDEs in ambient air samples 

from the West Midlands, UK 

Worcester 

Jun-

Jul 

Jul-

Aug Aug-Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

BDE-17 0.4 1.5 0.8 <0.21 <0.21 <0.21 

BDE-28 0.5 4.2 0.3 0.9 <0.23 1.3 

BDE-47 <0.3 2.3 1.3 2.4 4.5 0.8 

BDE-66 <0.45 <0.45 <0.45 <0.45 <0.45 <0.45 

BDE-100 1 <0.45 <0.45 2.2 <0.45 <0.45 

BDE-99 <0.49 <0.49 <0.49 3.5 <0.49 <0.49 

BDE-85 <0.74 <0.74 <0.74 <0.74 <0.74 <0.74 

BDE-154 1.4 2.6 1.5 <0.89 <0.89 <0.89 

BDE-153 1.7 <1.1 2.3 <1.1 <1.1 <1.1 

BDE-183 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 

BDE-209 <2.2 58 13 82 110 300 

∑PBDEs 5 69 19 91 110 300 

∑tri-heptaPBDEs 5 11 6.2 9 4.5 2.1 

Droitwich 

Jun-

Jul 

Jul-

Aug Aug-Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

BDE-17 0.6 2.4 <0.21 0.3 0.7 <0.21 

BDE-28 0.9 6.3 0.5 0.5 1.8 2 

BDE-47 <0.3 6.2 1.1 0.6 0.9 1.6 

BDE-66 <0.45 <0.45 <0.45 <0.45 <0.45 <0.45 

BDE-100 <0.45 <0.45 <0.45 <0.45 <0.45 <0.45 

BDE-99 <0.49 <0.49 <0.49 1.3 <0.49 <0.49 

BDE-85 <0.74 <0.74 <0.74 <0.74 <0.74 <0.74 

BDE-154 <0.89 8.7 <0.89 <0.89 <0.89 <0.89 

BDE-153 <1.1 9.5 <1.1 <1.1 <1.1 <1.1 

BDE-183 <1.5 11 <1.5 <1.5 <1.5 <1.5 

BDE-209 <2.2 59 56 <2.2 56 380 

∑PBDEs 1.5 100 58 2.7 59 380 

∑tri-heptaPBDEs 1.5 44 1.6 2.7 3.4 3.6 
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Bromsgrove 

Jun-

Jul 

Jul-

Aug Aug-Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

BDE-17 7.9 0.8 1.5 <0.21 <0.21 <0.21 

BDE-28 9.4 7.4 1.9 <0.23 1.3 1.5 

BDE-47 18 1.3 2.8 0.9 4.5 1.6 

BDE-66 4.4 2 <0.45 <0.45 <0.45 <0.45 

BDE-100 15 <0.45 <0.45 <0.45 <0.45 <0.45 

BDE-99 36 <0.49 <0.49 <0.49 <0.49 <0.49 

BDE-85 6.7 <0.74 <0.74 <0.74 <0.74 <0.74 

BDE-154 20 4.6 <0.89 <0.89 <0.89 <0.89 

BDE-153 31 8.2 <1.1 <1.1 <1.1 <1.1 

BDE-183 29 <1.5 <1.5 <1.5 <1.5 <1.5 

BDE-209 1500 210 <2.2 120 63 350 

∑PBDEs 1700 230 6.2 120 69 350 

∑tri-heptaPBDEs 180 24 6.2 0.9 5.8 3.1 

Bournville 

Jun-

Jul 

Jul-

Aug Aug-Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

BDE-17 6.4 1 3.3 0.4 <0.21 <0.21 

BDE-28 6.4 6.8 4.4 1.5 1.4 1.5 

BDE-47 11 6.8 7.2 1.9 3.7 0.5 

BDE-66 6.6 5.1 3.7 <0.45 <0.45 <0.45 

BDE-100 10 <0.45 1.5 <0.45 <0.45 <0.45 

BDE-99 13 <0.49 6.4 1.8 <0.49 <0.49 

BDE-85 11 <0.74 3.8 <0.74 <0.74 <0.74 

BDE-154 18 <0.89 5 <0.89 <0.89 <0.89 

BDE-153 26 <1.1 7.8 1.5 <1.1 <1.1 

BDE-183 21 <1.5 8.8 <1.5 <1.5 <1.5 

BDE-209 <2.2 140 58 27 120 510 

∑PBDEs 130 160 110 34 130 510 

∑tri-heptaPBDEs 130 20 52 7.1 5.1 2 
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Edgbaston 

Jun-

Jul 

Jul-

Aug Aug-Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

BDE-17 42 1.3 0.3 <0.21 <0.21 0.3 

BDE-28 26 3.4 0.9 <0.23 1.4 0.8 

BDE-47 31 5.8 2 2.1 4 0.4 

BDE-66 <0.45 4.5 <0.45 <0.45 <0.45 <0.45 

BDE-100 30 <0.45 1.3 <0.45 <0.45 <0.45 

BDE-99 43 <0.49 1.8 <0.49 <0.49 <0.49 

BDE-85 <0.74 <0.74 <0.74 <0.74 <0.74 <0.74 

BDE-154 57 <0.89 9.4 7.3 <0.89 <0.89 

BDE-153 62 <1.1 1.9 <1.1 <1.1 <1.1 

BDE-183 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 

BDE-209 <2.2 180 

SAMPLING
a
 

ERROR 92 26 270 

∑PBDEs 290 200 - 100 31 270 

∑tri-heptaPBDEs 290 15 18 9.4 5.4 1.5 

Digbeth 

Jun-

Jul 

Jul-

Aug Aug-Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

BDE-17 25 1 0.3 2.5 <0.21 <0.21 

BDE-28 26 2 0.5 4.1 1.8 0.9 

BDE-47 27 3.9 1.9 10 3.1 1.3 

BDE-66 16 0.8 <0.45 2.1 <0.45 <0.45 

BDE-100 14 <0.45 0.6 <0.45 <0.45 <0.45 

BDE-99 27 1.7 0.9 6.1 <0.49 <0.49 

BDE-85 <0.74 <0.74 <0.74 <0.74 <0.74 <0.74 

BDE-154 42 2 <0.89 2.9 <0.89 3.2 

BDE-153 70 3.7 <1.1 6.5 <1.1 1.7 

BDE-183 57 <1.5 <1.5 <1.5 <1.5 11 

BDE-209 <2.2 34 97 180 170 360 

∑PBDEs 300 49 100 210 170 380 

∑tri-heptaPBDEs 310 15 4.2 34 4.9 18 

 

a
 GFF not present upon collection of samplers. Therefore particulate phase (and thus BDE-209) not measured  
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Sutton Coldfield 

Jun-

Jul 

Jul-

Aug Aug-Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

BDE-17 3.7 0.9 0.9 <0.21 <0.21 <0.21 

BDE-28 2.7 3.9 1.3 <0.23 1 1.3 

BDE-47 2.5 8.3 4 2.2 0.7 0.6 

BDE-66 2.1 <0.45 <0.45 <0.45 <0.45 <0.45 

BDE-100 1.3 <0.45 1.9 <0.45 <0.45 <0.45 

BDE-99 3.5 11 3.3 <0.49 <0.49 <0.49 

BDE-85 4.5 <0.74 <0.74 <0.74 <0.74 <0.74 

BDE-154 14 9.1 <0.89 3.8 <0.89 <0.89 

BDE-153 11 <1.1 <1.1 4.1 <1.1 <1.1 

BDE-183 <1.5 <1.5 <1.5 17 <1.5 <1.5 

BDE-209 17 370 16 48 120 220 

∑PBDEs 62 400 27 75 120 220 

∑tri-heptaPBDEs 45 33 11 27 1.7 1.9 

Tamworth 

Jun-

Jul 

Jul-

Aug Aug-Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

BDE-17 15 <0.21 0.5 1.8 <0.21 0.5 

BDE-28 9.9 2.2 1.2 2.3 <0.23 1.4 

BDE-47 14 6.1 3.3 5.1 1.8 0.5 

BDE-66 <0.45 <0.45 <0.45 1.9 <0.45 <0.45 

BDE-100 8.1 2.2 1.8 <0.45 <0.45 <0.45 

BDE-99 11 5 3.7 3.9 <0.49 <0.49 

BDE-85 <0.74 <0.74 <0.74 <0.74 <0.74 <0.74 

BDE-154 <0.89 <0.89 <0.89 2.2 <0.89 <0.89 

BDE-153 <1.1 <1.1 14 3.9 <1.1 <1.1 

BDE-183 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 

BDE-209 <2.2 97 18 47 38 440 

∑PBDEs 58 110 43 68 40 440 

∑tri-heptaPBDEs 58 16 25 21 1.8 2.4 
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Introduction  
In recent years, several studies have been published showing that the steel industry could be a potential source 

of Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) to the 

environment
1, 2, 3

. Amongst the processes involved in steelmaking, the EAF (Electric Arc Furnace) steelmaking 

process was pointed out as the main potential source of PBDEs and PBDD/Fs from the steel industry. For 

instance, Odabasi et al. have highlighted the recycling of scrap metal containing PBDE impurities as a potential 

source of PBDEs in the environment
3
. Wang et al. measured the emissions of PBDEs and PBDD/Fs in both 

carbon steel EAFs and stainless steel EAFs in Taiwan showing that carbon steel EAFs exhibited emission 

factors of PBDEs and PBDD/Fs three to eighteen times higher than those of stainless steel EAFs owing to the 

fact that the production of stainless steel requires scrap with fewer impurities than carbon steel
2
. In the same 

study, the iron ore sintering process was highlighted, for the first time, as a potential source of PBDEs in the 

environment because PBDEs (sum of 30 congeners)  were found at higher concentrations (ca. 35 ng / m
3
)  than 

EAFs (ca. 15 ng / m
3
). Based on these results, it was hypothesized that PBDEs could be formed in the sintering 

process through similar formation conditions than PCDD/Fs (ie. de novo formation), however the bromide 

content and the potential PBDE content of raw materials were not measured. The presence of PBDEs in sinter 

plant emissions could also have implications with regard to the mechanism of formation of PBDD/Fs in iron ore 

sintering since the formation of PBDFs from PBDEs requires only an intra-molecular elimination of Br2 or HBr, 

which occur within the temperature range 510 to 630ºC
4
. Considering that the mechanisms involved in PBDEs 

and PBDD/Fs formation in iron ore sintering remains unclear, the aim of this study was to investigate into more 

details their potential formation in sintering through a series of laboratory sinter pot experiments and the 

measurement of PBDEs in raw material inputs and emissions from commercial sinter plants operated by Tata 

Steel in the UK. 

 

Materials and methods  
The sinter pot experiments were performed using a laboratory sinter pot which has a raw sinter mix capacity of 

1.0 kg, with a bed diameter and height of 100 and 150 mm, respectively (Fig. 1). The raw sinter mix was 

charged as micro-pellets onto a layer of hearth material, approximately 25 mm thick, consisting of sinter cake 

pieces supported on a 3-mm thick stainless steel mesh. On each day of operation, sufficient raw mix was 

prepared for single test firing by mixing the raw materials and additives in a drum mixer/pelletiser together with 

water to give the required moisture content (6%-wt).  The ore blend contained a base mixture of several high-

grade iron ores, coke breeze (3.3%-wt) as fuel and additions of limestone and olivine. In the experiments, the 

potential for PBDE and PBDD/F formation was investigated by adding medium and high concentrations of 

potassium bromide (KBr) and PBDE Technical mixtures (both Penta- and Deca-BDE). PBDEs and PBDD/Fs 

were measured in the raw sinter mix and sinter product at the start and end of each experimental run, and also in 

the volatile emissions collected on PUF plugs. 

 

Table 1 - Sinter pot experimental conditions to study PBDE and PBDD/F formation in iron ore sintering. 

Experiment 1 "Base Case" – Standard Raw Sinter Mix / no KBr / no PBDE technical mixture  

Experiment 2 Standard Raw Sinter Mix  + 74.5 mg/kg KBr 

Experiment 3 Standard Raw Sinter Mix  + 224 mg/kg KBr 

Experiment 4 Standard Raw Sinter Mix  + 100 µg/kg PBDE Technical Solutions (Penta / Deca) 

Experiment 5 Standard Raw Sinter Mix  + 224 mg/kg KBr + 100 µg/kg PBDE Technical Solutions 

(Penta / Deca) 
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Fig. 1 - A schematic diagram of the laboratory sinter pot apparatus 

 

PBDEs were also measured in a series of raw material input and output samples taken from two commercial 

scale sintering plants in the UK including 6 raw sinter mix (ie. input samples); 9 electrostatic precipitator (ESP) 

dusts ; 6 sinter product samples and 1 stack emission sample (output samples). All samples, except for the stack 

emissions and the sinter pot PUF samples underwent pressurized liquid extraction PLE as previously used by 

our research group
5
. Stack emissions and sinter pot PUF samples were extracted using PLE according to Tata 

Steel ISO 17025 method accredited for PCDD/F analysis. For these samples, 90% (by volume) was retained for 

PBDD/F analysis, whilst the remaining 10% was used for PBDE analysis. Samples were measured for tri-hexa- 

PBDEs using GC-EI/MS
6
. All PBDD/F samples were analysed using HRGC/HRMS for tetra-hexa PBDD/Fs.  

 

Results and discussion 

Analysis of input / output materials used in commercial sinter plants.  

The results of the PBDE content of the initial raw mix entering the sintering process for five different beds are 

shown in Table 2 and revealed a substantial input of PBDEs, with the sum of the measured congeners ranging 

from 2,600-20,000 ng/kg. For Bed 2272, PBDE emissions were measured and a total concentration of 96 ng/m
3 

was found for the sum of the 6 congeners analysed. This value was used to calculate a mass balance by 

comparing the total PBDE input to the total PBDE output (ie. ESP dust + Sinter Product + Emissions), for each 

bed. The results of the mass balance are depicted in Fig. 2 and showed a total input of 600-1200 g PBDE per 

sintering bed (Fig. 2). In comparison, the total PBDE outputs were estimated only at 33-150 g PBDE per 

sintering bed, which represented a 75-97% reduction of the total input. This reduction showed that the PBDEs 

that were already present in the raw materials prior to sintering were destroyed during the process. 
 

 

Table 2 - PBDE concentrations (ng/kg) of key congeners in raw sinter six samples (ie. input) from sinter 

plants in the UK. 

 
 Bed 2258 Bed 2259 Bed 2265 Bed 2272 Bed 719

 

BDE-28 390 190 230 180 38 

BDE-49 2000 940 1100 940 180 

BDE-47 3800 1900 2300 2300 700 

BDE-99 10000 5100 6500 5600 1050 

BDE-100 1400 760 200 710 270 

BDE-153 2600 1300 1700 1400 350 

∑tri-hexaPBDEs
a
 20000 10000 12000 11000 2600 

a
Sum of individual congeners may not be the same as ΣPBDEs due to rounding to 2 

significant figures. 
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Fig. 2 - Measured PBDE inputs and outputs (g) in sinter plants in the UK.  

 

Analysis of PBDD/F emissions in sinter plants in the UK   

A series of emission samples from UK sinter plants were analysed for their PBDD/F concentrations, and the 

results were compared with the emissions of their chlorinated homologues (PCDD/Fs). The results are presented 

in Fig. 3. For this study, PBDD/F emissions concentrations were reported as WHO-TEQ emission 

concentrations, by assuming that PBDD/F and PCDD/F would have identical toxic equivalency factors (WHO-

TEFs). Fig. 3 shows WHO-TEQ concentrations for both types of compounds indicating that PBDD/Fs were 

detected in quantifiable levels in all emission samples within the range 0.03 - 0.39 ng WHO-TEQ/m
3
. These 

concentrations were substantially lower than those of their chlorinated analogues (0.39 - 1.9 ng WHO-TEQ/m
3
). 

This suggests that, although PBDD/Fs are emitted from the sintering process, the magnitude of these emissions 

was substantially lower than that of the PCDD/Fs (ie. less than 10%). It is believed that PBDD/F emissions are 

significantly lower than PCDD/F emissions because soluble bromide concentrations in the raw sinter mix are 

substantially lower (typically below 5 mg / kg) than soluble chloride concentrations (typically within the range 

20 to 80 mg/kg). 

 

 

Fig. 3 - WHO-TEQ concentrations (ng WHO-TEQ/ m
3
) of PCDD/Fs and PBDD/Fs in sinter plant stack 

emission samples. 

 

Results of sinter pot tests experiments -   

The results obtained with regard to PBDD/Fs in sinter pot experiments are shown in Fig. 4. The results are 

expressed in ng WHO-TEQ / kg raw sinter mix for each experiment. As may be seen from Fig. 4, very low 

PBDD/F emissions were observed in experiment 1 where no KBr was added to the raw sinter mix. However, a 

significant increase in PBDD/F emissions was observed in experiments 2, 3 and 5 when KBr was added to the 

raw sinter mix. These results showed that PBDD/Fs can be formed in the iron ore sintering process, provided 

that sufficient soluble bromide is available in the raw mix (ie. non–standard conditions), following a similar 

pathway to their chlorinated homologues (ie. de novo formation). Interestingly, no significant increase in 

PBDD/F emissions was observed in experiment 4 where large amounts of PBDE technical mixtures were added 

to the raw sinter mix. This result ruled out the possibility that PBDD/Fs could be formed via PBDEs as 

precursors in iron ore sintering, although the conversion of PBDEs into PBDFs has been demonstrated 

previously in laboratory experiments using pure chemical conmpounds
4
.   
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Fig. 4 – Mean tetra- through to hexa-PBDD/Fs amounts (expressed in WHO-TEQ / kg raw sinter mix) 

formed during the sinter pot experiments. 
 

The results obtained with regard to PBDEs in sinter pot experiments are shown in Fig. 5. As shown in Fig. 5b, 

the addition in increasing amounts of KBr to the raw sinter mix did not result in a significant rise in PBDE 

emission concentrations in experiments 2 and 3, suggesting that there was no formation of PBDEs in the iron 

ore sintering following a pathway similar to the formation of PCDD/Fs and PBDD/Fs (ie. de novo formation). 

For the sinter pot experiments, PBDE mass balances were also carried out by comparing the total PBDE input 

(ie. raw sinter mix) to the total PBDE output (ie. Sinter product + emissions). As shown in Fig. 5a, the results 

indicated that the addition of KBr did not result in any increase in PBDE output with percentage decreases of 

90%, 79% and 92%, respectively. Similarly, the addition of the penta- to the raw mix resulted in very high 

percentage reduction in PBDEs (94% and 92%). This result suggested strongly that PBDEs are actually 

destroyed rather than formed in the sintering process due to the consistent fall in PBDE output for all the 

experiments. 
   

 
Fig.  5 – Total input and output of PBDEs (ng) per kg of raw mix used; and 5b total PBDE emissions (ng) 

per kg of raw mix used in sinter pot tests 
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SUMMARY OF ANALYTICAL METHODS AND ASSOCIATED QUALITY 

ASSURANCE/QUALITY CONTROL (QA/QC) PROCEDURES FOR SEMI-VOLATILE 

ORGANIC COMPOUNDS 

 

Prepared by: Dr. Stuart Harrad, 

Organic Pollutants Research group, 

Division of Environmental Health & Risk Management, 

University of Birmingham 

 

1.  Overview 

This document describes the generically applicable methods and procedures that all researchers within 

the group must follow to ensure the reliability of their analytical data. Methods that apply only to a 

specific group of pollutants are not covered here. If you have any questions about anything relating to 

analysis, please ask your supervisor or an experienced member of the Research Group for advice.  

 

2.  Instrument Calibration 

A full 5-point calibration must be conducted at the beginning of any measurement campaign. The 

exact concentrations and content of the calibration standard mixes will vary according to the pollutant 

class being measured but as a guide, the table below gives a typical example. 

 

Compound Standard  

A     Concn 

(pg µ1-1) 

Standard  

B     Concn 

(pg µ1-1) 

Standard  

C     Concn 

(pg µ1-1) 

Standard  

D     Concn  

(pg µ1-1) 

Standard  

E      Concn 

(pg µ1-1) 

All “native”
1
 

standards 

Internal 

standards, 

Sampling 

Evaluation 

standards, 

recovery 

determination 

standards 

20 

 

200 

50 

 

200 

200 

 

200 

500 

 

200 

1000 

 

200 

                                                             
1
 “native” refers to the 

12
C or 

1
H isotope of the target compound. The term is used to distinguish it from the 

13
C 

or 
2
D (deuterated) isotope used as the internal standard.  
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These standards are used to calculate relative response factors (RRFs) for each of the “target” 

compounds. The RRF is defined as the instrument response for a unit amount of target 

pollutant relative to the instrument response obtained for the same amount of the internal 

standard (IS). For example, if the response of a unit amount of the target compound is 1.5 

times that for the same amount of the internal standard, the RRF =1.5. It is calculated as in 

equation 1.  

NAT

IS

IS

NAT

C

C

A

A
RRF   (equation 1) 

 

where ANAT is the peak area for the “native” compound in the standard; AIS is the peak area of the 

internal standard in the standard; CNAT is the concentration of the “native” compound in the standard; 

and CIS is the concentration of the internal standard in the standard. 

 

Calculation of RRFs for each of the standards A-E, should reveal them to be essentially identical in 

each standard. Ideally, the relative standard deviation (i.e. ( 1n /average) x 100%) of RRFs for a 

given target compound should not exceed 10%. If they do, consult your supervisor before proceeding. 

 

A full 5 point calibration typically only needs to be conducted infrequently, or when an on-going 

accuracy check proves unsatisfactory. The average RRF for any subsequent full calibration should be 

within   10% of the average RRF obtained for the 1
st
 5-point calibration. If they do not, then you 

must consult your supervisor immediately.  

 

Before each batch of samples are analysed on the GC/MS, one of the calibration standards (usually 

Standard C, but others are fine) must be run. The RRFs obtained from this analysis must be within 

25% of the RRFs obtained for that standard in the initial 5-point calibration. If they do not, please 

consult your supervisor before proceeding. At the end of each batch of samples, the same calibration 

standard must be run. The RRFs obtained from this analysis must be within  25% of the RRFs 

obtained for that standard in the initial 5-point calibration. The RRFs that must be used for calculating 

concentrations in samples in that batch will be an average of those obtained for the 2 standards run for 

that batch. 

 

3. GC/MS tuning tips 

At the start of each session, an autotune should be run. The results should be printed out and a record 

kept. Following the autotune (which should detect any major problems with the GC/MS), a manual 

tune must be conducted. The purpose of the manual tune is to maximise sensitivity and instrument 
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performance for the particular group of compounds you are targeting. As a general rule, while during 

tuning the detector voltage should be set at 200V, you should set the detector voltage to 450V (i.e. 

that necessary to detect compounds in the concentration range 10-1000 pg/component) in your 

acquisition file used when running standards and samples. You should also tune with the oven 

temperature at a temperature similar to that at which your target compounds will elute form the GC 

column. Typically for a DB-5 type column it will be 250
o
C, but may be lower for other columns (DO 

NOT EXCEED THE MAXIMUM ALLOWABLE ISOTHERMAL OPERATING TEMPERATURE 

FOR THE COLUMN). You should choose the m/z values most appropriate to the mass range of the 

pollutants which you are targeting – your supervisor will be able to advise you on the best choice. The 

autotune uses m/z 69, 219, and 502 – this is not appropriate for PCBs for example, which lie in the 

mass range 256 to 394, and the manual tune should be based on tuning masses 219, 264, and 414.  

 

 

4. Determination of Internal Standard Recoveries 

It is important to note that use of the internal standard quantification method means that NO 

correction of concentrations for recovery is required. However, it is important that recoveries of 

internal standards are calculated for each sample as a QA/QC measure. Typically such recoveries 

should be around 70%, but they may routinely fall in the range 30%-150%. If values exceed 150%, 

the sample extract should be re-analysed and the recovery recalculated. If recoveries are below 30%, 

then the signal to noise (S:N) ratio of the internal standard must be calculated. The data are acceptable 

provided that the S:N ratio exceeds 20:1. If it is less than 20:1 the sample extract should be re-

analysed and the recovery recalculated. If the recovery percentage and S:N ratio is still unacceptable 

then data for that sample must be considered invalid.  

 

Internal standard (IS) recoveries are calculated thus: 

 

% IS Recovery = 























































SIS

RDS

STDRDS

IS

STDIS

RDS

SRDS

IS

C

C

C

C

A

A

A

A
x 100 (equation 2) 

 

 

where (AIS/ARDS)S = ratio of internal standard peak area to recovery determination standard peak area 

in the sample; (ARDS/AIS)STD = ratio of recovery determination standard peak area to internal standard 

peak area in the calibration standard (the average of values obtained for both calibration standards run 

for a batch of samples is used); (CIS/CRDS)STD = ratio of concentration of internal standard to 

concentration of recovery determination standard in the calibration standard; and (CRDS/CIS)S = ratio of 

concentration of recovery determination standard to concentration of internal standard in the sample 

(assuming 100% recovery). Note that this can be calculated as the amount of internal or recovery 

determination standard added to the sample divided by the volume of the sample extract used for 

GC/MS analysis (typically 25-50 µ1). 
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5. Determination of Sampling Evaluation Standard Recoveries 

Recoveries of sampling evaluation standards (i.e. those added to the PUF plug in air or aqueous 

sample analysis) are calculated for each sample as QA/QC measure. Note that SESs are NOT added to 

solid samples like soil or grass. Typically such recoveries should be around 70%, but they may 

routinely fall in the range 30%-150%. Note that although SES recoveries should be recorded for every 

sample, they are a QA/QC check only, and are NOT used to correct concentrations for sampling 

losses. If values exceed 150%, the sample extract should be re-analysed and the recovery recalculated. 

If it still exceeds 150%, then data for that sample must be considered invalid. If recoveries are below 

30%, then the signal to noise (S:N) ratio of the sampling evaluation standard must be calculated. The 

data are acceptable provided that the S:N ratio exceeds 20:1. If it is less than 20:1 the sample extract 

should be re-analysed and the recovery recalculated. If the recovery percentage and S:N ratio is still 

unacceptable then data for that sample must be considered invalid.   

 

Sampling evaluation standard (SES) recoveries are calculated thus: 

 

% SES Recovery = 























































SSES

RDS

STDRDS

SES

STDSES

RDS

SRDS

SES

C

C

C

C

A

A

A

A
x 100 (equation 3) 

 

where (ASES/ARDS)S = ratio of sampling evaluation standard peak area to recovery determination 

standard peak area in the sample; (ARDS/ASES)STD = ratio of recovery determination standard peak area 

to sampling evaluation standard peak area in the calibration standard (the average of values obtained 

for both calibration standards run for a batch of samples is used); (CSES/CRDS)STD = ratio of 

concentration of sampling evaluation standard to concentration of recovery determination standard in 

the calibration standard and (CRDS/CSES)S = ratio of concentration of recovery determination standard 

to concentration of sampling evaluation standard in the sample (assuming 100% recovery). Note that 

this can be calculated as the amount of sampling evaluation or recovery determination standard added 

to the sample divided by the volume of the sample extract used for GC/MS analysis (typically 25-50 

µ1). 

 

6.  Determination and On-Going Monitoring of Accuracy 

The principal means of determining method accuracy is via analysis of one or more certified or 

standard reference materials (CRMs or SRMs). Your supervisor will recommend a suitable 

CRM/SRM. Before you commence analysis of any samples as part of your research, you must 

conduct 5 replicate analyses of a suitable CRM or SRM, and obtain satisfactory data for these 

analyses. Essentially a CRM or SRM is a sample that has been analysed a large number of expert 

laboratories worldwide and that has had agreed concentrations of target pollutants assigned to it. 

These values are usually cited as an average ± a standard deviation. The values you obtain will be 
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compared with these. You must discuss your data with your supervisor and will only be allowed to 

proceed with analysis of your samples once acceptable accuracy of data are obtained. 

 

As an ongoing measure of accuracy, you must analyse 1 aliquot of the same CRM/SRM for every 20 

samples – i.e. every 21
st
 sample you analyse must be a CRM/SRM. If satisfactory data are not 

obtained, then you must consult your supervisor immediately. 

 

Additional means of evaluating accuracy include participation in interlaboratory comparisons. Your 

supervisor will advise you as and when such comparisons are to take place.  

 

7.  Determination of Precision 

This is defined as the relative standard deviation (i.e. 100 x  n-1/average) of concentrations obtained 

from 5 replicate analyses of the same sample. Usually, this is a CRM/SRM. Typically, precision 

should be no more than 30%, but you must discuss your data with your supervisor.   

 

8.  Determination of Blank Concentrations 

This is defined as the concentration of a target pollutant present in an analysis where the sample is 

omitted, but internal standards etc. are added. Note that for air analyses, a blank should consist of 

analysis of a clean PUF plug and filter paper. For calculation of blank sample concentrations, you 

should assume the sample mass or volume to be that typically used – e.g. 1,000 m
3
 for air samples, 

50g for soil or grass samples. One blank analysis must be conducted for every 5 samples – i.e. every 

6
th

 analysis you perform must be a blank. Where the concentration of a target pollutant in a blank for a 

given batch of samples is 5-20% of the concentration in a sample from that batch, the blank 

concentration must be subtracted from that in the sample.  Where the concentration in the blank 

exceeds 20% of that in a sample from that batch, data for that target pollutant in that sample must not 

be reported.  

 

9. Determination of Detection limits 

Two categories of detection limits exist. 

  

1. instrument detection limit (IDL) 

2. sample detection limit (SDL) 

 

The IDL is defined as that amount of pollutant that gives a signal to noise ratio of 3:1. It is best 

determined by calculating the signal to noise ratio for the pollutant in your calibration standard A. To 
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illustrate, if the concentration of a target pollutant in that standard = 20 pg/µ1 and 1 µ1 is injected, 

then if a signal to noise ratio of 50:1 is obtained, then the IDL = 20 x (3/50)= 1.2 pg/injection. 

 

The SDL can then be calculated as in equation 4: 

 

 

SDL = 
eryISSSVFEI

FEVIDL

covRe%

100





 (equation 4) 

 

Where FEV = final extract volume (µ1), VFEI = volume of final extract injected (µ1); SS = sample 

size (m
3 
or g); and %IS recovery = percentage recovery of internal standard used to quantify the target 

pollutant in a particular sample. 

 

To illustrate, if the IDL = 1.2 pg/injection, the final extract volume for a sample is 50µl, 1 µ1 is 

injected; the sample size is 1,000 m
3
,
 
and the percentage internal standard recovery in that sample = 

70%, then the SDL = ((1.2 x 50)/ (1 x 1000)) x 100/70 = 0.086 pg m
-3

. 

 

Where the concentration in the sample blank exceeds the SDL calculated as above, the effective SDL 

is the blank concentration. This is not an unusual occurrence.  

 

10. Calculation of concentrations in samples 

Concentrations in samples may be calculated via the equation below:  

 

Concn. =  
SS

M

RRFA

A IS

IS

NAT 
1

 (equation 5) 

 

Where AIS = peak area of internal standard in sample; ANAT = peak area of target pollutant in sample; 

RRF = relative response factor for the target pollutant (see equation 1); MIS = mass of internal 

standard added to sample (pg) and SS = sample size (m
3
 or g). 

 

To illustrate, where ANAT = 10,000 units; AIS = 20,000 units; RRF = 1.5; MIS = 20,000 pg; and SS = 

50 g, the concentration of the target pollutant will be (10,000/20,000) x (1/1.5) x (20,000/50) = 133.33 

pg g
-1

. 
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11. Correct Storage of Calibration and internal standards 

Once prepared in CERTAN vials, all standards should be stored in a freezer unless required for 

analysis. You should record the weight of the CERTAN vial and contents before and after each use. 

Before weighing, allow the vial and contents to reach room temperature, and wipe off any 

condensation before weighing. If at any time, the weight before use is less than 5% of the weight after 

recorded after the previous use, you must consult your supervisor immediately.  

 

12.  Criteria for Quantification of a Peak as a Target pollutant 

For a given peak to be identified as a target pollutant in a sample, various criteria must be met. These 

are: 

 

1. the signal to noise ratio of the peak must exceed 3:1 

2. the relative retention time (RRT) of the peak in the sample must be within 0.2% of the average 

value determined for the 2 calibration standards run for the sample batch. Note RRT = retention 

time of target pollutant/retention time of internal standard used to quantify target pollutant. 

 

The above criteria apply to all target pollutants. For organochlorine and organobromine pollutants, the 

following criterion also applies. 

   

 the isotope ratio of the peak in the sample must be within 20% of the average value determined 

for the 2 calibration standards run for that sample batch. If it falls outside this range, then you 

must consult your supervisor, but it is likely that the peak cannot be quantified due to a co-eluting 

interference. For example, for trichlorinated PCBs, where 2 m/z values are monitored (i.e. 255.95 

and 257.95) the isotope ratio = area of peak for 255.95 trace/area of peak for 257.95 trace. Note 

that for calculating RRFs and concentrations, the m/z value providing the largest peak must be 

used.  
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Congener Group (no. of Br) Bromine Sites Common Name Congener Group (no. of Br) Bromine Sites Common Name Congener Group (no. of Br) Bromine Sites Common Name 

Mono-BDE 

2 BDE-1 

Tri-B
D

E 

2, 2', 3 BDE-16 

Tetra-B
D

E 

2, 2', 3, 3' BDE-40 

3 BDE-2 2, 2', 4 BDE-17 2, 2', 3, 4 BDE-41 

4 BDE-3 2, 2', 5 BDE-18 2, 2', 3, 4' BDE-42 

D
i-B

D
E 

2, 2' BDE-4 2, 2', 6 BDE-19 2, 2', 3, 5 BDE-43 

2, 3  BDE-5 2, 3, 3' BDE-20 2, 2',3, 5 BDE-44 

2, 3' BDE-6 2, 3, 4 BDE-21 2, 2',3, 6 BDE-45 

2, 4 BDE-7 2, 3, 4' BDE-22 2, 2', 3, 6' BDE-46 

2, 4' BDE-8 2, 3, 5 BDE-23 2. 2',4 ,4' BDE-47 

2, 5 BDE-9 2, 3, 6 BDE-24 2, 2', 4, 5 BDE-48 

2, 6 BDE-10 2, 3', 4 BDE-25 2, 2', 4, 5' BDE-49 

3, 3' BDE-11 2, 3', 5 BDE-26 2, 2', 4, 6 BDE-50 

3, 4 BDE-12 2, 3', 6 BDE-27 2, 2', 4, 6' BDE-51 

3, 4' BDE-13 2, 4, 4' BDE-28 2, 2', 5, 5' BDE-52 

3, 5 BDE-14 2, 4, 5 BDE-29 2, 2', 5, 6' BDE-53 

4, 4' BDE-15 2, 4, 6 BDE-30 2, 2', 6, 6' BDE-54 

   
2, 4', 5 BDE-31 2, 3, 3', 4 BDE-55 

   
2, 4', 6 BDE-32 2, 3, 3', 4' BDE-56 

   
2, 3', 4' BDE-33 2, 3, 3', 5 BDE-57 

   
2, 3', 5' BDE-34 2, 3, 3', 5' BDE-58 

   
3, 3', 4 BDE-35 2. 3. 3' 6 BDE-59 

   
3, 3', 5 BDE-36 2, 3, 4, 4 ' BDE-60 

   
3, 4, 4' BDE-37 2, 3, 4, 5 BDE-61 

   
3, 4, 5 BDE-38 2, 3, 4, 6 BDE-62 

   
3, 4', 5 BDE-39 2, 3, 4', 5 BDE-63 

      
2, 3, 4', 6 BDE-64 
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Congener Group (no. of Br) Bromine Sites Common Name Congener Group (no. of Br) Bromine Sites Common Name Congener Group (no. of Br) Bromine Sites Common Name 

Tetra-B
D

E 

2, 3, 5, 6 BDE-65 

P
en

ta-B
D

E 

2, 2', 3, 3', 4 BDE-82 

P
en

ta-B
D

E 

2,3,3’,5,5’ BDE-111 

2, 3', 4, 4' BDE-66 2, 2', 3, 3', 5 BDE-83 2,3,3’,5,6 BDE-112 

2, 3', 4, 5 BDE-67 2, 2', 3, 3', 6 BDE-84 2,3,3’,5', 6 BDE-113 

2, 3', 4', 5 BDE-68 2 ,2', 3, 4, 4' BDE-85 2,3,4,4’,5 BDE-114 

2, 3', 4, 6 BDE-69 2, 2', 3, 4, 5 BDE-86 2,3,4,4’,6 BDE-115 

2, 3', 4', 5 BDE-70 2, 2', 3, 4, 5' BDE-87 2,3,4,5,6 BDE-116 

2, 3', 4', 6 BDE-71 2, 2', 3, 4, 6 BDE-88 2,3,4’,5,6 BDE-117 

2, 3', 5, 5' BDE-72 2, 2', 3, 4, 6' BDE-89 2,3’,4,4’,5 BDE-118 

2, 3', 5', 6 BDE-73 2, 2', 3, 4', 5 BDE-90 2,3’,4,4’,6 BDE-119 

2, 4, 4', 5 BDE-74 2, 2', 3, 4', 6 BDE-91 2,3’,4,4’,5 BDE-120 

2, 4, 4', 6 BDE-75 2, 2', 3, 5, 5' BDE-92 2,3’,4,5’,6 BDE-121 

2, 3', 4', 5' BDE-76 2, 2', 3, 5, 6 BDE-93 2,3,3’,4’,5’ BDE-122 

3, 3', 4, 4' BDE-77 2, 2', 3, 5, 6' BDE-94 2,3’,4,4’,5’ BDE-123 

3, 3', 4, 4' BDE-78 2, 2', 3, 5', 6 BDE-95 2,3’,4’,5,5’ BDE-124 

3, 3', 4, 5' BDE-79 2, 2', 3, 6, 6' BDE-96 2,3’,4’,5',6 BDE-125 

3, 3', 5, 5' BDE-80 2, 2', 3, 4', 5' BDE-97 3,3’,4,4’,5 BDE-126 

3, 4, 4', 5 BDE-81 2, 2', 3, 4', 5 BDE-98 3,3’,4,5,5’ BDE-127 

   
2, 2', 4, 4', 5 BDE-99 

   

   
2, 2', 4, 4', 6 BDE-100 

   

   
2, 2', 4, 5, 5' BDE-101 

   

   
2, 2', 4, 5, 6' BDE-102 

   

   
2, 2’, 4, 5’, 6 BDE-103 

   

   
2,2’,4,6, 6 BDE-104 

   

   
2,3,3’,4, 4’ BDE-105 

   

   

2,3,3’,4, 5 BDE-106 
   

   

2,3,3’,4’,5 BDE-107 
   

   

2,3,3’,4  ,5’ BDE-108 
   

   

2,3,3’,4,6 BDE-109 
   

   

2,3,3’,4’, 6 BDE-110 
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Congener Group (no. of Br) Bromine Sites Common Name Congener Group (no. of Br) Bromine Sites Common Name Congener Group (no. of Br) Bromine Sites Common Name 

H
exa-B

D
E 

2,2’,3,3’,4,4’ BDE-128 

H
exa-B

D
E 

2, 2’, 4, 4’, 6, 6’ BDE-155 

H
ep

ta-B
D

E 

2, 2’, 3, 3’, 4, 4’, 5 BDE-170 

2,2’,3,3’,4,5 BDE-129 2, 3, 3', 4, 4' 5 BDE-156 2, 2’, 3, 3’, 4, 4’, 6 BDE-171 

2, 2’, 3, 3’, 4, 5’ BDE-130 2, 3, 3’, 4, 4’, 5’ BDE-157 2, 2’, 3, 3’, 4, 5, 5’ BDE-172 

2, 2’, 3, 3’, 4, 6 BDE-131 2, 3, 3’, 4, 4’, 6 BDE-158 2, 2’, 3, 3’, 4, 5, 6 BDE-173 

2, 2’, 3, 3’, 4, 6’ BDE-132 2, 3, 3’, 4, 5, 5’ BDE-159 2, 2’, 3, 3’, 4, 5, 6’ BDE-174 

2, 2’, 3, 3’, 5, 5’ BDE-133 2, 3, 3’, 4, 5, 6 BDE-160 2, 2’, 3, 3’, 4, 5’, 6 BDE-175 

2, 2’, 3, 3’, 5, 6 BDE-134 2, 3, 3’, 4, 5’, 6 BDE-161 2, 2’, 3, 3’, 4, 6, 6’ BDE-176 

2, 2’, 3, 3’, 5, 6’ BDE-135 2, 3, 3’, 4’, 5, 5’ BDE-162 2, 2’, 3, 3’, 4, 5’, 6’ BDE-177 

2, 2’, 3, 3’, 6, 6’ BDE-136 2, 3, 3’, 4’, 5, 6 BDE-163 2, 2’, 3, 3’, 5, 5’, 6 BDE-178 

2, 2’, 3, 4, 4’, 5 BDE-137 2, 3, 3’, 4, 5’, 6 BDE-164 2, 2’, 3, 3’, 5, 6, 6’ BDE-179 

2, 2’, 3, 4, 4’, 5’ BDE-138 2, 3, 3’, 5, 5’, 6 BDE-165 2, 2’, 3, 4, 4’, 5, 5’ BDE-180 

2, 2’, 3, 4, 4’, 6 BDE-139 2, 3, 4, 4’, 5, 6 BDE-166 2, 2’, 3, 4, 4’, 5, 6 BDE-181 

2, 2’, 3, 4, 4’, 6’ BDE-140 2, 3', 4, 4’, 5, 5’ BDE-167 2, 2’, 3, 4, 4’, 5, 6’ BDE-182 

2, 2’, 3, 4, 5, 5’ BDE-141 2, 3’, 4, 4’, 5’, 6 BDE-168 2, 2’, 3, 4, 4’, 5’, 46 BDE-183 

2, 2’, 3, 4, 5, 6 BDE-142 3, 3’, 4, 4’, 5, 5’ BDE-169 2, 2’, 3, 4, 4’, 6, 6’ BDE-184 

2, 2’, 3, 4, 5, 6’ BDE-143 

  

  

2, 2’, 3, 3’, 5, 5’ 6 BDE-185 

2, 2’, 3, 4, 5’, 6 BDE-144 

  

  

2, 2’, 3, 4, 5, 6, 6’ BDE-186 

2, 2’, 3, 4, 6, 6’ BDE-145 

  

  

2, 2’, 3, 4’, 5, 5’, 6 BDE-187 

2, 2’, 3, 4’, 5, 5’ BDE-146 

  

  

2, 2’, 3, 4’, 5, 6, 6’ BDE-188 

2, 2’, 3, 4’, 5, 6 BDE-147 

  

  

2, 3, 3’, 4, 4’, 5, 5’ BDE-189 

2, 2’, 3, 4’, 5, 6’ BDE-148 

  

  

2, 3, 3’, 4, 4’, 5, 6 BDE-190 

2, 2’, 3, 4’, 5’, 6’ BDE-149 

  

  

2, 3, 3’, 4, 4’, 5’, 6 BDE-191 

2, 2’, 3, 4’, 6, 6’ BDE-150 

  

  

2, 3, 3’, 4, 5, 5’, 6 BDE-192 

2, 2’, 3, 5, 5’, 6 BDE-151 

  

  

2, 3, 3’, 4’, 5, 5’, 6 BDE-193 

2, 2’, 3, 5, 6, 6’ BDE-152 

  

     2, 2’, 4, 4’, 5, 5’ BDE-153 

  
     2, 2’, 4, 4’, 5, 6’ BDE-154 
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Congener Group (no. of Br) Bromine Sites Common Name 

Octa-BDE 

2, 2’, 3, 3’, 4, 4’, 5, 5’ BDE-194 

2, 2', 3, 3', 4, 4', 5, 6 BDE-195 

2, 2’, 3, 3’, 4, 4’, 5, 6’ BDE-196 

2, 2’, 3, 3’, 4, 4’, 6, 6’ BDE-197 

2, 2’, 3, 3’, 4, 5, 5’, 6 BDE-198 

2, 2’, 3, 3’, 4, 5, 5’, 6’ BDE-199 

2, 2’, 3, 3’, 4, 5, 6, 6’ BDE-200 

2, 2’, 3, 3’, 4, 5’, 6, 6’ BDE-201 

2, 2’, 3, 3’, 5, 5’, 6, 6’ BDE-202 

2, 2’, 3, 4, 4’, 5, 5’, 6 BDE-203 

2,2’,3,4,4’,5,6,6’ BDE-204 

2,3,3’,4,4’,5,5’,6 BDE-205 

Nona-BDE 

2, 2’, 3, 3’, 4, 4’, 5, 5’, 6 BDE-206 

2, 2’, 3, 3’, 4, 4’, 5, 6, 6’ BDE-207 

2, 2’, 3, 3’, 4, 5, 5’, 6, 6’ BDE-208 

Deca-BDE 2, 2’, 3, 3', 4, 4', 5 , 5', 6, 6' BDE-209 

 


