
Cardinality Optimization Problems

by

Mohammad Javad Abdi

A thesis submitted to
The University of Birmingham

for the degree of
Doctor of Philosophy

School of Mathematics
The University of Birmingham
May 2013

Abstract

In this thesis, we discuss the cardinality minimization problem(CMP) and the cardinal-

ity constraint problem, which have attracted plenty of recent attention across various

disciplines. These problems have a wide range of applications in such areas like signal

processing, control theory, finance, economics, statistics and principal component analysis.

Due to the NP-hardness of these problems, we discuss Lagrangian and SDP relaxations,

reweighted l1-techniques, smoothing, linearization, and d.c. programming techniques for

finding an approximate solution to these problems. We also discuss the l1-minimization

as one of the most efficient methods for solving CMPs, and we demonstrate that the

l1-minimization uses a kind of weighted l2-minimization. Through theoretical, geomet-

rical and numerical methods, we show that the reweighted lj-minimization (j ≥ 1) is

very effective to locate a sparse solution to a linear system. Next, we show how to intro-

duce different merit functions for sparsity, and how proper weights may reduce the gap

between the performances of these functions for finding a sparse solution to an undeter-

mined linear system. Furthermore, we introduce some effective computational approaches

to locate a sparse solution for an underdetermined linear system. These approaches are

based on reweighted lj-minimization (j ≥ 1) algorithms. As a special case of reweighted

approaches, we focus on the reweighted l1-minimization. We introduce several new con-

cave approximations to the l0-norm function. These approximations can be employed to

define new weights for reweighted l1-minimization algorithms. We show how the change

1

of parameters in reweighted algorithms may affect the performance of the algorithms for

finding the solution of the cardinality minimization problem. In our experiments, the

problem data were generated according to different statistical distributions, and we test

the algorithms on different sparsity level of the solution of the problem. As a special case

of cardinality constrained problems, we also discuss compressed sensing and restricted

isometry property(RIP). We illustrate how the problem of finding the restricted isometry

constant(RIC) is related to an optimization problem with cardinality constraints, and we

discuss some techniques for an approximate solution to these problems.

Acknowledgements

First and foremost, I would like to express my special thanks to my supervisor Dr. Yunbin

Zhao, who awarded me his thoughts and experiences. I feel very proud to have him as

my supervisor. This thesis would not have been possible without his support.

I am thankful to Dr. Sandor Zoltan Nemeth as my co-supervisor for his support and

comments.

I am really thankful to Professor Michal Kocvara for his great lectures on nonlinear

and semidefinite programming, and also for being in my defense and reading committee,

for many helpful discussions, comments and suggestions. I thank Dr. Houdou Qi for

kindly accepting to be on my reading committee, and for providing valuable feedbacks. I

also thank Dr. Alex Bespalov as the chair of my defense committee.

I am grateful to Professor Stephen Decent, who gifted me the opportunity to be a

researcher at the University of Birmingham.

I am thankful to those who helped me to complete this thesis, including the lecturers

and the support staff.

I owe my deepest gratitude to my parents Ehsan and Manijeh, and my sister Elahe,

for their support during all of my life.

And finally, I would like to dedicate this thesis to my wife, Niloofar.

Contents

1 Introduction 1

1.1 Outline of the thesis . 7

2 Preliminaries 9

2.1 General optimization problems, duality, and KKT conditions 9

2.2 Convex optimization . 11

2.3 Conic optimization and duality . 15

2.4 Semidefinite optimization . 21

2.5 Rank minimization . 25

3 Cardinality Minimization Problem(CMP) 32

3.1 Cardinality constrained problems . 34

3.2 CMP under linear constraints . 41

3.3 CMP with nonlinear non-convex constraints 44

3.4 CMP with 0-1 variables . 49

3.5 Subgradient method . 51

3.6 Numerical experiments . 59

3.7 Branch and bound method . 60

3.8 Numerical experiments . 66

4 The l1-Method and Reweighted Algorithms 68

4.1 The l1-minimization . 69

4.2 Weighted l2-minimization is hidden inside the l1-minimization 73

4.3 How weights may perform to find the sparsest solution of an underdeter-

mined linear system of equations . 75

4.4 Weights may improve sparsity enhancing property of merit functions . . . 83

4.5 Weights may reduce the gap between some merit functions 91

4.6 General reweighted lj (j ≥ 1) algorithms 93

4.7 Numerical experiments . 95

5 Reweighted l1-Algorithms 103

5.1 Weighted l1-algorithms . 105

5.2 Concave approximations to ‖x‖0 and reweighted l1-minimization 113

5.3 Merit functions and reweighted algorithms 117

5.3.1 New Merit Functions . 122

5.4 Numerical experiments . 125

6 RIP Constant via Cardinality Constrained Problems 140

6.1 An introduction to compressed sensing . 140

6.2 Restricted isometry property(RIP) . 145

6.3 Computing RIC . 147

6.3.1 Relaxation techniques . 149

6.3.2 Smoothing techniques . 151

6.3.3 D.C programming approaches . 156

6.4 Numerical experiments . 159

7 Conclusions 161

Notation 163

Bibliography 166

List of Figures

3.1 The figure shows the value of g(k) at each iteration. The value achieved

after 4000 iterations is equal to 4.4095. 60

3.2 The figure shows the error, (g(k) − g∗), at each iteration. 60

3.3 x ∈ R50. The solid line represents the lower bound and the dashed line

represents the upper bound on card(x) at each iteration. 67

4.1 This figure shows how the l1-minimization may locate the sparsest solution

of a linear system. 76

4.2 This figure shows how the l2-minimization may fail to locate the sparsest

solution of a simple linear system. 77

4.3 This figure shows how the l∞-minimization may fail to locate the sparsest

solution of a simple linear system. 77

4.4 This figure shows how the weighted l1-minimization may locate the sparsest

solution of a linear system. 78

4.5 This figure shows how the weighted l1-minimization may locate the sparsest

solution of a linear system. 79

4.6 This figure shows how the weighted l2-minimization may locate the sparsest

solution of a linear system. 80

4.7 This figure shows how the weighted l2-minimization locates the sparsest

solution of a linear system. 80

4.8 This figure shows how the weighted l∞-minimization may locate the spars-

est solution of a linear system. 81

4.9 This figure shows how the weighted l∞-minimization may locate the spars-

est solution of a linear system. 82

4.10 The performance of the reweighted l2-minimization with wi = (x2
i + ε)

−0.25

for different choices of ε. 100

4.11 The performance of the reweighted l2-minimization with wi = (x2
i + ε)

−0.5

for different choices of ε. 101

4.12 The performance of the reweighted l3-minimization with wi = (x3
i + ε)

− 1
3

for different choices of ε. 101

4.13 The performance of the reweighted l3-minimization with wi = (x3
i + ε)

− 2
3

for different choices of ε. 102

5.1 The solid graph represents card(x), the dash graph represents ‖x‖1, as

the convex envelop of card(x). The dot graph represents the function

sin
(
atan

(
|x|
ε

))
for ε = 0.1, and the dash-dot graph represents sin

(
atan

(
|x|
ε

))

for ε = 0.01. 111

5.2 The l1-minimization and the reweighted l1-minimization with a matrix A ∈
R100×200. The dots line represents card(x) based on the l1-minimization.

The solid line represents card(x) achieved by the reweighted l1-minimization

based on ϕ1 approximation, at each iteration. And the dashed line rep-

resents card(x) achieved by the reweighted l1-minimization based on ϕ2

approximation, at each iteration. 112

5.3 The graph of
∑n

i=1 |xi|p for different values of 0 < p ≤ 1. 114

5.4 The graph of
∑n

i=1 log(|xi| + ε) +
∑n

i=1(|xi| + ε)p for different values of

0 < p ≤ 1. 114

5.5 Comparing the performance of l1-min, CWB, W1, W2 minimization via the

probability of success for finding the exact k-sparse solution of Ax = b,

where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix A has been generated

from Exponential distribution. 100 randomly generated matrices have been

tested for different sparsity of k = 1, ..., 26. 132

5.6 Comparing the performance of l1-min, CWB, W1, W2 minimization via the

probability of success for finding the exact k-sparse solution of Ax = b,

where A ∈ R50×200, b ∈ R50, p = q = 0.4. Matrix A has been generated

from Exponential distribution. 100 randomly generated matrices have been

tested for different sparsity of k = 1, ..., 26. 132

5.7 Comparing the performance of l1-min, CWB, W1, W2 minimization via the

probability of success for finding the exact k-sparse solution of Ax = b,

where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix A has been generated

from F-distribution. 100 randomly generated matrices have been tested for

different sparsity of k = 1, ..., 26. 133

5.8 Comparing the performance of l1-min, CWB, W1, W2 minimization via the

probability of success for finding the exact k-sparse solution of Ax = b,

where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix A has been generated

from Gamma distribution. 100 randomly generated matrices have been

tested for different sparsity of k = 1, ..., 26. 133

5.9 Comparing the performance of l1-min, CWB, W1, W2 minimization via the

probability of success for finding the exact k-sparse solution of Ax = b,

where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix A has been generated

from Normal distribution. 100 randomly generated matrices have been

tested for different sparsity of k = 1, ..., 26. 134

5.10 Comparing the performance of l1-min, CWB, W1, W2 minimization via the

probability of success for finding the exact k-sparse solution of Ax = b,

where A ∈ R50×200, b ∈ R50, p = q = 0.4. Matrix A has been generated

from Normal distribution. 100 randomly generated matrices have been

tested for different sparsity of k = 1, ..., 26. 134

5.11 Comparing the performance of l1-min, CWB, W1, W2 minimization via the

probability of success for finding the exact k-sparse solution of Ax = b,

where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix A has been generated

from Uniform distribution. 100 randomly generated matrices have been

tested for different sparsity of k = 1, ..., 26. 135

5.12 Comparing the performance of l1-min, CWB, W1, W2 minimization via the

probability of success for finding the exact k-sparse solution of Ax = b,

where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix A has been generated

from Poisson distribution. 100 randomly generated matrices have been

tested for different sparsity of k = 1, ..., 26. 135

5.13 Comparing the performance of W2 minimization for different q = 0.04 :

0.08 : 1, p = 0.08 via the probability of success for finding the exact k-

sparse solution of Ax = b, where A ∈ R50×200, b ∈ R50. Matrix A has been

generated from normal distribution. 100 randomly generated matrices have

been tested for different sparsity of k = 5, 10, 15, 20. 136

5.14 Comparing the performance of W2 minimization for different q = 0.04 :

0.08 : 1, p = 0.4 via the probability of success for finding the exact k-

sparse solution of Ax = b, where A ∈ R50×200, b ∈ R50. Matrix A has been

generated from normal distribution. 100 randomly generated matrices have

been tested for different sparsity of k = 5, 10, 15, 20. 136

5.15 Comparing the performance of W2 minimization for different q = 0.04 :

0.08 : 1, p = 0.8 via the probability of success for finding the exact k-

sparse solution of Ax = b, where A ∈ R50×200, b ∈ R50. Matrix A has been

generated from normal distribution. 100 randomly generated matrices have

been tested for different sparsity of k = 5, 10, 15, 20. 137

5.16 Comparing the performance of W1 minimization for different p = 0.04 :

0.08 : 1 via the probability of success for finding the exact k-sparse solution

of Ax = b, where A ∈ R50×200, b ∈ R50. Matrix A has been generated from

normal distribution. 100 randomly generated matrices have been tested for

different sparsity of k = 5, 10, 15, 20. 137

5.17 Comparing the performance ofW1 minimization using different ε = 0.00001, 0.0001,

0.001, 0.01, 0.1 via the probability of success for finding the exact k = 15-

sparse solution of Ax = b, where A ∈ R50×200, b ∈ R50, p = 0.05. Matrix

A has been generated from Normal distribution. 100 randomly generated

matrices have been tested for different chosen epsilons. 138

5.18 Comparing the performance of l1-min, CWB, W1, W2 minimization using

fixed ε = 0.01 via the probability of success for finding the exact k-sparse

solution of Ax = b, where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix

A has been generated from Normal distribution. 100 randomly generated

matrices have been tested for different sparsity of k = 1, ..., 26. 138

5.19 Comparing the performance of l1-min, CWB, W1, W2 minimization using

Candes updating rule via the probability of success for finding the exact

k-sparse solution of Ax = b, where A ∈ R50×200, b ∈ R50, p = q = 0.05.

Matrix A has been generated from Normal distribution. 100 randomly

generated matrices have been tested for different sparsity of k = 1, ..., 26. . 139

6.1 Trade-off graph between ‖Ax− b‖2, and card(x), A ∈ R100×200. 146

6.2 The figure shows the probability of success for the l0 recovery using the

l1-minimization. The graph shows that the l1-minimization is almost exact

for the solutions with cardinality less than 20, i.e, 99 successful solutions

has been found. 160

List of Tables

4.1 Comparison of different reweighted lj-minimizations with wl
i =

1
|xl

i|+εl
. The

number of iterations is l = 4. The numbers in the columns show the

cardinality of the solution. 96

4.2 Comparison of different reweighted lj-minimizations with wl
i =

1
(|xl

i|+εl)1.5
.

The number of iterations is l = 4. The numbers in the columns show the

cardinality of the solution. 97

4.3 Comparison of lj-minimizations and reweighted lj-minimizations for j =

1, 2, 3,∞. The numbers in the columns show the frequencies of success in

finding the sparse solutions. 98

4.4 Comparison of different reweighted lj-minimizations with wl
i =

1
|xl

i|+εl
. The

number of iterations is l = 40. The numbers in the columns show the

cardinality of the solution. 99

Chapter 1

Introduction

We study the following optimization problems:

Minimize
x

Card(x)

s.t. x ∈ F ,

(1.1)

and

Minimize
x

f(x)

s.t. Card(x) ≤ τ

x ∈ F ,

(1.2)

where f(x) is the objective function, x is a vector, τ is a constant, and F is the feasible

set. We may suppose that F is a linear or nonlinear convex set or even a nonlinear and

non-convex set.

We refer to the problem (1.1) as the cardinality minimization problem(CMP), and we

refer to (1.2) as the cardinality constrained problem(CCP). These problems are known

as NP-hard problems [62, 135, 31, 103, 51], i.e., they are computationally intractable in

general.

1

Cardinality minimization problems(CMPs), and cardinality constrained problems(CCPs)

have many applications in finance [97, 35, 126], where the cardinality constrained defines

some bounds on the number of the assets, or sets the portfolio proportion. CMPs and

CCPs have also lots of applications in signal and image processing [22], and compressed

sensing [11, 50]. Compressed sensing tries to recover the vector (signal) x ∈ Rn using

an observed vector (signal) b ∈ Rm by solving Am×nx = b (m < n). CMPs and CCPs

have found many applications in statistics and principal component analysis(PCA) as well

[47, 154]. PCA is often used to reduce the dimension of a model, or in other words, PCA

tries to compress the data without losing much information. Usually PCA is reformulated

as an optimization problem on eigenvalues. We will discuss some special cases of PCAs

in chapter 6.

In general, cardinality minimization problem(CMP) (1.1) is looking for the sparsest

solution (i.e, a vector with the maximum number of zeros) to a mathematical program.

A special case of the CMP is the problem of finding the sparsest solution to an under-

determined linear system of equations, which have found so many applications across

various disciplines, including signal recovery and image processing. Excellent surveys

about compressed sensing can be found in [50, 33, 22].

As normally used in the literature, we use ‖x‖0 or card(x) or l0-norm to denote the

cardinality of the vector x. Clearly, the sparsest solution of Ax = b is the solution to the

following problem:

Minimize
x

‖x‖0

s.t. Ax = b,

(1.3)

where A ∈ Rm×n (m < n) and b ∈ Rm. Obviously, in this case, Ax = b defines an

underdetermined linear system of equations, which has infinitely many solutions.

2

The old methods for solving the above problem are mostly based on least squares, or

structured total least norm [85, 68, 134, 118]. The least square problem can be written

as follows:

(1.4) Minimize
x

‖Ax− b‖2 s.t. x ∈ Rn.

This problem is an unconstrained convex problem, and its optimal solution minimizes the

residuals, r = Ax − b. The most common application of the least square method is in

data fitting and linear and non-linear regression problems [98, 139].

The most well known heuristic approach for solving the problem (1.3) is to replace

‖x‖0 by ‖x‖1, and solve the following convex problem:

Minimize
x

‖x‖1

s.t. Ax = b,

(1.5)

which is called the basis pursuit problem. This problem has lots of applications, espe-

cially in signal processing [41, 58, 30, 22, 123, 26]. Except for solving the problem (1.5),

sometimes greedy methods are also used in the literature. These methods include the or-

thogonal matching pursuit(OMP) [132, 55]. OMP algorithm starts with a sparse solution

and then searches for a sparser solution iteratively. This procedure finds an approximate

solution to the problem by linear combination of some selected columns of matrix A.

To find a sparser solution, at each iteration some new column is added to the existing

columns to build a possibly sparser solution. OMP is a relatively strong algorithm to solve

CMPs, however the l1-minimization is more successful than OMP algorithms in finding

a sparse solution, in many situations [51, 131]. Therefore, we discuss the l1-minimization

with more details in chapter 4.

3

It is worth mentioning that the combination of the problem (1.4) with l1-norm con-

straints has been considered by Tibshirani in 1995 [129]. This problem is called LASSO-

type problem, which can be cast as

Minimize
x

‖Ax− b‖2

s.t. ‖x‖1 ≤ τ.

(1.6)

This problem has found many applications in regression selections [137, 145]. The uncon-

strained version of the LASSO-type problem can be written as follows:

(1.7) Minimize
x

‖Ax− b‖2 + λ‖x‖1, x ∈ Rn,

where λ À 0 is a penalty parameter.

As mentioned, the l1-minimization is considered as one of the most successful methods

to locate a sparse solution to a system of linear equations. So, seeking for even more effec-

tive algorithms than the l1-minimization is one of the developing and ongoing researches

in this area. Numerical experiments show that the reweighted l1-minimization outperform

the l1-minimization in many situations [152, 82, 34, 140, 37, 43].

Candes, Wakin, and Boyd [34] proposed the following reweighted l1-algorithm (CWB-

algorithm):

xl+1 = argmin
n∑

i=1

1

|xl
i|+ ε

|xi|

s.t. Ax = b,

(1.8)

where l is the number of the iteration, and xl
i is the ith component of the solution from

4

the lth iteration. The term 1
|xl

i|+ε
can be interpreted as the penalty, which encourages the

small component to tend to zero quickly if possible. We will discuss the CWB-algorithm

with more details in the chapters 4 and 5. It is shown in [61] that after enough number

of iterations, the problem (1.8) may solve the following problem:

Minimize
x

∑
i

log(|xi|+ ε)

s.t. Ax = b.

(1.9)

In [140], it is demonstrated that if ε is set to be zero in the problem (1.9), then the iterative

reweighted l2-method for solving this problem can be interpreted as the FOCal Under-

determined System Solver algorithm (FOCUSS algorithm). The FOCUSS algorithm was

first introduced by Gorodnitsky, Rao et al [115, 71, 70].

Here we should mention that the cardinality minimization problem over polyhedral

sets was considered by Mangasarian in 1995 [96]. He approximated the cardinality func-

tion (‖x‖0) with a smooth concave exponential approximation, and used a finite linear-

programming-based iterative method (successive linearization algorithm) to solve the

problem [21, 94]. Also, he proved that this algorithm converges to a stationary point

(vertex point) of the approximation problem after a finite number of iterations.

Recently, Zhao and Li [152] also used concave approximations to the cardinality func-

tion and proposed a unified framework to construct reweighted l1-algorithms. They illus-

trated how to define merit functions for sparsity. These merit functions are some proper

concave approximations to the function ‖x‖0, and minimizing such functions may lead us

to a sparse solution of the problem. Also, they defined range space property(RSP) for the

matrix A, under which their algorithm may converge to a sparse solution. In chapter 5,

we will focus on the method proposed by Zhao and Li [152], and we will construct more

5

new concave approximations to the function ‖x‖0 and we will explain how to define more

new reweighted l1-algorithms along the line in [152].

The reweighted l1-minimization is a new topic in the field of optimization and ap-

plied mathematics, but reweighted least squares methods(RLS) have been introduced by

Lawson in 1960s [84]. The RLS problem can be written as follows:

(1.10) xl+1 = argmin
n∑

i=1

wl
i(Ax

l − b)2i ,

where (Axl − b)i is the ith component of the residual at the iteration l, and w1
i ∈ Rn

+

is the weight. Reweighted least square problems have been extended to lp-minimization

(0 < p < 1), which is non-convex problem [42, 43]. RLS has many applications in

maximum likelihood estimates problems [5], and robust regression [111]. Note that RLS

can also be considered as the reweighted l2-algorithm [70, 38, 63], which will be discussed

in chapter 4. We show that the l1-minimization itself is a kind of weighted l2-minimization,

which is hidden inside the l1-norm function. We also give some theoretical, geometrical,

and numerical explanations for promoting weighted approaches. Hence, we will consider

the following general form of weighted lj-minimization problems:

xl+1 = argmin ‖W lx‖j
s.t. Ax = b,

(1.11)

where j ≥ 1, and W l is a diagonal matrix at the iteration l, with the weights on its

diagonal. Note that in this thesis, the iterative weighted problems are called reweighted

problems, i,e. weights are updated in each iteration. In chapter 4, we mainly focuss on

the case when j ≥ 2, and we will focuss on reweighted l1-minimization in the chapter 5.

6

1.1 Outline of the thesis

In chapter 2, we review some basic concepts of convex optimization problems, duality

and semidefinite programming. Besides, we discuss rank minimization problems(RMPs)

briefly, as these problems are closely related to the cardinality minimization problem.

In chapter 3, we start with the optimization problems with cardinality constraints.

Different SDP relaxations are provided based on Shor’s lemma for these problems. Next,

we proceed with the cardinality minimization problem(CMP) under non-convex quadratic

constraints. We apply reformulation techniques combined with Lagrange duality methods,

and Shor’s lemma to relax the CMP to an SDP form. Furthermore, we show how the CMP

can be cast as a bilevel optimization problem. Also, we discuss the l1-minimization and

reweighted l1-methods for finding an approximate solution to the CMP. We introduce a

continuous approximation to the ‖x‖0-function, and we explain how to apply linearization

methods combined with the reweighted l1-minimization method to get an approximate

solution to the CMP. We continue to develop the reweighted minimization approaches

in chapters 4 and 5. Finally, in chapter 3, we review branch and bound algorithms

and subgradient methods. We also provide some numerical experiments based on these

methods.

In chapter 4, we discuss the l1-minimization and reweighted lj-minimizations (j ≥ 1)

in details. To motivate the weighted approaches, we first show that a certain weighted

l2-minimization is hidden inside the l1-minimization, and through theoretical, geometrical

and numerical studies, we prove that weighted approaches are very effective to locate a

sparse solution to a linear system. Also, we illustrate that choosing proper weights may

reduce the gap between different merit functions for sparsity. In addition, we demonstrate

how to construct different new merit functions for sparsity, and how to introduce new

effective weights to reweighted algorithms by applying different merit functions. In this

7

chapter, the choice of the parameter ε in the weights will be also discussed, and the

performances of different algorithms will be compared through the numerical experiments.

In chapter 5, we focuss on reweighted l1-algorithms. We introduce different new con-

cave approximations to the ‖x‖0-function, and we show how to generate more approxi-

mations to the ‖x‖0-function, and how to introduce new reweighted l1-algorithms based

on these approximation functions. Besides, we show how the change of parameters in

reweighted algorithms may affect the performances of the algorithms to find the sparsest

solution of the cardinality minimization problem. In our experiments, the problem data

will be generated according to different statistical distributions (as in the literatures usu-

ally normally distributed matrices are discussed), and we test the algorithms on different

sparsity levels of the solution of the problem.

In chapter 6, we discuss some topics on compressed sensing and restricted isometry

property(RIP). Following that, we explain how the problem of finding the restricted isom-

etry constant(RIC) is related to a sparse eigenvalue problem, which itself is a cardinality

constrained problem. Next, to find an approximate solution to RIC as a special case of

the cardinality constrained problem, we study such methods as relaxation, smoothing,

and d.c. programming techniques.

Finally, in chapter 7, we summarize the main results of this thesis.

8

Chapter 2

Preliminaries

In this chapter, we review some basic definitions and concepts of conic and semidefinite

programming, [12, 20, 110, 75]. Also, we discuss rank minimization problems briefly, as

these problems are closely related to the cardinality minimization problem.

2.1 General optimization problems, duality, and KKT

conditions

An optimization problem in standard form is defined as follows:

Minimize
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, ..., p,

hi(x) = 0, i = 1, ..., q ,

(2.1)

where x ∈ Rn is the optimization variable. f0 : Rn → R is the objective function, and the

functions fi : Rn → R and hi : Rn → R are called inequality constraint functions, and

equality constraint functions, respectively.

9

The Lagrangian L : Rn × Rp × Rq → R associated with the problem above is

L(x, λ, ν) = f0(x) +

p∑
i=1

λifi(x) +

q∑
i=1

νihi(x),

where the vector λ = (λ1, ..., λp) and ν = (ν1, ..., νq) are the dual variables or Lagrange

multiplier vectors associated with the problem (2.1).

The Lagrangian dual function, g : Rp × Rq → R, is defined as the minimum value of

the Lagrangian over x, i.e., for λ ∈ Rp and ν ∈ Rq, we have

g(λ, ν) = inf
x∈F

L(x, λ, ν),

where L(x, λ, ν) is the Lagrangian defined above, and

F =

(
p⋂

i=0

dom(fi)

)
∩
(

q⋂
i=1

dom(hi)

)
.

For each pair (λ, ν), where λ ≥ 0, the Lagrangian dual function provides a lower bound

for the optimal value of the problem (2.1). Hence, looking for the best lower bound leads

us to the following optimization problem:

Maximize
λ,ν

g(λ, ν)

s.t. λ ≥ 0.

(2.2)

The above problem is called the dual problem associated with the primal problem

(2.1).

Assume that fi, ∀i = 0, ..., p, and hi, ∀i = 1, ..., q are differentiable in the primal

problem, and let x∗ and (λ∗, ν∗) be any primal dual optimal points with zero duality

gaps, i.e, there is no gap between the optimal solutions of the primal problem and the

10

dual problem. Since x∗ minimizes L(x, λ∗, ν∗) with respect to x, then at x∗ we have

∇f0(x
∗) +

p∑
i=1

λi
∗∇fi(x

∗) +
q∑

i=1

νi
∗∇hi(x

∗) = 0.

Therefore, (x∗, λ∗, ν∗) satisfies

fi(x
∗) ≤ 0, i = 1, ..., p,

hi(x
∗) = 0, i = 1, ..., q,

λi
∗ ≥ 0,

λi
∗fi(x∗) = 0,

∇f0(x
∗) +

∑p
i=1 λi

∗∇fi(x
∗) +

∑q
i=1 νi

∗∇hi(x
∗) = 0.

(2.3)

The above conditions are called Karush-Kuhn-Tucker(KKT) conditions. For any op-

timization problem with differentiable objective functions and constraint functions for

which the constraint qualification holds, the optimal points must satisfy the KKT con-

ditions. So, KKT conditions are necessary for the point (x∗, λ∗, ν∗) to be optimal. If

the primal problem is convex, then KKT conditions are also sufficient conditions for the

points to be optimal.

In the next section, we simply review convex optimization problems. More discussions

about duality theory can be found in the conic optimization section.

2.2 Convex optimization

Definition 2.1. (Convex set)

A subset C in Rn is convex if

(2.4) αx+ (1− α)y ∈ C, ∀x, y ∈ C, 0 ≤ α ≤ 1.

11

The set {αx+ (1− α)y : α ∈ [0, 1]} represents the closed line segment between x and

y.

We call a point of the form
∑k

i=1 αixi, where
∑k

i=1 αi = 1, and αi ≥ 0, ∀i = 1, ..., k

a convex combination of the points x1, ..., xk. Clearly, a set is convex if and only if it

contains all convex combinations of its points.

Example 2.1.

• An empty set, a singleton and the whole space Rn are the simple examples of convex

sets.

• Affine subspaces of Rn are convex. In particular, a polyhedral is a convex set, since

it is the solution set of a finite system defined as Ax ≤ b.

• Euclidean balls and ellipsoids are convex. An Euclidean ball centered at a with a

radius r is

{x : ||x− a||2 ≤ r},

where || · ||2 is the standard Euclidean norm, ||x||2 =
√
xTx. An ellipsoids centered

at a, with a given matrix Q ∈ Rm×n is

{x ∈ Rn : ||Q(x− a)||22 ≤ 1}.

Definition 2.2. (Convex hull)

Let K ⊆ Rn be a nonempty arbitrary set. The intersection of all convex sets containing

K, is the convex hull of K. In other words the convex hull of K, denoted by Conv(K), is

the smallest convex set containing K.

The convex hull of m + 1 affinely independent points x0, x1, ...xm ∈ Rn, (i.e., x1 −
x0, ..., xm − x0 are affinely independent) is called a m-dimensional simplex, defined as

12

follows,

Conv(x0, ..., xm) =

{
m∑
i=0

αixi :
m∑
i=0

αi = 1, αi ≥ 0

}
.

Definition 2.3. (Convex function)

f : Rn → R is a convex function, if dom(f) is a convex set, and

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ dom(f), 0 ≤ λ ≤ 1.

Example 2.2. If ‖ · ‖ : Rn → R is a norm, and 0 ≤ α ≤ 1, then from the triangle

inequality and homogeneity of the norm we have

‖αx+ (1− α)y‖ ≤ ‖αx‖+ ‖(1− α)y‖ = α‖x‖+ (1− α)‖y‖,

so, the norm is a convex function.

Here we review the first and second order convexity conditions. First order convexity

condition for a differentiable function f is as follows:

f is convex, if and only if dom(f) is convex, and

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y ∈ dom(f).

If f is twice differentiable, the second order convexity condition is as follows:

f is convex, if and only if dom(f) is convex, and

∇2f(x) º 0 ∀x ∈ dom(f).

Example 2.3. The function

f : Rn → R

13

f(x) =
1

2
xTBx+ aTx+ c,

where B ∈ Sn, a ∈ Rn, c ∈ R, is convex if and only if B º 0, since ∇2f(x) = B.

Definition 2.4. (Quasiconvex functions)

f : Rn → R is quasiconvex if the domain of f and its sublevel sets {x ∈ dom f :

f(x) ≤ β}, for β ∈ R are convex.

Quasiconvex functions can also be defined by the following expressions:

A function f is quasiconvex if and only if its domain is convex, and

f(αx+ (1− α)y) ≤ max{f(x), f(y)}, ∀x, y ∈ dom(f), 0 ≤ α ≤ 1,

and f is quasiconcave if

f(αx+ (1− α)y) ≥ min{f(x), f(y)}, ∀x, y ∈ dom(f), 0 ≤ α ≤ 1.

Example 2.4. Cardinality function on Rn
+, and rank function on Sn

+, are quasiconcave.

In fact,

Card(x+ y) ≥ min{Card(x), Card(y)}, x, y ≥ 0,

Rank(X + Y) ≥ min{Rank(X), Rank(Y)}, X, Y ∈ Sn
+,

where Sn
+ denotes the cone of the positive semidefinite matrices.

In general, a convex optimization problem is of the form

Minimize
x

f(x)

s.t. g(x) ≤ 0,

14

where f, g are convex functions. Roughly speaking, minimizing a convex function over a

convex set is called convex programming.

If one can reformulate a problem as a differentiable convex optimization problem, then

it can be solved efficiently, in general. However, reformulating a problem as a convex opti-

mization can be challenging. Heuristics based on convex optimization have an important

role for solving non-convex problems. As we will see in chapter 3, one of the goals of

this thesis is to study the convex optimization problems based on heuristic methods for

cardinality minimization and cardinality constrained problems. For example, one of the

methods for solving the CMP problem is to apply l1-norm heuristics.

Next, we are going to introduce conic optimization. Before doing so, we need some

basic definition and facts.

2.3 Conic optimization and duality

Definition 2.5. (Cone)

A cone K ⊆ Rn is a proper cone, if it satisfies

1. K is nonempty and closed under addition, i.e.,

a, b ∈ K ⇒ a+ b ∈ K,

and K is a conic set, i.e.,

a ∈ K, γ ≥ 0 ⇒ γa ∈ K,

(if these two conditions hold then K is convex),

2. x ∈ K, and −x ∈ K ⇒ x = 0, which means K is pointed,

3. K has nonempty interior, int(K) 6= φ,

15

4. K is closed.

If 1,2 above hold then K is a pointed convex cone.

The partial ordering using a pointed convex cone K, denoted by ≥K or º, can be

defined as:

a º b ⇔ a− b º 0 ⇔ a− b ∈ K.

Example 2.5. (Some examples of cones)

• The nonnegative orthant Rm
+ = {x = (x1, ..., xm) ∈ Rm : xi ≥ 0, i = 1, ...,m} in Rn.

• Lorentz or second order cone or ice cream, defined as,

Lm :=

 x = (x1, x2, ..., xm−1, xm) ∈ Rm;xm ≥

√√√√
m−1∑
i=1

x2
i

 .

• The semidefinite cone Sm
+ , equipped with Frobenius inner product, and defined in the

space of m×m symmetric matrices.

For more explanation about the last example above, we need to introduce Frobenius

norm, which is based on the concept of inner product. Frobenius norm is used in semidef-

inite optimization.

Definition 2.6. (Inner product)

Define the linear vector inner product as follows,

〈x, y〉 = xTy.

where the x, y are the vectors with the same dimension. Matrix inner product can be

computed using vectorization of the matrices. For an arbitrary m × n matrix Y =

16

(
y1, . . . , yn

)
, where yi’s denote the columns of Y , we may define,

vecY :=

y1
...

yn

.

Then the inner product of two matrices X and Y with the appropriate dimensions will

be defined as follows:

〈Y,X〉 := tr(Y TX) = (vecY)TvecX = 1T (Y ◦X)1,

where 1 is a vector with all its components equal to 1, and ◦ represents the Hadamard

Product of the matrices, [69].

Definition 2.7. (Frobenius norm)

Assume that X ∈ Rm×n is a normal matrix, i.e., it has a complete normal set of

eigenvectors [146]. Then Frobenius norm is defined using vector inner product as follows:

||X||2F = ||vecX||22 = 〈X,X〉 = tr(XTX) =
∑
i

σ(X)2i ,

where σ(X)i is the ith singular value of X.

Now, we are ready to represent the general conic optimization problem. Denote E

as an Euclidean space with finite dimension, equipped with both inner product 〈., .〉 and
partial ordering (º or ≥K), and let K be a proper cone in E. c ∈ Rn is the objective,

b ∈ E, and x → Ax is a linear mapping defined with a Am×n matrix. Then the conic

optimization problem(CP) is in the form of

(2.5) min
x

{cTx : Ax º b}.

17

Obviously, the linear programming(LP),

(2.6) min
x

{cTx;Ax ≥ b},

is a special case of (2.5), in which E and K are replaced with the whole real space and

its nonnegative orthant respectively.

One of the important systematic ways for finding a lower bound for the optimal value

of a linear program is to use LP duality [15]. The main idea in LP duality is to add

a weighted sum of the constraint functions to the objective function to achieve the La-

grangian, then the minimum value of the Lagrangian over x is called the Lagrange dual

function. Applying the above method to the linear programming (2.6) and denoting the

weighted vectors with ω ≥ 0, we have

ωTAx ≥ ωT b,

Obviously, if ATω = c, then ωT b is a lower bound for cTx. Hence, to achieve the best

lower bound one should solve

max
ATω=c,ω≥0

bTω.

One can use the same methodology to build a dual for a conic problem (2.5). Note

that the weight vectors, in this case, should be chosen from the dual cone, which is defined

as follows:

(2.7) K∗ = {ω ∈ E : 〈ω, k〉 ≥ 0, ∀k ∈ K}.

Note that in the LP dual problem the weight vectors have been chosen from the

nonnegative orthant, which is a convex set.

Proposition 2.1. Dual cone is always convex even if the cone itself is not convex.

18

Proof. As we have seen, the dual cone is defined as

(2.8) K∗ = {ω ∈ E : ωTk ≥ 0,∀k ∈ K}.

Assume that ω, z ∈ K∗, then for any k ∈ K, and 0 ≤ α ≤ 1, we have

(αω + (1− α)z)Tk = αωTk + (1− α)zTk ≥ 0,

so αω + (1− α)z ∈ K∗. Hence, K∗ is convex.

As an example, note that nonnegative orthant is self dual, i.e., Rm
+ = (Rm

+)
∗, so

is the cone of semidefinite positive matrices, which is a nice property for semidefinite

programming. To derive a dual problem for the conic problem (2.5), the weight vectors

should be chosen from K∗ and repeat the same procedure as for LP dual to get:

(2.9) max{〈b, ω〉 : ATω = c, ω ∈ K∗}.

Recall that, ω ∈ K∗, means ω ≥K∗ 0.

The following theorem illustrates the importance of Lagrange duality.

Theorem 2.1. (Conic duality theorem) [12]

For the conic problem (2.5) and its dual (2.9) the following statements hold.

• The duality is symmetric.

• cTx− 〈b, ω〉 ≥ 0 for all feasible points.

• If the primal conic problem(CP) is bounded below and Slater’s condition holds (i.e.,

the problem is strictly feasible), then the dual is solvable and the optimal values are

equal.

19

• If the dual problem is bounded above and Slater’s condition holds (i.e., the dual

problem is strictly feasible), then the primal conic problem is solvable and the optimal

values are equal.

• If one of the problems (primal or dual) is bounded and strictly feasible, then the pair

(x, ω) is the optimal solution to the primal and dual respectively, if and only if

cx− 〈b, ω〉 = 0,

which means the duality gap is zero, and

if and only if

〈ω,Ax− b〉 = 0,

which means that the complementary slackness holds.

Before we proceed to semidefinite optimization, let us discuss a bit of conic quadratic

representable sets.

Definition 2.8. (Conic quadratic representable sets)

We say a set X ⊂ Rn is Conic Quadratic representable(CQr), or it can be represented

using conic quadratic inequalities, if there exists a finite system S with the form of

Aj

x

u

− bj ≥Lmj 0,

where x ∈ Rn and additional variable u, such that X is the projection of the solution set

of S onto the x-space.

20

Or in a shorter form one can write,

x ∈ X ⇔ ∃u : Aj

x

u

− bj ≥Lmj 0, j = 1, ..., N.

Every such a system S is called a Conic Quadratic Representation(CQR) of the set

X. If a function f is Conic Quadratic(CQ) representable, then so all of its level sets,

and every Conic Quadratic(CQ) representable (of the epigraph of f) explicitly induces

CQ-representation of the level sets. Recall that the epigraph of a function f is defined as

Epi(f) = {(x, t) ∈ Rn × R : f(x) ≤ t}.

Suppose that we have a CQr of the epigraph of f . Then

f(x) ≤ t ⇔ ∃u : ‖ξj(x, t, u)‖2 ≤ ζj(x, t, u), j = 1, ..., N,

where ξj is a vector valued affine function, and ζj is a scalar valued affine function. The

inequality on the right hand side above has been achieved directly from the definition of

the second order cone.

In the next section, we review semidefinite optimization concepts, which is a special

case of conic optimization.

2.4 Semidefinite optimization

Definition 2.9. (Positive semidefinite matrices)

The matrix A ∈ Sn is positive semidefinite if xTAx ≥ 0 for all x ∈ Rn,where Sn is the

space of symmetric matrices.

Replacing ≥ with > above leads to the definition of a positive definite matrix.

It is not hard to see that if A ∈ Sn, then the following statements are equivalent.

21

• A º 0,

• λi(A) ≥ 0 ∀i = 1, ..., Rank(A),

• A = CCT for certain rectangular matrix C, for such C, Rank(C) = Rank(A),

• A = LLT for certain lower triangular L, Rank(L) = Rank(A),

• 〈A,B〉 ≥ 0, ∀B ∈ Sn
+.

Semidefinite programming is a special case of conic programming, which can be defined

as optimizing a linear objective over the cone of positive semidefinite matrices with linear

matrix inequalities(LMIs) [109]. Replacing K with the cone of positive semidefinite m×m

matrices Sm
+ in (2.5) and defining a linear mapping A : Rn → Sm yields the following

generic semidefinite optimization problem:

(2.10) min
x

{cTx : Ax−B º 0},

where ” º ” means ” ≥Sm
+
”, and

Ax =
n∑

i=1

xiAi, Ai ∈ Sm, i = 1, ..., n.

As we have seen, a semidefinite program for a variable x ∈ Rm can be also cast as

Minimize
x

cTx

s.t. A(x) º 0,

(2.11)

where A(x) can be defined as follows:

(2.12) A(x) = A0 +
m∑
i=1

xiAi,

22

with c ∈ Rm, and m+ 1 symmetric matrices A0, A1, ..., Am ∈ Rn×n.

The inequality A(x) º 0 is called linear matrix inequality(LMI). Note that the optimal

solution x∗ of the problem (2.11) is on the boundary of the feasible region, so, A(x∗) is

singular.

Semidefinite programming(SDP) can be considered as an extension of linear program-

ming(LP). The following example illustrates this.

Example 2.6. As a special example of an SDP consider the following linear program(LP):

Minimize
x

cTx

s.t. Dx+ b ≥ 0,

(2.13)

where, ≥ is componentwise. Since the both sides of the inequality are vectors, obviously

the following holds,

Dx+ b ≥ 0 ⇔ A(x) = diag(Dx+ b) º 0,

i.e., in (2.12) we have

A0 = diag(b), Ai = diag(di), i = 1, ...,m,

and D = [d1, ..., dm] ∈ Rn×m. So, one can reformulate the problem (2.13) as the following

SDP:

Minimize
x

cTx

s.t. A(x) = diag(Dx+ b) º 0.

(2.14)

23

The above example illustrates that SDP can be considered as an extension of LP,

with replacing the componentwise inequalities with matrix inequalities. In other words,

replacing the first orthant in LP, with the cone of semidefinite positive matrices, can be

resulted in SDP problem. Another point about the relationship between SDP and LP is

that the matrix inequality A(x) º 0 means yTA(x)y ≥ 0 ∀y ∈ Rn. So, SDPs can be

interpreted as a semi-infinite LPs. It is not strange that the approaches to solve SDPs are

closely related to LPs, while many methods and algorithm which are used to deal with

LPs can be generalized for SDPs. However, there are some important differences between

them. For example, one can not use the practical simplex method for LPs to solve SDPs.

Also, the duality results for SDPs are weaker than those of LPs.

Remark 2.1. Based on the definition of CQr sets in the previous section, one can also

define semidefinite representable sets(SDr) as follows:

A set X ⊂ Rn is SDr if the following holds,

x ∈ X ⇔ ∃u : A

x

u

−B º 0.

In other words, X is SDr if there exists Linear Matrix Inequalities (LMIs), in a way

that

A

x

u

−B º 0,

where u is the additional variable, such that X is the projection of the solution set of the

LMI onto the x-space. An LMI with this property is called the Semidefinite Representation

(SDR) of the set X [12].

24

2.5 Rank minimization

In this section, we discuss rank minimization problem, and we review some facts about

this problem, as we use them later in this thesis.

Definition 2.10. (Range and Kernel of a Linear Transformation)

The range (or image) of a linear transformation A : Rn → Rm, R(A) (or Im(A)) is

defined by

R(A) = {u ∈ Rm : u = Av for some v ∈ Rn}.

If the columns of A are written as [a1, ..., an], then

R(A) = Span{a1, ..., an}.

So, directly from the definition we have R(A) ⊆ Rm.

The null space (or kernel) of A : Rn → Rm, denoted by N (A) (or Ker(A)), is defined

by

N (A) = {v ∈ Rn : Av = 0}.

Clearly, we have N (A) ⊆ Rn.

Definition 2.11. (Rank, and Nullity)

Let A : Rn → Rm. Then the column rank of A is rank(A) = dimR(A), i.e., rank(A)

is the maximum number of independent columns. In the same way the row rank of A is

dimR(AT). Also dimN (A) is the nullity of A.

For more illustration, see the following theorem:

Theorem 2.2.

Rank(A) = dimR(A) = dimN (A)⊥ = dimR(AT) = Rank(AT).

25

Definition 2.12. (Moore-Penrose Pseudoinverse)

Let A : Θ → Γ be a linear transformation, where Θ,Γ are finite dimensional vector

spaces. Define a transformation B : N (A)⊥ → R(A) in the following sense

Bx = Ax, ∀x ∈ N (A)⊥.

Then as it was proved in Theorem 2.2, B is both one to one and onto. Now the

Moore-Penorse Pseudoinverse of A, denoted by A† is defined as follows

A† : Γ → Θ, A†y = B−1y1,

where y = y1 + y2, y1 ∈ R(A), y2 ∈ R(A)⊥.

Theorem 2.3. (Singular Value Decomposition) Let Am×n be a matrix with rank(A) = r.

Then there exists orthogonal matrices U ∈ Rm×m and V ∈ Rn×n, such that

A = UΣV T ,

where

Σ =

σ 0

0 0

 , σ = diag(σ1, ..., σr) ∈ Rr×r, σ1 ≥ σ2 ≥ ... ≥ σr > 0.

σi’s are called singular values of the matrix A.

The above theorem also can be cast as

With

U1 ∈ Rm×r, U2 ∈ Rm×(m−r), V1 ∈ Rn×r, V2 ∈ Rn×(n−r),

26

A =

(
U1 U2

)

σr×r 0

0 0

V T
1

V T
2

 = U1σV

T
1 .(2.15)

Proof. Obviously the eigenvalues of the matrix ATA are nonnegative, since ATA º 0.

Define these eigenvalues as follows:

{σ2
i : i = 1, ..., n}, such that σ1 ≥ σ2 ≥ ... ≥ σr > 0, σr+1 = σr+2 = ...σn = 0,

and define the related orthonormal eigenvectors as {vi : i = 1, ..., n}.
And let

V1 = [v1, ..., vr], V2 = [vr+1, ..., vn], σ = diag(σ1, ...σr).

Then we have

ATAV1 = V1σ
2 ⇒ V T

1 ATAV1 = V T
1 V1σ

2 = σ2, since V T
1 V1 = I

⇒ σ−1V T
1 AT

︸ ︷︷ ︸
UT
1

AV1σ
−1

︸ ︷︷ ︸
U1

= I.

By the definition of U1, UT
1 above, we have UT

1 U1 = I.

Also,

ATAV2 = V20 = 0 ⇒ V T
2 ATAV2 = 0 ⇒ AV2 = 0.

Now, construct a matrix U2 ∈ Rm×(m−r) such that [U1 U2] is orthogonal, i.e, U
T
2 U1 = 0.

27

Hence, one can write

UTAV =

UT
1 AV1 UT

1 AV2︸︷︷︸
0

UT
2 AV1 UT

2 AV2︸︷︷︸
0

 =

σ 0

0 0

 .

The proof is complete.

Singular values of a matrix A can be interpreted as the eigenvalues of the matrix
√

(AAT), i.e,

σi(A) = λi((AA
T)

1
2).

The singular value decomposition theorem for A ∈ Rm×n, (m ≤ n) can also be repre-

sented as

A =
m∑
i=1

σi(A)uiv
T
i ,

where {ui} and {vi} are orthonormal sequences in Rm and Rn, respectively.

Clearly, if we know rank(A) = r ≤ min{m,n}, then

A =
r∑

i=1

σi(A)uiv
T
i .

Note that the singular value decomposition is a general case for the eigenvalue decom-

position of a symmetric matrix Am×m = AT
m×m, which can be written as follows

A =
m∑
i=1

λi(A)uiu
T
i ,

where {ui}mi=1 is the orthonormal eigenbasis of the matrix A.

Theorem 2.4. Let UΣV T be the singular value decomposition of matrix Am×n as in

28

Theorem 2.3. Then

A† = V Σ†UT ,

where

Σ† =

σ−1 0

0 0

 ∈ Rm×n.

One can rewrite the above expression as

A† =
r∑

i=1

1

σi

viui.

For more detailed discussions and examples about SVD, see [124, 138].

As a corollary of the above notes, if A = UΣV T is a SVD of the matrix A, then clearly

Rank(A) = Rank(Σ).

The matrix Σ is a diagonal matrix with its diagonal components equal to the singular

values of the matrix A, i.e,

Σ = diag(σ1, ..., σn).

Therefore, we have

Rank(Σ) = Rank diag(σ1, ..., σn).

By setting σ = (σ1, ..., σn)
T , the rank of the matrix A is reduced to the cardinality of

the vector of singular values, i.e,

Rank(A) = Card(σ).

Obviously, rank(A) is equal to the number of non-zero singular values. So, by us-

29

ing SVD theorem, one can reduce a rank minimization problem(RMP) to a cardinality

minimization problem(CMP).

In [60], it was proved that ‖X‖∗ is the convex envelop of rank(X), i.e, the convex

relaxation of the RMP

Minimize
X

Rank(X)

s.t. X ∈ C,

(2.16)

(where C is a convex set) is

Minimize
X

‖X‖∗

s.t. X ∈ C.

(2.17)

Nuclear norm of a matrix Xm×n is defined as the summation over the singular values of

the matrix, i.e,

‖X‖∗ =
min{m,n}∑

i=1

σi(X).

Note that the problem (2.17) can be reformulated as follows:

Minimize
t,X

t

s.t. ‖X‖∗ ≤ t

X ∈ C.

Based on [12, 135], one can say ‖X‖∗ ≤ r is SDr. The following proposition is the

general case for this.

Proposition 2.2. [12] The sum of the β largest singular values of a matrix Xm×n, m ≤ n

30

denoted with Σβ is SDr. Specially the operator norm of a matrix is SDr, i.e,

|X| ≤ r ⇔

rIn −XT

−X rIm

 º 0.

Note that the operator norm for a linear map X : V → W is defined as follows:

|X| = sup

{‖Xv‖
‖v‖ : v ∈ V, v 6= 0

}

In the next chapter, we start discussing general cardinality constrained problems and

cardinality minimization problems under non-convex quadratic constraints and linear con-

straints.

31

Chapter 3

Cardinality Minimization

Problem(CMP)1

.

The general cardinality minimization problem(CMP) over a convex set C, and cardi-

nality constrained problem can be cast respectively as:

(3.1) Minimize
x

{Card(x) : x ∈ C},

and

(3.2) Minimize
x

{f(x) : Card(x) ≤ τ, x ∈ C}.

In this thesis, we also consider CMPs over nonconvex sets. CMP is to maximize the num-

ber of zero components or equivalently to minimize the number of non-zero components

of a vector satisfying certain constraints. In other words, CMP is looking for the sparsest

vector in a given feasible set or looking for the simplest model for describing or fitting a

certain phenomena. The card function, card(x), can be expressed as l0-norm. While l0 is

1Most parts of this chapter can be found in [3]

32

not a norm, we can still call it l0-’norm’, due to the following fact:

‖x‖0 = lim
p→0

‖x‖pp = lim
p→0

(
n∑

i=1

|xi|p
) 1

p

= Card(x).

The l0-norm is a non-convex, non-smooth and integer valued function, and the opti-

mization problems with ‘card’ objective or constraints are known as NP-hard problems

[87, 135], and thus CMPs are not computationally tractable in general.

These kinds of problems have many applications in such areas as finance [97, 35, 126],

signal processing and control [133, 72, 93], statistics and principal component analysis

[47, 141, 154, 101] , compressive sensing [11, 50, 23], etc. Due to the NP-hardness of

CMP, the aim of this chapter is to introduce different SDP relaxations/approximations

of CMPs.

This chapter is organized as follows. In section 3.1, we consider cardinality constrained

problems, and discuss SDP relaxation methods for these problems based on Shor’s lemma

and duality methods. Also, we show how this problem can be cast as a bilevel optimization

problem. In section 3.2, we review various existing methods for solving CMPs under linear

constraints, and as an example of reweighted l1-techniques, we introduce a continuous

approximation of the cardinality function and then apply linearization methods to solve

the problem iteratively (we focus on reweighted lj-algorithms (j ≥ 1) in the chapters 4

and 5). In section 3.3, we study CMPs under nonlinear non-convex constraints, and show

how to find an approximate solution to these problems using reformulation techniques

and Lagrangian duality methods. We also explain how the dual problem can be reduced

to a semidefinite problem. In section 3.4, we discuss CMP under 0-1 vectors, and explain

how to reformulate these problems by adding certain penalty instead of dropping the rank

constraint. In section 3.5, we discuss the subgradient method to solve the l1-minimization

problem, and in section 3.6, through numerical experiments, we show the performance of

33

this method. In section 3.7, we explain the branch and bound algorithm to solve CMPs

and in section 3.8, we demonstrate the performance of this method through the numerical

experiments.

3.1 Cardinality constrained problems

Let us first start with a general cardinality constrained problem. A general cardinality

constrained problem is of the form (3.2) where f(x) and C are convex. Card(x) ≤ τ is

not a convex constraint, so we try to relax this constraint using semidefinite relaxation.

Before doing so, we first note that norms are equivalent in finite dimensional spaces in the

following sense: Suppose ‖ · ‖µ, ‖ · ‖ν are norms on Rn. Then there exist scalars a, b ≥ 0,

such that a‖x‖µ ≤ ‖x‖ν ≤ b‖x‖µ, ∀x ∈ Rn. For example, we have

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2.

To be more precise note that in general case for a polytope norm defined by max |aTi x|, i =
1, ..., n, we have

1√
β

√
xTAx ≤ max

i=1,...,n
|aTi x| ≤

√
β
√
xTAx, ∀A < 0, x ∈ Rn,

where β is a constant.

Proposition 3.1. [47] A convex relaxation of the nonconvex cardinality constraint, Card(x) ≤
τ , can be expressed via the following convex constraints

1T |X|1 ≤ τtr(X),

X x

xT 1

 º 0, for some symmetric matrices X,

where |X| denotes the element-wise absolute value of the matrix X.

34

Proof. For any given vector x =

(
x1 . . . xn

)T

6= 0, obviously we have

0 ≤ |xi|√
x2
1 + ...+ x2

n

≤ 1, i = 1, ..., n,

and hence
n∑

i=1

|xi|√
x2
1 + ...+ x2

n

≤ Card(x) ≤ τ,

i.e.,

(3.3)

∑n
i=1 |xi|√

x2
1 + ...+ x2

n

=
‖x‖1
‖x‖2 ≤ Card(x) ≤ τ.

Note that the cardinality of the vector x = (x1, ..., xn) is equal to that of the vector

|x| = (|x1|, ..., |xn|). So by the fact that Card(|x|) = Card(x) ≤ τ , we define the vector

ψ = (ψ1, ...ψn), where for every i, ψi = 1 if xi 6= 0; otherwise ψi = 0. By Cauchy-Schwartz

inequality, i.e, |〈|x|, ψ〉|2 ≤ 〈|x|, |x|〉.〈ψ, ψ〉, and noting that Card(x) ≤ τ , we have

||x1|+ ...+ |xn||2 ≤ τ(|x1|2 + ...+ |xn|2).

Therefore we have

(3.4) ‖x‖21 ≤ τ‖x‖22.

In what follows, we use semidefinite relaxation methods [62] to represent the above

35

statement as a convex inequality. Consider the matrix, X = xxT , i.e.,

X =

x2
1 x1x2 . . . x1xn

x2x1 x2
2 . . . x2xn

...
...

. . .
...

xnx1 xnx2 . . . x2
n

.

Clearly, the left hand side of the inequality (3.4) is the summation of all of the components

of the matrix X, and ‖x‖22 is the trace of the matrix X. So (3.4) can be written as the

following convex inequality (see e.g. [47])

1T |X|1 ≤ τtr(X),

where |X| denotes the element-wise absolute value of the matrix X. While the constraint

X = xxT is not convex, by applying Shor’s lemma, it can be written as X º xxT ,

Rank(X) = 1. Rank(X) = 1 is a nonconvex constraint, so by dropping the rank con-

straint, one may achieve the following convex relaxation for the constraint X = xxT ,

X x

xT 1

 º 0,

and this completes the proof.

In [149], Zhao proved that under certain conditions, matrix rank minimization can be

formulated as a linear bilevel optimization problem. This motivates the following result.

Proposition 3.2. If the set C is bounded and defined by linear constraints, the cardinality

constrained problem (3.2) can be written as a bilevel optimization problem.

36

Proof. From the proof of Proposition 3.1, one can rewrite the problem (3.2) as of the

form:

Minimize
x,X

f(x)

s.t. x ∈ C(3.5)

1T |X|1 ≤ τtr(X)

X = xxT .

Now by applying Shor’s lemma, we can write the above problem as the following form:

Minimize
x,X

f(x)

s.t. x ∈ C

1T |X|1 ≤ τtr(X)(3.6)

X x

xT 1

 º 0

Rank(X) = 1.

The nonconvex constraint Rank(X) = 1 motivates to look for the low rank matrices X.

So, instead of dropping the rank constraint, in our optimization problem, one should also

minimizes the rank of the matrix X. Since X is a symmetric matrix, rank(X) may be

replaced by its convex envelop tr(X). Hence, the problem (3.6) will be equivalent to the

following bilevel optimization form (see [149]):

37

Minimize
x,X,X̂

f(x)

s.t. x ∈ C

1T |X̂|1 ≤ τtr(X̂)(3.7)

X̂ = arg min
X∈Sn

tr(X) :

X x

xT 1

 º 0

.

The proof is complete.

The constraint Rank(X) = 1 is not convex. In order to get a reasonable approxi-

mation/relaxization of (3.2), a simple idea is to drop this constraint. This leads to the

following problem:

Minimize
x,X

f(x)

s.t. x ∈ C

1T |X|1 ≤ τtr(X)(3.8)

X x

xT 1

 º 0,

which can be solved more efficiently than the original problem. Dropping the rank con-

straint, however, may result in a large gap between the optimal values of the relaxed

problem (3.8) and the original problem. In [60], it is proved that the convex envelop of

Rank(X) is the nuclear norm function (‖X‖∗), which is defined as the summation over

all of the singular values of the matrix X. Therefore to achieve a convex problem, we can

use the penalty method instead of dropping the rank constraint to obtain better approx-

38

imation of the original problem. This yields the following convex problem (semidefinite

problem):

Minimize
x,X

f(x) + ξ‖X‖∗
s.t. x ∈ C

1T |X|1 ≤ τtr(X)(3.9)

X x

xT 1

 º 0

where ξ > 0 is the penalty parameter which is chosen to be sufficiently large.

A special case of the problem (3.2) can be cast as

Minimize
x

f(x) =
1

2
xTPx+ qTx

s.t. Ax ≤ b(3.10)

Card(x) ≤ τ

0 ≤ xi ≤ si, i = 1, ..., n,

where P is an n × n symmetric matrix, q ∈ Rn, A ∈ Rm×n, b ∈ Rm, and τ ∈ N. This

problem was studied by Zheng, Sun and Li [153].

As we have seen above, a common way to solve the optimization problems with a

cardinality function as an objective or constraint is to relax the cardinality function. We

take the specific example above to demonstrate this approach further. First, the problem

(3.10) can be reformulated as the following mixed integer quadratic problem:

39

Minimize
x,u

f(x) =
1

2
xTPx+ qTx

s.t. Ax ≤ b,

1Tu ≤ τ, u ∈ {0, 1}n,(3.11)

0 ≤ xi ≤ siui, i = 1, ..., n,

where 1 still denotes the vector of ones. Note that the constraint ui ∈ {0, 1} can be

written as u2
i − ui = 0. Assuming P º 0, the convex relaxation of the problem above can

be achieved by replacing ui ∈ {0, 1} by ui ∈ [0, 1]. So, it leads to the following problem

(see [153]):

Minimize
x,u

f(x) =
1

2
xTPx+ qTx

s.t. Ax ≤ b(3.12)

1Tu ≤ τ, u ∈ [0, 1]n

0 ≤ xi ≤ siui, i = 1, ..., n.

Note that the constraint ui ∈ [0, 1] can be written as u2
i − ui ≤ 0. Obviously, the optimal

value of the problem (3.12) is a lower bound for the problem (3.10). An SDP relaxation

for the problem (3.10) can be obtained as follows: Let X = xxT , and U = uuT , which

can be relaxed to X º xxT and U º uuT . This yields the following relaxed problem:

40

Minimize
x,u,X,U

f(x) =
1

2
xTPx+ qTx

s.t. Ax ≤ b

1Tu ≤ τ, u2
i − ui ≤ 0, i = 1, ..., n(3.13)

0 ≤ xi ≤ siui, i = 1, ..., n

X x

xT 1

 º 0,

U u

uT 1

 º 0.

Relationship between (3.12) and (3.13) was characterized by the following result.

Proposition 3.3. [153] Suppose that the feasible set of the problem (3.12) has an inte-

rior point (or a relative interior point, if Ax ≤ b includes equality constraint). If P º 0,

then the optimal value of the problems (3.13) and (3.12) are equal.

In the next section, we explain cardinality minimization problem under linear con-

straints briefly, and we will discuss these problem with full details, in chapters 4 and

5.

3.2 CMP under linear constraints

The Cardinality minimization problem(CMP) with linear constraints, i.e.,

(3.14) Minimize
x

{Card(x) : Ax = b},

where A ∈ Rm×n is a matrix with m < n, has been widely discussed in the field of

compressive sensing [33, 92, 130], which deals with the signal processing/recovery together

41

with applications in such areas as image processing [91].

The most popular approach for solving (3.14) (which is NP hard in general) is to

replace the function card(x) by its convex envelop the ‖x‖1-function, we will give a proof

of this fact in chapter 4. Hence a relaxation of (3.14) is as follows:

(3.15) Minimize
x

{‖x‖1 : Ax = b},

which will be discussed in chapter 4 with more details.

Another effective method for solving the problem (3.14) is to apply reweighted l1-

techniques (see e.g. [34]). The reweighted lp-minimization (p ≥ 1) will be discussed in

chapter 4 and 5, where we introduce new weights and functions for sparsity. For now, as

an example let us define the following continuous approximation of card(x):

(3.16) Card(x) = ‖x‖0 = lim
ε→0

n∑
i=1

sin

(
atan

(|xi|
ε

))
.

Hence for a given small ε > 0, an approximation counterpart of (3.14) is given as follows:

Minimize
x

n∑
i=1

sin

(
atan

(|xi|
ε

))
(3.17)

s.t. Ax = b.(3.18)

Note that

sin

(
atan

(|xi|
ε

))
≤ sin

(
atan

(|yi|
ε

))
+

1

y2i + ε2
cos

(
atan

(|yi|
ε

))
(|xi| − |yi|)

≤ sin

(
atan

(|yi|
ε

))
+

1

y2i + ε2
(|xi| − |yi|), ∀ x, y.

Using linearization techniques(majorization minimization), one obtain the following iter-

42

ative scheme:

(3.19) xl+1 = argmin
x

{
n∑

i=1

|xi|(
xl
i

)2
+ ε2

: Ax = b

}
,

where l is the number of the iteration, and 1

(xl
i)

2
+ε2

can be interpreted as the weight which

forces the nonzero component to be zero if possible. The initial point x0 can be chosen

as the optimal solution of the l1-minimization (chapter 5).

Before closing this section, it is worth mentioning that sometimes we are interested in

finding a solution with a prescribed cardinality t. Such problems can be written as the

following feasibility problem:

Find x

s.t. Ax = b(3.20)

card(x) ≤ t.

which can be reformulated as a d.c. programming. In fact, for x ∈ Rn, the problem above

is equivalent to the minimization of (n− t) smallest components of x.

Now suppose St(x) is defined as the summation over the t largest components of the

vector |x| (assume that |x1| ≥ |x2| ≥ ... ≥ |xn|)

St(x) =
t∑

i=1

|xi|,

which clearly is a convex function. Hence the problem (3.20) can be reformulated as

(3.21) Minimize
x

{‖x‖1 − St(x) : Ax = b},

43

which is a d.c. programming problem, since both of the functions ‖x‖1 and St(x) are

convex. This problem can be solved by the cutting plane method, which is a usual

approach for solving d.c. problems. However, linearization method can be still used to

obtain an approximate solution to the problem. The linearized version of the problem

can be written as

Minimize
x

{∇(‖x‖1 − St(x))
Tx : Ax = b}.

This is equivalent to

Minimize
x,g,u

(sign(x)− g)Tx

s.t. Ax = b,

g = Maximize uTx(3.22)

s.t. u ∈ [0, 1]

1Tu = t,

which can be viewed as a special linear bilevel programming problem.

3.3 CMP with nonlinear non-convex constraints

In this section, we discuss the CMP with quadratic constraints, i.e., C in (3.1) is of the

form

C = {x : bix
2
i − aixi − ci ≤ 0}, i = 1, ..., n.

We assume that the constraint functions are not necessarily convex, i.e., bi is not nec-

essarily positive. In this section, we discuss some approaches for the relaxation and/or

reformulation of such problems.

By adding a boolean valued slack variable v = (v1, ..., vn)
T to the problem, the CMP

44

(3.1), with non-convex quadratic constraints, can be reformulated as:

Maximize
v,x

n∑
i=1

vi = 1Tv

s.t. vixi = 0(3.23)

vi ∈ {0, 1}, i = 1, 2, ..., n

bix
2
i − aixi − ci ≤ 0, i = 1, 2, ..., n,

A similar reformulation can be found in [41]. We now give a dual formulation of this

problem.

Proposition 3.4. The dual SDP form of the problem above can be written as the fol-

lowing SDP problem

min
γ,λ,µ,β

(γ :

c(λ, µ, β) + γ b(λ, µ, β)T

b(λ, µ, β) A(λ, µ, β)

 º 0),

where A(λ, µ, β), c(λ, µ, β), b(λ, µ, β) are defined in (3.25), (3.26).

Proof. We make some small changes to the objective of (3.23) and rewrite the problem

as follows:

Maximize
v,x

1

0

T

v

x

s.t. vixi = 0(3.24)

vi ∈ {0, 1}, i = 1, 2, ..., n

bix
2
i − aixi − ci ≤ 0, i = 1, 2, ..., n,

45

where 1 ∈ Rn is a column vector with all of its components are equal to one, and 0 ∈ Rn

is a column vector with all of its components are equal to zero. The condition vi ∈ {0, 1}
can be relaxed with v2i − vi ≤ 0, which is a convex constraint. Now we may produce the

following relaxed problem:

Minimize
x,v

−

1

0

T

v

x

s.t. vixi = 0

v2i − vi ≤ 0, i = 1, 2, ...n

bix
2
i − aixi − ci ≤ 0, i = 1, 2, ..., n,

where

v

x

 = (v1, ..., vn, x1, ..., xn)

T , (1,0) =

 1...1︸︷︷︸

n−times

, 0...0︸︷︷︸
n−times

 .

Applying Lagrange duality and adding some weight vectors µ, λ, β yields

Lv,x(µ, λ, β) =

inf
(v,x)T∈R2n

−

1

0

T

v

x

+

n∑
i=1

µi(v
2
i − vi) +

n∑
i=1

λivixi +
n∑

i=1

βi(bix
2
i − aixi − ci)

 .

Note that

46

Lv,x(µ, λ, β)

=

v1
...

vn

x1

...

xn

T

µ1 0 0 λ1 0 0

0
. . . 0 0

. . . 0

0 0 µn 0 0 λn

λ1 0 0 β1b1 0 0

0
. . . 0 0

. . . 0

0 0 λn 0 0 βnbn

2n×2n

v1
...

vn

x1

...

xn

+

−1− µ1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 −1− µn 0 0 0

0 0 0 β1a1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 βnan

v1
...

vn

x1

...

xn

+

0

...

0

β1

...

βn

T

0

...

0

−c1
...

−cn

.

Setting

(3.25)

A(λ, µ, β) =

µ1 0 0 λ1 0 0

0
. . . 0 0

. . . 0

0 0 µn 0 0 λn

λ1 0 0 β1b1 0 0

0
. . . 0 0

. . . 0

0 0 λn 0 0 βnbn

, c(λ, µ, β) =

0

...

0

β1

...

βn

T

0

...

0

−c1
...

−cn

,

47

(3.26) b(λ, µ.β) =
1

2

−1− µ1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 −1− µn 0 0 0

0 0 0 β1a1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 βnan

,

and introducing a new variable y for (v, x), the function Lv,x(µ, λ, β) can be written as

Ly(λ, µ, β) = yTA(λ, µ, β)y + 2b(λ, µ, β)Ty + c(λ, µ, β).

Assume that λ, µ, β and θ are chosen such that

Ly(λ, µ, β)− θ ≥ 0, ∀y ∈ R2n.

Then θ is an upper bound for the optimal value of (3.23). Also from chapter 3 of [12], we

have

g(y) = yTAy + 2bTy + c− θ ≥ 0 ⇔ G(y, t) = yTAy + 2btTy + (c− θ)t2 ≥ 0.

So,

G(y, t) ≥ 0 ⇔

c− θ bT

b A

 º 0.

Then looking for the best upper bound for the main problem above becomes

48

max
θ,λ,µ,β

θ :

c− θ bT

b A

 º 0

.

Setting θ = −γ yields a relaxation for the original problem

min
γ,λ,µ,β

γ :

c+ γ bT

b A

 º 0

,

which is an SDP and can be solved efficiently.

3.4 CMP with 0-1 variables

In some situations, we are interested in minimizing the cardinality of a boolean vector

x ∈ Rn, i.e xi ∈ {0, 1}, i = 1, ..., n. So, we may consider the CMP with 0-1 variables and

quadratic constraints:

Minimize
x

Card(x)

s.t. xTBix− Aix− bi ≤ 0, i = 1, ...,m(3.27)

x ∈ {0, 1},

where Bi º 0, Ai is a vector with appropriate dimension, bi is a constant. This problem

is also discussed in [61] in which the feasible set is defined by a linear system.

Define a new variable z = 2x− 1. Hence the problem above can be reformulated as:

49

Minimize
z

Card(z + 1)

subject to 0.25(z + 1)TBi(z + 1)− 0.5(Ai(z + 1))− bi ≤ 0, i = 1, ...,m(3.28)

z ∈ {−1, 1}.

Now let Z = zzT . By shor’s lemma, Z = zzT is equivalent to Z º zzT and rank(Z) = 1.

Also note that tr(Z) = n, since all the elements on the main diagonal of the matrix Z are

equal to one. Hence the problem (3.28) is equivalent to the following problem:

Minimize
z,Z

1T z

s.t. 0.25(z + 1)TBi(z + 1)− 0.5(Ai(z + 1))− bi ≤ 0, i = 1, ...,m

Z º zzT , Z º 0(3.29)

Tr(Z) = n, Rank(Z) = 1.

Since z ∈ {−1, 1}, we can remove the constraint tr(Z) = n and replace it by diag(Z) = 1.

To relax the constraint Rank(Z) = 1, one can replace the rank function by the nuclear

norm which is certain convex relaxation of the rank function. So, we get the following

SDP:

Minimize
z,Z

1T z

s.t. 0.25(z + 1)TBi(z + 1)− 0.5(Ai(z + 1))− bi ≤ 0, i = 1, ...,m(3.30)

Z º zzT , Z º 0

Diag(Z) = 1, ‖Z‖∗ ≤ γ,

50

where γ is a constant depends on the bound of ‖Z‖∗.
As we mentioned in the previous sections, another simple approach to construct an

approximation of the problem (3.29) is using penalty function as proposed by Zhao [149].

So, we obtain the following approximation counterpart of (3.29):

Minimize
z,Z

1T z + ξ‖Z‖∗
s.t. 0.25(z + 1)TBi(z + 1)− 0.5(Ai(z + 1))− bi ≤ 0, i = 1, ...,m(3.31)

Z º zzT , Z º 0, Diag(Z) = 1,

where ξ > 0 is the penalty parameter.

In the next sections, we discuss subgradient method and branch and bound method,

and we test these methods through some numerical experiments.

3.5 Subgradient method

More detailed discussion about subgradient method can be found in [121, 120, 100]. As

we discuss the l1-norm methods in chapter 4 and 5, it is worth mentioning some of the old

methods to solve l1-minimization problems. l1-norm is a convex and non-smooth function,

so here we give some explanation about subgradient method to solve l1-minimization

problems.

Definition 3.1. (Subgradient)

Subgradient of a convex function f : Rn → R, at a point x(k), is every vector ξ(k) =

(ξ
(k)
1 , ξ

(k)
2 , ..., ξ

(k)
n)T , which satisfies the following inequality,

(3.32) f(x) ≥ f(x(k)) + ξ(k)
T
(x− x(k)).

51

Definition 3.2. (Subdifferential) Subdifferential of a function f , at a point x(k), is the

set of all subgradients of f at x(k), denoted by ∂f(x(k)).

Theorem 3.1. Let f be a convex function with dom(f) 6= φ and f(x) ≥ −∞, ∀x ∈
dom(f). Then x? is a minimizer of f if and only if 0 ∈ ∂f(x?).

Proof.

0 ∈ ∂f(x?) ⇔ f(x) ≥ f(x?) + 0(x− x?) (∀x ∈ Rn) ⇔ x? minimizes f.

Subgradient methods are used for non-differentiable optimization problems. A usual

method, which is used to minimize a convex(or even concave) function f is approximating

the function f by tangential linearization and then improving the approximation itera-

tively. This method is so called generalized linear programming(GLP), however for the

problems with large number of variables, it might be better to use subgradient algorithm

[100]. For a differentiable function, we know the subgradient at an arbitrary point is

exactly the gradient at that point, in this case, the subgradient method reduces to the

gradient method.

For the unconstrained case, the subgradient method uses the following iterative scheme

to minimize a convex non-smooth objective f .

(3.33) x(k+1) = x(k) − βkξ
(k),

where βk is the step size.

Subgradient method is not a descent method, since the negative subgradient direction,

−β(k), is not necessary a descent direction. So, the iterations above do not necessarily

decrease the objective at each step. Hence, in this method we should store the best point

52

which has been found so far, in other words in (3.33) at every iteration k, we have

(3.34) f (k)
∗ = min{f (k−1)

∗ , f(x(k))} = min
j=1,...,k

f(x(j)),

where f∗ denotes the smallest value of the objective which has been found so far.

For constrained optimization of the form

Minimize
x

f(x)

s.t. x ∈ C,

one could rewrite the iteration (3.33) as follows

(3.35) x(k+1) = PC

(
x(k) − βkξ

(k)
)
,

where βk is the step size. PC(x) = argminy∈C (‖x− y‖22) is the standard projection

operator on C. The above method is called the subgradient projection algorithm(see

Algorithm 3.1). Now based on [105, 20], we prove the convergence of the subgradient

projection algorithm as follows.

First, observe that from (3.32) we have

(3.36) f(x(k))− f(x?) ≥ −ξ(k)
T
(x? − x(k)).

53

In (3.35) let u(k+1) =
(
x(k) − βkξ

(k)
)
. Then

‖u(k+1) − x?‖22 = ‖x(k) − βkξ
(k) − x?‖22

= ‖x(k) − x?‖22 + β2
k‖ξ(k)‖22 − 2βkξ

(k)T
(
x(k) − x?

)

≤ ‖x(k) − x?‖22 + β2
k‖ξ(k)‖22 − 2βk

(
f(x(k))− f(x?)

)
,

where the last inequality follows from (3.36). Now by the definition of projection mapping

we have

‖PC(u
(k+1))− x?‖2 ≤ ‖u(k+1) − x?‖2.

Note that

‖x(k+1) − x?‖2 = ‖PC(u
(k+1))− x?‖2.

Therefore,

‖x(k+1) − x?‖2 ≤ ‖u(k+1) − x?‖2,

which results in the following inequality,

‖x(k+1) − x?‖22 ≤ ‖x(k) − x?‖22 + β2
k‖ξ(k)‖22 − 2βk

(
f(x(k))− f(x?)

)
.

If we apply the inequality above for ‖x(k) − x?‖22, we have

‖x(k) − x?‖22 ≤ ‖x(k−1) − x?‖22 + β2
k−1‖ξ(k−1)‖22 − 2βk−1

(
f(x(k−1))− f(x?)

)
.

Repeating this procedure yields

0 ≤ ‖x(k+1) − x?‖22 ≤ ‖x(1) − x?‖22 +
k∑

j=1

β2
j ‖ξ(j)‖22 − 2

k∑
j=1

βj

(
f(x(j) − f(x?)

)
.

Now assume that the Euclidean distance of the starting point x(1) of the algorithm to

54

the optimal set, C?, is known, and denoted by d(x(1), C?). We have

d(x(1), C?)2 +
k∑

j=1

β2
j ‖ξ(j)‖22 ≥ 2

k∑
j=1

βj

(
f(x(j) − f(x?)

)
.

In addition, from (3.34), we see that

2
k∑

j=1

βj

(
f(x(j) − f(x?)

) ≥ 2

(
k∑

j=1

βj

)
(
f (k)
∗ − f(x?)

)
,

which implies that

(3.37)
(
f (k)
∗ − f(x?)

) ≤ d(x(1), C?)2 +
∑k

j=1 β
2
j ‖ξ(j)‖22

2
∑k

j=1 βj

.

So, the convergence of the subgradient algorithm depends essentially on the way how

the step sizes βk, at each step k, are chosen.

The simplest case is to choose βk = constant, or in the case of known or estimated

optimal value f ∗ one can choose the step size as [113],

β(k) =
f(x(k))− f ∗

||ξ(k)||22
.

Another option, for example, is to choose the step size using the divergent series rules,

βk → 0(k → ∞),
∑∞

k=1 βk = ∞.(3.38)

As proved in [112, 59], if the step size is chosen as above then the sequence generated

by the constrained subgardient algorithm satisfies

lim inf k→∞f(x(k)) = f(x?) = min
x∈C

f(x).

55

As an example about the convergency analysis using the inequality (3.37), see the

following example and its proof.

Example 3.1. If we choose the step size by divergent series rule, assuming |ξ(j)‖22 is

bounded with ξ > 0, we have

lim
k→∞

(
f (k)
∗ − f(x?)

) → 0.

Proof. Notice that

βk → 0(k → ∞) ⇒ ∀ε ≥ 0,∃M1 ∈ N s.t. ∀k > M1, βk ≤ ε

ξ
.

Since
∑∞

k=1 βk → ∞, we have

∃M2 ∈ N s.t.

M2∑

k=1

βk ≥ 1

ε

(
d(x(1), C∗)2 + ξ

M1∑

k=1

β2
k

)
.

Now for M ≥ max{M1,M2}, we have

d(x(1), C?) +
∑M

k=1 β
2
k‖ξ(k)‖22

2
∑M

k=1 βk

≤ d(x(1), C?)2 + ξ
∑M

k=1 β
2
k

2
∑M

k=1 βk

≤ d(x(1), C?)2 + ξ
∑M1

k=1 β
2
k

2
∑M

k=1 βk

+
ξ
∑M

k=M1+1 β
2
k

2
∑M1

k=1 βk + 2
∑M

k=M1+1 βk

≤ d(x(1), C?)2 + ξ
∑M1

k=1 β
2
k

2
ε

(
d(x(1), C?)2 + ξ

∑M1

k=1 β
2
k

) +
ξ
∑M

k=M1+1
εβk

ξ

2
∑M

k=M1+1 βk

= ε.

For other step sizes the convergency proof is quite the same.

Now we are going to apply subgradient method to the convex envelop of CMP under

some convex sets.

56

Recall the following CMP,

Minimize
x

Card(x)

s.t. x ∈ C.

As we have seen, CMP can be relaxed by replacing the card function with its convex

envelop, the l1-norm function to minimize the summation of absolute values of the vector

components. So, CMP can be relaxed as

Minimize
x

‖x‖1 = |x1|+ ...+ |xn|

s.t. x ∈ C.

Obviously, the l1-norm function is a convex and non-smooth function, besides we as-

sume that C is a convex, closed and bounded set, so by Weierstrass theorem the existence

of the optimal solution is guaranteed.

It is not hard to see that, the problem above is equivalent to

Minimize
x

f(x) = max{αTx;αi ∈ {−1, 1}}

s.t. x ∈ C.

Because of the non differentiability of objective function, we use the subgradient di-

rection to decrease the objective in the feasible set. Using the following algorithm one

can generate a sequence {x(k)}∞k=0 which converges to the optimal solution.

Algorithm 3.1. 1. At step 0, choose an starting point x0 for the algorithm.

2. At step k, compute subgradient ξ(k) of the objective at x(k), if ξ(k) = 0, then x(k) is

57

optimal,(as a result of the Theorem 3.1, if ξ(k) 6= 0 then compute

x(k+1) = PC

(
x(k) − βk

ξ(k)

||ξ(k)||
)
,

where PC(x) = x, if and only if, x ∈ C.

3. If the stopping criteria is satisfied, the optimum is achieved.

To compute the subgradients of the l1-norm function, the following lemma from chapter

4 of [14] is applied.

Lemma 3.1. Let g(x) = maxi=1,2,...,n(gi(x)), where gi’s are convex and subdifferentiable,

and let j ∈ {i; i = 1, 2, ..., n}, such that gj(x) = g(x). If ξ ∈ ∂gj(x) then ξ ∈ ∂g(x).

By using the above lemma, assume there exists α ∈ {−1, 1}n , such that αTx = f(x),

hence, subgradients of the function are ξ = (ξ1, ξ2, ..., ξn) such that

ξi =

1, xi > 0

−1, xi < 0

[-1,1], xi = 0.

Now, one can apply the subgradient method described above. Suppose that in the

above CMP the constraints set C is the set of convex inequity constraints fi(x) ≤ 0, i =

1, ..., n. We take the subgradients ξ(k) as defined above, if x(k) is a feasible point. If x(k)

does not satisfy one (or more than one) of the constraints, (for example, if fj(x
(k)) � 0),

then we use the subgradient of the violated constraint. If all of the x(k) are infeasible,

then the objective function will go to infinity.

In the next section, we present our numerical experiments to solve an l1-norm mini-

mization problem by applying subgradient method.

58

3.6 Numerical experiments

Consider the following problem:

Minimize
x

‖x‖1

s.t. Ax ≤ b,

where A ∈ Rm×n(m < n). Obviously, one of the subgradients of the ‖x‖1-function at x0

is sign(x0). Also, the projection operator is

PC(y) = y − AT (AAT)−1(Ay − b).

So, the subgradient iteration for the problem (3.39) will be

x(k+1) = x(k) − βk(I − AT (AAT)−1A sign(x(k)).

As an example, we consider the problem (3.39), with a randomly generated matrix of

A100×2000 from the normal distribution with mean zero and variance one, i.e, N(0, 1). Let

g(k) be the optimal value of the problem (3.39), at each iteration. Choose the step size

βk = 0.1
k
. Note that this step size satisfies the divergent series rules. The graph below

shows how the subgradient method works for this choice of step size. We used Matlab

programming, and the procedure took 25 minutes for 4000 iterations on a laptop with

dual core CPU-2GHz.

59

0 500 1000 1500 2000 2500 3000 3500 4000
4

4.5

5

5.5

6

6.5

7

7.5

8

Iteration

g(
k
)

Figure 3.1: The figure shows the value of g(k) at each iteration. The value achieved after
4000 iterations is equal to 4.4095.

The optimal value of the problem (3.39) for our defined matrix A is equal to g∗ =

4.3679. For more illustration, we present the error graph of g(k) − g∗ at each iteration.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration

g(k
)

−g
*

Figure 3.2: The figure shows the error, (g(k) − g∗), at each iteration.

3.7 Branch and bound method

One may refer to [25, 13] for full discussion about the branch and bound method. Branch

and bound(BB) algorithm is one of the global optimization methods for solving NP-hard

combinatorial problems. BB algorithm searches the whole space of the feasible solutions

set, and find an optimal solution to the problem. Therefore it usually needs lots of

computational efforts, and the convergence of the algorithm can be very slow.

60

To introduce the method, suppose that we want to solve the following problem by

applying BB method,

f ? = Minimize
x

f(x)

s.t. x ∈ S.

Branch and bound method has three steps: Branch, Bound, and Prune. Branch

procedure splits the feasible set S into 2 or more subsets S1,S2,...,Sn, and minimize f(x)

over those sets one by one. Therefore the main problem can be cast as the set of the

following optimization problems

νi = Minimize
x

f(x)

s.t. x ∈ Si,

where i = 1, ..., n.

Then clearly f ? = min{νi : i = 1, ..., n}. This algorithm can be represented as a tree

graph with its root node as the original feasible set S, and the other nodes as the sets

which result from branching procedure. Next step is bounding. This procedure uses two

functions, fl, and fu, in the following sense,

∀i = 1, ..., n, fl(Si) ≤ minf(Si) ≤ fu(Si).

fl and fu should be defined in a way that the bounds in the inequality above become

tighter. When Si gets smaller, specially when the size of the set Si,(Size(Si)) goes to

a singleton, fu(Si) − fl(Si) converges to zero. This implies that for enough small α, if

Size(Si) ≤ α, we have

fu(Si)− fl(Si) ≤ ε, ∀ε ≥ 0.

61

The efficiency of BB algorithm is strongly related to the splitting procedure, and also

to the upper and lower bound defined functions. The main idea in BB algorithm is that

if the lower bound for some Sj ⊂ S, (one of the tree nodes) is greater than the upper

bound for some others Sk ⊂ S, (some of the other tree nodes) then Sj can be removed

from the search, since every point in that subset is worse than the current upper bound

on f ?. This step is so called prune step. Removing these kinds of subsets does not affect

the algorithm, since they will never be chosen later to split. For more illustrations, we

review the algorithm.

Suppose we have already estimated fl and fu satisfying the above conditions. For

a given sufficiently small ε, if fu(S) − fl(S) ≤ ε, then we are done and the algorithm

terminates. Otherwise, we split S into two subsets S1 and S2, without intersection. Then

computing the lower and upper bounds on these sets yields

min{fl(S1), fl(S2)} ≤ minf(S) ≤ min{fu(S1), fu(S2)}.

Again if the difference between the achieved bounds is less than ε, then the algorithm

terminates. Otherwise we split the Si, which satisfies fl(Si) = min{fl(S1), fl(S2)} into

two subsets, and we repeat the procedure above for the three subsets achieved so far.

Clearly, after k iterations, we have k subsets of S, in a way that ∪k
i=1Si = S. As we

mentioned, this procedure can be represented as a binary tree (since we split Si into two

subsets at each iteration).

Hence, after k iterations, we have

min
i=1,...,k

fl(Si) ≤ f ? = min f(x) ≤ min
i=1,...,k

fu(Si).

We again check the termination criteria. If it is not satisfied, we proceed to the

k + 1 iteration. At each iteration, one could prune the useless subsets to reduce the

62

storage(memory) requirement.

As for more illustration, we apply the method above to the following CMP:

Minimize
x

Card(x)

s.t. Ax ¹ b.

(3.39)

A simple reformulation of the problem above is as follows [19]:

v? = Minimize
v,x

1Tv

s.t. Livi ≤ xi ≤ Uivi

Ax ¹ b

vi ∈ {0, 1}, i = 1, ..., n,

(3.40)

where 1 = (1...1)T

This is a special case of mixed integer linear programming(MILP)[65], called mixed

0-1 linear programming [48], (as we have seen in the previous sections), which can be

solved for each of 2n linear (convex) programs for different values of vi. So, this method

is not practical for large problems.

Obviously, the problem (3.40) can be relaxed by replacing vi ∈ {0, 1} with vi ∈ [0, 1],

so, the relaxed problem is

63

β1 = Minimize
v,x

1Tv

s.t. Livi ≤ xi ≤ Uivi

Ax ¹ b

0 ≤ vi ≤ 1 i = 1, ..., n,

(3.41)

Ui and Li can be easily computed by minimizing and maximizing the variable xi on

the feasible set Ax ¹ b. Let Li ≤ 0 and Ui ≥ 0 (otherwise the solution is trivial). The

problem (3.41) is a convex problem, which can be solved easily. The optimal value of

this problem β1 is a lower bound for (3.40), consequently dβ1e is a better lower bound for

(3.39), since Card(x) is an integer. One can also achieve an upper bound, denoted by α1,

for the problem (3.40), using the l1-norm relaxation. Or by decoding the relaxed problem

(3.41). Now using the branch and bound algorithm described above, we are going ro

provide an upper and lower bound for the problem (3.40).

If α1 − β1 ≤ ε, then the algorithm terminates. Otherwise in (3.41), one can fix the

variable vj, which is equal to 0 or 1 alternatively, and solve the following relaxed problems:

Minimize
v,x

1Tv

s.t. Livi ≤ xi ≤ Uivi

Ax ¹ b

0 ≤ vi ≤ 1, i = 1, ..., n

vj = 1,

(3.42)

and

64

Minimize
v,x

1Tv

Subject to Livi ≤ xi ≤ Uivi

Ax ¹ b

0 ≤ vi ≤ 1, i = 1, ..., n

vj = 0.

(3.43)

Solving the convex problem (3.42), and (3.43), results in achieving lower and upper

bounds for the following (MILP) branched problems:

Minimize
v,x

1Tv

Subject to Livi ≤ xi ≤ Uivi

Ax ¹ b

vi ∈ {0, 1}, i = 1, ..., n

vj = 1,

(3.44)

and

Minimize
v,x

1Tv

Subject to Livi ≤ xi ≤ Uivi

Ax ¹ b

vi ∈ {0, 1}, i = 1, ..., n

vj = 0.

(3.45)

65

By using the relaxed problems, suppose β′ , β′′ are the lower bounds and α′ , α′′ are

the upper bounds for the problems (3.44), and (3.45) respectively. Clearly we have

β1 ≤ β2 = min{β′, β′′} ≤ v? ≤ α2 = min{α′, α′′} ≤ α1,

where v? is the optimal value for problem (3.40). Note that since cardinality is an integer

valued function one could replace β2 with dβ2e to get a better(tighter) lower bound.

Now we can choose one of the problems (3.44), or (3.45). Its lower bound is equal to

min{β′, β′′}, to branch again by fixing another vγ = 0, or 1, γ 6= j, and continue the same

procedure explained above, to get new bounds for v? satisfying

β1 ≤ β2 ≤ β3 ≤ v? ≤ α3 ≤ α2 ≤ α1.

By continuing this procedure, the algorithm will be terminated after k iterations if

αk − βk ≤ ε. At the iteration k, we have an upper bound αk. Now to prune the search

area, if any of the achieved lower bounds for the branched problem is more than αk, then

one could remove the the related area to reduce the search efforts.

The worst case scenario for the BB algorithm is fixing all of the variables vi, i = 1, ..., n,

and solving 2n relaxed problems to get an equal upper and lower bound for each problem.

3.8 Numerical experiments

Here we represents a graph for the CMP, with a randomly generated matrix of A from the

normal distribution with mean 0 and variance 1, i.e, N(0, 1). x ∈ R50, and we have 110

constraints. The graph shows the lower and upper bound on card(x) for each iteration.

66

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
0

5

10

15

20

25

30

35

40

45

50

Iteration

Ca
rd
(x
)

Figure 3.3: x ∈ R50. The solid line represents the lower bound and the dashed line
represents the upper bound on card(x) at each iteration.

67

Chapter 4

The l1-Method and Reweighted

Algorithms1

In this chapter, we discuss cardinality minimization problem(CMP) under some linear

constraints denoted by

C = {x;Ax = b, }, A ∈ Rm×n, b ∈ Rm,

where m < n, which means we have more variables than equations. Clearly, these systems

have infinitely many solutions. The CMP in this case, can be interpreted as finding the

sparsest solution to a linear system of equations. In this chapter, we first start with the

l1-minimization method, which is one of the common methods for solving CMPs. Then

to motivate the reweighted algorithms, we show that the l1-minimization uses a kind of

weighted l2-minimization, which is hidden inside the l1-norm function. In this thesis, a

reweighted algorithm in general refers to an iterative weighted algorithm, i.e, the weights

are updated in each iteration. Next, we discuss other different convex norm-functions to

locate a sparse solution to a linear system, and then we proceed to different reweighted

1Special thanks to my supervisor, Dr. Yun-bin Zhao, for his stimulating suggestions for the section
4.2 and 4.4 of this chapter.

68

lj-algorithms (j ≥ 1). The main idea of the reweighted lj-minimization (∀j ≥ 1) is to

define the weights based on the current solution of each iteration xl. The weights should

be defined in a way that penalize the small components, and force them to tend to zero.

These weights may improve the sparsity measurement property of a merit function. Also,

we introduce different merit functions for sparsity, and we show how minimizing such

functions may lead us to a sparse solution to a linear system. In addition, we illustrate

that different weights, if chosen properly, may reduce the gap between different merit

functions. For example, we define some special weights for the reweighted l2-algorithm

and the reweighted l3-algorithm, and through the numerical experiments, we show how

these weights may reduce the gap between the performances of these algorithms and the

l1-minimization algorithm to find a sparse solution to a linear system.

4.1 The l1-minimization

The l1-minimization has lots of applications in basis pursuit problems [41, 39, 40], noise

deconvolution [128], sparse signal recovery [41, 54], sparse model selection [144, 9]. Some

more applications of the l1-minimization can be found in [150, 67, 127, 136, 8]. Also, a

short survey of the l1-minimization can be found in [34]. The l1-minimization has been

generalized to the nuclear-norm minimization, which is used in matrix rank minimization

[60, 61] and low-rank matrix recovery [28, 32].

A usual approach to solve cardinality minimization problems is to relax the problem

by the l1-norm, and to solve the relaxed problem efficiently [20]. The l1-norm is known

as the convex envelop of the function card(x), over {x : ‖x‖∞ ≤ 1}.
Here we give a proof of this fact. Before proving this, let’s first define the conjugate

function, and review some of the important properties of the conjugate functions.

Definition 4.1. (Conjugate function)

69

The conjugate of a function f : Rn → R, denoted by f ∗ : Rn → R, is defined as follows

f ∗(y) = sup
x∈dom(f)

{yTx− f(x)}.

Proposition 4.1. f ∗ is always a convex function, [20].

Proof. The proof is straight forward, since the conjugate function is the pointwise supre-

mum of a family of affine functions of y.

The conjugate of conjugate or the biconjugate of the function f , denoted by f ∗∗, is

the convex envelop of the function f .

Proof. The conjugate of card(x) on the set ‖x‖∞ ≤ 1, is defined by

f ∗(y) = sup
‖x‖∞≤1

{yTx− Card(x)},

where y = (y1, ..., yn)
T ∈ Rn.

If x = 0, then f ∗(y) = 0. If Card(x) = m, 1 ≤ m ≤ n, then

yTx− Card(x) ≤
m∑
i=1

|yi||xi| −m ≤
m∑
i=1

|yi| −m, over {x : ‖x‖∞ ≤ 1},

so,

f ∗(y) = sup

{
0, |y1| − 1, ...,

m∑
i=1

|yi| −m, ...,

n∑
i=1

|yi| − n

}
,

and hence if ‖y‖∞ ≤ 1, then
∑j

i=1 |yi| − j ≤ 0, ∀j = 1, ..., n, which means f ∗(y) = 0.

Now if ‖y‖∞ ≥ 1, without loss of generality suppose that |yi| ≥ 1 for i = 1, ...,m, and

|yi| ≤ 1 for i = m,m+ 1, ..., n. Then f ∗(y) =
∑m

i=1 |yi| −m, and therefore

f ∗(y) =

0, ‖y‖∞ ≤ 1,
∑m

i=1 |yi| −m, |yi| ≥ 1, ∀i = 1, ...,m, |yi| ≤ 1, ∀i = m+ 1, ..., n.

70

Now we compute the conjugate of f ∗, i.e.,

f ∗∗(u) = sup
u
{uTy − f ∗(y)}.

(4.1) f ∗∗(u) = sup
u

{
uTy − (

m∑
i=1

|yi| −m)

}
.

If ‖u‖∞ ≥ 1, there exists at least one i such that |ui| ≥ 1, so, one can increase that

|ui| in a way that f ∗∗(u) goes to infinity. If ‖u‖∞ ≤ 1, and ‖y‖∞ ≤ 1, then f ∗(y) = 0,

and

f ∗∗(u) =
n∑

i=1

|ui| = ‖u‖1.

Now if ‖u‖∞ ≤ 1 and ‖y‖∞ ≥ 1, then

uTy − (
∑m

i=1 |yi| −m) =
n∑

i=1

|ui||yi| − (
m∑
i=1

|yi| −m) +
n∑

i=1

|ui| −
n∑

i=1

|ui|

=
m∑
i=1

(|yi| − 1)(|ui| − 1)

︸ ︷︷ ︸
≤0

+
n∑

i=m+1

(|yi| − 1)|ui|
︸ ︷︷ ︸

≤0

+
n∑

i=1

|ui|

≤
n∑

i=1

|ui| = ‖u‖1.

hence,

f ∗∗(u) = sup
u
{uTy − f ∗(y)} = ‖u‖1.

Note that for x ∈ Rn, the convex envelop of card(x) on {x : ‖x‖∞ ≤ τ} is 1
τ
‖x‖1.

71

Hence the following CMP:

Minimize
x

‖x‖0 = Card(x)

s.t. Ax = b,

(4.2)

is relaxed by replacing card(x) with the l1-norm. The relaxed problem is as follows:

Minimize
x

‖x‖1 =
n∑

i=1

|xi|

s.t. Ax = b.

(4.3)

The l1-minimization problem can be written as

(4.4) Minimize
x

{s : ‖x‖1 ≤ s, Ax = b}.

Clearly, (4.3) and (4.4) are linear programming problems. For instance, (4.4) can be

written as the following linear program:

Minimize
s,x

1T s

s.t. −s ≤ x ≤ s(4.5)

Ax = b.

The l1-norm is the most well known merit function for sparsity. Note that in this chapter,

a function is said to be a merit function for sparsity if it promotes sparsity, i.e, minimizing

72

such a function can drive the variable to be sparse.

In the next section, we show that weighted l2-minimization is hidden inside the l1-

minimization. This gives a motivation to focuss on reweighted algorithms.

4.2 Weighted l2-minimization is hidden inside the l1-

minimization

In this section, using the Huber function, we prove that weighted l2-minimization is hidden

inside the l1-minimization. This motivates to focuss on reweighted algorithms.

Proposition 4.2. limδ→0

∑n
i=1 φδ(xi) = ‖x‖1, where φδ : R → R+ is the Huber function.

This shows a kind of weighted l2-minimization is already used by l1-minimization.

Proof. Suppose x ∈ Rn, and let δ ∈ (0, 1), and φδ : R → R+ be the Huber function, i.e.,

φδ(t) =

|t| − δ
2

if |t| ≥ δ

t2

2δ
, if |t| < δ

Consider the function Fδ : R
n → R, which is given by

Fδ(x) =
n∑

i=1

φδ(xi) =
∑

xi∈(−δ,δ)

x2
i

2δ
+

∑

|xi|≥δ

(
|xi| − δ

2

)
.

The function Fδ is a uniform approximation of the l1-norm function norm. Clearly,

|Fδ(x)− ‖x‖1| =

∣∣∣∣∣∣
∑

|xi|<δ

(
x2
i

2δ
− |xi|

)
+

∑

|xi|≥δ

(
(|xi| − δ

2
)− |xi|

)∣∣∣∣∣∣

=

∣∣∣∣∣∣
δ

2

∑

|xi|<δ

(
x2
i

δ2
− 2|xi|

δ

)
+

∑

|xi|≥δ

(−δ

2
)

∣∣∣∣∣∣

≤ δ

2
(card(Γ) + card(Λ)) =

δn

2
,

73

where Γ = {i : |xi| < δ}, and Λ = {i : |xi| ≥ δ}. Notice that

lim
δ→0

Fδ(x) = lim
δ→0

n∑
i=1

φδ(xi) = ‖x‖1.

Because of the above fact, when δ is sufficient small, minimizing the l1-norm over a feasible

set is almost identical to minimizing the Huber function over the same feasible set. Notice

that the first term of Fδ(x) can be written as

∑

|xi|∈δ

x2
i

2δ
= ‖Wx‖22, for − δ < x < δ,

where is W = diag(w), and w = (w1, ..., wn), wi =
1
2δ
, ∀i ∈ Γ.

So, the l1-minimization already uses weighted minimization. As seen, when xi is small

enough i.e, |xi| < δ, then a large weight (1
2δ
) is assigned to the component. This weight

acts like a large penalty and forces the component to tend to zero. The l1-minimization

ignores the difference between the large components of x i.e, |xi| > δ, by simply allocating

them the same weight. This fact motivates that the performance of the l1-minimization

might be improved. For example, a natural way to improve the performance of the

l1-minimization is to define an iterative algorithm and to allocate the weights to the

components according to the value of them at each iteration. In the next section, we give

some natural and geometrical explanation for promoting weighted approaches.

74

4.3 How weights may perform to find the sparsest

solution of an underdetermined linear system of

equations

In this section, we demonstrate several graphical examples of different norm-functions

and weighted norm-functions for finding the sparsest solution to a simple linear system.

The aim of these examples is to illustrate how these different methods work, and how the

weighted functions may perform to find the sparsest solution to a linear system.

Suppose in the problem (4.2) the matrix A, and the vector b are as follows:

A =

(
1
2

1

)
, b =

(
3
2

)
.(4.6)

Then the cardinality minimization problem (4.2) can be written as

Minimize
x

‖x‖0

s.t.
1

2
x1 + x2 =

3

2
.

(4.7)

Clearly, the above problem has two optimal (sparse) solutions, which are:

x1 = 0, x2 =
3

2
, and x1 = 3, x2 = 0.

As mentioned before, one of the usual approaches to find the sparsest solution of the

problem (4.7) is to replace ‖x‖0 with ‖x‖1, and then to solve the following l1-minimization

problem:

75

Minimize
x

‖x‖1

s.t.
1

2
x1 + x2 =

3

2
.

(4.8)

Figure 4.1 shows how the l1-minimization may find the sparsest solution of this linear

system, i.e. x1 = 0, x2 =
3
2
.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Figure 4.1: This figure shows how the l1-minimization may locate the sparsest solution of
a linear system.

Another approach to solve the problem (4.7) is to replace ‖x‖0 with ‖x‖2, and then

to solve the following l2-minimization problem:

Minimize
x

‖x‖2

s.t.
1

2
x1 + x2 =

3

2
.

(4.9)

Figure 4.2 shows even for a very simple linear system, the l2-minimization may fail to

locate the sparsest solution. The optimal solution found by the l2-minimization is x1 =

3
5
, x2 =

6
5
, which obviously is not the sparsest solution.

76

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Figure 4.2: This figure shows how the l2-minimization may fail to locate the sparsest
solution of a simple linear system.

Also replacing ‖x‖0 with ‖x‖∞ results the following optimization problem:

Minimize
x

‖x‖∞

s.t.
1

2
x1 + x2 =

3

2
.

(4.10)

Figure 4.3 shows how the l∞-minimization may fail to locate the sparsest solution of a

simple linear system. The optimal solution found by l∞-minimization is x1 = 1, x2 = 1,

which clearly is not the sparsest solution.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Figure 4.3: This figure shows how the l∞-minimization may fail to locate the sparsest
solution of a simple linear system.

77

Now lets consider the reweighted l1-minimization. First, we allocate a large penalty like

λ À 0 to the first component of the vector x. Hence the related weighted l1-minimization

problem can be written as follows:

Minimize
x

λ|x1|+ |x2|

s.t.
1

2
x1 + x2 =

3

2
.

(4.11)

Figure 4.4 shows how the weighted l1-minimization may locate the sparsest solutions of

the linear system. In this case, the optimal solution is x1 = 0, x2 =
3
2
.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Figure 4.4: This figure shows how the weighted l1-minimization may locate the sparsest
solution of a linear system.

Note that if we use the reweighted l1-algorithm starting from the solution of the

l1-minimization, then we find the same optimal solution as well. We will discuss the

reweighted l1-minimization in the next chapter.

Now we put the penalty (λ À 0) on the second component of the vector x. Hence the

related weighted l1-minimization problem can be written as follows:

78

Minimize
x

|x1|+ λ|x2|

s.t.
1

2
x1 + x2 =

3

2
.

(4.12)

Figure 4.5 shows how the weighted l1-minimization may locate the sparsest solutions of

the linear system. Notice that the change of the weights may enable us to find the second

sparsest solution of the problem, i.e. x1 = 3, x2 = 0. One of the open questions in this

area is how to jump from one sparse solution to another one. Note that in lots of cases

the problem may have many sparse solutions.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Figure 4.5: This figure shows how the weighted l1-minimization may locate the sparsest
solution of a linear system.

Now we consider the reweighted l2-minimization, which can be written as follows:

Minimize
x

λx2
1 + x2

2

s.t.
1

2
x1 + x2 =

3

2
,

(4.13)

where λ À 0 is a large penalty for x2
1. The optimal solution of the above problem is

x1 = 0, x2 =
3
2
, which is one of the sparsest solutions. This is shown in Figure 4.6.

79

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Figure 4.6: This figure shows how the weighted l2-minimization may locate the sparsest
solution of a linear system.

Another form of the weighted l2-minimization can be written as follows:

Minimize
x

x2
1 + λx2

2

s.t.
1

2
x1 + x2 =

3

2
,

(4.14)

where λ À 0 is a large penalty for x2
2. The optimal solution of the above problem is

x1 = 3, x2 = 0, which is one of the sparsest solutions. This is shown in Figure 4.7.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Figure 4.7: This figure shows how the weighted l2-minimization locates the sparsest solu-
tion of a linear system.

80

The weighted l∞-minimization problems can be written as the follows:

Minimize
x

max{λ|x1|, |x2|}

s.t.
1

2
x1 + x2 =

3

2
,

(4.15)

and

Minimize
x

max{|x1|, λ|x2|}

s.t.
1

2
x1 + x2 =

3

2
,

(4.16)

where λ À 0 is a large penalty. Note that in this case, we should choose a larger

penalty than what used in the weighted l1-minimization and the weighted l2-minimization.

If a proper weight is not found, then the weighted l∞-minimization may fail to find the

sparsest solution. This is shown in Figures 4.8 and 4.9. But a very big penalty makes

the weighted l∞-minimization successful to find the the solutions x1 = 0, x2 = 3
2
and

x1 = 3, x2 = 0 for the problems (4.15) and (4.16), respectively.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

X 2

X
1

Figure 4.8: This figure shows how the weighted l∞-minimization may locate the sparsest
solution of a linear system.

81

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

X
1

X 2

Figure 4.9: This figure shows how the weighted l∞-minimization may locate the sparsest
solution of a linear system.

Now we explain another example in higher dimension.

Example 4.1. Suppose the matrix A, and the vector b are as follows:

A =

3 −2 4 0 −1 1

5 −2 −3 5 0 6

1 2 −1 −5 −6 7

2 −3 0 4 −6 0

, b =

0

5

−5

4

.

We would like to solve the following CMP:

Minimize
x

‖x‖0

s.t. Ax = b.

(4.17)

The optimal solution (the sparsest solution) of the above problem is x̂ = (0, 0, 0, 1, 0, 0)T ,

clearly, ‖x‖0 = 1. The l1-minimization finds x∗ = (0, 0,−1.0078, 0.8532,−0.0978,−0.3327)T ,

which is not the sparsest solution.

The l2-minimization finds x∗ = (0.0813,−0.4678,−0.9394, 0.5778,−0.0205,−0.3313)T ,

82

and the l∞-minimization finds x∗ = (−0.8459,−0.8459,−0.8459, 0.8234, 0.0233, 0.1355)T .

None of the solutions above are the optimal solution to the problem (4.17). So, for this

example, the l1, l2, l∞ fail to find the sparsest solution. However, weighted algorithms have

more capability to locate the optimal solution of the problem. As we see in the numerical

experiments section, most of the reweighted lj-minimizations, where j = 1, 2, ...15,∞,

(if the weights are chosen properly), are more successful to find the optimal solution of

the problem, i.e. x̂ = (0, 0, 0, 1, 0, 0). Without using weights, the different norms may

yield totally different solutions, which may be far from a sparse solution of the system.

However, once we introduce the weights, such differences are significantly reduced. Even

by applying suitable weights, it may be observed that the performance the algorithms can

be comparable.

In the following section, we explain how to define different merit functions for sparsity,

i.e. how to construct new concave approximations for ‖x‖0. Also, we show that even

for some functions which are not approximating ‖x‖0, we may improve their sparsity

measurement by adding suitable weights.

4.4 Weights may improve sparsity enhancing prop-

erty of merit functions

As mentioned before, the merit functions should have strong sparsity measurement prop-

erty. Obviously, if a function approximates the ‖x‖0-function, then it has a strong sparsity

measurement, or in other words, it has strong sparsity enhancing property. Under certain

conditions, minimizing such functions may hopefully lead us to a sparse solution to the

linear system. Notice that adding suitable weights to a merit function may enhance its

sparsity measurement property. We will discuss this in this section, and we will explain

more about merit functions and their properties in the next chapter. However, in this

chapter, let’s define the general merit function for sparsity, F (x), as the function which

83

leads us to a sparse solution to the system, i.e., minimizing such function may result

in finding a sparse solution to the system. Additionally, some other properties will be

defined for the function F (x) as follows:

F (x) =
n∑

i=1

ψi(|xi|),

where ψi : R++ → R, i = 1, ..., n are twice continuously differentiable and nondecreasing,

functions.

Thus, a general cardinality minimization problem can be written as follows:

Minimize
x

n∑
i=1

ψi(|xi|)

s.t. Ax = b.

(4.18)

To avoid the division by zero and the non-differentiability (in some cases) of these

functions, we may perturb the function by introducing a parameter ε > 0. In different

cases depending on the merit function, there are different ways to perturb these function.

We perturb these function as follows; Replace |xi| by the functions
√

x2
i + ε or |xi| + ε.

Notice that

lim
ε→0+

ψi(
√

x2
i + ε) = ψi(|xi|),

lim
ε→0+

ψi(|xi|+ ε) = ψi(|xi|),

Usually, we use the first perturbation to avoid the non-differentiability, and the second

one to avoid the division by zero when we differentiate these functions. So, the cardinality

minimization problem can be approximated by the following problem:

84

Minimize
x

Fε(x)

s.t. Ax = b,

(4.19)

where

(4.20) Fε(x) =
n∑

i=1

ψi(
√

x2
i + ε), or

(4.21) Fε(x) =
n∑

i=1

ψi(|xi|+ ε).

As we will see in the next chapter, Fε(x) should be concave to ensure that the function

is an approximation to ‖x‖0.
It can be guaranteed that Fε is concave if we choose all ψis to be concave. In this

thesis, it is assumed that all of the functions ψis are concave. Note that we always seek

for concave merit functions for sparsity, because of the nature of the ‖x‖0-function. Since
the cardinality minimization problem is NP-hard, it seems that there is no possibilities

to approximate ‖x‖0 to any level of accuracy by a convex function. But there are many

concave functions, which can approximate ‖x‖0 to any level of accuracy. More explanation

can be found in the next chapter.

For more illustration, here we present some examples about different choices of ψis.

Example 4.2. Suppose all ψis are identical mappings, i.e, ψi(τ) = τ, i = 1, ..., n.

We apply ψi(τ) = τ , then we have

F (x) =
n∑

i=1

ψi(|xi|) =
n∑

i=1

|xi| = ‖x‖1.

85

Note that

F (x) = lim
ε→0

Fε(x) = lim
ε→0

n∑
i=1

(|xi|+ ε) = lim
ε→0

n∑
i=1

√
x2
i + ε.

Therefore, the problem (4.18) reduces to the l1-minimization problem, and a smooth

approximation of the problem (4.18) can be written as follows:

Minimize
x

n∑
i=1

√
x2
i + ε

s.t. Ax = b.

(4.22)

Example 4.3. Let ψi(τ) = log(τ), i = 1, ..., n.

First define J = {i ∈ N; xi 6= 0}. If we apply ψi(τ) = log(τ), then

F (x) =
∑
J

ψ(|xi|) =
∑
J

log |xi|.

Hence

F (x) = lim
ε→0

Fε(x) = lim
ε→0

n∑
i=1

log(|xi|+ ε) = lim
ε→0

n∑
i=1

log
√

x2
i + ε.

Therefore, the approximations of the problem (4.18) can be cast as

Minimize
x

n∑
i=1

log
√

x2
i + ε

s.t. Ax = b,

(4.23)

and

86

Minimize
x

n∑
i=1

(|xi|+ ε)

s.t. Ax = b.

(4.24)

Example 4.4. Suppose ψi(τ) = τ p, i = 1, ..., n.

If we replace ψi(τ) = τ p, then

F (x) =
n∑

i=1

ψi(|xi|) =
n∑

i=1

|xi|p = ‖x‖pp.

So,

F (x) = lim
ε→0

Fε(x) = lim
ε→0

n∑
i=1

(|xi|+ ε)p = lim
ε→0

n∑
i=1

(√
x2
i + ε

)p

.

Thus, in this case, the problem (4.18) reduces to the well-known lp-minimization (0 <

p < 1), so an approximations of the problem can be cast as

Minimize
x

n∑
i=1

(√
x2
i + ε

)p

s.t. Ax = b,

(4.25)

Example 4.5. Set ψi(τ) = log(1 + τ), i = 1, ..., n.

F (x) =
n∑

i=1

log(1 + |xi|) = lim
ε→0

n∑
i=1

log(1 + (|xi|+ ε)) = lim
ε→0

n∑
i=1

log

(
1 +

√
x2
i + ε

)
.

The same as the above examples, these functions can be also used to define new approx-

imations for the cardinality minimization problem.

87

There are infinitely many functions, which can be used to define new merit functions

F . For instance, we may also use some proper mixture of the functions ψis to construct

some more complicated merit functions for sparsity.

Let Ψ be the cone generated by univariate twice differentiable, nondecreasing concave

functions. Then any function in Ψ can be used to construct a new sparsity merit function.

Notice that any constant function, ψi(τ) = constant, is in the cone. So, we may also

generate a new merit function from this fact. Here we give another example to illustrate

how to construct new merit functions for sparsity.

Example 4.6. Set ψi(τ) = − 1
τ
∈ Ψ, i = 1, ...n.

This yields the merit function

Fε(x) =
n∑

i=1

ψi(|xi|+ ε) =
n∑

i=1

− 1

|xi|+ ε
.

Now, the combination of the constant function, i.e, φi(τ) = 1 ∈ Ψ and ψi yields the

following function:

ξi = φi(τ) + εψi(τ) = 1− ε

τ
.

Clearly, ξi ∈ Ψ, so, we can construct the following merit function:

Fε(x) =
n∑

i=1

ξi(|xi|+ ε) =
n∑

i=1

(1− ε

|xi|+ ε
).

This function is an approximation to the ‖x‖0-function, since

lim
ε→0

n∑
i=1

(1− ε

|xi|+ ε
) = lim

ε→0

n∑
i=1

|xi|
|xi|+ ε

= ‖x‖0.

For more explanation about the above formulation, note that

88

lim
ε→0

|xi|
|xi|+ ε

= 0 if xi = 0, i = 1, ..., n,

and

lim
ε→0

|xi|
|xi|+ ε

= 1 if xi 6= 0, i = 1, ..., n.

In the next chapter, we introduce new merit functions, which lead us to new reweighted

l1-algorithms.

Here we explain how we can apply weights to improve the sparsity measurement of a

function. Suitable weights may improve the approximation level to the ‖x‖0-function, i.e,
adding good weights to some merit functions may lead us to a good approximation to the

‖x‖0-function. If we add weights to the problem (4.18), the achieved weighted problem

can be written as follows:

Minimize
x

n∑
i=1

wiψi(|xi|)

s.t. Ax = b,

(4.26)

and its approximation can be cast as follows:

Minimize
x

n∑
i=1

wiψi

(√
x2
i + ε

)

s.t. Ax = b.

(4.27)

There are many different options to define weights. In most of the cases, weights

depend on the parameter ε, or they depend on the both parameters ε and x. Note that

If we use a mixture of the log funtion and the lp-norm (0 < p < 1) to construct a merit

function, then the weights may also rely on the parameters ε, x, and p (see chapter 5).

89

In the following example, we show that by choosing proper weights, the objective

function of the problem (4.27) can approximate the ‖x‖0-function to any level of accuracy.

Example 4.7. The weights depend on both the current point x and ε.

Let ψi = log(1 + τ), i = 1, ..., n, and let

wi =
1

log(1 +
√

x2
i + εp)

, i = 1, ..., n,

where 0 < p < 1 is any fixed constant (e.g., p = 1
2
, 1
3
, ...), then

lim
ε→0

n∑
i=1

wiψi

(√
x2
i + ε

)
= lim

ε→0

n∑
i=1

log
(
1 +

√
x2
i + ε

)

log(1 +
√

x2
i + εp)

= ‖x‖0

Similarly, we may choose

wi =
1

log(1 + |xi|+ εp)
,

such that the above limitation remains valid.

As we see in the numerical experiment section, the choice of the initial point for the

reweighted algorithm plays a vital rule. This means, by choosing a proper starting point,

most of the weighted lj-minimizations (j ≥ 1) are successful in locating the sparsest

solution, Tables 4.1, 4.2 and 4.4 .

In the next section, we continue discussing the weights, and we show that choosing

proper weights may reduce the gap between the performances of different merit functions

to locate a sparse solution to a linear system.

90

4.5 Weights may reduce the gap between some merit

functions

In this section, we show that suitable weights may significantly reduce the gap between

some of the merit functions. We suppose that the initial points in the wlj-algorithms

(j ≥ 2) are set to be the solution of the l1-minimization. Also, we explain how to

define different kinds of weights for weighted norm-functions in order to have a function

with high sparsity measurement property. Besides, we discuss which choices of weights

may reduce the gap between different merit functions. For example, in what follows we

illustrate what choices of weights may reduce the gap between the performances of the

‖Wx‖2-minimization and the ‖x‖1-minimization to locate a sparse solution of a linear

system.

One approach to find such weights is to define the weights in a way that each w2
i x

2
i

becomes equivalent to |xi|, i = 1, ..., n. Suppose that W = diag(w1, w2, ..., wn), then

‖Wx‖2 =
√√√√

n∑
i=1

w2
i x

2
i .

Now let’s choose

(4.28) wi =
1

(x2
i + ε)

1
4

.

If we replace the above weights to the weighted l2-norm, then

‖Wx‖2 =
√√√√

n∑
i=1

1

(x2
i + ε)

1
2

x2
i .

91

Note that
√

x2
i + ε ≈ |xi|, when ε is small enough. This yields:

‖Wx‖2 ≈
√√√√

n∑
i=1

|xi| =
√

‖x‖1,

and therefore,

‖Wx‖22 ≈ ‖x‖1.

In general, choosing proper weights in ‖Wx‖j-minimization (j ≥ 2) can make it equiv-

alent to the ‖x‖1-minimization. Set

(4.29) wi = (|xi|j + ε)
1−j

j2 .

Clearly, this choice of the weight will result in the following:

‖Wx‖jj ≈ ‖x‖1.

It is worth mentioning that the weighted l2-norm function can also be an approximation

to the ‖x‖0-function. This can be proved as follows:

Set the weights as

(4.30) wi =
1√

x2
i + ε

, i = 1, ..., n,

and let W = diag(w1, w2, ..., wn). Therefore

‖Wx‖2 =
√√√√

n∑
i=1

(wixi)2 =

√√√√
n∑

i=1

x2
i

x2
i + ε

.

92

Now taking the limit when ε → 0, yields: For xi 6= 0, we have

lim
ε→0

x2
i

x2
i + ε

= 1,

and for xi = 0, we have

lim
ε→0

x2
i

x2
i + ε

= 0.

Hence

lim
ε→0

n∑
i=1

x2
i

x2
i + ε

= ‖x‖0.

This motivates us to test another reweighted l2-algorithm with the weights defined in

(4.30), see the numerical experiment section.

In general, for weighted lj-norms (j ≥ 2), if the weights are chosen as

wi = (xj
i + ε)

− 1
j2 , i = 1, ..., n,

then we can conclude that

lim
ε→0

‖Wx‖jj ≈ ‖x‖0,

where W = diag(w1, ..., wn).

4.6 General reweighted lj (j ≥ 1) algorithms

In chapter 5, we will discuss the reweighted l1 algorithms in details, however in this section

we explain a general reweighted lj (j ≥ 1) algorithm.

First, we should choose a starting point x1, and an initial weight ω1 = (ω1
1, ..., ω

1
n) for

the algorithm. Usually the weights at the iteration l + 1 are chosen using the solution

vector, xl, from the iteration l. Note that at each iteration l the vector ωl = (ωl
1, ..., ω

l
n) is

the penalty vector, where ωis can be interpreted as penalties that discourage the existence

93

of nonzero elements of the vector x ∈ Rn. Also a parameter ε is used in our penalty vector,

ωl, to avoid the division by zero. Sometimes we may use some updating rule for ε as well,

e.g. set εl+1 = 0.5εl. Hence, a general reweighted lj algorithm can be defined as follows:

Algorithm 4.1. Set l as an index which counts the iterations, and choose a small enough

ε,

Step 0: Choose a starting(initial) point x1 for the algorithm,

Step 1: Set l = 1 and ωl = (ω1, ..., ωn),

Step 2: The iterative scheme; Solve

(4.31) xl+1 = argmin{‖diag(ωl)x‖j : Ax = b},where j ≥ 1,

Step 3: Update the weights; update the penalty vector ωl+1 using the optimal solution,

xl, achieved in the last step,

Step 4: If some stopping criteria holds, stop. Otherwise, go to step 2.

We may use the weights introduced in (4.28) and (4.30) to define the following

reweighted l2-minimization problems:

xl+1 = argmin
n∑

i=1

(
(x2

i)
l + ε

)−0.25
x2
i

s.t. Ax = b,

(4.32)

and

xl+1 = argmin
n∑

i=1

(
(x2

i)
l + ε

)−0.5
x2
i

s.t. Ax = b,

(4.33)

94

where l is the number of the iteration.

In our numerical experiments, we compared the performances of the above reweighted

l2-minimization problems with the l1-minimization, see Figures 4.10 and 4.11. The numer-

ical experiments show that the choice of ε is very important to improve the performances

of the algorithms. In addition, by using the above discussion, we introduced some weights

for the reweighted l3-algorithm, and we also compared the performances of the reweighted

l3-minimization with the l1-minimization, via different choices of ε, see Figures 4.12 and

4.13.

Note that after adding the weights, the resulting function may lose its simplicity or

convexity. The procedure of adding weights normally generates a concave function with a

strong sparsity measurement. If the function is a good continuous approximation to the

‖x‖0-function, then it means the function is concave. One of the common approaches to

solve concave optimization problems is the linearization method, which will be explained

in the next chapter.

In the next section, we demonstrate some numerical examples to see how weights may

reduce the gap between merit functions for sparsity.

4.7 Numerical experiments

In this section, we report some results from our numerical experiments to support the

points made in this chapter. These experiments show that weights (if chosen properly)

may significantly reduce the gap between merit functions in finding a sparse solution to

a linear system.

We start with the simple Example 4.1. As seen, the optimal solution of the problem

is x̂ = (0, 0, 0, 1, 0, 0)T , and ‖x̂‖0 = 1. In this example, numerical tests show that the

l1-minimization finds the solution with cardinality 4, and all the lj-minimizations for

j = 2, ...,∞ find the solutions with cardinality 6. However, reweighted lj-minimizations

95

(j ≥ 1) are much better in general. In the Table 4.1, we use the weight wl
i =

1
|xl

i|+εl
in

the reweighted lj-minimization with j = 1, ..., 5, 15,∞. And in the Table 4.2, we use the

weight wl
i =

1
(|xl

i|+εl)1.5
in the reweighted lj-minimization with j = 1, ..., 5, 15,∞. Also, the

updating rule for ε is εl+1 = 0.25εl, with ε0 = 0.0001. The number of the iterations for

all of the reweighted algorithms is equal to 4, i.e, l = 4, and we run the algorithms from

10 different initial points. After presenting these numerical experiments in the following

tables, we continue to improve the results by changing the number of iterations.

Table 4.1: Comparison of different reweighted lj-minimizations with wl
i = 1

|xl
i|+εl

. The

number of iterations is l = 4. The numbers in the columns show the cardinality of the
solution.

Initial Point x0 wl1 wl2 wl3 wl4 wl5 wl15 wl∞
(0, 0, 0, 0, 0, 0)T 1 1 6 6 6 6 6
(1, 1, 1, 1, 1, 1)T 1 1 6 6 6 6 6
(0, 1, 1, 1, 1, 1)T 1 1 5 5 6 6 6
(0, 0, 1, 1, 1, 1)T 1 1 1 1 1 5 6
(0, 1, 1, 1, 0, 0)T 1 1 1 1 1 6 6
(0, 1, 0, 1, 0, 1)T 1 1 1 1 1 6 6
(1, 1, 1, 0, 0, 0)T 4 6 6 6 6 6 6
(0, 100, 100, 100, 100, 100)T 1 1 5 5 6 6 6
(0, 0, 100, 100, 100, 100)T 1 1 1 1 1 5 5
(0, 0, 0, 100, 100, 100)T 1 1 1 1 1 5 6

96

Table 4.2: Comparison of different reweighted lj-minimizations with wl
i =

1
(|xl

i|+εl)1.5
. The

number of iterations is l = 4. The numbers in the columns show the cardinality of the
solution.

Initial Point x0 wl1 wl2 wl3 wl4 wl5 wl15 wl∞
(0, 0, 0, 0, 0, 0)T 1 1 1 5 5 5 6
(1, 1, 1, 1, 1, 1)T 1 1 1 5 5 6 6
(0, 1, 1, 1, 1, 1)T 1 1 1 1 1 5 5
(0, 0, 1, 1, 1, 1)T 1 1 1 1 1 1 1
(0, 1, 1, 1, 0, 0)T 1 1 1 1 1 1 6
(0, 1, 0, 1, 0, 1)T 1 1 1 1 1 1 6
(1, 1, 1, 0, 0, 0)T 1 1 5 5 5 6 6
(0, 100, 100, 100, 100, 100)T 1 1 1 1 1 5 5
(0, 0, 100, 100, 100, 100)T 1 1 1 1 6 6 1
(0, 0, 0, 100, 100, 100)T 1 1 1 1 6 6 6

Now, we generate randomly distributed matrices A and the sparse vectors x. The

matrices A are normally distributed with mean zero and variance 1, i.e, N(0, 1). We

generate 500 such matrices A, and sparse vectors x, and compare the frequency of

success of the lj-minimization and the reweighted lj-minimization (j = 1, 2, 3,∞) in

finding 5-sparse, 7-sparse, 9-sparse, 11-sparse and 12-sparse solutions of the linear sys-

tem. We use the weights wl
i =

(|xl
i|+ εl

)−1
for the reweighted l1-minimization and the

reweighted l2-minimization, and wl
i =

(|xl
i|+ εl

)−1.5
for the reweighted l3-minimization

and the reweighted l∞-minimization. The initial point for all of the algorithm are set to

be x0 = 1 ∈ R120, where 1 is a vector with all entries are equal to 1. Also ε0 = 0.01, and

the updating rule for εl is εl+1 = 0.5εl. The results are presented in Table 4.3. As seen,

the l1-minimization is efficient in finding the sparsest solution of a linear system. The l2,

l3 and l∞-minimization fail to locate any sparse solution when ‖x‖0 ≤ 12. However, the

gap between them was significantly reduced when we add the weights to the functions.

As shown, the reweighted l1-minimization and the reweighted l2-minimization perform

similarly in many cases. Also, note that the frequencies of success in the reweighted

97

l3-minimization and the reweighted l∞-minimization are significantly improved.

Table 4.3: Comparison of lj-minimizations and reweighted lj-minimizations for j =
1, 2, 3,∞. The numbers in the columns show the frequencies of success in finding the
sparse solutions.

Sparsity l1 l2 l3 l∞ wl1 wl2 wl3 wl∞
‖x‖0 ≤ 5 98.6% 0% 0% 0% 99.2% 92% 70.2% 0.6%
‖x‖0 ≤ 7 98.6% 0% 0% 0% 99.2% 93% 74.8% 0.8%
‖x‖0 ≤ 9 98.6% 0% 0% 0% 99.2% 93.8% 76.8% 1%
‖x‖0 ≤ 11 98.6% 0% 0% 0% 99.2% 94.2% 78% 1%
‖x‖0 ≤ 12 98.6% 0% 0% 0% 99.2% 94.6% 79.6% 1%

Now, we test different reweighted lj-minimizations with a much higher number of

iteration for finding the sparsest solution of the Example 4.1. The numerical experiments

show that for the reweighted l1-minimization usually 4 iterations are enough to find the

optimal solution. However, for the reweighted lj-minimization (j ≥ 2), we should increase

the number of iterations to locate the solutions with higher sparsity. We set the weights

as wl
i =

1
|xl

i|+εl
, and iterate the algorithm 40 times, i.e, l = 40. Based on our experiments,

after 40 iterations there will not be any improvements to the optimal solution of the

problem. This means one may stop the algorithm at the iteration k if xk = xk−1 = xk−2.

98

Table 4.4: Comparison of different reweighted lj-minimizations with wl
i = 1

|xl
i|+εl

. The

number of iterations is l = 40. The numbers in the columns show the cardinality of the
solution.

Initial Point x0 wl1 wl2 wl3 wl4 wl5 wl15 wl20 wl200 wl∞
(0, 0, 0, 0, 0, 0)T 1 1 1 1 1 1 5 6 6
(1, 1, 1, 1, 1, 1)T 1 1 1 1 1 1 5 6 6
(0, 1, 1, 1, 1, 1)T 1 1 1 1 1 1 1 6 6
(0, 0, 1, 1, 1, 1)T 1 1 1 1 1 1 1 2 6
(0, 1, 1, 1, 0, 0)T 1 1 1 1 1 1 1 5 6
(0, 1, 0, 1, 0, 1)T 1 1 1 1 1 1 1 1 6
(1, 1, 1, 0, 0, 0)T 4 4 4 4 4 5 5 6 6
(0, 100, 100, 100, 100, 100)T 1 1 1 1 1 1 1 5 6
(0, 0, 100, 100, 100, 100)T 1 1 1 1 1 1 1 1 5
(0, 0, 0, 100, 100, 100)T 1 1 1 1 1 1 1 1 5

We continue our numerical experiments by focusing on the following reweighted l2-

minimization and reweighted l3-minimization problems:

xl+1 = argmin
n∑

i=1

(
(x2

i)
l + ε

)−0.25
x2
i

s.t. Ax = b,

(4.34)

xl+1 = argmin
n∑

i=1

(
(x2

i)
l + ε

)−0.5
x2
i

s.t. Ax = b,

(4.35)

xl+1 = argmin
n∑

i=1

(
(x3

i)
l + ε

)− 1
3 x3

i

s.t. Ax = b,

(4.36)

99

xl+1 = argmin
n∑

i=1

(
(x3

i)
l + ε

)− 2
3 x3

i

s.t. Ax = b,

(4.37)

As mentioned, a suitable weight may vanish the gap between the reweighted lj-

minimization (j ≥ 2), and the l1-minimization. We compared the performance of the

4 algorithms above with the l1-minimization. 100 randomly generated matrices have

been tested. The matrices A are normally distributed with mean zero and variance 1, i.e,

N(0, 1), and we run the algorithms for different sparsity levels of the solution vector x, (i.e,

‖x‖0 = 1, ...16). Figure 4.10 shows the performance of the first reweighted l2-minimization

(4.34) for finding the sparsest solution to the linear system Ax = b. Different choices of ε

have been tested.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

l
1

wl
2
, ε=10−4

wl
2
, ε=10−9

wl
2
, ε=10−10

wl
2
, ε=10−12

Figure 4.10: The performance of the reweighted l2-minimization with wi = (x2
i + ε)

−0.25

for different choices of ε.

Figure 4.11 shows the performance of the second reweighted l2-minimization (4.35) for

finding the sparsest solution of the linear system Ax = b for different choices of ε. See

that if a suitable ε is chosen, then the performance of the algorithms will be quite similar

to the l1-minimization.

100

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

l
1

wl
2
, ε=10−4

wl
2
, ε=10−5

wl
2
, ε=10−6

wl
2
, ε=10−7

Figure 4.11: The performance of the reweighted l2-minimization with wi = (x2
i + ε)

−0.5

for different choices of ε.

Figure 4.12 shows the performance of the first reweighted l3-minimization (4.36) for

finding the sparsest solution of a linear system. Clearly, if a proper ε is chosen, then

the gap between the reweighted l3-minimization and the l1-minimization will be reduced

significantly.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

l
1

wl
3
, ε=10−6

wl
3
, ε=10−8

wl
3
, ε=10−10

wl
3
, ε=10−12

Figure 4.12: The performance of the reweighted l3-minimization with wi = (x3
i + ε)

− 1
3 for

different choices of ε.

Figure 4.13 shows the performance of the second reweighted l3-minimization (4.37) for

finding the sparsest solution of linear system. See that if a suitable ε is chosen, then the

gap between the reweighted l3-minimization and the l1-minimization will be reduced.

101

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

l
1

wl
3
, ε=10−4

wl
3
, ε=10−6

wl
3
, ε=10−7

wl
3
, ε=10−10

Figure 4.13: The performance of the reweighted l3-minimization with wi = (x3
i + ε)

− 2
3 for

different choices of ε.

In the next section, we discuss the reweighted l1-minimization, which is one of the

most successful approaches to find a sparse solution of a linear system.

102

Chapter 5

Reweighted l1-Algorithms1

We discussed different reweighted algorithms and the l1-minimization method in the last

chapter. Because of the effectiveness of l1-minimization, it is natural to ask if there are

other methods which can be comparable or outperforms the l1-minimization. Numerical

experiments show that proper reweighted l1-minimizations outperform the l1-minimization

in many situations [34, 37, 43]. This means reweighted minimization methods may find

the sparsest solution when the l1-minimization fails. The reweighted l1-minimization can

be written as

Minimize
x

‖Wx‖1

s.t. Ax = b,

(5.1)

where W is a diagonal matrix W = diag(w) with w = (w1, w2, ..., wn) ∈ Rn
+. The main

idea of the reweighted l1-minimization is to define the weights based on the current iter-

ate xl. These weights can be interpreted as large penalties for small component of the

vector x. This means the weights force the small components to be zero in every itera-

tion. Reweighted l1-minimization is a new topic in the field of optimization and applied

1Most parts of this chapter can be found in [2].

103

mathematics, however reweighted least square (RLS) method has a relatively long his-

tory. RLS was proposed by Lawson [84] in 1960s, who introduced the weighted lp-norm

for solving a class of uniform approximation problems. This method has been extended

to lp-minimization (0 < p < 1) later. RLS is used in many areas such as robust statistical

estimation [142, 78, 111] and FOCUSS algorithms [72]. The recent interest is now focused

on reweighted l1-minimizations which have shown powerfulness in finding the sparsest

solution to an underdetermined linear system of equations.

A unified framework of reweighted l1-algorithms has been recently proposed by Zhao

and Li [152], where they illustrated how to define different merit functions for sparsity.

These functions are certain concave approximations to the l0-norm function. In this

chapter, we continue to introduce more new merit functions, which can be employed to

propose new weights for the reweighted l1-algorithms. Especially, we focus on the nu-

merical comparison between some new and existing reweighted l1-algorithms. We show

how the change of parameters in reweighted algorithms may affect the performance of

the algorithms for finding the solution of the cardinality minimization problem. In our

experiments, the problem data were generated according to different statistical distribu-

tions, and we test the algorithms on different sparsity level of the solution of the problem.

Our numerical results demonstrate that these reweighted l1-methods are very efficient for

locating the solution of the cardinality minimization problem.

In the next section, we discuss some of the existing weighted l1-algorithms, and the

majorization-minimization(MM) method. Also, we apply the MM-method to the function

which we defined in chapter 3 (3.16) to define a reweighted l1-algorithm, and we continue

to develop more approximations to the function ‖x‖0 in the other sections.

104

5.1 Weighted l1-algorithms

Weighted l1-minimization problem can be written as

Minimize
x

ωT |x| = 〈ω, |x|〉

s.t. Ax = b,

(5.2)

where the vector |x| is the componentwise absolute value of the vector x, and ω is the

weight vector. The weight vector should be chosen in a way that they encourage the small

entries of the vector x to be zero, so this method is sometimes called l1 penalty method.

Most of weighted l1-minimization techniques are based on majorization-minimization

methods, so we introduce this method and we discuss about its applications to achieve

different weights to our reweighted l1-minimization problems.

The majorization-minimization(MM) method is one of the well-known optimization

techniques which has lots of applications in different optimization problems [66, 64]. MM-

method is an iterative technique using a majorization function, which is easier to work

with, for minimizing a given function f(x). Here we introduce majorization function, and

then we apply the MM-method to our cardinality problem.

Definition 5.1. (Majorization function)

Consider the function f : R → R, and suppose in the i-th iterations one can find a

function gi(x) with the following properties,

• gi(x
i) = f(xi). Note that the parameter vector at the iteration i + 1 is obtained as

follows: xi+1 = argminx gi(x).

• gi(x) ≥ f(x),

• The minimization of gi(x) is easier than minimization of f(x).

105

This gi(x) is called a majorization function for f(x).

The common feature of MM-algorithm, like expectation-maximization(EM) [99], and

cyclic-minimization [125], is that it monotonically decreases the function’s value at each

iteration. Based on the definition of gi(x) above, to verify this feature for MM-method,

let’s see that

f(xi) = gi(x
i) ≥ gi(x

i+1) ≥ f(xi+1).

To apply MM-algorithm to CMP, first one should reformulate the cardinality function

to a differentiable one, and then relax the concave problem with replacing its linear

majorized function. To see how this procedure works, we consider the following CMP:

Minimize
x

Card(x)

s.t. Ax = b.

(5.3)

An approximation of card(x) can be written as [122]

(5.4) Card(x) = lim
ε→0

n∑
i=1

log(1 + |xi|
ε
)

log(1 + 1
ε
)
,

with ε ≥ 0 and x = (x1, ..., xn)
T . Without loss of generality we can assume that x ≥ 0,

since if not one can write x = x+−x− with x+, x− ≥ 0, and card(x) = card(x+)+card(x−).

Now one could reformulate the problem (5.3) as follows [34]:

Minimize
x

n∑
i=1

log
(
1 +

xi

ε

)

s.t. Ax = b, x ≥ 0.

(5.5)

Note that log(1 + xi

ε
) is not equivalent to the l0-norm function, but it encourages the

106

xis to be set to zero. As we will see on this chapter later, we call these kinds of functions

as merit functions.

The objective function of the problem (5.5) is concave, so one can use the linear

majorization of the function as a new objective which is convex. For a a given concave

function f we know

f(x) ≤ f(y) + (x− y)T∇f(y), ∀x, y ∈ dom(f).

The right hand side of the inequality above is a linear function with respect to x.

Linearization is a famous method to minimize a concave function over convex sets [77].

The convergence of these kinds of algorithms can be shown using the global convergence

theorem [90].

One could reformulate the problem (5.5) by its linearized majorization function. To

do so, we write the first order approximation of the objective function, at the point xl, as

follows

(5.6)
n∑

i=1

log
(
1 +

xi

ε

)
≈

n∑
i=1

log

(
1 +

xl
i

ε

)
+

n∑
i=1

xi − xl
i

ε+ xl
i

Then one could solve the achieved following convex problem:

Minimize
x

n∑
i=1

xi − xl
i

ε+ xl
i

s.t. Ax = b, x ≥ 0.

(5.7)

By setting 1
ε+xl

i
= ωi, we have the following weighted l1-minimization problem:

107

Minimize
x

n∑
i=1

ωixi

s.t. Ax = b, x ≥ 0.

(5.8)

In [34], a simple iterative algorithm is proposed to solve reweighted l1-minimization

problems. In what follows, we briefly introduce this algorithm.

Define a vector ω = (ω1, ..., ωn), where ωis can be interpreted as penalties that dis-

courage the existence of nonzero elements of the vector x.

Algorithm 5.1. Set l as an index which counts the iterations, and choose a small enough

ε.

Step 0: Choose a starting(initial) point x0 for the algorithm, solving the convex opti-

mization problem (4.3).

Step 1: Set l = 0 and ωl = (ω1, ..., ωn) = 1T .

Step 2: Solve

(5.9) xl = argmin{〈ω(l), |x|〉 : Ax = b}.

Step 3:

ωl+1
i =

1

|xl
i|+ ε

, i = 1, ..., n.

Step 4: If some stopping criteria holds, stop. Otherwise (l+ 1 7→ l), and go to step 2.

There are different stopping criteria for this algorithm. For example, one may stop the

algorithm when there is no improvements in the optimal solution of the algorithm. Hence

the algorithm may be terminated at iteration k if xk = xk−1 = xk−2. Or one may define

some updating rules for the parameter ε, e.g. εl+1 = 0.5εl, and terminates the algorithm

when ε is small enough.

108

The above algorithm is sometimes called reweighted l1-heuristic.

One of the most recommended choices for the starting point, x0, is the optimal solution

of the relaxed l1-minimization problem.

Another more general reformulations of the CMP (5.3) are as follows [34]:

Minimize
x,R

n∑
i=

Ri

s.t. Ax = b

|xi| ≤ Ri,

(5.10)

or

Minimize
x,R

n∑
i=1

log(Ri + ε)

s.t. Ax = b

|xi| ≤ Ri,

(5.11)

which is equivalent to

Minimize
x

n∑
i=1

log(|xi|+ ε)

s.t. Ax = b,

(5.12)

The problem (5.12) and (5.11) are equivalent in the following sense.

If x∗ is a solution to (5.12) then (x∗, |x∗|) is a solution to (5.11), and if (x∗, R∗) is a

solution to (5.11), then x∗ is a solution to (5.12).

109

Based on the above technique, the problem (5.11) can be solved by using its linearized

relaxation function.

Rl+1 = argmin
n∑

i=1

Ri

Rl
i + ε

s.t. Ax = b

|xi| ≤ Ri, i = 1, ..., n,

(5.13)

which is equivalent to

xl+1 = argmin
n∑

i=1

|xi|
|xl

i|+ ε

s.t. Ax = b.

(5.14)

Then the Algorithm 5.1 can be applied to the above problem, by setting

ωl+1
i =

1

|xl
i|+ ε

, i = 1, ..., n.

Here, we use the following reformulation for the cardinality function (as seen in chapter

3),

(5.15) Card(x) = ‖x‖0 = lim
ε→0

n∑
i=1

sin

(
atan

(|xi|
ε

))
.

If we repeat the previous MM-procedure for the above function, the following weights

can be obtained:

ωi =
1

x2
i + ε2

.

Now, one can easily apply the Algorithm 5.1. It seems, in this case, the algorithm

110

should converge faster since the above weights propose larger penalties for small xis. See

Figures 5.1 and 5.2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Figure 5.1: The solid graph represents card(x), the dash graph represents ‖x‖1, as the

convex envelop of card(x). The dot graph represents the function sin
(
atan

(
|x|
ε

))
for

ε = 0.1, and the dash-dot graph represents sin
(
atan

(
|x|
ε

))
for ε = 0.01.

For more illustration, here we present Figure 5.2, based on the l1-minimization and

the reweighted l1-minimization for the following cardinality problem:

Minimize
x

Card(x)

s.t. Ax = b,

(5.16)

where A ∈ R100×200.

A, b are randomly generated from the normal distribution with mean of 0 and variance

of 1, N(0, 1).

The dot line is presenting card(x) achieved by the l1-minimization. The solid line is

111

presenting card(x) achieved from the reweighted l1-minimization at each iteration. The

weights, in this case, are obtained by applying the linearization method to the following

approximation of card(x), denoted by ϕ1,

(5.17) Card(x) = lim
ε→0

n∑
i=1

log(1 + |xi|
ε
)

log(1 + 1
ε
)

= ϕ1.

And the dashed line is presenting card(x) achieved from the reweighted l1-minimization

method at each iteration, the weights in this cased are achieved by applying linearization

method based on our approximation of card(x), denoted by ϕ2,

(5.18) Card(x) = ‖x‖0 = lim
ε→0

n∑
i=1

sin

(
atan

(|xi|
ε

))
= ϕ2.

1 2 3 4 5 6 7 8 9 10
20

25

30

35

40

45

50

55

60

Iterations

C
ar

d(
x)

Figure 5.2: The l1-minimization and the reweighted l1-minimization with a matrix A ∈
R100×200. The dots line represents card(x) based on the l1-minimization. The solid line
represents card(x) achieved by the reweighted l1-minimization based on ϕ1 approximation,
at each iteration. And the dashed line represents card(x) achieved by the reweighted l1-
minimization based on ϕ2 approximation, at each iteration.

In the next section, we focus on some new concave merit approximations to the function

‖x‖0, which lead us to new reweighted l1-algorithms.

112

5.2 Concave approximations to ‖x‖0 and reweighted

l1-minimization

As we have seen, there are some alternatives to improve the l1-minimization, called

reweighted l1-minimization techniques. In this section, we continue to develop the reweighted

l1-minimization algorithms.

Remind that the problem of finding the sparsest solution to the linear system, can be

stated as follows:

Minimize
x

‖x‖0

s.t. Ax = b,

(5.19)

where Ax = b is an undetermined linear system of equations.

The l0-norm function is discontinuous, so the main idea for solving the problem (5.19)

is to approximate the l0-norm function by some other continuous functions which are easier

to deal with. For example, the lp-norm function(0 < p < 1) is one of the approximations

to the l0-norm function. The lp-minimization (0 < p < 1) has been studied in [119, 42, 43].

Figure 5.3 represents the graph of
∑n

i=1 |xi|p, for p = 1, p = 0.6, and p = 0.2. Note that

as p goes to zero,
∑n

i=1 |xi|p approaches to the l0-norm function.

113

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

x

p=1

p=0.6

p=0.2

Figure 5.3: The graph of
∑n

i=1 |xi|p for different values of 0 < p ≤ 1.

−6 −4 −2 0 2 4 6

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

p=1

p=0.6
p=0.2

Figure 5.4: The graph of
∑n

i=1 log(|xi|+ε)+
∑n

i=1(|xi|+ε)p for different values of 0 < p ≤ 1.

As seen in Figure 5.3, the closest convex approximation to the ‖x‖0-function is the

well known l1-norm function. So it is unavoidable to use non-convex functions, especially

concave functions, in order to have a better approximation to the ‖x‖0-function. As we will
see in this chapter, these approximations will lead us to construct different reweighted l1

algorithms through the linearization method. These reweighted algorithms perform much

better than the original lj-minimization (j ≥ 1) techniques to find a sparse solution to a

system of linear equations. In [152] Zhao and Li introduced the following function which

is a combination of the lp-norm (0 < p < 1) and the log function to approximate the

114

‖x‖0-function, x ∈ Rn, (see Figure 5.4):

Fε(x) =
n∑

i=1

log(|xi|+ ε) +
n∑

i=1

(|xi|+ ε)p, 0 < p < 1.

We will discuss these kinds of functions later. Finite successive linear approximation

algorithms have also been used and are still used to get an approximate solution of the

concave approximation problems [96, 117, 21, 94].

l1-minimization methods have been used to solve the problem (5.19). This is motivated

by the main idea of replacing the ‖x‖0-function with its convex envelop, the l1-norm

function, and then solve the resulting linear program [31, 52, 27]. Under certain conditions

the l1-minimization method is able to obtain the exact solution of the problem (5.19) for

very sparse solutions of the system Ax = b. In the literature, several conditions have been

introduced and discussed for the equivalence between the l1-minimization and the l0-

minimization. The outstanding ones are spark [52], mutual coherence [53, 29], restricted

isometry property(RIP)[31, 25, 16], and null space property(NSP) [28, 11]. For large

optimization problems, the unconstrained version of the problem has been investigated in

the literature, that may be referred as Lasso-type problems [137].

Numerical experiments show that weighted approaches are very affective in locating

an exact solution of the problem (5.19), and it can outperform other methods, in many

situations [152, 82, 34, 140, 37, 43].

Candes, Wakin, and Boyd [34] proposed a reweighted l1-algorithm as follows:

Minimize
x

n∑
i=1

ωi|xi|

s.t. Ax = b.

(5.20)

115

By introducing a diagonal matrix W = diag(ω1, ω2, ..., ωn), the problem above can be

written as

Minimize
x

‖Wx‖1

s.t. Ax = b.

(5.21)

The weight can be interpreted as penalties for the components of the vector x. Larger

penalties, (ωi)s, apply to smaller component of the vector x, for example one may choose

the weights as 1
|xi| , i = 1, ..., n. However to avoid having infinity penalties, one may add

a parameter like ε > 0 to define the following weight [34]

ωi =
1

|xi|+ ε
, i = 1, ..., n.

Choosing the proper ε to have a more efficient algorithm is one of the challenges. Very

small or very large ε might lead to improper weights which may cause the failure of the

algorithms. Since very small ε might result in infinity penalties for small component of

x, and with very big ε the penalty might not recognize the difference between the small

components of x and the large ones. We discuss the choice of ε for our algorithms in the

numerical experiment later.

In an iterative reweighted l1-algorithm, weights can be defined from the iteration in

the previous step. Suppose the solution at the step l is xl, then the weight at the next

step l + 1, can be given as ωl+1 = 1
|xl|+ε

. This was introduced by Candes, Wakin, and

Boyd, and we refer to their algorithm as CWB, in this chapter.

In [152], Zhao and Li introduced a unified framework of reweighted l1-minimization.

116

The main idea is to define a merit function which is a certain concave approximation of the

cardinality function, and to construct different types of weights through the linearization

techniques. Based on the class of merit functions defined by Zhao and Li [152], we identify

several new specific merit functions, which are used to define the weights of the reweighted

l1-algorithms. The main purpose of this chapter is to study these merit functions, and

to test the success probability of the reweighted algorithms associated with these merit

functions for locating the sparsest solution to linear systems, where the matrices, A, are

generated based on different statistical distributions. Note that most of the previous

experiments in the literature use normally distributed matrices. Also, we demonstrate

how the parameters used in the algorithms may affect the performance of these methods.

Furthermore, we evaluate what choice of ε may make our algorithms work better. In

section 5.3, we discuss different types of merit functions and the associated reweighted

l1-algorithms. In section 5.4, we present and discuss our numerical results, and provide

comparison between these algorithms.

5.3 Merit functions and reweighted algorithms

Merit functions have been used frequently in the field of optimization. Recently Zhao

and Li [152] have used merit functions to approximate the l0-norm function. The merit

function is defined as follows.

Definition 5.2. (Merit Function)

For any ε > 0, a merit function Fε(x) : Rn → R is separable and coercive of the

form Fε(x) =
∑n

i=1 ψi(|xi| + ε) for approximating the l0-norm, where the functions ψi

are strictly concave, strictly increasing and twice differentiable. Also the function Fε(x)

should satisfy the following properties:

1. limε→0
Fε(x)
g(ε)

= ‖x‖0 + C, g(ε) > 0 is a function of ε, C is a constant,

117

2. Fε(x) = Fε(|x|), ∀x ∈ Rn,

3. lim(xi,ε)→(0,0)[∇Fε(x)]i = ∞, ∀x ≥ 0, ∀ε > 0,

4. limε→0[∇Fε(x)]i = ci, ∀xi > 0, where each ci is a positive constant.

After replacing the ‖x‖0 by a merit function the problem (5.19) can be written as

Minimize
x

Fε(x)

s.t. Ax = b.

(5.22)

Note that Fε(x) is a concave function. One of the usual methods to solve concave

optimization problems is to apply the linearization method, which in this case is a spe-

cial type of Majorization-Minimization(MM) method. For more illustration see that by

applying the Taylor expansion of Fε(x) around a point u, we conclude

Fε(x) ≤ Fε(u) + 〈∇Fε(u), x− u〉.

The right hand side of the inequality above is a linear function. Hence the problem (5.22)

would be reduced to the following linear program:

Minimize
x

〈∇Fε(u), x〉

s.t. Ax = b.

(5.23)

So in our iterative reweighted algorithm, the iteration l should solve the following opti-

mization problem:

118

Minimize
x

〈∇Fε(x
l), x〉

s.t. Ax = b,

(5.24)

where xl is the solution of the previous iteration, and ∇Fε(x
l) are the weights. The

reweighted l1-algorithm can be defined as follows:

Algorithm 5.2. • Set l as an index which counts the iterations, and choose a small

enough ε > 0.

• Step 0: Choose a starting point x1. This can be obtained by solving the l1-minimization

problem.

• Step l: Set ωl = ∇Fε(x
l), and Solve

(5.25) xl+1 = argmin{〈ωl, x〉 : Ax = b}.

• Step l + 1: If some termination criteria holds, stop. Otherwise (l ← l + 1), and go

to step l.

An additional step can be added to the above algorithm concerning the choice of ε.

In this chapter, our updating rule is εl+1 = 0.5εl. In CWB algorithm, ε is updated as

εl+1 = max{|xl|(i0), 0.001}, where i0 =
m

[4 log(n
m
)]
, and |x|i0 is the biggest i0 elements of x.

It is quit challenging to prove that under a mild condition, the reweighted l1-algorithm

converges to the sparsest solution of problem (5.19). This is still an open questions in this

field. However some progress have been made in this area [152, 95, 43, 140]. Mangasarian

[95] introduced a successive linearization algorithm(SLA) to find the solution of general

complementarity problems, and proved that SLA algorithm terminates in finite number of

119

iterations, and creates decreasing objective function values at each iteration. Furthermore

he proved these values converge to a stationary point. Chen and Zhou in [43] proved

that the sequence generated by reweighted l1-algorithm converges to a stationary point

of a kind of truncated lp-minimization problem (0 < p < 1). Similar results can also

be found in [82]. Recently, Zhao and Li [152] defined a range space property(RSP) for

matrices, under which he proved that the reweighted l1-algorithm converges to certain

sparse solution of the problem.

Following the framework of the reweighted l1-algorithm in [152], we discuss some new

merit functions. Before we go ahead, let’s consider the following merit function

(5.26) Fε(x) =
n∑

i=1

log(|xi|+ ε) +
n∑

i=1

(|xi|+ ε)p,

where 0 < p < 1, which is mentioned in [152], based on which we will construct new merit

functions. To verify that the above function is a merit function, one should check all the

defined properties are satisfied. First, let’s verify that this function is an approximation

of l0-norm function.

Indeed, it is easy to check that

lim
ε→0

(
n−

∑n
i=1 log(|xi|+ ε) +

∑n
i=1(|xi|+ ε)p

log ε

)
= ‖x‖0.

Note that

lim
x→∞

Fε(x) = ∞,

which means the function is coercive. It is clear that Fε(x) = Fε(|x|), and the function is

120

increasing. In Rn
+, we have

∇Fε(x) =

(
1 + (x1 + ε)pp

x1 + ε
, ...,

1 + (xn + ε)pp

xn + ε

)T

.

Also, for every i = 1, ..., n, we have

lim
(xi,ε)→(0,0)

[∇Fε(|x|)]i = lim
(xi,ε)→(0,0)

1 + (|xi|+ ε)pp

|xi|+ ε
= ∞, i = 1, ..., n,

and ∇Fε(x) is bounded when ε → 0. Since 0 < p < 1 and xi > 0, we have

p(xi + ε)p > p2(xi + ε)p, i = 1, ..., n,

so

−1 + (xi + ε)pp2 − (xi + ε)pp

xi + ε
< 0, i = 1, ..., n,

and hence

∇2Fε(x) = diag

(−1 + (xi + ε)pp2 − (xi + ε)pp

xi + ε

)
≺ 0, i = 1, ..., n.

As seen, in Rn
+ the Hessian of the above merit function is negative definite, so the function

Fε(x) is strictly concave. From the above discussion one can define the following weights

for the reweighted l1-algorithm:

ωi = [∇Fε(|x|)]i = 1 + (|xi|+ ε)pp

|xi|+ ε
, i = 1, ..., n.

Note that the item (2) of the definition of a merit function implies that [∇Fε(x
l)]i → ∞

as (xl
i, ε) → (0, 0), which means larger penalties(weights) for the smaller elements of x, at

each iteration.

121

5.3.1 New Merit Functions

Now, we start to define a new merit function as follows

(5.27) Fε(x) =
n∑

i=1

log(log(|xi|+ ε+ (|xi|+ ε)p)).

We verify this function is a merit function. Clearly, this function is an approximation of

l0-norm function. Because

lim
x→0

log(log(xi + ε+ (xi + ε)p))

log(log(ε))
= 0, for xi 6= 0,

and

lim
x→0

log(log(xi + ε+ (xi + ε)p))

log(log(ε))
= 1, for xi = 0,

we conclude that

lim
x→0

∑n
i=1 log(log(|xi|+ ε+ (|xi|+ ε)p))

log(log(ε))
= n− ‖x‖0,

In Rn
+, the gradient of Fε(x) is given by

[∇Fε(x)]i =
1 + (xi+ε)pp

xi+ε

(xi + ε+ (xi + ε)p)(log(xi + ε+ (xi + ε)p))
,

and since limxi→0 xi log(xi) = 0, we have

lim
(xi,ε)→(0,0)

[∇Fε(x)]i = ∞.

122

Note that for every xi > 0,

lim
ε→0

[∇Fε(x)]i =
1 + pxp−1

i

(xi + xp
i) log(xi + xp

i)
= ci, i = 1, ..., n,

where ci is positive and bounded for every i = 1, ..., n. Also in Rn
+, ∇2Fε(x) is a diagonal

matrix with the following entries on its diagonal,

[∇2Fε(x)]ii =

(xi+ε)pp2

(xi+ε)2
− (xi+ε)pp

(xi+ε)2

(xi + ε+ (xi + ε)p) log(xi + ε+ (xi + ε)p)

−

(
1 + (xi+ε)pp

xi+ε

)2

(xi + ε+ (xi + ε)p)2 log(xi + ε+ (xi + ε)p)

−

(
1 + (xi+ε)pp

xi+ε

)2

(xi + ε+ (xi + ε)p)2 log (xi + ε+ (xi + ε)p)2
, i = 1, ..., n.

Since, for every i = 1, ..., n, [∇2Fε(x)]ii < 0, we have

∇2Fε(x) ≺ 0.

So the function (5.26) is strictly concave, and it is a merit function.

Based on (5.26), the reweighted l1-algorithm choose the following weights:

ωi =
1 + (|xi|+ε)pp

|xi|+ε

(|xi|+ ε+ (|xi|+ ε)p)(log(|xi|+ ε+ (|xi|+ ε)p))
, i = 1, ..., n.

In this chapter, we refer to W1 as the reweighted algorithm with the above weights.

Figure 5.17 shows the probability of success of W1 algorithm via different choices of ε.

This figure demonstrates that ε = 0.01 works very good to locate the exact solution of

the problem (5.19), when the sparsity is 15. Clearly the above weights are related to the

parameter p, so we tested the performance of W1 algorithm for different sparsity of the

123

solution, i.e, k = 5, 10, 15, 20, via different choices of p. Thirteen different values of p

have been tested (matrix A has been normally distributed), and the result is summarized

in Figure 5.16. Obviously the probability of success is higher when the sparsity of the

solution is lower. This can be seen in Figure 5.16.

Another new merit function can be defined as follows

(5.28) Fε(x) =
1

p

n∑
i=1

(log(|xi|+ ε+ (|xi|+ ε)q))p ,

where 0 < p, q < 1, which is an approximation of ‖x‖0. In fact

n− lim
ε→0

1
p

∑n
i=1 (log(|xi|+ ε+ (|xi|+ ε)q))p

1
p
(log(ε+ εq))p

= ‖x‖0.

In Rn
+, the gradient of Fε(x) is given by

[∇Fε(x)]i =
log (xi + ε+ (xi + ε)q)p

(
1 + (xi+ε)qq

xi+ε

)

(xi + ε+ (xi + ε)q) log (xi + ε+ (xi + ε)q)
.

Note that lim(xi,ε)→(0,0)[∇Fε(x)]i = ∞, and limε→0[∇Fε(x)]i is bounded, for every fixed

x > 0. In Rn
+, the Hessian is a diagonal matrix with the following diagonal elements

[∇2Fε(x)]ii =
log (xi + ε+ (xi + ε)p)q

(xi + ε+ (xi + ε)q) log (xi + ε+ (xi + ε)q)

.

(p− 1)
(
1 + (xi+ε)qq

xi+ε

)2

(xi + ε+ (xi + ε)q) log (xi + ε+ (xi + ε)q)
+

(xi + ε)qq2 − (xi + ε)qq

(xi + ε)2
−

(
1 + (xi+ε)qq

xi+ε

)2

xi + ε+ (xi + ε)q

 , i = 1, ..., n.

124

where 0 < p, q < 1. Clearly, ∇2Fε(x) ≺ 0, which implies the function is strictly concave.

Thus, the function (5.28) is a merit function, so we may choose the following weights in

our algorithm:

ωi =
log (|xi|+ ε+ (|xi|+ ε)q)p

(
1 + (|xi|+ε)qq

|xi|+ε

)

(|xi|+ ε+ (|xi|+ ε)q) log (|xi|+ ε+ (|xi|+ ε)q)
, i = 1, ..., n.

We refer to W2 as the reweighted algorithm with the weights above. Figures 5.13,

5.14, 5.15 show the performance of W2 algorithm for finding the exact solution of the

problem (5.19) for different choices of the weights parameters, p and q, and for different

fixed sparsity of the solution, i.e., k = 5, 10, 15, 20.

Remark 5.1. We see from above that the log function plays a vital rule in constructing

a merit function. As pointed in [152, 151], the log function can enhance the concavity

of a given function without affecting its coercivity and monotonicity. For the conver-

gency analysis of the reweighted l1-algorithms based on the class of merit functions that

defined at the beginning of this chapter, one may refer to the Theorems (3.9) and (3.11)

in [152], where it has been shown that under the so-called RSP condition, the algorithm

may converge to a solution of problem (5.19) with certain level of sparsity.

5.4 Numerical experiments

In this section, we compare the performance of the l1-minimization and the above reweighted

algorithms for finding the exact solution of the problem (5.19) through the numerical tests.

We compare the following problems/algorithms in our numerical experiments.

l1-min:

125

Minimize
x

‖x‖1

s.t. Ax = b,

(5.29)

CWB(Candes, Wakin, Boyd):

xl+1 = argmin
n∑

i=1

1

|xl
i|+ εl

|xi|

s.t. Ax = b,

(5.30)

W1:

xl+1 = argmin
n∑

i=1

1 +
(|xl

i|+εl)pp

|xl
i|+εl

(|xl
i|+ εl + (|xl

i|+ εl)p)(log(|xl
i|+ εl + (|xl

i|+ εl)p))
|xi|

s.t. Ax = b,

(5.31)

W2:

xl+1 = argmin
n∑

i=1

log
(|xl

i|+ εl + (|xl
i|+ εl)q

)p (
1 +

(|xl
i|+εl)qq

|xl
i|+εl

)
(|xl

i|+ ε+ (|xl
i|+ εl)q

)
log

(|xl
i|+ εl + (|xl

i|+ εl)q
) |xi|

s.t. Ax = b,

(5.32)

where l is the lth iteration, 0 < p, q < 1, A ∈ R50×200, b ∈ R50, and x ∈ R200.

In our numerical works, we randomly generated the matrix A ∈ R50×200, and for a fixed

sparsity, we randomly generated the solution vector x ∈ R200. We tested 100 randomly

126

generated matrices, A, for different level of k-sparsity of the solution, i.e., k = 1, 2, ..., 26.

The matrix A (the problem data) was randomly generated based on different statistical

distributions. Most of the previous numerical experiments in the literature usually use

normally distributed matrices.

The distributions that we considered were Normal, (N(µ, σ)) with the parameters

µ = 0 and σ = 1 , Poisson, (Pois(λ)) with the parameter λ = 2, Exponential, (Exp(µ))

with the parameter µ = 5, F-distribution, (F (α, β)) with the parameters α = 1 and

β = 6, Gamma distribution, (Gam(a, b)) with parameters a = 5 and b = 10, and Uniform

distribution, (U(N)) with the parameter N = 10. The probability of success of the 4

algorithms mentioned above, i.e, l1-min, CWB, W1, W2 have been compared via different

sparsity of the solution, and through all the above differently distributed matrices A. On

a laptop with a Core 2 Duo CPU (2.00 GHz, 2.00GHz) and 4.00 GB of RAM memory,

each comparing figure took approximately 14-hours time (in average).

The updating rule εl+1 = 1
2
εl was used, at each iteration l. The choice of ε is crucial

for reweighted l1-algorithms. Hence, we have also tested the algorithms by applying Can-

des, Wakin, Boyd(CWB) updating rule for ε, and also a fixed ε = 0.01. These figures

demonstrate how these choices of ε may affect the performance of the algorithms.

As seen, the weights in W1 and W2 vary for different values of p and p, q. Therefore,

we have tried different choices of p and q to find out how they may affect the success

probability for W1 and W2 algorithms.

In the Figure 5.5, the matrix A has been generated from Exp(µ), with µ = 5. We

set p = 0.05 in W1, and p = q = 0.05 in W2. As shown, all of the algorithms are very

127

successful when ‖x‖0 < 7. When 7 < ‖x‖0 < 11, CWB, W1 and W2 almost perform the

same as each other, but when ‖x‖0 > 11, W1 and W2 outperform the CWB algorithm.

All of the algorithms fail when the cardinality of the solution is above 25, i.e, ‖x‖0 > 25.

In Figure 5.6, the matrix A has been generated from Exp(µ), with µ = 5, as in Figure

5.5. However, in this case we used different values for p and q. We chose p = q = 0.4,

which is much larger than 0.05. As expected, both W1 and W2 perform significantly worse

than the case of p = q = 0.05. Even for lower sparsity, both algorithms fail to locate the

exact sparse solution with a high probability.

In Figure 5.7, the matrix A has been generated from F (α, β), with α = 1 and β = 6,

and we set p = q = 0.05. As shown, all of the algorithms start failing when the cardinality

of the solution is higher than 4, i.e, ‖x‖0 > 4. W1 and W2 perform better than CWB for

higher cardinality of the solution, and W2 is slightly better than W1 in general.

In Figure 5.8, the matrix A has been generated from Gam(a, b), with a = 5 and b = 10,

and we set p = q = 0.05. For lower cardinality of the solution, CWB and W1 perform

slightly better than W2 when ‖x‖0 < 8. Also CWB, W1, and l1-min are completely

successful for locating the exact solution, when ‖x‖0 < 8. But for 8 < ‖x‖0 < 10, only

CWB and W1 are successful. l1-min, CWB, W1 and W2 fail when ‖x‖0 > 17, ‖x‖0 > 21,

‖x‖0 > 24, ‖x‖0 > 26, respectively. Therefore W1 and W2 perform significantly better for

higher cardinality of the solution.

In Figure 5.9, the matrix A has been generated from N(µ, σ), with µ = 0 and σ = 1,

and we set p = q = 0.05. As shown, l1-min, CWB, and W1 are very successful for finding

the sparsest solution of the system when ‖x‖0 < 8. W1 and W2 perform better than the

128

other two algorithms for higher cardinality of the solution.

In Figure 5.10 , the matrix A has been generated from N(µ, σ), with µ = 0 and σ = 1

as in Figure 5.9. However, we chose bigger values for p and q, i.e, p = q = 0.4. For

large values of p and q, W2 starts failing for ‖x‖0 > 4, and performs much worst than W1,

CWB, and l1-min. Also, for higher cardinality of the solution CWB performs better than

W1 and W2. Hence, from this figure and Figure 5.6, one may conclude that smaller values

for p and q should be chosen in order to achieve better results. Note that for large values of

p and q the merit functions inW1 andW2 are not good concave approximations of l0-norm.

In Figure 5.11, the matrix A has been generated form U(N), with N = 10, and we

set p = q = 0.05. All of the algorithms except W2 are successful for finding the sparsest

solution of the system when ‖x‖0 < 9. For 9 < ‖x‖0 < 12, CWB performs slightly better

than W1 and W2. But for higher cardinality of the solution, W1 and W2 outperform l1-min

and CWB.

In Figure 5.12, the matrix A has been generated from Pois(λ), with λ = 5, and we

set p = q = 0.05. All of the algorithms except W2 are successful for finding the sparsest

solution of the system when ‖x‖0 < 9. For higher cardinality of the solution, W1 and W2

outperform the other algorithms.

Clearly, for small values of p, the best algorithm is W1 in general, i.e. for different

cardinality of the solution and for different tested distributions. For all of the different

tested distributions, both W1 and W2 (for small choices of p and q) outperform CWB

when the cardinality of the solution is higher.

129

In Figures 5.13, 5.14, 5.15, we focused on the performance of W2 algorithms for dif-

ferent values of p and q via different fixed cardinality of the solution. In Figure 5.13, we

fixed p = 0.08 and set different values of q. We examined the probability of success of W2

for different fixed sparsity of 5,10,15,20. As expected, when cardinality of the solution is

lower the success probability of W2 is higher. As seen, the probability of success for fixed

sparsity of 5 is the highest, and the probability of success for fixed sparsity of 20 is the low-

est. Figures 5.14 and 5.15 show the same results for fixed p = 0.4 and p = 0.8, respectively.

In Figure 5.16, the performance of W1 has been tested using different choices of p and

different fixed sparsity of the solution. As seen, in Figure 5.16, when p increases from

0.04 to 1, the probability of success of the algorithm becomes lower(except some jumps).

As shown, for different fixed sparsity of 5,10,15,20 the highest probability of success was

achieved when p = 0.04. Looking back to the merit function defined for the W1 algorithm,

one may see that for smaller values of p the function is a better concave approximation

of l0-norm.

As we have discussed before, the choice of ε for the reweighted l1-algorithm is impor-

tant. Either very small or very big ε may result in improper weights, which may cause

the failure of the algorithms. In Figure 5.17, we fixed the sparsity of the solution (k = 15)

and set p = 0.05. Different choices of ε have been tested to suggest what ε might be the

good one for which W1 performs better. The matrix A has been generated from N(0, 1).

As shown, when ε tends to zero (e.g. ε ≈ 0.0001), or when ε is big (e.g. ε ≈ 0.1), the

probability of success decreases. Our numerical experiments, in Figure 5.17, show that

ε = 0.01 is a good choice for the weights in W1 algorithm.

In Figure 5.18, we fixed ε = 0.01(with no updating rule) and compared the perfor-

130

mance of l1-min, CWB, W1, W2. Like Figure 5.9, the matrix has been generated from

N(0, 1), and we set p = q = 0.05. Our numerical experiment show that W1 and W2 sig-

nificantly outperform CWB especially for higher cardinality of the solution. Comparing

Figure 5.18 and Figure 5.9, one may conclude that even for a fixed ε, if chosen correctly,

both W1 and W2 algorithms may perform very well to find a sparse solution.

Again to show that how important the choice of ε is, we compare the performance of

l1-min, CWB, W1, W2 based on the Candes updating rule. As seen, CWB outperforms

both W1 and W2 for lower cardinality of the solution, i.e, when ‖x‖0 < 12, in our numer-

ical experiments.

In the next chapter, we discuss different methods for finding the restricted isome-

try constant(RIC). Since the problem of finding the RIC is a problem with cardinality

constraints, we will use different approximation techniques to solve the problem.

131

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y o
f s

uc
ce

ss

l1−min
CWB
W1
W2

Figure 5.5: Comparing the performance of l1-min, CWB, W1, W2 minimization via the
probability of success for finding the exact k-sparse solution of Ax = b, where A ∈ R50×200,
b ∈ R50, p = q = 0.05. Matrix A has been generated from Exponential distribution. 100
randomly generated matrices have been tested for different sparsity of k = 1, ..., 26.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y o
f s

uc
ce

ss

l1−min
CWB
W1
W2

Figure 5.6: Comparing the performance of l1-min, CWB, W1, W2 minimization via the
probability of success for finding the exact k-sparse solution of Ax = b, where A ∈ R50×200,
b ∈ R50, p = q = 0.4. Matrix A has been generated from Exponential distribution. 100
randomly generated matrices have been tested for different sparsity of k = 1, ..., 26.

132

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y o
f s

uc
ce

ss

l1−min
CWB
W1
W2

Figure 5.7: Comparing the performance of l1-min, CWB, W1, W2 minimization via the
probability of success for finding the exact k-sparse solution of Ax = b, where A ∈ R50×200,
b ∈ R50, p = q = 0.05. Matrix A has been generated from F-distribution. 100 randomly
generated matrices have been tested for different sparsity of k = 1, ..., 26.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

P
ro

b
a

b
ili

ty
 o

f
su

cc
e

ss

l1−min
CWB
W1
W2

Figure 5.8: Comparing the performance of l1-min, CWB, W1, W2 minimization via the
probability of success for finding the exact k-sparse solution of Ax = b, where A ∈ R50×200,
b ∈ R50, p = q = 0.05. Matrix A has been generated from Gamma distribution. 100
randomly generated matrices have been tested for different sparsity of k = 1, ..., 26.

133

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
lity

 o
f s

uc
ce

ss

l1−min
CW
W1
W2

Figure 5.9: Comparing the performance of l1-min, CWB, W1, W2 minimization via the
probability of success for finding the exact k-sparse solution of Ax = b, where A ∈ R50×200,
b ∈ R50, p = q = 0.05. Matrix A has been generated from Normal distribution. 100
randomly generated matrices have been tested for different sparsity of k = 1, ..., 26.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y o
f s

uc
ce

ss

l1−min
CWB
W1
W2

Figure 5.10: Comparing the performance of l1-min, CWB, W1, W2 minimization via the
probability of success for finding the exact k-sparse solution of Ax = b, where A ∈ R50×200,
b ∈ R50, p = q = 0.4. Matrix A has been generated from Normal distribution. 100
randomly generated matrices have been tested for different sparsity of k = 1, ..., 26.

134

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

P
ro

b
a

b
ili

ty
 o

f
su

cc
e

ss

l1−min
CWB
W1
W2

Figure 5.11: Comparing the performance of l1-min, CWB, W1, W2 minimization via the
probability of success for finding the exact k-sparse solution of Ax = b, where A ∈ R50×200,
b ∈ R50, p = q = 0.05. Matrix A has been generated from Uniform distribution. 100
randomly generated matrices have been tested for different sparsity of k = 1, ..., 26.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

l1−min
CWB
W1
W2

Figure 5.12: Comparing the performance of l1-min, CWB, W1, W2 minimization via the
probability of success for finding the exact k-sparse solution of Ax = b, where A ∈ R50×200,
b ∈ R50, p = q = 0.05. Matrix A has been generated from Poisson distribution. 100
randomly generated matrices have been tested for different sparsity of k = 1, ..., 26.

135

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Sparsity=5
Sparsity=10
Sparsity=15
Sparsity=20

Figure 5.13: Comparing the performance of W2 minimization for different q = 0.04 : 0.08 :
1, p = 0.08 via the probability of success for finding the exact k-sparse solution of Ax = b,
where A ∈ R50×200, b ∈ R50. Matrix A has been generated from normal distribution. 100
randomly generated matrices have been tested for different sparsity of k = 5, 10, 15, 20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

q=0.04:0.08:1, p=0.4

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

Sparisty=5
Sparsity=10
Sparsity=15
Sparsity=20

Figure 5.14: Comparing the performance of W2 minimization for different q = 0.04 : 0.08 :
1, p = 0.4 via the probability of success for finding the exact k-sparse solution of Ax = b,
where A ∈ R50×200, b ∈ R50. Matrix A has been generated from normal distribution. 100
randomly generated matrices have been tested for different sparsity of k = 5, 10, 15, 20.

136

0 0.04 0.12 0.2 0.28 0.36 0.44 0.52 0.6 0.68 0.76 0.84 0.92 1
0

10

20

30

40

50

60

70

80

90

100

q=0.04:0.08:1, p=0.8

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

Sparsity=5
Sparsity=10
Sparsity=15
Sparsity=20

Figure 5.15: Comparing the performance of W2 minimization for different q = 0.04 : 0.08 :
1, p = 0.8 via the probability of success for finding the exact k-sparse solution of Ax = b,
where A ∈ R50×200, b ∈ R50. Matrix A has been generated from normal distribution. 100
randomly generated matrices have been tested for different sparsity of k = 5, 10, 15, 20.

0.04 0.12 0.2 0.28 0.36 0.44 0.52 0.6 0.68 0.76 0.84 0.92 1
0

10

20

30

40

50

60

70

80

90

100

P=0.04:0.08:1

P
rb

b
a

lit
y

o
f

su
cc

e
ss

Sparsity=5
Sparsity=10
Sparsity=15
Sparsity=20

Figure 5.16: Comparing the performance of W1 minimization for different p = 0.04 :
0.08 : 1 via the probability of success for finding the exact k-sparse solution of Ax = b,
where A ∈ R50×200, b ∈ R50. Matrix A has been generated from normal distribution. 100
randomly generated matrices have been tested for different sparsity of k = 5, 10, 15, 20.

137

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

Epsilon=[0.00001 0.0001 0.001 0.01 0.1]

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

Figure 5.17: Comparing the performance of W1 minimization using different ε =
0.00001, 0.0001, 0.001, 0.01, 0.1 via the probability of success for finding the exact k = 15-
sparse solution of Ax = b, where A ∈ R50×200, b ∈ R50, p = 0.05. Matrix A has been
generated from Normal distribution. 100 randomly generated matrices have been tested
for different chosen epsilons.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
lity

 o
f s

uc
ce

ss

l1−min
CWB
W1
W2

Figure 5.18: Comparing the performance of l1-min, CWB, W1, W2 minimization using
fixed ε = 0.01 via the probability of success for finding the exact k-sparse solution of
Ax = b, where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix A has been generated from
Normal distribution. 100 randomly generated matrices have been tested for different
sparsity of k = 1, ..., 26.

138

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Sparsity

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

l1−min
CWB
W1
W2

Figure 5.19: Comparing the performance of l1-min, CWB, W1, W2 minimization using
Candes updating rule via the probability of success for finding the exact k-sparse solution
of Ax = b, where A ∈ R50×200, b ∈ R50, p = q = 0.05. Matrix A has been generated from
Normal distribution. 100 randomly generated matrices have been tested for different
sparsity of k = 1, ..., 26.

139

Chapter 6

RIP Constant via Cardinality

Constrained Problems

6.1 An introduction to compressed sensing

The main focus of compressed sensing is on signal and image processing.The related

background for compressed sensing(CS) can be found in [33, 92, 130]. When a signal

is transmitted, some information should be neglected in order to compress the signal

efficiently. One of the main problems handled by compressed sensing is how to recover an

unknown signal from much fewer of measurements. In other words, it tries to recover a

vector with a sparser vector using an observed vector. More specifically, the sparse vector

x can be recovered by solving Am×nx = b (m < n), where b ∈ Rm is an observed vector,

and Am×n is a measurement matrix.

To guarantee recovering a k sparse vector x, which satisfies the system Ax = b, some

restrictions are applied on the matrix A, like Spark [56, 86], Mutual Coherence [57, 114],

Restricted Isometry Property(RIP) [25, 10, 36], Null Space Property(NSP) [44, 81, 46],

Restricted Orthogonality Constant(ROC) [102], and Range Space Property(RSP), which

recently was introduced by Zhao and Li [152].

140

In this section, we explain Spark, Mutual Coherence and Restricted Isometry Prop-

erty(RIP). Especially, we focus on RIP and the computation of Restricted Isometry Con-

stant(RIC) [24, 17], as a problem with cardinality constraints.

We consider the case that the solution to the following cardinality problem is unique,

Minimize
x

Card(x)

s.t. Ax = b.

(6.1)

We know a convex relaxation of the problem above is

Minimize
x

‖x‖1

s.t. Ax = b.

(6.2)

One of the questions concerned in compressed sensing is finding some conditions on

A, such that (6.1), and (6.2) have the same solution. Before answering this question, we

review some basic concepts.

Definition 6.1. (Spark(A))

For an arbitrary matrix A with nonzero columns, Spark(A) is the smallest number n

such that there exists a set of n columns of A which are linearly dependent, or alternatively

Spark(A) = min {‖x‖0 : Ax = 0, x 6= 0} .

The following theorem illustrates that spark(A) provides an upper bound for the

cardinality minimization problem.

Theorem 6.1. [53] Vector x is the unique solution of the cardinality problem (6.1) if

141

Ax = b, and

‖x‖0 ≤ Spark(A)

2
.

Proof. Assume that there exist a vector x, such that Ax = b, and satisfies ‖x‖0 ≤ Spark(A)
2

,

and suppose y is another solution to the system Ay = b, such that ‖y‖0 ≤ ‖x‖0. Clearly,
we have A(x− y) = 0, so (x− y) ∈ null(A), which implies that

(6.3) ‖x− y‖0 ≥ Spark(A).

But from the assumption ‖y‖0 ≤ ‖x‖0, we have

2‖x‖0 ≥ ‖x‖0 + ‖y‖0.

Since ‖x‖0 + ‖y‖0 ≥ ‖x− y‖0, and 2‖x‖0 ≤ Spark(A), we have

Spark(A) > ‖x− y‖0,

which contradicts the inequality (6.3), so x is the only (sparsest) solution to the equation

Ax = b.

Note that Spark(A)
2

can be considered as an upper bound for the cardinality problem(6.1).

However, Spark(A) is hard to compute. Instead one could calculate an upper bound for

‖x‖0, using the incoherence of a matrix that is easy to compute.

Definition 6.2. (Incoherence of a matrix)

Suppose A = [a1, ..., an], where ai ∈ Rm for i = 1, ..., n, are the column vectors of the

matrix A, and ‖ai‖2 = 1. Then The incoherence of the matrix A is defined as follows

M(A) = max
i 6=j,1≤i,j≤n

|〈ai, aj〉|.

142

So, for a matrix with normalized columns we always have 0 ≤ M(A) ≤ 1. Obviously,

M(A) = 0 if and only if the columns of A are orthogonal, and M(A) = 1 if and only if

there exists i, j, (i 6= j) such that ai = αaj for some |α| = 1. Now, we start reviewing

some theorems and their proofs, since they are needed to understand the RIP.

Theorem 6.2. [53] If A = [a1, ..., an] is a matrix with normalized columns, then

Spark(A) ≥ 1

M(A)
+ 1.

Proof. Suppose x? = (x?
1, ..., x

?
n) = argmin{‖x‖0 : Ax = 0, ‖x‖∞ = 1}, hence, Spark(A) =

‖x?‖0. On the other hand, we have, ATAx? = 0, i.e.,
∑n

j=1〈ai, aj〉x?
j = 0, i = 1, ..., n.

Now, assume that max{|xi| : i = 1, ..., n} = x?
α = ‖x?‖∞. Therefore, we have

x?
α = −

n∑

j=1,j 6=α

〈aα, aj〉x?
j ,

which implies that

1 = ‖x?‖∞ = |x?
α| ≤

n∑

j=1,j 6=α

|〈aα, aj〉||x?
j | ≤ M(A)

∑

j=1,j 6=α

|x?
α| = M(A)(‖x?‖1 − 1).

As a result, we obtain

‖x?‖1 ≥ 1

M(A)
+ 1,

so,

‖x?‖0 = Spark(A) ≥ 1

M(A)
+ 1, since ‖x?‖0 ≥ ‖x?‖1.

Theorem 6.3. [53] If x? is a vector that satisfies Ax = b, and

‖x?‖0 ≤ 1

2

(
1 +

1

M(A)

)
,

143

then x? is the unique solution to the problem (6.1).

Proof. This follows form the Theorem 6.1, and the fact that Spark(A)
2

≥ 1
2

(
1 + 1

M(A)

)
.

In the numerical experiment in section 6.4, we showed that l1-minimization may re-

cover the exact solution for much higher sparsity level than that indicated by mutual

coherence.

The following theorem provides a sufficient condition for sparse recovery.

Theorem 6.4. [116] Suppose Ω = supp(x∗), and the matrix AΩ is defined as AΩ = [ai]i∈Ω.

Also suppose x? is the unique solution to the problem (6.1). If

‖A†
ΩAΩc‖1 ≤ 1,

then x∗ is also a unique solution to the problem (6.2).

Note that the support of a vector x is defined as: supp(x) = {i;xi 6= 0}. Recall that

for a matrix Am×n,

‖A‖1 := max
1≤j≤n

m∑
i=1

|aij| =
{
max

‖Ax‖1
‖x‖1 : x 6= 0

}
= max

1≤i≤n
‖ai‖1.

Proof. Assume

∃ x = (xΩ, xΩc)T s.t. b = Ax = AΩxΩ + AΩcxΩc .

So,

xΩ = A†
Ωb− A†

ΩAΩcxΩc

⇒ xΩ = (AT
ΩAΩ)

−1AT
Ωb− (AT

ΩAΩ)
−1AT

ΩAΩcxΩc .

144

Since AΩx
?
Ω = b, we have

x?
Ω = A†

Ωb = (AT
ΩAΩ)

−1AT
Ωb,

and

x?
Ω − xΩ = (AT

ΩAΩ)
−1AT

Ωb− (AT
ΩAΩ)

−1AT
Ωb+ (AT

ΩAΩ)
−1AT

ΩAΩcxΩc = (AT
ΩAΩ)

−1AT
ΩAΩcxΩc .

Applying the assumption in the theorem, i.e., ‖A†
ΩAΩc‖1 ≤ 1, we have

‖x?
Ω − xΩ‖1 = ‖(AT

ΩAΩ)
−1AT

ΩAΩc‖1‖xΩc‖1 ≤ ‖xΩc‖1.

Therefore,

‖x?‖1 = ‖x?
Ω‖1 ≤ ‖x‖1.

6.2 Restricted isometry property(RIP)

As we mentioned in the previous section, with a given matrix A, and a vector b, compressed

sensing methods try to recover a k-sparse optimal vector x, which is a solution to

Minimize
x

‖x‖0

s.t. Ax = b.

(6.4)

145

It is not hard to see that the problem above is closely related to

Minimize
x

‖Ax− b‖2

s.t. ‖x‖0 ≤ k,

(6.5)

where k is a constant, see Figure 6.1. The problem (6.5) is called regressor selection

problem [6, 147, 89].

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

||Ax−b||
2

ca
rd

(x
)

Figure 6.1: Trade-off graph between ‖Ax− b‖2, and card(x), A ∈ R100×200.

The above reformulation is a motivation to proceed with Restricted Isometry Prop-

erty(RIP).

Definition 6.3. (Restricted Isometry Constant) The restricted isometry constant(RIC)

δk of a matrix A is the smallest nonnegative number such that [143],

(6.6) (1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22, ∀x ∈ Σk,

where Σk := {x ∈ Rn : ‖x‖0 = |supp(x)| ≤ k}.

146

If the inequity above holds, we say that the matrix A satisfies the restricted isometry

property(RIP). As in [16], for a given matrix Am×n, x ∈ Rn, and an observed vector

b ∈ Rm, one may rewrite the RIP inequity in the form of

R(k,m, n) := min
δ≥0

δ subject to (1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22,

∀x ∈ Rn s.t. ‖x‖0 ≤ k.

In the following section, we show how the problem of finding the RIC is closely related

to the problems with cardinality constraints. Furthermore, we provide different methods

to solve these problems.

6.3 Computing RIC

The following lemma illustrates how to calculate an RIC, for a given matrix.

Lemma 6.1. δk in the inequality (6.6) is the maximum of |λ− 1| over all λ, eigenvalues

of AT
βAβ, |β| ≤ k, where Aβ := [ai]i∈β, and ai is the ith column of the matrix A [16].

Proof. For any β, such that |β| ≤ k we have

(1− δk)x
T
βxβ ≤ xT

βA
T
βAβxβ ≤ (1 + δk)x

T
βxβ,

which implies that

(1− δk) ≤
xT
βA

T
βAβxβ

xT
βxβ

≤ (1 + δk).

Applying variational characterization of eigenvalues [12], we have

(1− δk) ≤ λmin(A
T
βAβ) ≤ λmax(A

T
βAβ) ≤ (1 + δk),

147

equivalently,

−δk ≤
xT
β (A

T
βAβ − I)xβ

xT
βxβ

≤ δk,

which implies that

δk = max
β:β=|k|

sup
xβ

|xT
β (A

T
βAβ − I)xβ|
|xT

βxβ|

= max
β:|β|=k

γ(AT
βAβ − I).

Problem of finding RIC, i.e., δk above, can be solved by applying principal component

analysis(PCA) techniques [7, 1]. Principal Component Analysis(PCA) has a wide range

of applications in data analysis and dimensionality reduction. It is a way for identifying

pattern in data and expressing data such that one can highlight their similarities and

differences. In other words, it compresses the data by reducing the dimensions of data,

without loss of much information. As we know, PCA is an optimization problem on

eigenvalues. The general optimization problem to find a maximum eigenvalue for a matrix

ψ can be cast as

λmax(ψ) = Maximize
x

xT (ψ)x

s.t. ‖x‖2 = 1.

(6.7)

A special case of the problem above is the sparse eigenvalue problem as follows:

(1 + δmax
k) = Maximize

x
xT (AT

βAβ)x

s.t. card(x) ≤ β

‖x‖2 = 1.

(6.8)

148

One can recognize that the problem above is directly related to the problem of finding

RIC. This problem is NP hard, since it has a cardinality constraint. Due to the NP-

hardness of the problem above, one of the main challenges in compressed sensing is to

find RIC constant.

Sparse eigenvalue problem (6.8) is used frequently in Principle Component Analy-

sis(PCA) [80]. There are lots of free software which can be used to solve a sparse eigen-

value problem [74]. Here we give more details to solve the problem (6.8). The first

approach is to relax the problem, and the second one is to apply smoothing techniques,

and the third is to apply d.c. programming methods.

6.3.1 Relaxation techniques

In fact, (6.8) is a PCA problem in the following sense.

Given a covariance matrix AT
βAβ = B ∈ Sn, PCA is the problem of finding a sparse

factor which describes the maximum amount of the data variance.

We apply Shor’s complement for the problem (6.8) by replacing X = xxT . Also with

B = AT
βAβ, the problem (6.8) will be [47]:

Maximize
X

tr(BX)

s.t. tr(X) = 1

Card(X) ≤ β2

X º 0

Rank(X) = 1.

(6.9)

The objective tr(BX) is an affine function, which is convex. The non-convex constraint

‖x‖2 = 1 was relaxed by replacing tr(X) = 1, which is linear and so a convex constraint.

The problem above is still an NP-hard problem because of the non-convex constraints

149

card(X) ≤ β2 and Rank(X) = 1.

Card(x) ≤ β2 can be relaxed by a weaker but convex constraint, 1T |X|1 ≤ βtr(X).

Now, if we drop the rank constraint, the problem will be a convex one, as follows:

Maximize
X

tr(BX)

s.t. tr(X) = 1

1T |X|1 ≤ βtr(X)

X º 0.

(6.10)

Dropping the rank constraint may result in a large gap between the optimal solution

of (6.8) and (6.10). As we have seen before, the convex envelop of rank(X) on the set

{X ∈ Rm×n : ‖X‖ ≤ M} is 1
M
‖X‖∗, for large M enough. Hence one can relax the rank

constraint by replacing it by its convex envelop, to get the following SDP:

Maximize
X

tr(BX)

s.t. tr(X) = 1

1T |X|1 ≤ βtr(X)

‖X‖∗ ≤ M

X º 0.

(6.11)

The above problem is a semidefinite program (linear objective with LMI constraints)

which can be solved efficiently using interior point methods with the solvers such as CVX,

which has two packages in it, Sedumi, and SDPT3 [73].

The optimal value of the semidefinite program (6.10) is an upper bound for the problem

of sparse eigenvalue (6.9) and (6.8). Similarly we can get a lower bound on sparse minimum

150

eigenvectors. A lower bound on δk can be computed using approximate sparse eigenvectors

(block squares). Next, we discuss a smoothing technique to solve the problem (6.8).

6.3.2 Smoothing techniques

As we have seen, finding the RIP constant (δk) is reduced to a PCA problem, for which

provided the semidefinite relaxation (6.10). Note that the problem (6.10) can also be cast

as follows [148]:

Maximize
X

tr(BX)

s.t. tr(X) = 1

1T |X|1 ≤ β

X º 0.

(6.12)

Using penalty methods, the above problem can be written as

Maximize
X

tr(BX)− κ1T |X|1

s.t. tr(X) = 1

X º 0,

(6.13)

where κ > 0 is the penalty parameter.

The dual of the above problem is equal to the following maximum eigenvalue problem:

Minimize
Y

λmax(B + Y)

s.t. |Yij| ≤ κ i, j = 1, ..., n,

(6.14)

151

where Y ∈ Sn is the dual variable. To obtain the dual problem above, we note that the

problem (6.13) can be cast as

Max Min tr(X(B + Y))

s.t. tr(X) = 1

X º 0

|Yij| ≤ κ i, j = 1, ..., n.

(6.15)

For the min-max structure one can use prox function algorithms in [107, 104]. We

briefly explain this special problem.

If the problem has min-max model, the problem can be solved with two main steps as

follows:

• Regularization: Add strongly convex penalty inside the min-max representation

to produce an ε-approximation of the objective function with Lipschitz continuous

gradient. It can be considered as generalized Moreau-Yosida regularization step [88].

• Optimal first order minimization: Using optimal first order scheme for Lipschitz

continuous functions as in [106], to solve the regularized problem.

Note that the KKT conditions for the problems above are as follows [45]:

λmax(B + Y)X = (B + Y)X,

Y ◦X = −κ|X|,
tr(X) = 1,

X º 0,

|Yij| ≤ κ i, j = 1, ..., n.

(6.16)

152

If λmax(B + Y) has the multiplicity equal to one, then X is a rank one matrix. If

λmax(B + Y) has the multiplicity greater than one then one can truncate the matrix X

to get a dominant eigenvector as an approximate solution. For more details about this

procedure one can refer to [87, 4].

To solve problem (6.14), note that λmax is a non-smooth function. So it can be solved

using interior point methods or by general methods of convex optimization, (see chapter

7 of [110]).

In [108] the author considered a smoothing technique which is similar to the method

has been used in [107]. Here we give an outline to solve the problem (6.14) using smoothing

techniques.

Put

f(Y) = λmax(Y +B),

and replace f(Y) with its smooth approximation as in [108],

fγ(Y) = γE(
1

γ
(Y +B)), γ > 0,

where

E(X) = ln

n∑
i=1

eλi(X).

So,

fγ(Y) = γln

(
n∑

i=1

e
λi(B+Y)

γ

)
.

Note that

fγ(Y) ≥ λmax(B + Y),

and

fγ(Y) ≤ λmax(Y +B) + γln(n).

153

Combining these inequalities gives

λmax(Y +B) ≤ fγ(Y) ≤ λmax(Y +B) + γln(n).

Since (B + Y) ∈ Sn, the eigenvalue decomposition of (B + Y) is

B + Y = Udiag(λ)UT , with λ ∈ Rn, and UUT = I.

The gradients of the smooth approximate function fγ(Y) is

∇fγ(Y) =

(
n∑

i=1

exp

(
λi(B + Y)

γ

))−1

.

(
n∑

i=1

exp

(
λi(B + Y)

γ

)
uiu

T
i

)
,

where ui’s are the components of the eigenvector U . Since exp(λi

(
(B+Y)

γ

)
decreases very

fast, the gradient above depends on the few largest eigenvalues.

So, the problem (6.14) will be reduced to the following problem:

Minimize
Y

fγ(Y)

s.t. Y ∈ Q = {Y ∈ Sn : |Yij| ≤ κ}.
(6.17)

Now, referring to [106], choose

γ =
ε

2ln(n)
.

This choice of γ gives an ε-approximate solution to problem (6.14), i.e., with this γ,

fγ(Y) becomes a uniform ε approximation of λmax(B + Y), with a Lipschitz continuous

gradient with the constant 2ln(n)
ε

.

154

Note that we are looking for Y ∗ such that

λmax(B + Y ∗)−min
Y ∈Q

λmax(B + Y) ≤ ε.

Now, one should find a 1
2
ε-approximate solution to the smooth problem. To see this,

note that

fγ(Y
∗)−min

Y ∈Q
fγ(Y) ≤ 1

2
ε ⇒ λmax(B + Y ∗)−min

Y ∈Q
λmax(B + Y)

≤ fγ(Y
∗)−min

Y ∈Q
fγ(Y) + γln(n) ≤ ε.

For more details about the complexity of the procedure one can refer to [108].

The algorithm to find an approximate solution to our problem using the smoothing

technique above has four steps [148] as follows.

Given a matrix B ∈ Rn, ε, and a parameter which controls sparsity, κ.

Algorithm 6.1. For j = 1, ..., N :

• Compute ∇fγ(Yj). This step is the most expensive step.

• Euclidean projection steps. Both are the projections on Q = {Y ∈ Sn : |Yij ≤ κ}:
Find

Vj = argmin
V ∈Q

〈∇fγ(Yj), V 〉+ 1

2
L‖Yj − V ‖F 2,

where L is the Lipcshitz constant.

This problem can be cast as

arg min
‖V ‖∞≤1

‖V −W‖F ,

with W = Y − L−1∇fγ(Y) being given.

155

Find

Zj = argmin
Z∈Q

{
L‖Z‖F 2

2
+

N∑
i=0

i+ 1

2
(fγ(Yi) + 〈∇fγ(Yi), Z − Ui〉)

}
.

•
Yj+1 =

2

j + 3
Zj +

j + 1

j + 3
Vj.

• When the duality gap is less than ε, the algorithm terminates, i.e., when

λmax(B + Yj)− trBXi + 1T |Xi|1 ≤ ε.

6.3.3 D.C programming approaches

For full detailed discussion about d.c. function, and d.c. programming one may refer to

chapters 3 and 5 of [76].

Consider the problem (6.8) which, by setting AT
βAβ = B, can be cast as

Maximize
x

xTBx

s.t. xTCx ≤ 1

‖x‖0 ≤ β,

(6.18)

where C = diag(1, ..., 1).

By adding the ‖x‖0-function to the objective, the problem above can be written as

Maximize
x

xTBx− λ‖x‖0

s.t. xTCx ≤ 1,

(6.19)

156

where λ À 0 is the penalty parameter.

Now, we may use the following merit function to replace the ‖x‖0-function,

Fε(x) =
n∑

i=1

log(log(|xi|+ ε+ (|xi|+ ε)p)).

Referring to [76, 122], we apply a d.c. programming approach to solve the following

problem:

Maximize
x

xTBx− λ

n∑
i=1

log(log(|xi|+ ε+ (|xi|+ ε)p))

s.t. xTCx ≤ 1.

(6.20)

Here, we introduce a d.c. function.

Definition 6.4. (d.c function)

Let Ω be a convex set in Rn. We say that a function is d.c. on Ω if it can be expressed

as the difference of two convex functions on Ω, i.e., if f(x) = f1(x)− f2(x), where f1, f2

are convex on Ω.

For solving a d.c. optimization problem, cutting plane method [79], or branch and

bound method can be applied.

Now, in the problem (6.20) suppose thatB is indefinite, i.e., it has negative eigenvalues.

Assume there exists a scalar γ ∈ R, such that γ ≥ −λmin(B). So, the matrix B + γIn is

positive semidefinite. Hence, we have

xTBx = xTBx+ xTγInx− xTγInx

= xT (B + γIn)x− γ‖x‖22.

Note that γ‖x‖22, and xT (B + γIn)x are convex. The problem (6.20) can be written

157

as follows:

Maximize
x

xT (B + γIn)x− γ‖x‖22 − λ

n∑
i=1

log(log(|xi|+ ε+ (|xi|+ ε)p))

s.t. xTCx ≤ 1,

(6.21)

or

Minimize
x

γ‖x‖22 − xT (B + γIn)x+
n∑

i=1

log(log(|xi|+ ε+ (|xi|+ ε)p))

s.t. xTCx ≤ 1,

(6.22)

which is equivalent to the d.c. optimization problem

Minimize
x,y

γ‖x‖22 −
(
xT (B + γIn)x− λ

n∑
i=1

log(log(|yi|+ ε+ (|yi|+ ε)p))

)

s.t. xTCx ≤ 1

− y ≤ x ≤ y.

(6.23)

See that the function xT (B + γIn)x − λ
∑n

i=1 log(log(|yi| + ε + (|yi| + ε)p)) is jointly

convex in x and y. The problem above can be solved using augmented lagrangian method

or reduced gradient method [49, 18].

The problem above can also be solved using the linear majorization technique as in

the weighted l1-minimization section. In this case, we may use the following reformulation

for the ‖x‖0-function as follows

(6.24) Card(x) = ‖x‖0 = lim
ε→0

n∑
i=1

sin

(
atan

(|xi|
ε

))
.

158

Note that, we may apply other merit functions introduced in chapters 4 and 5 to approx-

imate the ‖x‖0-function:
from the above reformulation, we have

lim
ε→0

sin

(
atan

(|xi|
ε

))
= sin(0) = 0, xi = 0,

lim
ε→0

sin

(
atan

(|xi|
ε

))
= sin

(π
2

)
= 1, xi 6= 0,

sin

(
atan

(|xi|
ε

))
≤ sin

(
atan

(|yi|
ε

))
+

1

y2i + ε2
cos

(
atan

(|yi|
ε

))
(|xi| − |yi|)

≤ sin

(
atan

(|yi|
ε

))
+

1

y2i + ε2
(|xi| − |yi|), ∀ x, y.

Also, we have

γ‖x‖22 − xT (B + γIn)x ≤ γ‖x‖22 − yT (B + γIn)y − 2(x− y)T (B + γIn)y, ∀ x, y.

So, the following similar iteration to the reweighted l1-norm can be achieved.

xl+1 = argmin
x

{γ‖x‖22 − 2xT (B + γIn)x
l + λ

n∑
i=1

|xi|(
xl
i

)2
+ ε2

: xTCx ≤ 1},

where l is the number of iterations. For convergency proof of the algorithm above one

can refer to [83, 122].

6.4 Numerical experiments

Here we present our numerical experiments about sparsity recovery by using the l1-

minimization. We tested 100 randomly generated matrices A ∈ R100×200 from a normal

distribution of mean zero and variance 1.

159

For each matrix, the cardinality of 1 to 100 was tested.(The process takes 85 minutes

on a laptop with 2GHz dual core CPUs).

The expected value of the mutual coherence of our randomly generated matrices is

approximately equal to 0.292, i.e., E(M(A)) = 0.292. According to Theorem 6.3, only for

the ‖x‖0 ≤ 1
2
(1 + 1

0.292
) ≈ 2.21, the l1 norm guaranteed to succeed.

However, according to our experiment the cardinality of the solution achieved from

the l1-minimization problem is almost exact (99 successful solutions has been found) when

the cardinality of the solution is less than 20, i.e, for ‖x‖0 ≤ 20.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

110

P
r
o
b
a
b
i
l
i
t
y

o
f

S
u
c
c
e
s
s

Cardinality of the solution

Figure 6.2: The figure shows the probability of success for the l0 recovery using the l1-
minimization. The graph shows that the l1-minimization is almost exact for the solutions
with cardinality less than 20, i.e, 99 successful solutions has been found.

160

Chapter 7

Conclusions

We studied cardinality minimization problems(CMPs) and cardinality constrained prob-

lems(CCPs). Both of these problems are known as NP-hard in general, hence, we first dis-

cussed different relaxations and heuristic methods to solve these problems approximately.

Different relaxation techniques were applied to reformulate the problems in different forms

of semidefinite programming problems. For a general cardinality minimization problem

under non-convex quadratic constraints, we relaxed the problem by applying the La-

grangian duality combined with some SDP relaxation techniques. Also, by reformulation

techniques, we transformed the problem to the so-called bilevel optimization problem.

We continued our studies by focusing on a special case of the cardinality minimization

problem with underdetermined linear system of equations, which is called the problem

of finding the sparsest solution to a linear system. We demonstrated that reweighted

lj-algorithms (j ≥ 1) are very efficient to find a sparse solution of such systems. We

showed that the l1-minimization already uses a hidden weighted l2-minimization, and

we presented some theoretical, geometrical and numerical results, which indicate that

reweighted lj-minimizations (j ≥ 1) are quite successful to locate a sparse solution of the

problem. Furthermore, we demonstrated that the weights may reduce the gap between

different merit functions for sparsity. This means the performances of different weighted

161

algorithms are quite similar if the weights are chosen properly.

We introduced several new concave approximations to the ‖x‖0-function, and showed

how to construct more approximations to the ‖x‖0-function. We also demonstrated

how these approximations can be employed to introduce new weights to reweighted l1-

algorithms. Through numerical experiments, we presented the performances of our new

reweighted l1-algorithms, and we explained how these algorithms may perform even better

by changing different weights parameters. Also, we compared the new reweighted algo-

rithms and some of the existing reweighted algorithms via different statistical distributed

matrices, A, and with respect to different sparsity levels of the solution. Besides, we

showed when these algorithms outperform each other in different situations. In addition,

through the numerical experiments, we showed that different choices of ε may seriously

affect the performance of the algorithms.

As a special case of cardinality constrained problems, we studied the problem of com-

puting restricted isometry constant(RIC). We reviewed and explained how the problem

of finding the restricted isometry constant(RIC) is related to a sparse eigenvalue problem,

which again is a cardinality constrained problem. We studied some additional methods

to solve the problem of finding the RIC approximately.

162

Notation

Some specific Sets

R Set of real matrices.

Rn Set of real m-vectors.

Rm×n Set of real m× n matrices.

R+ Nonnegative real numbers.

Sn Symmetric n× n matrices.

Sn
+ Symmetric positive semidefinite n× n matrices.

Lm Second order cone or ice cream.

Vectors and matrices

1 Vector with all components 1.

I Identity matrix.

XT (xT) Transpose of a matrix X (vector x).

X† Moore-Penrose or pseudo-inverse of matrix X.

diag(x) Diagonal matrix with diagonal entries x1, ..., xn.

tr(X) Trace of matrix X.

λi(X) The i-th largest eigenvalue of symmetric matrix X.

σi(X) The i-th largest singular value of matrix X.

λmin(X), λmax(X) Minimum, maximum eigenvalue of symmetric matrix X.

163

x⊥y Vectors x and y are orthogonal.

U⊥ Orthogonal complement of subspace U .

Rank(x) Rank of a matrix x.

R(A) Range of matrix A.

N (A) Nullspace of matrix A.

M(A) Incoherence of matrix A.

〈x, y〉 Inner products of vectors x, y.

〈X, Y 〉 Inner product of matrices X, Y .

X ◦ Y Hadamard product of matrices X, Y .

Norms and distances

‖.‖ A norm.

‖x‖0 or l0 − norm Cardinality of vector x.

‖x‖1 l1-norm of vector x.

‖x‖2 l2-norm or Euclidean norm of vector x.

‖x‖∞ l∞-norm of vector x.

‖X‖F Frobenius norm of matrix X.

‖X‖∗ Nuclear norm of matrix X.

d(A,B) Distance between sets(or points) A and B.

Generalized inequalities

x ¹ y Components wise inequalities between vectors x and y.

X º 0 X is positive semidefinite.

X Â 0 X is positive definite.

x ¹K y Generalized inequality induced by proper cone K.

x ¹K∗ y Dual generalized inequality induced by proper cone K.

164

Topology and convex analysis

Card(x) Cardinality of a vector x.

Conv C Convex hull of set C.

K∗ Dual cone associated with K.

f ∗ Conjugate function of f .

f ∗∗ Convex envelop of function f .

Probability and Statistics

E(X) Expected value of a random vector X.

N(µ, σ) Normal distribution with mean µ and variance σ.

Pois(λ) Poisson distribution with the parameter λ.

Exp(µ) Exponential distribution with the parameter µ.

F (α, β) F-distribution with the parameters α and β.

Gam(a, b) Gamma distribution with the parameters a and b.

U(N) Uniform distribution with the parameter N .

Function and derivatives

f : A → B f is a function on the set dom(f) into the set B.

dom(f) Domain of function f .

epi(f) Epigraph of function f .

∇f Gradient of function f .

∇2f Hessian of function f .

PC(x) Standard projection operator on C.

∂f(x) Subdifferential of f at x.

165

Acronyms

CMP Cardinality minimization problem.

CCP Cardinality constrained problem.

RMP Rank minimization problem.

CS Compressed sensing.

PSD Positive semidefinite cone.

SDP Semidefinite programming.

MILP Mixed integer linear programming.

LMI Linear matrix inequity.

PCA Principal component analysis.

LP Linear Programming.

GLP Generalized linear programming.

RIP Restricted isometry property.

NSP Null space property.

RIC Restricted Isometry constant.

ROC Restricted orthogonality constant.

RSP Range Space Property.

SVD Singular value decomposition.

KKT Karush-Kuhn-Tucker.

SDr Semidefinite representable.

MM Majorization minimization.

BB Branch and bound.

RLS Reweighted Least Squares.

166

Bibliography

[1] H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdisciplinary

Reviews: Computational Statistics 2 (2010), no. 4, 433–459.

[2] M. J. Abdi, Comparison of several reweighted l1-algorithms for solving cardinality

minimization problems, University of Birmingham, Technical Report, Submitted

(2013).

[3] M. J. Abdi and Y. B. Zhao, Approximation, reformulation and convex techniques for

cardinality optimization problems, Journal of the School of Business Administration,

Istanbul University 40 (2011), no. 2, 124–137.

[4] F. Alizadeh, Interior point methods in semidefinite programming with applications to

combinatorial optimization, SIAM Journal on Optimization 5 (1995), no. 1, 13–51.

[5] T. Amemiya, The maximum likelihood and the nonlinear three-stage least squares es-

timator in the general nonlinear simultaneous equation model, Econometrica: Jour-

nal of the Econometric Society (1977), 955–968.

[6] , Selection of regressors, International Economic Review 21 (1980), no. 2,

331–354.

[7] F. Bach and L. El Ghaoui, Optimal Solutions for Sparse Principal Component Anal-

ysis, Journal of Machine Learning Research 9 (2008), 1269–1294.

167

[8] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, Compressive wireless sensing, Pro-

ceedings of the 5th international conference on Information processing in sensor

networks, ACM, 2006, pp. 134–142.

[9] O. Banerjee, L. El Ghaoui, and A. d’Aspremont, Model selection through sparse

maximum likelihood estimation for multivariate gaussian or binary data, The Jour-

nal of Machine Learning Research 9 (2008), 485–516.

[10] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, A simple proof of the

restricted isometry property for random matrices, Constructive Approximation 28

(2008), no. 3, 253–263.

[11] R. G. Baraniuk, Compressive sensing, IEEE Signal Processing Magazine 24 (2007),

no. 4, 118.

[12] A. Ben-Tal and A. S. Nemirovski, Lectures on modern convex optimization, (2000).

[13] D. P. Bertsekas et al., Dynamic programming and optimal control, (1995).

[14] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex analysis and optimization,

Athena Scientific, 2003.

[15] D.P. Bertsekas, WW Hager, and OL Mangasarian, Nonlinear programming, Athena

Scientific Belmont, MA, 1999.

[16] J. D. Blanchard, C. Cartis, and J. Tanner, Compressed sensing: How sharp is the

restricted isometry property?, SIAM Review 53 (2011), no. 1, 105–125.

[17] T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing,

Applied and Computational Harmonic Analysis 27 (2009), no. 3, 265–274.

[18] J. F. Bonnans and C. Lemaréchal, Numerical optimization: theoretical and practical

aspects, Springer-Verlag, 2006.

168

[19] S. P. Boyd, A. Ghosh, and A. Magnani, Branch and bound methods, Avail-

able at: http://www. stanford. edu/class/ee3920/bb. pdf, http://www. stanford.

edu/class/ee3920/bb. pdf (2003).

[20] S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univ Pr, 2004.

[21] P. S. Bradley, O. L. Mangasarian, and J. B. Rosen, Parsimonious least norm ap-

proximation, Computational Optimization and Applications 11 (1998), no. 1, 5–21.

[22] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of

equations to sparse modeling of signals and images, SIAM Review 51 (2009), no. 1,

34–81.

[23] M. Bruglieri, M. Ehrgott, H. W. Hamacher, and F. Maffioli, An annotated bibli-

ography of combinatorial optimization problems with fixed cardinality constraints,

Discrete Applied Mathematics 154 (2006), no. 9, 1344–1357.

[24] T.T. Cai, L. Wang, and G. Xu, New bounds for restricted isometry constants, In-

formation Theory, IEEE Transactions on 56 (2010), no. 9, 4388–4394.

[25] E. J. Candès, The restricted isometry property and its implications for compressed

sensing, Comptes Rendus Mathematique 346 (2008), no. 9-10, 589–592.

[26] E. J. Candès, L. Demanet, D. Donoho, and L. Ying, Fast discrete curvelet trans-

forms, Multiscale Modeling & Simulation 5 (2006), no. 3, 861–899.

[27] E. J. Candès and Y. Plan, Near-ideal model selection by l1 minimization, The Annals

of Statistics 37 (2009), no. 5A, 2145–2177.

[28] E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foun-

dations of Computational mathematics 9 (2009), no. 6, 717–772.

169

[29] E. J. Candès and J. Romberg, Quantitative robust uncertainty principles and opti-

mally sparse decompositions, Foundations of Computational Mathematics 6 (2006),

no. 2, 227–254.

[30] E. J. Candès, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete

and inaccurate measurements, Communications on Pure and Applied Mathematics

59 (2006), no. 8, 1207–1223.

[31] E. J. Candès and T. Tao, Decoding by linear programming, Information Theory,

IEEE Transactions on 51 (2005), no. 12, 4203–4215.

[32] , The power of convex relaxation: Near-optimal matrix completion, Informa-

tion Theory, IEEE Transactions on 56 (2010), no. 5, 2053–2080.

[33] E. J. Candès and M. B. Wakin, An introduction to compressive sampling, Signal

Processing Magazine, IEEE 25 (2008), no. 2, 21–30.

[34] E. J. Candès, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted 1

minimization, Journal of Fourier Analysis and Applications 14 (2008), no. 5, 877–

905.

[35] T. J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha, Heuristics for cardinality

constrained portfolio optimisation, Computers and Operations Research 27 (2000),

no. 13, 1271–1302.

[36] R. Chartrand and V. Staneva, Restricted isometry properties and nonconvex com-

pressive sensing, Inverse Problems 24 (2008), no. 3, 035020.

[37] R. Chartrand and W. Yin, Iteratively reweighted algorithms for compressive sensing,

Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International

Conference on, IEEE, 2008, pp. 3869–3872.

170

[38] , Iteratively reweighted algorithms for compressive sensing, Acoustics, Speech

and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on,

IEEE, 2008, pp. 3869–3872.

[39] S. Chen and D. L. Donoho, Basis pursuit, Signals, Systems and Computers, 1994.

1994 Conference Record of the Twenty-Eighth Asilomar Conference on, vol. 1, IEEE,

1994, pp. 41–44.

[40] , Examples of basis pursuit, SPIE’s 1995 International Symposium on Optical

Science, Engineering, and Instrumentation, International Society for Optics and

Photonics, 1995, pp. 564–574.

[41] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis

pursuit, SIAM journal on scientific computing 20 (1998), no. 1, 33–61.

[42] X. Chen, F. Xu, and Y. Ye, Lower bound theory of nonzero entries in solutions of

l2-lp minimization, SIAM Journal on Scientific Computing 32 (2010), no. 5, 2832–

2852.

[43] X. Chen and W. Zhou, Convergence of reweighted l1 minimization algorithms and

unique solution of truncated lp minimization, Technical Report, HK Polytech. Univ

(2010).

[44] A. Cohen, W. Dahmen, and R. DeVore, Compressed sensing and best k-term ap-

proximation, American Mathematical Society 22 (2009), no. 1, 211–231.

[45] A. d’Aspremont, F. Bach, and L. E. Ghaoui, Optimal solutions for sparse principal

component analysis, The Journal of Machine Learning Research 9 (2008), 1269–

1294.

171

[46] A. d’Aspremont and L. El Ghaoui, Testing the nullspace property using semidefinite

programming, Mathematical programming 127 (2011), no. 1, 123–144.

[47] A. d’Aspremont, L. E. Ghaoui, M. I. Jordan, and G. R. G. Lanckriet, A direct formu-

lation for sparse PCA using semidefinite programming, Arxiv preprint cs/0406021

(2004).

[48] R. E. Davis, D. A. Kendrick, and M. Weitzman, A Branch-and-Bound Algorithm

for Zero-One Mixed Integer Programming Problems, Operations Research 19 (1971),

no. 4, 1036–1044.

[49] E. P. de Carvalho, A. dos Santos Júnior, and T. F. Ma, Reduced gradient method

combined with augmented Lagrangian and barrier for the optimal power flow prob-

lem, Applied Mathematics and Computation 200 (2008), no. 2, 529–536.

[50] D. L. Donoho, Compressed sensing, Information Theory, IEEE Transactions on 52

(2006), no. 4, 1289–1306.

[51] , For most large underdetermined systems of linear equations the minimal

1-norm solution is also the sparsest solution, Communications on pure and applied

mathematics 59 (2006), no. 6, 797–829.

[52] D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthog-

onal) dictionaries via l1 minimization, Proceedings of the National Academy of

Sciences 100 (2003), no. 5, 2197–2202.

[53] D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete

representations in the presence of noise, Information Theory, IEEE Transactions on

52 (2006), no. 1, 6–18.

172

[54] D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM

Journal on Applied Mathematics 49 (1989), no. 3, 906–931.

[55] D. L. Donoho, Y. Tsaig, I. Drori, and J-L Starck, Sparse solution of underdetermined

systems of linear equations by stagewise orthogonal matching pursuit, Information

Theory, IEEE Transactions on 58 (2012), no. 2, 1094–1121.

[56] M. F. Duarte and Y. C. Eldar, Structured compressed sensing: From theory to

applications, Signal Processing, IEEE Transactions on 59 (2011), no. 9, 4053–4085.

[57] M. Elad, Optimized projections for compressed sensing, Signal Processing, IEEE

Transactions on 55 (2007), no. 12, 5695–5702.

[58] M. Elad and A. M. Bruckstein, A generalized uncertainty principle and sparse rep-

resentation in pairs of bases, Information Theory, IEEE Transactions on 48 (2002),

no. 9, 2558–2567.

[59] Y. M. Ermol’ev, Methods of solution of nonlinear extremal problems, Cybernetics

and Systems Analysis 2 (1966), no. 4, 1–14.

[60] M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Stanford. Univ,

2002.

[61] M. Fazel, H. Hindi, and S. P. Boyd, Log-det heuristic for matrix rank minimiza-

tion with applications to Hankel and Euclidean distance matrices, American Control

Conference, 2003. Proceedings of the 2003, vol. 3, IEEE, 2003, pp. 2156–2162.

[62] , Rank minimization and applications in system theory, American Control

Conference, 2004. Proceedings of the 2004, vol. 4, IEEE, 2004, pp. 3273–3278.

[63] M. A. Figueiredo, Adaptive sparseness for supervised learning, Pattern Analysis and

Machine Intelligence, IEEE Transactions on 25 (2003), no. 9, 1150–1159.

173

[64] M. A. T. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak, Majorization–

minimization algorithms for wavelet-based image restoration, Image Processing,

IEEE Transactions on 16 (2007), no. 12, 2980–2991.

[65] M. Fischetti and D. P. Williamson, Integer programming and combinatorial opti-

mization, Springer-Verlag.

[66] C. S. Foo, C. B. Do, and A. Y. Ng, A majorization-minimization algorithm for

(multiple) hyperparameter learning, Proceedings of the 26th Annual International

Conference on Machine Learning, ACM, 2009, pp. 321–328.

[67] L. Gan, Block compressed sensing of natural images, Digital Signal Processing, 2007

15th International Conference on, IEEE, 2007, pp. 403–406.

[68] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem,

SIAM Journal on Numerical Analysis 17 (1980), no. 6, 883–893.

[69] , Matrix computations, Johns Hopkins Univ Pr, 1996.

[70] I. F. Gorodnitsky, J. S. George, and B. D. Rao, Neuromagnetic source imaging with

focuss: a recursive weighted minimum norm algorithm, Electroencephalography and

clinical Neurophysiology 95 (1995), no. 4, 231–251.

[71] I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data

using focuss: A re-weighted minimum norm algorithm, Signal Processing, IEEE

Transactions on 45 (1997), no. 3, 600–616.

[72] , Sparse signal reconstruction from limited data using FOCUSS: A re-

weighted minimum norm algorithm, Signal Processing, IEEE Transactions on 45

(1997), no. 3, 600–616.

174

[73] M. Grant, S. P. Boyd, and Y. Ye, CVX: Matlab software for disciplined convex

programming, Web Page and Software) 2008 [Online]. Available: http://stanford.

edu/˜ boyd/cvx.

[74] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal, A survey of software for

sparse eigenvalue problems, Universidad Politécnica de Valencia, Tech. Rep. STR-6

(2006).

[75] J. B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, Springer-

Verlag, 2001.

[76] T. Hoang, Convex analysis and global optimization, Springer-Verlag, 1998.

[77] K. L. Hoffman, A method for globally minimizing concave functions over convex

sets, Mathematical Programming 20 (1981), no. 1, 22–32.

[78] P. W. Holland and R. E. Welsch, Robust regression using iteratively reweighted

least-squares, Communications in Statistics-Theory and Methods 6 (1977), no. 9,

813–827.

[79] R. Horst and N. V. Thoai, DC programming: overview, Journal of Optimization

Theory and Applications 103 (1999), no. 1, 1–43.

[80] I. T. Jolliffe, Principal component analysis, Springer-Verlag, 2002.

[81] B. S. Kashin and V. N. Temlyakov, A remark on compressed sensing, Mathematical

notes 82 (2007), no. 5, 748–755.

[82] M. J. Lai and J. Wang, An unconstrained lq minimization with 0 < q < 1 for sparse

solution of under-determined linear systems, SIAM J. Optim 21 (2010), 82–101.

175

[83] Gert R Lanckriet and Bharath K Sriperumbudur, On the convergence of the

concave-convex procedure, Advances in neural information processing systems, 2009,

pp. 1759–1767.

[84] C. Lawson, Contributions to the theory of linear least maximum approximation, PhD

Thesis (1961).

[85] C. L. Lawson and R. J. Hanson, Solving least squares problems, vol. 161, SIAM,

1974.

[86] K. Lee and Y. Bresler, Computing performance guarantees for compressed sensing,

Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International

Conference on, IEEE, 2008, pp. 5129–5132.

[87] Claude Lemaréchal and François Oustry, Semidefinite relaxations and lagrangian

duality with application to combinatorial optimization, Rapports de recherche- IN-

RIA (1999).

[88] Claude Lemaréchal and Claudia Sagastizábal, Practical aspects of the moreau–

yosida regularization: Theoretical preliminaries, SIAM Journal on Optimization

7 (1997), no. 2, 367–385.

[89] I. Lind and L. Ljung, Regressor selection with the analysis of variance method,

Automatica 41 (2005), no. 4, 693–700.

[90] D. G. Luenberger and Y. Ye, Linear and nonlinear programming, Springer-Verlag,

2008.

[91] M. Lustig, D. Donoho, and J. M. Pauly, Sparse MRI: The application of compressed

sensing for rapid MR imaging, Magnetic Resonance in Medicine 58 (2007), no. 6,

1182–1195.

176

[92] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing MRI,

Signal Processing Magazine, IEEE 25 (2008), no. 2, 72–82.

[93] D. Malioutov, M. Cetin, and A. S. Willsky, A sparse signal reconstruction perspective

for source localization with sensor arrays, Signal Processing, IEEE Transactions on

53 (2005), no. 8, 3010–3022.

[94] O. L. Mangasarian, Machine learning via polyhedral concave minimization, Applied

Mathematics and Parallel Computing-Festschrift for Klaus Ritter (1996), 175–188.

[95] , Solution of general linear complementarity problems via nondifferentiable

minimization, Acta Mathematics Vietnamical 22 (1997), no. 1, 199–205.

[96] , Minimum-support solutions of polyhedral concave programs, Optimization

45 (1999), no. 1-4, 149–162.

[97] D. Maringer and H. Kellerer, Optimization of cardinality constrained portfolios with

a hybrid local search algorithm, OR Spectrum 25 (2003), no. 4, 481–495.

[98] I. Markovsky and S. Van Huffel, Overview of total least-squares methods, Signal

processing 87 (2007), no. 10, 2283–2302.

[99] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions, LibreDigital,

2008.

[100] M. Minoux and S. Vajda, Mathematical programming: theory and algorithms, Wiley

New York, 1986.

[101] B. Moghaddam, Y. Weiss, and S. Avidan, Spectral bounds for sparse PCA: Exact and

greedy algorithms, Advances in Neural Information Processing Systems 18 (2006),

915.

177

[102] K. Mohan and M. Fazel, New Restricted Isometry results for noisy low-rank recovery,

Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on,

IEEE, 2010, pp. 1573–1577.

[103] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM journal on

computing 24 (1995), no. 2, 227–234.

[104] A. Nemirovski, Prox-method with rate of convergence O (1/t) for variational in-

equalities with Lipschitz continuous monotone operators and smooth convex-concave

saddle point problems, SIAM Journal on Optimization 15 (2005), no. 1, 229–251.

[105] A. S. Nemirovskij and D. B. Yudin, Problem complexity and method efficiency in

optimization. Transl. from the Russian by ER Dawson, (1983).

[106] Y. Nesterov, A method of solving a convex programming problem with convergence

rate O (1/k2), Soviet Mathematics Doklady, vol. 27, 1983, pp. 372–376.

[107] , Smooth minimization of non-smooth functions, Mathematical Program-

ming 103 (2005), no. 1, 127–152.

[108] , Smoothing technique and its applications in semidefinite optimization,

Mathematical Programming 110 (2007), no. 2, 245–259.

[109] Y. Nesterov and A. S. Nemirovski, Optimization over positive semidefinite matrices:

Mathematical background and user’s manual, USSR Academy Sciences. Center of

Economy and Mathematics Inst, 32 Krasikova St, Moscow, 1990.

[110] Y. Nesterov and I. U. E. Nesterov, Introductory lectures on convex optimization: A

basic course, Springer Netherlands, 2004.

178

[111] D. P. O’Leary, Robust regression computation using iteratively reweighted least

squares, SIAM Journal on Matrix Analysis and Applications 11 (1990), no. 3, 466–

480.

[112] B. T. Polyak, A general method for solving extremal problems, Sov.Math.Dokl 8

(1967).

[113] , Introduction to optimization, Optimization Software Inc. Publications Di-

vision, 1987.

[114] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, Sparsity and compressed sensing

in radar imaging, Proceedings of the IEEE 98 (2010), no. 6, 1006–1020.

[115] B. D. Rao and K. Kreutz-Delgado, An affine scaling methodology for best basis

selection, Signal Processing, IEEE Transactions on 47 (1999), no. 1, 187–200.

[116] H. Rauhut, Compressive sensing and structured random matrices, Theoretical foun-

dations and numerical methods for sparse recovery 9 (2010), 1–92.

[117] F. Rinaldi, F. Schoen, and M. Sciandrone, Concave programming for minimizing

the zero-norm over polyhedral sets, Computational Optimization and Applications

46 (2010), no. 3, 467–486.

[118] J. B. Rosen, H. Park, and J. Glick, Total least norm formulation and solution for

structured problems, SIAM Journal on Matrix Analysis and Applications 17 (1996),

no. 1, 110–126.

[119] R. Saab, R. Chartrand, and O. Yilmaz, Stable sparse approximations via nonconvex

optimization, Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE

International Conference on, IEEE, 2008, pp. 3885–3888.

179

[120] N. Z. Shor, Nondifferentiable optimization and polynomial problems, Kluwer Aca-

demic Publishers, 1998.

[121] N. Z. Shor, K. C. Kiwiel, and A. Ruszcayski, Minimization methods for non-

differentiable functions, Springer-Verlag New York, Inc. New York, NY, USA, 1985.

[122] B. K. Sriperumbudur, D. A. Torres, and G. R. G. Lanckriet, A dc programming

approach to the sparse generalized eigenvalue problem, stat 1050 (2009), 13.

[123] J-L. Starck, F. Murtagh, and J. M. Fadili, Sparse image and signal processing:

wavelets, curvelets, morphological diversity, Cambridge University Press, 2010.

[124] Gilbert W Stewart and GW Stewart, Introduction to matrix computations, vol. 441,

Academic press New York, 1973.

[125] P. Stoica and Y. Selén, Cyclic minimizers, majorization techniques, and the

expectation-maximization algorithm: a refresher, Signal Processing Magazine, IEEE

21 (2004), no. 1, 112–114.

[126] F. Streichert, H. Ulmer, and A. Zell, Evolutionary algorithms and the cardinality

constrained portfolio optimization problem, Operations research proceedings 2003:

selected papers of the International Conference on Operations Research (OR 2003),

Heidleberg, September 3-5, 2003, Springer Verlag, 2004, p. 253.

[127] D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham,

K. F. Kelly, and R. G. Baraniuk, A new compressive imaging camera architecture

using optical-domain compression, Electronic Imaging 2006, International Society

for Optics and Photonics, 2006, pp. 606509–606509.

[128] H. L. Taylor, S. C. Banks, and J. F. McCoy, Deconvolution with l1 norm, Geophysics

44 (1979), 39–52.

180

[129] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal

Statistical Society. Series B (Methodological) (1996), 267–288.

[130] M.Y.J. Ting, Signal processing for magnetic resonance force microscopy, Ph.D. the-

sis, 2006.

[131] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, Informa-

tion Theory, IEEE Transactions on 50 (2004), no. 10, 2231–2242.

[132] J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via

orthogonal matching pursuit, Information Theory, IEEE Transactions on 53 (2007),

no. 12, 4655–4666.

[133] Y. Tsaig and D. L. Donoho, Extensions of compressed sensing, Signal processing 86

(2006), no. 3, 549–571.

[134] S. Van Huffel and J. Vandewalle, The total least squares problem: computational

aspects and analysis, vol. 9, Society for Industrial and Applied Mathematics, 1987.

[135] L. Vandenberghe and S. P. Boyd, Semidefinite programming, SIAM Review 38

(1996), no. 1, 49–95.

[136] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham, D. Takhar,

K. F. Kelly, and R. G. Baraniuk, An architecture for compressive imaging, Image

Processing, 2006 IEEE International Conference on, IEEE, 2006, pp. 1273–1276.

[137] H. Wang, G. Li, and C. L. Tsai, Regression coefficient and autoregressive order

shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 69 (2007), no. 1, 63–78.

[138] D. S. Watkins, Fundamentals of matrix computations, John Wiley and Sons, 2002.

181

[139] H. White, Using least squares to approximate unknown regression functions, Inter-

national Economic Review 21 (1980), no. 1, 149–170.

[140] D. Wipf and S. Nagarajan, Iterative reweighted l1 and l2 methods for finding sparse

solutions, IEEE Journal of Selected Topics in Signal Processing 4 (2010), no. 2,

317–329.

[141] S. Wold, K. Esbensen, and P. Geladi, Principal component analysis, Chemometrics

and intelligent laboratory systems 2 (1987), no. 1-3, 37–52.

[142] A. Y. Yang, S. R. Rao, and Y. Ma, Robust statistical estimation and segmentation

of multiple subspaces, Computer Vision and Pattern Recognition Workshop, 2006.

CVPRW’06. Conference on, IEEE, 2006, pp. 99–99.

[143] L. Ying and Y. M. Zou, Linear Transformations and Restricted Isometry Property,

Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International

Conference on, IEEE, 2009, pp. 2961–2964.

[144] G. Yu, G. Sapiro, and S. Mallat, Image modeling and enhancement via structured

sparse model selection, Image Processing (ICIP), 2010 17th IEEE International Con-

ference on, IEEE, 2010, pp. 1641–1644.

[145] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped vari-

ables, Journal of the Royal Statistical Society: Series B (Statistical Methodology)

68 (2006), no. 1, 49–67.

[146] F. Zhang, Matrix theory: basic results and techniques, Springer-Verlag, 1999.

[147] Q. Zhang, Regressor selection and wavelet network construction, Decision and Con-

trol, 1993., Proceedings of the 32nd IEEE Conference on, IEEE, 1993, pp. 3688–

3693.

182

[148] Y. Zhang, A. d’Aspremont, and L. El Ghaoui, Sparse pca: Convex relaxations,

algorithms and applications, Handbook on Semidefinite, Conic and Polynomial Op-

timization, Springer, 2012, pp. 915–940.

[149] Y. B. Zhao, An approximation theory of matrix rank minimization and its applica-

tion to quadratic equations, Linear Algebra and its Applications 437 (2012), no. 1,

77–93.

[150] Y. B. Zhao, S-C Fang, and J. E. Lavery, Geometric dual formulation for first-

derivative-based univariate cubic l1 splines, Journal of Global Optimization 40

(2008), no. 4, 589–621.

[151] Y. B. Zhao, S. C. Fang, and D. Li, Constructing generalized mean functions us-

ing convex functions with regularity conditions, SIAM Journal on Optimization 17

(2006), 37–51.

[152] Y. B. Zhao and D. Li, Reweighted l1-minimization for sparse solutions to underdeter-

mined linear systems, SIAM Journal on Optimization 22 (2012), no. 3, 1065–1088.

[153] X. Zheng, X. Sun, D. Li, and X. Cui, Lagrangian decomposition and mixed-integer

quadratic programming reformulations for probabilistically constrained quadratic

programs, European Journal of Operational Research (2012).

[154] H. Zou, T. Hastie, and R. Tibshirani, Sparse principal component analysis, Journal

of computational and graphical statistics 15 (2006), no. 2, 265–286.

183

