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Abstract

Prototype-based classification models, and particularly Learning Vector Quantization (LVQ)

frameworks with adaptive metrics, are powerful supervised classification techniques with good

generalization behaviour. This thesis proposes three advanced learning methodologies, in the

context of LVQ, aiming at better classification performance under various classification settings.

The first contribution presents a direct and novel methodology for incorporating valuable

privileged knowledge in the LVQ training phase, but not in testing. This is done by manipulat-

ing the global metric in the input space, based on distance relations revealed by the privileged

information. Several experiments have been conducted that serve as illustration, and demon-

strate the benefit of incorporating privileged information on the classification accuracy.

Subsequently, the thesis presents a relevant extension of LVQ models, with metric learning,

to the case of ordinal classification problems. Unlike in existing nominal LVQ, in ordinal LVQ

the class order information is explicitly utilized during training. Competitive results have been

obtained on several benchmarks, which improve upon standard LVQ as well as benchmark

ordinal classifiers.

Finally, a novel ordinal-based metric learning methodology is presented that is principally

intended to incorporate privileged information in ordinal classification tasks. The model has

been verified experimentally through a number of benchmark and real-world data sets.
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CHAPTER 1

Introduction

Machine Learning algorithms target solving a specific problem, related to a given data set,

based on example data or past experience [4]. In particular, they aim to optimize the perfor-

mance criterion of a model through learning from a given training data. In the learning course,

data samples are presented to the system and model parameters are adapted in such a way

that a novel data, coming from the same domain, is better processed towards solving the given

problem. The arena of Machine Learning has emerged from computer science and artificial

intelligence domains. It combines several computational methods from various related fields,

including applied mathematics, pattern recognition, neural networks and statistics. Machine

Learning models constitute a significant number of classification techniques that aim to assign

an input pattern to one known discrete class, when given a set of classes. Classification algo-

rithms lend themselves to numerous practical applications in natural science and engineering

[4], such as, face recognition [5] and medical diagnosis [6]. Supervised classifications assume

that each training data is associated with a desired output class, while in unsupervised scenar-

ios, detection is based on hidden patterns in input spaces. An overview of different Machine

Learning algorithms and techniques can be found, for example, in [7, 4].

Prototype-based models, and particularly the Learning Vector Quantization (LVQ) frame-
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works, are a popular family of supervised multi-class classification techniques with distance-

based classification. LVQ classifiers are parameterized by a set of prototypical-vectors, which

represent classes in the input space; and hence reflect the characteristics of the data distribu-

tion. In the working phase, an unknown sample is assigned to the class represented by the

closest prototype, with respect to a selected distance metric. Kohonen introduced the origi-

nal LVQ scheme in 1986 [8, 9] which uses Hebbian learning to adapt the prototypes to the

training data. Meanwhile, researchers proposed numerous modifications of the basic learning

scheme aiming to achieve a better approximation of decision boundaries, faster or more robust

convergence. Some variations can be derived from an explicit cost function [10], while others

extend the LVQ distance measure, used to quantify similarities between prototypes and feature

vectors, by means of incorporating an adaptive distance measure with metric learning schemes

[11, 12, 13, 14, 15].

LVQ algorithms are in general more amenable to interpretation when compared to other

learning systems (e.g. Support Vector Machine (SVM) [16] and Artificial Neural Networks

[17]). They offer an intuitive interface to the underlying data set; in addition, their classification

method can be more directly understood due to the natural and simple method of classifying

data points to the class of their closet prototype. A further strength is that they lend them-

selves naturally to multi-class classification problems without requiring any modification in the

learning algorithm or the decision rule. Moreover, the LVQ learning rules are typically based

on Hebbian learning which makes it easy to implement. The end result has been that, LVQ

frameworks have attracted several complex practical applications to their use for analysis and

classification. Specifically, in image analysis, bioinformatics, robotics or telecommunication

[18, 11, 19, 20, 21, 22, 23, 24, 25].

This thesis presents three advanced learning methodologies, in the context of prototype-

based classification, aiming to enhance the model performance under various classification set-

tings. Benefits of the proposed frameworks are mainly investigated in the recently introduced
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Generalized Matrix LVQ (GMLVQ), see [26, 13], which is a modification of the standard LVQ

model with full adaptive metric learning.

1.1 Motivation

In some pattern recognition problems, there exists some additional informative knowledge about

the training data items that will simply not be available in the test phase. Traditionally in the

Machine Learning community such privileged information would be discarded, since predic-

tive models have been based on input features that characterize data items in the same manner,

irrespective of whether they are used in training or test phases. The inclusion of privileged

knowledge into the classification training was originally proposed by Vapnik [27, 28] in the

framework of Learning Using Privileged Information (LUPI). The new learning paradigm was

presented in the context of SVM model, so-called SVM+. For example, when classifying pro-

teins based on their amino-acid sequences, protein 3D-structures can be used as privileged in-

formation, in [27]. Another example is time series prediction, where future events (presented

in the training set, but not available in the test phase) form privileged information. Theoretical

analysis and numerical experiments, conducted in [27, 28, 29, 30], proved the superiority of

SVM+ with LUPI (in terms of classification performance) over the standard SVM (in classical

learning contexts). However,

1. the existing LUPI paradigm (presented by Vapnik [27, 28]) is specially tailored for incor-

porating privileged data in SVM classifications and hence inapplicable to use with other

classifiers,

2. the SVM+ model is formulated for binary classification,

3. as typical for many kernel-based methods, it can scale unfavorably with the number of

training examples and

4. the methodology of incorporating the privileged information in SVM+ is less amenable
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to interpretation, due to the black box learning behaviour.

The idea of incorporating privileged information during the training course has proven useful

in a number of benchmark problems and practical applications from various fields, including

financial prediction models [31] and clustering problems [32]. The extension of the LVQ algo-

rithms to the case of the LUPI scheme will indeed benefit the overall classification performance.

In a different context, pattern recognition problems of classifying examples to ordered

classes, namely ordinal classifications, have received significant attention in the recent Machine

Learning literature. They lend themselves to many practical applications, such as in information

retrieval [2], medical analysis [6], preference learning [33] or credit rating [34]. However, all

existing LVQ variants (with or without metric learning) were designed for nominal classification

problems only (non-ordered categories). In ordinal classification tasks, nominal LVQ classifiers

will ignore the class order relationships during learning, which can have a detrimental effect on

the overall classification accuracy. Therefore, developing a new learning formulation for LVQ

models to be intended designed principally for classifying data with ordered classes, may lead

to a substantial improvement in ordinal predictions. In addition, incorporating the privileged

information in ordinal classification learning courses will add a further advantageous towards

better LVQ ordinal predictions.

1.2 Contributions

The key contributions of this thesis are threefold, represented by three advanced learning method-

ologies (listed below), in the context of LVQ with full adaptive metric learning.

1. Develop a novel algorithm for Learning Using Privileged Information (LUPI), in

prototype-based models, based on metric learning techniques.

In particular, the extension of the existing GMLVQ to the case of additional (privileged)

information, available only during the training phase. The proposed contribution of in-

tegrating the privileged data is based on the idea of manipulating the metric in the orig-
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inal input space based on the privileged data. For this purpose, two metric modification

approaches are introduced, one based on using privileged information in a more quanti-

tative (rather than qualitative) manner through a novel metric fusion approach developed

specifically for blending distance information in the privileged space with the metric in

the original input space, while the other is based on a qualitative way through an infor-

mation theoretic approach. The introduced LUPI framework provides a more direct and

transparent method for incorporating the privileged information. It is naturally cast in the

context of prototype-based models with metric tensor learning, particularly in the multi-

class GMLVQ classifier, via two suggested scenarios for incorporating the new learnt

metric. Furthermore, since the privileged information is used to manipulate the input

space or its metric, the new LUPI paradigm is investigated in another convenient classi-

fier (e.g. k-NN). The computational complexity of the resulting classifier is investigated.

Furthermore, extensive experiments have been conducted that prove the superiority of the

new LUPI formulation.

2. Introduce two novel ordinal LVQ schemes with metric adaptation, specifically de-

signed for classifying data items into ordered classes.

It describes a very intuitive and relevant extension of LVQ models with metric learning,

to the case of ordinal classification problems. Unlike in nominal LVQ (with non-ordered

label classification), in the proposed ordinal LVQ variants the class order information

is explicitly utilized during training, in the selection of class prototypes for adaptation,

as well as in determining the exact manner in which prototypes are updated. Competi-

tive results are obtained on several benchmarks which not only improve upon standard

(nominal) LVQ, but which also reach or improve state of the art ordinal regressors.

3. Present a novel ordinal-based metric learning methodology that is specially designed

for incorporating privileged information in ordinal classification tasks.
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The proposed framework is naturally cast in the ordinal prototype-based classification

with metric adaptation, introduced in the second contribution, as well in a SVM-based

ordinal regression framework. The privileged information is incorporated into the model

operating on the original space using metric learning techniques. Two scenarios for in-

corporating the new learned metric in the ordinal prototype-based model are introduced.

The presented work has been verified in three experimental settings, including ordinal

prediction time series models.

1.3 Thesis Outline

This section presents a brief outline of the thesis alongside the topics discussed in each chapter.

Chapter 2 addresses the basic information and research relevant to the rest of this

document.

It begins by providing a short introduction to the prototype-based learning models, followed by

a detailed description of the nearest prototype classification technique. Furthermore, a number

of basic LVQ training algorithms are reviewed, including the original LVQ training algorithm

(LVQ1) and the Generalized LVQ (GLVQ). A particular focus was put on the LVQ algorithms

with adaptive matrices that are closely related to our research. The algorithm of interest, the

Generalized Matrix LVQ (GMLVQ), is presented and described from a perspective that allows

for understanding the proposed formulations and experiments conducted throughout the thesis.

Finally, a list of key research questions is addressed along with their concise answer.

Chapter 3 introduces a novel framework for dealing with the problem of learning in

the presence of privileged information.

The chapter initially reviews the literature regarding the LUPI paradigm in the context of Sup-

port Vector Machines (SVM). Subsequently, the focus is placed on the literature of distance

metric learning algorithms, specifically on the Information Theoretic Metric Learning (ITML)

algorithm that will be utilized in the remainder of the thesis. Two more direct and transparent
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formulations for incorporating privileged information, during the training phase, are introduced

based on metric learning techniques. The computational complexity of the resulting classifier

is studied. Furthermore, a number of numerical experiments on several benchmarks and prac-

tical large-scale applications have been conducted with the purpose of verifying the presented

techniques.

Chapter 4 proposes an adaptive metric LVQ formulation for ordinal classification.

The review begins with discussing methodologies and developments of existing ordinal classi-

fication algorithms. Then, the main contribution is presented, which proposes two novel ordinal

LVQ with full metric adaptation schemes, that are specifically designed for classifying data

items into ordered classes. Experiments are run on several datasets in order to assess perfor-

mances with respect to nominal standard LVQ variants as well as other state-of-the-art ordinal

regression methods.

Chapter 5 introduces a novel ordinal-based metric learning methodology, based on

ITML, for learning using privileged information in ordinal classification tasks.

A brief overview of metric learning algorithms for rank predictions is first provided. The pro-

posed model is then introduced that aims to learn a new metric in the original data space, based

on distance relations revealed in the privileged space, while preserving the linear order of classes

in the training set. The new metric is then incorporated into the context of the LVQ for ordi-

nal classification, introduced in Chapter 4. The proposed method is verified through extensive

experiments, including large-scale practical ordinal classification problem and real life ordinal

time series predictions.

Finally, Chapter 6 presents a brief summary of the presented work and a collection of

research plans that can be undertaken in the future.
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CHAPTER 2

Prototype-Based Learning Models

2.1 Introduction

Prototype-Based classification Models aim to identify data objects by means of computing the

distance between objects and some data class representative, so-called prototypes. Prototypes

are identified in the same space as the input data and are regarded as typical representatives of

their classes. Classification decisions rely heavily on the similarity of on a given data input to

the model prototypes.

The use of prototype-based models as a supervised classification method, where each train-

ing data is associated with a desired output class, has received considerable attention in the

machine learning literature. This interest owes its origin to their superior performance in classi-

fying data patterns in a simple, yet robust and efficient manner. In contrast to several supervised

learning techniques, a case in point would be Support Vector Machine (SVM) [16], in which

classification is performed based on black box behaviour, in prototype-based techniques, classi-

fication decisions are implemented in a meaningful, accessible way. Salient advantage in the use

of prototype representation is that it allows for the inspection of the structure of the data, and

hence understanding of the decision taken. Furthermore, prototype-based models lend them-
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selves naturally to multi-class problems and can be constructed at a smaller computational cost

than alternative non-linear classification models.

This thesis focuses on a group of supervised prototype-based learning classifiers, namely

Learning Vector Quantization (LVQ). LVQ models are distance based classification techniques,

which use Hebbian online learning to adapt prototypes to training data [9, 8]. As in typical

prototype-based models, LVQ classifiers are parameterized by a set of prototypical-vectors,

representing classes in the input space, and a distance measure on the input data. In the train-

ing phase, prototypes are iteratively adapted, using the winner-take-all scheme, to define class

boundaries. For each training pattern, the algorithm determines one closest prototype with the

same class, and simultaneously another closest prototype in a different class from the training

point. The position of this, so-called winner prototypes, are then updated, specifically, the win-

ner prototype with the correct class label is rewarded by being pushed closer to the data point,

while the prototype with the different label is penalized by being moved away from the data pat-

tern. In the classification phase, an unknown sample is assigned to the class represented by the

closest prototype with respect to the given metric, the so-called Nearest Prototype Classification

(NPC) scheme. The concept of prototype-based rules has been proposed in [35]

Kohonen introduced the original LVQ1 scheme in 1986 [8], which applies Hebbian online

learning to adapt the prototypes to training data. Since then, researchers have proposed a num-

ber of modifications to the basic learning scheme which target better approximation of decision

boundaries and/or faster and more robust convergence. Some variations were derived by ex-

ploiting an explicit cost function in order to update prototypes by means of gradient descent

(e.g. Generalized LVQ (GLVQ) [10] and soft LVQ [36]). Alternatively, others allow for the

incorporation of adaptive distance measures [11, 12, 13, 14, 15].

One of the most crucial features that need to be chosen carefully when designing a LVQ

classifier is the choice of a suitable distance similarity measure. Earlier LVQ variants (e.g.

[8, 10]) mainly depend on the standard Euclidean metric, which assumes that all components
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of the input vector contribute equally to the overall distance. This setting can be applicable

when all features are similar in nature, yet unsuitable for feature vectors involving various mag-

nitudes that can be found in high dimensional noisy data. Accordingly, new metric learning

schemes have been proposed, in the LVQ frameworks, which aims at optimizing the distance

measure for a given classification task [11, 12, 13, 14, 15]. Generalized Relevance LVQ (GR-

LVQ), introduced in [12], proposed an adaptive diagonal matrix acting as the metric tensor

of a (dis)similarity distance measure. This was further extended in Matrix LVQ (MLVQ) and

Generalized Matrix LVQ (GMLVQ) [13, 26] that use a fully adaptive metric tensor accounting

for different scalings and pairwise correlations of features. Metric learning in the LVQ context

has been shown to have a positive impact on the stability of learning and the classification ac-

curacy [13, 26]. Furthermore, they proved beneficial for the classification of potentially high

dimensional heterogeneous data.

This chapter is organized as follows; Section 2.2 discusses the NPC scheme. Sections 2.2.1

and 2.2.2 introduce the basic LVQ algorithms and the mathematical properties of the cost func-

tion in the context of Generalized LVQ (GLVQ) [10] algorithm, respectively. Sections 2.3.1,

2.3.2, 2.3.3 and 2.3.4 review the most popular LVQ with metric learning schemes, the Rele-

vance LVQ (RLVQ), the Generalized Relevance LVQ (GRLVQ) [12], the Matrix LVQ (MLVQ)

and the Generalized Matrix LVQ (GMLVQ) [13, 26], respectively. More emphasis is attached

to the later algorithm (the GMLVQ scheme) which is studied in depth throughout the thesis.

Section 2.4 provides the main research questions answered by this thesis and the motivation

behind each of them. Finally, this chapter is summarized in section 2.5.

2.2 Nearest Prototype Classification

Assume training data (xi, yi) ∈ Rm × {1, ..., K}, where i = 1, 2, ..., n is given, m denoting

the data dimensionality and K is number of different classes. A typical LVQ network consists

of L prototypes wj ∈ Rm, where j = 1, 2, 3, ..., L, also known as codebook, defined by their
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location in the same input space and their class label c(wj) ∈ {1, ..., K}. We assume that

each class k ∈ {1, 2, ..., K}, may be represented by P prototypes. Leading to total number of

L = K · P prototype1 collected in the set W as follows,

W = {(wj, c(wj)) | Rm × {1, ..., K}}Lj=1. (2.1)

Note that, at least one prototype per class needs to be included in the model. The overall num-

ber of prototypes is a model hyper-parameter optimized e.g. in a data driven manner through

a validation process. Employing a very small number of prototypes in the LVQ network (par-

ticularly in a large-scale scattered data set) may not correctly capture the data structure of the

input space, and hence causes poor classification performance. On the other hand, using a large

number of prototypes may lead to an overfitting problem, and hence poor generalization ability

[13].

In this thesis, the means of P random subsets of training samples selected from each class k,

where k ∈ K, are chosen as initial states of the prototypes. Alternatively, one could run a vector

quantization with P centers on each class. However, accuracy of LVQ is closely related to the

proper initialization of prototypes and the optimization mechanism. One recent study in [37]

proposed a proper initialization method for prototype positions, based on context dependent

clustering and modification of the LVQ cost function, which exploits additional information

about the class-dependent distribution of the training vectors.

The prototypes define a classifier by means of a winner-takes-all rule, where a pattern xi ∈

Rm is classified with the label of the closest prototype,

c(xi) = c(wq), q = arg min
l
d(xi, wl), (2.2)

1This imposition can be relaxed to a variable number of prototypes per class.
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where d(x,w) denotes the squared distance ’similarity’ measure1. Similar schemes are applied

in other distance based classifiers, as in the k-Nearest Neighbour (k-NN) [38] or the unsuper-

vised Self Organizing Map (SOM) [39]. However, LVQ algorithms avoid the limitation of the

large memory storage or the high computational cost incorporated in some of these models.

Furthermore, complexity of a LVQ classifier can be controlled by users as it depends mainly on

the number of prototypes involved in classification and not on the number of classes or the data

dimensions [18].

In the LVQ network, each prototype wj with class label c(wj) will represent a receptive field

Rj in the input space. The receptive field of prototype wj is defined as the set of points in the

input space which pick this prototype as their winner, i.e.

Rj = {x ∈ Rm | d(x,wj) < d(x,wi),∀j 6= i}. (2.3)

Points in the receptive field of prototype wj will be assigned class c(wj) by the LVQ model.

Note that, the goal of the typical LVQ learning is to adapt prototypes automatically such

that the distances between data points of class k ∈ {1, ..., K} and the corresponding prototypes

with label k (to which the data belong) is minimized. Furthermore, one good advantage about

LVQ algorithms is that they can handle missing values in training patterns. One of the most

straightforward options is to simply ignore the missing dimensions when comparing prototypes

with input data. Subsequently, the prototype updates only affect the known features [26].

2.2.1 Learning Vector Quantization (LVQ)

In the Kohonen’s first version of LVQ1 [9, 8], d(x,w) is assigned to the following (squared)

Euclidean distance,

d(x,w) = (x− w)T (x− w). (2.4)

1Throughout this thesis, the mathematical squared notation has been omitted from the distance for the easier
presentation.
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Each training iteration in the LVQ1 model, causes an update of one prototype with the

minimum distance to the training pattern. Hence, for each training point xi with class label

c(xi), closest prototype with the same label is rewarded by pushing it closer to xi. Conversely,

if the closest prototype has a different label then it is penalized by repelling it from xi. The

learning is performed until a stopping criterion is achieved, set by the user. A short description

of the LVQ1 training algorithm is given in Algorithm 1.

Algorithm 1 The LVQ1 Training Algorithm.
initialize the prototype positions wj ∈ Rm, j = 1, 2, ..., L
while a stopping criterion (maximum number of training epochs) is not reached do

randomly select a training pattern xi, i ∈ {1, 2, ..., n} with label c(xi)
find the closest prototype wq = arg minl d(xi, wl)
update wq according to
if c(wq) = c(xi) then

∆wq = +ηw · (xi − wq)
else if c(wq) 6= c(xi) then

∆wq = −ηw · (xi − wq)
end if

end while

Note that, parameter ηw denotes the learning rate which determines the general prototype

update strength, set through validation procedures.

LVQ1 was further extended into few other variants, including the Optimized Learning rate

LVQ (OLVQ1) [39] and the LVQ2.1 [40], aiming at faster convergence and better approxima-

tion of Bayesian decision boundaries, respectively. Unlike in LVQ1, where only one prototype

is adapted at each training epoch1, in the LVQ2.1 model the two closest prototypes with correct

and wrong label (denoted here as w+ and w− respectively) are adapted simultaneously. The

update of w+ and w− is implemented based on a window rule technique, and is given by

∆w+ = +ηw · (xi − w+)

∆w− = −ηw · (xi − w−)
1One sweep through all the training set is referred to one epoch.
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However, the LVQ2.1 model suffers from a serious divergence problem, as it drifts the prototype

vectors from their optimal locations with respect to the training data.

2.2.2 Generalized LVQ (GLVQ)

Generalized LVQ (GLVQ) algorithm, introduced by Sato and Yamada in [10], is an expansion

of the basic LVQ derived from an explicit cost function. The algorithm is trained in an on-

line-learning manner that is, training samples (xi, yi) are presented iteratively (one in each

iteration), and the model parameters are updated depending on the presented sample. The aim is

to reposition the prototypes in order to achieve high classificatory accuracy on novel data after

training. Prototypes adaptation in the GLVQ is derived by minimizing the following explicit

cost function:

fGLV Q =
n∑
i=1

φ(µ(xi)) where

µ(xi) = d(xi, w+)− d(xi, w−)
d(xi, w+) + d(xi, w−) , (2.5)

based on the steepest descent technique.

φ is a monotonic function, for example the logistic function or the identity φ(`) = `,

d(xi, w+) and d(xi, w−) denote the squared Euclidean distance of data point xi from the closest

prototype with the same class label c(w+) = c(xi) = yi and the closest prototype with a differ-

ent class label than yi, respectively. Note that the numerator is smaller than 0 if the classification

of the data point is correct. The smaller the numerator, the greater the ’security’ of classifica-

tion, that is the difference of the distance from a correct and wrong prototype [13]. Note that,

the ‘security’ of classification characterizes the hypothesis margin of the classifier. The larger

this margin, the more robust is the classification of a data pattern with respect to noise in the

input or function parameters. Furthermore, good generalization ability is expected [41]. The

denominator scales the argument φ to the extent that it falls in the interval [−1, 1] [13].
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Hebbian-like on-line updates are implemented for prototypes w+, w−, where w+ is pushed

towards the training instance xi and w− is pushed away from it. The derivatives of fGLV Q with

respect to the prototypes w+, w− yield the following adaptation rules [10],

∆w+ = +ηw · φ′(µ(xi)) · γ+ · (xi − w+), (2.6)

∆w− = −ηw · φ′(µ(xi)) · γ− · (xi − w−),

where

γ+ = 2d(xi, w−)
(d(xi, w+) + d(xi, w−))2 ,

γ− = 2d(xi, w+)
(d(xi, w+) + d(xi, w−))2 ,

φ′ is the derivative of φ and ηw is the positive learning rate for prototypes (set individually

for each application via cross validation). Note additionally that, the GLVQ overcomes the

LVQ2.1 divergence problem by incorporating the classification accuracy in the above cost func-

tion Eq.(2.5) that is minimized during learning, via the gradient descent technique.

A short description of the GLVQ algorithm is given in Algorithm 2 [10, 42].

Algorithm 2 The GLVQ Training Algorithm.
initialize the prototype positions wj ∈ Rm, j = 1, 2, ..., L
while a stopping criterion (maximum number of training epochs) is not reached do

randomly select a training pattern xi, i ∈ {1, 2, ..., n} with label c(xi)
find the closest correct prototype w+

q = arg minl d(xi, w+
l ) with c(xi) = c(w+

q )
find the closest incorrect prototype w−q = arg minl d(xi, w−l ) with c(xi) 6= c(w−q )
update w+

q and w−q according to Eq.(2.6)
end while

Such extension has allowed for further investigations in risk bound and convergence be-

haviour. Mathematical analysis in relation to the GLVQ cost function is presented in [43]. It

has been shown in [44] that LVQ classifiers aim at optimizing class margins and hence good

generalization ability can be guaranteed. Furthermore, the bound is dimension-free and thus a

kernelized version of the algorithm, (e.g. [45, 46]), may yield a good performance. For more
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theoretical analysis and statistical physics investigations on other LVQ variants on simplified

model situations, please consult [18].

2.3 LVQ with Adaptive Metrics

Special attention has been paid recently to schemes for manipulating the input space metric used

to quantify ‘similarity’ between prototypes and feature vectors [11, 12, 13, 14, 15]. The pre-

defined Euclidean metric (given in Eq.(2.4)), used by typical LVQ schemes as in LVQ [8] and

GLVQ [10], measures the similarity of two feature vectors via equally weighted dimensions.

Such metric can only be applicable if the data displays a Euclidean characteristic. However,

in the case of high-dimensional heterogeneous data sets where noise increases in the data, the

Euclidean metric may not be a good choice. In such cases, data are disrupted, and hence the

usage of Euclidean metric may incorporate a negative impact on the overall classification accu-

racy. The two following sections review the most popular alternatives, based on metric learning

schemes, particularly proposed to overcome the feature-scaling problem. The main purpose is

to learn a discriminative distance, using training data, for a given classification task.

2.3.1 Relevance LVQ (RLVQ)

Relevance LVQ (RLVQ) algorithm [11] is an extension of the original LVQ1 [8] with an adap-

tive diagonal matrix acting as a metric tensor defining the distance in the input space. The

distance is a weighted squared Euclidean metric defined as,

dπ(x,w) =
m∑
i

πi(xi − wi)2 with πi ∈ Rm, πi > 0,
m∑
i

πi = 1. (2.7)

During classification, the parameter πi (so-called relevance vector) weights the input dimen-

sions according to their relevance (with respect to the classification task), which is crucial to

prune out irrelevant, noisy and redundant dimensions. On the other hand, it assigns higher

weights for discriminative and more relevant features. Accordingly, a further Hebbian learning
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step was added to the original LVQ1 adaptation rules (see Algorithm 1), which adds an iterative

update on π.

2.3.2 Generalized Relevance LVQ (GRLVQ)

The LVQ1 Hebbian learning steps showed some instabilities for large data sets. Thus, the

GLVQ [10] was extended, with respect to the adaptive metric Eq.(2.7), to the Generalized Rel-

evance LVQ (GRLVQ) algorithm [12]. In this context, the new adaptation step was achieved by

minimizing the cost function given in Eq.(2.5) with respect to π and it reads,

∆π = −ηπφ′(µπ(xi))
[
γ+ · (xi − w+)2 − γ− · (xi − w−)2

]
,

where

γ+ = dπ(xi, w−)
(dπ(xi, w+) + dπ(xi, w−))2 ,

γ− = dπ(xi, w+)
(dπ(xi, w+) + dπ(xi, w−))2 ,

π > 0, (2.8)

where ηπ is the learning rate of relevance factor π, set individually to each application through

cross validation procedure. For more details please consult [12].

A further expansion, namely Localized GRLVQ (LGRLVQ) [41], suggests that the diagonal

metric (with relevance factors) can also be chosen locally attached to each single prototype,

rather than globally for the whole data space. The local distance similarity measure will be

reformulated as,

dπ
l(x,wl) =

m∑
i

πli(xi − wli)2. (2.9)

In this case, relevance factors πl (attached to each prototype wl) is updated individually together

with their corresponding prototype wl. Note that, wl can be wl+ or wl−.

Investigations in [41] showed that the generalization bound, for the GRLVQ classifier with

adaptive diagonal metric, can be derived. It was also found that the bound depends on the
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margin of the classifier rather than the dimensionality of the data. This appealing fact justifies

(theoretically) the reason of the good classification performance, particularly in cases of noisy

high dimensional data. Furthermore, an empirical and theoretical comparison of the GRLVQ

with the Support Vector Machine (SVM) formulation, presented in [47], has shown that the

two classifiers share several crucial advantages, such as convergence to global optimum1, and

interpretation as large margin optimizers for which dimensionality independent generalization

bounds exist and formulation of learning in a feature space defined by non-linear kernels.

Due to the high classification performance as well as the improved interpretability of the

system, the GRLVQ model has been employed successfully in several practical applications

with irrelevant or inadequately scaled dimensions. This includes processing of functional data

[48], 3D object recognition [49], bioinformatics [23] and telecommunication [22].

2.3.3 Matrix LVQ (MLVQ)

Matrix LVQ (MLVQ) [26] is a new heuristic extension of the basic LVQ1 [8] with a full (that

is not only diagonal elements) matrix tensor based distance measure. The advanced distance

measure accounts for different scalings and pairwise correlations between different features,

and hence provides more discriminative power capable of separating between classes.

Given an (m×m) positive definite matrix Λ � 02, the algorithm uses a generalized form

of the squared Euclidean distance

dΛ(xi, w) = (xi − w)TΛ(xi − w). (2.10)

Positive semi-definiteness of Λ can be achieved by substituting Λ = ΩTΩ, where Ω ∈ Rm×m

is a full-rank matrix.

Note that, the employed distance measure in LVQ schemes can indeed determine the shape

1If GRLVQ is combined with the Neural Gas model.
2We use the notation A � 0 and A � 0 to signify that A is positive definite and positive semi-definite,

respectively.
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of the decision boundaries. In contrast to the linear boundaries imposed by the use of Euclidean

metric, the extended adaptive distance measure provides non-linear decision boundaries and

hence more accurate classification results. The MLVQ algorithm implements Hebbian updates

with respect to the training pattern xi for the closest prototype and the metric parameter as,

∆w+ = +ηw ·Λ · (xi − w+), ∆Ω = −ηΩ ·Ω · (xi − w+)(xi − w+)T ,

or,

∆w− = −ηw ·Λ · (xi − w−), ∆Ω = +ηΩ ·Ω · (xi − w−)(xi − w−)T ,

ηw, ηΩ are positive learning rates for prototypes and metric, respectively. They are set individ-

ually to each application through cross validation. Note that, ηΩ can be chosen independently

of ηw. Often, it is set to a smaller order of magnitude to account for a slower time-scale of

metric learning compared to the weight updates [50]. The Λ needs to be normalized after each

learning step to prevent the algorithm from degeneration. Here, it is set

∑
i

Λii = 1, (2.11)

to fix the sum of diagonal elements (eigenvalues) to be constant.

2.3.4 Generalized Matrix LVQ (GMLVQ)

For faster and more robust convergence, the new advanced distance measure (2.10) was better

utilized in the extended variant of the GLVQ [10], the Generalized Matrix LVQ (GMLVQ, see

[13, 26, 15]) with explicit cost function. Similarly to the above GLVQ and GRLVQ learning

schemes, the GMLVQ model is trained in an on-line-learning manner by minimizing the cost

20



function,

fGMLV Q =
n∑
i=1

φ(µΛ(xi)) where

µΛ(xi) = dΛ(xi, w+)− dΛ(xi, w−)
dΛ(xi, w+) + dΛ(xi, w−) , (2.12)

based on the steepest descent method. φ is a monotonic function, e.g. the logistic function or

the identity φ(`) = `, dΛ(xi, w+) is the distance of data point xi from the closest prototype with

similar class label c(w+) = c(xi) = yi, and dΛ(xi, w−) is the distance of xi from the closest

prototype with a dis-similar class label than c(w−) 6= c(xi) 6= yi. Hebbian-like on-line updates

are implemented for prototypes w+, w− along with the metric parameter Ω: w+ is attracted

towards the training instance xi and w− is repelled from it.

The derivatives of fGMLV Q Eq.(2.12) with respect to the prototypes w+, w− and the metric

parameter Ω yield the following adaptation rules [13, 26],

∆w+ = +ηw · φ′(µΛ(xi)) · γ+ ·Λ · (xi − w+), (2.13)

∆w− = −ηw · φ′(µΛ(xi)) · γ− ·Λ · (xi − w−), (2.14)

∆Ω = −ηΩ · φ′(µΛ(xi))

·
[
γ+ · (Ω(xi − w+)(xi − w+)T )− γ− · (Ω(xi − w−)(xi − w−)T )

]
, (2.15)

where

γ+ = 4dΛ(xi, w−)
(dΛ(xi, w+) + dΛ(xi, w−))2 , γ− = 4dΛ(xi, w+)

(dΛ(xi, w+) + dΛ(xi, w−))2 .

The GMLVQ method is summarized in Algorithm 3. For more details about the algorithm

and the derivatives please consult [13, 26, 42].

Similarly to the diagonal localized metric given in Eq.(2.9), extensions to full adaptive lo-

calized metric Λl attached to individual prototypes, was introduced in the Localized GMLVQ

21



Algorithm 3 The GMLVQ Training Algorithm.
initialize the prototype positions wj ∈ Rm, j = 1, 2, ..., L
initialize matrix Ω and normalize according to Eq.(2.11)
while a stopping criterion (maximum number of training epochs) is not reached do

randomly select a training pattern xi, i ∈ {1, 2, ..., n} with label c(xi)
compute the distances from xi to prototypes wj using the adaptive distance in Eq.(2.10)
find the closest correct prototype w+

q = arg minl dΛ(xi, w+
l ) with c(xi) = c(w+

q )
find the closest incorrect prototype w−q = arg minl dΛ(xi, w−l ) with c(xi) 6= c(w−q )
update w+

q and w−q according to Eq.(2.13) and (2.14), respectively
update Ω according to Eq.(2.15)
normalize the matrix using Eq.(2.11)

end while

(LGMLVQ) [13, 26, 15] and the distance reads

dΛl(x,wl) = (x− wl)TΛl(x− wl). (2.16)

Localized distance measures allows for various correlations between different classes in the

feature space. Thus, data can be seen as a group of clusters with ellipsoidal shape and different

directions. In the training course, each localized metric Λl is individually adapted along with

its corresponding prototype wl. For details about the parameters updates please consult [13].

Along with the superior classification performance, the GMLVQ scheme can also achieve a

generalization ability as demonstrated by theoretical findings in [13, 50, 26]. Furthermore,

large margin generalization bounds are achieved without depending on the data dimensionality,

which also holds for local metrics attached to each prototype [13, 50, 26].

There have been several important extensions of the original GMLVQ, however irrelevant

to this research, allowing for better performance in complex applications with high dimensional

valued data. For instance, in high-dimensional data the GMLVQ algorithm may incorporate

large number of free adjustable parameters leading to instability in learning and over fitting.

This problem has been initially investigated in [21] by proposing a band-limited GMLVQ for

classification and analysis of high dimensional spectral data. In this application, the number
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of non-zero adjacent diagonals in Ω has been reduced, and so the number of free parameters,

without restricting the algorithm performance.

The problem of high computational cost in high-dimensional data sets has been handled

from a different perspective in [51, 52, 42]. The study assumes that in some cases parts of the

data relevant for classification can lie in a linear subspace of Rm, hence, Ω (and thus Λ) can

be low rank (i.e. rectangular matrix Ω ∈ Ru×m, u < m). The Limited Rank Matrix LVQ

(LiRaM LVQ) scheme [51, 52, 42] introduces an important extension of the GMLVQ to the

use of limited rank matrices corresponding to low-dimensional representations of the data. This

modification has helped to include prior knowledge about the essential dimension of the data,

particularly in high dimensional data. In addition, it reduces the number of free parameters

involved in the GMLVQ learning, and hence the computational complexity, while maintaining

valid classification performance. The localized version of the limited rank transformation ma-

trices allows for more complex decision boundaries. The detailed analysis of the model and the

study of convergence behaviour can be found in [51].

Controlling the rank of a matrix allows for determining the important dimensions of data,

and hence brings out an attractive discriminative visualization tool for labeled data sets [53,

20, 51]. This can be achieved by applying an appropriate projections into the most relevant

two- or three-dimensional spaces i.e. u= 2 or 3, of the original data set. The advantage of

restricting the rank has been demonstrated in several high-dimensional real-world applications,

such as image analysis and bioinformatics [53, 20, 51]. A recent variant of the GMLVQ has

been employed for inspecting the relevance of texture features in their capability to classify

high-resolution tomography images [24, 42]. The GMLVQ algorithm was further employed in

several application domains, including differentiable kernel applications [54] where it has been

considered as an alternative kernel-based classifier.

The GMLVQ scheme (in its original form) will be investigated and employed extensively

throughout this thesis. This thesis considers only the typical GMLVQ setting, which assumes
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symmetric full rank metric Ω ∈ Rm×m with one global (non-localized) matrix that accounts

for a transformation of the whole input space.

2.4 Research Questions

This Section addresses the key research questions, investigated throughout this thesis, along

with their corresponding brief answers. Each of the following problem statements comprises

the motivation behind the tackled problem, the main objective and a concise description of the

methodology suggested to solve the problem.

The field of supervised classification introduced a new paradigm, so-called Learning Using

Privileged Information [27, 28], which intends to improve classification accuracy through in-

corporating additional valuable knowledge during a classifier training course, however, hidden

in testing.

• What is the appropriate methodology for including privileged data in the training

phase of LVQ classifiers, and particularly within the GMLVQ model [13]? How

does the extended GMLVQ (with LUPI) compare with the standard GMLVQ (with

classical learning scheme), in terms of classification accuracy?

Contribution in Chapter 3 presents two direct and transparent methodologies, based on metric

learning, for incorporation of valuable privileged knowledge in the model construction phase

of the GMLVQ model. In particular it extends the GMLVQ [13, 26], to the case of additional

(privileged) information available only during the training phase and not in testing. This is

executed by changing the global metric in the input space, based on distance relations revealed

by the privileged information. Applications on controlled experiments and practical large-scale

scenarios illustrate the benefit of the proposed LUPI formulations with respect to the classical

ones. Furthermore, the results reveal that they perform favorably against other existing LUPI

formulation (i.e. SVM+).

Several practical learning problems involve classifying examples into classes which have a
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natural order imposed on them (e.g. information retrieval [2], medical analysis [6] and pref-

erence learning [33]). Such problems, namely ordinal classification, have recently received a

great attention in the Machine Learning literature.

• What is the appropriate learning mechanism for extending the nominal LVQ frame-

works (with non-ordered classes), particularly the GMLVQ, to be intended designed

principally for classifying data with ordered classes?

Chapter 4 argues that the exiting nominal LVQ are unable to perform optimally in ordinal clas-

sification problems. Therefore, this chapter extends the LVQ with full adaptive matrix, MLVQ

and GMLVQ [13, 26], to the case of ordinal classification. Unlike in nominal LVQ (with non-

ordered classes), in the proposed ordinal LVQ the class order information is explicitly utilized

during training, in selection of the class prototypes for adaptation, as well as in determining

the exact manner in which prototypes are updated. Experiments conducted on several ordi-

nal classification problems demonstrate that the proposed ordinal LVQ formulations compare

favorably with their nominal counterparts besides achieving competitive performance against

existing benchmark ordinal classification models.

• Can the proposed ordinal LVQ variants benefit from the incorporation of the priv-

ileged information during the ordinal classification learning? What is the learning

methodology required to achieve this aim?

Chapter 5 presents a novel ordinal-based metric learning scheme specially designed for incor-

porating privileged information in ordinal classification tasks. This is performed by imposing a

global metric change on the input feature space, based on distance relations obtained from the

privileged information. The proposed model has been formulated in the context of the presented

ordinal LVQ classifier with metric adaptation. In contrast to the nominal version of LUPI, in the

ordinal LUPI variant the ordinal information of classes is appropriately taken into account while

incorporating the privileged data. Experimental results demonstrate the benefit of incorporating
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the privileged information in ordinal classification tasks, including real-life ordinal time-series

predictions.

2.5 Chapter Summary

This chapter has given an overview of the main features of prototype-based classification al-

gorithms in terms of the popular Learning Vector Quantization (LVQ) family. The Nearest

Prototype Classification (NPC) scheme, implemented in the classification phase, was initially

explained along with the required background information regarding the basic learning algo-

rithms, in addition to the notations used throughout the thesis. Attention was given to various

LVQ approaches being taken with regard to faster and more robust convergence, as given in the

cost function-based learning algorithm (the Generalized LVQ (GLVQ) [10]).

A particular focus was placed on a group of efficient LVQ variants which extend the standard

restricted metric scheme (with Euclidean settings) into an advanced adaptive metric scheme,

which takes into account different relevance and correlation of data features. LVQ models with

metric adaptation schemes allow adapting a diagonal relevance metric (as given in Generalized

Relevance LVQ (GRLVQ) [12]) or a full matrix (as in the Generalized Matrix LVQ (GMLVQ)

[13]) according to a given classification task. This adjustability thus increases the classifiers’

flexibility, interpretability and capacity. As a result, LVQ variants with metric learning have

proven to be beneficial in a variety of practical complex applications, as referenced in this

chapter.
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CHAPTER 3

Incorporating Privileged Information Through Metric

Learning

3.1 Introduction

Traditionally in classification learning problems the learner is given a labeled training set of

examples xi ∈ X from a data space X and aims to find a decision function f (preferably with a

small generalization error) over the domain X . Although the main data set plays an important

role when designing a classifier, additional privileged knowledge (represented through ‘privi-

leged space’ X∗) may contain substantial information that might be used when constructing f .

Designing classifiers that incorporate privileged knowledge along with the original data set is

an important and challenging research issue.

Recently, [27, 29, 28] integrated privileged knowledge in a Support Vector Machine (SVM)

classifier via a new learning paradigm called Learning Using Privileged Information (LUPI). In

the training stage, along with training input xi ∈ X , a classifier may be given some additional

information x∗i ∈ X∗ about xi. Such additional (privileged) information, however, will not be

available in the test phase, where labels must be estimated using the trained model for previously

27



unseen inputs x ∈ X only (without x∗). In the SVM context, the additional information is used

to estimate a slack variable model in SVM+. However,

1. SVM classifiers use decision hyperplane1 and are inherently constructed to deal with

binary classification problems. Even though there have been developments in extending

SVM to multi-class scenarios (e.g. [55]), such formulations do not naturally represent the

multi-class nature of the data in a single model.

2. It may be difficult to interpret how exactly the additional information influences the re-

sulting classifier through the slack model in SVM+.

3. SVM+ training can be computationally expensive (even impractical for large-scale data

sets).

4. The LUPI paradigm, used by SVM+, is specially designed for incorporating the privi-

leged information in SVM classifications, hence inapplicable to employ in other super-

vised classifiers.

This chapter proposes a completely different approach to learning with privileged infor-

mation through metric learning in prototype-based models, particularly in the Learning Vector

Quantization (LVQ) frameworks. LVQ models (revised in Chapter 2) lend themselves natu-

rally to multi-class problems, are more amenable to interpretations and can be constructed at a

smaller computational cost. In particular, this chapter extends the recently proposed modifica-

tion of LVQ, the Generalized Matrix LVQ (GMLVQ) [13, 26] (see section 2.3.4), to the case

of additional (privileged) information available only during the training phase. In GMLVQ the

prototype positions, as well as the (global) metric in the data space X can be modified.

The main idea behind our approach is the modification of the metric in the original data

space X based on data proximity ‘hints’ obtained from the privileged information space X∗.

1In the original, or feature spaces.
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We present two approaches for metric manipulation in X based on X∗. We also introduce two

methods for incorporating the new metric in X in the context of prototype-based classification.

One of the main advantages of our approach is that, unlike in the SVM+ formulation [27, 29,

28], the privileged information is used to manipulate the metric in the input space and thus

any convenient classifier can be subsequently used, bringing more flexibility to the problem of

incorporating privileged information during the training.

We experimentally study the performance of our general methodology and compare it with

the SVM+ model [27, 28]. In addition, we illustrate its advantages in galaxy morphology

classification using a large-scale astronomical data set (on which application of the standard

SVM based methodology would be computationally costly1).

This chapter has the following organization: Section 3.2 gives insights about the idea of

learning with privileged information, particularly in the SVM context. Section 3.3 revises some

important algorithms and techniques in the field of distance metric learning with a focus on

the information theoretic metric learning method that relates to our research. Sections 3.4 and

3.5 introduce novel approaches for incorporation of privileged knowledge in prototype-based

classification using metric learning methods. The computational complexity of the proposed

formulations are studied in section 3.6. Experimental results are presented in section 3.7 and

discussed in section 3.8. Section 3.9 concludes the study by summarizing the key contributions.

3.2 Learning Using Privileged Information (LUPI)

Learning Using Privileged Information (LUPI) framework [27, 29, 28] aims to improve learning

in the presence of an additional (privileged) information x∗ ∈ X∗ about training examples

x ∈ X , where the privileged information will not be available at the test stage.

The incorporation of the privileged information into training has been formulated within the

Support Vector Machine (SVM) framework, in particular, [27, 29, 28] presented a new learning

1There have been developments in the SVM literature aiming to handle large data sets (e.g.[56] ). However,
direct transformation of the LUPI framework to such formulations would be non-trivial
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scheme for SVM based on SVM+. In [27, 28] three situations where privileged information

might usefully be employed were considered:

1. Privileged information as an advanced technical model, applying the LUPI paradigm

to construct a rule for classification of proteins into families based on their amino-acid

sequences, and employing protein 3D-structures as privileged information.

2. Privileged information as a holistic description, incorporating image poetic description,

as privileged information, in learning to improve image classification problems.

3. Privileged information as future events, employing a series of future events as privileged

information to solve time series prediction problems.

The basic process of the original supervised SVM model starts with mapping the training data

from the original input space into a higher dimensional feature space, by using kernels, so that a

linearly non-separable problem is transformed into a linearly separable one. Within the feature

space, the hyperplane with maximum margin is constructed to separate two classes in case of

binary classification. In order to find the hyperplane, SVM model presents an objective function

in a dual form and employs quadratic programming to solve the optimization problem. If the

training set is not linearly separable, the standard SVM model allows the decision margin to

make a few “mistakes” represented by slack variables (ξi).

In the standard SVM classification [16] we are given a set of (input,label) pairs,

{(x1, y1), ...., (xn, yn)}, xi ∈ X, yi ∈ {−1, 1} , i = 1, ..., n,

generated according to a fixed (but unknown) probability measure P (x, y). The data is used to

estimate a decision function h(zi) = 〈ẃ, zi〉 + b́, where 〈·, ·〉 represents the dot product and ẃ,

b́ are solutions of:

min
ẃ,b́,ξi

1
2 ||ẃ||

2
2 +B

n∑
i=1

ξi under the constraints,
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∀ 1 6 i 6 n, yi(〈ẃ, zi〉+ b́) > 1− ξi, ξi > 0,

where B ≥ 0 is a hyper-parameter that balances the goal between classification accuracy (some

of slacks) and smoothness of the decision boundary in the original space. Training inputs xi are

(implicitly) transformed to their feature space images zi through the use of the ‘kernel trick’:

Given a kernelK, K(xi, xj) represents a dot product 〈zi, zj〉 in the corresponding Hilbert space.

In the LUPI framework additional informative information x∗i ∈ X∗ about a training ex-

ample xi ∈ X during the training stage. However, such information will not be available (i.e.

hidden) at the test stage. In the SVM+ model we are given a set of training triplets,

{(x1, x
∗
1, y1), ...., (xn, x∗n, yn)} xi ∈ X, x∗i ∈ X∗, yi ∈ {−1, 1} , i = 1, ..., n,

generated according to a fixed (unknown) probability measure P (x, x∗, y). The training triplets

are used to estimate two linear functions concurrently:

1. The decision function h(zi) = 〈ẃ, zi〉+ b́

2. A correcting function (i.e. slack function) ξi = 〈ẃ∗, z∗i 〉 + b́∗, where ẃ∗ , ẃ, b́ and b́∗ are

the solutions of

min
ẃ,b́,ẃ∗,b́∗

1
2 ||ẃ||

2
2 + ρ

2 ||ẃ
∗||22 +B

n∑
i=1

(〈ẃ∗, z∗i 〉+ b́∗) under the constraints,

∀ 1 6 i 6 n, yi(〈ẃ, zi〉+ b́) > 1− (〈ẃ∗, z∗i 〉+ b́∗), (〈ẃ∗, z∗i 〉+ b́∗) > 0

In SVM+ model, correcting functions control the slack variables based on the privileged infor-

mation. The objective function of SVM+ contains two hyper-parameters B, ρ > 0. The ρ is a

nonnegative parameter that reflects the imposition of smoothness in the slack model. Training

triplets

(x1, x
∗
1, y1), ......, (xn, x∗n, yn)
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are transformed into the triplets

(z1, z
∗
1 , y1), ......, (zn, z∗n, yn)

by mapping vectors x ∈ X into z ∈ Z and x∗ ∈ X∗ into z∗ ∈ Z∗, where Z and Z∗ are the

corresponding feature spaces endowed with inner products 〈zi, zj〉 = K(xi, xj), 〈z∗i , z∗j〉 =

K∗(x∗i , x∗j) defined by kernels K and K∗.

In [27] another related approach, dSVM+, is introduced. In dSVM+ the space of admissible

non-negative correcting functions is constrained to a 1-dimensional space (d-space). Privileged

information x∗i is transformed into so-called deviation (scalar) values di and the SVM+ method

is applied to training triplets (xi, di, yi). It has been experimentally verified in [27, 28] that

classifiers trained with both privileged information x∗i ∈ X∗ and original data xi ∈ X can

improve over classifiers fitted on xi ∈ X only [27, 28]. A detailed theoretical analysis about

the LUPI paradigm in supervised settings (using SVM+) is presented in [30].

The original SVM+ [27, 29, 28] algorithm is typically implemented with the L2 norm SVM,

with ||ẃ||2 =
√∑m

i=1 ẃ
2
i computation. Vapnik’s LUPI [27, 29, 28] paradigm has been refor-

mulated to the L1 norm SVM, with ||ẃ||1 = ∑m
i=1 |ẃi|, aiming to reduce the time spent on

determining the optimum model parameters [57]. The L1 SVM approach is a popular extension

of standard SVM based on feature selection [58]. It is found that the L1 norm SVM model,

causes many (irrelevant) parameters to equal zero, so that the parameter vector is sparse. This

is particularly valuable in the case of learning in redundant or noisy features. The nonlinear

feature mapping (supported by the kernel trick), for the extended LUPI with L1 SVM form, has

been introduced in [59]. It utilizes the privileged information in a transformed feature space

instead of the original space.

A very recent extension of the SVM+ [27, 29, 28], namely ν-K-SVCR+, to a multi-class

support vector algorithm for LUPI is presented in [60]. The method has been proposed based
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on the ν-K-SVCR algorithm [61], which solves the multi-class classification problem using the

one-against-one-against-rest structure during the decomposition through utilizing a mixture of

the formulations of ν-SV Classification and ν-SV Regression. Similarly to the original SVM+

formulation, the ν-K-SVCR+ model has been established based on the correcting functions

determined by the privileged information.

The idea of incorporating privileged information during the training course in supervised

context has proven useful in a number of benchmark problems and practical applications, e.g.

financial prediction models [31], automatic recognition of traffic signs [62]. In addition, other

approaches have been introduced for incorporation of privileged information in the unsuper-

vised learning context. For instance, the study in [32] proposed a cluster fusion algorithm that

aimed towards improving clustering performance through using privileged data as part of the

clustering process itself.

However, despite of all previous trials for LUPI, it can be questioned why not using a tradi-

tional ’feature fusion’ method to integrate the privileged data in the classifier learning course.

Standard features fusion will simply merge the privileged features in space X∗ with the original

data features in spaceX , in order to form one extended training set of (X+X∗), yet, the test set

is only performed on space X . Despite of the simplicity of this method, it is found (in our nu-

merical experiment results1) that classifiers adopting such technique attains poor classification

performance. That is because the feature fusion approach tends to merge two non-homogeneous

features, coming from two different hypothesis spaces, into one single training set. Even simple

feature normalization might not guarantee the efficiency of integrating such fused features for

the classification task. Furthermore, merged training features in X and X∗ are treated equally

by classifiers, and hence the effect of more important/relevant features (mostly the original fea-

tures in X), which should actually control the classification task, will diminish.

In this chapter, we present a more transparent formulation for LUPI based on metric learn-

1However, results are not revealed in the thesis because as expected the performance of the scheme was con-
sistently inferior when compared to the proposed methodology. Hence, it is too obvious to report.
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ing, in the context of supervised multi-class LVQ frameworks. The new model suggests to

handle the original data features in X separately from the privileged features in X∗. Such

separation in treatment, allows for controlling the amount of the incorporated additional data,

according to their importance/confidence towards the classification task. Furthermore, it pro-

vides more flexibility to the problem of LUPI to the application with various classifiers, rather

than being restricted to a specific classifier, as in the case of SVM+ [27, 29, 28]. The next

section introduces the notion behind metric learning along with reviewing some of previous

methodologies related to this study.

3.3 Distance Metric Learning (DML)

Over the last few years, there has been considerable research on Distance Metric Learning

(DML) algorithms which aim to optimize a target distance for a given set of data points under

various types of constraints (given in the form of side information) [63, 64, 65, 66, 67, 68,

69, 70]. In general, DML frameworks aim to improve the performance of learning algorithms

through encoding good distance information of the instance distribution. DML methods have

been successfully employed in several real-world applications (e.g. information retrieval, image

recognition and face verification [71, 72]).

In the context of supervised metric learning, the distance metric is learnt from training

data associated with explicit class labels and pairwise similarity constraints. Such constraints

indicate that points in the same class should have smaller distances to each other than points in

different classes. The Neighbourhood Components Analysis [63] algorithm targets improving

the k-Nearest Neighbor (k-NN) classification accuracy by designing a new distance metric. It

defines for each data input the probability of selecting a similar class input as its neighbors, and

then learns a distance metric that maximizes the summation of such probabilities over all the

inputs. The Large Margin Nearest Neighbor [64] learns a Mahanalobis distance metric for k-

NN classification through maximizing a large margin between instances from different classes
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and conversely minimizing the distance of the k closest similarly-labeled instances. In [73],

generalization error of a regularized supervised DML formulation has been investigated - under

appropriate constraints the generalization error is independent from the data dimensionality. In

a different research stream [74], the metric is estimated within the Empirical Risk Minimization

(ERM) framework. The learnt metric is consistent in the asymptotic regime of training set size

approaching infinity. This work was further extended in [75] by proposing a constrained ERM

DML framework. The generalization bound proved in [75] demonstrates the importance of the

employed constraints.

Supervised subspace selection approaches can be viewed as ‘appropriately’ changing the in-

put features and metric in order to enhance the classification performance, e.g. Fisher’s Linear

Discriminant Analysis (FLDA) [76]. In multi-class classification, multi-class FLDA may merge

classes which are close in the original data space. This problem has been addressed in [77]. As-

suming (as in FLDA) that the classes are Gaussian-distributed with the same covariance matrix,

the algorithm maximizes the geometric mean (rather than the arithmetic mean implicitly used

in FLDA) of the (normalized) Kullback-Leibler (K-L) divergences between the projected class

distributions. The requirement of the same covariance matrix shared by all classes has been

relaxed in the kernelized version of Max-Min Distance Analysis (MMDA) approach [78]. The

method separates all class pairs by maximizing the minimum distance between the projected

class pairs.

In semi-supervised metric learning, the distance metric is learnt from a weaker supervisory

information, such as pairwise similarity constraints and partially available or completely absent

class labels. The similarity constraints describe pairs of points that should, or should not be

grouped together (e.g. Relevance Component Analysis [66], Discriminant Component Analysis

[67])).

In the context of supervised clustering, the algorithm presented in [68] learns a metric using

semi-definite programming through minimizing the sum of squared distances between similarly
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labeled examples, while imposing a lower bound on the distances between examples with dif-

ferent labels. However, the algorithm suffers from high computational cost especially in the

case of high-dimensional data.

3.3.1 Information Theoretic Metric Learning (ITML)

In this research we will utilize an existing supervised DML method, namely, Information Theo-

retic Metric Learning (ITML) [65] to learn a Mahalanobis distance metric for the original space

X using supervisory information (pairwise similarity constraints and class labels) extracted

from the privileged space X∗.

In ITML [65] given a set of n points {x1, ..., xn}, xi ∈ Rm, also given an initial distance

function, parameterized byA0, specifying prior knowledge about interpoint distances. In ITML

the one learns a positive definite matrix A � 0 defining the (squared) distance dA (xi, xj) =

(xi − xj) TA (xi − xj), that is close to the baseline matrix A0, subject to categorical pairwise

similarity information on the data points that should be preserved. Two sets of pairs of data

points from X are formed corresponding to the ‘similar’ S+ and ’dis-similar’ S− data items.

• S+ = {(xi, xj)|xi and xj are judged to be similar}

• S− = {(xi, xj)|xi and xj are judged to be dis-similar}

In supervised multi-class settings, constraints are taken directly from the provided labels, i.e.

points in the same class are constrained to be ’similar’ S+, and points in different classes are

constrained to be ’dis-similar’ S− [65].

The closeness relation between the original metric and the new one is measured through the

Kullback-Leibler (K-L) divergence, also known as relative entropy, between the multivariate

zero-mean Gaussian having A0 and A as precision matrices. The ITML optimization problem

[65] tends to minimize the K-L divergence between the associated Gaussians whose covariance

matrices are parameterized according to A0 and A. It has been found that the differential

relative entropy between two equal-mean Gaussians with covariance matricesA0 andA exactly
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equals the LogDet divergence between A0 and A, that is equals to DLogDet (A,A0)1. The

LogDet divergence2, that is also called the Burg matrix divergence (DBurg (A,A0)), is a type

of Bregman matrix divergence that has widely been used in matrix nearest problems [79]. One

advantages of using the Burg divergence method is that it preserves the positive definiteness

constraint of matrices while solving the optimization problem.

The Problem Statement

To compute the optimalA, the resulting matrix divergence

DBurg (A,A0) = tr (AA0)−1 − log det (AA0)−m,

is minimized while enforcing the desired constraints as,

min
A�0

DBurg (A,A0) , subject to

dA (xi, xj) ≤ l, if (xi, xj) ∈ S+, and

dA (xi, xj) ≥ u, if (xi, xj) ∈ S−. (3.1)

where l and u are relatively small and large distance bounds (respectively), tr denotes the trace

operator and m is the data dimensionality. Note that, A0 can be parameterized by inverse of

the sample covariance (when data are assumed to be Gaussian), or alternatively by the squared

Euclidean metric [65].

In some cases, particularly if the number of constraints is large, it is not possible to find

a feasible solution for the optimization problem in (3.1). Therefore, slack variables may be

introduced to (3.1), which allows constraints to be violated, however, penalized. Yet, for sim-

plicity this section reviews the ITML algorithm in its original form only, and the slack variable

1According to [65], it is actually equals to 1
2DLogDet (A,A0), however, we remove the 1

2 for ease of presen-
tation

2The LogDet divergence is a Bregman matrix divergence generated by taking the Burg entropy of the eigen
values (λi), i.e. ϕ(A) =

∑
i logλi; which may be expressed as ϕ(A) = −logdetA [65].
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formulation will be discussed in the following sections.

The ITML Optimization Algorithm

To solve the optimization problem in (3.1), the ITML approach typically utilizes the Bregman’s

method, proposed in [80, 79], which is based on cyclic Bregman projection; i.e. in each iteration

the algorithm chooses one constraint and performs a projection so that the current solution

satisfies the chosen constraint.

The ITML framework is presented in Algorithm (4) [65, 79]. The ITML algorithm begins

with implementing the required initializations. Subsequently, based on the Bregman optimiza-

tion algorithm, for the chosen constraint (i, j) with index s(i, j) (from S+ or S−), the algorithm

maintains a non-negative dual variable ζij for that constraint. A dual variable correction is

needed here to guarantee convergence to a globally optimal solution, as proved in [79]. After

solving the system of equations, denoting the result here as ψ′, it set ψ = min(ζij, ψ′) (as given

in Eq.(3.2)), and subsequently performs the update of ζij = ζij − ψ (as given in Eq.(3.4)).

Consequently, the projection is done via the update in Eq.(3.5), where the projection parameter

is computed via Eq.(3.3). Note that, unlike the orthogonal projection, the Bregman projection

is tailored to the particular function that is being minimized. This process is then repeated by

cycling through the constraints [79]. Furthermore, according to [65, 79], in the case of the un-

derlying distance constraints where dA (xi, xj) 6= 0, elementary arguments reveal that there is

exactly one solution for ψ′ provided that l 6= 0 and u 6= 0. The unique solution, in this case,

can be expressed as given in Eq.(3.2). For further details about the algorithm description please

consult [65, 79]. Description of the Bregman algorithm proof of convergence can be found in

[80].

Why ITML?

In ITML [65] the learned distance function is used to enhance the accuracy of a k-NN clas-

sification. In this research we utilize the ITML [65] for incorporating the privileged data
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Algorithm 4 The Information Theoretic Metric Learning Approach.
input X ,A0, l and u
outputAMahalanobis matrix
initializeA = A0 and ζij=0 ∀ i,j
construct (dis)similarity constraints S±.
repeat

select a constraint in (i, j) ∈ S+ or (i, j) ∈ S−

ψ =

min
(
ζij, ( 1

dA(xi,xj) −
1
l
)
)

if(xi, xj) ∈ S+

min
(
ζij, ( 1

u
− 1

dA(xi,xj))
)

if(xi, xj) ∈ S−
(3.2)

β =


ψ

1−ψdA(xi,xj) if(xi, xj) ∈ S+,
−ψ

ψdA(xi,xj)+1 if(xi, xj) ∈ S−,
(3.3)

ζij = ζij − ψ, (3.4)

where xi and xj are data points associated with one of the (dis)similarity constraints from
S±, β is a projection parameter computed by the algorithm and ζij is the corresponding
dual variable.

compute the Bregman projection, via the update

A = A+ βA(xi − xj)(xi − xj)TA, (3.5)

until convergence
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(which will be explained in the following sections). The reasons for particularly adopting the

ITML as a supervised DML method in this research is that (a). it can naturally incorporate

prior distances, (b). it can be solved through efficient optimization avoiding costly computa-

tions (e.g. semi-definite programming as in [68]), (c). it is flexible in terms of the constraint

specification (constraints may also be defined in terms of relative distance comparisons, i.e.,

dA (xi, xj) < dA (xi, xk) [81]) and (d). it has been generalized to work in kernel space1 [82],

hence, can efficiently handle data with high-dimensional feature space.

3.4 LUPI in the Prototype-Based Model GMLVQ

This section presents two metric learning approaches of incorporating privileged information in

the GMLVQ’s learning phase. In the following algorithms data metricU is learnt in the original

space informed by inter point distances in the privileged space.

3.4.1 Metric Fusion (MF) Approach

We propose a method that incorporates the distance structure in the privileged spaceX∗ into the

metric in the original space X . Assume that we are given a global metric tensorM on space X

which parametrizes the (squared) Mahalanobis distance

dM (xi, xj) = (xi − xj)TM (xi − xj), (xi, xj) ∈ X. (3.6)

We assume that the data set is ordered such that the first p ≤ n data items have privileged

information. The sum of pairwise squared distances of the training points with privileged infor-

mation is then equal to

D =
p∑
i<j

dM (xi, xj). (3.7)

1Note that the ITML kernel version is not included in this study as we only focused on the baseline method.
However it can be considered as a future work.
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Assume further that we are given a global metric tensor M ∗ on space X∗ which parametrizes

the (squared) Mahalanobis distance

dM
∗(x∗i , x∗j) = (x∗i − x∗j)TM ∗(x∗i − x∗j), (x∗i , x∗j) ∈ X∗. (3.8)

The sum of pairwise squared distances of the training points in X∗ is then equal to

D∗ =
p∑
i<j

dM
∗(x∗i , x∗j). (3.9)

In order to be able to directly compare the distances in X and X∗, we need to rescale the

distances in X∗ by a scaling factor α that levels out the difference in scales of D and D∗:

α = arg min
a>0

[D − aD∗]2 , leading to α = D

D∗
. (3.10)

The proposed distance metric learning is formulated as the following optimization problem:

Find a full-rank matrixU of size m×m, parameterizing a positive-definite matrixC = UTU ,

that minimizes the cost function

I(C) = 2γ
p(p− 1)

p∑
i<j

(
dC (xi, xj)− α dM

∗ (
x∗i , x

∗
j

))2

+ 2(1− γ)
n(n− 1)

n∑
i<j

(
dC (xi, xj)− dM (xi, xj)

)2
. (3.11)

where γ ∈ [0, 1] is constant that determines the ‘importance’ of the auxiliary metric. There are

two forces at play in the above expression: One pulls the new metric dC in the direction of the

metric dM
∗

in the privileged space X∗, the other one prevents dC from deviating too far from

the distance dM in the original space X . Note that the normalization terms 2/(p(p − 1)) and

2/(n(n−1)) appear since not all training items have an associated privileged information (only

p ≤ n out of n training points).
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The cost function I(UTU) is quartic (degree 4) in U , which means that a gradient based

optimization of I can get stuck in a local optimum. However, for unconstrained C, I(C) is

quadratic in C. We will initialize gradient descent optimization of I(UTU ) by first finding

the unconstrained minimizer of I(C) analytically, and then projecting it to the space of pos-

itive definite matrices parametrized by UTU . In order to find C minimizing I(C) we first

differentiate

dI
dC

= 4γ
p(p− 1)

p∑
i<j

[
(xi − xj)TC(xi − xj)− α(x∗i − x∗j)TM ∗(x∗i − x∗j)

]
· (xi − xj)(xi − xj)T

+ 4(1− γ)
n(n− 1)

n∑
i<j

[
(xi − xj)TC(xi − xj)− (xi − xj)TM(xi − xj)

]
· (xi − xj)(xi − xj)T . (3.12)

Denoting the rank-1 matrix (xi − xj)(xi − xj)T by J (i,j), the optimal C is the solution of

4γ
p(p− 1)

p∑
i<j

(xi − xj)TC(xi − xj)J (i,j) + 4(1− γ)
n(n− 1)

n∑
i<j

(xi − xj)TC(xi − xj)J (i,j)

= 4γ
p(p− 1)

p∑
i<j

α(x∗i − x∗j)TM ∗(x∗i − x∗j) J (i,j)

+ 4(1− γ)
n(n− 1)

n∑
i<j

(xi − xj)TM(xi − xj) J (i,j). (3.13)

Note that

(xi − xj)TC(xi − xj)J (i,j)

= [(xi − xj)TC(xi − xj)](xi − xj)(xi − xj)T

= (xi − xj)(xi − xj)TC(xi − xj)(xi − xj)T

= J (i,j)CJ (i,j).
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Therefore, denoting the RHS of (3.13) byH , and introducing further notation

P (i,j) = 2
√

γ

p(p− 1)J
(i,j), N (i,j) = 2

√
1− γ

n(n− 1)J
(i,j),

we have
p∑
i<j

P (i,j)CP (i,j) +
n∑
i<j

N (i,j)CN (i,j) = H . (3.14)

The solution C of the encapsulating sum system (3.14) can be written as [83]

Vec(C) =
 p∑
i<j

P (i,j)T ⊗P (i,j) +
n∑
i<j

N (i,j)T ⊗N (i,j)

−1

· Vec(H).

where
⊗

denotes the Kronecker product and Vec is the vectorization operator on matrices.

We found that the unconstrained solutionC was typically already ‘close’ to being symmet-

ric positive-definite. The L2 projection of C onto the space of matrices parametrized by UTU

can be found by minimizing

U 0 = arg min
U
||UTU −C||2, (3.15)

which is achieved e.g. by first finding a 2-norm positive approximant G of C [84] and then

decomposing the positive definite matrix G � 0 into the product UT
0U 0 (Cholesky decompo-

sition).

The projection U 0 then initializes a gradient descent algorithm

U t+1 = U t − η ·
dI(UT

t U t)
dU t

. (3.16)

43



C

U U
T

U U
T

00

M

Figure 3.1: Illustration of the process of finding minimizer of the cost function I constrained
on the manifoldM of symmetric positive definite matrices.

where 0 6 η 6 1 is a positive step size parameter1 and

dI(UTU)
dU

= 8γ
p(p− 1)

p∑
i<j

[
(xi − xj)TUTU(xi − xj)

−α(x∗i − x∗j)TM ∗(x∗i − x∗j)
]
·U(xi − xj)(xi − xj)T

+ 8(1− γ)
n(n− 1)

n∑
i<j

[
(xi − xj)TUTU(xi − xj)−

(xi − xj)TM (xi − xj)
]
·U(xi − xj)(xi − xj)T .

The approach is illustrated in Figure. 3.1. Unconstrained analytically obtained minimizer C of

the cost function I (eq. (3.11)) is projected (with respect to the L2-norm) onto the manifoldM

of symmetric positive definite matrices. The projectionUT
0U 0 is not necessarily the constrained

minimizer of I (constrained to the manifold M). We therefore run a gradient descent on I

constrained to M to find the minimizer of I parametrized as UTU . In practice we found

that usually the matrix C was already ‘almost’ symmetric and positive definite, so that the

updates described above were minimal. The Metric Fusion training approach is summarized in

Algorithm 5.

1We employed a line search algorithm to identify the ‘optimal’ value of η.

44



Algorithm 5 The Metric Fusion Approach.

input X , X∗,M ,M ∗ and γ
output U Mahalanobis matrix for space X
rescale the distances in X∗ by finding the scaling factor α in (3.10)
solve optimization problem in Eq.(3.11) (analytically) to find the full-rank matrix C
solve optimization problem in Eq.(3.15) to initialize U 0
run a gradient descent in Eq.(3.16) to find matrix U

3.4.2 Information Theoretic (IT) Approach

In the previous approach, the resulting squared metric dC formed a ‘compromise’ between the

squared metric dM in the original space X and the scaled squared metric α · dM∗
in the privi-

leged space X∗. The actual pairwise distances played a crucial role. In this section we suggest

another approach where the privileged information is used to describe closeness relations be-

tween some of the points in a categorical manner only - e.g. the points are ‘close’ or ‘far apart’.

This categorical information is then imposed on the original space through the framework of

Information Theoretic Metric Learning (ITML) [65] (see section 3.3.1). Our aim is to learn

a new metric in the original space which imposes small distances on points within the same

class and with ‘similar’ associated privileged data, and large distances between points across

different classes and with ‘dis-similar’ associated privileged information.

Consider training data (xi, yi), i = 1, 2, ..., n, as in section 2.2. As before, additional infor-

mation x∗i ∈ X∗ is given about training examples xi ∈ X , i = 1, 2, ..., p ≤ n. Assume that we

are given a global metric tensorM on space X defining the squared Mahalanobis distance dM

(3.6). We would like to modify dM so that the distances under the new metric dC on X are en-

larged and shrunk for pairs of points that have ‘dis-similar’ and ‘similar’ privileged information,

respectively.

As in the original ITML approach (see section 3.3.1), two sets of pairs of data points fromX

are formed corresponding to the ‘similar and dis-similar’ data items in S+ and S−, respectively.

The two sets are constructed based on proximity information in the privileged space X∗. In par-
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ticular, assume we are given a global metric tensorM ∗ on X∗ giving the squared Mahalanobis

distance dM
∗

(3.8). We calculate all pairwise squared distances dM
∗(x∗i , x∗j), 1 ≤ i < j ≤ p.

These distances are then sorted in ascending order and, given a lower percentile parameter

a∗ > 0, a distance threshold l∗ is found such that a∗ percent of the lowest pairwise squared

distances dM
∗(x∗i , x∗j) are smaller than l∗. Analogously, given an upper percentile parameter

b∗ > a∗, a distance threshold u∗ > l∗ is found such that (1− b∗) percent of the largest pairwise

squared distances dM
∗(x∗i , x∗j) are greater than u∗. The sets S+ and S− are constructed using

privileged information as follows:

• If dM
∗
(
x∗i , x

∗
j

)
6 l∗ and c (xi) = c (xj) = yi (same class label) then (xi, xj) ∈ S+.

• If dM
∗
(
x∗i , x

∗
j

)
> u∗ and c (xi) 6= c (xj) 6= yi (different class labels), then (xi, xj) ∈ S−.

Note that it is not necessary for all training points in X to be involved pairs of points in S+ or

S−.

The Problem Statement

In the IT approach the ‘similarity’ between two metrics dC and dM on X ⊂ Rm , given by

metric tensors C and M , respectively, is measured through the Bregman divergence (Burg).

The divergence is defined over the cone of positive definite matrices as [65]:

DBurg (C,M ) = tr (CM)−1 − log det (CM)−m,

Given distance thresholds 0 < l < u on X , the Bregman divergence is minimized while enforc-

ing the desired constraints:

min
C�0

DBurg (C,M) , subject to

dC (xi, xj) ≤ l, if (xi, xj) ∈ S+, and

dC (xi, xj) ≥ u, if (xi, xj) ∈ S−. (3.18)
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As before, in order to estimate a distance thresholds 0 < l < u on X , we calculate all pairwise

squared distances dM (xi, xj), 1 ≤ i < j ≤ p. These distances are then sorted in ascending

order and, given a lower percentile parameter a > 0, a distance threshold l is found such that

a percent of the lowest pairwise squared distances dM (xi, xj) are smaller than l. Analogously,

given an upper percentile parameter b > a, a distance threshold u > l is found such that (1− b)

percent of the largest pairwise squared distances dM (xi, xj) are greater than u.

As in the original ITML formulation [65], in order to guarantee the existence of a feasible

solution for C, a slack variable is introduced: Let s(i, j) denote the index of the (i, j)-th con-

straint, and let ξ be a vector of slack variables, initialized to ξ0, with components equal l for

similarity constraints and u for dissimilarity constraints. Then the optimization problem can be

reformulated as [65]:

min
C�0,ξ

DBurg (C,M) + ν ·DBurg (diag(ξ), diag(ξ0)) subject to

dC (xi, xj) ≤ ξs(i,j), if (xi, xj) ∈ S+, and

dC (xi, xj) ≥ ξs(i,j), if (xi, xj) ∈ S−. (3.19)

In IT approach the trade-off between the minimization problem and satisfying the constraints is

controlled by the parameter ν, set through cross-validation.

The IT Algorithm for LUPI

As in [65], optimizing (3.19) involves repeatedly projecting (Bregman projections) the current

solution onto a single constraint until convergence, via the update in Eq.(3.20). There are two

forces applied in this optimization problem, the first aims to find the optimal matrixC that best

approximates the distance measures of space X∗ (given in the form of similarity constraints),

while the other force attempts to preserve the original distance structure of space X , given in

the original metricM .

The algorithm is initialized with C equal to the Mahalanobis matrix of the data distribution
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in the original space X . The Information Theoretic approach is summarized in Algorithm 6.

Description of the optimization algorithm is given in section 3.3.1.

3.5 Incorporating Privileged Information in Classifiers

We propose two approaches for incorporation of the learnt metric dC into a classifier operating

on X . The first approach linearly transforms data in the original space X so that the distance

information from the privileged space X∗ is ‘preserved’. The classifier is then trained on the

transformed points. In the second approach, specially designed for the GMLVQ classification,

the new metric dC is used for only retraining the prototype positions in X , given that the metric

tensor on X has changed. This is achieved by running GMLVQ with dC fixed.

3.5.1 Transformed Basis (TB)

Recall that dC is found in the parametrized form C = UTU . Then for any x ∈ X , we have

‖x‖2
C = xTCx = xTUTUx = x̃T x̃ = ‖x̃‖2

2,

where x̃ = Ux is the image of x under the basis transformation U . The layout of the trans-

formed points x̃i = Uxi now reflects the ‘similarity/dis-similarity’ information from X∗. Data

points with ‘similar’ privileged data representation will now in general be closer than in the

original data layout. Likewise, data points with more distant privileged representations will

tend to move further apart. The classification algorithm (e.g. GMLVQ in its original form) is

now applied to the transformed data {(x̃1, y1), ...., (x̃n, yn)}. We stress that the TB approach is

flexible and, unlike SVM+, allows for application of any suitable metric-based classifier , e.g.

k-NN.
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Algorithm 6 The Information Theoretic Approach.

input X , X∗,M ,M ∗, l, u, l∗, u∗ and ν
output C Mahalanobis matrix for space X
initialize C = M and ζij=0
construct the (dis)similarity constraints S±
repeat

select constraint s(i, j)
if s(i, j) ∈ S+ then

initialize ξs(i,j) = l
else

initialize ξs(i,j) = u
end if
∀ i, j solve the optimization problem Eq.(3.19) through the followings:

ψ =


min

(
ζij, ( 1

dC(xi,xj) −
ν

ξs(i,j)
)
)

if(xi, xj) ∈ S+,

min
(
ζij, ( ν

ξs(i,j)
− 1

dC(xi,xj))
)

if(xi, xj) ∈ S−,

β =


ψ

1−ψdC(xi,xj) if(xi, xj) ∈ S+,
−ψ

ψdC(xi,xj)+1 if(xi, xj) ∈ S−,

ξs(i,j) =

νξs(i,j)/(ν + ψξs(i,j)) if(xi, xj) ∈ S+,

νξs(i,j)/(ν − ψξs(i,j)) if(xi, xj) ∈ S−,
ζij = ζij − ψ,

where xi and xj are data points associated with one of the (dis)similarity constraints from
S±, β is a projection parameter computed by the algorithm and ζij is the corresponding
dual variable.

compute the Bregman projection, via the update

C = C + βC(xi − xj)(xi − xj)TC, (3.20)

until convergence

49



3.5.2 Extended Model (Ext)

Unlike the TB approach, this methodology is specially designed to incorporate the privileged-

information-induced learned metric C in the GMLVQ algorithm. First, GMLVQ is run on

the training set (xi, yi) ∈ Rm × {1, ..., c}, i = 1, 2, ..., n, yielding a global metric dM (given

by metric tensor M ) and a set of prototypes wj ∈ Rm, j = 1, 2, ..., L. Then, one of the

two techniques of section 3.4 is used to find metric dC on X that will replace the metric dM

originally found by GMLVQ. Hence, the Ext in GMLVQ squared metric will have the form

dC(w, x) = (x− w)TC(x− w).

The metric dC incorporates the privileged information. Finally, GMLVQ is run once more with

metric tensor C fixed to modify the prototype positions1.

3.6 Computational Complexity Analysis

Our methodology incorporates three main steps:

1. metric learning in the original space X via Metric Fusion (MF) or Information Theoretic

approach (IT),

2. incorporation of the learned metric in the underlying classifier - Transformed Basis (TB)

or Extended Model (Ext),

3. forming the resulting classifier.

We study the computational complexity of each by each phase separately.

1. Analytical computation of the unconstrained matrix C in MF by solving the quadratic

problem I(C) (Eq.(3.11)) costs O(n2 +m2), where n is the number of training examples

1 The prototype positions will in general change, since the metric has been changed from dM to dC .
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andm is the data dimensionality. This is also the cost of each iteration of gradient descent

in Eq.(3.16). Learning matrix C in IT costs O(m2) per projection (Eq.3.20). Each itera-

tion of IT costs O(s ·m2), where s is the number of pairwise constrains (s = |S+ ∪ S−|)

[85].

2. TB linearly transforms each data point (cost O(n)). The complexity of the closest correct

and incorrect prototypes’ adaptation in each step of Ext costs O(m2 · Nw), where Nw is

the number of updated prototypes [13].

3. In the TB case, the complexity depends on the classifier used. For example, The original

GMLVQ costs O(m2) for matrix adaptation in each adaptation step together with O(m2 ·

Nw) for the closest correct and incorrect prototypes adaptation in each adaptation step

[13]. In the case of Ext, the cost per adaptation steps is O(m2 ·Nw).

3.7 Experiments and Evaluations

The effectiveness of the proposed methodology, integrating privileged information in learning,

was evaluated in the context of classification accuracy obtained against the state of art algo-

rithms GMLVQ, used in the original space. In addition, since the privileged information is used

to manipulate metric in the original input space X , we also employed simple k-Nearest Neigh-

bor (k-NN) metric based classifier operating in the modified metric. The two proposed metric

learning methodologies, metric fusion (MF, Section 3.4.1) and information theoretic approach

(IT, Section 3.4.2) were assessed in four experiments.

In all experiments, the (hyper-)parameters of the metric learning and classification algo-

rithms were tunned via 5-fold cross-validation on the training set. In the MF approach, param-

eter γ was tuned over the values 0.2, 0.3, ..., 1. In both classification scenarios (GMLVQ and

k-NN), the metric tensor M ∗ in X∗ was set to the precision matrix1 of the privileged training

1The inverse of the covariance matrix.
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points x∗1, x
∗
2, ..., x

∗
p (Mahalanobis distance in X∗). The same applies to the initial metric tensor

M in the original space X .

In the IT1 approach, lower and upper bounds for the privileged and original spaces were cho-

sen over the values of {2, 3, 5, 7, 10} for (a, a∗) and of {80, 85, 90, 95} for (b, b∗). Furthermore,

the slack parameter ν was tuned over the values {0.01, 0.1, 1}.

For GMLVQ, the number of prototypes per class was tunned over the set {1, 2, 3, 4, 5}.

The class prototypes were initialized as means of random subsets of training samples selected

from the corresponding class. Relevance matrices were normalized after each training step to∑
i Λii = 1 (see section 2.3.4).

Initial learning rates for prototypes ηw and relevance metric ηΩ were chosen through cross-

validation2. They decrease monotonically with training epoch index t [86]:

ηg ←
ηg

1 + τ(t− 1) (3.21)

where g ∈ {Ω, w}, τ > 0 determines the speed of annealing with τ > 0 set to 10−5. We

determine the number of epochs that yields the best mean training accuracy and display the

corresponding test accuracy.

For the k-NN classification algorithm, k was cross validated over the range 1...83.

The ‘optimal’ metric tensor U in X , resulting from the above metric learning algorithms,

is then incorporated in the GMLVQ classification process via one of the two scenarios: trans-

formed basis (TB, Section 3.5.1) and extended model (Ext, Section 3.5.2). Note that when using

k-NN only the TB approach is applicable. We summarize the models constructed within our

framework in Table. 3.1. The models are built along two degrees of freedom, namely metric

learning and incorporation of the learnt metric.

1We modified the ITML Matlab code available from http://www.cs.utexas.edu/users/pjain/
itml/. The parameters were tuned via cross-validation.

2We imposed ηw > ηΩ, implying slower rate of changes to the metric, when compared with prototype modifi-
cation.

3larger values of k did not bring performance improvements
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Table 3.1: Summary of models constructed within the LUPI for classification framework.

Metric Modification Metric Incorporation
Transformed Basis (TB) Extended Model (Ext)

Metric Fusion (MF) MF-TB MF-Ext

Information Theoretic (IT) IT-TB IT-Ext

The statistical significance of the obtained results have been assessed using the non-parametric

Sign Test measure [87]. The Sign Test examines the null hypothesis that differences in perfor-

mance of two candidate models have a distribution with zero median1. The Sign Test is a

non-parametric test, and hence makes no assumptions about the distribution. This test is used

throughout the thesis, aiming to measure the statistical significance of the difference between

two classifiers performances, one using the privileged data in learning, the other operating only

in the original data space. The Sign Test estimates a one-sided p-value for the hypothesis that

the median of the population is zero, or in other words, for implying the probability that the de-

tected data would just occur coincidentally under the null hypothesis. If the p-value is less than

or equal a predefined significance level, set here to 0.05, then the result is said to be ’statistically

significant’, and the confidence of the obtained results is confirmed.

3.7.1 Initial Controlled Experiments

In this section we report on experiments performed using three classification datasets from the

UCI database [88], namely Iris, Pima, and Abalone sets. Here we have a control over what

features constitute the ‘original’ and ‘privileged’ spaces X and X∗, respectively. In order to

demonstrate the potential of methods able to incorporate the privileged information, we used

the least informative features (from the point of view of classification) as the original features,

the rest as the privileged ones. We also studied the effect of downsizing the amount of privileged

information in the training set.

1http://www.mathworks.co.uk/help/stats/signtest.html
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Data Sets

The Iris data set contains 150 items, has four input features and three classes. The 8-dimensional

Pima data set contains 768 data items classified into two classes. Finally, the 8-dimensional

Abalone data set has 4177 data items classified into three classes.

As mentioned above, in order to create the experimental testbed, input features are first

categorized into ‘privileged’ and ‘original’. This categorization is driven by feature relevance

for the underlying classification. Diagonal elements in the GMLVQ relevance matrix effectively

order the input features with respect to their relevance for classification (higher value means

higher relevance). For each data set, we first ran the GMLVQ algorithm on the training set1 and

then took the lower half of input features as the ‘original’ ones, the second half as the privileged

features. As shown in Figure. 3.2.(a) the GMLVQ identified that third and fourth dimensions

are the most discriminative features to classify the Iris data set. Thus, the first two dimensions

in Iris were allocated to the original space X , while the last two dimensions (the relevant ones)

were considered in the privileged space X∗. Same action was conducted on the Abalone and

Pima data sets. We studied the diagonal elements of their relevance matrix (recall that each

data set has eight features), and selected the most four relevant features to form the privileged

space X∗. While the remaining four dimensions (less important features) were assigned to the

original data space X . See Figures. 3.2.(b) and 3.2.(c).

Experimental Settings and Results

Cross-validated values of (hyper-)parameters of the studied methods can be found in Appendix

A, Section A.1, Table. A.1. We randomly selected 75% of data items of each class for training

and use the remaining data for testing. Mean misclassification rates (± Std. dev) are reported

across 10 runs (10 random re-samplings of the training/test sets). Table. 3.2 presents results for

the case where each training point has both original and privileged information. Our findings

1random selection of 75% points from the original data set
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Figure 3.2: Visualization of the diagonal elements of the GMLVQ relevance matrix Λ in Iris,
Pima and Abalone data sets shown in (a),(b) and (c), respectively.

confirm that all our metric learning methods are able to successfully incorporate privileged

information during the classifier building stage, even though in the test phase (reported results)

the privileged information is not available. For the GMLVQ classification, the IT approach

achieves the best overall performance for both metric incorporation methods (TB and Ext). On

average, it outperforms (relatively) the baseline GMLVQ (trained onX only) by 25%, 14%, and

5% on Iris, Pima, and Abalone data sets, respectively. For the k-NN classification, on average

(across the three data sets) the IT-TB and MF-TB outperformed (relatively) the baseline k-

NN (trained on X only) with 7% and 6% , respectively. Compared with k-NN, GMLVQ is

more successful because it not only incorporates the privileged information in terms of learnt

metric on X , but also re-positions the class prototypes ‘optimally’ with respect to the modified

metric. The statistical significance of the obtained results are estimated using the Sign Test,

for the GMLVQ and k-NN algorithms against their LUPI counterparts. The p-value results

are summarized in Table. 3.3. It is noticed that results attained by the IT-TB algorithm are

statistically significant at the 0.05 level in GMLVQ and k-NN algorithms.

Studying the Effect of Downsizing Privileged Information in Space X∗

Obtaining privileged data may be costly. Therefore it is quite natural to expect that in real

applications the number of data items in X∗ will be relatively small, compared to the number of

available data inX . Thus, in the next experiment (conducted using the GMLVQ in Transformed
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Table 3.2: Mean misclassification rates for GMLVQ and k-NN classifications, along with stan-
dard deviations (±) across 10 training/test re-sampling, obtained on Iris, Pima, and Abalone
data sets. Each training point has both the original and privileged information. The best results
are marked with bold font.

Algorithm Metric learning Iris Pima Abalone

GMLVQ N/A 0.22 ±(0.05) 0.35 ±(0.01) 0.45 ±(0.009)

IT-TB 0.16 ±(0.03) 0.30 ±(0.007) 0.42 ±(0.01)
IT-Ext 0.17 ±(0.03) 0.30 ±(0.006) 0.43 ±(0.01)

MF-TB 0.18 ±(0.02) 0.33 ±(0.01) 0.43 ±(0.05)

MF-Ext 0.18 ±(0.1) 0.31 ±(0.008) 0.44 ±(0.01)

k-NN N/A 0.45 ±(0.02) 0.37 ±(0.05) 0.50 ±(0.02)

IT-TB 0.39 ±(0.03) 0.35 ±(0.04) 0.48 ±(0.01)

MF-TB 0.41 ±(0.01) 0.35 ±(0.02) 0.47 ±(0.02)

Table 3.3: Results of statistical test (p-values of the one-sided Sign Test) comparing the
standard GMLVQ and k-NN against their counterparts with LUPI, across 10 training/test re-
sampling, obtained on Iris, Pima, and Abalone data sets. Statistically significant results with
p-values<0.05 are marked with bold font.

Algorithm Metric learning Iris Pima Abalone

GMLVQ IT-TB 0.002 0.01 0.003
IT-Ext 0.09 0.101 0.01
MF-TB 0.06 0.11 0.105

MF-Ext 0.07 0.12 0.09

k-NN IT-TB 0.01 0.02 0.01
MF-TB 0.11 0.08 0.07

Basis scenario only (best performing)) we removed privileged information for randomly chosen

40% of the training points. Results are reported in Table. 3.4. Naturally, the performance levels

of GMLVQ algorithm decrease - the performance of IT-TB and MF-TB relatively decreased by

10% and 6% (in the three data sets), respectively. The IT-TB still retains the best performance.

We found (not reported here) that GMLVQ based methods were more robust to reducing the

privileged information than the k-NN ones, with k-NN performance deteriorating rapidly as the
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Table 3.4: Mean misclassification rates for GMLVQ classification (using the Transformed Basis
scenario only), along with standard deviations (±) across 10 training/test re-sampling, obtained
on Iris, Pima, and Abalone data sets. Only 60% of training points have privileged information.
The best results are marked with bold font.

Algorithm Metric learning Iris Pima Abalone

GMLVQ N/A 0.22±(0.05) 0.35±(0.02) 0.45±(0.009)

IT-TB 0.201±(0.03) 0.34±(0.01) 0.43±(0.01)
MF-TB 0.204±(0.2) 0.35±(0.01) 0.45±(0.03)

amount of privileged information was reduced.

3.7.2 Comparison with SVM and SVM+

In this section we compare the approaches developed here with the recently introduced SVM-

based technique for incorporation of privileged information [27, 28] (see section 3.2). We

use two of the three scenarios of incorporating privileged information addressed in Section

3.2 based on [27, 28], namely, privileged information as a holistic description and privileged

information as future events. In both experiments, we followed the same data preprocessing

procedures and experimental settings used by [27, 28].

Privileged Information as a Holistic Description

In this experiment, images of digits (original space) are enhanced with poetic image description

(represented as privileged information).

Data Sets: This experiment uses the MNIST hand writing database1. It consists of 60,000

training examples and 10,000 test samples, each of which is a 28×28 pixel gray scale image.

As in [27, 28], we used the subset of the MNIST data set corresponding to digits ’5’ and ’8’.

However, in order to make the task more challenging and to illustration the benefit of incorpo-

rating the privileged information, the digits images were rescaled from 28×28 to 10×10 pixels,

as shown in Figure. 3.3. Training inputs (in spaceX) consist of the first 50 samples of digits ’5’

1The MNIST dataset can be downloaded from http://yann.lecun.com/exdb/mnist/

57

http://yann.lecun.com/exdb/mnist/


50 100 150 200 250

20

40

60

80

100

120

140

(a) Digits images of ’5’ in 28×28 pix-
els.

20 40 60 80 100

10

20

30

40

50

(b) Digits images of ’5’ in 10×10 pix-
els.
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(c) Digits images of ’8’ in 28×28 pix-
els.
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(d) Digits images of ’8’ in 10×10 pix-
els.

Figure 3.3: Illustration of the rescaled MNIST digits of ’5’ and ’8’, from 28×28 to 10×10
pixels. The later case is used in experiments.

and ’8’ from the MNIST training data (making 100 training points). We used a validation set of

size 4,000 to find the optimal model parameters, and finally the testing data has 1,866 samples

of digits ’5’ and ’8’ from the MNIST test data. Poetic descriptions describing images, with the

help of language experts, were designed and used by [27, 28] as privileged information. Poetic

descriptions were translated by experts into 21-dimensional feature vectors 1 and considered as

the privileged data (in space X∗). Example of such poetic descriptions are found in [27, 28].

Experimental Setting and Results: As in [27, 28], we used training sets of increasing size

40, 50, ..., 90 (each training set containing the same number of digits ’5’ and ’8’). We selected

12 different random samples from each training data set and we reported the average of test

1The reader is referred to http://www.nec-labs.com/research/machine/ml_website/
department/software/learning-with-teacher/where a detailed description of the dataset exists.
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Figure 3.4: Number of misclassified points obtained by GMLVQ (left figure) and k-NN (right
figure) classifications (error bars report standard deviation across 12 training re-sampling) con-
ducted on the MNIST data set (images ’5’ and ’8’).

errors. Cross-validated values of (hyper-)parameters of the studied methods are presented in

Appendix A, Section A.1, Table. A.2.

Results are shown in Figure. 3.4. As in the previous experiment, GMLVQ with incorporated

privileged information outperforms the standard GMLVQ. Analogously for the k-NN classifier,

even though the k-NN results are again inferior to the GMLVQ ones. The best performing

algorithm (IT-TB in GMLVQ) was compared against the existing SVM+ based models (see

Figure. 3.5). In particular, IT-TB in GMLVQ achieves relative performance improvement of

14%, 6%, and 2% over the SVM, X∗SVM+, and dSVM+, respectively.

Results are evaluated statistically via the paired Sign Test, for the GMLVQ and k-NN algo-

rithms against their LUPI counterparts, across 12 training re-sampling for each of the examined

training size 40, 50, ..., 90, and summarized the p-value results in Tables. 3.5. As shown in the

reported results, many of the obtained results are statistically significant with p-values<0.05.
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Figure 3.5: Number of misclassified points obtained by the IT-TB in GMLVQ and the previ-
ously introduced SVM+ based models for LUPI conducted on the MNIST data set (images ’5’
and ’8’).

Table 3.5: Results of statistical test (p-values of the one-sided Sign Test) comparing the standard
GMLVQ and k-NN against their counterparts with LUPI, across 12 training/test re-sampling for
each of the examined training size 40, 50, ..., 90, obtained on the MNIST data set (images ’5’
and ’8’). Statistically significant results with p-values<0.05 are marked with bold font.

Algorithm Metric learning Training size
40 50 60 70 80 90

GMLVQ IT-TB 0.387 0.037 0.051 0.035 0.002 0.043
IT-Ext 0.251 0.008 0.007 0.045 0.037 0.048
MF-TB 0.387 0.073 0.051 0.089 0.343 0.062

MF-Ext 0.391 0.061 0.042 0.094 0.054 0.032
k-NN IT-TB 0.105 0.021 0.084 0.049 0.074 0.095

MF-Ext 0.04 0.052 0.073 0.084 0.055 0.053

Privileged Information as Future Events

In this experiment, a set of time series of future events are employed as privileged information

to improve performance of time series predictions.
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Figure 3.6: 1500 points in Mackey-Glass time series.

Data Sets: Mackey-Glass (MG) is chaotic time series model that was originally introduced

as a model of blood cell regulation [89]. It is a well-known time series benchmark for evaluat-

ing nonlinear approaches and prediction methods. The MG series is defined by the following

differential equation:
d(x)
d(t) = −âx(t) + b̂(x)(t−$)

1 + x10(t−$) (3.22)

where â and b̂ are parameters of the equations, and $ is the delay in series. Using different

initializations for x($) = x$ one can yield different realizations for this chaotic series.

This experiment investigates whether we can improve the MG time series future trend pre-

diction, using the GMLVQ classifier, through integrating the future observations as privileged

information during learning. Results will be compared to the SVM+ model in [27], where it has

been demonstrated that SVM+ model (with learning using privileged future events) outperforms

the classical SVM algorithm for MG time series predictions.

Experimental Setting and Results: For comparison purposes, the series was generated

using the same configuration as given in [27], where â = 0.1, b̂ = 0.2, $ = 17 and initial

condition of x($) = 0.9. The series generated by this set of parameters are shown in Figure.

3.6.
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Likewise in [27], this intends to solve a qualitative time series prediction problem. In partic-

ular, given historical information about the time series values up to the moment t, the target here

is to predict whether the time series value at the moment t+T will be larger or smaller than the

value at t, where T denotes the number of predicted steps ahead. In such quality prediction set-

tings, prediction of yt = x(t+ T ) takes one of the following two values (binary classification),

yt =


1 if x(t+ T ) 6 x(t)

2 if x(t+ T ) > x(t)
(3.23)

In this experiment, the input features and the privileged information were constructed based

on the scheme described in [27]. Hence, we are provided with a four dimensional vector of

historical observations given for the input pattern xt as,

xt = (x(t− 3), x(t− 2), x(t− 1), x(t)).

Furthermore, for the same data point, the privileged data is formulated as a four dimensional

vector,

xt
∗ = (x(t+ T − 2), x(t+ T − 1), x(t+ T + 1), x(t+ T + 2)),

of future time series observations, available in the training course. A series of 1500 values was

generated and splitted into a set of 500 samples for training and validation and a set comprising

the remaining 1000 samples for testing. Cross-validated values of (hyper-)parameters of the

studied methods are presented in Appendix A, Section A.1, Table. A.3.

Misclassification rates of the different prototype-based models along with the different SVM

approaches are presented in Table. 3.6. Results are presented for three trend prediction prob-

lems (one step, five steps and eight steps ahead predictions (T = 1, 5, 8)). In general, the

obtained results agree with the previous findings. The classification performance of GMLVQ

has been improved by incorporating the time series future events (as privileged information)
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Table 3.6: Misclassification rates of the different algorithms (for one step, five steps and eight
steps ahead predictions (T = 1, 5, 8)) on qualitatively predicting the Mackey-Glass series. The
best results are marked with bold font.

Algorithm Metric learning T=1 T=5 T=8

GMLVQ N/A 0.041 0.084 0.093

IT-TB 0.005 0.030 0.042

IT-Ext 0.028 0.056 0.062

MF-TB 0.007 0.051 0.054

MF-Ext 0.022 0.027 0.037
SVM N/A 0.021 0.032 0.05

X*SVM+ N/A 0.017 0.031 0.045

dSVM+ N/A 0.017 0.027 0.042

via the proposed metric learning methods for LUPI. The IT-TB approach achieves the best one

step ahead prediction result (T = 1), while MF-Ext model shows the best performance for five

and eight steps ahead predictions (T = 5, 8). Results are compared against the SVM+ mod-

els, built using the same input selection scheme with the same privileged data considered in

training. As illustrated in Table. 3.6, our GMLVQ models with LUPI for time series prediction

achieve performance improvement over the SVM, SVM+, and dSVM+ in T = 1 and T = 8

and comparable results with dSVM+ in T = 5. In particular, for T = 1, IT-TB in GMLVQ

achieves relative performance improvement of 72%, 71%, and 71% over the SVM, X∗SVM+,

and dSVM+, respectively. Furthermore, for (T = 5, 8) (on average) the MF-Ext in GMLVQ

achieves relative performance improvement of 21%, 21%, and 12% over the SVM, X∗SVM+,

and dSVM+, respectively. Figures. 3.7, 3.8 and 3.9 illustrate traces of some selected units of

the predicted output versus the target output for the three prediction problems of (T = 1, 5, 8),

respectively. From the figures, it can be observed that the GMLVQ forecasts with the proposed

LUPI formulation are more closely to the actual values than the classical GMLVQ (with no

future events included in learning), especially in the case of (T = 5, 8) where the incorporation

of the future events is clearly utilized for the favor of better prediction.
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Figure 3.7: Predicted output time series (dashed line) vs. Target output time series (solid line)
for (T=1) in the interval from t=800 to t=1000 in the test set, obtained by the different learning
algorithms.
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Figure 3.8: Predicted output time series (dashed line) vs. Target output time series (solid line)
for (T=5) in the interval from t=800 to t=1000 in the test set, obtained by the different learning
algorithms.
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Figure 3.9: Predicted output time series (dashed line) vs. Target output time series (solid line)
for (T=8) in the interval from t=800 to t=1000 in the test set, obtained by the different learning
algorithms.
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Figure 3.10: Galaxy Morphological classes in the Hubble’s Original Tuning Fork Diagram

3.7.3 Galaxy Morphological Classification using Full Spectra as Privi-

leged Information

Morphological galaxy classification aims to classify galaxies based on their structure and ap-

pearance. It is the first step towards a greater understanding of the origin and formation process

of galaxies, as well as the evolution processes of the Universe [90, 91]. Astronomers pre-

sented several schemes for classifying Galaxies according to their morphological structure, i.e.

visual appearance. The Hubble sequence scheme, is one of the most popular galaxy classifica-

tion schemes. It classifies galaxies morphologically into 3 broad categories - Elliptical, Spiral

(normal or Barred), and Irregular (see Figure. 3.101). There have been several approaches to

Galaxy morphology classification, e.g. [92, 93, 94]. Most of these approaches rely heavily on

the galaxy photometric data, ignoring spectroscopic information. Huge amount of information

about the physical properties of galaxies comes from their electromagnetic spectrum [95]. It

is therefore of paramount importance to be able to consider detailed spectral data when train-

ing galaxy classifiers. However, obtaining a full spectrum is much more costly than measuring

coarse spectral features and basic morphological characteristics. Nevertheless, for many galax-

ies full spectra have been measured and should not be discounted, even though for a new galaxy

to be classified we may not have the privilege to have such an information. This is exactly

the arena of learning with privileged information - construct a classifier using both basic and

1This picture is taken from http://ned.ipac.caltech.edu/level5/Dev/frames.html
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advanced (more costly) spectral information, while in the ‘test’ phase the classifier will take as

inputs only the basic (‘original’) features.

Data Set

The following experiment targets a training set that includes labeled galaxy samples with imag-

ing parameters in data space X and a corresponding spectra parameters in privileged space

X∗.

A sample of galaxy identifications numbers (IDs) was extracted from Galaxy Zoo project

catalogs [96, 97]. The Galaxy Zoo project launched in 2007 has provided visual morphological

classifications for around one million galaxies, extracted from the Sloan Digital Sky Survey

(SDSS) (data release 7) [98]. Astronomers and general public experts were invited to visually

inspect and classify these galaxies via the main analysis page from the Galaxy Zoo website1.

The project had obtained a huge number of classifications made by 100,000 participants with

remarkable results, which were consistent with those for subsets of SDSS galaxies classified by

professional astronomers.

From the Galaxy Zoo catalog we used the TOPCAT Java Tool2 in order to extract well

classified galaxy objects that had more than 50 votes with 95% agreement among the votes.

The galaxy IDs were then used to extract features characteraizing the galaxies in the original

(bulk measurement) space X , as well as, if available, in the privileged space X∗ of full spectra.

Basic Imaging Features (Space X): It was shown by [99] that imaging parameters associ-

ated with colors, profile-fitting, adaptive shape, concentration and texture, are useful in separat-

ing the galaxy objects into the basic three morphological classes. Using galaxy IDs, databases

SQL scripts were designed to extract 9 essential imaging parameters defined in [99] from the

PhotoObjAll and PhotoTag Tables. in SDSS DR7 catalogues3. The SDSS observes galaxies in

various photometric bands. Recent astronomical investigations proved that some colouring cal-

1http://data.galaxyzoo.org/
2http://www.star.bris.ac.uk/˜mbt/topcat/
3http://cas.sdss.org/astro/en/tools/crossid/upload.asp
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Figure 3.11: Visualization of the diagonal elements of the GMLVQ relevance matrix Λ in the
40 selected spectra features.

ibrations are crucial in differentiating between galaxy morphological properties. Hence, After

detailed discussions with astronomers, we added four auxiliary photometric calibrations along

with the nine nominated imaging parameters.

Detailed Spectral Features (Space X∗): Input spectra parameters for the extracted galaxy

objects were obtained from the MPA-JHU DR7 release of spectrum measurements1. Originally,

there were 138 spectral features. Based on consultations with astronomers, we downsized the

amount of features to 40. Out of these we selected only the most relevant ones (for the purposes

of classification) using diagonal elements in the relevance matrix provided by GMLVQ (see Fig-

ure. 3.11). There were 8 spectral features 2 showing high significance for galaxy classification

that were confirmed as highly important by astronomers.

Experimental Setting and Results

Overall, our dataset contained 20,000 galaxies characterized by 13 ‘original’ features (in X)

and 8 ‘privileged ’ spectral features (in X∗). On the set of this size, we found it infeasible to

run extensive sets of experiments using the SVM+ based approaches.

1http://www.mpa-garching.mpg.de/SDSS/DR7/
2Descriptions are found in http://www.mpa-garching.mpg.de/SDSS/DR7/SDSS_line.html
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Table 3.7: Mean misclassification rates, along with standard deviations (±) across 10 train-
ing/test re-sampling, for the galaxy morphological classification. The best results are marked
with bold font.

Algorithm Metric learning Misclassification

GMLVQ N/A 0.023±(0.001)

IT-TB 0.019±(0.001)
IT-Ext 0.020±(0.002)

MF-TB 0.020±(0.001)

MF-Ext 0.020±(0.003)

k-NN N/A 0.025±(0.004)

IT-TB 0.022±(0.003)

MF-TB 0.023±(0.004)

On the set of 20,000 galaxies, we conducted 10 experimental runs, in each run the galaxy set

was randomly split into training set (75%) and test set (25%). Mean misclassification rates (±

Std. dev) are reported across 10 runs (10 random re-samplings of the training/test sets). Cross-

validated values of (hyper-)parameters1 of the studied methods are presented in Appendix A,

Section A.1, Table. A.4.

Results are presented in Table. 3.7. In general, using the spectral privileged information

in the model building phase enhances the classification accuracy, even though in the test phase

the models are fed with the original ‘coarse’ features only. For the GMLVQ classification,

the average relative improvement (in both metric incorporation scenarios (TB and Ext)) in the

classification accuracy over the GMLVQ baseline is 15% and 13% for IT and MF, respectively.

It is interesting that in this case, even the k-NN base classifier works well. As expected, the

inclusion of full spectral information improves its accuracy (e.g. IT-TB in k-NN). However, the

best (and most stable) results are obtained by the IT-TB method in GMLVQ. To evaluate the

results statistically, we performed the paired Sign Test, for the GMLVQ and k-NN algorithms

1Due to large data set size and imbalanced nature of the 3 classes, we allowed for larger and different number
of prototypes in each class.
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Table 3.8: Results of statistical test (p-values of the one-sided Sign Test) comparing the standard
GMLVQ and k-NN against their counterparts with LUPI, across 10 training/test re-sampling,
obtained on galaxy morphological classification data sets. Statistically significant results with
p-values<0.05 are marked with bold font.

Algorithm Metric learning p-values

GMLVQ IT-TB 0.004
IT-Ext 0.009

MF-TB 0.005
MF-Ext 0.009

k-NN MF-TB 0.02

against their LUPI counterparts, and summarized the p-value results in Tables. 3.8. As shown

in the reported results, all the obtained results are statistically significant with p-values<0.05.

Studying the Effect of Downsizing Privileged Information in Space X∗

Extracting galaxy spectral parameters is complex and expensive task. SDSS has photometric

data for around fifty million galaxies [98]. However, the spectroscopic features are available

for only relatively few galaxy objects. We quantified deterioration of the classification accu-

racy with decreasing number of galaxies having privileged spectral information. The above

experiment (conducted for the GMLVQ formulations in IT-TB and MF-TB (best performing)

scenario only) was repeated with 5000, 10,000 and 15,000 galaxy objects (randomly selected

over 10 runs) having the privileged information. The results are shown in Figure. 3.12. As

in the case of UCI datasets (Section 3.7.1) the IT model is more robust to limited amounts of

privileged information in the training data.

3.8 Discussion

The principal difference between the IT and MF approaches is in the way the distance informa-

tion in the privileged space X∗ is treated. While the MF approach emphasize the exact values

of the distances, the IT approach works on a qualitative level only (similar/dis-similar repre-
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Figure 3.12: Mean misclassification rates (error bars report standard deviation across 10 train-
ing/test re-sampling) obtained using varying amounts of privileged information.

sentations in X∗). This makes the IT framework more robust to deficiencies in the privileged

information. Treating distance information in X∗ as qualitative only (similar/dis-similar) in-

stead of paying full attention to precise distances can be beneficial when the link between the

original features and the privileged information is loose, e.g. poetic descriptions of images of

digits (Section 3.7.2). Figure. 3.4 clearly demonstrates superiority of IT-TB over MF-TB.

Note that If the privileged information is less credible (e.g. contaminated with noise, or

of subjective character as in the digits experiment), the model can reduce its influence in the

model building phase via the regularization parameters γ and ν in the (MF and IT) formulations,

respectively. For example, in the astronomical experiment with GMLVQ the parameters γ and

ν were assigned (based on cross-validation) to relatively high values (1 and 0.1, respectively)

when compared to the values set in the digits experiment (0.5 and 0.01, respectively). The

main reason, is that the spectral data is costly to obtain but contains relatively accurate and very

valuable additional measurements. In contrast, the poetic description of digits is more vague

and may be contaminated with ‘noise’ (as it depends on human descriptions rather than exact

measurements).

In the GMLVQ classifications, the overall performance of the two metric incorporation sce-

narios considered in this study - Transformed Basis (TB) and Extended Model (Ext) - is com-
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parable, with TB being slightly better most of the time. In the Ext approach, the prototypes get

retrained one more time using GMLVQ, given the modified metric tensor in X . If we contin-

ued updating both prototypes and metric tensor on X further (as in GMLVQ), all information

from the privileged space X∗ would get eventually lost. On the hand, in the TB scenario the

privileged information is ‘permanently’ coded in X by changing the distribution of points in

X on the basis of distance relations in X∗. The subsequent runs of GMLVQ operate on this

new layout of training points in X with the privileged information contribution not lost during

further training.

In the experimental settings, we tried to impose on X∗ the metric obtained by running GM-

LVQ on the privileged data only, but this did not (at least for the data sets used here) improve

(compared to using precision matrix (Mahalanobis distance) on X∗) the classification perfor-

mance.

Finally, we remark that we also tried to incorporate the privileged information using the

naive feature fusion method, however, it attained an inferior results1 when compared to the

proposed methods of LUPI.

3.9 Chapter Summary

We have introduced a novel framework for learning with privileged information through metric

learning. The framework can be naturally cast in prototype-based classification with metric

adaptation (GMLVQ). The privileged information is incorporated into the model operating on

the original space X by changing the global metric in X , based on distance relations revealed

by the privileged information in X∗.

The success of the proposed LUPI with metric learning method depends crucially on the

quality of the chosen distance metric. The extent to which the new metric incorporates the priv-

ileged distance structure while preserving the original distances. Two metric learning solutions

1For example, in the astronomical experiment we obtained an error rate of 0.34(±0.03) for the GMLVQ clas-
sification, which is worse than the original results obtained by GMLVQ without privileged data.
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have been presented, the first approach (namely metric fusion) learns a Mahalanobis distance

metric for the original data space X by exploiting distance information given in the privileged

space X∗, while the second one (namely information theoretic) learns a Mahalanobis distance

metric for the original space X using a supervisory information (pairwise similarity constraints

and class labels) extracted from the privileged space X∗. Unlike in the existing SVM-based

approaches for learning with privileged information, the privileged information is used to ma-

nipulate the input space or its metric and thus any classifier (e.g. simple k-NN) can be subse-

quently used. This provides more flexibility for the task of incorporating privileged information

during the training. Moreover, prototype-based approaches have the additional advantages of

providing more interpretable models and natural formulation of multi-class classifiers.

We verified our framework in four experimental settings: (a). controlled experiments using

three data sets from UCI repository, (b). handwritten digit recognition using poetic descriptions

as privileged information, (c). time series predictions using a series of future events as privi-

leged information, (d). a real-world application of great practical and theoretical importance

in astronomy - galaxy morphological classification. Here, the privileged information takes the

form of costly-to-obtain full galaxy spectra.
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CHAPTER 4

Adaptive Metric Learning Vector Quantization for Ordinal

Classification

4.1 Introduction

Most classification algorithms focus on predicting data labels from nominal (non-ordered)

classes. However, several pattern recognition problems involve classifying data into classes

which have a natural ordering. This branch of problems are known as ordinal classification or

ordinal regression. Loosely speaking, Ordinal classification lies somewhere between nominal

classification and regression. In nominal classification classes take the form of non-ordered

categories, yet in ordinal classification there is a natural ordinal relationship among the cate-

gories. Furthermore, it differs from regression in such a way that the number of ranks (ordered

categories) is finite and, unlike in regression models, the exact values of difference between

ranks are disregarded [100]. Since ordering or ranking is a natural representation of human

preferences, this type of problem is commonly seen in several real life applications. Some

of the practical applications include information retrieval [2], medical analysis [6], preference

learning [33], wind forecasting [101] or credit rating [34].
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This chapter proposes two novel Learning Vector Quantization with metric learning models

specifically designed for classifying data into ordered classes. Learning Vector Quantization

(LVQ) (revised in Chapter 2), constitutes a family of supervised learning multi-class classifi-

cation algorithms. Classifiers are parameterized by a set of prototypical-vectors, representing

classes in the input space, and a distance measure1 on the input data. In the classification phase,

an unknown sample is assigned to the class represented by the closest prototype. Compared to

SVM type methods, prototype-based models are in general more amenable to interpretations

and can be constructed at a smaller computational cost. The function of such classifiers can be

more directly understood because of the intuitive classification of data points to the class of their

closet prototype (under a given metric). However, all existing LVQ variants were designed for

nominal multi-class classification problems. While in some cases, the training examples may

be labeled by classes with a natural order imposed on them (e.g. classes can represent rank). In

such problems, although it is still possible to use the conventional (nominal) methods, the order

relation among the classes will be ignored, which may affect the stability of learning and the

overall prediction accuracy.

In this research the recently proposed modifications of LVQ, Matrix LVQ (MLVQ) (see

Section 2.3.3) and Generalized MLVQ (GMLVQ) (see Section 2.3.4) [13, 26], are extended to

the case of ordinal classification. The main target of the existing nominal MLVQ/GMLVQ clas-

sifiers is to maximize the classification accuracy through iterative adaptation (during learning)

of prototype positions as well as the global metric in the data space. Yet, in the proposed ordi-

nal LVQ classification framework along with maximizing the classification accuracy, classifiers

also aim at minimizing the distances between the actual and the predicted ordered classes. This

goal can be achieved through utilizing the class order information during training in selection

of the class prototypes to be adapted, as well as in determining the exact manner in which the

prototypes and the global data space metric get updated. In particular, a region of acceptable

1Different distance metric measures can be used to define the closeness of prototypes.
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correct/incorrect labels are initially specified, based on which prototype adaptation can take

place. However, unlike the nominal LVQ version, the updates are weighted using a Gaussian of

label differences. To the best of our knowledge, this research work presents the first attempt at

extending the LVQ model with metric learning to ordinal classification.

This chapter is organized as follows: Section 4.2 presents a literature of different ordinal

classification methods related to this study. Section 4.3 introduces two novel ordinal LVQ

approaches for classifying data with ordered labels. Experimental results are presented and

discussed in Section 4.4 and 4.5, respectively. Section 4.6 concludes the study by summarizing

the key contributions.

4.2 Ordinal Classification Related Work

A lot of effort has already been devoted to the problem of ordinal classification in the machine

learning literature. One straight forward approach in [102] aimed to incorporate cost models in

the decision-making of an ordinal classification task. The cost-sensitive ordinal classification

method defines fixed and unequal misclassification costs between the ordinal classes given in

the form of a cost matrix with zero diagonal elements. This formulation can be employed in

any learning algorithm, providing the availability of the label information needed to completely

construct the cost matrix, however inapplicable when this is not possible as it requires making

an important assumption about the distances between the adjacent labels. Another simple ap-

proach involves converting ordinal regression to a set of nested binary classification problems

that encode the ordering of the original ranks. Results of these nested binary classifications

are combined to produce the overall label predictions [103, 104]. Note that, the availability of

ordinal information allows for rank comparisons. For example, [103] employs binary classifica-

tion tree learners to compare between ranks. Other alternative in [104] applies explicit weights

over the patterns of each binary system. The approach was cast in a SVM formulation and

errors on data patterns were calculated according to the absolute difference between their rank
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and the rank of the compared pattern. However, a pairwise comparisons approach may not be

appropriate for large-scale learning problems, as it may lead to large optimization problem. Al-

ternatively, instead of solving multiple-binary sub-problems, a group of researchers suggested

constructing a unified binary classifier for all the sub-problems [3, 105, 106]. For example, the

study in [3] reduced the ordinal classification problem to the standard two-class setting using

nonparametric method for ordinal classifications, the so called data replication method. The

framework was mapped into neural networks and support vector machines. In a similar context,

Li and Lin [105] presented a reduction framework from ordinal regression to binary classifica-

tion based on ‘extended’ binary examples that are extracted from the original ordinal ranking

examples. The binary classifier is first trained on the extended binary examples and then uti-

lized to construct a ranker. We refer to this model as REDuction-SVM (RED-SVM). This work

was enriched by more theoretical results in [106]. The work of [105] was further extended into

another reduction framework known as Weighted LogitBoost [107].

Another stream of ordinal regression research assumes that ordinal labels originate from

coarse measurements of a continuous variable. The labels are thus associated with intervals on

the real line. A group of algorithms, known as threshold models [108], focuses on two main

issues:

1) How to find the ‘optimal’ projection line, representing the assumed linear order of classes,

onto which the input data will be projected;

2) How to optimally position thresholds defining the label intervals so that the margin of

separation between neighbouring classes is maximized.

For example, in the SVM context, a class of models under the name of Support Vector Ordi-

nal Regression (SVOR) was developed by the large-margin algorithm in [109]. However, it

incorporated some drawbacks in terms of the problem size (large size). Alternatively, Shashua

and Levin [110] proposed two large-margin principles: (i) The fixed-margin principle, in which
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the margin of the closest pair of classes is being maximized leading to equal margins between

two neighbouring classes (the assumption that is too strict in most cases); (ii) The sum of mar-

gins principle, which allows for different margins and only the sum of all K − 1 margins is

maximized (assuming there are K ordered categories). However, the order on the K − 1 class

thresholds was not imposed, which can lead to non-desirable solutions. Therefore this work

was further extended in the SVOR with EXplicit ordering Constraints (SVOR-EXC) formula-

tion [2], where the order of class thresholds is considered explicitly in the model formulation.

Furthermore, Chu and Keerthi [2] also presented an alternative SVOR model, namely SVOR

with IMplicit ordering Constraints (SVOR-IMC). In this approach, the samples in all the classes

are allowed to contribute errors for each threshold, therefore there is no need to include (ex-

plicitly) the inequality constraints in the problem. However, most of the existing SVM based

algorithms suffered from the problem of disregarding the global information of the data and

the high computational complexity (in the number of training points) [1]. Therefore, Sun et

al. [1] introduced a (non-SVM)-based model with a lower computational complexity - Kernel

Discriminant Learning for Ordinal Regression (KDLOR).

Although the problem of ordinal classification is of great practical importance, it has not

received the appropriate attention in the literature of instance/distance based classification al-

gorithms. For example, the popular k-NN [38] classifier was expanded in a few directions so

it can be used for ordinal classification along with the nominal classification. For instance, the

work in [111] presents a weighted k-Nearest-Neighbor technique that utilizes kernel functions

to weight the k nearest neighbors according to their distances to the training pattern. The study

has investigated the possibility of using the new nearest neighbor technique for classifying data

with ordinal class structure.
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4.3 The Proposed Ordinal LVQ Classifiers

This section presents two novel methodologies based on LVQ for classifying data with ordinal

classes.

Assume that we are given training data (xi, yi) ∈ Rm × {1, ..., K}, where i = 1, 2, .., , n,

and K is the number of different classes. In the ordinal classification problem, it is assumed

that classes are ordered yK > yK−1 > ... > y1, where > denotes the order relation on labels.

As in LVQ models, the proposed classifier is parameterized with L prototype-label pairs1:

W = {(wq, k) | wq ∈ Rm, q ∈ {1, ..., L} , k ∈ {1, ..., K}} . (4.1)

We assume that each class k ∈ {1, 2, ..., K}, may be represented by P prototypes2 collected in

the set W (k),

W (k) = {w ∈ W | c(w) = k}, (4.2)

leading to total number of L = K · P prototypes. The prototypes define a classifier by means

of a winner-takes-all rule, where a pattern xi ∈ Rm is classified with the label of the closest

prototype, c(xi) = c(wj), j = arg minl dΛ(xi, wl), where dΛ denotes the the squared Euclidean

metric.

dΛ(xi, w) = (xi − w)TΛ(xi − w). (4.3)

As given in original form of the algorithm, Section 2.3.3, positive definiteness of Λ can be

achieved by substituting Λ = ΩTΩ, where Ω ∈ Rm×m, 1 ≤ l ≤ m is a full-rank matrix.

Furthermore, Λ needs to be normalized after each learning step to prevent the algorithm from

degeneration (see Eq.(2.11)).

1Following [13, 26], the means of P random subsets of training samples selected from each class k, where
k ∈ {1, 2, ...,K}, are chosen as initial states of the prototypes. Alternatively, one could run a vector quantization
with P centers on each class.

2 Of course, this imposition can be relaxed to a variable number of prototypes per class.
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Whereas in nominal versions of LVQ the target is to position the class prototypes in the input

space so that the overall misclassification error is minimized, the proposed ordinal LVQ model

aims at adapting the class prototypes so that the average absolute error of class mislabeling is

minimized. Loosely speaking, this implies that some class mislabeling (e.g. claiming class

c(wj) = (k+ 1) instead of class c(xi) = k) will be treated as ‘less serious’ than other ones (e.g.

outputting c(wj) = K instead of c(xi) = 1), where the ‘seriousness’ of misclassification will

be related to1 |c(xi)− c(wj)|. In the next section, we describe identification of prototypes to be

modified, given each training input xi.

4.3.1 Identification of Class Prototypes to be Adapted

The initial step in each training instance xi, i = 1, 2, ..., n, focuses on detecting the ‘correct’

and ‘incorrect’ prototype classes (with respect to c(xi)) that will be modified. Subsequently,

the correct prototypes will pushed towards xi, whereas the incorrect ones will be pushed away

from xi.

Correct and Incorrect Prototype Classes

Due to the ordinal nature of labels, for each training instant xi and prototype wq, q = 1, 2, ..., L,

the correctness of prototype’s label c(wq) is measured through the absolute error loss function

H (c(xi), c(wq)) (e.g. [112]):

H (c(xi), c(wq)) =| c(xi)− c(wq) | (4.4)

Given a rank loss thresholdLmin, defined on the range of the loss function, in our case [0, K−1],

the class prototypeswq withH(c(xi), c(wq)) ≤ Lmin will be viewed as ‘tolerably correct’, while

prototypes with H(c(xi), c(wq)) > Lmin will be classified as ‘incorrect’. This is illustrated in

1 Of course, other order related costs could be used.
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Figure. 4.1. The sets of correct and incorrect prototype classes for input xi hence read:

N (c(xi))+ = {c(wq) ∈ {1, 2, 3.., , K} | |c(xi)− c(wq)| 6 Lmin} (4.5)

and

N (c(xi))− = {c(wq) ∈ {1, 2, 3.., , K} | |c(xi)− c(wq)| > Lmin} , (4.6)

respectively.

Figure 4.1: Correct and incorrect prototype classes estimation. Given training pattern c(xi) = 2
indicated with square, and threshold Lmin = 1. White circles are prototypes of correct classes
with respect to c(xi), while black circles indicate prototypes of incorrect classes.

Prototypes to be Adapted

Given a training pattern xi, the nominal LVQ techniques adapt either the closest prototype or the

closest pair of correct/incorrect prototypes. In our case we need to deal with the class prototypes

in a different way.

1) Correct prototypes with labels in N(c(xi))+: For correct prototypes it makes sense to

push towards xi only the closest prototype from each class in N(c(xi))+. The set of

correct prototypes to be modified given input xi reads:

W (xi)+ = {wz(k)| c(wz(k)) = k ∈ N+(c(xi)), z(k) = arg min
l∈W (k)

[dΛ(xi, wl)]} (4.7)

2) Incorrect prototypes with labels in N(c(xi))−: For incorrect prototypes it is desirable

to push away from xi all incorrect prototypes lying in the ‘neighbourhood’ of xi. In our
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case the neighbourhood will be defined as a sphere of radius < under the metric dΛ.

W (xi)− = {wz| c(wz) ∈ N−(c(xi)), dΛ(xi, wz) < <}. (4.8)

For more illustration, consider the ordinal classification training iteration given in Figure. 4.2.

4.3.2 Prototype Weighting Scheme

Unlike in nominal LVQ, we will need to adapt multiple prototypes, albeit to a different degree.

Given a training input xi, the attractive and repulsive force applied to correct and incorrect

prototypesw will decrease and increase, respectively, with growingH(c(xi), c(w)). In addition,

for incorrect prototypes w, the repulsive force will diminish with increasing distance form xi.

In the two following sections we describe the prototype adaptation schemes in greater detail.

Given a training pattern xi, there are two distinct weighting schemes for the correct and

incorrect prototypes w in W (xi)+ and W (xi)−, respectively.

1) Weighting correct prototypes w ∈ W (xi)+:

We propose a Gaussian weighting scheme,

α+ = exp
{
−(H(c(xi), c(w)))2

2σ2
+

}
, (4.9)

where, σ+ is the Gaussian kernel width.

2) Weighting incorrect prototypes w ∈ W (xi)−:

Denote by εmax the maximum rank loss error within the set W (xi)−,

εmax = max
w∈W (xi)−

H(c(xi), c(w)).
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Input pattern
Prototypes

(a) The training pattern xi is shown in the trian-
gular shape with c(xi) = 2, the labled prototypes
are illustrated in the oval shape, where each class
is presented by two prototypes.

Input pattern
Prototypes correct prototype calss

incorrect prototype calss

(b) Given Lmin = 1, correct prototype classes
(N+(c(xi))) and incorrect prototype classes
(N−(c(xi))) are identified in the red solid and red
dotted ovals, respectively.

Closest incorrect prototype
Closest correct prototype

Input pattern
Prototypes

Radius

(c) Given the radius <, closet correct proto-
types (W (xi)+) and closet incorrect prototypes
(W (xi)−) are selected in the red solid and red dot-
ted circles, respectively.

Input pattern
Prototypes

(d) The prototypes to be adapted (in one train-
ing iteration) are chosen. Subsequently, closet
prototypes with correct labels (c(xi) = (1, 2, 3))
will move towards the training pattern, conversely,
closest prototypes with incorrect labels (c(xi) =
(8, 9)) will be repelled away.

Figure 4.2: Illustrative example for one training iteration in the proposed ordinal LVQ training
algorithm.

84



The weight factor α− for incorrect prototype w ∈ W (xi)− is then calculated as follows:

α− = exp
{
−(εmax −H(c(xi), c(w)))2

2σ2
−

}
· exp

{
−(dΛ(xi, w))2

2σ−′2

}
, (4.10)

where σ− and σ−′ are the Gaussian kernel widths1 for the distance factor in α−.

Note that, α+ is inversely proportional to the rank loss error, as it reaches maximum value if

H(c(xi), c(w)) = 0 (which implies that c(xi) = c(w+)). While α− is directly proportional to

the rank loss error, as it reaches maximum value if H(c(xi), c(w)) = εmax. Also it is inversely

proportional to the the distance relation dΛ(xi, w), meaning that the repulsive weight in α−

fades out as the w− gets farther during learning. These weighting factors will be utilized in two

prototype update schemes introduced in the next two sections.

4.3.3 Ordinal MLVQ (OMLVQ) Algorithm

In this section we generalize the MLVQ algorithm (given in Chapter 2, Section 2.3.3) to the

case of linearly ordered classes. We will refer to this new learning scheme as Ordinal MLVQ

(OMLVQ). In particular, there are two main differences between MLVQ and OMLVQ:

• In OMLVQ the order information on classes is utilized to select appropriate multiple

prototypes (rather than just the closest one as in MLVQ) to be adapted.

• The ordinal version of MLVQ realizes Hebbian updates for all prototype parameters in

W (xi)+ andW (xi)−, using the assigned weights α±. Similarly to MLVQ, each prototype

update ∆w will be followed by a corresponding metric parameter update ∆Ω.

The OMLVQ training algorithm is outlined in greater detail in Algorithm 7. Note that, for

ease of presentation we omit from the notation the classes of the prototypes and the training

point in the presented Algorithm 7. Note that, unlike in the original MLVQ, during the training,

1We employed a line search over the training sets (via cross-validation procedure) to identify the ‘optimal’
values of σ+, σ− and σ−′.
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Algorithm 7 The OMLVQ Training Algorithm.
initialize the prototype positions wq ∈ Rm, q = 1, 2, ..., L
initialize matrix Ω, by setting it equal to the identity matrix (Euclidean distance), and nor-
malize according to Eq.(2.11)
while a stopping criterion (maximum number of training epochs) is not reached do

randomly select a training pattern xi, i ∈ {1, 2, ..., n} with label c(xi)
compute the distances from xi to prototypes wj using the adaptive distance in Eq.(4.3)
determine the correct and incorrect classes for xi, N (c(xi))+ and N (c(xi))− based on
(4.5) and (4.6), respectively.
find collections of prototypes W (xi)+ and W (xi)− to be adapted using (4.7) and (4.8).
assign weight factors α± to the selected prototypes (Eq.(4.9) and (4.10)).
update the prototypes from W (xi)+, W (xi)− and the distance metric Ω as follows:
for each w ∈ W (x)+ do

∆w = +ηw · α+ ·Λ · (xi − w) (w dragged towards xi)
∆Ω = −ηΩ · α+ ·Ω · (xi − w)(xi − w)T (dΛ(xi, w) is shrinked)

end for
for each w ∈ W (x)− do

∆w = −ηw · α− ·Λ · (xi − w) (w pushed away from xi)
∆Ω = +ηΩ · α− ·Ω · (xi − w)(xi − w)T (dΛ(xi, w) is increased)

end for
where ηw, ηΩ are positive learning rates for prototypes and metric.
initial learning rates are chosen individually for every application through cross-
validation. They decrease monotonically with time as given in Eq. (3.21):
normalize the matrix Ω after each learning step so that

∑
i Λii = 1, using Eq.(2.11)

end while
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adaptation of the prototypes is controlled by the corresponding weight factors α±which reflect,

(i) the class order (see (4.9), (4.10)), and (ii) the distance of incorrect prototypes from training

inputs (see (4.10)).

4.3.4 Ordinal GMLVQ (OGMLVQ) Algorithm

This section extends the update rules of the GMLVQ algorithm (3)(given in Chapter 2, Section

2.3.4) to the case of ordinal classes. The algorithm, referred to as Ordinal GMLVQ (OGMLVQ),

will inherit from GMLVQ its cost function Eq.(2.12). There are two main differences between

OGMLVQ and GMLVQ:

• For each training pattern xi, GMLVQ scheme applies Hebbian update for the single clos-

est prototype pair (with the same and different class labels with respect to the label c(xi)

of xi, see Section 2.3.4). On the other hand, in OGMLVQ there will be updates of r > 1

prototype pairs from W (xi)+ ×W (xi)− (see (4.7) and (4.8)). This is done in an iterative

manner as follows:

Set W± = W (xi)±, r=0.

While (W+ 6= ∅ and W− 6= ∅)

1) r ← r + 1.

2) Construct ‘the closest’ prototype pair Rr = (wa, wb), where

a = arg min
l∈W+

dΛ(xi, wl), b = arg min
l∈W−

dΛ(xi, wl). (4.11)

3) Update wa, wb and Ω (to be detailed later).

4) W+ ← W+ \ {wa}, W− ← W− \ {wb}.

End While
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• In order to control prototype adaptation by their corresponding weight factors α± (Eq.(4.9)

and (4.10)), OGMLVQ scales the metric (4.3) (used in the original GMLVQ cost function

(2.12)) as

dΛ
α+(xi, wa) = α+ · dΛ(xi, wa)

dΛ
α−(xi, wb) = α− · dΛ(xi, wb) (4.12)

The OGMLVQ cost function reads:

fOGMLV Q =
n∑
i=1

r∑
j=1

φ(µ(xi, Rj)), (4.13)

where

µ(xi, Rj) = dΛ
α+(xi, wa)− dΛ

α−(xi, wb)
dΛ
α+(xi, wa) + dΛ

α−(xi, wb)
, (wa, wb) = Rj.

The cost function fOGMLV Q will be minimized with respect to prototypes and metric

parameter Ω using the steepest descent method. Recall that dΛ
α+(xi, wa) is the distance of

the data point xi from the correct prototype wa, and dΛ
α−(xi, wb) is the distance from the

incorrect prototype wb and, φ is a monotonic function set (as in GMLVQ) to the identity

mapping.

To obtain the new adaptation rules for the OGMLVQ algorithm, we present derivatives of

µ(xi, Rj) with respect to the prototype pair (wa, wb) = Rj (4.11) and the metric parameter

Ω .

Derivatives of µ(xi, Rj) with respect to the correct prototype wa,

∂µ(xi, Rj)
∂wa

= ∂µ(xi, Rj)
∂dΛ

α+(xi, wa)
· ∂d

Λ
α+(xi, wa)
∂wa

= γ+ ·
∂dΛ

α+(xi, wa)
∂wa

,
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where

γ+ = ∂µ(xi, Rj)
∂dΛ

α+(xi, wa)

= (dΛ
α+(xi, wa) + dΛ

α−(xi, wb))− (dΛ
α+(xi, wa)− dΛ

α−(xi, wb))
(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2

= 2dΛ
α−(xi, wb)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2 (4.14)

and

∂dΛ
α+(xi, wa)
∂wa

= −2α+ · [ΩTΩ](xi − wa) = −2α+ ·Λ(xi − wa) (4.15)

Derivatives of µ(xi, Rj) with respect to the incorrect prototype wb,

∂µ(xi, Rj)
∂wb

= ∂µ(xi, Rj)
∂dΛ

α−(xi, wb)
· ∂d

Λ
α−(xi, wb)
∂wb

= γ− ·
∂dΛ

α−(xi, wb)
∂wb

,

where

γ− = ∂µ(xi, Rj)
∂dΛ

α−(xi, wb)

= −(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))− (dΛ
α+(xi, wa)− dΛ

α−(xi, wb))
(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2

= −2dΛ
α+(xi, wa)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2 , (4.16)

and

∂dΛ
α−(xi, wb)
∂wb

= −2α− · [ΩTΩ](xi − wb) = −2α− ·Λ(xi − wb) (4.17)
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Furthermore, derivatives of µ(xi, Rj) with respect to the metric parameter Ω,

∂µ(xi, Rj)
∂Ω

=

(
∂dΛ
α+ (xi,wa)
∂Ω − ∂dΛ

α− (xi,wb)
∂Ω

) (
dΛ
α+(xi, wa) + dΛ

α−(xi, wb)
)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2

−

(
∂dΛ
α+ (xi,wa)
∂Ω + ∂dΛ

α− (xi,wb)
∂Ω

) (
dΛ
α+(xi, wa)− dΛ

α−(xi, wb)
)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2 (4.18)

= 2dΛ
α−(xi, wb)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2 ·
∂dΛ

α+(xi, wa)
∂Ω

+ −2dΛ
α+(xi, wa)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2 ·
∂dΛ

α−(xi, wb)
∂Ω

(4.19)

using (4.14) and (4.16) then,

∂µ(xi, Rj)
∂Ω

= γ+ · ∂d
Λ
α+(xi, wa)
∂Ω

+ γ− · ∂d
Λ
α−(xi, wb)
∂Ω

(4.20)

where

∂dΛ
α+(xi, wa)
∂Ω

= 2α+ · [Ω (xi − wa)(xi − wa)T ] (4.21)

and

∂dΛ
α−(xi, wb)
∂Ω

= 2α− · [Ω (xi − wb)(xi − wb)T ] (4.22)

Note that the OGMLVQ cost function (4.13) is a sum of r “weighted versions” of the GMLVQ

cost function [13] (eq. (2.12)). The only difference is that the distances from data points to pro-

totypes are linearly scaled by factors α± (see eq. (4.12)). As such, the OGMLVQ cost function

inherits all the discontinuity problems of the GMLVQ cost functional at receptive field bound-

aries of the prototypes. As argued in [13], the GMLVQ prototype and metric updates resulting
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from gradient descent on the GMLVQ cost function are valid whenever the metric is differ-

entiable (see also [12, 41]). Using delta function (as derivative of the Heaviside function) the

argument can be made for cost functions rewritten with respect to full ‘reasonable’ distributions

on the input space (with continuous support) [13]. Since weighting of distances in individual

GMLVQ cost functions that make up the OGMLVQ cost function preserves differentiability

of the metric and because the OGMLVQ cost function is a sum of such individual weighted

GMLVQ cost functions, the theoretical arguments made about updates from the GMLVQ cost

function also fall through in the case of the OGMLVQ cost function.

We summarize the OGMLVQ training in Algorithm 8. During the adaptation, distances

between the training point xi and the correct prototypes inW+ are on average decreased, in line

with the aim of minimizing the rank loss error. Conversely, the average distances between xi

and the incorrect prototypes inW− are increased, so that the risk of higher ordinal classification

error (due to the high rank loss error of incorrect prototypes) is diminished.

Note that while OMLVQ is a heuristic extension of MLVQ, updating each prototype in-

dependently of the others, the OGMLVQ is an extension of GMLVQ, with parameter updates

following in a principled manner from a well-defined cost function. In OGMLVQ the prototypes

are updated in pairs as explained above.

4.4 Experiments and Evaluations

We evaluated the performance of the proposed ordinal regression LVQ methods through a set

of experiments conducted on two groups of data sets: eight benchmark ordinal regression data

sets1 [1, 2, 105, 3, 107] and two real-world ordinal regression data sets [3]. The ordinal LVQ

models, OMLVQ and OGMLVQ, were assessed against their nominal (non-ordinal) counter-

parts, MLVQ and GMLVQ, respectively. The ordinal LVQ models were also compared with

benchmark ordinal regression approaches.

1Regression data sets are available at http://www.gatsby.ucl.ac.uk/˜chuwei/
ordinalregression.html
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Algorithm 8 The OGMLVQ Training Algorithm.
initialize the prototype positions wq ∈ Rm, q = 1, 2, ..., L
initialize matrix Ω, by setting it equal to the identity matrix (Euclidean distance), and nor-
malize according to Eq.(2.11)
while a stopping criterion (maximum number of training epochs) is not reached do

randomly select a training pattern xi, i ∈ {1, 2, ..., n} with label c(xi)
compute the distances from xi to prototypes wj using the adaptive distance in Eq.(4.3)
determine the correct and incorrect classes for xi, N (c(xi))+ and N (c(xi))− based on
(4.5) and (4.6), respectively.
find collections of prototypes W (xi)+ and W (xi)− to be adapted using (4.7) and (4.8).
assign weight factors α± to the selected prototypes (Eq.(4.9) and (4.10)).
set W± = W (xi)±, r=0.
while (W+ 6= ∅ and W− 6= ∅) do
r ← r + 1
construct ‘the closest’ prototype pair Rr = (wa, wb) as in (4.11).
update the prototypes position:

∆wa = 2ηw · γ+ · α+Λ(xi − wa)

(wa dragged towards xi )

∆wb = 2ηw · γ− · α−Λ(xi − wb)

(wb pushed away from xi )
update the metric parameter Ω,

∆Ω = −2ηΩ · [γ+α+Ω(xi − wa)(xi − wa)T + γ−α−Ω(xi − wb)(xi − wb)T ]

where γ+ and γ− are given in (4.14) and (4.16), respectively. ηw, ηΩ are the learning
rates for prototypes and metric respectively, and they normally decrease throughout the
learning as given in (3.21).
normalize the matrix Ω after each learning step so that

∑
i Λii = 1, as given in Eq.(2.11)

W+ ← W+ \ {wa},
W− ← W− \ {wb}.

end while
end while
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The experiments utilized three evaluation metrics to measure accuracy of predicted class ŷ

with respect to true class y on a test set:

1) Mean Zero-one Error (MZE) - (misclassification rate) the fraction of incorrect predic-

tions,

MZE =
∑v
i=1 I(yi 6= ŷi)

v
.

where v is the number of test examples and I(yi 6= ŷi) denotes the indicator function

returning 1 if the predicate holds and 0 otherwise.

2) Mean Absolute Error (MAE) - the average deviation of the prediction from the true

rank,

MAE =
∑v
i=1 |yi − ŷi|

v
.

3) Macroaveraged Mean Absolute Error (MMAE) [113] - macroaveraged version of

Mean Absolute Error - it is a weighted sum of the classification errors across classes,

MMAE = 1
K

K∑
k=1

∑
yi=k |yi − ŷi|

vk
.

where K is the number of classes and vk is the number of test points whose true class is

k. The Macroaveraged MAE is typically used in imbalanced ordinal regression problems

as it emphasizes errors equally in each class.

The obtained results are evaluated statistically and reported, in all experiments, through the

Sign test measure. The test has been applied to asses whether the observed differences between

the two models performances, the standard MLVQ/GMLVQ models against its corresponding

ordinal version OMLVQ/OGMLVQ1, are statistically significant.

For comparison purposes and with respect to the eight benchmark ordinal regression data

1It was not possible to apply the statistical test in the benchmark ordinal regression comparisons, due to the
unavailability of the detailed results attained by benchmark ordinal classifiers.
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sets we conducted the same pre-processing as described in [1, 2, 105, 3, 107]. Data labels

were discretized into ten ordinal quantities using equal-frequency binning. Hence, the eight

benchmark ordinal regression data sets are balanced with respect to their classes distribution.

The input vectors were normalized to have zero mean and unit variance. Each data set was

randomly partitioned into training/test splits as recorded in Table. 4.1. The partitioning was

repeated 20 times independently, yielding 20 re-sampled training/test sets. For these class-

balanced data sets, the experimental evaluations were done using the MZE and MAE measures.

The two real-world ordinal ranking problems were represented by two data sets: cars and

the red wine subset redwine of the wine quality set from the UCI machine learning repository

[88]. For fair comparison, we followed the same experimental settings as in [3]. We randomly

split 75% of the examples for training and 25% for testing, as recorded in Table. 4.1, and

conducted 20 runs of such a random splits. The cars problem intends to rank cars to four

conditions (unacceptable, acceptable, good, very good), while the redwine problem ranks red

wine samples to 11 different levels (between 0 and 10, however, the actual data only contains

samples with ranks between 3 and 8). It is worth mentioning that the two data sets are highly

imbalanced (with respect to their classes distribution). In the cars data set the class distribution

(percentage of instances per class) is as follows: unacceptable - 70%, acceptable - 22%, good

- 4% and very good - 4%. The redwine data set has the following class distribution: 3 - 1%, 4

- 3%, 5 - 43%, 6 - 40%, 7 - 12% and 8 - 1%. Real-world ordinal regression data sets are often

severely imbalanced, i.e. are likely to have different class populations at their class order, and

(unlike in many previous ordinal classification studies) ordinal classification algorithms should

be examined in both balanced and imbalanced class distribution cases. As shown in [113],

testing a classifier on imbalanced data sets using standard evaluation measures (e.g. MAE) may

be insufficient. Therefore, along with the MZE and MAE evaluation measures, we examined

our prototype-based models with the Macroaveraged Mean Absolute Error (MMAE)[113] that

is specially designed for evaluating classifiers operating on imbalanced data sets. On each
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Table 4.1: Ordinal regression data sets partitions

Data set Dimension Training Testing

Pyrimidines 27 50 24

MachineCpu 6 150 59

Boston 13 300 206

Abalone 8 1000 3177

Bank 32 3000 5182

Computer 21 4000 4182

California 8 5000 15640

Census 16 6000 16784

Cars 8 1296 432

Redwine 11 1200 399

data set, the algorithm (hyper-)parameters were chosen through 5-fold cross-validation on the

training set. Test errors were obtained using the optimal parameters found for each data re-

sampling, and were averaged over the 20 trials (runs). We also report standard deviations across

the 20 trails.

For all learning algorithm, the number of prototypes per class was tunned over the set

{1, 2, 3, 4, 5}. The class prototypes were initialized as means of random subsets of training

samples selected from the corresponding class. Relevance matrices were normalized after each

training step to
∑
i Λii = 1 (see Section 2.3.4). Initial learning rates for prototypes ηw and rele-

vance metric ηΩ were chosen through cross-validation. We imposed ηw > ηΩ, implying slower

rate of changes to the metric, when compared with prototype modification. This setting has

proven better performance in other LVQ with metric learning applications (e.g. [13, 26]). In all

the following experiments, learning rates decrease monotonically with training epoch index e

according to the learning schedule given in Eq .(3.21). The (hyper)parameter (speed of anneal-

ing) τ > 0 remains constant in all experiments, and set to 10−5. In OMLVQ and OGMLVQ,

parameter Lmin was tunned over the values 0, 1, 2, in all data sets. Given training pattern xi, and
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given Γ carrying the mean of distances from xi (under the metric dΛ) to all prototypes. Distance

radius < under the metric dΛ, was tunned over the values of (Γ/2, Γ, Γ ·2). Cross-validated val-

ues of (hyper-)parameters of the studied methods are presented in the Appendix A Section A.2

Tables. A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12, A.13, A.14 for Pyrimidines, MachineCpu,

Boston, Abalone, Bank, Computer, California, Census, Cars, Redwine, respectively.

4.4.1 Comparison with MLVQ and GMLVQ

This section evaluates performance of the proposed OMLVQ and OGMLVQ algorithms against

their standard nominal versions MLVQ and GMLVQ. For the eight benchmark ordinal regres-

sion data sets, the MZE and MAE results, along with standard deviations (represented by error

bars), across 20 runs are shown in Figures. 4.3 and 4.4, respectively. The MZE, MAE and

MMAE results, along with standard deviations (represented by error bars) across 20 runs, for the

two real-world ordinal regression data sets are presented in Figures. 4.5.(a), 4.5.(b) and 4.5.(c),

respectively. Furthermore, the statistical significance of the obtained results are estimated using

the Sign Test, for the MLVQ/GMLVQ against their ordinal counterparts OMLVQ/OGMLVQ.

The p-value results are summarized in Table. 4.2.
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Figure 4.3: MZE results for the eight benchmark ordinal regression data sets.

The results in general confirm that the proposed ordinal LVQ models achieve better per-
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Figure 4.4: MAE results for the eight benchmark ordinal regression data sets.

Table 4.2: Results of statistical test (p-values of the one-sided Sign Test) comparing the nominal
MLVQ/GMLVQ against their ordinal counterparts OMLVQ/OGMLVQ, with respect to Zero-
one Error (MZE) and Mean Absolute Error (MAE), across 20 training/test re-sampling on the
eight benchmark ordinal regression data sets along with the two real-world data sets. Statisti-
cally significant results with p-values<0.05 are marked with bold font.

Data set MZE
(MLVQ/OM-

LVQ)

MAE
(MLVQ/OM-

LVQ)

MZE (GM-
LVQ/OGMLVQ)

MAE (GM-
LVQ/OGM-

LVQ)

Pyrimidines 0.062 0.081 0.049 0.053

MachineCpu 0.0813 0.072 0.072 0.055

Boston 0.0019 0.0013 0.083 0.357

Abalone 0.019 0.166 0.003 0.179

Bank 0.303 0.005 0.200 0.008
Computer 0.002 0.007 0.0012 0.0093
California 0.0095 0.019 0.0287 0.0095
Census 0.002 0.0053 0.009 0.002
Cars 0.006 0.0076 0.017 0.0038
Redwine 0.0019 0.0017 0.0024 0.0036

formance in terms of MZE, MAE and MMAE rates than their standard (nominal) LVQ coun-

terparts. On average, across the eight benchmark ordinal regression data sets the OMLVQ

algorithm outperforms the baseline MLVQ by relative improvement of 10% and 18% on MZE
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(a) MZE Results
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(b) MAE Results

Cars Redwine
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(c) MMAE Results

Figure 4.5: MZE, MAE and MMAE results for the the two real-world ordinal regression data
sets shown in (a), (b) and (c), respectively.

and MAE, repectively. Furthermore, OGMLVQ achieves relative improvements over the base-

line GMLVQ of 5% and 15% on MZE and MAE, respectively. For the two real-world ordinal

regression data sets, on average the OMLVQ algorithm outperforms the baseline MLVQ by

relative improvement of 41%, 48% and 46% on MZE, MAE and MMAE, repectively. Fur-

thermore, the OGMLVQ achieves relative improvements over the baseline GMLVQ of of 14%,

15% and 8% on MZE, MAE and MMAE, repectively. In most cases, the resulting p-value are

lower than the standard significance level (0.05), which implies that the differences in the two

model performances (nominal LVQ and ordinal LVQ) are in most cases statistically significant,

in terms of MZE and MAE.

4.4.2 Comparison with Benchmark Ordinal Regression Approaches

This section compares (in terms of MZE, MAE and MMAE) the proposed ordinal LVQ ap-

proaches (OMLVQ and OGMLVQ) against five benchmark ordinal regression methods: two

threshold SVM based models (SVOR-IMC and SVOR-EXC [2] with the Gaussian kernel), two

reduction frameworks (the SVM based model RED-SVM with perception kernel [105, 3] and
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the Weighted LogitBoost [107]), and a non SVM based - Kernel Discriminant Learning for

Ordinal Regression method (KDLOR [1])1.

The first comparison was conducted on eight benchmark ordinal ranking data sets used in

[2, 1, 105, 3, 107]. We used the same data set pre-processing and experimental settings as in

[2, 1, 105, 3, 107].

MZE and MAE test results2, along with standard deviations over 20 training /test re-samplings,

are listed in Tables. 4.3 and 4.4, respectively3. We use bold face to indicate the lowest average

error value among the results of all algorithms.

In comparison with other methods and with respect to the eight benchmark ordinal ranking

data sets, OGMLVQ and OMLVQ algorithms achieve the lowest MZE results on four data

sets, with OGMLVQ being lowest in Pyrimidines, MachineCPU, and Abalone data sets, and

OMLVQ in Boston data set. Furthermore, OGMLVQ and OMLVQ attain the lowest MAE for

three data sets Pyrimidines, MachineCPU, and Abalone, with OGMLVQ being slightly better

than OMLVQ on all data sets. Note that on Abalone data set, both ordinal LVQ models beat the

competitors out-of-sample by a large margin. However, relative to the competitors, OMLVQ

and OGMLVQ exhibit the worst performance on three data sets (Computer, California and

Census), and comparable performances on the remaining data sets Boston and Bank. Note that

on the three data sets where the ordinal LVQ methods were beaten by the competitors, the

original LVQ methods performed poorly as well (see Figures 4.3 and 4.4). We hypothesize

that the class distribution structure of those data sets may not be naturally captured by the

prototype-based methods. We also examined the performance of our prototype-based models,

using the two real-world ordinal ranking problems, against two SVM-based ordinal regression

approaches (SVOR-IMC [2] with the Gaussian kernel and RED-SVM with perceptron kernel

1The statistical significant test was not performed in this experiment, due to the unavailability of the detailed
results obtained by the five benchmark ordinal regression methods with respect to the used testing measure.

2The underlying eight benchmark data sets are considered as balanced (with respect to their class distribution).
Thus, we did not examine their MMAE results.

3 MZE results of the Weighted LogitBoost reduction model is not listed because only MAE of this algorithm
was recorded in [107].
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Table 4.3: Mean Zero-one Error (MZE) results along with standard deviations, (±) across 20
training/test re-sampling, for the ordinal LVQ models (OMLVQ and OGMLVQ) and the bench-
mark algorithms KDLOR reported in [1], SVOR-IMC (with Gaussian kernel), SVOR-EXC
(with Gaussian kernel) reported in [2], RED-SVM (with Perceptron kernel) reported in [3]. The
best results are marked with bold font.

Data set KDLOR SVOR-
IMC

SVOR-
EXC

RED-
SVM

OMLVQ OGMLVQ

Pyrimidines 0.739±
(0.050)

0.719±
(0.066)

0.752±
(0.063)

0.762±
(0.021)

0.660 ±
(0.060)

0.645±
(0.106)

MachineCpu 0.480±
(0.010)

0.655±
(0.045)

0.661±
(0.056)

0.572±
(0.013)

0.431±
(0.079)

0.415±
(0.096)

Boston 0.560±
(0.020)

0.561±
(0.026)

0.569±
(0.025)

0.541±
(0.009)

0.532±
(0.017)

0.534±
(0.024)

Abalone 0.740±
(0.020)

0.732±
(0.007)

0.736±
(0.011)

0.721±
(0.002)

0.545±
(0.021)

0.532±
(0.049)

Bank 0.745±
(0.0025)

0.751±
(0.005)

0.744±
(0.005)

0.751±
(0.001)

0.756 ±
(0.016)

0.750±
(0.008)

Computer 0.472±
(0.020)

0.473±
(0.005)

0.462±
(0.005)

0.451±
(0.002)

0.535±
(0.019)

0.510±
(0.010)

California 0.643±
(0.005)

0.639±
(0.003)

0.640±
(0.003)

0.613±
(0.001)

0.710±
(0.018)

0.680±
(0.007)

Census 0.711±
(0.020)

0.705±
(0.002)

0.699±
(0.002)

0.688±
(0.001)

0.754±
(0.154)

0.735±
(0.014)

[105, 3])1.

The MZE and MAE test results of the cars and redwine data sets for the two compared

algorithms were reported in [3]. MZE, MAE and MMAE test results over 20 training/test

random re-samplings are listed in Table. 4.52. We use bold face to indicate the lowest average

error value among the results of all algorithms.

In comparison with SVOR-IMC [2] and RED-SVM [105, 3], on the two real-world ordinal

regression data sets (cars and redwine), the prototype-based models for ordinal regression (OM-

1Unfortunately we have not been able to obtain codes for the two other ordinal regression algorithms considered
in this study (Weighted LogitBoost [107] and KDLOR [1]).

2 MMAE results of the SVM based models are not listed because only MZE and MAE of these algorithms were
recorded in [3]. Furthermore, MZE of the SVOR-IMC with Gaussian kernel algorithm were not reported in [3].
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Table 4.4: Mean Absolute Error (MAE) results, along with standard deviations (±) across
20 training/test re-sampling, for the ordinal LVQ models (OMLVQ and OGMLVQ) and the
benchmark algorithms KDLOR reported in [1], SVOR-IMC (with Gaussian kernel), SVOR-
EXC (with Gaussian kernel) reported in [2], RED-SVM (with Perceptron kernel) reported in
[3], Weighted LogitBoost, reported in [1]. The best results are marked with bold font.

Data set KDLOR SVOR-
IMC

SVOR-
EXC

RED-
SVM

Weighted
Logit-
Boost

OMLVQ OGMLVQ

Pyrimidines 1.1±
(0.100)

1.294±
(0.204)

1.331±
(0.193)

1.304±
(0.040)

1.271±
(0.205)

1.004±
(0.123)

0.985±
(0.169)

MachineCpu 0.690±
(0.015)

0.990±
(0.115)

0.986±
(0.127)

0.842±
(0.022)

0.800±
(0.087)

0.660±
(0.291)

0.630±
(0.176)

Boston 0.700±
(0.035)

0.747±
(0.049)

0.773±
(0.049)

0.732±
(0.013)

0.816±
(0.056)

0.742±
(0.048)

0.731±
(0.050)

Abalone 1.400±
(0.050)

1.361±
(0.013)

1.391±
(0.021)

1.383±
(0.004)

1.457±
(0.014)

0.732±
(0.035)

0.731±
(0.068)

Bank 1.450±
(0.020)

1.393±
(0.011)

1.512±
(0.017)

1.404±
(0.002)

1.499±
(0.016)

1.501±
(0.025)

1.462±
(0.009)

Computer 0.601±
(0.025)

0.596±
(0.008)

0.602±
(0.009)

0.565±
(0.002)

0.601±
(0.007)

0.776±
(0.018)

0.698±
(0.023)

California 0.907±
(0.004)

1.008±
(0.005)

1.068±
(0.005)

0.940±
(0.001)

0.882±
(0.009)

1.238±
(0.048)

1.208±
(0.018)

Census 1.213±
(0.003)

1.205±
(0.007)

1.270±
(0.007)

1.143±
(0.002)

1.142±
(0.005)

1.761±
(0.033)

1.582±
(0.018)

LVQ and OGMLVQ) show a competitive performance in MZE and MAE. For the cars data set,

among the compared algorithms the OMLVQ model is performing the best with respect to the

MZE and MAE results. For the redwine data set, the RED-SVM yields the best MZE/MAE per-

formance. The OMLVQ and OGMLVQ models are slightly worse than RED-SVM, but better

than the SVM-IMC algorithm.

4.4.3 Sensitivity of the Ordinal LVQ Models to the Correct Region

As specified in Section 4.3.1, the rank loss threshold Lmin defines the sets of correct and incor-

rect prototype classes. Given classes 1, 2, ..., K, the value of the Lmin is defined on the range of
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Table 4.5: Mean Zero-one Error (MZE), Mean Absolute Error (MAE) and Macroaveraged
Mean Absolute Error (MMAE) results on the real-world cars and redwine data sets, along
with standard deviations, (±) across 20 training/test re-sampling, for the ordinal LVQ models
(OMLVQ and OGMLVQ) and the benchmark algorithms (SVOR-IMC with Gaussian kernel
and RED-SVM with Perceptron kernel) reported in [3]. The best results are marked with bold
font.

Data set Algorithm MZE MAE MMAE

Cars SVOR-IMC N/A 0.051±(0.002) N/A

RED-SVM 0.064±(0.003) 0.061±(0.003) N/A

OMLVQ 0.035±(0.012) 0.044±(0.016) 0.069±(0.029)
OGMLVQ 0.111±(0.029) 0.128±(0.035) 0.281±(0.080)

Redwine SVOR-IMC N/A 0.429±(0.004) N/A

RED-SVM 0.327±(0.005) 0.357±(0.005) N/A

OMLVQ 0.358±(0.014) 0.405±(0.016) 0.535±(0.067)
OGMLVQ 0.331±(0.009) 0.364±(0.014) 0.555±(0.083)

the absolute error loss function, i.e. [0, K − 1].

The following experiment investigates the sensitivity of the presented models to the choice

of the correct region, i.e. the value of Lmin. The experiment was conducted on four data sets

with different number of classes K (Pyrimidines and Abalone with K = 10; cars and redwine

with K = 4 and K = 6, respectively). Using settings of the best-performing models from

the previous experiments, we examined sensitivity of the model performance with respect to

varying Lmin in the range [L∗min−1, L∗min+1], where L∗min denotes the ‘optimal’ value of Lmin

found using cross-validation as described above.

The MAE and MMAE1 results are presented in Tables. 4.6 and 4.7, respectively. As ex-

pected, sensitivity with respect to variations in Lmin is much greater if the number of classes

is small (e.g. cars and redwine). In such cases, setting the ‘right’ value’ of Lmin is crucial.

Not surprisingly, for small number of classes the selected value of Lmin was 0. Interestingly,

OGMLVQ appears to be more robust to changes in Lmin than OMLVQ. We speculate that this

1The MMAE results of the Pyrimidines and Abalone data sets were not assessed as they are considered as
balanced data sets, and hence their MAE and MMAE results coincide.
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Table 4.6: Mean Absolute Error (MAE) results, along with standard deviations (±) across 20
training/test re-sampling, obtained using varying number of rank loss threshold ( (Lmin − 1),
(Lmin) and (Lmin + 1)), on four ordinal regression data sets. Note that, the value of Lmin is
determined using a cross validation procedure on each of the four examined data sets. The best
results are marked with bold font.

Data set K Lmin Algorithm MAE
(Lmin − 1)

MAE (Lmin) MAE
(Lmin + 1)

Cars 4 0 OMLVQ N/A 0.044±(0.016) 0.403±(0.027)

0 OGMLVQ N/A 0.128±(0.035) 0.324±(0.034)

Redwine 6 0 OMLVQ N/A 0.405±(0.016) 0.800±(0.080)

0 OGMLVQ N/A 0.364±(0.014) 0.440±(0.019)

Pyrimidines 10 1 OMLVQ 1.274±(0.177) 1.004±(0.123) 1.300±(0.168)

1 OGMLVQ 1.162±(0.199) 0.985±(0.169) 1.062±(0.130)

Abalone 10 1 OMLVQ 0.885±(0.082) 0.732±(0.035) 0.901±(0.104)

1 OGMLVQ 0.740±(0.011) 0.731±(0.068) 0.886±(0.034)

Table 4.7: Macroaveraged Mean Absolute Error (MMAE) results, along with standard devia-
tions (±) across 20 training/test re-sampling, obtained using varying number of rank loss thresh-
old ( (Lmin − 1), (Lmin) and (Lmin + 1)), on two ordinal regression data sets. Note that, the
value of Lmin is determined using a cross validation procedure on each of the four examined
data sets. The best results are marked with bold font.

Data set K Lmin Algorithm MMAE
(Lmin − 1)

MMAE (Lmin) MMAE
(Lmin + 1)

Cars 4 0 OMLVQ N/A 0.069±(0.029) 0.268±(0.036)

0 OGMLVQ N/A 0.281±(0.080) 0.390±(0.062)

Redwine 6 0 OMLVQ N/A 0.535±(0.067) 0.781±(0.145)

0 OGMLVQ N/A 0.555±(0.083) 0.678±(0.071)

is so since OMLVQ in each training step updates all selected correct and incorrect prototypes

independently of each other. On the other hand, OGMLVQ updates only the closest pair of

correct and incorrect prototypes, affecting potentially a smaller number of prototypes.
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4.5 Discussion

OGMLVQ slightly outperforms OMLVQ in almost all cases. This may be due to principled

adaptation formulation through the novel cost function (4.13). Interestingly enough, this is also

reflected in the nominal classification case, where GLVQ (later extended to GMLVQ) has been

shown to be superior to LVQ1 (later extended to MLVQ) [10].

As expected, ordinal LVQ methods demonstrate stronger improvements over their nominal

counterparts in terms of MAE, rather than MZE. As an example, this is illustrated in Figures. 4.6

and 4.7 obtained on MachineCpu and Boston test sets, respectively. The figures compare the true

class labels in the selected test set (a) against the predicted ones generated by MLVQ, OMLVQ,

GMLVQ and OGMLVQ ((b), (c), (d) and (e), respectively). Furthermore, visualizations of

ordinal predication results obtained by GMLVQ (a) and OGMLVQ (b) on a single example

run of Abalone test set1 with respect to two dominant dimensions (using PCA) are depicted in

Figure. 4.8.

Although there are several misclassifications by our ordinal LVQ methods (OMLVQ and

OGMLVQ), they incorporate less deviations (from their true ordinal label) when compared to

the deviations occurring in the MLVQ and GMLVQ misclassifications. Clearly, the ordinal

LVQ schemes efficiently utilize the class order information during learning, thus improving the

MAE performance.

It can be seen that test predications resulting from our methods (OMLVQ and OGMLVQ)

are arranged more orderly, i.e. according to their true ranks, when compared to the stan-

dard (MLVQ and GMLVQ), with OGMLVQ being slightly better than OMLVQ. Furthermore,

although there are several misclassifications resulting from the OMLVQ and OGMLVQ ap-

proaches, they incorporate less deviations (from their true ordinal scale) when compared to the

deviations occurring in the MLVQ and GMLVQ misclassifications. The reason is that the ordi-

1It was not possible to visualize results obtained by the other four datasets (Bank, Computer, California, and
Census), due to their large size.
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nal LVQ schemes efficiently utilize the class order information during learning, hence especially

tailored to classify ordinal data, while nominal LVQ models are not.

Interestingly enough, we observed that reshaping the class prototypes in the ordinal LVQ

methods by explicit use of the class order information stabilizes the training substantially, when

compared to the nominal LVQ methods. Provided the class distribution in the data space re-

spects the class order, the class prototypes of ordinal LVQ will quickly reposition to reflect

this order. Then most misclassifications that need to be acted on during training have low ab-

solute error, i.e. most misclassifications happen on the border of receptive fields of ordered

prototypes with small absolute differences between the classes of data points and those of their

closest prototypes. This stabilizes the training in that only relatively small prototype updates

are necessary. In nominal LVQ, where the order of classes is not taken into account during

training, larger jumps in absolute error can occur. For example in Figures. 4.9 and 4.10 we

show evolution of MAE error rates as the training progresses (measured in training epochs) for

a single run of (O)MLVQ and (O)GMLVQ on the Abalone and Boston data sets, respectively.

The same training sample and similar experimental settings for MLVQ and OMLVQ, as well as

for GMLVQ and OGMLVQ were used.

4.6 Chapter Summary

This chapter introduced two novel prototype-based learning methodologies, especially tailored

for classifying data with ordered classes. Based on the existing nominal LVQ methods with

metric learning, Matrix LVQ (MLVQ) and Generalized MLVQ (GMLVQ) [13, 26], we pro-

posed two new ordinal LVQ methodologies - Ordinal MLVQ (OMLVQ) and Ordinal GMLVQ

(OGMLVQ).

Unlike in nominal LVQ, in ordinal LVQ the class order information is utilized during train-

ing in selection of the class prototypes to be adapted, as well as in determining the exact manner

in which the prototypes get updated. In particular, the prototypes are adapted so that the ordi-
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nal relations amongst the prototype classes are preserved, reflected in reduction of the overall

mean absolute error. Whereas in the OMLVQ approach the prototypes are adapted indepen-

dently of each other, in the OGMLVQ approach the prototypes are updated in pairs based on

minimization of a novel cost function.

Experimental results on eight benchmark data sets and two real-world imbalanced data sets

empirically verify the effectiveness of our ordinal LVQ frameworks when compared with their

standard nominal LVQ versions. The mean zero-one error (MZE), mean absolute error (MAE)

and macroaveraged mean absolute error (MMAE) (in case of imbalanced data sets) rates of

the proposed methods were considerably lower, with more pronounced improvements on the

MAE (in case of balanced data sets) and MAE, MMAE rates (in case of imbalanced data sets)

when compared to the MZE rate. In addition, our ordinal models exhibit more stable learning

behavior when compared to their nominal counterparts. Finally, in comparison with existing

benchmark ordinal regression methods, our ordinal LVQ frameworks attained a competitive

performance in terms of MZE and MAE measurements1.

1However, this conclusion was not accompanied with a statistical significant test, due to the unavailability of
the detailed results of the compared methods that is required by the used statistical test measure (the Sign Test).
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Figure 4.6: Ordinal prediction results of a single example run in MachineCpu data set (true
labels in (a)) obtained by MLVQ, OMLVQ, GMLVQ and OGMLVQ shown in (b),(c),(d) and
(e), respectively.
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Figure 4.7: Ordinal prediction results of a single example run in Boston data set (true labels
in (a)) obtained by MLVQ, OMLVQ, GMLVQ and OGMLVQ shown in (b),(c),(d) and (e),
respectively.
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Figure 4.8: Visualizations of ordinal predication results obtained by GMLVQ (a) and OGMLVQ
(b) of a single example run on Abalone test set with respect to two dominant dimensions (using
PCA).
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Figure 4.9: Evolution of MAE in the course of training epochs (t) in the Abalone training set
obtained by the MLVQ, OMLVQ algorithms, in (a) and (b), respectively.
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(a) GMLVQ
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Figure 4.10: Evolution of MAE in the course of training epochs (t) in the Boston training set
obtained by the GMLVQ, OGMLVQ algorithms, in (a) and (b), respectively.
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CHAPTER 5

Ordinal-Based Metric Learning for Learning Using

Privileged Information

5.1 Introduction

Learning Using privileged Information (LUPI) paradigm, originally proposed by Vapnik [27,

29, 28] in the SVM+ framework (see section 3.2), aims to improve the supervised learning in

the presence of additional (substantial) information x∗ ∈ X∗ about training examples x ∈ X ,

where the privileged information will not be available at the test stage. Chapter 3 Section 3.4

proposed two direct and flexible alternatives for LUPI, based on distance metric learning, in the

context of prototype-based classification (particularly in the GMLVQ [13] algorithm). One of

the proposed LUPI variant (namely Information Theoretic (IT) approach), introduced in section

3.4.2, is based on Information Theoretic Metric Learning (ITML) [65]. The main idea behind

the IT approach for LUPI is the modification of the metric in the original data space X based in

data proximity ‘hints’ obtained from the privileged information space X∗. Two methods were

proposed for incorporation of the new metric (obtained based on privileged information) into

the original data space X .
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All previous LUPI variants (whether in SVM+ or in metric learning formulation) were de-

signed for incorporating privileged information for nominal classification problems. However,

the training examples may be labeled by classes with a natural order imposed on them (e.g

classes can represent rank). In the context of LUPI in prototype-based, the applied metric learn-

ing (i.e. IT) for LUPI learns a distance metric for data space X from a number of (dis)similarity

constraints obtained in the privileged space X∗ through proximity information and label agree-

ment. The appropriate metric for space X is found by keeping similar and dis-similar pairs

closer and farther, respectively. Such an intuitive strategy may not, however, work well when

classes are ordered, i.e. ordinal classification tasks. The ordinal label information is not consid-

ered explicitly during the constraints selection and metric learning, which can negatively affect

the model performance.

This chapter proposes an ordinal version of the ITML approach, namely Ordinal-based In-

formation Theoretic (OIT), specifically designed for incorporating privileged data during train-

ing in ordinal classification tasks, particularly in ordinal prototype-based models, proposed in

Chapter 4. The proposed metric learning method, the OIT, aims to learn a new metric in the

original data space X , based on distance relations revealed in the privileged space X∗, while

preserving the linear order of classes in the training set. The class order information is uti-

lized in formulating the (dis)similarity constraints, as well as in the distance metric learning

Itself. The new metric is then incorporated into X in the context of Ordinal Generalized Matrix

LVQ (OGMLVQ), introduced in Chapter 4 Section 4.3.4. We empirically study our general

methodology - LUPI via the proposed OIT - in three experimental settings: a) ordinal classi-

fication benchmark data sets, b) large-scale astronomical ordinal classification problem and c)

large-scale real-world ordinal time series predictions.

This chapter has the following organization: Section 5.2 briefly reviews the most popular

metric learning algorithms for ranking problems related to this study. Section 5.3 and 5.4 intro-

duce a novel ordinal-based metric learning approach for incorporation of privileged knowledge
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in ordinal prototype-based classification. Experimental results are presented in Section 5.5 and

discussed in Section 5.6. Finally, Section 5.7 concludes with a summary of the proposed for-

mulation.

5.2 Metric Learning for Ordinal Prediction

There has been intensive research activity devoted to the problem of distance metric learning

in supervised settings (e.g. [63, 64, 65, 66, 67, 68, 69, 70]). They generally aim at improving

predictions by learning an optimum metric for the data space such that similar data points are

close to each other while dis-similar pairs are well separated. The (dis)similarity constraints

(imposed on data points) are mostly derived from some combination of proximity and label

agreement between data instances (see section 3.3). This technique of metric learning can

be helpful for improving nominal classification predictions, however, in the case of ’ordinal’

classifications it will not provide the same benefit, as it ignores the class ordinal information

during the metric learning.

Some advances have been made in the development of metric learning algorithms for im-

proving ranking problems (e.g. [114, 115, 116, 81, 117]). Unlike in typical metric learning

techniques for classifications, metric learning for ranking problems generally allow for captur-

ing different degree of correctness/incorrectness among similar/dissimilar data pairs, respec-

tively. For example, based on structural SVM formulation, the study in [116] proposed a metric

learning algorithm which optimizes for ranking-based loss functions. The algorithm applies

different values of loss at the level of rankings, rather than fixed pairwise distances, among

(dis)similar data pairs. The problem has been naturally cast as an information retrieval task.

Based on SVM formulation, the method in [81] aims to learn a metric from relative compar-

isons. The learned metric preserves ranks of distances based on a set of qualitative constraints

derived from the training data. Such constraints lead to a convex quadratic programming prob-

lem. A similar rank-based approach for distance metric learning has been presented in [115],
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in the context of image retrieval. It addresses the problem of heterogeneous input space where

‘must-link’ (or similarity) constraints may vary from one query to another (i.e. relevance judg-

ments).

The dis-similarities ranking (d-ranking) problem, which is a special case of the metric learn-

ing problem, has been investigated in [114]. In contrast to typical metric learning methods, the

dis-similarities ranking approach [114] aims to learn a proper metric which preserves the ranks

(specified order) between points, rather than the absolute values of the dissimilarities. For ex-

ample, if given that distances between the pair xi and xj is smaller than that between xi and xq,

then the problem targets finding a dissimilarity function, such that d(xi, xj) < d(xi, xq). Three

formulations of d-ranking problems has been discussed in [114] and solved via one semidefinite

programming algorithm and another quadratic programming one.

In the context of distance-based ordinal regression, a distance metric learning method in [5]

has been designed and employed for solving an ordinal regression facial age estimation prob-

lem. The algorithm learns a new metric that keeps the local geometry of target neighbourhoods,

as well as preserving the ordinal relationship among different age groups. The model is formu-

lated as a semidefinite programming problem and a k-NN regression model is used for the age

estimation on the learned metric.

5.3 Ordinal-Based Information Theoretic (OIT) for Incorpo-

rating Privileged Information

Consider a training data set (xi, yi) ∈ Rm×{1, ..., K}, where i = 1, 2, .., , n, and K is the num-

ber of ordered classes K > K − 1 > ... > 1. Assume that additional (privileged) information

x∗i ∈ X∗ may be given about training examples xi ∈ X , i = 1, 2, ..., p ≤ n. As in the case of

nominal version of IT for LUPI (Section 3.4.2), the aim here is to learn a data metric C for the

original space X informed by inter-point distances in the privileged X∗ space. The privileged

information in X∗ is used to describe sets of similarity S+ and dis-similarity S− constraints, as
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defined in section 3.4.2. However, due to the ordinal nature of the underlying training classes,

the class order information will be explicitly taken into account in the constraints derivation, as

well as in distance metric learning for the original space X .

5.3.1 (Dis)similarity Constraints Derivation

Consider a privileged pair (x∗i , x∗j) ∈ X∗ with distance dM
∗(x∗i , x∗j), given in Eq.(3.8), and the

corresponding original training pair (xi, xj) ∈ X with distance dM (xi, xj), given in Eq.(3.6).

Whereas in nominal IT for LUPI constrains are decided based on proximity information and

label agreement, in the OIT instead of strict label agreement, we will use the absolute class

difference,

H(xi, xj) =| c(xi)− c(xj) | (5.1)

, which has been employed before in Section 4.3.1, where c(x) denotes the class label of x.

Given a “tolerable class difference threshold” κ ≥ 0, defined on the range of the loss func-

tion1, the (dis)similarity sets S+ and S− are now constructed as follows2:

• If dM
∗
(
x∗i , x

∗
j

)
6 l∗ and H(xi, xj) ≤ κ (close in their class order), then (xi, xj) ∈ S+.

• If dM
∗
(
x∗i , x

∗
j

)
> u∗ and H(xi, xj) > κ (apart in their class order), then (xi, xj) ∈ S−,

where l∗ and u∗ are ‘small’ and ‘large’ distance thresholds (on X∗), respectively.

Thus, relatively close privileged points with low rank loss error are considered as ’similar’,

while relatively apart privileged points with high rank loss error are constrained as ’dis-similar’.

5.3.2 Weighting Scheme for the Metric Learning

Unlike the nominal IT for LUPI, the proposed OIT method aims to learn an optimal metric in

spaceX where distances induced among similar/dis-similar data pairs preserve the natural order

relation between their classes. Thus, the notion of similar/dis-similar data pairs vary according

1In our case [0,K − 1].
2Note that it is not necessary for all training points in X to be involved pairs of points in S+ or S−.
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to the corresponding class differences. Loosely speaking, if the class of point xi is closer in

order to the class of xj than to the class of xq, i.e. H(xi, xj) < H(xi, xq) ≤ κ, then during the

metric learning the ‘force’ pulling together xi and xj is larger than the force applied on xi and

xq. Analogous principle applies to the “repulsive force” applied on dis-similar pairs.

In the following we will propose a weighting scheme1 for the OIT for LUPI which controls

the amount of distance updates imposed on data pairs. There are two distinct weighting schemes

for similar and dis-similar points.

1) Weighting two similar points in (xi, xj) ∈ S+:

We propose a Gaussian weighting scheme,

ϑ+
ij = exp

{
−(H(xi, xj))2

2σ2
+

}
, (5.2)

where, σ+ is the Gaussian kernel width.

2) Weighting two dis-similar points in (xi, xj) ∈ S−:

Denote by εmax the maximum class rank difference within all dis-similar pairs (xl, xq)∀(l, q) ∈

S−, i.e.,

εmax = max
(xl,xq)∈S−

H(xl, xq)

The weight factor ϑ−ij for two dis-similar points (xi, xj) ∈ S− is then calculated as fol-

lows:

ϑ−ij = exp
{
−(εmax −H(xi, xj))2

2σ2
−

}
(5.3)

where σ− is the Gaussian kernel width2.

The calculated weighting factors ϑ± are utilized in the new OIT scheme presented in the next

section.
1A similar technique was originally introduced in Chapter 4, Section 4.3.2, for ordinal prototype based models.
2We employed a grid search over the training sets (via cross-validation procedure) to identify the ‘optimal’

values of σ+ and σ−.
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5.3.3 Ordinal-Based Metric Learning Algorithm

We aim to learn a new positive definite matrix (metric tensor) C on X , yielding the squared

distance

dC(xi, xj) = (xi − xj)TC(xi − xj), xi, xj ∈ X,

that while incorporating dominant distance relations in the privileged space X∗, also respects

the class order.

Distance metric updates for similar/dis-similar pairs in space X are performed using the

corresponding weights ϑ±. Thus, different degree of attraction and repulsive forces (based on

data pairs class order relations) are allocated among similar and dis-similar pairs, respectively.

As in the standard ITML [65], the similarity between two the metricsC andM is measured

through the Bregman divergence (Burg) defined over the cone of positive definite matrices.

Hence, the learning task is posed as the following constrained minimization problem:

min
C�0

DBurg (C,M) , subject to

dC (xi, xj) ≤ l · ϑ+
ij, if (xi, xj) ∈ S+, and

dC (xi, xj) ≥ u · ϑ−ij, if (xi, xj) ∈ S−, (5.4)

where 0 < l < u are the small and large distance thresholds on X , respectively.

Similarly to the original ITML model [65] and the IT approach in Section 3.4.2, in the OIT,

for guaranteeing a feasible solution for C, the trade-off parameter ν > 0 is used governing the

influence of the constraints (and hence the influence of the privileged information). Let s(i, j)

denote the index of the (i, j)-th constraint, and let ξ be a vector of slack variables, initialized

to ξ0, with components equal to l for similarity constraints and u for dissimilarity constraints.

The estimation of distance thresholds 0 < l < u on X and 0 < l∗ < u∗ on X∗ is presented in
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Section 3.4.2. The optimization problem can be reformulated as follows,

min
C�0,ξ

DBurg (C,M) + ν ·DBurg (diag(ξ), diag(ξ0)) subject to

dC (xi, xj) ≤ ξs(i,j) · ϑ+
ij, if (xi, xj) ∈ S+, and

dC (xi, xj) ≥ ξs(i,j) · ϑ−ij, if (xi, xj) ∈ S−. (5.5)

The algorithm is initialized with C equal to the Mahalanobis matrix of the data distribution in

the original space X . Similarly to the IT approach (Section 3.4.2), optimizing (5.5) involves

repeatedly projecting (Bregman projections) the current solution onto a single constraint, via

the update given in Eq.(5.6) [65]. The OIT algorithm for LUPI in ordinal classifications can be

summarized in Algorithm 9. The description of the optimization algorithm is given in section

3.3.1.

5.4 Incorporating Privileged Information Into the OGMLVQ

As in Chapter 3 Section 3.5, we suggest two approaches for incorporating the learned metric

tensor C into the OGMLVQ classifier operating on X .

1. Transformed Basis (TB):

Knowing that metric tensor C is found in the parametrized form C = UTU , then for any

training point x ∈ X , x̃ = Ux is the image of x under the basis transformation U . Distances

imposed on similar or dis-similar data pairs will now in general be shrunk or expanded ac-

cording to (dis)similarity constraints. The standard OGMLVQ algorithm is now applied to the

transformed data {(x̃1, y1), ...., (x̃n, yn)}. Note that, this linear transformation approach allows

for application of any suitable ordinal regression classifier.

2. Extended Model (Ext):

OGMLVQ is first run on the original training set without privileged information, yielding a

global metric dM (given by metric tensor M ) and a set of prototypes wj ∈ Rm, j = 1, 2, ..., L.

118



Algorithm 9 The Ordinal-Based Information Theoretic Approach.

input X , X∗,M ,M ∗, l, u, l∗, u∗, ν, κ, σ+ and σ−.
output C Mahalanobis matrix for sapce X
initialize C = M and ζij=0
based on Eq.(5.1), construct (dis)similarity constraints S±.
repeat

select constraint s(i, j)
if s(i, j) ∈ S+ then

estimate the corresponding ϑ+
ij based on Eq.(5.2)

initialize ξs(i,j) = l
else

estimate the corresponding ϑ−ij based on Eq.(5.3)
initialize ξs(i,j) = u

end if
∀ i, j solve the optimization problem Eq.(5.5)through the followings:

ψ =


min

(
ζij, ( 1

dC(xi,xj) −
ν

ξs(i,j)ϑ
+
ij

)
)

if(xi, xj) ∈ S+,

min
(
ζij, ( ν

ξs(i,j)ϑ
−
ij

− 1
dC(xi,xj))

)
if(xi, xj) ∈ S−,

β =


ψ

1−ψdC(xi,xj) if(xi, xj) ∈ S+,
−ψ

ψdC(xi,xj)+1 if(xi, xj) ∈ S−,

ξs(i,j) =

νξs(i,j)ϑ
+
ij/(ν + ψξs(i,j)ϑ

+
ij) if(xi, xj) ∈ S+,

νξs(i,j)ϑ
−
ij/(ν − ψξs(i,j)ϑ−ij) if(xi, xj) ∈ S−,

ζij = ζij − ψ,

where xi and xj are data points associated with one of the (dis)similarity constraints from
S±, β is a projection parameter computed by the algorithm and ζij is the corresponding
dual variable.

compute the Bregman projection, via the update

C = C + βC(xi − xj)(xi − xj)TC, (5.6)

until convergence
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Then, the OIT technique finds metric dC onX , based on the privileged information, that will re-

place dM . Finally, OGMLVQ is run once more while fixing the metric tensorC and modifying

the prototype positions.

5.5 Experiments and Evaluations

In this section we report on extensive experiments that were performed to asses the effectiveness

of the proposed LUPI methodology in ordinal classification tasks. We perform experiments in

three ordinal classification settings; a) ordinal classification benchmark data sets, b) large-scale

astronomical ordinal classification problem and c) real-world ordinal time series predictions.

In each experiment, we evaluate the effectiveness of incorporating the privileged informa-

tion, via the proposed learning methodologies OIT (Section 5.3), against the state of art OGM-

LVQ (trained without privileged information) used as a baseline. Furthermore, to show flexi-

bility of the proposed OIT model, we also employ the SVM Ordinal Regression with IMplicit

Constraints (SVOR-IMC) classifier [2] (see section 4.2) operating in the modified metric found

by the OIT model. For computational feasibility only small scale data from the first and third

experiment is used.

For each of following experiments we also asses the performance of the Metric Fusion (MF)

approach, presented in section 3.4.1, for integrating the privileged information in the OGM-

LVQ’s construction phase. The OGMLVQ algorithm has been trained on the original features

once, and on the modified metric (via MF and OIT methods) in other runs for comparison

purposes. The ‘optimal’ metric tensor C in X , resulting from the above metric learning al-

gorithms (OIT and MF), is incorporated in the OGMLVQ classification process via one of the

two scenarios: transformed basis (TB) and extended model (Ext), Section 5.4. However, when

using the SVOR-IMC classifier only the TB approach is applicable. We summarize the models

constructed within our framework in Table. 5.1. The models are build along two degrees of

freedom, namely metric learning and incorporation of the learnt metric.
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Table 5.1: Summary of models constructed within the LUPI for ordinal classification frame-
work.

Metric Modification Metric Incorporation
Transformed Basis (TB) Extended Model (Ext)

Metric Fusion (MF) MF-TB MF-Ext

Ordinal-Based Information
Theoretic (OIT)

OIT-TB OIT-Ext

Three evaluation metrics, explained in Section 4.4, have been utilized to measure accuracy

of predicted classes on a test set; (a). Mean Zero-one Error (MZE) - misclassification rate;

(b). Mean Absolute Error (MAE) - the average absolute deviation of the predicted ranks from

the true ranks and (c). Macro-averaged Mean Absolute Error (MMAE) - a weighted sum

of the classification errors across classes, and it is more appropriate for evaluating a classifier

performance under imbalanced classes, as it emphasizes errors equally in each class [113].

The statistical significance of the obtained results are estimated using the Sign Test, ex-

plained and used in Chapter 3 Section 3.7, with a significance level of p-value=0.05. The

test determines the statistical significance of the results obtained by comparing the classical

OGMLVQ/SVOR-IMC against their counterparts for LUPI - over multiple datasets, for each

different evaluation measure.

In all experiments, the (hyper-)parameters of the studied algorithms have been tuned via

crossvalidation on the training set. For the OIT and MF approaches, we use the same parameter

tunning settings as described in Chapter 3, Section 3.7. However, for the proposed ordinal

version of the IT approach, the OIT, the new tolerable class difference threshold κ has been

tuned over the values {0, 1, 2}. For the OGMLVQ classifier, number of prototypes per class

are tuned over the set {1, 2, 3, 4, 5} in the first experiment (small-scale benchmark data sets),

and over the set {5, 10, 15, 20} in second and third experiments (large-scale data sets). The rest

of the OGMLVQ parameters have been tunned using the same settings as given in Chapter 4,

Section 4.4. Furthermore, we use 5-fold cross validation to determine the optimal values of the
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SVOR-IMC model parameters, the Gaussian kernel parameter and the regularization factor [2],

both ranging from {-2, -1,..., 1, 2}. The cvx1 Matlab optimization routine has been used to find

the optimum parameters.

5.5.1 Controlled Experiments on Benchmark Data Sets

In this section we report on experiments performed using two benchmark ordinal regression

data sets2, namely Pyrimidines and MachineCpu, used in several ordinal regression formula-

tions (e.g. [2]) and also used as a benchmark ordinal regression data set in Chapter 4 Section

4.4. Each data set has been randomly partitioned into training/test splits 10 times indepen-

dently, yielding 10 re-sampled training/test sets of size 50/24 and 150/59 for Pyrimidines and

MachineCpu, respectively. On each data set, labels are discretized into five ordinal quantities

using equal-frequency binning. For these class-balanced data sets, the experimental evaluations

are done using the MZE and MAE measures.

In order to demonstrate the advantage of the proposed method for incorporating the privi-

leged information, an initial experiment is conducted which categorizes the input dimensions

into ’original’ and ’privileged’ features in spaces X and X∗, respectively. A similar procedure

has been conducted in Chapter 3 Section 3.7. For each data set, we sort the input features in

terms of their relevance for the ordinal classifier (in our case OGMLVQ). The first most rele-

vant half of the features will form privileged information, the remaining half will constitute the

original space X . Privileged features will only be incorporated in the metric learning, via MF

and OIT models, and will be absent during the ordinal classification testing. On each data set,

parameters of the algorithm have been tuned through 5-fold cross-validation on the training set.

Cross-validated values of (hyper-)parameters of the studied methods are presented in Appendix

A, Section A.3, Table. A.15.

In each experiment, for comparison purposes, ordinal classifications are implemented on

1http://cvxr.com/cvx/
2Available at http://www.gatsby.ucl.ac.uk/˜chuwei/ordinalregression.html
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the original metric once and on the modified metric in another experiment. The average MZE

and MAE results over 10 randomized data sets splits (trials), along with standard deviations are

shown in Table. 5.2. The corresponding p-value of the obtained results are also reported in

Table. 5.3, for MZE and MAE measures.

Table 5.2: MZE and MAE results on two benchmark ordinal regression data sets (Pyrimidines
and MachineCpu), along with standard deviations (±) across 10 training/test re-sampling, for
the OGMLVQ and SVOR-IMC (without privileged data and with OIT/MF for LUPI). The best
results are marked with bold font.

Algorithm Metric learn-
ing

Pyrimidines MachineCpu

MZE MAE MZE MAE

OGMLVQ N/A 0.594
±(0.063)

0.787
±(0.082)

0.463
±(0.059)

0.518
±(0.066)

OIT-TB 0.548
±(0.052)

0.728
±(0.088)

0.429
±(0.040)

0.496
±(0.048)

OIT-Ext 0.587
±(0.044)

0.749
±(0.075)

0.424
±(0.040)

0.501
±(0.057)

MF-TB 0.569
±(0.077)

0.736
±(0.106)

0.430
±(0.056)

0.509
±(0.058)

MF-Ext 0.594
±(0.063)

0.754
±(0.097)

0.426
±(0.062)

0.511
±(0.063)

SVOR-IMC N/A 0.534
±(0.056)

0.681
±(0.12)

0.523
±(0.026)

0.571
±(0.038)

OIT-TB 0.514
±(0.101)

0.671
±(0.18)

0.535
±(0.019)

0.581
±(0.044)

Results reveal that the OIT method along with the previously proposed MF are able to suc-

cessfully incorporate privileged information during the classifier building stage, even though

in the test phase (reported results) the privileged information is not available. In the OGM-

LVQ classification, the OIT-TB approach achieves the best overall performance with respect to

the MAE. In relative terms, on average, it outperforms the baseline OGMLVQ (trained on X

only) by 8% and 6% on Pyrimidines and MachineCpu data sets, respectively. For the SVOR-
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Table 5.3: Results of statistical test (p-values of the one-sided Sign Test) comparing the classi-
cal learning algorithms (OGMLVQ/SVOR-IMC) and their LUPI counterparts, across 10 train-
ing/test re-sampling, obtained on Pyrimidines and MachineCpu data sets, for MZE and MAE
measures. Results with p-value < 0.05 are marked with bold font.

Algorithm Metric learn-
ing

Pyrimidines MachineCpu

MZE MAE MZE MAE

OGMLVQ OIT-TB 0.141 0.377 0.032 0.144

OIT-Ext 0.400 0.089 0.186 0.148

MF-TB 0.253 0.054 0.171 0.253

MF-Ext 0.400 0.377 0.089 0.330

SVOR-IMC OIT-TB 0.144 0.089 0.109 0.226

IMC classification, incorporating the privileged information via the proposed OIT-TB improves

the general performance on the Pyrimidines data set by 2% (relatively) when compared to the

baseline SVOR-IMC (trained on X only). However, it slightly reduces the performance on the

MachineCpu data set.

5.5.2 Galaxy Morphological Ordinal Classification Using Spectra as Priv-

ileged Information

Astronomers have been using several schemes for classifying Galaxies according to their mor-

phological structure, i.e. visual appearance (e.g [92, 118]). The popular Hubble sequence

scheme1 classifies galaxies into three broad categories - Elliptical, Spiral and Irregular [96].

Later on, the de Vaucouleurs scheme2 (used in [118]) proposed a wider range of morphological

classes through considering more detailed morphological characteristics (e.g. Bars, Rings and

Spiral arms). The extended morphological classes reflect galaxy age, thus imposing a mean-

ingful order among the classes. This turns the galaxy morphology classification into an ordinal

classification problem. Each class in the de Vaucouleurs system corresponds to one numerical

1http://www.galaxyzoo.org/
2http://en.wikipedia.org/wiki/Galaxy_morphological_classification
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value where smaller numbers correspond to early-type galaxies (e.g. elliptical and lenticular)

and larger number correspond to late-types (e.g. spiral and irregular).

Most of the existing galaxy morphological ordinal classification approaches use as input fea-

tures galaxy photometric data, and ignore the costly-to-obtain full spectroscopic information.

In a nominal classification setting (under the Hubble sequence classification scheme), experi-

ments conducted in Chapter 3 Section 3.7.3, revealed that using spectroscopic information as

privileged information in the model construction phase (during training), alongside the original

photometric data, can enhance the galaxy morphology classification based on photometric data

only (test phase). This leads us to hypothesize that in the ordinal classification setting (under

the de Vaucouleurs classification scheme), incorporating the spectral privileged information will

improve the ordinal classification in test regime (using photometric data only).

Our data set contained 7,000 galaxies, classified into six ordinal morphological classes,

extracted from a visual morphological classification catalog1 in the Sloan Digital Sky Survey

(SDSS) Data Release 4 (DR4) (galaxy IDs and their ordinal labels). Note that, the original de

Vaucouleurs system constitutes 17 classes, however, based on consultation with astronomers

we downsized the morphological categories into 6 basic ordinal classes through merging sev-

eral sub-classes with similar basic morphological structures into one major class. A detailed

description of the ordinal morphological classes, used in this experiment, is presented in Table.

5.4. Note that, galaxies within the irregular class were excluded from the selected data set due to

their very small population, with respect to the rest of classes. Galaxies are represented through

13 photometric features (in X) and 8 privileged spectral features (in X∗), previously explained

and used in experiment in Section 3.7.3, both extracted based on galaxy IDs from the SDSS

DR9 [119] data catalog2.

Algorithm parameters have been tuned through 10-fold cross-validation on the validation

set (the first 5000 examples in the data set). Cross-validated values of (hyper-)parameters of

1http://vizier.cfa.harvard.edu/viz-bin/Cat?J/ApJS/186/427
2http://www.sdss3.org/dr9/
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Table 5.4: Description of galaxies ordinal morphological classes used in the experiment. Galax-
ies numerical values indicate their age where smaller numbers denote younger galaxies and
larger indicate older ones.

Ordered
numerical
value

Class type Astronomical description

1 E Ellipticals is the earliest stage of galaxies.

2 S0 Lenticular is an early stage of galaxies.

3 S0/a The transition type between Lenticular and Spiral.

4 Sa/Sa-b Spiral galaxies without bars (early stage among the Hubble
sequence of spiral).

5 Sb/Sb-c spiral galaxies with bars (later stage among the Hubble se-
quence of spiral).

6 Sc Latest stage among the Hubble sequence of spiral.

the studied methods are presented in Appendix A, Section A.3, Table. A.16. Note that, on

such large-scale dataset, we found it infeasible (in terms of time cost) to run extensive sets of

experiments using the SVOR-IMC model, so the astronomical experiment was conducted here

using the OGMLVQ classifier only.

We compare the OGMLVQ (trained without spectral privileged data) against the OGMLVQ

(with spectral privileged data using OIT and MF approaches) on 10-fold cross validation ex-

periments, where each data set is divided into ten subsets, of which nine subsets are used for

training and the remaining one for test. The MZE and MAE results, along with standard devia-

tions (10-fold cross validation) are shown in Table. 5.5. Note that the galaxy classes are almost

balanced. The corresponding p-value of the obtained results are also reported in Table. 5.6, for

MZE and MAE measures.

As expected, in general, the inclusion of the spectral privileged information in the training

phase via the OIT and MF models enhances the ordinal classification performance, even though

in the test phase the models are fed with the original photometric features only. The MF-

TB approach achieves the best performance, in terms of MZE and MAE, with improvement
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Table 5.5: MZE and MAE results on the astronomical data set, along with standard deviations
(±) across 10 cross validation runs, for the OGMLVQ (without privileged data) and the OGM-
LVQ (with LUPI using OIT and MF approaches). The best results are marked with bold font.

Algorithm Metric learning MZE MAE

OGMLVQ N/A 0.458 ±(0.012) 0.648 ±(0.018)

OIT-TB 0.457 ±(0.018) 0.640 ±(0.019)

OIT-Ext 0.451 ±(0.018) 0.627 ±(0.012)

MF-TB 0.450 ±(0.008) 0.614 ±(0.015)
MF-Ext 0.453 ±(0.015) 0.628 ±(0.022)

Table 5.6: Results of statistical test (p-values of the one-sided Sign Test) comparing the classi-
cal learning algorithm OGMLVQ and its LUPI counterpart, across 10 training/test re-sampling,
obtained on galaxy morphology data sets, for MZE and MAE measures. Results with p-
value<0.05 are marked with bold font.

Algorithm Metric learning MZE MAE

OGMLVQ OIT-TB 0.212 0.042
OIT-Ext 0.253 0.129

MF-TB 0.363 0.0107
MF-Ext 0.226 0.0352

of 4% (relatively) over the standard OGMLVQ (trained on photometric features only). The

statistical results reveal that differences in MAE, obtained by the proposed algorithms for LUPI,

are statistically significant with the level of 0.05 in most cases. Note that, the MAE results is

more relevant in the case of ordinal predictions than the MZE results, which has been found to

be statistically insignificant here.”

5.5.3 Real-world Ordinal Time Series Predictions

In this section we report on extensive experiments that were performed to investigate the effec-

tiveness of incorporating the privileged information (given in the form of future time series ob-

servations), via the proposed OIT as well as the MF approach, in ’ordinal’ time series prediction

problems. Our models are verified on three real-life chaotic time series models, explained be-
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low. The time series have been quantized into a series of ordered categories, using the symbolic

dynamic technique [120]. Note that, a similar experiment had been conducted, in experiment

3.7.2 Chapter 3, however, it investigated the benefit of incorporating the future observations

as privileged information in a ’qualitative’ time series prediction problem, using the nominal

GMLVQ classifier.

The Santa Fe Laser Time Series Ordinal Prediction

The Santa Fe Laser data set, obtained from a far-infrared-laser, is a cross-cut through periodic

to chaotic intensity pulses of a real laser. The full time series1, shown in Figure. 5.1, consists

of 10092 points. The laser activity produces periods of oscillations with increasing amplitude,

followed by sudden, difficult to predict, activity collapses.
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Figure 5.1: The Santa Fe Laser time series set.

A substantial research activity has been devoted to the prediction and modeling of the Laser

time series, e.g. [121]. However, this problem is studied here in the context of ordinal predic-

tion settings rather than in nominal settings [122]. The model is predicting the order relations

between the successive values instead of the time series values themselves. Ordinal prediction

time series are found to be useful in several fields (e.g. analysis of stock prices and medical

applications [123]). They are robust under non-linear distortion of the signal, since they use the

1Taken from http://www-psych.stanford.edu/˜andreas/Time-Series/SantaFe/A.
cont
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ordinal relations of the time series rather than their real values.

As a pre-processing step, the laser activity changes have been quantized into ordinal sym-

bolic streams. The method of extracting ordinal categorical information from complex time

series forms the basis of ordinal symbolic dynamic [120]. Symbolic dynamic algorithms aim to

impose or smooth a dynamic system topology into a space consisting of symbolic stream. Se-

quences of dynamic symbols allow visualizing the basic topology, metric and trajectory of the

evolving system. For the laser quantization process, we followed almost the same parameters

and settings as given in [122].

Given the chaotic laser time series yt, t = 1, 2, ..., 10092, the differenced sequence zt =

yt − yt−1 has been quantized into a symbolic stream st, with st representing ordered categories

of low/high positive/negative laser activity changes [122]:

st =



1 (extreme down) if zt ≤ Θ1

2 (normal down) if Θ1 < zt < Θ3

3 (normal up) if Θ3 6 zt < Θ2

4 (extreme up) if Θ2 6 zt,

(5.7)

where Θ1 = −56, Θ2 = 56 and Θ3 = 0. Θ1 and Θ2 correspond to Q percent (set here to

10%) and (100−Q) percent (set to 90%) sample quantile, respectively. Hence, data examples

labelled 1 an 4 each represent roughly 10%, while the ones lablled 2 and 3 each present 40% of

the whole population. Figure. 5.2 plots the histogram of the differences between the successive

laser activations. Dotted and solid vertical lines show the corresponding cut values. Ordinal

labels of the transformed time series are shown in Figure. 5.3.

Given the quantized laser time series, the task here is to predict the next laser activation

change category st+1, given the following (in the training):

• History of the last 10 activity differences (zt−9, zt−8, ..., zt−1, zt), considered as the origi-
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Figure 5.2: Histogram of the difference between the successive laser activation. Dotted vertical
lines show the cut values Θ1 = −56 and Θ1 = 56, while solid vertical line shows the cut value
Θ3 = 0. Ordinal symbols corresponding to the quantized regions appear on the top of the figure.
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Figure 5.3: Transformed Santa Fe Laser time series (ordinal symbols).
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Table 5.7: MZE, MAE and MMAE results on the Santa Fe laser test set for the OGMLVQ
(without privileged data) and the OGMLVQ (with OIT and MF for LUPI). The best results are
marked with bold font.

Algorithm Metric learning MZE MAE MMAE

OGMLVQ N/A 0.081 0.087 0.062

OIT-TB 0.073 0.078 0.052
OIT-Ext 0.071 0.077 0.054

MF-TB 0.076 0.081 0.055

MF-Ext 0.075 0.079 0.062

nal training data in X = R10.

• 10 future activity differences (zt+11, zt+10, ..., zt+2), considered as the privileged informa-

tion in X∗ = R10.

The first 5000 values of the series are used for training and validation, while the remaining 5092

are used for testing. Note that, due to the large-scale of the laser data set, this experiment was

conducted using the OGMLVQ classification only, as it was infeasible (in terms of time cost) to

run it on the SVOR-IMC classification. Algorithm parameters have been tuned through 10-fold

cross-validation on the training set. Cross-validated values of (hyper-)parameters of the studied

methods are presented in Appendix A, Section A.3, Table. A.17. The class distribution in the

laser data set are highly imbalanced. Classes 2 and 3 (normal up/down) are more populated

(each represent roughly 40% of the data population) than classes 1 and 4 (extreme up/down)

(each represent roughly 10% of the data population). Therefore in Table. 5.7, along with

the MZE and MAE measures we also report the Macroaveraged MAE (MMAE) (measuring the

mean performance of the classifier across all classes), which is specially designed for evaluating

classifiers operating on imbalanced data sets.

Experimental results show the superiority of the suggested LUPI paradigms (in terms of

ordinal predictions), of incorporating the future time series data as privileged information, over
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Figure 5.4: Predicted output time series (black line) vs. Target output time series (Grey line) in
the interval from t=0 to t=5000 on the test set, obtained by the OGMLVQ (trained on X only,
without privileged data) and the two best performing learning algorithms (OIT-TB and OIT-Ext)
for LUPI. The black lines in the figure indicate mistakes in predictions.

the original OGMLVQ method (with no privileged data)1. With respect to the MZE and MAE,

the OIT-Ext approach achieves the best prediction results, while with respect to the MMAE, the

best performing method was the OIT-TB. In general (over the three evaluation measures) the

OIT-TB and the OIT-Ext approaches (both) achieve performance improvement of 12% (rela-

tively) over the standard OGMLVQ (trained on X only). Figure. 5.4 illustrates traces of some

selected units of the predicted output versus the target output for the OGMLVQ (trained without

privileged data) and the best performing algorithms OIT-TB and OIT-Ext (trained with future

events integrated as privileged data). From the figures, it can be observed that the OGMLVQ

forecasts with the proposed LUPI formulations (OIT-TB and the OIT-Ext) are more closely to

the actual values than the classical OGMLVQ.

1However, this claim was not proved here through a statistical significant test as it was performed based on one
experimental run.
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The Australian Red-wine Sales Time Series Ordinal Prediction

The Australian red-wine sales series1 reports the monthly sales (in kiloliters) of red-wine by

Australian wine makers over the period of January 1980 till October 1991 [124]. Figure. 5.5

depicts the increasing sales trend of the red-wine with a seasonal pattern.
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Figure 5.5: The Australian red-wine sales (in kiloliters) from January 1980 - October 1991.

As in the previous experiment, given the time series yt, t = 1, 2, ..., 142, the differenced

sequence zt = yt − yt−1 has been quantized into four ordered symbolic categories st, using

Eq.(5.7), where Θ1 = −450, Θ2 = 350 and Θ3 = 50. Hence, data examples labelled 1 an

4 each represent roughly 10%, while the ones lablled 2 and 3 each present 40% of the whole

population. Figure. 5.6 plots the histogram of the differences between the wine monthly sales

values. Dotted and solid vertical lines show the corresponding cut values. Ordinal labels of the

transformed time series are shown in Figure. 5.7.

Given the red-wine time series, the task here is to predict the next sale category st+1, given

the following (in the training):

• History of the last 5 sales differences (zt−4, zt−3, ..., zt−1, zt), considered as the original

training data in X = R5.

• 5 future sales differences (zt+6, zt+5, ..., zt+2), considered as the privileged information in

1Taken from http://faculty.washington.edu/dbp/s519/data.html
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Figure 5.6: Histogram of the difference between the red-wine monthly sales values. Dotted
vertical lines show the cut values Θ1 = −450 and Θ2 = 350, while solid vertical line shows the
cut value Θ3 = 50. Ordinal symbols corresponding to the quantized regions appear on the top
of the figure.
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Figure 5.7: Transformed Australian red-wine Monthly Sales series (ordinal symbols).
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Table 5.8: MZE, MAE and MMAE results on the Australian red-wine test set for the OGMLVQ
and the SVOR-IMC (without privileged data) and their counterparts (with OIT and MF for
LUPI), across 5-fold cross validations. The best results are marked with bold font.

Algorithm Metric learning MZE MAE MMAE

OGMLVQ N/A 0.776±(0.13) 0.901±(0.12) 1.04±(0.063)

OIT-TB 0.592±(0.053) 0.718±(0.033) 0.824±(0.071)
OIT-Ext 0.684±(0.088) 0.89±(0.081) 0.969±(0.160)

MF-TB 0.618±(0.034) 0.788±(0.108) 0.892±(0.122)

SVOR-IMC N/A 0.614±(0.105) 0.722±(0.054) 0.972±(0.057)

OIT-TB 0.605±(0.115) 0.691±(0.084) 0.931±(0.019)

X∗ = R5.

Each data set has been randomly partitioned into training/test splits 5 times independently,

yielding 5 re-sampled training/test sets of size 105/25. Algorithm parameters have been tuned

through 5-fold cross-validation on the training set. Cross-validated values of (hyper-)parameters

of the studied methods are presented in the Appendix A, Section A.3, Table. A.18.

We compare the OGMLVQ and SVOR-IMC (trained without privileged data) against their

counterparts (trained with privileged data using OIT and MF approaches) on 5-fold cross vali-

dation experiments. The class distribution in the red-wine data set are imbalanced, so the MZE,

MAE and MMAE results, along with standard deviations (5-fold cross validation), are all re-

ported in Table. 5.8. Results reveal that incorporating the future time series data as privileged

information (via the OIT and MF models) indeed improves the ordinal predictions in the OGM-

LVQ as well as in the SVOR-IMC classifications. With respect to the OGMLVQ classification,

the OIT-TB approach (best performing) achieves performance improvement of 21% (relatively)

over the standard OGMLVQ (trained on X only). While the SVOR-IMC classification im-

proves the general performance by 4% (relatively) when compared to the baseline SVOR-IMC

(trained on X only). For the statistical evaluation, the p-value results obtained by the different

algorithms are summarized in Tables 5.9, for MZE, MAE and MMAE measures.
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Table 5.9: Results of statistical test (p-values of the one-sided Sign Test) comparing the classical
learning algorithms (OGMLVQ/SVOR-IMC) and their LUPI counterparts, across 5-fold cross
validations, obtained on the quantized Australian red-wine data set, for MZE, MAE and MMAE
measures. Results with p-value<0.05 are marked with bold font.

Algorithm Metric learning MZE MAE MMAE

OGMLVQ OIT-TB 0.187 0.187 0.031
OIT-Ext 0.164 0.330 0.187

MF-TB 0.505 0.251 0.145

SVOR-IMC OIT-TB 0.312 0.125 0.125

The Fish Recruitment Time Series Ordinal Prediction

The Fish Recruitment is an environmental time series that monitors the monthly values of new

fishes over the period of 1950-1987. The data1 was taken from Shumway and Stoffer textbook

[125]. Figure. 5.8 shows the irregular periodic behavior of the series over 453 monthly values.
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Figure 5.8: Fish Recruitment time series (number of new fishes) over the period 1950-1987.

As before, given the time series yt, t = 1, 2, ..., 453, the differenced sequence zt = yt− yt−1

has been quantized into four ordered symbolic categories st, using Eq.(5.7), where Θ1 = −11,

Θ1 = 12 and Θ3 = 0. Hence, data examples labelled 1 an 4 each represent roughly 10%,

while the ones lablled 2 and 3 each present 40% of the whole population. Figure. 5.9 plots

1Taken from http://faculty.washington.edu/dbp/s519/data.html
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the histogram of the differences between the fish recruitment numbers. Ordinal labels of the

transformed time series are shown in Figure. 5.10. similarly to the two previous experiments,
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Figure 5.9: Histogram of the difference between the Fish Recruitment numbers. Dotted and
solid vertical lines shows the cut values Θ1 = −11 and Θ1 = 12, while solid vertical line shows
the cut value Θ3 = 0. Ordinal symbols corresponding to the quantized regions appear on the
top of the figure.
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Figure 5.10: Transformed Fish Recruitment Time Series (ordinal symbols).

given the quantized time series, the classifier aims to predict the next Fish Recruitment category

st+1, given the following (in the training):

• History of the last 5 sales differences (zt−4, zt−3, ..., zt−1, zt), considered as the original

training data in X = R5.

• 5 future sales differences (zt+6, zt+5, ..., zt+2), considered as the privileged information in

X∗ = R5.
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Each data set has been randomly partitioned into training/test splits 5 times independently,

yielding 5 re-sampled training/test sets of size 265/177. Cross-validated values of (hyper-

)parameters of the studied methods are presented in Appendix A, Section A.3, Table. A.19.

We compare the OGMLVQ and SVOR-IMC (without privileged data) against their coun-

terparts (with privileged data using OIT and MF approaches) on 5-fold cross validation exper-

iments. The class distribution in the Fish Recruitment data set are imbalanced, so the MZE,

MAE and MMAE results1, along with standard deviations (5-fold cross validation), are all re-

ported in Table. 5.10.

Results agree with the previous findings, incorporating the future time series data as privi-

leged information (via the OIT and MF models) achieves considerable performance gain in the

OGMLVQ as well as in the SVOR-IMC classifications. With respect to the OGMLVQ clas-

sification, the OIT-TB approach (best performing) achieves performance improvement of 9%

(relatively) over the standard OGMLVQ (trained on X only). While for the SVOR-IMC classi-

fication it improves the general performance by 6% (relatively) when compared to the baseline

SVOR-IMC (trained on X only). For the statistical evaluation, the p-value results obtained by

the different algorithms are summarized in Tables 5.11, for MZE, MAE and MMAE measures.

Results show that the MAE obtained by the different algorithms were statistically significant in

some cases (with p-value<0.05).

5.6 Discussion

According to our experiments in ordinal classification data sets (first and second experiments),

we can generally conclude that the proposed OIT, as well as the MF formulation, are both able

to successfully incorporate the privileged data in the model construction phase of ordinal clas-

sification tasks, and hence achieve better ordinal classification performance over the classical

classifiers (OGMLVQ and SVOR-IMC), trained without privileged data. Furthermore, in the

1We did not attain any improvements in the OIT-Ext approach, so we omitted their results.
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Table 5.10: MZE, MAE and MMAE results on the Fish Recruitment test set for the OGMLVQ
and the SVOR-IMC (without privileged data) and their counterparts (with OIT and MF for
LUPI), across 5-fold cross validations. The best results are marked with bold font.

Algorithm Metric learning MZE MAE MMAE

OGMLVQ N/A 0.656±(0.012) 0.820±(0.027) 0.812±(0.042)

OIT-TB 0.582±(0.013) 0.710±(0.033) 0.788±(0.021)
MF-TB 0.616±(0.011) 0.762±(0.013) 0.796±(0.016)

MF-Ext 0.632±(0.042) 0.816±(0.053) 0.808±(0.046)

SVOR-IMC N/A 0.567±(0.035) 0.628±(0.046) 0.810±(0.040)

OIT-TB 0.563±(0.033) 0.620±(0.046) 0.803±(0.048)

Table 5.11: Results of statistical test (p-values of the one-sided Sign Test) comparing the clas-
sical learning algorithms (OGMLVQ/SVOR-IMC) and their LUPI counterparts, across 5-fold
cross validations, obtained on the quantized Fish Recruitment data set, for MZE, MAE and
MMAE measures. Results with p-value<0.05 are marked with bold font.

Algorithm Metric learning MZE MAE MMAE

OGMLVQ OIT-TB 0.035 0.032 0.200

MF-TB 0.030 0.031 0.312

MF-Ext 0.312 0.250 0.312

SVOR-IMC OIT-TB 0.250 0.062 0.350

context of ordinal time series prediction, experimental results (shown in third experiments) re-

veal that the proposed formulation of incorporating the future time series data as privileged

information, can lead to good performance boost in the test regime over the standard classifiers

(OGMLVQ and SVOR-IMC) trained on the historical time series observations only. Note that,

(in all experiments) the inputs in the test phase were the same for all the examined classifiers.

It is noticeable that, the OIT (for incorporation of privileged data) has slightly better per-

formance improvement over the MF approach (in most cases). That is because, unlike in MF

model, the OIT is a metric learning formulation that is specially designed for ordinal classifica-

tion tasks. Whereas in MF the privileged data is included by emphasizing the exact values of

the distances in X space using distance information in the X∗ space, in OIT the privileged data
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is integrated in learning by imposing new distances in X among similar and dissimilar pairs,

where the (dis)similarity data is extracted from the the class ordinal information of space X∗.

Likewise the previously introduced approaches for LUPI in nominal classification (chapter

3), in the OGMLVQ classifications the overall performance of the two metric incorporation

scenarios - Transformed Basis (TB) and Extended Model (Ext) - is comparable, with TB being

slightly better most of the time. That is because the TB scenario ‘permanently’ codes the new

learnt distances in X (before classification), while the Ext relies on changing the positions of

prototypes under the new learnt metric in X .

It is worthwhile mentioning that incorporating the privileged information, via OIT approach,

in the OGMLVQ classifier is more successful than in the SVOR-IMC based classifier. For ex-

ample, the relative performance improvement in OGMLVQ is 8% and 6% on Pyrimidines and

MachineCpu data sets, respectively. While in the SVOR-IMC, it is 2% on the Pyrimidines

data set and it reduces the performance on the MachineCpu data set (See Table 5.3 for statisti-

cal results). This is because the OGMLVQ algorithm does not only incorporate the privileged

information in terms of the learnt metric on X , but it also re-positions the class prototypes ‘op-

timally’ with respect to the modified metric. Furthermore, our OIT method can be considered

a natural extension of the recent developments in LVQ, where the original LVQ approaches

have been first extended to diagonal [12] and later to full metric tensors [13], which is further

extended to the ordinal version, the OGMLVQ classifier (presented in chapter 4). In such ap-

proaches both the input space metric and the class prototype positions are jointly trained to an

optimal setting. Moreover, from the analysis of the MMAE performance (which is more con-

siderable in case of unbalanced class data set), we can conclude that in the case of unbalanced

data sets the OGMLVQ with LUPI outperforms the SVOR-IMC with LUPI.

Regarding the galaxy morphological ordinal classification problem (in section 5.5.2), we

remark that the performance improvement attained after integrating the spectral privileged in-

formation in the ordinal classification task, is less effective than the improvement achieved after
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incorporating the spectroscopic privileged data in the nominal classification case (given in ex-

periment 3.7.3). Where in the nominal GMLVQ classification, the average relative improvement

(for both metric incorporation scenarios (TB and Ext)) in the classification accuracy over the

GMLVQ baseline is 15% and 13% for IT and MF, respectively. While in the OGMLVQ, the

OIT-TB approach achieves the best performance in terms of MZE and MAE, with improvement

of 4% (relatively) over the standard OGMLVQ (trained on photometric features only). There

are two main reasons for that (mainly related to the nature of the data given). Firstly, in the

nominal classification experiment (in 3.7.3) only three main classes were involved, in contrast

to six (more detailed) ordered classes used in the ordinal classification problem (in 5.5.2). In-

tegrating the spectral privileged data in the former case will indeed be more beneficial than

the (more complex) later case. Secondly, the morphological classes assigned to galaxies in the

nominal classification problem are more credible than the ordered classes used in the ordinal

classification scenario. That is because in the nominal case, a set of well classified galaxy ob-

jects were extracted from the Galaxy Zoo project, restricted to having more than 50 votes with

95% agreement among the votes. On the other hand, the ordinal classifiction problem used less

credible classes of the galaxy objects as it only depends on the visual classification of the public

with no accuracy considered.

5.7 Chapter Summary

We have introduced a novel ordinal-based metric learning methodology, based on Information

Theoretic Metric Learning (ITML)[65], for Learning Using privileged Information (LUPI) in

ordinal classifications. The proposed framework can be naturally cast in ordinal prototype-

based classification with metric adaptation (OGMLVQ), introduced in chapter 4 Section 4.3.4.

The privileged information is incorporated into the model operating on the original space X

by changing the global metric in X , based on proximity relations obtained by the privileged

information in X∗. We used two scenarios for incorporating the new learned metric on X in the
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ordinal prototype-based modeling.

Unlike the nominal version of IT for LUPI in prototype models, Chapter 3 Section 3.4.2,

in the proposed Ordinal-based Information Theoretic (the OIT) version the order information

among the training classes is utilized to select the appropriate (dis)similarity constraints. Fur-

thermore, the ordinal version of IT realizes distance metric updates, for similar/dissimilar points

in spaceX , using the assigned weights ϑ±, assigning different degree of similarity/dissimilarity

measures (based on class order relations).

Likewise the IT and MF approaches for learning with privileged information in nominal

classifications, the OIT method is applicable in conjunction with any ordinal classifier for in-

tegrating the privileged data in ordinal classification training course. To our knowledge, this is

the first work which studies the idea of LUPI into the ordinal classification setting.

We verified our framework in three experimental settings: (1) controlled experiments using

two benchmark ordinal regression data sets, (2) real-world astronomical application- galaxy

morphological ordinal classification. Here, the privileged information takes the form of costly-

to-obtain full galaxy spectra. (3) real-world ordinal time series prediction on chaotic time series.

Experiment results revealed that incorporating privileged information via the proposed ordinal-

based metric learning framework can improve the ordinal classification performance.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusion

This thesis proposes three advanced learning methodologies that aim to improve the perfor-

mance of prototype-based classifiers with full adaptive metrics, particularly the Generalized

Matrix Learning Vector Quantization (GMLVQ) algorithm [13, 26]. One learning methodol-

ogy namely Learning Using Privileged Information (LUPI), originally introduced in [27, 29,

28], aims to improve classification performance through incorporating additional (privileged)

knowledge into the classifier learning phase, but not in testing. The first contribution in this

thesis investigates the importance of incorporation of such an expert privileged information in

the context of the GMLVQ model. Two novel and intuitive frameworks for LUPI, based on

metric learning techniques, have been introduced and naturally cast in the GMLVQ algorithm

(see chapter 2). The second contribution of this thesis proposes a novel ordinal LVQ formula-

tion with adaptive metric that is intended for classifying data with ordered classes (i.e. ordinal

classification). Ordinal classification gives arise to a variety of machine learning applications,

including information retrieval [2], medical analysis [6] and preference learning [33]. Finally,

the thesis establishes a link between the proposed LUPI paradigm and the presented ordinal
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GMLVQ classifier through a novel ordinal-based metric learning technique, which aims to im-

prove ordinal classification tasks by incorporating privileged data in the learning course.

In particular, the thesis introduces a novel framework for LUPI through a metric learning

technique. The framework is naturally cast in the GMLVQ classification algorithm aiming

at improving its performance. The privileged information is incorporated into the model by

changing the global metric in the original input space, where a classifier operates, based on

distance information revealed by the privileged space. Two metric learning solutions have been

presented, the first learns a Mahalanobis distance metric for the original data space by utilizing

distance information given in the privileged space, the second learns a metric for the original

space using a supervisory information (given in the form of pairwise similarity constraints and

class labels) extracted from the privileged space. Experimental results on several data sets show

that the proposed LUPI models do indeed improve the performance of the existing GMLVQ

classifier. They also show comparable or better results than the alternative state-of-the-art LUPI

technique, the SVM+ (introduced by Vapnik in [27, 29, 28]). Furthermore, the introduced

LUPI frameworks have been successfully utilized to drive a better solution in an important

astronomical classification problem, the Galaxy Morphological Classification. In addition to

the superior performance and in contrast to the SVM+, it has been shown that the new LUPI

techniques can be employed for incorporating privileged data in combination with any other

supervised classifier (e.g. the k-NN algorithm).

The second main contribution of this thesis proposes two novel ordinal LVQ classifiers with

full adaptive metrics, the OMLVQ and OGMLVQ (chapter 4). In contrast to the exiting nom-

inal LVQ algorithms, ordinal LVQ variants exploit the class order information during training,

particularly in the selection of class prototypes to be adapted and in determining the exact man-

ner in which prototypes get updated. In general, a region of tolerable correct/incorrect labels

are initially specified, based on which prototype adaptation can take place. However, unlike

the nominal LVQ version, updates are weighted using a Gaussian of label differences, as an
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attempt to preserve the ordinal relations amongst the pattern’s classes and hence improve the

overall ordinal classification accuracy. The new learning rules for the proposed ordinal LVQ

algorithms have also been derived in this chapter. Results of performed comparative experi-

ments on benchmark and real-world data sets with ordered classes verify the effectiveness of

the proposed ordinal LVQ frameworks, not only when compared to their standard nominal LVQ

counterparts, but also with respect to some existing benchmark ordinal regression methods.

The encouraging results achieved by integrating the privileged information in nominal clas-

sification learning, inspired us to undertake some further extensions of the proposed LUPI

paradigm to the case of LUPI in ordinal classification problems. Hence, we present a novel

ordinal-based metric learning methodology, based on the Information Theoretic Metric Learn-

ing (ITML) [65], especially designed for incorporating privileged data in ordinal classification

learning courses. The new LUPI formulation is naturally cast in the proposed ordinal LVQ

classifier with metric adaptation scheme. Similarly to the nominal LUPI formulation, pro-

posed in Chapter 3, the ordinal variant incorporates the privileged information into the model,

operating on the original space X , by changing the global metric of X based on proximity rela-

tions ((dis)similarity constraints) obtained from the privileged information. However, unlike the

nominal LUPI version, the order information amongst the training classes is taken into consider-

ation when selecting the appropriate (dis)similarity constraints. Furthermore, distance updates

for similar/dissimilar pairs in spaceX realize the different degree of change based on their class

order relations, which is provided by a Gaussian of label differences. It has been shown that

the proposed ordinal LUPI framework is able to improve the ordinal classification accuracy

in various experimental settings, including benchmark ordinal regression data sets, real-world

astronomical application (the Galaxy Morphological ordinal classification) and real-world or-

dinal time series predictions. Furthermore, likewise the proposed nominal LUPI scheme, the

suggested model is flexible. In other words, it can work in conjunction with any other su-

pervised ordinal classifier (e.g. SVOR-IMC approach) to achieve better ordinal classification
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accuracy.

6.2 Future Work

The research conducted in this thesis opens up new research directions and can be further ex-

tended along the following lines:

• The proposed LUPI approaches target incorporating auxiliary knowledge from one privi-

leged data space. However, complex classification problems may benefit from incorporat-

ing expert information from multiple domains. Thus, we intend to expand the proposed

LUPI models to the case of integrating privileged information (during learning) from

multiple spaces of privileged knowledge, which may contribute to better training. For

instance, based on discussions with astronomers we found out that in the studied Galaxy

Morphological classification problem (see sections 3.7.3 and 5.5.2), incorporating other

privileged astronomical parameters alongside with the spectra data, such as characteriza-

tions of local spatial context of galaxies, may boost the classification accuracy.

• Based on outcomes obtained in this thesis, we can claim that the proposed metric learning

frameworks for LUPI in nominal and ordinal settings have proven superiority (in terms

of performance) over the classical learning in the context of the GMLVQ and OGMLVQ

models, respectively. However, they actually increase the number of free parameters used

in the system, when compared to the GMLVQ and OGMLVQ algorithm with classical

learning. So how to reduce the workload of LUPI with GMLVQ and OGMLVQ becomes

an interesting problem and worthy of study.

• Learning a full distance matrix for high dimensional feature data sets using the proposed

LUPI with the ITML technique, may require a large number of parameters which can

cause overfitting. Hence, we suggest extending the proposed IT and OIT metric learning

models for LUPI (sections 3.4.2 and 5.3, respectively) to the case of low-rank metric
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tensors (subspaces of the data and the privileged spaces).

• Due to the intuitive and flexible way of incorporating the privileged data, we believe that

the proposed metric learning schemes for LUPI paradigm (in both ordinal and nominal

classifications) can be successfully employed in several interdisciplinary applications.

Thus, future work will address the application to further complex data sets, such as in the

psychology domain. In such cases, the Functional Magnetic Resonance Imaging (FMRI)

data can be used as a privileged information to enhance the classification of behavioral

data.

• The proposed ordinal LVQ formulations with full adaptive metric, the OMLVQ and the

OGMLVQ, utilizes one relevance matrix that defines the global distance measure. How-

ever, following the work in [13], this can be extended to the case of localized distance

measures attached to each individual prototypes. In this case, each matrix will be adapted

individually, and consequently the prototypes adaptations will also encounter the cor-

responding local matrices. This particular extension is technically straightforward, yet

it may lead to more complex decision boundaries and hence better ordinal classifica-

tion accuracy. That is because, local relevance matrices take into consideration that the

relevance might change within the data space, which may contribute to better learning.

Furthermore, inspired by the work done in [52], the ordinal LVQ formulations can also

be extended to case of Limited Rank Matrix Learning. This formalism parameterizes the

relevance matrix in terms of a rectangular (limited) rank, rather the employed full rank,

which corresponds to low-dimensional representations of the data. This future exten-

sion aims at reducing the number of free parameters in the ordinal classification learning

problem.

• Relevance learning, in classical LVQ models, has already proven to be a plausible system

as well as a robust classification scheme. It provides valuable insights into the problem
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at hand and facilitates fruitful interdisciplinary collaboration. Forthcoming studies will

address the implication of relevance learning on the proposed LUPI frameworks.
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Table A.1: Cross-validated values of (hyper-)parameters for the Iris, Pima, and Abalone data
sets obtained for GMLVQ and k-NN classifications.

Algorithm Hyper-parameter Iris Pima Abalone

GMLVQ Prototypes per class 1 3 1

(a∗, b∗, a, b) (10,90,5,95) (5,90,5,90) (2,85,5,90)

ν 1 0.01 1

γ 0.7 0.2 0.2

k-NN k 3 4 4

(a∗, b∗, a, b) (10,90,5,95) (5,90,5,90) (5,90,5,90)

ν 1 0.01 1

γ 0.7 0.2 0.2

APPENDIX A

Description of Experimental Setup

A.1 Experimental Setup for Chapter Three Experiments

Cross-validated values of (hyper-)parameters of the studied methods used in section 3.7.1, 3.7.2,

3.7.2 and 3.7.3, are provided here in Tables. A.1, A.2, A.3 and A.4, respectively.

149



Table A.2: Cross-validated values of (hyper-)parameters for the MNIST data set (images ’5’ and
’8’) obtained for GMLVQ and k-NN classifications.

GMLVQ Prototypes per class (a∗, b∗, a, b) ν γ

1 (5,80,5,95) 0.01 0.5

k-NN k (a∗, b∗, a, b) ν γ

4 (5,80,5,95) 0.01 0.2

Table A.3: Cross-validated values of (hyper-)parameters for the Mackey-Glass time series set
obtained for GMLVQ classifications.

GMLVQ Prototypes per class (a∗, b∗, a, b) ν γ

10 (5,90,5,95) 1 1

Table A.4: Cross-validated values of (hyper-)parameters for the galaxy data set obtained for
GMLVQ and k-NN classifications.

GMLVQ Prototypes per class (a∗, b∗, a, b) ν γ

(20,10,5) (3,90,5,90) 0.1 1

k-NN k (a∗, b∗, a, b) ν γ

6 (3,90,5,90) 0.1 0.8

Table A.5: Cross-validated values of (hyper-)parameters for the Pyrimidines data set obtained
for MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 3 N/A N/A

GMLVQ 3 N/A N/A

OMLVQ 3 1 Γ
OGMLVQ 3 1 Γ

A.2 Experimental Setup for Chapter Four Experiments

Cross-validated values of (hyper-)parameters of the studied methods are presented in Tables.

A.5, A.6, A.7, A.8, , A.9, A.10, A.11, A.12, A.13, A.14 for Pyrimidines, MachineCpu, Boston,

Abalone, Bank, Computer, California, Census, Cars, Redwine, respectively.
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Table A.6: Cross-validated values of (hyper-)parameters for the MachineCpu data set obtained
for MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 3 N/A N/A

GMLVQ 3 N/A N/A

OMLVQ 3 1 Γ
OGMLVQ 3 1 Γ

Table A.7: Cross-validated values of (hyper-)parameters for the Boston data set obtained for
MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 3 N/A N/A

GMLVQ 3 N/A N/A

OMLVQ 3 2 Γ
OGMLVQ 3 2 Γ · 2

Table A.8: Cross-validated values of (hyper-)parameters for the Abalone data set obtained for
MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 3 N/A N/A

GMLVQ 3 N/A N/A

OMLVQ 3 1 Γ · 2
OGMLVQ 3 1 Γ · 2

Table A.9: Cross-validated values of (hyper-)parameters for the Bank data set obtained for
MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 3 N/A N/A

GMLVQ 3 N/A N/A

OMLVQ 3 2 Γ
OGMLVQ 3 1 Γ · 2
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Table A.10: Cross-validated values of (hyper-)parameters for the Computer data set obtained
for MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 3 N/A N/A

GMLVQ 3 N/A N/A

OMLVQ 3 2 Γ
OGMLVQ 3 2 Γ

Table A.11: Cross-validated values of (hyper-)parameters for the California data set obtained
for MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 3 N/A N/A

GMLVQ 3 N/A N/A

OMLVQ 3 1 Γ
OGMLVQ 3 1 Γ

Table A.12: Cross-validated values of (hyper-)parameters for the Census data set obtained for
MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 3 N/A N/A

GMLVQ 3 N/A N/A

OMLVQ 3 1 Γ
OGMLVQ 3 1 Γ

Table A.13: Cross-validated values of (hyper-)parameters for the Cars data set obtained for
MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 5 N/A N/A

GMLVQ 5 N/A N/A

OMLVQ 5 0 Γ · 2
OGMLVQ 5 0 Γ · 2
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Table A.14: Cross-validated values of (hyper-)parameters for the Redwine data set obtained for
MLVQ, GMLVQ, OMLVQ and OGMLVQ classifications.

Algorithm P Lmin <

MLVQ 5 N/A N/A

GMLVQ 5 N/A N/A

OMLVQ 5 0 Γ/2
OGMLVQ 5 0 Γ · 2

Table A.15: Cross-validated values of (hyper-)parameters for the Pyrimidines and MachineCpu
data sets obtained for OGMLVQ and SVOR-IMC classifications.

Algorithm Hyper-parameter Pyrimidines MachineCpu

OGMLVQ Prototypes per class 3 3

(a∗, b∗, a, b) (3,95,10,90) (3,98,10,90)

ν 0.001 0.001

γ 0.1 0.2

Lmin 0 0

κ 1 0

SVOR-IMC (a∗, b∗, a, b) (5,95,10,90) (3,98,10,90)

ν 0.001 0.001

κ 1 0

A.3 Experimental Setup for Chapter Five Experiments

Cross-validated values of (hyper-)parameters of the studied methods in Section 5.5.1 and 5.5.2

are presented in Tables. A.15 and A.16, respectively. Cross-validated values of (hyper-)parameters

of the studied methods in the time series models in Section 5.5.3 are presented in Table. A.17,

Table. A.18, Table. A.19, for the Santa Fe Laser, Australian red-wine and Fish Recruitment

data sets, respectively.
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Table A.16: Cross-validated values of (hyper-)parameters for the galaxy data set obtained for
OGMLVQ classifications.

OGMLVQ Prototypes per class (a∗, b∗, a, b) ν γ κ Lmin

20 (3,98,5,95) 0.001 0.1 1 0

Table A.17: Cross-validated values of (hyper-)parameters for the quantized Santa Fe Laser data
set obtained for OGMLVQ classifications.

OGMLVQ Prototypes per class (a∗, b∗, a, b) ν γ κ Lmin

15 (10,90,10,90) 0.001 0.8 0 0

Table A.18: Cross-validated values of (hyper-)parameters for the quantized Australian red-wine
data set obtained for OGMLVQ and SVOR-IMC classifications.

OGMLVQ Prototypes per class (a∗, b∗, a, b) ν γ κ Lmin

3 (3,98,10,90) 0.001 0.2 1 0

SVOR-IMC N/A (3,98,10,90) 0.001 N/A 1 N/A

Table A.19: Cross-validated values of (hyper-)parameters for the quantized Fish Recruitment
data set obtained for OGMLVQ and SVOR-IMC classifications.

OGMLVQ Prototypes per class (a∗, b∗, a, b) ν γ κ Lmin

3 (5,95,10,90) 0.001 0.8 0 0

SVOR-IMC N/A (5,95,10,90) 0.001 N/A 0 N/A
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