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 Abstract 

Perfume-filled microcapsules are intended to be incorporated in household products 

(e.g. detergents), and then provide a pleasant scent to consumers after laundry 

processes. To realise this, it is essential for the microcapsules to deposit and then remain 

on fabric surfaces during and after laundry processes. Therefore, microcapsules and 

model fabric surfaces were modified respectively with special chemicals in order to 

enhance the adhesion between them in this work; then the adhesion and retention of 

microcapsules on model fabric surfaces were investigated and adhesion mechanisms 

were explained; finally, the relationship between the adhesion and the removal/retention 

of particles from a model surface was established by a mathematical model.  

Microcapsules were modified by polyelectrolytes (PEs) (polyvinyl formamide (PVF) 

and chitosan). It was found by atomic force microscopy (AFM) that the adhesion 

between single PE-modified microcapsules and a cellulose thin film were enhanced 

compared with non-modified microcapsules; however, the PE-modified microcapsules 

were observed to aggregate. Bridging interactions were considered to be the reason 

causing the increase in adhesion and the aggregation of microcapsules by the 

polyelectrolytes. Additionally, big variations in the value of adhesion between different 

microcapsules were observed, which was attributed to uneven attachment of PE 

molecules on the surface of microcapsules after modification; the difference in the 

structure of PE molecules may be the reason causing the difference in their 

performance.  

A flow chamber technique was then introduced to measure the removal/retention of 

microcapsules on a model fabric surface to characterise adhesion. In order to avoid 

aggregation of microcapsules, a new protocol to modify model fabric surfaces with 

polyelectrolytes was developed. A cellulose thin film was modified by PVF, chitosan 

and poly (ethyleneimine) (PEI) respectively and both the adhesion and retention of 

microcapsules on the PE-modified cellulose were found to increase by AFM and the 

flow chamber technique compared with the non-modified cellulose. The order of the 

performance on enhancing adhesion and retention of the three PEs is PVF ≥ Chitosan > 

PEI. Electrostatic attractions, bridging interactions and hydrogen bonds were considered 

to be the possible mechanisms to enhance adhesion and the structure of the PE 

molecules was the main factor to determine their performance on adhesion and retention 

enhancement.  

The flow chamber technique and AFM were extended to investigate the retention and 

adhesion of microcapsules on a polyester substrate (PET), which were found much 

higher than those on a cellulose thin film. This was mainly because the PET surface is 

much more hydrophobic than the cellulose surface. Additionally, adhesion was found to 

decrease after a PET surface was modified with the three PEs, while the retention of 

microcapsules on the three PE-modified PET surfaces increased, which seems 

inconsistent. No difference was observed on adhesion after a PET surface was modified 

with the three PEs, but the order of retention of microcapsules on the PE-modified PET 

surface is PVF> chitosan> PEI. The inconsistency was mainly because adhesion 

determined by AFM is influenced by the surface properties; while the retention of 

particles on a surface can be influenced by the attached PE molecules on the side wall of 

microcapsules which extended from the PE-modified PET surface. A model was 

developed based on the displacement of microcapsules from a substrate in a flow 

chamber to establish the relationship between the removal/retention of microcapsules 



 

 

exposed to a fluid flow and their adhesion to the substrate. The model predictions of 

adhesion and thermodynamic work of adhesion agree well with the results obtained by 

AFM and the flow chamber experiments for microcapsules interacting with glass and 

PET surfaces after considering possible microcapsule-substrate contacts in aqueous 

solution. Moreover, the model predicts that the sum of thermodynamic work of 

adhesion is the main parameter to determine the removal of particle, which has 

interpreted the inconsistency of the increase of retention but the observed decrease of 

adhesion between microcapsules and PET surfaces after modification with PEs.  

It is believed that this study has enhanced fundamental understanding of the various 

interactions between microcapsules and fabric surfaces relevant to industrial 

applications and has laid a solid foundation to effectively develop new formulations to 

improve the performance of various consumer products.   
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Nomenclature 

ia  

The normalised area ratio of microcapsules remaining after removal on i 

position 

a    The average normalised area ratio 

A Total area occupied by microcapsules, m
2
 

'A  The effective area of the particle perpendicular to the flow direction, m
2
 

Aafterremoval Total area occupied by microcapsules after using a water flow, m
2
 

Abeforeremoval   Total area occupied by microcapsules before using a water flow, m
2
 

Ai    Surface area occupied by a single microcapsule, m
2
 

HA  Hamaker constant, J 

b 

The half lengths of the cross section of the rectangular channel in y 

direction, m 

c   

The half lengths of the cross section of the rectangular channel in z 

direction, m 

DC             The drag coefficient  

D  The distance between two surfaces, m 

D
’
    The width or the height of the channel, m 

D4,3               The volume mean diameter, m 

E Young’s modulus of each material, Pa 

EB The binding energy, J 

Ek The energy of the core electron which excited from the atom, J 

EC Young’s modulus of the wall of microcapsule, Pa 

ES Young’s modulus of the substrate, Pa 

E  The equivalent Young’s modulus, Pa 

F   The applied load, N 

Fadhesion The adhesion force, N 

FB The sum of buoyancy force and gravity force, N 

Fbouyancy The buoyancy force, N 
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Fc The pull-off/adhesion force, N 

FD /Fdrag         The drag force, N 

Ff /Ffriction        The friction force, N 

Fgravity The gravity force, N 

Flift The lift force, N 

FSA The Saffman lift force, N 

g The gravity, m s
-2

 

h The vertical distance between the contact point and the surface, m 

hυ The incident energy of X-ray photon, J 

l is equal to (h/tan(θ)), m 

L The development length, m 

DM  The moment of the surface stress, Nm 

N   The number of microcapsules 

NDP The degree of polymerization  

q The net charge on the particle, C 

R   Radius of microparticle, m 

Rchain-size            The polyelectrolyte chain size  

pRe  The Reynolds number of the flow chamber system 

fU    The velocity of the fluid, m s
-1

 

mU  The maximum velocity in the velocity profile, m s
-1

 

PU  The velocity of the particle, m s
-1

 

V The volume of the particle, m
3
 

y The distance from the centre line to the particle, m 

z The location of the particle orthogonal to the direction of flow, m 

z0 The equilibrium separation, m 
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Greek Symbol 

 

  The contact radius, m 

 The relative permittivity 

0  Permittivity of free space, C
2
 m

-2
 N

-1
  

C    The surface energy of microcapsule per unit area, J m
-2

 

S    The surface energy of substrate per unit area, J m
-2

 

CS  

The interfacial adhesion energy between microcapsule and substrate per unit 

area, J m
-2

 

  The thermodynamic work of adhesion per unit area, J m
-2

 

 zy,  The shear stress in the position (y, z), N m
-2

 

  The shear rate, s
-1

 

ν   The kinematic viscosity m
2
 s

-1
 

analyser  The work function of the electron analyser, J 

C     Coulomb’s constant, m
2
 N C

-2
 

  Contact angle, ° 

  The static friction coefficient 

υ Poisson’s ratio 

υc Poisson’s ratio of microcapsule 

υs Poisson’s ratio of substrate 

p  The density of the particle, kg m
-3

 

f  The density of the fluid, kg m
-3

  

f  The torque due to the flow, Nm 
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Abbreviations 

AFM Atomic Force Microscopy  

DLVO  Derjaguin–Landau–Verweij–Overbeek Theory  

DMSO Dimethyl Sulfoxide  

DMT Derjaguin-Muller-Toporov Theory  

ESEM Environmental Scanning Electron Microscopy  

HPLC  High Performance Liquid Chromatography  

JKR Johnson-Kendall-Roberts Theory  

MF Melamine Formaldehyde  

NMMO N-methylmorpholine-N-oxide  

PE (s) Polyelectrolyte(s) 

PEI  Poly(ethyleneimine) 

PET  Polyethylene terephthalate 

PMMA Poly(methyl methacrylate)  

PVF  Polyvinyl formaldehyde 

RH Relative Humidity  

RMS  Root Mean Square  

SDBS           Sodium Dodecylbenzenesulfonate 

SEM  Scanning Electron Microscopy  

SFA Surface Forces Apparatus  

TEM  Transmission Electron Microscopy  

XPS     X-ray Photoelectron Microscopy  
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Chapter 1: Introduction 

 

1.1 General background of the project 

The delivery of particles to surfaces and the removal of them from surfaces have 

attracted much attention in a wide range of fields such as personal and household care 

(Rodrigues et al., 2009, Liu, 2010), drug delivery (Fischer et al., 2009), biomaterials 

(Shin et al., 2003), particle filtration and fouling (Oliveria, 1997), drying and cleaning 

industries (Zhang et al., 1999, Zhang, 1999) and so on. Adhesion behaviour is 

fundamentally important for these processes and it can be favourable or undesirable 

depending on the system of interest. Particles containing active ingredients such as 

perfume oil (Rodrigues et al., 2008, Rodrigues et al., 2009), moisturizers (Ghosh, 

2006),  and  vitamins (Yao et al., 2011) are expected to be delivered to human surfaces 

such as skin and hair or to textiles to provide designated performances during the 

application process, in which the adhesive behaviour is favourable.  However, in some 

other cases, like particle filtration, fouling and cleaning processes, one wishes particles 

to be removed from the surfaces, in which case adhesion should be avoided. Therefore, 

it is fundamentally important to understand the adhesion between particles and surfaces 

in order to either increase or avoid adhesion for different systems.  In this project, the 

application of perfume-filled microcapsules to liquid detergent and their adhesion and 

retention on fabric surfaces are of special interest. It is expected that understanding of 

the adhesion behaviour between perfume-filled microcapsules and fabric surfaces can 

provide useful guidance on development of new formulations of detergents with 

perfume-filled microcapsules. 

http://www.google.co.uk/url?sa=t&rct=j&q=microcapsules+for+skin+care+&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=http%3A%2F%2Fisrael21c.org%2Ftechnology%2Fisraeli-developed-microcapsules-deliver-vitamins-straight-to-your-skin%2F&ei=sNaMUYzaHsn40gXK7IDIAQ&usg=AFQjCNFMGluYEBUFF9c6Rwan1QLMkaaLfA
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Perfume oil has been encapsulated into polymer walls to make perfume-filled 

microcapsules in order to reduce its evaporation, decrease the reaction with other 

substances in the surrounding environment and achieve a long-lasting release of the 

fragrance during applications (Hong and Park, 1999, Hong and Park, 2000, Long et al., 

2010). The features of perfume-filled microcapsules have attracted great attention in 

personal care and household-care industries, especially those leading companies such as 

Procter & Gamble. They are expected to add perfume-filled microcapsules into personal 

care and household-care products, including washing powders (Brown and Bowman, 

1985), liquid detergents (Broeckx et al., 2004), bleach (Bianchetti et al., 2010), and 

personal cleaner (Ouali and Benczedi, 2008), to provide a long-lasting release of 

pleasant scent to consumers to improve the product image. The application of perfume-

filled microcapsules into liquid detergents becomes one of the main focuses among the 

various kinds of products. Such microcapsules should ideally have a number of 

desirable properties, including no oil leakage in liquid detergents during storage, 

optimum mechanical strength not only to resist the external mechanical forces during 

the laundry process to avoid breakage but also to deliver the perfume oil through 

breakage resulting from friction with the cleaned fabrics, and certain surface properties 

to enhance their retention on the targeted fabric substrates after laundry processes.  

The mechanical strength of melamine-formaldehyde perfume-filled microcapsules was 

systematically investigated by Liu (2010) and it was concluded that the mechanical 

strength of perfume-filled microcapsules can be adjusted by changing the formulation 

conditions including reaction time, temperature or adding a layer of coating. 

Additionally, the interaction between melamine formaldehyde (MF) microparticles 

which were used to mimic MF perfume-filled microcapsules and a cotton film used to 

mimic the cotton fabric surface was investigated (Liu et al., 2013) and their adhesion 
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was detected in ambient air and no significant adhesive force could be measured in 

water and detergent solutions. From this, it was envisaged that the retention of 

microcapsules on fabric surfaces after laundry processes would be low, which needs to 

be improved.  

 

1.2 Objective of the project 

The low retention of perfume-filled microcapsules on fabric surfaces causes a product 

cost and financial loss. Therefore, the main objective of the project is to understand the 

adhesion and retention behaviour of perfume-filled microcapsules on fabric surfaces so 

that guidance can be provided to develop better product formulation which can enhance 

the retention of microcapsules on fabric surfaces in laundry processes. 

 

1.3 Layout of the thesis 

Chapter 2: This chapter aims to provide basic knowledge from previous research 

which could be used in the project. Firstly, knowledge of perfume-filled microcapsules, 

including the formulation methodology, wall materials and the applications is reviewed; 

and then general information about the fabric is introduced. Secondly, research work on 

enhancing adhesion between surfaces via surface treatment is reviewed. Finally, the 

adhesion behaviour of micro-particles on surfaces, especially the adhesion mechanisms 

in ambient air and liquid environments, the techniques (Atomic force microscopy 

(AFM) and flow chamber technique used for characterizing adhesion, the influencing 

factors and the methodology to calculate adhesion energy between surfaces are 

introduced. 
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 Chapter 3:  This chapter presents the materials, the techniques and the experimental 

methodologies including their principle and operation procedures that were used in the 

project.  

 

Chapter 4: Melamine formaldehyde (MF) perfume-filled microcapsules were modified 

with functional polyelectrolytes and then the adhesion between single microcapsules 

and a cellulose film was investigated by AFM, which had been created to mimic a 

cotton fabric surface. MF perfume-filled microcapsules were then modified with 

chitosan and polyvinyl formamide (PVF) and their surface properties were characterized 

by an ESEM, particle sizer, zeta Master. Finally, the interactions between microcapsules 

and cellulose thin films were investigated by an AFM colloidal probe technique, and the 

effects of operation parameters including the compression load and contact time were 

investigated;  and then the adhesion between microcapsules and cellulose films in 

ambient air, High Performance Liquid Chromatography (HPLC) grade H2O water and 

sodium dodecylbenzenesulfonate (SDBS) solutions were studied; additionally, the 

factors influencing the adhesion results, including the particle size and surface 

roughness of both microcapsules and cellulose films were interpreted.  

 

Chapter 5: The retention and adhesion behaviour of microcapsules on a cellulose film 

were investigated by a parallel-plate flow chamber device and AFM, which is presented 

in this chapter. Cellulose films were modified with the functional polyelectrolytes (i) 

polyvinyl formamide (PVF), (ii) chitosan, and (iii) poly(ethyleneimine) (PEI), to 

http://www.google.co.uk/url?sa=t&rct=j&q=sdbs%20surfactant&source=web&cd=1&cad=rja&ved=0CC0QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSodium_dodecylbenzenesulfonate&ei=ZLjNUcmhCMf80QXY2oCIAQ&usg=AFQjCNHnF1KwjBGGpDxUGmIrtoy6P5eG7g&bvm=bv.48572450,d.d2k
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increase the attraction to microcapsules. The surface properties were characterized by 

AFM imaging and XPS. The retention of microcapsules on modified cellulose surfaces 

was investigated by the flow chamber technique and then the interactions between 

single microcapsules and cellulose surfaces were investigated by an AFM colloidal 

probe technique. The results from both flow chamber experiments and the AFM 

technique were compared and the adhesion mechanism was proposed.  

 

Chapter 6:  The investigation of the retention and adhesion behaviours of MF 

microcapsules was further extended to polyester surfaces in this chapter. Functional 

polyelectrolytes (PVF, chitosan and PEI) were used to modify polyester surfaces and 

the retention and adhesion of microcapsules were investigated by the flow chamber 

technique and AFM. The performances of adhesion and retention enhancement resulting 

from using the three chemicals were compared and the adhesion mechanism was 

elucidated.   

 

Chapter 7: A theoretical model was proposed based on the flow chamber experiments, 

to predict the adhesion and the thermodynamic work of adhesion between 

microcapsules and a glass surface used as a model substrate. The minimum sizes of 

microcapsules which can be removed by lift, sliding and rolling were calculated to 

investigate the removal mechanism. The influence factors such as the particle radius, 

flow rate, density of the particle, coefficient of friction and the distance of the central 

position of the settled particle to the centre line of the channel and their influence on 

adhesion behaviour were interpreted. The adhesion and thermodynamic work of 

adhesion between a microcapsule and a glass were then predicted by incorporating the 
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experimental results including the critical flow rate, particle size and particle location in 

the flow chamber to the model. Additionally, the thermodynamic work of adhesion was 

calculated from AFM adhesion results. The results of adhesion and thermodynamic 

work of adhesion from the flow chamber model and AFM were compared. The 

influence of the contact issue between the microcapsule and the substrate in aqueous 

solution on the adhesion and thermodynamic work of adhesion was further discussed. 

Finally, the model was used to interpret the relationship between the adhesion and the 

removal of particles as presented in Chapter 5 and Chapter 6. 

 

Chapter 8: This chapter presents the overall conclusions of the project and 

recommendations for future work are proposed.  
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Chapter 2: Literature Review 

 

2.1 Perfume  

Perfume is a mixture of fragrant essential oils and aroma compounds, fixatives, and 

solvents, which is used to give the human body, animals, objects, and living spaces a 

pleasant scent (Ohloff et al., 1994, Sell, 2006). It has been used in many diverse 

consumer products such as cosmetic, soaps, detergents, household cleansers, air 

fresheners (Herman, 2002). In fact, perfume itself has no effect on the functionality of 

the personal care and household products, but it plays an important role in promoting 

the product image and attracting consumers’ attention for its aesthetic attributes.  

However, the direct incorporation of perfume into personal care and household products 

has drawbacks. Most perfume ingredients are unsaturated hydrocarbons, alcohols, 

esters, aldehydes ketones, phenols or terpenes (Jellinek, 1975, Sell, 2006, Nivaldo, 

2007) and these ingredients evaporate quickly during packaging, storage and application 

processes; they are sensitive to heat, light, oxygen and extraneous organic materials; 

additionally, they may also react with some ingredients such as oxidizing agents, strong 

acids, strong bases and also proteins and polypeptides from the surrounding 

environments (Jellinek, 1975); some perfume components themselves may undergo 

slow chemical changes by reacting with the air and container materials during storage 

(Ishikawa et al., 1971); besides, surfactants are mean to solubilise perfume oils which 

can affect the performance of the detergent; Additionally, perfume oil is hydrophobic 

and it has poor solubility in the emulsion products; the incomplete solubility of perfume 

in consumer products often causes haziness or cloud and visible precipitation in the 

http://en.wikipedia.org/wiki/Essential_oil
http://en.wikipedia.org/wiki/Aroma_compound
http://en.wikipedia.org/wiki/Fixative_(perfumery)
http://en.wikipedia.org/wiki/Solvent
http://en.wikipedia.org/wiki/Odor
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products, and even worse cases such as clogging the valve orifices. All the issues were 

mentioned above not only cause perfume loss but also affect the performance of the 

products and break down the product image. Therefore, using perfume in detergent with 

a high efficiency and without causing problems has become an urgent business need.  

 

2.2 Encapsulation  

2.2.1 Encapsulation methodology 

The encapsulation technique is one of the possible ways to achieve the goal to use 

perfume efficiently without causing problems in consumer products. Using the 

technique, different core materials, including particles, droplets and even gases can be 

coated or encapsulated into solid wall/shell to separate them from the outside 

environments and then to achieve some unique performances such as protecting the core 

materials and their slow release (Karsa and Stephenson, 1993).  

Perfume oil, as a core material, has been captured with different encapsulation 

techniques in the past three decades or so. The most common techniques used are in-situ 

polymerization (Hong and Park, 1999, Sun and Zhang, 2002, Long et al., 2010, Pan et 

al., 2012), interfacial polymerization (Han et al., 2009, Rodrigues et al., 2008 and 

2009), and complex coacervation (Michael, 1990, Meyer, 1992). It was found that the 

complex coacervation generally produced a microcapsule wall from polymers with low 

molecular mass, leading to a weak mechanical resistance (Rodrigues et al., 2008). 

Therefore, in-situ polymerization and interfacial polymerization have been the two main 

methods to prepare perfume microcapsules recently (Sun and Zhang, 2001 and 2002, 

Long et al., 2010, Pan et al., 2012). 
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2.2.2 Wall materials 

The choice of wall material is extremely important to produce perfume-filled 

microcapsules with desirable properties. Until now, perfume oil was most commonly 

entrapped into polymers such as urea formaldehyde (Sun and Zhang, 2002, Rodrigues et 

al., 2008, Rodrigues et al., 2009) and melamine formaldehyde (Sun and Zhang, 2001, 

Hong and Park, 1999). Preparation of perfume-filled microcapsules with these polymers 

not only enhanced the stability and extended the release of the perfume oil (Hong and 

Park, 1999), but also produced microcapsules with desirable mechanical strength (Sun 

and Zhang, 2001, Sun and Zhang, 2002). Recently, an additional layer of inorganic 

materials, such as silica and nanoparticule CaCO3 (Long et al., 2010), was formulated 

on the inner organic shell to make double shell microcapsules, which significantly 

reduced the leakage of perfume oil in an aqueous environment.  

  

2.2.3 Application and performance  

Perfume-filled microcapsules (Figure 2.1) have been prepared to be incorporated in a 

wide range of consumer products. The release of the perfume on the cleaned fabric 

surfaces has been extended after incorporating the formulated perfume-filled 

microcapsules into the granular washing powders and liquid detergents, and then 

applying the detergents into laundry processes; some cationic fabric softener has been 

found to facilitate the attachment of microcapsules to the fabric surfaces during a pre-

soaking and washing process (Michael, 1990, Broeckx et al., 2004, Ouali and Benczedi, 

2008). The extended release of perfume has also been achieved by direct incorporation 

of perfume-filled microcapsules to the textile with adding adhesive bonding materials to 
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the suspension of microcapsules at the curing stage. However, the percentage of the 

perfume-filled microcapsules which have been attached to the fabric surface during 

laundry process was still quite low (approximately 30% on artificial fabrics), leading to 

a waste of resource and low efficiency of using perfume-filled microcapsules in laundry 

processes; the direct impregnation of perfume-filled microcapsules to the textile can 

only be achieved at the final stage of fabric curing in industrial process and it cannot 

satisfy consumers’ needs to have fresh scent after each laundry process; additionally, 

the attachment of the microcapsules to the fabric surfaces and then their retention during 

the complex washing process haven’t been fully understood so far. Therefore, more 

study is required to evaluate the adhesion of perfume-filled microcapsules to fabric 

surfaces, to investigate the performances of adding special chemicals as bonding agent 

to enhance the retention of perfume-filled microcapsules on fabric surface, and to 

understand fundamental interactions between microcapsules and fabric surfaces linking 

to the real laundry process.     

 

 

Figure 2.1  SEM image of MF microcapsules provided by P&G. 

 

 

Perfume-filled microcapsules are desired to release perfume oil in the final stage of 

using cleaned fabric via diffusion from their shell or breakage via friction and rubbing 
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with the fabric. Therefore, the release rate in air and the mechanical strength are the two 

dominant factors to achieve the targeted goal. Firstly, perfume release is expected to 

sustain. The continuous release of perfume was effectively sustained when perfume-

filled microcapsules were used in a series of household products (Brown and Bowman, 

1985). Rodrigues et al. (2008, 2009) found that the impregnated perfume-filled 

microcapsules into textiles continued to release pleasant scent after 9000 abrasion 

cycles and 5 dry cleaning washing cycles. The perfume loss from the finished cotton 

fabric was effectively decreased from 69% to 52% with perfume nanocapsules 

compared with free fragrance, which  (Hu et al., 2011). Perfume microcapsules were 

formulated and their release rate can be adjusted by changing the formulation conditions 

like the content of medium and the stirring time (Hong and Park, 2000) or introducing 

an additional inorganic outer shell on the organic inner shell to make double shell 

microcapsules (Long et al., 2010). 

Secondly, perfume microcapsules should have optimum mechanical strength. They 

should be able to resist mechanical forces generated in mixing, packing and washing 

processes, but should be ruptured via friction and rubbing between human body and 

fabric if mechanical rupture is used as a main mechanism to release perfume. The 

mechanical properties (rupture force, nominal rupture stress, and deformation at 

rupture) and the elastic-plastic behaviours of melamine/urea-formaldehyde 

microcapsules were investigated by a manipulation rig (Sun and Zhang, 2001). A 

schematic diagram of the manipulation rig and a force versus probe displacement curve 

to compress a microcapsule to break are presented in Figure 2.2. The typical rupture 

force of melamine/urea-formaldehyde microcapsules is from a few  N to few mN and 

the microcapsules behaved as elastic at a small deformation (about 10% to 20%) (Hu et 

al., 2009, Liu, 2010). The mechanical properties of perfume microcapsules can be 
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adjusted by changing the formulation and also adding an additional coating such as 

starch and silica (Liu, 2010). 

 

 

(a) 

 

(b) 

Figure 2.2 A schematic representation of micromanipulation rig (Liu, 2010) (a) and a 

typical force versus probe displacement curve obtained from compressing a melamine 

formaldehyde microcapsule to rupture (Sun and Zhang, 2001) (b). 

 

 

When perfume-filled microcapsules are used in household and personal care products, 

their adhesion and retention behaviours on substrates are crucial to effective usage. So 

far, investigation of the adhesion and retention of perfume-filled microcapsules on 

related surfaces has been very limited, except a few reports about impregnation of 

perfume-filled microcapsules into textiles with adhesives (Rodrigues et al., 2008, 

Rodrigues et al., 2009, Monllor et al., 2010). Based on the author’s knowledge, only 

Liu et al. (2013) reported the adhesion of perfume-filled microcapsules to cotton fabric 

surfaces. She used a MF microsphere instead of a MF perfume microcapsule to measure 

its adhesion to a cotton film which was used to mimic the cotton fabric surface in 

ambient air and liquid environments. Adhesion was only detected in ambient air which 
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was mainly due to the capillary force. However, in liquid environment, no adhesion was 

detected in most of the cases since both the particle and cotton fabric were negatively 

charged, and the occasional detected adhesion was attributed to bridging forces because 

of the extension of cellulose chains. The presence of perfume-filled microcapsules on a 

cotton fabric in an experiment to mimic the laundry process (Figure 2.3) was attributed 

to physical entrapments of the microcapsules by the fabric fibres rather than their 

adhesion.   

 

 

Figure 2.3 A woven fabric immersed into an aqueous suspension of MF microcapsules 

(Liu, 2010). 

 

2.3 Fabric 

The most common natural fabric materials used for the cloth industry are cotton, wool, 

silk and linen. Among them, cotton is widely used and its main component is cellulose. 

Cotton used for fabric is usually made of yarn and the surface is too rough (Liu et al., 

2013) for direct measurement of the adhesion of microcapsules to it. Therefore, attempts 

had been made to dissolve raw cotton materials in organic solvents and then flat cotton 

films (see Figure 2.4 (a)) were made on silicon wafers by a spin-coating technique 
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(Notley and Wågberg, 2005, Sczech and Riegler, 2006). The cotton films were 

successfully used to mimic cotton fabrics to study the adhesion of microcapsules based 

on AFM in Liu’s work (2013).  

 Other than the natural fabric, synthetic fabrics such as nylon, acrylic, and polyester 

(Kadolph, 2010) account for a large percentage of usage in cloth industry. Among them, 

polyethylene terephthalate (PET) is the most commonly used and it accounts for 

approximate 50% of all polyester fibre materials (Takke et al., 2011). Compared with 

cotton containing a large amount of carboxyl and hydroxyl groups on the molecular 

structure, PET is a linear and aromatic polymer which lacks of polar groups and is much 

more hydrophobic (Yang et al., 2009, Nina et al., 2011). Therefore many researchers 

have focused on treating PET surfaces by various methods to increase their 

hydrophilicity for different applications (Wang et al., 2004, Li et al., 2007, Navaneetha 

et al., 2008). PET in flat sheet (Figure 2.4 (b)) is commercially available. Therefore it 

can be used directly for investigation of microcapsule adhesion.  

 

 

(a)  (b) 

Figure 2.4 AFM topography image of cellulose film over a scan area of 5 μm × 5 μm 

made from cotton powder (Liu, 2010) (a); and polyethylene terephthalate surface over a 

scan area of 1 μm × 1 μm (Hsieh et al., 2006). 
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2.4 Surface treatment with functional chemicals to enhance adhesion 

and deposition  

So far, the quantity of microcapsules deposited on the cleaned fabric surface after 

laundry processes has been quite low (personal communication with Dr Johan Smets, 

Procter & Gamble (P&G) Belgium; approximately 30% on the artificial fabrics). In 

order to increase the adhesion and retention of microcapsules on fabric surface, it is 

essential to understand possible interaction mechanisms between them. Adhesion 

between two surfaces originates from the van der Waals force and the electrostatic force 

(Bowling, 1985). However, the main reason causing adhesion is quite different for 

different systems. In ambient air, the capillary force (Butt et al., 2010) was found to be 

the main contribution. While in liquid environment, the combination of van der Waals 

forces and the electrostatic double layer force (Radtchenko et al., 2005) which can be 

described by DLVO theory (Israelachvili, 2011), ionic-bonds, H-bonds (Douglas et al., 

2008), bridging forces (Biggs, 1996), hydrophobic interactions (Ishida et al., 2012) and 

some specific interactions (Giesbersa et al., 2002, Altobelli et al., 2010) were attributed 

to cause adhesion. The adhesion fundamentals will be further introduced in § 2.5.1. 

Here, based on the understanding of the adhesion mechanisms, adhesion can be adjusted 

by introducing chemicals such as adhesives, polyelectrolytes, and specific functional 

groups to change the surface properties. 

 

2.4.1 Adhesive 

Adhesive was used to bind objects together to enhance their adhesion. Fabric surfaces 

were impregnated into a suspension of perfume microcapsules by adding adhesives such 
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as self-crossing linking agents (Rodrigues, 2008; 2009) and an acrylic binder (Hong and 

Park, 1999; 2000), and the percentage of the perfume microcapsules remaining on the 

fabric surface was increased after curing and finishing. However, these adhesives can 

only work after the solvents evaporate. Additionally, they can react with the constitutes 

of liquid detergent (Onusseit et al., 2000). Therefore, the application of the adhesives in 

laundry processes is limited.  

 

2.4.2 Polyelectrolyte 

Modifying surfaces with polyelectrolytes is another common method which was used to 

enhance adhesion between two surfaces (Claesson et al., 2003, Christendat et al., 2005, 

Che et al., 2008, Orelma et al., 2011). Polyelectrolyte is one kind of polymer with long 

molecular chains bearing electrolyte charges on each repeat unit (Podgornik and Ličer, 

2006). Normally, opposite charged polyelectrolyte has been chosen to modify one of the 

contacted surfaces, and then adhesion was enhanced either through electrostatic 

attraction, or bridging forces, or even their combination that may lead to the 

entanglement of charged long polyelectrolyte molecular chains (Podgornik and Ličer, 

2006). A schematic diagram in Figure 2.5 illustrates the polyelectrolyte bridging 

interaction between two single macro ions.  
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Figure 2.5 Schematic diagram of the mechanism of adhesion enhancement by 

polyelectrolyte bridging interaction (Podgornik and Ličer, 2006). 

 

Using polyelectrolyte to enhance adhesion between surfaces has been applied in many 

systems. Immobilization of concanavalin A (FL-Con A) on a PANCAA nanofibrous 

surface was enhanced by treating the surface with chitosan through electrostatic 

attraction and also the specific recognition of Con A on chitosan (Che et al., 2008). 

Opposite charged polyelectrolyte was used to modify a mica surface, and the adhesion 

between the modified surface and unmodified surface was increased; the main reason 

for the adhesion enhancement was due to the presence of electrostatic attraction for the 

high charge density polyelectrolyte and bridging forces for the low density charge 

polyelectrolyte (Claessona et al., 2003). Sczech (2006) investigated the adhesion 

between cellulose powders and a cellulose film based on sticking experiments; 

modifying of either the cellulose film or the particles with positively charged 

polyelectrolytes increased the number of stuck cellulose particles. Nolte (2004) also 

found that adhesion of PSS-terminated polyelectrolyte capsules were blocked on a 

substrate with the same charge sign and enhanced to another substrate with the opposite 

charge sign. Therefore, polyelecteolyte is a favorable chemical to modify surfaces in 

order to enhance adhesion either through electrostatic attraction or bridging forces and it 

may be possible to enhance adhesion in a microcapsule - fabric system via modifying 

one of  their surfaces using polyelectrolytes. 



18 

 

  

2.4.3 Specific chemicals with functional groups 

Some other chemicals with special functional groups which can form special linkages or 

react with other groups on the surface, have been chosen to modify surface to enhance 

adhesion in many fields, such as papermaking industry and specific recognition between 

certain molecules in biomedical applications. PVAm-PBA (polyvinylamine derivatized 

with phenylboronic acid) is the most common chemical used to form strong adhesion 

joints between celluloses in papermaking industries and the adhesion was enhanced 

because boronic acid groups can form ester linkage with the cis diol groups on the 

cellulose surface (Chen et al., 2009, Notley, 2009, Zhang et al., 2010). Additionally, the 

specific recognition of cell and proteins such as fibronectin, collagen, laminin or 

peptides like arginine, glycine, and aspartic acid were investigated and the proteins and 

peptides were used to modify the synthetic polymeric materials to enhance adhesion for 

medical applications (Chen and Moy, 2000, Hersel et al., 2003). Besides, these 

chemicals with hydroxyl, carboxyl and amine groups were used to modify surface to 

enhance adhesion through hydrogen bonds (Orelma et al., 2011) and acid-base 

interaction (Giesbersa et al., 2002). Therefore, treatment of surface with functional 

chemicals was demonstrated to be another possible way to enhance the adhesion 

between two surfaces.  

 

2.5 Adhesion 

Adhesion is the attractive interaction at the interface when two surfaces are brought into 

an intimate contact and it is a complex physicochemical process. The presence of 

adhesion either offers a favourable or an undesired effect in many industries.  For 
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example adhesion is favourable in compacting process, enhancing interactions between 

cells and viruses in biological systems (Martines et al., 2004), printing of toner particles 

on the photoreceptor and the targeted copy paper in electro photography (Rimai et al., 

2010) and particle deposition to fabric (Liu, 2010); whilst in particle filtration, 

(Oliveria, 1997), drying and cleaning processes (Zhang et al., 1999, Zhang, 1999), 

particle-surface or particle-particle adhesion should be avoided. Therefore, it is 

fundamentally important to understand the basic mechanisms of adhesion in order to 

either increase or avoid adhesion for different systems.  

 

2.5.1 Adhesion at molecular scale 

2.5.1.1 Adhesion in ambient air 

van der Waals force is the sum of the attractive or repulsive forces between molecules 

which refers to the interaction between dipoles (including permanent dipoles and 

induced diploes). It widely exists and has been reported to be the main mechanism to 

cause powder agglomeration (Hartley et al., 1985) and the ability of geckos to hang on a 

glass surface using only one toe or to climb on a sheer surface (Autumn et al., 2002). 

Additionally, it has been suggested to play an important role between surfaces and 

molecules when they are close enough (Eastman and Zhu, 1996, Pakarinen et al., 2009, 

Aradhya et al., 2012). van der Waals force is determined by the material properties, 

which is expressed as the Hamaker constant in Equation (2.1); additionally, it is 

inversely proportional to the squared distance between two surfaces (D) (see Table 2.1), 

therefore other than the material itself, the presence of any surface asperities will 

decrease the van der Waals force effectively in ambient air (Katainen et al., 2006). van 

der Waals force may be negligible when the contact surfaces are quite rough.  

http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Molecular_dipole_moment
http://en.wikipedia.org/wiki/Gecko
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Electrostatic interaction (see Table 2.1) exists between two electrically charged surfaces 

and it can be either attractive or repulsive. Electrostatic force is a function of the surface 

charge of the two contacted surfaces, the properties of the medium and the distance 

between them (Equation (2.2)). However, the presence of water in ambient air with 

moderate or high relative humidity (generally RH ≥ 40%) always dissipates the surface 

charges (Karner and Urbanetz, 2012), causing the electrostatic force to vanish. 

Therefore, electrostatic forces can be only observed under dry condition with less 

humidity or in some processes which can generate charges such as triboelectric charge 

arising when pharmaceutical powders are mixed (Karner and Urbanetz, 2012). Hence, 

the electrostatic force may not be the dominant factor to influence adhesion in laundry 

processes.   

Compared with van-der Waals forces and electrostatic forces, capillary forces (see 

Table 2.1) have been considered as the main mechanism for the adhesion between two 

contacted surfaces in ambient air when the relative humidity is above 40% (Jones et al., 

2002, Liu, 2010). The water vapour condenses on the surface to form a thin water layer 

and then a small liquid capillary bridge forms between two surfaces. Capillary force is 

not only a function of the surface chemical state, but also a function of the relative 

humidity (RH). It has been validated to be the main mechanism of adhesion between 

two contacted surfaces in ambient air condition (Jones et al., 2002, Grobelny et al., 

2006, Butt et al., 2010, Liu, 2010).  
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Table 2.1 The schematic diagram and equations to describe van der Waals, electrostatic 

and capillary forces (Israelachvili, 2011) 
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q is the net charge on the particle; C  is the 

Coulomb’s constant and 0  is the permittivity 

of free space;  is the relative permittivity. 
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S is the liquid-vapour surface tension and   

is the solid-liquid contact angle. 

 

 

2.5.1.2 Adhesion in liquid environment  

In liquid environment, adhesion is much more complicated. Besides van der Waals 

force, the electrostatic double layer force is another important parameter to influence the 

interaction between two surfaces. The surface which is immersed into a liquid generates 

charges either through dissociation or ionization of surface groups from the surrounding 

medium, or adsorption or binding charged ions or molecules to the previous uncharged 

or oppositely charged surface; the charged surface attracts counterions from the 

surrounding liquid environment and repels co-ion; therefore, an extended layer of 
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counterions is developed on the original surface which is called the electrical double 

layer (EDL) (Hunter, 2001); the wall charge is screened by the counterions. 

Electrostatic double layer force is a function of the surface charge, the properties of the 

medium, the concentration of the counterions and the distance between two surfaces. 

Two similarly charged surfaces usually repel each other electrostatically in solution 

(Israelachvili, 2011). The combination of van der Waals force and electrostatic double 

layer force is described by the DLVO theory (Israelachvili, 2011). A schematic diagram 

of the variation of free energy with particle separation according to DLVO theory is 

illustrated in Figure 2.6.  

 

 

Figure 2.6 Schematic diagram of the variation of free energy with particle separation 

according to DLVO theory. The net energy is given by the sum of the double layer 

repulsion and the van der Waals attractive forces that the particles experience as they 

approach one another. (Malvern_Instruments, 2007). 

 

 

Electrostatic attraction happens between two oppositely charged surfaces. It was 

reported to be the main reason to increase adhesion between cellulose beads and a 

cellulose surface (Sczech and Riegler, 2006), dye and cotton fibres (Janhom et al., 
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2006), mica surfaces (Claessona et al., 2003) after modifying one of the surfaces with a 

positive polyelectrolyte to alter the sign of the surface charge.  

However, some inconsistency was observed which showed the classic DLVO theory 

underestimated the interaction in colloidal system (Grasso et al., 2002). The reason for 

the failure is that when two surfaces are close enough to the molecule scale, some other 

non-DLVO forces come into play (Israelachvili, 2011), such as solvation, structural and 

hydration forces. The solvation or structure force can arise from the reordering of the 

solvent molecule at a small separation between two surfaces or a limited space. It is 

geometrically original and depends on the molecular shape. The solvent force in 

aqueous solution becomes hydration force. There are two kinds of common hydration 

force: one is the repulsion between the solid hydrophilic surfaces (Pashley, 1981a, 

Pashley, 1981b) and another is the attractive force between two hydrophobic surfaces 

(Meyer et al., 2006, Thormann et al., 2008, Israelachvili, 2011). The repulsive 

interaction between hydrophilic surfaces can be recognized as the propensity of certain 

molecules and groups to be water-soluble and to strongly repel each other in water; the 

groups prefer to be in contact with water rather than with each other, therefore the 

repulsive force can be observed when two surfaces containing the hydrophilic groups 

approach each other in water.  The attractive force between two hydrophobic surfaces 

arises primarily from the rearrangement of the H-bond configurations in the overlapping 

solvation zones as two surfaces come together; and it favours adhesion enhancement. It 

has been observed in many systems, such as the interaction between silicone oil and 

hydrophobic Teflon and paraffin surfaces in water (Zbik and Frost, 2010), 

octadecyltrichlorosilane treated glass and silicon surfaces (Ishida et al., 2012) and 

polyester surfaces (Faghihnejad and Zeng, 2012), micelle formation (Gao and Dubin, 

1999), and protein folding (Lins and Brasseur, 1995). The reported range of 
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hydrophobic attraction was reviewed by Meyer (2006), and is from a few nanometres to 

hundreds of nanometres and it was concluded that the only short range attractive force 

(< 10 nm) is the true hydrophobic force. Hydrophobic attraction was found to be 

stronger than the van der Waals forces at separation less than 10-15 nm.  

In addition to the hydration force, the diffusive force is another kind of non-DLVO 

force and refers to the diffusion of the polymer chains at the interface, which is also 

called the bridging force (Biggs, 1996). Diffusive adhesion is somewhat like mechanical 

interlocking at the molecular level. The adhesion occurs because of the entanglement 

and tethering of molecule chains and it is quite commonly observed in the systems 

involving with polymers. The range of the bridging force is a function of the effective 

length of the molecule chain, which was reported from dozens of  nm (Liu, 2010) to a 

few m (Notley, 2009, Kocuna et al., 2011). Adhesion due to diffusive interaction was 

observed for many polymer molecules such as cellulose (Nigmatullin et al., 2004, 

Notley, 2009), chitosan (Xu et al., 2007, Orelma et al., 2011),  and Poly(N-

isopropylacrylamide) (Poly (NiPAAm)) (Zoppe et al., 2011). 

Besides, these hydrogen bonds are another important interaction at interfaces. It was 

first noticed for the extremely strong and orientation-dependent adhesion between water 

molecules (Israelachvili, 2011). Although the hydrogen bonding is believed to be a 

purely electrostatic and Coulomb like interaction (Coulson, 1961), it is still 

complicated; it not only exists between water molecules, but also exists between 

electronegative atoms such as O, N, F and Cl and H atoms which are bonded to similar 

electronegative atoms covalently (Israelachvili, 2011). Therefore, hydrogen bonding 

becomes to be another important parameter to cause adhesion between surfaces 

containing functional groups such as hydroxyl, carboxyl, and amine groups. 

Additionally, amine groups are positively charged, while carboxyl and hydroxyl groups 
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are negatively charged. Hence, both the electrostatic attraction and hydrogen bonding 

work together to improved adhesion (Giesbersa et al., 2002).   

 

2.5.2 Adhesion at the micro scale 

Adhesion via mechanical interlocking between two surfaces at the microscale is another 

important adhesion mechanism. It causes adhesion by holding surfaces together through 

adding adhesive material or physical entrapment. Mechanical interlocking can occur 

both in ambient air and liquid environments. Perfume microcapsules were impregnated 

into fabric surface by binding with some adhesives such as self-crossing linking agents  

(Rodrigues et al., 2008, Rodrigues et al., 2009) and acrylic binders (Hong and Park, 

1999, Hong and Park, 2000); the filtration of MF microcapsules in cotton fabric by the 

network structures of the cotton bundles was considered as the main reason for the 

deposition of melamine formaldehyde microcapsules (Liu, 2010).  

 

2.5.3 Adhesion measurements 

In order to understand the adhesion between microcapsules and fabric surfaces, it is 

essential to characterize the adhesion. Therefore, the techniques to characterise adhesion 

are reviewed in this section. Characterization of the adhesive force is normally based on 

the detachment of the candidate particles from a substrate with measurable external 

forces. The most common techniques used so far are based on population and individual 

analyses.  
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2.5.3.1 The flow chamber technique  

A fluid flow in a chamber  removes particles or cells from a surface through 

hydrodynamic force (Decuzzi et al., 2007) and it can be adjusted by the choice of flow 

velocity and the fluid physical properties; the flow chamber technique is most 

commonly used,  based on particle population to study adhesion in liquid environments 

(Renshaw et al., 2005, Garrett et al., 2008). Most of the research on adhesion using a 

flow chamber  so far relied on counting the number of the particles on the substrate 

before and after the flow experiment (Brown and Larson, 2001, Decuzzi et al., 2007), or 

calculating the surface area coverage by the particles (Renshaw et al., 2005, Garrett et 

al., 2008).  

Martines et al. (2004) investigated the cell adhesion on flat and nanopatterned poly 

(methylmethacrylate) substrates using a parallel-plate flow chamber. A greater number 

of cells were removed from the nanopatterned surface than that from the flat surface, 

which correlates well with the previous study (Gallagher et al., 2002) of cell adhesion to 

nano-patterned surfaces. Bacterial adhesion on stainless steel substrate under different 

culture time was studied by Garrett (2008) with a self-designed flow chamber. More 

bacteria remained on the stainless steel substrate after they were cultured longer, which 

indicates a stronger adhesion between biomass and the substrate; and the results are 

consistent with the study of bacterial adhesion with a micromanipulation technique. 

Renshaw (2005) developed a flow chamber to study the adhesion of different kinds of 

cells on synthetic materials with a live-dead assay and image capturing system. A 

higher deposition number of rat aortic smooth muscle cells (SMC) to PLL films rather 

than that of endothelial cells (EC) were found. The displacement of microspheres from a 

glass surface was investigated by a flow chamber and centrifuge technique in Sanjit’s 

(1994) work. More polystyrene microspheres remained on the glass surface compared 
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with the glass microspheres after the same hydrodynamic force was applied; 

additionally, the glass spheres with a large diameter were found to be more difficult to 

be displaced compared with the small ones; more glass microspheres remained on the 

glass surface by decreasing pH and increasing the ionic strength of the intervening fluid. 

These results agree with the experimental results from the centrifuge technique (Sharma 

et al., 1992, Sanjit et al., 1994) 

The principle of the flow chamber technique is to displace particles from a surface with 

hydrodynamic force. Particles can be displaced from the substrate either by lift 

(Saffman, 1965), sliding (Derksen and Larsen, 2011), or rolling (Zoeteweij et al., 2009) 

motions or a combination (Figure 2.7). Particles are removed by lift motion when the 

lift force overcomes the adhesion in vertical direction (Zoeteweij et al., 2009). If the lift 

is not sufficient enough, particles will possibly be displaced by drag force in lateral 

direction through sliding or rotation motion (Sanjit et al., 1994, Zhang, 1999, Zoeteweij 

et al., 2009). The balance on the forces and torques resulting in the removal of a particle 

from a surface is directly correlated with the adhesion between two surfaces. Therefore, 

the flow chamber experimental data may also be used to calculate adhesion of particles 

on a substrate.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.7 Schematic representation of displacement of micro particles by lift force (a), 

drag force (b) and rolling motion (c) 
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When a microparticle settles on a substrate in a flow chamber, adhesion (FC), buoyancy 

force (FB), lift force (FSA), drag force (FD), friction (Ff) are the possible interactions 

acting on the particle before it is removed or displaced (Figure 2.8). The buoyancy force 

is a constant value for a certain particle. However, adhesion in theory is influenced by 

the properties of the particle, including particle size (Lam and Newton, 1992, Katainen 

et al., 2006), surface roughness (Chris S. Hodges, 2004, Katainen et al., 2006), elastic 

properties of the contacted surfaces (Johnson et al., 1971), and the properties of the 

fluid around such as the ionic strength and pH (Vakarelski et al., 2000). Consequently, 

the force balance in the vertical direction will be affected by changing these parameters. 

The lift and sliding force are each a function of shear stress, which is dominated by the 

flow velocity, particle location and flow properties (Saffman, 1965, Decuzzi et al., 

2007, Derksen and Larsen, 2011). A given shear stress can lead to a complete removal 

of particle from surface or no removal at all. Additionally, the surface roughness of the 

contacted region influences the friction force corresponding to the on-set of 

displacement of a particle if it is displaced by sliding. Additionally, the settling time is 

important. The settling time should be long enough for the particle to fully interact with 

the substrate. If it is less than a critical settling time (Lamb, 1994),  poor contact is 

achieved between the two surfaces and the particles will be removed easily compared 

with those well settled particles. Other than the theoretical prediction, the influence of 

these parameters on particle removal in a flow chamber was also validated by 

experiment results which have been reported in many publications. The increase in the 

surface roughness of the nanopatterned poly(methylmethacrylate) substrates caused 

more cell retention on them (Martines et al., 2004). The fraction of micro particles on 

surface and the critical hydrodynamic force which is the minimum hydrodynamic force 

required to remove microspheres from the surface, is found to be a function of the 

particle size,  elastic properties of the particle, surface roughness and the medium 
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properties (Sharma et al., 1992, Sanjit et al., 1994). A higher hydrodynamic force was 

needed to displace microspheres from a glass substrate if the microparticle became 

softer and the surface roughness decreased. The size effect of sphere particles on their 

removal behaviour in a flow chamber system was also observed by Decuzzi (2007) and 

it was concluded that the normalized number (number per unit area) of spherical micro- 

and nano-particles attached on surface of cells surface, which was prepared by plating 

human umbilical vein endothelial cells (HUVECs) on a borosilicate dish, decreased with 

the particle size for a given flow rate. Therefore, either the properties of the micro 

particles or the contacted substrate or the operation conditions can influence the 

deposition and removal behaviours of microparticles on a substrate in a flow chamber. 

 

 

Figure 2.8 Schematic diagram of forces on a microparticle. 

 

The above previous studies suggest that the flow chamber technique is a reliable 

technique to study microparticle or cell adhesion to a substrate. It is sensitive enough to 

detect the effects of the material properties, and the properties of the intervening fluid 

on particle removal. Moreover, it is possible that the adhesion between a particle and a 
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substrate can be predicted by the flow chamber technique if the removal mechanism of 

the particle is well understood.  Therefore, the flow chamber technique may be used to 

characterize the remaining of microcapsules on fabric surfaces and to study the adhesion 

behaviours between single microcapsules and fabric surfaces.  

 

2.5.3.2 Atomic force microscope (AFM) 

AFM with a colloid probe has been used to measure micro- and nanoscale forces 

between particles and surfaces (Binnig et al., 1986, Ducker et al., 1992, Kappl and Butt, 

2002). A candidate particle can be attached to the end of a cantilever and then the force 

between the particle and a surface in different environments can be measured with 

AFM. Figure 2.9 shows a SEM image of a single MF microsphere attached to the end of 

a tipless cantilever. The adhesion has been investigated either by comparison of 

adhesive forces directly or interpretation of the detailed information of the force curves: 

the difference in the adhesive force between surfaces with different chemical 

compositions (Eastman and Zhu, 1996, Żbik and Frost, 2010) and surface roughness 

(Cooper et al., 2001, Katainen et al., 2006); force curves were acquired by varying 

relativity humidity, ionic strength, pH, hydrophobic or hydrophilic nature etc to 

investigate adhesion mechanisms including capillary force, electrostatic interaction, 

hydrophobic interaction and bridging interaction (Vakarelski et al., 2000, Jones et al., 

2002, Notley, 2009, Żbik and Frost, 2010, Kocuna et al., 2011). 

Bowen et al. (1998a; 1998b; 2001; 2002) ) carried out a series of studies on cell 

adhesion using AFM with a colloidal probe, including the adhesion between single cell 

probes, which were prepared by immobilizing a single cell at the apex of a tipless AFM 

cantilever, and mica and synthetic membranes (Bowen et al., 2001), Bacillus mycoides 

spores and glass substrates with hydrophilic and hydrophobic properties (Bowen et al., 
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2002) to generate understanding of cell adhesion on surfaces relevant to bio-

applications. The adhesion between a silica sphere and a mica plate ((Vakarelski et al., 

2000, Vakarelski and Higashitani, 2001) and a cellulose surface (Holmberg et al., 1997) 

in water and electrolyte solutions was measured to investigate the adhesion mechanism 

at molecule level by AFM. AFM with a colloidal probe was also used to investigate the 

interaction between polystyrene particles as a function of particle size (Hodges et al., 

2002), surface roughness, relative humidity and compression load (Cleaver and Looi, 

2007) to study their influences on adhesion. Besides the solid spheres, single perfume 

microcapsules with a core shell structure were successfully attached to the end of an 

AFM cantilever, to study their adhesion on a cotton film which was used to mimic 

fabric surface in Liu’s (2010) work and to explore the application of the microcapsules 

in household products. Besides measuring the forces between microparticles and 

surfaces directly, AFM was also adopted to study the stretching of the molecule chains 

like cellulose (Notley et al., 2009) and chitosan  (Xu et al., 2007, Kocuna et al., 2011) 

to get information of molecule structure.  

 

 

Figure 2.9 SEM image of a MF microsphere attached to the end of a tipless cantilever 

(Liu, 2010). 
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AFM is a very sensitive technique, and the force measured between a particle and 

surface is influenced by many factors, including compression load, contact time, and 

extending speed for non-perfectly elastic materials, particle size, surface roughness of 

the contact surfaces and the environmental conditions such as the relative humidity in 

ambient air and ionic concentration and pH value in liquid. Adhesion is also influenced 

by contact area and vice versa. The extra compression load can cause a significant 

deformation of the contact bodies to generate a contact area. Stegeman et al. (2007) 

investigated the influence of compression load on the pull-off force between sphere 

silicon probes and a Ag surface and the adhesion was found to be independent of 

compression load from 90 nN to 200 nN; a further increase of the compression load to 

350 nN caused an increase in adhesion; the transmission of elastic deformation to 

plastic deformation by compressing silicon sphere was considered to be the main reason 

for the adhesion increase. Cleaver (2007) studied the adhesion between polystyrene 

particles as a function of humidity and applied load; there is no obvious variation in 

adhesion by increasing the applied load in low and moderate humidity environments; 

however, the adhesion increased steadily with compression load after it reached a 

threshold value of 1200 nN in high humidity condition; the enhancement of adhesion 

was also attributed to  the plastic deformation of particle and the adsorption of water in 

high humidity environment, which acted as a plasticizer. The dependence of adhesion 

on contact time and compression load was observed when investigating the adhesion 

between a polymer sphere and a silicon surface; adhesion was increased by either 

increasing contact time or applied load, which was attributed to the viscous-elastic 

nature of the polymer and its elastic-plastic deformation through contact (Reitsma et al., 

2000). McNamee et al. (2006) investigated the influence of compression load and 

contact time on the adhesion between a colloid probe and cell; it was found that there is 

no obvious variation in adhesion by increasing the applied load to 10 nN, indicating that 
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cell will not be damaged under this compression load; however, adhesion increased with 

the contact time because of the visco-elastic property of the cells. Vakarelski et al. 

(2000, 2001) found that the adhesion between a silica sphere and a mica plate in water 

and electrolyte solutions increased by increasing the contact time and it was concluded 

that the adhesion is related to the structure of the layer of cations and water molecules 

adsorbed on the outside surface: a thin but firm primary inside layer and a thick but 

fragile secondary outside layer were suggested to be present on the surface in liquid 

environment. 

Hodges et al. (2002, 2004) investigated the influence of particle size on the pull-off 

force between polystyrene particles; the average pull-off forces were quite scattered and 

there was no obvious trend between particle size and adhesion; surface roughness was 

attributed to the reason for adhesion variation. The interplay of surface roughness and 

particle size was investigated in Katainen et al.’s (2006) work, the dependence of the 

adhesion on particle size was observed when the asperities are much smaller than the 

particle dimension, otherwise the adhesion was dominated by the shape and size of the 

asperities. The dependence of adhesion between micro-particles and surfaces on the 

environmental condition such as relative humidity in air (Liu, 2010), and ionic strength 

and pH of the intervening medium was observed (Giesbersa et al., 2002, Christendat et 

al., 2005, Xu et al., 2005). 

It is suggested that AFM with a colloidal probe is a proven technique to measure 

adhesion between a single microparticle and a substrate both in dry and liquid 

environments. The technique is sensitive to the change in the properties of the particle 

and the substrate, the properties of the surrounding environments and the operation 

parameters. Therefore, it can be used to investigate adhesion between microcapsules 

and fabric surfaces both in dry and liquid environments. 
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2.5.4 Adhesion energy  

Adhesion is a complex function of both adhesion energy and contact area. The surface 

energy of a solid surface is commonly determined by measuring the contact angle of a 

droplet with known surface energy and then calculated by fitting the contact angle data 

to the Young’s equation; additionally, the surface energy of a solid surface can be 

evaluated according to semi-empirical analytical models such as Fowkes, Owens-

Wendt, and Van Oss-Chaudhury-Good equations by knowing the contact angle 

(Medendorp, 2011). The methodology makes it possible to calculate adhesion energy on 

a flat and homogeneous surface at the macroscale; however, it is not desirable  to 

determine adhesion energy on a substrate which is unstable to the probing liquid or a 

substrate with a small dimension (Drelich et al., 2004). Alternatively, the 

thermodynamic work of adhesion or adhesion energy of an unstable substrate or a 

surface with microscopic dimension can be obtained by acquiring the contact area from 

the well established contact mechanics such as the JKR model (Johnson et al., 1971) or 

the DMT model (Derjaguin et al.1975) or by direct measurement with a high-resolution 

reflection interference contrast microscopy (Liu et al., 2002a, Liu et al., 2002b, Elsner 

et al., 2004) since the adhesion can be determined by an AFM colloidal probe 

technique. 

 

2.5.4.1 Calculation of interfacial adhesion energy with contact mechanics models 

Contact mechanics such as the Hertz model (Johnson, 1985), the Bradley model 

(Johnson, 1985), JKR (Johnson et al., 1971) and DMT (Derjaguin et al.1975) have been 

well established to describe the contact between two objects. Except the Bradley model, 
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which has been applied to calculate the contact area between two rigid objects, the other 

models are applicable to elastic bodies. The Hertz model is used to describe non-

adhesive elastic contact.  Adhesive interaction was incorporated into the Hertz model to 

develop JKR and DMT models, which have been successfully used to predict the 

contact area and adhesion energy in many systems (Hodges et al., 2004, Han et al., 

2009, Lamprou et al., 2010). The JKR model considered the adhesion effect within the 

contact zone; while the DMT model took consideration of the long range attractive 

interaction outside of the Hertz contact area (Johnson, 1985). Generally, the JKR model 

is more appropriate for softer materials having higher surface energy and larger radius 

of particle curvature; the DMT model applies better to harder materials with low surface 

energy interacting with small particles (Drelich et al., 2004). The Tabor number 

(Johnson and Greenwood, 1997, Tabor, 1977) has been used as the criteria to determine 

the applications of the JKR and DMT models to avoid the generalization. The contact 

radius (α) and the pull-off forces (Fc) when the two surfaces are separated for JKR and 

DMT models are listed in Table 2.2. 
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Table 2.2 JKR model and DMT model (Israelachvili, 2011). 

 

where R is the radius of microparticle;           
       

    
 

   
 and    

    
 

   
 ); υ is the Poisson’s 

ratio and E is the Young’s modulus of each material; CSSC   , is the work of adhesion per 

unit area (
C  is the surface energy per unit area for the microparticle; 

S  is the surface energy per unit 

area for the substrate; 
CS  is the interfacial adhesion energy per unit area); Z0 is the equilibrium 

separation;  and F is the applied load. 

 

The two contact models have been successfully used to calculate surface energy. The 

JKR and DMT models were used to calculate surface energy between a gold-coated tip 

and a modified glass surface with functional groups of –CH3, –OH, –CO2H, and –CF3 

from the adhesion force acquired by AFM and the results correlate well with the 

adhesion energy obtained from contact angle measurements (Lamprou et al., 2010). 

C4F8 was used to treat polyimide (PI) and Si surface, and then interfacial adhesion 

energy of PI/Si, PI-F/Si, PI/Si-F and PI-F/Si-F were investigated by contact angle 

measurements and AFM pull-off data in conjunction with–JKR/DMT models. Both 

results indicate that the incorporation of fluorine decreased interfacial adhesion energy 

and the inconsistency in the absolute value of interfacial adhesion energy from two 
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techniques was attributed to the lack of the consideration of the meniscus forces in the 

contact angle methodology (Han et al., 2009). Brunner et al. (Brunner et al., 2010) 

investigated the adhesion between two surfaces separated by a thin layer of liquid and 

compared the adhesion results with surface energy from contact angle measurement; the 

observed decrease of the surface energy with the thickness of the liquid is in agreement 

with the decrease of adhesion; the JKR and DMT models were used to predict the linear 

relationship between interfacial adhesion energy and adhesion force, and a modified 

model by considering the total excess adhesion energy was proposed.  

Although the agreement on surface energy was observed by using contact angle 

methodology and adhesion-contact models (JKR/DMT), the application of the contact 

mechanics models to calculate the surface energy was still challenging. Drelich  et al 

(2004) reviewed those previous publications  using JKR or DMT models to predict the 

surface energy and found that JKR model had been used most frequently without 

justifications; additionally, important parameters such as mechanical properties of the 

contact surfaces and the applied load which affects the interaction between the tip or the 

probe and the substrate were not always clearly reported; besides, the main reason for 

the scatter of the adhesion data from AFM is the surface roughness and heterogeneity. 

Therefore, determination of the surface energy according to the classic contact 

mechanics needs to be treated with caution and an investigation of the properties of the 

contact surfaces remains to be carried out.     

 

2.5.4.2 Calculation of adhesion energy from contact area and energy balance  

There was a query on the applicability of the classic contact mechanics such as JKR and 

DMT model to microspheres with a core-shell structure such as microcapsules and cells 



38 

 

(Liu et al., 2002a, Liu et al., 2002b); the contact area determined was much larger than 

the prediction from JKR model, which is probably because the stress distribution in the 

contact zone no longer obeys the Hertzian stress field and the large contact area resulted 

from a change in the geometry of the core shell structure.  

Theoretical models based on energy balance of a microcapsule adhered to a substrate 

were proposed to calculate the adhesion energy (Liu et al., 2002a, Liu et al., 2002b, 

Elsner et al., 2004). Liu et al. (2002a, 2002b) worked out a theoretical model to 

calculate the interfacial adhesion energy based on the balance of strain energy release 

rate and adhesion strength. The strain energy release rate is altered by changing the 

microcapsule volume caused by the osmotic inflation. With a fixed osmotic pressure, 

adhesion energy is a function of contact area and it was measured through a high-

resolution reflection interference contrast microscopy. The interfacial adhesion energy 

between microcapsules and a glass surface is estimated from approximately 10 µN m
-1

 

to about 500 µN m
-1

  under different buffer concentrations for urea-formaldehyde 

microcapsules (Liu et al., 2002a) and 60 mN m
-1

, 113 mN m
-1

  and 257 mN m
-1

  for 

three types of urea-formaldehyde microcapsules (Liu et al., 2002b). Another model 

proposed in Elsner et al.’s (2004) research was used to calculate the adhesion energy 

based on the balance of the energy cost due to the deformation of microcapsules to 

establish the contact zone and the energy gain due to the work of adhesion. Contacts 

corresponding to different deformations were considered separately. However, the 

adhesion energy regardless of the extent of deformation is a function of the contact 

radius and wall thickness of microcapsules. The contact radius and wall thickness data 

were obtained using a reflection interference contrast microscope and AFM imaging 

system. The obtained interfacial adhesion energy by the small deformation model and 

large deformation model for microcapsules with 12 layers of PAH/PSS are 280.0±20.0 
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µN m
-1

  and 26.0±2.0 µN m
-1

 (according to radius dependency fit), 260.0±70.0 µN m
-1

 

and 27.0±3.0 µN m
-1

 (according to thickness dependency fit) respectively; the 

interfacial adhesion energy was also estimated by an independent measurement using an 

AFM colloidal probe technique and it was from 200 to 500 µN m
-1

, which indicates that 

the small deformation model was much more applicable. However, a further discussion 

indicates that the behaviour of the thin shell was described well by the large 

deformation model while the behaviour of the thick shell was described better by the 

small deformation model. Graf et al., (2006) built a theoretical model by considering 

the deformed shape of microcapsule to calculate the adhesion energy; besides the elastic 

energy and adhesion energy, the bending effect of the membrane was also considered in 

this work. Experimental data in Elsner et al.’s (2004) work were fitted into Graf et al.’s 

(2006) model and the adhesion energy values are of the same order as the values 

obtained from Elsner et al.’s (2004) model. These theoretical models are adaptable to 

calculate the adhesion energy of microcapsules bound to substrate when the 

deformation (especially the contact radius) can be measured. Therefore, techniques 

which can be used to acquire the contact area between two surfaces at microscopic level 

are needed. 

 

2.5.4.3 No real contact between two surfaces 

In both the classic JKR/ DMT contact models and  models based on the energy balance 

(Elsner et al., 2004, Liu et al., 2002b), it has been assumed that real contact is achieved 

between two surfaces. However, the assumption may not hold in aqueous solution, if 

the external force applied is not enough to squeeze out the water molecule layer 

(Rossetto et al., 2012, Vakarelski and Higashitani, 2001) between two surfaces. 

(Vakarelski and Higashitani, 2001, Vakarelski et al., 2000) investigated the short-range 



40 

 

interaction of a silica sphere on a mica surface and proposed that a thin and firm layer of 

water molecules existed on the surface. Kendall et al. (2010) simulated the interaction 

between magnesium oxide (MgO) surfaces contaminated with water and it was found 

that it is impossible to squeeze out the last water monolayer even at a pressure that 

causes the MgO deformation plastically. The presence of the confined water molecules 

on the surfaces in aqueous solution was also investigated in Rossetto et al.’s work 

(2012) and it was concluded that the behaviour of the confined water molecules is 

different from the bulk water solution because of the reordering of the water molecules 

between two surfaces at the nanoscale.  

 

2.6 Conclusions 

The literature review in this chapter has identified that perfume oil can be entrapped into 

a polymer wall such as UF and MF to make perfume-filled microcapsules through in-

situ polymerization or interfacial polymerization processes in order to improve the 

efficiency of perfume usage and eliminate the issues of direct incorporation of perfume 

into fabric care products, such as liquid detergents. For such applications, it has been 

found that perfume-filled microcapsules should possess desirable properties, including 

long-lasting release of perfume, optimum mechanical properties and the ability to be 

kept on fabric surfaces. The release and the mechanical properties have been researched 

and they can be adjusted according to the requirement by altering the formulation and 

adding additional outer layers (Liu, 2010, Long et al., 2010). However, the retention of 

microcapsules on a fabric surface in laundry process is comparably quite low at this 

stage and there is lack of good understanding of microcapsule-fabric interactions. 

Therefore, how to increase the retention of microcapsules on the fabric surface during 
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laundry processes via fundamental understanding of their interactions becomes a very 

important task, which is the final objective of this project.  

The retention of microcapsules on the fabric surface is directly related to the adhesion 

behaviour; therefore fundamental interactions between surfaces, the methodology to 

enhance adhesion between two surfaces, techniques to characterise adhesion and 

retention of microparticles on a substrate, and adhesion energy at interfaces were 

reviewed. It has been found that special chemicals such as polyelectrolytes can be 

applied to  modify the surfaces of microcapsules and fabric surfaces to enhance 

adhesion and retention between them through either electrostatic attraction or bridging 

forces, or even their combination; additionally, a flow chamber technique can be applied 

to investigate particle retention on a substrate in the liquid environment and AFM with  

a colloidal probe  can measure adhesion between single microparticles and surfaces in 

order to understand possible adhesion mechanisms; Moreover, the relationship between 

adhesion obtained from AFM and the removal of particles from a substrate in a flow 

chamber has been qualitatively interpreted by considering possible mechanisms of 

displacing a particle from a substrate and the contact issue at the interface. 
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Chapter 3: Materials and Methods 

 

Introduction 

In order to understand molecular interactions between perfume-filled microcapsules and 

fabric surfaces, it was intended to measure their adhesion by AFM and the removal of 

the former on the latter by shear forces generated in a flow chamber, i.e. the flow 

chamber technique. However, the surface of fabric fibres, particularly cotton, is too 

rough, which makes it difficult to do direct measurements of adhesion by AFM. 

Therefore, a cellulose film was first created by dissolving cellulose powders in an 

organic solvent and then the cellulose solution was spin-coated on the pre-treated Si 

wafer. Then perfume-filled microcapsules, and the cellulose surface were treated with 

different polyelectrolytes respectively in order to modify their surface properties, the 

adhesion of the microcapsules to and removal from the model cellulose surface was 

investigated.  The same approach has been taken to study molecular interactions 

between perfume-filled microcapsules and a model synthetic fabric polyethylene 

terephthalate (PET) film. In each case, the properties of microcapsules, model fabric 

surface and polyelectrolytes relevant to the adhesion and removal of the microcapsules 

from the model fabric surface were characterised. Moreover, in order to understand 

possible mechanisms of removal of microcapsules from fabric surfaces, a membrane to 

mimic the wall of microcapsules was also produced in order to determine the friction 

coefficient for the surface of microcapsules and that of model fabrics. The details of 

these experimental works are described in this chapter.     
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3.1 Materials 

The main materials used in this work were melamine-formaldehyde perfume-filled 

microcapsules, model fabric surfaces and the chemicals used to do surface treatment, 

and they are introduced as follows. 

3.1.1 Melamine-formaldehyde (MF) perfume microcapsules 

Perfume-filled MF microcapsules were supplied by Procter & Gamble (P&G), Belgium. 

The details of their chemical compositions and preparation methods are not known due 

to commercial sensitivity. Typically,  MF microcapsules are produced by in-situ 

polymerization (Pan et al., 2012) of MF precondensate and formaldehyde with poly-

(acrylamide-acrylic acid, sodium salt) at a temperature range of 55-85°C. The core oil is 

a typical perfume blend of various components (Long et al., 2010), all of which have a 

relatively low solubility in water, and are used in consumer products. The mean 

diameter of the perfume microcapsules was approximately 20 m, measured with a 

Malvern particle sizer (APA2000, Malvern Instruments Ltd., UK). Two kinds of MF 

microcapsules with the same wall material but different core oils of varying density 

were used in this work. The density of the MF microcapsules for the study presented in 

Chapter 4 was less than water and the density of the perfume microcapsules used for 

adhesion measurements and retention test in Chapter 5, 6, 7 was greater than water.  

An example protocol of preparing MF microcapsules by in-situ polymerization is as 

follows (Pan et al., 2012): 2.5 g Melamine formaldehyde (precondensate), 0.3 g 

formaldehyde solution (37% (w/v) ) and 0.78 g acryl amide/acrylic acid were mixed 

with 70 g deionised H2O; adjusted pH to 4.3 with acetic acid and then the solution was 

stirred (400 rpm) with a Rushton turbine impeller (Ø 32 mm), in a 250 mL standard 
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stirred vessel (Ø 65 mm) with 4 baffles for 105 min at a temperature of 23°C. Then 10.5 

g oil, used as core material, was added and emulsified at 2500 rpm for 30 min at 15°C. 

After that, the dispersion was stirred continuously at 400 rpm for 30 min at 15°C. The 

dispersion temperature was then increased to 65°C and allowed to polymerize for 4 h at 

400 rpm in order to form microcapsule walls. Finally, microcapsules were formed, and 

the solution pH was raised to pH 10 by the addition of 20 wt% NaOH solution. 

Microcapsules with different properties can be fabricated by changing some parameters, 

including core/capsule ratios (the relative content of core and wall materials in 

microcapsules) or polymerisation time.  

 

3.1.2 Model fabric surfaces 

3.1.2.1 Cellulose thin films  

Cellulose thin films were prepared according to a methodology reported by Notley and 

Wågberg (2005) and Liu et al. (2013) to mimic cotton fabric (Chapter 4 and Chapter 5).  

Materials: cotton powder with a mean particle size of 20 m (Sigma-Aldrich, UK) was 

used directly without any further purification. 50 wt% N-methylmorpholine-N-oxide 

(NMMO) in water solution (Sigma-Aldrich, UK) was used as received as a solvent to 

dissolve the cotton powder (Sigma-Aldrich, UK). Dimethyl sulfoxide (DMSO) (ACS 

spectrophotometric grade, ≥99.9%, Sigma-Aldrich, UK) was used as a viscosity 

modifier. 50% (w/v) poly(ethyleneimine) (PEI) in aqueous solution (Sigma-Aldrich, 

UK) was used as an anchoring polymer promoting adhesion of cellulose to the Si 

surface (single side polish Si wafers, 76 mm diameter, n <100>, resistivity 1-10 ohm 

cm, 381 m thickness, IDB Technologies, UK). High Performance Liquid 
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Chromatography (HPLC) grade H2O (Fisher Scientific, UK) was used throughout. 

General purpose grade NaOH powder (Sigma-Aldrich, UK) was used to make 10 wt% 

NaOH solutions. 

Procedures (Figure 3.1): (a) 0.5 g cotton powder was added into 25 g 50 wt% NMMO 

solution in a 200 mL beaker, which was placed in a paraffin oil bath, and the 

temperature of the oil was increased to 115°C to dissolve the cotton powders. 75 g 

DMSO was added into the cellulose/NMMO solution once the cotton powder was 

dissolved completely, visualised by the appearance of the cotton powder suspension 

turning to a dark yellow transparent liquid. (b) Si wafers were pre-treated with 10 wt % 

NaOH solution for 30 s, then washed with HPLC grade water and dried with N2 

afterwards. Si wafers were then treated with PEI solution for 10 min, then rinsed with 

HPLC grade H2O and dried with N2.  (c) The cellulose solution obtained from 

procedures (a) was deposited on a pre-treated Si wafer obtained from procedure (b) with 

a Ø150 mm spinning processor (WS-400B-6NPP/LITE, Laurell Technologies 

Corporation, US) at 3500 rpm for 30 s, and then the cellulose thin film on the Si wafer 

was immersed in a batch of fresh HPLC grade H2O for 1 h and afterwards immersed 

into another batch of fresh HPLC grade H2O for 3 h. Finally, the cellulose thin film was 

dried and stored in a desiccator in the presence of silica gel.  
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Figure 3.1 Schematic illustrating the protocol to prepare a cellulose thin film. 

 

3.1.2.2 Polyethylene terephthalate (PET) films  

A flat polyethylene terephthalate (PET) film was used to mimic an artificial fabric 

surface in Chapter 6 and it was provided by Goodfellow, UK. The PET film is 

amorphous with a thickness of 0.25 mm. The film was cut into small pieces (3 cm× 1 

cm) and they were used directly for further investigation. 

 

3.1.2.3 Glass slides 

Fisherfinest premium plain glass microscope slides (Fisher Scientific, UK) were used as 

model substrates in Chapter 7.  

 

3.1.3 Chemicals used to modify microcapsules and model fabric surfaces 
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Polyvinyl formamide (PVF): PVF in water solution with 20% hydrolysis was provided 

by P&G (Belgium). It is a long linear cationic polymer with a high molecular weight 

(1000 kg mol
-1

). The structure of the PVF is shown in Figure 3.2(a).  

Chitosan: chitosan was purchased from Sigma-Aldrich, UK with a molecule weight of 

400 kg mol
-1

; it is a positive polysaccharide containing D-glucosamine groups (Che et 

al., 2008) and it bears a long linear structure with spiral planes (Figure 3.2(b)). 

Poly (ethyleneimine) (PEI):  50% (w/v) PEI in water solution with a molecule weight of 

750 kg mol
-1

 was provided by Sigma-Aldrich, UK. PEI is a branched cationic polymer 

bearing amine groups and the structure is presented in Figure 3.3 (c).  

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. 2 The structure of PVF (a), Chitosan (b) and PEI (c) drawn with 

ChemDraw Software. 

 

 

 

  

http://www.google.co.uk/aclk?sa=l&ai=C7VT_c7nKUcb7KPCZ0wWh44CwCq-155ADn_HniEG-8-sFCAAQAigDUNqTteT-_____wFgu-6Xg9AKoAHj_aboA8gBAaoEJ0_QrSXoxI5P3m-1Vd7NlLoOrbo3EuNXNrz0ucXFX7dERv2AFzJVOIAHhYLZFw&sig=AOD64_1zEAS3WQCOgshzrHIHCqwVQa5j-g&ved=0CDwQ0Qw&adurl=http://scistore.cambridgesoft.com/chemdraw/%3Fcid%3D50
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3.2 Modification of microcapsules and model fabric surfaces with PEs 

3.2.1 Treatment on surface of microcapsules 

3.2.1.1 Preparation of polyelectrolyte (PE) solution  

PVF solution with 20% activity (1000 kg mol
-1

, P&G, Brussels) and perfume-filled 

microcapsules (P&G, Brussels) were used as received, and they were diluted into 0.1 

wt% and 1.0 wt% respectively. Chitosan (Sigma-Aldrich, UK) was dissolved into 10 

wt% acetic acid (Sigma-Aldrich, UK) solution and then diluted to 0.1 wt% with HPLC 

grade H2O. 10 wt% NaOH solutions were used to adjust polyelectrolyte (PE) solutions 

to pH 6.  

 

3.2.1.2 Modification of MF microcapsules with PE solution 

PVF and chitosan solutions were used to modify perfume microcapsules respectively. 

0.1 wt% PVF and 0.1 wt% chitosan solutions each was added into a suspension of 1.0 

wt% perfume microcapsules, which were then agitated with a Vortex mixer (FB15012 

TopMix, Fisher Scientific) at 3000 rpm for 5 min.  Then the modified microcapsules 

were used for further investigation.  

 

3.2.2 Treatment on surface of model fabric surfaces  

3.2.2.1 Preparation of polyelectrolyte (PE) solutions 

0.1 wt% PVF and 0.1 wt% chitosan solutions prepared as described in § 3.2.1 each was 

further diluted to 0.01 wt% and 0.001 wt% with HPLC grade H2O. 50% (w/v) poly 
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(ethyleneimine) (PEI) in water solution (Sigma-Aldrich, UK) was diluted into 0.1 wt%, 

0.01 wt% and 0.001 wt% solution respectively with HPLC grade H2O. 10 wt% NaOH 

solution was used to adjust PE solutions to pH 6.   

3.2.2.2 Modification of model fabric surfaces for flow chamber experiment  

Flow chamber experiment: to modify the model fabric surfaces (cellulose thin film/ 

PET surface in Chapter 5 and Chapter 6), 0.1 mL of PVF/chitosan/PEI solution with a 

prepared concentration was injected to the flow chamber, full details of which are given 

in § 3.4.1, using a model fabric substrate of lateral dimensions 1.5 mm × 24 mm; the 

substrate dimensions were chosen to match the internal dimensions of the flow 

chamber. The solution and substrate were left in contact for 30 minutes. A continuous 

flow of distilled H2O at 10 mL h
-1

 was subsequently used to remove any unabsorbed PE 

molecules and wash the PE-modified cellulose thin film for 5 minutes. The modified 

substrate was further used for investigating the removal behaviour of microcapsules on 

it in the flow chamber (§ 3.4.1).  

 

3.2.2.3 Modification of model fabric surfaces for AFM measurement 

AFM measurement: 140 µL of PE solution was deposited on a model fabric surface 

(cellulose thin film/ PET surface) of dimensions 10 mm × 10 mm and left in contact for 

30 min, in order to maintain the same concentration of PE per unit area as used in the 

flow chamber experiment. The PE-modified model fabric surface was then spun for 30 s 

at 1000 rpm using a spin processor (WS-400-6NPP, Laurell Technologies, USA). The 

PE-modified model fabric surface was then immersed in HPLC grade H2O for 5 min, 

before being used as the substrate in the AFM measurement. 
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3.3 Characterization of microcapsules and substrate surfaces 

3.3.1 Optical microscopy 

The basic principle of optical microscopy is to magnify small samples or objects by 

using visible light and a serious of lenses. Firstly, an optical microscope (Leica DM 

RBE, Leica Microsystems GmbH, and Germany) equipped with Leica QWin Pro V2.8 

software (Leica Microsystems Imaging Solutions Ltd., UK) was used to capture the 

image of microcapsules remaining on a transparent substrate (PET surface or glass 

substrate). Another optical camera (Navitar; with a light source on top (LLS - LED 

Light Source)) with Leica QWin Pro V2.8 software (Leica Microsystems Imaging 

Solutions Ltd., UK) was used to capture the images of microcapsules remaining on 

opaque substrates (cellulose film) for flow chamber experiments (§ 3.4.1). 

The optical microscope (Leica DM RBE, Leica Microsystems GmbH, and Germany) 

equipped with Leica QWin Pro V2.8 software (Leica Microsystems Imaging Solutions 

Ltd., UK) was also used to capture the image of a microcapsule colloidal probe to 

ensure the single microcapsules were properly attached to the end of a tipples cantilever 

for adhesion measurements by AFM; the captured image was further analysed to 

calculate the diameter of the microcapsule and the distance between the end of the 

cantilever and the centre of microcapsule, which were used to calculate the spring 

constant of the cantilever with an attached microcapsule (Bowen et al., 2010). 
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3.3.2 Particle size 

The size distribution of microcapsules was characterized by a Malvern Mastersizer 

(APA2000, Malvern Instruments Ltd., UK) which connects with a small volume entry 

level wet dispersion unit (Hydro 2000SM) constituting of a continuously variable single 

shaft pump and a stirrer dispersion unit (Hydro 2000SM). The size range (diameter) 

which can be measured is from 200 nm to about 2000 μm. The principle of the 

measurement is based on Dynamic Light Scattering (Malvern, 2007): microparticles in 

a stable aqueous dispersion with a suitable concentration were delivered to the optical 

measurement area (optical bench) with the continuously variable single shaft pump 

which is contained in Hydro 2000SM  dispersion unit and then a laser beam was applied 

to illuminate these microparticles. The intensity of the light scattered by the 

microparticles within the sample over a wide range of angles were collected by a series 

of detectors (Figure 3.3 (a)). The particles scattered light at an angle which is inversely 

proportional to their size (Malvern, 2007) (Figure 3.3 (a)). Then the mean diameter and 

the distribution of particles can be obtained by analysing the intensity of light scattered 

according to Mie Theory (Merkus, 2009). In order to use Mie Theory, the optical 

property (the refractive index) of the particle and the medium should be provided. The 

refractive index values of the MF microcapsules and the water are 1.65 (Brydson, 1999) 

and 1.333 (Hecht, 2003) respectively. 

Procedures: A suspension of 0.1 wt% MF perfume-filled microcapsules was added to 

the sample unit with a 2000 rpm agitation speed until the concentration of 

microcapsules reached an optimum concentration range indicated by the software. 5 
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separate samples from the same batch were measured and data were averaged in order 

to obtain a mean value of the particle size and error bar.   

 

 

(a) 

 

(b) 

Figure 3.3 Schematic representation of particle size measurement by the dynamic light 

scattering (a); the relationship between particle size and the scattering angle (a). 

 

3.3.3 Zeta potential 

A Zetasizer Nano Series (Malvern Instruments Ltd, UK) with disposable folded 

capillary cells was employed for determining the zeta potential of perfume-filled 

microcapsules, cotton powders in aqueous solution, and PVF/chitosan/ PEI solution. A 

Zetasizer Nano ZS is capable of determining the zeta potential of particles with a 

diameter of 3.8 nm to 100 μm. A dispersed particle or big molecule in a medium may 

bear surface charges and these charges affect the ionic distribution in the surrounding 

medium; some opposite charged ions will gather at the surface of the particle and form a 

strong bond, which is knowing as the Stern layer; and then more ions will bond the 

particle next to the stern layer loosely but work as a part of the whole when the particle 
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moves, which is called the slipping layer; zeta potential is the charge difference between 

the slipping layer and the bulk solution (Hunter, 1981, Myers, 1991, Hunter, 2001). A 

structure diagram of a negative charged particle in a medium is presented in Figure 3.4 

to illustrate the concept of surface charge, stern charge and zeta potential. Therefore, 

zeta potential, which represents the effective charge on the particle, is a function of 

surface charge and the properties of the surrounding medium and it is always different 

from stern charge and surface charge (Malvern_Instruments, 2007). Zeta potential is 

usually, but not necessarily, of the same sign as the surface charge (Hunter, 1981) .   

 

  

Figure 3.4 A schematic diagram to illustrate zeta potential (Malvern_Instruments, 

2007). 
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The principle of the Zetasizer technique: the particle with a zeta potential is moved 

towards an oppositely charged electrode by applying an electric field across the 

dispersion. The velocity relevant to the electrophoretic mobility of the particle can be 

determined by a patented laser interferometric technique (M3-PALS, Phase analysis 

Light Scattering) (Malvern); and the electrophoretic mobility was converted to zeta 

potential by inputting the dispersant viscosity and dielectric permittivity, and the 

application of the Smoluchowski theories (Hunter, 1981, Sze et al., 2003). 

Perfume-filled microcapsules were diluted into deionised H2O with a concentration of 

0.1 wt%. 0.1 wt% PVF/Chitosan/PEI solution was prepared according to the protocol 

described in § 3.2. HCl and NaOH aqueous solution was used to adjust pH of the 

microcapsule suspension and polyelectrolyte solutions. 0.1 wt% microcapsule 

suspension and 0.1 wt% PVF/chitosan/PEI solutions with pH values of 3, 5, 7, 9 and 11 

were formulated. Then, 3 separate samples from the same batch were measured and data 

were averaged in order to obtain a mean value for the zeta potential and error bar.   

 

3.3.4 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy at the University of Warwick was used to do surface 

composition analysis. The principle of XPS is illustrated in Figure 3.5. An X-ray photon 

with energy of hυ is incident on the surface and the energy is absorbed by an atom with 

binding energy of EB.  When hυ > EB, the core electron with Ek is excited from the atom 

and then escapes into the surrounding environment. It is unique for each core electron 

bound to the atom; therefore XPS analysis can provide detailed information of the 

composition of a material. An ultra-high vacuum environment is often needed for XPS 
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analysis in order to maximise the free path of the electrons and increase the probability 

of detection. The binding energy can be calculated by equation (3.1) 

analyserkB EhE                                                  (3.1) 

where analyser is the work function of the electron analyser.  

 

 

(a) 

 

(b) 

Figure 3.5 A schematic diagram showing the principle of the XPS technique: (a) the 

incidence of an X-ray photon with energy of hυ (b) the excitation of an electron with 

energy of Ek from the atom. 

 

XPS was used to analyse the surface composition of the cellulose film to make sure 

there was no residual solvent on the surface. Additionally, both cellulose films and 

polyester surfaces were modified with PVF, chitosan and PEI respectively, and XPS 

was used to detect these chemicals attached on the surfaces. The unmodified cellulose 

film was used as manufactured and the PET surface was used as received. The PE-

modified cellulose films/PET surfaces were prepared by applying 0.1 wt% a PE solution 

to an unmodified substrate for 30 min. In order to maintain the same concentration of 
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PE per unit area, the same volume/area ratio was maintained as described in § 3.2. 

Samples were gently washed with HPLC grade H2O before drying under a stream of N2. 

The substrates were analysed using a monochromated Al κα X-ray source (1486.6 eV) 

and the data acquired at normal emission with respect to the sample surface using a 

sampling spot size of diameter 1.2 mm. The analysis chamber base pressure was 2 × 10
-

11
 mbar. The C 1s, O 1s, and N 1s photoelectron peaks were acquired using a pass 

energy of 20 eV, which gave an energy resolution of 0.69 eV. The cellulose film is 

insulating and can become positively charged as electrons leave the sample surface. 

Therefore a flux of 1 eV electrons was used to compensate. Data were analysed using 

the CasaXPS package using Voigt lineshapes, a mixture of Gaussian and Lorentzian 

lines. 

 

3.3.5 Environmental Scanning Electron Microscope (ESEM) 

The surface topography of microcapsules and MF membrane for the work presented in 

Chapter 4, Chapter 6 and Chapter 7 was scanned by an environmental scanning electron 

microscope (Philips XL30 ESEM-FEG fitting with an oxford Inca 300 EDS system, 

The Netherlands). ESEM is capable of collecting electron micrographs with high 

resolution at low vacuum and high temperature, which provided the capability to 

examine different kinds of samples such as wet, oily, and non-conductive surfaces in 

their original state without complex sample preparation and treatment (Danilatos, 1997). 

In this work, ESEM was used to scan the microcapsule surface and MF membrane in 

dry condition; therefore it functions in the same principle of scanning electron 

microscope (SEM) (Reimer, 1998, Goldstein et al., 2003).  
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The principle of the technique: a focused beam of high-energy electrons is used to scan 

the sample surface and then the electrons interact with the atoms which will emit 

different types of electrons (Figure 3.6) as the signals to reveal the information of the 

sample, including secondary electrons (SE), backscattered electrons (BSE), and X-Rays 

(Reimer, 1998). These can be collected by different kinds of detectors and then analysed 

to get information of the sample. Normally, the SE and BSE are used to produce 

images; the characteristic X-rays of photons are used to analyse elements, which can be 

used to determine chemical compositions (energy-dispersive X-Ray Spectroscopy 

(EDS) (Goldstein et al., 2003)). Compared with a conventional microscope, the size of 

the electron spot and the interaction volume are the critical parameters to determine the 

resolution of ESEM (SEM) (Goldstein et al., 2003).  

 

 

Figure 3.6 A schematic diagram to show the emitting of electrons. 

 

0.1 wt% microcapsules in distilled water before and after their surfaces were modified 

with polyelectrolytes (PEs) were placed on double sided adhesive carbon filled 

conductive discs which were fixed on a pin mount stubs, and then they were dried in 

http://serc.carleton.edu/research_education/geochemsheets/bse.html
http://serc.carleton.edu/research_education/geochemsheets/xrays.html
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ambient air; a MF membrane was placed on double sided adhesive carbon filled 

conductive discs which were fixed on a pin mount stub.  A layer of gold with a 

thickness of about 5 to 6 nm was coated on the MF microcapsules or MF membrane in a 

sputter coater (Polaron S07640, Quorum Technologies Ltd, UK) in order to make the 

surface conductive. The beam energy and exposure time used in this work were 

controlled to be less than 20 kV and 1 minute to prevent damage to the microcapsules 

within 1 minute in dry environment (Ren 2007).  

 

3.3.6 Interferometry 

The surface topography of cellulose thin films and Si wafers was captured using a 

vertical scanning white light interferometer (MicroXAM2, Omniscan, UK), and the 

acquired data were analysed using Scanning Probe Image Processor software (Image 

Metrology, Denmark). The principle of the interferometer is to use the superposition of 

waves to combine them in a way in which some information about the sample 

properties and the original state of the waves can be diagnosed (Hariharan, 2007). In 

this work, the specimen was moved vertically over the full height range of the sample in 

order to find the position of maximum fringe contrast for each pixel. Then the analysis 

of nearby positions will produce an image of surface topography and information about 

surface roughness.  

The cellulose thin films and Si wafers were used directly without any treatment by 

using a vertical scanning white light interferometer (MicroXAM2, Omniscan, UK). 

Samples were measured as prepared, and the acquired data were analysed using 

Scanning Probe Image Processor software (Image Metrology, Denmark). The scan area 
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was 839 μm x 639 μm and 3 separate images were acquired for each sample to calculate 

the root mean square (RMS) roughness and error bar.  

 

3.3.7 Contact angle  

The hydrophilic and hydrophobic nature of MF membranes in Chapter 6 and the PET 

surfaces before and after being treated with PE molecules were characterised using a 

contact angle measurement apparatus equipped with a Charge Coupled Device (CCD) 

camera (KP-M1E/K, Hitachi) (School of Chemistry, The University of Birmingham). 

The contact angle was used to indicate the affinity of a water droplet to the surface. The 

surface is considered to be hydrophobic with a larger contact angle (>90°) and 

hydrophilic with a small contact angle (<90°) (Kwok and Neumann, 1999).  

A water droplet with a volume of approximately 1 μL was placed on a piece of PET 

surface and the profile of the water droplet was visualised with a side view camera 

within 30 seconds in order to obtain the equilibrium contact angle. FTA (First Ten 

Angstroms) video analysis software v1.96 was used to analyse the image subsequently 

to determine the contact angle; all the measurements were performed at room 

temperature of 20ºC. At least 5 separate measurements were acquired for each sample to 

calculate the mean contact angle and error bar.  

 

3.3.8 Viscosity  

An AR-1000 Rheometer (TA Instrument, UK) with Rheology Advantage softerware 

(TA Instrument, UK) was used to measure the viscosity of the PE solutions. In 
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principle, the viscosity represents the resistance of a fluid to the gradual deformation by 

shear stress or tensile stress. It was used to indicate the information of the polymer 

molecule (Ofori-Kwakye et al., 2006).  The parallel plate system was chosen to do the 

measurement and an acrylic plate with a diameter of 40 mm (TA Instrument, UK) was 

used as the rotor. Approximately 2 mL of 0.1 wt% PE solution was placed on the 

sample stage and its temperature was maintained at 25ºC and the gap between the 

sample stage and the acrylic plate was 1000 µm. Then the experiment was performed to 

measure the viscosity by increasing the shear rate from 10 (s
-1

) and 100 (s
-1

). Each 

measurement was repeated twice to calculate the mean viscosity. 

 

3.3.9 AFM imaging 

A NanoWizard®II AFM with an attached CellHesion module (JPK Instruments, UK) 

was used for imaging cellulose films and polyester surfaces. The basic principle of 

AFM is that a cantilever with a sharp tip (probe) scans over the surface of the specimen 

and then the reflection of the light focusing on the back of the cantilever resulting from 

the interaction between the tip and the surface is recorded into an electrical signal of 

voltage, which is then used to produce image information (Binnig et al., 1986, Nader 

and Karthik, 2004). Figure 3.7 shows the deflection of the cantilever and the signal 

recording in AFM. In order to get the topography information of a sample, the 

cantilever with a tip needs to be moved over the target surface. Therefore, the feedback 

and image control is significant. The most common used feedback control modes 

includes contact mode (Figure 3.8 (a)), intermittent contact mode (Figure 3.8 (b)), non-

contact mode (Figure 3.8 (c)) and force modulation mode (Figure 3.8 (d)) (JPK 

Instruments, 2009).  The tip never leaves the surface during the scanning process if 
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contact mode or the force modulation mode is used, which generates images with high 

resolutions, but it always causes large forces in the lateral direction, leading to the 

disruption of the surface (Nader and Karthik, 2004). Less or no contact between the tip 

and the surface can be achieved by applying the intermittent contact mode and non-

contact mode, which decreases the lateral force significantly. However, the presence of 

the attractive force, especially the capillary force in the ambient environment, makes a 

jump of the cantilever to the surface possible, which can ruin the no-contact condition 

(Garc  a and P re , 2002). 

  

 

Figure 3.7 A schematic diagram to show the deflection and recording of the beam 

signals by AFM (JPK Instruments, 2009).  

 

In this work, imaging was performed in intermittent contact mode using a pyramidal-

tipped Si cantilever (RTESP, Veeco, France) with a nominal spring constant of 40 N m
-
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1
 in ambient conditions. A scan rate of 1 Hz and a resolution of 1024 × 1024 pixels were 

set for all the scanning. At least 3 separate images were acquired for each sample to 

calculate the root mean square (RMS) roughness.  

  

 

  

(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 3.8 The control mode used for AFM imaging: contact mode (a); intermittent 

contact mode (b); non-contact mode (c) and force modulation mode (d) (JPK 

Instruments, 2009). 

 

3.4 Characterization of microcapsule adhesion to and removal from 

surfaces 

3.4.1 Flow chamber technique 

 

 

 

Force modulation mode 

 

 

 

Non-contact mode 

 

 

 

Intermittent contact mode 

  

 

 

Contact mode 
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A parallel-plate flow chamber was purposely built in order to measure the retention and 

removal behaviour of a population of microcapsules on a model fabric surface in an 

aqueous environment. The principle of the flow chamber technique is to displace 

particle from a substrate with hydrodynamic force (Decuzzi et al., 2007).  

 

3.4.1.1 Construction of the flow chamber system 

The flow chamber (Figure 3.9 (a)) consisted of a top plate, a gasket with a rectangular 

channel, a cellulose film substrate, a piece of soft rubber, a bottom plate and suitable 

screws. Figure 3.9 (b) shows a schematic of the flow chamber: (1) a rectangular 

transparent plastic plate (PMMA, 70 mm × 30 mm × 5 mm) with an entrance, outlet 

port and sample injection port; (2) a gasket (70 mm × 30 mm × 5 mm)  with a 

rectangular channel (24 mm × 1.5 mm × 1.5 mm) as the main body of the flow 

chamber; (3)  a piece of model fabric surface with dimensions greater than those of the 

rectangular channel as the bottom substrate of the flow chamber; (4) a piece of soft 

rubber to ensure a well-defined seal between the cellulose film and the bottom plate; (5) 

a piece of transparent rectangular plastic plate (PMMA, 70 mm × 30 mm × 5 mm) as 

the bottom of plate. The flow chamber was fabricated by fixing the above pieces 

together with screws, which was then connected to a syringe pump (KD 100, KD 

Scientific Inc., USA) and a waste tank with rubber tubes, having an inner diameter of 2 

mm. Figure 1 (b) shows a schematic of the visualisation and measurement system. The 

schematic diagram of the system can be seen in Figure 3.10. 
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(a)                                                                                    (b) 

Figure 3.9 The image of the flow chamber (a); a schematic representation of the flow 

chamber (b).   

 

Figure 3.10 The schematic diagram of the flow chamber system. 

 

3.4.1.2 Removal/retention measurement with the flow chamber device 

(1) The retention of microcapsules to a model fabric surface for the experimental work 

presented in Chapter 5 and Chapter 6: Distilled H2O was pumped through the system 

ensuring no air bubble was present. 0.2 mL microcapsule suspension (0.5 wt%) was 

then injected into the chamber through the sample injection port and these 

microcapsules were allowed to settle for 10 min. Subsequently, the system was 

subjected to a flow of 0.1 mL h
-1

 for 5 min in order to remove any suspended free oil 
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droplets introduced by occasional breakage of microcapsules and air bubbles imported 

by injection. A Navitar optical camera with an attached LED light source coupled with 

Leica QWin Pro V2.8 software (Leica Microsystems Imaging Solutions Ltd., UK) was 

used to capture the images of 6 positions in the flow chamber, as shown in Figure 3.11. 

Images of these six positions were recorded as the flow rate was increased, and 

continued to be taken until after removal of the microparticles deposited in these 

positions. All the experimental work was carried out at a flow rate which was equal or 

less than 200 mL h
-1

 and the Re number was far less than 2100; therefore the flow in the 

flow chamber system was in the laminar flow condition.  A schematic diagram of the 

captured areas and an example of a series of 6 images before and after using water flow 

is presented in Figure 3.11.  

 (2) The removal of single microcapsules from a glass surface in the flow chamber for 

the experimental work presented in Chapter 7:  Distilled H2O was pumped through the 

system ensuring no air bubble was present. 0.1 mL microcapsule suspension (0.1 wt%) 

was injected into the chamber through the sample injection port and these 

microcapsules were allowed to settle under gravity for 10 min. Subsequently, the 

system was subjected to a flow of 0.1 mL h
-1

 for 5 min in order to remove any 

suspended air bubbles entrained by injection and unsettled microcapsules. Then a water 

flow of 10 mL h
-1

 was used to remove the microcapsules for 10 min. A video system 

was applied to monitor the fully developed flow region to ensure there is no suspended 

microcapsule in the region and the remaining microcapsules are far away from each 

other.   The flow rate was then increased with an increment of 2 mL h
-1

, and the removal 

of microcapsules was monitored by the video system.  
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           (a) 

 

 

 

 

 

 

             (b) 

 

 

 

 

 

 

(c) 

Figure 3.11 Images captured (6 red areas) in the channel (a); the images of 

microcapsules on PET surface before (b) and after (c) a water flow of 200 mL h
-1 

for 3 

min. The black arrow indicates the flow direction. 

 

3.4.1.3 Calculation of surface area occupied by microcapsules  

A MATLAB code for calculating the surface area occupied by microcapsules for the 

experimental work presented in Chapter 5 and Chapter 6 was provided by Dr James W. 
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Andrews in the School of Chemical Engineering, University of Birmingham. The code 

was used to calculate the area ratio covered by microcapsules (the black spots in the 

original image) for each image (the red colour area in Figure 3.11). The original image 

(Figure 3.12 (a)) was converted into a grey-scale image (Figure 3.12 (b)), and then a 

black and white image (Figure 3.12 (c)) was generated to remove the shadow and fill 

the hollow holes with MATLAB. Then MATLAB was used to get the particle size 

distribution (Figure 3.12 (d)) and surface area covered by the microcapsules on the 

capture area. The MATLAB code was presented in Appendix I.  

The surface area occupied by a single microcapsule was recorded as Ai,  

the total area occupied by microcapsules is 

                     



n

i

iAA
1

                                                                          (3.2) 

where n is the total number of microcapsules; 

The normalised area ratio of microcapsules remaining after removal on one position was 

recorded as  

                    
valbeforeremo

alafterremov

A

A
a                                                                       (3.3); 

The average normalised area ratio in the six positions can be recorded as:  

                  
6

6

1


 i

ia

a                                                                           (3.4). 
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(a) The original image 

 

(b) Grey-scale image 

 

(c) Black & white image 

 

 (d) Particle size distribution 

Figure 3.12 Calculation of surface area covered by microcapsules using MATLAB. 

 

The video which were used to record the removal of single microcapsules were 

analysed with the MATLAB code (provided by Dr James W. Andrew in University of 

Birmingham) to obtain the data of the displaced microcapsules, including the diameter 

of the microcapsules and the distance of the centre of each microcapsule from the 

central line of the flow channel before removal.  

3.4.2 Measurement of microcapsule adhesion to a surface by AFM 
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3.4.2.1 The principle of AFM 

The NanoWizard®Ⅱ AFM with an attached CellHesion module (JPK Instruments, UK) 

mentioned in § 3.2.7 was used for measuring the adhesive properties of microcapsules 

on different substrates in ambient air and aqueous solutions. The principle of the force 

measurements by AFM is the same as described in § 3.3.9. A tip of the cantilever was 

bought into contact with the sample directly without moving in the lateral direction, and 

then retracted from the surface (Binnig et al., 1986). The bending of the cantilever 

because of the interaction was recorded in an electrical signal of voltage, which was 

then converted into force according to Hooke's law (JPK Instruments, 2009). In order to 

examine the interaction between single microparticles and a substrate, an AFM colloidal 

probe technique (Butt, 1991, Ducker et al., 1992, Kappl and Butt, 2002) was applied. A 

single microparticle was glued to the free end of a tipless cantilever and the interaction 

between the particle and a surface could be determined. A schematic diagram in Figure 

3.13 illustrates the interaction between a colloidal probe and a substrate on approach 

and retraction.   
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Figure 3.13 The blending of the cantilever with a sphere probe on approach and 

retraction (JPK Instruments, UK).   

 

3.4.2.2 Preparation of colloidal probe 

For measuring the adhesive force between single microcapsules and substrates, tipless 

rectangular Si cantilevers (NSC12, MikroMasch, Estonia) were used to attach single 

microcapsules. A schematic diagram of the procedures employed for the attachment of 

microcapsules to the free end of a tipless cantilever is presented in Figure 3.14, whereby 

a micromanipulation rig was used for precise displacement control (Zhang et al., 1999). 

The procedures are listed as follows: 

(1) A chip with tipless rectangular silicon cantilevers was reversely held on the 

micromanipulation rig with a fine glass tube and some Blu Tack, ensuring that 

the cantilevers were in focus and perpendicular to the incident beam of light.  

(2) A droplet of suspension with diluted microcapsules was placed on a glass slide 

and dried at room temperature, and then the glass slide with microcapsules was 
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fixed on the sample stage; the glass slide with microcapsules was moved to the 

screen manually and a candidate microcapsule was focused.  

(3)  A small quantity of superglue was placed on the glass slide and then the 

cantilever was made to contact with superglue by moving the stage horizontally 

and cantilever vertically.  

(4) After a fraction of the superglue was attached to the free end of the tipless 

cantilever, the sample stage was moved quickly to attach the candidate 

microcapsule; a gentle press on the microcapsule was maintained for a few 

minutes until the superglue was dried. 

(5)  At last the attached microcapsule colloid probe was moved upwards and taken 

away for further experiments. 

The cantilever spring constant was calculated by measuring their width, length and 

resonant frequency according to the method described by Bowen et al. (2010). 

 

 

Figure 3.14 Schematic diagram of attaching a microcapsule onto a cantilever with 

micromanipulation. 

Superglue 

Fine glass 
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3.4.2.3 AFM operation 

A model fabric substrate was attached to a poly (styrene) Petri dish, of diameter 35 mm 

and height 4 mm, which was subsequently firmly secured with double sided carbon 

adhesive tape (SPI Supplies®) on the stage of AFM. Adhesion measurements were 

conducted in different environments. In dry conditions, the temperature and relative 

humidity of the surrounding environment were kept at 18°C and 40%. In aqueous 

solution, the Petri dish with a substrate was filled to at least 2 mm height with H2O 

(HPLC grade, Fisher Scientific, UK), ensuring there were no air bubble present. Upon 

immersion of the cantilever in the H2O, the system was left to thermally equilibrate for 

10 min. A minimum of 100 measurements were performed over an area of 10 µm × 10 

µm for each microcapsule to calculate the mean value of adhesion for the experimental 

work presented in Chapter 4, 5, 6 and 7. A minimum of 25 measurements were 

performed over an area of 10 µm × 10 µm for each microcapsule to investigate the 

adhesion mechanism presented in Chapter 5 and 6. The approach velocity was   20 μm 

s
-1

. The particle/surface contact time and the setpoint of compressive load were adjusted 

according to the requirement of the work described in each chapter. After each set of 

measurements, the cantilever with the attached microcapsule was washed gently with 

H2O to remove any possible contamination on the microcapsule surface. The adhesive 

force between single microcapsules and substrates were measured in 10
-3

 M, 10
-2

 M and 

0.1M NaCl solution to investigate the influence of ionic strength on adhesion; and then 

in 10
-3

 M NaCl solution, the pH of which was adjusted to the range 3 to 11 to 

investigate the influence of pH on adhesion.   
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3.5 Determination of friction coefficient  

A model based on the displacement of a single microcapsule from a fabric substrate in 

the flow chamber was built to understand the mechanism of on-set removal and to 

interpret the relationship between adhesion and the retention of microcapsules on a 

surface. The parameter of friction coefficient between the microcapsule and the 

substrate was needed. Two methodologies based on AFM and a nano-tribometer were 

used to determine the friction coefficient as follows. 

 

3.5.1 Determination of friction coefficient by AFM  

Single microcapsules with a diameter of 8 µm to 25 µm were attached to the end of a 

tipless rectangular Si cantilever (NSC12, MikroMasch, Estonia), and then the 

microcapsule probe was used to make friction measurements on different substrates 

using AFM. The procedure of the calibration of the normal spring constant of the 

cantilever with an attached microcapsule is described in Bowen et.al (2010). The lateral 

spring constant was measured by using a microcapsule probe to scan a TGF11 silicon 

calibration grid (Figure 3.15) which consists of a 1-D array of trapezoidal steps with a 

10 µm pitch and height of approximately 1.75 µm. The lateral faces of the steps have an 

inclination angle with respect to the horizontal plane of precisely arctan 2  (54
◦
74'). 

The angle is defined by the crystallography of silicon and is maintained with high 

accuracy. Direct calibration of the lateral force can be obtained by analysing the contact 

response measured on the flat and sloped facet. 
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Figure 3.15 The TGF11 silicon calibration grid. 

 

The TGF11 silicon calibration grid was attached to a glass slide, which was 

subsequently firmly secured on the stage of AFM. Calibration was performed by 

imaging the TGF11 silicon calibration grid using the microcapsule probe in ambient 

condition. The cantilever should be parallel to the z direction in Figure 3.15 to ensure 

that the cantilever scans over the flat and sloped surface. An applied load of 5 nN, a 

scan area of 50 µm × 2 µm, a scan velocity of 5 µm s
-1

 and a resolution of 512 × 512 

pixels were set for all the scanning. The lateral deflection in voltage was recorded for 

further calculation of the calibration factor and the lateral spring constant of the 

cantilever (Varenberg et al., 2003, Tocha et al., 2006, Huang et al., 2009). 

Additionally, a microcapsule with a diameter of 25 µm was used to scan PET and glass 

surfaces in H2O (HPLC grade, Fisher Scientific, UK) using the same scan area and scan 

velocity. The lateral deflection was recorded by increasing the applied load from 2 nN 

to 30 nN to investigate the contact issue between microcapsules and a substrate in 

HPLC grade H2O.  
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3.5.2 Determination of friction coefficient by a nano-tribometer  

A melamine formaldehyde membrane was prepared and the coefficient of friction 

between the membrane and a glass sphere which was made of the same material as the 

glass substrate was measured with a Nanovea Tribometer (Rotative Mode (ASTM 

G99), Nanovea, USA). 

 

3.5.2.1 Preparation of melamine formaldehyde membrane 

A melamine formaldehyde microparticle suspension was produced by in-situ 

polymerization of MF precondensate and formaldehyde with poly-(acrylamide-acrylic 

acid, sodium salt) as described in § 3.1.1 (Pan et al., 2012) without adding perfume oil.  

And then the MF micro-particle suspension was deposited on a glass slide with a 

spinning disk (WS-400B-6NPP/LITE, Laurell Technologies Corporation, US) at 500 

rpm for 30 s; finally, the MF membrane on a glass slide was dried in a desiccator.  

 

3.5.2.2 Friction coefficient measurement 

A Nanovea Tribometer (Rotative Mode (ASTM G99), Nanovea, USA) was used to 

measure the coefficient of static friction between a glass sphere with a diameter of 2 

mm and the MF membrane in ambient air and HPLC H2O. The glass sphere was loaded 

onto a MF membrane with a precisely known weight and at a specific position from the 

centre to create a circular wear track as the bottom plate rotated. The friction coefficient 

was determined from the experiment by measuring the deflection of the direct load cell. 

The applied force, the radius of the circular wear track and the rotation speed were set at 



76 

 

20 mN, 2 mm and 1mm s
-1

 respectively. For each experiment, the measurement was run 

for 10 cycles. Five replicated experiments were done for each sample. The Tribometer 

Friction Software (Nanovea, USA) was used to calculate the coefficient of friction.  
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Chapter 4: Adhesion of Single Perfume -filled 

Microcapsules on a Model Fabric Surface Investigated 

by AFM  

 

4.1 Introduction 

Perfume-filled microcapsules are intended to use in a wide range of personal care and 

household products, such as washing powders (Michael 1990), liquid detergents 

(Broeckx et al., 2004), bleach (Bianchetti et al., 2010), and personal cleaner (Ouali and 

Benczedi, 2008), to provide a long-lasting release of pleasant scent to consumers. 

Among them, the application of perfume-filled microcapsules into liquid detergents has 

drawn much attention recently (personal communication with Dr. Johan Smets from 

P&G, Belgium). The retention of perfume-filled microcapsules on fabric surfaces is the 

key factor to control their application to achieve a high efficiency of usage. However, 

not all the perfume-filled microcapsules can be kept on fabric surface during and after 

laundry processes. Therefore enhancement of the retention of perfume microcapsules on 

fabric surfaces has become an urgent objective which needs to be achieved.  

Adhesion was reported in many publications to be enhanced by treating surfaces with 

functional chemicals such as polyelectrolyte (Biggs, 1996, Boura et al., 2003, Claesson 

et al., 2003, Borkovec and Papastavrou, 2008, Gurumoorthy and Khan, 2011). This 

approach has been widely adopted because adhesion can increase either by electrostatic 

interaction (Holmberg et al., 1997, Claesson et al., 2003) or bridging forces resulting 

from molecule chains’ entanglement (Biggs, 1996, Suraya et al., 2005, Gurumoorthy 

and Khan, 2011) or their combination (Podgornik and Ličer, 2006). Polyelectrolytes 
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such as chitosan (Che et al., 2008, Da Róz et al., 2010, Orelma et al., 2011), polyvinyl 

amine and its derivative (Chen et al., 2006, Notley et al., 2009, Pinschmidt, 2010, Liu, 

2012) have been found to enhance the adhesion between cellulose surfaces. Hence, they 

potentially may be used to enhance the deposition and retention of microcapsules on 

cotton fabrics.  

So far, AFM with a collodial probe (Binnig et al., 1986) is the most common and 

precise technique to measure adhesive forces between single particles and surfaces. A 

candidate particle is attached to the end of a microfabricated cantilever and the force 

between the particle and surface can be measured with AFM in different environments. 

It is accurate to atomic scale and has been successfully used to measure adhesion in 

various systems such as between protein layers (Bowen et al., 1998), Saccharomyces 

cerevisiae cells and mica (Bowen et al., 2001) or glass surfaces (Bowen et al., 2002), a 

silicon sphere probe and mica surfaces (Vakarelski et al., 2000, Vakarelski and 

Higashitani, 2001) and between polyester spheres (Hodges et al. 2002, Hodges et al. 

2004) .  

In this work, AFM with a colloidal probe was used to investigate adhesion between 

single microcapsules and a cellulose thin film. At first, cellulose thin films were 

prepared from cotton powders to mimic a cotton fabric surface. Then MF perfume-filled 

microcapsules were modified with polyvinyl formamide (PVF) and chitosan 

respectively and the aggregation of microcapsules and the surface topography were 

investigated. The adhesion was investigated under various conditions of AFM: 

compression load, contact time and particle size in order to study their influence on 

adhesion. After that, adhesion between unmodified and modified single microcapsules 

and cellulose thin films was investigated in both ambient air and aqueous environments. 

Finally, the mechanism of adhesion and the reason for the variation of adhesion data 
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were discussed. It is expected that the work can provide some guidance on further 

investigation of microcapsules’ adhesion to fabric surfaces. Then a rational strategy for 

increasing the adhesion of perfume-filled microcapsules to fabric surfaces can be 

proposed in order to achieve the goal of effective delivery of perfume-filled 

microcapsules to fabric surfaces through laundry process.          

 

4.2 Experimental 

4.2.1 Perfume-filled MF microcapsules  

Perfume-filled MF microcapsules were supplied by Procter & Gamble, Belgium, see 

§3.1.1 for more details. 

 

4.2.2 Cellulose thin film  

The materials and experimental procedures used to prepare a cellulose thin film were 

described in detail in § 3.1.2. 

 

4.2.3 Modification of microcapsules with chemicals 

PVF and chitosan were used to modify the MF perfume-filled microcapsules and the 

details were described in § 3.2.1. 

 

4.2.4 Optical microscopy 
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The optical microscope described in § 3.3.1 was used to capture the image of a 

microcapsule colloidal probe to ensure the single microcapsules were properly attached 

to the free end of a tipples cantilever for adhesion measurements by AFM; the captured 

image was further analysed to calculate the diameter of the microcapsule and the 

distance between the end of the cantilever and the centre of microcapsule, which were 

used to calculate the spring constant of the cantilever with an attached microcapsule 

(Bowen et al. 2010). 

 

4.2.5 Particle size  

The mean volume particle size (D4,3) of perfume-filled MF microcapsules was 

characterized by a Malvern Mastersizer and the detailed information of the technique 

and the procedures to measure D4,3 were described in § 3.3.2.  

 

4.2.6 Zeta potential  

A Zetasizer Nano Series (Malvern Instruments Ltd, UK) with disposable folded 

capillary cells was employed to determine the zeta potential of perfume-filled 

microcapsules before and after they were modified with PVF and chitosan in aqueous 

solution. The details were described in § 3.3.3. 

 

4.2.7 Surface topography by environmental scanning electron microscope 

(ESEM) 
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The aggregation, the surface topography of microcapsules before and after modification 

with PEs and the wall thickness of MF microcapsules were studied by an environmental 

scanning electron microscope (Philips XL30 ESEM-FEG fitting with an Oxford Inca 

300 EDS system, The Netherlands). The detailed information was described in § 3.3.4. 

 

4.2.8 Interferometry  

The surface topography of silicon wafers and cellulose thin films was captured using a 

vertical scanning white light interferometer described in § 3.3.5.  

 

4.2.9 Atomic force microscopy (AFM)     

4.2.9.1 Imaging  

The surface topography of silicon wafers and cellulose thin films was acquired by AFM 

as described in § 3.3.9.  

 

4.2.9.2 Force measurement 

The adhesion between microcapsules and cellulose thin films in ambient air, HPLC 

water and 0.2 SDBS (pH 7) aqueous solutions was measured as described in § 3.3.9. 
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4.3 Results  

4.3.1 Cellulose thin films 

Surface topography of a silicon wafer and cellulose thin film prepared from dissolving 

cellulose powders characterized by AFM (Figure 4.1) and interferometry (Figure 4.2) 

shows that a cellulose thin film was deposited on the Si wafer successfully. The RMS 

roughness of the cellulose thin film with a scan area of 5 m  5m was 5.4 ± 0.4 nm, 

and the RMS roughness from the interferometer with a large scan area (639 m  839 

m) was 29.3 nm. The RMS roughness from AFM is comparable to the result obtained 

by Liu (2013), which was 5.2 nm over a scan area of 5 m  5 m for a typical cotton 

film. Compared with a real cotton fibre (the root mean square (RMS) roughness was 

about 17.6 nm over an scan area of 4 μm
2
 (Liu 2010)), the cellulose thin film was much 

smoother over a similar area.  

 

 

(a) 

 

(b) 

Figure 4.1 AFM images of (a) bare silicon wafer (RMS = 0.3 nm); (b) dry cellulose thin 

film made of 0.5 wt% cotton powders (RMS = 5.4±0.4 nm). Both the scan areas are 5 

m 5 m. 
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(a) 

 

(b) 

Figure 4.2 Interferometer images of (a) bare silicon wafer (RMS = 0.005 μm); (b) dry 

cellulose thin film made of 0.5 wt% cotton powders (RMS = 0.029 μm). Both scan areas 

are 639 m 839 m. 
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4.3.2 Modification of perfume microcapsules with PVF and chitosan 

4.3.2.1 Aggregation of microcapsules   

The aggregation of microcapsules after their surfaces were modified with PVF and 

chitosan is shown in Figure 4.3 and 4.4. Most of non-modified microcapsules were 

dispersed and microcapsules aggregated after they were modified with PVF or chitosan 

solution with the increase of polyelectrolyte (PE) concentration. Obvious aggregation 

was observed when the concentration of PE to microcapsules approached to 0.3 wt% 

and 0.2 wt% for PVF and chitosan respectively, and the dimension of the aggregates 

increased from 20 μm to approximately 100 μm at 0.8 wt% and 0.5 wt% for PVF and 

chitosan respectively.  

 

 

(a) 0 

 

(d) 0.1% 

 

(e) 0.2% 

 

(f) 0.3% 

 

(g) 0.4% 

 

(h) 0.5% 
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(i) 0.6% 

 

(j) 0.7% 

 

(k) 0.8% 

Figure 4.3 ESEM images of microcapsule aggregates caused by PVF as a function of 

PVF concentration (wt %). 

 

 

(a) 0 

 

(b) 0.1% 

 

(c) 0.2% 

 

(d) 0.3% 

 

(e) 0.4% 

 

(f) 0.5% 

Figure 4.4 ESEM images of microcapsule aggregates caused by chitosan as a function 

of chitosan concentration (wt %). 

 

The aggregation of microcapsules is also illustrated by the particle size analysis (Figure 

4.5). The volume mean diameter (D4,3) of microcapsules after being modified with PE 

solution began to increase at a concentration of 0.4 wt% and 0.3 wt% for PVF and 

chitosan respectively and then rapidly increased with each PE concentration. The 

concentration of PVF and chitosan at the onset of aggregation indicated by particle size 
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analysis is slightly higher than that by ESEM imaging. The mean reason can be that an 

agitation speed of 2000 rpm was used in a sampling cell for particle size measurement, 

which might reduce aggregation through mixing. Therefore the optimum concentration 

of PVF and chitosan to modify MF microcapsules is approximately 0.2 wt% and 0.1 

wt% respectively in order to prevent aggregation.     

 

 

(a) 

 

(b) 

 Figure 4.5 The mean diameter (D4,3) of microcapsules modified with PVF (a) and 

chitosan (b). 

 

4.3.2.2 Surface topography 

Figure 4.6 shows the surface topography of the MF microcapsules before and after 

modification with PVF and chitosan solution with a concentration of 1 wt%. The 

surfaces of the non-modified microcapsules are quite smooth, see Figure 4.6 (a). After 

MF microcapsules were modified with PE solution, there was a layer of filaments on the 

surface, particularly at the joint of two microcapsules. Additionally, the surface 
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roughness was increased. Therefore, PVF and chitosan are considered to have attached 

on the surfaces successfully.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.6 Surface topography of microcapsules before (a) and after being modified 

with PVF (b) and chitosan (c) with a concentration of 1 wt%. 

 

4.3.3 Adhesion measured by AFM 

4.3.3.1 Colloidal probe of single microcapsules 

Single MF microcapsules were attached to the end of a tipless cantilever to prepare a 

colloidal probe of microcapsule. Figure 4.7 presents a typical top (a) and side (b) view 

image of a MF microcapsule with a diameter of 22 μm attached on the end of a tipless 

cantilever. The attached microcapsules were used to measure their adhesion to a 

cellulose thin film.  
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(a) Top view 

 

(b) Side view 

Figure 4.7 Optical image of a single microcapsule (22 µm) on the end of the cantilever. 

 

Figure 4.8 presents an approaching and retracting force curve to show interactions 

between a microcapsule and a cellulose thin film in HPLC H2O. As can be seen, from 

point A to B, the microcapsule was approaching to the cellulose thin film and there was 

no extra force applied on the cantilever; from point B, a repulsion force was occurring 

between the two surfaces, leading to a bending of the cantilever against the substrate; 

when the repulsion force reached the pre-set compression load (point C), the 

microcapsule started to retract; at point D, the bending of the cantilever to the substrate 

approached to the maximum and the attractive interaction reached the peak value, then 

the microcapsule started to travel back from the surface; at point E, the cantilever 

recovered to zero position and then departed from the substrate. In Figure 4.8, there is 

no obvious “snap –in” on the approach curve when the microcapsule approached to the 

cellulose thin film. Bowen et al. (2002) studied the interactions between single Bacillus 

mycoides spores and hydrophobic-coated and hydrophilic glass surfaces in aqueous 

solution by AFM with a colloidal probe, a simple counting methodology and a spinning 

disk technique. It was found that the “snap-in” event on the approach curve indicates 

50 μm 
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that there is an attractive interaction between two surfaces. The attraction during the 

approach process can help the surface capture more Bacillus mycoides spores to the 

hydrophobic-coated glass surface (Bowen et al. 2002). Therefore, there is no attractive 

force when the microcapsule approached the cellulose thin film in HPLC H2O. An 

obvious popup event on the retraction was observed, which is considered as the 

adhesion or the “pull-off” force between the microcapsule and the cellulose thin film. 

Adhesion on the retraction process is considered to relate to the remaining of the 

particles to a surface.     

 

 

Figure 4.8 Schematic representations of steps during a typical force interaction between 

a non-modified microcapsule with a diameter of 22 µm and a cellulose thin film in 

HPLC H2O. 
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4.3.3.2 Operation parameters for adhesion measurements by AFM 

(1) The compression load 

The compression load influences the adhesion of a particle on a substrate by causing the 

particle deformation to change the contact area. The adhesion of single MF 

microcapsules on a cellulose thin film was investigated as a function of the compression 

load in HPLC water. Four single microcapsules were measured (Figure 4.9). In general, 

adhesion of the single MF microcapsules on the cellulose thin film in HPLC H2O 

increased with the compression load and then levelled off. However, slight difference in 

the shape of adhesion vs. compression load curve between microcapsules was seen, 

which may be attributed to the difference in the surface properties (such as wall 

thickness, surface roughness and porosities) between themselves. The difference in the 

wall thicknesses between perfume microcapsules from the same batch was noticed by 

the ESEM images shown in Figure 4.10, which varies from approximately 90 nm to 

about 120 nm. The dependence of the adhesion behaviour on the wall thickness of 

microcapsules was also observed in the work of Elsner et al. (2004) and the surface 

roughness was also shown to affect adhesion (Katainen 2006). The overall trend of 

adhesion increasing and then reaching a constant value by increasing the compression 

load correlates with previous publications (Bhushan 2003, Xu and Siedlecki 2009). 

However, other results are inconsistent with this. Stegemann et al. (2007) found that 

adhesion between a titanium sphere and metal single crystals was independent of 

compression load from 90 nN to 200 nN and then increased with the compression load 

to 350 nN. There was also a report showing no obvious varation in adhesion with the 

increase of the applied load in low and moderate humidity enviroments between 

polystyrene particles and then increase steadily with compression load after it reached a 

threshold value of 1200 nN (Cleaver and Looi 2007). The inconsistency may be 
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attributed to the transformation of elastic deformation to plastic deformation of particles 

at high compression load. In this work, the low compression load can generate low 

adhesion forces between microcapsules and a cellulose thin film in aqueous solution. 

Therefore in order to generate more an accurate measurement of adhesion force, an 

extremely low compression load should be avoided; additionally, the adhesion force of 

microcapsules to a cellulose thin film should be measured within the elastic limit of the 

microcapsules to avoid palstic deformation; The elastic limit of MF microcapsules was 

investigated in Sun and Zhang (2001) and Liu (2010) and the critical nominal 

deformation (ratio of displacement to diamter) to avoid plastic deformation was 15±1% 

(Liu 2010) and 19±1% (Sun and Zhang 2001) respectively. The rupture force of the MF 

microcapsules was reported to within a range of hundred of nN to few mN (Zhang et al. 

1999, Liu 2010, Pan et al. 2012). In order to avoid plastic deformation, a comparable 

high compression load should be avoid. Comprehensively, a compression load of 10 nN 

was selected for application in the further experiments.     

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.9 The relationship between microcapsule adhesion and compression load in 

HPLC water. (a) diameter 23 μm, contact time 0.001 s; (b) diameter 17 μm, contact time 

10 s; (c) diameter 19 μm, contact time 10 s; (d) diameter 23 μm, contact time 10 s. 

 

 

(a) 

 

(b) 

 

Figure 4.10 ESEM images showing the wall thicknesses of MF microcapsules from the 

same sample. 

(2) Contact time 

Figure 4.11 shows a typical relationship between the adhesion and contact time. 

Generally, the adhesion increased with the contact time for the first few seconds, and 

then maintained a constant value with increasing the contact time (Figure 4.11); but 

there was one microcapsule (Figure 4.11 (d)), from which the adhesion started to 

decrease after a contact time of 20 s. When a certain compression load is placed on 
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microcapsules, it is suggested that there is a “stress transmission” effect resulting from 

slight viscoelasticity of the microcapsules (Zhang et al. 1999, Sun and Zhang 2001, Sun 

and Zhang 2002, Liu 2010), whereby the compressive load is transmitted through the 

particle with increasing time, resulting in the microcapsule deformation, and then the 

contact radius reaches a constant value. The required time to achieve the equilibrium 

contact radius is approximately 5 to 10 s. In the meantime, when two surfaces are 

brought together, cellulose molecular chains on each surface may penetrate and entangle 

with each other, leading to an increase in the pull-off force on separation (Poptoshev 

and Claesson 2002, Nordgren et al. 2009). 

 

 
        (a) 

 
(b) 

 
       (c) 

 
     (d) 

Figure 4.11 The relationship between microcapsule adhesion and contact time 

(compression load 10 nN). (a) diameter 17.0 μm; (b) diameter 19.0 μm; (c) diameter 23 

μm; (d) diameter 14.5 μm. 
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However, for the microcapsule shown in Figure 4.11 (d), the adhesion started to 

decrease when the contact time increased to 20 s, which is probably because an increase 

in the holding time under a certain compression load caused the diffusion or even the 

leakage of the core material-perfume oil. With the presence of the perfume oil, the 

surface of microcapsules is much more hydrophobic (Liu 2010). The layer of perfume 

oil, with a high viscosity, can not only separate the two surfaces but also decrease the 

penetration speed of the molecular chains, which might suppress the adhesion between 

the microcapsule and the cellulose thin film. The breakage of the microcapsule after 

conducting the adhesion vs. contact time experiment in Figure 4.11 (d) was noticed, as 

shown in Figure 4.12. Therefore a contact time of 10 s for holding single microcapsules 

on the surface was chosen for application in the further experiments.  

 

 

(a) 

 

(b) 

Figure 4.12 Microscopy images of the microcapsule before (a) and after (b) conducting 

adhesion vs. contact time measurements; the microcapsule presented here is the same 

one as used in Figure 4.11 (d). 
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(3) Microcapsule size 

The relationship between adhesion and microcapsule diameter is plotted in Figure 4.13. 

In HPLC H2O, the adhesion of microcapsules is independent of their size. However, the 

pull-off forces were found to be proportional to the particle diameter according to 

continuum mechanics models (JKR (Johnson et al. 1971), DMT (Derjaguin et al. 1975) 

and Maugis-Pollock (Maugis and Pollock 1984). The independence may be due to the 

surface morphology of single microcapsules being different (Vakarelski et al. 2000, 

Hodges et al. 2002), leading to the variation in adhesion; the effects overcoming the 

influence from particle size (which will be explained in 4.4.2) in this work; additionally, 

in liquid environment the adhesion between microcapsules and the cellulose film is 

more likely to result from the entanglement of molecular loops or tails on the two 

surfaces to form “bridging forces” (Biggs 1996, Liu 2010). The intensity of the force 

depends on the number of the paired entangled molecular chains and also the strength of 

each entanglement. When the microcapsules were separated from the cellulose film, the 

adhesion depended on the entangled molecular chains other than the microcapsule 

diameter. Therefore, in this work the adhesion is not going to be normalized with the 

particle diameter in the analysis.  
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Figure 4.13 The relationship between microcapsules’ adhesion on cellulose film in 

HPLC water and their diameter with a compression load of 10 nN and contact time of 

10 s. 

 

4.3.4 Adhesion between microcapsules and cellulose thin films in various 

environments 

4.3.4.1 Adhesion between microcapsules and cellulose thin films in ambient air 

Thirteen non-modified microcapsules, Ten modified microcapsules with PVF with a 

concentration of 0.25 wt% (provided by P&G) and eleven modified microcapsules with 

chitosan with 0.1 wt%, which had diameters of 15 µm to 30 µm, were used to measure 

adhesion on cellulose thin films in ambient air (18°C, 40% relative humidity (RH)) by 

AFM, and the results are shown in Figure 4.14. Only the data with a contact time of 10 

ms are presented for comparison. The average adhesion force between non-modified 

MF microcapsules and the cellulose was 44±7 nN. The result of the adhesion between a 

MF microcapsule and a cellulose thin film in ambient air condition by Liu (2010) was 
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79.6 nN. The difference might result from the difference in the compression load and 

the relative humidity (RH) used in the AFM measurements. The RH in this work is 

40%, and it is smaller than the value of 46% in Liu’s work (2010). Additionally, the 

compression load used in this work was 10 nN, which is smaller than a force of a few 

hundreds of nano Newton used in her work. After modification with PVF and chitosan, 

the adhesion between MF microcapsules and the cellulose thin film increased to 90±27 

nN and 61±21 nN respectively. An unpaired t-test (O'Rourke et al. 2005) was used to 

compare the results of the three groups of microcapsules by assuming no difference 

between them (the null hypothesis); the possibility ( p-value) from the unpaired t-test 

between non-modified and PVF-modified microcapsules, non-modified and chitosan-

modified microcapsules, and PVF-modified and chitosan-modified microcapsules is 

0.07, 0.05 and 0.97 respectively, which indicates that after microcapsules were modified 

with PVF and chitosan, their adhesion increased significantly compared with non-

modified microcapsules. However, no such difference was observed between PVF-

modified microcapsules and chitosan-modified microcapsules. Capillary force is 

considered to be the reason causing adhesion between MF microcapsules and the cotton 

film in Liu’s work (2010), which is not only determined by the properties of the 

condensed water layer but also the surface chemistry and roughness (Hodges et al. 

2002, Jones 2002, Liu 2010). Modification of MF microcapsules with PVF and chitosan 

altered the surface properties of MF microcapsules, leading to the adhesion increase.  
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Figure 4.14 The average value of adhesion for non-modified (reference) microcapsules, 

modified microcapsules with PVF (0.25 wt%) and chitosan (0.1wt%) on cellulose films 

in ambient air with a contact time of 10 ms (the error bars represent the standard error of 

the mean).  

 

4.3.4.2 Adhesion between microcapsules and cellulose thin films in HPLC water 

In liquid environments, nine non-modified microcapsules, six PVF-modified 

microcapsules and five chitosan-modified microcapsules survived after adhesion 

measurements. The results are illustrated in Figure 4.15. Compared with the results in 

ambient air, adhesion in HPLC water dropped off dramatically. The significant decrease 

of adhesion in aqueous solution was attributed to the absence of capillary force 

(Weisenhorn et al. 1989), which was also observed in Liu et al. work (2013). She didn’t 

detect obvious attractive interaction when a MF sphere and a cotton film were immersed 

in HPLC water. The MF microsphere used in her work was made of pure melamine 

formaldehyde without any surfactant (Liu et al., 2013). However, the MF microcapsules 
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used in this work were likely made of melamine formaldehyde and copolymers (Long et 

al. 2010). The copolymers contain carboxyl and hydroxyl groups, which can form 

hydrogen bonding with the hydroxyl and carboxyl groups on cellulose (Claesson and 

Ninhami 1992). Additionally, the adhesion was observed to increase by modifying 

microcapsules with PVF and chitosan in HPLC water, in which the adhesion increased 

from 6.2±1.7 nN to 19±8 nN and 9.8±0.5 nN respectively. The possibility of the 

adhesion to be the same between the non-modified and PVF-modified microcapsules, 

non-modified and chitosan-modified microcapsules, and PVF-modified and chitosan-

modified microcapsules is 0.03, 0.30 and 0.22 respectively from the unpaired t-test. The 

p-value of adhesion between non-modified and PVF-modified microcapsules is much 

lower than between non-modified and chitosan-modified microcapsules, which 

indicates that the performance of PVF to enhance adhesion between microcapsules and 

cellulose thin films is better than that of chitosan in aqueous solution. Both PVF and 

chitosan are positively charged long molecules and were attached on the surface of 

microcapsules. When the modified microcapsules approached the negatively charged 

cellulose thin film, the positively PE molecules can stretch to the cellulose surface and 

then form entanglements between cellulose chains and PE molecular chains to enhance 

the adhesion. The difference in the performance of PVF and chitosan to enhance 

adhesion between microcapsules and cellulose thin films is possibly due to the 

difference in their molecule structures and this will be further discussed in § 4.4.1.     
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Figure 4.15 The average value of adhesion for non-modified (reference) microcapsules, 

modified microcapsules with PVF (0.25 wt%) and chitosan (0.1wt%) on cellulose films 

in HPLC water with a contact time of 10 s (the error bars represents the standard error 

of the mean).  

 

4.3.4.3 Adhesion between microcapsules and cellulose films in SDBS solution 

The interaction between single MF microcapsules and a cellulose thin film was also 

investigated in 0.2 mM SDBS solution which was used to mimic the detergent solution 

used in real laundry process (Liu 2010). 9 non-modified microcapsules, 6 PVF-modified 

microcapsules and 5 chitosan-modified microcapsules were measured and the results are 

shown in Figure 4.16. The p-value from the unpaired t-test on the adhesion results 

between non-modified and PVF-modified microcapsules, non-modified and chitosan-

modified microcapsules, and PVF-modified and chitosan-modified microcapsules are 

0.12, 0.08 and 0.30 respectively. Therefore, microcapsules modified with PEs still 

showed an increase in mean adhesion value in comparison with that of non-modified 
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microcapsules, as shown in Figure 4.16, but the extent of increase in adhesion in SDBS 

solution was less than that in HPLC water. This is also attributed to the PE molecules 

attached on MF microcapsules to enhance adhesion on the cellulose thin film. However, 

the presence of the negatively charged detergent molecules on the two contacted 

surfaces led to the reducing adhesion between surfaces (Holder and Keyhani 2005, Liu 

2010) compared with the HPLC water.  

 

 

Figure 4.16 The average value of adhesion for non-modified microcapsules, modified 

microcapsules with PVF (0.25 wt%) and chitosan (0.1wt%) on cellulose films in 0.2 

mM SDBS solution with a contact time of 10 s (the error bars represents the standard 

error of the mean).  

 

 



102 

 

4.4 Discussion 

4.4.1 Adhesion mechanisms 

Microcapsules turned to aggregate after modification with PVF and chitosan, which is 

either due to the compensation of surface charge or bridging interaction (Theodoly et al. 

2001, Bordi et al. 2009). Zeta potential of the microcapsules before and after the 

modification was measured, and the results are presented in Figure 4.17. There was no 

significant change in the value of zeta potential when PVF and chitosan concentration 

increased to 0.9 wt% and 0.5 wt% respectively. This is possibly because the tiny 

amount of PEs used is not enough to alter the surface charge significantly, therefore the 

increase in adhesion between PEs-modified microcapsules and the negatively charged 

cellulose thin film (Notley 2006, Notley 2009, Da Róz et al. 2010) might not be due to 

electrostatic attraction. However, it might be big enough to cause formation of bridges 

between different MF microcapsules when they were close to each other, which agrees 

with the conclusion that bridging interactions are always observed in low 

polyelectrolyte concentration (Biggs 1996, Podgornik and Ličer 2006). Therefore, the 

increase in adhesion between the modified microcapsules and cellulose thin film is 

considered to mainly result from bridging interaction.  
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Figure 4.17 Zeta potential of microcapsules modified with PVF (a) and chitosan (b). 

 

However, the performance of PVF to enhance the adhesion was better than that of 

chitosan. The main reason might be the difference in their properties, including 

molecule weight (400 kg mol
-1

 and 1000 kg mol
-1

 for chitosan and PVF respectively) 

and their structures (Figure 3.2). The molecular weight of the PVF is more than twice 

larger than that of chitosan; therefore the length of the PVF molecular chains is longer 

than that of chitosan. When the PE molecular chains encounter with the cellulose 

chains, the long molecular chains can form a longer bridges (Figure 4.18) with cellulose 

chains.   Additionally, PVF is a long linear molecule, while chitosan has ring structures, 

and can be much fluffier if the molecule attached on the microcapsule surface. When 

PVF molecules are attached on the surface of microcapsules, they could be more 

flexible and the structure of their chains on the surface could possess more trains and 

loops other than tails (Gurumoorthy and Khan 2011) (Figure 4.18). However, the ring 

structures of chitosan can lead to the steric forces, which may form more tails on the 

surface. The entanglement of cellulose chains with loops may be much stronger than 

that between trails. Additionally, both chitosan and MF bear –NH2 groups which will be 

protonated, and there will be a repulsive force between these functional groups if they 

approach each other. Compared with chitosan, the –NH- group on PVF is more stable 
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and less repulsive force can occur. Therefore modification with PVF led to a higher 

increase in adhesion than chitosan. The steric effect and protonation were much more 

often detected in liquid environments (Israelachvili and Wennerstroem 1990, 

Gurumoorthy and Khan 2011) than in air, which may explain why more increase in 

adhesion was observed in ambient air than in aqueous solution after MF microcapsules 

were modified with PVF and chitosan. 

 

 

Figure 4.18 Schematic diagram showing possible interactions between microcapsules 

and a cellulose film before and after modification with chitosan and PVF. 

 

4.4.2 The scattering of adhesion results 

4.4.2.1 Surface properties of microcapsule 

Big variations in the value of adhesion between different microcapsules were observed. 

One possibility is the limited number of the microcapsules measured in this work; 

another is that microcapsules were observed to aggregate after the modification in § 

4.3.1, therefore for the single microcapsules used to measure adhesion, they were either 
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unmodified or less modified; the uneven coverage of PE and the increase of the surface 

roughness may be the main reasons causing the adhesion variation between difference 

microcapsules. The surface roughness of microcapsules in this work is shown in their 

ESEM images (Figure 4.19). The surface roughness of MF microcapsules from the 

same batch was quite different. The asperities on surface of the microcapsules varied 

from dozens of nanometers to hundreds of nanometers; these asperities covered the 

surface either as a monolayer of tiny particles or as particle aggregates. The presence of 

the asperities on the surface can decrease the actual interfacial contact area and the 

number of microscopic contact points between the microcapsule and the cellulose thin 

film, leading to the suppression on adhesion. The increase in the scatter of the pull-off 

force data (Tormoen and Drelich 2005, Tormoen et al. 2005, Drelich 2006) and the 

decrease of adhesion value (Hodges et al. 2004, Katainen et al. 2006) were noticed with 

the increase of the surface roughness.  

 

   

(a) Monolayer               (b) Slight aggregation          (c) Heavy aggregation 

Figure 4.19 Asperities on the surface of microcapsules from the same batch. 
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4.4.2.2 Surface properties of cellulose thin films 

In addition to the surface roughness of microcapsules, the network structure (see Figure 

4.1) of the cellulose thin film may also influence the adhesion. The surface of the Si 

wafer is significantly smoother than that of the cellulose thin film from § 4.3.1, so the 

adhesion between different single microcapsules and the cellulose thin film and Si wafer 

was measured in ambient air (Figure 4.20) instead of the liquid environments to avoid 

the stretching of cellulose molecule chains in liquid (Liu 2010). In Figure 4.20 (a), the 

data of adhesion on the cellulose thin film at 100 positions are quite scattered, however 

for the Si wafer the adhesive forces are more consistent. For all the measured 

microcapsules, the standard errors from the Si wafer on 100 positions are much smaller 

than those from the cellulose thin film (Figure 4.20 (b)). These results indicate that the 

surface roughness of the cellulose thin film also caused the variation of the adhesion of 

microcapsules to it. 

       

 

(a) The adhesion of one microcapsule at 

100 positions 

 

(b) Average results from five 

microcapsules (1F, 2D, 2E, 2F and 3D 

indicates the name of the microcapsule 

measured) 

   Figure 4.20 Adhesion of single microcapsules on a cellulose film (red) and silicon 

wafer (blue).  
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4.5 Conclusions 

MF microcapsules were modified by PVF and chitosan successfully. However, 

microcapsules tended to aggregate after being modified with PEs. The adhesion 

between PE-modified microcapsules and cellulose thin films were found to increase 

compared with non-modified microcapsules in ambient air, HPLC water, and a SDBS 

solution. Bridging interactions because of the extension of long PE molecular chains 

between microcapsules and the entanglements of PE molecular chains with cellulose 

chains were considered to be the reason causing the aggregation of microcapsules by the 

polyelectrolytes and the increase in adhesion after microcapsules were modified with 

PEs. The difference in the structure of PE molecules was considered to be the reason 

causing the difference in their performance. The uneven coverage of PE on the surface 

of microcapsules and the difference in the surface roughness may be the reasons to 

cause the adhesion variation between difference microcapsules.  
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Chapter 5: Investigation of Adhesion of Perfume-filled 

Microcapsules to a Cellulose Thin Film by AFM and a 

Flow Chamber Technique 

Part of the work presented in Chapter 5 has been submitted to Journal of 

Microencapsulation. 

 

5.1 Introduction 

The study presented in Chapter 4 indicates that modification of perfume-filled 

microcapsules with polyelectrolyte such as PVF and chitosan enhanced their adhesion 

to a model cotton fabric surface based on the results obtained using AFM with a 

colloidal probe. However, modification of microcapsules with the polyelectrolytes 

caused aggregation through bridging force; so for the single microcapsules used to 

measure adhesion, they were either unmodified or less modified; the uneven coverage 

of PE and the increase of the surface roughness may be the main reasons of adhesion 

variation between difference microcapsules. Additionally, the application of the AFM 

colloidal probe technique to investigate the adhesion of microparticles is restricted due 

to the low efficiency of attaching microparticles to the end of the cantilevers and some 

undesirable sample properties such as the easy breakage of the weak microcapsules. 

Therefore, a technique which can be used to investigate the adhesion based on a 

population of microcapsules is also desirable. 

The adhesion of microparticles and cells on substrates has previously been investigated 

using shear flow in a flow chamber (Sanjit et al. 1994, Garrett et al. 2008). The removal 

of particles from a surface through hydrodynamic forces (Decuzzi et al. 2007) can be 
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adjusted by controlling flow velocity and the consequently shear stress imposed upon 

the particles; it is the most common technique used to study adhesion of particles on a 

surface in liquid environments (Martines et al. 2004, Renshaw et al. 2005, Garrett et al. 

2008). Microparticles exposed to shear flow are expected to be displaced by lift, sliding, 

rolling or some combination thereof (Saffman 1965, Zhang et al. 1999a, Zoeteweij et al. 

2009). Particles are removed by lift motion when the lift forces overcome the adhesion 

in direction normal to the surface (Zoeteweij et al. 2009). If the lift is not sufficient, 

particles can also be displaced by drag forces in the lateral direction through either 

sliding or rotating motion (Sanjit et al. 1994, Zhang et al. 1999a, Zoeteweij et al. 2009). 

The balance on the forces and torques resulting in particle removal from the surface is 

directly correlated with the adhesion between the two surfaces. Crucially, the technique 

provides adhesion for a population of particles, providing statistically significant 

information in a short period of time.  

In contrast, atomic force microscopy (AFM) can be used to measure micro- and 

nanoscale forces between a single particle and a surface of interest via a colloid probe 

technique (Binnig et al. 1986, Ducker et al. 1992, Kappl and Butt 2002). Adhesion has 

been investigated either by comparison of adhesive forces on specimen with different 

chemical compositions (Eastman and Zhu 1996, Żbik and Frost 2010) and surface 

roughness (Cooper et al. 2001, Katainen et al. 2006), or through interpretation of the 

force-displacement data by varying relativity humidity, ionic strength, pH, hydrophobic 

or hydrophilic nature etc to explore adhesion mechanisms including capillary force 

(Jones et al. 2002), electrostatic interaction (Vakarelski et al. 2000), hydrophobic 

interaction (Zbik and Frost 2010) and bridging interaction (Notley 2009, Kocuna et al. 

2011).  
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Therefore, in this study a custom-built flow chamber was employed in order to 

investigate the removal/retention of perfume-filled MF microcapsules from a cellulose 

thin film; and then AFM measurements to determine the adhesion were also performed 

in order to obtain information regarding the specific interactions which occur between 

individual particles and the surface. The cellulose thin film was modified with 

polyelectrolytes (PEs) (PVF, chitosan and PEI) to avoid the aggregation of 

microcapsules and then removal/retention of microcapsules on it was investigated. 

Finally, the adhesion between microcapsules and a cellulose thin film in different 

aqueous environments was quantified by AFM in order to elucidate the possible 

adhesion mechanisms. 

 

5.2 Experimental  

5.2.1 Perfume-filled MF microcapsules 

Perfume-filled MF microcapsules were supplied by Procter & Gamble, Belgium. The 

detailed information was described in §3.1.1. 

 

5.2.2 Cellulose films  

The materials and experimental procedures used to prepare a cellulose thin film were 

described in detail in § 3.1.2. 
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5.2.3 Surface treatments on cellulose films 

The detailed procedures to modify cellulose film with PVF, chitosan and PET solutions 

for adhesion measurements by AFM and retention tests by a flow chamber technique 

were described in §3.2.2.  

 

5.2.4 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy at the University of Warwick was used to do surface 

composition analysis of cellulose film before and after being modified with PVF, 

chitosan and PEI. The detailed information and the procedures were described in 

§.3.3.4.  

 

5.2.5 Zeta potential  

A Zetasizer Nano Series (Malvern Instruments Ltd, UK) was employed for determining 

the zeta potential of perfume-filled microcapsules and PVF, chitosan and PEI in 

aqueous solution. The detailed information was described in § 3.3.3. 

 

5.2.6 Interferometer 

The surface topography of cellulose films was captured using a vertical scanning white 

light interferometer and the detailed information was described in § 3.3.6 
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5.2.7 Atomic force microscopy  

5.2.7.1 AFM imaging 

The surface topography of cellulose thin films before and after modification with PEs 

was acquired by AFM as described in § 3.3.9.  

 

5.2.7.2 Force measurement 

The adhesion of single microcapsules to cellulose thin films before and after 

modification with PEs, and the adhesion as a function of ionic concentration, pH were 

investigated by AFM as described in § 3.4.2.   

 

5.2.8 Flow chamber experiment 

The detailed procedures to measure the retention of microcapsules on cellulose surfaces 

before and after being modified with PEs were illustrated in § 3.4.1.  

 

5.3 Results 

5.3.1 Modification of cellulose thin films with PVF/chitosan/PEI 

Cellulose films were modified with PEs (PVF/chitosan/PEI) in an attempt to enhance 

the adhesion of microcapsules on them. The surface properties of cellulose films before 

and after the modification were investigated by XPS and AFM to ensure that the 

modification was successful.   
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5.3.1.1 Surface composition  

Cellulose is an organic compound with the formula of (C6H10O5)n (Johansson and 

Campbell 2004); while the formula of PVF, chitosan and PEI is (C3H5NO)n (the 

information was provided by P&G, Brussels), (C6H11O4N)n and (N11C22H55)n 

respectively.  Therefore, the N 1s photoelectron peak was used to indicate the adsorption 

of the three kinds of PE to the cellulose surface, because nitrogen is absent in cellulose 

but present in PEs (Da Róz et al. 2010, Franca et al. 2011). Figure 5.1 shows the results 

of XPS analysis of both cellulose film and the PVF/chitosan/PEI-modified surface. The 

cellulose thin film does not display a N 1s photoelectron peak, found in the binding 

energy region 401 ± 5 eV. In contrast, the PEs-modified cellulose thin film exhibits a 

clear peak in this region, indicating the successful adsorption of PVF, chitosan and PEI 

to the cellulose thin film respectively. Similar results of adsorption of chitosan onto 

model cellulose thin films through electrostatic attraction were observed by Da Róz et 

al. (2010) and Orelma et al. (2011) with XPS.  

 

 
(a) 

 
(b) 
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(d) 

 

Figure 5.1 XPS analysis of the N element of cellulose thin film (a); cellulose film 

modified with 0.1 wt % PVF (b); chitosan (c); and PEI (d) solution. 

 

5.3.1.2 Surface topography 

The surface topography of cellulose thin films was imaged using AFM. In Figure 5.2, 

the root mean square (RMS) roughness of a dry cellulose thin film measured over a scan 

area of 10 µm ×10 µm was 6.8±0.6 nm. After modification by PVF/chitosan/PEI, the 

surface roughness increased to 11.5±1.5 nm, 9.0±1.4 nm, and 8.8±0.3 nm respectively. 

An increase in surface roughness after modification was also observed in Da Róz et 

al.’s work (2010), in which the RMS roughness of cellulose films over a scan area of 

2.5 μm x 2.5 µm
 
was reported as 13 nm, which increased to 33 nm over a scan area of 5 

μm x 5 µm after modification by chitosan. Therefore, the results presented here indicate 

that PEs were attached to the cellulose thin film successfully.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.2 2D and 3D images of dry cellulose films (10 µm ×10 µm) made of 0.5 wt% 

cotton powders (a); after modification with 0.1wt% PVF (b)/chitosan (c)/PEI (d) (RMS: 

(a) 6.8±0.6 nm, (b) 11.5±1.5 nm, (c) 9.0±1.4 nm, (d) 8.8±0.3 nm). 

 

5.3.2 Retention of microcapsules on cellulose thin films investigated by the 

flow chamber technique 

5.3.2.1 The experimental parameters for flow chamber experiments 

(1) Concentration of microcapsules 

The concentration of microcapsules is important for the deposition experiments by a 

flow chamber. Either a high concentration or a low concentration of microcapsules 

results in uneven particle distributions (Sjollema and Busscher 1990). 0.2 ml of 

microcapsule solution with a concentration of 0.3 wt%, 0.5 wt%, and 0.7 wt% were 

injected into the flow chamber channel and they were allowed to settle for 10 min; and 

then the images were captured, as shown in Figure 5.3. When the concentration of 0.3 
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wt% was used, there were just few microcapsules settled on the surface unevenly, which 

is insufficient for statistical analysis. Conversely, a high concentration such as 0.7 wt% 

not only caused aggregates  but also led to the overlapping (Derksen and Larsen 2011) 

of single microcapsules. The irregular structures of microcapsule aggregates and the 

overlapping of single microcapsules can decrease the effective contact area and increase 

the centre of gravity, which may cause the microcapsules to be removed from the 

surface more easily. Besides, the overlapping can cause error in the area calculation by 

considering a microcapsule aggregate as one microcapsule. Therefore, a medium 

concentration of 0.5 wt% was adopted in this work, in which microcapsules distributed 

uniformly without aggregation and overlapping.  

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.3 Images of microcapsule distribution as a function of microcapsules’ 

concentration (a) 0.3 wt%, (b) 0.5 wt% and (c) 0.7 wt%. 

 

(2) Settling time  

The settling time of microcapsules in the flow chamber before removal was also 

characterized (Figure 5.4). As can be seen, the retention of microcapsules increased 

significantly by increasing the settling time from 5 min to 10 min and then the trend 

slowed down. The settling time was also calculated according to Stokes' law (Lamb 

1994) and the settling time is approximately 136 s (the density of the microcapsule is 
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1.050 g cm
-3

). Therefore, a settling of 10 min was deemed to be sufficient for all of the 

microcapsules to attach to the cellulose surface prior to commencing removal 

experiments.  

 

 

Figure 5.4 Microcapsules remaining in normalized area as a function of settling time 

(The concentration of microcapsules was 0.5 wt%; the flow rate was 20 mL h
-1

; the 

removal time was 3 min). 

 

(3) The running time of the flow used to remove microcapsules  

The running time of the flow used to remove microcapsules from substrate is another 

important parameter to affect their retention. A short time may not be sufficient for the 

flow to go through the channel to remove all the loose attached microcapsules. The 

residence time for water passing through the flow channel is 19 seconds at a flow rate of 

10 mL h
-1

. With the increase of the flow rate, the residence time decreased. Therefore, 

the running time should be longer than the residence time. The retention of 

microcapsules on a cellulose film under different running time is illustrated in Figure 
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5.5. The microcapsules removed by the flow increased with the running time to about 

150 s and then levelled off. An integral value of 3 min was chosen as the running time 

and used in the following experimental work.  

 

 

Figure 5.5 Microcapsules remaining in normalized area as a function of removal time. 

(The concentration of microcapsules was 0.5 wt%; the settling time was 10 min; the 

flow rate was 60 mL h
-1

). 

 

(4) Flow rate 

The shear stress of a flow varies with the flow rate, which can influence the detachment 

of microcapsule from a substrate (Zoeteweij et al. 2009). A flow rate of 100 mL h
-1 

produced a Reynolds Number (Re) of 9.26 (the density of water at room temperature is 

taken to be 1000 kg m
-3

), which is much less than the critical Re of 1400 (Bakker et al. 

2003) for laminar flow conditions. The retention of microcapsules on a cellulose thin 

film was investigated as a function of flow rate (Figure 5.6). As can be seen, at  20 mL 

h
-1

, more than 50% microcapsules still remained on a cellulose thin film after the water 
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flow was applied. It can be difficult to determine the effect of surface modification on a 

cellulose surface if the flow rate used is not able to remove  a significant proportion of 

the microcapsules (Garrett et al. 2008). Therefore, higher flow rates were tested and 

more microcapsules were removed by increasing the flow rate. The microcapsules 

remaining only dropped marginally when the flow rate was increased from 80 mL h
-1

 to 

100 mL h
-1

. Therefore, a flow rate of 80 mL h
-1

 was used to remove MF microcapsules 

from a cellulose thin film in the flow chamber. 

 

 

Figure 5.6 Microcapsules remaining in normalized area as a function of flow rate. The 

concentration of microcapsules was 0.1wt%; the settling time was 10 min; the removal 

time was 3 min. 

 

5.3.2.2 Microcapsule distribution after removal 

The removal of microcapsules from a cellulose thin film was investigated as a function 

of the distance from the entrance of the flow chamber (Figure 5.7). Microcapsules were 

evenly distributed before using the water flow (Figure 5.7 (a)). After using a H2O flow 
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of 80 mL h
-1

 for 3 min to attempt removal of microcapsules from the cellulose thin film, 

a significant number of microcapsules were displaced from the cellulose thin film; more 

microcapsules were detached from the area near the entrance and exit than in the centre 

region of the chamber (Figure 5.7 (b)). It is suggested that the configuration of flow 

chamber is the main reason to cause the uneven distribution of velocity in the flow 

chamber (Bakker et al. 2003), in which the fluid velocity is found to be higher at the 

transition zones between the vertical inlet and outlet, and the parallel plate middle 

region.  

 

 

(a) 

 

(b) 

Figure 5.7 Distribution of microcapsules as a function of the distance from the chamber 

entrance, before (a) and after (b) removal with a water flow of 80 mL h
-1

for 3 min. 

 

 

5.3.3 Retention of microcapsules on modified cellulose films with PEs in 

the flow chamber 

Figure 5.8 shows the results of three repeated experiments of the removal of 

microcapsules from a cellulose thin film and PE-modified cellulose thin films with a 
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water flow of 80 mL h
-1

, for different concentrations of PE solution. The shear stress 

was estimated to be 3.95 ×10
-2

 Pa, assuming the viscosity of water to be 10
-3

 Pa s at 

20
o
C (Bakker et al. 2003). The modification of the cellulose thin film by PEs promoted 

significant particle retention. For PVF and chitosan solutions of concentration 0.01 wt% 

and 0.1wt%, the retention of the microcapsules after exposure to the water flow for 3 

min was in excess of 90 %, compared with retention of microcapsules to a non-modified 

cellulose thin film of less than 10%. In contrast, fewer microcapsules were found to 

remain on cellulose thin films after PEI solutions with a concentration of 0.01 wt% and 

0.1 wt% respectively were applied on the cellulose thin films for 30 min, which was 

approximate 10% and 67% accordingly. Therefore, modification of cellulose thin films 

with PEs enhanced the retention of MF microcapsules to cellulose thin films and the 

performances of PVF and chitosan were better than that of PEI.  

 

 

Figure 5.8 Effect of modification of cellulose thin film with PVF/chitosan/PEI solution 

on the removal of microcapsules from the corresponding surface. The error bars 

represent the standard error of the mean from three same measurements. 
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The removal of microcapsules adhered to a surface in a flow chamber was a dynamic 

process. The displacement of microparticles from surface was conventionally suggested 

to be via rotation (Sanjit et al. 1994, Zhang 1999, Zhang et al. 1999, Zoeteweij et al. 

2009). Modification of the cellulose thin film with PEs altered the surface chemical 

moieties available for interaction with adhering species; furthermore the surface 

roughness was also altered. The three kinds of PE are cationic under the aqueous 

conditions employed here, and may adsorb to the anionic cellulose thin film through 

electrostatic attraction (Da Róz et al. 2010). The resultant adhesion between anionic MF 

microcapsules and the modified surfaces may be increased through electrostatic 

attraction and bridging forces (Fras  emljič et al. 2009, Da Róz, et al. 2010). With 

increasing PE concentration used to treat the cellulose thin film there might be a greater 

polycationic surface charge, increasing the adhesion of MF microcapsules. 

Correspondingly, a greater shear stress was required in order to displace the adhered 

microparticles. Therefore, under conditions of constant shear stress but increasing PE 

concentration, a greater number of MF microcapsules remained adhered to the modified 

cellulose thin film.   

 

5.3.4 Adhesion between single microcapsules and cellulose films 

investigated with AFM  

The mean maximum adhesive force between single MF microcapsules and a cellulose 

thin film before (N=9) and after modification by PVF (N=5), chitosan (N=7) and PEI 

(N=6) are shown in Figure 5.9. Both the adhesion between microcapsules and the 

cellulose thin film with a short contact time (0.01 s) and a longer contact time (10 s) 

were measured. The mean maximum adhesive force between a single MF microcapsule 
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and the unmodified cellulose thin film was 2.3±1.0 nN for a contact time of 0.01s, 

which increased to 72±23 nN, 58±31 nN and 13±4 nN after modification using PVF, 

chitosan and PEI respectively  each with a concentration of 0.1 wt%; the mean 

maximum value of adhesive force for a contact time of 10 s also increased from 4.0±0.9 

nN to 80±15 nN, 69±33 nN and 32±11 nN after a cellulose thin film was modified with 

PVF, chitosan and PEI respectively each with  a concentration of 0.1 wt%. The large 

standard error may be attributed to the small number of MF microcapsules investigated 

and the difference in the surface properties between microcapsules, in which the surface 

asperities appear to be the main reason to cause the variation of adhesion, following 

suggestions of Hodges et al. (2004) and Katainen et al. (2006)  on similar systems. The 

adhesion was also found to increase when the contact time was increased from 0.01 s to 

10 s, which is consistent with the results reported for adhesion between a PCL-grafted 

cellulose sphere and a neat cellulose sphere (Nordgren, et al. 2009). When the two 

surfaces were brought together, molecular chains on the surfaces might start to extend 

and then entangle with each other, leading to an increase of the pull-off force when 

separated (Poptoshev and Claesson 2002, Nordgren, et al. 2009). The adhesion results 

from AFM validate the flow chamber data that modification of the cellulose thin film 

with PEs enhanced adhesion between the MF microcapsules and the cellulose thin film, 

and also that the adhesion increased with increasing PE concentration, resulting in 

greater retention of MF microcapsules on the substrate in the flow chamber. The 

performances of PVF and chitosan to enhance adhesion were better than that of PEI.  
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(a) 

 

(b) 

Figure 5.9 adhesions between microcapsules and cellulose thin films modified with 

PVF/chitosan/PEI solution with a contact time of (a) 0.01 s and (b) 10 s. The error bars 

represent the standard error of the mean from 10, 5, 7, 6 microcapsules on no modified, 

modified cellulose thin films with PVF, chitosan and PEI respectively. 

 

5.4 Discussions 

The results from both the flow chamber experiments and AFM measurements indicate 

that the three kinds of PE enhanced the interaction between the MF microcapsules and 

the cellulose thin film.  In order to understand the possible mechanisms, the zeta 

potential of the MF microcapsules in aqueous suspension was measured and their 

adhesion on a cellulose thin film exposed to different pH and ionic strength was further 

investigated. 

 

5.4.1 Zeta Potential  

The zeta potential of MF microcapsules in aqueous suspension and PVF, chitosan and 

PEI in solution are shown in Figure 5.10. MF microcapsules were negatively charged 

over a pH range of 3 to 11, which correlates with the results obtained by Liu (2010). 

PVF, chitosan and PEI were positively charged over the range of pH 3 to pH 9 and the 
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value of zeta potential decreased by increasing pH. PVF was provided as the partly 

hydrolysed polyvinylformamide (PVFA) and this contains both vinylformamide and 

vinylamine functional groups (Pinschmidt 2010). Chitosan is a positive polysaccharide 

containing D-glucosamine groups (Che et al. 2008). The branched PEI also contains 

amine groups on its molecular structure (Chibowski et al. 2009). The presence of amine 

groups is the main reason for the positive charge of PEs (Chen et al. 2009) and they will 

be protonated under low pH environment, leading to a high surface charge; amino 

groups will become deprotonated with increasing pH and the surface charge will 

become increasingly lower. The zeta potential of chitosan was much more influenced by 

the pH and the value drops off from 73±3 mv to -4±4 mv from pH 3 to pH 11; 

compared with chitosan, PEI and PVF were less influenced, decreased from 44±4 mv to 

-2±1 mv and 30±1 mv to 12±1 mv respectively. The reason might be because chitosan 

possesses more amino groups than PEI and then PVF.  

 

 

Figure 5.10 Zeta potential of MF microcapsules in aqueous suspension and PVF, 

chitosan and PEI in aqueous solution with pH 3-11. 
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5.4.2 Adhesion as a function of ionic strength 

The interaction between single microcapsules and a cellulose thin film before and after 

modification with PEs (PVF, chitosan and PEI) was measured as a function of ionic 

strength of NaCl solution by AFM, and the data are shown in Figure 5.11, Figure 5.12 

and Figure 5.13. Repulsive interactions can be observed when the microcapsule 

approached a non-modified cellulose thin film in HPLC water (Figure 5.11 (a)), and the 

increase of ionic concentration decreases the decay length (Israelachvili 2011). The 

repulsion force might originate from electrostatic repulsion because both MF 

microcapsules and the cellulose thin film are negatively charged (Liu 2010). The 

increase of the ionic strength decreases the thickness of the electrical double layer 

(Zoppe et al. 2011), which decreases the decay length. After the two surfaces contacted, 

adhesion was detected on separation (Figure 5.12 (a)).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.11 Typical force curves when the microcapsule was approaching to a non-modified cellulose film (a), modified cellulose film with PVF (b), 

chitosan (c) and PEI (d) with a contact time of 0.01s in NaCl solutions with different concentrations. 
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(a) 

 

(b) 

 

  

(c) 

 

  

(d) 

Figure 5.12 Typical force curves when the microcapsule was retracting from a non-modified cellulose film (a), modified cellulose film with PVF (b), 

chitosan (c) and PEI (d) with a contact time of 0.01s in NaCl solutions with different concentrations. 
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(a) 

 

(b) 

 

(b) 

 

(d) 

Figure 5.13 The average pull-off force between microcapsule and non-modified (a), 

PVF-modified (b), chitosan-modified (c) and PEI-modified (d) cellulose film with a 

contact time of 0.01s in NaCl solution with different concentrations, and the dotted line 

just indicates the trend. At 10
-3

 M NaCl solutions, some of the adhesion values are out 

of the scale in (b). 

 

Furthermore, 25 approach curves were analysed.  Among them, 11 curves show the 

“snap-in” valleys on approach for NaCl solutions of 10
-3 

M and 10
-2 

M as presented in 

Figure 5.11(a). This is possibly because of the loose extension of cellulose chains 

causing steric hindrance (Notley 2009)  in the solution with low ionic concentration. 

When the microcapsule approached the surface, it probably met the loose cellulose 

chains at first. Then a repulsive force was generated from compressing cellulose chains. 

Whenever a group of cellulose chains were compressed, a “snap-in” event was 
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produced. The difference in the effective length of the cellulose chains might be the 

main reason to cause several “snap-in” valleys. However, in a solution with a high ionic 

concentration, the cellulose chains were folded and compressed into a dense layer 

(Zoppe et al. 2011). Therefore, no multiple “snap-in” events were detected as shown in 

Figure 5.11(a). Figure 5.14 presents a schematic of the interaction between a 

microcapsule and cellulose chains in a solution with different ionic concentrations. 

 

 

Figure 5.14 Schematic diagrams illustrating the configuration of cellulose molecule 

chains under different ionic concentration. 

 

The extension of cellulose molecule chains to the surface of microcapsules can also be  

explained by the detailed information on separation: in a weak ionic environment, the 

microcapsule separated from the cellulose surface with plateau events before the force 

dropped to zero for a NaCl solution of 10
-3

 M in Figure 5.12 (a); while in an 

environment with high ionic strength, a sharp pop-up interaction before the 

microcapsule was really separated with the surface was observed because cellulose 

chains were folded (Notley 2009, Zoppe et al. 2011) and the microcapsule might meet a 
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pop-up with the folded cellulose chains before final separation with the attached 

extended cellulose chains. 25 retract curves were analysed and 16 cases exhibited 

obvious sharp pop-up interaction in 0.1 M NaCl solution as shown in Figure 5.12 (a), 

which means it was not an occasional case. Additionally, the mean adhesion force 

seemed to be independent of ionic concentration in Figure 5.13(a), which indicates that 

the interaction between MF microcapsules and the cellulose thin film may be irrelevant 

to electrostatic interaction. Therefore, the bridging force is considered to be one of the 

main mechanism of the adhesion in this case. The bridging interaction proposed here is 

consistent with Zoppe et al.’s work (2011) when they investigated the surface 

interaction between a silicon sphere probe and a cellulose nanocrystal surface modified 

with poly (NiPAAm) as brushes. 

After the cellulose thin film was treated with PVF, chitosan and PEI, the attractive 

forces were observed on approach (Figure 5.11 (b), (c) and (d)), which is in direct 

contrast to comparable measurements with the unmodified cellulose film in Figure 5.11 

(a). After the modification, the microcapsule and cellulose thin film surfaces had 

opposite charges. When a microcapsule approached the modified surface, electrostatic 

attraction occurred to capture the microcapsule to the surface, enhancing the adhesion. 

Therefore the increase of ionic strength screening the attractive interaction between the 

two surfaces was observed in NaCl solution of 0.1 M, see the mean value of the pull-off 

force as a function of ionic strength in Figure 5.13 (b), (c) and (d). The plateau in the 

force-separation curve is observed on retraction after cellulose thin film was modified 

with PVF, chitosan and PEI (Figure 5.12 (b), (c) and (d)). The tip-surface separation 

distance (the distance from the point of two surfaces contacted to the point where the 

microcapsule separated from the surface on the retraction curve, which will be 

explained in detail in Chapter 6) between the microcapsule and PE-modified cellulose 
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film is about 1500 nm, 1000 nm and approximately 200 nm to 400 nm in a 10
-3

 M NaCl 

solution for PVF, chitosan and PEI respectively (Figure 5.12 (b), (c) and (d)). The tip-

surface separation distances may reflect the length of the polyelectrolyte molecules; the 

molecule weight of PVF, chitosan and PEI is 1000 kg mol
-1

, 400 kg mol
-1

 and 750 kg 

mol
-1 

respectively. However, PEI is highly branched and this is possibly to be the reason 

that the tip-surface separation of PEI was much smaller than that of PVF and chitosan. 

The tip-surface distance between the microcapsule and chitosan-modified cellulose thin 

film was about 5 to 10 times of the contour length of single chitosan molecule (94 to 

178 nm) measured in Kocuna et al.’s work (2011). It should be mentioned that the 

chitosan molecule used in this work (400 kg mol
-1

) is about twice as big as the one used 

in Kocuna et al.’s work (220 kg mol
-1

); and also the diameter of the microcapsule probe 

is much bigger than that of a tip of a cantilever, so there were more chitosan strands 

(Kocuna et al. 2011) attaching on the microcapsule surface, extending the tip-surface 

separation distance. Therefore, after contact positively charged PE acts as a 

“polyelectrolyte bridge” and “molecule chain bridge” connecting the negatively charged 

microcapsule and negatively charged cellulose film. When two surfaces were separated, 

a higher force was needed.  

 

5.4.3 Adhesion as a function of pH  

The adhesion between MF microcapsules and a non-modified cellulose film decreased 

with increasing pH of the suspension liquid, as shown in Figure 5.15 (a). However, the 

adhesion between microcapsules and the modified cellulose thin film with PVF, 

chitosan and PEI firstly increased and then decreased with pH (Figure 5.15 (b), (c) and 

(d)). The maximum value was observed approximately at pH 5 for PVF and chitosan 
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and pH 7 for PEI. Both non-modified cellulose thin film and MF microcapsules were 

negatively charged and their surfaces became more negative by increasing the pH, 

causing the decrease of adhesion between them. However, after PE molecules were 

attached on the cellulose film, amine groups of PVF, chitosan and PEI are totally 

protonated and deprotonated at pH 3 and pH 11 respectively. At pH 3 or pH 11, the 

carboxyl groups (Liu 2010) on the surface of the microcapsules are uncharged or 

negatively charged. So the attraction was weak between them at pH 3 or pH 11. Both 

functional groups on the surface of microcapsule and modified cellulose thin surfaces 

are of half-deprotonation in medium pH range. The pKa value of charged carboxyl 

group on cellulose and glucosamine segments on chitosan molecule is 4-5 (Notley 

2009) and  6.3-7.5 (Claesson and Ninhami 1992, Kocuna et al. 2011) respectively. 

Therefore, the attraction between the microcapsule and modified surface reached a 

maximum value under pH 5. No pKa is provided for PVF, but it contains similar –NH2 

groups so the pKa may be similar.  The maximum adhesion shifted from pH 5 to 7 after 

treatment with PEI compared with PVF and chitosan, which is attributed to be the 

increase of the pKa value (8-10) of PEI (Zander 2009). Besides electrostatic attraction at 

the medium pH, amine groups and carboxyl groups on two surfaces may form hydrogen 

bonding (Giesbersa, Kleijnb et al. 2002), which helps to promote the adhesion. 

Additionally, a shape of the plateau in the force -separation curve is observed in low pH 

environment (Figure 5.16). In low pH solution, the carboxyl group on cellulose 

molecule is fully protonated. Cellulose film under this condition extended into solution 

loosely, causing the plateau events on retraction (Notley 2009). Therefore, the bridging 

force, because of the extension of cellulose chains, dominated the interaction between 

the microcapsule and cellulose thin film. However, the interaction between the 

microcapsule and PE-modified surface is mainly due to electrostatic attraction on 

approach. The strong electrostatic attraction brings the two surfaces into close contact 
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and there will be charge neutralization on approach. Upon separation, extra force will be 

required (Giesbersa et al. 2002). Additionally, hydrogen bonding and PE molecules act 

as bridges (Kocuna et al. 2011) increasing the energy required to separate the two 

surfaces, which corresponds to an increase in the peak force on separation.  

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 5.15 The average pull-off force between microcapsule and non-modified (a), 

PVF-modified (b), chitosan-modified (c) and PEI-modified (d) cellulose film in 10
-3

 M 

NaCl solution with different pH, and the dotted line just indicates the trend. At pH 5 

some of the adhesion values are out of the scale in (b) and (c). 
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Figure 5.16 Typical force curves when single microcapsules were approaching to a non-

modified cellulose film in 10
-3

 M NaCl solution with different pH. 

 

5.4.4 Interpretation of the difference in the performance of PVF, chitosan 

and PEI 

The main reason causing adhesion increase between MF microcapsules and 

PVF/chitosan/PEI-modified cellulose films was found to be electrostatic attraction, 

bridging force and hydrogen bonding.  However, differences in the performance of 

different PEs were observed, in which the performances of PVF and chitosan were 

better than that of PEI. Since the similar functional amine groups are present on the 

three chemicals, the molecule structure and the surface charge of the chemicals may be 

the reason causing the difference and they are discussed as follows. 

The zeta potentials of PVF, chitosan and PEI were investigated in § 5.4.1 and the values 

at pH 5 were approximately the same; however, at pH 7 the zeta potential of chitosan 

was slightly lower than that of PVF and PEI. The retention test by a flow chamber 

technique and the adhesion measurement was conducted in aqueous solution, of which 

the pH value was about 5 to 6. Within the range, there was not much difference in the 
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value of zeta potential of the three chemicals and therefore the influence resulting from 

surface charge can be ignored.  

Other than surface charge, the molecule structure is another possible reason causing the 

difference in the performance of the three chemicals.  PVF is a kind of long linear 

molecule chains with repeated vinyl groups as the bone structure (Liu 2012); chitosan 

molecular chains in solution exist in a string-like conformation appearing as worm-like 

(spiral) single chains (Pedroni et al. 2003, Franca et al. 2011)  and each repeat unit 

forms a spiral plane. Compared to PVF and chitosan, the PEI molecule is highly 

branched. Therefore, it is possible that when a microcapsule approaches to the surfaces 

modified with the three chemicals, molecules with long linear structures such as PVF 

and chitosan can be attracted to the microcapsule surface to form more trains and loops 

(Al-Hashmi and Luckham 2010); whilst it might be difficult for the steric effect from 

the highly branched molecules of PEI to form tight contact with the microcapsule 

surface. The spiral planes of chitosan also promote higher steric hindrance than PVF 

and it is expected that a higher adhesion between microcapsules and a modified 

cellulose thin film should be detected for PVF compared with chitosan. Therefore, the 

order of the performance of PEs to enhance adhesion and retention between 

microcapsules and cellulose thin films is PVF > chitosan > PEI.   

 

5.5 Conclusions 

PVF, chitosan and PEI were successfully introduced to the surface of a cellulose thin 

film respectively and the retention and adhesion of perfume-filled melamine 

formaldehyde microcapsules on the cellulose thin film was correspondingly enhanced. 

The surface area covered by remaining microcapsules increased from less than 10 % to 
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90 % at a shear stress of 3.95 ×10
-2

 Pa before and after PVF and chitosan solutions at a 

concentration of 0.1 wt% were applied to a cellulose film for 30 min. Less retention of 

microcapsules on the cellulose film modified by PEI for the same other conditions was 

observed, just 67%. Correspondingly, the average pull-off force between single 

microcapsules and the cellulose thin film increased from 2.3±1.0 nN to 72±23 nN, 

58±31 nN and 13±4 nN after modification using PVF, chitosan and PEI respectively at 

a concentration solution of 0.1 wt%, as measured by AFM with a contact time of 0.01 s. 

The agreement between the adhesion results obtained using the two techniques indicates 

that the flow chamber technique can be potentially used as a tool for fast screening the 

effects of various chemicals on the adhesion of microcapsules on different fabric 

surfaces.  

The mechanism of adhesion between the microcapsules and unmodified cellulose thin 

film was mainly attributed to the bridging force resulting from the extension of cellulose 

molecule chains. After the modification, chitosan molecules attached on the surface of 

the cellulose to capture microcapsules through electrostatic attraction and then the 

adhesion was enhanced by electrostatic attraction, bridging interaction and hydrogen 

bonding on separation. The difference in the molecular structure may be the main 

reason to cause the difference in the performance of adhesion enhancement between 

microcapsules and cellulose films, which is PVF > chitosan > PEI. The mechanisms 

proposed here suggest that the positively charged chemicals with long molecule chains 

can be potentially useful to modify the surface of microcapsules and enhance their 

retention on a fabric surface.  
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Chapter 6: Investigation of Adhesion of Perfume-filled 

Microcapsules to A Polyester Fabric Surface by AFM 

and a Flow Chamber Technique 

 

6.1 Introduction 

Polyethylene terephthalate (PET) is the most commonly used material to make polyester 

fabrics and it accounts for approximate 50% of all polyester fibre materials (Takke et al. 

2011). Polyester is widely used in the clothes industry as an alternative to cotton. 

Polyethylene terephthalate (PET) is a linear and  aromatic polymer which lacks polar 

and reactive functional groups such as hydroxyl, carboxyl and amine groups (Mohamed 

et al. 2012). It is hydrophobic in nature and the water contact angle on its surface was 

reported to be about 80° (Dadsetan et al. 2000, Liu et al. 2005, Yang et al. 2009, Nina 

et al. 2011).  The surface hydrophobicity of PET has been decreased by various 

methods such as plasma treatment (Navaneetha et al. 2008, Yang et al. 2009), 

hydrolysis  followed by adsorption of oppositely charged polymers (Liu et al. 2005), 

silver ion implantation (Li et al. 2007) and introducing a hydrophilic surface finishing 

agent to the surface (Zaman et al. 2013) to increase the wetting ability. Adhesion could 

be either enhanced between the modified-PET surface and surfaces or chemicals 

containing caboxyl, hydroxyl and amine groups through forming hydrogen bonds 

(Takke et al. 2011) or decreased between Staphylococcus epidermis and the Ag
+ 

modified PET surface because the release of the antibacterial Ag
+
 (Li et al. 2007).  

Polyelectrolytes are the most common chemicals reported to enhance adhesion 

(Claesson et al. 2003, Sczech and Riegler 2006, Che et al. 2008). Adhesion was 

file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_36
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_36
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_24
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_24
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_7
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_22
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_43
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_26
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_26
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_25
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_43
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_22
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_19
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_44
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_35
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_19
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_5
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_33
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%206/YP%20Chapter%206-zz.docx%23_ENREF_2


139 

 

enhanced either through electrostatic attraction or bridging forces at the interface 

(Podgornik and Ličer 2006). Electrostatic attraction works between oppositely charged 

surfaces and it is most likely to occur after one of the surfaces was modified with 

polyelectrolyte of a high concentration (Che et al. 2008); conversely, bridging forces are 

more likely to occur at interfaces modified with a low concentration of PE, which is 

more dependent on the molecular structures (Roiter and Minko 2005, Podgornik and 

Ličer 2006, Notley 2009, Kocuna et al. 2011) and the dimension of single molecular 

chains of polyelectrolyte. Polyelectrolyte molecules such as chitosan (Kocuna et al. 

2011), poly (2-vinylpyridine) (Roiter and Minko 2005)  and PVAm-

PBA (polyvinylamine derivatized with phenylboronic acid) (Chen et al. 2009, Notley 

2009, Zhang et al. 2010) were reported to raise adhesion between a Si3N4 AFM 

cantilever tip and a mica surface,  and cellulose surfaces through bridging forces by 

AFM. However, the work is still very limited on  using polyelectrolytes to modify 

polyester surfaces, then investigating the adhesion and understanding the adhesion 

mechanism between microcapsules and polyester surfaces; furthermore, no work has 

been published on exploring the influence of the polyelectrolytes’ molecular structures 

on the adhesion behaviour.   

Therefore in this study, three polyelectrolytes (PEs): PVF, chitosan and PEI were 

introduced to modify a PET surface and then the adhesion between perfume-filled 

microcapsules and the PET surfaces before and after being modified with PEs were 

investigated by AFM and the retention of microcapsules on these surfaces under a shear 

flow by a flow chamber technique. Adhesion mechanisms between them were 

investigated based on the hydrophobic nature of the PET surfaces, the structures of the 

polyelectrolytes and the detailed information extracted from the force-displacement 

curves obtained by AFM. It is expected that a correlation between the data of adhesion 
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and those of retention using the polyelectrolytes with different molecular structures can 

be determined, which can provide guidance to propose a strategy to enhance the 

retention of microcapsules on the polyester surface according to the molecular 

structures of PEs.   

 

6.2 Experimental  

6.2.1 Perfume-filled MF microcapsules 

Perfume-filled MF microcapsules were supplied by Procter & Gamble, Belgium. The 

detailed information was provided in §3.1.1. 

 

6.2.2 Polyethylene terephthalate (PET) films 

A flat polyethylene terephthalate (PET) film was used to mimic an artificial fabric 

surface and the information was described in 3.1.2.2. 

 

6.2.3 Surface treatments on PET surfaces  

The detailed procedures to modify PET surfaces with PVF, chitosan and PET solutions 

for adhesion measurements by AFM and retention tests by a flow chamber technique 

were described in §3.2.2.  

 

6.2.4 X-ray Photoelectron Spectroscopy (XPS) 
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X-ray Photoelectron Spectroscopy at the University of Warwick was used to do surface 

composition analysis of PET before and after being modified with PEs. The 

experimental details were described in § 3.3.4. 

 

6.2.5 Contact angle  

The contact angle of a water droplet on PET surface before and after being modified 

with PEs was characterised using a contact angle measurement apparatus equipped with 

a Charge Coupled Device (CCD) camera (KP-M1E/K, Hitachi). The detailed 

procedures were described in § 3.3.7.  

 

6.2.6 Viscosity  

The viscosities of the PE solutions were measured as described in § 3.3.8.  

 

6.2.7 Environmental scanning electron microscope (ESEM) 

The image of MF membrane which was used to mimic the wall of MF microcapsules 

and the shell of microcapsules were scanned by ESEM, and the experimental details 

were described in § 3.3.5. 

 

6.2.8 Atomic force microscopy  

6.2.8.1 AFM imaging 
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The topography of PET surfaces before and after being modified with PEs, and also 

PET surfaces after being hydrolyzed with 10 wt% NaOH solution was analyzed by 

AFM. For the details, see § 3.3.9. 

 

6.2.8.2 Force measurement 

The adhesion of microcapsules to PET surfaces before and after being modified with 

PEs in HPLC water was measured by AFM, see  § 3.4.2. 

 

6.2.9 Flow chamber experiment 

The detailed procedures to measure the retention of microcapsules on PET surface 

before and after being modified with PEs were illustrated in § 3.4.1.  

 

6.3 Results 

6.3.1 Modification of PET surfaces with PVF/chitosan/PEI 

 

6.3.1.1 Surface composition of PET before and after modification with 

PVF/chitosan/PEI 

PET is a kind of polymer containing C, O, H elements (Wang et al. 2004, Eslami and 

M ller-Plathe 2009). Other than the three elements, N element is another component 
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present in PVF, chitosan and PEI molecules, which can be used as an indication of the 

attachment of PVF/chitosan/PEI molecules to the PEI surface. The results of XPS 

analyses of PET surfaces are illustrated in Figure 6.1. No peak was present at 400±5 eV 

for a bare PET surface (Figure 6.1 (a)). After PVF, chitosan and PEI solutions at a 

concentration of 0.1 wt% were applied to the PET surface for 30 min respectively; 

obvious peaks were observed at approximately 400 eV, which indicates the attachment 

of the PE molecules on the surface. The results are consistent with the validation of 

attachment of PE molecules to cellulosic fabrics in a previous publication  (Fras  emljič 

et al. 2009). The atomic concentration of N on the PET surface modified with PVF, 

chitosan and PEI was 1.94%, 1.43% and 3.90% respectively, of which N present on the 

PET surface modified by PEI was higher than that by PVF or chitosan, which may be 

attributed to a higher atomic concentration of N in a PEI (N11C22H55)n molecule than 

that of PVF (C3H5NO)n and chitosan (C6H11O4N)n. 
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Figure 6.1 XPS analyses of the N element of polyethylene terephthalate surface (a) and 

polyethylene terephthalate surface modified with 0.1% (wt. %) PVF (b)  chitosan (c) 

PEI (d) solution. 

 

 

6.3.1.2 Surface roughness 

The surface topography and roughness of PET surfaces were investigated by AFM. As 

can been seen in Figure 6.2 (a), the PET surface was quite smooth and the RMS 

roughness was just 2.9±0.6 nm over a scan area of 10 μm × 10 μm. The results are 

comparable with those reported in previous publications (Fu et al. 2005, Liu et al. 2005, 

Yang et al. 2009). After the three PE solutions at a concentration of 0.1 wt% were 

applied to each PET surface for 30 min, some protuberances were present on the 

modified surfaces. The RMS roughness of the PET surface slightly increased by the 

surface treatment with PVF and PEI, which was 4.8±0.7 nm and 4.7±1.0 nm 

respectively; however, after being modified with chitosan solution, the PET surface 

became much rougher with a RMS roughness of 12.3±1.0 nm, see Figure 6.2 (c). The 

increase of surface roughness is attributed to the attachment of PVF, chitosan, PEI 
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molecules to the PET surface, which agrees with the observation of PEG deposition on 

untreated PET surfaces (Takke et al. 2011).  

 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 6.2 2D and 3D images of polyethylene terephthalate surfaces (10 µm ×10 µm) 

(a); after modification with 0.1wt% PVF (b)/chitosan (c)/PEI (d) (RMS: (a) 2.9±0.6 nm, 

(b) 4.8±0.7 nm, (c) 12.3±1.0 nm, (d) 4.7±1.0 nm). 

 

6.3.2 Retention of microcapsules on PET surfaces investigated by the flow 

chamber technique 

The retention of microcapsules on PET surfaces was investigated by the flow chamber 

technique. Water  with a given flow rate of 80 mL h
-1

 as used to remove microcapsules 

from cellulose films was first used to remove microcapsules from PET surfaces, and it 

was found that more than 80% of microcapsules still remained on the PET surface. 

Compared with a retention ratio of less than 10% on the cellulose film under the same 

flow condition, the interaction between MF microcapsules and the PET surface is much 
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stronger than that on the cellulose film. The PET surface modified by the 

polyelectrolytes, was found to enhance the retention ratio of MF microcapsules on the 

surfaces. In order to show their effects, higher flow rates were used and the results for 

the non-modified surface are shown in Figure 6.3. The retention ratio of microcapsules 

decreases with the increase of the flow rate from 50 mL h
-1

 (shear stress of 2.47×10
-2

 

Pa) to 200 mL h
-1

 (shear stress of 9.88×10
-2

 Pa). At 200 mL h
-1

, more than 66% of 

microcapsules were removed; therefore a flow rate of 200 mL h
-1

 was used in further 

experiments on the modified PET surfaces.  

 

 

Figure 6.3 Microcapsules remaining on a non-modified PET surface in normalized area 

ratio as a function of flow rate. 

 

Each PET surface was modified with PVF, chitosan and PEI respectively with a 

concentration of 0.1 wt% and 0.01 wt%. Without the modification, about 33% 

microcapsules remained on the PET surface after applying a shear stress of 9.88×10
-2

 Pa 
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to the microcapsules for 3 min. After each PVF, chitosan and PEI solution of a 

concentration of 0.1 wt% was applied on the PET surface for 30 min, more than 90% of 

microcapsules remained for all three chemicals (the blue columns in Figure 6.4). The 

order of the performance of the three chemicals was PVF > chitosan > PEI (Figure 6.4). 

In order to get a clear contrast, the concentration of PVF, chitosan and PEI was further 

diluted to 10
-4

 ppm, and then the results of microcapsules remaining on the modified 

PET surfaces are illustrated in Figure 6.4. As can be seen, after the modifications with 

the diluted PVF, chitosan and PEI solution, the retention ratio of microcapsules was 

79%, 55% and 49% respectively (the red columns in Figure 6.4). A better contrast of 

the performance of the three chemicals (PVF> chitosan > PEI) has now been observed 

and more microcapsules remained on the modified PET surface compared with the non-

modified surface, the retention ratio of which is 33%.  

 

 

Figure 6.4 Effect of modification of each PET surface with PVF/chitosan/PEI solution 

on the removal of microcapsules from it. The errors bars represent the standard error of 

the mean based on at least 3 repeated measurements. 
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6.3.3 Adhesion between single microcapsules and PET surfaces 

investigated with AFM 

The interaction between single microcapsules and a PET surface before and after being 

modified by PVF, chitosan and PEI respectively was also investigated by AFM with a 

colloidal probe. The average pull-off forces with a contact time of 0.01 s and 10s are 

presented in Figure 6.5. The average adhesion of single microcapsules (N=5) on a non-

modified PET surface was 13±3 nN (0.01 s) and 35±3 nN (10 s) respectively. After the 

surface was modified with PVF (N=6), chitosan (N=5) and PEI (N=5) respectively, the 

average adhesion decreased to 7.2±3.6 nN (0.01 s) and 23±6 nN (10 s), 4.7 ±0.5 nN 

(0.01 s) and 21 ±4 nN (10 s) and 6.3±1.1 nN (0.01 s) and 23±4 nN (10 s)  respectively. 

It is surprising that the adhesion decreased after the PET surface was modified with the 

three PEs, which seems to be inconsistent with the retention behaviour presented in 3.2. 

Additionally, there is no significant difference in the value of the adhesion between 

single microcapsules and the modified PET surface with the three kinds of PE. A further 

interpretation will be discussed in § 6.4.   
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Figure 6.5 Adhesion between single microcapsules and a PET surface before and after 

being modified with PVF/chitosan/PEI solution. The error bars represent the standard 

error of mean pull-off force. The number of microcapsules (N) measured for non-

modified, modified PET surface with PVF, chitosan and PEI are 5, 6, 5 and 5 

respectively. 

 

6.3.4 Summary of the adhesion behaviour on PET surfaces 

The attachment of PVF, chitosan and PEI molecules on each polyethylene terephthalate 

surface was validated by XPS analyses and AFM mapping in this work. It was more 

difficult to remove microcapsules from a PET surface by a given fluid flow than from a 

cellulose film, and treatment of the PET surface with the three kinds of PE all showed 

an enhancement of retention of microcapsules. The performance of PVF was better than 

that of chitosan and PEI. It is surprising to note that the average adhesion force 

characterized by AFM presented a different trend, in which the average pull-off force 

decreased after each PET surface was modified with PVF, chitosan and PEI. The PET 

surface was reported to be much more hydrophilic after a polyelectrolyte was 

introduced on the surface (Huh et al. 2001, Nina et al. 2011, Takke et al. 2011)  and a 
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decrease of adhesion of 3T3 fibroblast cell to the modified-PET surface (Nina et al. 

2011) has been observed.  To the author’s knowledge, there has been no research work 

to date investigating the interaction between single micro-particles and a PET surface. It 

is supposed that the inconsistency indicates that the peak value of the pull-off force is 

not the only factor to determine the retention behaviour, especially when microcapsules 

are removed in the lateral direction. Possible mechanisms of the retention enhancement 

and the reason for the inconsistency of the results between AFM and the flow chamber 

technique observed on the modified PET surfaces will be discussed in § 6.4.  

 

6.4 Discussion 

6.4.1 Mechanisms of adhesion between MF microcapsules and PET 

surfaces 

The adhesion of single MF microcapsules on a un-modified PET surface was found to 

be greater compared with the corresponding result on a cellulose film, see Chapter 5, 

and the adhesion increased from a few nano-Newton on a cellulose film to about 13 to 

35 nN on the PET substrate for contact times of 0.01s and 10 s measured by AFM.  

Additionally, a flow rate of 80 mL h
-1

 which was used to remove most of the 

microcapsules from the cellulose film was not sufficient to remove the microcapsules 

from the unmodified PET surface. Therefore, the mechanisms of adhesion between MF 

microcapsules and PET surfaces is supposed be different from those between MF 

microcapsules and cellulose thin films.  
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6.4.1.1 Hydrophilic and hydrophobic nature of MF microcapsules and PET surfaces  

A MF membrane prepared according to a method proposed by a visiting scholar 

Professor Hong Huang from South China University of Technology (personal 

communication) was used to mimic the shell of MF microcapsules and the contact angle 

on the membrane was measured to determine the hydrophilic and hydrophobic nature of 

the surface of MF microcapsules. ESEM was used to determine the surface topography 

of both MF microcapsules and the MF membrane, and the images are shown in Figure 

6.6. Although the thickness of the MF membrane, which was approximately 1.2 µm, 

was about 12 times larger as that of the shell of MF microcapsules of 100 nm, the 

morphologies of the MF membrane and MF microcapsules were nearly the same, which 

means that the MF membrane can be used to mimic the shell of MF microcapsules.  

 

 

(a) 

 

(b) 

Figure 6.6 ESEM images of a MF membrane (a) and shell of MF microcapsules (same 

image as used in Figure 4.10 (a)) (b). 

 

The contact angles between water droplets and a MF membrane and PET surface were 

measured, which are 66°±1° and 82°±1° respectively. Although melamine-
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formaldehyde is hydrophilic in nature with a contact angle of 34° (Crick and Parkin 

2011), the hydrophilic and hydrophobic nature can be adjusted by their surface 

topography (Xu et al. 2007, Crick and Parkin 2011) because proper microstructures 

can trap air under the water droplet which can increase the hydrophobicity. The result of 

the contact angle on the MF membrane in this work is comparable with that measured in 

Crick and Parkin’s work (2011).  PET is synthesized from ethylene glycol and dimethyl 

terephthalate (C6H4(CO2CH3)2) or terephthalic acid and it bears repeated units 

containing aromatic rings, ester and vinyl groups on the backbone of the molecules. The 

contact angle of a water droplet on the PET surface is consistent with that determined in 

the previous research works (Dadsetan et al. 2000, Liu et al. 2005, Yang et al. 2009, 

Nina et al. 2011). Therefore, compared with the cellulose thin film with a contact angle 

of about 30° (Liu 2010), the PET surface is much more hydrophobic and the 

hydrophobic interaction (Meyer et al. 2006, Thormann et al. 2008, Israelachvili 2011) 

between MF microcapsules and the PET might be one of the reasons for the adhesion.   

 

 6.4.1.2 Influence of the hydrophobic nature and surface roughness on adhesion 

The adhesion of single MF microcapsules on a PET with varying hydrophobicity was 

investigated. The hydrophobicity of PET was adjusted by converting the ester groups 

into carboxyl and hydroxyl groups (Liu, He et al. 2005) by treating it with NaOH.  

Figure 6.7 presents the surface topography of the PET surface after being treated with 

NaOH and the RMS roughness is 176.4 ± 6.2 nm. The morphology of the surface is 

quite similar to that reported in Liu et al.’s work (2005). The contact angle of water 

droplets on the treated PET surface was 72°±1°, which was smaller compared with that 

on the untreated PET surface which was 82°±1°. Therefore the PET surface became 
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more hydrophilic and rougher after being treated with NaOH. The adhesion between a 

microcapsule with a diameter of about 20 µm and the PET surface before and after 

treatment with NaOH is presented in Figure 6.8.  The adhesion decreased from 10.6 ± 

0.3 nN and 34.1 ± 1.0 nN to 3.7 ± 0.3 nN and 10.3 ± 1.4 nN with a contact time of 0.01 

s and 10 s. The adhesion decreased as expected from the increase of the hydrophilicity 

and surface roughness, in which the adhesion is further explained to be due to 

hydrophobic interaction.  

 

(a) (b) 

Figure 6.7 AFM image of a PET surface treated with 10 wt% NaOH solutions at 80°C 

for 12 hours, (a) 2D image and (b) 3D image.  
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Figure 6.8 The mean value of adhesion between a MF microcapsule with a diameter of 

20 µm and PET surface before and after being treated with NaOH in HPLC water with a 

contact time of 0.01 s and 10 s. 

 

6.4.2 Adhesion between microcapsules and PET surface modified with 

polyelectrolytes 

The mean value of adhesion was found to decrease after a PET surface was modified 

with the polyelectrolytes, which was unexpected. However, the retention ratio was 

enhanced. Therefore, it is fundamentally important to understand why there is such a 

discrepancy.  

 

6.4.2.1 Surface hydrophilic properties of PET  

Contact angle measurements were conducted to determine the hydrophilic and 

hydrophobic nature of PET surfaces before and after modification with PVF, chitosan 

and PEI. The contact angle θ, between a drop of water and a reference PET surface and 
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modified surfaces is listed in table 1. The contact angle of a water droplet on a non-

modified PET surface was 82°±1°, which is comparable with that determined in the 

research works (Dadsetan et al. 2000, Liu et al. 2005, Yang, et al. 2009, Nina et al. 

2011). After the PET surfaces was modified with PVF, chitosan and PEI, the contact 

angle decreased slightly to 65°±2°, 77°±2°, 70°±1° respectively. The results of contact 

angle after the PET was modified with the polyelectrolytes are comparable with that on 

a PET surface deposited with a layer of chitosan in Liu et al.’s work ( 2005).  The 

functional groups of PET are nonpolar and it is difficult for them to form hydrogen 

bonds with amine groups which presented in the three polyelectrolytes used to modify 

the PET surface. Therefore, it is suggested that the attachment of polyelectrolyte 

molecules on the surface of PET after modification altered the hydrophobic nature of 

the substrate, which caused the decrease of the adhesion between microcapsules and the 

PET surface. The adhesion measured by AFM with a hydrophobic probe coated with 

octyltrichlorosilane (OLTS) to a polystyrene (PS) surface was also reported to decrease 

due to increasing the hydropilicity of the PS surface by modifying it with poly(styrene- 

b-origoethylene glycol methyl ether methacrylate) (PS-PME NMA) in previous 

publication (Zhang et al. 2008)  

 

Table 6.1 the contact angle of a water droplet on PET surfaces. 

  polyester 

modified with 0.1% 

PVF 

modified with 0.1% 

chitosan 

modified with 0.1% 

PEI 

Contact angle 82°±1° 65°±2° 77°±2° 70°±1° 
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6.4.2.2 Surface topography analysis  

Polyelectrolyte molecules were attached on the PET surfaces and their configuration 

was examined by AFM.  PVF, chitosan and PEI molecules on the PET surface were 

found to be stretched because the PET surface is neutral and the positively charged PE 

molecules cannot have intimate contact compared with a negative surface such as 

cellulose, as shown in Figure 6.9, which is another factor causing the decrease in 

adhesion between microcapsules and the modified PET surface. Besides, after 

modification with the chemicals, some protuberances were observed on the PET 

surfaces. These were analysed. As can be seen in Figure 6.9, the protuberances 

distributed more densely on the surfaces modified with chitosan and PET compared 

with PVF. However, the dimension of the protuberances on the PVF-modified surface 

was bigger than that of chitosan and PEI. The height of the protuberances was about 60 

nm, 30 nm and 15 nm for PVF, chitosan and PEI respectively; and the diameter of the 

protuberances was about 500 nm for PVF, while for chitosan and PEI it was much 

smaller, i.e. 100 nm to 300 nm and 50 nm to 200 nm respectively. The polyelectrolyte 

chain size Rchain-size was reported to be dependent on the degree of polymerization NDP, 

in which 33.0)(ln~ DPDPsizechain NNR 
(Liao et al. 2003). The calculated polyelectrolyte 

size is presented in Table 6.2 and the size of PVF is much bigger than that of chitosan 

and PET; although the molecule weight of PEI is bigger than that of chitosan, but its 

size is still smaller because it is branched (Üzüm et al. 2012).  

Considering the molecular structure of the polyelectrolytes gives a reasonable 

explanation of the difference in the protuberances on the PET surface caused by them. 

Single polyelectrolyte chains like poly(2-vinylpyridine) (P2VP) (Roiter and Minko 

2005) and chitosan (Kocuna et al. 2011) on mica substrates have been imaged  by AFM. 
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The length and width of a single molecule were reported to be around a few hundred 

nano-meters and less than 1 nm respectively, which are much smaller than the height 

value determined in this work. It was supposed that single positively charged molecular 

strands adsorbed on mica through electrostatic attraction and they were distributed in 

parallel to the surface at a very low concentration; however, the polyelectrolyte 

concentration used to modify the PET surface here was higher and therefore molecular 

chains were not presented as single strands; additionally, PET is naturally charged and a 

polyelectrolyte bearing positive charges is unlikely to form intimate parallel contacts 

with PET as with the negatively charged mica, and they possibly stretch from the 

surface to the solution and distribute vertically;  moreover, the image in this work was 

captured in dry conditions, in which molecular chains are coiled and less extended than 

in liquid condition. Therefore, the stretching of the polyelectrolyte might not only 

increase the surface roughness, but also cause steric hindrance, which decreases the 

peak value of adhesion.    
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(a) 

 

 

(b) 

 

 

(c) 

Figure 6.9 AFM analyses of the protuberances on the PET surface modified with PVF (a), chitosan (b) and PEI (c). 
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Table 6.2 Calculated polyelectrolyte size 

  PVF Chitosan PEI 

molecule weight (kg mol
-1

) 1000 400 750 

molecule weight of each monomer(g mol
-1

) 71 161 473 

the degree of polymerization NDP 14085 2484 1586 

The chain size Rchain-size 29661 4897 3065 

 

 

6.4.2.3 Viscosity investigation 

The viscosity of the three polyelectrolyte solutions was also investigated at 25
o
C, and 

the results are given in Figure 6.10. The viscosity of water solution at 25
o
C is 0.8902 × 

10
-4

 Pa s
-1

 (Kestin et al. 1978). The viscosity of each polyelectrolyte solution decreases 

with the increase of shear rate from 10 (s
-1

) to 100 (s
-1

), which indicates the 

polyelectrolyte solutions are shear thinning liquids. The observation agrees well with 

conclusions of previous work (Wyatt and Liberatore 2009, El-Hefian et al. 2010, Wyatt 

et al. 2011)  0.1 wt% of PVF solution exhibited a higher viscosity than chitosan and PEI 

at a given shear rate, which  indicates that the molecular chain of PVF is longer than 

that of chitosan and PEI (Ofori-Kwakye et al. 2006). This is consistent with the 

conclusion of § 6.4.2.2. Therefore, the stretching of polyelectrolyte molecular chains is 

supposed here to be one of the reasons causing decrease in adhesion. Additionally, the 

molecular chains of PVF were found to be the longest and then chitosan and PEI was 

the shortest, which correlates well with the conclusion in § 6.4.2.2.   
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Figure 6.10 The viscosity of 0.1 wt% PVF, chitosan and PEI solution at pH 5.  

 

6.4.2.4 Interpretation of forces curves obtained using AFM 

Figure 6.11 shows typical force-displacement curves obtained by applying AFM to 

measure the adhesion between single MF microcapsules and PET surfaces before and 

after being modified by the three polyelectrolytes. Although the mean value of adhesion 

decreased after the surface modification, there are other features on the forces curves. 

The MF microcapsule retreated back sharply from the non-modified PET surface; see 

Figure 6.11 (a). However, multiple plateau events can be observed for the PET surface 

modified with PVF, chitosan and PEI (Figure 6.11 (b), (c) and (d)). The attachment of 

polyelectrolyte molecules to the surface was demonstrated in § 6.3.1. The presence of 

multiple events on the retraction curves is believed to be due to the extension of 

polyelectrolyte long molecular chains when the MF microcapsule was separated from 

the PE-modified PET surface. The results agree with the bridging interaction proposed 

in Chapter 4, which occurred between the cellulose film and the MF microcapsules 

modified with PVF and chitosan. Additionally, similar multiple events were observed 
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between a polystyrene sphere colloidal probe and a glass surface by AFM (Thormann et 

al. 2008), chitosan molecules (Kocuna et al. 2011) and  a silica nitride tip and a 

cellulose film by AFM (Notley 2009),  which was attributed to the extension of the long 

molecule chains.  

 

 

(a) 

 

(b) 

(c) (d) 

Figure 6.11 Typical force-displacement curves from AFM to measure the interactions 

between single MF microcapsules and a PET surface (a) and PET surface modified with 

PVF (b), chitosan (c) and PEI (d) at a concentration of 0.1 wt%. 
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A schematic diagram in Figure 6.12 illustrates how the multiple events might occur. 

Each polyelectrolyte with long molecular chains attached on the PET surface and they 

extended into water solution freely. When a microcapsule contacted the modified PET 

surface, the polyelectrolyte at the contact region might be folded and act as bridges to 

connect the two surfaces. Those chains beside the contacted area still extended to the 

side wall of the MF microcapsule and made contacts. Those connections were released 

gradually when the microcapsules was separated from the PET surface, causing multiple 

events. This interpretation is consistent with the previous research (Thormann et al. 

2008). The “microcapsule-surface separation distance” as presented in Figure 6.13 is 

considered as one of the parameters to characterise the strength of bridging interactions. 

The values of the distance were determined from the force-displacement curves of 

AFM. The results are illustrated in Figure 6.14.  Five microcapsules were used to 

investigate their adhesion on a polyelectrolyte-modified PET surface, and 10 typical 

force-displacement curves were analysed for each microcapsule. Figure 6.14 (a) 

presents the distribution of the “microcapsule-surface separation distance” for the PET 

surface modified with three chemicals and Figure 6.14 (b) shows the mean value. The 

values of the microcapsule-surface separation distance for PVF and chitosan were 

scattered and the mean values were 2130±120 nm and 1100±70 nm respectively. 

However, the microcapsule-surface separation distance distribution of PEI was less 

scattered and the mean value was just about 280±20 nm. There was no multiple event 

for the unmodified PET surface and the order of the separation distance after 

modification with three chemicals is PVF > chitosan > PEI. The values of 

“microcapsule-surface separation distance” are much bigger than the height dimension 

as shown in Figure 6.9. This may result from several molecular chains attaching to the 

side of a microcapsule wall and the gradual breakage of the connections from the side 

wall to the contact area causing the long plateau events (Kocuna et al. 2011); 
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additionally, the PE molecules may be much more stretched in aqueous solution than in 

dry environments. The value of the separation distance observed in this work is 

comparable with the approximate 1000 nm observed on the retraction curves in Kocuna 

et al.’s work (2011) by using a chitosan-modified tip to investigate adhesion to a glass 

surface.  The separation distance may be used to reveal the length of the polyelectrolyte 

chains, which correlates well with the order of the length of the three chemicals 

suggested in § 6.4.2.2 and § 6.4.2.3.  

 

  

 

Figure 6.12 Schematic representation of the multiple events showing on retraction 

curves between single MF microcapsules and the PET surface modified with 

polyelectrolytes. 
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Figure 6.13 Definition of the “microcapsule- surface separation distance” from a typical 

force-displacement curve between a microcapsule and a PE-modified PET surface, 

obtained from using AFM. 

 

 

(a) 
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(b) 

Figure 6.14 The distribution of the microcapsule-surface separation distance (a) for the 

modified PET surfaces and the mean value (b); the error bars represent the standard 

error of mean microcapsule-surface separation distance. 

 

6.4.2.5 Adhesion Energy 

The adhesion energy was calculated between single MF microcapsules to the PET 

surface before and after being modified by the three polyelectrolytes and the results are 

presented in Table 6.2. The average adhesion energy of single microcapsules (N=5) on a 

non-modified PET surface was 1.2×10
-15

±0.2×10
-15 

J (0.01 s) and 3.7×10
-15

±1.0×10
-15 

J 

(10 s) respectively. After the surface was modified with PVF (N=6), chitosan (N=5) and 

PEI (N=5) respectively, the average adhesion decreased to 1.7×10
-15

±0.9×10
-15 

J (0.01 

s) and 10.1×10
-15

±3.8×10
-15 

J (10 s), 1.8×10
-15

±0.5×10
-15 

J (0.01 s) and 7.9×10
-

15
±2.9×10

-15 
J (10 s) and 1.9×10

-15
±1.2×10

-15 
J (0.01 s) and 6.0×10

-15
±2.1×10

-15 
J (10 s) 

respectively. The adhesion energy between microcapsules and PET surfaces was 

increased after PET surfaces were modified with the three chemicals and the order is 

PVF > chitosan > PEI> non-modified PET surface. The trend of the increase of surface 
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energy after PET surface was modified with PEs is consistent with the retention of 

microcapsules to PET surface before and after being modified with PEs. Therefore, it is 

suggested that other than the net adhesion force, the adhesion energy is another 

important parameter to determine the retention of microcapsules to PET surface. 

 

Table 6.2 Adhesion energy between single microcapsules and a PET surface before and 

after being modified with PVF/chitosan/PEI solution. The error bars represent the 

standard error of adhesion energy, the number of microcapsules (N) measured for non-

modified, modified PET surface with PVF, chitosan and PEI are 5, 6, 5 and 5 

respectively. 

  

Adhesion Energy (×10
-15

 J ) 

 

  

non-modified 

PET 

PVF-modified 

PET 

chitosan-modified 

PET 

PEI-modified 

PET 

0.01 s 1.2±0.2 1.7±0.9 1.8±0.5 1.9±1.2 

10 s 3.7±1.0 10.1±3.8 7.9±2.9 6.0±2.1 

 

6.4.3 The retention of microcapsules on PET surfaces under a shear flow 

In the above section it was proposed that polyelectrolyte molecular chains after 

attaching to a PET surface extended into the aqueous solution and the length of PVF is 

considered to be longer than that of chitosan and PEI. Additionally, the roughness of a 

PET surface increased after it was modified with PVF, chitosan and PEI, as presented in 

6.3.1. The adhesion is measured by AFM based on popping-out a single microcapsule 

from a substrate in the vertical direction. However, the removal of microcapsules from a 

surface by a fluid flow is much more complex.  Micro particles are theoretically 

removed or displaced by lift, sliding and rolling or even a combination (Saffman 1965, 
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Cherukat et al. 1994, Zoeteweij et al. 2009, Larsen et al. 2010, Derksen and Larsen 

2011); rolling is reported to be the most likely motion when a micro particle is displaced 

in a flow chamber (Sharma et al. 1992, Zoeteweij et al. 2009, Zhang et al. 2010). 

Therefore, the removal of microcapsules from a PET surface may not be relevant to the 

friction between them because the friction only works when micro particles are 

displaced by sliding (Zoeteweij et al. 2009). However, the relationship between the 

retention behaviour and adhesion may be interpreted by considering the molecule 

structures of polyelectrolytes, and their long molecular chains beyond the contacted area 

are supposed to attach on the side of the microcapsule wall as presented in Figure 6.12. 

Without the surface modification, the microcapsule starts to rotate by overcoming the 

torque at point A as illustrated in Figure 6.16 (a); at this point, the displacement vector 

for friction is zero, therefore the friction has no influence on the torque balance. 

However, after the surface modification, the right position for the torque balance can be 

raised to each contacted point such as B, C and D (Figure 6.16 (b)); and then the 

displacement of the microcapsule from the PET surface is not a single motion anymore, 

which becomes to be a gradual process of breaking joints from the position far away 

from the substrate to the contact region. The strength and the number of the bonding of 

each joint become  an important factor to influence the displacement. Those molecules 

with longer chains and less steric hindrance tend to form close and long distance 

contacts with the microcapsule wall easily and then it will be less easy for them to be 

released from the substrate, see Figure 6.11 in which more single plateaus are observed 

for PVF than those of chitosan and then PEI. This is supposed to be the main 

mechanism of the modified PET surface providing enhanced retention of microcapsules 

than a non-modified surface and the reason why the performance of PVF was better 

than chitosan and then PEI on improving the retention behaviour of MF microcapsules 

on a PET surface in flow chamber experiments.   
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(a) 

 

(b) 

Figure 6.15 Schematic to illustrate the extension of molecule chains to the surface of a 

microcapsule wall and the influence on the displacement; (a) unmodified PET surface, 

(b) modified PET surface. 

 

6.5 Conclusions 

The investigation of the retention of microcapsules on fabric surfaces has been extended 

to PET surfaces. It is found that both the adhesion and retention behaviours of MF 

microcapsules on a PET surface are better than those on a cellulose film. This is because 

the PET surface is much more hydrophobic than the cellulose film and hydrophobic 

interaction is considered to be the main reason causing the difference.   

Adhesion was found to decrease after the PET surface was modified with three 

polyelectrolytes by AFM. However, the retention behaviour of MF microcapsules on 
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the modified PET surfaces in the flow chamber was enhanced. All three polyelectrolytes 

on the PET surface might extend into aqueous solution, and the increase of its 

hydrophilicity, roughness and the steric hindrance are considered to be the main reasons 

for the decrease of the peak value of adhesion. Additionally, multiple plateau events on 

the retraction curves of AFM were found for the interactions between the microcapsules 

and the PET surface modified with all the three chemicals and the order of the 

microcapsule-surface separation distance correlates with length of the molecules 

calculated according to the molecule weight, the viscosity value and the dimension of 

the three chemicals on the PET surface in air. Bridging interactions are attributed to be 

the main mechanism of adhesion between microcapsules and the modified PET surface.  

The inconsistency between the adhesion and retention results of microcapsules on the 

PET surface before and after modification with the polyelectrolytes was interpreted 

according to their molecular structure. The attachment of the long molecule chains 

which are beyond the contact region on the side of the microcapsule wall caused the 

change on the torque balance and the gradual breaking of the joints between 

microcapsules and single molecules led to more difficult displacements of 

microcapsules from the modified PET surface. The molecular chains of PVF are longer 

and cause less steric hindrance than chitosan and then PEI, therefore PVF provided the 

best performance on retention enhancement and then chitosan and then PEI.  Until now, 

based on the author’s knowledge, this is the first time to interpret the removal of micro 

particles from a substrate by considering the structure of the molecule chains in a flow 

chamber.  It is expected that understanding the influence of molecular structures on 

retention will provide useful guidance in selecting proper chemicals to modify either 

perfume microcapsules or the fabric surface to enhance retention of the microcapsules 

on the fabric surface in laundry processes.  
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Chapter 7: Modelling Removal of Microcapsules from 

Model Fabric Surfaces in a Flow Chamber 

 

7.1 Introduction 

Adhesion is the attractive interaction at the interface when two surfaces are brought into 

an intimate contact and it is a complex physicochemical phenomenon. So far, the AFM 

colloidal probe technique (Butt, 1991, Ducker et al., 1992) and flow chamber technique 

(Sanjit et al., 1994, Decuzzi et al., 2007, Haun and Hammer, 2008) are the most 

common techniques used to characterise the adhesion between microparticles and 

substrates. AFM detects adhesion (pull-off forces) when a single microparticle separates 

from a surface both in dry and wet conditions. The flow chamber technique 

characterizes adhesion by employing a large sample population, and it therefore based 

on statistical analysis by counting the number of particles remaining on a substrate  

(Brown and Larson, 2001, Decuzzi et al., 2007), or calculating the surface area 

coverage (Renshaw et al., 2005, Garrett et al., 2008) after applying an air or a fluid 

flow. Microparticles exposed to shear flow are expected to be displaced/removed by lift, 

sliding, rolling or some combination thereof (Saffman, 1965, Zhang et al., 1999, 

Zoeteweij et al., 2009). The balance of the forces for lift and sliding motion and torques 

for rolling resulting in particle removal from the surface is directly correlated with the 

adhesion between the two surfaces by knowing the contact area. Therefore, it is 

generally considered that a greater adhesion force at the interface gives a higher 

retention of microparticle on the surface, which was also found in previous publications 

(Sanjit et al., 1994, Garrett et al., 2008, Zoeteweij et al., 2009) and the author’s work in 

Chapter 5. However, an inconsistency of adhesion decrease and retention enhancement 
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between microcapsules and PET surfaces after they were modified with polyelectrolytes 

were observed in Chapter 6. 

Therefore, a model was developed by analysing the forces acting on the microcapsule 

adhered to the substrate when a liquid (water in this case) flowed through the flow 

chamber to displace the microcapsule to investigate the relationship between adhesion 

behaviour and the removal of particles in a flow chamber. The model began with a 

simple assumption of DMT contact between a microcapsule and a glass surface to 

calculate the adhesion and thermodynamic work of adhesion between them. Then a 

further consideration of the contact mechanics between microcapsules and a glass 

surface in aqueous solution was discussed. Additionally, the model predictions of 

adhesion and thermodynamic work of adhesion were compared with the data obtained 

by AFM. Finally, the model was used to interpret the inconsistency between the 

adhesion to and retention of microcapsules on PET surfaces after they were modified 

with PEs, observed in Chapter 6. 

 

7.2 Theoretical background 

The model was developed based on the following assumptions: 

(1) The microcapsules are perfectly spherical; 

(2) Real contact has been achieved between the microcapsules and the substrate in 

aqueous solution; 

(3) The contact mechanics between the microcapsules and the substrate obeys the 

DMT model.   
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The onset removal of a particle bonded to a wall in a flow chamber is a dynamic 

process. Gravity force, buoyancy force, and adhesion between the particle and the 

substrate act on the particle in a static condition. The detachment of a particle from a 

surface in a linear shear flow will happen by lifting, sliding, rolling or their combination 

(Saffman, 1965, Sanjit et al., 1994, Zoeteweij et al., 2009).  Figure 2.8 illustrates the 

possible forces and torques present on a microcapsule bound to a wall in a flow 

chamber; FB and FC represent the resultant force of buoyancy force and gravity force, 

and adhesion at the contact region, and the expression of each force is illustrated in § 

7.2.2 and § 7.2.4. When a liquid flow (water) is applied, the particle will be removed by 

FSA which is the lift force if it can overcome the balance of FB and FC. Otherwise, the 

particle is most likely to be displaced by FD and a friction force Ff will be present in the 

opposite direction to the drag force. If the drag force is still not enough to exceed the 

friction force, the particle can be displaced by rolling when the torque MD due to the 

flow overcomes the torque caused by these forces which are perpendicular to the 

contact area. The expression and the critical condition for the removal under the 

possible motion of lifting, sliding and rolling will be further interpreted in § 7.2.3.  

 

7.2.1 The velocity profile  

7.2.1.1 Reynolds Number 

The Reynolds number of the flow chamber system is  

        

  


RUzyU Pf

p




,2
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                                                     (7.1) 
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where, 
fU  is the velocity of the fluid which will be explained in 7.2.1.3; 

 PU  is the 

velocity of the particle and is equal to zero before the particle is displaced; R is the 

radius of the microcapsule and ν is the kinematic viscosity; y is the distance from the 

centre line to the particle and z is the location of the particle orthogonal to the direction 

of flow. 
 

 

7.2.1.2 Development length 

The development length (Durst et al., 2005) is the distance between the entrance of the 

channel and the position where the flow reaches a parabolic velocity profile. It can be 

calculated by equation (7.2), 

            
Re/ 10

' CCDL 
                                                 (7.2)

 

where L is the development length; D
’
 is the width or the height of the channel (the 

smaller value should be used into the calculation to make sure the flow reaches  the 

parabolic velocity profile at both directions); Durst et al. (2005) suggests  C0=0.631; 

C1=0.044.  

 

7.2.1.3 Velocity profile in fully developed flow region 

Figure 7.1 shows the velocity profile of a linear shear flow in a rectangular channel in 

the fully developed flow region and the velocity is given by equation (7.3), 
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where, mU  is the maximum velocity in the velocity profile, b and c are the half lengths 

of the cross section of the rectangular channel. The shear rate is given as, 
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Figure 7.1 A fully developed flow over microcapsules settled on a wall and its velocity 

profile. 

 

7.2.2 Buoyancy force and gravity force   

When a particle adheres to a substrate in fluid environment, buoyancy and gravity will 

act orthogonally on the particle. The resultant force of buoyancy force and gravity force 

is given by  
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 gRF fpB   3

3

4
                                            (7.5) 

where BF  is the buoyancy force, 
p is the density of the particle, 

f is the density of 

the fluid and g is gravity. 

 

7.2.3 Removal forces and critical condition for each motion 

The detachment of a particle from a surface in a linear shear flow will happen by lifting, 

sliding or rolling. The critical condition at which the microcapsule can be removed from 

the surface will be calculated by considering each removal motion. 

 

7.2.3.1 Lift 

Lift force represents a force which is perpendicular to the relative motion of the flow, 

and it is created by different pressure of opposite side of an object due to the fluid flow 

past the object.  In this work, the lift force resultes from the gradient of the velocity 

placed on the particle. Other than the flow velocity, shear rate and the particle 

dimension, lift force is also a function of the viscosity. The lift force of a fluid with a 

very large viscosity (the Stokes fluid) is negligible. The lift force was firstly 

investigated by Saffman (1965), and it is expressed by   

                                     2

2/1
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UzyUF PfSA 















                (7.6) 
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where SAF  is the lift force on the particle,  is the viscosity of the fluid, 
fU is the 

velocity of the fluid, 
pU is the velocity of the particle, and   is the shear rate. 

 

When the lift force exceeds the attraction force and the buoyancy force, the particle will 

be removed. The critical adhesion at which the microcapsule can be removed is 

calculated by  

                                               BCSA FFF 
                                                   (7.7)

 

The equation can be converted into, 

                                             BSAC FFF 
                                                  (7.8)

 

 

7.2.3.2 Sliding  

The particle will slide over the surface because of the drag force generated by the shear 

stress of the flow in a direction of the relative flow velocity. It is a function of the fluid 

density, flow velocity and the effective area of the particle perpendicular to the flow 

direction. The drag force (Zoeteweij et al., 2009) on a particle can be expressed as, 

                                                    '2

2

1
ACUF DffD                                                  (7.9) 

where DF  is the effective drag force; DC is the drag coefficient and 'A  is the effective 

area of the particle perpendicular to the flow direction. The drag coefficient for a 

particle attached to a wall is given by (for 2Re10 4 

p ) 
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p

DC
Re

24
7009.1                                                 (7.10) 

Particle sliding will happen in a situation where the drag force is greater than the 

friction force which is in the opposite direction to the flow, 

                                           SACBD FFFF                                                (7.11) 

where  is the static friction of the system; if the condition provided by the equation is 

satisfied, the particle may slide over the surface. The critical condition of adhesion for 

sliding is,  

                                   BSA
D

C FF
F

F 


                                             (7.12) 

 

7.2.3.3 Rolling 

Particles will also experience another kind of complicated motion, which is rotation. A 

particle may be displaced from the surface by rolling. The rotation is related to the 

balance of the moment of the surface stresses on the particle. 

The torque as a result of the vertical forces can be approximately calculated by, 

                                                  SACB FFF                                              (7.13)                                                

where  is the contact radius. The DMT model mentioned in the previous section is 

used to calculate the contact radius (it will be interpreted in § 7.2.4), 

                       RF
E

R
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2

4
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where SAcb FFFF   and
 

E  is the equivalent Young’s modulus. The torque due to 

the flow can be calculated as  

                                              RFM DDf                                                   (7.15) 

where DM is the moment of the surface stress. The torque due to the drag force does not 

take such a simple expression, and consideration of the shear stress on the sphere will 

correct for this. This simple approach enables the following condition; the particle will 

roll when, 

 

                                 

(7.16)
 

 

This can be converted into equation, 

                                             BSA
DD

C FF
RFM

F 





                                        (7.17) 

 

The moment of surface stresses (Batchelor, 1967) is given by, 

                                                           VCUM MffD

2

2

1
                                         (7.18) 

                                                

Where V is the volume of the particle, 

                                                        
p

MC
Re

24
94339.0                                         (7.19) 

                                                   

7.2.4 Adhesion  

  CBSADD FFFRFM 
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Adhesion between a particle and a surface is another vertical force acting on the 

particle. Until now, adhesion and the contact mechanism between two surfaces have 

been poorly understood. Microcapsules can be treated as the elastic spheres under small 

deformation (Liu, 2010) and DMT (Derjaguin et al., 1975) contact was assumed to be 

the contact mechanism at the initial stage. Here, the Tabor number  (Tabor, 1977) was 

calculated by equation (7.20): 
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  ); υ is the Poisson’s ratio and E is 

the Young’s modulus of each material,   is the thermodynamic work of adhesion per 

unit area; Z0 is the equilibrium separation. 

The Young’s modulus and Poisson’s ratio of glass are 70 GPa and 0.23 (Akhtar et al., 

2009) respectively. The diameter of microcapsules was assumed to be 20 µm and their 

Young’s modulus is 1.8 GPa (Mercade-Prieto et al., 2011) and their Poisson’s ratio is 

assumed to be 0.5 (Liu, 2010). The thermodynamic work of adhesion between 

microcapsule and a glass surface in aqueous solution is assumed to be 100 µJ/m
2
 (Liu et 

al., 2002a, Liu et al., 2002b). The equilibrium separation is assumed to be 3Å (Tabor, 

1977). Then the calculated Tabor number is 0.04, which is smaller than 5 (Table 2.2). 

So DMT model has been used to calculate thermodynamic work of adhesion, which is 

given as 
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RFc  2                                              (7.21) 

                                                        

                                                       

 

7.3 Experimental  

7.3.1 Perfume-filled microcapsules  

Perfume-filled MF microcapsules were supplied by Procter & Gamble, Belgium, 

described in §3.1.1. 

7.3.2 Glass slides 

Fisherfinest premium plain glass microscope slides (Fisher Scientific, UK) were used as 

substrates in this work.  

 

7.3.3 Determination of friction coefficient by AFM  

AFM was used to determine the friction coefficient between microcapsules and glass 

surfaces in H2O (HPLC grade, Fisher Scientific, UK). It was also used to investigate the 

contact mechanics between microcapsules and a glass surface in aqueous solution by 

varying the compression load. The detailed procedures were described in § 3.5.1. 

 

7.3.4 Determination of friction coefficient by a Nanovea Tribometer  
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A melamine formaldehyde (MF) membrane was prepared according to a protocol 

described in § 3.5.2.1; and then the static coefficient of friction between a glass sphere 

and the MF membrane was measured with a Nanovea Tribometer in dry condition.  The 

detailed information was described in § 3.5.2.2. 

 

7.3.5 Prediction of adhesion behaviour by the model 

7.3.5.1 Flow chamber experiment 

The displacement of single microcapsules from a glass surface by a fluid flow in the 

flow chamber was recorded. The video was analysed by a Matlab code to determine the 

radius of the microcapsules and its location (the distance to the centre line of the 

channel). The detailed methodology was described in § 3.4.2.2 and § 3.4.2.3. 

 

7.5.3.2 Adhesion and the thermodynamic work of adhesion 

Adhesion and the thermodynamic work of adhesion was calculated by incorporating the 

corresponding flow rate to remove the microcapsule, the particle radius and particle 

location acquired in § 7.5.3.1 in equation (7.17).     

 

7.3.4 Adhesion behaviour by AFM  

The adhesion between single MF microcapsules and a glass surface was measured by 

the AFM colloidal probe technique according to the procedures described in § 3.4.1. 

The mean value of the pull-off force was calculated and  the DMT model (Derjaguin et 
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al., 1975) was used to predict the thermodynamic work of adhesion between a 

microcapsule and the glass surface according to equation (7.21). 

 

7.4 Results  

7.4.1 Friction coefficient  

7.4.4.1 Measurement of friction coefficient by AFM   

The coefficient of friction between a microcapsule and a glass surface was measured 

according to a methodology proposed in previous publications (Varenberg et al., 2003, 

Tocha et al., 2006, Huang et al., 2009) by applying a AFM microcapsule probe to scan 

a TGF11 silicon calibration grid described in § 3.5.1. Several microcapsules with 

diameters of 8 µm to 25 µm were applied to do the measurements. Unfortunately, all the 

experiments failed either due to dropping of microcapsules during the scanning process 

or unstable result. The main reason may be that the particle sizes of the microcapsules 

used in this work were so big compared with the dimension of the calibration grid that it 

was easy for the particle to get stuck or they couldn’t contact the slopped plane. Until 

now, no proper calibration grid has been found to do the calibration. Therefore, an 

alternative methodology to measure the friction coefficient was chosen. 

 

 

  

file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_42
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_39
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_16


183 

 

7.4.1.2 Measurement of friction coefficient by a Nanovea Tribometer  

(1) MF membrane  

A MF membrane was prepared to mimic the surface of MF microcapsules to measure 

the coefficient of friction. AFM and SEM were used to determine the surface 

topography and the thickness of the MF membrane (Figure 7.2).  It was dense and 

compact, which formed with small MF particles. Over a scan area of 100 µm × 100 µm, 

the RMS roughness was 243.8 nm (Figure 7.3 (a)).  Liu (2010) studied the surface 

roughness of MF microcapsules over a scan area of 500 nm×500 nm and she found that 

the RMS roughness was 3.4 nm. The captured area of the MF membrane in this work 

and that of the MF microcapsule in Liu’s (2010) work are not in the same order of 

magnitude; therefore it is difficult to make the direct comparison.  Figure 7.3 (b) and (d) 

show the surface topography of a piece of MF membrane and the surface of a MF 

microcapsule by SEM. The tiny particles over a size range of nanometres to 

micrometres were observed on both surfaces. MF particles with a diameter of few 

nanometres to about 1 micrometre were observed on the MF membrane; while the 

diameter of the circular MF particles observed on the surface of the microcapsule is 

much smaller than that on the MF membrane, most of which was approximately several 

micrometres to hundreds of micrometres in dimension. However, the MF material is 

elastic at small deformations (Liu, 2010) and an applied load of 20 mN was used in the 

friction measurement. The applied load might be large enough to overcome the 

heterogeneity on the two surfaces. The MF membrane had a thickness of about 2 µm 

(Figure 7.3 (c)), which is about ten times larger than that of the wall thickness of MF 

microcapsules (Long et al., 2010, Mercade-Prieto et al., 2011). It was used to measure 

friction coefficient in this work.     
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                                                    (a) 

 

                          (b) 

 

                                           (c) 

 

                           (d) 

Figure 7.2 Surface topography of MF membrane (a) AFM image (RMS roughness: 

243.8 nm); (b) SEM image; (c) the thickness of MF membrane by SEM; (d) SEM image 

of a MF microcapsule. 

 

(2) Friction coefficient results 

The static coefficients of friction between a glass sphere and a glass surface, and a glass 

sphere and a MF membrane in dry conditions were measured and they were 0.44±0.05 

and 0.20±0.02 (the mean value ± 1 standard error) respectively. The coefficient of 

friction between glass surfaces was measured as a control experiment, and the result is 

comparable with the friction coefficient (0.45) determined from polished glass for dry 

contact in Belkhir et al.’s work (2009).  MF microspheres were fabricated and the 

coefficient of friction between two MF surfaces was about 0.1 by using an ASTM 

D1884-95 test method (Evert, 2001). The inconsistency was attributed to be the 
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difference in the surface properties of the glass sphere and the MF sphere.  The 

coefficient of friction was also measured in aqueous solution. However, the MF 

membrane was swollen and then peeled off from the glass slide. Therefore, no result 

was obtained. The main reason is that the acryl amide/acrylic acid copolymer was used 

to formulate the MF membrane and it contains amine and carboxyl groups which led to 

a hydrophilic nature of the MF membrane.   

 

7.4.2 Particle removal and adhesion based on the simulations of the model 

of particle removal 

7.4.2.1 Particle removal in flow chamber  

The minimum size of the microcapsules which can be displaced was calculated 

according to each motion mechanism as a function of location in the channel (Figure 

7.3). The critical radius of the particle that can be displaced from the substrate in a fully 

developed flow region is dependent on the particle location from the centre of the 

channel. With the increase of the distance, the critical radius of the particle that can be 

displaced increases, which indicates that it is easier for smaller particles to be displaced 

in the area near the central line of the channel. The main reason is the parabolic 

distribution of the velocity and shear stress in the flow chamber. The critical radius of 

particle that can be displaced by lift, sliding and rolling is 60 μm, 23 μm and 0.2 μm 

respectively. In this work, the average radius of microcapsule is 10 μm, therefore 

microcapsules were most probably displaced by rolling in the flow chamber. However, 

it can be still displaced by sliding motion if the operation parameters are changed. The 

influence of parameters including the particle radius, the coefficient of friction, the flow 
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rate and the particle location will be discussed later. Simulation results here are 

comparable with the conclusion that the rotation is the main reason causing the onset of 

removal of micro particles from surfaces suggested by Zoeteweij et al. (2009); similar 

results of the minimum radius for lift, sliding and rolling motion were observed, which 

is 100 μm, 80 μm and 1.6 μm respectively when they investigated the displacement of 

glass spheres from glass substrates by air flow by calculating the critical Reynolds 

numbers.  

 

 

Figure 7.3 The minimum radius of microcapsules that can be removed as a function of 

location under each motion mechanism. The simulation parameters (flow rate: 50 mL h
-

1
; density of particle: 1050 kg m

-3
; coefficient of static friction: 0.2 (experimental data); 

Young’s modulus values of particle and glass: 1.8 GPa (Mercade-Prieto et al., 2011) 

and 70 GPa (Akhtar et al., 2009); Poisson’s ratio values of particle and glass: 0.5 (Liu, 

2010) and 0.23 (Akhtar et al., 2009), the adhesion energy per unit area 100 µJ m
-2 

(Liu 

et al., 2002a)). 

 

file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_28
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_1
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_25
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_25
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_1
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_22
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_22


187 

 

7.4.2.2 The influence of parameters on adhesion 

     

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.4: The critical interfacial adhesion energy due to each onset of removal motion 

as a function of the flow rate (a), friction coefficient (b), radius (c), and particle location 

(d). The simulation parameters (flow rate: 50 mL h
-1

; density of particle: 1050 kg m
-3

; 

coefficient of static friction: 0.2 (experimental data); Young’s modulus values of 

particle and glass: 37.4MPa (experimental data) and 70 GPa (Akhtar et al., 2009); 

Poisson’s ratio values of particle and glass: 0.5 (Liu, 2010) and 0.23 (Akhtar et al., 

2009)). 

 

200 400 600 800 1000
10

-1

10
0

10
1

10
2

10
3

10
4

Flow rate (mL/h)

W
o

rk
 o

f 
ad

h
es

io
n

 (
 

J/
m

2
)

Not displaced

Removed by lifting

Displaced by sliding

Displaced by rolling

0 2 4 6 8 10
10

0

10
1

10
2

10
3

10
4

Coefficient of friction

W
o

rk
 o

f 
ad

h
es

io
n

 (
 

N
/m

2
)

Not displaced

Displaced by rolling

Displaced by sliding

Removed by lift

1 2 3 4 5

x 10
-5

10
-1

10
0

10
1

10
2

10
3

10
4

Radius(m)

W
o

rk
 o

f 
ad

h
es

io
n

(
J/

m
2
)

Removed by lift

Displaced by sliding

Displaced by rolling

Not displaced

0 1 2 3 4 5 6

x 10
-4

10
-1

10
0

10
1

10
2

10
3

10
4

Distance from centre of channel (m)

W
o

rk
 o

f 
ad

h
es

io
n

 (
 

J/
m

2
)

Removed by lift

Displaced by rolling

Displaced by sliding

Not displaced

file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_1
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_25
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_1
file:///D:/Yanping-He/Yanping%20He/PROJECT/Work%202013/thesis/Chapter%207/YP%20Chapter%207-zz.docx%23_ENREF_1


188 

 

Figure 7.4 illustrates the influence of the flow rate (a), friction coefficient (b), and 

particle radius (c) and particle location (d) on the critical thermodynamic work of 

adhesion per unit area according to the three onsets of motions when using a water flow 

to displace a microcapsule from a glass surface in a flow chamber. The critical 

thermodynamic work of adhesion needed for each onset of motion is lift < sliding < 

rolling, which means that microparticles with small adhesion tend to be removed by lift 

and then sliding and at last rotation as adhesion increases.  Additionally, with the 

increase of the thermodynamic work of adhesion, the critical flow rate needed increases.  

It is suggested that a higher flow rate will be needed to displace a more adhesive 

particle. Additionally, a particle with certain thermodynamic work of adhesion can be 

displaced through different motion mechanism by changing the flow rate. Theoretically, 

a particle with a thermodynamic work of adhesion which is up to approximate 100 µJ 

m
-2 

can possibly be displaced by rolling at first and then sliding and at last lift by 

increasing the flow rate to 1000 mL h
-1

. In contrast, it is not possible to remove a 

particle with thermodynamic work of adhesion above 100 µJ m
-2

 by lift with a 

maximum flow rate of 1000 mL h
-1

.  

The influence of the coefficient of friction on the critical thermodynamic work of 

adhesion was simulated and the results are presented in Figure 7.4 (b). The work of 

adhesion is independent of the coefficient of friction for lift and rolling motion but 

inversely proportional to it for the sliding motion. This is because only sliding motion 

needs to overcome the resistant force balance in the direction parallel to the substrate. 

When the friction coefficient is quite small (approximately less than 0.1), the particle 

with high thermodynamic work of adhesion (approximately up to 1000 µJ m
-2

) can be 

displaced by sliding. Additionally, if sliding is the main mechanism when the 

microparticle is displaced from the surface, the displacement of microparticle from a 
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surface becomes difficult by increasing the coefficient of friction. The coefficient of 

friction can be calculated by knowing the thermodynamic work of adhesion for a given 

system if the particle is displaced by sliding. 

The influence of the particle radius on the critical thermodynamic work of adhesion is 

similar to the flow rate. For a batch of particles with the same thermodynamic work of 

adhesion up to approximate 60 µJ m
-2

, the smaller ones are possible to displace by 

rolling and sliding, whilst bigger ones are most likely to be removed by lift. Therefore it 

is possible to have particles displaced and removed by the three motions in a single 

experiment if the particle size range is wide enough. Additionally, for a batch of 

samples with the same particle size, the more adhesive ones could be more possibly 

displaced by rolling and then sliding, and the less adhesive ones are most likely 

removed by lift.  

The critical thermodynamic work of adhesion is also related to the location of the 

particle (the distance from the centre line).  At the same distance from the centre of the 

flow chamber channel, the particle will be removed or displaced by lift, sliding and then 

rolling with the increase of thermodynamic work of adhesion. Additionally, it is 

possible for particles with a certain thermodynamic work of adhesion to be removed by 

lift, sliding or sliding and rolling in the same experiment, when they are in different 

locations.  
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7.4.3 Calculation of adhesion using the model of particle removal with 

experimental data 

An example of microcapsules deposited on a glass slide under a microscope is given in 

Figure 7.5 (a).  A few microcapsules have been seen and microcapsules in the red 

circles were not considered because either they are aggregated (in red circles D1, D2, 

D4, D5) or they are quite close to each other (like the two particles marked as D3). The 

aggregated microcapsules are not spherical and it is very difficult to determine the 

contact area and the centre of gravity. Additionally, the flow condition around the 

particles cannot be assumed to the same as that around a single spherical particle.  

Therefore, just those isolated microcapsules (in green circles, G1-G4) were recorded for 

the displacement. Figure 7.5 (b) shows the microcapsule deposition after using a water 

flow of 18 mL h
-1 

for 3 min.  A single microcapsule (G1) in Figure 7.5 (a) was removed.  

 

 

          (a) 

 

                            (b) 

Figure 7.5 Deposition and removal of microcapsules on a glass slide before (a) and after 

(b) a water flow through the channel; the horizontal z axis indicates the width of the 

channel and vertical x axis shows the central line of the channel and the flow direction. 
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Finally 10 single microcapsules with a radius of 7.5 to 15 μm were recorded to be 

displaced by the water flow in the flow chamber. 16 single microcapsules were used to 

measure adhesion by AFM and then the thermodynamic work of adhesion was 

calculated according to the DMT model (Derjaguin et al., 1975)  The adhesion results 

are illustrated in Figure 7.6 (a).  As can be seen, the adhesion for each single 

microcapsule is scattered, obtained both from the model of particle removal with the 

flow chamber experimental data and AFM experiments, which is attributed to the effect 

of surface properties (e.g. surface roughness (Vakarelski et al., 2000, Katainen et al., 

2006)).  The mean values of adhesion from the model of particle removal with the flow 

chamber experimental data is 89.1± 14.2 nN, and it is more than 10 times larger than the 

mean value of adhesion measured by AFM, which is 7.5± 1.6 nN. The thermodynamic 

work of adhesion was also calculated according to DMT contact and the results are 

shown in Figure 7.6 (b). Values of the thermodynamic work of adhesion calculated 

from the model of particle removal with the flow chamber experimental data and AFM 

data are 1239±144 µJ m
-2

 and 89±20 µJ m
-2 

respectively. The work of adhesion 

predicted by the model of particle removal in a flow chamber is much bigger than that 

of AFM. The inconsistency in the adhesion and the thermodynamic work of adhesion 

are probably due to that using the DMT model was an over simplication for describing  

the contact mechanics  at the interface of microcapsules and the glass  in aqueous 

solution and it will be further investigated in § 7.5.   
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(a) 

 

(b) 

Figure 7.6 Adhesion (a)  and the thermodynamic work of adhesion determined  by  the 

model of particle removal with the flow chamber experimental data and AFM (An 

unpaired samples-T-TEST (O'Rourke et al., 2005) was used to evaluate the equal 

variances of two groups of adhesion and work of adhesion from  (a) and (b) 

respectively, and both the P values are less than 0.0001). 

 

 

7.5 Discussion  

7.5.1 The contact between the two surfaces in aqueous solution 

The model of particle removal proposed in this work is based on a hypothesis of DMT 

contact between two surfaces. However, the query whether the contact between a 

microcapsule and a substrate obeys conventional contact models such as the JKR model 

and DMT model was raised in previous publications (Liu et al., 2002a, Liu et al., 

2002b, Elsner et al., 2004). Liu et al. (2002b) found that the ratio of contact radius of 

urea-formaldehyde microcapsules on a glass surface was from about 0.07 to 0.50 for 

microcapsules with a radius of 10 µm to 80 µm under different buffer concentrations, 

which is bigger than that determined by JRK and DMT models; the ratio was 

independent of the particle size but increased with the buffer concentration; 

microcapsules with a diameter of 10 µm generated a contacted radius of 10% of the 
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particle radius in water. Elsner et al. (2004) also investigated the deformation of 

polyelectrolyte microcapsules on a substrate in dry conditions and it was found that the 

contact radius increased with increasing the radii of microcapsules; a microcapsule with 

a radius of 10 µm generated a contacted radius of 20% of the particle radius. The 

microcapsule-glass system in this work was similar to the system reported in Liu et al. 

(2002), therefore the contact radius, which is assumed to be equal to 10% of particle 

radius was used to re-calculate the adhesion and the thermodynamic work of adhesion. 

Since the deformation of microcapsules on the glass surface in aqueous solution may no 

longer obey DMT model, the pull-off force cannot be calculated according to DMT 

model. However, the pull-off force was found to be  the same as the expression 

proposed in DMT model for a thin shell sphere separating from a substrate (Shanahan, 

2003). The trend of minimum radius of particle as a function of particle location 

(distance from the centre line) that can be displaced by lift, sliding and rolling is similar 

to the results reported in Figure 7.5, and the minimum value at central line is  60 μm, 24 

μm and 1.5 μm for lift, sliding and rolling respectively; similarly, the trend of the 

influence of the flow rate, coefficient of friction, radius and particle location on the 

critical thermodynamic work of adhesion is similar to the trend in Figure 7.6. The 

adhesion and thermodynamic work of adhesion recalculated by using a contact radius of 

10% of radius is 4.8± 0.8 nN and 67±10 µJ m
-2

. Based on these value and that 

determined by AFM, the p-value for an unpaired samples t-test result is 0.21 and 0.29 

for the adhesion and thermodynamic work of adhesion respectively. Therefore, it seems 

that the inconsistency between adhesion and the thermodynamic work of adhesion 

between microcapsules and a glass surface in § 7.4.3 is mainly due to the contact 

between microcapsules and a glass surface, which it no longer obeys DMT model. The 

contact suggested for microcapsules settled on a glass surface in aqueous solution in Liu 

et al’s work (2001) helps to describe the contact mechanics in this work.   
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Additionally, the work above was based on an assumption that a real contact was 

achieved between two surfaces. However, the assumption may not be sound for aqueous 

solution, if the external force applied is not big enough to squeeze the water molecule 

layer (Vakarelski and Higashitani, 2001, Kendall et al., 2010Rossetto et al., 2012) 

between two surfaces. The presence of a layer of confined water molecules on the 

surface in aqueous solution was validated by Vakarelski et.al (2000, 2001), and it was 

further investigated by Kendall et al (2010)  and they found that it is impossible to 

squeeze the last water monolayer even at a pressure high enough to cause plastic 

deformation of  MgO in contact.  Therefore, it was possible that there was a layer of 

water molecules between the MF microcapsule and the glass surface. The layer of water 

molecules increased the distance between the two surfaces, which decreased the van der 

Waals force, and then possibly decreased the contact radius. If the contact radius 

decreases by 20%, the ratio of contact radius to particle radius is 8%. The adhesion 

force and thermodynamic work of adhesion calculated by the model of particle removal 

are 6.0± 1.1 nN and 84±13 µJ m
-2

, and the p-value of equal variance is 0.48 and 0.68 

respectively. The better agreement indicates that a layer of water molecules possibly 

was present at the interface when the microcapsule settled on a glass surface in water. 

The scattering of the adhesion data from two techniques is another reason for the fitting 

result of the equal variance. It may be due to the difference in surface roughness of 

different microcapsules and limited number of microcapsules measured (He et al., 

2013).  

 A further experimental work was conducted to validate the contact issue between a 

microcapsule and a substrate in water. A 25 µm microcapsule colloidal probe was 

applied to scan a glass and PET surface and the lateral deflection signal by increasing 

the compression load was recorded. The results of the lateral deflection as a function of 
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compression load are shown in Figure 7.7.  The lateral deflection was independent of 

the applied load on the glass surface. However, it increased with the applied load but 

without passing the base point on PET. The adhesive forces between single 

microcapsules and glass and PET surfaces in water were 7.5 ± 1.6 nN and 34.9± 3.2 nN 

(experimental result in Chapter 6) respectively. The interaction between the 

microcapsules and PET surface is much stronger compared with that on glass surface. 

Therefore it is possible that the microcapsule contacted with the PET surface and then 

the lateral deflection increased with the applied load. Without a compression load or at a 

very low compression load, a layer of confined water molecules is present between the 

two surfaces, causing the curve of lateral deflection vs. applied load does not pass the 

base point. However, the interaction between microcapsules and the glass surface was 

quite weak; additionally, as both the glass and microcapsules are negatively charged, the 

repulsive force may occur between them in water. When the microcapsules approached 

to the glass surface, it was unlikely for them to penetrate into the water layer and make 

real contact. Therefore, the microcapsules are always contacted with a water layer by 

increasing the compression load, which might be the reason for the independence of the 

lateral deflection on the applied load.   
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Figure 7.7 The lateral deflection of the microcapsule as a function of the applied load on 

a glass and PET surface in aqueous solution. 

 

The results of adhesion and thermodynamic work of adhesion from the two techniques 

after considering the contact issue between microcapsules and a glass surface in 

aqueous solution are in the same order of magnitude as the adhesion energy calculated 

in the previous publication (Liu et al., 2002a, Liu et al., 2002b, Elsner et al., 2004). Liu 

et al. (2002a, 2002b) studied the adhesion between urea-formaldehyde microcapsules 

and a glass substrate as a function of osmosis. They developed a model to calculate 

adhesion energy by characterization of contact area and osmotic inflation of 

microcapsule volume. The adhesion energy between the microcapsules and glass 

surface was from approximately 10 µJ m
-2

 to about 500 µJ m
-2

 under different buffer 

concentrations for urea-formaldehyde microcapsules (Liu et al., 2002a) and 60 mJ m
-2 

to 257 mJ m
-2 

for another three kinds of microcapsules (Liu et al., 2002b). Elsner et al. 

(2004) studied the adhesion between microcapsules and a glass surface. The adhesion 

energy was calculated by fitting the shell thickness of microcapsules and the contact 
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area to a model based on balancing the energy cost of the mechanical deformation and 

the energy gain due to the work of adhesion. Values of the adhesion energy calculated 

by the small deformation model were 280±20 µJ m
-2

 (according to radius dependency 

fit), and 260±70 µJ m
-2

 (according to thickness dependency fit) respectively, the 

thermodynamic work of adhesion obtained in this work is within the same range as their 

data and the difference is probably attributed to the difference between the term of 

“thermodynamic work of adhesion” and “adhesion energy”, which was treated as the 

same in many previous publications. The thermodynamic work of adhesion is the work 

needed to separate two contact surfaces; while the adhesion energy is the energy 

between the two contacted surfaces. Additionally, the difference in microcapsules wall 

material, the wall thickness, the buffer concentration and the contact area can influence 

the results. Therefore, the model of particle removal can be potentially used to predict 

the adhesion behaviour of microparticles on a substrate in a flow chamber.  

 

7.5.2 Interpretation of the inconsistency between adhesion and retention 

between microcapsules and polyester surfaces in Chapter 6.   

The model of particle removal predicts that with the increase of the adhesion, a higher 

flow rate is needed to displace microcapsules from a surface in aqueous solution, and 

the conclusion is consistent with the experimental results in Chapter 5, of which a 

higher retention of microcapsules on PE-modified cellulose thin films was found after 

the adhesion between them was increased.  

However, the adhesion of microcapsules was found to decrease to PET surfaces after 

they were modified with PEs, but the retention of microcapsules on PET surfaces was 

enhanced after modification with PEs. A conclusion that the attachment of long 
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molecular chains which are beyond the contact region on the side of the microcapsule 

wall causes the change on the torque balance and then the gradual breaking of the joints 

between a microcapsule and single molecules leads to a more difficult displacement of 

the microcapsule from the modified PET surface was suggested in Chapter 6. A 

schematic diagram was presented in Figure 6.15 (b) to illustrate the attachment of PE 

molecules to the side wall of microcapsule and the change in the right position for the 

torque balance. An attempting of using the model of particle removal to interpret the 

inconsistency on adhesion and retention are presented here.  

 

 

Figure 7.8 Schematic to illustrate a microcapsule in contact with a PET surface and the 

relationship between ϴ, R, h. 

The microcapsule is assumed to retain a spherical form, except in the flattened zone in 

direct contact with the substrate, which subtends an angle of 2 ϴ (Shanahan, 2003), as 

presented in Figure 7.8. The radius of the truncated sphere is considered to be 
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unchanged ((1-cosϴ) «1).  Based on the conclusion in 7.5.1.3, a real contact is 

suggested to be achieved between a microcapsule and a polyester surface. Therefore, a 

contact of 10% of radius is used in the model, which leads to cosϴ =0.995 and 

Sinϴ=0.1. Then whenever there is a change in the position for the contact, the torque 

balance will be changed.  The modified toque balance of Equation 7.13 and 7.15 are 

presented in Equation 7.22 and 7.23,   

                                              )( lFFF SACB                                             (7.22) 

                                               )cos( hRFM DDf                                       (7.23) 

                                         

and then the expression of torque balance is changed to Equation 7.24 

                             BSA
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F 








 )cos(
                                 (7.24) 

Where h is the vertical distance between the contact point and the surface, and it 

represents the vertical length of a stretched PE molecule from a PET surface to the side 

wall of a microcapsule (PE molecules were assumed to contact two surfaces tightly 

without free length, which is like a straight stick); l is equal to (h/tan(θ)).    

The typical Young’s modulus and Poisson’s ratio of PET are 3 GPa and 0.3 (provided 

by Goodfellow, UK) respectively. The average radius of microcapsules is 10 µm and 

their Young’s modulus is 1.8 GPa (Mercade-Prieto et al., 2011) and their Poisson’s 

ratio is assumed to be 0.5 (Liu, 2010). A flow rate of 200 mL h
-1

 was used to remove 

microcapsules from a non-modified PET surface in aqueous solution, as described in 

Chapter 6. For a non-modified PET surface, there is no PE molecule attached on the 
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side wall of microcapsules and h is equal to zero. The adhesion and thermodynamic 

work of adhesion between microcapsule and a PET surface in aqueous solution 

predicted by the modified model were 34 nN and 542 µJ m
-2

, which agree well with the 

adhesion results obtained by AFM shown in Chapter 6, which are 35±3 nN and 560±50 

µJ m
-2 

by holding single microcapsules to a PET surface for 10s.  

Then PET surfaces were modified with PE molecules, which attached on the side wall 

of the microcapsule. The maximum pull-off force between microcapsules and each 

PE(PVF/chitosan/PEI)-modified PET surface dropped  to 23±6 nN (10 s), 21 ±4 nN (10 

s) and 23±4 nN (10 s) respectively. In order to break the main contact between the 

microcapsule and the PE-modified PET surface, the thermodynamic work of adhesion 

needed is 400±100 µJ m
-2

, 340±70 µJ m
-2 

and 360±60 µJ m
-2 

according to Equation 

7.21. However, in order to displace a microcapsule from a surface, other than break 

between the microcapsule and the surface, it still needs to break the joints between PE 

molecules and the wall of the microcapsule, which needs to overcome the extra 

thermodynamic work of adhesion between PE molecules and the microcapsule surface. 

The thermodynamic work of adhesion as a function of the distance from the contact 

joint of a PE molecule with the wall of microcapsule to the PET surface was 

investigated in Figure 7.9 (All the contacts are assumed on the parallel plane to the flow 

direction and past the origin of the sphere; additionally, the molecules are assumed to 

contact the wall of microcapsule and the surface in the vertical direction stiffly without 

any free length, which acts like a straight stick between them). When the contact joint is 

approximately 1000 nm far away from the surface the thermodynamic work of adhesion 

needed to break the point is 63 µJ m
-2

, and it increases with the decrease of h (the 

vertical distance between the contact joint and the PET surface). The thermodynamic 

work of adhesion needed for a microcapsule separating with a PE-modified PET surface 
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is the sum of the thermodynamic work of adhesion between the PE molecules and the 

side wall of the microcapsule and the microcapsule and the PET surface. Therefore, 

only with few PE-microcapsule contact joints on the side wall of the microcapsule, the 

sum of the thermodynamic work of adhesion can overcome that needed to break the sole 

microcapsule-PET contact.  With the increase of the number of the contact joins, more 

thermodynamic work of adhesion is needed to displace a microcapsule from a PET 

surface. Therefore, the stretching of PE molecules to the microcapsule surface and 

making contact joins is the main reason causing the increase of the sum of the 

thermodynamic work of adhesion when using a fluid flow to displace the particle and 

then it will be less easy for the particle to be removed from the PE-modified PET 

surface as found in Chapter 6. The more contact joints, the longer of the molecules, the 

higher the sum of thermodynamic work of adhesion. Therefore PE molecules with long 

linear structures and less steric hindrance can possibly enhance the retention between 

microparticles and a surface. Other than the adhesion force, the sum of the 

thermodynamic work of adhesion is the main parameter to interpret the removal of 

particle from a surface in a flow chamber, which sometime is missed. 
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Figure 7.9 The thermodynamic work of adhesion as a function of h. The simulation 

parameters (flow rate: 200 ml/h; density of particle: 1050 kg m
-3

; coefficient of static 

friction: 0.2 (experimental data); Young’s modulus values of particle and glass: 1.8 GPa 

(Mercade-Prieto et al., 2011) and 3 GPa (provided by Goodfellow, UK); Poisson’s ratio 

values of particle and glass: 0.5 (Liu, 2010) and 0.3(provided by Goodfellow, UK), the 

interfacial adhesion energy per unit area 560 µJ m
-2 

(experimental data) ). 

 

7.6 Conclusions 

The model of particle removal has been developed, and it predicts that the displacement 

of microcapsules from a glass surface is possibly due to rotation. The adhesion is related 

to onset of removal from a substrate by a fluid flow, particle radius, the flow rate, 

coefficient of friction between the particle and the substrate and the particle location 

(distance from the centre line). The adhesion and thermodynamic work of adhesion 

calculated according to the model of particle removal by considering DMT contact 

mechanic with the flow chamber experimental data is 89± 14 nN and 1200±100 µJ m
-2

, 
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which are much higher than the values of 7.5± 1.6 nN and 90±20 µJ m
-2  

obtained by the 

AFM colloidal probe technique. A better agreement of the adhesion and the 

thermodynamic work of adhesion results were achieved by considering the possible 

mechanisms of contact (the contact radius of 10% of particle radius in aqueous solution 

suggested by Liu et al. (2002) and a layer of water molecules present between two 

surfaces) between microcapsules and a substrate in aqueous solution, which is 6.0± 1.1 

nN and 84±13 µJ m
-2

. Additionally, the adhesion and thermodynamic work of adhesion 

between microcapsules and non-PET surfaces were predicted by the model are 34 nN 

and 542 µJ m
-2

. They agree well with the adhesion results determined by AFM in 

Chapter 6, which are 35±3 nN and 560±50 µJ m
-2

. The consistent results of the adhesion 

on glass surfaces and PET surfaces given by the two approaches indicate the model of 

particle removal developed in this work is promising to predict the adhesion behaviour 

between microparticles and a substrate in a liquid environment and it may be applicable 

to predict both thermodynamic work of adhesion and friction coefficient in 

microparticle –surface systems. 

The model reveals that with the increase of the adhesion, a higher flow rate is needed to 

displace microcapsules from the surface; in other words at a constant flow rate, more 

particles will remain. The conclusion is consistent with the trend of experimental results 

in Chapter 5 but contradictory to the results in Chapter 6. The model was further used to 

predict the sum of the thermodynamic work of adhesion after PE molecules attached on 

the side wall of microcapsules and it was suggested that other than adhesion, the sum of 

thermodynamic work of adhesion may be the main parameter to determine the removal 

of microcapsules from a surface in a flow chamber. The sum of thermodynamic work of 

adhesion is a function of both adhesion and the properties of the PE molecules acting as 

bridges at the interface. Therefore, adhesion is the main parameter to determine the 
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removal of microcapsules from a surface in a flow chamber when the bridging 

interactions are not the main adhesion mechanism, which can also interpret the data in 

Chapter 5.  
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Chapter 8: Overall Conclusions and Recommendations 

for Future Work 

 

8.1 Overall Conclusions 

Perfume microcapsules are intended to be incorporated in household products such as 

detergents, to provide a pleasant scent to consumers after laundry process. To realise 

this, it is essential for the microcapsules to deposit on fabric surfaces during the laundry 

process. Therefore, the main aim of this project was to investigate the adhesion and 

retention of perfume microcapsules on fabric surfaces and then to propose strategies to 

enhance the retention of microcapsules onto fabric surfaces during laundry process. The 

main conclusions are summarised as follows. 

 

(1) Positively charged polyelectrolytes (PEs) polyvinyl formamide (PVF), chitosan 

enhanced adhesion between microcapsules and cellulose thin films by either 

modifying the microcapsules or the cellulose thin films (Chapter 4 and Chapter 5). 

Although both modifications in Chapter 4 and Chapter 5 enhanced adhesion, the 

adhesion mechanisms were different. Adhesion between non-modified 

microcapsules and non-modified cellulose thin films was considered mainly due 

to bridging forces because of the extension of cellulose chains. After modifying 

microcapsules with PEs, the increase in adhesion between microcapsules and 

cellulose thin films was concluded to be mainly due to the bridge interactions 

because of the entanglement of PE molecular chains and cellulose chains. 

Simultaneously, after the modifications, electrostatic attraction was suggested to 
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capture the microcapsules to the modified cellulose film and then hydrogen bonds 

as well as bridging forces played important roles to contribute the adhesion when 

they were separated.  Therefore positively charged polyelectrolytes can be used to 

enhance adhesion between microcapsules and cellulose thin films either through 

bridging forces or electrostatic interactions. It can be potentially used to increase 

adhesion between other particle-substrate systems. 

 

(2) The aggregation of microcapsules was observed after modification of 

microcapsules with PEs and big variations in the value of adhesion between 

different microcapsules were observed, as presented in Chapter 4. Bridge 

interactions because of the entanglement of PE molecular chains were the reason 

causing aggregation. The limited number of the microcapsules measured in the 

work and the uneven coverage of PE molecules and the increase of the surface 

roughness may be the main reasons to cause the adhesion variation between 

difference microcapsules. Therefore, it is suggested that the aggregation of 

microcapsules should be avoided and a technique based on analysing a population 

of microcapsules is needed. Therefore, an alternative protocol to modify model 

fabric surfaces with polyelectrolytes and then investigation of retention of 

microcapsules to cellulose thin films by a flow chamber technique has been 

adopted.     

 

(3) Both retention of microcapsules characterised by the flow chamber technique and 

the average pull-off force by AFM were found to increase after PEs were applied 

to modified cellulose thin films, as presented in Chapter 5. It was concluded that 

the flow chamber technique can be potentially used as a tool for fast screening the 
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effects of various chemicals on the adhesion of microcapsules on different fabric 

surfaces.  

 

(4) Both retention and adhesion of microcapsules on PET surfaces (Chapter 6) were 

greater than those on cellulose thin films (Chapter 5). The main reason was that 

the PET surface is much more hydrophobic than that of cellulose thin film, and 

the increase of the adhesion on PET was attributed at least partially to 

hydrophobic interaction, combined with the bridging interactions caused by the 

extension of cellulose chains on the cellulose surface. Therefore, the hydrophobic 

interaction can also be important between surfaces. 

 

(5) Adhesion was found to decrease after PET surfaces were modified with PEs, 

which seems be inconsistent with the results of the increase in the retention 

(Chapter 6). The inconsistency could  be explained as adhesion is simply 

measured by AFM based on popping-out a single microcapsule from a substrate in 

the vertical direction and it is mainly determined by the surface properties (the 

decrease of the hydrophobic nature and the increase in surface roughness), whilst 

micro particles are theoretically predicted to be displaced by rolling; without 

modification, the microcapsules start to rotate by overcoming the torque balance 

on the centre of the contact region; however, after the modification of the PET 

surface with PEs, the right position for the torque balance is raised to each 

contacted point and then the displacement of the microcapsules from the PET 

surface is not a single motion anymore, which becomes to be a gradual process of 

breaking joints from the position far away from the substrate to the contact region; 

the strength and the number of the contact joints become important to influence 

the displacement; those molecules with longer chains and smaller steric hindrance 
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tend to form close and long distance contacts with the wall of microcapsule more 

easily and then it can be less easy for the microcapsules to be removed from the 

substrate. Therefore, the retention of microcapsules was enhanced even when the 

adhesion was decreased.  

 

(6) The performance of PVF was better than that of chitosan and then PEI  in terms of 

enhancing retention, as presented Chapter 4, 5 and 6,  but no much difference was 

observed in adhesion by AFM after they were used modify PET surfaces. The 

main reason may be the difference in the molecule structures: PVF is a molecule 

with long linear structure, whilst chitosan is formed with spiral planes and PET is 

highly branched.  The difference in structures was also validated by analysis of 

the protuberances on PE-modified surfaces, the viscosity of PE solution, and the 

“microcapsule-surface separation distance” observed on AFM force curves from 

experimental results.  It was concluded that long linear molecules with small 

steric hindrance may be more favourable to enhance adhesion at interface than 

branched molecules and they can be used to modify either microcapsules or fabric 

surfaces to enhance the retention of microcapsules on fabric surfaces during 

laundry processes. 

 

(7) A model was developed based on the displacement of a microcapsule from a 

substrate in a flow chamber to establish the relationship between the removal of 

microcapsules exposed to a fluid flow and their adhesion to the substrate. The 

model predicts that microcapsules were removed by rolling and the 

thermodynamic work of adhesion between microcapsules and the substrate in the 

flow chamber was found to be related to the particle radius, flow rate, coefficient 

of friction and the distance from the centre line before the particle. The 
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predictions of adhesion and thermodynamic work of adhesion between 

microcapsules and a glass surface in aqueous solution agree well with the results 

obtained by AFM by considering a relationship between the contact radius and the 

radius of microcapsules suggested by Liu (2002) (the contact radius is 10% of 

particle radius) and a layer of water molecules present between two surfaces in 

aqueous solution. Additionally, the adhesion and thermodynamic work of 

adhesion between microcapsules and non-modified PET surfaces were predicted 

well by the model. The consistent results on adhesion between microcapsules and 

glass surfaces and PET surfaces given by the two approaches indicate the model 

of particle removal developed in this work is promising to predict the adhesion 

behaviour of microparticles on a substrate and it may be applicable to predict both 

thermodynamic work of adhesion and friction coefficient in microparticle –

surface systems. 

 

(8) The model reveals that with the increase of the adhesion, a higher flow rate is 

needed to displace the microcapsules from the surfaces; in other words with a 

constant flow rate, more particles will be remaining. The conclusion is consistent 

with the trend of experimental results in Chapter 5 but contradictory to the results 

in Chapter 6. The model was further used to predict the sum of the 

thermodynamic work of adhesion after PE molecules attached on the side wall of 

microcapsules and it was suggested that other than the adhesion, the sum of 

thermodynamic work of adhesion, a parameter which is hidden behind adhesion, 

is also an important parameter to determine the removal of microcapsules from a 

surface in a flow chamber.  
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8.2 Future work 

(1) Adhesion was found to increase after perfume microcapsules were modified with 

PEs through bridging forces as presented in Chapter 4. However, entanglement of 

the long PE molecule chains between microcapsules also caused their 

aggregation. The presence of the big microcapsule aggregates not only influenced 

their retention behaviour on fabric surfaces but also affected product image if the 

microcapsule aggregates can be apparently seen in the product. Therefore, new 

formulation to prepare microcapsules such as via adding PE molecules to the wall 

materials or a protocol to modify microcapsules with PE chemicals with no or less 

aggregation is required. 

 

(2) In the work presented in Chapter 6 and Chapter 7, the retention of microcapsules 

on a polyester surface was enhanced through bridging interactions by increasing 

the sum of thermodynamic work of adhesion, and the retention behaviour is 

related to the PE molecular structures. It is proposed that the flow chamber 

technique be used for the investigation of the molecular interactions. Such work 

can be possibly done by introducing a well understood system, and then PE 

molecules with different concentration can be implanted on one of the surfaces, 

and then the removal of the particle can be recorded to analyse the sum of the 

thermodynamic work of adhesion for each concentration. Then a relationship of 

the sum of thermodynamic work of adhesion with the concentration of PE can be 

built. The number of the PE molecules is a function of their concentration. 

Therefore it is possible to calculate the thermodynamic work of adhesion and then 

adhesion of single molecules.   
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(3) Adhesion was found to be enhanced through the protocol for modifying the fabric 

surfaces with PEs as described in Chapter 4, 5 and 6 and the main mechanisms of 

adhesion enhancement are considered to be caused by either bridging forces or 

electrostatic attraction. The difference in the performance of enhancing adhesion 

and retention of microcapsules on fabric surfaces between the three chemicals 

used in this work was considered to be due to  their different structures. However, 

the molecular weights of the three chemicals are also different. Therefore, it is 

suggested that one chemical with different molecular weights be used to 

investigate the influence of the molecular weight on the adhesion and retention of 

microcapsules on fabric surfaces; then a further understanding of the effect of the 

molecular weight and structure on the adhesion behaviour can be developed.   

 

 

(4) The adhesion and thermodynamic work of adhesion of microcapsules on fabric 

surfaces were validated to be important for the retention of microcapsules on them 

in a flow chamber device in this work. However, the real laundry process is much 

more complicated and the friction between microcapsules and fabric surfaces may 

also influence the detachment of microcapsules. Therefore, the friction between 

microcapsule and fabric surfaces at molecule level in liquid environments should 

be further investigated. Currently, the MF membrane which was used to mimic 

the surface of the MF microcapsule was swollen in aqueous solutions and friction 

measurements failed by using tribometer. The methodology by AFM proposed in 

Chapter 7 can be used as a complimentary method to measure frictions between 

single microcapsules and fabric surfaces after finding a proper calibration grid; the 
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frication can be also predicted by the model of particle removal combined with 

experimental results with the flow chamber technique to achieve a better 

understanding of the retention of microcapsules on fabric surfaces.  

 

(5) Contact between microparticles including microcapsules and a substrate in 

aqueous solution is a complex issue. The model in Chapter 7 predicts the adhesion 

values, which are in good agreements with the results obtained by AFM for 

contact between microcapsules and a substrate by using a ratio of contact radius to 

particle radius of 0.1 observed in Liu et al. (2002). However, no universal 

understanding of the contact issue between microparticles and a substrate in 

aqueous solution was provided. Therefore, a further investigation of the contact 

between microparticles and a substrate in aqueous solution should be carried out. 

Then an improved model of particle removal in the flow chamber can be 

developed by introducing the contact mechanics which is applicable in aqueous 

solution to predict adhesion and the thermodynamic work of adhesion, and the 

model can be used further to characterize adhesion behaviour between 

microparticles and substrates in liquid environment widely.     

 

(6) The adhesion was investigated between microcapsules and the flat model fabric 

surfaces in this work. But real fabric surfaces are rough with network structures 

and surfactant and other additives are involved. Hence, a more representative 

system with real fabric and detergent should be investigated. Moreover, the 

retention caused by the physical entrapment also needs to be investigated; it is 

suggested that the influence of size of the microcapsules on their physical 

entrapment by real fabric surfaces be investigated.  
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(7) The Re number of the fluid in the flow chamber used in this work was calculated 

based on a straight pipe flow, which indicates it was laminar. However, the 

configuration of the quarter turnings of the inlet and outlet of the flow chamber 

may cause turbulent flow at these regions. Therefore future work should include 

investigation of the flow pattern in the flow chamber.  If turbulence is observed, 

the configuration of the flow chamber should be improved.   

 

(8) In this work the static contact angle was measured to show the hydrophilic and 

hydrophobic nature of the surface.  After the model fabric surface was modified 

with polyelectrolytes, the surface may be rough and not homogenous and it may 

be possible to observe contact angle hysteresis; therefore both the advancing 

contact angle and receding contact angle are suggested to be measured.      
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Appendix  

 

The Matlab code to count the number of microcapsules in an image (The code was 

written by Dr James M. Andrews) 

folder='D:\'; % Root directory of the image 
pixelareas=4.3403*10^(-12); % Put the area of the pixel here units m^2, 

can be changed according to experiments 

  
for indx=1:6 
    % Get image 
    basefilename=sprintf('%d.jpg',indx); % Filename 
    filename=fullfile(folder,basefilename); % Full location of the 

file 
    I1=imread(filename);  
    % NB change file name above 

  
    % Image inversion is necessary in this case 
    % If your image is not true color comment out the next line  
    negImage = rgb2gray(I1) ;  % Convert true colour to grayscale               
    negImage=double(negImage); % Convert the image matrix to double 

     
    negImageScale = 1.0/max(negImage(:));  % Find the max value in 

array                                            
    negImage = 1 - negImage*negImageScale; % Make negative image 
    figure;imshow(negImage); 
    %I2=histeq(I1);         % Histogram equalization of a gray-scale 

image. 
    I2=histeq(negImage); 

  
    % Remove background 
    negImage=imtophat(negImage,strel('disk',50)); 
    negImage = medfilt2(negImage,[3 3]); 
    negImage=imclearborder(negImage); 
    %bw=edge(negImage,'canny',level,5.5); 
    I2=histeq(negImage); 
    %level=graythresh(I2) 
    level=0.2; 

  
    % Convert to binary image 
    bw=im2bw(negImage,level); 
    bw=imfill(bw,'holes'); 

  
%    figure;imshow(bw); 

  
% Apply a morphological opening routine 

  
    [labels,N]=bwlabel(bw,4); 

  
% NB: N returns the number of objects found 
% labels contains information about locations of objects 
% The 4 indicates that particles must touch along an edge 
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% in order to be considered as an object 

  
    % Extracting the size of each object 

  
    data=regionprops(labels,'basic') % 
    areas=[data.Area]; 
    data1=regionprops(labels,'perimeter'); 
    perimeter=[data1.Perimeter] % Care in using this ?? 
    sortareas=sort(areas) % Sorts the areas into ascending areas 

  
    realareas=sortareas.*pixelareas; 
    sizedistribution=sqrt(realareas./pi);  

  
    % Store data 
    basefilename=sprintf('ParticleShape%d.dat',indx); % Filename 
    filename=fullfile(folder,basefilename); % Full location of the 

file 
    fid = fopen(filename, 'w') ;% Open file for writing 
    if fid==-1 
        error('File is not open') 
    end 
    fprintf(fid, 'Pixel area (10^(-12) m^2): %f\n\n', pixelareas/10^(-

12)); 
    fprintf(fid, 'Particle area (piexel^2)\tParticle perimeter 

(pixel)\n') 
    for i=1:length(areas) 
        fprintf(fid, '%e\t\t\t%e\n', areas(i), perimeter(i))  
    end 
    fclose(fid); 
    basefilename=sprintf('ParticleSize%d.dat',indx); % Filename 
    filename=fullfile(folder,basefilename); % Full location of the 

file 
    fid = fopen(filename, 'w') ;% Open file for writing 
    if fid==-1 
        error('File is not open') 
    end 
    fprintf(fid, 'Particle diameter (10^(-6) m)\n') 
    fprintf(fid, '%f\n', sizedistribution/10^(-6)) 
    fclose(fid) 

     
% Plot the particle diameter in a histogram 
     figure 
     hist(sizedistribution); 
     xlabel('Radius (m)') 
     ylabel('Number of particles') 
end 
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Conferences and seminar attendance 

9th European Congress of Chemical Engineering, Hague, the Netherlands, 2013, oral 

presentation; 

RSC Postgraduate symposium on nanotechnology - Chemical Engineering (RSC 

Chemical Nanoscience & Nanotechnology Group), Birmingham, UK, 2012, poster 

presentation; 

Postgraduate symposium on nanotechnology - Chemical Engineering (RSC Chemical 

Nanoscience & Nanotechnology Group), Birmingham, UK, 2012, poster presentation; 

Frontier in Chemical Engineering: the fourth Global Chinese Chemical Engineers 

Symposium; 

The Research Poster Conference, Birmingham University, UK, 2012, poster 

presentation; 

The 19th Joint Annual Conference of CSCST-SCI, Reading, UK, 2011, poster 

presentation; 

The 18
th

 Joint Annual Conference of CSCST-SCI, Cambridge, UK, 2011, oral 

presentation; 

The 17
th

 Joint Annual Conference of CSCST-SCI, Oxford, UK, 2011 

 


