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Abstract

Domain Decomposition (DD) methods have been successfully used to solve elliptic prob-

lems, as they deal with them in a more elegant and efficient way than other existing

numerical methods. This is achieved through the division of the domain into subdo-

mains, followed by the solving of smaller problems within these subdomains which leads

to the solution. Furthermore DD-techniques can incorporate in their implementation not

only the physics of the different phenomena associated with the modeling, but also the

enhancement of parallel computing. They can be divided into two major categories: with

and without overlapping. The most important factor in both cases is the ability to solve

the interface problem referred to as the Steklov-Poincaré problem . There are two existing

approaches to solving the interface problem. The first approach consists of approximating

the interface problem by solving a sequence of subproblems within the subdomains, while

the second approach aims to tackle the interface problem directly. The solution method

presented in this thesis falls into the latter category.

This thesis presents a non-overlapping domain decomposition (DD) method for solving

reaction-diffusion systems. This approach addresses the problem directly on the interface

which allows for the presentation and analysis of a new type of interface preconditioner for

the arising Schur complement problem. This thesis will demonstrate that the new interface

preconditioner leads to a solution technique independent of the mesh parameter. More

precisely, the technique, when used effectively, exploits the fact that the Steklov-Poincaré



operators arising from a non-overlapping DD-algorithm are coercive and continuous, with

respect to Sobolev norms of index 1/2, in order to derive a convergence analysis for a DD-

preconditioned GMRES algorithm. This technique is the first of its kind that presents a

class of substructuring methods for solving reaction diffusion systems and analyzes their

behaviour using fractional Sobolev norms. All the results presented have been published

in [37](linear case only), and submitted in [36](general case) for reviewing.
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Chapter 1

Introduction

Reaction-diffusion models were introduced in 1930 by Fischer [23] in the context of models

for the spatial spread of an advantageous gene. Since then reaction-diffusion systems have

attracted a considerable amount of scientific interest. One of the main reasons for the

large amount of research dedicated to reaction-diffusion systems is their use for modeling

within various fields including chemistry, biology, medicine, genetics, physics and social

science [48, 57, 69, 76, 55, 15, 22, 55]. Reaction-diffusion models are generally represented

as a system of nonlinear PDE:



∂u
∂t

= D∆u + f(u) in Ω,

n.(∇u) = 000 on ∂ΩN ,

u = g on ∂ΩD,

u(x, 0) = u0(x) for x ∈ Ω,

(1.1)

where ∂Ω = ∂ΩD ∪ ∂ΩN denotes the boundary of Ω, u is a vector of morphogen con-

centrations, ∆ is the Laplace operator, f is a smooth function of reaction kinetics and D

is a diagonal matrix with positive constant diffusion coefficients. Qualitatively speaking,

the system (1.1) describes the variation of the concentration of one or more substances

over time and space under the influence of two terms: a diffusion term and a nonlinear
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interaction term.

One of the main features of reaction-diffusion systems is that the combination of these

terms leads to the possibility of threshold phenomena, such as multiple steady states

[69], spatiotemporal patterns, oscillating solutions and chaos [75, 71]. Reaction-diffusion

models are generally too complex to solve analytically, therefore it becomes important to

look for an efficient and accurate numerical solution. However obtaining a numerical so-

lution for reaction-diffusion systems remains a challenging task, as they are often applied

to high dimensional exotic domains [80] and require a good understanding of many ar-

eas of mathematics, such as bifurcation and stability theories, semigroup theory, singular

perturbations and numerical analysis.

1.1 Theoretical formulation

The following reaction-diffusion system is the central problem on which this research study

is based:

−D∆u + Mu = f in Ω,

n.(∇u) = 000 on ∂ΩN ,

u = g on ∂ΩD,

(1.2)

where:

u =

u1

u2

 , M =

α1(x, y) β1(x, y)

β2(x, y) α2(x, y)

 , f =

f1

f2

 , and D =

d1 0

0 d2

 ,

and Ω ⊂ R2 is an open simply-connected domain with boundary ∂Ω in R2. The prob-

lem is outlined more extensively within Chapter 4. While the equation (1.2) represents

the steady-state solution to the general system of (1.1), it can also represent the system
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arising from the time stepping routine which results from the discretization of problem

(1.1) over time. The numerical solution of reaction-diffusion problems remains a challenge

as they often arise as a system containing multiple and interconnected nonlinear partial

differential equations that are solved on a complex domain. Such a problem arises, for

example, in mathematical models of spatial and temporal behaviour of interacting species

or reactants in ecological or chemical systems [57], in the mathematical modeling of be-

haviour of an open system in which the transport of reactants and products relies on

molecular diffusion processes [34] and for mathematical modeling of the dorsal-ventral

pattern during the zebrafish embryo development [69].

Additionally, when looking for a numerical solution, one should not only take into con-

sideration the complexity of each domain and the physics of the phenomena associated

with the modeling but also exploit the emergence of parallel computing for the numeri-

cal solution as this leads to faster and more efficient algorithms. Domain decomposition

(DD) methods fall into this category.

1.2 A domain decomposition approach

In this dissertation, the solution of problem (1.2) is obtained using a non-overlapping

domain decomposition method. More precisely the domain Ω is partitioned into N sub-

domains without overlap such that:

Ω =
N⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ (i 6= j), Γi = ∂Ωi\∂Ω, Γ =
N⋃
i=1

Γi.

It will be shown in Chapter 7 that the domain decomposition formulation of (1.2) yields

a sequence of two decoupled sets of problems involving the same operator L = −D∆+M,

with essential boundary conditions on each subdomain, together with a problem set on
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the interface Γ :


Lwi = f in Ωi,

wi = 000 on ∂Ωi ∩ ∂ΩD,

n · ∇wi = 000 on ∂Ωi ∩ ∂ΩN ,

wi = 000 on Γi,

(1.3a)

{
Sλλλ = −∑N

i=1 ni · ∇wi on Γ , (1.3b)

Lvi = 000 in Ωi,

vi = 000 on ∂Ωi ∩ ∂ΩD,

n · ∇vi = 000 on ∂Ωi ∩ ∂ΩN ,

vi = λλλi on Γi.

(1.3c)

The variational formulation of (1.3a)-(1.3c) reads as follow (See Chapter 7 for more de-

tails)


Find wi ∈ H1

D(Ωi)×H1
D(Ωi) such that for all zi ∈ H1

D(Ωi)×H1
D(Ωi)

Bi(wi, zi) = (fi, zi), ∀i = 1, · · · , N.
Find λλλ ∈ Λ× Λ such that for all ηηη ∈ Λ× Λ

S(λλλ,ηηη) := 〈Sλλλ,ηηη〉 =
N∑
i=1

[(fi, Fiηηηi)−Bi(wi, Fiηηηi)].
Find ṽi ∈ H1

D(Ωi)×H1
D(Ωi) such that for all zi ∈ H1

D(Ωi)×H1
D(Ωi)

Bi(ṽi, zi) = Bi(vi, zi)−Bi(ti, zi) = −Bi(ti, zi), ∀i = 1, · · · , N.
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A mixed finite element method is then used to discretize the above formulations. The

finite element discretization of the domain decomposition (1.3a)-(1.3c) reads:


Find whi ∈ V h

iI × V h
iI such that for all zi ∈ V h

iI × V h
iI

Bi(whi, zhi) = (fi, zhi), ∀i = 1, · · · , N.
(1.5a)


Find λλλh ∈ Sh × Sh such that for all ηηηh ∈ Sh × Sh

s(λλλh, ηηηh) := 〈Sλλλh, ηηηh〉 =
N∑
i=1

[(fi, ηηηhi)−Bi(whi, ηηηhi)].
(1.5b)


Find ṽhi ∈ V h

iI × V h
iI such that for all zhi ∈ V h

iI × V h
iI

Bi(ṽhi, zhi) = −Bi(thi, zhi), ∀i = 1, · · · , N.
(1.5c)

One can show that the algebraic representations of subproblems (1.5a)-(1.5c) are given

by:

AIIwI = fI ,

SuΓ = fΓ − AΓIwI ,

vI = A−1
II AIΓuΓ ,

respectively, where S := AΓΓ−AΓI(AII)−1AIΓ and u = (wI+vI ,uΓ ) is the final solution.

This corresponds to the Schur-complement algorithm for following linear system:

Au =

 AII AIΓ

AΓI AΓΓ


 uI

uΓ

 =

 fI

fΓ

 = f (1.6)

If the chosen discretisation is stable, as defined in Chapter 5, then (1.6) has a unique

solution. However, the system matrix A may be too large to be stored in the computer

memory, making a direct method too expensive to use. Therefore it becomes convenient
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to use iterative methods as they approximate the solution u by computing a sequence

of progressively accurate iterates using simple algebraic operations (matrix vector and

vector products).

1.3 Iterative methods and preconditioning

For a large scale problem such as (1.6), it is necessary to use an iterative method together

with a suitable preconditioning technique. Among the different iterative methods, the

GMRES method was selected and combined with a right preconditioner. In this research

study we exploit the coercivity and continuity of the Steklov-Poincaré operators arising

in a non-overlapping DD-algorithm with respect to the Sobolev norm of index 1/2. For

this reason our preconditioner incorporates two sets of solutions:

• The solution of problems posed on the interior of each domain, which can be achieved

in parallel using direct methods.

• The solution of a problem involving the discrete Steklov-Poincaré operator, which

is approximated iteratively.

In Chapter 9, it will be seen that the following preconditioner:

PR =

 AII AIΓ

0 H1/2

 with;

where H1/2 is the finite element matrix representation of the norm ‖ . ‖1/2 can be consid-

ered as a suitable preconditioner for the arising linear system. Using the above precondi-

tioner, the following preconditioned system has been obtained:

AP−1
R =

 I 0

AΓIA
−1
II SH−1

1/2

 ,
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It will also be seen that the eigenvalues of SH−1
1/2 are located in a region of the complex

plane that does not depend on problem size and is also located in the right half-plane.

The GMRES method is then used to solve the linear system (1.6), from an initial guess

u0 and an initial residual r0 = Au0 − f , so that after the m iterations, the correction

vector zm from the Krylov subspace:

Km = K(r0, A,m) = span{r0, Ar0, · · · , Am−1r0}

solves the following minimization problem:

min
z ∈Km

‖f − A(u0 + z)‖. (1.7)

Due the the changing nature of our preconditioner, the flexible GMRES (FGMRES)

presented in [84] described by them Algorithm 1 has been exploited in our implementation.
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begin
Choose x0 and m. Define a (m+ 1)×m matrix Hm with entries hi,j = 0.

Compute r0 = b− Ax0, β = ‖r0‖2, v1 = r0/β.

for j = 1, · · · ,m do
zj := M−1

j vj, w := Azj

for i = 1, · · · , j do
hi,j := (w, vi), w := w − hi,jvj

end

hj+1,j = ‖w‖2, vj+1 = w/hj+1,j.

end

Define Zm := [z1, · · · , zm].

Compute xm = x0 + Zmym where ym = argminy‖βe1 −Hmy‖2 and

e1 = [1, 0, · · · , 0]T .
end

Algorithm 1: FGMRES: GMRES with variable Preconditioning
For an efficient implementation of the GMRES method the reader should refer to [66, 46].

1.4 Thesis overview

The thesis is organized as follows. Chapter 2 and Chapter 3 can be considered as the

building blocks of this research, as they present all the mathematical tools used in this

research to tackle reaction-diffusion problems. More precisely, Chapter 2 outlines in a

simple way some definitions and fundamental results from the field of functional anaysis

while Chapter 3 describes the theoretical aspects of finite element methods. Chapter 4

presents the mathematical aspect of reaction-diffusion systems. The first section of the

chapter looks at the question of how reaction-diffusion systems arise as a model. The

second section presents the derivation of the basic reaction-diffusion equation using Fick’s

Law and the last section discusses the question of the existence and the uniqueness of

its solution. Chapter 5 demonstrates the well-posedness of the mixed variational for-
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mulation of the problem (1.2) in a natural choice of norm together with all the technical

details.

Chapter 6 can be considered as a natural continuation of Chapter 5, as it gives a rigor-

ous presentation of some numerical schemes available to solve the problems arising from

Chapter 5. Chapter 7 to Chapter 9 contain the main theoretical contributions of the

thesis. Chapter 7 presents a rigorous formulation of non-overlapping domain decomposi-

tion methods for reaction-diffusion systems. The Steklov-Poincaré operator is derived and

studied together with various technical tools from functional analysis. In Chapter 8 and

Chapter 9 we present and analyse different types of preconditioning approaches for solv-

ing the Schur complement problem arising from non-overlapping domain decomposition

methods. While the preconditioners presented in Chapter 8 are based on the standard

technique of block matrix preconditioners of the Schur-complement for solving the linear

system, the preconditioners described in Chapter 9 are motivated by the fact that the

Steklov-Poincaré operators arising in a non-overlapping DD−algorithm are coercive and

continuous with respect to Sobolev norms of index 1/2 [5]. Here an innovative interface

preconditioner for the Steklov-Poincaré operator together with the convergence analysis

for the preconditioned GMRES can be found.

In Chapter 10, the theoretical results obtained through different test problems are val-

idated together with experiments outside the theoretical framework presented. Finally,

Chapter 11 outlines the conclusions of the research study and summarizes other key

aspects of the thesis.
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Chapter 2

Mathematical Background

The aim of this chapter is to outline some definitions and fundamental results from the

field of functional analysis given in [49, 35, 18], which are used to elaborate this research

study.

2.1 Definitions and notation

Let Ω be an open domain ∈ Rn. In addition, the set of independent variables is denoted

by x = xi, i = 1, . . . , n.

Definition 2.1.1 An n−tuple of α = (α1, · · · , αn), αi ∈ N is called a multi-index of

order k := |α| = α1 + · · ·+ αn. Let x ∈ Rn, the product xα1
1 · · ·xαnn is denoted by xα and

Dα = ∂|α|

∂x
α1
1 ···∂x

αn
n

is the partial differential operator of order k = |α|.

Definition 2.1.2 Let α be a multi-index of order k. The set of continuous, real-valued

functions defined on Ω, which are k times differentiable, is denoted by Ck(Ω):

Ck(Ω) := {u : Ω→ R|Dαu continuous on Ω, for all α with |α| 6 k}. (2.1)

Definition 2.1.3 Let 1 6 p < ∞, the set of real-valued functions whose absolute value

10



raised to the pth power is integrable is defined by Lp(Ω):

Lp(Ω) :=
{
u(x) : Ω→ R :

∫
Ω
|u(x)|p dx <∞

}
.

Lp(Ω) spaces are Banach spaces when endowed with the norm:

‖u(x)‖Lp(Ω) :=
(∫

Ω
|u(x)|p dx

)1/p

This study is mainly concerned with the space L2(Ω), which can be seen as a Hilbert

space when endowed with the inner product:

〈u, v〉L2(Ω) =
∫

Ω
u(x)v(x)dx.

Definition 2.1.4 Let α be a multi-index of order k. The Sobolev space of order k is

denoted by:

W k,p(Ω) := {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω) for all α with |α| 6 k} .

W k,p(Ω) are Banach spaces when equipped with the norm:

‖u‖Wk,p(Ω) := ‖u‖k,p,Ω := ‖u‖k,p :=
∑
|α|6k
‖Dαu‖pLp(Ω)

1/p

, 1 6 p <∞.

Spaces W k,2(Ω), which are denoted by Hk(Ω) arise naturally when solving PDEs. These

spaces are classed as Hilbert when equipped with the inner product:

〈u, v〉 =
∑
|α|6k
〈Dαu,Dαv〉L2(Ω).
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and are by Definition ref kamdef Sobolev spaces. This research study is particularly

concerned with the following Sobolev spaces:

H1(Ω) =
{
v ∈ L2(Ω) : ‖∇v‖0 <∞

}
,

endowed with the norm:

‖v‖2
H1(Ω) = ‖v‖2

1,Ω = |v|20,Ω + |v|21,Ω = ‖v‖2
L2(Ω) + ‖∇v‖2

L2(Ω);

with:

|v|21,Ω :=
n∑
j=1
‖ ∂v
∂xj
‖2
L2(Ω) = |∇v|20,Ω = ‖∇v‖2

L2(Ω).

We also define:

H1
D(Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂ΩD }.

Another space of interest is H1/2(U), which is the interpolation space of index 1/2 between

H1(U) and L2(U) of an open non-empty subset U ∈ ∂Ω denoted by:

H1/2(U) := [H1(U), L2(U)]1/2

equipped with the norm ‖ . ‖1/2,U [62]. We also define the generic space Λ, which is the

interpolation space between the spaces H1
∗ and L2(U):

Λ := [H1
∗ , L

2(U)]1/2.

12



H1
∗ can be one of H1(U), H1

0 (U) or H1
D(U) depending on the boundary conditions of the

problem. The space Λ is also equipped with the same norm as H1/2(U) and its dual space

will be denoted throughout the thesis by Λ′. We will return to the illustration of this

space in Chapter 9.

Finally, we introduce the following inequalities [78], [62, p. 6]:

Lemma 2.1.5 (Poincaré-Friedrichs inequality) Let Ω ⊂ Rn be a bounded open set with a

sufficiently smooth boundary ∂Ω. Then there exists a constant C = C(Ω) so that for all

v ∈ H1
D(Ω)

‖v‖L2(Ω) = ‖v‖0,Ω 6 C(Ω) |v|1,Ω . (2.2)

Lemma 2.1.6 The trace operator γ0 : H1(Ω)→ H1/2(∂Ω) is surjective and continuous

i.e., there exists a constant Cγ(∂Ω) so that

‖γ0v‖1/2,∂Ω 6 Cγ‖v‖1,Ω ∀v ∈ H1(Ω). (2.3)

Remark 2.1.7 We note the following:

1. For the case when v ∈ L2(Ω)× L2(Ω) or v ∈ H1(Ω)×H1(Ω), we will overload the

definitions of norms ‖ . ‖0 and ‖ . ‖1 with

‖v‖2
0 = ‖v1‖2

L2(Ω) + ‖v2‖2
L2(Ω), ‖v‖2

1 = ‖v1‖2
H1(Ω) + ‖v2‖2

H1(Ω). (2.4)

2. The notations ‖ . ‖1/2,∂Ω, ‖ . ‖1/2,Γ will overload the notations ‖ . ‖H1/2(∂Ω)×H1/2(∂Ω)

and ‖ . ‖H1/2(Γ )×H1/2(Γ ) respectively.

3. An extension of Lemma 2.1.6 to the vector case can be easily derived.
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2.2 Variational formulation of PDE

We will see in Chapter 5 how to reduce a reaction-diffusion system into an integral for-

mulation involving a bilinear form defined on some suitable space. This type of equation

is known as the variational form of the PDE. All the results presented here are fully de-

scribed in [49, p.116].

Let H denote a Hilbert space with the inner product 〈 . 〉H .

Definition 2.2.1 A bilinear form a(·, ·) : H×H → R is continuous if there is a constant

c1 > 0 such that:

a(u, v) 6 c1‖u‖H‖v‖H ∀ u, v ∈ H.

Definition 2.2.2 A bilinear form a(·, ·) : H × H → R is coercive if there is a constant

c2 > 0 such that:

a(v, v) > c2‖v‖H‖v‖H ∀ v ∈ H.

Let V ⊂ H denote a closed subspace of H. Then V is also a Hilbert space when endowed

with the H-inner product 〈., .〉H .

Let l be a linear functional on V . Furthermore, let a(., .) : V × V → R be a bilinear form

on V . Consider the following abstract variational problem:


Find u ∈ V such that for all v ∈ V

a(u, v) = l(v).
(2.5)

The existence and uniqueness of the problem (2.5) is well-understood. We quote below

the main results.

Lemma 2.2.3 (Lax-Milgram -see Theorem 7.2.1 in [49])

Let a(·, ·) be a continuous and coercive bilinear form on V and let l denote a continuous
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linear functional on V . Then there exists a unique function u ∈ V such that for all v ∈ V

a(u, v) = l(v).

Proof: The reader is referred to [49, p.118].

In theory the variational problem posed on V is replaced by a new problem posed on a

finite-dimensional subspace of V : Vh ⊂ V . The resulting discrete variational reads:


Find uh ∈ Vh such that for all vh ∈ Vh

a(uh, vh) = l(vh).
(2.6)

The formulation is called the Ritz-Galerkin methods, which give rise to a linear algebraic

system once the basis of Vh is specified. This will be presented in the next chapter.
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Chapter 3

Finite Element Method

This chapter covers the main idea of finite element methods for PDE and also highlights

the theoretical issues discussed in later chapters.

3.1 Finite element construction

As presented in the previous chapter, the first step of a finite element method is to

transform the the original problem into its variational form:


Find u ∈ V such that for all v ∈ V

a(u, v) = l(v).
(3.1)

Then, construct a finite-dimensional subspace of V : Vh ⊂ V , such that the problem (3.1)

is replaced by:


Find uh ∈ Vh such that for all vh ∈ Vh

a(uh, vh) = l(vh).
(3.2)

In practice the subspace Vh subspace is formed of continuous piecewise polynomial func-

tions of a fixed degree associated with a triangulation of the solution domain presented

below.
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Ki

Ω

Figure 3.1: A finite element triangulation of a polygonal domain.

3.1.1 Domain Triangulation

The domain Ω is divided into a set Th = {K1, · · · , KN} of non-overlapping triangles Ki

as shown in Figure (3.1):

Ω =
⋃

K∈Th
K = K1 ∪K2 . . . ∪KN .

Let hK be the diameter of the circumscribed circle of K, with:

h = max
K∈Th

hK , hmin = min
K∈Th

hK .

The triangulation is constructed such that no vertex of one triangle lies on the edge of

another, i.e. it is a conforming subdivision of Ω and each interior node (Nj) is associated

with a basis function φj. Then, we can write:

dim Vh = N(h) and Vh = span{φj, · · · , φN(h)}.

The basis functions φj for j = 1, · · · , N(h) can be taken to be linear polynomial, in

particular to satisfy:

φj(Ni) = δij;
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Ki

Ω

Nj

φj

Figure 3.2: The basis function φj.

We can expand uh in terms of the basis φj as:

uh =
N(h)∑
j=1

ujφj(x) (3.3)

Finally, using the discrete formulation (3.2), one should assemble and form the linear

system:

Au = B, (3.4)

which is equivalent to:


Find (u1, · · · , uN(h)) ∈ RN(h) such that:

N(h)∑
i=1

a(φi, φj)ui = l(φj), j = 1, · · · , N(h).
(3.5)

Where the unknown is u = (u1, · · · , uN(h)) and the matrix of the system is A = a(φj, φi)

of size N(h) × N(h). Here, the matrix A is sparse as the basis functions φi’s have local

support. This latter property provides a great advantage from a computational point of

view: They can be stored more easily and special algorithms can be employed to provide
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the solution in optimal time (see Chapter 6).

3.2 Calculation and assembly of element matrices

In this section, we want to generalize the construction of a finite element method, when

Ω is a bounded polygonal in the plane. Consider the same triangulation as that in the

previous section so that any arbitrary triangular element has its vertices indexed 1, 2, and

3. The restriction of u to the triangular element K ∈ Th is denoted by:

u(e)(xj, yj) = c1 + c2xj + c3yj for j = 1, 2, 3. (3.6)

Solving the linear system resulting from (3.6) we obtain:

c1 = 1
2A123

(α1u
(e)
1 + α2u

(e)
2 + α3u

(e)
3 ), (3.7)

c2 = 1
2A123

(β1u
(e)
1 + β2u

(e)
2 + β3u

(e)
3 ), (3.8)

c3 = 1
2A123

(θ1u
(e)
1 + θ2u

(e)
2 + θ3u

(e)
3 ), (3.9)

where: A123 is the area of the triangle and:

αi = xjyk − xkyj, (3.10a)

βi = yj − yk, (3.10b)

θi = −(xj − xk), (3.10c)

where i, j, k = 1, 2, 3.

Substituting (3.7)-(3.9) into (3.3) we obtain:

u
(e)
h (x, y) =

3∑
i=1

uiφi(x, y), (3.11)
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where

φ1 = 1
2A123

(α1 + β1x+ θ1y), (3.12a)

φ2 = 1
2A123

(α2 + β2x+ θ2y), (3.12b)

φ3 = 1
2A123

(α3 + β3x+ θ3y). (3.12c)

The expression (3.11) can be simplified using the so called local (ξ, η) coordinate system.

In the (ξ, η) coordinate system , each triangle K ∈ Th is mapped onto a unit right-angled

triangle E as shown in Figure 3.3 using the following affine transformation:


x = aξ + bη + c

y = dξ + eη + f.
(3.13)

Say E has vertex 1 at the origin (0, 0), vertex 2 at (1, 0), vertex 3 at (0, 1) the local

coordinates x(ξ, η) and y(ξ, η) have the following expression:


x(ξ, η) = (x2 − x1)ξ + (x3 − x1)η + x1

y(ξ, η) = (y2 − y1)ξ + (y3 − y1)η + y1

(3.14)

x

y

ξ

η

1(0, 0) 2(1, 0)

3(0, 1)

r1(x1, y1)

r2(x2, y2)

r3(x3, y3)

Figure 3.3: Linear transformation of a triangular element to a right-angled triangle
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where (xi, yi), i = 1, 2, 3 are the Cartesian coordinates of the vertices. The Jacobian

matrix of this affine transformation is given by:

J =

 x2 − x1 x3 − x1

y2 − y1 y3 − y1

 (3.15)

from which it follow that the Jacobian is given by:

|J| = det


1 1 1

x1 x2 x3

y1 y2 y3

 = 2A123, (3.16)

where, as before A123 is the area of the triangle.

By substituting (3.10) and (3.14) into (3.12), we obtain:

φ̂1(ξ, η) = 1− ξ − η, (3.17)

φ̂2(ξ, η) = ξ, (3.18)

φ̂3(ξ, η) = η. (3.19)

Therefore, from (3.11), we obtain:

u(e)(x(ξ, η), y(ξ, η)) = û(e)(ξ, η) =
3∑
i=1

uiφ̂i(ξ, η) (3.20)

This new expression of u(e) is then used to construct the matrix A in (3.5) by the summing

of the contribution from each element over the domain Ω. In the next section we present

the derivation of some special matrices derived later in chapter 5
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3.3 Derivation of special matrices

3.3.1 The mass matrix

• The mass matrix with constant coefficient.

The element mass matrix is given by:

M (e) = (me)ij =
∫
K
φi(x, y)φj(x, y)dxdy. (3.21)

Mapping to the canonical element we get:

(me)ij =
∫
E
φi(ξ, η)φj(ξ, η)|J|dξdη. (3.22)

• The mass matrix with non constant coefficient

(me)ij =
∫
K

τ(x, y)φi(x, y)φj(x, y)dxdy. (3.23)

Mapping to the reference element, we get:

(me)ij =
∫
E

τ(x(ξ, η), y(ξ, η))φi(ξ, η)φj(ξ, η)|J|dξdη. (3.24)

Where τ is the non constant coefficient.

3.3.2 The stiffness matrix with constant coefficient

The element stiffness matrix is given by:

L(e) = (le)ij =
∫
K
∇φi(x, y)∇φj(x, y)dxdy,

=
∫
K

(∂xφi(x, y)∂xφj(x, y) + ∂yφi(x, y)∂yφj(x, y)) dxdy. (3.25)
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Mapping to the reference element we obtain:

(le)ij =
∫
E

[(ξx∂ξφi(ξ, η) + ηx∂ηφi(ξ, η)) (ξx∂ξφj(ξ, η) + ηx∂ηφj(ξ, η)) +

(ξy∂ξφi(ξ, η) + ηy∂ηφi(ξ, η)) (ξy∂ξφj(ξ, η) + ηy∂ηφj(ξ, η))]|J|dξ.dη. (3.26)

3.3.3 The right hand side approximation

Assuming that the forcing term is approximated in the FEM space by:

f(x, y) =
∑
i

f(xi, yi)φi(x, y).

The elements of the RHS are given by (F )(e) = (fe)j, where:

(fe)j =
∫
K

∑
i

f(xi, yi)φi(x, y)φj(x, y)dxdy. (3.27)

Mapping to the reference element we obtain:

(fe)j =f(xi, yi)
∫
E

∑
i

φi(ξ, η)φj(ξ, η)|J|dξdη =
∑
i

(me)jif(xi, yi). (3.28)

The integrals (3.22),(3.24),(3.26),(3.28) are evaluated using a suitable Gauss rule. All the

results presented above are for the scalar case. However, when solving a system of PDEs

involving more than one unknown, one should consider mixed finite element method as

each unknown may require a different finite element space.

3.4 Mixed variational formulation

When having to deal with a system of PDEs with two or more unknowns, the continuity

of the bilinear form a(., .) is never a problem, however the coercivity is not always guar-

anteed. The result below generalize the case of mixed finite variational formulations, i.e.
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formulations which employ a bilinear form acting on mixed spaces: a(., .) : H1×H2 → R,

where Hi, i = 1, 2 denotes two Hilbert spaces with inner products and norms 〈, 〉Hi , ‖., .‖H1 ,

i = 1, 2, respectively. We state the results below [81]:

Theorem 3.4.1 Let V1× V2 ⊂ H1×H2 and let l denote a continuous bilinear functional

on V2. Let a(., .) be a linear form on V1 × V2 which satisfies for all v ∈ V1, w ∈ V2:

a(v, w) 6 C1‖v‖H1‖w‖H2 , (3.29a)

sup
u∈V1\{0}

a(v, w)
‖v‖H1

> C2‖w‖H2 , (3.29b)

sup
u∈V1\{0}

a(v, w)
‖w‖H2

> C2‖v‖H1 . (3.29c)

(3.29d)

Then there exits a unique function u ∈ V1 such that for all V2:

a(u, v) = l(v)

.

The conditions 3.29a-3.29c in Theorem 3.4.1 is generally refereed to as the inf-sup condi-

tions and may make the definition of the finite element spaces more complicated. However,

how we show in the next chapter, our problem yields a coercive bilinear form under certain

conditions and hence 3.29a-3.29c are satisfied.
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Chapter 4

Reaction-Diffusion Systems

The aim of this chapter is to introduce the central object of the study. In doing so, the

chapter will present some applications of reaction-diffusion systems. It also describes the

derivation and discusses the existence and uniqueness of the solution to reaction-diffusion

systems.

4.1 Applications

Reaction-diffusion systems may be utilized to model a vast variety of phenomena in applied

mathematics. The partial list includes:

• Biology. There are now a large number of real life problems in biology that involve

reaction-diffusion systems. Among the most notable of these are the Brusselator

and the Schnakenberg model presented in [54].

The Brusselator model is represented by the following set of PDEs:


ut = ∆u+ a− (b+ 1)u+ u2v on Ω;

vt = d∆v + bu− u2v on Ω;

n.∇u = 0 on ∂Ω.

(4.1)
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The Schnakenberg model is defined by the following set of PDEs:


ut = ∆u+ γ(a− u+ u2v) on Ω;

vt = d∆v + γ(b− u2v) on Ω; 0

n.∇u = 0 on ∂Ω.

(4.2)

The models presented in (4.1) and (4.2) are often used to study the emergence of

pattern formation. It has been shown that they describe interesting patterns such

as chaos and certain structures which include self-oscillations and self-replicating

spikes and stripes [56, 48].

• Electrodynamics. The following 6 × 6 system presented in [59] represents the

electro-decomposition of Nickel-Iron:



∂twi − di(wi)xx + b(x)(wi)x − [wiφx]x = Si(w),

S1 = S2 = 0, S3(w) = S4(w) = −S5(w),

−[φ]xx =
5∑
i=1

ziwi, zi ∈ R + bdy conditions,

i = 1, · · · , 5.

(4.3)

The model has been studied in [4]. It is mainly used in the field of alloy deposition,

namely for the recording, memory and storage devices of electronics goods.

• Pollution effects modeling. One of the most interesting examples of the appli-

cation of reaction-diffusion systems comes from the modeling of pollutant transfers

into the atmosphere. The modeling of the atmospheric dispersion of ozone and other

photochemically generated pollutants can be represented by the following PDEs:

∂φi
∂t

= di
∂2φi
∂z2 +∇ · (ωφi) + fi(φ) + gi. (4.4)
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Here φi represents the molecular densities for species i, the velocity field ωi =

(ω1, ω2, ω3) models the atmospheric current, di is the diffusion coefficient for species

i, fi(φ) are nonlinear reaction terms, representing the chemistry of the process,

and gi are source terms. [24] provides further details with regards to cases where

i = 1, · · · , 20.

See [59, 64, 19] for further examples of applications of reaction-diffusion systems.

4.2 Derivation

Let Ω be a region with boundary ∂Ω and n denotes the outer normal vector to ∂Ω. Using

Fick’s law [26], we arrive at the following equation:

∫
∂Ω

[(−n) · JD] ds =
∫
∂Ω
D∇u · n ds, (4.5)

where D is a positive constant called the diffusivity and JD the flux density.

The rate of change of the particle mass in the domain Ω is given by:

∂

∂t

∫
Ω
u dx =

∫
∂Ω

[(−n) · JD] ds +
∫

Ω
f(t, x, u)dx, (4.6)

where f(t, x, u) is the net creation rate of the particle at x ∈ Ω at time t.

Assuming that u and ∂Ω are smooth enough, by applying the divergence theorem on the

right side of (4.6) and combining with (4.5) the following equation will be obtained:

∫
Ω

(
∂u

∂t

)
dx =

∫
Ω
D∇2udx+

∫
Ω
f(t, x, u)dx. (4.7)

This yields the following reaction-diffusion equation:

ut = D∇2u+ f(t, x, u). (4.8)
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Equation (4.8) is considered the simplest model of a reaction-diffusion system. However,

the combination of a diffusion term together with a nonlinear term makes it difficult to

obtain an analytical solution of the equation. It is therefore important to note that the

existence and the uniqueness of the solution will depend on some conditions imposed on

f .

4.3 Existence and uniqueness

Due to the increasing need of reaction-diffusion systems in scientific modeling, the global

existence of solution to reaction-diffusion systems has received a great deal of interest.

Consider the following reaction-diffusion system:


∂tu− d1∆u = f(u, v) in R+ × Ω,

∂tv − d2∆v = g(u, v) in R+ × Ω,
(4.9)

with the boundary conditions:

n.∇u = 0, n.∇v = 0 on R+ × ∂Ω (4.10)

and initial data:

u(0, .) = u0, v(0, .) = v0 in Ω, (4.11)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. We assume that the

following basic hypotheses hold:
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Assumptions 4.3.1 .

• d1, d2, ξ1, ξ2 are constants with d1, d2, > 0 and ξ1, ξ2 > 0;

• f and g are positive continuously differentiable functions from R+ × R+ into R;

• u0(.) and v0(.) are measurable and bounded on Ω with u0(.), v0(.) > 0.

Fife [22, chap. 3] has established the local existence of unique, nonnegative, classical

solution of problem (4.9) on Ω× [0, T ∗) under the conditions that assumption 4.3.1 holds.

In addition to the assumptions made in 4.3.1 Haraux et al. [27], Hollis et al. [30] have

obtained global existence results of problem (4.9) by imposing some additional structural

conditions on f, g namely:

Assumptions 4.3.2 .

f(r, s) + g(r, s) 6 C1(r, s)(r + s+ 1) ∀r, s > 0; (4.12)

f(r, s) 6 C2(r, s)(r + s+ 1) ∀r, s > 0; (4.13)

where C1, C2 : R+ × R+ → R are some positive and uniformly bounded functions.

An extension to a class of reaction-diffusion problems involving more than two unknowns

has been explicitly derived by Morgan [52], Hollis [31] and Martin et al. [50]. It is impor-

tant to note that Assumption 4.3.2 ensures that the total mass of the components of the

system (4.9) is controlled over the time, as the possibility of blow-up may occur in finite

time (see for example Pierre and Schmitt [60]).

Recently, some progress has been established on the global existence results for solutions of

reaction-diffusion systems: Kouachi [40, 41] and Perterson [58] have obtained global exis-

tence results for solutions of problem (4.9) by relaxing the usual monotonicity assumption

on the nonlinear term f , more precisely by ignoring the condition (4.13). Chandrasekhar
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et al [74] extended the work done in Morgan [52] to establish the existence and uniqueness

for reaction-diffusion systems on evolving domains. A good survey on global existence in

reaction-diffusion systems with the control of mass can be found in [59]. For the rest of

the thesis, we assume that the assumptions 4.3.1 and 4.3.2 hold and our only focus will

be the numerical approximation of problem (4.9).
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Chapter 5

Finite Element Methods for

Reaction-Diffusion Systems

In this chapter we describe the model problem and present an appropriate mixed varia-

tional finite element formulation.

5.1 Model problem

We consider the following problem:


−D∆u + M(x)u = f on Ω,

u = 000 on ∂ΩD,

n · ∇u = 000 on ∂ΩN ,

(5.1)

where Ω ⊂ R2 and

u =

u1

u2

 , M(x) =

α1(x) β1(x)

β2(x) α2(x)

 , f =

f1

f2

 , D =

d1 0

0 d2

 ,
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with f1, f2 ∈ L2(Ω), d1, d2 > 0. We also assume that the following inequalities hold for

all x ∈ Ω:

0 < γmin <
ξξξTM(x)ξξξ
ξξξTξξξ

for all ξξξ ∈ R2 \ {0}, (5.2)

‖M(x)‖ < γmax. (5.3)

where γmin, γmax are positive real constants.

Remark 5.1.1 The following scaled version of problem (5.1) can also be considered:

−I2∆v + MD−1v = f , where v = Du. (5.4)

As mentioned in Chapter 2, it is possible to reduce a PDE to an integral formulation

involving a bilinear form defined on a suitable space. The same can be done for reaction-

diffusion problems as they are simply a system of PDE.

5.2 Weak formulation

Choose a test function z = (z1, z2) ∈ H1
D(Ω)×H1

D(Ω), multiply (5.1) by z and integrate

by parts to obtain :

∫
Ω

D∇u · ∇z + (Mu) · zdx =
∫

Ω
f · z dx. (5.5)

The weak formulation of problem (5.1) can be written as:


Find u ∈ H1

D(Ω)×H1
D(Ω) such that for all z ∈ H1

D(Ω)×H1
D(Ω)

B(u, z) =< f , z >,
(5.6)
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where:

B(u, z) =
∫

Ω
D∇u : ∇z + (M(x)u) · z dx, < f , z >=

∫
Ω

f · z dx.

We are concerned with the existence and the uniqueness of a solution u to problem (5.6).

Theorem 5.2.1 Consider problem (5.1) such that (5.2) and (5.3) hold. Then, problem

(5.1) has a unique solution in H1
D(Ω)×H1

D(Ω).

Proof: From (5.6) together with (5.2) and (5.3), we have:

B(u, z) =
∫

Ω
(∇u : ∇z + (Mu) z) dx,

=
∫

Ω

(
∇u : ∇z + uTMz

)
dx,

6 ||∇u||20 ||∇z||20 + γmax ||u||20 ||z||
2
0 ,

6 max{1, γmax}︸ ︷︷ ︸
c1

(
||u||21 ||z||

2
1

)
.

Analogously, one can derive the following lower bound:

B(z, z) >
∫

Ω

(
∇z : ∇z + zTMz

)
dx

>
(
||∇z||20 + γmin ||z||0

)
,

>min{1, γmin} ||z||21

>min{1, γmin}︸ ︷︷ ︸
c2

||z||21 .

33



Finally it holds:

l(z) :=< f , z >=
∫

Ω
f · z dx,

6 ||f ||20 ||z||
2
0 ,

6 C(Ω) ||f ||21 ||z||
2
1 .

Hence by Theorem (2.2.3), there exists a unique solution u ∈ H1
D(Ω)×H1

D(Ω) to problem

(5.6).

5.3 Discrete formulation

Let V h × V h be a finite dimensional subspace of H1
D(Ω) × H1

D(Ω). The discrete weak

formulation of problem (5.1) reads:


Find uh ∈ V h × V h such that for all zh ∈ V h × V h

B(uh, zh) =< fh, zh > .
(5.7)

The formulation (5.7) is known as the Ritz-Galerkin method. A notable property of this

formulation can be obtained by replacing z by zh in (5.6) and subtracting (5.7) to get:

B(u− uh, zh) = 0, ∀ zh ∈ V h × V h. (5.8)

This is an important result that can be used for error analysis (see Céa’s Lemma- see

Theorem 13.1 in [18, p.113]). The existence and uniqueness of the solution to (5.7) is also

guaranteed by the Lax-Milgram Lemma, provided the continuity and coercivity conditions

are satisfied.
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5.4 Matrix formulation

Consider a triangulation of the domain as presented in Section 3.1.1 and let

uh =
N∑
i=1

uiφi(x), zh =
N∑
i=1

ziφi(x), (5.9)

where span{φi} = Vh.

Inserting these approximations into the linear form of (5.7), we obtain the following system

of equations:

Au =

 d1L+Mα1 Mβ1

Mβ2 d2L+Mα2


 u1

u2

 =

 Mf1

Mf2

 . (5.10)

where L =
∫

Ω
∇φi(x)∇φj(x)dx, M =

∫
Ω
φi(x)φj(x)dx andMω =

∫
Ω
ωiφi(x)φj(x)dx, ω ∈

{α1(x), α2(x), β1(x), β2(x)}. The matrices M and L are respectively the standard mass

and stiffness matrix while Mα1 , Mα2 ,Mβ1 ,Mβ2 represent global mass matrices resulting

from the zero-order terms. They are all constructed as described in Section 3.2. It is

obvious that the system (5.10) is a large sparse system. In practice iterative methods are

used to solve such a system as they are more flexible and computationally cheap.
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Chapter 6

Solution Methods for Sparse

Linear Systems

In practice, most PDE discretizations lead to large linear systems of the form:

Au = f , (6.1)

where A is often a large sparse or banded matrix. To take advantage of the zero entries

and to reduce the computational cost, some special iterative techniques have been devel-

oped. They are largely divided into two main classes: classical and projection iterative

methods. Classical methods are easy to implement but generally too slow while projection

iterative methods are robust and can be combined with other methods such as domain

decomposition. This combination has been used in this research study as this leads to

the derivation of efficient solvers. Additionally the resulting solvers can take advantage of

the emergence of supercomputers as they can be easily implemented in parallel. In this

chapter, we describe projection iterative and domain decomposition methods for large

sparse linear systems. The theory and the practical aspects will be included.
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6.1 Projection iterative methods

These are methods which compute a sequence of progressively accurate iterates um, to

approximate the solution of problem (6.1) so that the residual rm = f −Aum satisfies the

more general Petrov-Galerkin condition:

(rm,y) = 0 ∀y ∈ Wm, (6.2)

where Wm is a subspace of Rm of dimension m.

To obtain a matrix formulation of the problem (6.2), let Vm = [v1, · · · , vm] ∈ Rn×n whose

column vectors form a basis of Vm and Wm = [w1, · · · , wm] ∈ Rn×n whose column vectors

form a basis of Wm. The iterates um are of the form:

um = u0 + Vmzm with zm ∈ Rm, (6.3)

from (6.2) we obtain:

W T
m(f − Au0 − AVmzm) = 0⇔ W T

mr0 = W T
mAVmzm. (6.4)

This leads to:

um = u0 + Vmzm = u0 + Vm(W T
mAVm)−1W T

mr0. (6.5)

From (6.5) we can see that the existence of um is dependent on the non-singularity of the

matrix W T
mAVm. Therefore it becomes important to carefully choose the subspaces Vm

and Wm.
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In practice, they are chosen to be Krylov subspaces, which are defined as:

Km = K(r0, A,m) = span{r0, Ar0, · · · , Am−1r0}. (6.6)

Modern iterative methods use Krylov subspaces divided into three main classes depending

on the choice of Vm and Wm:

• The Ritz-Galerkin approach (Wm = Vm = K(r0, A,m)).

In this approach we seek um so that the residual is orthogonal to the current space.

If A is symmetric positive definite, then ‖um − u‖A is minimized. The conjugate

gradient method falls into this category when the matrix is symmetric positive

definite. Another method is the Full orthogonalization method (FOM).

• The Petrov-Galerkin approach (Vm = K(r0, A,m); Wm = K(r0, A
T ,m))

In the case of A symmetric, this approach is equivalent to the first one. However, this

case was mainly designed for non-symmetric problems. Some illustrations of this

approach are the biconjugate gradient method (BICG) and the conjugate gradient

squared method (CGS).

• The minimum residual approach (Vm = K(r0, A,m); Wm = AK(r0, A,m))

In this approach um is obtained such that ‖f − Aum‖2 is minimized. Examples of

these methods are the Conjugate Residual method and the very popular GMRES

method.

The GMRES method is well known for being able to solve sparse linear systems

with a nonsymmetric nonsingular matrix. In practice, to compute the value of xm

a set of m orthogonal basis vectors has to be generated and stored and this set

has to be expanded with one new basis vector in each iteration. To overcome this

issue, one can restart GMRES if m exceeds a threshold. This procedure is called

the restarted GMRES method (GMRES(m)), where m is the maximal dimension of
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the Krylov subspace. The price that one has to pay for restarting is that GMRES

loses its optimality property, and convergence may slow down considerably [72]. An

exhaustive analysis of both versions can be found in [66].

In order to predict and analyze the convergence of GMRES, several upper bounds

on the residual norm have been proposed. A class of such bounds are based on the

H-field of values of any matrix M defined in [65] as:

WH(M) =
{
z ∈ C : z = x∗HMx

x∗Hx
=: 〈x,Mx〉H
〈x, x〉H

, x ∈ Cn \ {0}
}
,

where H ∈ Rn×n is a symmetric positive-definite matrix. This class of bounds has

many advantages: they are easy to compute and play an important role in the

analysis of preconditioners; more precisely, to prove that the solution technique is

independent of the mesh parameters. The classical bounds of the GMRES-residual

norm are based on the field of values [45, 73, 65] as:

‖rk‖H
‖r0‖H

6

(
1− ξ2

1
ξ2

2

)k/2
, k = 0, 1, · · · . (6.7)

where:

ξ1 = min
z∈WH(M)

Re(z) = min
x∈Rn\{0}

〈x,Mx〉H
〈x, x〉H

, and ξ2 = max
z∈WH(M)

|z| .

More bounds can be found in [20, 73].

Many other iterative methods have been proposed in the literature. The reader may

consult [9, 65, 25] for more details.
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6.2 Domain decomposition methods (DD)

DD methods have a long history going back to the nineteenth century. They are often

referred to as divide and conquer techniques as they divide the domain into subdomains

and then obtain the solution by solving smaller problems on these subdomains. Such a

formulation creates a very natural framework for solvers, which are easily parallelized on

coarse grain parallel computers. They are commonly classified into two major categories:

overlapping and non-overlapping subdomain algorithms.

6.2.1 Overlapping subdomains algorithms

In general, overlapping algorithms are generally referred to as Schwarz methods as they

can be seen as an extension of the work done by Hermann Schwarz in 1870 [68]. In

his work Hermann Schwarz [68], proposed a new approach for solving PDE on an exotic

domain by dividing the domain into two simple domains, namely a disc and a rectangle.

The main feature of this approach is that the original domain Ω is subdivided into a finite

number N of overlapping subdomains Ωi such that:

Ω =
N⋃
i=1

Ωi, for i = 1, · · · , N. (6.8)

Let Ii denote the indices of the nodes in the interior domain Ωi, and ni the number of

indices in Ii, we have for i = 1, · · · , N

I =
N⋃
i=1

Ii, and n <
N∑
i=1

ni (due to overlap) (6.9)
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where n is the number of unknowns in Ω.

Let also RT
i be the rectangular n× ni extension matrix of the domain Ωi such that:

(RT
i xi)k =


(xi)k for k ∈ Ii,

0 for k ∈ I − Ii
(6.10)

where xi is a given subvector of length ni. Schwarz methods can be classified into two

categories:

• Additive Schwarz methods described by:

um+1 = um +
N∑
i=1

RT
i A
−1Ri(f − Aum). (6.11)

• Multiplicative Schwarz methods described by:

um+1 = um +
N∏
i=1

RT
i A
−1Ri(f − Aum). (6.12)

where Ai = RiAR
T
i the restriction of A to Ωi. In practice both equations (6.12) and

(6.11) are often preconditioned (See [67, 65] for more details) in a way that they can be

used within an accelerator such as GMRES. One of the main drawbacks of overlapping

subdomain algorithms is that they are not efficient as the overlap becomes smaller [11],

and also for elliptic equations with large jump coefficients [78]. Therefore, it is better to

consider non-overlapping domain decomposition algorithms. This will be covered in the

next section.
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6.2.2 Non-overlapping subdomains algorithms

In contrast to overlapping subdomains algorithms, the original domain Ω is subdivided

into a finite number N of non-overlapping subdomains Ωi:

Ω =
N⋃
i=1

Ωi,

Ωi ∩ Ωj = ∅ (i 6= j).
(6.13)

The main feature of any non-overlapping subdomains algorithm is that the original system

(6.1) can be transformed into a reduced system on the interface Γ .

To understand this transformation, let us define the following sets:

I =
N⋃
i=1

Ii, and Γ =
N⋃
i=1

Γi; (6.14)

where Ii denotes the indices of the nodes in the interior domain Ωi, and Γi the indices of

the nodes which lie on the boundary ∂Ωi \ ∂Ω.

Using (6.14), the original linear system (6.1) can be partitioned as:

AII AIΓ

AΓI AΓΓ


uI

uΓ

 =

fI

fΓ

 . (6.15)

where AII = ⊕N
i=1AIiIi .

By using a block LU-factorization of A, the system (6.15) can be written as:

 I 0

ATIΓA
−1
II I


AII AIΓ

0 SΓΓ


uI

uΓ

 =

fI

fΓ

 (6.16)
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where:

SΓΓ = AΓΓ − ATIΓA−1
II AIΓ

is the Schur complement of AΓΓ in A.

By using block Gaussian elimination, the unknowns in the interior of the subdomains uI

can be eliminated in (6.16), and we arrive at the following equation for uΓ :

SΓΓuΓ = fΓ − ATIΓA−1
II fI . (6.17)

The system (6.17) is called the Schur complement system for the interface unknowns. It

presents many properties such as:

• The right hand side of the equation (6.17) can be obtained using N independent

subdomain solvers,

• for second order elliptic problems the condition number of SΓΓ is O(h−1), an im-

provement over the O(h−2) growth for A [9].

The main advantage of system (6.17) is that it can be solved using any type of iterative

method. However, a good preconditioner is needed to improve the convergence of the

system.

Remark 6.2.1 In practice, it is computationally cheap to perform the iteration on the

larger system (6.15) with AΓI = 0, and construct a preconditioner from the factorization

in (6.16) by replacing SΓΓ by its preconditioner S̃ΓΓ . This is due to the fact that computing

SΓΓ is too expensive as the matrix A−1
II is dense.

A good review of domain decomposition algorithms can be found in [16] and an excellent

comparison between some existing non-overlapping and overlapping domain decompo-
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sitions algorithms in [14, 13]. For applications and recent progress on domain decom-

position the reader should refer to the the annual international conference on Domain

Decomposition methods and also to the proceedings of conferences which are available

electronically in [1]. The rest of the thesis will focus on designing a parallel solver using a

non-overlapping domain decomposition method together with projective iterative meth-

ods. Our aim is to obtain a solver with a performance independent of the problem size

and the problem parameters.
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Chapter 7

Non-overlapping Domain

Decomposition Methods for

Reaction-diffusion Systems

Domain Decomposition (DD) methods have been widely used to solve many different

varieties of PDE. The main reason for the popularity of these methods is the straightfor-

ward applicability for parallel computing; this means domain decomposition algorithms

are usually faster even when they are implemented on monoprocessor computers. Other

benefits include: easy handling of global solution domains of complex and irregular do-

main, the possibility of using different numerical techniques in different subdomains and

most importantly, they can be used as an iterative solver. A wide variety of applica-

tions and techniques of domain decomposition can be found in the proceedings of the

international conference on domain decomposition [1]. It is important to observe that

most of the domain decomposition algorithms used refer to a standard approach and lit-

tle has been done on reaction-diffusion systems [28, 39, 47, 63, 70]. In this chapter, we

present an substructuring formulation of non-overlapping domain decomposition methods

for reaction-diffusion by addressing the problem directly on the interface. A similar study
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for reaction diffusion equations has been carried out in [5] and for some simple model

problems on uniform meshes in [3, 10, 17, 61]. The Steklov−Poincaré operator equation

is derived and studied together with different technical tools from functional analysis.

7.1 Domain decomposition formulation

Let us recall the problem (5.1):


−D∆u + M(x)u = f on Ω,

u = 000 on ∂ΩD,

n · ∇u = 000 on ∂ΩN .

(7.1)

Consider a non-overlapping subdivision of the original domain Ω ∈ Rd as described in

(6.13):

Ω =
N⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ (i 6= j), Γi = ∂Ωi\∂Ω, Γ =
N⋃
i=1

Γi;

with Γ ⊂ Rd−1.

Let us also denote by ui = u |Ωi the solution u on each subdomain Ωi and ui |Γi= λλλi the

solution on each interface. The problem (7.1) can be written as:



Lui + M(x)ui = f on Ωi,

ui = 000 on ∂Ωi ∩ ∂ΩD,

n · ∇ui = 000 on ∂Ωi ∩ ∂ΩN ,

ui = λλλi on Γi

(7.2)

where:

L := −D∆ + M(x).
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By setting ui = wi + vi , from (7.2) we obtain the following two sets of subproblems :



Lwi = f in Ωi,

wi = 000 on ∂Ωi ∩ ∂ΩD,

n · ∇wi = 000 on ∂Ωi ∩ ∂ΩN ,

wi = 000 on Γi

(7.3a)



Lvi = 000 in Ωi,

vi = 000 on ∂Ωi ∩ ∂ΩD,

n · ∇vi = 000 on ∂Ωi ∩ ∂ΩN ,

vi = λλλi on Γi.

(7.3b)

Here, wi is dependent only on the data f , whilst vi depends solely on the value λλλi on Γi.

In other words, vi can be seen as the L-extensions of λλλi to the domain Ωi. Henceforth,

such generalized L-extensions of functions λλλ or λλλi will be denoted by Eλλλ and Eiλλλi respec-

tively. Any other extensions will be denoted by Fλλλ and Fiλλλi. To find an equation for λλλi

we integrate the set of equations in (7.3a) and (7.3b) against zi ∈ H1
D(Ωi) × H1

D(Ωi) on

Ωi to obtain:

−
∫
Γi

ni∇wi · zi ds +
∫

Ωi
(∇wi : ∇zi + (Mwi) · zi) dΩi =

∫
Ωi

f · zi dΩi; (7.4)

and:

−
∫
Γi

ni∇vi · zi ds +
∫

Ωi
(∇vi : ∇zi + (Mvi) · zi) dΩi = 000. (7.5)
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Adding both (7.4) and (7.5) together and then summing over i we obtain:

N∑
i=1

(∫
Ωi
∇(wi + vi) : ∇zi dΩi

)
+

N∑
i=1

(∫
Ωi

(M(wi + vi)) · zi dΩi

)
=

N∑
i=1

∫
Ωi

f · zi dΩi

+
N∑
i=1

∫
Γi

ni∇wi · zi ds

+
N∑
i=1

∫
Γi

ni∇vi · zi ds.

(7.6)

Using the weak formulation of the initial problem (5.6) in (7.6), we find:

N∑
i=1

∫
Γi

ni ∇Eiλλλi · zi ds = −
N∑
i=1

∫
Γi

ni ∇wi · zi ds (7.7)

Analogously to the scalar diffusion problem, the Steklov-Poincaré matrix operator acting

on Λ× Λ can be defined as:

〈Sλλλ,µµµ〉 =
N∑
i=1

∫
Γi

ni · ∇(Eλλλi) · µµµids(Γi) :=
N∑
i=1
〈Siλλλi,µµµi〉 , (7.8)

for all λλλ,µµµ ∈ Λ× Λ with λλλ |Γi := λλλi, µµµ |Γi := µµµi and:

S : Λ× Λ→ Λ′ × Λ′.

The operator S can be represented after using integration by parts as:

〈Sλλλ,µµµ〉 = B(Eλλλ, Fµµµ) =
N∑
i=1

Bi(Eiλλλi, Fiµµµi), ∀λλλ,µµµ ∈ Λ× Λ; (7.9)

with the bilinear form Bi(., .) defined similarly to B(., .):

Bi(ui, zi) = (D∇ui,∇zi)Ωi + ((M(x)ui) , zi)Ωi . (7.10)
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The above definition of S leads to a reformulation of the problem (5.1) as an ordered

sequence of three decoupled sets of problems, which involve an operator L := −D∆+M(x)

with possibly mixed conditions on each subdomain, and a problem set on the interface Γ .

These are given by:



Lwi = f in Ωi,

wi = 000 on ∂Ωi ∩ ∂ΩD,

n · ∇wi = 000 on ∂Ωi ∩ ∂ΩN ,

wi = 000 on Γi,

(7.11a)

{
Sλλλ = −∑N

i=1 ni · ∇wi on Γ , (7.11b)

Lvi = 000 in Ωi,

vi = 000 on ∂Ωi ∩ ∂ΩD,

n · ∇vi = 000 on ∂Ωi ∩ ∂ΩN ,

vi = λλλi on Γi.

(7.11c)

Given the representation (7.8), one can show that S is a bounded positive operator on

Λ× Λ.

Lemma 7.1.1 Let S be defined as in (7.8). Then there exist constants α1, α2 such that

for all λλλ,µµµ ∈ Λ× Λ

α1‖λλλ‖2
1/2,Γ 6 〈Sλλλ,λλλ〉, 〈Sλλλ,µµµ〉 6 α2‖λλλ‖1/2,Γ‖µµµ‖1/2,Γ .
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Proof: Let vi = Eiλλλi,wi = Eiµµµi satisfy the problem of the type (7.11c) and assume

(5.2) and (5.3) hold. We have:

〈Siλλλi,λλλi〉 = Bi(vi,vi) =
∫

Ω
∇vi : ∇vi + vTi M(x)vi dx,

> ||∇vi||20 + γmin ||vi||20 ,

>min{1, γmin} ||vi||21 .

〈Siλλλi,µµµi〉 = Bi(vi,wi) =
∫

Ω
∇vi : ∇wi + vTi M(x)wi dx.

6 |vi|1 |wi|1 + γmax ||vi||0 ||wi||0 ,

6max{
√

2,
√

2γmax} ||vi||1 ||wi||1 .

Moreover, using the elliptic regularity result [2], which is known to hold for the weak

solution of (7.11c), we get:

‖vi‖1,Ωi = ‖Eiλλλi‖1,Ωi 6 Ce‖λλλi‖1/2,Γi , ‖wi‖1,Ωi = ‖Eiµµµi‖1,Ωi 6 Ce‖µµµi‖1/2,Γi . (7.12)

Since γ0vi = λλλi and γ0wi = µµµi, the trace inequalities (2.3) read for all i = 1, . . . , N

‖λλλi‖1/2,Γi 6 Cγ(Ωi)‖vi‖1, ‖µµµi‖1/2,Γi 6 Cγ(Ωi)‖wi‖1

and the result follows from (7.12) and the definition in (7.8) of the operator S.
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7.2 Mixed variational formulation

The weak formulations of problems (7.11a)-(7.11c) reads:


Find wi ∈ H1

D(Ωi)×H1
D(Ωi) such that for all zi ∈ H1

D(Ωi)×H1
D(Ωi)

Bi(wi, zi) = (fi, zi), ∀i = 1, · · · , N.
(7.13a)


Find λλλ ∈ Λ× Λ such that for all ηηη ∈ Λ× Λ

S(λλλ,ηηη) := 〈Sλλλ,ηηη〉 =
N∑
i=1

[(fi, Fiηηηi)−Bi(wi, Fiηηηi)].
(7.13b)


Find ṽi ∈ H1

D(Ωi)×H1
D(Ωi) such that for all zi ∈ H1

D(Ωi)×H1
D(Ωi)

Bi(ṽi, zi) = Bi(vi, zi)−Bi(ti, zi) = −Bi(ti, zi), ∀i = 1, · · · , N.
(7.13c)

With ṽi = vi − ti, and ti = Fiλλλi any extension of λλλi to Ωi satisfying ni · ∇ti = 0 on

∂Ωi ∩ ∂ΩN and ti = 0 on ∂Ωi ∩ ∂ΩD.

7.3 FEM discretization

Consider a triangulation Th of the domain Ω by a finite union of elements K ∈ Th as

described in subsection 5.4. Let Pr(t) be the space of polynomials in d variables of degree

r defined on a set t ⊂ Rd. We denote by:

V h = V h,r :=
{
w ∈ C0(Ω) : w|t ∈ Pr(t) ∀t ∈ Th, w |∂ΩD= 0

}
⊂ H1

D(Ω)

a finite-dimensional space of dimension n of piecewise polynomial functions defined on a

triangulation Th of Ω into simplices t of maximum diameter h. Similarly we define:

V h
i = V h,r

i :=
{
w ∈ C0(Ωi) : w|t ∈ Pr(t) ∀t ∈ Th, w |∂ΩD∩∂Ωi= 0

}
⊂ H1

D(Ωi).
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Also let φik denote the basis functions of V h
i with support in Ωi and: write

V h
iI = span{φik, k = 1 · · ·nIi },

with:

nI =
N∑
i

nIi , and nΓ = n− nI .

Finally, we consider:

Sh = span{ψk−nI = γ0(Γ )φk, k = nI + 1 · · ·nI + nΓ}.

Using the above definitions, the finite element discretization of problems (7.11a)-(7.11c)

reads:


Find whi ∈ V h
iI × V h

iI such that for all zi ∈ V h
iI × V h

iI

Bi(whi, zhi) = (fi, zhi), ∀i = 1, · · · , N.
(7.14a)


Find λλλh ∈ Sh × Sh such that for all ηηηh ∈ Sh × Sh

s(λλλh, ηηηh) := 〈Sλλλh, ηηηh〉 =
N∑
i=1

[(fi, Fiηηηhi)−Bi(whi, Fiηηηhi)].
(7.14b)


Find ṽhi ∈ V h

iI × V h
iI such that for all zhi ∈ V h

iI × V h
iI

Bi(ṽhi, zhi) = −Bi(thi, zhi), ∀i = 1, · · · , N.
(7.14c)

Note that thi is the finite element projection of ti = Fiλi.

The result of Lemma 7.1.1 also holds in the discrete case for the choice of space Sh× Sh.

Using the above notation, we can now write the following coercivity and continuity bounds

for s(·, ·).

Lemma 7.3.1 Let S be defined as in (7.8). Then there exist constants α1, α2 such that
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for all λλλh,µµµh ∈ Sh × Sh ⊂ Λ× Λ

α1‖λλλh‖2
1/2,Γ 6 s(λλλh,λλλh), s(λλλh,µµµh) 6 α2‖λλλh‖1/2,Γ‖µµµh‖1/2,Γ . (7.15)

7.4 Matrix formulation

Let {φφφk} denote a basis of V h × V h. By letting:

uh(x) =
2(nI+nΓ )∑

k

ukφφφk(x),

we obtain the following linear system:



A
(1)
II A

(1)
IΓ M

(1)
II M

(1)
IΓ

A
(1)
ΓI A

(1)
ΓΓ M

(1)
ΓI M

(1)
ΓΓ

M
(2)
II M

(2)
IΓ A

(2)
II A

(2)
IΓ

M
(2)
ΓI M

(2)
ΓΓ A

(2)
ΓI A

(2)
ΓΓ





u1I

u1Γ

u2I

u2Γ


=



f1I

f1Γ

f2I

f2Γ


; (7.16)

in which subscripts I and Γ refer to the interior nodes and the interface nodes respectively,

A(j) := djL + M(αj) and M (j) := M(βj). The matrices M(αj) and M(βj) are weighted

mass matrices, whilst L represents the discrete stiffness matrix. We also denote by:

SA(j) := A
(j)
ΓΓ − A

(j)
ΓI(A

(j)
II )−1A

(j)
IΓ , (7.17)

the corresponding local Schur complement associated with A(j).

Equation (8.1) can be rewritten as:

Au =

 AII AIΓ

AΓI AΓΓ


 uI

uΓ

 =

 fI

fΓ

 , (7.18)
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where:

Aµν =

d1Lµν +Mµν(α1) Mµν(β1)

Mµν(β2) d2Lµν +Mµν(α2)

 ,uν =

u1ν

u2ν

 , fν =

f1ν

f2ν

 , µ, ν ∈ {I, Γ}.

The following result is standard and follows from the equivalence between (5.7) and (7.14)

[6].

Proposition 7.4.1 The algebraic representations of equations (7.14a), (7.14b) and (7.14c)

are given by:

AIIwI = fI ,

SuΓ = fΓ − AΓIwI ,

vI = A−1
II AIΓuΓ ,

respectively, where S := AΓΓ − AΓI(AII)−1AIΓ . The solution is then: u = (wI + vI ,uΓ )

Proof: The proof follows that presented in [6, p. 7].

Remark 7.4.2 Note that the following relationships hold:

wI ↔ whi, vI ↔ ṽhi, uΓ ↔ λλλh

via the representations:

whi =
2(nI+nΓ )∑

k=1
(wI)kφφφk, ṽhi =

2(nI+nΓ )∑
k=1

(vI)kφφφk, λλλh =
2nΓ∑
k=1

(uΓ )kψψψk;

where {ψψψk}, {φφφk} are basis for the spaces V h × V h and Sh × Sh respectively. Propo-

sition 7.4.1 indicates that we have to consider a Schur-complem problem, therefore it

becomes important to look for preconditioners of the Schur complement as S is expensive

to compute.
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Chapter 8

Interface Preconditioners

Consider problem (5.1) with M ∈ R2×2 the matrix formulation of the finite element

approximation presented in Chapter 5 is given by:

d1L+ α1M β1M

β2M d2L+ α2M

 =

Mf1

Mf2

 . (8.1)

It is easy to see that equation (8.1) will have the following form:

Au =

 AII AIΓ

AΓI AΓΓ


 uI

uΓ

 =

 fI

fΓ

 , (8.2)

where:

Aµν =

d1Lµν +Mµν(α1) Mµν(β1)

Mµν(β2) d2Lµν +Mµν(α2)

 ,uν =

u1ν

u2ν

 , fν =

f1ν

f2ν

 , µ, ν ∈ {I, Γ}.
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We can see that the Schur complement S arising from the linear system (8.2) is of the

form:

S =

S1 S2

S3 S4



where Si for i = 1, 2, 3, 4 are to be determined. This is a very difficult and expensive

task, therefore it becomes important to look for a good preconditioner of the Schur-

complement. In this chapter we present and analyze different block preconditioners of the

Schur-complement for solving the linear system arising from a non-overleaping domain

decomposition formulation.

8.1 Case of two subdomains

The domain Ω is partitioned into two non-overlapping equal domains Ωi = (−1, 1) ×

(−a, a) for i = 1, 2, a > 0 and uniformly subsided into equal triangles. We denote by Ik

the identity matrix of order k, where k is a positive integer. The global stiffness matrix

L and the global mass matrix M can be written as:

L = Tn ⊗ In + In ⊗ Tn and M = M̃n ⊗ In + In ⊗ M̃n;

where:

Tk := tridiag[−1, 2,−1] ∈ Rk×k and M̃k := tridiag 1
6[1, 4, 1] ∈ Rk×k (8.3)

are respectively the element stiffness matrix and element mass matrix on a mesh with k

interior points.
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8.1.1 Eigenvalue analysis

Let us recall the system (7.18) in Chapter 7:

 AII AIΓ

AΓI AΓΓ


 uI

uΓ

 =

 fI

fΓ

 . (8.4)

Using the notation presented in the section above the original matrices presented in (8.1)

as Lm,n and Mm,n, which are respectively the corresponding stiffness and mass matrix

with m interior nodes in the x-direction and n interior nodes in the y-direction. We have:

Ln,n =


Lm,n −em ⊗ In

Lm,n −e1 ⊗ In

−eTm ⊗ In −eT1 ⊗ In T

 , Mn,n =


Mm,n −em ⊗ In

Mm,n −e1 ⊗ In

−eTm ⊗ In −eT1 ⊗ In M

 ;

(8.5)

where:

Lm,n = Tm ⊗ In + Im ⊗ Tn, Mm,n = Nm ⊗ In + Im ⊗Nn,

T = 2In + Tn, M = 4
6In + M̃n, N = 4

6M̃,
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and ei denotes the ith column of Im.

The block matrices of the system (8.1) are:

AII =



d1Lm,n + α1Mm,n β1Mm,n

β2Mm,n d2Lm,n + α2Mm,n

d1Lm,n + α1Mm,n β1Mm,n

β2Mm,n d2Lm,n + α2Mm,n


;

AΓI =

(d1 + α1)(−em ⊗ In) β1(−em ⊗ In) (d1 + α1)(−e1 ⊗ In) β1(−e1 ⊗ In)

β2(−em ⊗ In) (d2 + α2)(−em ⊗ In) β2(−e1 ⊗ In) (d2 + α2)(−e1 ⊗ In)

 ;

= [C ⊗ (−em ⊗ In) C ⊗ (−e1 ⊗ In)] with C =

d1 + α1 β1

β2 d2 + α2

 ;

=ATIΓ ;

AΓΓ =

d1T + α1M β1M

β2M d2T + α2M

 .

From the eigenvalues decomposition of Tm, Nm [79]:

Tm = VmDmV
T
m , and Nm = VmBmV

T
m ; (8.6)

with:

(Dm)ii = 2
(

1− cos iπ

k + 1

)
=: µ(k)

i (Bm)ii = 1
6

(
4− 2 cos iπ

k + 1

)
=: ϑ(k)

i (8.7)

and:

Vm = [v1, · · · , vm], (vj)i =
√

2
k + 1 sin ijπ

k + 1 , i, j = 1, · · · , k. (8.8)
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It follows:

Ln,n = (Vm ⊗ Vn)Dm,n(Vm ⊗ Vn)T , Mn,n = (Vm ⊗ Vn)Bm,n(Vm ⊗ Vn)T ; (8.9)

where:

Dm,n = Im ⊗Dn +Dm ⊗ In Bm,n = Im ⊗Bn +Bm ⊗ In.

Similarly,

diLn,n + αiMn,n = (Vm ⊗ Vn)C(i)
m,n(Vm ⊗ Vn)T (8.10)

with:

C(i)
m,n = diDm,n + αiBm,n.

and:

T = 2In + Tn = Vn (2In +Dn)V T
n M = Vn

(4
6In + 6

4Bn

)
V T
n . (8.11)

The Schur complement of the system (8.4) is given by:
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S
=
A
Γ
Γ
−
A
Γ
I
A
−

1
I
I
A
I
Γ

=
A
Γ
Γ
−

∑
i∈
{1
,m
}
C
⊗

(e
i
⊗
I n

)B
−

1 C
T
⊗

(e
i
⊗
I n

)T
;

w
it
h
B

=

   d
1L

m
,n

+
α

1M
m
,n

β
1M

m
,n

β
2M

m
,n

d
2L

m
,n

+
α

2M
m
,n

   ;
=
A
Γ
Γ
−

2C
⊗

(e
m
⊗
I n

)B
−

1 C
T
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m
⊗
I n

)T
︸

︷︷
︸

F

(8
.1

2)

W
e

ha
ve

: A
Γ
Γ

=

   V
n

V
n

      d
1(

2I
n

+
D
n
)+

α
1
( 4 6I

n
+

6 4B
n

)
β

1
( 4 6I

n
+

6 4B
n

)
β

2
( 4 6I

n
+

6 4B
n

)
d

2(
2I
n

+
D
n
)+

α
2
( 4 6I
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+

6 4B
n
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V
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1
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V
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n
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β
1B

m
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β
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C
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V
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⊗
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n

V
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⊗
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n

            
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︷
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The equations (8.25), (8.25) give us a good idea of what one should consider when looking

for a block preconditioner of the Schur complement of a reaction-diffusion system. The

same idea is also obtained when having to deal with more than two subdomains. This is

discussed in the next section.

8.2 Case of many subdomains

Consider a non-overlapping subdivision of the original domain Ω ∈ Rd such that:

Ω =
N⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ (i 6= j), Γi = ∂Ωi\∂Ω, Γ =
N⋃
i=1

Γi;

with Γ ⊂ Rd−1. The same system (8.4) is obtained with:

AII =

 d1LII + α1MII β1MII

β2MII d2LII + α2MII

 ;

AIΓ =

 d1LIΓ + α1MIΓ β1MIΓ

β2MIΓ d2LIΓ + α2MIΓ

 ;

AΓI =

 d1LΓI + α1MΓI β1MΓI

β2MΓI d2LΓI + α2MΓI

 ;

AΓΓ =

 d1LΓΓ + α1MΓΓ β1MΓΓ

β2MΓΓ d2LΓΓ + α2MΓΓ

 .
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Since the matrices L,M are symmetric and positive-definite, there exists a matrix Q such

that [Section 7.6][32]:

QTLQ = D and QTMQ = I; (8.26)

where (D)ii = λi(M−1L), denotes the ith eigenvalue of the matrix M−1L.

The system (8.4) can be re-written as:

Ãũ =

 ÃII 0

0 ÃΓΓ


 ũI

ũΓ

 =

 f̃I

f̃Γ

 , (8.27)

where:

ÃII =

 d1DII + α1III β1III

β2III d2DII + α2III

 ;

ÃΓΓ =

d1DΓΓ + α1IΓΓ β1IΓΓ

β2IΓΓ d2DΓΓ + α2IΓΓ

 .
The Schur complement of the system (8.27) is given by:

S̃ΓΓ = ÃΓΓ . (8.28)

The expression of the Schur-complement S̃ΓΓ in (8.28) confirms that a good preconditioner

requires an efficient approximation of the Steklov-Poincaré operator on the interface. It is

well known that the inverse of the Steklov-Poincaré operator can be expressed explicitly

using the Green’s function restricted to the interface [77], however computing the Green’s

function remains a difficult task.

Following the discussions in [53, 33, 17], it is feasible to consider the following precondi-
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tioner for S̃ΓΓ :

P̃
S̃ΓΓ

=

d1DΓΓ + α1IΓΓ 0

0 d2DΓΓ + α2IΓΓ

 . (8.29)

8.2.1 Eigenvalue analysis

Consider a triangulation of the solution domain Ω as described in section 5.4: Ω into a

set Th = {K1, · · · , KN} of non-overlapping triangles Ki such that:

Ω =
⋃

K∈Th
K = K1 ∪K2 . . . ∪KN ; (8.30)

where hK be the diameter of the circumscribed circle of K, with:

h = max
K∈Th

hK , hmin = min
K∈Th

hK . (8.31)

We will make use of the eigenvalue bounds for the Galerkin Mass matrix and Stiffness

Matrix presented in [21, p. 57-60] for the two dimensional case:

Lemma 8.2.1 Given a finite element approximation such that (8.30) and (8.31) hold. A

realistic bounds for eigenvalues of the Mass matrix and the Stiffness matrix are given by:

κ2h
2 < λi(M) 6 κ1h

2 and κ̃2h
2 < λi(L) 6 κ̃1; κ2, κ1, κ̃1, κ̃2 ∈ R. (8.32)

The above Lemma allows us to derive the follwoing theorem: Then, it holds:

Theorem 8.2.2 Given a finite element approximation such that (8.30) and (8.31) hold,

the eigenvalues of the matrix M−1L are bound below and above by:

γ < λi(LM−1) 6 ζh−2; γ, ζ ∈ R. (8.33)
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Proof:

λi(M−1L) =λi(M−1)λi(L);

= 1
λi(M)λi(L);

The result follows from the Lemma 8.2.1.

Theorem 8.2.3 The eigenvalues of P̃−1
S̃ΓΓ

S̃ΓΓ satisfy

λi(P̃−1
S̃ΓΓ

S̃ΓΓ ) ∈
[
1−

√
β1β2

(d1γ + α1)(d2γ + α2) , 1 +
√

β1β2

(d1γ + α1)(d2γ + α2)

]
. (8.34)

Proof: The eigenvalues of P̃−1
S̃ΓΓ

S̃ΓΓ satisfy:

 d1D + α1I 0

0 d2D + α2I


−1 d1D + α1I β1I

β2I d2D + α2I


 x

y

 = λ

x
y

 . (8.35)

From (8.35), we obtain the following system of equations:


Ix+ By = λIx

Fx+ Iy = λIy
=⇒


By = xI(λ− 1)

Fx = yI(λ− 1)
(8.36)

where:

B = (d1D + α1I)−1β1I and F = (d2D + α2I)−1β2I.

The matrices B and F are diagonal matrices with entries:

(Bn)ii = bi = β1

d1λi(M−1L) + α1
, and (Fn)ii = fi = β2

d2λi(M−1L) + α2
(8.37)
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From (8.36) we obtain the following:

Fx = xB−1(λ− 1)(λ− 1) =⇒ x(I(λ− 1)(λ− 1)− BF) = 0.

The value of λi is obtained by solving the following quadratic equation:

λ2
i − 2λi + 1− bifi = 0.

This yields:

λi = 1±
√
bifi =⇒ λi = 1±

√
β1β2

(d1λi(M−1L) + α1)(d2λi(M−1L) + α2) (using (8.37)).

From inequality (8.33), we obtain:

λi ∈
[
1−

√
β1β2

(d1γ + α1)(d2γ + α2) , 1 +
√

β1β2

(d1γ + α1)(d2γ + α2)

]
.

We can also consider the preconditioner for S̃ΓΓ to be:

P̃
S̃ΓΓ

=

d1DΓΓ + α1IΓΓ β1IΓΓ

0 DΓΓ + α2IΓΓ

 . (8.38)

Theorem 8.2.4 The eigenvalues of P̃−1
S̃ΓΓ

S̃ΓΓ satisfy:

λi(P̃−1
S̃ΓΓ

S̃ΓΓ ) ∈
[
1− β1β2

(d1γ + α1)(d2γ + α2) , 1
]
. (8.39)
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Proof: The eigenvalues of P̃−1
S̃ΓΓ

S̃ΓΓ satisfy:

 d1D + α1I β1I

0 d2D + α2I


−1d1D + α1I β1I

β2I d2D + α2I


x
y

 = λ

x
y

 . (8.40)

using the fact that:

d1D + α1I β1I

0 d2D + α2I


−1

=

(d1D + α1I)−1 −(d1D + α1I)−1β1I(d2DL + α2I)−1

0 (d2DL + α2I)−1

 ;

we obtain:


Ax = λIx

Cx+ Iy = λIy
(8.41)

where:

A = I − (d1D + α1I)−1β1I(d2D + α2I)−1β2I

and:

C = (d1D + α1I)−1β2I.

A and C are diagonal matrices with the following entries:

(An)ii = ai = 1− β1β2

(d1λi(M−1L) + α1)(d2λi(M−1L) + α2)

(Cn)ii = ci = β2

d1λi(M−1L) + α1
. (8.42)

From (8.41) the following cases are obtained:

if x = 0⇒ λ = 1.

This means that we have at least n eigenvalues equal to 1. We just have to look at
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the n other eigenvalues.

if A = λI.

We obtain from (8.42):

λi = ai = 1− β1β2

(d1λi(M−1L) + α1)(d2λi(M−1L) + α2) . (8.43)

Therefore using the inequality (8.33), we can write:

λi ∈
[
1− β1β2

(d1γ + α1)(d2γ + α2) , 1
]
.

We observe from (8.39) and (8.34) that both intervals are closer to 1 and independent of

the mesh-size h. However, one of the main drawbacks associated with theses approaches

is that they are not convenient if the grid on the interface is non-uniform or does not have

a natural multigrid structure [77].

All of the preconditioners presented in this chapter are related to the block structure of the

Schur-complement. Therefore it would be interesting to look into the Schur-complement

operator itselft. In other words, to exploit the fact the Steklov-Poincaré operators arising

in a non-overlapping DD-algorithm are coercive and continuous with respect to Sobolev

norms of index 1/2 as in [5, 7, 8]. This will be considered in the next chapter.
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Chapter 9

Interface Preconditioners

Associated with Fractional

Sobolev Norms

In a recent paper, Caetano et al. [12] introduced a non-overlapping domain decompo-

sition algorithm of Schwarz waveform relaxation type for semilinear reaction-diffusion

equations. For solving the interface problem they proposed a new type of nonlinear

transmission: using Robin or Ventcell transmission conditions, which leads to a solution

technique independent of the mesh parameter. However, this has not been extended to

reaction-diffusion systems. In this chapter we present an alternative approach to approx-

imate the Steklov-Poincaré operators arising from a non-overlapping DD-algorithm for

reaction diffusion systems. Our approach is related to that in [6]. The coercivity and the

continuity of the Steklov-Poincaré operators arising in a non-overlapping domain decom-

position algorithm for scalar elliptic problems with respect to Sobolev norms of index 1/2

allow us to construct a new interface preconditioner, which leads to solution techniques

independent of the mesh size h.
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9.1 Interpolation space

We briefly review the interpolation theory for Hilbert spaces presented in Lions and Ma-

genes 1968 [43, chapter 1, section 2]. Let X, Y be two Hilbert spaces with scalar products

(., .)X , (., .)Y and norms ‖ . ‖X , ‖ . ‖Y respectively. We assume that:

X ⊂ Y, X dense in Y with continuous injection. (9.1)

Then there exists a positive self-adjoint operator: L : X → Y (see Riesz Sz-Nagy, 1956),

such that:

(u, v)X = (u,Lv)Y , ∀u, v ∈ X (9.2)

The spectral properties of L allow us to define a new operator ζ = L1/2 which is also

positive definite and self-adjoint in Y with domain X denoted D(ζ). Furthermore, the

norm of X is equivalent to the graph norm: ‖ . ‖ζ :

‖u‖X ∼ ‖u‖ζ :=
(
‖u‖2

Y + ‖ζu‖2
Y

)1/2
. (9.3)

It is also possible to define any real power of ζ by using the spectral decomposition of ζ.

Definition 9.1.1 Let 0 < θ < 1. We denote by:

1. [X, Y ]θ := D(ζ1−θ) the interpolation space of index θ for the pair [X, Y ] .

2. ‖u‖θ :=
(
‖u‖2

Y + ‖ζ1−θu‖2
Y

)1/2
the norm on [X, Y ]θ.

Remark 9.1.2 1. D(ζ1−θ) is endowed with the inner product (u, v)θ = (u, v)Y +

(u, ζ1−θv)Y ;
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2. [X, Y ]0 = X and [X, Y ]1 = Y .

3. For any θ1, θ2 such that 0 < θ1 < θ2 < 1, we have

X ⊂ [X, Y ]θ1 ⊂ [X, Y ]θ2 ⊂ Y.

Finally, it is important to note the main interpolation theorem presented in Lions and

Magenes 1968 [43, chapter 1, section 5].

Theorem 9.1.3 Let X,Y be two Hilbert spaces with the same properties as X and Y

respectively. Let π be a continuous linear operator from X into X, and from Y into Y i.e.

π ∈ L(X,X) ∩ L(Y,Y),

then for all θ ∈ (0, 1)

π ∈ L ([X, Y ]θ; [X,Y]θ) .

9.2 Finite dimensional spaces

In the following section we consider the case when X = X × X , Y = Y × Y , Xh = Xh ×

Xh, Yh = Yh×Yh, with Xh ⊂ X , Yh ⊂ Y two finite-dimensional subspaces with dimension

n. They are Hilbert spaces when endowed with the inner-products 〈·, ·〉X , 〈·, ·〉Y . As in

the previous subsection we define the corresponding positive, self-adjoint operator

ζh = L1/2
h , Lh : Xh ×Xh → Yh × Yh such that:

(uh, vh)X = (uh,Lhvh)Y , uh, vh ∈ Xh ×Xh. (9.4)
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Similarly, we denote the domain of ζh by D(ζh), which in turn is Xh ×Xh, and the scale

of discrete norms as:

‖uh‖1/2,h :=
(
‖uh‖2

Y + ‖ζhuh‖2
Y

)1/2
, ∀uh ∈ Xh ×Xh. (9.5)

Furthermore using the definition (9.1.1), we can define:

[Xh, Yh]θ := D(ζ1−θ
h );

and the scale of discrete norms as:

‖uh‖θ,h :=
(
‖uh‖2

Y + ‖ζ1−θ
h uh‖2

Y

)1/2
, ∀uh ∈ Xh ×Xh. (9.6)

Let HX and HY be the Grammian matrices corresponding to the inner products (., .)X ,

(., .)Y respectively and {ψi}16i6n denotes a basis of Xh.

Let also Q be the basis of Xh ×Xh such that:

Q =


ψj

0

 ,
 0

ψj

 , j = 1, . . . , n

 . (9.7)

Then HX , HY can be written as:

HX = GX ⊕GX , HY = GY ⊕GY , (9.8)

where:

(GX)ij = 〈ψi, ψj〉X ; (GY )ij = 〈ψi, ψj〉Y 1 6 i, j 6 n.
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And the corresponding norms ‖ . ‖X , ‖ . ‖Y as:

‖uh‖X = ‖u‖HX
=
(
uTHXu

)1/2
, ‖uh‖Y = ‖u‖HY

=
(
uTHY u

)1/2
,

with u the vector of coefficients of uh in the basis Q.

Furthermore, equality (9.4) can be written in the discrete case as:

uTHXu = uTHY Ju; (9.9)

where J = H−1
Y HX is a positive-definite matrix. Since J is the matrix representation of

the corresponding positive self-adjoint operator.

Finally, lets us recall definition of the θ power of a matrix studied in [42, section 5.4] and

[29, Chap. 6-7]:

Definition 9.2.1 Let M ∈ Rn×Rn be a positive diagonalizable matrix with a real positive

definite spectrum, which eigenvalue decomposition is denoted by M = Q−1DMQ. The

matrix DM is a diagonal matrix with positives entries labeled in increasing order as:

0 < λ1 < · · · < λn.

Let θ ∈ R. The θ power of M = Q−1DMQ is given by:

M θ = Q−1Dθ
MQ.

Using the above definition together with the expression of HX and HY , it holds:

Proposition 9.2.2 The matrix representation of the norm ‖ . ‖θ,h : [Xh, Yh]θ → R+ is

Hθ,h = HY + HY (H−1
Y HX)1−θ; (9.10)
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and the reduced form of Hθ,h is given by:

Hθ = HY (H−1
Y HX)1−θ. (9.11)

Proof: The proof follows that in [8, p. 1-5]

Remark 9.2.3 Using the fact that the matrices HY and HX are symmetric and positive

definite, one can find a matrix Q such that: [32, Section 7.6]:

HX = QTDQ, HY = QTQ,

where D is a diagonal matrix with positives entries.

Using definition 9.2.1, the matrices Hθ,h and Hθ can be written as:

Hθ,h = QT (I +D1−θ)Q, Hθ = QT (D1−θ)Q, (9.12)

9.3 Discrete interpolation norms

Our aim in this section is to describe an optimal preconditioner for the Schur complement

S acting on the space Λ×Λ (see (7.9)). In the following we will make use of the basis Q

given in (9.7) to denote a basis of Sh × Sh. Let it be defined by:

∇Γψ(x) := ∇ψ(x)− n(n · ∇ψ(x))

the projection of the gradient of ψ(x) onto the plane tangent to Γ . Additionally, we also

defined the following Sobolev space:

H1
D(Γ ) =

{
v ∈ L2(Γ ) :

∫
Γ
|∇Γv|2 ds(Γ ) <∞; v |Γ∩∂Ω= 0

}
, (9.13)
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where Γ =
N⋃
i=1

Γi.

By considering the space Λ to be the interpolation space between X = H1
D(Γ ) and

Y = L2(Γ ), which is equipped with norm ‖ . ‖Λ, we can choose:

Xh =
(
Sh × Sh, ‖ · ‖H1(Γ )×H1(Γ )

)
⊂ X, and Yh =

(
Sh × Sh, ‖ · ‖L2(Γ )×L2(Γ )

)
⊂ Y.

Similar to the work done in [6], we derive the following finite element matrix representation

of the norm H1/2

H1/2 :=

H1/2 0

0 H1/2

 with H1/2 = MΓ (M−1
Γ LΓ )1/2, (9.14)

where MΓ and LΓ represent respectively the mass matrix and the Laplace-Beltrami op-

erator assembled on Γ [6]:

(MΓ )ij = (ψi, ψj)L2(Γ ) , (LΓ )ij = (∇Γψi,∇Γψj)H1(Γ );

where ψi ∈ Sh for i = 1, · · · , nΓ .

Finally, let πh ∈ L(X,Xh) ∩ L(Y, Yh) from Theorem 9.1.3 we can derive an equivalence

between the continuous and the discrete interpolation norms of index 1/2 as in [5, p.8]

namely: for all λλλh ∈ Sh × Sh there exist constants κ1, κ2 such that:

κ1‖uuuΓ‖1/2,Γ 6 ‖λλλh‖H1/2 6 κ2‖uuuΓ‖1/2,Γ . (9.15)

Let us consider some examples to illustrate the above derivation.

Example ConsiderX = H1
0 (Ω), Y = L2(Ω). We want to derive the matrix representation
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of a norm defined on a discrete subspace of the following interspace:

H
1/2
00 = [H1

0 (Ω), L2(Ω)]1/2.

Let Xh ⊂ X being the finite element space spanned by a basis {φ}16i6n of piecewise

polynomials defined on subdivision of Ω. Use the same procedure as presented above we

described the following Grammian matrices with respect ot the set {φ}i corresponding to

the following inner product:

(L)i,j = (∇φi,∇φj)L2(Ω), (M)i,j = (φi, φj)L2(Ω).

The matrices L,M represent the discrete Dirichlet Laplacian and mass matrix respectively.

Therefore a norm for the interpolation space [Xh, Yh]θ is given by

Hθ = M(M−1L)1−θ.

Assuming that we have a uniform subdivision of the domain Ω, then L,M are simultaneous

diagonalisable and Hθ becomes

Hθ = M θ/2(M1−θL)θ/2.

For the case where θ = 1/2, we obtain

H1/2 = M1/4(M1/2L)1/4.

The above example show us that the computation of H1/2 is done in two steps: The first

step consists of assembly the matrices L,M on the interfaces, which consist of a segment

in a triangular mesh. The second step is just simple matrix algebra(matrix multiplication
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and inversion).

Finally, If we consider the coercivity and continuity bounds for s(·, ·) given in (7.15)

together with the above result, we get for all µµµh,λλλh ∈ Sh × Sh:

α1

κ2
2
‖uuuΓ‖2

H1/2
6 s(uuuΓ ,uuuΓ ), s(uuuΓ ,vvvΓ ) 6 α2

κ2
1
‖uuuΓ‖H1/2‖vvvΓ‖H1/2 . (9.16)

The above inequalities indicate that H1/2 and the Schur complement S have the same

spectral properties. This will be described and used in the construction of a new type of

interface preconditioners presented in the next section.

9.4 Analysis

Preconditioned GMRES is often used to solve the linear system (7.18) due to the size

and the sparsity of the matrix A. In our case a suitable strategy would be to use a

GMRES solver combined with a right preconditioner, which requires the solution of a

large subsystem posed on the interior of each subdomain and a small subsystem involving

the discrete Steklov-Poincaré operator. The speed of convergence of the preconditioned

system will depend on the ability of the preconditioner PS to approximate the Schur

complement S. To see this, consider the following eigenvalue problem:

 AII AIΓ

AΓI AΓΓ


 uI

uΓ

 = µ

 AII AIΓ

0 PS


 uI

uΓ

 . (9.17)

One can prove that µ = 1 or µ satisfies:

SuΓ = µPSuΓ . (9.18)

Therefore if the eigenvalues of the problem (9.18) are clustered, we expect fast conver-

gence.
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Given the inequalities in (9.16), a natural choice of PS is:

Ŝ1 =

SA(1) 0

0 SA(2)

 ; (9.19)

where SA(i) = A
(i)
ΓΓ − A

(i)
ΓI(A

(i)
II )−1A

(i)
IΓ , with A(i) := diL+ αiM for i = 1, 2.

Proposition 9.4.1 Let SA(j) be defined as in (7.17). Then there exist two constants σj, δj

such that for j = 1, 2:

σi‖υ̃‖2
H

(i)
1/2

6 〈SA(i) υ̃, υ̃〉, 〈SA(i) υ̃, µ̃〉 6 δi‖υ̃‖H(i)
1/2
‖µ̃‖

H
(i)
1/2

; i = 1, 2. (9.20)

Proof: Let vi = Eiλλλi,wi = Eiµµµi satisfy (7.11c) with L := −∆ + αj(x), and SA(j)

the corresponding Steklov-Poincaré operator. Define αjmax = max
x∈Ω

αj(x), and αjmin =

min
x∈Ω

αj(x). Then, we have:

〈SA(j)λλλi,λλλi〉 = Bi(vi,vi) =
∫

Ω
∇vi : ∇vi + αj(x)vTi vi dx,

> ||∇vi||20 + αjmin ||vi||
2
0 , (as (5.2) holds)

>min{1, αjmin} ||vi||
2
1 .

〈SA(j)λλλi,µµµi〉 = Bi(vi,wi) =
∫

Ω
∇vi : ∇wi + αj(x)vTi wi dx,

6 ||∇vi||0 ||∇wi||0 + αjmax ||vi||0 ||wi||0 , (as (5.2) holds)

6max{
√

2,
√

2αjmax} ||vi||1 ||wi||1 .

Since γ0vi = λλλi and γ0wi = µµµi, the trace inequalities (2.3) read for all i = 1, . . . , N

‖λλλi‖1/2,Γi 6 Cγ(Ωi)‖vi‖1, ‖µµµi‖1/2,Γi 6 Cγ(Ωi)‖wi‖1.
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The inequality (9.20) follows from (7.12) and the definition of the operator S given in

(7.8).

Proposition 9.4.1 suggests the following more practical choice of PS,

Ŝ2 :=

H
(1)
1/2 0

0 H
(2)
1/2

 ;

where H(i)
1/2 = MΓΓ

(
M−1

ΓΓ (diLΓΓ + αiMΓΓ )
)1/2

for i = 1, 2.

The preconditioner Ŝ2 can be implemented using sparse linear algebra techniques. In

particular the action of the inverse of H(i)
1/2 on a given vector z ∈ Rn can be approximated

via generalised Lanczos algorithms. In that case mesh independence can only be obtained

when the number of lanczos vectors k = nΓ . However, the number of iterations required

to compute H−(i)
1/2 z is of the order O(knΓ ), which is still very low. A intensive study of the

numerical approximation for H1/2-norm using Lanczos algorithms can be found in [8, 6].

Proposition 9.4.2 There exist two constants ε̃1, ε̃2 such that ∀βββ,µµµ ∈ Sh × Sh

ε̃1‖βββ‖2
Ŝ2

6 βββTSβββ, µµµTSβββ 6 ε̃2‖βββ‖Ŝ2
‖µµµ‖

Ŝ2
. (9.21)

Proof: Using the Poincaré-Friedrichs inequality (see Lemma 2.1.5), we obtain

vTMΓv 6 C2(Γ )vTLΓv.

This gives:

divTLΓv 6 vT (diLΓ +MΓ (αi))v 6 (di + C2(Γ ))vTLΓv,
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which means A(j)
Γ = djLΓ + MΓ (αj) is spectrally equivalent to LΓ and H

(j)
1/2 is spectrally

equivalent to H1/2 for j = 1, 2. Therefore the matrix Ŝ2 is spectrally equivalent to H1/2

defined in (9.14).

The inequalities (9.20), (9.21) indicate that the eigenvalues of SŜ−1
k for k = 1, 2 can

be bounded independently of the meshsize h, which means the preconditioners Ŝk (for

k = 1, 2) are optimal in some sense to be described below.

9.5 GMRES convergence

To establish the mesh independence of GMRES convergence, one can study the bounds

of the field of values of the preconditioned matrix SŜ−1
2 . We will make use of the H-field

of values of any matrix M presented in subsection 6.1.

Proposition 9.5.1 Let PS be a symmetric and positive definite matrix such that ∀βββ,µµµ ∈

Sh × Sh, there exist two constants α̃1, α̃2 with:

α̃1‖βββ‖2
PS

6 βββTSβββ, µµµTSβββ 6 α̃2‖βββ‖PS‖µµµ‖PS .

Then the P−1
S -field of values of SP−1

S lies in the right half-plane and is bounded indepen-

dently of the meshsize h.

Proof: We have for all z ∈ WP−1
S

(SP−1
S ),

min
z
|z|= min

βββ∈RnΓ \{0}

〈
βββ, SP−1

S βββ
〉
P−1
S

〈βββ,βββ〉P−1
S

= min
β̃ββ∈RnΓ \{0}

β̃ββ
T
Sβ̃ββ

β̃ββ
T
PSβ̃ββ

> α̃1 > 0;

and

|z|6 max
βββ∈RnΓ \{0}

‖Sβββ‖P−1
S

‖βββ‖PS
= max

βββ∈RnΓ \{0}
max

µµµ∈RnΓ \{0}

βββµTβββ

‖βββ‖PS‖µµµ‖PS
6 α̃2.
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Therefore the P−1
S -field of values of SP−1

S is contained in the intersection of the regions:

R1 = {z ∈ C : Rez > α̃1} and R2 = {z ∈ C : Rez > α̃2};

which lies in the right half-plane. Furthermore:

‖rk‖PS
‖r0‖PS

6

(
1− α̃2

1
α̃2

2

)k/2
.

All the preconditioners presented in this chapter are proved to be independent of the

problem size and the problem parameters, however it is necessary to validate the obtained

results on numerical experiments. This is done in the next chapter.
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Chapter 10

Numerical Results

In this chapter we validate the theoretical results obtained in various numerical experi-

ments. The numerical experiments are obtained by solving reaction-diffusion problems in

two dimensions. The problems are solved either on a square domain or on the unit disc.

• Square Domain

On the square domain, we used two types of partition: A uniform partition, where

Ω is divided into N = Nx × Ny subdomains of size 2/Nx × 2/Ny each, with Nx =

Ny ∈ {2, 4, 8} (see Figure 10.3), and an automatical partition using METIS [38],

which is a graph-partitioning tool publicly available.

• Unit Disc

As it is not possible to have a uniform partition in that case, only the automatical

partition provided by METIS [38] is considered (see Figure 10.2).
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Figure 10.1: Unit square Figure 10.2: Unit circle

The iterative method employed in all cases is the GMRES method with a right precondi-

tioner PS as indicated. Additionally, GMRES is stopped when the relative residual norm
‖rk‖2
‖r0‖2

is brought below 10−6.

10.1 Test problem 1

10.1.1 Manual partitioning

Consider now the problem (5.1)


−D∆u + M(x)u = f on Ω,

u = 000 on ∂ΩD,

n · ∇u = 000 on ∂ΩN ,

(10.1)

with the following parameters:

• u = 000 on ∂Ω with Ω = [0, 1]2.

• Matrices

M =

α1 β1

β2 α2

 ; D =

1 0

0 1

 ; f =

1 + x+ y

1− x− y


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The following interface preconditioner is used:

PSj =

 AII AIΓ

0 Ŝj

 (j = 1, 2); (10.2)

where:

Ŝ1 =

SA(1) 0

0 SA(2)

 , SA(i) = A
(i)
ΓΓ − A

(i)
ΓI(A

(i)
II )−1A

(i)
IΓ , with A(i) := diL+ αiM ;

Ŝ2 =

 H1/2,α1 0

0 H1/2,α2

 ; with H1/2,αi = MΓΓ

(
M−1

ΓΓ (diLΓΓ + αiMΓΓ )
)1/2

.

The results represented in Table 10.1 and 10.2 show us that PS1 is an optimal precondi-

tioner for problem (5.1), as the number of iterations is independent of the problem size

and the number of subdomains. However, it remains computationally expensive. A more

practical option is PS2 . We indeed find that working with PS2 still gives us virtually no

dependence on the size of the problem, but a dependence on the number of subdomains

(see Table 10.3). However, this dependence disappears with increasing αi. This latter

property is due to the fact that the problem becomes ‘easier’ to solve iteratively as the

mass matrix becomes more and more dominant (see Table 10.1).

Preconditioner= PS1 PS2

k1= 1 2 3 1 2 3
domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

size = 8, 450 4 4 4 4 4 4 3 3 3 10 14 18 10 12 13 11 11 11
33, 282 4 4 4 4 4 4 3 3 3 10 14 18 10 12 14 10 11 11

132, 098 4 4 4 4 4 4 3 3 3 10 14 19 10 12 14 10 10 11

Table 10.1: GMRES iterations for Problem 1 with α1 = α2 = 10k1 , β1 = β2 = 1.
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Preconditioner= PS1 PS2

k1= 1 2 3 1 2 3
domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

size = 8, 450 0.3 0.3 0.3 0.2 0.1 0.18 0.25 0.05 0.17 0.5 1 4 0.5 0.6 2 1 1 9
33, 282 2 2 2 1.5 1 1 1 1 0.9 3 4 18 3 4 14 3 5 10

132, 098 8 8 8 5 6 6 4 4 6 13 23 261 13 20 205 15 23 170

Table 10.2: CPU time in Secondes

Preconditioner= PS2

k2 0 1 2
doms = 4 16 64 4 16 64 4 16 64

size = 8, 450 10 15 18 12 16 20 15 26 49
33, 282 10 15 19 11 16 20 15 28 55

132, 098 10 15 19 12 16 20 15 28 56

Table 10.3: GMRES iterations for Problem 1 with α1 = α2 = 1, β1 = β2 = 10k2 .

10.1.1.1 Computational results beyond the theory

As described in chapter 9 the optimal matrix exponent required for our preconditioner is

1/2. However, we found when using the preconditioner PS2 with:

Hς,αi = MΓΓ

(
M−1

ΓΓ (diLΓΓ + αiMΓΓ )
)ς

; (10.3)

where ς = 0.6, 0.7 for doms = 16, 64 respectively. The number of iterations is indepen-

dent of the problem size and the number of subdomains (see Table 10.4-10.5). However,

we do not have any theoretical results to indicate the independence on the number of

subdomains.

10.1.2 Automatic partitioning

The results from Table 10.6 shows us that, when using automatic partitioning of the

domain, our precondition maintains the h-independence with a much reduced dependence

on the number of subdomains. However, the independence on the number of subdomains
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Preconditioner= PS2,ς

k1 1 2 3
ς= 0.5 0.6 0.7 0.5 0.6 0.7 0.6 0.6 0.7

doms = 4 16 64 4 16 64 4 16 64
size = 8, 450 10 11 12 10 9 9 11 9 8

33, 282 10 11 13 10 9 10 10 8 7
132, 098 10 12 14 10 10 12 10 8 8

Table 10.4: GMRES iterations for Problem 1 with α1 = α2 = 10k1 , β1 = β2 = 1.

Preconditioner= PS2,ς

k2 0 1 2
ς= 0.5 0.6 0.7 0.5 0.6 0.7 0.6 0.6 0.7

doms = 4 16 64 4 16 64 4 16 64
size = 8, 450 10 11 12 12 13 14 15 28 50

33, 282 10 11 13 11 14 16 15 30 52
132, 098 10 12 15 12 14 17 15 31 55

Table 10.5: GMRES iterations for Problem 1 with α1 = α2 = 1, β1 = β2 = 10k2 .

can be achieved by modifying the exponent as shown in Table 10.7.

Preconditioner= PS2

k1 0 1 2
doms = 4 16 64 4 16 64 4 16 64

size = 8, 450 14 19 26 14 19 26 13 15 22
33, 282 14 19 27 14 19 27 13 16 23

132, 098 15 20 28 15 19 28 14 16 23

Table 10.6: GMRES iterations for Problem 1 with α1 = α2 = 10k1 , β1 = β2 = 1.

10.1.3 Other type of preconditioners

In this section, we consider a uniform partition of the domain Ω and present some different

preconditioning approaches.
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Preconditioner= PS2,ς

k1 0 1 2
ς= 0.5 0.6 0.7 0.5 0.6 0.7 0.6 0.6 0.7

doms = 4 16 64 4 16 64 4 16 64
size = 8, 450 14 18 22 14 17 21 13 13 18

33, 282 14 18 23 14 18 23 13 14 20
132, 098 15 19 24 15 18 26 14 14 22

Table 10.7: GMRES iterations for Problem 1 with α1 = α2 = 10k1 , β1 = β2 = 1.

First, we consider the following preconditioner:

P̂S2 =

 AII AIΓ

0 Ŝ2

 ;

where:

Ŝ2 =

 H1/2,α1 0

0 H1/2,α2

 ; (10.4)

with:

H1/2,αi = MΓΓ

(
M−1

ΓΓ (diLΓΓ + (αi − β1β2)MΓΓ )
)1/2

. (10.5)

This is mainly inspired by the work presented in section 8.1 and the results obtained

in Tables 10.5 and 10.3, which illustrated a poor performance of our preconditioner for

βi � αi for i = 1, 2. We found that the number of iterations remains independent of

the problem size but increases at worst logarithmic with the number of subdomains (see

Table 10.8, 10.9). However, the perfomance of the preconditioner deteriorates badly with

increasing βi compared to the initial preconditioner PS2 but is very similar when αi � βi

for i = 1, 2.
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Preconditioner= P̂S2

k1 1 2 3
doms = 4 16 64 4 16 64 4 16 64

size = 8, 450 14 14 18 10 12 13 11 11 11
33, 282 10 14 18 10 12 14 10 11 11

132, 098 10 14 18 10 12 14 10 10 11

Table 10.8: GMRES iterations for Problem 1 with α1 = α2 = 10k1 , β1 = β2 = 1.

Preconditioner= P̂S2

k2 0 1 2
ς= 0.5 0.6 0.7 0.5 0.6 0.7 0.6 0.6 0.7

doms = 4 16 64 4 16 64 4 16 64
size = 8, 450 10 14 18 39 88 141 286 790 1714

33, 282 10 14 18 40 91 145 297 866 2010
132, 098 10 15 19 40 93 146 312 870 N/A

Table 10.9: GMRES iterations for Problem 1 with α1 = α2 = 1, β1 = β2 = 10k2 .

Finally, consider the following preconditioner:

PS =

 PSα1
β2M

0 PSα2

 ;

where:

PSαi =

 (diL+ αiM)II (diL+ αiM)IΓ

0 H1/2,αi

 (i = 1, 2). (10.6)

This preconditioner is inspired by the work carried out in [44], where the block matrix A in

(5.10), is the preconditioner by an upper triangular matrix. Here instead we approximated

the diagonal entries using a DD-preconditioner. We found that the number of iterations is

dependent on the problem size and the number of subdomains and decreases for increasing

αi. This poor performance is due to the fact that we are preconditioning a coupled problem

using a decoupled approach. One should mention that the preconditioner (10.1.3) will

92



require twice as many processors as our original preconditioner if implemented in parallel.

Preconditioner= PS

k1 0 1 2
doms = 4 16 64 4 16 64 4 16 64

size = 8, 450 63 86 104 31 36 40 17 18 18
33, 282 102 184 250 56 67 75 22 24 25

132, 098 161 302 384 102 125 320 39 44 44

Table 10.10: GMRES iterations for Problem 1 with α1 = α2 = 10k1 , β1 = β2 = 1.

As a result of our investigations, we will consider only the preconditioner PS2 for the

remaining test problems.

10.2 Test problem 2

We consider now the problem (5.1), with the following parameters:

d1 = 1, d2 = 0.1, α1 = α2 = 10k1 , β1 = β2 = 1;

with f such that uT =
(
(x− 1

3x
3)(y − 1

3y
3), (x− 1

3x
3)(y − 1

3y
3) + 2

)
. Since d1 6= d2 two

set of results have been obtained (see Table 10.13). The first set of results is obtained

by applying the preconditioner directly to the problem (5.1). The second set of results is

obtained by applying the preconditioner to a scaled version of problem (5.1), namely:

−I2∆v + MD−1v = f , where v = Du. (10.7)

In both cases, we find indeed that the number of iterations is independent of the problem

size but exhibits at worst logarithmic dependence on the number of subdomains. However,

the number of iterations remains higher than in the Test problem 1. This is due to the

fact that the preconditioned matrices are no longer symmetric.
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Without Scaling With Scaling
k1= 1 2 3 1 2 3

domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64
size = 8, 450 20 24 26 17 19 19 16 17 16 13 14 17 12 12 13 9 11 10

33, 282 20 24 27 17 20 21 15 19 19 13 14 18 12 13 13 10 12 11
132, 098 20 24 28 18 21 22 15 19 19 14 14 18 12 13 13 10 12 12

Table 10.11: GMRES iterations for Problem 2 .

Remark 10.2.1 The similarity between the second part of the results in Table cdtable:a@

tells us that the performance of our preconditioner will not be affected if

d1 << d2. In that case the scaled version (10.7) of the problem is used.

10.3 Test problem 3

Finally we consider problem (5.1) with d1 = 1; d2 = 0.1; f = (1, 1)T and

u = 000 on ∂Ω together with the following jump coefficients such that assumptions (4.3.2)

are sastified:

α1 =


1 if x2 + y2 < 1/4;

100 otherwise.
; α2 =


100 if x2 + y2 < 1/4;

1 otherwise.

β1 =


0.1 if x2 + y2 < 1/4;

1 otherwise.
β2 =


1 if x2 + y2 < 1/4;

0.1 otherwise.

An illustration of the final solution u is provided in Figure 10.3, while the iteration count

is presented in Table 10.12. We observe a similar convergence behaviour: independence

of the problem size and logarithmic dependence on the number of subdomains.
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domains = h 4 16 64
size = 8, 450 0.0313 19 24 28

33, 282 0.0156 18 25 28
132, 098 0.0078 18 26 28

Table 10.12: GMRES iterations for Problem 3.

Figure 10.3: Solution for Problem 3.

10.4 Test problem 4

The problem (5.1) is solved on domain Ω = (−1, 1)2 with ∂ΩN = ∅. The rest of the

parameters are: f = (1, 1)T ,u = 0 on ∂ΩD and

M(x) =

 1 + x2 + y2 x2 + y2

x2 − y2 x2 + y2

 .
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As we are dealing with non constant coefficients the matrix Ŝ2 is adapted as:

Ŝ2 =

 Hα1
1/2 0

0 Hα2
1/2

 ; (10.8)

with:

Hαi
1/2 := [diL+Mωi ,M ]1/2 and Mωi =

∫
Γ
ωφiφj dΓ.

The other parameters together with the number of iterations are given in Table 10.13 and

Table 10.14. We indeed find that the number of iterations is independent of the size of

the problem but increases with the number of subdomains.

d1 = d2 = 1
doms = 4 16 64

size = 8, 450 14 15 19
33, 282 15 16 20

132, 098 16 17 20

Table 10.13: GMRES iterations for Problem 4.

d1 = 0.1, d2 = 1
doms = 4 16 64

size = 8, 450 21 25 29
33, 282 22 26 31

132, 098 24 27 31

Table 10.14: GMRES iterations for Problem 4.

96



10.5 Test problem 5

In this section we present the numerical experiments obtained by solving the Schnakenberg

system: Schnakenberg model is defined by the following set of PDEs:


ut = ∆u+ γ(a− u+ u2v) on Ω;

vt = d∆v + γ(b− u2v) on Ω; 0

n.∇u = 0 on ∂Ω.

(10.9)

This model is widely used in biology to model the emergence of patterns (see [48, 76, 54])

and can be written as:



∂u
∂t

= D∆u + f(u) in Ω,

n.(∇u) = 000 on ∂ΩN ,

u = g on ∂ΩD,

u(x, 0) = u0(x) for x ∈ Ω,

(10.10)

with ∂ΩD = ∅, where:

f(u) =

γ(a− u1 + u2
1u2)

γ(b− u2
1u2)

 , D =

1 0

0 d

 , a, b, γ, d > 0. (10.11)

If we denote by

f(u1, u2) = γ(a− u1 + u2
1u2), g(u1, u2) = γ(b− u2

1u2),

then for all u, v > 0,

f(0, u2) = γa > 0, g(u1, 0) = γb > 0, f(u1, u2) + g(u1, u2) 6 γ(a+ b),
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so that (4.3.2) holds.

The steady state for the problem (10.10) is given by the solution of the system:


− 1
γ
D∆u + Mθ1,θ2(u)u = f on Ω,

n · ∇u = 0 on ∂Ω,

where θ1 = 1− θ2, θ2 ∈ R and:

Mθ1,θ2(u) =

1− (1− θ1)u1u2 −θ1u
2
1

θ2u1u2 (1− θ2)u2
1

 , f =

a
b

 .

Again the determinant of Mθ1,θ2(u) is denoted by

detMθ1,θ2 (u) =(1− θ2u1u2)θ1u
2
1 + θ1θ2u

3
1u2

=θ1u
2
1 > 0.

so that (5.2) holds. We solve this nonlinear problem using the following Picard iteration

with k ∈ N0:


− 1
γ
D∆uk+1 + Mθ1,θ2(uk)uk+1 = f on Ω,

n · ∇uk+1 = 0 on ∂Ω,

uk+1(0, .) = u0.

(10.12)

together with the following adaptive stopping criterion:

‖rω‖
‖F(uk)‖q 6 tol, q > 0; (10.13)

where rω denotes the GMRES residual and F(uk) := − 1
γ
D∆uk+1 + Mθ1,θ2(uk)uk+1 − f .

Note that for the small value of q we relax the stopping criterion for GMRES.
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The starting value is obtained after using an explicit time stepping integration. More

precisely, a Crank-Nicolson scheme is applied on the reaction diffusion system (10.9) with

final time tF = 110 and time-step δt = 5 × 10−2 following the setup in (10.11). The

parameters values are the same as used in [80], namely:

γ = 100, a = 0.1305, b = 0.7695, d1 = 0.05, d2 = 1

and u0(x) =
(
a+ b+ 10−3 exp

(
−100(x− 1

3)2 − 100(y − 1
2)2
)
,

b

(a+ b)2

)T
.

The preconditioner used here is the same as in the previous case and is also adapted as

in (10.8). Before solving problem (10.12), it is important to run some selective tests in

order to find the best value for θ1 and θ2 as they have an impact on the preconditioner

as shown in the Table 10.15. We solve the system (10.12) on the unit square domain (see

θ1 = 1− θ2 0.3 0.35 0.4 0.45
2178 819 698 738 778
8450 657 561 593 625

Table 10.15: Total number of nonlinear iterations

Figure 10.3). An illustration of the solution to the steady state is shown in Figure 10.4

and iteration counts in Table 10.16 for θ2 = 0.35. We find indeed that the number of

iterations is independent of the problem size but exhibits at worst logarithmic dependence

on the number of subdomains.

q = 10−2 tol = 10−1

doms = 4 16 64
size = 2, 178 3, 152 9, 180 8, 082

8, 450 2, 540 4, 015 4, 956
33, 282 3, 324 4, 949 3, 525

Table 10.16: Total number of GMRES iterations for Problem 5.
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Figure 10.4: One steady state of the Schnakenberg model.

Next we change the shape and the size of the domain, using a METIS [38] partitioning of

the domain (see Figure 10.2), but keep all other parameters unchanged. An illustration

of the solutions of the steady state is shown in Figure 10.5 and iteration counts in Table

10.17. As in the previous case, the number of iterations is independent of the size of the

problem, but exhibits a logarithmic dependence on the number of subdomains.

q = 10−2 tol = 10−1

doms = 4 16 64
size = 4, 258 10, 045 14, 210 16, 248

16, 770 7, 620 11, 457 11, 430
66, 562 6, 762 10, 593 11, 556

Table 10.17: Total number of GMRES iterations for Problem 5.

Remark 10.5.1 The results obtained in Table 10.17 and 10.16 show that the approach

presented in this thesis is an important contribution for finding the steady state of reaction-

diffusions systems. Our approach produces the results in more efficient and faster way that

any other approaches existing in the literature (See for example [48, 76, 80]).
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Figure 10.5: One steady state of the Schnakenberg model.
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Chapter 11

Conclusion

11.1 Summary

We presented a general non-overlapping domain decomposition method for solving reaction-

diffusion systems. We derived the corresponding Steklov-Poincaré operator together with

the associated linear algebra problem. In addition, by exploiting the fact that the Steklov-

Poincaré operators arising in a non-overlapping DD-algorithm are coercive and continu-

ous with respect to Sobolev norms of index 1/2, an interface preconditioner for the Schur

complement problem was constructed. This was shown to be strongly related to the fi-

nite element representation of the norm ‖ . ‖1/2,Γ . Its implementation can be achieved

via sparse Lanczos procedures, which do not add to the complexity of the problem. We

used various numerical examples to validate our theoretical results. We found that the

performance of our preconditioner is independent of the mesh parameters when having

a uniform or a METIS [38] partitioning of the domain but exhibits at worst logarithmic

dependence on the number of subdomains. However, the subdomain independence can be

achieved when using a fractional power greater than 1/2. Although we do not have any

theory to back up this affirmation, it has been validated in various numerical experiments.
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11.2 Further directions

The results obtained in this thesis are very satisfactory and its extension to larger reaction-

diffusions systems would be straightforward and would exhibit similar properties. How-

ever, some issues concerning the performance and the robustness need to be addressed as

there is still room for improvement.

• Block diagonal preconditioning of the Schur-complement

In this thesis we have considered a block diagonal precondition for the Schur com-

plement of reaction-diffusion systems. However, we found that when βi � αi for

i = 1, 2, our preconditioner deteriorates (See Test problem 1). Another approach

will be to consider a new type of preconditioner, the structure of which would take

into consideration the parameters βi for i = 1, 2 as shown by the equations (8.25),

(8.25) while remaining extendable to large systems and easily implementable.

• The linearization problem

For our non-overlapping algorithm to remain valid for any non-linear reaction dif-

fusion systems, it is necessary to transform the given non-linear reaction diffusion

systems into linear reaction diffusion systems. However, the linearization techniques

can have an impact on the performance of the solver (see Table 10.15). Therefore

it becomes important to run some selective tests.

• Subdomains dependence

We found that the subdomain dependence can be eliminated by using a fractional

power greater than 1/2. However this can not be proved theoretically. That is

why we believe it would be interesting to explore the idea of envisaging a coarse

grid correction, if the performance of our preconditioner deteriorates badly with the

number of subdomains. Another option would be to try to devise an algorithm,

103



which would allow us to find the optimal number of subdomains in order for our

preconditioner to remain subdomain independent.

• Lanczos algorithm

In this thesis all the results have been obtained without using a Lanczos algorithm

as our aim was to study the performance of the exact preconditioner. However, this

has been suggested in chapter 9 and done in [8, 6] for reaction diffusion equations but

the demonstration of the effect of the lanczos space dimension of reaction-diffusion

systems still remains an open problem.

• Multigrid methods (MG) In this thesis we have presented only Krylov subspace

method. It would be interesting have look into MG, as they belong to the category

of iterative solver, which solve the problem by taking into account the underlying

PDE systems together with a hierarchy of discretization of the problem. More

precisely, they consist of combining computed results obtained on different scales,

using results from one scale to reduce certain error components of the approximation

of the solution on another scale. Some applications can be found in [82, 83].

• Parallel performance

It is well known that the main purpose of using domain decomposition is to devise

parallel algorithms that can exploit the emergence of multiprocessor computers.

However, the results presented in this thesis have been obtained from a single pro-

cessor computer. It would be quite tempting to investigate the degree of parallelism

that can be achieved by the approach presented in this session. This would open

the road to test the approach presented in this paper on more complicated reaction-

diffusion systems, such as problems (4.4).
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