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Abstract 

 

Birt-Hogg-Dubé syndrome (BHD) (OMIM: #135150) is a rare genodermatosis following a 

dominant pattern of inheritance. The disease is characterised by the clinical presentation of 

benign cutaneous fibrofolliculomas and a predisposition to pneumothorax and renal cell 

carcinomas. The heritable genetic cause of BHD has been determined as mutations within 

the 3638bp transcript encoding the gene Folliculin (FLCN).  FLCN is thought to mediate a 

molecular effect through two binding proteins; FNIP1 and FNIP2, and a role in the Akt-mTOR 

pathway through interaction with AMPK has been elucidated through co-

immunoprecipitation assays. A variable phenotype has been observed though in systems 

modelling loss of function. This study therefore intends to take a novel approach to 

mutational studies by utilising the zebrafish model organism. The ease of use, application of 

systems such as morpholinos and optical clarity provided by zebrafish embryos make them 

ideal for functional assays in vivo. We exploit this benefit using imaging analysis of a Fucci 

transgenic line and in situ hybridisation and are able to suggest a possible functional role of 

FLCN within cell cycle regulation and morphogenesis in the developing brain. In addition, 

progress is made to determining the embryonic lethality of null homozygous mutants in the 

zebrafish model organism.  

Word count - 200  
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Introduction 

 

Birt-Hogg-Dubé Syndrome (BHD) (OMIM: #135150) is a rare dominantly inherited genodermatosis 

with a predisposition to hereditary kidney neoplasms and benign cutaneous hamartomas. In past 

literature it has been cited as Hornstein-Knickenberg syndrome due to a 1975 study by Hornstein 

and Knickenberg (2) in which they described a sibling pairing with a presentation of perifollicular 

fibromas with association of intestinal polyps. In 1977 Drs. Birt, Hogg and Dubé (3) described similar 

cutaneous symptoms in a more extensive kinship with 15/70 affected family members. Both studies 

presented cases of what is now referred to as BHD. Birt et al. (3) used the extensive family available 

of the index case and the presence or absence of papular skin lesions to determine an autosomal 

dominant pattern of inheritance through pedigree studies.  

Clinical presentation and current treatment options 

As both aforementioned studies have suggested one of the main clinical phenotypes observed 

within patients is the presence of small, rounded, dome-shaped skin lesions from which the Birt et 

al. paper (3) coined the terminology of fibrofolliculomas. These smooth and skin-coloured papules 

are often determined as the defining pathology of the disease and are most prevalent on the head, 

neck and trunk of affected patients. They are benign tumours in the hair follicle due to spatially 

restricted proliferation of collagen and fibroblasts (4). They occur predominately in patients older 

than 20 (1) with some papers suggesting onset of skin lesions only occurring in the third to fourth 

decade of life in affected individuals (5). They are often found in vast numbers and can be present 

together with lesions of similar morphology including trichodiscomas (both present in 31% of 

patients) and acrochordons (91%) (5).  

The most threatening clinical complication of BHD is a linked predisposition to malignant carcinoma, 

in particular renal neoplasms. In a study of 124 BHD patients Pavlovich (6) found 27% (34/124) to 

have a renal cell carcinoma (RCC) of varying histology. Zbar, in his 2002 paper (7), suggested an odds 
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ratio (OR) of 6.9 that patients with BHD will contract a renal tumour in multivariate age adjusted 

analysis and that the median age of detection was 51 years. The renal tumours published in patients 

suffering with BHD vary greatly in histology with four main sub-categories observed; papillary RCC, 

clear cell RCC, chromophobe RCC and oncocytomas. Tumours are often multifocal and bilateral with 

chromophobe RCCs being most common but vast familial variation and individual variation occurs 

with many hybrid cases of sub-categories within one kidney or one tumour being reported (8). 38 

months follow up of 10 patients by Pavlovich et al., (6) revealed 80% overall survival with five 

remaining disease free, three retaining small renal tumours and two patients dying of metastatic 

RCC. 

Another important symptom of BHD is pulmonary cysts and spontaneous pneumothorax. The 

original link between BHD and lung cysts was first reported by Toro et al. (5) where the complication 

was found in four out of 28 cases using chest radiography. Since then, numerous cases of pulmonary 

cysts within patients suffering from BHD have been reported with recent studies showing 24% 

prevalence in BHD patients (9) and an OR 32 times as great, for those with BHD compared to those 

without, in multivariate analysis (7). In BHD it can be said that the pneumothorax seen cannot be 

classed as spontaneous but more as a possible secondary complication when lung cysts rupture 

under pressure (4). 

Previous diagnostic criteria relied on the presence of five or more facial papules or at least one 

papule confirmed as a fibrofolliculoma using specific criterion (5). Menko et al. (1) have built on this 

knowledge and suggested the major and minor diagnostic criteria as shown in Table 1. One of the 

main clinical problems with BHD is its variation; be that across a panel of patients or within a family 

with a predicted segregating mutation. Clinical presentation of the symptoms stated previously can 

occur at a varied time post the second decade of life (1, 10). This presents an altogether different 

challenge in treating BHD and its symptoms and susceptibilities requiring a personal maintenance 

approach.  
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Currently treatment aims to achieve just this and focuses on clinical management of phenotypic 

presentations and screening for critical complications such as renal cell carcinoma. Laser ablation, 

with varying results, using systems such as erbium:YAG laser (11), is currently suggested for use for 

aesthetical treatment of fibrofolliculomas and other presented skin lesions. Management of the 

most threatening clinical complication, RCC, is achieved through regular monitoring from a relatively 

early age. It is suggested now that scanning should occur from the age of 20 upwards at yearly 

intervals (1). Computerised tomography is the preferred method of analysis due to its improved 

ability to detect smaller masses (<3cm diameter) when compared to ultrasound techniques (12) but 

it does raise the issue of an increased risk to cumulative radiation across a lifetime. Upon detection 

of a renal carcinoma mass normal staging and grading occurs followed by appropriate treatment, 

usually nephron sparing surgery, with promising event free survival, for masses larger than 3cm (13). 

Tackling other complications of BHD, such as pneumothorax and colonic cysts, occurs currently at 

presentation of symptoms. The high risk factor of pneumothorax in patients suffering with BHD 

though does provide evidence for the instigation of CT monitoring of pulmonary cysts in patients at 

risk (1). 

Figure 1. Diagnostic criteria for diagnosis of BHD upon patient presentation, as described by Menko et al. (1). 

Diagnostic criteria for Birt-Hogg-Dubé syndrome (BHD; patients should fulfill one major or two minor 

criteria for diagnosis) 

 

Major criteria 

 

 At least five fibrofolliculomas or trichodiscomas, at least one histologically confirmed, of 

adult onset* 

 

 Pathogenic FLCN germline mutation 

Minor criteria 

 

 Multiple lung cysts: bilateral basally located lung cysts with no other apparent cause, with or 
without spontaneous primary pneumothorax 

 

 Renal cancer: early onset (<50 years) or multifocal or bilateral renal cancer, or renal cancer 
of mixed chromophobe and oncocytic histology 

 

 A first-degree relative with BHD 
 

http://www.sciencedirect.com/science/article/pii/S1470204509701883#box1fn1


4 
 

Folliculin, the causative gene underlying BHD 

From the first mention of heritability (3) and the dominant pattern of inheritance observed in 

pedigree studies it had been clear there was a genetic causation of BHD but it was not until 2001 

when Khoo et al. (14) first mapped the BHD gene to a locus between 17p12-q11.2. They used 

microsatellite markers every 10cM and haplotype mapping to determine segregation in affected 

patients. This work was built upon and confirmed by Schmidt et al. (15) who narrowed down the 

location of the causative gene to 17p11.2 using a high penetrance model of disease and linkage 

analysis software. In all patient families Schmidt analysed high LOD scores were obtained for a <4cM 

region between microsatellite markers in the 17p11 region. Cloning of the affected gene was first 

performed by Nickerson et al. (16) and followed a logical progression from narrowing down the 4cM 

region using additional familial recombination studies to then gene mining the critical region. This 

method returned two possible alternately spliced transcripts. Finally cDNA extracted from kidney 

and lung, thought to be a combination of the two alternately spliced transcripts, was sequenced 

with >4 fold coverage.  The resultant product is a sequence of 3638 nucleotides/14 exons, 11 of 

which are coding, that they named folliculin (FLCN) after the fibrofolliculomas in clinical 

presentation. 

Studies by Schmidt et al. (17) and Toro (18) have showed prevalence of FLCN mutations in 84 and 

88% of BHD patients, respectively. As of the 26th of March 2013 there are 153 described variants 

within the European Birt-Hogg-Dube consortium database (19). Toro (18) reported that 47% (24/51) 

of familial mutations occur within exon 11, 19 of which occur at a “mutational hotspot” in a 

mononucleotide tract of eight cytosine residues, (C)8, and this was reported earlier by Schmidt (17). 

In Toro’s study 74% had an insertion of cytosine at position 1733 in the coding sequence 

(c.1733insC) and 24% had a deletion (c.1733delC) and a literature review by Toro found 125 

mutations from 40 families at this point in the sequence. Mutations in the 2008 Toro study occurred 

in only translated exons 4, 5, 6, 9, 11, 12 and 13 and consisted of insertions, deletions, missense and 

nonsense single nucleotide changes and splice site mutations (18). With the majority of the 



5 
 

mutations in the Toro study being one and two nucleotide insertions or deletions the majority of 

mutations produced a frame shift and a subsequent altered AA sequence which is predicted to 

truncate the protein product. Several studies have attempted to create a genotype-phenotype link 

between mutation and the spectrum of clinical complications. Schmidt (17) initially reported an 

increased prevalence of RCC in patients with c.1733delC compared to c.1733insC, this was again 

reported by Toro et al. (18) but it was found to be not statistically significant (p=0.11). Toro also 

found no other links between mutation type, mutation vs. no mutation and any of the main 

phenotypic presentations. 

The 3638bp FLCN transcript codes for a 579 AA, 64kDa protein. mRNA expression of FLCN  in humans 

is seen in tissues of the skin, kidney, lung as well as tissues of the tonsils, lymph nodes, spleen, brain, 

breast, bladder, testis, prostate, ovary, myometrium, pancreas and parotid gland (20). Expression is 

also seen in the epidermis of fibrofolliculomas and lung blebs from BHD patients but no expression 

was noted in renal carcinoma cells of the same patients. Interestingly no expression was seen in the 

endothelial cells of the colon.  

Molecular function of FLCN 

To this date there seems to be a level of ambiguity surrounding the molecular function of FLCN. A 

second mutational hit, either by somatic mutation or loss of heterozygosity (LOH), has been 

previously reported in tumour samples as evidence of a tumour suppressor role of FLCN. LOH was 

confirmed in 17% of renal tumours (21) indicating a possible tumour suppressor function of FLCN but 

in similar studies looking at LOH in fibrofolliculomas (22) no second-hit mutations could be observed 

suggesting haploinsuffuciency may be the causative effect of tumourogensis in this particular 

phenotype.  

Efforts to determine the function of FLCN have mainly been focused around studying possible 

binding partners of the full-length transcript protein product and associated pathways where it may 

play a role. Initial studies in Drosophila suggested a role downstream of the JAK/STAT pathway in 

germline stem cell maintenance in fly testis (23), but it was a 130kDa interacting protein, first 
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established using co-immunoprecipitation experiments (24), designated FLCN-interacting protein 1 

(FNIP1) that elucidated a possible explanation for the phenotypic presentation of BHD. The team 

from the National Cancer Institute in Frederick confirmed a similar expression pattern of FNIP1 to 

FLCN and interactions of FNIP1 with the C-termini of FLCN from mutational studies. Using similar co-

immunoprecipitation studies the group were also able to prove that FNIP1 can bind to AMP-

activated protein kinase (AMPK) independently of FLCN or together to form a complex. FNIP1 can 

also act as a substrate of AMPK and be phosphorylated in the AMPK pathway and the same can be 

said for FLCN where its phosphorylation is diminished upon AMPK inhibition. More recently an 

uncharacterised cDNA sequence, homologous to FNIP1, was discovered using BLAST sequence 

searches and designated as FNIP2 (25). Both sequences shared 49% identity and 74% sequence 

similarity with highly conserved regions in the C-termini and the N half of the protein. Like FNIP1, 

FNIP2 binds to FLCN in in vitro studies and co-localises with AMPK in the cytoplasm of the HEK293 

kidney cell line. FNIP1 and 2 can also form multimers independent of FLCN. The difference between 

the possible roles of both FNIP1 and FNIP2 seems to lie in their slightly altered expression patterns, 

with higher expression of FNIP2 seen in the fat, liver and pancreas. Interestingly when varying 

histological renal cell carcinoma samples were tested for mRNA expression levels of the two FLCN-

interacting proteins there seemed to be some deviation in expression depending on the type of 

tumour tested (25). 

The interactions of FLCN and its two reported binding proteins with AMPK poses an interesting 

hypothesis to the function of FLCN and how deregulation through mutation may lead to the 

phenotypic effects seen in BHD. AMPK acts as a sensor of ATP levels in eukaryotic cells and is 

activated upon elevated AMP due to a depleted ATP environment (26). It is upon this activation that 

it is believed that AMPK can inhibit the function of mTOR, through phosphorylation, which, in turn, 

correlates with findings of a reduced mTOR function in low nutrient levels (27). mTOR, a key 

member of the PI3K-AKT-mTOR signalling pathway, usually functions to increase cellular growth 

through increased protein synthesis and/or reduced protein degradation as well as number of other 
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cellular processes (reviewed in (28)). In theory this model of an altered AMPK and mTOR pathway 

due to FLCN mutation could explain the predisposition to uncontrolled cellular growth in 

fibrofolliculomas and carcinomas in BHD patients. This possible link is further strengthened with the 

involvement of causative genes from other hamartoma syndromes such as; TSC, Peutz-Jeghers 

syndrome and PTEN-related hamartoma syndromes playing roles within the AMPK-mTOR signalling 

pathway (29, 30). The main flaw with this hypothesis currently is that relies on not just an interaction 

between FLCN and AMPK but a reaction causing a change to how AMPK relays it’s downstream 

signal. This is still yet to be determined.  

Current models of BHD to elucidate the role of FLCN further involve in vivo cell-specific and whole 

organism knockouts in mice and in vitro tumour isolated cell lines. Through a Cre-recombinase 

system of mutation Baba et al. (31) were able to establish a murine model that produced Cre-

mediated deletion of floxed FLCN sequences with a significantly lower level of expression compared 

to normal renal tissue. By week one after birth inactivated-FLCN kidneys began to enlarge and this 

accumulated in the vast production of cysts within the lumens of ducts and tubules and significant 

kidney failure by week three, at which point mice were euthanized. This experimental data has been 

confirmed in a competing paper where death by renal failure was observed at three weeks of age 

(32). Baba built on these initial findings to report an increase in proliferation and a marked 

difference in size of proximal ducts and tubules. They also went further to assess the effect on the 

previously linked Akt-mTOR pathway. They observed elevated mTOR phosphorylation and increased 

kidney:body weight ratio in FLCN knockout mice as well as increased survival of knockout mice when 

treated with the mTOR inhibitor rapamycin (31). 

Hasumi et al (33) focused their efforts on producing a homozygous murine null mutant strain for 

FLCN. FLCN homozygous null mice (BHDd/d) were embryonic lethal with no homozygous embryos 

observable at E9.5. Interestingly there was a lack of an organised cell layer in early homozygous 

mutant embryos and images from the visceral endoderm showed an increased cytoplasm and 

disorganised structure. Kidney cyst development was also noted in BHDd/+ mice mimicking the 
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tumour phenotype within humans and like before (31) proteins from the Akt-mTOR pathway were 

elevated in comparison to normal kidney samples.   

To date work studying the functional effect of FLCN has focused mainly around its most detrimental 

clinical phenotype of renal cysts and carcinoma. What we propose in the following study is a novel 

method to study the effects of FLCN in the early stages of development using the zebrafish model 

organism. A role of FLCN during development has already previously been suggested (33) so a better 

understanding of FLCN at this early and fundamental step will potentially help elucidate it’s 

mechanism of effect in simple cellular processes such as growth and cellular organisation.  

The use of the Fucci transgenic system to study a novel phenotype within the midbrain 

Originally developed in 1985 by Summerton et al. and published in 1989 (34) morpholinos are an 

antisense 25-mer oligonucleotide designed around an adapted ribonucleoside backbone. They 

mediate a temporary effect, up to 5 days (35), by targeted binding with high efficacy to RNA, 

blocking the translation initiation complex by an RNAse H-independent steric blocking mechanism 

or, alternatively, splicing machinery. Using morpholino induced temporary knockdown targeted to 

the splice acceptor site of exon 2 (Sp2) of FLCN a novel phenotype during early development was 

observed. This phenotype consisted of fluid retention within the midbrain: hydrocephalus and is 

shown in Figure 2. We believe there may be a case for this phenotype being caused by a 

disorganisation of cells/a lack of cells within the midbrain during early development. Prior work in 

mouse models has already shown a disorganisation of cells and developmental structures in murine 

models (33) so this novel phenotype could be a similar effect at a later stage of development. We 

initially propose that the phenotype observed may be an effect of deregulated cell cycle control 

leading to an altered cell growth and proliferation. This model will potentially fit with the 

uncontrolled cellular growth seen in fibrofollicumoas and lung and renal cysts and could be as a 

result of altered mTOR activity but this will need to be explored further before a real link can be 

established.  
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To study the novel phenotype we intend to employ in vivo imaging tactics to study cell-cycle control. 

Originally developed for cell line models to study cell-cycle progression (36) the Fucci (fluorescent 

ubiquitination-based cell cycle indicator) transgenic line provides a unique perspective for studying 

spatial and temporal regulation of the cell cycle. More recently this system has been applied to the 

zebrafish model organism (37) allowing for live in vivo time-lapse imaging facilitated by the 

translucent nature of zebrafish embryos. The Fucci transgenic line revolves around the conjugation 

of fluorescent proteins; monomeric Kusabira Orange2 (mKO2) and monomeric Azami Green (mAG) 

to the ubiquitination domains of Ctd1 and geminin respectively. Cells control Ctd1 and geminin 

activity at the protein level by targeting them for destruction using ubiquitination so that Ctd1 levels 

peak during the G1 phase of the cell cycle and geminin the S/G2/M phase. Transfection of the 

conjugated proteins allows them to accumulate reciprocally in the nuclei of cells effectively creating 

a cell cycle marking system by labelling cells in G1 orange/red and those in S/G2/M green. The 

benefit of this system is that cell-cycle progression can monitored live by the length of each stage of 

the cell cycle thus creating a platform for mutational comparisons and their effect on the cell cycle. 

The way in which we hope to utilise this imaging system is by optimising an experimental procedure 

Figure 2 showing fluid 

retention in the midbrain in 

Sp2 morpholino injected 

embryos at 48hpf. Fluid 

retention is displayed as the 

clear area around the 

midbrain indicated by the red 

arrows. This novel phenotype 

is observable in all Sp2 

injected embryos but some 

variability in severity is 

present.  
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that can use the basics of the Fucci transgenic line, different fluorescence corresponding to different 

stages of the cell cycle, to assess cell cycle control over time in both FLCN temporary knockout and 

wild type embryos. We hypothesise that by focusing on the phenotypically interesting area of the 

tectum and midbrain we can establish a role of FLCN in cell-cycle control. Also by direct comparison 

of mutant embryos to wild type embryos we have the potential to suggest a theory for the 

phenotypical manifestations seen in BHD as a result of aberrant cell-cycle control.  

Zebrafish as a model organism to study FLCN 

Zebrafish, Danio rerio, (Taxonomy ID – 7955) have been used as a model organism for over 30 years 

(38), they are desirable for studying vertebrate development due to their ease of use, fast 

reproductive cycle and beneficial anatomical and developmental features such as a translucent 

embryo and development outside of a womb. They have been utilised for many genetic screens 

including random mutagenesis by ENU generation of point mutations and as a result there is a large 

surrounding open database of genomic and developmental information available at www.zfin.org. 

They provide an ideal intermediate in terms of cost and conserved homology and are favoured in 

this particular study due to their optical clarity. 

FLCN is highly conserved throughout eukaryotes with orthologous sequences in organisms down to 

D.melongaster and C.elegans. The zebrafish orthologue of FLCN, zFLCN, is located on zebrafish 

chromosome 16 and encodes a 558 AA protein with 68.8% sequence identity when compared to the 

human sequence. Other members of the mTOR pathway are also conserved within zebrafish 

including mTOR and the coding subunits of AMPK, as well provisional homologs are suggested for 

both FNIP1 and FNIP2 proving the adaptability of the zebrafish model to this field. There is little 

published information regarding zFLCN and its function so the approach I will take in this study is a 

complete categorisation of the role of FLCN in early development of the zebrafish model organism. 

Therefore it can be said we have two main aims for the initial body of work excluding the application 

of the FUCCI transgenic system; 

http://www.zfin.org/
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 Determine FLCN mRNA expression patterns in early development using whole mount in-situ 

hybridisation. 

 Confirm/dispute embryonic lethality previously established in murine models using a 

homozygous null mutant breeding strain. 

Whole mount in-situ hybridisation will be used as opposed to tissue in-situ hybridisation employed 

by prior localisation studies as the small size of zebrafish embryos makes it unsuitable for sectioning. 

The confirmation of embryonic lethality and hence agreement with work published in mice will 

provide a more substantial level of evidence to a possible function of FLCN in early development. 

Whether this putative function at early development is the same or a similar manifestation of that 

observed in adult tissue that can cause a retention of fluid within the mid-hindbrain is yet to be 

seen. 

Overall we aim to achieve a better understanding of the role of FLCN in early embryonic 

development to help progress studies into BHD and its causation. 
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Methods 

 

Zebrafish husbandry and care 

Adult zebrafish were maintained in a facility utilising a recirculating water system with bead and 

sand filtration devices. UV lights sterilise post filtrated water. Water temperature is maintained at 

28.5°C and between pH 7.2 and 7.5. Fish were reared and cared for according to standard protocols 

as set out within the 5th edition of The Zebrafish Book, the chapter dedicated to general methods to 

laboratory care, and home office regulations. Personnel followed home office guidelines for handling 

of transgenic and wild type fish. 

Fish were bred according to standardised protocols where up to four fish were placed in breeding 

tanks fitted with collection trays. All tanks were maintained at 28.5°C and standardised humidity and 

were set up overnight to allow the fish to settle and grow a custom to their new surroundings. In the 

case where the precise time of laying was desired males and females were separated by a plastic 

screen until desired. In these cases time of laying was noted and embryos from separate breeding 

tanks were kept separate throughout subsequent experiments. Fish were never set up for breeding 

more than once every seven days and always returned to the same takes that they were removed 

from. 

All experimental procedures involving zebrafish and care are covered by home office regulations and 

the personal licenses held within the University of Birmingham. 

 

Transgenic lines 

Fucci transgenic line: Tg{[EF1α:mKO2-zCdt1(1/190) ][ EF1α:mAG-zGem(1/100)]}. 

Founder fish were supplied by Maya Sugiyama of the Laboratory for Cell Function and Dynamics, 

Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, 

Saitama 351-0198, Japan (37). 
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Heterozygous embryos for use in time-lapse imaging were generated by outcrossing founding 

females to wild type males. 

Flcn heterozygous fish (Flcne36/+) were generated and supplied by the Sanger zebrafish mutational 

project (39). The e36 allele contains a point mutation affecting the 12th amino acid within exon 2. 

The G->T change is a nonsense mutation that causes a truncated non-functional 4 exon protein with 

a 194 amino acid total. The flanking region around the mutation is as follows; 

GCCCTGTGCCACTTTTGT[G/T]AGCTCCATGGCCCAC. 

The mutation disrupts a Sac1 restriction site. 

 

Morpholinos and Micro-injections 

Morpholinos (www.gene-tools.com) were injected into 1 cell embryos post fertilisation. 1.4nl, 

measured by a graded graticule, of morpholino at a concentration of 1mM, diluted in phenol red, 

was injected through the chorion into the single cell. Injections were performed using needles pulled 

from capillary glass tubing, Borosilicate – thin wall with filament (G100TF4) (1mm outer diameter, 

0.78mm inner diameter). Embryos were stored at 28.5°C immediately after injection and moved to a 

35°C incubator when the rate of development was wished to be increased. 

The following morpholino sequences were used during experimentation, 

Mismatch (mm) morpholino –  

Splice 2 (Sp2) morpholino – CGTTCATCTGGAGGAAACAAACATA. 

Localisation of the Splice2 morpholino is shown in Figure 3.  

Sp2 

Figure 3. 
Shown is the binding region of the splice 2 morpholino in relation to the FLCN sequence. The putative 
effect of the morpholino is a temporary knock down of the gene by abolishment of the function of the 
full length protein. The morpholino blocks splicing machinery binding at the exon 2 acceptor site causing 
the retention of the 3392 bases long 1st intron. The mismatch morpholino binds… 
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In vivo time-lapse imaging of heterozygous Fucci embryos 

Time-lapse imaging was performed on live embryos for the duration of 11 hours from 12 hours post 

fertilisation (bud-stage/1 somite stage) onwards. Preparation was performed by first adding 110µl of 

1% agarose (Bioline) in 30% Danieus solution (1x solution: 2% NaCl (50x), 1% KCl, 1% MgSO4.7H20, 

1% Ca(NO3)2, 1% HEPES, 92% H20) (diluted in dH2O) to each well of a 96-well flat bottomed plate 

(Greiner Bio-One). This was covered by 30µl of absolute ethanol and a brass 96 pin fakir bed 

template was inserted until the agarose set, upon which the template was wash thoroughly with 

distilled water. Embryos were manually dechorinated on 1% agarose in 30% Danieus and transferred 

with 60µl of solution to the prepared 96 well plate, one embryo per well. Embryos were orientated 

using a Microlance 3 needle with an outer diameter of 0.51mm (BD biosciences). 40µl of mineral oil 

(Sigma) was applied to the surface of the Danieus to prevent evaporation. A Leica LSI TCS Zoom 

confocal microscope and bundled software were used to capture the time-lapse video. The final 

experimental parameters used for time-lapse imaging are described in figure 4. 

 

Figure 4. The final parameters used for 

time-lapse videos captured with the 

confocal LSI microscope from Leica. All 

parameters were maintained throughout 

experimental procedures and repeats. 

Room temperature was maintained using 

an adjustable room cooling system. Time-

lapse was conducted in xyzt mode using 

the 532 and 488 nm lasers adjusted to 

capture the wavelength of fluorescence 

produced by the conjugated Fucci 

proteins. 40 slices, still images taken 

along the z-axis, were taken per stack.  
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Time-lapse images were viewed and subsequently analysed using the Fiji (alternatively known as 

ImageJ) processing package (40). Overlay colours were added to the images from corresponding 

lasers and still images of individual frames were taken with the bundled software. 

 

In-situ hybridisation 

Whole mount In-situ hybridisation (ISH) was performed using previously available probes at a 

working concentration of 1µg/ml in hybridisation mix. Antisense RNA probes were made in house to 

hybridise to the full length open reading frame of FLCN mRNA and were inserted into a pC52+ 

plasmid vector. ISH was performed on previously morpholino injected embryos at seven stages from 

50% epiboly to 24 hours post fertilisation. All embryos were initially fixed by removing the 1x E3 

medium (5mM NaCl, 0.17mM KCl, 0.33mM CaCl and 0.33mM MgSO4 made up in dH20) and replacing 

it with 4% PFA in PBS and stored overnight at 4°C. For embryos older than 20 somites the chorions 

were removed prior to fixation, those younger the chorions were removed post fixation. All embryos 

were washed and subsequently stored in 100% methanol at -20°C. Embryos were rehydrated in 

successive dilutions of PBS/Tween 20 0.1% and placed in hybridisation mix prior to being left 

overnight at 68°C in hybridisation mix containing FLCN antisense RNA probe. Embryos were then 

placed in antibody solution overnight at 4°C (PBT/2% goat serum/2mg:ml BSA/1:2500 anti-DIG 

antibody). The following day embryos were washed and the anti-serum removed. Embryos were 

placed in the dark in staining solution containing 100mg/ml NBT and 50mg/ml BCIP overnight with 

slight agitation at 4°C. The staining reaction was stopped and embryos re-fixed for 20 minutes in 4% 

PFA in PBS to ensure no further staining. Fixed embryos were set up for long-term storage in glycerol 

by gradual dehydration by methanol and increasing concentrations of glycerol (10, 20, 50 and 100% 

diluted in dH2O were necessary).  

In-situ hybridised embryos were mounted in a slide and images taken with a mounted HD Canon 

digital SLR camera at 10x optical zoom.  
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Polymerase chain reaction (PCR) 

PCR was performed on whole euthanized embryos at regular stages from 5 days post fertilisation to 

24 dpf. Whole euthanized embryos were added to 30µl of DNA extraction buffer (10mM tris pH8, 

2mM EDTA, 0.2% Triton X-100 and 200µg/ml Proteinase K) containing Proteinase K at 200µg/ml and 

incubated at 55°C for three hours in 8 strip PCR eppendorf tubes. Proteinase K was inactivated at 

95°C for 15 minutes. PCR tubes were centrifuged at 4000rpm for 10 minutes and the supernatant 

transferred to a fresh tube. 5µl of supernatant was visualised by etheidum bromide staining and 

loaded onto a 1% agarose gel in TAE (40mM Tris, 20mM acetic acid and 1mM EDTA made to a 1x 

solution in dH20) along with 2µl of loading buffer to test success of DNA extraction. 3µl of DNA 

containing supernatant was used per 25µl PCR reaction. The following PCR primers were used for 

amplification of a 342bp section of FLCN; 

Forward primer - catataagaatatgtttgtttcctcca 

Reverse primer – tcagGGCTGTCGCTCTTTAC 

The following cyclic PCR reaction was used; 

 
5µl of PCR product was added to 1µl of Sac1 restriction enzyme and 2µl of NEbuffer1.1. Reactions 

were made up to 20µl with distilled water and incubated at 37°C for 2 hours. Sac1 enzyme 

recognises the 5bp palindromic sequence 5’…GAGCT ˇC…3’. The PCR reaction amplifies a 342bp 

sequence and after digestion the products produced are 276 and 66bp fragments. Therefore in 

heterozygotes because of the disruption by the point mutation to the Sac1 restriction site two bands 

will be observable within the visualised gel, one indicating a 342bp undigested fragment and the 

95°C for 5 minutes 
 

94°C for 30 seconds 
           59°C for 20 seconds        x35 cycles 

72°C for 45 seconds 
 

72°C for 5 minutes 

Figure 5 

Figure 5. Cyclic PCR parameters 
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other the 276bp digested fragment. The 66bp fragment will intentionally not be observable on the 

gel due to the running time chosen. 5µl of loading buffer (10mM Tris-HCl (ph 7.6), 0.03% 

bromophenol blue, 0.03% xylene cyanol FF, 60% glycerol and 60mM EDTA) was added to the 

digested PCR product which was visualised by ethedium bromide staining on a 1% agarose gel in TAE 

ran for 30 minutes at 120volts. PCR gels were also loaded with 100bp DNA ladder to confirm the 

presence of bands corresponding to extracted FLCN by size and dH2O as a negative sample. PCR gels 

were viewed using a standard ultraviolet transilluminator imaging system.
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Results  

In vivo cell cycle analysis reveals possible cell cycle control deregulation in FLCN knock down 

embryos 

Time-lapse imaging was first optimised using both mismatch and splice embryos for reference. The 

settings previously explained in Figure 4 were the final settings decided on providing optimal frame 

number and resolution per frame. Figure 6A shows still images from both mismatch and splice 

embryos. Both the red and green filters are shown to provide a comparison between percentages of 

cells in G1 to those in G2/S/M phases.  

1088mpf 998mpf 885mpf 682mpf 772mpf 

mm 

Sp2 

Figure 6A. Shown are still images from both a splice 2 and a mismatch time-lapse video. Still images were taken at the 

following time points post fertilisation. These correspond to 22, 112, 225, 338 and 428 minutes elapsed since the start of 

the time-lapse at the bud-1 somite stage. 
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Slight differences are observable in the fluorescence between the mismatch and splice2 embryos 

but clarification of these differences is hard to achieve without statistical analysis. We performed 

our statistical analysis using a protocol developed in house to compare levels of fluorescence. The 

results from the statistical analysis are shown in Figure 6B. 

 

Red fluorescence Red fluorescence (G1) 

0

5

10

15

20

25

22 53 81 112 142 173 203 234 265 295 326 356 387 418

M
ea

n
 G

ra
yV

al
u

e 
fr

o
m

 a
 s

ta
n

d
ar

d
is

ed
 a

re
a 

 

Time elapsed from start (min) 

mm

Sp2

0

5

10

15

20

25

22 53 81 112 142 173 203 234 265 295 326 356 387 418

M
ea

n
 G

ra
yV

al
u

e 
fr

o
m

 a
 s

ta
n

d
ar

d
is

ed
 a

re
a 

 

Time elapsed from start (min) 

mm

Sp2

Figure 6B shows the 

statistical analysis of the 

time-lapse videos. Analysis 

was performed by using an 

internal measurement tool 

measuring the intensity of 

fluorescence (GrayValue) 

over an area of standard 

size on each frame. The 

measurement area was 

placed specifically over the 

region of the tectum. The 

value was averaged and 

plotted for each frame to 

determine the change in 

intensity over time for both 

the red and green 

fluorescent signal.  

Green fluorescence (S/G2/M) 
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The region of the tectum was chosen for statistical analysis due to previous phenotype observed in 

Sp2 injected embryos. Noticeabl within the graphs is a clear difference in fluorescence intensity 

between the Sp2 and mm embryos analysed. This indicates an increased number of cells within the 

Sp2 injected embryo that are within the G1 (red) stage of the cell cycle whereas the cells within the 

mismatch embryo spend more time in S/G2/M stage shown by an increased intensity of the green 

signal. This experiment and statistical analysis has been repeated in work prior to this study and has 

confirmed the same patterns of intensity and differences between the two types of injected 

embryos.  

 

Analysis of FLCN expression suggests tissue specific loss upon morpholino knock-down 

In total seven different time points/stages of development between 50% epiboly and 24hpf were 

fixed for in situ hybridisation using the full length FLCN probe. The results are shown in the large 

panel in Figure 7A overleaf. Localisation of FLCN mRNA appears uniform and similar in both mm and 

Sp2 injected embryos as well as wild type uninjected embryos. The point where slight deviation 

occurs is at 24hpf. The most notable difference from localisation seen within mm and wild type 

embryos compared to Sp2 injected embryos is a variation in localisation and therefore subsequent 

expression at the midbrain-hindbrain boundary. This is shown in more detail in Figure 7B. This 

variation in staining was present across all Sp2 injected embryos at 24hpf that were screened using 

in situ hybridisation (n=8). 
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24hpf 

21hpf 

13 somites 

4 somites 

Bud stage 

75% 

Epiboly 

50% 

Epiboly 

Sp2 

injected 

Mm 

Injected 
Wild type 

Figure 7A shows wild type, mm and Sp2 injected embryos across seven stages of early development probed 

with an in situ hybridisation probe to the full length FLCN mRNA. Little difference is observable between the 

three type of embryo at the early stages up to and including 13 somites. Noticeable change starts to appear 

at 21hpf where Sp2 embryos have a slight lack of expression within the developing mid to hindbrain region; 

this is marked with an arrow. Large variations in localisation and therefore expression are apparent at 24hpf 

where a loss of expression in the midbrain-hindbrain boundary is observed in Sp2 embryos and is show by the 

red arrow. 

Figure 7A. 
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PCR genotyping of FLCN mutant embryos reveals non-mendelian segregation rations and suggest 

that homozygous mutants do not survive past juvenile development 

Embryonic digests to be used for PCR were available for the following time points; 5, 6, 7, 8, 9, 12, 

15, 21 and 24dpf. At each stage a randomised selection of fish were taken. Fish that had not survived 

at the point of collection were not tested and were subsequently removed from the tank. The results 

from the PCR reaction are summarised in Figure 8. The subsequent genotype percentages at each 

stage post fertilisation are shown in Table 1. The expected ratio from a double heterozygous mutant 

cross is 1:2:1, homozygous mutant:heterozygous:homozygous wild type. Apart from 8dpf, which 

seems to be anomalous result, the percentages of the genotypes tends to follow the same predicted 

ratio. After this point the percentage of homozygous mutant embryos falls from 22% at 9dpf to 10%, 

12%, 9% and finally 0 at 24dpf indicating a reduction of embryos homozygous for the mutant allele. 

In a repeat test performed prior to this work (data not shown) at 24dpf one embryo out of 22 was 

Sp2 5 Sp2 3 Sp2 1 mm wt Sp2 2 Sp2 4 

Figure 7B 

Figure 7B compares the mid to hindbrain regions of uninjected and injected embryos at a higher magnification (15x). 

The most obvious feature that was present uniformly in wild type and mismatch embryos but not Splice2 morpholino 

injected embryos was the midbrain-hindbrain boundary indicated by red arrows. In splice2 embryos (n=8) a widely 

variable staining was present in this region with few cases showing the stereotypical dark band of staining noticeable 

in the wt and mm embryos. This phonotypical variability is also present in the clear area posterior to the boundary 

with a number of embryos showing a reduction in the size of this corresponding hindbrain region. 
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determined to be homozygous mutant. This indicates that although the numbers may fall 

homozygous mutants are still present, but in very low numbers, up to and including 24dpf. 

Therefore if the mutation is detrimental to the survival of the embryo the effect cannot, in some 

cases, impact the organism up to and including this stage. 
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300bp 
400bp 

200bp 

5dpf

6dpf

7dpf

8dpf

9dpf

12dp

f

15dpf

21dpf

24dpf

100bp 

-/- +/+ +/- 
Figure 8. 

Figure 8. The collection of PCR pictures taken at different time points from 5dpf to 24dpf. Where possible 25 

embryos were collected and ran in parallel with a 100bp DNA ladder. 15 and 21dpf are without a 100bp DNA 

ladder due to degradation of the ladder. The ladder is labelled in the gel from 5dpf for clarity. Homozygous 

mutant results are represented by a single larger band (342bp), this is due to the e36 point mutation occurring 

within the Sac1 restriction site. Heterozygotes therefore have two bands, the larger and the smaller band 

(276bp) due to a successful digest in the unaffected wild type allele. Homozygous wild type embryos will only 

contain this smaller band as both alleles are wild type and therefore digested by the Sac1 restriction enzyme. 

Three lanes from the 5dpf gel picture are labelled to show how the three possible genotypes are presented. 
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Discussion 

In vivo time-lapse imaging in Fucci embryos 

The use of the Fucci transgenic line provides us with a novel approach of visualising the effect of 

mutation. It is an easily applicable system to study cell cycle control, cellular and organism growth 

and therefore proliferation. In theory the system has the ability to be modified and applied to a wide 

area of study. This could be achieved by utilising the fundamental theories of the method and 

changing the genes expressed to widen the range or by altering the transgenic constructs to restrict 

expression in a tissue specific manner, an approach that could improve this particular study. In this 

study however we have shown this applicability of the already established Fucci system to studying 

the effects of FLCN in early development without modification. In addition, using statistical analysis, 

we can suggest a novel effect of the Sp2 morpholino on the development of the zebrafish embryo 

and in particular the cell cycle. An effect of FLCN on the cell cycle has always been a proposed idea 

due to the nature of mutations to manifest as uncontrolled cellular growth and the formation of 

potentially cancerous neoplasms (6, 7). Current knowledge points towards the idea that the 

disruption to cellular growth is due to the effect on the Akt-mTOR pathway (24). There could 

however be an alternative effect working in conjunction to produce the phenotypes observed. The 

reduction in signal intensity of green fluorescence in the Sp2 indicates a reduced number of cells in 

the S/G2/M stage of the cell cycle. This is confirmed by increased signal intensity, when compared to 

the mismatch injected embryo, of red fluorescence representative of cells within the G1 stage of the 

cell cycle. On this evidence a proposal can therefore be made that FLCN could potentially be 

involved in maintenance and regulation of the time cells spend in S/G2/M. This proposed loss of 

regulation seen within temporary FLCN mutants could help explain the uncontrolled cellular growth 

that characterises the symptoms of BHD. Recently though a group in Tokyo lead by Kawai (41) have 

elucidated at a role of FLCN in control of expression of cyclin D1. They found that levels of cyclin D1, 

encoded by the CCND1 gene, were markedly increased in FLCN knockdown experiments in HeLA 

cells. They suggest that regulation occurs post-transcriptionally and may be in part due to miRNA or 
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RNA binding to the 3’-UTR of the CCND1. If experimentally reproducible their results provide an 

interesting idea to the effect of FLCN on cellular growth. Cyclin D1 functions in the G1/S phase 

transition, therefore an increased expression in cyclin D1 would lead to an increase in cells 

progressing through the cell cycle and hence an increase in cellular growth. In the context of this 

study this concept is interesting in the sense that if there was an increase in cyclin D1 expression you 

would therefore predict that majority of cells would be present in S/G2/M phases due to a shorter 

time spent in G1. This would be because levels of cyclin D1 would presumably have already reached 

a threshold needed for the transition and this idea could, in its own right, explain the uncontrolled 

cellular growth. It is in fact the inverse that is observed within this study though as a higher 

percentage, and therefore signal intensity, is accounted to cells in G1. The increased intensity from 

cells in G1 falls in line with the theory that a mutation in FLCN would decrease activation of AMPK 

which would subsequently mean a reduced level of inhibition of mTOR allowing for increased cell 

growth. This is because cells progressing through G1 can be said to be growing as opposed to 

proliferating. The complicated nature of FLCNs effect on cell cycle control means that this then is a 

key area that would benefit from further study to reproduce results and categorise an effect. This 

could be achieved in numerous ways, one of which would be the use of a quantitative method to 

study the protein levels of cyclin D1.  

The use of morpholino based knock downs has allowed us to temporarily remove the function of 

FLCN and therefore study its effects. Morpholinos used in this way can be seen as both beneficial 

and detrimental to the overall study. Although they allow us a temporary control over imitating a 

mutation they are in essence not functionally the same as an initial heritable mutation, in particular 

one occurring in the C8 mutational hotspot, and a possible secondary loss of heterozygosity or 

“second hit”. At first two initial morpholinos were designed for use, one of which, the Splice2 site 

directed morpholino, is used extensively in this study. Although the putative effect of this 

morpholino is a complete loss of function due to the retention of the 3392bp first intron this has not 

been fully confirmed and tested as western blots to do so are currently being optimised. FLCN 



10 
 

transduces its effects through the C-terminal binding of its binding proteins so there is an argument 

that the Splice 2 affected protein could potentially still be translated and function. This is highly 

improbable as the retention of such a large intron would most likely tag the mRNA for degradation 

and if translated it would cause a subsequent frameshift to the downstream coding sequence similar 

to what is observed in most patients. Nevertheless it cannot be yet ruled out so alternatively the use 

of a second morpholino, targeted to the splice donor site of exon 2, could be employed. The effect 

of this Splice1 morpholino, ATGACACTCCCCTCTCGCTCACCTC, is the retention of the second intron 

which contains a premature stop codon. It would therefore be interesting to repeat experiments 

previously performed with the Splice2 morpholino with the Splice1 morpholino to determine 

whether the same functional effects are observed. 

 

Effect of FLCN mutation on the midbrain-hindbrain boundary 

In this study we have managed to elucidate a novel effect of FLCN mutations that leads to variable 

staining within the mid-hindbrain boundary. Variability ranged from embryos showing a complete 

lack of staining to a pattern more similar to the staining observed in wild type and mismatch injected 

embryos (Sp2 2, Figure 7B). Although highly heterogeneous the effect could help explain the fluid 

retention phenotype observed in Sp2 injected embryos at 48hpf. A deregulation in cellular 

organisation has already been reported in developing murine embryos (33) and although this work is 

in a different context to the work published by Hasumi et al the idea does match relatively well with 

the observed fluid retention phenotype and the theorised effect on cell cycle control. Short term 

further work can help address this issue and determine whether a loss in the mid-hindbrain 

boundary can result in an increased volume of fluid around the midbrain and tectum. Relatively 

simple assays could be tested such as the injection of a soluble die or, alternatively, several 

midbrain-hindbrain markers such as fgf8, pax2 and eng2 (42) exist that could be tested for presence 

by in situ hybridisation in Sp2 injected embryos. 
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Homozygous lethality of FLCN knockout 

Although a small data subset was used and homozygous mutant embryos were present up to and 

including 24dpf the percentage of FLCN-/- embryos present reduced considerably after 9dpf and 

strayed away from the expected 1:2:1 ratio. Without additional time points we cannot confirm or 

exclude an embryonic lethality of the homozygous null mutant. As previously mentioned embryonic 

lethality has been noted previously in mice embryos from E5.5-6.5 up to the point where no 

homozygous embryos were present post E9.5 (33). If embryonic lethality is conserved within 

zebrafish it does not occur before 24dpf, this indicates that there is a vast difference in the time 

point of lethality across organisms. At E9.5 mouse embryos contain a developing heart, brain as well 

as other developing organs such as the pancreas and liver. Inversely by 12dpf, the first stage at 

which a reduction in the number of homozygous mutant embryos is observed, zebrafish have full 

motility and digestion. Therefore if embryonic lethality is to be observed in both organisms the 

mutation must be taking effect at a different developmental stage and possibly by an alternative 

mechanism. It is therefore important to further our time points used and possibly try an alternative 

mutant allele to determine whether embryonic lethality in zebrafish is consistent with other model 

organisms. 

 

In conclusion in this study we have shown the applicability of the zebrafish model organism to study 

the effects of FLCN mutations in early development. We have been able to suggest a possible 

functional role of FLCN within cell cycle regulation as well as regulated morphogenesis in the 

developing brain. In addition we have made progress to determining the embryonic lethality of a 

homozygous null mutation and shown the effectiveness and future potential adaptations of 

zebrafish in studying a complex inherited disorder such as BHD. 
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Abstract 

 

Platelet based bleeding disorders are a rare subset of bleeding diathesis that can 

incorporate thrombocytopenias and platelet function defects. Both thrombocytopenias and 

platelet function defects present clinically with symptoms relating to hypocoagulability that 

often manifest as a variation of bleeding episodes. Platelet based bleeding disorders covers 

a wide variety of individual bleeding disorders with highly heterogeneous severity often due 

to the genetic component of disease involved. To date there is a large collection of inherited 

platelet based bleeding disorders incorporating a spectrum of genes with an elucidated role 

in platelet development or function. This study aims to progress work in this field by using a 

whole exome sequencing approach following the Genotyping and Platelet Phenotyping 

(GAPP) protocol as previously described (2). We focus our efforts on two patients families 

and determine novel candidate variations as potentially disease causing. These candidate 

variations offer a starting point for subsequent research which can help produce a novel 

diagnosis and determine new genes with an involvement in platelet functioning and 

development. In addition we screen a panel of thrombocytopenic patients for variations 

within the newly discovered 5’-UTR of ANKRD26 (1) to try and diagnose previously 

unclassified diseases. 
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Introduction 

 

Bleeding diathesis is an unusual susceptibility to haemorrhaging upon injury. Disorders in this 

spectrum are due to a coagulopathy and in most cases a hypocoagulability. Common symptoms of 

diseases in this spectrum stem from a prolonged and/or increased rate of bleeding due to a 

decreased or improper coagulation at the site of injury. Clinically patients can present with 

complications such as disproportionate bruising, petechial and purpura in early childhood and 

extensive bleeding from cutaneous membranes, such as; epistaxis, menorrhagia and bleeding 

gingiva (reviewed in (3)). Hypocoagulability disorders can be split into three main sections; those 

affecting clotting factors, platelet function disorders (PFDs) or thrombocytopenias. This study will 

focus only around inherited disorders affecting platelet function and thrombocytopenias. 

Diagnostically the pattern of bleeding can help distinguish PFDs and thrombocytopenias from 

coagulation disorders but the different disorders share similar symptoms and phenotypes (2). 

PFDs and thrombocytopenias can be grouped together to be classed as platelet-based bleeding 

disorders. Inherited platelet-based bleeding disorders are rare and as such their population statistics 

are unknown but it is widely believed they are drastically under diagnosed emphasising the need for 

correct diagnostics to ensure disease management.  

Platelets are small anucleate cells derived from megakaryocytes through megakaryopoiesis. In their 

development megakaryocytes follow a pathway consisting of differentiation from hematopoietic 

stem cells, endomitosis/nuclear polyploidisation and cytoplasm maturation, all of which prepare the 

cell for the formation of platelets (reviewed in (4)). Currently platelet biogenesis is thought to occur 

by the proplatelet model of formation which suggests development of megakaryocyte branches into 

the sinusoids of bone marrow where platelets are shed into circulation (5). This has been quite well 

evidentially supported but the fragmentation model, where megakaryocytes travel from the bone 

marrow to the lung where they are fragmented to form platelets (6), cannot be completely 

excluded. One of the key players in platelet formation is the growth factor thrombopoetin (TPO) and 
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its receptor c-Mpl. C-Mpl-/- knockout mice have shown an 85% reduction in platelet number (7) but 

thrombopoetin is only one of several proteins involved in platelet formation that can lead to 

thrombocytopenia. 

Normal platelet count in whole blood is 150-450x109/l, such that anything below 150x109/l is classed 

as a thrombocytopenia (3). Platelet count is highly variable between individuals and even within 

affected family members meaning differing levels of severity can exist within patients. In addition 

patients with thrombocytopenia are often seen associated with other abnormalities. It is therefore 

difficult when classifying inherited thrombocytopenia and is important to avoid misdiagnosis as 

other conditions such as immune thrombocytopenia which may result in altered treatment. As a 

result various methods of classification currently exist trying to separate inherited 

thrombocytopenia on a number of criteria including; mode of inheritance, platelet size, genetic 

mutations and existing abnormalities (8, 9). An Italian based laboratory have also suggested a 

diagnostic algorithm to help diagnose and distinguish inherited thrombocytopenias (10). 

 

Inherited thrombocytopenias 

Current classified inherited thrombocytopenias are outline in Table 1.  

Defects in transcription factors affecting early pathways of platelet biogenesis are one of the more 

frequent causes with mutations being observed in genes  such as GATA1 (11) and RUNX1 (12). 

GATA1 and GATA2 are zing-finger transcription factors that bind to a common co-factor FOG1. Both 

genes are expressed in developing megakaryocytes and are presumed to have an overlapping 

function (13). GATA1 knockout mice display thrombocytopenia with deregulated megakaryocyte 

proliferation and cytoplasmic maturaTtion (14) and these phenotypic effects are similar to those 

observed in patients with a GATA1 mutation. Mutations in GATA1 play a role in several disorders, 

possibly due to its downstream effect on protein and DNA binding in both megakaryopoiesis and 

erythropoiesis. Mutations that affect binding to its co-factor FOG1 cause an X-linked 
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macrothrombocytopenia with severe bleeding (3) and some papers suggest a dyserythropoietic 

anaemia dependant on disruption of GATA1’s DNA binding function (15).  

RUNX1 is a member of the RUNT of family transcription factors. RUNX1 mutations are most noted in 

forms of paediatric and adult leukaemia and monoallelic mutations can cause a familial platelet 

disorder with predisposition to acute myelogenous leukaemia (12). It is believed RUNX1 mutations 

cause an effect due to a deregulation of MYH10 silencing meaning a switch from mitosis to 

endomitosis cannot occur (16). The result is an unaltered platelet size but a reduced number of 

mature megakaryocytes leading to a reduced platelet count.  

Table 1. A list of inherited thrombocytopenias classified by size. 

Table 1. 
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Other examples of transcription factors mutated in cases of thrombocytopenia include FLI1 and NF-

E2. Hemizygous loss of FLI1 is thought to underlie Paris-Trousseau/Jacobsens syndrome (17). But 

there has been recent publications to oppose this or even suggest that a possible positional effect 

could be disease causing (18, 19). NF-E2 is believed to act independently of thrombopoetin and be 

involved in late platelet formation as null mice are shown to have no circulating platelets in 

knockout studies (20). 

Cases of familial thrombocytopenia that do not affect transcription factors are also observed with a 

rare prevalence. Three of the most notable disorders are Wiskott-Aldrich syndrome (WAS), MYH-9 

related disorders and congenital amegakarycotyic thrombocytopenia (CAMT).  

WAS is a rare X-linked recessive disease classified by microthrombocytopenia, eczema and 

immunodeficiency. Symptoms of WAS were first reported by Wiskott in 1937 (21) and later by 

Aldrich in 1954 (22). It has an incidence of 4 live male births in 1 million and arises from defects in 

the WAS gene located at Xp11.22, with a high frequency of missense mutations in the two 

mutational hotspots in exon 2 and intron 6 (affecting a splice acceptor site) (23). Noticeably reduced 

expression of the WAS protein, WASP, in disease (24) causes an aberrant regulation of the 

cytoskeleton which gives rise to its clinical presentations (25). Complete absence of WASP 

expression has been noted in 54% of patients in a large multinational cohort. WAS is categorised by 

a severe thrombocytopenia with a platelet count varying between 5 and 50x109/l and presentation 

of eczema shortly after birth (3). 

MYH-9 related disorders encompass several syndromic and non-syndromic conditions some of which 

were previously referred to as May–Hegglin anomaly, Sebastian syndrome, Fechtner syndrome and 

Epstein syndrome. All syndromes now referred to as a MYH-9 related disorder have a deleterious 

mutation within the MYH9 gene that encodes the non-muscle myosin II-A heavy chain (NMMHC-IIA) 

protein (26). A recent study has previously suggested that to date 44 mutations have been reported 

within the MYH9 gene, with 79% occurring within six common residues (27), but it is worth noting 

that the clinical picture is varied both between patients and throughout a patient’s life (28). Platelet 
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counts vary from <10x109/l to above 150x109/l and patients can present with a 

macrothrombocytopenia with a variation of other clinical symptoms that seems to follow a 

genotype-phenotype correlation (27). 

CAMT is a rare recessively inherited disorder that presents with severe thrombocytopenia present at 

birth. This is associated with a complete absence of megakaryocytes and a susceptibility to lead to 

bone marrow failure and pancytopenia that can occur within the first few months of life (29, 30). 

Mutations in the thrombopoetin receptor gene MPL are the cause of CAMT and most mutations 

seem to affect the TPO binding domain or lead to a truncated protein abolishing its function (30). 

CAMT is unique in the sense that its onset is early and can present as a life threatening disorder due 

to complications affecting all aspects of haematopoiesis.  

 

Platelet function disorders 

Once platelets are formed and shed into the circulation they have an average lifespan of 10 days. 

Upon endothelium damage platelets undergo a well regulated series of responses from adhesion, to 

spreading and to aggregation and formation of a thrombus. Endothelial damage exposes 

subendothelial components such as collagen, fibronectin and Von-Willebran factor (VWF). Through 

receptors present on the platelet surface an initial interaction is made with VWF that aids in slowing 

the platelets sufficiently so static adhesion and then aggregation can occur. Activation of platelets 

occurs as platelets are recruited to the site of injury where agonists such as adenosine diphosphate 

(ADP) and thrombin stimulate internal signalling cascades through transmembrane receptors and G-

proteins.  These receptors can subsequently activate enzymes within cellular metabolism to alter 

processes in cytoskeleton organisation to allow for spreading, secretion of α-granules and formation 

of a procoagulant surface to allow for formation of a thrombus (31). 

The majority of defects affecting platelet function occur either in receptors or signalling cascades 

involved in platelet activation or, alternatively, they are commonly found to affect processes 

involving granule secretion. However there does exist defects that are classed independently of 
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these two subgroups, these include; Glanzmann Thrombasthenia (GT), Bernard-Soulier syndrome 

and Scott Syndrome.  

GT is a rare autosomal recessive disorder characterised by a deficiency of platelet GPIIB/IIIA from the 

fibrinogen receptor integrin αIIbβ3 (32). Mutations occur within the genes encoding GPIIB and 

GPIIIA, IGTA2B and ITGB3, respectively, and the current published mutations can be found in the 

mutation database: http://med.mssm.edu/glanzmanndb. Patients have a normal platelet count and 

can be classed into three sub-groups dependant on the percentage of their surface G-proteins (33). 

Clinical features have been summarised in a large cohort of 177 patients and consists of purpura, 

epistaxis, bleeding gingiva with presentation often before the age of five (34). αIIbβ3 is key in 

platelet aggregation by binding fibrinogen and other adhesive proteins allowing for platelet-platelet 

adhesion, so mutations that disrupt its function affect a platelets ability to adhere thus causing the 

bleeding phenotype observed (35).  

Bernard-Soulier syndrome (BSS) is an interesting example of both a platelet function disorder and a 

thrombocytopenia. Clinically it presents as a potentially severe thrombocytopenia with large 

platelets and tendency for spontaneous bleeding (36). It is characterised by the absence of the major 

carbohydrate containing G –protein complex GPIb/IX/V. The first mutation was observed in GP1bα 

(37), a gene encoding part of a sub-unit of the complete complex, but since mutations have also 

been noted in GP1bβ and GP9 affecting their respected translated proteins. BSS can be inherited in 

both a recessive and dominant pattern with a varied level of severity observed depending on 

mutation (38). Phenotypic effects arise due to the abolishment of the usual function of the 

GPIb/IX/V in binding Von-WIllebrand factor (39). Mutations in one protein of the complex result in 

low surface expression of the overall complex due to a tightly linked association and the need for all 

proteins to be present for complete biosynthesis (40).  

Scott Syndrome differs from previously mentioned disorders due to its involvement with an 

alternate platelet surface component. First described by Weiss in 1979 (41) Scott Syndrome was 

recognised as a severe bleeding disorder but where complications seem to be confined to only 

http://med.mssm.edu/glanzmanndb
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bleeding episodes, usually following injury or invasive procedure. The main attribute of Scott 

Syndrome is a defect in membrane lipid scrambling disrupting the asymmetrical distribution of lipids, 

including phosphatidylserine (PS), across the plasma membrane (42). PS exposure on the exoplasmic 

surface of the plasma membrane is hallmark of apoptosis (43) but within platelets it functions to 

create the prothrombinase complex to allow for conversion of prothrombin to thrombin (44). This 

subsequently activates and promotes a localised procoagulant activity within platelets. Normal lipid 

mobility is achieved through the action of a calcium-dependant scramblase (45) and several studies 

have previously tried to determine the encoding gene of this transport protein. ABCA1 was first 

suggested as a candidate (46) but TMEM16F is a more recent suggestion thought to now be the 

causative gene encoding the defected scramblase in Scott Syndrome (45).  

Interestingly there exists a syndrome thought to be the inverse of Scott Syndrome named 

Stormorken Syndrome. First described in 1985 (47) patients have a low platelet count , bleeding  and 

spontaneous platelet activation and aggregation with a full exposure of surface PS (48, 49). 

Disorders that can be classed as affecting platelet receptors and signal transduction pathways are an 

ill-defined group that show inhibition of platelet activation to one or more agonist. Platelet count is 

usually normal but aggregation to one or more agonists is reduced or deaggregation is observed. 

Defects have currently been observed in the collagen receptor GPVI, where no response to collagen 

could be observed (50). As well as in the adenosine diphosphate (ADP) receptors P2Y12 and P2Y1 

(50, 51) and the ATP receptor and ligand-gated ion-channel P2X1 (52), both of which affect platelet 

activation. In addition defects have been noted in other platelet surface receptors such as the 

prothrombin receptor Thromboxane A2 (TXA2) (53). 

Patients with defects attributed to secretion can be further grouped into two categories; those that 

involve platelet granule deficiencies and those that can be considered primary secretion defects. It is 

worth noting that primary secretion defect disorders are a diminishing group of disorders that 

cannot otherwise be classified. Defects are seen in two types of secretory granules that platelets 

contain; dense core and α-granules and disorders are associated with a deficiency of either one or 
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both combined. Both dense core and α-granules contain molecules thought to act in a paracrine way 

to promote local aggregation of surrounding platelets. Dense core granules contain smaller 

molecules such as ADP whereas α-granules contain the larger VWF and PF4 (54). A reduction in 

these granules therefore has a detrimental impact in platelet aggregation and often a secondary 

wave usually caused by secretion is not noticed in aggregation tests. To date several disorders have 

been reported affecting both types of granules. Disorders that only affect dense core granules 

include: Hermansky-Pudlak Syndrome (HPS) (55), which affects HPS genes 1-9 and several other loci 

(56), and Chediak- Hagashi Syndrome (CHS), caused by mutations in LYST which is thought to play a 

role in vesicle trafficking (57). Both syndromes share similar clinical presentations and can be classed 

together as dense granule storage pool diseases (δ-SPD) but they remain functionally distinct. Alpha 

granule deficiencies or α-SPD present clinically with differences to those involving dense core 

granules with symptoms like hypopigmentation and albinism confined to HPS and CHS (58). Alpha 

granule deficiencies include Grey Platelet syndrome (GPS), a syndrome showing both recessive and 

dominant inheritance patterns and named due to the complete absence of alpha granules in 

platelets causing a greyish colour in peripheral blood smears (59, 60). Recent publications have 

suggested the molecular cause of GPS as a BEACH (Beige and Chédiak-Higashi) domain containing 

protein involved in vesicle trafficking known as NBEAL2 (61). Other alpha granule deficiencies 

include Quebec platelet syndrome (62), affecting factor V and Arthrogryposis-renal dysfunction-

cholestasis (ARC) where mutations in the gene VPS33B is the known cause (63). 

 

Approach to the diagnosis of platelet based bleeding disorders and the GAPP study 

Upon suspicion of a platelet function disorder it is ideal to phenotype the patient to help elucidate a 

possible cause. To date the “gold standard” of testing platelet activation is ex vivo light transmission 

aggregometry (LTA).  First described by Born in 1962 (64) LTA is a fairly inexpensive test utilising 

patient platelet-rich-plasma (PRP) or wash-platelets to determine aggregation in response to a 

selection of agonists by monitoring light transmission. LTA has the ability to inform you of details 
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about aggregation within a patient and can help hint at a deficiency by observation of the effects 

due to different agonists. Although functionally simple the test is not robust and flaws arise due to a 

wide variation in controls that can overlap with patients (65) and also due to a non-standard practice 

across institutions (66). 

Many other platelet function tests are also available and beneficial in diagnosis such as flow 

cytometry (reviewed in (67)), platelet function analyser 100 (PFA-100) (68) and more recently 

several parallel functional tests have arisen as a more efficient means of testing. One such platform 

is the 96 well plate aggregation assay: Optimul (69). Although providing a high throughput system 

there seems to be some discrepancy with a reduction in aggregation to arachidonic acid on Optimul 

(70). In combination with a thorough medical and family history platelet function testing can be ideal 

to diagnose certain sub-sections of platelet based bleeding disorders. Diagnostics becomes more of 

a challenge however when patients present with a novel or more complex phenotype, for example, 

a combined thrombocytopenia hinted by a low platelet count and an observable deaggregation to 

certain agonists.  

Correct classification of disease is paramount for two main reasons; genetic counselling and 

treatment. In conjunction with the consultant counselling can help affected patients understand the 

inheritance patterns of their disease and susceptibility to a couple’s offspring. This additional 

information from a thorough diagnosis can alter a patient’s lifestyle and choices allowing them to 

cope and manager their disease more effectively. Current treatment for inherited platelet-based 

bleeding disorders varies widely. A lot of treatment is based around prevention of bleeding episodes 

through correct management of disease. This can materialise as day to day caution in extremely 

severe cases to correctly adjusted protocols for invasive routine procedures such as dental 

treatment and childbirth. The most common and effective form of treatment of symptoms currently 

is platelet transfusion but complications can arise due to the development of alloimmune antibodies 

against HLA and αIIβIII (71), however molecular treatments do exist as an alternative and include; 
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 Antifibrinolytic agents. (E.g. tranexamic acid) Benificial for prevention of subcutaneous 

bleeds and can be administered orally (3). 

 Desmopressin. A synthetic analogue of the hormonal diuretic vasopressin first used for 

treatment of Von Willebrand disease and haemophilia. It functions by increasing plasma 

levels of VWF, Factor VIII and tissue plasminogen activator and has been shown to shorten 

bleeding time in dense granule storage pool diseases and signal transduction disorders and 

possibly BSS and HPS but with some ambiguity (72). 

 Recomibinant Factor VIIa. First used for the successful treatment of epistaxis in a two year 

old with GT (73) rFVIIa is an alternative to platelet transfusion in patients with GT, although 

variable success is observed (71). 

Also worth noting is the use of haematopoietic stem cell transplantation which has been shown to 

be effective in GT (74) and BSS (75) but arguably most importantly is the innovation into gene 

therapy. Preliminary work has suggested the idea that gene therapy may be a feasible form of 

treatment especially in GT patients with transducible αIIβIII (76, 77). This is a potentially exciting 

field and fortifies the need for accurate and extensive diagnostics to provide the correct treatment 

on an individual basis in the near future. 

Genotyping of patients is not uncommon and several previous studies have taken a genome wide 

approach to studying possible causative and mutated genes (78, 79). Many of these GWAS have 

produced a vast list of genes with SNPs in genes involved, or with putative functions, in platelet 

functioning or count but many have no credible link to disease. Definitive genotyping in platelets is 

also complicated by diseases such as the previously mentioned HPS that has several possible disease 

causing genes.  
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The Genotyping and Phenotyping Project (GAPP) 

The genotype and platelet phenotyping (GAPP) consortium takes a novel approach to, in particular, 

genotypic diagnostics which is outlined in Figure 1 (2). Through collaboration the consortium aims to 

achieve phenotypic and genotypic categorisation of patients entered into the patient bank using a 

standardised set of protocols. Each patient is considered individually and screened using a next 

generation whole exome sequencing approach which is in addition to more classic platelet 

phenotyping performed prior. The data from whole exome sequencing provides a platform from 

which a panel of candidate genes can be produced. Candidate genes can then be tested for 

segregation and the impact of mutation analysed. This approach is not without its shortcomings 

though as only the coding regions and a few immediate adjacent bases are sequenced and it cannot 

determine imprinting defects which may play a role in disease (80). What it can achieve, though, is a 

complete categorisation of an individual’s disease which may potentially show classification of a 

previously known mutant or the discovery of a novel change. These novel changes then provide us 

with the opportunity to achieve novel insights into molecular functions within platelets and this has 

been illustrated recently by the discovery of a patient with a mutation in the PDZ binding domain in 

the C-terminus of P2Y12 which shows an inability to recycle the receptor (81). 

 

Figure 1. The GAPP work flow 

approach to diagnosis and 

prognosis of inherited platelet 

based bleeding disorders. 

Areas focused on in this study 

will be from the 2nd generation 

sequencing onwards and will 

incorporate previous results 

suggested by platelet function 

analysis. 

Figure 1. 
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Variations in the 5’-UTR of ANKRD26 as the causative mutation underlying Thrombocytopenia 2 

(THC2) 

Ankirin Repeat domain 26 is a protein of unknown function thought to be involved in protein-protein 

interaction due to the ankyrin repeat domains. Recently mutations in the 5’-UTR of ANKRD26 have 

been reported in patients thought to be suffering from a rare dominant form of thrombocytopenia, 

THC2 (MIM 188000). This gene maps to 10p12.1, the location of the previously suggested causative 

genes for THC2 (82, 83), and to date 12 single nucleotide heterozygous variations have been 

reported in a 21 base stretch of the 5’-UTR from c.-113 to c.-134. So far these mutations have been 

observed in 78 patients from 21 families presenting with the clinical symptoms of THC2 (1, 84). 

Partial inactivation of ANKRD26 in mouse models leads to obesity and insulin resistance whereas 

platelet count is normal (85) leading to suggest that a gain of function mutation may be responsible 

for the thrombocytopenia observed. It can be said then that this is possibly due to a deficiency in 

formation of platelets as megakaryocyte numbers are normal in preliminary data (1). The reported 

mutations so far in the 5’-UTR of ANKRD26 in patients suggest a higher incidence and involvement of 

this gene and THC2 than first expected. It is because of this that we will therefore screen a panel of 

patients with thrombocytopenia for mutations in the 5’-UTR of ANKRD26 prior to whole exome 

sequencing to identify novel disease-causing genes. Patients within the panel have varied levels of 

thrombocytopenia from mild to severe, consistent with previously reported cases, meaning it is 

therefore worthwhile to determine the prevalence of ANKRD26 as a causative gene in these 

unclassified cases.  

Aims of this Project 

In this study we plan to adopt the approach of the GAPP consortium and apply it to two sets of 

patients. One family has a single affected individual and the other is a large kindred with three 

generations of affected family members. Patients will follow the protocol outlined in (2) with the aim 

of elucidating a possible causative mutation in both patient sets. Any novel mutations will be 
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analysed with the aim to determine a functional role of the gene in platelet functioning/formation 

and the subsequent detrimental effect of the mutation. 

In addition we plan to screen a previously undiagnosed thrombocytopenic panel of patients for 

mutations in the 5’-UTR of ANKRD26 in the hope of possibly classifying unknown patients with THC2. 

Therefore our aims for this study are two-fold; 

 Use whole exome sequencing data to determine a causative mutation and defective gene or 

genes in two unrelated cases of inherited platelet based bleeding disorders. 

 Screen a thrombocytopenic panel of patients for mutations in the 5’-UTR of ANKRD26 to 

determine frequency of mutations in a previously reported mutational hotspot. 

Overall through these outlined aims above we hope to further our understanding in rare, so far, 

unclassified cases of inherited platelet based bleeding disorders. We therefore aim that through 

standardised protocols we can elucidate a molecular cause in these patients and when presented 

with novel genes determine their related molecular functions within platelets to aid in disease 

management and treatment. 
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Methods 

 

Patient recruitment 

All patients and healthy controls within this study were entered into the GAPP study and are 

therefore covered under the GAPP study ethical license (NIHR portfolio status in the non-malignant 

haematology subgroup (ID 9858); REC no 06/MRE07/36). All patients and healthy controls willingly 

volunteered for participation within this study and have fully consented to the extent of the study 

and its experimental procedures. All patient personal information has been kept confidential and 

anonymous throughout the study. More information regarding the ethical approval and licensing of 

the GAPP study can be requested from Professor Steve Watson, Centre for Cardiovascular Sciences, 

Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, 

Birmingham, B15 2TT, UK.  

  

Preparation of patient blood and DNA extraction 

Patient blood was taken in clinic local to the patients in question or at their home. Blood samples 

were taken following GAPP guidelines which include no samples being taken recently after 

blood/platelet transfusion. DNA, present within a white cell layer known as the “buffy-coat”, and 

Platelet rich plasma (PRP) were extracted from fresh patient whole blood using an in-house 

preparation by centrifugation. The white cell rich buffy-coat was stored at -80°C while PRP was 

tested for concentration using a coulter particle count and size analyser and subsequently used fresh 

in aggregation assays or adjusted to a platelet concentration of 5x108/ml in 1x SDS containing 

sample buffer (50mM Tris-HCl [ph 6.8], 2% SDS, 10% glycerol, 1% β-mercaptoethanol, 12.5mM EDTA 

and 0.02% bromophenol blue) for use in protein studies and western blotting. 

DNA was extracted from buffy-coat using the Gentra Puregene blood kit available from Qiagen™ 

(www.qiagen.com) and the included protocol sheet for DNA preparation from buffy-coat. The 

method relies on a spin protocol to remove cell debris and DNA is precipitated using isopropanol and 

http://www.qiagen.com/
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washed with ethanol. The concentration of extracted hydrated DNA was determined using a 

Nanodrop™ 2000 Spectrophotometer available from Thermo Scientific. 2µl of extracted DNA was 

tested and concentration (ng/µl), 260/280 and 280/230 values were recorded and the sample stored 

and logged within the on-site GAPP patient database for further testing. 

 

Polymerase chain reaction (PCR) 

PCR was performed a using standardised in house protocol on extracted patient and control DNA at 

a concentration of 20ng/µl. Where a concentration of 20ng/µl was not available DNA was used neat. 

Oligonucleotide primers were designed using Primer3 sofware and validated using In-silico PCR 

software available at http://genome.ucsc.edu/cgi-bin/hgPcr. All oligonucleotides are available from 

www.sigmaaldrich.com (see attached appendix for specific sequences). PCR followed the standard 

cyclical protocol of denaturing, hybridisation and annealing as follows; 

 

PCR reactions were performed using RedTaq® Readymix™ PCR reaction mix (20 mM Tris-HCl, pH 8.3, 

100 mM KCl, 3 mM MgCl2, 0.002 % gelatin, 0.4 mM dNTP mix (dATP, dCTP, dGTP, TTP), stabilizers 

and 0.06 unit/mL of Taq DNA Polymerase) also available from Sigma-Aldrich 

(http://www.sigmaaldrich.com/catalog/product/sigma/r2523?lang=en&region=GB). PCR reactions 

94°C for 3 minutes 

 

94°C for 1 minute 

              60°C for 1 minute                  x 30 cycles 

72°C for 1 minute 

 

72°C for 5 minutes 

Figure 2. 

Figure 2. Cyclic PCR parameters. 

http://genome.ucsc.edu/cgi-bin/hgPcr
http://www.sigmaaldrich.com/
http://www.sigmaaldrich.com/catalog/product/sigma/r2523?lang=en&region=GB
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were performed in 25µl reactions containing 20ng of genomic DNA, 2x Sigma RedTaq Readymix and 

5.0 µmol of each primer. PCR reaction was performed in parallel in 96-well plates and performed in 

Bio-rad Tetrad thermal cyclers. All primers were tested initially on two unaffected healthy controls, 

upon failure annealing temperature was varied along with the inclusion of 5µl of GC-rich buffer to 

determine a successful parameter. All final PCR reactions both for sequencing and other tests were 

performed with an annealing temperature of 60°C and without GC-rich buffer. All primers were 

added at a concentration of 10µM and a 0.5µl volume per reaction. PCR products were visualised 

using ethedium bromide staining on a 1% agarose TAE gel and viewed using a standard ultraviolet 

transilluminator imaging system. All gels were also loaded with 2µl of 1kb DNA ladder (NEB) and a 

negative dH20 control.  

 

Sequencing 

Whole exome sequencing was performed externally with collaborators in Imperial College London.  

The SureSelect human AllExon 50Mb kit (Agilent Technologies) was used and sequencing was 

performed on the HiSeq 2000 (Illumina) with 100bp paired-end reads. The sequences were aligned 

to the reference genome (hg19) with Novoalign (Novocraft Technologies) that aligns based upon 

Needleman-Wunsch algorithm with affine gap penalties. Duplicate reads and reads mapping to 

multiple locations were excluded from downstream analysis. The SamTools software package and in-

house software tools were used to identify and quality filter single nucleotide substitutions and 

small insertions/deletions. All calls with a read coverage of <4 were excluded. Novelty of variants 

was determined by comparison to dbSNP137 and 1000 Genomes variant calls and variants 

previously indentified in >600 in house control exomes sequenced and analysed using the same 

protocol as described above. 

Sanger sequencing was performed in house to verify candidate mutations and determine 

segregation using the list of PCR primers shown in the appendix. Successful PCR products were 

cleaned and concentrated using the microCLEAN solution (available from www.microzone.co.uk), 

http://www.microzone.co.uk/
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applied in equal volumes and the protocol designed for 96-well eppendorf plates was followed. The 

purified PCR product was sequenced in both forward and reverse directions using the relevant 

primers (2pmol/µl) and the BigDye® Terminator v3.1 Cycle Sequencing Kit, available from Applied 

Biosystems®.  

PCR cycling conditions were:- 

96°C for 30 seconds 

     50°C for 15 seconds       x30 

60°C for 4 minutes 

Conditions were used to allow for optimal elongation and random termination to provide all lengths 

of fragments necessary for good coverage sequencing. The EDTA method of precipitation was used 

for sequencing reaction clean up and sequencing was performed on an ABI 3730 automated 

sequencer using a capillary sequencing system. Sequencing results were analysed using 

MutationSurveyor® software from Soft Genetics®. When no match could be made, of the sequence 

to one within the enclosed database, sequences were analysed using Chromas sequence 

chromatogram viewer. A minimum 20 fold coverage was used as a quality cut off. All sequencing was 

repeated at least once more for clarity and more times in the case of a failed sample. 

The same sequencing protocol was applied for a screen of the whole coding region of TMEM30B, 

using the three primer pairs displayed in the appendix (TMEM30B 1,2 and 3 F and R), in a panel of 

potential patients.
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Results 

Characterisation of a novel gene defect in a family with an inherited thrombocytopenia 

(Family 1) 

Clinical features of bleeding history in family 1 

A 31 year old female first presented to a haematological clinic with a history of cutaneous bleeding, 

prolonged bleeding (after minor wounds and dental treatment), menorrhagia, postpartum 

haemorrhaging and spontaneous muscle haematomas. The patient had previously been treated for 

their symptoms using platelet and red blood cell transfusions, antifibrinolytics, utering packing after 

postpartum haemorrhaging and iron therapy. An extensive family history was taken from the index 

patient, who will hence forth be known as patient 4:3, and a family pedigree was produced 

indicating 8 affected family members across three generations which can be seen in Figure 3. All 

patients presented with a variation of bleeding diathesis similar to the symptoms previously 

described in the index case. Platelet counts, tested within the haematological referring centre, 

varied between 74x109 and 140x109 indicating a mild to moderate thrombocytopenia throughout 

the family. Bleeding was disproportionate to platelet count within the index case indicating a 

possible secondary platelet function effect.  

Platelet function testing in family 1 

Platelet phenotyping was performed on patient PRP in-house by Dr Marie Lordkipanidzé and Dr 

Gillian Lowe using LTA and flow-cytometry following the guidelines as set out within the GAPP 

project (2). Five patients, indicated by green arrows in Figure3, were subjected to platelet 

phenotyping. The following agonsists were used in LTA; ADP, Collagen, Adrenaline, Arachidonic acid, 

Thrombin receptor activating proteins (PAR-1 petide and PAR-4 peptide) and risctocetin. All patients 

shared similar results of deaggregation at 10 and 30µM ADP, primary wave only at 10 and 30µM 

collagen, deaggregation at PAR-1 100µM and shape change at collagen 1µg/ml. In addition tested 

patients showed an undetectable level of ATP secretion with 100µM PAR-1 and ATP secretion on the 

lower levels of normal (0.75nmol/1x108 platelets) with PAR-4 peptide 500µM. Flow cytometry in 
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whole blood also supported a defect in PAR-1 or its subsequent signalling. Aggregation traces for 

ADP 10µM and PAR-1 peptide 100µM in patient 4:1 are shown in Figure 4 as a reference. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

3:2 3:3 

4:1 4:3 4:4 

2:1 

140x10
9

/l 74x10
9

/l 

110x10
9

/l 100x10
9

/l 116x10
9

/l 

Figure 3. 

Figure 3 shows the family pedigree 

produced from the family history in 

family 1. Males and females shaded in 

black are affected members of the 

family and those unshaded are 

unaffected members. Patient samples 

were available for the 6 patients 

labelled. The index case is marked by 

a red arrow. Platelet counts are 

shown in red and available for five 

patients. The same five patients have 

also received platelet function testing 

and this is indicated by the green 

arrows. 
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Whole exome sequencing in family 1 

Whole exome sequencing was performed on three patients from family 1; individuals 4:3, 3:3 and 

4:1. 389 novel variations were found within the three patients after analysis and comparison to 

reference databases; dbSNP137, 1000 Genomes and our in house database of >600 whole exomes. 

Of these 389 eight novel variants were shared across all three patients, four of which were non-

synonymous amino acid changes or insertions/deletions. The eight mutations are shown in table 2. 

Familial segregation of the four remaining variants was undertaken using traditional Sanger 

sequencing with all the available affected family members. Primers flanking the region of the 

variants in the four genes were PCR-amplified and sequenced in all six patients and an unaffected 

related control, sibling of 4.1. The only variant that could be excluded at this stage was in TOR2A on 

Figure 4. 
PAR-1 100µM ADP 10µM 

Figure 4 shows two LTA aggregation traces from patient 4:1. In the ADP 10µM trace the 

black line represents a control (PRP from an unaffected, unrelated individual) trace taken 

on the same day and the blue line represents the patients trace. As you can see 

deaggregation occurs at this ADP concentration which is shown by a reduction in 

percentage (of light transmission) in the blue line after the initial increase. The PAR-1 

100µM trace uses the following key; blue line – patient aggregation, red line – control 

aggregation, black line - patient ATP secretion and green line – control secretion. Once 

again deaggregation to the agonist is observed and also noteable is the lack of initial 

secretion within the patient. 
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the basis that the mutation was not observed in all family members screened. The results from the 

Sanger sequencing and the presence or absence of the novel variant in each gene are summarised in 

Table 2.  

 

 

The result of Sanger sequences was the production of three candidate mutations as a possible cause 

for disease within the affected family.  

The three remaining candidate genes 

Transmembrane protein 30B (TMEM30B), alternatively CDC50B, maps to the reverse strand at 

chromosome 14q23.1. The main protein coding transcript (Ensembl ID - ENST00000555868) encodes 

a one exon, 4471bp, 351AA sequence expressed in most endogenous tissues according to BioGPS 

microarray data (http://biogps.org). As of yet no function has been elucidated for TMEM30B but the 

Table 2. 

Table 2 shows a combination of both the whole exome sequencing results and those from Sanger sequencing. The four 

novel genes shared between all three patients that are either an insertion or deletion or cause a non-synonymous amino 

acid change are TOR2A, TMEM30B, NEMF and SLFN1. The candidate mutations and the effect to the protein sequence are 

also presented in the table. Sanger sequencing was used for confirmation of the initially suggested mutation and to 

determine presence across the affected family. TOR2A can therefore be secluded on these premises as the mutation is 

not confirmed in 3:3 by Sanger sequencing and it fails to be present in all family members negating it as a possible 

causative mutation. Therefore the three candidate mutations in TMEM30B, NEMF and SLFN14 cannot be narrowed down 

further at this stage. TMEM30B is not excluded due to the fact that the unaffected family member had no supplementary 

platelet phenotyping or any platelet counts. Therefore although the family member is thought to be unaffected we 

cannot confirm this so for all remaining purposes TMEM30B will continue to be included in further study. 

Patient Patient 3:3 Patient 4:3 Patient 4:1 Patient 3:2 Patient 4:4 Patient 2:1 Unaffected

Novel variations share between all three patients Non-synonymous/insertions/deletions wild type allele mutation

CYP39A1: c.G627A: p.E209E

DST: c.A12063G: p.T4021T

FURIN: c.A1941T: p.S647S

DNAJB12: c.G39A: p.R13R

TOR2A: c.A1C: p.M1L TOR2A: c.A1C: p.M1L A C A A/C A/C A A/C - -

TMEM30B: c.778delC: p.P260fs TMEM30B: c.778delC: p.P260fs C - C/- C/- C/- C/- C/- C/- C/-

NEMF: c.C2884T: p.H962Y NEMF: c.C2884T: p.H962Y C T C/T C/T C/T C/T C/T C/T C

SLFN14 c.T659A: p.V220D SLFN14 c.T659A: p.V220D T A T/A T/A T/A T/A T/A T/A T

http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000182107;r=14:61744088-61748558;t=ENST00000555868
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discovered mutation causes a frame shift and is therefore predicted to have a high impact on the 

original protein structure. 

Nuclear export mediated factor (NEMF) is a protein with predicted function in nuclear export due to 

the domain contained within the N terminal. NEMF also maps to chromosome 14 but at position 

q21.3. There are seven predicted protein coding transcripts, the largest of which is a 5038bp 

transcript encoding a 1076 amino acid protein sequence. The largest transcript has 33 coding exons 

and the mutation found within family 1 affects exon 28 causing a non-synonymous histidine to 

tyrosine change. 

Schlafen family member 14 (SLFN14) is a gene with a transcript length of 2889bp and a translation 

length of 912 amino acids. It is part of the larger Schlafen family of proteins and has an unknown 

protein function. A valine to aspartic acid change due to a T to A substitution in exon 1 of 4 is the 

mutation found within all available affected members of family 1. 

All three candidate mutations are expressed and translated within platelets (MOPED and PaxDb). 

The three candidate mutations suggested by Sanger sequencing were initially tested using 

MutationTaster online mutational predicting software (www.mutationtaster.org). Predictions are 

based upon evolutionary conservation, splice-site changes, loss of protein features and effects to 

amount of mRNA and a score is produced using a naïve Bayes classifier (86). This approach was 

utilised as an initial method to decide which mutation to pursue further in the first instance. 

TMEM30B was the only mutation out of the three predicted to be disease causing with a probability 

score of 1 so we will therefore look to expand our further work on this gene initially. 

Sanger sequencing of a panel of patients with thrombocytopenia for a TMEM30B mutation 

Mutation screening was performed using Sanger sequencing and three primer pairs spanning the 

entire coding region of TMEM30B. Unclassified patients from the GAPP study were selected 

according to a similar phenotype as patients within family 1. 21 patients were screened and no novel 

variations or patients containing the c.778delC heterozygous mutation within family 1 were found. 

Two previously reported heterozygous SNPs were observed within the subset, c.272T>C and 

http://www.mutationtaster.org/
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c.222C>T, were found in both homozygous and heterozygous states within patients. c.272T>C 

(rs137950125) is a synonymous variant found in 98% of the population in the database of the 1000 

genomes project. c.222C>T is also a synonymous variant found at a frequency of 21% in the 1000 

genomes project. As both variations have been previously reported synonymous (do not change the 

amino acid) and are not thought to occur in the two functional transmembrane domains they can 

therefore be excluded as being potentially disease causing.  
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Investigation of a novel gene defect in Family 2 

Clinical features and phenotyping of family  

A young child was first referred to a haematology centre with a strong bleeding history. He 

presented with a moderate platelet count, 77x109/l and 99x109/l on two separate occasions, and a 

history of easy bruising for which he wore protective headwear during early childhood to protect 

against possible haematoma formation. He was diagnosed at first presentation to have a platelet 

function disorder with moderate thrombocytopenia. He is the only affected family member within 

his family although his mother has stated a history of easy bruising but has not been investigated 

fully. Three individuals were available to study within this family; the mother, the affected index case 

and an unaffected sibling. The pedigree in figure 5 shows all members of the family and individuals 

are labelled where samples were available.  

 

Platelet function testing of family 2 

Platelet function testing was performed using the same GAPP guidelines previously mentioned for 

family 1 and experimental procedures were performed by Dr Ban Dawood. Deaggregation was 

observed in the patient at all ADP concentrations (10, 30 and 100µM) but it can be suggested there 

was no defect in cAMP or cGMP production due to full inhibition in the presence of PGI2. Full 

aggregation was observed in response to arachidonic acid negating a possible defect in the TxA2 

1:2 
 

2:2 
70 and 99x109/l 

  

  

2:1 
 

Figure 5. Figure 5 shows the family pedigree for family 2. The 

index case, 2:2, is indicated with the red arrow. Data 

is only available for the affected individual, his 

mother (1:2) and an unaffected sibling (2:1). The 

affected patients mother did note symptoms of a 

bleeding diathesis but no investigation had been 

undertaken indicating a possible de novo or 

dominant inheritance as the cause of disease. 
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Mother Affected Unaffected sibling

Gene Mutation

Patient 1:2 Patient 2:2 Patient 2:1 control

IFIT1 c.497_498insA:p.N166fs,c.590_591insA:p.N197fs. no ins het insA het insA no ins

CADPS2 c.2935_2937del:p.979_979del,c.2923_2925del:p.975_975del het delCC het delCC het delCC no del

CHIC1 c.189_191del:p.63_64del, het delAG no del no del Fail

STAB1 c.3364_3365insC:p.R1122fs, no ins het insC no ins no ins

CLCNKB c.118delA:p.R40fs, no del no del (F read only) no del no del (F read only)

KCNAB3 c.532_534del:p.178_178del, no del het del no del Fail

WASL c.862_864del:p.288_288del, no del no del no del no del

ALS2CL c.T2207G:p.L736X,c.T248G:p.L83X het change het change het change no change

C1orf204 c.C37T:p.R13X homo 7481C>G het C>T change and homo 7481C>G homo 7481C>G homo 7481C>G

SLFN14 c.A652G:p.K218E, no change het A>G Fail no change

pathway. Marked inhibition of aggregation with deaggregation at high concentration was noticed in 

effect to PAR-1 peptide and the beginning of deaggregation was also observed at the intermediate 

(250µM) concentration of PAR-4. In addition the level of ATP secretion was markedly reduced in 

response to ADP, PAR1 and collagen.  

Whole exome sequencing of the affected individual of family 2 

Whole exome sequencing was performed on the one affected family member; 2.2. Sequencing 

revealed 108 novel variations (after comparison to databases previously mentioned) that were 

either insertions or deletions, non-synonymous amino acids changes, stop gains or losses and 

unknown mutations. Synonymous amino acid changes were excluded for the time being as they do 

not alter the amino acid sequence. From the 108 novel variations 10 were selected as an initial 

screen to confirm the mutation and determine familial segregation. These ten included all insertions 

and deletions, stop gains and a single novel missense variant which was also found to be mutated in 

family 1. The initial screen was intended to encompass 13 genes that fit the above criteria but three 

primer pairs failed to work upon control screening. The results from the Sanger sequencing can be 

found in Table 3.  

Table 3. 

Table 3 shows the Sanger sequencing results from all 3 available individuals within the family as well as an additional 

control sample. Rows labelled in grey are excluded on the basis that either the mutation is found in all family 

members, including unaffected, and is therefore not disease causing. White rows are inconclusive due to no 

confirmation of the initial mutation in the affected patient. This may although indicate a false positive results from the 

original exome sequencing and this cannot be disregarded. Rows highlighted in blue are, at this stage, possible disease 

causing mutations. This is indicated through Sanger sequencing confirming in the initial mutation and then no 

mutations observable in the control and unaffected family members. 
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From the above sequencing data it can be said that at this point we can exclude three possible 

mutations on the basis that they are found within unaffected family members so are more than 

likely non-disease causing variants. Initially we can suggest four possible candidate mutations and 

genes that, at this point, segregate and are only found within the affected individual. This is primary 

data and currently excludes a vast body of variations first discovered by exome sequencing but it 

does provide us with a foundation of from which to continue and progress work.  

 

Mutation screening of the ANKRD26 5’-UTR mutations in a panel of patients with 

thrombocytopenia 

In total 39 patients previously determined to be thrombocytopenic (<150x100/l platelet count) were 

entered into a sequencing screen looking in particular at the 5’-UTR region. All patients were 

presented with an unclassified thrombocytopenia with a possible secondary defect. Patients showed 

similar platelet counts to those previously identified with an ANKRD26 mutation. In total three 

variations were observed across the panel with the results being summarised in Table 4 overleaf. 

Out of the three variations observed only one falls into the previously reported mutation hotspot of 

the 5’-UTR of ANKRD26. This single nucleotide change, c.-126T>T/G is found in a heterozygous state 

in one patient and falls between two previously described mutations in patients with THC2 (1). The 

location of the mutation is explained in Figure 6 overleaf. The two other variations fall outside of the 

mutational hotspot and are in fact previously reported common variations. c.59A>A/G and c.59A>G 

are present in a frequency of 39 and 58%, respectively in this study, and the G allele (rs7897309) is 

found in 93% of the worldwide population (1000 genomes). c.-140C>C/G is found also as frequently 

in the 1000 genomes database with a prevalence of 96% (rs41299222).  
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Table 4. 

Table 4 shows the results from the 

screening of the 

thrombocytopenic panel for 

mutations in the 5’-UTR region of 

ANKRD26. Patient families are 

contained within boxes. 6/39 

patients failed to produce any PCR 

product, in most cases this was 

due to a limited supply of patient 

material and therefore DNA to 

sequence. Three variable bases 

were noticed across the 39 

patients screened, c.59A>A/G, c.-

140C>C/G and c.-126T>T/G. 

c.59A>A/G was found both 

heterozygously and homozygously 

in a high frequency of patients 

with only one patient being wild 

type at that base. c.-140C>C/G 

was found in two patients within 

the same family , further 

observation reveals these patients 

are mother and daughter which 

may explain the presence in both 

patients, the variation is not 

observed in any other members of 

the family. The final variation, c.-

126T>T/G, is found a single 

unrelated patient, patient 8. 

Figure 6 shows an Ensembl 

search of the 5’-UTR of 

ANKRD26. Highlighted in red 

boxes are the six reported 

mutations in the “mutational 

hostpot” from -134 to -113 as 

previously reported by Pippuci 

et al. (1). Within blue boxes are 

the three variations observed 

within this study. Worth noting 

is the c.-126T>T/G change with 

blue labelling that falls directly 

between two previously 

suggested disease causing 

mutations, these are believed to 

be the novel cause of THC2. 

Patient Mutations

1 c.59A>G

2 c.59A>G

3 c.59A>G

4 c.59A>A/G

5 Fail

6 c.59A>A/G

7 c.59A>G

8 c.-126T>T/G       c.59A>A/G 

9 c.59A>A/G

10 c.59A>G

11 c.59A>G

12 Fail

13 c.59A>A/G

14 c.59A>G

15 c.59A>A/G

16 Fail

17 c.59A>G

18 c.59A>G     Reverse read only

19 c.59A>G

20 Fail

21 c.59A>G

22 c.59A>G

23 c.59A>G

24 Fail

25 c.59A>A/G

26 c.59A>G

27 c.59A>A/G

28 c.59A>A/G

29 c.59A>A/G

30 wild type

31 c.59A>A/G

32 c.59A>A/G

33 c.-140C>C/G    c.59A>G

34 c.-140C>G       c.59A>G

35 c.59A>G

36 c.59A>A/G

37 c.59A>A/G

38 c.59A>G

39 Fail
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Discussion 

Although no conclusive data has been generated from this study we have managed to reduce the 

number of possible candidate mutations through a variety of sequencing techniques and have made 

valuable progress in achieving our aforementioned aims. At this current stage patient reports and 

causative mutations are incomplete but there are a number of interesting leads that can provide 

areas for future research and study. 

A novel variant in TMEM30B as a candidate mutation in family 1 

Out of the three candidate variants suggested by whole exome and Sanger sequencing in family 1 

TMEM30 is an interesting possibility for the causative gene. Although the same mutation was 

present within the unaffected family member it is still not possible to exclude it without a full 

individual report/platelet function testing. The complex nature of the affected individuals within this 

family, displaying with both a varied level of thrombocytopenia and a suggested platelet function 

defect, hints at the possibility of a compound effect involving two or more mutated genes. It is on 

this basis that therefore a suggestion could be made that although the unaffected individual is 

classed as phenotypically normal there may be a mild thrombocytopenia present, consistent with 

other family members, that has not previously been observed due to little or no recent bleeding 

episodes. The c.778delC variant observed within family 1 occurs within the second transmembrane 

region of TMEM30B. The effect of this single base deletion is a frame shift which results in the 

removal of the wild type stop codon and extension of the peptide sequence by 33 amino acids. We 

predict therefore that the probable effect of this mutation is a degree of loss of function to the 

protein by removal of the second transmembrane domain externalising the C terminal if the protein 

does translocate, this mutation is seen in a heterozygous state in all patients though so a complete 

knock out will not be produced.  

Work in 2010 by Bryde et al. (87) has tried to elucidate the possible function of TMEM30B within 

human cell line models and this could potentially provide an explanation to one aspect of the 

phenotype observed within family 1.  
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They hypothesise a possible role of TMEM30B, and TMEM30A, in the production of the 

asymmetrical phospholipid distribution across the plasma membrane. They believe that this effect is 

mediated through interaction with P4-ATPases and yeast homologues have been shown to be 

responsible for transport of the phospholipids; phosphatidylserine (PS), phosphatidylethanolamine 

(PE) and phosphatidylcholine (PC) (88). It was on this notion that Coleman and Molday based their 

work. They initially determined a cellular localisation of TMEM30B at the plasma membrane through 

exogenous expression and continued to show interaction of TMEM30B with ATP8B1, B2, B4 and A1 

P4-ATPases and markedly increased expression when co-expressed. They also categorised that P4-

ATPases fail to translocate from the endoplasmic reticulum to the plasma membrane in the absence 

of both TMEM30A and TMEM30B and that TMEM30A is required for the conversion of ATP8B1 and 

B2 to their phosphoenzyme intermediates. 

The specific asymmetrical distribution of phospholipids across the endoplasmic and cytoplasmic 

membrane is important in many cellular processes such as membrane stability, vesicle transport, 

recognition of apoptosis and blood coagulation which is already been made apparent in the defect in 

the phospholipid scramblase seen within Scott syndrome (45, 88, 89). Based upon the work 

previously mentioned by Bryde et al. (87) we have two hypotheses as to the effect of the mutation 

and how it can potentially cause disease. We believe that if TMEM30B does in fact play a role in the 

function of a P4-ATPase the mutation presented within family 1 has the potential to disrupt either its 

translocation out of the endoplasmic reticulum or its function involved in transporting the polar 

phospholipids. If we therefore presume that TMEM30B, and not TMEM30A (TMEM30C is expressed 

strictly in the testis so can therefore be ruled out in this instance), interacts with a P4-ATPase acting 

in a flippase manner, that is normally functioning to remove PS and other phospholipids from the 

exoplasmic to the cytoplasmic leaflet of the plasma membrane, we are able to suggest a two-fold 

idea that may explain the thrombocytopenia observed. Due to the role of PS in apoptosis and blood 

coagulation we believe that a possible effect of this particular mutation might be that PS is blocked 

from being transported from the exoplasmic membrane. It is this retention, on the exoplasmic side, 
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that may trigger apoptotic like signals and a local coagulation resulting in removal of platelets by 

coagulation or phagocytosis and therefore a reduced platelet count in what would appear as a 

Stormorken-like disease. Alternatively if TMEM30B is shown to interact with the opposite of a 

flippase, a floppase, then the platelet function defect may be equally explained by a reduced 

exposure of PS leading to reduced coagulation. The mutation in TMEM30B therefore provides quite 

an interesting development from which to progress. For these hypotheses to be true a number of 

criteria need to be satisfied, this is why the use of the cloning approach to study TMEM30B 

localisation and the effect of the mutation is an ideal starting point for further work to commence. In 

addition an Annexin-V binding assay could be used to determine the presence of PS on the outer 

membrane and henceforth validate or disprove the proposed hypothesis. 

Novel variations in SLFN14 in both family 1 and 2 

Although TMEM30B does provide us with an interesting lead we cannot rule out the two other 

possible candidate mutations without further work. Interestingly the presence of a mutation in the 

functionally unknown SLFN14 is apparent in both patients from family 1 and those from family 2. 

Closer investigation into the nature of these mutations reveals that both the mutations are within 

seven bases of each other and therefore could be affected the same functional domain. When the 

mutations are analysed using the mutation prediction software Polyphen (Polymorphism 

Phenotyping version2.1.0)(90) the mutation found within family 1, p.V220D, returns with two 

alternate prediction scores (HumDiv and HumVar) of 0.773 and 0.665 and is predicted to be 

“possibly disease causing” (all prediction scores are out of a total of 1). In contrast the variant found 

in family 2, p.K218E, returns HumDiv and HumVar scores of 0.999 and 0.996 respectively and is 

predicted to be “probably disease causing”. As V220D represents a nonpolar to acidic polar change 

and K218E represents a basic polar to acidic polar change the difference seems to lie within the 

conservation of the amino acids. A figure showing the amino acid conservation in a number of 

organisms is shown in Figure 7. Although the valine at amino acid 220 is not well conserved the 

presence of both mutations in close juxtaposition to one another provides an interesting prospect in 
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terms of cause of disease. Patients from both family 1 and family 2 are known to have a compound 

disease consisting of a level of thrombocytopenia and an additional platelet function disorder. This 

consistency continues when observing the platelet phenotyping as both patients present with 

deaggregation to ADP and PAR-1 peptide and an additional ATP secretion defect. Although it is not 

possible to draw conclusions without the known function of the protein and categorising the 

mutation this work does provide an insight into the potential of SLFN14 and a suggestion into an 

area of further research to be completed.  

 

It is worth noting that SLFN14 is one of four possible candidate mutations within family 2 and there 

are still 98 additional novel variants to screen. In cases where there is little familial background of 

disease there is more of an argument for a complex multigenic disease in which several genes can be 

causative in combination. At this stage we cannot rule this idea out and our only method to confirm 

or deny this theory is to extend the family history and variant segregation. 

 

 

 

Figure 7. 

Figure 7 shows the conservation of amino acids in the region flanking the two mutations in SLFN14. As 

you can see conservation is maintained throughout majority of mammals across the region with 

extensive conservation at the lysine at position 218 in the H.sapiens coding region. The valine at 

position 220, the mutated amino acid within family 1, is less well conserved. No homologues of 

SLFN14 have yet been published in lesser order model organisms such as D.rerio or C.elegans. 
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A novel variation in the 5’-UTR of ANKRD26 in a patient with thrombocytopenia 

One of our initial aims was to determine the prevalence of mutations within the 5’-UTR of ANKRD26 

in a panel of thrombocytopenic patients. In total 33 patients were successfully screened using 

Sanger sequencing and one single nucleotide change was found that falls in the proposed mutational 

hotspot. This mutation c.-126T>T/G is a novel variant not previously reported within the 1000 

genomes database and our internal database. Further work is needed to establish this mutation and 

whether the patient can therefore be diagnosed with THC2, this could be achieved through the use 

of a luciferase assay similar to as previously described by Pippuci (1). 

 

Whole exome sequencing in the diagnosis of patients with rare platelet based bleeding disorders 

Although whole exome sequencing has been proven to generate novel candidate variations it cannot 

give us the complete picture of a patient’s genome. The method of sequencing used in this study 

stretches 5 bases from the exons into the untranslated regions allowing coverage of splice acceptor 

and donor sites. It does not however cover the vast non-coding section of a patient’s genome so 

variations in enhancers, suppressors, non-coding RNAs and other intronic variants will be missed. 

There is however an option to work a whole genome sequencing approach into the GAPP work flow 

after whole exome sequencing when no variants are shown. Structuring in this way is a lot more cost 

effective and efficient but still retains the option for complete coverage if needed. 
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Appendix 

PCR primers 
Cardiff Family 

Primer name   Sequence        Scale (µmol)     Purification 

TOR2A_F        CTTTCTGAGCCACTACGATGG  0.025  DST 

TOR2A_R        CTCAACGGGTACCCTCCAC   0.025  DST 

NEMF_F        GGGAAGAAAGGAAAAACAAAGG  0.025                DST 

NEMF_R        TGTATTTCTGGATGACATTCCATT  0.025              DST 

SLFN14_F        GGGTTTAGAGCCCAAAGAGG  0.025              DST 

SLFN14_R        CAGCAGAAGTGGAATGTAGGC  0.025  DST 

TMEM30B_Exon1_1F       CTGAGCTGGCGGGAAAC   0.025  DST 

TMEM30B_Exon1_1R       ACTCGTTGACAGGGTGGC   0.025  DST 

TMEM30B_Exon1_2F       TGCCCGAGCTCTTCCAG   0.025  DST 

TMEM30B_Exon1_2R       GTGCGCATCCACACCAC   0.025  DST 

TMEM30B_Exon1_3F       GTCAAGTTCCGCAACCC   0.025  DST 

TMEM30B_Exon1_3R       GAGATGCCAAAAGCACCTTG  0.025  DST 

TMEM30B_Internal_F       GGCATCAAGGAGCTGGAGTA  0.025  DST 

TMEM30B_Internal_R       GCCCCTGGGAACAAATTACT  0.025  DST 

 

Birmingham Family 

IFIT_F          ATGGGCCTTGCTGAAGTG    0.025  DST 

IFIT_R          GCCACCTCAAATGTGGGC               0.025  DST 

CADPS2_F         TGGCCCATATTTTCCAAATG   0.025  DST 

CADPS2_R         CGCAGAACACAGCCCAG    0.025  DST 

CHIC1_F        ACCTCGGCAGGTTCAAACTC   0.025  DST 

CHIC1_R         CCCTCGATCACTTCTCATTCC   0.025  DST 

STAB1_F         CTGGCAGTCTCTCTGTTGGG   0.025  DST 

STAB1_R         CTCGCCCTCTATGCCTTTG    0.025  DST 

CLCNKB_F         caaaatggagatcgcaacc    0.025  DST 

CLCNKB_R         gaaaggaagagcaaggggtg    0.025  DST 

KCNAB3_F         GGGAGGAGAGGAAGGAATTG   0.025  DST 

KCNAB3_R         AATGTTCCCTACTCCTCTGGC   0.025  DST 

WASL_F         AAATAAAATGCAAAGATGAGACCC  0.025  DST 

WASL_R         TCCTGCAGTAGTTGGAACCTG    0.025  DST 

ALS2CL_F         ACTCCAGTTCTGTGGCAAGG   0.025  DST 

ALS2CL_R         CTCTTTCCCCAAGGGAGGTC   0.025  DST 

C1orf204_F         CGAAACATCAGAAAGGGATTG   0.025  DST 

C1orf204_R         CCCAGCTGCAGACAGAGAG   0.025  DST 

 


