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Abstract

The focus of the work presented here is the theoretical description of the

photodissociation of molecular systems. Owing to the generally high density

of electronically excited states, and in particular intersections between these

states, the Born-Oppenheimer approximation, which underpins the majority

of our understanding of chemical processes, cannot be invoked in the study

of photochemical processes. This, coupled with the large amplitude motion

of the nuclei associated with a dissociation process, results in the area of

photodissociation dynamics being a rich, but challenging area of research.

The systems studied here are united by the presence of nitrogen-hydrogen

bonds, and low-lying, singlet 3s/πσ∗ states that are quasi-bound with respect

to the dissociation of these bonds. The simplest such system is ammonia,

and the photodissociation dynamics of this molecule are studied. The vi-

bronic coupling responsible for the formation of the barrier to dissociation in

ammonia’s S1(3s/πσ
∗) state is identified, and two eight-state model Hamil-

tonians incorporating this coupling are constructed by fitting to the results

of MCQDPT2 calculations. Using a transformation of the model Hamiltoni-

ans based on a block-diagonalisation scheme, the effect of the coupling of the

S1(3sπσ
∗) state to several higher-lying states on the dissociation dynamics

in this state is evaluated. The dynamics of ammonia in its S2(3p) state are

also studied.

The dissociation of 3-pyrroline in its first two excited states are stud-

ied using quantum dynamics simulations employing a six-state, eight-mode

model Hamiltonian. Using the method of improved relaxation, vibrational

eigenstates of the ground electronic state that correspond to the equatorial

and axial conformers of 3-pyrroline are calculated. Using these wavefunc-
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tions, a conformer-resolved study of 3-pyrroline excited to its S1(3s/πσ
∗) and

S2(3px) states is performed, and the first two bands of its electronic spec-

trum calculated. Distinct similarities between the photo-induced dynamics

of 3-pyrroline and ammonia are found to exist.

Using an eight-state model Hamiltonian fitted to extensive CASPT2 cal-

culations, the photodissociation of pyrrole following excitation to itsA2(3s/πσ
∗),

A1(ππ
∗) and B2(ππ

∗) states is investigated. The role played by tunnelling

through the barrier to dissociation in the A2(3s/πσ
∗) state is assessed and

found to be significantly underestimated in previous theoretical works. The

relaxation of pyrrole from its bright A1(ππ
∗) and B2(ππ

∗) states to the dis-

sociative A2(3s/πσ
∗) and B1(3s/πσ

∗) states is studied. The role played by

intensity borrowing in the first band of pyrrole’s electronic absorption spec-

trum is analysed, and a re-assignment of much of the structure of this band

is made.

An eight-state model Hamiltonian parameterised via fitting to EOM-

CCSD calculations is constructed and used in the study of the dynamics of

aniline following excitation to its first two singlet ππ∗ states. Two previously

neglected 3p Rydberg states are found to play important roles in aniline’s

excited state dynamics. The first two bands in aniline’s electronic absorption

spectrum are calculated, and the role played by the Hertzberg-Teller effect

in the first band is analysed.
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excitation to the Ã(3s) state calculated using the eight-state

diabatic representation of the nuclear wavefunction and the

four-dimensional potential W (r). (a) Probabilities of dissoci-

ation in the diabatic states, and; (b) probabilities of dissocia-

tion in the adiabatic states. . . . . . . . . . . . . . . . . . . . 97

List of Figures viii



List of Figures

4.12 State population probabilities and probabilities of dissociation

following vertical excitation to the Ã(3s) state calculated using
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tential; (b) the Ã state potential, and; (c) the B̃ state potential.125

5.7 Model potential surfaces for the ground and first excited states

of 3-pyrroline along the N-H out-of-plane bending mode φ and

the N-H dissociation coordinate R. (a) Adiabatic surfaces, (b)

Diabatic surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.8 Model adiabatic potentials for the S0 and S1 states along the

N-H dissociation coordinate plotted for different values of the

N-H out-of-plane bending coordinate φ: (a) φ=0.0 radians,

(b) φ=0.2 radians, and (c) φ=0.7 radians. . . . . . . . . . . . 127

List of Figures x



List of Figures

5.9 The two-dimensional reduced density plotted along the C-N-C

inversion coordinate Q1 and N-H out-of-plane bending coor-

dinate φ for: (a) the vibrational eigenstate |ΨAX〉 calculated

using the method of relaxation, and; (b) the vibrational eigen-

state |ΨEQ〉 calculated using the method of improved relaxation.128

5.10 Diabatic population probabilities following excitation to the
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5.17 (a) Calculated absorption spectrum corresponding to excita-

tion of the AX conformer to the B̃ state. (b) Calculated ab-

sorption spectrum corresponding to excitation of the EQ con-

former to the B̃ state. . . . . . . . . . . . . . . . . . . . . . . 138

5.18 Expectation values 〈Q1〉 and 〈φ〉 calculated following excita-

tion of the |ΨAX〉 conformer to the B̃ state. . . . . . . . . . . 138

5.19 Combined spectrum corresponding to excitation of the AX

and EQ eigenstates to both the Ã and B̃ electronic states.
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Chapter 1

Introduction

Photochemistry, that is, the area concerned with chemical reactions driven

by the interaction of a molecular system with an external electric field, can

be considered to be ubiquitous in the natural world. Pertinent examples in-

clude the cis/trans isomerisation of the retinal chromophore of the rhodopsin

protein, which constitutes the initial step in the process of vision [1], and the

efficient radiationless decay mechanisms exhibited by the DNA bases follow-

ing electronic excitation, which have been posited as constituting possible

origins of the photostability of life [2–5].

A qualitative framework in which basic photochemical processes may be

cast is as follows. In the presence of an external electric field ǫ(t), a molecular

system experiences a perturbation ĤML described in the dipole approxima-

tion by

ĤML = −µ · ǫ(t), (1.1)

where µ denotes the dipole moment of the system. When the frequency of

the external field is resonant with a transition between two electronic states,

the interaction with the field may result in the transfer of population be-

tween the two states in question. Following such an electronic transition, a

multitude of possible relaxation pathways may be open, including the radi-
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S0

S1

S2

T1

T2hν

IC

F

ISC

IC

P

Fig. 1.1: A so-called Jablonski diagram illustrating the possible relaxation path-
ways open to a molecular sytem following the absorption of a photon of frequency
ν in its singlet ground state. Here, the lables Sn denote the singlet electronic
states, and Tn the triplet electronic states. IC, ISC, F, and P denote, respectively,
internal conversion, intersystem crossing, flourescence and phosphorescence.

ationless transfer of population to energetically proximate electronic states.

Such processes are shown schematically in Figure 1.1. Following electronic

excitation, the system will typically be at a non-stationary point on the po-

tential surface generated by the electrons of the molecule. Thus, nuclear

motion may be driven.

The focus of the work presented here is the photodissociation of molecular

systems, that is, the breaking of one or more bonds in a molecule following

the absorption of light. Within the framework of non-relativistic quantum

mechanics, such a process may be cast in the following form. An initial

state |ψi〉 is taken to propagate on the ground state potential until time

t = 0. Taking |ψi〉 to be an eigenstate of the ground state potential, the

initial wavefunction changes only by a phase factor. At time t = 0, the

absorption of a single photon results in the promotion of the state |ψi〉 to an

electronically excited state, which, assuming vertical excitation, is given in
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the dipole approximation by

|φi(0)〉 = µ|ψi〉, (1.2)

where µ is the corresponding transition dipole moment operator. The ini-

tially excited state |φi(0)〉 consists of a linear combination of the vibrational

eigenstates of the excited electronic state

|φi(0)〉 =
∑

n

Cn|ψn〉

=
∑

n

〈ψn|µψi〉 |ψn〉,
(1.3)

where the |ψn〉 correspond to the eigenstates of the excited state potential.

This superposition of eigenstates, a so-called wavepacket, then drives the

movement of the excited wavefunction according, in a non-relativistic frame-

work, to the time-dependent Schrödinger equation

i~
∂

∂t
|φi〉 = Ĥ|φi〉, (1.4)

with Ĥ denoting the system Hamiltonian. Pictorially, this process is illus-

trated in Figure 1.2. Photodissociation may, of course, occur when the ex-

cited state potential is unbound with respect to one or more nuclear degrees

of freedom.

Photodissociation processes are typically challenging to model in an ac-

curate manner for two primary reasons. Firstly, unlike the preponderance

of ground state processes, the excitation of a molecular system to an elec-

tronically excited state denies us, in general, the possibility of treating in a

satisfactory manner the electronic and nuclear degrees of freedom as being

decoupled. Thus, the evolution of the wavepacket |φi〉 has be considered to

occur over a manifold of vibronically coupled electronic states. Secondly, the
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φi(0)
φi(t)

Fig. 1.2: Pictorial representation of the excitation of a system from its ground
electronic state |ψi〉 to an excited state |φi〉 = µ|ψi〉, a wavepacket that evolves as
governed by the time-dependent Schrödinger equation. R here corresponds to a
nuclear coordinate.

dissociation of a molecule implies large amplitude motion of the nuclei, ren-

dering necessary the accurate description of the molecular Hamiltonian over

a large range of nuclear geometries. This is in particular a challenge for the

representation of the potential operator, for which exact analytic expressions

do not exist.

One particular class of molecular systems that has attracted much recent

attention regarding the photo-induced dissociation of its members are het-

eroaromatic species containing a heteroatom-hydride bond (denoted X-H),

such as phenols, pyrroles and azoles. Many of these species are remarkable

for their vanishing fluorescence quantum yields, a phenomenon that is ex-

plicable in terms of the existence of efficient radiationless decay mechanisms

connecting their excited and ground electronic states. Initial attempts to

identify the nature of the operative mechanisms of decay were largely cen-
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tred on the observation by Sobolewski and Domcke [6] that common to many

heteroaromatic species is the existence of low-lying singlet 3s/πσ∗ states that

are quasi-bound with respect to an X-H bond. Population of such a state

has been posited as providing a mechanism for radiationless decay by means

of the accessing of a conical intersection with the ground state situated along

the X-H dissociation coordinate RXH . A good example of the roles played by

low-lying 3s/πσ∗ states in the photochemistry of heteroaromatic molecules

is provided by indole. Illustrated in Figure 1.3 are the calculated energies

(adapted from Ref. [6]) of the S0, S1(ππ
∗), S2(ππ

∗) and S3(3s/πσ
∗) states

of indole are shown plotted along the N-H dissociation coordinate. The re-

pulsive nature of the S3(3s/πσ
∗) state is clearly seen, as is the intersection

of this state with the ground state. The mediation of ultrafast N-H dis-

sociation by the S3(3s/πσ
∗) state has been revealed experimentally, with a

timescale of ∼ 100 fs for direct N-H dissociation following excitation to the

ππ∗ states and subsequent internal conversion to the S3(3s/πσ
∗) state being

reported [7], highlighting the efficiency of 3s/πσ∗ state-mediated dissociation

mechanisms even when the dissociative states under question do not undergo

direct excitation.

Before proceeding, clarification of the notation ‘3s/πσ∗’ is sought: the

adoption of this label is used to describe the character of the correspond-

ing adiabatic states under question, which typically possess 3s Rydberg-type

character in the vicinity of the Franck-Condon point, but acquire pronounced

πσ∗, valence-type characters as the the X-H dissociation coordinate is tra-

versed. Explanation of this change in character is typically made by taking

the adiabatic potential in question to correspond to an avoided crossing be-

tween two diabatic states: a lower, bound 3s Rydberg state that is vibron-

ically coupled to a higher-lying, purely dissociative πσ∗ state by the X-H
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Fig. 1.3: Energies of the four lowest adiabatic electronic states of indole along the
N-H dissociation coordinate (adapted from Ref. [6]), with the geometry of indole
at the Franck-Condon point inset.
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Fig. 1.4: Potential surfaces yielded by the avoided crossing model given in Equation
1.5 using a coupling function W12(RXH) = ∆ tanh(ρRXH): (a) model adiabatic
surfaces, and; (b) model diabatic surfaces. The labels 3s and πσ∗ refer to the
characters of the states whose potentials they reside next to.

dissociation coordinate. Such an avoided crossing may be modelled by

V±(RXH) =
1

2

{

W11(RXH) +W22(RXH)

±
√

(W11(RXH)−W22(RXH))2 + 4W 2
12(RXH)

}

,

(1.5)

where V−(RXH) and V+(RXH) denote the lower and upper adiabatic states in

question, respectively, W11(RXH) and W22(RXH) correspond, respectively, to

the bound 3s Rydberg and dissociative πσ∗ diabatic states, and W 2
12(RXH)

the coupling between the two diabatic states. A pictorial representation of

this model is given in Figure 1.4. This model is, of course, an idealisation

that neglects the coupling of the states in question to their orthogonal com-

plement, but is still of use in the interpretation of the dissociation dynamics

of the molecules under consideration here.

Generally, the oscillator strengths associated with transition from the

ground state to the 3s/πσ∗ states of heteroaromatic species are either small
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or zero, as in the case of indole, with the transition gaining intensity via

the Herzberg-Teller effect and/or intensity borrowing from nearby optically

bright states. The case of a 3s/πσ∗ ← S0 transition mediated by intensity

borrowing has typically been viewed as occurring as a result of vibronic cou-

pling of the 3s/πσ∗ state to an energetically proximate, optically bright ππ∗

state. Depending on the relative energetic spacing and ordering of the low-

lying ππ∗ and 3s/πσ∗ states in these systems, significantly different excited

state dynamics may be observed. By way of example, both phenol and thio-

phenol share in common a bright ππ∗ state as their first excited state and a

quasi-bound 3s/πσ∗ state as their second excited state. Both molecules are

found to dissociate following excitation to their first excited states [8]. How-

ever, as illustrated in Figure 1.5, the energetic spacing of the S1(ππ
∗) and

S2(3s/πσ
∗) states in thiophenol is greatly reduced in comparison to that in

phenol. Consequently, following excitation to the S1(ππ
∗) state of phenol the

rate of depopulation of this state is much slower than in the case of thiophe-

nol [8], a result of the hindrance of internal conversion to the S2(3s/πσ
∗) state

owing to the increased energetic separation of the S1(ππ
∗) and S2(3s/πσ

∗)

states.

The aim of the work presented in this thesis is to model at a fully quantum

mechanical level the dynamics of 3s/πσ∗ state-containing systems following

photoexcitation, focussing on the molecules ammonia, 3-pyrroline, pyrrole

and aniline. The work is partitioned as follows. In Chapter 2 the theoretical

framework underpinning the techniques and methods used is presented, in-

cluding the definition of the adiabatic and diabatic representations mentioned

above. Chapter 3 contains an exposition of the computational methods used

in the studies presented in the later chapters.

In Chapter 4 a study of the excited state dynamics of ammonia is pre-
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Fig. 1.5: Calculated adiabatic energies of the first two ππ∗ and the first two 3s/πσ∗

states of: (a) phenol, and; (b) thiophenol. Adapted from Ref. [9].

sented. Ammonia in many ways represents a prototype for the dissociation

of molecular systems containing quasi-bound 3s/πσ∗ states. As such, numer-

ous studies of its dissociation dynamics following excitation to its S1(3s/πσ
∗)

state have been made over the past few decades. However, no study has

yet been made that questions the role played by states higher than the

S1(3s/πσ
∗) state on the dynamics of ammonia following excitation to this

state. An estimation of the order of magnitude of the non-adiabatic coupling

of the S0 and S1(3s/πσ
∗) states of ammonia to their orthogonal complement

is made based on an evaluation of the extended Curl equation. Furthermore,

two eight-state model Hamiltonians based on different coordinate systems

are developed and used in quantum dynamics simulations of ammonia fol-

lowing excitation to its S1(3s/πσ
∗) and S2(3p) states. Spectra corresponding

to these excitations are calculated and analysed in comparison to the cor-

responding experimentally determined spectra. An attempt to identify the

origin of the barrier to dissociation on the S1(3s/πσ
∗) state is made, and
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a study of effect of the inclusion of the coupling of the S1(3s/πσ
∗) state

to several higher-lying states on the dynamics following excitation to the

S1(3s/πσ
∗) state is performed.

In Chapter 5 a conformer-resolved study of the excited state dynamics

of the 3-pyrroline molecule is presented. A model Hamiltonian based on

the vibronic coupling Hamiltonian and extended to describe efficiently a dis-

sociation pathway is constructed. Using this model Hamiltonian, quantum

dynamics simulations corresponding to the excitation of both ground state

conformers of 3-pyrroline to both its S1(3s/πσ
∗) and S2(3p) states are per-

formed. Corresponding electronic absorption spectra are calculated and their

vibrational structure analysed.

Presented in Chapter 6 are the results of a study of the photoinduced

dynamics of pyrrole. Using the methodology outlined in Chapter 5, a model

Hamiltonian is constructed to describe the dynamics of pyrrole following

excitation to the vibronically coupled manifold of states comprising its first

six singlet electronic states. Quantum dynamics simulations of the excitation

of pyrrole to its S1(3s/πσ
∗), S4(ππ

∗) and S5(ππ
∗) states are discussed. The

first band in the electronic absorption spectrum of pyrrole is calculated and

a comprehensive analysis of its structure is made.

In Chapter 7 a study of the dynamics of aniline following excitation to its

first two ππ∗ states is made. A vibronic coupling Hamiltonian is constructed

and used in subsequent quantum dynamics calculations corresponding to ex-

citation to these two states. An analysis of the role played by two previously

neglected 3p Rydberg states following excitation to aniline’s second ππ∗ state

is made. The first two bands in aniline’s electronic absorption spectrum are

calculated and their vibrational structure analysed.
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Chapter 2

Theory

2.1 The Nuclear Schrödinger Equation

If one’s interest lies in the description of the properties and time-evolution

of a molecular system, then, in order to guarantee the generality of an ac-

curate treatment to a large number of situations, the non-relativistic, time-

dependent Schrödinger equation,

iΨ̇(r,R, t) = Ĥ(r,R)Ψ(r,R, t), (2.1)

is required to be solved. Here Ψ(r,R, t) denotes the total wavefunction

for a molecular system comprised of electrons and nuclei whose collective

coordinates are denoted, respectively, by r and R. Ψ̇(r,R, t) denotes the

time-derivative of Ψ(r,R, t). Here, and in the following, atomic units are

used, for which ~ is equated with unity.

The total Hamiltonian Ĥ(r,R) may be partitioned as follows:

Ĥ(r,R) = Ĥel(r;R) + T̂n(R), (2.2)

where T̂n(R) denotes the nuclear kinetic energy operator, and Ĥel(r;R) the

electronic Hamiltonian, comprised of the potential and electronic kinetic en-

ergy operators:
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The Nuclear Schrödinger Equation 2.1

Ĥel(r;R) = U(r,R) + T̂e(r). (2.3)

Expanding the total wavefunction Ψ(r,R, t) in the basis of the eigenfunc-

tions of the electronic Hamiltonian, {φi}, we may write

Ψ(r,R, t) =

∞
∑

i=1

φi(r;R)χi(R, t), (2.4)

with

Ĥel(r;R)φi(r;R) = Vi(R)φi(r;R). (2.5)

Projection onto the Schrödinger equation 2.1 with 〈φj| and subsequent in-

sertion of the expansion 2.4 yields the following set of coupled equations for

the time-dependence of the nuclear wavefunctions χj(R, t):

iχ̇j(R, t) =
[

T̂n(R) + Vj(R)
]

χj(R, t)−
∞
∑

i=1

Λjiχi(R, t), (2.6)

where the coupling terms Λji describe the coupling of the nuclear and elec-

tronic degrees of freedom:

Λji = δjiT̂n(R)− 〈φj|T̂n|φi〉. (2.7)

Equation 2.6 corresponds to the nuclear Schrödinger equation in the so-called

adiabatic representation. Adopting rectilinear nuclear coordinates and an

averaged nuclear mass, M , we may further write

T̂n(R) = − 1

2M
∇ ·∇, (2.8)

with

∇α =
∂

∂Rα

. (2.9)
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Using this specific form of the nuclear kinetic energy operator, the coupling

terms may be written

Λji =
1

2M

{

2τ ji ·∇ + τ
(2)
ji

}

. (2.10)

Here, the terms τ ji are the so-called nonadiabatic coupling terms (NACTs),

τ ji = 〈φj|∇φi〉 (2.11)

while the scalar coupling terms τ
(2)
ji are given by

τ
(2)
ji = 〈φj|∇2φi〉. (2.12)

Using this notation, the nuclear Schrödinger equation may be written

iχ̇ =

[

− 1

2M
(∇ + τ )2 + V

]

χ, (2.13)

with χ and V denoting, respectively, vectors of the nuclear wavefunctions

χi(R) and the adiabatic energies Vi(R).

The nuclear Schrödinger equation 2.13, as it stands, is intractable, owing

to the complete, and in general infinite basis of electronic eigenfunctions {φi}

used in the expansion of the total wavefunction. Thus, approximations to

the nuclear Schrödinger equation as presented above are necessitated.

2.2 Hilbert Subspaces and the Group Born-

Oppenheimer Approximation

To render the nuclear Schrödinger equation 2.13 tractable, it is required that

we work with only a subspace of the complete Hilbert space of electronic

states. We consider the partitioning of the complete Hilbert space into two

subspaces: the P-space, spanned by the first N states, and its orthogonal
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complement, the Q-space. The nuclear Schrödinger equation is then written

such that all quantities now refer only to the P-space states:

iχ̇j ≈
[

T̂n(R) + Vi(R)
]

χj(R, t)−
N
∑

i=1

Λjiχi(R, t); j ≤ N. (2.14)

The question now arises of what criterion for the partitioning of the Hilbert

space will not introduce significant errors into the determination of the χ̇j;

j ≤ N when using Equation 2.14. For convenience, we introduce the notation

PPΛji to denote the term coupling the states |φj〉, j ≤ N and |φi〉, i ≤ N ,

and PQΛji for the term coupling the states |φj〉, j ≤ N and |φi〉, i > N , with

QQΛji and QPΛji being defined analogously. There are two sources of error

introduced from the neglect of the states |φk〉, k > N : (i) the evaluation of

the coupling terms PPΛji, and; (ii) the neglect of the terms PQΛji.

When working with only the P-space states, the error introduced into

the evaluation of the coupling terms PPΛji can be understood most easily by

writing

PPΛji =
1

2M

{

2PPτ ji ·∇ + PP τ
(2)
ji

}

=
1

2M

{

2PPτ ji ·∇ + ∇
PPτ ji − PP (ττ )ji

}

(2.15)

and noting that the terms PP (ττ )ji can be written as

PP (ττ )ji =
N
∑

k=1

PPτ jk
PPτ ki +

∑

k>N

PQτ jk
QPτ ki. (2.16)

When working with only the P-space states, the sum over the terms PQτ jk
QPτ ki

are neglected. If, however, derivative coupling terms PQτ ji are of the order of

O(ǫ), then the errors introduced by the neglect of the Q-space states will be of

the order of O(ǫ2), and, provided ǫ is sufficiently small, the errors introduced

will be small enough to warrant their neglect.
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The error introduced by the neglect of the coupling terms PQΛji is less

straightforward to determine. We assume that the order of coupling between

the P-space and Q-space states, O(ǫ), is small. The NACTs PQτ ji entering

into PQΛji can thus be ignored. The scalar coupling terms PQτ
(2)
ji contained

in PQΛji can be written

PQτ
(2)
ji = ∇

PQτ ji −
N
∑

k=1

PPτ jk
PQτ ki −

∑

k>N

PQτ jk
QQτ ki. (2.17)

The term ∇PQτ ji may be ignored provided ǫ is small, but there is no reason

to assume that the terms PPτ jk
PQτ ki and PQτ jk

QQτ ki entering into Equa-

tion 2.17 should be small. Conversely, near an intersection of the two Q-space

states |φk〉 and |φi〉 the term PQτ jk
QQτ ki can be expected to be large. Simi-

larly, the term PPτ jk
PQτ ki can be expected to be large around an intersection

of the P-space states |φj〉 and |φk〉. To understand how the scalar coupling

terms between the P-space and Q-space states may be neglected, we consider

a point of intersection between the two Q-space states |φk〉 and |φi〉. At this

point we have, symbolically,

PQΛji ∋ PQτ jk
QQτ ki, (2.18)

and

PQΛjk ∋ PQτ ji
QQτ ik (2.19)

Noting that the NACTs may be written as

τ ji =

〈

φj

∣

∣

∣

(

∇Ĥel

)∣

∣

∣
φi

〉

Vi − Vj
, (2.20)

it can be seen to be justified to assume that PQτ jk ≈ PQτ ji at the point

of intersection of the states |φi〉 and |φk〉. Assuming real, antisymmetric
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NACTs, we thus find that

PQτ jk
QQτ ki ≈ −PQτ

QQ
ji τ ik. (2.21)

at the point of intersection. Hence, we see that the terms PQτ jk
QQτ ki ap-

pearing in PQΛji are approximately cancelled by the terms PQτ ji
QQτ ik ap-

pearing in PQΛjk. Analogous conclusions hold near an intersection of the

P-space states |φj〉 and |φh〉 for the approximate cancellation of the terms

PPτ jh
PQτ hi appearing in PQΛji by the terms PPτ hj

PQτ ji appearing in PQΛhi.

Away from intersections within the P- and Q-spaces these approximations

do not hold. However, at such points the terms PPτ jk
PQτ ki and PQτ jk

QQτ ki

should be small if the NACTs PQτ jk are sufficiently small.

The use of only the P-space states in the evaluation of the nuclear Schrödinger

equation is known as the group Born-Oppenheimer approximation. From the

above considerations, it is seen that this may be considered a valid approx-

imation so long as the NACTs coupling the P-space and Q-space states are

sufficiently small.

2.3 The Diabatic Representation

Writing the NACT τ ij as

τ ij =
〈φi|(∇Ĥel)|φj〉

Vj − Vi
(2.22)

it is seen that at an intersection between the adiabatic states |φi〉 and |φj〉

τ ij will become singular. Due to the singular nature of the NACTs τ at the

intersections between the adiabatic potentials, it is desirable to consider the

use of a basis in which the NACTs are eliminated. That is, a new set of

basis functions {φ̃a} are defined that are related to the adiabatic basis by a

unitary transformation
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φ̃a =

N
∑

i=1

φiSia, (2.23)

such that the NACTs in the new basis,

τ̃ ab =
〈

φ̃a

∣

∣

∣
∇φ̃b

〉

, (2.24)

are zero. Such a basis is termed a diabatic basis, and the transformation

matrix the adiabatic-to-diabatic transformation (ADT) matrix.

Rewriting τ̃ in terms of the adiabatic basis,

τ̃ = S†τS + S† (∇S) , (2.25)

it is clear that the ADT matrix must satisfy the relation

τS + ∇S = 0. (2.26)

An ADT matrix that fulfils Equation 2.26 exactly yields a so-called strictly

diabatic basis, in which the NACTs are truly eliminated. The necessary and

sufficient condition for Equation 2.26 having a solution is

∂2S

∂Rα∂Rβ

− ∂2S

∂Rβ∂Rα

= 0, (2.27)

leading to the condition

∂τ α

∂Rβ

− ∂τ β

∂Rα

− [τα, τ β] = 0. (2.28)

Equation 2.28, known as the extended Curl equation, is only satisfied for

the complete Hilbert space of electronic states. Thus, for all practical pur-

poses, for which a finite Hilbert subspace must be considered, a strictly di-

abatic basis does not exist. Instead we concern ourselves with a so-called

quasi-diabatic basis for which the NACTs τ̃ are rendered sufficiently small
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to be neglected without significant consequence. Setting the NACTs in the

quasi-diabatic representation to zero and defining the quasi-diabatic nuclear

wavefunctions

χ̃a =
N
∑

i=1

S†
aiχi, (2.29)

yields the following nuclear Schrödinger equation:

i ˙̃χj = T̂nχ̃j +
N
∑

i=1

Wjiχ̃i, (2.30)

where

Wji =
〈

φ̃j

∣

∣

∣
Ĥel

∣

∣

∣
φ̃j

〉

. (2.31)

It remains to note that Equation 2.26 defines the ADT matrix only up

to a constant unitary transformation. That is, if T is a constant, nuclear

coordinate-independent, unitary matrix, then the matrix

S
′

= ST (2.32)

will also satisfy Equation 2.26. By choosing T = S†(Qe), we may choose

the adiabatic and diabatic representations to be equivalent at the single,

arbitrary nuclear geometry Qe.

2.4 Conical Intersections

The points of intersection of two adiabatic potentials are of great importance

with regard to the excited state dynamics of a molecular system, owing to the

fact that the NACTs τ ij scale with the inverse of the energetic separation

Vj − Vi. Hence, at a point of intersection, denoted RI , between the two

Theory 18



Conical Intersections 2.4

states |φi〉 and |φj〉 an efficient, ultrafast radiationless transfer of population

between the two states is mediated.

Considering a two state system, the adiabatic energies, denoted V−(R)

and V+(R), may be written in terms of the diabatic potential

W (R) =

(

W11(R) W12(R)
W22(R) W22(R)

)

(2.33)

as

V±(R) =
1

2

{

W11(R) +W22(R)±
√

(W11(R)−W12(R))2 + 4W12(R)2
}

.

(2.34)

Expanding W (R) about the point of intersection RI then gives to first-order

∆V = V+ − V−

=
√

(gR)2 + 4(hR)2,
(2.35)

with

g = ∇(W11(RI)−W22(RI)) (2.36)

and

h = ∇W12(RI). (2.37)

Defining the intersection-adapted coordinates

x =
g

||g|| , (2.38)

y =
h

||h|| , (2.39)

and wi, i = 1, . . . , 3N−8 (for N atoms), we see that to first-order the degen-

eracy is lifted along only the gradient difference vector x and the derivative
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coupling vector y, which together form the so-called branching space. The

remainder of the intersection adapted coordinates, w, form the (3N − 8)-

dimensional seam space, in which the degeneracy is lifted quadratically. Such

an intersection, for which g 6= 0 and h 6= 0, is termed a conical intersec-

tion. If, by symmetry, g = h = 0, but ∇
2(W11(RI) −W22(RI)) 6= 0 and

∇
2W12(RI) 6= 0, the degeneracy is lifted quadratically and the intersection

belongs to a class that includes the so-called Renner-Teller intersection.
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Chapter 3

Methodology

3.1 Introduction

In order to evaluate the nuclear Schrödinger equation (as defined in Chapter

2), two principal steps are required to be taken: (i) the determination of the

matrix representation of the system Hamiltonian and; (ii) the adoption of a

numerical representation of the nuclear wavefunction.

With regards to the evaluation of the Hamiltonian, it is usually possible to

express analytically and exactly the kinetic energy operator, but generally the

required a priori knowledge of the exact potential is not possible. To proceed,

then, a model diabatic potential matrix W (R) is required to be determined.

The construction of the diabatic potential is commonly achieved by one of

two procedures: either through the calculation of the adiabatic potential

and the ADT matrix [10,11], or through an assumption of analytic forms of

the elements of the diabatic potential and subsequent fitting to calculated

adiabatic energies [12, 13]. The latter strategy, commonly referred to as

‘diabatisation by ansatz’, has the advantage of obviating the requirement of

calculating the NACTs τ , and is the diabatisation scheme adopted here. In

either case, however, an evaluation of the electronic Schrödinger equation

must be made at nuclear geometries of interest with regards the dynamics

of the system under consideration. To this end, a numerical representation
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of the electronic wavefunction must be adopted, and those methods used in

this work are described in Section 3.2.

In Section 3.3, methods for the numerical representation of the nuclear

wavefunction are discussed. Once a given representation of the nuclear wave-

function has been adopted, the integration of the time-dependent Schrödinger

equation requires the specification of an initial wavepacket, and methods for

achieving this are discussed in Section 3.4. Sections 3.5 and 3.6 detail the

methods used in the evaluation of the Hamiltonian matrix, a core procedure

in the integration of the time-dependent Schrödinger equation. The remain-

ing sections of this chapter are concerned with the analysis of a propagated

wavepacket and the methods used to fit a diabatic potential to a given set of

calculated adiabatic energies.

3.2 The Electronic Wavefunction

We consider a system comprised of N electrons, and assign to each a compos-

ite coordinate xα comprising both the spatial and spin coordinate of the αth

electron. The wavefunction Ψ(x1, . . . ,xN) for the system may be written as

a direct product expansion in terms of a set of one-electron basis functions

{φi}:

Ψ(x1, . . . ,xN) =
∑

i,j,...,n

Cij···nφi(x1)φj(x2) · · ·φn(xN). (3.1)

Now, as we are considering a system of fermions, we require that the wave-

function be antisymmetric with respect to the interchange of the coordinates

of any two electrons, which implies that Cij···kl···n = −Cij···lk···n. Thus, we

may write
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Ψ(x1, . . . ,xN) =
∑

i,j,...,n

′

Cij···n

N
∑

α,β,...,ν=1

ǫα,β,...,νφαiφβj · · ·φνn, (3.2)

where φαi = φi(xα), the primed summation implies summation over unique

N-tuples i, j, . . . , n only, and ǫα,β,...,ν is the Levi-Civita symbol:

ǫα,β,...,ν =











1, if (α, β, . . . , ν) is an even permutation of (1, 2, . . . , N)

−1, if (α, β, . . . , ν) is an odd permutation of (1, 2, . . . , N)

0, otherwise

(3.3)

Hence we may write

Ψ(x1, . . . ,xN ) =
∑

i,j,...,n

Cij···n det (Φij···n)

=
∑

µ

Cµ|µ〉
(3.4)

with

Φij···n =











φi(x1) φj(x1) · · · φn(x1)
φi(x2) φj(x2) · · · φn(x2)

...
...

. . .
...

φi(xN) φj(xN) · · · φn(xN)











. (3.5)

For a complete set of basis functions {φi}, Equation 3.4 corresponds the

exact non-relativistic electronic wavefunction. For all practical implementa-

tions, an incomplete, finite basis must, of course, be used. Further, for a

set of M one-electron basis functions the number of configurations |µ〉 (each

corresponding to a single so-called Slater determinant det (Φij···n)) that exist

is given by the binomial coefficient

(

M
N

)

. A truncation of the expansion

3.4 is thus enforced. The task at hand, then, is to adopt a suitable criterion

for the selection of configurations to enter into an approximate electronic

wavefunction.
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3.2.1 The Hartree-Fock Model

The ansatz for the Hartree-Fock wavefunction reads

|ΨHF 〉 =

[

N
∏

i=1

a†i

]

|vac〉, (3.6)

where the a†i correspond to the elementary creation operators and |vac〉 the

vacuum state. That is, the Hartree-Fock state corresponds to a set of N in-

dependent electrons subject to Fermi correlation. As such, the one-electron

basis functions {φi} (that is, molecular orbitals) of the Hartree-Fock wave-

function are determined as the eigenfunctions of a one-electron operator,

the so-called Fock operator f̂ . Through the minimisation of the expectation

value

E =

〈

ΨHF

∣

∣

∣
Ĥ
∣

∣

∣
ΨHF

〉

〈ΨHF |ΨHF 〉
, (3.7)

the Fock operator can be determined to take the following form:

f̂ = h(xα) +
∑

j

Jj(xα)−Kj(xα), (3.8)

with the core Hamiltonian h(xα), the Coulomb operator Jj(xα) and the

exchange operator Kj(xα) being given by

h(xα) = −1

2

∂2

∂x2
α

−
∑

A

ZA

rαA
, (3.9)

Jj(xα) =
〈

φj(xβ)
∣

∣r−1
αβ

∣

∣φj(xβ)
〉

, (3.10)

and

Kj(xα)φk(xα) =
〈

φj(xβ)
∣

∣r−1
αβ

∣

∣φk(xβ)
〉

φj(xα). (3.11)
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Here, the core Hamiltonian h(xα) is defined as the sum of the kinetic energy

operator of the αth electron and the Coulombic interaction of the αth electron

with the nuclei (indexed by A) of charge ZA. r−1
αβ denotes the inverse distance

between the αth and βth electrons, and r−1
αA the inverse distance between the

αth electron the the Ath nucleus.

3.2.2 The Coupled-Cluster Model

The ansatz for the coupled-cluster wavefunction may be written

|ΨCC〉 =

[

∏

µ

(1 + tµτ̂µ)

]

|ΨHF 〉, (3.12)

where the τ̂µ are excitation operators with corresponding amplitudes tµ,

|ΨHF 〉 denotes the Hartree-Fock state, and the product is over all excita-

tions, including the identity operator. Noting that the excitation operators

τ̂µ are nilpotent,

τ̂ 2µ = 0, (3.13)

we may write

1 + tµτ̂µ = exp(tµτ̂µ). (3.14)

Thus, the coupled-cluster wavefunction may be written

|ΨCC〉 =

[

∏

µ

exp(tµτ̂µ)

]

|ΨHF 〉 = exp(T̂ )|ΨHF 〉. (3.15)

Here, the cluster operator T̂ is given by

T̂ =
∑

µ

tµτ̂µ = T̂1 + T̂2 + · · · , (3.16)

with, for example,
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T̂1 =
∑

A,I

tAI a
†
AaI (3.17)

and

T̂2 =
∑

A>B
I>J

tAB
IJ a

†
AaIa

†
BaJ , (3.18)

where A, B, . . . and I, J , . . . index, respectively, spin orbitals that are

unoccupied and occupied in the Hartree-Fock reference state, and a†A and aI

denote the elementary creation and annihilation operators, respectively.

As it stands, the coupled-cluster wavefuction |ΨCC〉 as written in Equa-

tion 3.15 corresponds to the full direct product expansion of the electronic

wavefunction 3.4 for a given spin orbital basis. To introduce a tractable

approximation to the wavefunction 3.4, a truncation of the cluster operator

T̂ must be introduced. Equation 3.16 suggests a convenient way to do so:

writing the cluster operator as

T̂ =

N
∑

i=1

T̂i (3.19)

a hierachy of approximations may be defined by truncating the summation

in Equation 3.19 to run over only i = 1, . . . , n, n ≤ N . By way of example, in

the coupled-cluster singles-and-doubles (CCSD) model, the cluster operator

is truncated at the level of single and double excitations, and the CCSD

wavefunction may be written

|ΨCCSD〉 = exp(T̂1 + T̂2)|ΨHF 〉. (3.20)
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Extension to Excited States: The Equation-of-Motion Coupled-
Cluster Model

The equation-of-motion coupled-cluster (EOM-CC) model corresponds to a

method for the calculation of excited states within the coupled-cluster frame-

work. Specifically, the EOM-CC ansatz for the ith electronic state, |ΨEOM
i 〉,

corresponds to a linear, configuration-interaction-type parameterisation of

the state based upon a coupled-cluster reference state:

|ΨEOM
i 〉 =

∑

µ

cµ,iτ̂µ|ΨCC〉 = exp(T̂ )
∑

µ

cµ,iτ̂µ|ΨHF 〉, (3.21)

with the summation being over all excitation operators, including the iden-

tity operator. The second equality in Equation 3.21 holds as the excitation

operators τ̂µ commute amongst each other, and emphasises that the EOM-

CC states may be regarded as being generated from a linearly-parameterised

configuration interaction state by the application of the exponential operator

exp(T̂ ) containing the ground state amplitudes tµ. Thus, for a given excited

state i, the coefficients cµ,i can be seen, roughly, to describe the static cor-

relation specific to the ith state and the exponential operator the dynamic

correlation common to all states.

Truncating both the cluster operator T̂ and the linear excitations τ̂µ ap-

pearing in Equation 3.21 to the level of single and double excitations furnishes

the commonly used equation-of-motion coupled-cluster singles and doubles

(EOM-CCSD) model:

|ΨEOM−CCSD
i 〉 = exp(T̂1 + T̂2)







∑

A,I

cAI,ia
†
AaI +

∑

A>B
I>J

cAB
IJ,ia

†
AaIa

†
BaJ






|ΨHF 〉

(3.22)

It remains to note that the CC and EOM-CC models are based on cor-
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rections to a single-determinant reference wavefunction, and as such may

fail to represent accurately the electronic wavefunction in regions of nuclear

configuration space for which the true wavefunction becomes dominated by

multiple configurations, such as, for example, dissociation limits. In such

situations a method based upon a multi-configurational reference wavefunc-

tion is required to be adopted, the most commonly used variant being the

so-called multiconfigurational self-consistent field model.

3.2.3 The Multiconfigurational Self-Consistent Field Model

The ansatz for the Multiconfigurational Self-Consistent Field (MCSCF) wave-

function corresponds to an orbital-optimised configuration interaction-type

expansion:

|ΨMCSCF 〉 = exp(−κ̂)
∑

i

Ci|i〉, (3.23)

with the |i〉 being the configurations admitted into the MCSCF wavefunction.

Here, exp(−κ̂) corresponds to the orbital rotation operator [14]:

κ̂ =
∑

p>q

κpq
(

a†paq − a†qap
)

. (3.24)

The expansion coefficients Ci and orbital rotation parameters κpq are deter-

mined variationally through the minimisation of the expectation value of the

Hamiltonian:

E = min
κ,C

〈

ΨMCSCF

∣

∣

∣
Ĥ
∣

∣

∣
ΨMCSCF

〉

〈ΨMCSCF |ΨMCSCF 〉
. (3.25)

A method for the selection of the configurations |i〉 entering into the

MCSCF wavefunction must be adopted. One particular configuration se-

lection scheme that has seen widespread and successful use is the so-called

Complete Active Space Self-Consistent Field (CASSCF) method. In the
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CASSCF method the orbital space is partitioned into three classes: the in-

active orbitals, the active orbitals and the virtual orbitals. The inactive and

virtual orbitals remain, respectively, doubly occupied and unoccupied in all

configurations. The CASSCF configurations are generated by distributing

the electrons amongst the active orbitals.

The MCSCF method represents a successful way in which to describe

electronic wavefunctions dominated by more than one electronic configura-

tion, and is thus of much use in the description of electronically excited states

and of bond breaking. The non-linear optimisation of both the orbitals and

configurations of the MCSCF wavefunction, however, represents a compu-

tationally demanding problem. Consequently, the number of configurations

|i〉 that can be admitted into the MCSCF wavefunction is limited. Hence,

whilst important static correlation effects may effectively be accounted for,

the description of the dynamic electron correlation required for the calcula-

tion of quantitatively accurate energies may not be sufficient. To recover the

dynamic correlation missing from a given MCSCF wavefunction, it may be

used as the zero-order wavefunction in a subsequent perturbative calculation.

3.2.4 Multiconfigurational Perturbation Theory

The most widely used multiconfigurational perturbation theory method is

the so-called Complete Active Space Perturbation Theory (CASPT) method.

Here, a CASSCF wavefunction is used as the zero-order wavefunction in a

Rayleigh-Schrödinger perturbation theory calculation. Thus the total Hamil-

tonian Ĥ is partitioned into two parts

Ĥ = Ĥ0 + V̂ , (3.26)

where Ĥ0 is a zero-order Hamiltonian with known eigenfunctions |i(0)〉 and
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eigenvalues E
(0)
i , and V̂ is the perturbation. The CASSCF wavefunction is

the eigenfunction |0(0)〉 of the zero-order Hamiltonian with the corresponding

eigenvalue E(0).

The eigenfunction |0〉 and eigenvalue E of the exact Hamiltonian are

expanded in terms of the eigenfunctions of the zero-order Hamiltonian. To

this end, the differences |0〉 − |0(0)〉 and E − E(0) are expanded in terms of

the perturbation V̂ , and we write

|0〉 =
∞
∑

k=0

|0(k)〉 (3.27)

E =

∞
∑

k=0

E(k), (3.28)

where |0(k)〉 and |E(k)〉 denote the kth-order corrections to the wavefunction

and energy, respectively. Insertion of these expansions into the Schrödinger

equation

Ĥ|0〉 = E|0〉 (3.29)

yields

(

Ĥ0 + V̂
)

∞
∑

k=0

|0(k)〉 =
∞
∑

k=0

E(k)
∞
∑

k=0

|0(k)〉. (3.30)

Collecting terms of the same order then gives an expression for the nth order

correction |0(n)〉 in terms of all lower-order corrections:

(

Ĥ0 −E(0)
)

|0(n)〉 = −V̂ |0(n−1)〉+
n
∑

k=1

E(k)|0(n−k)〉. (3.31)

Through the imposition of intermediate normalisation,

〈0(0)|0(n)〉 = 0; n > 0, (3.32)
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the corrections to the zero-order energy are found to be given by

E(n) = 〈0(0)|V̂ |0(n−1)〉, (3.33)

and the corrections to the zero-order wavefunction by

|0(n)〉 = −
(

Ĥ0 −E(0)
)−1

(

V̂ |0(n−1)〉+

n
∑

k=1

E(k)|0(n−k)〉
)

(3.34)

To obviate problems arising from the operation of
(

Ĥ0 − E(0)
)−1

on the

zero-order wavefunction (which would result in a singularity), and noting that

neither the left- or right-hand sides of Equation 3.31 contains any component

of |0(0)〉, the projector Q̂ = 1 − |0(0)〉〈0(0)| is introduced into Equation 3.34

as follows

|0(n)〉 = −Q̂
(

Ĥ0 −E(0)
)−1

Q̂

(

V̂ |0(n−1)〉+

n
∑

k=1

E(k)|0(n−k)〉
)

= −Q̂
(

Ĥ0 −E(0)
)−1

Q̂

(

V̂ |0(n−1)〉+

n−1
∑

k=1

E(k)|0(n−k)〉
)

,

(3.35)

which defines the CASPT working equations for the wavefunction corrections.

In the commonly used CASPT2 model, the corrections to the zero-order

CASSCF wavefunction |0(0)〉 and energy E(0) are taken to second order, and

the zero-order Hamiltonian is taken as

Ĥ0 = 〈0(0)|f̂ |0(0)〉P̂ + Q̂f̂ Q̂, (3.36)

where f̂ is the CASSCF Fock operator [14], and P̂ is the projector onto the

CASSCF state, P̂ = |0(0)〉〈0(0)|. It remains to note that the CASPT2 method

is commonly afflicted by poor convergence when their exists an eigenfunc-

tion |i(0)〉, i > 0 of the zero-order Hamiltonian that is coupled and quasi-

degenerate to the zero-order CASSCF wavefunction |0(0)〉. Such states are
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commonly termed ‘intruder states’, and their effect on the convergence of

a CASPT2 calculation may be understood through a consideration of the

second-order correction to the energy, E(2):

E(2) =
〈

0(0)
∣

∣

∣
V̂
∣

∣

∣
0(1)
〉

= −
〈

0(0)

∣

∣

∣

∣

V̂ Q̂
(

Ĥ0 − E(0)
)−1

Q̂V̂

∣

∣

∣

∣

0(0)

〉

= −
∑

i

〈

0(0)

∣

∣

∣

∣

V̂ Q̂
(

Ĥ0 − E(0)
)−1
∣

∣

∣

∣

i(0)
〉〈

i(0)
∣

∣

∣

∣

Q̂V̂

∣

∣

∣

∣

0(0)

〉

= −
∑

i>0

∣

∣

∣

〈

0(0)
∣

∣

∣
V̂
∣

∣

∣
i(0)
〉∣

∣

∣

2

E
(0)
i − E(0)

,

(3.37)

where in the third step the resolution of the identity has been inserted. From

Equation 3.37 it can be seen that the existence of an intruder state |i(0)〉 will

result in the second-order correction to the energy to become singular in the

limiting case of E
(0)
i = E(0). In order to obviate the problems arising from

the presence of such a state, the technique of level-shifting may be used [15].

Here, the separation of the eigenvalues of E
(0)
i and E(0) of the zero-order

Hamiltonian is increased through the addition of a parameter ǫ to the zero-

order Hamiltonian:

Ĥ0 → Ĥ0 + ǫ, (3.38)

resulting in a modified second-order energy correction Ẽ(2):

Ẽ(2) = −
∑

i>0

∣

∣

∣

〈

0(0)
∣

∣

∣
V̂
∣

∣

∣
i(0)
〉∣

∣

∣

2

E
(0)
i + ǫ− E(0)

. (3.39)

Through the use of an approximate back-transformation [15], the second-

order energy unshifted zero-order Hamiltonian may then be obtained.
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3.3 Representation of the Nuclear Wavefunc-

tion

3.3.1 The Standard Method

Taking the nuclear degrees of freedom to be distinguishable, we may write

the nuclear wavefunction for f degrees of freedom qκ, Ψ(q, t), as a direct

product expansion in terms of a time-independent basis:

Ψ(q, t) =

N1
∑

j1=1

· · ·
Nf
∑

jf=1

Cj1,...,jf (t)

f
∏

κ=1

χ
(κ)
jκ

(qκ)

=
∑

J

CJ(t)ΦJ ,

(3.40)

where, due to the distinguishability of the nuclear degrees of freedom, a differ-

ent set of basis functions {χ(κ)
j (qκ)} may be used for each degree of freedom,

J = j1 · · · jf denotes a composite index, and ΦJ = χ
(1)
j1
· · ·χ(p)

jf
. Typically,

the basis functions chosen correspond to a discrete variable representation

(see Section 3.5.2).

Equations of motion for the time-dependent expansion coefficients CJ

may be derived by the insertion of the wavefunction ansatz 3.40 into the

Dirac-Frenkel variational principle

〈

δΨ
∣

∣

∣
Ĥ − i∂t

∣

∣

∣
Ψ
〉

= 0. (3.41)

Doing so results in the set of equations

iĊJ =
∑

L

〈

ΦJ

∣

∣

∣
Ĥ
∣

∣

∣
ΦL

〉

CL. (3.42)

The representation of the nuclear wavefunction 3.40 and the resulting

equations of motion 3.42 are collectively known commonly as the ’standard

method’. Whilst the equations of motion furnished by the standard method

are readily solved, the applicability of the method is severely limited by the
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exponential scaling of the number of configurations ΦJ the with the number

of nuclear degrees of freedom. At most, systems comprised of no more than

4 to 6 degrees of freedom may be described in a tractable manner by the

standard method, thus excluding from study the vast majority of systems of

interest.

3.3.2 The Multiconfigurational Time-Dependent Hartree

Method

The basis of the multiconfigurational time-dependent Hartree (MCTDH)

method is the use of a wavefunction ansatz corresponding to a direct product

expansion in terms of a time-dependent basis:

Ψ(Q, t) =

n1
∑

j1=1

· · ·
np
∑

jp=1

Aj1,...,jp(t)

p
∏

κ=1

ϕ
(κ)
jκ

(Qκ, t). (3.43)

Here the p logical coordinates Qκ correspond each to a composite of dκ phys-

ical coordinates qν :

Qκ = (qκ1
, . . . , qκdκ

). (3.44)

The time-dependent basis function ϕ
(κ)
j , termed single-particle functions (SPFs),

are in turn expanded in terms of sets of time-independent primitive basis

functions {χ(κ)
k }, typically chosen as a DVR:

ϕj(Qκ, t) =

N1
∑

k1=1

· · ·
Ndκ
∑

kdκ=1

a
(κ)
k1,...,kdκ

(t)

dκ
∏

ν=1

χ
(ν)
kν

(qν). (3.45)

Whilst the exponential scaling of the standard method is retained by the

MCTDH approach, the latter is advantageous over the former for the de-

scription of larger systems for two primary reasons: (i) the expansion orders

nκ of the MCTDH wavefunction are generally much smaller than those of the
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standard method, owing to the use of optimal, time-dependent basis func-

tions, and; (ii) the use of combined modes Qκ allows for a further reduction

of number of coefficients AJ entering into the wavefunction expansion.

Considering the transformed SPFs and coefficients

ϕ̃
(κ)
jκ

=

nκ
∑

lκ=1

Ujκlκϕ
(κ)
lκ

(3.46)

and

Ãj1,...,jp =

n1
∑

l1=1

· · ·
np
∑

lp=1

U−1
j1l1
· · ·U−1

jplp
Al1,...,lp, (3.47)

where U is any non-singular matrix, it is apparent that

Ψ(Q, t) =
∑

J

AJΦJ =
∑

J

ÃJΦ̃J , (3.48)

with Φ̃J = ϕ̃
(1)
j1
· · · ϕ̃(p)

jf
. Thus, we see that the MCTDH wavefunction ansatz

is not unique. To remove the redundancies in the MCTDH wavefunction and

guarantee unique equations of motion, the constraints

i〈ϕ(κ)
i |ϕ̇

(κ)
j 〉 = 〈ϕ(κ)

i |ĝ(κ)|ϕ
(κ)
j 〉 = g

(κ)
ij (3.49)

are introduced, where ĝ(κ) is an operator acting on the κth particle Qκ. By

considering the time-derivative of the SPF overlaps

∂t〈ϕ(κ)
i |ϕ

(κ)
j 〉 = 〈ϕ̇(κ)

i |ϕ
(κ)
j 〉+ 〈ϕ(κ)

i |ϕ̇
(κ)
j 〉

= i
(

g
(κ)†
ij − g

(κ)
ij

)

,
(3.50)

it can be seen that a set of initially orthonormal SPFs will remain orthonor-

mal for all time if the constraint operators ĝ(κ) are chosen to be Hermitian.

Assuming ĝ(κ) = 0, insertion of the MCTDH wavefunction ansatz into

the Dirac-Frenkel variational principle yields the following set of equations

of motion for the coefficients and SPFs:
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iȦ = KA (3.51)

iϕ̇(κ) =
[

(

1− P (κ)
) (

ρ(κ)
)−1

H
(κ)
]

ϕ(κ). (3.52)

Here, K denotes the matrix representation of the Hamiltonian in the basis

of the Hartree products ΦJ ,

KJL =
〈

ΦJ

∣

∣

∣
Ĥ
∣

∣

∣
ΦJ

〉

. (3.53)

P (κ) is the projector onto the space spanned by the SPFs for the κth degree

of freedom,

P (κ) =
∑

j

|ϕ(κ)
j 〉〈ϕ

(κ)
j |, (3.54)

and the appearance of the operator
(

1− P (κ)
)

in Equation 3.52 ensures that

the time derivative of the SPFs is orthogonal to the space spanned spanned by

the SPFs. It is also apparent that this operator results in time-independent

SPFs in the limit of a complete basis, thus recovering the standard method

as a limiting case. The mean-field H
(κ) corresponds to on operator on the

κth degree of freedom, and is defined as

H(κ)
jl =

〈

Ψ
(κ)
j

∣

∣

∣
Ĥ
∣

∣

∣
Ψ

(κ)
l

〉

, (3.55)

with the single-hole functions Ψ
(κ)
j being given by

Ψ
(κ)
j =

〈

ϕ
(κ)
j

∣

∣

∣
Ψ
〉

. (3.56)

Finally, the density matrix ρ(κ) is given by

ρ
(κ)
jl =

〈

Ψ
(κ)
j

∣

∣

∣
Ψ

(κ)
l

〉

. (3.57)
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3.4 Calculation of Initial Wavepackets

The integration of the time-dependent Schrödinger equation is an initial value

problem, and as such we are required to first determine an initial wavepacket,

|Ψ(0)〉. For the study of the photoexcitation of a system, |Ψ(0)〉 can be taken

as

|Ψ(0)〉 = µ|ΨGS〉, (3.58)

where µ denotes the corresponding transition operator, and |ΨGS〉 a vibra-

tional eigenfunction of the ground electronic state. We here make the distinc-

tion between situation for which |ΨGS〉 corresponds to the ground vibrational

state and those for which it corresponds to a vibrationally excited state.

3.4.1 Calculation of the Vibrational Ground State

The generation of the vibrational ground state may be simply achieved using

the method of relaxation [16]. Here, an initial wavepacket is propagated in

negative imaginary time and subsequently renormalised:

|Ψ(τ)〉 =
exp(−Hτ)|Ψ(0)〉
|| exp(−Hτ)|Ψ(0)〉|| , (3.59)

where τ = −it. Expanding the initial wavefunction in the eigenfunctions ψn

of the Hamiltonian,

|Ψ(τ)〉 =
∑

n

cn exp(−Enτ)ψn(0), (3.60)

we see that each eigenfunction ψn is annihilated at a rate that is proportional

to it’s eigenvalue En. Thus, as t → ∞, |Ψ(τ)〉 will converge to the ground

state.
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3.4.2 Calculation of Vibrationally Excited States

In order to obtain vibrationally excited states within the MCTDH frame-

work, the method of improved relaxation may be used [17]. Here, a time-

independent variational principle is employed to determine the optimal coef-

ficients and SPFs for a given vibrational state,

δ

{

〈Ψ|H|Ψ〉 −E
(

∑

J

A∗
JAJ − 1

)

−
p
∑

κ=1

nκ
∑

j,l=1

ǫ
(κ)
jl

(〈

ϕ
(κ)
j

∣

∣

∣
ϕ
(κ)
l

〉

− δjl
)

}

= 0.

(3.61)

The Lagrange multipliers E and ǫ
(κ)
jl are introduced to keep, respectively, the

A-vector (with elements AJ) normalised and the SPFs orthonormal. Varia-

tion with respect to the coefficients gives

∑

L

〈ΦL|H|ΦJ〉AJ = EAJ , (3.62)

whilst variation with respect to the SPFs is found to yield

(

1− P (κ)
)

nκ
∑

l=1

H(κ)
jl ϕ

(κ)
l = 0. (3.63)

The variationally optimal solution is furnished when the Equations 3.62 and

3.63 are simultaneously satisfied.

Through the use of the constant mean-field integration scheme [18], a de-

coupling of the propagation of the A-vector and that of the SPFs is afforded.

From Equation 3.62, we see that the A-vector can be obtained as an eigen-

vector of the matrix representation of the Hamiltonian in the basis of the

configurations ΦJ . The determination the optimum set of SPFs is achieved

via noting that Equation 3.63 implies that

nκ
∑

j=1

Cj

(

1− P (κ)
)

nκ
∑

l=1

H(κ)
jl ϕ

(κ)
l = 0, (3.64)
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for any set of coefficients Cj. Choosing the coefficients Cj to be the negatives

of the elements
(

ρ(κ)
)−1

k,j
of the inverse density matrix, it is found that

0 = −
(

1− P (κ)
)

nκ
∑

j,l=1

(

ρ(κ)
)−1

kj
H(κ)

jl ϕ
(κ)
l =

∂ϕ
(κ)
k

∂τ
. (3.65)

Thus, the variationally optimal set of SPFs may be obtained by relaxing

an initial set of SPFs until their derivatives with respect to τ = −it are

sufficiently small.

The improved relaxation algorithm derives from Equations 3.62 and 3.65,

and is as follows. The Hamiltonian matrix is first diagonalised in the basis

of configurations ΦJ corresponding to an initially chosen state. The thus

obtained A-vector is then used to relax the SPFs, which are then used to

reconstruct the Hamiltonian matrix. By iterating this process until conver-

gence a variationally optimal wavepacket may be obtained. By choosing the

eigenvector of the Hamiltonian matrix with the lowest eigenvalue at each time

step, the ground vibrational state is obtained. By choosing at each time step

the eigenvector that gives the largest overlap with an appropriately chosen

initially defined state, a vibrationally excited state may be obtained. By

way of example, for a set of harmonic oscillators defined with respect to the

modes Q, a vibrational state corresponding to excitation of the mode Qα

may be achieved by choosing the initial wavefunction as

|Ψ(τ = 0)〉 =
(

b†α
)n |Ψ0〉, (3.66)

where |Ψ0〉 corresponds to the ground vibrational state (prepared, for exam-

ple, by relaxation), b†α to the harmonic oscillator creation operator for the

αth mode, and n is a positive integer.
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3.5 Evaluation of the Hamiltonian Matrix

For the sake of simplicity, we consider in the following a one-dimensional

problem defined by the coordinate x and the Hamiltonian Ĥ = T (p̂) +V (x̂),

where p̂ and x̂ denote, respectively, the momentum and position operators.

We are tasked with the evaluation of the matrix representation of the Hamil-

tonian in a chosen basis {φn}. In general, analytic solutions to the elements

of the kinetic energy matrix,

Tmn = 〈φm|T (p̂)|φn〉, (3.67)

are known. The evaluation of the elements of the potential matrix,

Vmn = 〈φm|V (x̂)|φn〉, (3.68)

is, however, non-trivial.

Acknowledging the necessity of working with a finite subset of N basis

functions φn, we introduce the projector P̂N onto the desired N-dimensional

subspace:

P̂N =
N
∑

n=1

|φn〉〈φn|. (3.69)

Then, the potential operator in the so-called variational basis representation

(VBR) may be written

V̂ V BR = P̂NV (x̂)P̂N , (3.70)

the use of which in the evaluation of the potential matrix will yield a varia-

tional upper bound to the energy.
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3.5.1 The Finite Basis Representation

In the finite basis representation (FBR) the following approximation is made:

P̂NV (x̂)P̂N = V (P̂N x̂P̂N) = V̂ FBR. (3.71)

We note the VBR and FBR would be equivalent if the basis set {φn} used

were complete, for then the following would hold:

P̂N → P̂ =
∞
∑

n=1

|φn〉〈φn| = 1, (3.72)

P̂ x̂jP̂ =

j
∏

i=1

[

P̂ x̂P̂
]

. (3.73)

Introducing the eigenfunctions θα and corresponding eigenvalues xα of

the position operator,

x̂θα = xαθα, (3.74)

and the transformation between the original basis {φn} and the set of eigen-

functions of x̂, {θα},

x = U †XU , (3.75)

xαβ = xαδαβ , (3.76)

Xmn = 〈φm|x̂|φn〉, (3.77)

the advantage of working with the FBR may be understood as follows. In

the FBR the elements of the potential matrix may be written
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V FBR
mn = 〈φm|V (P̂N x̂P̂N)|φn〉

=
N
∑

k,l=1

〈φm|V (|φk〉〈φk|x̂|φl〉〈φl|)|φn〉

=

N
∑

k,l=1

〈φm|φk〉V (〈φk|x̂|φl〉)〈φl|φm〉

= V (〈φm|x̂|φn〉)

=

N
∑

α=1

UmαV (〈θα|x|θβ〉)U †
αn

=
N
∑

α=1

UmαV (xα)U †
αn.

(3.78)

Hence, from a knowledge of the value of the potential at the points xα, cor-

responding to the eigenvalues of x̂, and the eigenfunctions of x̂, the potential

in the FBR may be easily evaluated.

3.5.2 The Discrete Variable Representation

The discrete variable representation (DVR) corresponds to the representation

of the Hamiltonian in the basis of the eigenfunctions of the position operator,

{θα}, with the additional approximation made that V̂ = V̂ FBR. Hence, we

write

HDV R
αβ = 〈θα|T (p̂)|θβ〉+ 〈θα|V (P̂N x̂P̂N)|θβ〉

= TDV R
αβ + V DV R

αβ .
(3.79)

The potential matrix in the DVR is determined by a simple prescription:

V DVR
αβ = V (xα)δαβ. (3.80)

The kinetic energy matrix in the DVR is most straightforwardly determined

via the transformation from the VBR to the DVR:

TDVR
αβ =

N
∑

m,n=1

U †
αm〈φm|T (p̂)|φn〉Unβ. (3.81)
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3.6 Product Representation of the Hamilto-

nian

In order to integrate the MCTDH equations of motion, the Hamiltonian

matrix elements KIJ must be evaluated. Assuming the use of a DVR, we

may write

KIJ = 〈ϕ(1)
i1
· · ·ϕ(p)

ip
|Ĥ|ϕ(1)

j1
· · ·ϕ(p)

jp
〉

=
∑

k1...kf

[

∑

l1...lf

a
(1)∗
k1...kd1 ,i1

· · · a(p)∗kf−dp+1...kf ,ip
a
(1)∗
l1...ld1 ,j1

· · ·a(p)∗lf−dp+1...lf ,jp

× 〈χ(1)
k1
· · ·χ(f)

kf
|T̂ |χ(1)

l1
· · ·χ(f)

lf
〉

+ a
(1)∗
k1...kd1 ,i1

· · · a(p)∗kf−dp+1...kf ,ip
a
(1)
k1...kd1 ,j1

· · · a(p)kf−dp+1...kf ,jp
V (q

(1)
k1
, . . . , q

(f)
kf

)

]

.

(3.82)

Thus, assuming the same number, N , of primitive functions for each degree

of freedom, a prohibitive number of multidimensional integral evaluations

would have to be made: Nf potential evaluations and Nf×Nf kinetic energy

matrix element evaluations. However, if the Hamiltonian is expressible as a

sum of products of monomodal terms,

Ĥ(q) =

ns
∑

r=1

cr

p
∏

κ=1

ĥ(κ)r (Qκ), (3.83)

significant gains may be made, for then every multidimensional integral KIJ

may be written

KIJ = 〈ϕ(1)
i1
· · ·ϕ(p)

ip
|Ĥ|ϕ(1)

j1
· · ·ϕ(p)

jp
〉

=

ns
∑

r=1

cr

p
∏

κ=1

〈ϕ(κ)
iκ
|ĥ(κ)r |ϕ

(κ)
jκ
〉.

(3.84)

Thus only ns· p low-dimensional integrals need be evaluated.

The kinetic energy operator is usually expressible in the product form

required for use with MCTDH. In contrast, the potential function is often
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not of the required form. In order to recast a given potential function in the

desired product form the so-called potfit algorithm may be employed.

3.7 The Potfit Algorithm

The basic idea underlying the potfit algorithm is to express a given potential

function V (Q) as a direct product expansion in terms of a set of one-particle

basis functions. Thus, denoting by Q(κ) the κth combined mode, the approx-

imate potential V PF (Q) may be written

V PF (Q(1), . . . , Q(p)) =

m1
∑

j1=1

· · ·
mp
∑

jp=1

Cj1,...,jp

p
∏

κ=1

ν
(κ)
jκ

(Q(κ)). (3.85)

In order to afford as compact an expansion as possible, both the coefficients

Cj1,...,jp and the so-called single-particle potentials (SPPs) ν
(κ)
jκ

(Q(κ)) are op-

timised. Assuming the use of a DVR, the potential need only be known at

the corresponding grid points, that is, we only need to determine the finite

set of values

V PF
i1,...,ip

= V PF (Q
(1)
i1
, . . . , Q

(p)
ip

) =

m1
∑

j1=1

· · ·
mp
∑

jp=1

Cj1,...,jp

p
∏

κ=1

ν
(p)
ipjp

, (3.86)

where Q
(κ)
i denotes the coordinate of the ith grid point of the κth grid, and

ν
(κ)
ij = ν

(κ)
j (Q

(κ)
i ). The determination of the optimal set of coefficients and

SPPs would be achieved through the minimisation of the functional

∆2 =

N1
∑

i1=1

· · ·
Np
∑

ip=1

{

V PF
i1,...,ip

− Vi1,...,ip
}2

. (3.87)

Taking the SPPs to be orthonormal on the grid,

Nκ
∑

i=1

ν
(κ)
ij ν

(κ)
il = δjl, (3.88)
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it can be shown that for a given set of SPPs the optimal set of coefficients is

given by

Cj1,...,jp =

N1
∑

i1=1

· · ·
Np
∑

ip=1

p
∏

κ=1

ν
(κ)
iκjκ

Vi1,...,ip, (3.89)

that is, by the overlap of the SPPs with the potential. Introducing the com-

posite indices I and J to label, respectively, the grid points and configurations

(that is, products of SPPs), and letting ΩI,J =
∏p

κ=1 ν
(κ)
iκjκ

, the functional ∆2

may be written

∆2 = V TV − V TΩΩTV

= V TV −CTC.
(3.90)

As such, the optimal set of SPPs would be obtained by the maximisation

of the norm of the coefficient vector C under the constraint that the SPPs

remain orthonormal. Doing so can be shown to furnish the following set of

equations:

∑

k

(

δk′k −
∑

l

ν
(κ)

k
′
l
ν
(κ)
kl

)

∑

i

˜̺
(κ)
ki ν

(κ)
ij = 0, (3.91)

where the so-called modified potential density matrices ˜̺
(κ)
ki are defined as

˜̺
(κ)
ki =

m1
∑

j1=1

· · ·
mκ−1
∑

jκ−1

mκ+1
∑

jκ+1

· · ·
mp
∑

jp=1

C
(κ)
j1,...,jκ−1,k,jκ+1,...,jp

C
(κ)
j1,...,jκ−1,i,jκ+1,...,jp

, (3.92)

with the partially transformed coefficients Cj1,...,jκ−1,k,jκ+1,...,jp being given by

Cj1,...,jκ−1,k,jκ+1,...,jp =

N1
∑

i1=1

· · ·
Nκ−1
∑

iκ−1=1

Nκ+1
∑

iκ+1

· · ·
Np
∑

ip=1

ν
(1)
i1j1
· · · ν(κ−1)

iκ−1jκ−1
ν
(κ+1)
iκ+1jκ+1

· · · ν(p)ipjp

× Vi1,...,iκ−1,k,iκ+1,...,ip.
(3.93)
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In order to avoid an iterative solution of Equation 3.93, the potfit algorithm

proceeds by approximating the modified potential density matrices ˜̺(κ) by

the so-called potential density matrices ̺(κ), defined as

̺
(κ)

k,k
′ =

N1
∑

i1=1

· · ·
Nκ−1
∑

iκ−1=1

Nκ+1
∑

iκ+1=1

· · ·
Np
∑

ip=1

Vi1,...,iκ−1,k,iκ+1,...,ipVi1,...,iκ−1,k
′
,iκ+1,...,ip

.

(3.94)

3.8 The Vibronic Coupling Hamiltonian

The vibronic coupling Hamiltonian [19,20] corresponds to a diabatisation by

ansatz in which an assumed diabatic potential matrix W (Q) is expanded in

terms of the ground state normal modes Q about a suitably chosen reference

geometry Q0. Collecting terms of the same order, we may write

H(Q) = H(0)(Q) + W (1)(Q) + W (2)(Q) + · · · (3.95)

where the zero-order Hamiltonian H(0)(Q) corresponds to a set of ground

state harmonic oscillators displaced to the vertical excitation energies Ei of

the electronic states under consideration:

H
(0)
ij (Q) =

[

Ei +
3N−6
∑

α=1

ωα

2

(

Q2
α −

∂2

∂Q2
α

)

]

δij , (3.96)

and assumes a diagonal form as the adiabatic and diabatic states are taken

to be equivalent at the point of expansion. For a system comprised of N

atoms, the first- and second-order potentials W (1)(Q) and W (2)(Q) may be

written

W
(1)
ii (Q) =

3N−6
∑

α=1

κ(i)α Qα, (3.97)
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W
(1)
ij (Q) =

3N−6
∑

α=1

λ(i,j)α Qα, i 6= j, (3.98)

W
(2)
ii (Q) =

1

2

3N−6
∑

α,β=1

γαβQαQβ , (3.99)

W
(2)
ij (Q) =

1

2

3N−6
∑

α,β=1

µ
(i,j)
αβ QαQβ , i 6= j. (3.100)

The change in equilibrium geometry and the so-called Duschinsky rotation

of the normal modes upon electronic excitation to the state indexed by i are

described, respectively, by the parameters κ
(i)
α and γ

(i)
αβ:

κ(i)α =
∂

∂Qα

〈

Φi

∣

∣

∣
Ĥel

∣

∣

∣
Φi

〉 ∣

∣

∣

Q0

=

〈

Φi

∣

∣

∣

∣

∣

∂Ĥel

∂Qα

∣

∣

∣

∣

∣

Φi

〉∣

∣

∣

∣

∣

Q0

,
(3.101)

γ
(i)
αβ =

∂2

∂Qα∂Qβ

〈

Φi

∣

∣

∣
Ĥel

∣

∣

∣
Φi

〉 ∣

∣

∣

Q0

(3.102)

The parameter λ
(i,j)
α describes to first-order the diabatic coupling between

the states indexed by i and j, and can be seen to be related to the NACTs

τ by

λ(i,j)α =
∂

∂Qα

〈

Φi

∣

∣

∣
Ĥel

∣

∣

∣
Φj

〉 ∣

∣

∣

Q0

=

〈

Φi

∣

∣

∣

∣

∣

∂Ĥel

∂Qα

∣

∣

∣

∣

∣

Φj

〉∣

∣

∣

∣

∣

Q0

= [Ej(Q0)−Ei(Q0)] ταij(Q0).

(3.103)

Through the use of simple group theoretical arguments it may be deter-

mined whether a given parameter of the vibronic coupling Hamiltonian is

necessarily zero by symmetry. Specifically, for a parameter to be non-zero it

is required that the corresponding integrand belong to a function space that

generates the totally symmetric irreducible representation of the point group
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of the molecule at its reference geometry Q0. Thus, letting Γα denote the

representation generated by the coordinate Qα, Γi the representation gen-

erated by the diabatic state |Φi〉, and Γ1 the totally symmetric irreducible

representation, we see, for example, that

κ(i)α 6= 0, Γα ∋ Γ1, (3.104)

and

λ(i,j)α 6= 0, Γi ⊗ Γj ⊗ Γα ∋ Γ1. (3.105)

More universally, for a general parameter

η(i,j)n1,...,n3N−6
=

∂m

∂Qn1

1 · · ·Q
n3N−6

3N−6

〈

Φi

∣

∣

∣
Ĥel

∣

∣

∣
Φj

〉

; m =
3N−6
∑

α=1

nα (3.106)

to be non-zero, it can be shown that the necessary, but not sufficient, condi-

tion is [21]

g−1
∑

a

gaχ
red(Ca) > 0. (3.107)

Here, g denotes the order of the point group, ga is the number of operations

of the ath class of the point group, and χred(Ca) corresponds to the character

of the reducible representation Γred of the operators of the ath class formed

from the direct product

Γred =

[

3N−6
⊗

α=1

(Γα)nα

]

⊗ Γi ⊗ Γj (3.108)

That is, explicitly,

η(i,j)n1,...,n3N−6
6= 0, g−1

∑

a

{

ga

(

3N−6
∏

α=1

[χα(Ca)]
nα

)

χi(Ca)χ
j(Ca)

}

> 0

(3.109)
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3.9 Complex Absorbing Potentials

Considering a system for which there exists an accessible region for which

the potential function is unbound with respect to a degree of freedom r,

it may be expected that a prohibitively long grid length for the degree of

freedom under question may have to be employed in order to avoid unwanted

reflections of the wavepacket from the grid edges. The use of a compact grid

may, however, be accommodated if a so-called complex absorbing potential

(CAP) is used. The use of a CAP corresponds to the augmentation of the

system Hamiltonian H with a negative imaginary potential function:

H → H̃ = H − iW (r). (3.110)

Commonly, the potential function W (r) is chosen to assume the following

monomial form:

W (r) = η(r − rc)nΘ(r − rc), (3.111)

where rc denotes a value of the coordinate r outside of the interaction region,

η is a strength parameter, n an integer, typically 2 or 3, and Θ(r−rc) denotes

the Heaviside step function centred at rc, defined as

Θ(r − rc) =

{

1, if r ≥ rc

0, otherwise
(3.112)

By considering the time-derivative of the square of the norm of the

wavepacket, it is found that

∂

∂t
||Ψ|| = 1

2

{〈

Ψ̇
∣

∣

∣
Ψ
〉

+
〈

Ψ
∣

∣

∣
Ψ̇
〉}

||Ψ||−1

=
1

2

{〈

Ψ
∣

∣

∣
iH̃† − iH̃

∣

∣

∣
Ψ
〉}

||Ψ||−1

= −〈Ψ|W (r)|Ψ〉 ||Ψ||−1.

(3.113)

Hence, the parts of the wavepacket entering into the CAP are annihilated.
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3.10 Flux, Reaction Probabilities and Dia-

batic State Populations

We define dissociation of a given bond to have occurred if the corresponding

bond length r exceeds a critical value rc. The probability of dissociation,

pdiss(t), may then be defined as the expectation value of the projector onto

the subspace for which r > rc:

pdiss(t) = 〈Ψ(t)|Θ(r − rc)|Ψ(t)〉 (3.114)

where Θ(r − rc) the Heaviside step function centred at rc. Similarly, the

state-resolved probabilities of dissociation are given by

pdiss,i(t) = 〈Ψ(t)|PiΘ(r − rc)Pi|Ψ(t)〉, (3.115)

where Pi denotes the projector onto the ith electronic state. The Equations

3.114 and 3.115 are valid as long as the norm of the wavepacket is conserved.

However, as is common practice, a CAP may be used to annihilate the dis-

sociating part of a wavepacket. In this case, a different strategy must be

employed to calculate the probabilities of dissociation.

The flux passing through a dividing surface placed at rc may be written

as

F (t
′

) =
∂

∂t
〈Ψ(t

′

)|Θ(r − rc)|Ψ(t
′

)〉, (3.116)

with state-resolved components Fi(t
′

) being given by

Fi(t
′

) =
∂

∂t
〈Ψ(t

′

)|PiΘ(r − rc)Pi|Ψ(t
′

)〉. (3.117)

Thus, the state-resolved probabilities of dissociation can be written
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pdiss,i(t) =

∫ t

0

dt
′

Fi(t
′

). (3.118)

Assuming that the component of the wavepacket leaving the interaction

region in a particular electronic state remains in that state as it exits into the

reaction asymptote, we may take the population ρi(t) of the diabatic state i

to be

ρi(t) = 〈Ψ(t)|PiΘ(rc − r)Pi|Ψ(t)〉+

∫ t

0

dt
′

Fi(t
′

). (3.119)

Finally, we note that the components Fi(t
′

) may most straightforwardly

be calculated using the relationship

Fi(t) = i〈Ψ(t)|Pi [H,Θ(rc − r)]Pi|Ψ(t)〉

= i〈Ψ(t)|Pi [TN ,Θ(rc − r)]Pi|Ψ(t)〉.
(3.120)

3.11 The Calculation of Absorption Spectra

The absorption spectrum σ(E) may be calculated from the Fourier transform

of the wavepacket autocorrelation function, that is,

σ(E) =
1

2π

∫ ∞

−∞

dteiEta(t), (3.121)

with

a(t) = 〈Ψ(0)|Ψ(t)〉 . (3.122)

Taking the Hamiltonian to be Hermitian, we may write

a(−t) =
〈

Ψ(0)
∣

∣

∣
eiĤt

∣

∣

∣
Ψ(0)

〉

=

〈

Ψ(0)

∣

∣

∣

∣

(

e−iĤt
)†
∣

∣

∣

∣

Ψ(0)

〉

= a(t)∗.

(3.123)
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Hence, the spectrum may be calculated without recourse to integration over

negative time:

σ(E) =
1

2π

∫ ∞

0

dte−iEta(−t) + eiEta(t)

=
1

2π

∫ ∞

0

dt
[

eiEta(t)
]∗

+ eiEta(t)

=
1

π
Re

∫ ∞

0

dteiEta(t).

(3.124)

In order to obviate problems arising from a finite wavepacket propagation

time T (specifically, issues arising from Gibbs phenomenon), a(t) may be pre-

multiplied by a filter function before its Fourier transform is computed such

that a(t) is forced to decay smoothly to zero as the time T is approached.

One such family of suitable filter functions may be written

gn(t) = cosn
(

πt

2T

)

Θ (t− T ) ; n = 0, 1, 2, . . . (3.125)

with Θ (t− T ) denoting the Heaviside step function centred at T .

In order to account for homogeneous broadening present in experimentally

determined spectra, the autocorrelation function may further be multiplied

by a damping function

f(t) = exp

(−tm
τm

)

, (3.126)

which is defined with respect to the free parameters τ and m.
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Chapter 4

Ammonia

4.1 Introduction

The photodissociation of ammonia has been subject to many experimental

[22–46] and theoretical [47–59] studies during the past few decades, owing to

the system being a prototype for non-planar to planar electronic transitions,

vibrational predissociation and nonadiabatic dynamics.

In the ground electronic state (X̃ , 1A
′

1), ammonia possesses a pyramidal

geometry, with two isoenergetic C3v minima that are connected by a D3h

saddle point along the umbrella inversion coordinate. The first excited state

(Ã(3s), 1A
′′

2) possesses a trigonal planar (D3h) minimum and is quasi-bound

with respect to N-H dissociation. From the planar Ã(3s) state minimum,

N-H dissociation leads to a conical intersection with the ground electronic

state, as illustrated schematically in Figure 4.1. Hence, the N-H dissociation

may evolve either diabatically, with the system passing through the conical

intersection to form ground state NH2(X̃ , 2B1), or adiabatically, with the

system crossing to the X̃ diabat to form the NH2(Ã, 2A1) product, i.e.,

NH3(Ã,
1A

′′

2)→ NH2(X̃,
2B1) + H (Diabatic)

→ NH2(Ã,
2A1) + H (Adiabatic).

(4.1)

Following excitation to the ground vibrational state of the Ã(3s) state, dis-
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Fig. 4.1: Schematic adiabatic potentials corresponding to the A
′

1(S0) and A2(3s)
′′

states along the N-H dissociation coordinate starting from: (a) the C3v Franck-
Condon point, and; (b) the planar, D3h S1 minimum energy geometry.
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sociation has been observed experimentally to proceed almost entirely dia-

batically [44]. The branching ratio between the two dissociation channels

is, however, found to be dependent upon the excitation wavelength, with

excitation of the umbrella inversion mode being found to promote adiabatic

dissociation [29, 43]. Theoretically, these observations are supported by re-

cent quantum dynamics simulations [59,60]. However, the branching ratio is

found to be sensitive to the dimensionality of the model used, with models

of reduced dimensionality being found to yield a greater amount of adiabatic

dissociation [59].

Concomitant with the crossing of the small barrier to dissociation on the

Ã(3s) state surface is a pronounced change in the character of Ã(3s) state

wavefunction; around the minimum point the wavefunction is dominated by

excitation to a diffuse 3s-type Rydberg orbital, whilst a pronounced valence

character is acquired once the barrier has been traversed. The barrier to

N-H dissociation has thus been viewed as likely being a consequence of an

avoided crossing between a lower, bound Rydberg state and a higher-lying,

purely dissociative state. No previous theoretical studies have, however, been

performed that have sought to identify the origin of the barrier to N-H disso-

ciation in ammonia. Similarly, previous theoretical studies of the photodisso-

ciation of ammonia have not been made with the intention of the evaluation

the potential importance with respect to the excited state dynamics of am-

monia of the nonadiabatic coupling of the Ã(3s) state to higher-lying states

that may give rise to the barrier to dissociation on the Ã(3s) state surface.

It is the intention of this work to address these two points.

In order to evaluate the validity of a two-state model of ammonia, two ap-

proaches are used. Firstly, in Section 4.2 a static approach is used whereby an

assessment of whether the first two excited states of ammonia are decoupled
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to a satisfactory extent from the electronic states forming their orthogonal

complement is made. This is achieved through the evaluation of the ex-

tended Curl equation at the S0 and S1 minima. Secondly, in Section 4.3 a

dynamical approach is pursued via the construction of two eight-state model

Hamiltonians for use in quantum dynamics simulations of the photoexcita-

tion of ammonia to the Ã(3s) state. By utilising a transformation of the full

eight-state Hamiltonians based on a block-diagonalisation of the potential

matrix, the coupling of the X̃ and Ã(3s) states from the higher-lying states

may be removed, and a direct evaluation of the effects of this coupling to the

higher-lying states made. The two model Hamiltonians constructed are: (i) a

two-mode Hamiltonian employing Jacobi coordinates, and; (ii) a four-mode

Hamiltonian employing valence coordinates. We note here that the main

intention of the present study is to construct qualitatively correct model

Hamiltonians that capture only the most essential features of potentials and

nonadiabatic coupling terms along the degrees of freedom considered. Other,

more recent studies have already successfully sought to derive quantitatively

accurate model potentials describing the first two electronic states of ammo-

nia [60, 61], but such a rigorous treatment here is inaccessible, owing to the

large number of electronic states considered.

4.2 Evaluation of the Validity of Taking the

X̃ and Ã(3s) States to Form a Hilbert Sub-

space

4.2.1 The Extended Curl Equation

Previous studies of photoexcited ammonia have not addressed to what extent

the X̃ and Ã(3s) states are, or are not, decoupled from their orthogonal

complement. In order to do so, we make use of the concept of a Hilbert
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A
(N)
αβij = ∇βταij −∇ατβij −

N
∑

k=1

(ταikτβkj − τβikταkj) ; i, j ≤ N

=
∑

k>N

(ταikτβkj − τβikταkj) ,
(4.5)

will be of the order of O(ǫ2), and by evaluating the tensor A(N) we may

calculate the order of magnitude of the nonadiabatic coupling of the subspace

of states {|φi〉}; i = 1, . . . , N to it’s orthogonal complement.

With regards to ammonia, the subspace to be considered here is that

spanned by the X̃ and Ã(3s) states, and we denote the tensor to be calculated

as A(2):

A
(2)
αβ = ∇βτα12 −∇ατβ12 −

2
∑

k=1

(τα1kτβk2 − τα1kτβk2)

= ∇βτα12 −∇ατβ12.

(4.6)

The last equality in Equation 4.6 holds as the derivative coupling matrix τ is

antisymmetric for the case of a basis of real electronic states. We here, and

in the following, term the subspace spanned by the X̃ and Ã(3s) states as

the P-space, and that spanned by it’s orthogonal complement the Q-space.

4.2.2 Analysis of A(2)

To calculate the tensor A(2), derivative coupling terms τ 12 between the X̃

and Ã(3s) states were calculated analytically at the CASSCF level using a

full valence active space and the 6-311++G** basis set, denoted CAS(8,7)/6-

311++G**. For the sake of simplicity, A(2) was calculated using Cartesian

nuclear coordinates. The derivatives ∇βτα12 were calculated using a three-

point finite difference formula and a step size of 0.0001 Å. All derivative

coupling calculations were performed using the Molpro 2009 set of programs

[63]. The A(2) tensor was calculated at two nuclear geometries pertinent to
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subspace, defined as follows: for a subset of N electronic states {|φi〉}; i =

1, . . . , N to form a Hilbert subspace it is required that

τ ij
∼= O(ǫ); i ≤ N, j > N, (4.2)

where ǫ is a suitably small number. That is, a subset of electronic states

is taken to form a Hilbert subspace if the nonadiabatic coupling of them to

the states that form their orthogonal complement is negligible. If the X̃ and

Ã(3s) states are found to form, to a satisfactory extent, a Hilbert subspace

in the regions of nuclear configuration space relevant to ammonia’s dynamics

following excitation to the Ã(3s) state, then the two-state model may be

considered entirely valid.

A rather elegant way in which to evaluate the order of magnitude of the

nonadiabatic coupling between a subset of electronic states and its orthogonal

complement is by a consideration of the so-called extended Curl equation

[11, 62]

Aαβ =
∂τ α

∂Rβ

− ∂τ β

∂Rα

− [τα, τ β]

= ∇βτα −∇ατ β − [τ α, τ β] ,

(4.3)

which defines the gauge field tensor A. Here, the Rα refer to the nuclear

coordinates. For a complete Hilbert space of electronic states A may be

shown to be identically zero. Considering two particular states |φi〉 and |φj〉;

i, j ≤ N , we may write

Aαβij = ∇βταij −∇ατβij −
N
∑

k=1

(ταikτβkj − τβikταkj)−
∑

k>N

(ταikτβkj − τβikταkj)

= A
(N)
αβij −

∑

k>N

(ταikτβkj − τβikταkj) = 0.

(4.4)

Thus, it is found that the elements of the tensor A(N),
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Table 4.1: Elements of the tensor A(2) calculated at the FC point using derivative
coupling terms calculated at the CAS(8,7)/6-311++G** level. Entries of - denote
elements that are zero. All elements are given in atomic units. The numbers
indexing the columns and rows correspond to the Cartesian nuclear coordinates
ordered xN , yN , zN , xH1

, yH1
, zH1

, xH2
, yH2

, zH2
, xH3

, yH3
, zH3

.

1 2 3 4
2 0.012 - - -
3 0.074 0.011 - -
4 0.357 -0.026 0.023 -
5 -0.048 0.025 0.001 0.036
6 -0.609 -0.044 -0.060 0.268
7 0.363 0.293 0.033 -0.218
8 0.349 0.507 0.051 -0.175
9 0.156 0.539 -0.005 -0.052
10 0.302 -0.221 0.027 -0.138
11 -0.349 0.469 -0.038 0.125
12 0.388 -0.507 -0.014 -0.197

5 6 7 8
6 0.025 - - -
7 -0.014 0.043 - -
8 -0.021 -0.042 0.044 -
9 -0.018 -0.085 0.022 -0.037
10 -0.012 0.017 -0.001 -0.044
11 0.011 0.016 -0.024 0.014
12 -0.007 0.050 0.053 0.045

9 10 11
10 -0.116 - -
11 0.134 0.004 -
12 -0.062 -0.074 0.113
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Table 4.2: Elements of the tensor A(2) calculated at the D3h Ã(3s) state minimum
using derivative coupling terms calculated at the CAS(8,7)/6-311++G** level.
Entries of - denote elements that are zero. All elements are given in atomic units.
The numbers indexing the columns and rows correspond to the Cartesian nuclear
coordinates ordered xN , yN , zN , xH1

, yH1
, zH1

, xH2
, yH2

, zH2
, xH3

, yH3
, zH3

.

1 2 3 4
2 - - - -
3 - 0.152 - -
4 - - - -
5 - - 0.270 -
6 - -0.247 - -
7 - -0.129 - -
8 0.141 - -0.067 0.031
9 - 0.057 - -
10 - 0.129 - -
11 -0.141 - -0.067 -0.031
12 - 0.057 - -

5 6 7 8
6 0.304 - - -
7 -0.059 - - -
8 - 0.047 -0.193 -
9 0.007 - - -0.109
10 0.059 - - 0.027
11 - 0.047 0.027 -
12 0.007 - - 0.056

9 10 11
10 - - -
11 -0.056 0.193 -
12 - - -0.109
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the photoinduced dynamics of ammonia: (i) the C3v FC point, and; (ii) the

D3h Ã(3s) state minimum energy geometry.

The results of the calculation of A(2) at the FC point and the Ã(3s) state

minimum are shown in Tables 4.1 and 4.2, respectively. It is found that at

both geometries elements of A(2) are far from zero: the largest calculated

|A(2)
αβ |

1

2 values, which are representative of the order of magnitude of the

nonadiabatic coupling of the P-space and Q-space states, at the FC and

Ã(3s) state minimum are, respectively, 0.780 a.u. and 0.551 a.u.. It may

thus be seen that the first two electronic states of ammonia do not constitute

a Hilbert subspace at these two points, which are certain to be of importance

with respect to excitation to the Ã(3s) state. Further, the calculated |A(2)
αβ |

1

2

values can be seen to imply that the order of magnitude of the nonadiabatic

coupling of the P-space and Q-space states should be large, providing a

motivation to pursue further the effect of this coupling on the dynamics of

ammonia in its Ã(3s) state.

4.3 Quantum Dynamics Simulations of Pho-

toexcited Ammonia

4.3.1 Nuclear Coordinates and Kinetic Energy Oper-
ators

Our choice of nuclear coordinates is guided by two factors: (i) the coordinates

used determine the order of expansion of the model potential required to

satisfactorily reproduce the true potential in the regions of interest, and;

(ii) the correlation of the particles of an MCTDH calculation, and thus the

convergence of it with respect to the numbers of SPFs, is determined by

the nuclear coordinates used. Photoexcited ammonia is known to undergo

large amplitude motion, and so the use of curvilinear coordinates is desirable
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Fig. 4.2: Definition of the effective three-body Jacobi coordinates used in the
construction of the two-mode model.

in order to reduce the ‘artificial’ correlation of the coordinates. Further,

owing to our interest in dissociation following excitation to the Ã(3s) state,

a coordinate system that describes efficiently the dissociation of the N-H

bonds is required.

Two-Dimensional Model

For the two-dimensional model, we consider the system to be an effective

three-body system, composed of a single dissociating hydrogen atom, the

nitrogen atom, and the centre of mass of the remaining H2 unit, denoted

by M . To construct the kinetic energy operator, we make use of Jacobi

coordinates, as illustrated in Figure 4.2. We denote by RMN the distance

between M and the nitrogen atom, which is held constant in our model. R

denotes the distance between the dissociating hydrogen atom and the centre

of mass of the M-N unit, and φ is the out-of-plane angle between RMN
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and R. We denote collectively the coordinates (R, φ) as q. In terms of the

coordinates q, the kinetic energy operator may be written, for the case of

zero total angular momentum,

T (q) = − 1

2µ

∂2

∂R2
− 1

2I

∂2

∂φ2
, (4.7)

with,

1

I
=

1

µR2
+

1

µMNR2
MN

, (4.8)

where

µ =
mh(mH2

+mN)

mH +mH2
+mN

, (4.9)

µMN =
mH2

mN

mH2
+mN

. (4.10)

Here, mH , mH2
, and mN denote the masses of the hydrogen atom, H2 unit

and nitrogen atoms, respectively.

Four-Dimensional Model

For the four-dimensional model, polyspherical coordinates based on a va-

lence vector parameterisation of the nuclear coordinates are used. The three

valence vectors Ri used here are those connecting the nitrogen and three

hydrogen atoms, as is depicted in Figure 4.3. Here Ri; i = 1, 2, 3 denote the

three N-H bond lengths, θi; i = 1, 2 the planar angles between R3 and the

vectors R1 and R2, and ϕ the dihedral angle between the vectors R1 and R2

and R3. The body-fixed (BF) frame used is defined such that the vector R3

lies along the z-axis of the BF frame, and the vector R2 lies in the x,z-plane

of the BF frame. In order to yield a more compact expression of the kinetic

energy operator, the coordinates ζi = cos θi are used in place of θi. The four
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Fig. 4.3: Definition of the three valence vectors and six polyspherical coordinates
used in the construction of the four-mode model.

coordinates entering into the reduced-dimensionality model used here are the

N-H bond length R1, the two cosines of the planar angles ζi and the dihedral

angle ϕ. We denote collectively by r these four coordinates.

We choose as our reference point the D3h Ã(3s) state minimum energy

geometry. The valence coordinates r do not generate irreducible represen-

tations (irreps) of the D3h point group, but are found to generate irreps of

the highest Abelian subgroup of the D3h point group, that is, the C2v point

group. Specifically, we have ΓRi = A1; i = 1, 2, 3, Γθi = B2; i = 1, 2, and

Γϕ = B1.

Further, within the space spanned by the two planar angles θi lies a pair

of Jahn-Teller active coordinates. To see this we perform the transformation

(

θ1
θ2

)

→
(

x
y

)

=

(

cos(π
4
) sin(π

4
)

− sin(π
4
) cos(π

4
)

)(

θ1
θ2

)

. (4.11)

The new pair of degenerate planar angles, x = 2− 1

2 (θ1 +θ2) and y = 2− 1

2 (θ1−
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θ2), together are found to generate the E
′

irrep of the D3h point group, and

in C2v symmetry we have Γx = A1, Γy = B2.

In terms of the valence coordinates r the kinetic energy operator may be

written [17]

T (r) =− M11

2

∂2

∂R2
1

−
2
∑

i=1

[

Mi3ζi
R3Ri

+

(

Mii

2R2
i

+
M33

2R2
3

∂2

∂ζi
u2i
∂2

∂ζi

)]

(4.12)

− M12 (ζ1ζ2 + u1u2 cos(ϕ))

R1R2
−
(

M13

2R3

∂

∂R1

)(

u21
∂

∂ζ1
+

∂

∂ζ1
u21

)

− M13u1 cos(ϕ)

2R3

∂

∂R1

(

u2
∂

∂ζ2
+

∂

∂ζ2
u2

)

− M12ζ1
2R2

∂

∂R1

(

u22
∂

∂ζ2
+

∂

∂ζ2
u22

)

− M33 cos(ϕ)

2R2
3

(

u1
∂2

∂ζ1∂ζ2
u2 + u2

∂2

∂ζ1∂ζ2
u1

)

+
M12

2R2

∂

∂R1
(u1 cos(ϕ))

(

ζ2u2
∂

∂ζ2
+

∂

∂ζ2
ζ2u2

)

+

2
∑

i 6=j=1

Mi3 cos(ϕ)

2R3Ri

(

uj
∂2

∂ζi∂ζj
ζiui + ζiui

∂2

∂ζi∂ζj
uj

)

+

2
∑

i 6=j=1

[

Mi3

R3Ri

∂

∂ζi
u2i ζi

∂

∂ζi
+

(

M12

2R2
− M13ζ2

2R3

)

× u1
u2

∂

∂R1

(

sin(ϕ)
∂

∂ϕ
+

∂

∂ϕ
sin(ϕ)

)]

− M12

2R1R2

[(

∂

∂ζ1
u1ζ1u2ζ2

∂

∂ζ2
+ u1ζ1

∂

∂ζ1

∂

∂ζ2
u2ζ2

)

cosϕ

+
∂

∂ζ1
u21u

2
2

∂

∂ζ2
+ u21

∂

∂ζ1

∂

∂ζ2
u22

]

+

2
∑

i 6=j=1

Mi3ζj
2R2Riuj

(

sinϕ
∂2

∂ζi∂ϕ
ζiui + ζiui

∂2

∂ζi∂ϕ
sinϕ

)

−
2
∑

i 6=j=1

Mij

2RiRjuj

(

∂

∂ζi
uiζi sinϕ

∂

∂ϕ
+ uiζi

∂

∂ζi

∂

∂ϕ
sinϕ

)

−
2
∑

i 6=j=1

(

M33ζi
2R2

3ui
− Mi3

2R3Riui

)(

sinϕ
∂2

∂ζj∂ϕ
uj + uj

∂2

∂ζj∂ϕ
sinϕ

)

−
2
∑

i=1

(

Mii

2R2
iu

2
i

+
M33ζ

2
i

2R2
3u

2
i

− Mi3ζi
R3Riu

2
i

)

∂2

∂ϕ2
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−
2
∑

i 6=j=1

[

Mi3ζj
R3Riujui

− 1

u2u1

(

M12

R1R2
+
M33ζ2ζ1
R2

3

)]

∂

∂ϕ
cosϕ

∂

∂ϕ
,

where ui = (1− ζ2i )
1

2 , and the quantities Mij denote the elements of the

inverse-mass matrix

M =





1
mH

+ 1
mn

1
mN

1
mN

1
mN

1
mH

+ 1
mN

1
mN

1
mN

1
mN

1
mH

+ 1
mN



 , (4.13)

with mH and mN denoting, respectively, the masses of the hydrogen and

nitrogen atoms.

4.3.2 The Model Potentials

The model potential matrices used, W (q) and W (r), corresponds to the

matrix representations of the electronic Hamiltonian in assumed diabatic

bases. That is, we adopt diabatizations by ansatz, in which the matrix

elements Wij(q) and Wij(r) are taken to assume particular functional forms,

which are in turn parameterised such that maximal agreement between the

model and calculated adiabatic potentials is found.

We take the adiabatic and diabatic representations to be equal at the

D3h reference points, denoted q0 and r0. For both models, the first eight

electronic states are considered, that is, W (q) and W (r) correspond to

8× 8 matrices.

The Two-Dimensional Model

We may write the full diabatic potential W (q) as a sum of uncorrelated

potentials and an interaction potential:

W (q) = W (0) + W (R) + W (φ) + W I(R, φ), (4.14)
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where W (0) corresponds to a zero-order term, the uncorrelated potentials

W (R) and W (φ) describe the potentials along the coordinates R and φ,

and the interaction potential W I(R, φ) accounts for the correlation of the

two coordinates R and φ.

The zero-order term W (0) is given by W (0) = W (q0), with elements

W
(0)
ij = Eiδij , (4.15)

where Ei denotes the vertical excitation energy of the state |Φi〉 at the refer-

ence point. The diagonal form of W (0) arises due to the equivalence of the

adiabatic and diabatic representations at q0.

The uncorrelated diabatic potentials along the inversion angle φ, Wii(φ),

are taken as a set of quartic oscillators:

Wii(φ) =
1

2
ω(i)φ2 +

1

24
ǫ(i)φ4. (4.16)

The off-diagonal elements Wij(φ); i 6= j, are taken as linear expansions:

Wij(φ) = λ(i,j)φ, (4.17)

with the interstate coupling constants λ(i,j) being given by

λ(i,j) =
∂

∂φ
〈Φi|Hel|Φj〉|q0

=

〈

Φi

∣

∣

∣

∣

(

∂Hel

∂φ

)∣

∣

∣

∣

Φj

〉 ∣

∣

∣

∣

q0

,
(4.18)

with the last equality holding due to the integral 〈Φi|Hel|Φj〉 being evaluated

at the reference point q0, at which the adiabatic and diabatic representations

are taken to be equal. From Equation 4.18 we find that for a given inter-

state coupling constant λ(i,j) to be non-zero, the following necessary, but not

sufficient, condition has to be met:
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λ(i,j) 6= 0, Γi ⊗ Γj ∋ B1, (4.19)

where Γi denotes the symmetry of the diabatic state |Φi〉 and B1 is the irrep

of the C2v point group generated by the coordinate φ.

The uncorrelated diabatic potentials along the N-H dissociation coordi-

nate, Wii(R), are modelled using a set of Morse and exponentially decaying

potentials:

Wii(R) = D0,i (1− exp(−αi(R −R0,i)))
2 + E0,i; i 6= 6, (4.20)

E0,i = −D0,i (1− exp(αiR0,i))
2 , (4.21)

and

W66(R) = E∞ (exp(−ρR)− 1) . (4.22)

The bound/unbound nature of the diabatic potentials W22(R)/W66 in

contrast to the quasi-bound/bound forms of the corresponding adiabatic po-

tentials V2(R)/V6(R) arises as we here take the two diabatic states |Φ2〉 and

|Φ6〉 to be coupled strongly by the degree of freedom R, and the barrier to

dissociation on the potential V2(R) to be a consequence of this. Specifically,

we model the coupling between these two states as

W26(R) = Λ1 tanh(Λ2R). (4.23)

The reasoning behind this parametrisation of W (R) is expanded upon in

Section 4.3.8.

The correlation of the two degrees of freedom R and φ is dealt with by

taking the parameters ω(i), ǫ(i) and λ(i,j) entering into the expansion of W (φ)
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to be functions of the N-H dissociation coordinate R. Specifically, we choose

the elements of the interaction potential W I(R, φ) as follows:

W I
ii(R, φ) =

1

2

[

−ω(i) tanh (aω,iR) +
(

bω,iR + cω,iR
2
)

exp (−dω,iR)
]

φ2

− 1

24

ǫ(i)

2

[

1 + tanh

(

R −Aǫ,i

Bǫ,i

)]

φ4; i = 1, 2,

(4.24)

W I
ii(R, φ) =− 1

2

ω(i)

2

[

1 + tanh

(

R−Aω,i

Bω,i

)]

φ2

− 1

24

ǫ(i)

2

[

1 + tanh

(

R −Aǫ,i

Bǫ,i

)]

φ4; i = 3, . . . , 8,

(4.25)

W I
12(R, φ) =

[

−λ(1,2) tanh (aλ,1,2R) +
(

bλ,1,2R + cλ,1,2R
2
)

exp(−dλ,1,2R)
]

φ,

(4.26)

W I
ij(R, φ) = −λ

(i,j)

2

[

1 + tanh

(

Aλ,i,j

Bλ,i,j

)]

φ; i, j 6= 1, 2. (4.27)

The functional forms presented in Equations 4.24 to 4.27 are chosen such

that the contribution of φ to the potential decays smoothly to zero as the

dissociation limit is reached. The parameters ω(i); i > 2, ǫ(i); ∀i, and λ(i,j);

i, j 6= 1, 2, are expanded about R0 such that they remain approximately

constant in the interaction region and then decay to zero as the dissociation

limit is neared. In order to reproduce correctly the topology of the adiabatic

surfaces around the conical intersection between the S0 and S1 states that is

formed upon extension of the N-H bond, the parameters ω(i); i = 1, 2, and

λ(1,2) were allowed to increase in magnitude in the interaction region before

being forced to zero in the dissociation limit.
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The Four-Dimensional Model

As mentioned in Section 4.3.1, the pair of symmetrised coordinates x =

2− 1

2 (θ1 + θ2) and y = 2− 1

2 (θ1 − θ2) are found to constitute a pair of Jahn-

Teller active coordinates. As degenerate electronic states are present in the

subspace of states considered here, we find it preferential to use the coordi-

nates (x, y) in the parameterisation of the four-dimensional model potential.

In the following the set of coordinates (R1, x, y, ϕ) are denoted collectively

by r̃

As for the two-dimensional model, we write the four-dimensional potential

W (r̃) as a sum of zero-order, uncorrelated, and interaction potentials:

W (r̃) =W (0) + W (R1) + W (x) + W (y) + W (ϕ) + W I(R1, ϕ) + W I(x, y)

+ W I(x, ϕ) + W I(y, ϕ) + W I(R1, x, ϕ) + W I(R1, y, ϕ).
(4.28)

The forms of W (0) and W (R1) are the same as those given in Equations 4.15

and 4.20-4.23, respectively.

With respect to the planar angles x and y, it is convenient to sum the

potentials W (x), W (y) and W I(x, y) to give

W (x, y) = W (x) + W (y) + W I(x, y). (4.29)

We take the on-diagonal elements of W (x, y) corresponding to singly-degenerate

states as

Wii(x, y) =

[

D
(i)
0,x

(

1− exp(−α(i)
x (x− x(i)0 ))

)2

+ E
(i)
0,x

]

+
1

2
γ(i)y y2; i = 1, 2, 5, 6,

(4.30)

with
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E
(i)
0,x = −D(i)

0,x

(

1− exp(α(i)
x x

(i)
0 )
)2

. (4.31)

That is the diabatic potentials for the singly degenerate states are taken as

Morse potentials along x and as harmonic oscillators along y.

For the two pairs of degenerate states |Φ3〉 and |Φ4〉, and |Φ7〉 and |Φ8〉, the

symmetry of the coordinates x and y allows us to write [64]

W (i,j)(x, y) =

(

Wii Wij

Wji Wjj

)

; i, j = (3, 4), (7, 8)

= W
(i,j)
0 (x, y) +

(

−κ(i)x x− 1
2
γ
(i)
x (y2 − x2) κ

(i)
x y + γ

(i)
x xy

κ
(i)
x y + γ

(i)
x xy κ

(i)
x x + 1

2
γ
(i)
x (y2 − x2)

)

,

(4.32)

where the diagonal matrices W
(i,j)
0 (x, y), which represent the potentials of

the corresponding states in the absence of any coupling, are given by Morse

potentials along x and harmonic oscillators along y:

W
(i,j)
0 (x, y) =

([

D
(i)
0,x

(

1− exp(−α(i)
x (x− x(i)0 ))− 1

)2

+ E
(i)
0,x

]

+
1

2
ω(i)
y y

2

)

1.

(4.33)

The off-diagonal elements of W (x, y) that are not contained within the sub-

matrices W
(3,4)
0 (x, y) and W

(7,8)
0 (x, y) are expanded to second-order with

respect to x and to first-order with respect to y:

Wij(x, y) = λ(i,j)x x+
1

2
µ(i,j)
x x2 + λ(i,j)y y. (4.34)

The diabatic potentials along the dihedral angle ϕ are taken as quartic

oscillators,

Wii(ϕ) =
1

2
ω(i)
ϕ ϕ

2 +
1

24
ǫ(i)ϕ ϕ

4, (4.35)

while the off-diagonal elements Wij(ϕ) are taken as linear expansions,
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Wij(ϕ) = λ(i,j)ϕ ϕ. (4.36)

The interstate coupling constants entering into the model potential, that

is, λ
(i,j)
x , λ

(i,j)
y , λ

(i,j)
ϕ and µ

(i,j)
x , are determined to be non-zero by symmetry

via the conditions

λ(i,j)α 6= 0, Γi ⊗ Γj ∋ Γα; α = x, y, ϕ (4.37)

µ(i,j)
x 6= 0, Γi = Γj . (4.38)

The pairwise correlation of the degrees of freedom x and ϕ, and y and

ϕ, corresponding to the potentials W I(x, ϕ) and W I(y, ϕ), is of particular

importance for describing correctly the adiabatic potentials along the inver-

sion pathway that connects the two isoenergetic C3v ground state minima.

This pairwise correlation is modelled by including in the model potential

terms non-zero by symmetry entering into an eighth-order expansion of the

elements W11(r̃) and W22(r̃) with respect to only x and ϕ, and y and ϕ.

Specifically, we take

W I
ii(x, ϕ) =

1

3!
η
(i)
xϕ2xϕ

2 +
1

4!
η
(i)
x2ϕ2x

2ϕ2 +
1

5!
η
(i)
x3ϕ2x

3ϕ2 +
1

5!
η
(i)
xϕ4xϕ

4 +
1

6!
η
(i)
x2ϕ4x

2ϕ4

+
1

7!
η
(i)
x3ϕ4x

3ϕ4 +
1

8!
η
(i)
x4ϕ4x

4ϕ4; i = 1, 2,

(4.39)

and

W I
ii(y, ϕ) =

1

4!
ηy2ϕ2y2ϕ2+

1

6!
ηy2ϕ4y2ϕ4+

1

6!
ηy4ϕ2y4ϕ2+

1

8!
ηy4ϕ4y4ϕ4; i = 1, 2

(4.40)

where
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η
(i)
xmϕn =

∂(m+n)Wii

∂xm∂ϕn

∣

∣

∣

∣

r̃0

, (4.41)

and

η
(i)
ymϕn =

∂(m+n)Wii

∂ym∂ϕn

∣

∣

∣

∣

r̃0

. (4.42)

The parameters ηxmϕn and ηymϕn are taken as functions of the N-H dis-

sociation coordinate R1. We take these parameters to be approximately

constant in the interaction region and to decay to zero as the dissociation

limit is reached. This is achieved through the use of the interaction potentials

W I
ii(R1, x, ϕ) =

∑

m,n

− 1

(m + n)!

ηxmϕn

2

[

1 + tanh

(

R1 − Axmϕn

Bxmϕn

)]

xmϕn; i = 1, 2

(4.43)

W I
ii(R1, y, ϕ) =

∑

m,n

− 1

(m + n)!

ηymϕn

2

[

1 + tanh

(

R1 − Aymϕn

Bymϕn

)]

ymϕn; i = 1, 2

(4.44)

with the sums being taken to run over only the combinations of m and n

given in Equations 4.39 and 4.40.

The pairwise correlation of the degrees of freedom R1 and ϕ is accounted

for through the use of the interaction potential W I(R1, ϕ), which is taken to

have the following form:

W I
ii(R1, ϕ) =

[

−1

2
ω(i)
ϕ tanh (aω,iR1) +

(

bω,iR1 + cω,iR
2
1

)

exp(−dω,iR1)

]

ϕ2

− 1

2

ǫ
(i)
ϕ

2

[

1 + tanh

(

R1 − Aǫ,i

Bǫ,i

)]

ϕ4; i = 1, 2

(4.45)
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W I
ii(R1, ϕ) =− 1

2

ω
(i)
ϕ

2

[

1 + tanh

(

R1 − Aω,i

Bω,i

)]

ϕ2

− 1

2

ǫ
(i)
ϕ

2

[

1 + tanh

(

R1 − Aǫ,i

Bǫ,i

)]

, ϕ4; i = 3, . . . , 8,

(4.46)

W I
ij(R1, ϕ) =

[

−λ(i,j)ϕ tanh (aλ,i,jR1) +
(

bλ,i,jR1 + cλ,i,jR
2
1

)

exp(−dλ,i,jR1)
]

ϕ;

i, j = 1, 2,
(4.47)

W I
ij(R1, ϕ) = −λ

(i,j)
ϕ

2

[

1 + tanh

(

R1 − Aλ,i,j

Bλ,i,j

)]

ϕ; i, j 6= 1, 2. (4.48)

That is, the parameters ω
(i)
ϕ ; i > 2, ǫ

(i)
ϕ ; ∀i, and λ

(i,j)
ϕ ; i, j 6= 1, 2 are taken

to be approximately constant in the interaction region and decay to zero as

the dissociation limit is reached. The parameters ω
(i)
ϕ ; i = 1, 2, and λ

(1,2)
ϕ

are allowed to vary in magnitude in the interaction region, as is found to

be required to reproduce faithfully the topology of the S0 and S1 adiabatic

potentials in the vicinity of the conical intersection of these two states.

Parameterisation of the Model Potentials

The parameterisation of both model potentials was achieved by minimising

the root mean square deviation (RMSD) of the model adiabatic energies, ob-

tained by diagonalising the model diabatic potentials, and adiabatic energies

calculated at a large number of points pertinent to the dynamics of ammonia

following excitation to the Ã(3s) state. In order that the model potentials be

preferentially accurate in regions of low energy, the actual quantity optimised

is the following functional:

∆ =

σ
∑

s=1

nσ
∑

i=1

(V s
i − V s,mod

i )2Ωs
i . (4.49)

Ammonia 74



Quantum Dynamics Simulations of Photoexcited Ammonia 4.3

Here, σ is the number of electronic states, nσ is the number of points for the

state σ, and V s
i and V s,mod

i are the true and model adiabatic energies at the

ith point for the sth state, respectively. Ωs
i is a weight function, chosen as

Ωs
i = exp (−(V s

i − V s
0 )) , (4.50)

where V s
0 is the value of the sth adiabatic potential at the reference point.

4.3.3 Product Representation of the Potential

The low dimensionality of the two-dimensional model is such that the stan-

dard wavepacket propagation method, as outlined in Section 3.3.1, may be

used. There exists, then, no restriction on the form of the model potential

W (q). For the four-dimensional model, however, we are forced to resort to

the use of the MCTDH method. As such, we require that the model poten-

tial W (r) be cast in the form of a sum of products of monomodal operators.

Although the ansatz for the model potential W (r̃) as outlined in Section

4.3.2 is in the required product form, the kinetic energy operator written in

terms of the coordinates r̃ is not. We are thus required to transform the

model potential W (r̃) to be in terms of the coordinates r. To proceed, we

make use of the potfit algorithm [65] to expand the model potential W (r),

as calculated from the parameterised potential W (r̃), in terms of a direct

product basis. We note that the smooth form of elements Wij(r) results

in a very accurate product representation of the potential using only small

expansion orders in the potfit procedure.

4.3.4 Electronic Structure Calculations

The adiabatic energies used in the parametrisation of both model poten-

tials were calculated using the second-order Multi-Configurational Quasi-

Degenerate Perturbation Theory (MCQDPT2) method [66] as implemented
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Table 4.3: Vertical excitation energies, symmetries and dominant configurations of
the first eight singlet excited states of ammonia calculated at the D3h S1 minimum
energy geometry at the MCQDPT2(4,11)/aug level.

State Dominant Configuration Symmetry: D3h (C2v) ∆E (eV)

X̃ |0〉 A
′

1 (A1) 0.00

Ã 2px → 3s A
′′

2 (B1) 5.19

B̃y 2px → 3py E
′′

(A2) 6.67

B̃z 2px → 3pz E
′′

(B1) 6.67

C̃ 2px → 3px A
′

1 (A1) 8.59

D̃ 2px → 4s A
′′

2 (B1) 9.13

Ẽy 2px → 4py E
′′

(A2) 9.17

Ẽz 2px → 4pz E
′′

(B1) 9.17

in the GAMESS-US software package [67] in conjuction with the aug-cc-

pVDZ basis set. The reference wavefunction used corresponds to a CAS(4,11)

wavefunction, with an active space formed by the orbitals 1e
′

(2pz), 1a
′′

2(2px),

3a
′

1(3s), 2e
′

(3py), 2e
′

(3pz) , 2a
′′

2(3px), 4a
′

1(4s), 3e
′

(4py), 3e
′

(4pz), 4e
′

(5py) and

4e
′

(5pz). We denote this method of calculation by MCQDPT2(4,11)/aug. At

each geometry used in the fitting procedure the first eight adiabatic energies

were calculated, the details of which are summarised in Table 4.3. In order

to distinguish between the components of the doubly degenerate states, the

following convention is used: each state label (either B̃ or Ẽ) is indexed by

either the label y and z, with the labels denoting, respectively, states that

are dominated by a configuration corresponding to excitation into an npy or

npz orbital.

4.3.5 Block Diagonalisation of the Diabatic Potential

We consider a unitary transformation of the diabatic basis {Φi} to yield a

new basis {ΦBD
i },

ΦBD
i =

N
∑

j=1

SjiΦj , (4.51)
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such that the matrix representation of the potential in the new basis {ΦBD
i },

W BD, has a given block diagonal form:

W BD =











W BD,1

W BD,2 0

0
. . .

W BD,n











, (4.52)

where the sub-matrices W BD,i are Ni × Ni square matrices. That is, the

states entering into two different blocks W BD,i and W BD,j are no longer

coupled by the electronic Hamiltonian. Correspondingly, the matrix repre-

sentation of the kinetic energy operator should also be subject to the same

transformation, i.e., we should make the transformation

T → T BD = S†TS (4.53)

in order to yield an equivalent representation of the Hamiltonian.

We here, however, consider the use of an intermediate Hamiltonian,

H̃ = W BD + T , (4.54)

in order to study the effect of the neglect of the coupling of the states en-

tering into the different blocks WBD,i and W BD,j, which may be achieved

through the use of the two Hamiltonians H and H̃ in separate quantum

dynamics simulations. We may consider H̃ to be the matrix representation

of the Hamiltonian in the basis {ΦBD
i } with the approximation made that

the states entering into different blocks W BD,i and W BD,j are decoupled. In

the following, we make this approximation implicitly and term this basis the

intermediate basis.

In order to calculate the transformation matrix S, we make use of the

method developed by Cederbaum et al. [68] Within this scheme, the trans-

formation matrix S is constructed such that
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||S − 1|| = minimum, (4.55)

where ||A|| denotes the Euclidean norm of the matrix A. That is, the trans-

formation matrix S will bring the potential matrix W into block diagonal

form, but beyond this will do nothing else. This constraint is found to be

necessary as there exists an infinite number of unitary transformations that

will bring the potential matrix into a given block diagonal form. Through

the enforcement of this requirement, it can be shown that [68]

S = UU
†
BD

(

UBDU
†
BD

)− 1

2

. (4.56)

Here, U denotes the matrix of eigenvectors of the diabatic potential W , and

UBD the block-diagonal part of U .

For the case of ammonia, we wish to determine the effect of the neglect

of the coupling of the X̃ and Ã(3s) states to the six higher-lying states B̃

to Ẽ. Thus, we take the matrix UBD that enters into the definition of the

transformation matrix S to be

UBD =

























U11 U12 0 0 0 0 0 0
U21 U22 0 0 0 0 0 0
0 0 U33 U34 U35 U36 U37 U38

0 0 U43 U44 U45 U46 U47 U48

0 0 U53 U54 U55 U56 U57 U58

0 0 U63 U64 U65 U66 U67 U68

0 0 U73 U74 U75 U76 U77 U78

0 0 U83 U84 U85 U86 U87 U88

























. (4.57)

In order to simplify the discussion of the two model Hamiltonians H

and H̃ , we introduce the following notation. We denote the total nuclear

wavefunction in the diabatic representation by |Ψ(d)〉:

|Ψ(d)〉 =

N
∑

i=1

|Ψ(d)
i 〉|i(d)〉, (4.58)
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where the sum is over the diabatic electronic states |i(d)〉, and |Ψ(d)
i 〉 denotes

the nuclear wavefunction for the diabatic electronic state |i(d)〉. Similarly, we

write the nuclear wavefunction in the adiabatic representation as

|Ψ(a)〉 =
N
∑

i=1

|Ψ(a)
i 〉|i(a)〉. (4.59)

Finally, we denote by |Ψ(bd)〉 the nuclear wavefunction in the intermediate

representation:

|Ψ(bd)〉 =
N
∑

i=1

|Ψ(bd)
i 〉|i(bd)〉. (4.60)

4.3.6 Projection Onto the Adiabatic States

Although allowing for a rigorous decoupling of the X̃ and Ã(3s) states from

their orthogonal complement, the block diagonalisation scheme used here

does not allow for a simple comparison of the results of wavepacket propaga-

tions performed using the Hamiltonians H and H̃ . In the case of using the

Hamiltonian H , that is, when working in the original, diabatic, represen-

tation, dissociation can occur in the three electronic states |1(d)〉, |2(d)〉 and

|6(d)〉. When using the intermediate Hamiltonian H̃ , however, dissociation

may proceed only in the states |1(bd)〉 and |2(bd)〉. A direct comparison of the

results may, however, be made via the transformation of the diabatic and

intermediate wavefunctions to the adiabatic representation.

In principle, as the two potentials W and W BD, and thus their eigenvec-

tors, are known, the transformation to the adiabatic representation of both

wavefunctions is known:

|Ψ(a)〉 = U †|Ψ(d)〉

= X†|Ψ(bd)〉,
(4.61)
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where |Ψ(a)〉 denotes the vector of adiabatic nuclear wavefunctions |Ψ(a)
i 〉,

with |Ψ(b)〉 and |Ψ(bd)〉 being defined analogously, and

V = U †WU

= X†W BDX,
(4.62)

with V denoting the adiabatic potential matrix. However, as the transfor-

mation matrices U † and X† are not in the required MCTDH product form,

this direct approach cannot be used.

To proceed, we introduce the set of projectors onto the adiabatic states,

Pa,i,

Pa,i|Ψ(a)〉 = |Ψ(a)
i 〉. (4.63)

In the adiabatic representation the matrix representation of Pa,i, P
(a)
a,i , is

given by

(

P
(a)
a,i

)

mn
= δmiδni. (4.64)

In the diabatic and intermediate representations, the matrix representations

of P
(a)
i are given, respectively, by

(

P
(d)
a,i

)

mn
=
∑

k,l

Umk

(

P
(a)
a,i

)

kl
U †
ln

= UmiUni,

(4.65)

and

(

P
(bd)
a,i

)

mn
=
∑

k,l

Xmk

(

P
(a)
a,i

)

kl
X†

ln

= XmiXni.

(4.66)

Again, the elements of the projection matrices P
(d)
a,i and P

(bd)
a,i are not

in product form. We circumvent this problem by making use of the potfit

algorithm [65] to expand the elements P
(d)
a,i and P

(bd)
a,i in direct product bases
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such that they are expressed in the sum-of-products form required for use

with the MCTDH method.

Using these projectors the time-evolution of the adiabatic state popula-

tions resulting from the use of the Hamiltonians H and H̃ may be calculated,

respectively, as the expectation values

p
(d)
a,i (t) = 〈Ψ(d)(t)|P (d)

a,i |Ψ(d)(t)〉, (4.67)

p
(bd)
a,i (t) = 〈Ψ(bd)(t)|P (bd)

a,i |Ψ(bd)(t)〉. (4.68)

Further, the flux passing into the two adiabatic dissociation channels, de-

noted F
(b)
a,i (t) and F

(bd)
a,i (t) (i = 1, 2) for the quantities calculated using, re-

spectively, H and H̃ , may be calculated as

F
(d)
a,i (t) = 〈Ψ(d)(t)|P (d)

a,iFP
(d)
a,i |Ψ(d)(t)〉, (4.69)

and

F
(bd)
a,i (t) = 〈Ψ(bd)(t)|P (bd)

a,i FP
(bd)
a,i |Ψ(d)(t)〉, (4.70)

where F denotes the appropriately defined flux operator. In this way we

may compare in a meaningful manner the differences between the dynam-

ics of ammonia following excitation to the Ã(3s) state calculated using the

Hamiltonians H and H̃ .

4.3.7 Preparation of Initial Wavepackets and the Cal-
culation of Spectra

As is well known, the electronic absorption spectrum of ammonia in the re-

gion 40000 cm−1 to 65000 cm−1 contains two progressions in the inversion
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mode, corresponding to excitation of the nearly degenerate pair of tunnel-

split ground vibrational eigenstates, denoted |Ψg〉 and |Ψu〉. In order to

circumvent the propagation of both eigenstates, we make the approxima-

tion that the |Ψg〉 and |Ψu〉 eigenstates are isoenergetic. The ground state

wavefunction |ΨGS〉 may then be written

|ΨGS〉 =
1√
2

(|Ψg〉+ |Ψu〉) . (4.71)

Equation 4.71 would be exact if the eigenstates |Ψg〉 and |Ψu〉 were truly

isoenergetic, and is considered justifiable as the splitting between the two

states is known to be very small (<1cm−1). Further, we assume that the

ground state wavefunction |ΨGS〉 as written in Equation 4.71 may be obtained

as

|ΨGS〉 = Θinv|Ψg〉, (4.72)

where Θinv denotes the projector onto one of the pair of isoenergetic ground

state minima. The assumption of the equality of the expressions for |ΨGS〉

given in Equations 4.71 and 4.72 can be taken to be justifiable if the eigen-

states |Ψg〉 and |Ψu〉 are approximated to differ only in their parities with

respect to the inversion coordinate. The eigenstate |Ψg〉 is calculated using

the method of relaxation.

Initial wavepackets |Ψ(t = 0)〉 were produced via vertical excitation to

the electronic state of interest. We here make the distinction between the

initial state used for the study of the dynamics,

|Ψ(t = 0)〉 = {|i〉〈1|+ h.c.} |Ψg〉

= O(i)
v |Ψg〉,

(4.73)

and that used to calculate electronic spectra,
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|Ψ(t = 0)〉 = {|i〉〈1|+ h.c.}Θinv|Ψg〉

= O(i)
v,p|Ψg〉,

(4.74)

where |i〉 denotes the excited state of interest.

4.3.8 The Origin of the Barrier to Dissociation on the

S1 Adiabatic State Surface

We here discuss the choice of ansatz used for the model potential W (R),

which, as detailed in Section 4.3.2, is based on the barrier to dissociation on

the S1 adiabatic surface being a consequence of strong vibronic coupling of

the Ã(3s) and D̃(4s) states.

Starting from the D3h reference point, movement along a single N-H dis-

sociation coordinate will bring the ammonia molecule into coincidence with a

geometry of C2v symmetry. The Ã(3s) state generates the A
′′

2 irrep of the D3h

point group, and the A
′′

2 irrep correlates with the B1 irrep of the C2v point

group. Thus for an element W2i (i 6= 2) of the diabatic potential matrix to be

nonzero at extended N-H bond lengths, it must be that the state |Φi〉 gener-

ates an irrep of the D3h point group that correlates with the B1 irrep of the

C2v point group. Of the states considered here, only the B̃z(3pz), D̃(4s) and

Ẽz(4pz) states generate the B1 irrep of the C2v point group. Furthermore, we

note that adiabatic potentials found in other molecules that are quasi-bound

with respect to a heteroatom-hydride bond have been successfully modelled

by taking them to correspond to avoided crossings between an upper, disso-

ciative diabatic state and a lower, bound diabatic state [12, 69, 70]. As such

we are directed to look for a state that has a significantly large negative gra-

dient with respect to the N-H stretching coordinate R at the D3h reference

point, at which our adiabatic and diabatic states are taken to be equivalent.

The gradients of the B̃z(3pz), D̃(4s) and Ẽz(4pz) states with respect to R

Ammonia 83



Quantum Dynamics Simulations of Photoexcited Ammonia 4.3

calculated at the MCQDPT2(4,11)/aug level are +3.02, -4.57, and +1.21

eV/a.u. Additionally, the Ã(3s) and D̃(4s) states are found to be strongly

coupled with respect to R, with the nonadiabatic coupling term τR,2,6 calcu-

lated at the CAS(4,11)/aug level taking a value of -5.68 eV/a.u. For these

reasons we take the coupling of the Ã(3s) and D̃(4s) states to be responsible

for the formation of barrier to dissociation on the S1 adiabatic potential.

4.3.9 Quantum Dynamics Simulations Using the Two-

Mode Model

The Parameterised Model Potential

The two-dimensional model potential W (q) was parameterised via fitting a

total of 111 parameters non-zero by symmetry to 431 calculated adiabatic

energies. An unweighted (weighted) RMSD of the model and calculated adi-

abatic energies of 0.073 (0.028) eV was attained, indicating that the model

potential is capable of faithfully reproducing the calculated adiabatic poten-

tials in the regions of nuclear configuration space considered.

Shown in Figure 4.4 are the elements of the model diabatic and adiabatic

potential matrices along the N-H dissociation coordinate R. Overall, good

agreement of the model and calculated adiabatic potentials is found. The as-

sumption set forth in Section 4.3.8 that the coupling of the Ã(3s) and D̃(4s)

states is responsible for the formation of the barrier to dissociation on the

S1 adiabatic potential is further supported through the ability of the sim-

ple model potential W (R), that is based on this assumption, to reproduce

accurately the calculated adiabatic potentials along the N-H dissociation co-

ordinate.

The model and calculated adiabatic and diabatic potentials along the

inversion coordinate φ are displayed in Figure 4.5. Given in Table 4.4 are the

values of the fitted linear interstate coupling constants λ(i,j) that enter into
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Fig. 4.4: Model and calculated potentials along the N-H dissociation coordinate
R: (a) Model (lines) and MCQDPT2(4,11)/aug (points) adiabatic potentials; (b)
Model diabatic potentials, and; (c) Model diabatic coupling between the Ã(3s)
and D̃(4s) states.
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Table 4.4: Linear interstate coupling coefficients λ(i,j) entering into the expansion
of the two-dimensional model potential W (q). All values are given in eV/radian.

i, j λ(i,j)

1, 2 -1.1025
1, 4 0.9697
1, 6 1.0920
1, 8 1.2921
2, 5 0.2371
4, 5 -0.1916
5, 6 -0.0046
5, 8 0.5414

the off-diagonal elements Wij(φ) of the model potential. It is found that the

ground X̃ state is strongly coupled to the Ã(3s), B̃z(3pz), D̃(4s) and Ẽz(3pz)

states by φ. Further, it is this coupling of the ground and excited states by

the inversion coordinate that is found to be responsible for the formation of

the barrier to inversion on the ground state adiabatic potential. If only the

X̃ and Ã(3s) states are taken to be coupled, then this is not the case. To

see this, we consider the block diagonalisation of the diabatic potential as

outlined in Section 4.3.5. The thus block-diagonalised ground state potential

is shown in Figure 4.5 (c) alongside the corresponding model diabatic and

adiabatic potentials. It can be seen that only via the inclusion of the coupling

of the X̃ and Ã(3s) states to the higher-lying manifold of electronic states is

the origin of the barrier to inversion entirely due to vibronic coupling of the

ground state to its orthogonal complement.

Wavepacket Dynamics Following Excitation to the Ã(3s) State

Owing to its low dimensionality, standard wavepacket propagations employ-

ing the full primitive grid were used for the two-dimensional model. For both

degrees of freedom, R and φ, exponential DVRs were used. For the N-H dis-

sociation coordinate R, a grid of 111 points from -1.0 to 10.0 a.u. was used.
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Fig. 4.5: Model and calculated potentials along the inversion coordinate φ:
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Fig. 4.6: State population probabilities following vertical excitation to the Ã(3s)
state calculated using the diabatic representation of the nuclear wavefunction and
the two-dimensional potential W (q). (a) Diabatic state populations, and; (b)
adiabatic state populations.

For the inversion coordinate φ, a grid of 151 points from -3.1 to 3.1 radians

was used. All wavepacket propagations were performed for 5000 fs.

Shown in Figure 4.6 are the state populations in the diabatic represen-

tation calculated following vertical excitation to the Ã(3s) state. A strongly

driven oscillatory transfer of population between the initially excited Ã(3s)

state and the ground state is found to occur throughout the duration of the

simulation. This is presumably a consequence of two factors: (i) the strong

coupling of the X̃ and Ã(3s) states that exits with respect to the inversion

mode φ, and; (ii) the choice of the planar D3h reference geometry, which

results in the value of the diabatic potential element W12 being already large

in magnitude at the geometries corresponding to the adiabatic ground state

minima. Additionally, a slow rise in the population of the D̃(4s) diabatic

state is found to occur, resulting in a slow monotonic rise in the probability

of N-H dissociation, as is illustrated in Figure 4.7 (a). In addition to the dis-

sociation on the purely repulsive D̃(4s) state surface, both the X̃ and Ã(3s)

state dissociation channels are found to be open, a consequence of the strong
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Fig. 4.7: State-resolved N-H dissociation probabilities following vertical excitation
to the Ã(3s) state calculated using the diabatic representation of the nuclear wave-
function and the two-dimensional potential W (q). (a) Probabilities of dissociation
in the diabatic states, and; (b) probabilities of dissociation in the adiabatic states.

coupling by φ of the X̃ and D̃(4s) states and by R of the Ã(3s) and D̃(4s)

states.

In order to render the results discussed here more intuitive, we consider

the transformation of the nuclear wavefunction to the adiabatic representa-

tion. As the standard wavepacket method employing the full primitive grid

is used for the two-dimensional model, the elements of the projectors onto

the adiabatic states, P
(d)
a,i , can be, and were used directly in the form given

in Equation 4.65. The adiabatic state populations calculated using the pro-

jected wavefunctions P
(d)
a,i |Ψ(d)〉 are shown in Figure 4.6 (b). We note that

due to the diabatic nature of the vertical excitation operator O
(2)
v used, the

initial wavepacket corresponds to a linear combination of both the S0 and

S1 states. The depopulation of the S1 state following excitation is found

to be hindered, a consequence of the inability of the wavepacket to traverse

directly the barrier to the conical intersection with the S0 state. In turn, the

hindrance of dissociation can be seen to be a consequence of the modulation

of the barrier to dissociation on the S1 adiabatic state surface by the inver-

Ammonia 89



Quantum Dynamics Simulations of Photoexcited Ammonia 4.3

sion mode φ, with the barrier height being increased at geometries away from

the planar arrangement of the molecule. As the initially excited wavepacket

is displaced to the repulsive walls of the S1 state potential, motion along

the coordinate φ is driven, resulting in a frustration of N-H dissociation by

virtue of the evolving wavepacket needing to sample regions of configuration

space proximate to the D3h S1 minimum in order for dissociation to proceed

unhindered.

Shown in Figure 4.7 (b) are the time-cumulated probabilities of N-H dis-

sociation in the adiabatic representation. The branching ratio between the

two adiabatic state dissociation channels,

B
(d)
1,2 =

f
(d)
a,1

f
(d)
a,2

, (4.75)

f
(d)
a,i =

∫ T

0

dtF
(d)
a,i (t), (4.76)

is calculated to take a value of 2.16, corresponding to a dominance of dia-

batic dissociation. This is in good agreement with the work of Giri et al. [59],

who reported a branching ratio of 1.98 being obtained from two-state, two-

dimensional quantum dynamics. It is found that the preponderance of the

dissociation occurring on the S1 potential occurs within the first 200 fs fol-

lowing excitation.

Shown in Figures 4.8 (a) and 4.8 (b) are, respectively, the state popula-

tions in the intermediate representation along with the adiabatic state popu-

lations obtained from the projected intermediate wavefunctions P
(bd)
a,i |Ψ(bd)〉,

both calculated following excitation to the Ã(3s) state. For reference, the

adiabatic state populations calculated from the diabatic representation of the

wavepacket are also shown in Figure 4.8 (b). It is found that the vibronic

coupling terms neglected upon making the transition from the diabatic rep-
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Fig. 4.8: State population probabilities calculated following excitation to the Ã(3s)
state: (a) State population probabilities in the intermediate representation, and;
(b) adiabatic populations calculated from both the diabatic and intermediate rep-
resentations of the nuclear wavepacket.

resentation to the intermediate representation has no significant effect on

evolution of the wavepacket in the adiabatic representation. To see this in

a quantitative manner, we consider the RMSD of the adiabatic populations

calculated using the two representations:

D =

{

1

2T

2
∑

i=1

∫ T

0

dt
(

p
(d)
a,i − p

(bd)
a,i

)2
}

1

2

, (4.77)

where T denotes the final propagation time of 5000 fs. D is found to take

a value of 0.0099, that is, the adiabatic populations calculated using the

diabatic and intermediate representations differ on average by only ∼1%.

Finally, we note that the calculated branching ratio

B
(bd)
1,2 =

∫ T

0
dtF

(bd)
a,1 (t)

∫ T

0
dtF

(bd)
a,2 (t)

, (4.78)

takes a value of 2.76, implying that the vibronic coupling terms neglected in

the intermediate representation lead to a slight decrease in the propensity

for adiabatic dissociation to occur.
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Fig. 4.9: Model (lines) and calculated (points) potentials along the nuclear degrees
of freedom entering into the four-dimensional model. (a) Adiabatic potentials
along x. (b) Adiabatic potentials along y (c) Adiabatic potentials along ϕ.

4.3.10 Quantum Dynamics Simulations Using the Four-
Mode Model

The Parameterised Model Potential

The four-dimensional model potential W (r̃) was parameterised by fitting

a total of 303 parameters non-zero by symmetry to 2424 calculated adia-

batic energies. A weighted/unweighted RMSD of the model and calculated

adiabatic energies of 0.45/0.16 eV was attained.

The model potentials along the dissociative degree of freedom R1 are

essentially identical, apart from a shift of the origin, to those of the two-
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Table 4.5: Linear interstate coupling coefficients λ
(i,j)
α ; α = x, y, ϕ, entering into

the expansion of the four-dimensional model potential W (r̃). All values are given
in eV/radian.

α i j λ
(i,j)
α

x 1 5 -3.2017
x 2 4 -1.4856
x 2 6 0.4807
x 2 8 0.7762
x 3 7 0.8528
x 4 6 0.1057
x 4 8 0.4745
x 6 8 2.0120
y 2 3 0.7843
y 2 7 0.5774
y 3 4 -0.1593
y 3 6 0.7799
y 3 8 0.1684
y 4 7 0.5367
y 6 7 0.4668
y 7 8 1.6533
ϕ 1 2 -0.9910
ϕ 1 4 1.0306
ϕ 1 6 0.2810
ϕ 1 8 -1.7951
ϕ 2 5 -0.6232
ϕ 4 5 -0.2138
ϕ 5 6 0.0808
ϕ 5 8 -0.5275
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Table 4.6: Quadratic interstate coupling coefficients µ
(i,j)
αβ entering into the ex-

pansion of the four-dimensional model potential W (r̃). All values are given in
eV/radian2.

α β i j µ
(i,j)
αβ

x x 1 5 -1.9031
x x 2 4 -0.7661
x x 2 6 -0.9282
x x 2 8 0.4167
x x 3 7 -1.3561
x x 4 6 -1.1829
x x 4 8 2.0129
x x 6 8 0.3182
x y 3 4 0.6081
x y 7 8 3.4888

dimensional potential defined with respect to R, as discussed in Section 4.3.9,

and are not discussed further here. The adiabatic potentials along the an-

gular degrees of freedom x, y, and ϕ are shown in Figure 4.9. Overall good

agreement between the calculated and model adiabatic energies is found to

be provided by the simple model potential used. Displayed in Tables 4.5

and 4.6 are, respectively, the values of the fitted first- and second-order in-

terstate coupling coefficients. Significant interstate coupling coefficients are

found to exist to couple either directly or indirectly all pairs of states consid-

ered. Of particular interest is that the Ã(3s) and B̃z(3pz) states are found to

be strongly coupled to both first- and second-orders by the planar angle x.

Significant coupling to both first- and second-order of the Ã(3s) and D̃(4s)

states is also found to exist. Relatively weak coupling of the degenerate states

B̃y(3py) and B̃z(3pz) states by the pair of Jahn-Teller active modes x and y

is found to exist, the manifestation of which can be seen in the only modest

splitting of the corresponding adiabatic energies by the degrees of freedom

x and y. In contrast the pair of degenerate states Ẽy(3py) and Ẽz(3pz) are

found to be strongly coupled by the degrees of freedom x and y.
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Fig. 4.10: State population probabilities following vertical excitation to the Ã(3s)
state calculated using the diabatic representation of the nuclear wavefunction and
the four-dimensional potential W (r). (a) Diabatic state populations, and; (b)
adiabatic state populations.

Wavepacket Dynamics Following Excitation to the Ã(3s) State

Four-mode, eight-state wavepacket propagations using both the diabatic and

intermediate representations of the nuclear wavepacket were performed using

the MCTDH method. Propagation times of 750 fs were used in each case,

and all details of the calculations are displayed in Table 4.7.

Shown in Figure 4.10 (a) are the diabatic state populations calculated fol-

lowing excitation to the Ã(3s) state. As in the case of the two-dimensional

model discussed above, significant population of only the diabatic states X̃ ,

Ã(3s) and D̃(4s) is found to occur. Correspondingly, as shown in Figure 4.11

(a), dissociation is found to occur in all these three diabatic states, with the

majority of the dissociating wavepacket reaching the dissociation limit in the

D̃(4s) state. Illustrated in Figure 4.10 (b) are the adiabatic populations, and

in Figure 4.11 (b) the time-cumulated probabilities of N-H dissociation in the

adiabatic states, both calculated from the projected diabatic wavefunctions

P
(d)
a,i |Ψ(d)〉. We note that high expansion orders were required to reproduce
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Table 4.7: Computational details of the wavepacket propagations corresponding to excitation to the Ã(3s) state using the diabatic and
intermediate representations. The DVR types exp and sin correspond to exponential and sine DVRs, respectively. Ni, Nj are the number
of primitive DVR functions used to describe each particle. ni are the number of single-particle functions used for each state.

Diabatic Representation Particle DVR type Ni, Nj Range n1, n2, . . . , n8

R exp 81 [-0.8,10.0] 21, 17, 11, 15, 16, 20, 7, 4
ζ1, ζ2 sin 19, 19 [-0.98,0.98], [-0.98,0.98] 17, 17, 12, 15, 13, 18, 7, 4
ϕ exp 51 [-2.5,2.5] 14, 14, 10, 12, 12, 16, 7, 4

Intermediate Representation Particle DVR type Ni, Nj Range n1, n2

R exp 81 [-0.8,10.0] 20, 20
ζ1, ζ2 sin 19, 19 [-0.98,0.98], [-0.98,0.98] 23, 20
ϕ exp 51 [-2.5,2.5] 20, 20
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Fig. 4.11: State-resolved N-H dissociation probabilities following vertical excitation
to the Ã(3s) state calculated using the eight-state diabatic representation of the
nuclear wavefunction and the four-dimensional potential W (r). (a) Probabilities
of dissociation in the diabatic states, and; (b) probabilities of dissociation in the
adiabatic states.

via the potfit method the elements of the projectors P
(d)
a,i , owing to the dis-

continuous nature of these functions. A total of 600 terms were admitted into

the direct product expansion of each element, a realistic limit considering the

linear scaling of the computational effort of the calculation of the expectation

values 〈Ψ(d)(t)|O|Ψ(d)(t)〉 with the number of terms entering into the oper-

ator O. We note, however, that even with the large expansion orders used

the accuracy of the fitted projectors is limited. It is not straightforward to

gauge the accuracy of the fitted projectors in a meaningful manner by simply

considering the RMSD of the true and fitted elements over all the grid points

used. The most meaningful analysis would consist of the calculation of an

RMSD weighted by the time-averaged modulus square of the wavepacket at

the grid points, which is, however, somewhat complicated. We instead simply

consider the requirement that an expectation value be invariant with respect

to a unitary transformation of the basis used to represent the wavefunction,

and note that the RMSD of the total probabilities of dissociation calculated
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using the diabatic and projected wavefunctions,







1

T

∫ T

0

dt

(

∫ t

0

dt
′

〈
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′

)
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∣
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∣
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

1

2

,

(4.79)

takes a value of 0.016. That is, on average the two quantities differ by only

1.6%, which we take to be satisfactory.

It is found that the rate of depopulation of the S1 state is significantly

higher, by approximately an order of magnitude, than that furnished by the

two-state model, highlighting the limited use reduced dimensionality models.

We note the neglect here of two of the three N-H dissociation coordinates

undoubtedly leads to an underestimation of the rate of dissociation yielded by

the four-mode model. The construction of a five- or six-dimensional model,

however, is not possible here given our requirement of the construction of

approximate fitted projectors, the number of terms entering into which scales

exponentially with the number of MCTDH particles. The branching ratio

B
(bd)
1,2 between the two adiabatic dissociation channels takes a value of 5.94.

This result is in agreement with the quantum dynamics calculations of Giri

et al., who report a decrease in the amount of adiabatic dissociation seen

upon increasing the dimensionality of the model used.

We now consider the effect of the coupling of the X̃ and Ã(3s) states to

their orthogonal complement on the dynamics described using the four-mode

model. Shown in Figure 4.12 are the adiabatic state populations and time-

cumulated probabilities of N-H dissociation calculated from the intermediate

representation of the wavepacket. In contrast with the two-mode model, it is

not meaningful to consider the RMSD of the adiabatic populations calculated

from the diabatic and intermediate representations of the wavepacket as the

stronger coupling of the X̃ and Ã(3s) states to their orthogonal complement

Ammonia 98



Quantum Dynamics Simulations of Photoexcited Ammonia 4.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700

A
di

ab
at

ic
 s

ta
te

 p
op

ul
at

io
n

Time (fs)

(a) S0
S1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700
N

-H
 d

is
so

ci
at

io
n 

pr
ob

ab
ili

ty
Time (fs)

(b) S0
S1

Total

Fig. 4.12: State population probabilities and probabilities of dissociation following
vertical excitation to the Ã(3s) state calculated using the two-state intermedi-
ate representation of the nuclear wavefunction and the four-dimensional potential
W (r): (a) Adiabtic state population probabilities, and; (b) time-cumulated N-H
dissociation probabilities.

in the four-mode model and the diabatic nature of the excitation operator

used results in markedly different initial adiabatic state populations in the

two representations. Instead we focus on the time-cumulated probabilities

of dissociation. It is found that the total probability of dissociation by 750

fs in the diabatic and intermediate representations are, respectively, 0.578

and 0.678, implying that dissociation is hindered by the coupling of the

X̃ and Ã(3s) states to their orthogonal complement. By comparison, the

rates of dissociation in the two representations obtained using the two-mode

model deviate insignificantly. We thus see that the increased hindrance of

dissociation in the diabatic representation is predominantly affected by the

planar angles ζ1 and ζ2. The branching ratio between the two adiabatic

dissociation channels calculated from the intermediate representation, B
(bd)
12 ,

is 6.31. Thus, as in the case of the two-mode model, the amount of adiabatic

dissociation is increased slightly in the diabatic representation relative to

that in the intermediate representation. From the above considerations we
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Fig. 4.13: State population probabilities and time-cumulated probabilities of dis-
sociation in the diabatic representation following excitation to both components
of the doubly-degenerate B̃(3p) state calculated using the eight-state, four-mode
model: (a) diabatic population probabilities, and; (b) time-cumulated probabilities
of dissociation in the diabatic states.

conclude that although the X̃ and Ã(3s) states do not constitute a Hilbert

subspace, the effect on the dynamics following excitation to the Ã(3s) state

of the coupling of these two states to their orthogonal complement is not

particularly significant.

Dynamics Following Excitation to the B̃(3p) State

Neither the two components of the B̃(3p) state are directly coupled to the

Ã state by the degrees of freedom R and φ, and so the two-mode model

cannot be used to study the dynamics of ammonia excited to the B̃(3p)

state. Through the inclusion of the planar angles ζ1 and ζ2, however, the

coupling between both components of the B̃(3p) state and the Ã state is

included in the four-mode model.

Both components of the B̃(3p) state are found to be bright, with oscillator

strengths for both the B̃y ← X̃ and B̃z ← X̃ transitions of 0.0083 being

furnished by MRCI(8,7)/aug-cc-pVDZ calculations. These values are to be

compared to the value of 0.0752 for the Ã← X̃ transition calculated at the
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same level of theory. As such, the initial state used to study the dynamics of

ammonia following excitation to its B̃(3p) state was chosen as the projection

of the ground state onto both components of the B̃(3p) state:

|Ψ(t = 0)〉 =
1

2

4
∑

i=3

{|1〉〈i|+ h.c.} |Ψg〉, (4.80)

with |Ψg〉 denoting the ground vibrational eigenstate.

Shown in Figure 4.13 (a) are the calculated diababatic state populations,

and in Figure 4.13 (b) the time-cumulated probabilities of dissociation in

the diabatic states. We first note that although Figure 4.13 (a) may sug-

gest that the initial population of the B̃z(3pz) state is lower than that of

the B̃y(3py) state, this is not the case: the strong diabatic coupling of the

B̃z(3pz) and Ã(3s) states that exists at the FC point results in an initial

loss of ∼10% of the B̃z(3pz) within the first 2 fs. Population from both the

By(3py) and Bz(3pz) states is found to relax relatively efficiently to the Ã(3s)

state, whereupon the strong coupling of the Ã(3s) and D̃(4s) states results in

transfer to, and dissociation in, the latter state. By 750 fs the total calculated

probability of N-H dissociation stands at 0.67, with dissociation proceeding

predominantly in the D̃(4s) state. The rate of depopulation of the B̃z(3pz)

state is found to be markedly faster than that of the B̃y(3py) state, a con-

sequence of the stronger coupling of the Ã(3s) state to the B̃z(3pz) state by

the planar angles ζ1 and ζ2 than of the Ã(3s) state to the B̃y(3py) state.

Shown in Figures 4.14 (a) and 4.14 (b) are, respectively, the state popu-

lations and time-cumulated probabilities of dissociation in the adiabatic rep-

resentation calculated using the projected wavefunctions P
(d)
a,i |Ψ(d)〉. The in-

terpretation of the dynamics following excitation to the B̃(3p) state is rather

simple and somewhat more intuitive in the adiabatic representation: pop-

ulation is transferred from the initially excited S2(3py) and S2(3py) states
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Fig. 4.14: State population probabilities and time-cumulated probabilities of dis-
sociation in the adiabatic representation following excitation to both components
of the doubly-degenerate B̃(3p) state calculated using the eight-state, four-mode

model and the projected wavefunctions P
(d)
a,i |Ψ(d)〉: (a) adiabatic population prob-

abilities, and; (b) time-cumulated probabilities of dissociation in the adiabatic
states.

to the S1(3s) state, whereupon dissociation in the S1(3s) state is driven.

The propensity for diabatic dissociation following excitation to the B̃(3p)

state is found to be significantly increased relative to the case of excitation

to the Ã(3s) state, with a branching ratio B
(d)
1,2 between the two adiabatic

dissociation channels of 18.53 being obtained. As in the case of the diabatic

representation, the 3pz component of the S2 state is found to undergo a more

rapid depopulation than the 3py component.

To date, the most illuminating time-resolved experimental investigation

of the dynamics of ammonia following excitation to its B̃(3p) state have been

the pump-probe ionisation measurements of Ritze et al. [71]. The reported

timescale for relaxation from the B̃(3p) state were found to be sensitive to

the initial vibrational level excited with timescales of 9.5±1.5 ps and 2.5±0.5

ps being reported for excitation to the 2441 and 2331 vibrational levels of

the B̃(3p) state, respectively. The sub-picosecond timescales calculated here

for relaxation from both components of the B̃(3p) state are certainly not
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comparable with the experimentally determined values of Ritze et al., but

this does not necessarily imply a contradiction. It is evident that the rate

of relaxation from the B̃(3p) state is highly sensitive to the initial vibra-

tional state excited. The initial, vertically displaced, wavepacket used here

is comprised of a linear combination of all vibrational states of the B̃(3p)

state and so it may be of little surprise that the rate of depopulation seen

in this work is significantly different to those furnished by the excitation of

particular vibrational levels.

4.3.11 Electronic Absorption Spectra

Absorption spectra corresponding to excitation to the Ã and both compo-

nents of the doubly-degenerate B̃(3p) state were calculated from the Fourier

transforms of the wavepacket autocorrelation functions obtained from wavepacket

propagations starting in the respective states. As detailed in Section 4.3.7,

the initial wavepackets used correspond to vertical excitation of an approxi-

mate linear combination of the two tunnel-split ground vibrational states. All

calculations were performed using the diabatic representation of the wave-

function and the full eight-state model Hamiltonians, using both the two-

and four-mode models.

Shown in Figure 4.15 are the calculated and experimental Ã state spectra.

Qualitatively, good agreement between the experimental [72] spectrum and

the spectra calculated using both the two-dimensional and four-dimensional

models is found. As has long been known to be true, both calculated spec-

tra are dominated by a long progression in the umbrella inversion mode,

reflecting the pyramidal-to-planar transition that accompanies excitation to

the Ã state. Displayed in Table 4.8 are the calculated and experimentally

determined [25] peak positions and spacings. In order to afford an easier com-

parison to the experimental spectrum, both calculated spectra were shifted
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Table 4.8: Comparison of the calculated and measured peak positions (En) and
spacings (∆En) in the Ã(3s) ← X̃ spectrum of ammonia. Both calculated spec-
tra were shifted such that their origins coincided with that of the experimental
spectrum. All energies are reported in units of cm−1. † Ref. [25]

n En (2D) En (4D) En (Exp.)† ∆E (2D) ∆E (4D) ∆E (Exp.)†

0 46222 46222 46222
1 46978 46920 47057 756 698 838
2 47777 47592 47964 799 672 907
3 48601 48293 48869 824 701 905
4 49426 49023 49783 825 730 914
5 50276 49850 50730 850 827 948
6 51125 50707 51656 849 857 926
7 52041 51544 52543 916 837 887
8 52955 52440 53496 914 896 953
9 53883 53375 54454 928 935 958
10 54862 54309 55380 979 934 926
11 55867 55234 56341 1005 945 961
12 56846 56179 57300 979 945 959
13 57845 57172 58285 999 993 985
14 - 58104 59308 - 932 1023

such that their origins were brought into coincidence with that of the ex-

perimental spectrum. Overall, particularly considering the simplicity of the

model potentials used, good agreement between the calculated and experi-

mental peak spacings is seen, particularly for the two-mode model for which

the umbrella inversion is well approximated by the degree of freedom φ.

As noted in Section 4.3.10, both components of the doubly-degenerate

B̃(3p) state are bright and share the same oscillator strength. As such, a

spectrum corresponding to excitation to the B̃(3p) state was produced using

the initial state

|Ψ(t = 0)〉 =
1

2

4
∑

i=3

{|1〉〈i|+ h.c.}Θinv|Ψg〉, (4.81)

with the quantities Θinv and |Ψg〉 being defined in Section 4.3.7. That is,

the initial state used corresponds to a projection of the approximate linear
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Fig. 4.15: Calculated and experimental spectra corresponding to excitation to the
Ã(3s) state: (a) Spectrum calculated using the two-mode model; (b) spectrum
calculated using the four-mode model, and; (c) experimental spectrum adapted
from [72].
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combination of the two tunnel-split ground vibrational states onto both the

B̃y(3py) and B̃z(3pz) components of the B̃(3p) state. Shown in Figure 4.16 is

the resulting spectrum. As a result of the planar minimum energy geometries

of both components of the B̃(3p) state, the spectrum in dominated by a

single progression in the inversion mode. Due to the strong first-order and

second-order coupling of the Ã(3s) and B̃y(3pz) states, a small amount of the

intensity seen in the Ã(3s)← X̃ spectrum is found to arise due to borrowing

of intensity from the B̃(3pz)← X̃ transition, as evidenced by intensity in the

region 46000 to 57000 cm−1 seen in the B̃(3p) state spectrum. Shown in Table

4.9 is a comparison of the positions and spacings of the peaks of the calculated

and experimentally determined B̃(3p) state spectrum. To aid comparison,

the origin of the calculated spectrum was shifted so as to coincide with that of

the experimental spectrum. Overall, reasonable agreement of the calculated

and experimental spectra if found. The spacings of the peaks is, however,

somewhat overestimated in the calculated spectrum. This is presumably

a consequence of the the lack of correlation in the model potential of the

angular degrees of freedom ζ1, ζ2, and ϕ in the B̃y(3py) and B̃z(3pz) states.

4.4 Conclusions

In this chapter the effects of the non-adiabatic coupling of the Ã(3s) and X̃

states of ammonia to a number of higher-lying electronic states have been as-

sessed. By a consideration of the extended Curl equation, the X̃ and Ã(3s)

states have been shown to not constitute a Hilbert subspace at either the

FC point or the S1 minimum energy geometry. The construction of two

eight-state model Hamiltonians lends further credence to this proposition,

with their existing large diabatic coupling of the X̃ and/or Ã(3s) states and

their orthogonal complement with respect to all degrees of freedom. Most
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Fig. 4.16: Spectrum corresponding to vertical excitation to both the B̃y(3py) and
B̃z(3pz) components of the B̃(3p) state calculated using the four-mode model.

Table 4.9: Comparison of the calculated and measured peak positions (En) and
spacings (∆En) in the B̃ ← X̃ spectrum of ammonia. The calculated spectrum was
shifted such that their origins coincided with that of the experimental spectrum.
All calculated quantities were computed using the four-mode model. All energies
are reported in units of cm−1. †: Ref. [73], ‡: Ref. [74]

n En (Calc.) En (Exp.) ∆En (Calc.) ∆En (Exp.)
0 59225 59225†

1 60315 60123† 1090 898
2 61382 61055† 1067 932
3 62451 62015† 1069 960
4 63721 62997† 1270 982
5 64925 63997† 1204 1000
6 66106 65015† 1181 1018
7 67128 66043† 1022 1028
8 68217 67083† 1089 1040
9 69512 - 1295 -
10 70739 69188‡ 1227 -
11 72508 70250‡ 1769 1062
12 73372 71315‡ 864 1065
13 74712 72378‡ 1340 1063
14 76029 73455‡ 1317 1077
15 77483 74513‡ 1454 1058
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significantly, the origin of the barrier to dissociation on the S1 adiabatic po-

tential is posited to result from the strong coupling of the Ã(3s) and D̃(4s)

states, with a simple model potential based upon this assumption being able

to reproduce excellently the topologies of the corresponding adiabatic po-

tentials along the N-H dissociation coordinate. Further validation of the

model potentials constructed comes from their ability to reproduce well the

experimentally determined Ã(3s) spectrum.

Through the use of a transformation based on a block-diagonalisation of

the model potentials constructed, an assessment of the effect on the dynamics

of ammonia in its Ã(3s) state of the non-adiabatic coupling of the X̃ and

Ã(3s) states to their orthogonal complement has been made. Although the

X̃ and Ã(3s) states manifestly do not constitute a Hilbert subspace, the

effect of the neglect of the coupling of these two states to their orthogonal

complement is found to be slight: the only discernible effect of the neglect

of this coupling appears to be a small increase in the rate of dissociation.

In turn, the source of this hindrance of dissociation is found to be the large

coupling of the X̃ and Ã(3s) states to their orthogonal states by the planar

angular degrees of freedom.

Using an eight-state, four-mode model, the dynamics of ammonia follow-

ing excitation to its B̃(3p) state has been modelled. It is found that, similar

to excitation to the Ã(3s) state, the B̃(3p) state spectrum is dominated by

progressions in the inversion mode, with overlapping contributions from each

of the two components of the state. Sub-picosecond timescales for relaxation

from both components of the B̃(3p) state to the Ã state are found. Unfor-

tunately, the results obtained here are not directly comparable with the sole

time-resolved study performed to date of the relaxation of ammonia from its

B̃(3p) state [71], in which the system was prepared in specific vibrationally
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excited states. It would, therefore, be desirable to extend the work per-

formed here, in which vertical excitation to the B̃(3p) state was used, to the

preparation of specific initial vibrational states.
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Chapter 5

3-Pyrroline

5.1 Introduction

3-pyrroline (C4H6NH, see Figure 5.1) is a partially saturated five-membered

heterocyclic molecule related to pyrrole by saturation of the carbon atoms

adjacent to the N-H bond. The effect of the partial saturation of the 3-

pyrroline molecule is to render a planar ground state geometry, as adopted

by the pyrrole molecule, inaccessible. Instead, the nitrogen atom lies out

of the plane defined by the four carbon atoms, giving rise to two possible

conformers, with the N-H bond lying either axial (AX) or equatorial (EQ),

as illustrated in Figure 5.3. As shown schematically in Figure 5.4, the AX and

EQ conformers are separated by only a modest energy, ∆EEQ−AX =340 ±50

cm−1 [75], with the AX conformer lying lowest in energy. Under experimental

conditions, 3-pyrroline is found to exist in both conformers [75–78]. The

dynamics of 3-pyrroline following electronic excitation has seen little study

to date, with a notable exception being the energy-resolved photofragment

translational spectroscopy studies of Oliver et al. [75], who determined N-

H dissociation to occur following excitation to the first excited state of 3-

pyrroline.

The electronic spectrum of 3-pyrroline in the region 4.8 to 6.4 eV has

previously been reported [75], and has been taken to correspond to excita-
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Fig. 5.1: Molecular structure of 3-pyrroline.
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Fig. 5.2: Schematic adiabatic potentials corresponding to the A
′

(S0), A
′

(3s), and
A

′

(3px) states along the N-H dissociation coordinate for the planar arrangement
of the C4NH unit.

tion to two states: a lower-lying 3s-type Rydberg state and a higher-lying

3p-type Rydberg state. Using CASPT2 calculations, Oliver and co-workers

determined that the S1(3s) state is quasi-bound with respect to N-H stretch-

ing and exhibits a conical intersection with the ground electronic state for a

planar arrangement of the C4NH unit at an elongated N-H bond length. The

adiabatic potentials of these states along the N-H dissociation coordinate are

shown schematically in Figure 5.2

In this chapter a model Hamiltonian is developed for use in quantum
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(a)
(b)

(c)

Fig. 5.3: (a) Geometry of the axial conformer; (b) Geometry of the equatorial
conformer, and; (c) Geometry of the reference configuration.

dynamics simulations of the excitation of 3-pyrroline to its first two excited

states. Through the use of the improved relaxation method, initial states

corresponding to both the AX and EQ conformers are prepared, allowing for

a conformer-resolved study of the photo-induced dynamics of 3-pyrroline.

5.2 Theoretical Framework

5.2.1 The Model Hamiltonian

We take the photoexcited 3-pyrroline molecule to correspond to a labile,

dissociating hydrogen atom, denoted Hd, coupled to a 3-pyrrolinyl radical

that undergoes only small displacements. As such, we choose to use as nuclear

coordinates the spherical polar coordinates of Hd taken relative to the ground

state equilibrium position of the nitrogen atom, denoted r = (R, θ, φ). Here,

R denotes the distance of Hd from the nitrogen atom, and θ and φ the in-

and out-of-plane angles of Hd relative to the C-N-C vertex. The remaining

3N − 9 coordinates are taken to be the dimensionless mass- and frequency-

scaled normal modes Q of the pyrrolinyl fragment at the Franck-Condon
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Fig. 5.4: Schematic of the ground state adiabatic potential along the reaction
coordinate for interconversion of the EQ and AX conformers.

(FC) point. The potential matrix may thus be written

W (Q, r) = W (Q) + W (r) + W int(Q, r), (5.1)

where W (Q) and W (r) describe the diabatic potential with respect to the

uncorrelated pyrrolinyl fragment and Hd nuclear degrees of freedom, respec-

tively, and W int(Q, r) describes the correlation of the two sets of nuclear

degrees of freedom.

W (Q) is described using the vibronic coupling Hamiltonian of Köppel et

al [19, 20]. That is, we take an expansion of W (Q) about a reference point.

Collecting together terms of the same order, we may write

W (Q) = W (0)(Q) + W (1)(Q) + W (2)(Q) + · · · . (5.2)

The zeroth-order potential corresponds to a set of ground state harmonic

oscillators displaced at the vertical excitation energies Ei:
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W
(0)
ij (Q) =

(

Ei +
3N−9
∑

α=1

ωα

2
Q2

α

)

δij , (5.3)

and assumes a diagonal form as we choose the diabatic and adiabatic rep-

resentations to be equal at the reference point. The first- and second-order

potentials may be written

W
(1)
ii (Q) =

3N−9
∑

α=1

κ(i)α Qα (5.4)

W
(1)
ij (Q) =

3N−9
∑

α=1

λ(i,j)α Qα (5.5)

W
(2)
ii (Q) =

3N−9
∑

α,β=1

1

2
γ
(i)
αβQαQβ (5.6)

In general, a second-order expansion of the diabatic PESs and a linear

expansion of the nonadiabatic coupling was found to be sufficient. How-

ever, for the accurate description of some important topological features and

conical intersections between the states under consideration, the inclusion of

certain third-order and fourth-order terms was found to be necessary. The

complete third and fourth-order contributions to the diabatic potential, W (3)

and W (4), respectively, take the form

W
(3)
ii (Q) =

1

6

3N−9
∑

α,β,γ=1

ι
(i)
αβγQαQβQγ , (5.7)

W
(4)
ii (Q) =

1

24

3N−9
∑

α,β,γ,δ=1

= ǫ
(i)
αβγδQαQβQγQδ. (5.8)

It was, however, found sufficient to use the following truncated expansions:

W
(3)
ii (Q) =

1

6

3N−9
∑

α,β=1

ι
(i)
αβQαQ

2
β , (5.9)
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W
(4)
ii (Q) =

1

24

3N−9
∑

α,β=1

ǫ
(i)
αβQ

2
αQ

2
β . (5.10)

The diabatic potentials and nonadiabatic coupling along the in and out-

of-plane bending angles θ and φ are modelled by low-order Taylor expansions

about the FC point:

Wii(θ, φ, R) =κ
(i)
θ (R)θ + κ

(i)
φ (R)φ+

1

2
(γ

(i)
θθ (R)θ2

+ γ
(i)
φφ(R)φ2) +

1

6
ι
(i)
φ (R)φ3 +

1

24
ǫ
(i)
φ (R)φ4 +Wii(R)

(5.11)

Wij(θ, φ, R) = λ
(i,j)
θ (R)θ + λ

(i,j)
φ (R)φ (5.12)

That the parameters entering into the expansions 6.3 and 6.4 are written as

functions of the N-H dissociation coordinate, R, reflects that as the dissoci-

ation limit is reached the contribution of these terms to the potential should

decay to zero. This is achieved by expanding these terms about the FC point

N-H bond length, R0 as follows

κ(i)a (R) = κ(i)a (R0)[1− tanh(k(i)a R)], a = θ, φ (5.13)

γ(i)aa (R) = γ(i)aa (R0)[1− tanh(g(i)aaR)], a = θ, φ (5.14)

ǫ(i)a (R) = ǫ(i)a (R0)[1− tanh(e(i)a R)], a = θ, φ (5.15)

ι
(i)
φ (R) = ι

(i)
φ (R0)[1− tanh(I

(i)
φ R)] (5.16)

λ
(i,j)
θ (R) = λ

(i,j)
θ (R0)[1− tanh(l

(i,j)
θ R)] (5.17)
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λ
(i,j)
φ (R) = (l

(i,j)
φ,1 R + l

(i,j)
φ,2 R

2) exp(−l(i,j)φ,3 R). (5.18)

The anharmonic diabatic potentials along R are described as follows. For

states bound with respect to R, we choose to model the diabatic potentials

as Morse oscillators:

Wii(R) = Di
0

[

1− exp
(

−αi

(

R −Ri
0

))]2
; i = 1, 3 (5.19)

For the dissociative 3s state, the diabatic potential is modelled using an

avoided crossing model potential:

W22(R) =
1

2

(

νbound(R) + νdiss(R)
)

− 1

2

[

(

νbound(R)− νdiss(R)
)2

+ 4ρ2
]

1

2

,

(5.20)

with

νbound(R) = D0,b [1− exp (−αb (R− R0,b))]
2 (5.21)

νdiss(R) = P (exp (−αd(R− R0,d))) +D0,d. (5.22)

The coupling of the two subsets of nuclear degrees of freedom, r and Q,

is achieved via the use an interaction potential W int(Q, r), which we take as

W int(Q, r) = W int(1)(Q, r) + W int(2)(Q, r) + . . . , (5.23)

with

W
int(1)
ii (Q, r) =

3N−9
∑

α=1

1K(i)
α tanh(2K(i)

α R)Qα, (5.24)

W
int(1)
ij (Q, r) =

3N−9
∑

α=1

1Λ(i,j)
α tanh(2Λ(i,j)

α R)Qα, (5.25)
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W
int(2)
ii (Q, r) =

3N−9
∑

α,β=1

1Γ
(i)
αβ tanh(2Γ

(i)
αβR)QαQβ (5.26)

The terms 1K
(i)
α and 1Γ

(i)
αβ correspond to the change in the equilibrium ge-

ometry of the pyrrolinyl fragment and the rotation of the normal modes

of the pyrrolinyl fragment, respectively, as the Hd atom dissociates. The

terms 1Λ
(i,j)
α describe the corresponding changes in nonadiabatic coupling

with respect to the pyrrolinyl normal modes as the dissociation coordinate

is traversed.

In the coordinate system used, we may write the kinetic energy TN oper-

ator as

TN =TX + TRf
+

1

2

3N−9
∑

α=1

ωα

∂2

∂Q2
α

− 1

µ

(

1

R

∂2

∂R2
R +

1

R2 sin φ

∂

∂φ
sinφ

∂

∂φ
+

1

R2 sin2 φ

∂2

∂θ2

)

,

(5.27)

where ωα is the frequency of the pyrrolinyl fragment normal mode Qα, TX

denotes the centre of mass translational kinetic energy of the whole molecule,

TRf
denotes the rotational kinetic energy of the pyrrolinyl fragment, and

1

µ
=

1

mH

+
1

mf

. (5.28)

Here, mh and mf denote the masses of the hydrogen atom and the pyrrolinyl

fragment, respectively. In the following we equate the total rotational kinetic

energy and the rotational kinetic energy of the pyrrolinyl fragment, allowing

us to ignore the contributions from TX and TRf
. This approximation is

considered justifiable due to the small ratio of mH/mf .

All parameters entering into the model potential were determined via

the minimisation of the weighted root mean square deviation (RMSD) of
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the eigenvalues of the model potential and adiabatic energies calculated at a

large number of nuclear configurations, as detailed in Section 4.3.2.

5.2.2 Electronic Structure Calculations

The reference geometry chosen was the saddle point connecting the AX and

EQ conformers with respect to the N-H out-of-plane bending coordinate φ.

This geometry was optimised using the CCSD method and aug-cc-pVDZ

basis. At this geometry, the 3-pyrroline molecule possesses Cs symmetry,

and the irreducible representations of this point group will be used to label

the electronic states and nuclear degrees of freedom in the following. All

calculations of adiabatic potential energy surfaces were performed using the

equation-of-motion coupled cluster single and doubles (EOM-CCSD) method

[79]. The six lowest-lying singlet state adiabatic energies were calculated

at each geometry considered. At the reference point these correspond to

the diabatic states X̃ , Ã(3s), B̃(3px), C̃(3py), D̃(nπ∗) and Ẽ(3px). The

symmetries and vertical excitation energies of these states are given in Table

5.1. All calculations were performed using the Molpro 2009 set of programs

[63].

5.2.3 Calculation of Vibrational Eigenstates: The AX
and EQ Conformers

It is well established that both the AX and EQ conformers exist under ex-

perimental conditions [75–78]. The two conformers may be viewed as two

different vibrational eigenstates, |ΨAX〉 and |ΨEQ〉. The eigenstate |ΨAX〉

can be taken to correspond to the ground vibrational state. As such, |ΨAX〉

may be obtained through the use of the relaxation method, that is, by propa-

gating an initial state in negative imaginary time. The higher-lying eigenstate

|ΨEQ〉 cannot be calculated so straightforwardly. We here use the method
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Table 5.1: Symmetries, dominant configurations and vertical excitation energies of
the first six singlet states of 3-pyrroline at the reference point as determined from
EOM-CCSD calculations employing the aug-cc-pVDZ basis set. The bracketed
numbers displayed alongside the dominant configurations are the corresponding
coefficients. |0〉 denotes the reference (Hartree Fock) configuration.

State Symmetry Dominant configurations Vertical excitation energy (eV)
S0 A

′ |0〉 0.00

S1 A
′

12a
′ → 13a

′

(0.63) 4.64
12a

′ → 14a
′

(0.38)
11a

′ → 14a
′

(0.34)

S2 A
′

12a
′ → 15a

′

(0.54) 5.45
12a

′ → 14a
′

(0.38)
12a

′ → 13a
′

(0.34)
12a

′ → 16a
′

(0.30)

S3 A
′′

12a
′ → 8a

′′

(0.59) 5.56
12a

′ → 11a
′′

(0.30)

S4 A
′′

12a
′ → 12a

′′

(0.51) 5.61
12a

′ → 8a
′′

(0.39)
12a

′ → 17a
′′

(0.33)
12a

′ → 11a
′′

(0.31)

S5 A
′

12a
′ → 15a

′

(0.58) 5.68
12a

′ → 14a
′

(0.38)
12a

′ → 13a
′

(0.32)
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of improved relaxation to generate a vibrationally excited state that can be

taken to correspond to |ΨEQ〉. To do so, we make use of the approxima-

tion that the AX and EQ conformers are connected by the N-H out-of-plane

bending mode φ. Doing so, we define an initial state with density localised

at φ ∼ −1 radians. The A-vector used at each time step in the improved

relaxation calculation is then taken as that which gives the greatest overlap

with the wavefunction at the previous time step. In this manner, an eigen-

state of the Hamiltonian may be obtained that has density localised about

φ ∼ −1, and as such may be taken to correspond to the EQ conformer.

5.2.4 Wavepacket Propagations

Wavepacket propagations were performed using the MCTDH method. In-

dividual calculations corresponding to excitation of the |ΨAX〉 and |ΨEQ〉

vibrational states to both the Ã and B̃ electronic states were performed by

vertically displacing the eigenstates to the corresponding electronic states,

that is,

|ΨC(0)〉 = {|f〉〈1|+ h.c.} |ΨC〉; f = 2, 3, C = AX,EQ. (5.29)

In order to circumvent the use of prohibitively long grids for the dissocia-

tive degree of freedom R, a CAP was placed at a value of R corresponding

to an N-H bond length of 6.4 a.u..

State- and conformer-resolved absorption spectra were calculated from

the Fourier transforms of the wavepacket autocorrelation functions calculated

for each wavepacket propagation.
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Table 5.2: Linear intrastate coupling constants obtained from the fitting of the
model potential to adiabatic energies calculated at the EOM-CCSD/aug-cc-pVDZ
level. All quantities are reported in eV.

Degree of freedom S1 S2

Q1 -0.0990 -0.0702
Q3 0.0525 0.0452
Q4 0.1163 0.0941
Q6 -0.1703 -0.1230
Q9 -0.0565 -0.0473
Q10 -0.0934 -0.0817
Q12 -0.0537 -0.0613
Q14 0.0593 0.1503
Q17 -0.0222 -0.0798
Q19 -0.0210 -0.0265
Q20 0.0255 -0.0251
Q22 0.1038 0.1209
Q24 0.0328 0.0161
Q26 -0.0627 -0.0459
φ 0.1552 0.1321

Table 5.3: Linear interstate coupling constants obtained from the fitting of the
model potential to adiabatic energies calculated at the EOM-CCSD/aug-cc-pVDZ
level. All quantities are reported in eV.

Degree of freedom S0, S1 S0, S2 S1, S2

Q4 0.0035 0.0000 0.0141
Q14 0.0000 0.0000 -0.0120
Q17 0.0000 0.2410 -0.0336

5.3 Results

5.3.1 Model Diabatic Potentials

A total of 1019 parameters non-zero by symmetry entering the model diabatic

potential were determined by fitting to a total of 5322 calculated adiabatic

energies. A weighted RMSD of the model and calculated adiabatic energies

of 0.067 eV was attained, indicating that the model potential constructed

may faithfully reproduce the adiabatic surfaces in the regions of nuclear con-

figuration space of interest.

We are interested in the dynamics of the 3-pyrroline molecule following
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excitation to the Ã and B̃ states, and the first-order terms entering into

the expansion of the 3×3 block of W with elements Wij, i, j = 1, 2, 3 can be

expected to be of greatest importance with respect to this. These parameters

are listed in Tables 5.2 and 5.3. We note that as the X̃ , Ã and B̃ states are all

of A
′

symmetry at the point of expansion, they may only be coupled to first-

order by the totally symmetric 3-pyrrolinyl modes Qα, Γα = A
′

. The first-

order intrastate coupling constants, κ
(i)
α , which give the gradients of the ith

diabatic state with respect to the modes Qα, are also non-zero only for totally

symmetry degrees of freedom. We thus restrict ourselves to consideration of

only the totally symmetric subset of nuclear degrees of freedom. Significant

gradients of the Ã and B̃ state potentials are found for the 3-pyrrolinyl modes

Q1 (C-N-C out-of-plane bending), Q4 (ring stretching and methine wagging),

Q6 (ring breathing), Q14 (symmetric methyline twisting), Q17 (symmetric

methyline wagging) and Q22 (symmetric methyline stretching), and φ, the

out-of-plane N-H bending coordinate.

At the reference point, the X̃ and B̃ states are coupled strongly to first-

order by the mode Q17, while the states Ã and B̃ are coupled significantly by

the modes Q4, Q14 and Q17. Only weak coupling between the X̃ and Ã states

is found to exist at this point. However, a large variation of the first-order

interstate coupling constants λ
(1,2)
α (R) with the N-H bond length is found.

Specifically, at the conical intersection between the X̃ and Ã states (located

at R =1.66 a.u., corresponding to an N-H bond length of 3.58 a.u.) the

states X̃ and Ã are found to be coupled strongly by the degrees of freedom

Q4, Q17 and φ. The parameters entering into the expansion of the first-order

interstate coupling constants are displayed in Table 5.4.

From a consideration of the fitted parameters we may isolate a subset

of eight nuclear degrees of freedom that can be expected to be of greatest
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Table 5.4: Fitted parameters entering into the expansion of the linear interstate

coupling constants λ
(i,j)
α with respect to the N-H dissociation coordinate R. The

terms 1Λ
(i,j)
α are given in eV, all other quantities are dimensionless.

Mode 1Λ
(1,2)
α

2Λ
(1,2)
α

1Λ
(1,3)
α

2Λ
(1,3)
α

1Λ
(2,3)
α

2Λ
(2,3)
α

Q4 0.1193 2.7031 -0.1514 1.1373 0.3603 0.9606
Q14 0.0633 1.4167 0.3738 0.0180 0.0598 0.0192
Q17 0.4104 0.0264 -1.5021 0.0325 -0.0436 0.0277

l
(1,2)
φ,1 l

(1,2)
φ,2 l

(1,2)
φ,3

φ -4.5622 0.4309 0.8341

Fig. 5.5: The normal modes of the 3-pyrrolinyl radical important for the description
of the photochemistry of 3-pyrroline. (a.) Q1 (C-N-C out-of-plane bending), (b.)
Q4 (ring stretching and methine wagging), (c.) Q6 (ring breathing), (d.) Q14

(symmetric methyline twisting), (e.) Q17 (symmetric methyline wagging), and (f.)
Q22 (symmetric methyline stretching).

importance for the description of the dynamics of 3-pyrroline following exci-

tation to the Ã and B̃ states: the 3-pyrrolinyl modes Q1, Q4, Q6, Q14, Q17

and Q22 (illustrated in Figure 5.5), and R and φ, the N-H dissociation and

out-of-plane bending coordinates, respectively.

Of particular importance to the photoinduced dynamics of 3-pyrroline

are the nuclear degrees of freedom Q1 and φ, which together describe the

planarisation of the C4NH subunit following excitation to both the Ã and

B̃ states. For both the AX and EQ conformers in the X̃ state, both the

nitrogen and hydrogen atoms of the N-H unit lie out of the plane defined by
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the four carbon atoms. Following excitation to both the Ã and B̃ states, sp2

hybridisation of the nitrogen centre occurs for both the AX and EQ conform-

ers, driving a planarisation of the C4NH unit. The model diabatic potentials

for the X̃ , Ã and B̃ states as a function of the Q1 and φ degrees of freedom

are shown in Figure 5.6. Through the inclusion of selected second, third and

fourth-order terms, namely γ
(i)
φ,Q1

, ι
(i)
φ,Q1

and ǫ
(i)
φ,Q1

, a faithful description of the

planarisation of the C4NH unit is found to be given by the model diabatic

potential.

Shown in Figure 5.7 are the model adiabatic and diabatic potentials of

the first two electronic states of 3-pyrroline in the space spanned by the N-H

dissociation coordinate R and the N-H out-of-plane bending coordinate φ.

It is worth drawing comparison here to the photodissociation of ammonia

in its first electronically excited state. As is well known, the planarisation

of the ammonia molecule is a prerequisite for unhindered dissociation of the

molecule following excitation to its Ã state, with the barrier to dissociation

being modulated accordingly by the umbrella inversion coordinate. Similarly,

it is found that for 3-pyrroline the barrier to N-H dissociation is increased

for geometries for which the N-H bond lies out of the plane defined by the

C-N-C vertex, as illustrated in Figure 5.8.

5.3.2 Calculation of the |ΨAX〉 and |ΨEQ〉 Vibrational

Eigenstates

Using the method of improved relaxation, the eigenstates |ΨAX〉 and |ΨEQ〉

as defined in Section 5.2.3 were calculated. The two-dimensional reduced

density for the degrees of freedom Q1 and φ are shown in Figure 5.9 for the

calculated eigenstates |ΨAX〉 and |ΨEQ〉. It is found that the two eigenstates

each have density localised over one, and only one, of the two minima along

φ, and as such validation of our taking the two states to correspond to the AX
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Fig. 5.6: Model diabatic surfaces along the N-H out-of-plane bending mode φ and
the C-N-C bending mode Q1: (a) the X̃ state potential; (b) the Ã state potential,
and; (c) the B̃ state potential.
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Fig. 5.7: Model potential surfaces for the ground and first excited states of 3-
pyrroline along the N-H out-of-plane bending mode φ and the N-H dissociation
coordinate R. (a) Adiabatic surfaces, (b) Diabatic surfaces.
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Fig. 5.9: The two-dimensional reduced density plotted along the C-N-C inversion
coordinate Q1 and N-H out-of-plane bending coordinate φ for: (a) the vibrational
eigenstate |ΨAX〉 calculated using the method of relaxation, and; (b) the vibra-
tional eigenstate |ΨEQ〉 calculated using the method of improved relaxation.

and EQ conformers is provided. The difference in energy of the eigenstates

|ΨAX〉 and |ΨEQ〉, ∆EEQ−AX , thus obtained is 422.36 cm−1, which compares

favourably to an experimentally determined value of 340 ± 50 cm−1 [75].

5.3.3 Excitation to the Ã State

Quantum dynamics simulations using the |ΨAX〉 and |ΨEQ〉 eigenstates were

performed using the eight nuclear degrees of freedom Q1, Q4, Q6, Q14, Q17,

Q22, R and φ, and the three electronic states X̃ , Ã and B̃. For both cal-

culations a propagation time of 700 fs was used. All other details of the

calculations are summarised in Table 5.5.
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Table 5.5: Computational details of the wavepacket propagations corresponding to
excitation to the Ã state. The DVR types exp and HO correspond to exponential
and Harmonic oscillator DVRs, respectively. Ni, Nj are the number of primitive
DVR functions used to describe each particle. ni are the number of single-particle
functions used for each state.

Particle DVR type Ni, Nj n1, n2, n3

R exp 81 12, 10, 5
φ exp 101 12, 12, 5

Q1, Q6 HO 41, 31 10, 9, 5
Q4, Q14 HO 31, 41 10, 9, 5
Q17, Q22 HO 31, 31 10, 7, 3
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Fig. 5.10: Diabatic population probabilities following excitation to the Ã state:
(a) population probabilities following vertical excitation of the |ΨAX〉 state, (b)
population probabilities following vertical excitation of the |ΨEQ〉 state.

The diabatic electronic state population probabilities following vertical

excitation of the |ΨAX〉 and |ΨEQ〉 eigenstates to the Ã state are displayed in

Figure 5.10. In both cases the evolving wavepacket remains predominantly

in the initially excited Ã state, but with an initial oscillatory transfer of

population between the Ã and X̃ states for the first 250 fs. By 700 fs, the

population probabilities of the X̃ and Ã states following excitation of the

|ΨAX〉 (|ΨEQ〉) eigenstates are, respectively, 0.096 (0.077) and 0.897 (0.091).

The state-resolved, time-cumulated probabilities of N-H dissociation fol-

lowing excitation to the Ã state are shown in Figure 5.11. These quantities
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were calculated by integrating over time the flux passing through a divid-

ing surface placed at an N-H bond length of 6.4 a.u.. We thus define the

probability of dissociation as the expectation value of the projector onto the

subspace for which the N-H bond length is greater than 6.4 a.u.. For both

excitation of the |ΨAX〉 and |ΨEQ〉 eigenstates, dissociation is found to occur

almost entirely diabatically, that is in the Ã state. The calculated branching

ratios for dissociation on the Ã and X̃ states,

ΓÃ
X̃

=
P

(2)
d (t = 700)

P
(1)
d (t = 700)

, (5.30)

are 81.3 and 170.8 for excitation of the |ΨAX〉 and |ΨEQ〉 eigenstates, respec-

tively. Here P
(1)
d and P

(2)
d denote, respectively, the probability of dissociation

in the Ã(3s) and B̃(3px) states. The preponderance of the population of the

X̃ state is found to remain in the interaction region of this state, with proba-

bilities of forming hot ground state molecules of 0.086 and 0.070 for excitation

of the |ΨAX〉 and |ΨEQ〉 eigenstates, respectively. The calculated branching

ratios ΓÃ
X̃

are found to compare favourably with the recent energy-resolved

photofragment translational spectroscopy study of Oliver et al. [75], who ob-

served only the formation of ground state (X̃) 3-pyrrolinyl products following

excitation to the Ã state.

Relatively long timescales for N-H dissociation following excitation of

both the |ΨAX〉 and |ΨEQ〉 eigenstates are found. Hindrance of N-H disso-

ciation in 3-pyrroline may be rationalised by reference to the topology of

the diabatic coupling between the X̃ and Ã states in the space spanned by

the N-H stretching coordinate R and the N-H out-of-plane bending coor-

dinate φ. As shown in Figure 5.12, the model diabatic coupling of the X̃

and Ã states is large in magnitude for values of φ significantly displaced

from its reference value in the sub-volume of nuclear configuration space
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Fig. 5.11: Time-cumulated N-H dissociation probabilities following excitation to
the Ã state: (a) dissociation probabilities following vertical excitation of the |ΨAX〉
state, (b) dissociation probabilities following vertical excitation of the |ΨEQ〉 state.

spanned by R and φ around the barrier to dissociation on the Ã state dia-

batic potential. The corresponding adiabatic potential, S1(3s), thus exhibits

an increased barrier to dissociation for displacements along φ relative to the

reference configuration, for which the C2NH unit is very almost planar. As

illustrated in Figure 5.12, modulation of the height of the barrier to dissoci-

ation on the S1(3s) surface by φ results in an adiabatic potential that may

effectively funnel the wavepacket to the conical intersection with the ground

state only when φ is close to its reference value. However, the vertically ex-

cited ground state wavepackets (both |ΨAX〉 and |ΨEQ〉) are initially localised

around φ0,AX ∼ +1 and φ0,EQ ∼ −1, respectively, and are thus initially dis-

placed to the repulsive walls of the S1(3s) state potential. Oscillatory motion

along the degree of freedom φ is thus driven, frustrating the passage of the

wavepacket over the barrier to dissociation.

5.3.4 Excitation to the B̃ State

Quantum dynamics simulations using the |ΨAX〉 and |ΨEQ〉 eigenstates were

performed using the eight nuclear degrees of freedom Q1, Q4, Q6, Q14, Q17,
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Fig. 5.12: Elements of the model diabatic and adiabatic potential matrices along
the N-H dissociation coordinate R and the N-H out-of-plane bending mode φ. (a)
The diabatic potential for the Ã state, (b) the adiabatic potential for the S1 state,
(c) the diabatic coupling between the X̃ and Ã states.
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Table 5.6: Computational details of the wavepacket propagations corresponding to
excitation to the B̃ state. The DVR types exp and HO correspond to exponential
and Harmonic oscillator DVRs, respectively. Ni, Nj are the number of primitive
DVR functions used to describe each particle. ni are the number of single-particle
functions used for each state.

Particle DVR type Ni, Nj n1, n2, n3

R exp 81 12, 10, 5
φ exp 101 12, 12, 12

Q1, Q6 HO 41, 31 10, 9, 12
Q4, Q14 HO 31, 41 10, 9, 5
Q17, Q22 HO 31, 31 10, 7, 3

Q22, R and φ, and the three electronic states X̃ , Ã and B̃. A propagation

time of 1500 fs was used. The details of these propagations are given in Table

5.6.

The diabatic electronic states populations following vertical excitation of

the |ΨAX〉 and |ΨEQ〉 eigenstates to the B̃ state are displayed in Figure 5.13.

For both the |ΨAX〉 and |ΨEQ〉 eigenstates the relaxation to the Ã(3s) state

is essentially complete by 1.5 ps, at which point the population probabilities

of the X̃ , Ã and B̃ states for the |ΨAX〉 (|ΨEQ〉) eigenstate are 0.028 (0.019),

0.929 (0.937), and 0.042 (0.0434), respectively. The relatively slow timescale

for internal conversion from the B̃ state to the Ã state is attributable to the

relatively small first-order intrastate coupling constants that exist to couple

these two states, the values of which are given in Table 5.3.

Experimentally, the energy-resolved photofragment translational spec-

troscopy study of Oliver et al. [75] reports an increase in the yield of low

kinetic energy H-atoms produced following excitation of 3-pyrroline at wave-

lengths of less than 230 nm, at which the B̃ state becomes accessible. This

rise in the production of slow H-atoms with increasing excitation energy was

speculated to arise from either internal conversion from the bound B̃ state to

the ground state, or from unimolecular decay following two-photon excitation
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Fig. 5.13: Diabatic population probabilities following excitation to the B̃ state:
(a) population probabilities following vertical excitation of the |ΨAX〉 state, (b)
population probabilities following vertical excitation of the |ΨEQ〉 state.

to one of several ‘super-excited’ states. The results presented here are not

consistent with internal conversion from the B̃ state to form vibrationally

hot ground state molecules, by virtue of the very small population probabil-

ities of the ground state following excitation of both the |ΨAX〉 and |ΨEQ〉

eigenstates to the B̃ state. We do note, however, that the model potential

presented here is rather simple and as such we cannot definitively rule out

the possibility of the existence of an accessible pathway connecting the B̃

and X̃ states.

The state-resolved, time-cumulated probabilities of N-H dissociation fol-

lowing excitation to the B̃ state are shown in Figure 5.14. As in the case of

direct excitation to the Ã state, diabatic N-H dissociation is found to occur

almost exclusively, with calculated branching ratios ΓÃ
X̃

of 211.7 and 734.4

for the |ΨAX〉 and |ΨEQ〉 eigenstates, respectively.
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Fig. 5.14: Time-cumulated N-H dissociation probabilities following exciation to the
B̃ state: (a) dissociation probabilities following vertical excitation of the |ΨAX〉
state, (b) dissociation probabilities following vertical excitation of the |ΨEQ〉 state.

5.4 Electronic Absorption Spectra

The only reported experimental electronic absorption spectrum of 3-pyrroline

is that of Oliver et al. [75]. This spectrum, measured between 4.9 and 6.4

eV, shows no clear vibrational structure and exhibits a long onset, starting

from ∼5 ev and reaching a maximum at ∼5.9 eV. We report here calculated

spectra corresponding to the excitation of the |ΨAX〉 and |ΨEQ〉 eigenstates

to both the Ã and B̃ states.

Shown in Figure 5.15 are the calculated spectra corresponding to vertical

excitation of the |ΨAX〉 and |ΨEQ〉 eigenstates to the Ã state. For both cases,

a damping time of 95 fs was used to account for the homogeneous broadening

of the spectra due to excluded degrees of freedom. Both spectra appear to

be dominated by progressions in modes with frequencies of ∼0.05 eV. We

estimate the frequency ω
(i)
α of a mode indexed by α in the electronic state

indexed by i from the periodicity of the expectation value 〈Qα〉(t) calculated

following excitation to the ith electronic state. In the Ã state, the modes Q1

and φ are estimated to have frequencies of 0.050 eV and 0.051 eV, respec-
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Fig. 5.15: Spectra calculated from the Fourier transforms of the wavepacket auto-
correlation functions following excitation to the Ã state. (a) Absorption spectrum
corresponding to excitation of the AX conformer to the Ã state, and; (b) Absorp-
tion spectrum corresponding to excitation of the EQ conformer to the Ã state.

tively. As such, we determine the dominant features seen in these spectra

to be overlapping progressions in these two degrees of freedom. Collectively

these two modes describe the planarisation of C4NH unit upon electronic

excitation, which is driven upon excitation to the Ã state. Shown in Figure

5.16 are the calculated values of 〈Q1〉(t) and 〈φ〉(t) following excitation to

the Ã state. It is seen that oscillatory motion along both degrees of freedom

occurs, with a gradual damping of the amplitude of the motion with time

driving the system towards a planar arrangement of the C4NH unit. A sim-

ilar evolution of the system is found to occur for following excitation of the

|ΨEQ〉 eigenstate, owing to the existence of the common minimum in the Ã

state.

Figure 5.17 shows the calculated spectra corresponding the vertical exci-

tation of the |ΨAX〉 and |ΨEQ〉 eigenstates to the B̃ state. As in the case of

excitation to the Ã state, the spectra are found to be dominated by progres-

sions in modes with frequencies of ∼0.05 eV. Again, these progressions are
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Fig. 5.16: Expectation values 〈Q1〉 and 〈φ〉 calculated following excitation of the
|ΨAX〉 conformer to the Ã state.

attributed to the modes Q1 and φ. Shown in Figure 5.18 are the expectation

values 〈Qq〉 and 〈φ〉 calculated following excitation of the |ΨEQ〉 eigenstate to

the B̃ state. Similar to the case of excitation to the Ã state, a planarisation

of the system is found to be driven following excitation to the B̃ state.

Finally, we show in Figure 5.19 the composite spectrum formed from

the weighted sum of the four spectra corresponding each to excitation of

one of the |ΨAX〉 and |ΨEQ〉 eigenstates to one of the Ã and B̃ states,

with the weights used being the products of: (i) the calculated oscillator

strengths of the electronic states, and; (ii) the Boltzmann coefficient of the

vibrational state calculated using the experimentally determined value of

∆EEQ−AX =340 ±50 cm−1 [75].

5.5 Discussion and Conclusions

Using the MCTDH method for wavepacket propagation in conjuction with

the improved relaxation method for the generation of vibrational eigenstates,

it has been possible to perform conformer-resolved quantum dynamics simu-

lations of 3-pyrroline following excitation to its first two electronically excited
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Fig. 5.17: (a) Calculated absorption spectrum corresponding to excitation of the
AX conformer to the B̃ state. (b) Calculated absorption spectrum corresponding
to excitation of the EQ conformer to the B̃ state.
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Fig. 5.18: Expectation values 〈Q1〉 and 〈φ〉 calculated following excitation of the
|ΨAX〉 conformer to the B̃ state.
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Fig. 5.19: Combined spectrum corresponding to excitation of the AX and EQ
eigenstates to both the Ã and B̃ electronic states. Each contribution is weighted
by both the calculated oscillator strength of the electronic state and Boltzmann
factors for the vibrational states calculated using the experimentally determined
value of ∆EEQ−AX=340 cm−1 [75]. For clarity, the combined spectrum is shifted
upwards relative to the individual spectra.
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states.

Pronounced similarities in the evolution of initial wavepackets correspond-

ing to vertical excitation of the |ΨAX〉 and |ΨEQ〉 eigenstates to both the Ã

and B̃ states are found, with the calculated rates of N-H dissociation, evolu-

tion of state populations and branching ratios between the two N-H dissoci-

ation channels being much the same in each case. The similarities regarding

the manner in which N-H dissociation proceeds may be rationalised by the

common quasi-planar local minima shared by the |ΨAX〉 and |ΨEQ〉 states

in both the electronically excited states Ã and B̃, and that the planarisa-

tion of the C2NH unit is found to be required for unhindered dissociation to

occur in the Ã state of 3-pyrroline. Both the |ΨAX〉 and |ΨEQ〉 eigenstates

are vertically displaced to the repulsive walls of the Ã state potential along

the N-H out-of-plane bending mode φ, resulting in a similar frustration of

N-H dissociation in each case. Further, the propensity for dissociation to

occur from a planar arrangement of the C2NH unit efficiently funnels the

evolving wavepacket in each case towards the conical intersection with the

ground state that is located at an elongated N-H bond length, resulting in

a dominance of diabatic dissociation following excitation of both the |ΨAX〉

and |ΨEQ〉 eigenstates.

The calculated electronic absorption spectra corresponding to excitation

of each of the |ΨAX〉 and |ΨEQ〉 eigenstates to each of the Ã and B̃ states are

all found to be dominated by progressions in the two modes Q1 and φ, which

together describe the planarisation of the C4NH unit. Again, similarities may

be drawn with ammonia, whose spectra corresponding excitation to its first

excited state is well known to be dominated by progressions in the umbrella

inversion mode, owing to the planarisation of the molecule in its Ã state.
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Chapter 6

Pyrrole

6.1 Introduction

The photodissociation of heteroaromatic molecules via a πσ∗ state is now

well established as an important mechanism by which these molecules may

relax following photoexcitation [5, 80]. This process has been the subject of

numerous experimental [5, 9] and theoretical [6, 81] studies in recent years,

prompted partly as this mechanism is believed to endow a range of biolog-

ically important molecules, including aromatic amino acids and the DNA

bases, with photostability.

Pyrrole (C4H5N, see Figure 6.1), may be considered a prototype for

this class of systems, and as such has been the focus of many recent stud-

ies [?, 69, 82–93]. The electronic spectrum of pyrrole exhibits a broad, in-

tense band centred around 6 eV [94], believed to correspond predominantly

to dipole-allowed transitions to the first two B2(ππ
∗) and A1(ππ

∗) valence

states [94, 95]. Two 3s Rydberg states, A2(3s) and B1(3s), are known to

exist at lower energies. As a result of strong vibronic coupling to higher

lying πσ∗ states, these 3s Rydberg states acquire valence πσ∗ character, and

consequently become dissociative, along the N-H dissociation coordinate. Il-

lustrated schematically in Figure 6.2 are the topologies of these states along

the N-H dissociation coordinate.
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Fig. 6.1: Molecular structure of pyrrole.

E
ne

rg
y

RNH

A1(S0)

A2(3s)

B1(3s)

A1(ππ*)B2(ππ*)

Fig. 6.2: Schematic adiabatic potentials corresponding to the A1(S0), A2(3s),
B1(3s), A1(ππ

∗), and B2(ππ
∗) states along the N-H dissociation coordinate.
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The quantum dynamics simulations of Domcke et al. [69, 82–84] have

established a timescale of ∼30 fs for direct dissociation of the high-energy

components of the wavepacket following excitation to the A2(3s) and B1(3s)

states. Support for this assignment has come from the time-resolved veloc-

ity map imaging studies of Stavros et al. [96]. However, a second, slower

timescale for N-H dissociation of ∼120 fs has also been reported by both

Stavros et al. and Lippert and co-workers that so far has not been found to

be replicable by theoretical means.

The photofragment translational spectroscopy studies of Cronin et al. [90]

and the photofragment velocity map imaging experiments of Wei and co-

workers [92] suggest that following excitation to B2(ππ
∗) direct dissociation

on the A2(3s) state still occurs. However, concomitant with the increase in

excitation energy has been found to be an increase in the yield of low kinetic

energy H-atoms produced [90], attributed to statistical dissociation follow-

ing internal conversion to the ground state. It has thus been inferred that

an efficient relaxation pathway exists to connect the B2(ππ
∗) and ground

states. Identification of potentially accessible pathways that may radiation-

lessly connect these two states has been provided by the semi-classical surface

hopping calculations of Barbatti and co-workers [86–89]. Specifically, essen-

tially barrierless pathways along ring-puckering and ring-opening coordinates

were found to connect the Franck-Condon point and conical intersections be-

tween the B2(ππ
∗) and ground states.

To date, the only fully quantum mechanical wavepacket propagation sim-

ulations of the nuclear dynamics of pyrrole upon excitation to the B2(ππ
∗)

state has been conducted by Faraji et al. [85]. Ultrafast internal conversion,

on a timescale of ∼100 fs, to the dissociative A2(3s) and B1(3s) states from

the initially excited states was found to occur. However, the model Hamilto-
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nian used was acknowledged to be incapable of the description of the origin of

the significant yield of low kinetic energy H-atoms observed experimentally.

In this chapter, previous work is built upon through the construction of

a model Hamiltonian capable of describing the nuclear dynamics of pyrrole

following excitation to a manifold of five excited states, namely the A2(3s),

B1(3s), A2(3pz), A1(ππ
∗) and B2(ππ

∗) states. CASPT2 calculations have

been used to construct detailed potential energy surfaces along all nuclear

degrees of freedom. A model Hamiltonian based on the vibronic coupling

Hamiltonian [19, 20] is developed and parameterised by fitting to this data.

The model Hamiltonian constructed is used to simulate the dynamics of pyr-

role following excitation to the A2(3s), A1(ππ
∗) and B2(ππ

∗) states. Further,

the electronic absorption spectrum of pyrrole in the region 5.5 to 6.5 eV is

calculated and characterised, and comparison to previous experimental and

theoretical studies is drawn. It is found that the previously neglected A2(3pz)

Rydberg state plays an active role following excitation to the B2(ππ
∗) state

and is required to reproduce in a satisfactory manner the first band in the

electronic absorption spectrum of pyrrole.

6.2 Theoretical Framework

6.2.1 The Model Hamiltonian

The starting point in the construction of our model Hamiltonian is the vi-

bronic coupling Hamiltonian of Köppel et al [19, 20]. As is stands, however,

this model is not entirely suitable for our needs: a low-order expansion of the

diabatic potential matrix will not suffice to describe large amplitude motion

such as the N-H dissociation pathways known to be of utmost importance

with regard to the photochemistry of pyrrole. We here, however, do take

the pyrrolyl radical C4H4N to undergo only small amplitude displacements
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following electronic excitation. As such, we chose as the first of our 3N -

9 nuclear coordinates the normal modes {Qα}; α = 1, . . . , 3N − 9, of the

pyrrolyl radical at the geometry corresponding to the arrangement of the

C4H4N moiety at the Franck-Condon point of the parent pyrrole molecule.

As the remaining three coordinates we choose the spherical polar coordinates

of the hydrogen atom of the N-H bond, denoted Hd, taken relative to the po-

sition of the nitrogen atom at the Franck-Condon point, XFC
N , of the parent

pyrrole molecule, denoted r = (R, θ, φ). Here, R denotes the distance of Hd

from XFC
N , while θ and φ correspond, respectively, to the in- and out-of-plane

angles formed by the N-Hd bond relative to the plane defined by the C-N-C

vertex.

Making use of the division into the two subsets of degrees of freedom Q

and r, we write the full potential as a sum of three parts,

W (Q, r) = W (Q) + W (r) + W int(Q, r). (6.1)

where, W int(Q) describes the correlation of the two subsets of nuclear de-

grees of freedom Q and r. As alluded to above, we model the model diabatic

potential in the space spanned by the degrees of freedom Q, W (Q), by a

vibronic coupling Hamiltonian:

W (Q) = W (0)(Q) + W (1)(Q) + W (2)(Q) + · · · , (6.2)

with the terms appearing in Equation 6.2 being given in Chapter 3.8.

The potential in the space spanned by the degrees of freedom r is modelled

as follows. The diabatic potentials and nonadiabatic coupling along the in-

and out-of-plane bending angles θ and φ are modelled by low-order Taylor

expansions about the Franck-Condon point:
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Wii(θ, φ, R) = κ
(i)
θ (R)θ + κ

(i)
φ (R)φ+

1

2
(γ

(i)
θθ (R)θ2

+ γ
(i)
φφ(R)φ2) +

1

24
ǫ
(i)
φ (R)φ4δi6 + Wii(R)

(6.3)

Wij(θ, φ, R) = λ
(i,j)
θ (R)θ + λ

(i,j)
φ (R)φ (6.4)

That the modelling of the potential along φ for the sixth diabatic state,

corresponding to the B2(ππ
∗) state, requires the inclusion of a fourth-order

term is enforced by the double-well topology of the corresponding adiabatic

potential. Whilst it is possible that this feature of the adiabatic potential is

the result of the coupling of the B2(ππ
∗) state to a higher-lying state, such a

treatment is not within the scope of this work, owing to the need to truncate

the subspace of electronic states considered at a tractable level.

The parameters entering into the expansions 6.3 and 6.4 are written as

functions of the N-H dissociation coordinate, R. This reflects that as the

dissociation limit is reached the contribution of these terms to the potential

should decay to zero. This is achieved by expanding these terms about the

Franck-Condon N-H bond length, R0, as follows:

κ(i)a (R) = κ(i)a (R0)[1− tanh(k(i)a R)], a = θ, φ (6.5)

γ(i)aa (R) = γ(i)aa (R0)[1− tanh(g(i)aaR)], a = θ, φ (6.6)

ǫ
(6)
φ (R) = ǫ

(6)
φ (R0)[1− tanh(e

(6)
φφR)] (6.7)

λ(i,j)a (R) = λ(i,j)a (R0)[1− tanh(l(i,j)a R)], a = θ, φ (6.8)

The anharmonic diabatic potentials along R are described as follows. For

states bound with respect to R, we choose to model the diabatic potentials

Pyrrole 146



Theoretical Framework 6.2

as Morse oscillators:

W bound
ii (R) = Di

0

[

1− exp
(

−αi

(

R −Ri
0

))]2
(6.9)

For the dissociative 3s states, the diabatic potentials are modelled using

avoided crossing model potentials:

W diss
ii (R) =

1

2

(

νboundi (R) + νdissi (R)
)

− 1

2

[

(

νboundi (R)− νdissi (R)
)2

+ 4λ2i

]
1

2

,

(6.10)

with

νboundi (R) = Di
0,b

[

1− exp
(

−αi
b

(

R− Ri
0,b

))]2
(6.11)

νdissi (R) = Pi

(

exp
(

−αi
d(R− Ri

0,d)
))

+Di
0,d. (6.12)

The coupling of the two subsets of nuclear degrees of freedom, r and Q,

is achieved via the use the interaction potential W int(Q, r), which we take

as

W int(Q, r) = W int(1)(Q, r) + W int(2)(Q, r) + . . . , (6.13)

with

W
int(1)
ii (Q, r) =

3N−9
∑

α=1

1K(i)
α tanh(2K(i)

α R)Qα, (6.14)

W
int(1)
ij (Q, r) =

3N−9
∑

α=1

1Λ(i,j)
α tanh(2Λ(i,j)

α R)Qα, (6.15)

W
int(2)
ii (Q, r) =

3N−9
∑

α,β=1

1Γ
(i)
αβ tanh(2Γ

(i)
αβR)QαQβ (6.16)
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The terms 1K
(i)
α and 1Γ

(i)
αβ correspond to the change in the equilibrium ge-

ometry of the pyrrolyl fragment and the rotation of the normal modes of the

pyrrolyl fragment, respectively, as the N-H bond dissociates. The terms 1Λ
(i,j)
α

describe the corresponding changes in nonadiabatic coupling with repect to

the pyrrolyl normal modes as the dissociation coordinate is traversed.

In the coordinate system used, we may write the kinetic energy TN oper-

ator as

TN = −1

2

3N−9
∑

α=1

ωα

∂2

∂Q2
α

− 1

µ

(

1

R

∂2

∂R2
R +

1

R2 sinφ

∂

∂φ
sinφ

∂

∂φ
+

1

R2 sin2 φ

∂2

∂θ2

)

,

(6.17)

where ωα is the frequency of the pyrrolyl fragment normal mode Qα, and

1

µ
=

1

mH

+
1

mf

. (6.18)

Here, mh and mf denote the masses of the hydrogen atom and the pyrrolyl

fragment, respectively.

6.2.2 Fitting of the Model Potential and Electronic

Structure Calculations

The parameters entering into the expansion of the model potential were de-

termined through the minimisation of the weighted root mean square devia-

tion (RMSD) of the model and calculated adiabatic energies as described in

Section 4.3.2.

The reference geometry used corresponds to the FC point, which was

optimised using the MP2 method, employing the aug-cc-pVDZ basis. The

normal modes of the pyrrolyl radical in the geometry corresponding to the

removal of the active hydrogen atom from the parent pyrrole molecule were
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also calculated using this method and basis. Both calculations were made

using the GAUSSIAN 03 package [97].

Calculations of the adiabatic potentials were performed using the com-

plete active CASPT2 method. In order to properly describe the A2(3s),

B1(3s), A1(ππ
∗), and B2(ππ

∗) states, an active space consisting of the 8a1(σ),

1b1(π), 2b1(π), 1a2(π), 10a1(3s/σ
∗), 3b1(π

∗) and 2a2(π
∗) orbitals was used.

Additionally, the 11a1(3pz) orbital was included in order to allow for the de-

scription of the low-lying A2(3pz) state. Thus, an active space consisting of

8 electrons in 8 orbitals was used in all calculations.

In order to attain a balanced description of the calculated potentials, all

reference CASSCF calculations were averaged equally over the seven lowest-

lying electronic states, corresponding at the FC point, in ascending order, to

the adiabatic states A1(S0), A2(3s), B1(3s), A2(3pz), A1(ππ
∗), B2(ππ

∗), and

B1(3pz). The symmetries and vertical excitation energies of these states are

given in Table 6.1. All of the stated states were used in the construction of

the model potential, which thus corresponds to an 7×7 matrix representation

of the electronic Hamiltonian.

The above mentioned CASPT2 calculations were performed using a basis

set based upon the the aug-cc-pVDZ basis. In order to describe correctly

the Rydberg character of the A2(3s) and B1(3s) states in the vicinity of the

Franck-Condon (FC) point, additional diffuse s functions (one centred on the

nitrogen atom and two on the active hydrogen atom) and p functions (one set

centred on the nitrogen atom and two sets on the active hydrogen atom) were

used. Following Vallet et al. [69], the exponents of these additional functions

were derived in an even-tempered manner via the successive division of the

exponents of the most diffuse s and p functions in the aug-cc-pVDZ basis by

a factor of three. We denote the resulting basis set by aug+.
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Table 6.1: Symmetries, dominant configurations and vertical excitation energies Ev of the first seven adiabatic electronic states of pyrrole as
obtained from CASPT2(8,8)/aug+ calculations at the FC point. The bracketed numbers displayed alongside the dominant configurations
are the corresponding coefficients. All energies are given in units of eV.

State Symmetry Character Dominant configurations Ev (CASSCF) Ev (CASPT2)
S0 A1 |0〉 0.00 0.00

S1 A2 3s 1a2 → 10a1 (0.94) 4.17 5.06

S2 B1 3s 2b1 → 10a1 (0.92) 4.87 5.86

S3 A2 3pz 1a2 → 11a1 (0.94) 4.91 5.87

S4 A1 ππ∗ 2b1 → 3b1 (0.68) 6.47 6.01
1a2 → 2a2 (0.44)

S5 B2 ππ∗ 1a2 → 3b1 (0.90) 7.83 6.24

S6 B1 3pz 2b1 → 11a1 (0.93) 5.67 6.69
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6.3 Results

6.3.1 Electronic Structure Calculations

The quality of the model diabatic potential energy surfaces (PESs) used is de-

pendent upon the accuracy of the adiabatic PESs to which they are fitted. In

turn, the accuracy of the adiabatic PESs may be evaluated from comparison

of the calculated vertical excitation energies (VEEs) with previously reported

experimental and theoretical values. This information is shown in Table 6.2.

Overall, no particularly strong consensus on the values VEEs of the states

considered here appears to exist in the literature. An exception is the A2(3s)

state, which is generally accepted to lie at around 5.2 eV [94, 98–100]. The

value of 5.06 eV furnished by the present CASPT2(8,8)/aug+ calculations

for the VEE of the A2(3s) state, although slightly too low, is in reasonable

agreement with previously determined values. Previous theoretical studies

have generally placed the VEE of the B1(3s) state between 5.85 and 6.0

eV, in good agreement with the value reported here. Experimental studies,

however, have reported a VEE for this state of ∼6.4 eV [94,101], in stark dis-

agreement to the most generally accepted theoretically determined values. As

will be commented on further in Section 6.3.6, we consider these previously

reported experimental assignments to be somewhat erroneous. Previous the-

oretical studies have determined the VEE of the bright B2(ππ
∗) state to lie

at around 6.0 eV [98–100]. An experimentally determined value of 5.9 eV

has also been reported for the VEE of the B2(ππ
∗) state [101]. The VEE of

6.24 eV yielded by our CASPT2(8,8)/aug+ calculations is significantly higher

than these previously reported values. As will be explained more fully in Sec-

tion 6.3.6, we have confidence in the seemingly high B2(ππ
∗) VEE reported

here on account of the utilisation of this value in the model Hamiltonian con-

structed leading to the correct reproduction of the experimental absorption
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spectrum. There exists no conclusive experimentally assigned VEEs for the

of the A2(3pz) and A1(ππ
∗) states. However, good agreement between the

present calculated A2(3pz) VEE and previously calculated values is seen.

Together with the VEEs, the zeroth-order Hamiltonian, W (0)(Q), is con-

structed using the frequencies of the normal modes of the pyrrolyl radical.

These are displayed in Table 7.1. As the normal modes used are not calcu-

lated at the Franck-Condon point of the pyrrolyl radical, but rather at the

ground state minimum geometry of the C4H4N unit of the parent pyrrole

molecule, comparison to experimental values is not made here. In order to

aid the interpretation of the symmetry labels shown, it is noted that here

the pyrrole molecule is taken to lie in the y, z−plane with the N-H bond

coincident with the z−axis.

6.3.2 The Model Hamiltonian

A total of 2214 parameters entering into the model potential were fitted to

12239 adiabatic energies. A weighted RMSD of the model adiabatic surfaces

from the adiabatic energies fitted to of 0.076 eV was obtained, indicating

that the model potential is capable of reproducing satisfactorily the adiabatic

potentials in the regions of nuclear configuration space considered.

The intrastate linear coupling constants, κ
(i)
α are listed in Table 7.3. The

significance of these terms is that they give the gradients of the diabatic states

at the reference point with respect to the totally symmetric modes. Thus,

modes Qα with large corresponding terms κ
(i)
α can be expected to contribute

significantly to the dynamics following excitation to the state indexed by i.

For the B2(ππ
∗) and A1(ππ

∗) states, the gradients at the reference point

with respect to the ring-stretching mode Q12 and the ring-breathing mode

Q16 are found to be an order of magnitude larger than for those defined with

respect to the remaining totally symmetric modes. Barrierless pathways
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Table 6.2: A comparison of the calculated CASPT2(8,8)/aug+ vertical excitation with previously reported values determined both
experimentally and theoretically.aRef 98, bRef 99, cRef 100, dRef 94, eRef 101.

State Present work MR-CASPT2a EOM-CCSDb CCSDc Experimental

A2(πσ
∗) 5.06 5.22 5.18 5.17 5.22d,e

B1(πσ
∗) 5.86 6.02 5.84 5.88 6.43d,e

A2(3pz) 5.87 6.01 5.88 5.91 -
A1(ππ

∗) 6.01 5.98 6.55 6.55 -
B2(ππ

∗) 6.24 5.95 6.02 6.01 5.90e
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Table 6.3: Normal mode symmetries and frequencies of the pyrrolyl radical calcu-
lated calculated at the FC point. Both the nuclear geometry used and the Hessian
were calculated using the MP2 method and aug-cc-pVDZ basis. oop: out-of-plane,
sym: symmetric, asym: asymmetric.

Mode Symmetry Frequency Description
Q1 A2 0.0609 ring twisting
Q2 B1 0.0735 C-N-C oop bending
Q3 B1 0.0867 C-H oop bending (sym)
Q4 A2 0.0990 C-H oop bending (asym)
Q5 A1 0.1097 ring breathing
Q6 B2 0.1111 ring stretching
Q7 B1 0.1118 C-H oop bending (sym)
Q8 A2 0.1135 C-H oop bending (asym)
Q9 B2 0.1282 ring stretching
Q10 A1 0.1283 ring breathing
Q11 A1 0.1366 ring breathing
Q12 A1 0.1482 ring breathing
Q13 B2 0.1531 C-H in-plane bending (sym)
Q14 B2 0.1623 C-H in-plane bending (asym)
Q15 A1 0.1821 ring stretching
Q16 A1 0.1885 ring stretching
Q17 B2 0.4052 C-H stretching (asym)
Q18 A1 0.4071 C-H stretching (asym)
Q19 B2 0.4085 C-H stretching (asym)
Q20 A1 0.4115 C-H stretching (sym)
Q21 B2 0.5063 ring stretching
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Table 6.4: Linear intrastate coupling constants (eV) determined by fitting to adi-
abatic energies calculated at the CASPT2(8,8)/aug+ level.

Degree of freedom S1 S2 S3 S4 S5

Q5 0.0381 -0.1390 0.0251 0.0429 0.0395
Q10 -0.0055 0.1270 -0.0339 -0.0369 -0.0348
Q11 -0.1440 -0.0924 0.0440 0.0439 -0.0185
Q12 0.0631 -0.0193 0.0195 -0.2283 -0.1597
Q15 -0.0302 -0.0684 0.0043 -0.0288 0.0655
Q16 -0.1872 0.1435 -0.1521 -0.1270 -0.1489
Q18 -0.0002 0.0077 0.0078 0.0195 0.0060
Q20 0.0113 0.0282 0.0185 0.0790 0.0382

connecting the Franck-Condon point and conical intersections that connect

all the excited states considered are also found to exist along Q12 and Q16,

as illustrated in Figure 6.3. As such, these two totally symmetric modes

were chosen for inclusion in the calculations starting from the two ππ∗ states

considered.

Table 7.4. lists the interstate linear coupling constants, λ
(i,j)
α . These are

the terms that enter to first-order in the expansion of the off-diagonal ele-

ments Wij of the potential matrix, and are thus the most important with

respect to the description of the non-adiabatic coupling present in the sub-

space of electronic states considered. The calculated values of these terms are,

in general, relatively small. However, non-zero terms λ
(i,j)
α exist to directly

or indirectly couple all pairs of states. The antisymmetric C-H stretching

modes Q17 and Q19 are found to couple the B2(ππ
∗) and A1(ππ

∗) states,

and also the A2(3s) and B1(3s) states. The A2(3s) and B1(3s) states are

also found to be coupled by the ring stretching mode Q21, which also serves

to couple the A2(3pz) and B1(3s) states. The symmetric C-H out-of-plane

bending modes Q3 and Q7 couple the B2(ππ
∗) and A2(3pz) states.

Also worthy of mention is the C-N-C out-of-plane bending mode Q2, motion

along which provides a barrierless pathway from the B2(ππ
∗) state to the
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Fig. 6.3: Model (lines) and calculated (points) adiabatic energies along nuclear de-
grees of freedom important for the description of the dynamics of pyrrole following
photoexcitation.

Table 6.5: Linear interstate coupling constants (eV)

Symmetry Mode S0 − S4 S1 − S3

A1 Q5 0.0000 0.0046
Q16 0.0008 -0.0056

Symmetry Mode S0 − S2 S1 − S5 S2 − S4 S3 − S5

B1 Q3 0.0000 -0.0059 0.0000 0.0293
Q7 -0.0001 0.0000 0.0539 -0.0479
φ 0.7262 0.0000 0.0000 0.0000

Symmetry Mode S0 − S5 S1 − S2 S2 − S3 S4 − S5

B2 Q6 0.0000 -0.0056 0.0067 0.0110
Q13 0.0000 0.0115 -0.0105 0.0000
Q17 -0.1294 0.0322 0.0086 0.0371
Q19 -0.0736 0.0533 0.0000 0.0364
Q21 0.0000 0.0892 0.0635 0.0000

Symmetry Mode S0 − S1 S0 − S3 S1 − S4 S2 − S5 S3 − S4

A2 Q4 -0.007 0.0000 0.0330 0.0306 -0.0024
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6.4: Normal modes of the pyrrolyl radical important for the description of
the photoinduced dynamics of the pyrrole molecule: (a) Q2 (C-N-C out-of-plane
bending), (b) Q3 (C-H out-of-plane bending), (c) Q7 (C-H out-of-plane bending),
(d) Q12 (ring breathing), (e) Q16 (ring stretching), (f) Q17 (C-H stretching), (g)
Q19 (C-H stretching), and (h) Q21 (ring stretching).

A2(3s) state, as is illustrated in Figure 6.3 (a). Thus, in terms of their

impact on the excited state dynamics of pyrrole, the set of eight pyrrolyl

normal modes Q2, Q3, Q7, Q12, Q16, Q17, Q19, Q21 may be considered to be

of most importance, and these are illustrated in Figure 6.4.

Turning our attention to the nuclear coordinates r of the dissociating

hydrogen atom, it is found that only the N-H stretching coordinate R and

the out-of-plane bending coordinate φ are of interest, with the potentials

along the non-totally symmetric in-plane bending coordinate θ being rather

harmonic and there existing no significant interstate coupling with respect

to this coordinate. The model adiabatic potentials along R are shown in

Figure 6.3 (e). Overall good agreement between the model and calculated

CASPT2 adiabatic energies is found. In particular, we note that the model

S2 adiabatic dissociation limit is reproduced well by the model potential, a

consequence of an appropriate choice of nuclear coordinates. Compared to
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Table 6.6: Computational details of the wavepacket propagations corresponding
to excitation to the B2(ππ

∗) state. The DVR types exp and HO correspond to
exponential and Harmonic oscillator DVRs, respectively. Ni, Nj are the number
of primitive DVR functions used to describe each particle. ni are the number of
single-particle functions used for each state.

Particle DVR type Ni, Nj n1, n2, . . . , n6

R exp 71 5, 6, 6, 4, 2, 5
φ exp 71 5, 6, 6, 6, 3, 18

Q12, Q16 HO, HO 30, 30 5, 9, 8, 6, 4, 7
Q2, Q4 HO, HO 100, 16 7, 7, 8, 11, 5, 18
Q3, Q7 HO, HO 50, 70 6, 6, 8, 8, 4, 18
Q17, Q21 HO, HO 16, 70 5, 7, 6, 6, 4, 5

the dissociation energy of 5.6 eV obtained from high-level MRCI+Q calcula-

tions by Barbatti and co-workers [88], the value of 5.73 eV furnished by our

model potential can be deemed satisfactory. In contrast, the recent quantum

dynamics simulations of Faraji et al. [85] employed the full set of normal

modes of pyrrole, and as such approximated the N-H dissociation coordinate

by the N-H stretching normal mode. As a consequence, the model S2 disso-

ciation energy obtained was rather too high, lying at 6.55 eV. Together with

the N-H dissociation coordinate R, the out-of-plane bending coordinate φ is

of interest due to its significant first-order coupling of the ground and B1(3s)

states. Additionally, as shown in Figure 6.3 (f), starting from the FC point

in the B2(ππ
∗) state there exists a barrierless pathway along φ to conical

intersections with the A1(ππ
∗), A2(3pz), and B1(3s) states.

6.3.3 Dynamics Following Excitation to the B2(ππ
∗) State

To simulate the excitation of pyrrole to theB2(ππ
∗) state, an initial wavepacket

was produced by vertical excitation of a ground state wavepacket to the cor-

responding diabatic state in the model used, that is, state six. In turn, the

ground state wavepacket was obtained using the method of relaxation on the

ground state potential. Wavepacket propagations were performed using the
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ten modes R, φ, Q2, Q3, Q4, Q7, Q12, Q16, Q17 and Q21, and employing

the six-dimensional manifold of electronic states comprising the ground state

and the excited states A2(3s), B1(3s), A2(3pz), A1(ππ
∗) and B2(ππ

∗). A

propagation time of 750 fs was used in all calculations. All other details are

given in Table 6.6.

Shown in Figure 6.5 (a) are the calculated diabatic state populations fol-

lowing excitation to the B2(ππ
∗) state. An initial period of rapid transfer of

population from the initially excited B2(ππ
∗) state is seen, lasting approxi-

mately 50 fs. Proceeding this is a period of hindered transfer of population to

the lower-lying states, with a final probability of population of the B2(ππ
∗)

state 0.43 being attained after 750 fs. This result is not in accord with the pre-

vious wavepacket dynamics calculations of Faraji et al. [85] who reported an

almost complete depletion of the population of the initially excited B2(ππ
∗)

state within 100 fs. The origin of the hindrance of the depopulation of the

B2(ππ
∗) state is found to involve the C-N-C out-of-plane bending mode Q2.

Figure 6.5 (b) shows the diabatic state populations following excitation to the

B2(ππ
∗) state calculated using a nine-mode model identical to the previously

discussed ten-mode model in all aspects expect for the degree of freedom Q2

being removed. The effect of the removal of this degree of freedom is that the

rate of depopulation of the initially excited B2(ππ
∗) state now both begins

and remains high.

We note that the present results are in partial agreement with the photofrag-

ment translational spectroscopy studies of Cronin et al. [90], who reported a

rise in the production of low-kinetic energy hydrogen atoms upon increasing

the excitation energy used to the point at which excitation to the B2(ππ
∗)

state is expected to occur. The production of low-kinetic energy hydrogen

atoms may be equated with statistical dissociation in the ground electronic
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Fig. 6.5: Calculated diabatic state populations following excitation to the B2(ππ
∗)

state. (a) State populations calculated using a ten-mode model including the mode
Q2. (b) State populations calculated using a nine-mode model excluding the mode
Q2.
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Fig. 6.6: Calculated probabilities of N-H dissociation following excitation to the
B2(ππ

∗) state. (a) Dissociation probabilities calculated using a ten-mode model
including the mode Q2. (b) Dissociation probabilities calculated using a nine-mode
model excluding the mode Q2
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state, and hence with a hindrance of direct dissociation in the A2(3s) and

B1(3s) states. We observe a significant decrease in the time-cumulated prob-

ability of N-H dissociation for the case in which the mode Q2 is included

in the wavepacket propagation relative to that in which it is not, as illus-

trated in Figure 6.6. This inhibition of direct dissociation is, of course, a

consequence of the diabatic trapping of population in the B2(ππ
∗) state.

Displayed in Figure 6.7 is a representative plot of the one-dimensional

reduced density along the mode Q2 at 410 fs for the component of the

wavepacket corresponding to the B2(ππ
∗) state. A significant displacement

of the wavepacket along this degree of freedom is found to occur. In Figure

6.8 is shown a geometry representative of the locality of the density in the

B2(ππ
∗) state after for times greater than 200 fs together with the geometry

of the so-called ring-puckered conical intersection between the B2(ππ
∗) and

ground states. We tentatively note the similarity between the two structures,

and as such cautiously speculate that within our model the system may be

evolving towards the ring-puckered conical intersection, but that at present

the limited accuracy of the model potential is such that an accurate descrip-

tion of the potential in the vicinity of this geometry prohibits relaxation to

the ground state.

We note that the A2(3pz) state, that has been neglected in all previous

studies of photoexcited pyrrole, is populated to a significant extent following

excitation to the B2(ππ
∗) state. As shown in Figure 6.5 (a), a significant

proportion of the population exiting from the B2(ππ
∗) state effectively cas-

cades first into the A2(3pz) state, and subsequently from the A2(3pz) into the

B1(3s) state, as attested to by the out-of-phase oscillations in the diabatic

population probabilities of these two states.

As illustrated in Figure 6.6 (a), dissociation of the N-H bond following
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Fig. 6.7: The calculated one-dimensional reduced density along the C-N-C out-
of-plane bending mode Q2 at 410 fs following vertical excitation to the B2(ππ

∗)
state.

(a) (b)

Fig. 6.8: (a) Geometry representative of the location of density in the B2(ππ
∗)

state for times greater than 200 fs. (b) Geometry of the ring-puckered conical
intersection between the B2(ππ

∗) state and the ground state optimised at the
CAS(6,6)/6-311++G** level using an active space comprised of the orbitals 1b1(π),
2b1(π), 1a2(π), 3b1(π

∗) and 2a2(π
∗).
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Table 6.7: Computational details of the wavepacket propagations corresponding
to excitation to the A1(ππ

∗) state. The DVR types exp and HO correspond to
exponential and Harmonic oscillator DVRs, respectively. Ni, Nj are the number
of primitive DVR functions used to describe each particle. ni are the number of
single-particle functions used for each state.

Particle DVR type Ni, Nj n1, n2, . . . , n6

R exp 71 5, 6, 6, 4, 2, 3
φ exp 71 5, 6, 6, 4, 2, 3

Q12, Q16 HO, HO 30, 30 5, 7, 7, 6, 7, 3
Q17, Q19 HO, HO 20, 20 5, 7, 7, 6, 7, 3
Q4, Q21 HO, HO 16, 70 5, 7, 6, 6, 7, 3
Q7, Q11 HO, HO 50, 30 5, 6, 6, 6, 10, 3

excitation to the B2(ππ
∗) state is found to occur only in the A2(3s) and

B1(3s) states, and the calculated branching ratio

ΓA2

B1
=
pdiss,2(t = 750)

pdiss,3(t = 750)
(6.19)

between the two dissociation channels is found to take a value of 1.588.

6.3.4 Dynamics Following Excitation to the A1(ππ
∗) State

The nuclear dynamics of pyrrole following excitation to the A1(ππ
∗) state

was simulated using a six-state, ten-mode model comprising the modes R,

φ, Q4, Q7, Q11, Q12, Q16, Q17, Q19, and Q21, and the states A1(S0), A2(3s),

B1(3s), A2(3pz), A1(ππ
∗) and B2(ππ

∗). All other details of the calculation

are displayed in Table 6.7.

Shown in Figure 6.9 (a) are the calculated diabatic state populations

following vertical excitation to the A1(ππ
∗) state. An initial period of rapid

depopulation of the initially excited A1(ππ
∗) state is found to occur, lasting

∼100 fs, by the end of which ∼70% of the population has been transferred

to the A2(3s) and B1(3s) states. A relatively slow depletion of the A1(ππ
∗)

state population is found to follow, with final populations of the A1(ππ
∗),
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Fig. 6.9: (a) Calculated diababatic state populations following excitation to the
A1(ππ

∗) state. (b) Calculated probabilities of N-H dissociation following excitation
to the A1(ππ

∗) state.

A2(3s) and B1(3s) states of 0.03, 0.45 and 0.51 existing after 750 fs.

Figure 6.9 (b) displays the calculated time-cumulated probabilities of N-H

dissociation following vertical excitation to the A1(ππ
∗) state. Dissociation

is found to occur essentially entirely in the A2(3s) and B1(3s) states, with a

probability of dissociation in the ground state of 0.002 after 750 fs. Almost

identical probabilities of dissociation in the A2(3s) and B1(3s) states are

found, with the calculated branching ratio

ΓA2

B1
=
pdiss,2(t = 750)

pdiss,3(t = 750)
(6.20)

taking a value of 1.034.

6.3.5 Dynamics Following Excitation to the A2(3s) State

The dynamics of pyrrole following excitation to the A2(3s) state was modelled

using a seven-mode, six-state model comprising the degrees of freedom R, φ,

Q11, Q16, Q17, Q19 and Q21. All other details of the calculation are displayed

in Table 6.8.
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Table 6.8: Computational details of the wavepacket propagations corresponding
to excitation to the A2(3s) state. The DVR types exp and HO correspond to
exponential and Harmonic oscillator DVRs, respectively. Ni, Nj are the number
of primitive DVR functions used to describe each particle. ni are the number of
single-particle functions used for each state.

Particle DVR type Ni, Nj n1, n2, . . . , n6

R exp 71 5, 6, 5, 5, 3, 2
φ fft 80 5, 6, 4, 4, 3, 2

Q11, Q16 HO, HO 30, 30 5, 9, 5, 5, 3, 2
Q17, Q19 HO, HO 16, 16 4, 7, 5, 5, 3, 2
Q21 HO 150 3, 9, 5, 5, 3, 2

Illustrated in Figure 6.10 are the calculated diabatic state populations

and time-cumulated N-H dissociation probabilities following vertical excita-

tion to the A2(3s) state. Population is found to remain predominantly in

the initially excited A2(3s) state. Only negligible transfer of population to

the ground state is found to occur. We note that this result is in disagree-

ment with the quantum dynamics calculations of Domcke et al. [69, 82, 83],

who reported a transfer of ∼10% of the population to the ground diabatic

state. Support for the results presented here does, however, arise from the

recent TR-VMI studies of Stavros et al. [96], who observed no significant

contributions from statistical H-atom elimination following excitation to the

A2(3s) state, implying insignificant transfer of population to the ground state

interaction region. This result is also in accord with the photofragment trans-

lational spectroscopy studies of Cronin et al. [90], lending further weight to

the results presented here.

The role of tunnelling in the dissociation dynamics of pyrrole following

excitation to the A2(3s) state has received attention recently in the TR-VMI

studies of Stavros et al. [96]. Following excitation at 4.96 eV, the authors

reported a single timescale of 126±28 fs for H-atom elimination which was

taken to be attributable to tunnelling through the barrier to N-H dissociation
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Fig. 6.10: (a) Calculated diababatic state populations following excitation to the
A2(3s) state. (b) Calculated probabilities of N-H dissociation following excitation
to the A2(3s) state.

in the A2(3s) state. Upon increasing the excitation energy used to 5.21 eV,

a decrease in the timescale of H-atom elimination to 46±22 fs was found to

occur and was taken to correspond to direct dissociation, rendered possible

by excitation above the barrier to dissociation. In order to reconcile the re-

sults presented here with these findings, timescales for N-H dissociation were

extracted through the fitting of the following simple model to the total cal-

culated time-cumulated probability of N-H dissociation (illustrated in Figure

6.10 (b)):

p(t) = Θ(t− tc)
{

1− a exp

(

−t− tc
τ1

)

− (1− a) exp

(

−t− tc
τ2

)}

. (6.21)

Here, the two timescales τ1 and τ2 are used to account for the possibility

of both direct and tunnelling mechanisms of N-H dissociation being opera-

tive. The constant tc corresponds to the time taken by the wavepacket to

first reach the dissociation limit, and Θ(t − tc) denotes the Heaviside step

function centred at tc. Using a simple simplex optimiser the following param-

eter values were determined: a=0.2479, τ1=7.48 fs, τ2=339.81 fs, tc=22.71
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Table 6.9: Fitted parameters entering into the model expression for the N-H dis-
sociation probability calculated following vertical excitation to the A2(3s) state
using various barriers to dissociation, EB on the A2(3s) state potential surface.

EB/eV a τ1/fs τ2/fs tc/fs
0.3508 0.1979 14.55 2234.43 20.39
0.3319 0.2086 12.51 1593.90 21.36
0.3118 0.2166 11.12 1091.83 21.41
0.2915 0.2278 9.36 754.68 22.25
0.2713 0.2383 9.64 511.92 21.70
0.2498 0.2479 7.48 339.81 22.71
0.2285 0.2590 6.43 226.56 23.34
0.2059 0.2724 6.29 152.65 23.41
0.1833 0.2806 6.61 102.43 23.38
0.1610 0.2840 6.85 69.98 23.46
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Fig. 6.11: Fitted values of the tunnelling timescale τ2 following vertical excitation
to the A2(3s) state using various barriers to dissociation, EB, on the A2(3s) state
potential surface.
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fs. The fitted value of a, the coefficient corresponding to direct dissocia-

tion, implies that tunnelling through the barrier to dissociation in dominant.

Summing the parameters τ1 and tc yields a timescale of 30.19 fs that we

equate with the experimentally determined timescale of 46±22 fs for direct

N-H dissociation. The longer timescale of τ2=339.81 fs may be attributed

to the tunnelling of the wavepacket through the barrier to N-H dissociation.

That the two timescales derived here do correspond to direct dissociation and

tunnelling through the barrier to dissociation may be verified by recourse to

the variation of the barrier to dissociation used in the model Hamiltonian.

With reference to Equation 6.10, we note that by varying the parameter

P1 entering into the model potential, modulation of the barrier to dissoci-

ation on the A2(3s) potential may be achieved without significant change

of the potential surface either around the FC point or in the dissociation

limit. Through the variation of this parameter, modified model potentials

were constructed with A2(3s) barrier heights ranging from 0.16 eV to 0.35

eV. We note that the barrier height of the A2(3s) diabat obtained using the

original model potential takes a value of 0.25 eV. The timescales extracted

from wavepacket propagations performed using the modified potentials are

displayed in Table 6.9. A profound increase in the slow timescale τ2 is found

to occur upon increasing the barrier to dissociation, as would be expected if

this slow timescale did indeed correspond to the tunnelling of the low-energy

components of the wavepacket through the barrier to dissociation. In con-

trast, the fast timescale, τ1, remains relatively unchanged by the variation in

the barrier height, in accord with our assignment to this timescale of direct

dissociation of the high-energy components of the wavepacket that lie above

the barrier to dissociation. As such, we have confidence in the assignments

made here.
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Shown in Figure 6.11 are the values of the slow timescale τ2 plotted against

the A2(3s) barrier height. The near-exponential decrease in the rate of tun-

nelling upon increasing barrier height serves to emphasise the importance

of an accurate representation of the barrier to dissociation in quantum dy-

namics simulations. The presently reported timescale for tunnelling through

the barrier to dissociation of 339.81 fs is not completely satisfactory when

compared to the experimentally determined value of 126±28 reported by

Stavros et al. [96]. However, upon decreasing the barrier height of the model

potential by less than 0.05 eV the calculated tunnelling timescale, which

now takes a value of 152.65 fs, is bought into excellent agreement with the

experimentally-determined value. Finally, we make comment on the impact

of the electronic structure calculations underlying the model Hamiltonian on

the barrier to dissociation. The CAS(8,8)/aug+ calculations used to gen-

erate the reference states for the CASPT2 calculations used here yield a

barrier to dissociation in the A2(3s) state of 0.40 eV. The effect of the dy-

namic correlation recovered by the CASPT2 calculations is to reduce the

barrier to dissociation by 0.15 eV. Assuming an accurate representation of

the calculated adiabatic energies to which it is parameterised, we thus see

that a model Hamiltonian derived from the results of CASSCF calculations

performed using tractable active spaces is likely to massively underestimate

the contribution from tunnelling to the dissociation dynamics of pyrrole. In-

deed, this is found to be the case with the quantum dynamics calculations of

Domcke and co-workers [69, 82, 83], in which the CASSCF calculations un-

derlying the construction of the model potentials used were found to furnish

spuriously high barrier heights on the A2(3s) state potential of ∼0.40 eV,

leading to an underestimation of the role played by tunnelling.
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6.3.6 Electronic Absorption Spectra

Spectra corresponding to excitation to the B2(ππ
∗) and A1(ππ

∗) states were

calculated from the Fourier transforms of the autocorrelation functions calcu-

lated from wavepacket propagations performed following vertical excitation

of the ground-state wavepacket to the respective states. Both wavepacket

propagations were performed using the model Hamiltonian described in Sec-

tion 6.2.1. Additionally, in order to model the contribution to the first band

in the absorption spectrum of pyrrole of the B1(3py) Rydberg state a sepa-

rate model Hamiltonian was constructed. This is motivated by the general

acceptance that this state contributes significantly to the first band in the

electronic absorption spectrum of pyrrole [94, 95]. That the B1(3py) state

was neglected in the model Hamiltonian used and discussed in the above was

dictated by two factors: (i) we are primarily interested in the dynamics of

pyrrole following excitation to the bright B2(ππ
∗) state and the subsequent

dissociation of the system in the lower-lying 3s Rydberg states, and the con-

struction of an active space that was capable of the description of the B1(3py)

state was found to render the resulting CASPT2 calculations intractable for

our purposes, and; (ii) the feature in the electronic spectrum of pyrrole gen-

erally attributed to the B1(3py) state is the sharp, intense peak situated at

∼5.85 eV, as illustrated in Figure 6.12, which is likely the consequence of

excitation to a state that is not strongly coupled to its neighbouring states.

Taking the B1(3py) state to be effectively decoupled from all other electronic

states, we write the one-dimensional Hamiltonian used to model excitation

to this state, H3py(Q̃), as

H3py(Q̃) = E3py +
3N−9
∑

α=1

ω̃α

2

(

− ∂2

∂Q̃2
α

+ Q̃2
α

)

+
∑

α

κ(3py)α Q̃α, (6.22)
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where E3py denotes the vertical excitation energy of the B1(3py) state, and

Q̃ denotes the set of normal modes of the pyrrole molecule, that, is H3py(Q̃)

corresponds to a single-state vibronic coupling Hamiltonian. The normal

modes Q̃ and the corresponding frequencies ω̃α were calculated at the MP2

level using the aug-cc-pVDZ basis. The constants E3py and κ
(3py)
α entering

into Equation 6.22 were determined from EOM-CCSD calculations employ-

ing the aug-cc-pVDZ basis. In particular, the intrastate coupling constants

κ
(3py)
α were determined from the evaluation of the gradient of the EOM-

CCSD energy with respect to all totally symmetric normal modes Q̃α using

a three-point finite difference formula employing a step size of 0.1. The thus

determined constants are displayed in Table 6.10. The calculated vertical

excitation energy of the B1(3py) state is 6.00 eV, which compares favourably

with the previously reported value of 5.87 eV obtained by Roos et al. using

MS-CASPT2 calculations. Using the model Hamiltonian H3py(Q̃), a spec-

trum corresponding to excitation to the B1(3py) state was produced from the

Fourier transform of the autocorrelation function obtained from a wavepacket

propagation performed using the MCTDH method. All nine totally symmet-

ric modes were included in the calculation, and a propagation time of 200 fs

was used.

Shown in Figure 6.12 are the calculated and experimental electronic ab-

sorption spectra in the region 5.5 to 6.5 eV. Overall, favourable agreement

between the calculated and experimental spectra is seen. Excitation to the

B2(ππ
∗) state has previously been postulated to dominate the first band in

the electronic spectrum of pyrrole [94, 95]. Indeed, the majority of the in-

tensity present in the total calculated spectrum is found to map onto the

calculated B2(ππ
∗) state spectrum. We note that the origin of the calcu-

lated B2(ππ
∗) spectrum is located at ∼ 5.7 eV, whereas the VEE of the
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 5.6  5.8  6  6.2  6.4

Energy (eV)

Total
B2
B1
A1

Fig. 6.12: Experimental and calculated spectra corresponding to the first band
in the electronic spectrum of pyrrole. Top: experimental electronic absorption
spectrum [94] with the envelope of the first band of the photoelectron spectrum
[102] inset. Bottom: calculated electronic absorption spectra corresponding to
excitation to the A1(ππ

∗), B1(3py) and B2(ππ
∗) states of pyrrole. The combined

spectrum corresponds to the oscillator strength-weighted sum of the individual
spectra. For clarity, the combined spectrum is shifted upwards relative to the
individual spectra.
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Table 6.10: Parameters entering into the model Hamiltonian H3py(Q̃), as defined
in Equation 6.22, used to simulate to spectrum corresponding to excitation to
the B1(3py) state. All quantities were evaluated from the results of EOM-CCSD
calculations using the aug-cc-pVDZ basis.

Parameter Parameter value (eV)
E3py 6.0020

κ
(3py)
9 -0.0082

κ
(3py)
10 0.0280

κ
(3py)
12 -0.0035

κ
(3py)
14 0.0364

κ
(3py)
16 -0.0183

κ
(3py)
18 -0.0272

κ
(3py)
21 -0.0045

κ
(3py)
23 -0.0027

κ
(3py)
24 -0.0994

B2(ππ
∗) state entering into the model Hamiltonian used is 6.24 eV. The

rather large difference between the origin of the spectrum and the vertical

excitation energy could be attributed to either the shift in the B2(ππ
∗) state

minimum relative to the FC point or to the borrowing of intensity from the

B2(ππ
∗) ← A1(S0) transition by lower-lying states. Figure 6.13 shows the

spectrum corresponding to vertical excitation to the B2(ππ
∗) state calculated

using a model Hamiltonian from which all interstate coupling constants had

been removed. Non-negligible intensity in the uncoupled spectrum continues

down to ∼5.8 eV, indicative of a large shift of the B2(ππ
∗) state minimum

away from the FC point. However, the intensity of this spectrum below ∼6

eV is low, suggesting that a significant proportion of the B2(ππ
∗) state spec-

trum arises due to coupling to lower-lying states. In order to determine the

identity of the states to which coupling to the B2(ππ
∗) state gives rise to

intensity in the B2(ππ
∗) spectrum, calculations of the A2(3pz) and B1(3s)

state spectra were performed with all interstate coupling constants set to

zero. The resulting uncoupled spectra are shown in Figure 6.13. It is found
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 5.5  5.6  5.7  5.8  5.9  6  6.1  6.2  6.3

Energy (eV)

B2(ππ*) Full potential

B2(ππ*) No coupling

A2(3pz) No coupling

B1(3s) No coupling

Fig. 6.13: Calculated spectra corresponding to vertical excitation to the B2(ππ
∗)

state using both the full model Hamiltonian and the model Hamiltonian with
all interstate coupling constants removed. Overlayed are spectra corresponding
to vertical excitation to the A2(3pz) and B1(3s) states calculated using a model
Hamiltonian with all interstate coupling constants removed.

that through intensity borrowing both the A2(3pz) and B1(3s) states con-

tribute to the B2(ππ
∗) state spectrum. We identify the origin of the shoulder

at 5.8 eV as the coupling of the B2(ππ
∗) and A2(3pz) states. Further, the cou-

pling of these two states is found to give rise to the prominent peak centred

at 6.1 eV. We note that the possibility of the coupling of the A1(ππ
∗) and

B2(ππ
∗) states giving rise to the ‘missing’ intensity in the B2(ππ

∗) spectrum

was discounted due to the lack of population of the A1(ππ
∗) state following

excitation to the B2(ππ
∗) state, as is illustrated in Figure 6.5.

The peak visible at ∼5.70 eV in the experimental spectrum has previously

been assigned to the origin of the B2(ππ
∗) band by both Roos et al. [95] and

Bavia at al. [103]. Palmer et al. took this peak to correspond to excitation

to the B2(3px) Rydberg state. With reference to the components of the total

calculated spectrum (as shown in Figure 6.12), we note that the peak oc-
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curring at ∼5.80 eV is a consequence mainly of the A1(ππ
∗) band, with an

underlying contribution from the B2(ππ
∗) band. As mentioned above, the

contribution from the B2(ππ
∗) band is attributable to intensity borrowing by

the A2(3pz) state. Shown in Figure 6.14 are the A1(ππ
∗) state spectra calcu-

lated both with and without the interstate coupling constants included in the

model Hamiltonian. That the peak centred at ∼5.80 eV vanishes upon the

removal of the interstate coupling terms implies that this feature arises from

intensity borrowing from the A1(ππ
∗) ← A1(S0) transition. As illustrated

in Figure 6.9, population originating in the initially populated A1(ππ
∗) state

undergoes rapid transfer to the B1(3s) state, with only a very small pop-

ulation of the A2(3pz) state being observed. Thus, we attribute the peak

observed experimentally at ∼5.70 eV mainly to intensity borrowing from the

A1(ππ
∗)← A1(S0) transition by the B1(3s) state, with an underlying contri-

bution arising due to intensity borrowing from the B2(ππ
∗) ← A1(S0) tran-

sition by the A2(3pz) state. The small discrepancy between the positions of

the peaks of the experimental and calculated spectra that are being equated

here is presumably due to the limited accuracy of the CASPT2 calculations

used in the parameterisation of the model potential.

The most intense feature in the experimental spectrum is the sharp peak

centred at ∼5.85 eV. As previously mentioned, this peak has previously been

assigned to excitation to the B1(3py) state [94,95]. Our results are in agree-

ment with this assignment, with the simple model Hamiltonian H3py(Q̃)

being found to yield a spectrum dominated by a single, intense peak centred

at 5.9 eV.

Finally, we comment on the assignment of the peak centred at ∼6.2 eV

in the experimental spectrum. Derrick et al. [102] first suggested that this

peak arises due to excitation to the B1(3s) Rydberg state. This assignment
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 5.6  5.8  6  6.2  6.4

Energy (eV)

Full potential
No coupling

Fig. 6.14: Calculated spectra corresponding to vertical excitation to the A1(ππ
∗)

state using both the full model potential and the model potential with all interstate
coupling constants removed.

was also favoured by Palmer et al. [94]. The spectrum calculated here ex-

hibits a peak situated at around 6.25 eV that arises from contributions from

both the B2(ππ
∗) and A1(ππ

∗) bands. The uncoupled B2(ππ
∗) and A1(ππ

∗)

spectra retain intensity centred around 6.25 eV. As such, we believe previous

assignments made to the B1(3s) to be incorrect, and that instead most of

the intensity of this peak arises due to excitation to the B2(ππ
∗) state, with

a significant underlying contribution from excitation to the A1(ππ
∗) state.

We end this section by commenting again on the significant disparity

between the start of the calculated B2(ππ
∗) band and the VEE used in

the derivation of the model that was used in its production. The exten-

sion of this band to energies far below the VEE of the corresponding state

has implications for the practice of benchmarking electronic structure cal-

culations against experimentally determined band maxima. Previous joint

experimental-theoretical studies [94, 101] have led to an assignment of ∼5.9
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eV to the VEE of the B2(ππ
∗) state, based upon a matching of calculated

VEEs and observed peak positions in the experimental spectra. Such an

approach, however, is not entirely satisfactory in that it neglects the pos-

sibility of both intensity borrowing and a shift excited state minima from

the FC point resulting in potentially large shifts of band maxima from the

corresponding VEEs. In the case of the B2(ππ
∗) state of pyrrole, we have

confidence that the true VEE of the state lies significantly higher (at ∼6.25

eV) than has previously been postulated, as attested to by the ability of our

model Hamiltonian to reproduce satisfactorily the experimental spectrum.

This re-assignment has some implications for previously conducted experi-

mental studies of the photoinduced dynamics of pyrrole. By way of example,

previous experimental studies have generally taken excitation at energies in

the range 5.65 to 6.0 eV to correspond to excitation to the B2(ππ
∗) state [90]

on account of a rapid increase in the absorption cross-section in this en-

ergy interval. The work presented here, however, offers a new interpretation,

namely that excitation in this energy window should result in transition to

the B1(3s) and A2(3pz) states, mainly as a result of intensity borrowing from

the A1(ππ
∗) ← A1(S0) and B2(ππ

∗) ← A1(S0) transitions, respectively. As

such, a reinterpretation of some previously reported experimental observa-

tions should, perhaps, be considered.

6.4 Discussion and Conclusions

Through fitting to adiabatic energies resulting from CASPT2 calculations

performed at a large number of nuclear geometries, a model Hamiltonian

has been parameterised that is capable of the description of the dynamics of

the pyrrole molecule in the seven-dimensional manifold of electronic states

spanned by the states A1(S0), A2(3s), B1(3s), A2(3pz), A1(ππ
∗), B2(ππ

∗) and
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B1(3pz). In conjuction with the MCTDH wavepacket propagation algorithm,

the model Hamiltonian developed has been used to simulate the dynamics of

pyrrole following excitation to the A2(3s), A1(ππ
∗) and B2(ππ

∗) states.

Excitation to the A1(ππ
∗) state is found to result in prompt and efficient

relaxation to the A2(3s) and B1(3s) states, resulting in a dominance of direct

N-H dissociation in the ensuing dynamics. In contrast, a hindrance of direct

N-H dissociation is found to occur following excitation to the B2(ππ
∗) state,

with diabatic trapping of the population in the initially excited B2(ππ
∗)

state being found to occur. The trapping of the wavepacket in the B2(ππ
∗)

state is found to be attributable to the large amplitude displacement of the

wavepacket along the C-N-C out-of-plane bending mode Q2 in the B2(ππ
∗)

state. Significantly, this displacement of the evolving wavepacket is found

to drive the system towards nuclear geometries that are distinctly similar

to that of the ring-puckered conical intersection that is known to exist to

connect the ground and B2(ππ
∗) states [88]. At present, however, the sim-

plicity of the model Hamiltonian, and in particular the lack of correlation

of the pyrrolyl normal modes Q in the model potential, results in the in-

ability of the model used to describe accurately the pathway connecting the

Franck-Condon point and the ring-puckered conical intersection. Clearly, the

pursuit in future work of the improvement of the model potential developed

here to describe correctly this pathway would be desirable. Such further de-

velopment is of particular interest as internal conversion to the ground state

mediated by an accessible conical intersection connecting the B2(ππ
∗) and

ground states, and subsequent statistical dissociation, has been suggested as

a plausible explanation for the experimentally observed increase in the yield

of low-kinetic energy hydrogen atoms following the decrease of the excitation

wavelength used in photofragment translational spectroscopy studies [90].
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Following vertical excitation to the A2(3s) state, we observe both di-

rect dissociation of the high-energy components of the wavepacket and the

tunnelling of the low-energy components through the barrier to N-H dis-

sociation. The calculated value of the fast timescale (∼30 fs) is found to

be in good agreement with the recently reported experimentally determined

value of 46±22 fs [96]. The timescale calculated for the tunnelling of the

wavepacket through the barrier to dissociation takes a value of ∼340 fs, com-

paring not particularly favourably to the experimentally determined value of

126±28 fs [96]. Upon decreasing the barrier to dissociation by less than 0.05

eV, however, the calculated timescale for tunnelling is bought into excellent

agreement with the experimentally derived value. This serves to highlight

the requirement of using extremely accurate electronic structure calculations

in the parameterisation model Hamiltonians for use in the simulation of the

excited state dynamics of pyrrole and related systems if accurate appraisals

of the role played by tunnelling are to be made.

Electronic absorption spectra corresponding to vertical excitation to the

A1(ππ
∗), B2(ππ

∗) and B1(3py) states were calculated from the Fourier trans-

forms of the wavepacket autocorrelation functions obtained from the respec-

tive wavepacket propagations. Through intensity borrowing from the bright

B2(ππ
∗) ← A1(S0) transition, the B1(3s) and A2(3pz) states are found to

contribute significantly to the first band in pyrrole’s electronic spectrum, pro-

viding much of the intensity at energies below 6 eV. This has consequences

for the placement of the B2(ππ
∗) state, the VEE of which has previously

been taken to lie at ∼5.9 eV, corresponding to the B2(ππ
∗) band maximum.

The results presented here, however, imply that the VEE of the B2(ππ
∗)

state may actually lie significantly higher, at ∼6.25 eV, and that excitation

at energies around 5.7-6.1 eV should result mainly in transition to the B1(3s)
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and A2(3pz) states.
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Chapter 7

Aniline

7.1 Introduction

Much attention has been paid recently to the photochemistry of small aro-

matic amines, including the DNA bases adenine [104–106], guanine [107–109]

and cytosine [110, 111]. The focus of this chapter is the photoinduced dy-

namics of the prototypical aromatic amine aniline (C6H5NH2, see Figure 7.1).

Through a number of experimental [112, 113] and theoretical [114] studies,

the electronic spectrum of aniline in the region 4.0 to 6.0 eV is known to be

dominated by two bands centred at 4.35 eV and 5.39 eV, corresponding to

excitation to the first two 1ππ∗ states. Further, a single low-lying 13s/πσ∗

state has been identified to exist between these two 1ππ∗ states at an en-

ergy of ∼4.6 eV by the (2 + 2) resonance enhanced multiphoton ionisation

measurements of Ebata et al. [115]. The adiabatic potentials of these states

along the N-H dissociation coordinate are illustrated schematically in Figure

7.2.

Recent experimental studies of the excited state dynamics of aniline

have served to reveal the rich and complex photochemistry of this molecule.

Through the use of energy-resolved H (Rydberg) atom photofragment trans-

lational spectroscopy measurements, Ashfold et al. [116] reasoned that for

excitation energies in excess of 4.60 eV, N-H dissociation via the S2(3s/πσ
∗)
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NH2

Fig. 7.1: Molecular structure of aniline.

E
ne
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y

RNH

A1(S0)

B2(ππ*)

B1(3s/πσ*)

A1(ππ*)

Fig. 7.2: Schematic adiabatic potentials corresponding to the A1(S0), B2(ππ
∗),

B1(3s/πσ
∗), and A1(ππ

∗) states along the N-H dissociation coordinate starting
from the planar S1 minimum energy geometry.
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state occurs, with the dissociation proceeding diabatically to produce ground

state anilino radicals. The time-resolved ion yield studies of Montero and co-

workers [117] furnished both short (165 fs) and long (tens of picoseconds

to nanoseconds) timescales for relaxation following excitation in the range

4.60 to 5.17 eV. These timescales were attributed, respectively, to dissoci-

ation on the S2(3s/πσ
∗) surface, and sequential transfer of population to

the S1(ππ
∗) and S0 surfaces. Using femtosecond pump-probe velocity map

imaging, Stavros et al. [118] reported a timescale of 155 fs for the formation

of both high and low kinetic energy H-atoms following excitation at 5.17 eV.

Further, excitation to the S1(ππ
∗) state was found not to result in direct N-H

dissociation. Employing time-resolved photoelectron imaging, Fielding and

co-workers find that excitation at energies between 5.17 and 5.21 eV results

in a time-scale of decay of <100 fs [119,120]. This is attributed to excitation

to the second, bright 1ππ∗ state followed by ultrafast internal conversion to

the ground state.

In this chapter, the first steps towards performing quantum dynamics

simulations of the photo-induced dynamics of aniline are made by the con-

struction of a model Hamiltonian for the description the vibronically-coupled

manifold comprised of the first six electronic states of aniline. The model

used is the quadratic vibronic coupling Hamiltonian of Köppel et al. [19,20],

which is parameterised via fitting to the results of extensive equation-of-

motion coupled-cluster with single and double excitations (EOM-CCSD) cal-

culations. Preliminary calculations are performed whereby the electronic

absorption spectrum in the region 4.0 to 6.0 eV is calculated and analysed.
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7.2 Theory

7.2.1 The Model Hamiltonian

The model Hamiltonian adopted for the study here of the excited state dy-

namics of aniline is based on a simple quadratic vibronic coupling Hamilto-

nian

H(Q) = H(0)(Q) + W (1)(Q) + W (2)(Q), (7.1)

with all quantities being as defined in Section 3.8. Our choice of reference

geometry is guided by the fact that aniline possesses two isoenergetic ground

state minima of Cs symmetry connected by the inversion of the amino group.

As such, we choose as our reference geometry the transition state for NH2

inversion. As well as affording a balanced description of the two minima

connected by it, this choice of reference geometry renders zero by symmetry

a greater number of the parameters of the vibronic coupling Hamiltonian by

virtue of the higher (C2v) symmetry of this geometry in comparison to the

ground state minima. The nuclear coordinates, Q, used are, then, the mass-

and frequency-scaled normal mode coordinates of the amino group inversion

transition state.

Dissociation of the N-H bond is known to be of importance in the ex-

cited state dynamics of aniline. None of the 36 ground-state normal modes

describe the N-H stretching motion alone. However, the modes Q35 and Q36

correspond, respectively, to symmetric and antisymmetric stretching motions

of the two N-H bonds. To make the analysis of the bond breaking more

straightforward, we therefore make the following coordinate transformation:

Q→ Q̃ = DQ, (7.2)
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D = 1⊕
(

cos
(

π
4

)

sin
(

π
4

)

− sin
(

π
4

)

cos
(

π
4

)

)

(7.3)

where 1 denotes a (3N − 8) × (3N − 8) unit matrix. Thus the coordinates

Q̃α; α ≤ 34 still equate with the ground-state normal modes, while the

coordinates Q̃35 and Q̃36 correspond to normalised linear combinations of

the symmetric and antisymmetric NH2 stretching modes (Q35 and Q36), re-

spectively, and the N-H dissociation is now well-described by the degree of

freedoms Q̃35 and Q̃36.

Using the modified normal modes Q̃, the zeroth-order potential may be

written

W
(0)
ij (Q̃) =

(

Ei +
3N−8
∑

α=1

ωα

2
Q̃2

α +
ω+

2

[

Q̃2
35 + Q̃2

36

]

+ ω−Q̃35Q̃36

)

δij , (7.4)

where Ei denotes the vertical excitation energy of the ith electronic state at

the reference geometry Q̃0, the quantities ωα; α ≤ 34 are the frequencies of

the corresponding normal modes Q̃α = Qα, and the ω+ and ω− are given by

ω+ =
1

2
(ω35 + ω36) (7.5)

ω− =
1

2
(ω35 − ω36) . (7.6)

In general, a second-order expansion of the diabatic potential was found

to be adequate. However, for a handful of totally-symmetric degrees of free-

dom the degree of anharmonicity is such that the on diagonal expansions

W
(n)
ii (Q̃); ∀n were replaced by Morse oscillators:

Wii(Q̃α) = D
(i)
0,α

{

exp
(

δ(i)α

(

Q̃α − Q̃(i)
0,α

))

− 1
}2

+ E
(i)
0,α; α = 12, 30, 34,

(7.7)
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E
(i)
0,α = −D(i)

0,α

[

exp
(

−δ(i)α Q̃
(i)
0,α

)

− 1
]2

(7.8)

For the degree of freedom Q̃36, corresponding to N-H dissociation, the bound

state potentials were similarly described by Morse oscillators, whilst the dis-

sociative B̃(πσ∗/3s) potential was described by an avoided-crossing model:

W22(Q̃36) =
1

2

{

νb + νd −
√

(νb − νd)2 + 4
[

∆ tanh
(

ρQ̃36

)]2
}

, (7.9)

with

νb = Db

[

exp(−αb(Q̃36 − Q̃b
36,0))− 1

]2

(7.10)

νd = A exp(−αd(Q̃36 − Q̃d
36,0)) +Dd. (7.11)

The adiabatic potentials correlating with the X̃ and B̃(πσ∗/3s) states

form avoided crossings along the N-H dissociation coordinate for geometries

corresponding to an inverted NH2 moiety. To account for this, the inter-

state coupling constants λ
(1,3)
1 and λ

(1,4)
1 are taken as functions of the N-H

dissociation coordinate, Q̃36, as follows:

λ
(i,j)
1 (Q̃36) = λ

(i,j)
1 (Q̃36,0) +1 Λ(i,j) tanh(2Λ(i,j)Q̃36); i, j = (1, 3), (1, 4),

(7.12)

where Q̃36,0 denotes the reference value of Q̃36.

The matrix representation of the kinetic energy operator in the coordinate

system used, T (Q̃), reads

Tij(Q̃) =

(

−
3N−8
∑

α=1

ωα

2

∂2

∂Q̃2
α

+
ω+

2

[

∂2

∂Q̃2
35

+
∂2

∂Q̃2
36

]

+ ω− ∂2

∂Q̃35∂Q̃36

)

δij .

(7.13)
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The parameterisation of the model potential W (Q̃) was achieved by the

minimisation of the root mean square deviation of the model and calculated

adiabatic energies at a large number of nuclear geometries using the proce-

dure outlined in Section 4.3.2.

7.2.2 Electronic Structure Calculations

There is a preference when excited state potential energy surfaces are to

be calculated to use a method employing a multiconfigurational reference

function, such as the complete active-space self-consistent field (CASSCF)

method, in order to efficiently account for the potentially multiconfigura-

tional characters of excited states considered. Initial attempts to utilise the

CASSCF method were made here. However, it was found not to be possi-

ble to construct an active space that could simultaneously yield continuous

potential surfaces in all regions of nuclear configuration space of interest

and also result in the relatively modest computational cost required for the

calculation of adiabatic energies at large numbers of nuclear geometries. In-

stead use was made of the EOM-CCSD [79] method in conjunction with the

aug-cc-pVDZ basis set. At each geometry considered, the eight lowest-lying

adiabatic energies were computed, corresponding at the Franck-Condon (FC)

point to the states X̃ , Ã(ππ∗), B̃(πσ∗/3s), C̃(3pz), D̃(3py), Ẽ(ππ∗), F̃ (3pz),

and G̃(3dyz).

7.2.3 Calculation of Absorption Spectra

Absorption spectra, σ(E), corresponding to excitation to the two lowest-lying

1ππ∗ states were calculated via the Fourier transforms of autocorrelation

functions obtained from propagation of wavepackets starting in each of the

two states. The initial states, |Ψ(0)〉, used in the wavepacket propagations

were determined by vertically exciting the ground state wavefunction, |ΨGS〉,
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to the electronic state of interest, that is,

|Ψ(0)〉 = {|f〉〈1|+ h.c.}|ΨGS〉, (7.14)

where |f〉 denotes the electronic state of interest and |ΨGS〉 is determined by

wavepacket relaxation. In addition, it was found that the transition dipole

moments corresponding to excitation from the ground state to the Ã(ππ∗)

state have large gradients at the FC point with respect to a number of the

degrees of freedom Q̃α. To assess the effect of the “Herzberg-Teller terms”

on excitation to the Ã(ππ∗) state, the following operator was also used to

prepare the initial wavefunction corresponding to excitation to the Ã(ππ∗)

state:

ÔHT =

{

|2〉
[

µ12(Q̃0) +

3N−6
∑

α=1

∂µ12(Q̃0)

∂Q̃α

Q̃α

]

〈1|
}

+ h.c., (7.15)

where µ12(Q̃0) denotes the transition dipole moment for the ground and

Ã(ππ∗) states at the reference point. The gradients ∂µ12(Q̃0)/∂Q̃α were

calculated numerically using CASSCF calculations state-averaged over the

ground and first excited states and using the 6-311+G(d) basis set. For

these calculations, an active space comprising the three π orbitals and the

corresponding three π∗ orbitals was used.

7.3 Results

7.3.1 Electronic Structure Calculations

The reference geometry used (the transition state along the NH2 inversion

pathway) was optimised using Möller-Plesset second-order perturbation the-

ory (MP2) and the aug-cc-pVDZ basis set as implemented in the Gaussian

03 set of programs [97]. Subsequent normal mode analysis at the same level
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of theory confirms that the thus obtained geometry is a stationary point of

order one, with the single normal mode of imaginary frequency corresponding

to NH2 inversion. The frequencies and symmetries of these normal modes

are listed in Table 7.1.

The vertical excitation energies (VEEs) of the electronic states together

with the normal mode frequencies completes the parameterisation of the

zero-order potential. The VEEs calculated at the EOM-CCSD/aug-cc-pVDZ

level are given in Table 7.2 together with the excitation energies calculated

at the ground state minimum energy geometry. In the energy range of in-

terest (4 to 6 eV), interest has generally been devoted to the roles played

by the three states Ã(ππ∗), B̃(πσ∗/3s) and Ẽ(ππ∗). Although the order-

ing of the EOM-CCSD VEEs at the FC point is faithfully reproduced, the

actual values are all shifted upwards by between 0.3 and 0.4 eV relative to

the experimentally determined values. The addition of state-selective non-

iterative triples corrections via the completely renormalised EOM-CCSD(T)

(CR-EOM-CCSD(T)) [121] approach is found to significantly improve the

agreement of the calculated and experimental VEEs, as shown in Table 7.2.

As the parameters of the quadratic vibronic coupling (QVC) Hamiltonian are

predominantly determined by the local topologies of the potential surfaces

around the point of expansion and the CR-EOM-CCSD(T) method demands

more computational effort than the EOM-CCSD method, we adopt the fol-

lowing strategy: the model Hamiltonian is first parameterised by fitting to

EOM-CCSD adiabatic energies, followed by the shifting of the zero-order

parameters Ei, corresponding to the VEEs at the point of expansion, by

an amount that brings the calculated EOM-CCSD and CR-EOM-CCSD(T)

VEEs at the reference point into agreement.

Of interest is the fact that using both the EOM-CCSD and CR-EOM-
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Table 7.1: Frequencies and symmetries of the normal modes calculated at the
MP2/aug-cc-pVDZ level at the transition state to NH2 inversion. ip: in-plane,
oop: out-of-plane, sym: symmetric, asym: asymmetric.

Mode Frequency/eV Symmetry Description

Q1 0.0601i B1 NH2 inversion
Q2 0.0265 B1 Boat
Q3 0.0394 A2 NH2 torsion
Q4 0.0455 B2 NH2 ip bend
Q5 0.0502 A2 Boat
Q6 0.0618 B1 Boat
Q7 0.0649 A1 Ring stretch
Q8 0.0761 B2 Ring stretch
Q9 0.0771 B1 Chair
Q10 0.0913 B1 Sym C-H oop bend
Q11 0.1012 A2 Asym C-H oop bend
Q12 0.1019 A1 Ring stretch
Q13 0.1058 B1 Asym C-H oop bend
Q14 0.1122 B1 Asym C-H oop bend
Q15 0.1138 A2 Asym C-H oop bend
Q16 0.1231 A1 Ring stretch
Q17 0.1262 B2 (N)H2 ip bend
Q18 0.1290 A1 C5H5 breathing
Q19 0.1374 B2 Asym C-H ip bend
Q20 0.1439 B2 Asym C-H ip bend
Q21 0.1470 A1 Sym C-H ip bend
Q22 0.1629 A1 Ring breathing
Q23 0.1643 B2 Asym C-H ip bend
Q24 0.1804 B2 Ring stretch
Q25 0.1842 B2 Ring stretch
Q26 0.1870 A1 Ring stretch
Q27 0.2011 B2 Ring stretch
Q28 0.2026 A1 (N)H2 ip bend
Q29 0.2059 A1 Ring breathing + (N)H2 ip bend
Q30 0.3956 A1 Asym C-H stretch
Q31 0.3957 B2 Asym C-H stretch
Q32 0.3978 A1 Sym C-H stretch
Q33 0.3985 B2 Asym C-H stretch
Q34 0.4008 A1 Sym C-H stretch
Q35 0.4516 A1 Sym NH2 stretch
Q36 0.4692 B2 Asym NH2 stretch
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Table 7.2: Calculated and experimental excitation energies at the reference geometry (Q0) and the FC point (Qmin).
aRefs 112 and 113.

bRef 115.
State Symmetry EOM, Q0 CR-EOM, Q0 EOM, Qmin CR-EOM, Qmin Experimental, Qmin

X̃ A1/A
′

0.00 0.00 0.00 0.00 0.00

Ã(ππ∗) B2/A
′′

4.55 3.98 4.77 4.21 4.40a

B̃(πσ∗/3s) B1/A
′

4.65 4.31 5.02 4.69 4.60b

C̃(3pz) B1/A
′

5.36 5.00 5.67 5.31 -

D̃(3py) A2/A
′′

5.37 5.03 5.77 5.42 -

Ẽ(ππ∗) A1/A
′

5.56 5.11 5.85 5.42 5.39a

F̃ (3pz) B1/A
′

6.04 5.70 6.38 6.05 -

G̃(3dyz) A2/A
′′

6.06 5.71 6.39 6.04 -

A
n
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e
1
9
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CCSD(T) methods two 3p Rydberg states (C̃(3pz) and D̃(3py)) are pre-

dicted to exist between the B̃(πσ∗/3s) and Ẽ(ππ∗) states. At the CR-EOM-

CCSD(T) level, the C̃(3pz) state is found to lie around 0.1 eV below the

Ẽ(ππ∗) state, whilst the D̃(3py) state is calculated to be isoenergetic with

the Ẽ(ππ∗) state at the FC point. The oscillator strengths calculated for

these states at the FC point are small: 0.0149 for the C̃(3pz) state, and for

the and 0.0004 for the D̃(3py) state. To our knowledge, the only other high-

level computational study of the excited states of aniline are the calculations

of Honda et al. [114]. Using the SAC-CI method, the authors determine the

VEEs of these states at the FC point to be 5.57 eV (C̃(3pz)) and 6.06 eV

(D̃(3py)), in stark disagreement with our CR-EOM-CCSD(T) values. We,

however, have confidence in our placing of these states below the Ẽ(ππ∗)

state, due to the higher level of theory used here. More importantly, the

inclusion of these states in the model used is required to reproduce certain

features of the experimental spectrum.

7.3.2 The Model Potential

A total of 620 parameters of the model potential non-zero by symmetry were

fitted to 4200 adiabatic energies calculated across a wide range of nuclear

geometries. A weighted RMSD of the fitted potential of 0.11 eV was attained.

The linear coupling coefficients of the model potential can be expected

to have the greatest effect on the excited-state, short-time dynamics. As

such, an analysis of the coupling strengths κ
(i)
α /ωα and λ

(i,j)
α /ωα may be used

as a measure of the importance of the mode Q̃α with respect to its effect

on the dynamics of the system. We begin with an analysis of the degrees

of freedom important for the description of the nuclear dynamics following

excitation to the Ẽ(ππ∗) state. By symmetry, intrastate coupling strengths,

κ
(i)
α /ωα, may be non-zero for only the totally-symmetric subset of degrees of
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Table 7.3: Linear intrastate coupling strengths obtained from fitting to the results
of EOM-CCSD/aug-cc-pVDZ calculations.

Mode κ
(2)
α /ω2 κ

(3)
α /ω3 κ

(4)
α /ω4 κ

(5)
α /ω5 κ

(6)
α /ω6 κ

(7)
α /ω7 κ

(8)
α /ω8

Q̃7 -1.0918 -0.7315 -1.1719 -1.2381 -1.0148 -1.0518 -0.5159

Q̃12 0.7309 -0.0059 -0.0285 0.1324 0.4837 0.1030 0.1060

Q̃16 -0.9571 -0.8019 -0.7393 -0.5110 -1.2503 -0.5313 -0.7271

Q̃18 1.0220 0.4505 0.4854 0.3962 0.7428 0.5063 0.5280

Q̃21 -0.2838 0.0660 0.2382 -0.0184 0.3008 0.1048 0.1068

Q̃22 -0.1135 0.1252 0.1307 0.0681 0.2608 0.1056 -0.0012

Q̃26 -0.1417 -0.2059 0.0171 -0.1444 -0.0497 -0.1299 -0.0235

Q̃28 -0.1264 0.4315 0.2651 0.2799 0.7035 0.2587 0.3964

Q̃29 0.4380 -0.3137 -0.2346 -0.1777 -0.1802 -0.1229 -0.1433

Q̃30 0.1026 0.0933 0.1375 0.1211 0.1115 0.1974 0.1317

Q̃32 -0.2004 -0.2424 -0.1146 -0.2901 -0.5720 -0.4287 -0.2207

Q̃34 0.4878 0.2565 0.9182 0.4459 0.2992 0.3600 0.6168

freedom. The frequency-weighted κ
(i)
α for the totally-symmetric degrees of

freedom are listed in Table 7.3. For the Ẽ(ππ∗) state significant intrastate

coupling strengths are found for the degrees of freedom Q̃7 (ring stretching),

Q̃12 (ring stretching), Q̃16 (ring stretching), Q̃18 (ring breathing), Q̃21 (C-H

bending), Q̃22 (ring breathing), Q̃28 ((N)H2 in-plane bending) and Q̃32 (C-H

stretching). The interstate coupling strengths λ
(i,j)
α /ωα are shown in Table

7.4. The Ẽ(ππ∗) state is found to be strongly coupled to the D̃(3py) state by

the Q̃3 (NH2 torsion) mode, to the C̃(3pz) state by the Q̃1 (NH2 inversion)

mode, to the B̃(πσ∗/3s) state by the Q̃1 (NH2 inversion) and Q̃2 (boat)

modes, and to the Ã(ππ∗) state by the Q̃4 (NH2 in-plane bending) mode.

Additionally, the mode Q̃4 couples strongly the D̃(3py) and B̃(πσ∗/3s) states,

Q̃16 couples the C̃3pz and B̃(πσ∗/3s) states, while Q̃3 couples the C̃(3pz)

and Ã(ππ∗) states, and Q̃11 (C-H out-of-plane bending) couples significantly

the B̃(πσ∗/3s) and Ã(ππ∗) states. Thus, together with the N-H dissociation

coordinate Q̃36 we may identify a total of fourteen nuclear degrees of freedom

likely to be important for the description of the nuclear dynamics of aniline

following excitation to the Ẽ(ππ∗) state.
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Table 7.4: Linear interstate coupling strengths, obtained from fitting to the results
of EOM-CCSD/aug-cc-pVDZ calculations.

A1 λ
(1,6)
α /ωα λ

(3,4)
α /ωα λ

(3,7)
α /ωα λ

(4,7)
α /ωα λ

(5,8)
α /ωα

Q̃7 -0.1294 0.3573 1.1119 0.0708 0.2633

Q̃12 -0.1413 0.2315 -0.2953 -0.1403 -0.2266

Q̃16 0.8799 0.7523 0.1495 0.2705 0.2876

Q̃18 -0.1969 -0.1628 0.0899 -0.1783 -0.0070

Q̃21 0.7329 0.5110 -0.1497 0.5587 -0.0925

Q̃22 0.2455 0.1344 0.2136 0.0945 0.0466

Q̃26 0.2604 0.2198 -0.0551 0.3193 -0.1107

Q̃28 0.4695 0.2631 -0.2730 0.2069 0.0745

Q̃29 0.6182 0.3769 0.1515 0.1666 0.1952

Q̃30 0.0951 -0.1284 0.0344 -0.1115 -0.1782

Q̃32 0.6155 0.1722 0.2112 0.0219 0.0626

Q̃34 -0.3366 0.2078 -0.1200 -0.0257 0.2323

A2 λ
(1,5)
α /ωα λ

(1,8)
α /ωα λ

(2,3)
α /ωα λ

(2,4)
α /ωα λ

(2,7)
α /ωα λ

(5,6)
α /ωα λ

(6,7)
α /ωα

Q̃3 -1.6279 -5.2411 -0.0685 -4.3181 -3.2988 -1.6811 -4.2598

Q̃5 1.1656 -0.6695 -0.0379 2.5483 -0.8468 -0.1056 -0.3686

Q̃11 -0.3073 0.7440 -0.3952 -0.7045 -1.4218 -0.0968 -0.9061

Q̃15 0.8088 0.3279 -0.3780 -0.7666 -0.5626 0.0633 -0.1741

B1 λ
(1,3)
α /ωα λ

(1,4)
α /ωα λ

(1,7)
α /ωα λ

(2,5)
α /ωα λ

(2,8)
α /ωα λ

(3,6)
α /ωα λ

(4,6)
α /ωα λ

(6,7)
α /ωα

Q̃1 0.0000 0.0000 0.0000 -1.3616 -2.7632 -0.8223 -0.6225 -0.2447

Q̃2 0.1281 2.3098 -0.0377 -0.2223 4.0205 1.7634 0.1997 0.2223

Q̃6 1.0034 -0.2654 0.5211 0.5260 -1.4209 -1.1377 0.4628 0.0259

Q̃9 0.5723 -0.4308 0.2544 1.0096 -0.0999 0.3880 -0.1596 0.8669

Q̃10 -0.2278 -0.1128 -0.2190 -1.1083 -0.8608 -0.4622 0.1172 -0.7524

Q̃13 -0.2353 0.3733 -0.3582 0.2126 0.2495 -0.0444 -0.2155 -0.5906

Q̃14 -0.0312 0.0606 -0.1756 -0.2987 -0.9165 -0.5198 -0.0508 -0.0437

B2 λ
(1,2)
α /ωα λ

(2,6)
α /ωα λ

(3,5)
α /ωα λ

(3,8)
α /ωα λ

(4,5)
α /ωα λ

(4,8)
α /ωα λ

(5,7)
α /ωα λ

(7,8)
α /ωα

Q̃4 0.7952 -1.5662 -0.6326 -1.2850 0.2482 1.0939 0.7886 -0.1669

Q̃8 0.2801 -0.5510 -0.0565 -0.1946 -0.0973 -0.1959 0.1999 0.0092

Q̃17 0.8808 -0.6923 -0.5561 -0.5584 -0.2329 -0.1315 -0.6400 0.1909

Q̃19 0.3807 -0.4047 -0.0262 0.5496 -0.0298 0.1769 0.2715 -0.0116

Q̃20 1.3803 -0.3807 0.1938 0.4113 -0.0424 -0.4064 -0.3404 0.1216

Q̃23 0.3639 -0.3767 -0.0785 -0.6967 0.0189 -0.2282 -0.3596 -0.0268

Q̃24 0.9394 -0.2444 0.1579 -0.1652 0.0737 0.1668 -0.2244 -0.0205

Q̃25 1.7209 -0.0961 0.3431 -0.1965 -0.0521 0.0554 -0.3838 -0.0223

Q̃27 0.0497 0.1437 -0.1099 0.2457 0.0428 0.0836 -0.0139 -0.0124

Q̃31 0.1948 -0.2110 0.0541 -0.3556 -0.0306 -0.1271 -0.2381 0.0081

Q̃33 0.2896 0.0728 -0.0105 -0.3430 0.0296 -0.0858 -0.2288 -0.0141
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Table 7.5: Details of the MCTDH simulations of excitation to the Ã(ππ∗) state,
for which a propagation time of 300 fs was used.

Particle Number of grid points Grid lengths Number of SPFs

{Q̃1, Q̃36} {20, 71} [-4.0, 4.0], [-20.0, 3.00] (4, 3, 3, 3, 3, 2)

{Q̃7, Q̃12} {20, 20} [-7.0, 7.0], [-7.0, 7.0] (4, 5, 5, 4, 3, 2)

{Q̃16, Q̃18} {20, 20} [-7.0, 7.0], [-7.0, 7.0] (4, 6, 6, 5, 3, 2)

{Q̃29, Q̃34} {20, 20} [-7.0, 7.0], [-7.0, 7.0] (4, 6, 6, 5, 3, 2)

{Q̃3, Q̃5} {20, 20} [-7.0, 7.0], [-7.0, 7.0] (4, 6, 6, 6, 4, 2)

{Q̃20, Q̃25} {20, 20} [-7.0, 7.0], [-7.0, 7.0] (4, 5, 3, 3, 3, 2)

Table 7.6: Details of the MCTDH simulation of excitation to the Ẽ(ππ∗) state,
for which a propagation time of 300 fs was used.

Particle Number of grid points Grid lengths Number of SPFs

{Q̃1, Q̃7} {15, 15} [-4.0, 4.0],[-7.0, 7.0] (5, 6, 9, 8, 5, 6)

{Q̃21, Q̃22} {15, 15} [-7.0, 7.0], [-7.0, 7.0], [-7.0, 7.0] (5, 6, 8, 5, 4, 5)

{Q̃16, Q̃18, Q̃11} {15, 15, 15} [-7.0, 7.0], [-7.0, 7.0], [-7.0, 7.0] (5, 6, 9, 8, 5, 6)

{Q̃28, Q̃32, Q̃4} {15, 15, 15} [-7.0, 7.0], [-7.0, 7.0], [-7.0, 7.0] (5, 6, 9, 8, 5, 6)

{Q̃12, Q̃2, Q̃3} {15, 15, 15} [-7.0, 7.0], [-7.0, 7.0], [-7.0, 7.0] (5, 6, 9, 8, 5, 6)

{Q̃36} {71} [-20.0, 3.00] (5, 5, 5, 5, 5, 5)

Turning our attention to the excitation to the Ã(ππ∗) state, we find that

significant interstate coupling strengths exist for the degrees of freedom Q̃7

(ring stretching), Q̃12 (ring stretching), Q̃16 (ring stretching) and Q̃18 (ring

breathing). The Ã(ππ∗) and ground states are found to be very coupled

strongly by the degrees of freedom Q̃20 (C-H in-plane bending) and Q̃25

(ring stretching). The modes Q̃3 (C-H stretching) and Q̃5 (boat) couple

significantly the states Ã(πσ∗/3s) and C̃3pz . Only relatively weak coupling

of the Ã(ππ∗) and B̃(πσ∗/3s) states is found to exist.

Illustrated in Figures 7.3 and 7.4 are, respectively, the normal modes

most important for the description of the photoinduced dynamics of aniline,

and the model and EOM-CCSD adiabatic energies along these degrees of

freedom.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 7.3: Normal modes important for the description of the dynamics of aniline
following excitation to the Ã(ππ∗) and Ẽ(ππ∗) states: (a) Q̃1

(NH2 inversion), (b) Q̃2 (boat), (c) Q̃3 (NH2 torsion), (d) Q̃4 (NH2 in-plane
bend), (e) Q̃5 (boat), (f) Q̃7 (ring stretch), (g) Q̃11 (asymmetric C-H out-
of-plane bending), (h) Q̃12 (ring stretch), (i) Q̃16 (ring stretch), and (j) Q̃18

(C5H5 breathing).
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Fig. 7.4: Continued over page.
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Fig. 7.4: Model (lines) and calculated (points) adiabatic energies along nuclear de-
grees of freedom important for the description of the dynamics of aniline following
excitation to the Ã(ππ∗) and Ẽ(ππ∗) states.
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7.3.3 Model Spectra

To reproduce the electronic absorption spectrum in the range 4.0 to 6.0 eV,

two wavepacket propagations were performed, corresponding to excitation to

the Ã(ππ∗) and Ẽ(ππ∗) states. The total spectrum in this energy range was

then produced by summing the two resulting spectra weighted by their cal-

culated oscillator strengths. The details concerning the DVRs and numbers

of SPFs used in these calculations are given in Tables 7.5 and 7.6.

To calculate the spectrum corresponding to excitation to the Ã(ππ∗)

state, initial wavepackets were produced by operating on the ground state

wavefunction, |ΨGS〉, using two different excitation operators,

Ôv = |2〉〈1|+ h.c., (7.16)

and

ÔHT =

{

|2〉
[

µ12(Q̃0) +
3N−6
∑

α=1

∂µ12(Q̃0)

∂Q̃α

Q̃α

]

〈1|
}

+ h.c. (7.17)

The first of these operators, Ôv, corresponds to vertical excitation to the

Ã(ππ∗) state, whilst the operator ÔHT is used to take into account the possi-

bility of the Herzberg-Teller effect being operative in this process. Displayed

in Figure 7.5 are the calculated and experimental spectra. The spectrum

produced using the excitation operator ÔHT is found to yield significantly

better agreement with the experimental spectrum, and so only this is shown

here. Here, in order to affect homogeneous broadening of the spectra and ac-

count for the exclusion of the “bath” of modes not included in the wavepacket

propagations, the autocorrelation function is convoluted with an exponential

damping function, and short damping times of 18 fs and 38 fs were used in the

calculations of the Ã(ππ∗) and Ẽ(ππ∗) state spectra, respectively. Figures 7.6
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 220  240  260  280  300
wavelength / nm

(a) (b)

Fig. 7.5: (a) Absorption spectrum calculated using wavepacket propagations over
model potential surfaces representing the sub-Hilbert space spanned by the first six
electronic states of aniline. The upper band corresponds to vertical excitation to
the Ẽ(ππ∗) state and was produced using a fourteen-dimensional model potential.
The lower band corresponds to excitation to the Ã(ππ∗) state, was produced using
a twelve-dimensional model including Herzberg-Teller terms. Damping functions
have been included in the Fourier transforms of the autocorrelation functions to
model the homogeneous broadening due to excluded modes. (b) Experimental
spectrum, adapted from Ref 116.

and 7.7 show individually the two spectra calculated using a longer damping

time (100 fs), which renders transparent their vibrational structures.

Shown in Figure 7.6 (a) and Figure 7.6 (b) are the spectra calculated

using the excitation operators Ôv and ÔHT , respectively. The spectrum cor-

responding to vertical excitation contains progressions due to six modes: Q̃3,

Q̃5, Q̃7, Q̃12, Q̃16 and Q̃18. Within the quadratic vibronic coupling model, a

mode Q̃α with a ground state frequency ωα possesses a frequency ω
(i)
α in the

state indexed by i given by

ω(i)
α =

(

ω2
α + γ(i)ααωα

)
1

2 , (7.18)

and it is the modified frequencies ω
(2)
α that are used in the analysis of the

Ã(ππ∗) state spectrum. Specifically, we have ω
(2)
3 = 0.1130 eV, ω

(2)
5 = 0.0343

eV, ω
(2)
7 = 0.0666 eV, ω

(2)
12 = 0.1004 eV, ω

(2)
16 = 0.1384 eV and ω

(2)
18 = 0.1321
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Fig. 7.6: Spectra corresponding to excitation to the Ã(ππ∗) state, calculated using
twelve-dimensional, six-state wavepacket propagations. (a) Spectrum calculated
using vertical excitation to the Ã(ππ∗) state, with assignments of the vibrational
progressions given for the first eleven peaks. (b) Spectrum calculated using the
linear dipole excitation operator ÔHT to model the Herzberg-Teller effect.
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eV. As such, the progressions in the modes Q̃3 and Q̃12 are found to overlap,

as are those in the modes Q̃16 and Q̃18. We note that the non-totally sym-

metric modes Q̃3 and Q̃5 become spectroscopically active due to the strong

coupling of the Ã(ππ∗) and C̃(3pz) states that exists with respect to these

degrees of freedom. The gradient of transition dipole moment component

µ12,x with respect to the mode Q̃5 is calculated to be rather large (-1.13).

As a result, when the initial wavepacket is produced by operation on |ΨGS〉

with ÔHT , the intensities of the peaks corresponding to the progression in Q̃5

are significantly increased, as is illustrated in Figure 7.6 (b). We note that

both the inclusion of the C̃(3pz) state and the use of the excitation operator

ÔHT , used to account for the Herzberg-Teller effect, were required in order

to adequately reproduce the Ã(ππ∗) state spectrum.

The calculated spectrum corresponding to vertical excitation to the Ẽ(ππ∗)

state is shown in Figure 7.7. The spectrum is found to be dominated by pro-

gressions in the three modes Q̃7, Q̃16 and Q̃18. Again the progressions in the

modes Q̃16 and Q̃18 are found to overlap due to the almost identical modified

frequencies ω
(6)
α of these modes.

7.3.4 Dynamics

The diabatic state populations following excitation to the Ã(ππ∗) state are

shown in Figure 7.8. The system is found to remain predominantly in the

initially excited state, with significant population transfer only occurring

to the C̃(3pz) state. Only a small amount of population is found to cross

into the B̃(πσ∗/3s) state, with the probability of population of this state

growing steadily to reach a value of 0.055 at 300 fs. Although the N-H

dissociation coordinate Q̃36 is included in the calculation, only negligible

N-H dissociation is found to occur throughout the propagation, with a time-

cumulated probability of dissociation of 0.017 after 300 fs. This may be
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Fig. 7.7: Spectrum corresponding to vertical excitation to the Ẽ(ππ∗) state, cal-
culated using a fourteen-dimensional, six-state wavepacket propagation, with as-
signments of the three dominant vibrational progressions.
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Fig. 7.8: Diabatic state population probabilities following excitation to the Ã(ππ∗)
state, calculated using a twelve-dimensional, six-state wavepacket propagation.
The corresponding initial state was produced by operation on the ground state
wavefunction with the linear dipole excitation operator ÔHT .

attributed to two factors: (i) the barrier to N-H dissociation is found to

be rather large (∼0.5 eV at the EOM-CCSD/aug-cc-pVDZ level), and; (ii)

there exists only relatively small vibronic coupling of the states Ã(ππ∗) and

B̃(πσ∗/3s). We note that a negligible probability of N-H dissociation on the

B̃(πσ∗/3s) state surface is consistent with the results of the time-resolved

velocity map imaging studies performed by Stavros et al. [118].

The diabatic state population probabilities following excitation to the

Ẽ(ππ∗) state are shown in Figure 7.9. Strong vibronic coupling of the en-

ergetically proximate D̃(3py) and C̃(3pz) states to the Ẽ(ππ∗) state results

in an in-phase, oscillatory transfer of population between the initially ex-

cited state and the two 3p Rydberg states throughout the duration of the

wavepacket propagation. Further coupling of the 3p Rydberg states to the

Ã(ππ∗) and B̃(πσ∗/3s) states results in the monotonic rise in the popula-

tions of these states. By 300 fs the population probabilities of the five states

Ã(ππ∗), B̃(πσ∗/3s), C̃(3pz), D̃(3py) and Ẽ(ππ∗) are 0.083, 0.173, 0.058,

Aniline 205



Results 7.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

po
pu

la
tio

n 
pr

ob
ab

ili
ty

time / fs

A1(S0)

B2(ππ*)

B1(πσ*/3s)

B1(3pz)

A2(3py)

A1(ππ*)

Fig. 7.9: Diabatic state population probabilities following excitation to the Ẽ(ππ∗)
state, calculated using a fourteen-dimensional, six-state wavepacket propagation
and a vertical excitation of the ground state wavefunction.

0.133, and 0.476, respectively. The population that reaches the B̃(πσ∗/3s)

remains mainly in the interaction region, with the calculated probability of

dissociation after 300 fs being 0.068.

We note that only a negligible amount of population is transferred to the

ground state. This is in stark disagreement with the time-resolved photoelec-

tron imaging (TRPEI) studies of Fielding et al. [119,120], in which transfer of

population to the ground state was observed to occur on a timescale of <100

fs. This transfer of population is undoubtedly mediated by an accessible

pathway to a conical intersection between the two states that is not included

in our model potential. Indeed, the recent CASSF calculations of Paterson

and co-workers [118] point to a very likely candidate: a prefulvenic geometry

distinctly reminiscent of the geometry of the conical intersection known to

be responsible for ultrafast S1/S0 internal conversion in the ‘channel 3’ re-

gion of benzene [122, 123]. The results presented here, however, do suggest

that without the inclusion of this conical intersection population transfer out
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of the manifold of states spanned by the energetically proximate Ẽ(ππ∗),

D̃(3py) and C̃(3pz) states is hindered, indicating that there should be little

competition with a pathway that directly connects the Ẽ(ππ∗) and X̃ states.

We tentatively note that the rapid transfer of population from the Ẽ(ππ∗)

state to the energetically proximate C̃(3pz) and D̃(3py) states that we observe

may be consistent with the energetically broad band in the TRPEI spectrum

recorded by Fielding et al. [119,120] that is taken to correspond to ionisation

from the Ẽ(ππ∗) state. At excitation wavelengths close to the origin of the

second band in the electronic absorption spectrum of aniline, this peak is

seen to split into two components which we posit could be consistent with

the existence of an electronic state in existence just below the Ẽ(ππ∗) state.

For reference, the TRPEI spectra under consideration here are reproduced

in Figure 7.10.

7.4 Conclusions

In this chapter a model Hamiltonian based on the quadratic vibronic cou-

pling model has been developed for the primary intention of the study of

the electronic absorption spectrum of aniline. The parameterisation of the

model Hamiltonian is achieved via fitting to the results of extensive EOM-

CCSD calculations. In contrast to previously reported CASSCF [118] and

SAC-CI [114] calculations, the presently reported EOM-CCSD calculations

suggest the existence of two 3p Rydberg states in the vicinity of the sec-

ond 1ππ∗ state. The results of further, more rigorous, CR-EOM-CCSD(T)

calculations are found to be in agreement with this picture.

Using our model Hamiltonian, wavepacket propagations were performed

in order to calculate the absorption spectra corresponding to excitation to

the Ã(ππ∗) and Ẽ(ππ∗) states. The inclusion of the strong vibronic coupling
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(a)

(b)

Fig. 7.10: Time-resolved photoelectron spectra recorded following photoexcitation
of aniline adapted from Ref. [119]: (a) spectrum recored following excitation at
5.17 eV, and; (b) spectrum recorded following excitation at 5.21 eV. The lower
peak at ∼ 1 eV is attributable to ionisation from the B2(ππ

∗) state. The broad
peak seen at ∼ 1.3 eV to ∼ 1.6 eV has been taken to correspond to ionisation from
the A1(ππ

∗) state [119], but at lower excitation energies is found to be composed
of two peaks, the lower of which we propose could be due to ionisation from the
D̃(3py) and/or C̃(3pz) states.
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of the Ã(ππ∗) and C̃(3pz) states is found to be crucial to being able to

satisfactorily reproduce the Ã(ππ∗) spectrum. Further, the inclusion of the

Herzberg-Teller effect, through the use of a linear dipole excitation operator,

is also found to significantly alter the spectrum and is necessary to capture

the features of first band of the experimental spectrum.

The model Hamiltonian used is found to be capable of reproducing the

second band in the experimental spectrum, corresponding to excitation the

the Ẽ(ππ∗) state. The C̃(3pz) and D̃(3py) Rydberg states are found to be

active in the short-time dynamics following excitation of this state. A major

deficiency of the current model, however, is it’s inability to account for the

experimentally observed ultrafast internal conversion to the ground state

following excitation to the Ẽ(ππ∗) state. This is almost certainly due to the

inaccuracy of the model potential in the regions connecting the FC point

to a prefulvenic S1/S0 conical intersection known to exist [118]. Given this,

further work to extend the current model potential to describe accurately

regions further away from the reference geometry is desirable.
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Conclusions

In this thesis the results of the quantum dynamics simulations of a number

of molecular systems have been presented. A common feature unifying the

systems studied is the presence of one or more low-lying, quasi-bound singlet

3s/πσ∗ states in each. Until now the identity of the vibronic coupling re-

sponsible for the formation of the quasi-bound topologies of these states has

not been sought, nor an evaluation of its effect on the dynamics that ensue

following excitation to these states attempted.

Ammonia represents a prototype for systems containing quasi-bound 3s/πσ∗

states. All previous theoretical studies of the photodissociation of ammonia

have considered only the roles played by its S0 and S1(3s/πσ
∗) states. Given

the likelihood of the quasi-bound topology of the S1(3s/πσ
∗) state arising

as a result of vibronic coupling to higher-lying states, a pertinent question

to ask is whether S0 and S1(3s/πσ
∗) states of ammonia constitute a Hilbert

subspace, and if not what the effect of the coupling of these two states to

their orthogonal complement will have on ammonia’s photodissociation dy-

namics in its S1(3s/πσ
∗) state. In Chapter 4, through the evaluation of the

extended Curl equation for these two states, it was shown in a quantitative

manner that the states in question do not form to a satisfactory extent a

Hilbert subspace at either the Franck-Condon point or the S1(3s/πσ
∗) D3h
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minimum. Further, the estimated order of magnitude of the non-adiabatic

coupling of these states to their orthogonal complement was determined to

be large, prompting the construction of two eight-state model Hamiltonians

for use in quantum dynamics simulations of the photodissociation of ammo-

nia in its S1(3s/πσ
∗) state. From simple symmetry arguments and NACT

calculations, the strong vibronic coupling of the Ã(3s) and D̃(4s) states was

identified as possibly providing the origin to the barrier to dissociation on

the S1(3s/πσ
∗) state surface, and this coupling scheme incorporated into the

construction of the model Hamiltonians. The validity of the Hamiltonians

constructed (differing in their dimensionality and the choice of nuclear co-

ordinates used in their parameterisation) was confirmed by their ability to

reproduce well the S1(3s/πσ
∗) ← S0 electronic absorption spectrum. In or-

der to assess the effect of the coupling of the S0 and S1(3s/πσ
∗) states to their

orthogonal complement on the dissociation of ammonia in the latter state,

a transformation of the model Hamiltonians used was devised based upon a

block-diagonalisation of the model potentials such that the coupling by the

electronic Hamiltonian of X̃ and Ã(3s) diabatic states to their orthogonal

complement was removed. By ignoring the coupling terms introduced into

the off-diagonal elements of the matrix representation of the kinetic energy

operator by this transformation, the effect of this coupling of the dynamics

of ammonia following excitation to the Ã(3s) state was evaluated. It is found

that the strong coupling of the Ã(3s) and D̃(4s) states, that in both models

used is responsible for the barrier to dissociation in the S1(3s/πσ
∗) state,

has an almost negligible effect on the rates of dissociation, and a minor effect

on the calculated branching ratios between the two adiabatic dissociation

channels. The coupling of the Ã(3s) state to the and B̃(3p) states by the

planar angular degrees of freedom was found to have a more pronounced ef-
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fect on the dissociation dynamics, with the inclusion of the coupling leading

to a decrease by 10% of the probability of dissociation by 750 fs. The fact

that the inclusion in the model Hamiltonians used of the vibronic coupling

that is responsible for the formation of the barrier to dissociation appears

to have little effect on the dissociation dynamics of ammonia is of use with

regards to the construction of model Hamiltonians for larger systems: the in-

corporation of this coupling complicates significantly the construction of the

model Hamiltonian, a complication that will be amplified for larger systems

with higher densities of states, and the demonstration here of its negligibility

with regards to the dynamics in the Ã(3s) state of ammonia provides a more

rigorous argument for the neglect of analogous coupling in other systems.

The simulation of the dynamics of ammonia following excitation to both

components of its doubly-degenerate B̃(3p) state was performed using an

eight-state, four-mode model. Sub-picosecond timescales for the transfer of

population from both components to the Ã(3s) state were found, whereupon

dissociation was found to proceed almost entirely diabatically. Hindrance

of a meaningful comparison with experimentally determined timescales for

relaxation from the B̃(3p) state is brought about by the excitation of specific

vibrational levels (and the reporting of a high degree of sensitivity of rate of

relaxation with the initial vibrational state excited) in the only existing time-

resolved experimental study [71], in contrast to the vertical excitation used in

the present work. It would thus be desirable to repeat these calculations to

include the preparation of initial states corresponding to specific vibrational

levels of the B̃(3p) state.

In Chapter 5 a model Hamiltonian based on the vibronic coupling Hamil-

tonian, but extended to allow the description of the breaking of a bond, was

developed and used to model the excited state dynamics of 3-pyrroline. Us-
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ing the method of improved relaxation, wavefunctions corresponding to the

axial and equatorial conformers of 3-pyrroline were calculated. A conformer-

resolved study of dissociation dynamics of 3-pyrroline was performed by using

as initial wavepackets these wavefunctions vertically displaced to each of the

Ã(3s) and B̃(3px) states. Comparable branching ratios and rates of disso-

ciation were found for both conformers, a consequence of the existence of

shared quasi-planar minima in both the Ã(3s) and B̃(3px) states. In analogy

with the dissociation of ammonia in its first excited state, the dynamics of 3-

pyrroline following excitation to its Ã(3s) state is found to be dominated by

the requirement of quasi-planarisation for the unhindered dissociation of the

N-H bond to occur. This is found to be reflected in the calculated Ã(3s)← X̃

and B̃(3px)← X̃ absorption spectra, which are both dominated by progres-

sions in the C-N-C and N-H out-of-plane modes, which together describe the

planarisation of the C-NH-C unit. Again, this can be seen to be analogous

to the case of ammonia, whose electronic absorption spectrum is dominated

by progressions in the umbrella mode, corresponding to the planarisation of

the molecule in its electronically excited states.

Using the methodology developed in Chapter 5, an eight-state model

Hamiltonian for use in the description of the excited state dynamics of

pyrrole was presented in Chapter 6. The parameterisation of the model

Hamiltonian was achieved through fitting to the results of a large num-

ber of CASPT2 calculation. Using this model Hamiltonian, and an ‘aux-

iliary’ single-state vibronic coupling Hamiltonian parameterised to describe

the B1(3py) state, the first band in the electronic absorption spectrum of pyr-

role was calculated. The three spectra corresponding to vertical excitation

to the A1(ππ
∗), B1(3py) and B2(ππ

∗) states were found to account for the

majority of the intensity in this band, with the spectrum being dominated
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by the B2(ππ
∗) state spectrum, as has previously been postulated. How-

ever, it is found that much of the calculated spectrum arises due to intensity

borrowing from the A1(ππ
∗) ← A1(S0) and B2(ππ

∗) ← A1(S0) transitions

by the the B1(3s) ← A1(S0) and A2(3pz) ← A1(S0) transitions. The ef-

fect of this intensity borrowing is starkest for the B2(ππ
∗) spectrum, the

majority of whose intensity below 6.15 eV is found to result from coupling

to the B1(3s) and A2(3pz) states. Interestingly, the calculations performed

suggest that the peak appearing at ∼5.7 eV in the experimental spectrum

does not correspond, as has previously been postulated [95, 103], to the ori-

gin of the B2(ππ
∗) band, but instead to excitation to the B1(3s) and A2(3pz)

states, rendered non-negligible via coupling, respectively, to the A1(ππ
∗) and

B2(ππ
∗) states.

Using a seven-mode, six-state model, the dissociation dynamics of pyrrole

following excitation to its A2(3s) state was modelled. Two timescales for the

dissociation of the vertically excited wavepacket were found to exist. The

first, of ∼30 fs corresponds to direct dissociation of those components of

the initial wavepacket that lie above the barrier to dissociation, whilst the

second timescale of ∼340 fs was found to correspond to tunnelling of the low-

energy components of the wavepacket through the barrier to dissociation. By

varying in the model potential the height of the barrier to dissociation on the

A2(3s) state surface, an extreme sensitivity of the calculated timescale for

tunnelling through the barrier to dissociation was revealed. This serves to

highlight the need for accurate electronic structure calculations to underlie

the parameterisation of a model Hamiltonian, with a variation of the barrier

height by only ±0.1 eV being found to change the rate of tunnelling by an

order of magnitude.

Using a ten-mode, six-state model, the dynamics of pyrrole following ex-
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citation to the B2(ππ
∗) state was modelled. Approximately 60% of the pop-

ulation is found to relax efficiently via the A2(3pz) state to the A2(3s) and

B1(3s) states, whereupon diabatic dissociation was found to proceed unhin-

dered. Diabatic trapping of the remaining population in the initially excited

B2(ππ
∗) state was found to occur as a consequence of the C-N-C out-of-plane

bending mode Q2. This result is not in accord with the generally held view

that relaxation of pyrrole following excitation to the B2(ππ
∗) state occurs

at least in part by internal conversion to the ground state mediated by the

so-called ring-puckered conical intersection [86–89]. The evolving wavepacket

does, however, appear to sample regions of nuclear configuration space cor-

responding to geometries for which distinct similarities with the geometry

of the ring-puckered conical intersection exist. This serves to highlight the

limitations of the vibronic coupling Hamiltonian, the model on which the

Hamiltonian used here is based. Although able to reproduce well spectra

and describe relaxation pathways that are dominated by single nuclear coor-

dinates, the use of a model potential based on a low-order Taylor expansion

makes the accurate description of the potential along pathways correspond-

ing to linear combinations of possibly strongly correlated nuclear degrees of

freedom difficult task to achieve.

In Chapter 7, a study of the dynamics of aniline following excitation to

its first two ππ∗ states was presented. The parameterisation of the model po-

tential was achieved via fitting to the results of extensive EOM-CCSD calcu-

lations. The results of these, and further, more rigorous CR-EOM-CCSD(T)

calculations, suggest that two 3p-type Rydberg states, labelled the C̃(3pz)

and D̃(3py) states, should exist between the B̃(3s/πσ∗) and Ẽ(ππ∗) states.

These two states have previously been ignored, presumably as previous, less

accurate, calculations have placed them significantly higher in energy [114].
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In order to bring into agreement the calculated and experimental first bands

in aniline’s electronic absorption spectrum, both the inclusion of the coupling

of the Ã(ππ∗) and C̃(3pz) states and the use of a linear dipole excitation op-

erator were found to be necessary. The latter highlights the role played by

the Hertzberg-Teller effect in the excitation to the Ã(ππ∗), with, in partic-

ular, the gradient of the transition dipole moment µ12 with respect to the

‘boat’ mode Q̃5 being responsible for important aspects of the vibrational

structure seen in the Ã(ππ∗) spectrum.

The C̃(3pz) state, as well as the D̃(3py) state, is found to play a role also

in the dynamics of aniline following excitation to its Ẽ(ππ∗) state, with popu-

lation being found to cascade through both states into the lower-lying Ã(ππ∗)

and B̃(3s/πσ∗) states. Analogous to the case of pyrrole, there is known to

exist an efficient mechanism for internal conversion of aniline excited to its

Ẽ(ππ∗) state to its ground state, thought to involve a prefulvenic-type con-

ical intersection [118]. The model used in this work, however, is found to

not describe the potential well enough along the pathway to this conical in-

tersection to be able to describe this relaxation pathway. Again, as in the

case of pyrrole, this is due to a lack of correlation in the model potential

of the nuclear degrees of freedom involved in the transition to this conical

intersection. Future work in which this pathway is included in the model

potential is thus motivated.

Finally, we comment on the roles found to be played by usually neglected

3p Rydberg states in the excited states dynamics of both pyrrole and aniline.

In both systems, states of this character were found to play important roles

in relaxation following excitation to bright ππ∗ states. The activity of the

3p Rydberg states in these systems raises important questions with regards

to the choice of method used in the calculations of adiabatic energies for
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such systems. Multireference methods based on a CASSCF wavefunction are

the only currently available means of being able to describe bond-breaking

consistently well over a large range of systems, and as such are undoubtedly

of much value. However, for systems such as the heteroaromatic species

studied here, the high density of low-lying electronic states poses significant

problems for CASSCF-based methods, for which an active space must be

selected. The requirement of choosing a tractable active space will almost

always result in the inability of a single CASSCF calculation to be able to

describe all states in existence within an energy range of interest. Hence,

an a priori evaluation of the importance of an electronic state with regards

to a system’s excited state dynamics must be made, even though such an

importance may only truly be evaluated a posteriori, following the execution

of a quantum dynamics simulation. Active-space-free methods such as the

EOM-CCSD method obviate this problem and require no effective user-made

pre-selection of electronic states. Such single-reference methods, however, are

prone to failure when, for example, when far into a dissociation limit.
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