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ABSTRACT

We present an analysis of the properties of jets in proton–proton and lead–lead
collisions at the ALICE experiment at the CERN Large Hadron Collider, using the
technique of two-particle angular correlations. The data sample comprises proton
collisions at energies of

√
s = 7 TeV and

√
s = 2.76 TeV, and lead collisions at a

nucleon–nucleon collision energy of
√
sNN = 2.76 TeV, from data taking periods in

2010 and 2011.

The jet width and transverse momentum imbalance, quantified by the jet fragmen-
tation transverse momentum jT and the net partonic transverse momentum kT re-
spectively, were studied in minimum bias proton collisions. The width was found to
be independent of hadron transverse momentum, with a value of

√
〈j2T〉 ≈ 0.8 GeV.

This is higher than measurements from earlier experiments at lower beam energies,
consistent with theoretical expectations.

√
〈k2T〉 was found to increase with collision

energy and also with the transverse momentum of the hadrons in the jet.

The dependence of jet yield on the produced multiplicity was studied in proton
and ion collisions, with the multiplicity providing an estimator for the ion colli-
sion centrality. The ratio of awayside to nearside yield was studied, with a view
to identifying suppression of jet momentum through interaction with a deconfined
quark-gluon plasma. This suppression was identified in lead collisions as expected
from previous results, but no suppression was observed in high multiplicity proton
collisions.

The jet width and transverse momentum imbalance were also studied as a function
of multiplicity, with the width quantified by jT and the imbalance quantified by the
correlation function awayside peak width. In proton collisions, the jet width was
measured to be

√
〈j2T〉 ≈ 0.8 GeV independently of multiplicity; this was consistent
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with the measurements in minimum bias collisions. No firm evidence of medium
effects was observed in measurements of the awayside peak width in proton or lead
collisions, but the jet width was observed to decrease in lead collisions of increasing
centrality. This was interpreted as a suppression of the high momentum hadrons in
the jets.
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Goethe - Faust

Three quarks for Muster Mark!
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CHAPTER 1

INTRODUCTION

The present understanding of interactions in nature includes four fundamental forces:

gravity, electromagnetism and the strong and weak nuclear interactions. Gravity will

be omitted from this discussion as it is significantly weaker than the other three, and

its theoretical description proceeds along very different lines (although the possible

unification of gravity with the other forces is an open question in physics). The

other three interactions are described by the exchange of virtual bosons: photons

in the case of electromagnetism, W± and Z0 bosons for the weak interaction, and

gluons for the strong interaction.

The quantum field theory of electromagnetism (quantum electrodynamics) and the

unified electroweak theory describe electromagnetic and weak interactions to great

precision, indeed quantum electrodynamics has been described as the “jewel of

physics” for the extreme accuracy of its predictions [1]. This is partly because

the small coupling constant means that not many terms in a perturbative expansion

1
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1.1. QUANTUM CHROMODYNAMICS 2

are needed to provide a good degree of accuracy, and partly because the existence

of elementary charged and electroweakly interacting free particles (leptons) allows

precise experimental investigation. A classic example of this would be the precise

measurement of many electroweak variables at the Large Electron–Positron Col-

lider (LEP) [2]. Neither of these are the case for the strong interaction as, due to

the running of the strong coupling, perturbative expansions are not possible except

for interactions with a large transferred momentum, and also the property of con-

finement means that fundamental strongly interacting particles do not exist freely

in nature but exist instead in bound states.

1.1 Quantum chromodynamics

The strong interaction is the strongest of the four fundamental interactions and is

responsible for binding nucleons (protons and neutrons) together into atomic nuclei.

However, nucleons are not fundamental particles but are believed to be composed of

quarks, and it is also the strong interaction which binds these constituents together

to form the nucleons. Indeed, the constituent particles are exposed to the “full”

strong interaction, while the binding of atomic nuclei is due only to the residual

strong force between the nucleons.

The current accepted theoretical description of the strong interaction is the theory

of quantum chromodynamics (QCD). While similar to quantum electrodynamics

(QED) and electroweak theory in that it describes elemental particles carrying a

charge (the so-called colour charge in the case of QCD) interacting via the exchange

of virtual bosons, it has many important differences. Particularly important is that

the exchange bosons, gluons, carry colour charge [2]. This means that gluons can

self-interact, which fundamentally affects the properties of the interaction.
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1.1.1 The quark–parton model

The theory of the strong interaction has its roots in the parton and quark models

of the 1960s. The parton model originated as particle accelerators began to be suf-

ficiently energetic for deep inelastic electron–proton scattering to probe the internal

structure of nucleons [3]. It was subsequently shown by Bjorken that the observed

cross sections could be explained as evidence that nucleons were not elementary but

were in fact comprised of point-like “partons” [4].

At around the same time, the quark model was proposed independently by Gell-

Mann and Zweig [5, 6]. This was motivated by the large number of observed hadronic

(divided into bosonic mesons and fermionic baryons) states that had been discovered

over the preceding decade, which were considered to be too numerous to all be

fundamental.

The quark model explained these states as composite particles comprised of fraction-

ally charged, spin-1
2

“quarks”, along with their corresponding antiquarks; mesons

were described as quark–antiquark (qq̄) pairs, baryons as three quarks (qqq) and

antibaryons as three antiquarks (q̄q̄q̄). Three “flavours” of quarks were needed to

account for the observed combinations of charge, isospin (originally introduced in

response to the symmetries between the proton and neutron, and later generalised

to other hadrons) and strangeness (invoked to account for the long decay time of

the kaon relative to its mass); these were named the up (u), down (d) and strange

(s) quarks. The prediction and subsequent discovery of the Ω− baryon, consisting of

three strange quarks, was strong evidence for the validity of the quark model [7]. It

was later discovered that in addition to the u, d and s quarks, there existed charm

(c), bottom (b) and top (t) quarks, with masses too high to be produced at 1960s

experiments. The quarks and their quantum numbers are summarised in table 1.1.

A problem for the quark model was the need to explain the discovery of the ∆++

baryon, which according to the model comprised three u quarks with parallel spins
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Table 1.1: Quark flavours and their quantum numbers [8].

Flavour Charge Other

u +2/3 Isospin = +1/2
d −1/3 Isospin = −1/2
s −1/3 Strangeness = −1
c +2/3 Charm = +1
b −1/3 Bottom = −1
t +2/3 Top = +1

and should thus have violated the Pauli exclusion principle. This problem was

averted with the introduction of an additional quantum number, which was not

observed in hadrons and thus must sum to zero for physical states. This quantum

number, with the symmetry described by the SU(3) group, was termed colour, with

each quark having a colour of “red”, “green” or “blue” and likewise with “anti-

colours” for the antiquarks. Physical hadron states are SU(3) singlets (colourless),

either by having equal numbers of all three colours of quark (for example a baryon

must have a red, a green and a blue quark), or by having each colour sum to zero (for

example a meson could have red–antired, green–antigreen or blue–antiblue quarks).

The quark and parton models were realised to be describing the same objects, and

together form the quark–parton model. Later deep inelastic electron–nucleon scat-

tering experiments determined that hadrons can in fact contain large numbers of

quarks, gluons and antiquarks. However, the quark–parton model of flavour remains

valid with the observation that the net quark content of a given hadron obeys a sum

rule. A proton, for example, is in the quark model composed of (uud). Following the

sum rules, for a proton Σ(u) − Σ(ū) = 2, Σ(d) − Σ(d̄) = 1, and for all other quark

flavours Σ(q) − Σ(q̄) = 0. These net quarks are termed valence quarks, and the

rest sea quarks. In QCD, the quarks are viewed as elementary fields, with hadrons

existing as bound states of these.
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1.1.2 Confinement

Experimental investigation of the strong interaction is complicated by the fact that

elementary strongly interacting particles do not exist freely in nature but are bound

inside hadrons, a property known as confinement. As such, it is impossible to observe

an isolated scattering of coloured particles in the same way as, for example, electron

scattering provides a clean way to study the electroweak interaction. A description

of a widely studied QCD process that could be observed at a collider experiment

(hadronic jet production as a consequence of hard parton scattering) can be found

in section 2.1.

In QCD, the strong interaction is described in terms of the exchange of massless

bosons known as gluons. As stated in the introduction to this section, in contrast to

the uncharged photons in QED, gluons carry colour charge. This has consequences

when two quarks are pulled apart, and leads to the phenomenon of confinement.

To visualise this process it is instructive to consider the QCD colour field lines as

a function of separation, as shown in figure 1.1. At very short distances of much

less than the typical hadron size of 1 fm, the QCD potential behaves analogously

to the QED potential, with an r−1 dependence (figure 1.1a). At longer distances,

approaching the hadron size, the gluon self-interaction pulls the gluons exchanged

between the quarks into a “flux tube” as shown in figure 1.1b. Here the field energy

per unit length is approximately constant, analogously to a stretched spring. Taking

into account both of these components, the strong potential VS has the form

VS = −4

3

αS

r
+ kr (1.1)

where αS is the strong coupling, k is the tension of the flux tube and r is the

separation of the quarks.

At even larger separations of greater than 1 fm, it becomes more energetically
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Figure 1.1: The confinement of quarks visualised in terms of the QCD field lines.
a) The colour field at very short range behaves much like the QED field.
b) At longer range, the characteristic “flux tube” behaviour.
c) At even longer range, it becomes more energetically favourable for a new qq̄ pair to be
produced.

favourable for a new qq̄ pair to be produced from the field energy and the flux

tube “breaks”, leading to two separate hadrons, which are individually confined.

Despite this picture of confinement, to date there has been no analytic proof that

QCD should be confining. However, due to the lack of any observation of bound

coloured states, it is generally accepted.

As well as defining hadron size to around 1 fm, the majority of hadron mass also

arises from confinement: nucleons have mass of the order of 1 GeV, while the bare

quark mass is expected to be of the order of 1 MeV (although there is no way to

directly measure this at present).

1.1.3 Asymptotic freedom

The strong coupling αS, used to define the strength of the strong interaction, is not

in fact constant but varies with separation r. Due to the Heisenberg uncertainty

principle, this is equivalent to a dependence on transferred four-momentum q. This

arises due to quantum vacuum fluctuations and related effects occur in both QED

and QCD.
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In QED, virtual electron–positron pairs can appear from the vacuum and act as

dipoles, being polarised by the presence of a real charge (such as a real electron).

These act to shield the field of the real charge which results in its measured charge

increasing asymptotically with the momentum of a probe, or equivalently with de-

creasing separation. The electron charge is typically taken as its value measured at

infinity, with the QED coupling α “running”, that is to say increasing with decreas-

ing separation (or alternatively with increasing q).

A similar effect is present for QCD with virtual qq̄ pairs shielding a bare colour charge

but, due to the gluon self-interaction, gluon loops arise as well as qq̄ loops. This leads

to the net gluon contribution being in fact an anti-shielding which dominates over

the qq̄ shielding, with the net effect being that αS decreases with smaller separation

(or equivalently, αS decreases with increasing q).

As the coupling increases with separation, it cannot be scaled with respect to the

coupling at infinity, as is done with QED, but must instead be defined relative to

the coupling at a reference scale µ. From quantum field theory, this leads to the

expression for αS(Q2), where Q2 = −q2:

αS(Q2) =
αS(µ2)

1 + β0αS(µ2) ln
(
Q2

µ2

) (1.2)

where β0 = 1
12π

(2nq − 11nc), nq,c being the number of quark and colour degrees of

freedom. For QCD, with six quark flavours and three colours, β0 = − 7
4π

. This is

usually expressed in terms of the QCD scale constant Λ2
QCD = µ2 exp [−1/β0αS(µ2)]

which can be thought of as the scale at which the coupling becomes large. Defining

also the positive quantity b = −β0, equation 1.2 simplifies to [9]

αS(Q2) =
1

b ln(Q2/Λ2
QCD)

. (1.3)

From this equation the running of αS is apparent. For Q2 � ΛQCD, corresponding
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to small separation, αS � 1 and thus the interaction can be treated perturbatively,

much as in QED. This is the basis for perturbative QCD (pQCD), which has

had much success in calculating, for example, cross sections for various hard (high

Q2) QCD processes [9]. However, at low Q2 of the order of Λ2
QCD and lower, αS

becomes large and a perturbative expansion is impossible. Instead, non-perturbative

techniques must be used, such as lattice QCD; this approach formulates QCD on a

discrete spacetime lattice of finite size, with quarks defined on the sites and gluons

on the links [10]. Monte-Carlo techniques can then be applied to solve such a system

numerically.

Measurements of αS at a range of Q2 values are shown in figure 1.2 and from these

it has been determined that ΛQCD ∼ 0.2 GeV, which is equivalent to a distance of

roughly 1 fm. This is what constrains hadron size to this scale.

If one takes the running of αS to its logical conclusion, it becomes apparent that at

asymptotically large Q2, αS(Q2) → 0; hence the partons behave as if free, as first

predicted by Gross, Wilczek and Politzer [11, 12]. This phenomenon is known as

asymptotic freedom.

1.2 Quark–gluon plasma

The phenomenon of asymptotic freedom, as described in section 1.1.3, applies to

partons at close separation within a hadron. However, it also leads to the conclu-

sion that at extremely high energy density, bulk hadronic matter would become

deconfined with partons able to propagate freely through the medium. In such a

system of independent partons, hadrons would cease to exist [13]. This state of

matter is commonly referred to as quark–gluon plasma (QGP), and according to

big bang cosmology the universe was likely in such a state before t ∼ 10 µs [14].
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Figure 1.2: Dependence of the strong coupling αS on transferred momentum Q, from PDG
2010 summary of world data [8].

1.2.1 Debye screening

Deconfinement can occur in a dense medium, at lower energy densities than would

be required to reach the asymptotic limit, by a screening process analogous to the

Debye screening of electric charges in an electromagnetic plasma. Much as the

presence of mobile electric charges screens the field of a point charge in an electro-

magnetic plasma, mobile colour charges cause screening in a nuclear medium heated

or compressed to sufficient density that the nucleon boundaries begin to overlap.

Due to this colour charge screening, individual partons interact only with other par-

tons within the screening length, which is inversely proportional to the cube root of

the energy density. As this length becomes comparable to the mean separation, the

partons behave as if free.

Taking only the Coulomb-like (short range) part of equation 1.1 and including Debye
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Figure 1.3: Ratio of energy density to T 4 in strongly interacting matter as predicted by
lattice QCD, where T is temperature. 2 and 3 flavour calculations include two and three
light quarks, respectively, and 2+1 flavour calculations include two light quarks and a
heavy strange quark [16].

screening gives

VS ∼ −
αS

r
· exp

(
− r

rD(T )

)
(1.4)

where rD(T ) is the Debye screening radius, which characterises the separation within

which colour charges interact with each other [15]. It is dependent on the temper-

ature of the system, being infinite at low temperature (implying no screening) and

becoming shorter with increasing temperature over a critical temperature TC. When

rD(T ) becomes smaller than the hadronic radius, bound hadrons cease to exist. Due

to this screening effect, nuclear matter can undergo a transition to a deconfined

QGP state at a lower energy density than would be required for an asymptotically

free QGP.

As αS can still not be assumed to be small in this case, perturbative calculations

cannot be used. Instead, non-perturbative methods must be applied to model the

properties of a non-asymptotically-free QGP. Particularly useful is lattice QCD,

which has been used extensively to calculate thermodynamic properties of the QGP

such as the critical temperature of the phase transition.
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Lattice QCD calculations of the critical temperature TC depend on the number

of quark flavours considered, among other parameters, but generally yield con-

clusions that TC ≈ 170 MeV with a corresponding critical energy density εC ≈

1 GeV/fm−3 [16]. QGP energy densities from such calculations, for various numbers

of quark flavours, are shown in figure 1.3. The phase transition to a QGP state is

clearly visible at T = TC.

Typically, the produced energy density is quantified by the Bjorken energy density

εBj =
dET

dy

1

STτ
(1.5)

where dET/dy is the transverse energy per unit rapidity (which can be related to

the produced multiplicity of charged particles), ST is the transverse overlap area of

the colliding nuclei and τ is the plasma formation time [17]. Rapidity is defined

in appendix A. In
√
sNN = 0.2 TeV gold–gold collisions at the Relativistic Heavy

Ion Collider (RHIC), a measurement was made of τεBj = 5.2± 0.4 GeV/fm2 which,

assuming a formation time τ < 1 fm/c, gives an energy density of at least sev-

eral GeV/fm3, well in excess of the critical energy density as predicted by lattice

QCD [18].

Increased beam energy leads to a higher energy density and indeed measurements at

the ALICE experiment at the LHC indicate values of τεBj ≈ 15 GeV in central lead–

lead collisions [19]. As such, QGP is believed to be accessible to modern collider

experiments.

1.2.2 The phase diagram of quantum chromodynamics

A schematic representation of the QCD phase diagram, as a plot of temperature

T against baryon chemical potential µB is shown in figure 1.4. µB is a represen-

tation of the net baryon density, and characterises the imbalance between quarks
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Figure 1.4: Schematic representation of QCD phase diagram in temperature and baryon
chemical potential plane.

and antiquarks (although it does not give an absolute measurement of density). For

µB ≈ 0 lattice QCD can be used, and the rest of the diagram is deduced from QCD

phenomenology and equilibrium thermodynamics. The diagram shows the distinc-

tion between confined hadronic matter and deconfined QGP, and it is expected that

the phase transition between these states is a crossover type at low µB and first

order at higher µB, with a critical point existing. However, this is not yet fully

established [20].

Cold nuclear matter is shown at low-T , µB ≈ 900 MeV, and QCD vacuum exists

in the limit of T, µB → 0. Conditions expected at various past and present heavy

ion collider experiments are marked, which tend to increased T and lower µB with

increasing energy. The early universe is presumed to have existed in the extreme high

T , low µB position on the diagram with enormous temperature and approximately

equal quark and antiquark densities.
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Figure 1.5: Simulation of a heavy ion collision [21].

There also exists a phase transition to deconfined matter at low T and high µB,

which could occur in matter of very high pressure. This high pressure, (relatively)

low temperature matter is theorised to possibly exist in the core of compact stellar

objects such as neutron stars and hypothetical quark stars. However, such a system

is inaccessible to current experiments.

1.3 Experimental production of QGP

1.3.1 Relativistic heavy ion collisions

As stated in section 1.2.2, ultrarelativistic heavy ion collisions can be used to pro-

duce a high temperature, low baryon chemical potential QGP, similar to (but less

extremely so than) that of the early universe. At these experiments, the nuclei of

heavy elements are accelerated to high energy and collided inside detectors to record

the produced particles.

Figure 1.5 shows a simulation of a heavy ion collision. The nuclei impact each other

as Lorentz contracted “pancakes” which experience nucleon–nucleon collisions but

do not stop in the centre of mass frame. As they pass through each other, they

produce a hot dense region between them which rapidly expands and cools. The

system then “freezes out” into hadrons, which pass into the detector and can be

detected. The energy density ε is not directly measurable, but it is correlated with

the number and average energy of particles produced at mid-rapidity (around 90◦
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Figure 1.6: Depiction of the time evolution of a heavy ion collision, from the QGP phase,
through the hadron gas phase to freeze-out [22].

to the beam direction) as indicated by equation 1.5.

A more detailed depiction of the post-collision time evolution of system is shown

in figure 1.6. The initial pre-equilibrium (t < τ0) stage is thought to be dominated

by hard (high Q2) parton scattering. Multiple parton scatterings then take place,

driving the system to an equilibrated QGP phase. The expansion is then driven by

hydrodynamic pressure.

As the system expands it cools, with hadrons re-forming as the temperature drops

below TC. At LHC energies of 2.76 TeV per nucleon, this occurs at a time approx-

imately 10 fm/c after the initial collision [23]. Shortly after this, the temperature

falls below the chemical freeze-out temperature Tch, after which inelastic scattering

does not occur and the hadron species ratios are fixed. Finally, the temperature

drops below the kinetic freeze-out temperature Tf0 and no more elastic scattering

can occur. Barring any subsequent weak decays, the hadrons then pass unchanged

to the detectors.
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1.3.2 High multiplicity proton collisions

So far this section has described QGP production in heavy ion collisions, which

is well established. The systems produced in proton collisions are typically too

dilute and small in volume for thermalisation to occur and for QGP to be produced.

However, it has been suggested that it may be possible to produce sufficient energy

densities for QGP production in a subset of proton collisions in which a suitably

large number of particles are produced (as the energy density is correlated with the

multiplicity) [24, 25].

Studies of this have been performed at previous experiments, but have thus far

yielded inconclusive results [26]. Much greater multiplicities are produced at Large

Hadron Collider (LHC) energies, which may imply the production of QGP in the

highest multiplicity collisions. The mean charged particle multiplicity has been

measured in 7 TeV proton collisions to be dNch/dy = 6.01 ± 0.01+0.20
−0.12 [27] but

the highest produced multiplicities, reaching values of around dNch/dy ≈ 60, are

comparable to the multiplicities observed in 200 GeV/nucleon copper collisions at

RHIC at which measurable QGP effects were observed [28].

There has also been an observation of an extended ridge structure in dihadron

azimuth–pseudorapidity (∆φ–∆η) correlations in 7 TeV proton collisions at the

LHC [29]. While not yet fully understood, a similar feature was observed in gold

collisions at RHIC and so there is interest in whether this could be indicative of

QGP production [30]. Whether this observation implies the production of QGP in

proton collisions is still debated [31, 32].

If QGP were produced in a proton collision, the initial size would be significantly

smaller than that produced in a heavy ion collision, as the proton transverse size

(roughly 1 fm) is an order of magnitude smaller than that of a heavy ion. This,

combined with the shorter lifetime that results from the smaller size, would lead

observable QGP signatures (described in section 1.4) to be less apparent, although
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still potentially measurable [25].

1.3.3 Experimental history

Various experimental facilities have been built to attempt to create QGP through

heavy ion collisions. While there were earlier attempts at the Alternating Gradient

Synchrotron (AGS), the first indications of QGP production were found at fixed

target experiments at the CERN SPS [33], which studied lead–lead collisions at a

centre of mass energy per nucleon of 19.4 GeV. The peak energy density achieved

was estimated to be around 3 GeV/fm3.

The next experimental facility was the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory, a beam–beam collider which produced gold–gold,

copper–copper, proton–proton and deuteron–gold collisions at various centre of mass

energies per nucleon up to 200 GeV, producing an estimated energy density well in

excess of the critical density [18]. A wider range of QGP signatures were observed,

which provided greater confidence that QGP had indeed been produced and allowed

a more detailed study of its properties [34].

Currently operating is the CERN LHC which, in addition to its proton–proton

program, collides lead nuclei up to a current maximum centre of mass energy per

nucleon of 2.76 TeV, producing a longer-lived and hotter plasma than previously. A

Large Ion Collider Experiment (ALICE) is optimised to study heavy ion collisions

at this collider.

1.4 Signatures of quark–gluon plasma production

Various experimental observables have been proposed as signatures to identify the

production of QGP as opposed to a hot hadronic gas. Typically, these involve mea-
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suring the same observable in minimum bias proton–proton collisions (the ALICE

minimum bias trigger is described in section 3.2.6) on the assumption that gener-

ally the systems produced are too small to form a QGP. Comparison is then made

with heavy ion collisions to identify differences that cannot merely be explained as

a superposition of nucleon–nucleon collisons.

Significant observables include enhanced strange particle yield, charmonium sup-

pression, suppression of high momentum particles and hydrodynamic flow. The

first two were first observed at the Super Proton Synchrotron (SPS), and the second

two were important discoveries at RHIC [34].

1.4.1 Enhanced strange particle yield

One of the key pieces of evidence for the production of QGP at the SPS was the

increased production of strange particles (hadrons containing at least one strange

quark or antiquark) in nuclear collisions compared with hadronic collisions [33].

This was expected in QGP as the strange quark mass is of similar magnitude to the

QGP transition temperature of 170 MeV and so many strange quarks are produced

through scattering subprocesses. The dominant subprocess at SPS energies (and

above) is gluon-gluon fusion gg → ss̄ [35].

Strangeness production occurs as a result of the partonic rescattering that drives

the system to equilibrium. Analysis of strangeness production rates can therefore

provide insight into the equilibration process, an example being at the SPS where it

was discovered that the system typically reaches chemical equilibrium after times of

the order of 5 fm/c. A system with hadronic degrees of freedom rather than partonic

would take around ten times as long to equilibrate via hadron rescattering, and as

such would disperse too quickly for this to occur. [35].

After the system cools below TC, the strange quarks hadronise to form strange
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hadrons in greater numbers than would be expected in the absence of QGP.

1.4.2 Charmonium suppression

A consequence of the high charm quark mass is that the production of cc̄ pairs

tends to occur mainly in the early stages of a heavy ion collision. In a medium of

sufficient temperature, the Debye screening radius rD(T ) becomes smaller than the

relatively large size of bound cc̄ states, such as the J/ψ. This suppresses the observed

production of these states, whilst production of D± and D0 states is enhanced due

to the free charm quarks [36].

J/ψ suppression has been measured to be of a similar degree at SPS [37] and

RHIC [38] energies. While some degree of suppression would be expected in the

absence of a QGP due to cold nuclear matter effects such as hadronic rescattering,

the magnitude of these effects was studied in deuteron–gold collisions at RHIC and

was determined to be insufficient to account for the observed suppression in ion–ion

collisions [39].

Measurements at ALICE at the LHC have indicated the suppression at these energies

to be less than that observed at earlier experiments [40]. This is believed to be a

consequence of the higher energy densities produced at the LHC, which enhances the

production of cc̄ pairs. These deconfined quarks are then subject to recombination

during hadronisation, which partially compensates for the screening suppression

effect [41, 42].

1.4.3 Hydrodynamic flow

Due to the size of heavy nuclei, heavy ion collisions are not typically head-on but

instead occur with a degree of overlap. This overlap is quantified by centrality,
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Figure 1.7: Schematic diagram of colliding heavy ions, showing a non-central collision
with the interaction plane labelled [44].

ranging from 0%–100% where 0% is the most central (head-on) and 100% is the

most peripheral. A three-dimensional view of this, with the reaction plane (the

plane defined by the centres of the colliding nuclei and the beam direction) labelled,

is shown in figure 1.7. This spatial anisotropy leads to a larger energy density

gradient in the reaction plane than perpendicular to it, and hence a larger pressure

gradient in this plane [43].

Hydrodynamically, the difference in pressure gradient results in a momentum anisotropy

in the final state particle distribution, with particles emitted in the reaction plane

having higher pT than those emitted perpendicular to it. This can be measured

from the observed particle pT distribution as a function of azimuth. This can be

characterised as a Fourier series, the most important component being the second

harmonic v2 which measures the anisotropy between the reaction plane and the

perpendicular. This is termed elliptic flow [43].

Measurements of v2 are typically compared with predictions from relativistic hydro-

dynamics, assuming a QGP equation of state with quark degrees of freedom. These

predictions were shown to describe the data well for lower momentum particles at

RHIC [46] and at the LHC [47, 48], providing strong evidence for the production of
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Figure 1.8: Elliptic flow v2 in the 40%–50% centrality window, measured as a function
of pT at ALICE. Hydrodynamic predictions are shown to match the data well at lower
pT [45].

QGP; indeed the success of these models has led to the description of the QGP as

a “perfect liquid” with very small viscosity.

Figure 1.8 shows such a comparison for identified particles at ALICE, clearly ex-

hibiting the dependence of v2 on particle type and the accurate description of this

by a current “state-of-the-art” relativistic hydrodynamic model, with colour-glass

condensate (CGC) initial conditions. The models are not generally applicable at

high pT, where particle production is dominated by the scattering of hard partons

and their interaction with the medium.

1.4.4 Suppression of high transverse momentum particles

Another key QGP signature is the suppression of particles of high transverse momen-

tum pT. The main production mechanism for high pT hadron production at hadron

colliders is jet production, where hard-scattered partons hadronise into collimated

cones of hadrons known as jets. Typically this results in pairs of jets (dijets) that
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Figure 1.9: Schematic depiction of hard parton scattering leading to dijet production.

are approximately opposite in azimuth (although not in polar angle as the centre

of mass frame of the parton–parton collision is generally boosted with respect to

the lab frame, as described in appendix A). A simple picture of this is shown in

figure 1.9. This observation forms a large part of this thesis and so jet production

will be discussed in greater detail later.

Hard scattering in heavy ion collisions occurs early in the timeline of the collision,

but the pT of the scattered partons is expected to be significantly attenuated by

radiative interactions with the medium; an overview of this attenuation is provided

in section 2.2. Due to the reduced pT of the fragmenting parton, the produced

hadrons also have reduced pT and so this effect is visible as a reduction in the

yield of high pT particles when normalised by the number of nucleon collisions and

compared with proton collisions at the same centre of mass energy.

Typically the suppression is quantified with the nuclear modification factor RAA.

This is defined as the ratio of the charged particle yield in heavy ion (A–A) collisions
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to that in p–p collisions, the yield from proton collisions being scaled by the mean

number of binary nucleon–nucleon collisions in the ion collisions 〈Ncoll〉 [49]:

RAA(pT) =
(1/NAA

evt )d2NAA
ch /dηdpT

〈Ncoll〉 (1/Npp
evt)d

2Npp
ch /dηdpT

(1.6)

where η is the pseudorapidity as defined in appendix A and NAA
evt , N

pp
evt are the

number of ion and proton events, respectively. 〈Ncoll〉 is calculated from a model

incorporating the nuclear overlap and nucleon–nucleon cross sections. A model

of this type, used in this analysis to determine the relationship between observed

particle multiplicity and collision centrality, is outlined in appendix C.

Thus, a lack of suppression at a given pT would be implied by RAA(pT) = 1, which

would suggest that ion collisions could be viewed as simple superpositions of proton

collisions. Observations of RAA < 1 would indicate suppression. Figure 1.10 shows

measurements of RAA for a range of pT at the ALICE [49] experiment at the LHC

and the STAR [50] and PHENIX [51] experiments at RHIC. This shows RAA values

of significantly less than 1, implying a high degree of suppression. It is apparent that

more significant suppression was observed at ALICE than at the RHIC experiments,

which is interpreted as a consequence of the hotter, longer lived plasma produced

at the LHC compared to that produced at RHIC.

As with the charmonium suppression described in section 1.4.2, the possibility of

the high pT suppression being caused by cold nuclear matter effects such as gluon

shadowing or hadronic scattering was investigated at RHIC through the analysis of

deuteron–gold collisions. The lack of suppression in these events provided strong

evidence that the observed suppression in heavy ion collisions was indeed indicative

of QGP production [52]. A proton–lead collision program was underway at the LHC

at the time of writing with the aim of validating the suppression measurements in

a similar way.
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Figure 1.10: Measurements of the nuclear modification factor RAA in central heavy ion
collisions at ALICE (LHC) and STAR and PHENIX (RHIC) [49].

1.4.5 Jet quenching

Section 1.4.4 describes the general suppression of high pT particles in heavy ion

collisions. However, the degree of attenuation depends on the position and direction

of the parton within the geometry of the system: a parton produced by a hard

scatter near the edge of a volume of QGP and directed out of the medium would

have a shorter path length and suffer less energy loss than one traversing a greater

length of plasma.

As depicted in figure 1.11, jet quenching arises when a hard parton is produced in

a QGP volume, leading to a reduction in jet pT due to the interaction of the parton

with the medium. When a hard parton pair is produced near the edge of the volume,

one parton may be directed out of the medium and one azimuthally opposite, as

shown in the figure. As the first parton is not greatly suppressed, a high pT jet is still

observed in this direction. However, the greater energy loss from the other parton
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Figure 1.11: Simplified representation of radiative parton energy loss leading to jet quench-
ing, with the observed jets having a momentum asymmetry.

leads to a jet with significantly lower pT such that a jet momentum asymmetry is

observed.

In general it is difficult to fully reconstruct jets in heavy ion collisions as the jet

energies are typically not sufficiently high to be distinguished from the background;

because of this, jet studies have been performed using two-particle angular cor-

relations. In such an analysis, the distribution of angular difference ∆φ between

particles in defined “trigger” and “associated” pT ranges is produced. Given suf-

ficiently high pT bins, in p–p collisions this produces a characteristic shape of two

peaks, centred at ∆φ = 0 and ∆φ = π, atop a flat non-jet background (which is

generally subtracted). This shape appears as a consequence of azimuthally opposite

dijet production. However, a pT asymmetry in the jets, due to jet quenching, can

lead to the suppression of the awayside (∆φ = π) peak; this technique was used

to provide firm evidence for jet quenching at RHIC [52]. A more comprehensive

description of a two-particle correlation analysis is presented in section 4.4.

The degree of this attenuation can be described by the ratio of dihadron yields IAA.
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This is defined as

IAA =
YAA

Ypp
(1.7)

where YAA and Ypp are the yields of hadrons associated with the high pT “trigger” in

ion and proton collisions. Typically this quantity is constructed separately for the

nearside (∆φ ≈ 0) and awayside (∆φ ≈ π) peaks, with the difference between these

expressing the relative degree of suppression of the awayside jets. Measurements of

jet quenching and of the single particle suppression RAA are sensitive to different

properties of the medium, for example through the parent parton of an awayside

jet necessarily traversing a greater path length through the medium. As such, their

combined study allows effective constraint of jet quenching models [53, 54].

Figure 1.12 shows an early measurement in Pb–Pb and p–p collisions at ALICE

at the LHC [55]. The awayside peak in peripheral (60%–90% centrality) Pb–Pb

is shown to match that for p–p. However, the peak in central (0%–5% centrality)

Pb–Pb is suppressed with respect to p–p. This suppression indicates the effect of jet

quenching. The ∆φ = 0 peak is not suppressed in central Pb–Pb as the requirement

of “trigger” particles in a given high transverse momentum range preferentially

selects events where the jet production occurs near the surface of the QGP volume

and thus one jet escapes mostly unattenuated. In the plot shown, this peak can in

fact be seen to be enhanced in central Pb–Pb with respect to p–p; the mechanism

for this enhancement is not yet well understood.

It has also been suggested that the degree of acoplanarity of a dijet pair with respect

to the beam trajectory could be increased as a consequence of interaction of the jets

with the medium [56, 57, 58, 59]. The degree of acoplanarity can be determined from

the net transverse momentum of a jet pair, which can be extracted from two-particle

angular correlations.

At modern hadron collider experiments it is more usual to analyse jets by identifying

and reconstructing them on an event-by-event basis. At LHC energies, jets in heavy
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Figure 1.12: Corrected per-trigger pair yield at ALICE, comparing peripheral (60%–90%
centrality) Pb–Pb, central (0%–5% centrality) Pb–Pb and p–p. While the awayside yield
in peripheral Pb–Pb matches p–p, a suppression with respect to this is observed in central
Pb–Pb. This suppression indicates jet quenching [55].
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ion collisions are in fact energetic enough that it may be possible to accurately re-

construct them. However, due to the large number of non-jet background particles

overlapping with the jet this is still challenging, and correlations remain a valu-

able technique which allows comprehensive comparison with results from previous

experiments.

When taken in combination, measurements of the signatures described in this section

provide convincing evidence that a deconfined quark-gluon plasma state is produced

in heavy ion collisions at the energies of modern experiments.

1.5 Overview of thesis

This document presents a detailed analysis of jet properties, using the technique

of two-particle correlations, in proton–proton collisions at centre of mass collision

energies of
√
s = 7 TeV and

√
s = 2.76 TeV and lead–lead collisions at a nucleon–

nucleon centre of mass collision energy of
√
sNN = 2.76 TeV.

Chapter 2 reviews the theoretical background of jet production in proton and ion col-

lisions, including more detail regarding parton attenuation in a deconfined medium

than is given in this introduction. Chapter 3 discusses the ALICE experiment at the

LHC, at which the analysed data was taken, with particular emphasis given to the

detector subsystems relevant to this analysis. The details of the dihadron correlation

analysis are then described in chapter 4, including the construction of the correla-

tion functions and the extraction of interesting physical quantities from these. The

results of this analysis are then given in chapters 5, 6 and 7. The conclusions drawn

from the results are reviewed in chapter 8, and some additional technical details

regarding the analysis are presented in appendices: appendix A outlines some kine-

matic quantities used widely throughout this document, and appendices B and C

contain descriptions of the Monte-Carlo models used in the analysis.



CHAPTER 2

THEORETICAL BACKGROUND

2.1 Jets in proton–proton collisions

High pT hadron production in high energy particle collisions, at both e+e− and

hadron colliders, is characterised by jet production. Jets originate from the pro-

duction of a pair of high momentum coloured particles which, due to confine-

ment, fragment into collimated jets of hadrons. In e+e− collisions, the initial (pre-

fragmentation) event involves the production of a qq̄ pair via an intermediate photon

or Z boson through the process e+e− → γ/Z0 → qq̄.

In hadron collisions, the coloured particle pair is produced through the hard inelastic

scattering of the constituent partons of the colliding hadrons, with all possible parton

scattering processes contributing to the overall cross section. These constituents can

be valence quarks, sea quarks or gluons. By way of example, a diagram showing a

28
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q

q̄

p

p

Figure 2.1: Feynman diagram of typical p–p hard scattering event, which would lead to
two jets in a detector.

gluon–gluon scattering is shown in figure 2.1.

Hard (high momentum transfer) processes, where the strong coupling αS is small (as

described in section 1.1.3), can be well described by pQCD in much the same way

that electroweak theory can be used to describe processes such as e+e− scattering.

The parton scattering subprocesses fall into this category. However, the momentum

distributions of the initial partons within the hadron are incalculable with pQCD

as they arise from many soft processes. Despite this, the scattering cross section is

independent of the initial parton momentum distribution and the process can be fac-

torised into separate components. Because of this, given a suitable parameterisation

of this distribution, the dijet production cross section can be calculated [60, 61].

The momentum distribution of the initial partons is described by parton distribu-

tion functions PDF(i, x,Q2), where i denotes the type of parton and x the hadron

momentum fraction carried by that parton. PDFs are experimentally determined –

figure 2.2 shows the current best measurement of the proton PDFs at Q2 = 10 GeV2,
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Figure 2.2: Current best fit of the proton parton distribution functions at Q2 = 10 GeV2,
from combined H1 and ZEUS data [62].

from deep inelastic electron–proton scattering at the H1 and ZEUS experiments at

HERA [62]. This shows the relative proportion of the different parton types. The

fractions of proton momentum carried by valence up quarks, valence down quarks,

sea quarks and gluons are given by xuv, xdv, xS and xg, respectively. It can clearly

be seen that valence quarks contribute significantly at high x, and gluons (and, to

a lesser extent, sea quarks) dominate at low x.

The convolution of the PDFs with the hard scattering cross-sections gives the hard

parton production cross-section and therefore, as these partons fragment into jets

of hadrons, the dijet production cross section. The next stage in the jet production

process is the fragmentation of the outgoing partons into hadrons. Fragmentation

occurs due to confinement and can be visualised in terms of the stretching of gluon

“flux tubes” between partons, as described in section 1.1.2, which repeatedly produce

extra parton pairs that together form a jet of hadrons.

The hadrons that form the jet share the momentum of the parent parton and thus
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Figure 2.3: Schematic view of the kinematics of the fragmentation process for one jet. The
parton and hadron transverse momenta p̂T and pT are labelled, as is the jet fragmentation
transverse momentum component jTy. Seen in the plane perpendicular to the beam axis.

form a collimated cone shape about the parton momentum axis, with the relative

pT of a hadron to its parent parton termed jT (with y component in the azimuthal

plane) as shown in figure 2.3. As with the PDFs, the fragmentation process is

governed by soft QCD and cannot be calculated perturbatively. The results of

parton fragmentation are instead described by empirical fragmentation functions

D(h, z,Q2), which give the probability distribution for the production of hadrons

h with momentum fraction z of the parent parton. Assuming the fragmentation

process to be independent of both the hard parton production and of the proton

collision underlying event, the fragmentation functions can be measured in the com-

paratively clean environment of e+e− collisions and the results applied to hadron

collider physics [63].

This principle of the independence of the fragmentation function and hard cross

section (and also of the PDFs) is known as factorisation and is an important QCD

concept. The main consequence of factorisation is that the empirical fragmentation

functions and PDFs can be determined separately and convolved with the hard scat-

tering cross section, calculated using pQCD, to give the overall hadron production
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cross section due to jets. This can be written schematically as

σ =
∑
abcd

∫
dxadxbdz PDF(ia, xa, Q

2) PDF(ib, xb, Q
2)

⊗ σab→cd ⊗D(h, zc, Q
2)D(h, zd, Q

2)

with the sum over all parton scattering subprocesses a+ b→ c+ d.

2.1.1 The kT effect

If parton collisions were collinear with the p–p collision axis, the two emerging par-

tons in a hard scattering event would have equal transverse momentum and opposite

azimuth. Any initial partonic pT, denoted kT, would cause a deviation from this,

with the scattered partons having net transverse momentum 〈p2T〉pair = 2 · 〈k2T〉. It

might be näıvely expected that the partons would have kT ∼ 300 MeV, due to the

size of the proton [64]. However, this was observed [65] to not be the case, and

a study by the CERN-Columbia-Oxford-Rockefeller (CCOR) collaboration found

kT to be dependent on the centre of mass energy
√
s and to have a value as high

as 〈|kTy|〉 ∼ 0.8 GeV (giving
√
〈k2T〉 ∼ 1.1 GeV from the geometric relationship√

〈k2T〉 =
√
π〈|kTy|〉, where kTy is the component of kT perpendicular to the trans-

verse momentum of the other hard parton (typically this is defined relative to the

highest pT parton) [66]) for the highest energy collisions at the Intersecting Storage

Rings (ISR), with
√
s = 62 GeV [67].

Measurements of kT were subsequently performed at other experiments, the results

of many of which are collected in figure 2.4 [66]. This demonstrates clearly that

kT is both significantly larger than the näıve expectation and that it increases,

approximately logarithmically, with
√
s.

It was subsequently realised that the only satisfactory explanation for this behaviour

was that kT had a radiative origin (in addition to the intrinsic part already expected).
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Figure 2.4: Net pair pT measurements in proton collisions over a range of
√
s, illustrating

a clear dependence [66].

It is now understood that kT is composed of three components

〈k2T〉 = 〈k2T〉intrinsic + 〈k2T〉NLO + 〈k2T〉soft (2.1)

where “intrinsic” refers to the aforementioned component of roughly 300 MeV due

to the proton size, “NLO” refers to next to leading order corrections (the radiation

of an initial or final state hard gluon) and “soft” refers to the QCD radiation of

soft gluons, which is explained by resummation [68]. It was found by the E706

collaboration at Fermilab that the observed kT values cannot be explained by the

intrinsic and NLO components alone, and that the soft component is essential to

explain the observations. Indeed, it is believed that at collider energies the soft

component is dominant [69].
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(a) Scattering from thermal gluons and quarks.

(b) Radiation.

Figure 2.5: Energy loss mechanisms of hard partons in QGP.

2.2 Jets in heavy ion collisions

It is assumed that hard parton scattering in heavy ion collisions should behave

the same as in proton collisions and so, assuming the usage of appropriate PDFs

(modified to take into account the effects of the nuclear medium), it is possible to

calculate a dijet cross section in much the same way as for proton collisions. However,

the evolution of the system after the initial hard scattering takes place in a medium

very different from the vacuum of proton collisions. Significant suppression of high

pT particles (and jets) is expected relative to the yield observed in p–p collisions,

indeed this suppression is regarded as a signature of the production of QGP (as

introduced in section 1.4).

Colour charges (partons) traversing a colour-deconfined medium are expected to lose

energy through interactions with that medium, with those interactions being either

collisional or radiative. Collisional energy loss was the first type to be considered (by

Bjorken [70]), with interactions of this type involving the scattering of fast partons

from thermal quarks and gluons in the medium as depicted in figure 2.5a.

The other type of energy loss is radiative energy loss. Fast partons lose energy in
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this manner by interacting with scattering centres and emitting gluon radiation,

in a manner analogous to the emission of bremsstrahlung photons in electromag-

netic plasmas. A representation of such an interaction is shown in figure 2.5b [71].

All models of radiative parton energy loss must include the Landau-Pomeranchuk-

Migdal effect, whereby gluon radiation is suppressed due to interaction between the

parton and the radiated gluon [72, 59].

As well as energy loss, as stated in section 1.4.5 it has been suggested that medium

interactions could increase the acoplanarity of a jet pair with respect to the beam

trajectory [56, 57, 58, 59]. Any acoplanarity is measurable as a non-zero kTy, and so

measuring the pT imbalance in heavy ion collisions could provide a measure of the

degree of suppression.

2.2.1 Parton attenuation models

The first main approach to modelling radiative parton energy loss, known as BDMPS

(Baier-Dokshitzer-Mueller-Peigne-Schiff), models attenuation by the emission of

multiple soft gluons [72]. The second, known as GLV (Gyulassy-Levai-Vitev) mod-

els instead the emission of one or a small number of hard gluons [73]. Typically

in either of these approaches, for a finite volume of QGP, the parton energy loss is

not strongly dependent on the initial parton energy (except for it setting an upper

bound on the total energy loss).

The models differ regarding the thickness of plasma that they describe. BDMPS

calculations assume that the plasma is relatively thick and static, with the hard

partons being sufficiently energetic that the path length traversed L (defined by the

size of the plasma) is less than a critical length L < Lcr =
√
λgE/µ2, where λg is

the radiated gluon mean free path and µ = 1/RDebye is the Debye screening mass of

the medium. In models of this type the energy loss ∆E is proportional to L2.
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In contrast, GLV calculations are applicable to “thin” plasmas which are not signif-

icantly larger than the mean free path, where the BDMPS approximations do not

apply. In this situation it is appropriate to assume that only a small number of

gluon emissions take place [73]. From this model it can be shown that ∆E ∝ L.

The other main radiative energy loss formalisms are higher twist (HT) [74] and

Arnold-Moore-Yaffe (AMY) [75], both of which attempt to create a fuller quantum

field theoretic approach. AMY in particular is based entirely on pQCD, with the

consequence that it is limited to describing only plasmas of very high temperature

T � TC [59].

The models of parton energy loss outlined above generally relate the energy loss

to primary model parameters which characterise the medium. For example, in the

BDMPS approach the energy loss is related to the transport coefficient q̂ = 〈q2T〉/L,

where q2T is the transverse energy squared transferred to the traversing parton. This

is in turn related to the gluon density in the medium. The primary parameters in

the other models, for example the opacity (related to the screening length and mean

free path) in the case of the GLV approach, are typically translated into effective

transport coefficients [59].

Figure 2.6 shows measurements of parton energy loss, quantified by RAA, from the

ALICE experiment alongside results from various models [49, 76]. It can be seen

that it is difficult to discriminate between the different models by studying RAA

alone, as the data are well described by both purely collisional and purely radiative

models. This is attributed to the dependence of RAA on the initial conditions and

evolution of the system, which cannot be solely characterised by the (effective)

transport coefficient [77].

These models describe the general suppression of high pT particles in heavy ion

collisions. However, the dependence on path length leads to the conclusion that the

degree of attenuation depends on the position and direction of the parton within
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Figure 2.6: Measurements of the nuclear modification factor RAA in central heavy ion
collisions at ALICE, compared with various models [76].
HT, ASW and YaJEM are purely radiative models; the elastic models are purely collisional;
WHDG includes radiative and collisional energy loss.

the geometry of the system: a parton produced by a hard scatter near the edge of

a volume of QGP and directed out of the medium would have a shorter path length

and suffer less energy loss than one traversing a greater length of plasma. This can

lead to a measurable jet momentum asymmetry, as described in section 1.4.5.

This dependence on path length also has consequences for the potential observation

of QGP in proton collisions, which is described in section 1.3.2. If QGP production

were to occur in such collisions, the volume would be very small compared with that

produced in heavy ion collisions and as such, parton path lengths would be small

and the degree of quenching would not be as great. This would make it harder to

observe.



CHAPTER 3

THE ALICE EXPERIMENT AT THE

LHC

This chapter describes the LHC, a particle accelerator at CERN on the French-

Swiss border, in section 3.1. The ALICE experiment at the LHC is then described

in section 3.2, with particular emphasis on the subsystems which are relevant to the

two-particle correlation analysis described in chapter 4. These subsystems are the

Inner Tracking System (ITS) (section 3.2.3) and Time Projection Chamber (TPC)

(section 3.2.4) for tracking, and additionally the V0 (section 3.2.5) for triggering.

The triggering and reconstruction mechanisms are also described, in sections 3.2.6

and 3.2.7, respectively.

38
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3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a two-ring hadron synchrotron, 26.7 km in cir-

cumference and 45–70 m underground, located in the tunnel originally constructed

for LEP. Each ring (composed of curved and straight sections) can accelerate either

protons or lead nuclei in opposite directions about the ring and collide them at four

crossing points. At design energy it will be able to collide protons at
√
s = 14 TeV

and lead nuclei at
√
sNN = 5.5 TeV, although at the time of writing the highest

energies achieved were
√
s = 8 TeV and

√
sNN = 2.76 TeV for protons and lead,

respectively [78]. Collisions of lower-mass nuclei have also been proposed, but this

had not been implemented at the time of writing [79].

The beams are steered around the ring by dipole magnets with a peak field of 8.33 T

and are focussed by quadrupole magnets. The acceleration occurs within a single

straight section of the ring, containing an array of 400 MHz radio frequency (RF)

cavities [78]. The two-ring structure is necessary as, unlike previous hadron colliders

which typically studied proton–antiproton collisions, the LHC circulates two beams

of positively charged particles. This requires the bending magnetic field for the

clockwise beam to be in the opposite direction to that for the anticlockwise beam.

Four main experiments are positioned around the LHC ring, one at each of the four

crossing points. These are ALICE, optimised to study ion collisions, the general-

purpose experiments ATLAS and CMS, and LHCb, optimised for the study of b

physics. The layout of these experiments and the accelerating RF cavities around

the LHC ring is shown in figure 3.1.

Protons or lead nuclei are passed through a chain of accelerators prior to being in-

jected into the LHC [80]. Protons are supplied by a proton source, which strips hy-

drogen atoms of their electrons and injects them into a linear accelerator (LINAC2)

in which they are accelerated to 50 MeV prior to injection into the Proton Syn-

chrotron Booster (PSB). The PSB accelerates the protons to 1.4 GeV before inject-
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Figure 3.1: Schematic depiction of the LHC ring, showing ALICE at point 2 [78].
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Figure 3.2: The chain of accelerators leading to the LHC, for both protons and lead
ions [80]

ing them into the Proton Synchrotron (PS), in which they are accelerated to 25 GeV

before being fed into the SPS. In the SPS the protons are accelerated to 450 GeV,

after which they are injected into the LHC. This accelerator chain is shown in

figure 3.2.

The hadrons undergoing acceleration are collected in bunches, with a separation

between bunches of 25 ns at maximum capacity. One beam can circulate up to 2808

of these bunches, which have a typical transverse size when far from the detectors

of the order of 1 mm and a length of a few centimetres. The bunches are squeezed

by focussing magnets to a transverse size of approximately 16 µm at the interaction

points to maximise the collision rate in the experiments.

To produce lead beams, 208Pb atoms are stripped of their electrons by being passed

through a series of foils. The nuclei are then accelerated in a linear accelerator

(LINAC3), followed by the Low Energy Ion Ring (LEIR). The ions are then injected

into the PS, after which they follow the same accelerator chain as described for

protons (albeit at a correspondingly reduced energy per nucleon).
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The design p–p collision luminosity is L = 1034 cm−2 s−1 which, combined with the

total inelastic p–p collision cross section of σinel = 69.4 mb at
√
s = 7 TeV [81], gives

an event rate of 700 MHz. The highest produced luminosity across all of the LHC

experiments at the time of writing is 7.7× 1033 cm−2 s−1, with the value in ALICE

typically being around 1030 cm−2 s−1 (leading to an event rate of around 105 Hz).

When running with lead beams, the average produced luminosity to date was mea-

sured to be 5× 1023 cm−2 s−1, giving a hadronic collision rate of approximately

4 Hz. The overall interaction rate was around 50 Hz, but the majority of this was

due to electromagnetic processes which are easily rejected due to their low produced

multiplicity [82].

3.2 The ALICE detector

3.2.1 Detector overview

A Large Ion Collider Experiment (ALICE), measuring 16× 16× 26 m3 and situated

at point 2 on the LHC ring, is optimised to focus on the Pb–Pb collisions at the LHC

as opposed to the p–p collisions that are the focus of the other experiments. In par-

ticular, this required the design to take into account the very large track multiplicity

expected in ion collisions, roughly three orders of magnitude larger than that of typ-

ical p–p collisions and a factor of two to five higher than the largest multiplicities

observed at RHIC. ALICE was tested with simulations of up to dNch/dη = 8000 [83],

significantly higher than the value of dNch/dη = 1601± 60 measured at the LHC in

central Pb–Pb collisions at mid-rapidity [84].

The layout of the detector is illustrated in figure 3.3. The central barrel, centred on

the interaction point, is contained within a large solenoidal magnet which produces

a uniform field of 0.5 T. This causes particle paths within the detector to curve,
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Figure 3.3: Layout of the ALICE detector [83].

allowing their momentum to be measured as described in section 3.2.7. The central

barrel comprises many concentrically layered detector systems for charged particle

tracking, calorimetry and particle identification (PID), most of which cover the

pseudorapidity range −0.9 < η < 0.9 and the full range of azimuthal angle 0 < φ <

2π. Transverse momentum is measurable over a large range from around 100 MeV

up to over 100 GeV, and PID is also possible over much of this range. The analysis

presented in this document required only charged unidentified hadrons, and so of

the central barrel detectors only the tracking detectors were used. These, the ITS

and TPC, are described later in this section.

In addition to the central barrel detectors, there exist detectors at larger pseudora-

pidity to detect particles with paths closer to the beamline. Mostly these detectors,

such as the multiple components of the forward muon arm, were not used in this

analysis. However the V0, a particle counter with a fast response, is used for mini-

mum bias triggering and is described later in this section.
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3.2.2 Coordinate system

A standard set of coordinates is used when describing directions and angles in the

ALICE experiment. The origin of both coordinate systems defined here is set to the

intersection of the beamline and the central membrane of the TPC, in the mid-point

of the central barrel.

Cartesian x, y, z

The x-axis points to the centre of the LHC; the y-axis points vertically up-

wards; the z-axis is parallel to the beam direction and points towards the muon

arm end of the detector.

Cylindrical polar r, θ, φ

r is the radial distance perpendicular to the beam pipe. θ and φ are polar and

azimuthal angles with respect to the beam pipe (z-axis), although pseudora-

pidity η (as defined in appendix A) is typically used instead of θ.

Sides A and C

The A side of the experiment is the side closest to the main CERN site, and

the C side is the side furthest away. The muon arm is located on the C side.

3.2.3 Inner tracking system

The Inner Tracking System (ITS) consists of six concentric cylindrical layers of

silicon detectors, located immediately around the interaction point and covering

the pseudorapidity range |η| ≤ 0.9. As depicted in figure 3.4, from inner to outer

these six layers comprise two layers of Silicon Pixel Detector (SPD), two layers of

Silicon Drift Detector (SDD) and two layers of Silicon Strip Detector (SSD). The

main design consideration is the high multiplicity expected in ion collisions, which

necessitates a very high granularity in the tracking detectors close to the beam line
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Figure 3.4: Cross section of the ALICE inner tracking system [83].

– in the innermost layer, with its radius at the minimum allowed by the beam pipe,

track density can be as high as 90 cm−2. This granularity can only be achieved

through the use of silicon detectors.

The primary functions of the ITS are vertex determination (including separation of

secondary vertices), tracking of low-momentum particles and improvement of the

momentum and angle measurements of the TPC [85]. It is particularly important

for the measurement of particles of momentum lower than 200 MeV, which do not

reach the TPC and thus only appear in the ITS.

Silicon pixel detector

The SPD comprises the innermost two layers of the ITS, positioned at radii r =

3.9 cm and r = 7.6 cm. The SPD is finely segmented in two dimensions (perpendic-

ular to the φ direction), localising a particle passing through by detecting a signal

in one of its 9× 106 cells. This gives it the highest precision of the ITS components,

with a spatial resolution of 12 µm in rφ and 100 µm in z. Its proximity to the inter-

action point means that the SPD must be extremely radiation hard – the estimated

total dose over 10 years of running is 220 krad [86].
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Short tracks known as “tracklets” can be formed from two SPD hits, with no other

tracking information required. The number of these tracklets can provide a mea-

surement of charged particle multiplicity sensitive to very low momentum particles.

In addition to tracking, the SPD also contributes to the minimum bias trigger, as

described in section 3.2.6.

Silicon drift detector

The middle two layers, at r = 15.0 cm and r = 23.9 cm, of the ITS are SDDs. These

are finely segmented in one direction but coarsely in another, with track position

in this dimension reconstructed by measuring the drift time of the produced charge

to the electrode. This allows accurate hit location, with a resolution of 38 µm in

rφ and 28 µm in z, at the expense of being limited in the event rate that they can

accommodate – the ALICE SDD is configured for a maximum drift time of 6 µs [85].

As such, this type of detector is well suited to the high multiplicity, low frequency

events produced in heavy ion collisions.

Silicon strip detector

The outer two layers of the ITS, at r = 38.0 cm and r = 43.0 cm, consist of double-

sided SSDs. These are finely segmented in one direction but coarsely in the per-

pendicular direction, localising a particle to a single one of these strips. The two

sides are at a relative angle of 35 mrad to allow two-dimensional reconstruction of

a hit position with a resolution of 20 µm in rφ and 830 µm in z. This type of de-

tector is only suitable at these larger distances from the interaction point, where

the track density is typically less than 1 cm−2, as in a higher density environment

difficulties in the attribution of points to a given track could lead to ambiguity in the

reconstruction [85]. The SSD layers are particularly important for track matching

between the ITS and TPC.
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Figure 3.5: Layout of the TPC [87].

3.2.4 Time projection chamber

The Time Projection Chamber (TPC), located outside the ITS, is the main tracking

system of the central barrel of the detector and (as with the other central barrel

detectors) is optimised to provide a charged particle momentum measurement with

good two-particle separation, PID and vertex determination [83]. For tracks with

full radial track length it covers |η| ≤ 0.9, and coverage up to |η| ≈ 1.5 is possible

with reduced track length (to a minimum of one third of the total radial track

length) and correspondingly lower momentum resolution. The full range of azimuth

is covered, with momentum resolution better than 1% for tracks with pT between

0.2 and 1 GeV, around 5% for tracks of pT ≈ 10GeV, and rising to 30% for tracks

of up to 100 GeV. As with the ITS a significant factor in the design was the high

track multiplicities expected with a theoretical maximum of 2× 104 tracks over the

full volume, an unprecedented multiplicity for a TPC [83].

TPCs are a form of gaseous tracking detector and are essentially very large-volume

drift chambers with multi-wire proportional chambers (MWPCs) at one or both ends

(both in the case of ALICE [88]). Due to their very low material thickness, they cause

minimal scattering of the passing particles. This, combined with their excellent two-
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track separation, is desirable in the high multiplicity environment produced in ion

collisions. As with drift chambers, charged particles passing through ionise atoms

of the gas, liberating electrons. These electrons then drift in a uniform electric field

towards the MWPC, producing an electron shower when they approach the MWPC

anode wires and are accelerated by the stronger electric field near the wires. This

shower is then detected from the charge induced on cathode pads [89].

The long drift time of a TPC (up to approximately 92 µs at ALICE [83]) limits

the maximum collision rate that can be accommodated. Full three-dimensional

information can be read out: x and y from the two dimensionally segmented cathode

pads and z from the drift time.

The ALICE TPC is cylindrical with inner radius roughly 85 cm, outer radius roughly

250 cm and longitudial length of 500 cm; a cutaway diagram of its structure is shown

in figure 3.5. It contains 90 m3 of Ne/CO2/N2 in a 90:10:5 ratio at atmospheric pres-

sure; this mixture is optimised for low diffusion perpendicular to the drift direction

and low radiation length (minimising multiple scattering). It is separated by a cen-

tral cathode, and electrons drift up to 2.5 m from either side of this to MWPCs at

either end plate.

The end plates are shown in figure 3.6; the MWPCs comprise 18 trapezoidal sectors.

The entire TPC is contained within a field cage to permit the extremely uniform

electric field (of 400 V/cm) that is required in such detectors. It provides a position

resolution of 800–1100 µm (rφ) by 1100–1250 µm (z), the exact value depending on

the particle position within the detector [83].

3.2.5 V0

The V0 comprises two arrays of plastic scintillator counters at small angles to the

beam pipe – the V0A on the A side covering the pseudorapidity range 2.8 < η <
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Figure 3.6: Segmentation of the ALICE TPC end plates [88].

5.1, and the V0C on the C side covering the pseudorapidity range −3.7 < η <

−1.7. The V0A and V0C are positioned 340 cm and 90 cm from the interaction

point, respectively, this difference being due to the limitations on available space

on the C side imposed by the large muon absorber. This asymmetry leads to the

aforementioned difference in pseudorapidity coverage of the two arrays.

Each V0 array is coarsely granular, being composed of four concentric rings of eight

scintillator counters apiece. Its main relevance to the analysis presented here is

its contribution to the minimum bias trigger, as described in section 3.2.6. It can

also be used for a centrality trigger in heavy ion collisions, and for elimination of

beam–gas interactions – the relative timing of signals in the two arrays can be used

to distinguish a collision that occurred at the interaction point from one occurring

elsewhere along the beamline.
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3.2.6 Triggering

Typically at modern high energy physics experiments, including those at the LHC,

the collision rate is far in excess of the capacity to store the resulting data. This

necessitates some form of triggering to preferentially select interesting events for

storage and analysis.

Central Trigger Processor

The triggering in the ALICE experiment is controlled by the Central Trigger Pro-

cessor (CTP) hardware, located adjacent to the detector to minimise the latency.

The CTP can receive up to 24 inputs from triggering detectors (additional detec-

tors can be read out only, playing no role in triggering) and pass trigger signals to

detectors via Local Trigger Units (LTUs). There exist three levels of trigger: L0, L1

and L2 [83].

Initially, if the inputs satisfy defined L0 conditions (typically indicating that at

least one fast detector, such as the V0, has detected a possible event) and if no

vetoes occur (see below for examples of possible vetoes), an L0 signal is generated

which initiates the processing of the event by the read out detectors. This fast

decision typically reaches the detectors within 1.2 µs of an interaction. If further,

more restrictive, conditions are met, an L1 signal is generated and following this,

processing of the event either continues or is terminated. Finally, after additional

conditions are tested, an L2a (accept) or L2r (reject) signal is generated; if the

read out detectors receive an L2a signal the event data is read out to the Data

Acquisition (DAQ). This occurs roughly 88 µs after the interaction, approximately

equal to the drift time of the TPC.

The CTP can be connected to 24 L0 inputs, 24 L1 inputs and 12 L2 inputs. Up to 50

trigger classes can be defined, each comprising a logical combination of these inputs.
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Figure 3.7: Schematic diagram of the triggering and read out process (adapted from [91]).
One trigger detector and corresponding LTU is shown.
CTP: Central Trigger Processor; DAQ: Data Acquisition; ESD: Event Summary Data;
FERO: Front-end Read out Electronics; LTU: Local Trigger Unit.

A class then triggers the read out of one of up to 6 defined clusters of detectors [90].

A trigger class can be vetoed if one of various conditions are met. Some examples

are:

Detector busy A detector in the corresponding cluster is busy (indicated by a

busy signal to the LTU), and thus cannot be read out.

CTP busy The CTP cannot process L0 signals with a spacing closer than 1.6 µs.

DAQ busy If the bandwidth of the connection to the DAQ is exceeded, the DAQ

can veto further triggers.

Downscaling To protect rare triggers from being overwhelmed by common ones

saturating the read out, trigger classes can have their rates downscaled by the

CTP.

A schematic diagram of the flow of data through the triggering and read out process

is shown in figure 3.7.
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Triggers used in this analysis

The most basic trigger is a so-called minimum bias (MB) trigger which is optimised

to select inelastic events with as little physics bias as possible, to produce a selection

of the most typical events (with no preference for any rare characteristics). The

ALICE p–p minimum bias trigger requires at least one hit in the V0A, or the V0C,

or the SPD. Each SPD chip produces a Fast-OR signal for this purpose, indicating

that a hit has occurred on at least one of the pixels on that chip [92]. This signal

is fast enough to be used as an input to the L0 trigger; the full information is then

read out later if the trigger is not vetoed.

For the Pb–Pb collisions studied in this analysis the minimum bias trigger was

slightly different, requiring hits in at least two out of the V0A, V0C, or SPD.

Due to the steeply falling nature of the multiplicity spectrum, as demonstrated

in figure 3.8, the majority of events selected by a minimum bias trigger have a

relatively low multiplicity. For an analysis of high multiplicity p–p events, it is

therefore advantageous to have a trigger that selects only high multiplicity events.

The ALICE high multiplicity (HM) trigger was defined to require at least 60 fired

chips in the outer layer of the SPD, and was active during the LHC10e period of
√
s = 7 TeV p–p data taking in August 2010.

As shown in figure 3.8, the high multiplicity trigger greatly increases the statistics

at high multiplicity. In this plot multiplicity is defined as the number of recon-

structed tracks with pT > 0.2 GeV, according to the multiplicity definition used in

the analysis and described in more detail in section 4.3.

Figure 3.8 also shows the HM/MB ratio, which is constant (within statistical uncer-

tainty) above 58 tracks. As such, 58 tracks was taken as the threshold above which

the high multiplicity trigger was usable.

Each trigger described above was configured to trigger the read out of all of the
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s = 7 TeV p–p

data. Below is the HM/MB ratio.

main tracking detectors. Additional triggers, such as a muon trigger, were also in

use during the data taking period analysed here. However, as they were not used in

this analysis, they are not described in this document.

High multiplicity trigger bias

During the period of data taking in which the high multiplicity trigger was active

there were problems with the ITS cooling system, leading to a non-negligible number

of non-functioning pixels in the SPD. As described in section 4.1.1, track cuts were

optimised to minimise any resultant biasing of the results. However, there was some

concern that this would cause a bias in the high multiplicity trigger. Specifically,

as the dead pixels were clustered together causing large non-functioning sections,

there was a possibility that the trigger would respond differently to events with a

clustered track profile (such as jet events) as opposed to those with a more uniformly

distributed track profile. This would alter the relative proportions of these event

types in the selected event sample.
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To determine the extent of this issue, correlation plots were produced within the

same high multiplicity bin from both minimum bias and high multiplicity triggered

data. These were observed to be compatible within experimental uncertainty, lead-

ing to the conclusion that no significant bias existed in the final results.

3.2.7 Data acquisition and offline reconstruction

After an L2a trigger signal is received, the read out data from the detectors is

managed by the Data Acquisition (DAQ) system. The Front-End Readout Elec-

tronics (FERO) of each detector are connected via optical fibre to Local Data Con-

centrators (LDCs), each of which receive and process chunks of an event. These

chunks are then merged into a full event by one of a farm of Global Data Concen-

trators (GDCs), after which the raw data are stored for offline reconstruction [83].

The offline reconstruction of events is performed using the AliRoot software, an

extension of the ROOT analysis software with ALICE-specific libraries and methods.

This is processed on the Grid, a large distributed computing network [83].

The raw output from the tracking detectors consists of signals from detector ele-

ments, which are digitised. Sets of digits which are adjacent in space are assumed to

originate from the same particle traversing the detector, and are combined into clus-

ters. Space points are then reconstructed in three dimensions, generally positioned

according to the centre of gravity of the cluster [93].

Before reconstructing full tracks, the primary vertex is reconstructed. Pairs of space

points in the two layers of the SPD which are close in azimuthal and polar angles

are joined to form tracklets, from which the primary vertex position is determined.

A first pass track reconstruction is then performed, starting with track seeds from

the outermost clusters in the TPC and working inwards whilst assuming that all

tracks originated at the primary vertex. This is repeated without the constraint
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to the primary vertex, with both sets of tracks stored; the track finding is then

continued through it ITS.

After the first pass, a second pass takes place, with the track finding beginning at

the inner layer of the ITS and working outwards. The track can then be further

refined by a final refitting, again beginning at the outside of the TPC and following

the tracks inwards. Reconstruction is also possible using only the TPC or the ITS,

producing so-called TPC or ITS standalone tracks. The transverse momentum of

detected particles can then be deduced from the curvature of their tracks in the

0.5 T field of the ALICE solenoidal magnet, with the tracks of higher pT particles

having a greater radius of curvature.

After reconstruction, the data are stored in the Event Summary Data (ESD) format

for future analysis. Typically this analysis is carried out on the Grid using routines

written in C++ which utilise AliRoot.



CHAPTER 4

TWO-PARTICLE CORRELATION

ANALYSIS

Jet analysis using dihadron angular correlations, mentioned briefly in section 1.4.5,

takes a fundamentally different approach to the perhaps more familiar method of

event-by-event jet reconstruction. Instead of requiring that individual jets be recon-

structed, a statistical approach is taken whereby the distribution of angular separa-

tion of tracks is studied for a large sample of events. This technique is particularly

useful with heavy ion collisions, where the large multiplicities make it difficult for

jet-finder algorithms to distinguish tracks belonging to a jet from background. Such

a statistical method is sensitive to a wide variety of jet physics [64, 94].

This chapter describes the usage of two-particle angular correlations for a study of

jet shapes and transverse momentum imbalance (quantified by the jet fragmentation

transverse momentum jT, and the net partonic transverse momentum kT) in mini-

56
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Table 4.1: Summary of real data used in analysis.

System
√
s (TeV) LHC period MB events (millions)

p–p 2.76 LHC11a 45
7 LHC10e 52

Pb–Pb 2.76/nucleon LHC10h 18

Table 4.2: Summary of Monte-Carlo data used in analysis.

System
√
s (TeV) Generator MC production Events (millions)

p–p 2.76 Pythia 6 LHC11e3a plus 45
7 Pythia 6 LHC10e20 13

Pb–Pb 2.76/nucleon HIJING LHC11a10a bis 2.8

mum bias proton collisions, the results of which are presented in chapter 5. The use

of correlations for a study of the multiplicity dependence of the jet yield in proton

and ion collisions is described; the results of this are given in chapter 6. An analysis

of the multiplicity dependence of the jet shape was also performed, the results being

presented in chapter 7.

The proton multiplicity analyses were performed with a view to attempting to iden-

tify possible medium effects in high multiplicity proton collisions, as described in

section 1.3.2; the ion analyses were performed for comparison.

4.1 Data sample

This analysis used data from p–p collisions at
√
s = 7 TeV and

√
s = 2.76 TeV, and

Pb–Pb collisions at
√
sNN = 2.76 TeV. The data used, with the LHC periods and

number of MB triggered events at each energy, are summarised in table 4.1. The

analysis also used simulated Monte-Carlo data, which are detailed in table 4.2.

In the minimum bias proton collision analysis, the use of two beam energies allows

the dependence of jet shapes on beam energy to be ascertained. In the multiplicity
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analysis, the 2.76 TeV p–p data were used to allow the closest possible comparison

with Pb–Pb data, as for this data
√
spp =

√
sNN. The 7 TeV p–p data were used

to allow the furthest possible multiplicity reach, as the high multiplicity trigger was

only used during this period. Stronger QGP effects would also be expected to be

more apparent in higher energy data. The LHC period given in the table contains a

number indicating the year and a letter indicating the run period within that year,

a period of data taking lasting roughly a month.

The simulated Monte-Carlo data were central ALICE productions, generated to

match the detector response of the corresponding real data periods as closely as

possible (the production name not necessarily matching the corresponding run pe-

riod).

For p–p data, the Pythia 6 event generator was used with the Perugia-0 tune [95, 96].

Pythia is a Monte-Carlo event generator, developed with emphasis on events involv-

ing strong interactions. The total p–p collision cross section is divided into elastic,

diffractive and inelastic components, with the diffractive physics being described

by a pomeron model. Inelastic interactions are simulated with a pQCD model,

the divergence of the cross section at low pT being avoided by the introduction

of a phenomenological cutoff pTmin ∼ 2 GeV. Pythia also includes a description

of multi-parton interactions, whereby several parton–parton interactions can take

place within one event. Fragmentation of colour strings is simulated using the Lund

string model.

For Pb–Pb data, the HIJING 1.36 generator was used [97], which models QCD

processes in a similar manner to Pythia. The simulation is extended to heavy ion

collisions with Glauber geometry used to describe multiple nucleon–nucleon interac-

tions In addition, nuclear phenomena such as nuclear shadowing (where the nuclear

PDFs are modified with respect to those of free partons) are included. Final state

effects, such as the suppression of high pT hadrons in a volume of QGP, can also be

introduced.



4.1. DATA SAMPLE 59

In both cases, the detector response was simulated using GEANT3.

4.1.1 Track selection

For each event, a set of track selection cuts were applied to eliminate poor-quality

tracks. These were optimised to preferentially select primary particles not origi-

nating from weak decays or from interactions with detector components, and to

maximise momentum resolution. In the period in which
√
s = 7 TeV p–p data were

taken, there were a number of non-functioning sections in the ITS due to problems

with the cooling system, which caused a non-negligible number of dead pixels in the

SPD. To minimise the bias that this would cause to the results, no ITS hits were

required. For consistency, the same set of track cuts was used for all events; these

are detailed here.

• |η| < 0.8.

• At least 50 clusters in the TPC.

• χ2/cluster < 4 in the TPC.

• DCAz < 3.2 cm, DCAxy < 2.4 cm where DCAz,xy is the impact parameter of

the track in the beam direction and perpendicular to it.

• No kink daughters. Kinks can be produced by, for example, decay of a charged

particle leading to a charged and a neutral product, or by interaction with a

tracked particle with a detector element. They can also be produced by failures

in tracking.
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4.2 Pileup

A consequence of the high luminosities reached at the LHC during proton running

is a high probability of multiple interactions occurring within one bunch crossing,

termed pileup (due to the low luminosities during Pb–Pb collisions at the LHC,

pileup for these events is negligible). This is typically quantified within a given

run by the average number of interactions per bunch crossing µ; the probability

P (µ, n) for n interactions in one bunch crossing then being determined by a Poisson

distribution:

P (µ, n) =
e−µµn

n!
. (4.1)

µ is determined on a run-by-run basis from the number of fired CINT1B and

CBEAMB triggers. A CBEAMB trigger indicates that both beams were present

in the detector (as monitored by beam pickup detectors) and thus that proton

interactions could occur, and CINT1B is the minimum bias trigger described in sec-

tion 3.2.6 which implies that an interaction occurred while both beams were present.

The ratio of the number of CINT1B triggers to the number of CBEAMB triggers

thus gives the fraction of bunch crossings in which at least one interaction occurred,

and hence the probability of at least one interaction occurring in a given bunch

crossing. µ can then be determined by solving

CINT1B

CBEAMB
= 1− P (µ, 0) (4.2)

where CINT1B and CBEAMB indicate the number of those triggers fired and

P (µ, 0) = e−µ

is the probability of no interactions occurring in one bunch crossing.
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4.2.1 Estimation of pileup fraction

The fraction of pileup in measured data increases with event multiplicity and so

during the period in which the ALICE high multiplicity trigger was in use the LHC

was operated with a low-µ configuration at point 2, with the beams intentionally

slightly misaligned.

Only the runs with the lowest µ were selected for the high multiplicity p–p analy-

sis. The prevalence of pileup within these runs was estimated with a Monte-Carlo

model. This model generated simplified events following the multiplicity spectrum

determined from a “pileup-free” run of very low µ, each of which could contain from

one to three interactions with proportions according to the µ calculated as described

above. As a worst-case scenario, the highest µ of all selected runs was used.

The interaction vertices were distributed with a Gaussian distribution of width taken

from the same “pileup-free” run, and the track DCA to the interaction vertex dis-

tributed according to a Gaussian determined similarly. Within each event, the

highest multiplicity interaction was taken as the primary interaction and the others

as pileup.

Different cuts were then applied on the zDCA of each track with respect to the

primary vertex (where z indicates the direction parallel with the beam axis), and

the degree of included pileup calculated. With the same cut as used in the anal-

ysis, zDCA < 2 cm, at the highest multiplicities the pileup fraction estimate was

calculated to be 0.085.

To determine the effect of pileup on the final results, the analysis was performed

with the zDCA cut reduced to 0.5 cm, reducing the pileup fraction at the highest

multiplicities according to the model to 0.059. This had no measurable effect on the

results, and so pileup was not deemed to be a significant issue. The zDCA cut was

also varied when determining the systematic uncertainties due to the choice of track
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cuts.

4.3 Multiplicity definition

For the multiplicity analysis, various multiplicity estimators were considered. Fig-

ure 4.1 shows the correlation of four potential multiplicity estimators with the true

multiplicity in the region |η| < 0.8, in a sample of
√
s = 2.76 TeV p–p events

simulated in Pythia. The estimators displayed in the figure are the number of re-

constructed tracks with pT > 0.2 GeV, the number of reconstructed tracks with

pT > 0.3 GeV, the V0 multiplicity and the number of SPD tracklets (a tracklet

being a short track reconstructed using only information from the SPD).

It can be seen that the estimators involving the number of reconstructed tracks have

a tighter correlation with the true multiplicity. This is largely due to the sensitivity

of the detectors to different physics due to their differing acceptance. For example,

diffractive events that cause a signal in the V0 due to its forward position can still

produce few reconstructable tracks at central rapidity. In real data this effect is

worsened by, for example, beam–gas interactions.

It is also preferable to use a relatively low pT cut for the estimator, to minimise the

risk of biasing the final results. As such, the multiplicity estimator selected for this

analysis was the number of reconstructed tracks with pT > 0.2 GeV.

4.3.1 Defining centrality in heavy ion collisions

When heavy ion nuclei collide ultra-relativistically they appear in the centre of

mass frame as Lorentz contracted “pancakes” of thickness 2R/γcm (although there

is a limiting thickness of around 1 fm due to Fermi momentum) where R is the

nuclear radius (around 10 fm for typical experimental nuclei such as lead or gold)



4.3. MULTIPLICITY DEFINITION 63

| < 0.8)ηTrue mult (|
0 10 20 30 40 50 60

| <
 0

.8
)

η
>

 0
.2

 G
eV

 (
|

T
Tr

ac
ks

 w
ith

 p

0

10

20

30

40

50

60

(a)

| < 0.8)ηTrue mult (|
0 10 20 30 40 50 60

| <
 0

.8
)

η
>

 0
.3

 G
eV

 (
|

T
Tr

ac
ks

 w
ith

 p

0

10

20

30

40

50

60

(b)

| < 0.8)ηTrue mult (|
0 30 60

V
0 

m
ul

t

0

30

60

90

120

150

180

210

240

270

300

(c)

| < 0.8)ηTrue mult (|
0 10 20 30 40 50 60

Tr
ac

kl
et

s

0

10

20

30

40

50

60

(d)

Figure 4.1: Correlation of multiplicity estimators with true multiplicity in the region |η| <
0.8. Based on a sample of

√
s = 2.76 TeV p–p events simulated in Pythia. A logarithmic

scale is used on the z axis. The estimators depicted are (a) number of reconstructed tracks
with pT > 0.2 GeV, (b) pT > 0.3 GeV, (c) V0 multiplicity, (d) Number of SPD tracklets.



4.3. MULTIPLICITY DEFINITION 64

(a) (b)

Figure 4.2: Geometry of the collision of two heavy ions of radius R, with impact parame-
ter b.

and γcm = Ecm/2mN is the relativistic Lorentz factor, with mN being the nucleon

mass [10].

As the colliding nuclei are, in the transverse direction at least, relatively large, it

is likely that the collision is not in fact head on but instead occurs with a degree

of overlap. The transverse separation of the nucleus centres is termed the impact

parameter, b. This is depicted in figure 4.2a, with the overlapping region in the

transverse plane shown in figure 4.2b.

The degree of overlap is typically quantified not by the impact parameter but by

the collision centrality. This is defined from 0–100% of cross section, where 0%

is a perfectly head on collision with b = 0, and 100% is an extreme peripheral

collision with b = 2R. Typically in the ultra-peripheral region electromagnetic

effects dominate, and so centralities more peripheral than 90% are often excluded

from analyses. Larger, denser volumes of QGP would be expected in more central

collisions.
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4.3.2 Determination of centrality

The centrality is not directly measurable, but it is strongly correlated with the

observed particle multiplicity. As such, multiplicity is commonly used as a centrality

estimator, with the hadronic cross section as a function of multiplicity being divided

into percentiles [82].

While the standard ALICE centrality estimator uses the V0 multiplicity, in this

analysis it was decided that the same multiplicity estimator would be used for both

p–p and Pb–Pb data, to enable more direct comparison between the two systems.

This estimator is described at the beginning of section 4.3.

The multiplicity distribution according to this estimator is fit using a Monte-Carlo

model, with a Glauber model to describe the collision geometry and a negative

binomial distribution to describe the particle production. This follows the basic

technique used by the standard ALICE centrality estimator [82]; the model is de-

scribed in appendix C. The multiplicity distribution was fit only in the region above

25 tracks to minimise the contamination from electromagnetic interactions, which

comprise a non-negligible contribution to the total cross section in the most periph-

eral collisions.

The distribution obtained from the model and divided into centrality bins is shown,

together with the multiplicity distribution from the data, in figure 4.3. It can be seen

that the model matches the data well. Figure 4.4 shows the correlation between cen-

trality according to this estimator and centrality according to the standard ALICE

centrality estimator, using V0 multiplicity.
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Figure 4.3: Multiplicity spectrum from data and from the Glauber model, with the
Glauber distribution divided into centrality bins (alternately shaded). The most central
two are 0–5% and 5–10%, and the remaining are in 10% increments.
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Figure 4.4: Correlation of centrality according to reconstructed track multiplicity with
centrality according to V0 multiplicity.
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4.4 Correlation function construction

In each event, high pT particles (defined as having pT within a given range) are

identified and termed “trigger” particles. For each of these, pairs are formed with

“associated” particles, defined as having pT less than that of the trigger but still

relatively high (defined as being within a different, but still relatively high, range).

Dihadron azimuthal correlation functions measure the distribution of angular dif-

ference ∆φ = φt− φa between these pairs; in general in this analysis, subscripts “t”

and “a” refer to the trigger and associated particles, respectively. The allowed pT

ranges of the trigger and associated particles, pTt and pTa, are selected to be high

enough that soft effects (such as flow) do not form a significant contribution but low

enough that an acceptably large number of pairs are analysed.

The normalised correlation function can be constructed as the ratio of real to mixed

distributions

C(∆φ) =
Nmix

Ntrigg

· dNuncorr/d∆φ

dNmix/d∆φ
(4.3)

where Ntrigg is the number of triggers in the real distribution, Nmix is the num-

ber in the mixed distribution and dNuncorr/d∆φ and dNmix/d∆φ are the real and

mixed distributions. The real distribution is the ∆φ distribution within each event,

whereas the mixed distribution is constructed using the trigger particles of one event

and the associated particles of another event. As pairs in the mixed distribution

are uncorrelated by construction, the use of the mixed distribution in this manner

corrects for the pair detection efficiency of the detector.

If the mixed distribution is suitably flat, this normalisation is equivalent to normal-

ising by a constant, and so in this case the following distribution could be used:

1

Ntrigg

dNuncorr

d∆φ
. (4.4)

The mixed distribution is equivalent to the convolution of the φt distribution with the
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Figure 4.5: Convolution of φ distributions. (a) φt, for 8 < pTt < 15 GeV. (b) φa, for
3 < pTa < 8 GeV. (c) Monte-Carlo convolution of (a) with (b).

φa distribution. Figure 4.5 shows φt and φa distributions for
√
s = 7 TeV p–p data

next to the convolution of one with the other (performed using a simple Monte-Carlo

process). It can be seen that the φ distributions are noticeably non-uniform, mostly

as a result of the segmented structure of the TPC. Despite this, the convolution

process leads to a very flat pair acceptance. As such, in this analysis the raw ∆φ

distributions were normalised by a constant Ntrigg and no mixed distributions were

used. The “uncorr” suffix is omitted in the remainder of this document, ie.

1

Ntrigg

dN

d∆φ
≡ 1

Ntrigg

dNuncorr

d∆φ
. (4.5)

Normalised ∆φ correlation plots generally have a characteristic shape of two peaks,

at ∆φ ≈ 0 and ∆φ ≈ π, corresponding to pairs of azimuthally opposite jets. These

sit on top of a constant pedestal from the uncorrelated background. Examples of

uncorrected and normalised ∆φ distributions illustrating this shape, from both p–p

and Pb–Pb collisions, are shown in figures 4.6 and 4.7. In general in this document

∆φ distributions are presented in units of π such that, for example, ∆φ = 1 implies

that the two particles are perfectly back-to-back.
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Figure 4.6: Example raw (a) and per-trigger (b) correlation functions, from
√
s = 7 TeV

p–p data with 8 < pTt < 15 GeV and 3 < pTa < 8 GeV.
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Figure 4.7: Example raw (a) and per-trigger (b) correlation functions, from 0–5% central√
sNN = 2.76 TeV Pb–Pb data with 8 < pTt < 15 GeV and 3 < pTa < 8 GeV.

4.5 Corrections

When analysing correlation data it is important to consider the effects of efficiency

and contamination. These can be divided into single particle and pair corrections,

with the single particle correction being applied to all trigger and associated par-

ticles separately, and the pair correction being applied to all pairs. The required

corrections are determined from a comparison of reconstructed and generator-level

simulated Monte-Carlo data, the data being described in section 4.1 and summarised



4.5. CORRECTIONS 70

in table 4.2.

4.5.1 Single particle corrections

In general it is important to correct for tracking inefficiencies and fake tracks, where

tracking inefficiency is caused by tracks not being reconstructed and a fake track

is one which was wrongly reconstructed where in fact no particle from the initial

interaction traversed the detector. Tracking efficiency is defined as

ε =
Nprim

rec

Nprim
gen

(4.6)

where Nprim
rec and Nprim

gen are the number of reconstructed and generated primaries,

respectively, a primary being defined as a particle produced in the initial collision

and not resulting from a later weak decay or from an interaction with the detector

material. Contamination is defined as

f =
Nfake

Nrec

(4.7)

where Nfake is the number of reconstructed tracks that do not correspond to a

primary particle and Nrec = Nprim
rec + Nfake is the total number of reconstructed

tracks. The overall correction for efficiency and contamination c is then defined as

c−1 =
Nfake +Nprim

rec

Nprim
gen

=
Nrec

Nprim
gen

. (4.8)

This is shown in figure 4.8 for each Monte-Carlo production, as a function of pT,

for three multiplicity bins in p–p and three centrality bins in Pb–Pb. It can be

seen that, while there is some dependence on multiplicity/centrality, within a given

multiplicity bin the correction appears to be flat within statistical uncertainty above

pT ≈ 3 GeV.
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Figure 4.8: Single particle correction as a function of pT. (a)
√
s = 7 TeV p–p, (b)√

s = 2.76 TeV p–p, (c)
√
sNN = 2.76 TeV Pb–Pb.

Table 4.3: Histogram filling points for pair correction determination.

Stage Track selection Event selection Detector effect

0 All triggered events Primary MC
1 Reconstructed vertex Primary MC Vertex reconstruc-

tion
2 Primary MC if reconstructed Tracking efficiency
3 Primary MC if reconstructed

+ secondaries + fakes
Contamination

4 Reconstructed tracks Tracking resolution

4.5.2 Pair corrections

As well as single particle corrections, a combined pair correction must be considered.

An example of a pair effect is the possibility that two particles with ∆φ ≈ 0 are in-

correctly reconstructed as a single track. To demonstrate these corrections, separate

∆φ distributions are filled at various stages of the analysis. Table 4.3 summarises

these stages.

The ratio of the correlation plot at each stage to that of the previous stage was

then taken; these ratios are shown in figure 4.9. It can be seen that the significant

effects are those of tracking efficiency and contamination, and that the necessary

corrections are, within statistical uncertainty, constant in ∆φ. While the statistical

uncertainties for the two p–p collision energies in this study are relatively large due
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Figure 4.9: Pair correction as a function of ∆φ. Stages are defined in table 4.3. ∆φ is
shown in units of π. (a)

√
s = 7 TeV p–p, (b)

√
s = 2.76 TeV p–p, (c)

√
sNN = 2.76 TeV

Pb–Pb.

to the low Monte-Carlo statistics available, the uncertainties for Pb–Pb collisions

are small and the resulting ratios are very flat; generally pair effects are expected

to be less significant in p–p collisions than in Pb–Pb. The plots in this figure are

not binned in multiplicity or centrality as no significant distinction was observed

between the bins.

4.5.3 Overall correction

As can be seen in sections 4.5.1 and 4.5.2, the single particle corrections are flat

within statistical uncertainty for particles of pT greater than 3 GeV, and the pair

corrections are flat in ∆φ within statistical uncertainty. As will be described in

sections 4.6 and 4.7, the final values extracted from the correlation functions and

compared between different systems are either the ratio of away to nearside yields,

or are dependent on the widths of the near or awayside peaks. As such, the values

are unchanged by a constant scaling of the correlation functions. This has the

consequence that, provided all considered particles have pT > 3 GeV, the results

are independent of both the single particle and pair corrections. Because of this,

no correction was actually applied in the final analysis. Where absolute values of

quantities were compared, for example between data and Monte-Carlo (MC), this
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was done within the same system such that correction was not required.

4.6 Comparison of jet shapes

Dihadron correlations can be used to study the typical jet shape and momentum

imbalance. As described in section 2.1, the relative pT of a jet hadron with respect

to the parent parton is defined as the jet fragmentation transverse momentum jT.

The typical jet width is thus characterised by the RMS of this,
√
〈j2T〉.

In the same section, the net partonic transverse momentum kT is also introduced.

This quantifies the degree of pT imbalance between the two jets. Both jT and kT

can be extracted from ∆φ correlation functions, as described in this section.

4.6.1 Extraction of jT

The typical jet width is directly related to the width of the nearside peak of a

dihadron correlation plot (it can be seen that
√
〈j2T〉 = 0 would cause the nearside

peak to be a delta function), and can be extracted from a fit of this peak. The

normalised correlation functions were fitted to the function

1

Ntrigg

dN

d∆φ
= c0 + gN1(∆φ) + gN2(∆φ) + gA(∆φ) (4.9)

where c0 is a constant and gN1,N2,A(∆φ) are two Gaussians corresponding to the near-

side peak and one to the awayside peak, with their means fixed at µN1 = µN2 = 0 and

µA = π. Thus seven free parameters exist to be determined in the fit: the constant

background factor c0, the Gaussian widths σN1, σN2 and σA, and the Gaussian areas

c1, c2 and c3. Only the peak widths σN,A were actually required for the analysis.
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The nearside peak width was then taken to be

σN =

√
c1

c1 + c2
σ2
N1 +

c2
c1 + c2

σ2
N2 (4.10)

and the awayside peak width as the width of the awayside Gaussian.

For two particles from the same jet with pT = pTt, pTa, the nearside peak width can

be related to jT by

σ2
N = 〈∆φ2

N〉 =

〈(
jTy
pTa

)2

+

(
jTy
pTt

)2
〉

(4.11)

assuming 〈j2Ty〉 � p2Tt and p2Ta [66] and thus

√
〈j2T〉 =

√
2〈j2Ty〉 '

√
2

〈
p2Tt + p2Ta
p2Ttp

2
Ta

〉− 1
2

·σN. (4.12)

4.6.2 Geometry of kT

Diagrams illustrating a simplified version of the fragmentation of a parton pair in

the plane perpendicular to the beam are presented in figure 4.10 with some rele-

vant quantities labelled. Figure 4.10a shows two scattered partons with transverse

momenta p̂T pointing in opposite directions in the parton–parton centre of mass

frame.

The partons are shown in the lab frame in figure 4.10b with unequal pT of p̂Tt and

p̂Ta. The imbalance of these momenta is quantified by x̂h ≡ 〈p̂Ta〉/〈p̂Tt〉. The net

parton pair transverse momentum p̂T,pair corresponds to the vector sum of the kT

of each parton. The partons fragment, with jet fragments corresponding to each jet

having transverse momenta of pTt and pTa. As jT has been neglected, the jets have

no width.

The component of kT perpendicular to p̂Tt, termed kTy, has been labelled. It is as-
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(a)

(b)

(c)

Figure 4.10: The geometry of fragmentation in the plane perpendicular to the beam. Some
quantities relevant to this analysis are labelled.
(a) Back-to-back partons in the parton–parton centre of mass frame.
(b) The partons appear in the lab frame with unequal transverse momenta of p̂Tt and p̂Ta,
at an angle ∆φ. The partons fragment into hadrons of transverse momenta pTt and pTa,
with jT neglected here.
(c) As (b), with the addition of non-zero jT for the trigger-side jet.
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sumed that kTy and the component kTx parallel to p̂Tt follow equal Gaussian distri-

butions. An important feature of kT is that while 〈kTx〉 = 〈kTy〉 = 0, 〈kT〉 6= 0 as kT

is a radius vector, related to the components by the purely geometrical relationship√
〈k2T〉 =

√
2〈k2Tx〉 =

√
2〈k2Ty〉. These components lead to different experimental

effects; specifically kTx causes the pT imbalance of the outgoing parton pair (in other

words causes x̂h 6= 1) and kTy causes an acoplanarity (the pT of one jet lies out of

the plane defined by the pT of the other jet and the beam axis [66]). The component

of pTa perpendicular to pTt, a quantity somewhat analogous to kT but defined in

terms of final state hadrons rather than partons, is labelled pout.

Actual jets have width, as described in section 2.1 and depicted in figure 2.3. Fig-

ure 4.10c displays exactly the same geometry as that in figure 4.10b but with the

inclusion of non-zero jT for the trigger (p̂Tt side) jet. This is essentially the combi-

nation of figures 4.10b and 2.3, and it can be seen that this confuses the geometry

and makes it distinctly less trivial. In particular, pout and kTy are no longer collinear

and ∆φpartons 6= ∆φhadrons.

4.6.3 Extraction of kT

The determination of kT required both the jT results from section 4.6.1 and also the

extraction of pout from the data. While it would be possible to use the geometrical

relationship pout = pTa sin ∆φ on a pair-by-pair basis, this would not take into

account the uncorrelated background. Instead, pout was calculated [67] as

√
〈p2out〉 ∼ 〈pTa〉 sinσA. (4.13)

The third quantity required from the data for the determination of kT was the ratio
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of pTa to pTt, termed xh by analogy to the partonic x̂h introduced in section 4.6.2:

xh ≡
pTa
pTt

. (4.14)

These three quantities were then combined in the equation for kT [66]

〈zt〉
√
〈k2T〉

〈x̂h〉
=

1

〈xh〉

√
〈p2out〉 −

〈
j2Tay

〉
− 〈x2h〉

〈
j2Ty
〉

where x̂h ≡ p̂Ta/p̂Tt and zt ≡ pTt/p̂Tt. Assuming no difference between jTt and jTa,

this becomes

〈zt(kT, xh)〉
√
〈k2T〉

〈x̂h(kT, xh)〉
=

1

〈xh〉

√
〈p2out〉 −

〈
j2Ty
〉

(1 + 〈x2h〉) (4.15)

where zt and x̂h have been explicitly labelled as functions of kT and xh, and all

quantities calculated from the data are collected on the right hand side. Solving for

kT is non-trivial, except in the limit that zt and x̂h tend to 1, which corresponds

to low
√
s; indeed at ISR energies 〈zt〉 ≈ 0.85 which enabled this approach to be

taken [67].

At LHC energies values of the order of zt ∼ 0.35 are expected and thus the afore-

mentioned approximation is not valid; as such an iterative method utilising a Monte-

Carlo model was used to solve for kT. This model generates pairs of “partons” to

which kT values are applied, the values being drawn from a two-dimensional Gaus-

sian distribution. An output
√
〈k2T〉 value is then calculated according to equa-

tion 4.15, and the process repeated with this defining the width of the aforemen-

tioned Gaussian. This is then continued iteratively until the
√
〈k2T〉 value converges.

A more detailed description of the model is given in appendix B.
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4.7 Calculation and comparison of yields

To calculate the yield of charged particles associated with a trigger particle from the

correlation functions, it is necessary to subtract the uncorrelated background. This

can either be extracted from a fit of the correlation function, or by using the so-called

Zero Yield at Minimum (ZYAM) method, where it is assumed that between the jet

peaks is a region of zero jet yield. This region is defined as the lowest-yield region

of a given width in ∆φ, the width being selected to be small enough to ensure that

the boundaries are sufficiently far from the peaks; the mean yield in this region is

then taken as the background. For the yield calculation component of this analysis

the ZYAM method was used; the fitting method was used in the determination of

the systematic uncertainty. The process is illustrated in figure 4.11.

The integrals of the background-subtracted near and awayside peaks then corre-

spond to the (uncorrected) near and awayside per-trigger yields, respectively. For

the remainder of this document, “yield” will refer specifically to this per-trigger yield

of charged particles associated with a trigger particle, unless otherwise specified.

An informative way of comparing yields across different systems is the taking of

the ratio of awayside to nearside yield. This is sensitive to processes that modify

the near and awayside yields differently; for example it would be expected that jet

quenching would cause this ratio to fall in Pb–Pb collisions of increasing centrality,

or possibly in p–p collisions of high multiplicity.

The process of taking ratios has the convenient side-effect, as mentioned in sec-

tion 4.5.3, that the single particle and pair efficiencies cancel if they are constant

in pT and ∆φ, respectively. This method also allows the same quantity to be con-

structed for both Pb–Pb and p–p data.
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Figure 4.11: Normalised ∆φ correlation plot illustrating the ZYAM process. The vertical
red lines enclose the lowest-yield region of a given width in ∆φ, with the background
taken to be the mean yield in this region and displayed as the horizontal red line. The
near and awayside yields, prior to background subtraction, are shaded in blue and beige,
respectively.



CHAPTER 5

MINIMUM BIAS PROTON STUDY

RESULTS

This chapter presents the results of the study of jet shapes and transverse momentum

imbalance, quantified by jT and kT, respectively, in minimum bias (MB) proton

collisions. The study utilised data from
√
s = 7 TeV and

√
s = 2.76 TeV p–p

collisions as described in section 4.1.

Results are presented for a range of trigger and associated pT bins; the binning

Table 5.1: pT binning for MB p–p study. All ranges are given in GeV. All combinations
of pTt/pTa bins were used, with the exception of those for which pTa > pTt.

1 2 3 4 5 6

pTt 3–5 5–6 6–8 8–11 11–16 16–25
pTa 3–4 4–6 6–8

80
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scheme is outlined in table 5.1. All combinations of pTt and pTa bins were used, with

the exception of those for which pTa > pTt. Combined statistical and systematic

uncertainties are shown on the plots as brackets around the statistical error bars;

the mechanism by which these were calculated is described in section 5.4.

5.1 Correlation function results

Correlation functions for each pTt,a bin were produced following the prescription in

section 4.4, and fit to the function given in equation 4.9 of two nearside Gaussians,

an awayside Gaussian and a constant for the uncorrelated background. These are

shown for three pTt,a bins for each collision energy in figure 5.1. The separate

contributions of the three Gaussians, along with the sum of these plus the constant

background, are shown for one sample bin in figure 5.2.

The peak widths σN,A extracted from the fits are shown in figure 5.3, where σN

is the combination of the two nearside Gaussian standard deviations as defined in

equation 4.10. The widths are presented as functions of pTt within given pTa bins.

The nearside width is observed to decrease with increasing pTt, as expected due to

the tendency of higher pT triggers to carry a higher fraction of the momentum of

the parent parton, and thus to lie closer to the jet axis. Likewise, a dependence is

observed on pTa, for similar reasons. The combined effects of jT and kT complicate

the interpretation of the awayside width, but a similar dependence on pTt and pTa

is observed. These observations are qualitatively consistent with measurements at

RHIC [66].
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(a) 4 < pTt < 5 GeV, 3 < pTa < 4 GeV
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(b) 6 < pTt < 8 GeV, 4 < pTa < 6 GeV
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Figure 5.1: Normalised correlation plots for minimum bias p–p data at
√
s = 7 TeV (left

side) and
√
s = 2.76 TeV (right side), for three pTt,a bins, fit to two nearside Gaussians +

awayside Gaussian + constant.



5.1. CORRELATION FUNCTION RESULTS 83

φ∆
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

φ
∆dd
N

tr
ig

g
N

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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√
s = 7 TeV,

with 4 < pTt < 5 GeV and 3 < pTa < 4 GeV. The separate near and awayside Gaussians
are shown, along with the combination of these plus the constant background.
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Figure 5.3: Dependence of correlation function peak widths on pTt for various pTa windows.
Circles denote nearside width σN, squares denote awayside σA. pTt values are given in
GeV.
(a)
√
s = 7 TeV, (b)

√
s = 2.76 TeV.
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Figure 5.4:
√
〈j2T〉 values extracted from p–p data for various pTt,a bins. pTt values are

given in GeV.
(a)
√
s = 7 TeV, (b)

√
s = 2.76 TeV.

5.2 Extracted jT results

Values of
√
〈j2T〉, determined following the method described in section 4.6.1, are

presented in figure 5.4. It can be seen that the measured
√
〈j2T〉 is independent of

pTt and pTa, with a constant value of
√
〈j2T〉 ≈ 0.8 GeV. This is higher than the

values of around 0.6 GeV measured in
√
s = 200 GeV p–p collisions at RHIC [66],

consistently with the expectation from QCD that
√
〈j2T〉 should rise slowly with jet

pT, following
√
〈j2T〉 ∼

√
pTjet (and hence with collision energy) [98]. The expected

difference in
√
〈j2T〉 between the two collision energies studied in this analysis is too

small to be identified in the results presented here.

5.3 Extracted kT results

√
〈p2out〉 and 〈xh〉 were also calculated; the results are shown in figures 5.5 and 5.6,

respectively.
√
〈p2out〉 is observed to increase with increasing pTa and with decreasing
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Figure 5.5:
√
〈p2out〉 values extracted from p–p data for various pTt,a bins. pTt values are

given in GeV.
(a)
√
s = 7 TeV, (b)

√
s = 2.76 TeV.

pTt; this behaviour is expected from the equation for
√
〈p2out〉 ≈ 〈pTa〉 sinσA (equa-

tion 4.13), noting that σA decreases with increasing pTt. The dependence of 〈xh〉 on

pTt and pTa arises trivially from the definition of xh.

These results were then used, along with the
√
〈j2T〉 results, to determine

√
〈k2T〉

using the method described in section 4.6.3. The Monte-Carlo model described in

appendix B was used to extract the values from the experimental measurements.

These are shown in figure 5.7 as functions of pTt within given bins in pTa.

These results indicate that
√
〈k2T〉 increases with

√
s as expected from measurements

at earlier experiments – values are measured of
√
〈k2T〉 ≈ 10 GeV in

√
s = 2.76 TeV

collisions and
√
〈k2T〉 ≈ 12 GeV in

√
s = 7 TeV collisions, compared with the result

of
√
〈k2T〉 = 2.68 GeV measured in

√
s = 200 GeV collisions at RHIC [66], and of

1.1 GeV measured in
√
s = 62.4 GeV collisions at the ISR [67]. However, some

dependence on hadron pT is also observed, contrary to previous measurements at

lower beam energies:
√
〈k2T〉 can be seen to increase with increasing pTt and pTa. This

is suggested to be a consequence of the radiative origin of the measured acoplanarity.
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Figure 5.6: 〈xh〉 values extracted from p–p data for various pTt,a bins. pTt values are given
in GeV.
(a)
√
s = 7 TeV, (b)

√
s = 2.76 TeV.
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Figure 5.7:
√
〈k2T〉 values extracted from p–p data for various pTt,a bins. pTt values are

given in GeV.
(a)
√
s = 7 TeV, (b)

√
s = 2.76 TeV.
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5.4 Systematic uncertainties

The largest sources of systematic uncertainty in the minimum bias proton analysis

were the choice of track cuts and the choice of the mechanism used to extract the

peak widths. To determine the extent of the systematic effects, the track cuts and

width extraction scheme were varied and the spread of the results calculated follow-

ing the prescription in [99]. This prescription defines the systematic uncertainty on

a data point as the standard deviation of the values of that data point according

to the different methods, with the statistical uncertainty subtracted in quadrature.

Thus, if the spread of the values from the different methods was consistent with

statistical fluctuation, the calculated systematic uncertainty on that point would be

zero.

The following sets of track cuts were used, listed here in order from least to most

restrictive:

1. TPC tracks as defined in section 4.1.1.

2. Moderately tight cuts:

(a) Combined ITS+TPC tracks.

(b) At least 70 TPC clusters.

(c) Same DCA requirements as (1).

3. Tight cuts:

(a) Combined ITS+TPC tracks.

(b) At least 70 TPC clusters.

(c) Maximum DCA to vertex in beam direction DCAz < 2 cm.

The following schemes were used to determine the peak widths:
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1. The distributions were fit to two nearside Gaussians, one awayside Gaussian

plus a constant, as described in section 4.6.1.

2. The widths were taken as the background-subtracted RMSs of the distributions

in the peak regions, with the background determined in the non-peak region

under the assumption that between the peaks existed a region of zero jet yield.

3. As method 2, but with different widths for the defined “peak” and “back-

ground” regions.

By way of example, peak widths σN and σA extracted from
√
s = 7 TeV p–p data,

with 4 < pTa < 6 GeV, are shown in figure 5.8. The same procedure was also used

for the other pTa bins, for
√
s = 2.76 TeV data, and for the quantities calculated

from the peak widths, but the plots are not shown here.
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Figure 5.8: Near and awayside peak widths σN,A extracted from
√
s = 7 TeV p–p data

using various methods, the spread of which was used to determine the systematic uncer-
tainty. Only the 4 < pTa < 6 GeV bin is shown here. pTt values are given in GeV.
Top row shows the effects of using different track cuts on the (a) nearside width and (b)
awayside width.
Bottom row shows the effects of using width determination schemes on the (c) nearside
width and (d) awayside width.
The different methods are described in the text of section 5.4.



CHAPTER 6

JET YIELD DEPENDENCE ON

MULTIPLICITY

This chapter presents the results of the yield study component of the analysis, as

described in chapter 4. As detailed in section 4.1, the analysis used data from

p–p collisions at
√
s = 7 TeV and

√
s = 2.76 TeV, and from Pb–Pb collisions at

√
sNN = 2.76 TeV. Background-subtracted correlation plots are shown for each

system; the away/nearside yield ratios are then compared between the different

systems. As explained in section 4.7 an increase in the degree of jet quenching, for

example in Pb–Pb collisions of increasing centrality, would be expected to cause this

ratio to fall below that expected in the absence of such effects.

The multiplicity and centrality binning used for each analysed system is shown

in table 6.1. The centrality binning scheme for the peripheral Pb–Pb data was

selected such that it corresponds to the same multiplicity binning that was used for

90
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Table 6.1: Multiplicity/centrality binning for all analysed data. Binning for p–p data
is defined in terms of multiplicity, and binning for Pb–Pb data is defined in terms of
centrality.

Bin number 2.76 TeV p–p 7 TeV p–p Pb–Pb Pb–Pb (peripheral)

1 0–10 0–10 90%–60% 90%–88%
2 10–15 15–20 60%–50% 88%–85%
3 15–20 20–30 50%–40% 85%–81%
4 20–30 30–40 40%–30% 81%–77%
5 30–40 40–58 30%–20% 77%–73%
6 40–60 58–65 20%–10% 73%–70%
7 60–70 65–100 10%–5%
8 5%–0%

√
s = 2.76 TeV data, with the most peripheral bin removed. For the

√
s = 7 TeV

p–p data, the minimum bias trigger was used for bins 1–5, and the high multiplicity

trigger for bins 6 and 7.

Unless otherwise stated, a pT binning was used of 3 < pTa < 8 GeV and 8 < pTt <

15 GeV. In all plots of yields which follow, combined statistical and systematic

uncertainties are shown as brackets around the statistical error bars; the scheme

used to calculate these is described in section 6.3. Systematic uncertainties for the

simulated Monte-Carlo data are not displayed.

6.1 Correlation function results

6.1.1 Results from 7 TeV proton data

Normalised, background-subtracted correlation plots were produced from
√
s =

7 TeV p–p data, following the binning outlined in table 6.1. The correlation plots

for three bins are shown in figure 6.1. The near and awayside yields extracted from

these are presented in figure 6.2, where they are compared with results from simu-

lated Monte-Carlo data. The multiplicities are scaled by the mean multiplicity to
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Figure 6.1: Normalised and background-subtracted correlation plots for
√
s = 7 TeV p–p

data, for three multiplicity bins. (a) 0–10 tracks, (b) 30–40 tracks, (c) 65–100 tracks. (a)
and (b) were produced from minimum bias triggered data, (c) was produced from high
multiplicity triggered data.

account for the difference in slope between the multiplicity spectra in real and sim-

ulated data; with this correction applied the Monte-Carlo can be seen to describe

the data well.

The yields are expected to rise with multiplicity, as observed, due to a bias towards

harder collisions in higher multiplicity events. This effect is compounded on the

awayside by acceptance effects, with higher multiplicity events being more likely to

have both jets within the detector acceptance.
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Figure 6.2: Comparison of extracted
√
s = 7 TeV p–p yields from data with those from

MC simulations. 3 < pTa < 8 GeV; 8 < pTt < 15 GeV. (a) Nearside yield, (b) awayside
yield.

6.1.2 Results from 2.76 TeV proton data

Analogously to the previous section, normalised and background-subtracted correla-

tion plots were produced from
√
s = 2.76 TeV data and three such plots are shown

in figure 6.3. The near and awayside yields extracted from these are compared with

those from simulated Monte-Carlo data in figure 6.4. It can be seen that, with the

multiplicity scaled by the mean multiplicity, the Monte-Carlo data match the real

data well.

6.1.3 Results from ion data

As shown in table 6.1, two centrality binning schemes were used for
√
sNN =

2.76 TeV Pb–Pb data, one spanning the full range of centrality from 90% to 0%,

and one spanning a more limited range from 90% to 70%, corresponding to the

multiplicity binning used for
√
s = 2.76 TeV p–p data, to allow direct compari-

son between the two systems. Three sample plots from those binned over the full
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Figure 6.3: Normalised and background-subtracted correlation plots for three multiplicity
bins in

√
s = 2.76 TeV p–p data. (a) 0–10 tracks, (b) 20–30 tracks, (c) 60–70 tracks.
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Figure 6.4: Comparison of extracted
√
s = 2.76 TeV p–p yields from data with those from

MC simulations. 3 < pTa < 8 GeV; 8 < pTt < 15 GeV. (a) Nearside yield, (b) awayside
yield.

range of centrality are presented in figure 6.5, and three of those from the peripheral

binning scheme are presented in figure 6.6.

Near and awayside yields extracted from the correlation plots over the full range of

multiplicity are presented in figure 6.7. For consistency with the p–p data, central-

ities are expressed in terms of multiplicity rather than as a percentage. It can be

seen that the awayside yield falls in increasingly central collisions, while the same is

not the case for the nearside yield. This suppression of the awayside is interpreted

as a consequence of jet quenching.

6.2 Yield comparisons between systems

As described in section 4.7, it would be expected that jet quenching would suppress

the awayside yield relative to the nearside, causing the away/nearside yield ratio

to fall in Pb–Pb collisions of increasing centrality. Figure 6.8 shows this ratio as

a function of increasing centrality (expressed in terms of multiplicity as well as
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Figure 6.5: Normalised and background-subtracted correlation plots for
√
sNN = 2.76 TeV

Pb–Pb data, for three centrality bins. (a) 60%–90%, (b) 30%–40%, (c) 0%–5%.
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Figure 6.6: Normalised and background-subtracted correlation plots for peripheral√
sNN = 2.76 TeV Pb–Pb data, for three centrality bins. (a) 88%–90%, (b) 77%–81%,

(c) 70%–73%.
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Figure 6.7: Yields extracted from
√
sNN = 2.76 TeV Pb–Pb data. 3 < pTa < 8 GeV;

8 < pTt < 15 GeV. (a) Nearside yield, (b) awayside yield.

centrality percentile) from Pb–Pb data. It can be seen that the ratio does indeed

fall for more central collisions.

Presented in figure 6.9 is the away/near yield ratio as a function of multiplicity

(scaled by mean multiplicity [40]) for p–p collisions at
√
s = 7 TeV and

√
s =

2.76 TeV, compared with results from Pythia simulations of the same energies. The

ratios are observed to rise with multiplicity, an effect which is expected as a conse-

quence of a bias in higher multiplicity bins towards dijet events with both jets inside

the detector acceptance. This behaviour was reproduced in a Monte-Carlo model,

and was also observed in Pythia data as shown on the plot.

The ratio for
√
s = 7 TeV data, for which stronger QGP effects would be expected

(if present at all), is consistently lower than that for
√
s = 2.76 TeV data. However,

as the ratio was not observed to fall or to plateau at a value of less than 1 at

higher multiplicities, and as this was broadly consistent with Pythia, this cannot be

interpreted as evidence for QGP production. This is consistent with other results

indicating that dijet production cross sections in p–p collisions are generally well-

described by QCD predictions [100].
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Figure 6.8: Away/nearside yield ratios from Pb–Pb collisions with 3 < pTa < 8 GeV
and 8 < pTt < 15 GeV, over the full centrality range. (a) shows the ratio in terms of
multiplicity, and (b) in terms of centrality. Note that that increasing centrality percentile
is equivalent to decreasing multiplicity.
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Figure 6.9: Comparison of away/nearside yield ratios from
√
s = 2.76 TeV and

√
s =

7 TeV p–p collisions, with multiplicities scaled by mean multiplicity. Results from simu-
lated Pythia data are also shown. 3 < pTa < 8 GeV; 8 < pTt < 15 GeV
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The yield ratios extracted from
√
s = 2.76 TeV p–p collisions were also compared

to those from peripheral
√
sNN = 2.76 TeV Pb–Pb collisions. These results are

presented in figure 6.10. It can be seen that while the yield ratios for the two systems

match closely at low multiplicities, at higher multiplicities the yields diverge and the

peripheral Pb–Pb data do not exhibit the rise with multiplicity observed in the p–p

data.

The divergence between the two distributions is interpreted as being a consequence

of the differing mechanisms by which a high multiplicity event can be produced – in

proton collisions, high multiplicities are generally produced in events with two hard

jets, both of which are produced within the detector acceptance. While this mech-

anism also occurs in Pb–Pb events it is possible, and indeed more likely, to produce

high multiplicities from a superposition of many soft nucleon–nucleon collisions –

results from the Monte-Carlo Glauber model described in appendix C indicate that

a Pb–Pb event with 50 tracks typically has around 10 participants and 25 binary

nucleon–nucleon collisions. As these events are generally more isotropic than a typ-

ical dijet event, the acceptance effects are not as pronounced and the rise of yield

ratio with multiplicity is not observed.

The results presented in this chapter indicate that high multiplicity p–p collisions

are dominantly jet-like and therefore non-thermal, and hence are not equivalent to

peripheral Pb–Pb collisions of comparable multiplicity. Broadly speaking, this is

because jet suppression is a soft QCD effect in an extended deconfined medium,

but multiplicity in proton collisions is correlated not with the size of any produced

medium but instead with the number of jets inside the detector acceptance.
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Figure 6.10: Away/nearside yield ratios from peripheral
√
sNN = 2.76 TeV Pb–Pb col-

lisions, compared with
√
s = 2.76 TeV p–p collisions over the same multiplicity range.

3 < pTa < 8 GeV; 8 < pTt < 15 GeV.

6.3 Systematic uncertainties

The most significant sources of systematic uncertainty in the yield analysis arose

from the subtraction of the uncorrelated pedestal background, and from the choice

of track cuts. To quantify the extent of these effects, the pedestal subtraction scheme

and track cuts were varied, and the spread of the results calculated according to [99].

The following pedestal subtraction schemes were used:

1. ZYAM method as described in section 4.7.

2. As method 1, but with a ZYAM background region twice as wide.

3. As method 1, but with the ZYAM background region fixed to the geometric

midpoint between the two peaks.

4. Background extracted from a fit of the correlation plots to two peaks plus a

constant.

The following sets of track cuts were used:
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1. TPC tracks as defined in section 4.1.1.

2. Moderately tight cuts:

(a) Combined ITS+TPC tracks.

(b) At least 70 TPC clusters.

(c) Same DCA requirements as (1).

3. Tight cuts:

(a) Combined ITS+TPC tracks.

(b) At least 70 TPC clusters.

(c) Maximum DCA to vertex in beam direction DCAz < 2 cm.

The yields and ratios extracted from
√
s = 2.76 TeV p–p data using these various

methods are presented in figure 6.11. The same method was used to calculate

systematic uncertainties for the other analysed datasets, but the plots are not shown

here.
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Figure 6.11: Near and awayside yields, and away/nearside yield ratios, extracted from√
s = 2.76 TeV p–p data using varied methods, the spread of which is used to determine

the systematic uncertainty.
Top row shows the effects of using different pedestal subtraction schemes on the (a) near-
side yield, (b) awayside yield and (c) away/nearside yield ratio.
Bottom row shows the effects of using difference track cuts on the (d) nearside yield, (e)
awayside yield and (f) away/nearside yield ratio.
The different methods used are described in the text of section 6.3.



CHAPTER 7

JET SHAPE DEPENDENCE ON

MULTIPLICITY

This chapter presents the results of the analysis of jet shape dependence on event

multiplicity. The analysis uses the same data as used in the yield analysis. As

detailed in section 4.1, this comprised data from p–p collisions at
√
s = 7 TeV and

√
s = 2.76 TeV and Pb–Pb collisions as

√
sNN = 2.76 TeV.

The multiplicity and centrality binning was unchanged from that outlined in ta-

ble 6.1, with the exception that the highest multiplicity bin was removed from the
√
s = 2.76 TeV p–p data and the most peripheral removed from the peripheral

Pb–Pb data. This was necessitated by there being insufficient statistics in these

bins for a reliable fit.

As with the yield analysis, trigger and associated pT bins of 8 < pTt < 15 GeV and

104
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3 < pTa < 8 GeV were used. Combined statistical and systematic uncertainties are

shown on the plots as brackets around the statistical error bars; the method used

for calculating these is presented in section 7.4.

7.1 Correlation function results

As described in section 4.6.1, the normalised correlation plots shown in section 6.1

were fit to the function given in equation 4.9 of two nearside Gaussians, one awayside

Gaussian and a constant background. The results of these fits are shown for some

sample multiplicity bins for all collision systems and beam energies in figures 7.1–7.4.

7.2 Correlation peak widths

The peak widths σN,A extracted from the fits to p–p data are presented in figure 7.5,

and those from Pb–Pb data are presented in figure 7.6. The nearside peak widths

were taken as the combined widths of the two nearside Gaussians in the fit, as

defined in equation 4.10.

Extraction of
√
〈k2T〉 from these correlation functions was not possible using the

method described in this document. Multiplicity in a jet event is a product of

both Q2 (with harder scattering causing higher jet multiplicity) and acceptance

effects (with high multiplicity jet events being more likely to have both jets inside

the detector acceptance), requiring a proper treatment of jet fragmentation in the

model used for the extraction of kT. This is beyond the scope of a model such as

that used in this work.

However, given that in heavy ion collisions the majority of the observed multiplicity

originates from soft processes, in the absence of medium effects the shape of the
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Figure 7.1: Normalised correlation plots for
√
s = 7 TeV p–p data, for three multiplicity

bins, fit to two nearside Gaussians + awayside Gaussian + constant. (a) 0–10 tracks, (b)
30–40 tracks, (c) 65–100 tracks. (a) and (b) were produced from minimum bias triggered
data, (c) was produced from high multiplicity triggered data.
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Figure 7.2: Normalised correlation plots for
√
s = 2.76 TeV p–p data, for three multiplicity

bins, fit to two nearside Gaussians + awayside Gaussian + constant. (a) 0–10 tracks, (b)
20–30 tracks, (c) 40–60 tracks.
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Figure 7.3: Normalised correlation plots for
√
sNN = 2.76 TeV Pb–Pb data, for three

centrality bins, fit to two nearside Gaussians + awayside Gaussian + constant. (a) 60%–
90%, (b) 30%–40%, (c) 0%–5%.
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Figure 7.4: Normalised correlation plots for peripheral
√
sNN = 2.76 TeV Pb–Pb data, for

three centrality bins, fit to two nearside Gaussians + awayside Gaussian + constant. (a)
81%–85%, (b) 77%–81%, (c) 70%–73%.



7.2. CORRELATION PEAK WIDTHS 110

Multiplicity
0 10 20 30 40 50 60 70 80 90 100

N
, A

σ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nearside

Awayside

(a)

Multiplicity
0 10 20 30 40 50 60

N
, A

σ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nearside

Awayside

(b)

Figure 7.5: Values of σN and σA extracted from correlation functions from p–p data with
8 < pTt < 15 GeV and 3 < pTa < 8 GeV. (a)

√
s = 7 TeV, with circles indicating

minimum bias triggered data and triangles indicating high multiplicity triggered data. (b)√
s = 2.76 TeV.
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Figure 7.6: Values of σN and σA extracted from correlation functions from
√
sNN =

2.76 TeV Pb–Pb data with 8 < pTt < 15 GeV and 3 < pTa < 8 GeV. (a) full multiplicity
(centrality) range, (b) peripheral region.
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Figure 7.7: Comparison of
√
〈j2T〉 extracted from (a) p–p data at

√
s = 7 TeV and

√
s =

2.76 TeV, with multiplicity scaled by mean multiplicity, and (b) the same p–p data and
also peripheral

√
sNN = 2.76 TeV Pb–Pb data. 8 < pTt < 15 GeV; 3 < pTa < 8 GeV.

correlation function (for sufficiently high pT hadrons) is independent of centrality.

Figure 7.6a shows a slight downward trend in σA with increasing centrality, but

given the systematic uncertainties it is difficult to draw conclusions.

The near and awayside peak widths measured in p–p collisions are consistent with

being independent of multiplicity, as are the nearside peak widths measured in

Pb–Pb collisions.

7.3 Shape results

Figure 7.7 shows the values of the RMS jet fragmentation transverse momentum√
〈j2T〉, extracted from p–p and peripheral Pb–Pb data according to the method

described in section 4.6.1. It can be seen that for all systems,
√
〈j2T〉 is constant at

around
√
〈j2T〉 ≈ 0.8 GeV. This is consistent with the minimum bias proton results

presented in section 5.2.
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Figure 7.8:
√
〈j2T〉 values extracted from

√
sNN = 2.76 TeV Pb–Pb data with 8 < pTt <

15 GeV and 3 < pTa < 8 GeV, over the full multiplicity (centrality) range. (b) shows the
same but with the y axis zoomed in.

The
√
〈j2T〉 results for Pb–Pb data over the full range of centrality are shown in

figure 7.8. A slight downward trend is visible, with
√
〈j2T〉 decreasing slightly in in-

creasingly central collisions. As mentioned above, in the absence of medium effects

the hard processes are expected to be independent of centrality, and thus this may

be interpreted as a consequence of interaction with the medium. With no observed

σN narrowing, this effect can be caused by a suppression of the high pT hadrons in

the jet; this would be qualitatively consistent with measurements at other experi-

ments [101].

7.4 Systematics

As with the analysis of jT and kT in minimum bias p–p data presented in chapter 5,

the largest sources of systematic uncertainty in the study of jet shape and imbalance

as a function of multiplicity were the choice of track cuts and the choice of scheme

used to extract the peak widths. To determine the magnitude of these effects the
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same procedure was used as that detailed in section 5.4: various track cuts and

width determination schemes were used and the spread of the results calculated

following [99].

The following sets of track cuts were used:

1. TPC tracks as defined in section 4.1.1.

2. Moderately tight cuts:

(a) Combined ITS+TPC tracks.

(b) At least 70 TPC clusters.

(c) Same DCA requirements as (1).

3. Tight cuts:

(a) Combined ITS+TPC tracks.

(b) At least 70 TPC clusters.

(c) Maximum DCA to vertex in beam direction DCAz < 2 cm.

The following mechanisms were used to extract the peak widths:

1. Two nearside Gaussians, one awayside Gaussian plus a constant, as described

in section 4.6.1.

2. Widths taken as background-subtracted RMSs of the distributions in the peak

regions, with the background determined in the non-peak region under the

assumption that between the peaks existed a region of zero jet yield.

3. As method 2, but with different widths for the defined “peak” and “back-

ground” regions.
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Peak widths σN,A extracted from minimum bias triggered
√
s = 7 TeV p–p data are

shown in figure 7.9; the same procedure was also used for the other datasets and for

the quantities calculated from the peak widths, but the plots are not shown here.
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Figure 7.9: Near and awayside peak widths σN,A extracted from multiplicity-binned, min-
imum bias triggered

√
s = 7 TeV p–p data using various methods, the spread of which is

used to determine the systematic uncertainty.
Top row shows the effects of using different track cuts on the (a) nearside width and (b)
awayside width.
Bottom row shows the effects of using width determination schemes on the (c) nearside
width and (d) awayside width.
The different methods are described in the text of section 7.4.



CHAPTER 8

CONCLUSIONS AND OUTLOOK

This thesis presents an analysis of the properties of jets in proton–proton and lead–

lead collisions at the ALICE experiment at the CERN LHC, using the technique of

two-particle azimuthal correlations.

The analysis studied a sample of 45M minimum bias triggered p–p events at
√
s =

2.76 TeV, 52M minimum bias triggered p–p events at
√
s = 7 TeV and 18M min-

imum bias triggered Pb–Pb events at
√
sNN = 2.76 TeV, from data taking periods

in 2010 and 2011. During the
√
s = 7 TeV p–p running period, a high multiplicity

trigger was also in operation which was utilised to extend the multiplicity reach of

the analysis.

Two-particle azimuthal correlations were used to analyse the dependence of jet shape

and momentum imbalance on hadron pT in minimum bias p–p collisions. The jet

shape, quantified by the jet fragmentation transverse momentum jT, was found to
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be independent of hadron pT and to have a value of
√
〈j2T〉 ≈ 0.8 GeV. This is

higher than values measured at other experiments with lower beam energies (for

example the values of around 0.6 GeV measured in
√
s = 200 GeV proton collisions

at RHIC); this is qualitatively consistent with QCD expectations. The expected

difference in
√
〈j2T〉 between the two beam energies studied here is too small to

be identified in the measured results. Jet acoplanarity, quantified by the RMS net

partonic transverse momentum
√
〈k2T〉, was found to increase with collision energy

and also with the transverse momentum of the particles in the jet.

Azimuthal correlations were also used to analyse the dependence of jet yield on mul-

tiplicity in p–p collisions and centrality in Pb–Pb collisions. The ratio of awayside

to nearside yield was examined, a technique sensitive to jet suppression through

interaction with a deconfined medium. In Pb–Pb collisions this suppression was

observed as expected, but no suppression was observed in high multiplicity p–p

collisions (which were well described by simulated Pythia data).

An analysis of the dependence of jet shape and transverse momentum imbalance on

multiplicity/centrality was also performed, with the multiplicity dependence of the

jet transverse momentum imbalance quantified with the width of the awayside peak.

Although a slight downwards trend was identified in Pb–Pb collisions of increasing

centrality, firm conclusions could not be drawn due to the systematic uncertainty.

The jet width was measured to have no dependence on multiplicity with a value

of
√
〈j2T〉 ≈ 0.8 GeV in p–p and peripheral Pb–Pb collisions, consistent with the

measurement in minimum bias p–p data. Some indication was observed of a fall in

central Pb–Pb collisions which, in the absence of a corresponding narrowing of the

nearside peak width, was interpreted as a suppression of the high pT hadrons in the

jets.

The study of in-medium parton energy loss manifesting as measurable jet quenching

is an area of active theoretical work, with various approaches used to describe the in-
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teractions with the medium. Experimental study of different jet-related observables

can be used to constrain and discriminate between these models. Two such observ-

ables, which are analysed in this thesis, are the jet yields and shapes; both of these

are closely related to quantities which can be extracted from models [102, 103, 104].

As an improvement of this analysis for the future, the Monte-Carlo method for

extracting
√
〈k2T〉 could be developed further by introducing a jet pT dependent

fragmentation function. It would also be informative to analyse jet width and

acoplanarity through full event-by-event jet reconstruction.



APPENDIX A

KINEMATICS OF PARTICLE

COLLISIONS

Throughout this document, standard high energy physics notation is used. Some

commonly used kinematic quantities are defined here.

When describing particle interactions, the Lorentz invariant Mandelstam variable s

is defined in terms of a two-particle scattering process 1 + 2→ 3 + 4 as

s = (p1 + p2)
2 = (p3 + p4)

2 (A-1)

where p1,2,3,4 are the four-momenta of the incoming and outgoing particles. While

high energy proton collisions are not simple two-particle processes such as this, s

is generalised to refer to the momenta of the incoming protons. Thus,
√
s is equal

to the collision energy in the proton–proton centre of mass frame, equivalent to the
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laboratory frame in a colliding beam experiment with equal beam energies. When

describing heavy ion collisions, the energy is typically quantified by the nucleon–

nucleon centre of mass collision energy
√
sNN.

While the proton–proton centre of mass frame is equivalent to the laboratory frame,

the colliding partons can have any fraction x of the total momentum of their parent

proton (described by the Parton Distribution Functions (PDFs) as outlined in sec-

tion 2.1), and so the centre of mass frame of a parton–parton scattering is generally

boosted longitudinally to an unknown degree with respect to the laboratory frame.

As such, the component of momentum transverse to the beam direction pT, which

is invariant under this boost, is often used instead of the overall momentum when

describing the particles produced in a collision. In general, a subscript “T” typically

refers to the transverse component of a kinematic quantity such as this.

Another widely used kinematic variable is rapidity, defined as

y =
1

2
ln
E + pz
E − pz

(A-2)

where E and pz are a produced particle’s energy and longitudinal momentum re-

spectively. The difference in rapidity between two particles ∆y is invariant under

a Lorentz boost in the longitudinal direction. As the mass and thus energy of a

particle is often not known, this is commonly approximated by the pseudorapidity

η = − ln(tan
θ

2
) (A-3)

where θ is the polar angle of a particle with respect to the beam direction. Pseudo-

rapidity is equal to rapidity in the limit that particle mass m→ 0.



APPENDIX B

MONTE-CARLO SOLVING FOR kt

As explained in section 4.6.3, a Monte-Carlo model was used to extract the final

values for net partonic transverse momentum kT, by solving

〈zt(kT, xh)〉
√
〈k2T〉

〈x̂h(kT, xh)〉
=

1

〈xh〉

√
〈p2out〉 −

〈
j2Ty
〉

(1 + 〈x2h〉) (A-1)

(equation 4.15 in the main text). This section describes that model.

The model works by generating a large number of pairs of back-to-back partons,

according to a pT spectrum Σ defined as

Σ =
dN

dp̂T
=

1

ξ + p̂n−1T

(A-2)

where ξ = 1 GeV (an unphysical momentum cutoff, required to prevent divergences

at low pT, on which the final result does not depend) and n is set such that the
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measured hadron pT spectrum is reproduced within the pT range covered by the

analysis (assuming here that
√
〈k2T〉 =

√
p̂TQ0 where Q0 ∼ 1 GeV [98]). This leads

to values of n = 5.0 for
√
s = 2.76 TeV p–p data, and n = 4.7 for

√
s = 7 TeV p–p

data.

The partons are then Lorentz boosted in such a manner as to preserve the invariant

mass of the pair, resulting in the imbalance quantified by kT. This kT is drawn from

a two-dimensional Gaussian with σ = kTinput, such that azimuthal angle is uniformly

distributed between 0 and 2π. kTinput is set to a suitable input value, initially equal

to the right-hand-side of equation A-1. A limitation of the model is that it assumes

kT to be independent of parton pT, which is believed to not be the case at LHC

energies [56].

The partons are then fragmented into a pair of hadrons, according to a fragmentation

function D(z) parameterised as

D(z) = (1− z)0.88(1 + z)−13.29z−0.16. (A-3)

This parameterisation is obtained from e+e− collision data [66, 105]. The fragmen-

tation process also adds a relatively small jT component to the hadrons following

the measured value of
√
〈j2T〉 ∼ 0.6 GeV, as presented in section 5.2.

A large number of hadron pair “dijets” are generated in this manner and the mean

zt and x̂h, within pTt and pTa bins according the analysis, are output. From these,√
〈k2T〉 is calculated according to

√
〈k2T〉 = RHS · 〈x̂h〉

〈zt〉
(A-4)

where RHS refers to the right-hand-side of equation A-1. The generation process is

then repeated with the calculated kT as the new kTinput. This iterative process is

then repeated until the kT values converge, at which point a consistent value of kT
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is deemed to have been calculated.



APPENDIX C

MONTE-CARLO GLAUBER MODEL

As described in section 4.3.2, to determine the centrality percentiles used in the anal-

ysis of heavy ion data, the multiplicity spectrum of that data was fit to a Glauber

model to describe the collision geometry, with a negative binomial distribution to

describe the particle production. This section describes said model, the basic con-

struction of which is well-established in heavy ion physics [82].

In the model, a large number of Pb–Pb collisions are generated, with a multiplicity

calculated for each one. The first step is the determination of the position of the

nucleons (in spherical polar co-ordinates (r, φ, θ)) within each colliding nucleus. The

angles φ and θ are drawn randomly from flat distributions, and the radius r from a

Woods-Saxon distribution.

An impact parameter b is then generated randomly from the distribution dN/db =

b (up to a cutoff bmax � RPb, where RPb is the nucleus radius), and the nuclei
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Figure A-1: Distributions of Npart and Ncoll as functions of observed multiplicity Ntracks.

are positioned accordingly. It is assumed that the nucleons have no transverse

component of momentum, and that no interactions occur between nucleons of the

same nucleus. A collision between two nucleons is deemed to occur when their

relative transverse separation bNN <
√
σNN/π, where σNN is the inelastic nucleon–

nucleon cross section.

For each nucleus–nucleus collison, the number of participants Npart and the number

of collisions Ncoll can then be counted. Npart is defined as the number of nucle-

ons which undergo at least one collision, and Ncoll as the total number of binary

nucleon–nucleon collisions. The remaining nucleons, which do not collide, are termed

spectator nucleons.

The particle production is then assumed to follow a negative binomial distribution,

which has been seen to describe the data well at many experiments [106]. N ′part is

then defined as

N ′part =

Npart∑
1

NB(µ, κ) (A-1)

with N ′coll defined similarly, where NB(µ, κ) are randomly generated numbers sam-

pled from a negative binomial distribution with parameters µ and κ, defined as
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PNB
µ,κ (n) =

Γ(n+ κ)

Γ(n+ 1)Γ(κ)
· (µ/κ)n

(µ/κ+ 1)n+κ
. (A-2)

The observed particle multiplicity Ntracks is then calculated as

Ntracks = pN ′part + (1− p)N ′coll (A-3)

where p ∈ [0, 1] defines the relative contribution of Npart and Ncoll. In this manner,

the Ntracks distribution for a large number of events can be calculated; the depen-

dence of Ntracks on Npart and Ncoll is shown in figure A-1. This is then repeated

for many p, µ and κ, in order to best fit the resultant distribution to the observed

multiplicity distribution. As explained in section 4.3.2, this χ2 minimisation was

performed in the region above 25 tracks, to minimise the contamination from elec-

tromagnetic interactions.
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