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Abstract  

The glucose-6-phospate transporter (G6PT) translocates cytosolic glucose-6-phosphate 

(G6P) into the endoplamic/sacrcoplamic reticulum (ER/SR). In the liver, glucose-6-

phosphatase metabolises G6P as the terminal step in gluconeogenesis, essential for 

maintaining fasting blood glucose levels. Conversely, in both muscle and liver G6P can be 

converted by hexose-6-phoshate dehydrogenase (H6PDH) to 6-phosphogluconate (6-PG). 

This process generates the cofactor NADPH which allows 11β-hydroxysteroid 

dehydrogenase type 1 (11β-HSD1) to reduce cortisone to its active counterpart cortisol. 

This demonstrates the importance of the G6PT in glucose metabolism and glucocorticoid 

(GC) activation. H6PDHKO mice have shown GC independent myopathy thought to be 

attributed to disrupted glucose homeostasis and calcium (Ca
2+

) metabolism. In this study 

we used G6PT+/- mice to characterise the effects of G6PT depletion in respect to 

systematic glucose metabolism when challenged with diabetes inducing high fat diet, and 

separately the effect on muscle metabolic homeostasis. We found that G6PT depletion may 

promote weight gain and systemic insulin resistance despite normal fasted glucose levels 

on high fat diet. Furthermore, we found elevated intracellular Ca
2+

 in G6PT+/- primary 

muscle cells. As we show 11β-HSD1 enzyme activity was unaffected in G6PT+/- mice we 

propose novel GC-independent roles for G6PT in controlling glucose and calcium 

homeostasis. 
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1. Introduction 

1.1. Metabolic disease 

Metabolic syndrome is a collection of metabolic disorders that together increase an 

individual’s risk of developing type 2 diabetes mellitus and cardiovascular disease. These 

metabolic abnormalities include insulin resistance, hyperglycaemia, central obesity and 

hypertension [1]. The considerable increase in prevalence of metabolic syndrome in recent 

years has made it a major worldwide public health concern [2].  Insulin resistance is 

thought to be the primary mechanism by which metabolic syndrome develops, however 

there is still much to be learned concerning the pathogenesis and progression of metabolic 

syndrome [3]. Further understanding of the metabolic pathways involved in energy 

homeostasis is necessary to reduce the detrimental impact of these diseases.  

1.2. Glucocorticoids (GC) and metabolism 

Cortisol, the predominant GC in humans, is secreted from the adrenal cortex both 

permissively and adaptively in response to chronic stress and plays an essential role in 

carbohydrate, fat and protein metabolism [4][5]. Within muscle and fat tissues cortisol 

opposes the actions of insulin and stimulates glycogenolysis; it also acts anabolically in the 

liver to stimulate gluconeogenesis [5][6]. Together these actions help to maintain glucose 

homeostasis and provide the brain with sufficient levels of glucose [6]. The importance of 

regulating cortisol levels can be demonstrated clinically in patients with cortisol excess 

such as those with Cushing’s syndrome or deficiency such as in Addison’s disease. 

Cushing’s patients characteristically present with an overproduction of cortisol with 

symptoms including central obesity, diabetes and hypertension [7] where as Addison’s 
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disease presents with cortisol deficiency form adrenal failure with typical symptoms of 

anorexia and hypotension [8].    

As Cushing’s syndrome patients typically present with similar diagnostic features to those 

with metabolic syndrome it was proposed that deregulated cortisol levels may play a key 

role in the pathogenesis of metabolic syndrome. Preliminary studies have shown that in 

metabolic syndrome cortisol levels are typically raised, but following the reduction of 

cortisol levels through weight loss, clinical symptoms of metabolic syndrome can be 

ameliorated [9]. Although further studies are necessary to distinguish the effects of weight 

loss from reduced cortisol levels before any conclusions can be drawn, this research 

supports previous studies suggesting that inhibition of cortisol activity may prove to be a 

valuable therapeutic approach for metabolic syndrome.     

GC levels are modulated both systematically and at tissue level. The hypothalamic-

pituitary-adrenal (HPA) axis provides systematic regulation and allows elevated cortisol 

levels in response to chronic stress. Cortisol levels are normally tightly regulated by 

negative feedback to the hypothalamus and anterior pituitary [10]. GC levels are also 

controlled at tissue level by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-

HSD1). 11β-HSD1 is expressed in metabolic tissues such as liver, adipose and skeletal 

muscle. It primarily shows reductase activity and thereby converts inactive cortisone (11-

dehydrocorticosterone (11-DHC) in mice) into active cortisol (corticosterone in mice) as 

opposed to its dehydrogenase activity where the conversion is reversed [11].   

1.3. G6PT - H6PHD - 11β-HSD1 pathway 

The regulation of 11β-HSD1 is complicated by its subcellular location within the 

endoplasmic/sarcoplasmic reticulum (ER/SR). The ubiquitously expressed glucose 6-
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phosphate transporter (G6PT), also known as solute carrier family 37 member 4 

(SLC37A4), is the first component of the metabolic triad, which locally regulates GC 

activation, and consists of G6PT, hexose-6-phosphate dehydrogenase (H6PDH) and 11β-

HSD1 (figure 1.1) [12].  Together these components allow the transport of glucose-6-

phosphate (G6P) in to the lumen of the ER and subsequent enzyme-mediated GC 

regeneration.   Firstly G6P is transported from the cytosol into the ER via the G6PT; an ER 

associated antiporter [13][14]. G6P acts as a substrate for H6PDH and is subsequently 

converted into 6-phosphogluconate (6-PG), concurrently H6PDH reduces NADP
+
 to 

NADPH. This allows a high enough NADPH to NADP
+ 

ratio within the ER to sufficiently 

promote 11β-HSD1 reductase activity and therefore results in GC activation [12].  

Moreover, the G6PT - H6PDH - 11β-HSD1 pathway has been considered of great 

importance towards both characterising and targeting therapies at the group of increasingly 

prevalent metabolic conditions, particularly obesity and insulin resistance.  As excess GC 

levels can cause unwanted disruption to metabolic homeostasis, inhibition of the enzymes 

involved in glucocorticoid activation may prove to be a valuable therapeutic strategy to 

target metabolic diseases [15][16]. Previous animal studies have indicated that 11β-HSD1 

inhibitors may show physiological efficacy. Currently 11β-HSD1 inhibitors are in phase II 

clinical trials to assess their ability to ameliorate these metabolic diseases [15]. However, it 

is possible that any beneficial effect on metabolism, by the inhibition of 11β-HSD1 

mediated GC activation, may be counteracted by the HPA axis which may stimulate 

increased cortisol release by the adrenals to maintain circulatory cortisol levels.   
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Figure 1.1.  The G6PT-H6PHD-11β-HSD1 pathway   

A summary of the G6PT-H6PDH-11-βHSD1 system integrated within cellular metabolism. G6P 

is translocated by the G6PT and metabolised by H6PDH and downstream 11β-HSD1 reductase 

activity is stimulated allowing GC activation [12].   
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1.4. Hepatic glucose metabolism   

Gluconeogenesis allows glucose to be produced from non-carbohydrate molecules such as 

pyruvate, glycerol and lactate, and ensures sufficient blood glucose levels are maintained 

during fasting [6]. Specifically in gluconeogenic tissues, such as the liver, D-glucose-6-

phospatase (G6Pase) is expressed in the ER lumen and works in parallel with the G6PT - 

H6PHD - 11β-HSD1 pathway [17].  In hepatic tissue, G6P is transported into the ER 

lumen by the G6PT, however here G6P also acts as a substrate for the G6Pase enzyme 

which catalyses the hydrolysis of G6P into glucose and inorganic phosphate. As this 

hydrolysis reaction is the final step in both gluconeogenesis and glycogenolysis, the 

G6Pase system plays an essential role in glucose homeostasis [17]. Figure 1.2 illustrates 

interactions between the pathways discussed in regards to glucose and GC homeostasis.     

  

Figure 1.2.  Systemic and local GC regulation   

An illustration to demonstrate GC regulation through the integration of the endocrine system and 

pre-receptor metabolism. The role of the hepatic G6Pase system is also shown [12][17].   
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1.5. Glycogen storage disease type 1a and 1b 

Glycogen storage disease type 1 (GSD-1) or von Gierke disease, groups a series of 

autosomal recessive metabolic disorders associated with abnormalities to the G6Pase 

system. Deficiencies to G6Pase and the G6PT cause GSD-1a and GSD-1b respectively 

[13]. Currently more than 85 mutations to the human G6Pase gene have been identified, 

and over 80 mutations to the G6PT gene have been found. For both genes the mutations 

identified are mostly missense, small gene alterations with few mutations occurring with 

considerable frequency [18]. As both these ER associated proteins work collectively to 

modulate glycaemia, abnormalities to either tend to present with similar malfunctions 

associated with deregulated energy metabolism. For both disorders patients typically 

manifest with hypoglycaemia, hepatomegaly, growth retardation and renal dysfunction all 

of which are characteristic of deficient G6Pase activity. However GSD-1b patients also 

manifest with neutropenia and neutrophil dysfunction [13]. As expression of G6Pase is 

specific to gluconeogenic tissues such as the liver, intestine and kidney yet G6PT is 

ubiquitously expressed it is thought to have alternative unknown roles at these tissues 

particularly those which exert little glucocorticoid activity. Previous studies using G6PT 

KO mice gave adverse symptoms similar to GSD-1 patients where complete depletion of 

the G6PT proved difficult for long term survival of the mice [19].     

1.6. H6PDH and HSD1 knockout (KO) mice 

Numerous transgenic mouse models have been developed to investigate the effects of 11β-

HSD1 inhibition. Both 11β-HSD1KO and H6PDHKO mice, which display a considerable 

reduction in glucocorticoid sensitivity, show ameliorated glucose homeostasis and resist 

obesity when fed a high fat diet [12][20]. In contrast, a model overexpressing 11β-HSD1 

specifically in adipose tissue presented a metabolic syndrome phenotype including 
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hypertension, obesity and insulin resistance. Furthermore overexpression of 11β-HSD1 in 

the liver presents with mild hepatic insulin resistance but with no visceral obesity [21] 

[22]. These in vivo models further support the idea of inhibiting 11β-HSD1 enzyme 

activity as a novel therapy to improve or reverse the detrimental effects induced by 

metabolic syndrome in humans.      

However, despite the positive metabolic effects seen within these mouse models, H6PDH 

null mice have demonstrated a severe progressive skeletal myopathy. The myopathy 

displays increased insulin dependent uptake of glucose, glycogen accumulation and 

switching of sketetal type II fibres to type I slow twitching fibres in skeletal muscle. These 

changes are physiologically supported by the diminished running wheel activity and 

isolated skeletal muscle force generation of the null mice. In addition, the muscles are seen 

to contain numerous intrafibrillar membraneous vacuoles and aberrant triads which join T 

tubules to a SR. Expression levels of SR proteins, that participate in the regulation of 

calcium metabolism, such as calrecticulin and sarcoplasmic/endoplasmic reticulum 

calcium ATPase (SERCA) also appear to be abnormal. Concurrently, overexpression of 

genes which encode proteins associated with the unfolded protein response (UPR) pathway 

was observed [23]. These studies suggest that the G6PT - H6PHD - 11β-HSD1 pathway 

plays an essential role in muscle homeostasis. However, studies using a 11β-

HSD1/H6PDH double KO (DKO) found that GC metabolism and HPA axis regulation was 

similar to 11β-HSD1 mice yet the DKO mice presented with similar myopathy to the 

H6PDHKO suggesting the effects are GC independent [24].  

H6PDH is expressed exclusively in the ER/SR and functions to catalyse the reduction of 

G6P in the initial stages of the pentose phosphate pathway. As NADP
+
 is reduced to 
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NADPH in concert with G6P reduction is both pathways, H6PDH activity is likely to be 

integral to the maintenance of an appropriate redox environment within the ER. Disruption 

to the NADP
+
 /NADPH ratio by reduced H6PDH activity may alter the ER oxidation-

reduction balance, which is necessary for the correct folding of proteins, and result in ER 

stress [23].          

1.7. ER stress 

The ER offers proteins optimal conditions for efficient folding and assembly.  ER stress 

can be caused by numerous factors including; a build up of misfolded proteins, altered 

oxidation-reduction state, depleted glucose levels and disturbed Ca
2+

 homeostasis. In 

response to ER stress the cell undergoes an unfolded protein response (UPR); whereby the 

transcription of genes that regulate protein folding is stimulated. Consequently translation 

of further proteins is halted and chaperone levels are upregulated to assist with correct 

folding of proteins. Activating transcription factor (ATF6), protein kinase RNA-like 

endoplasmic reticulum kinase (PERK) and Inositol-requiring1 (IRE1) dissociate from 

immunoglobulin heavy chain-bindng protein (BiP) and become activated. ATF6 

translocates to the nucleus and promotes the expression of UPR genes. In contrast, IRE1 

and PERK undergo oligomerisation and autophosphorylation. Phosphorylated IRE1 

catalyses the splicing of XBP1 mRNA forming a potent transcription factor for UPR genes, 

whilst phosphorylated PERK interacts with eukaryotic translation initiation factor 2,α 

subunit (eIF2α) which reduces the rate of translation. Moreover, Endoplasmic-reticulum-

associated protein degradation (ERAD) is upregulated to degrade misfolded proteins 

beyond repair [25].  
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Due to the overexpression of UPR proteins and Ca
2+ 

disturbances seen in the H6PDHKO 

mice it has been proposed that the disruption to muscle homeostasis and consequent 

myopathy may be, at least partly, a result of SR stress [23]. 

1.8. What is the role of G6PT in metabolic homeostasis and muscle function? 

To date studies of the glucocorticoid activation pathway have predominantly focused on 

characterising the effects of knocking down the two enzymes, however to get a clearer 

picture of the pathway, by removing the G6P upstream substrate, through knocking out the 

G6PT will ensure that no alternative compensatory pathways can reduce G6P and provide 

NADPH for 11β-HSD1 activation in the ER. In addition by preventing G6P flux into the 

ER it will help to determine alternative roles for G6P within this organelle.     

 Previous studies have used G6PT antisense oligonucleotides (ASO) in diabetes db/db mice 

and found G6PT reduction ameliorated hyperglycaemia and insulin resistance; as 11β-

HSD1 expression was consequently reduced it is proposed these effects are GC dependent 

[26]. 

To further assess the role of G6PT in metabolism a heterozygous transgenic mouse model 

for the G6PT has been established. Characterisation of this heterozygous model will 

determine whether the beneficial effects of reducing GC activity can be seen without 

muscular pathology. To do this we will first look at the role of the G6PT in regards to 

whole body glucose homeostasis which we postulate to be GC dependent. We will 

examine clinical differences between heterozygous and wild type mice on a high fat diet to 

establish whether the heterozygous model can ameliorate obesogenic effects and insulin 

resistance. In addition, to determine the role of the G6PT specifically in muscle 

homeostasis, which we propose to be GC independent, we will examine the metabolic 
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status of primary isolated muscle cells from heterozygous and wild type mice. Elucidating 

the importance the G6PT in this pathway will help to determine potential new therapeutic 

targets of metabolic syndrome whilst recognising possible adverse effects from disrupting 

this pathway such as altered muscle homeostasis.  
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1.9. Hypothesis and Aims 

We hypothesise that reduced G6PT expression will lead to reduced HSD1 mediated 

Glucocorticoid generation and ameliorate high fat diet induced insulin resistance.  We 

hypothesise that G6PT expression is an important regulator of G6P metabolism and 

skeletal muscle homeostasis 

A heterozygous G6PT mouse model has been developed to further investigate its 

importance in metabolic homeostasis. The aims of this project are: 

1) To characterise the metabolic phenotype of G6PT +/- mice on a high fat diet to 

establish systemic effects of G6PT depletion using in vivo analysis of glucose 

clearance and body weight as well as molecular analysis of liver and muscle tissue.  

2) To investigate the role of the G6PT in muscle homeostasis using G6PT+/- primary 

myotubes to conduct multiple experiments to assess levels of key metabolites such 

as ATP, G6P, Ca
2+

 and glycogen as well as determine 11β-HSD1 enzyme activity.  
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2. Methods 

2.1. Transgenic heterozygous G6PT mouse 

The G6PT KO allele and embryonic stem cells were made by the European conditional 

mouse mutagenesis (EUCOMM) programme. Homologous recombination of an 

insertational mutagenesis cassette at an early intron (seen in figure 2.1) inhibits gene 

transcription and effectively makes the allele null.  

Embryonic stem cells containing the below allele of the G6PT gene were injected in to a 

blastocyst and implanted into a C57BL/6 mouse. A portion of the parental mouse stem 

cells within the blastocyst now contain the knockout sequence and upon birth chimeras 

derived from this knockout containing cassette appear a patchy grey colour. Genotyping 

was then performed to confirm either heterozygosity or wild type status.  

 

 

2.2. Primary Myofibre isolation  

Mice were genotyped and culled at 8 weeks old. The Extensor digitorum longus (EDL) 

muscle was dissected, fully intact, from tendon to tendon as described in Rosenblatt 1995 

[27] and placed in Dulbecco’s modified Eagle’s medium (DMEM) with 0.2% v/v of 

collagenase and incubated at 37°C for 2 hours. EDL tissue was placed in serum coated cell 

Figure 2.1. The G6PT KO allele – a linear representation of the G6PT KO allele produced by 

homologous recombination of an insertational mutagenesis cassette. 
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culture plates in DMEM preheated to 37°C to equilibrate. Serum coated glass pipettes were 

used to gently expel cell medium onto the muscle to release individual myofibres. 48 well 

cell culture plates were coated in Matrigel (BD Biosciences) and incubated at 37°C until 

the Matrigel had set. Then the individual myofibres isolated from the muscle were 

transferred onto the set Matrigel plates to grow. (All primary cells incubated at 37°C were 

in an atmosphere of 5% CO2) 

2.3. Primary cell maintenance 

Primary culture maintenance was conducted using the following media. Fibres were seeded 

in plating media (DMEM with 30% foetal bovine serum (FBS), 10% Horse serum (HS), 

1% Chick embryo extract (CEE), 100mg/ml fibroblast growth factor (FGF)) and left for 96 

hours at 37°C. Once satellite cells have migrated from the fibre, plating media was 

removed as well as the primary fibres and proliferation media (DMEM with 10% HS, 0.5% 

CEE) was added this was changed to differentiation media (DMEM 2% HS, 0.5% CEE) as 

the myoblasts approached confluence (80%) and myotubes allowed to fully develop for 4 

days incubating at 37°C before experimentation (illustrated in figure 2.3). 

 

 

Figure 2.3. Primary muscle cell culture – Light microscopic imaging of satellite cells migrating from 

the primary myofibre (A), myoblast proliferation and differentiation (B) and mature myotubes (C) 
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2.4. Genotyping 

DNA samples from tail clippings of C57BL/6 mice were prepared for PCR by placing each 

clipping in 100µl of digestion buffer (50mM Tris (pH 8.0), 100mM EDTA, 100mM NaCl, 

1% sodium dodecyl sulphate (SDS)) and 2µl of proteinase K and incubating overnight at 

57°C on a hot block. Samples were then vortexed and heated at 98°C for 20 minutes to 

denature enzymes. Samples were spun down to pellet debris and DNA was amplified using 

the 2x BioMix Red (Bioline) by following manufacturer’s instructions and using the 

primers listed below. Briefly 1µl of sample DNA was added to 19µl of each master mix, 

stated in table 2.4, in PCR tubes. Samples were vortexed and placed in the PCR machine 

set to 3 minutes at 95°C then 35 cycles of {30 seconds 95°C, 30 seconds 60°C and 30 

seconds 72°C} followed by 3 minutes at 72°C and left forever at 4°C.  

Primers-:  

Slc37a4-for – TGCAGCTGGTTACCTGTCAGACAGG  

loxR primer –  TGAACTGATGGCGAGCTCAGACC 

Slc37a4-5'-arm – TCCTTGGTGGATGAGATCGCTCTGG 

Slc37a4-3'-arm – TTGTGATGAGCCCTGCAGCGAAGG 

LAR3 primer – CAACGGGTTCTTCTGTTAGTCC 

LoxP  PCR mix/sample Lar3 PCR mix/sample 

Mastermix - 10µl    Mastermix - 10µl 

Primer (loxP) - 0.5µl Primer (3’-arm) - 0.5µl 

Primer (slc37a4-for) - 0.5µl Primer (5’-arm) - 0.5µl 

Nuclease free water (NFW)- 

8µl  

Primer (LAR3’) - 0.5µl 

 Nuclease free water - 7.5µl   

 
Table 2.4. Genotyping mastermixes 
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Samples were then loaded on to a 2% (w/v) agarose gel dissolved in TBE (Triboric 

acid/EDTA) heated and mixed gently to aid dissolution. 1µl/10ml of gel red was added to 

the mix and the gel was poured into the plates of the electrophoresis apparatus. Well 

forming combs were placed into the top and the gel was left to set. Combs were then 

removed and samples were loaded into the wells; 10 µl of BenchMark
TM 

pre-stained 

protein ladder (Invitogen) was also loaded as a molecular weight marker. The 

electrophoresis was run at 120 volts for 40 minutes. Gels were then removed from the 

apparatus and bands were visualised under UV conditions.    

2.5. Colourimetric and fluorometric assays 

Media was aspirated from 2 wells of primary cells from 48 well plates and each of the 

metabolic assays (listed in table 2.5) were performed following the manufacturer’s 

instructions (Cambridge Bioscience). Briefly, cells were lysed in the buffer provided in the 

assay kit and scraped from the well surface and placed into Eppendorf tubes. Equal 

volumes of lysate were placed in wells of a 96 well plate and the appropriate reagents 

provided by the kit were added. In parallel to this, standards were made using known 

concentrations of the metabolites. Absorbance, at the appropriate wavelength, for each 

sample was read using a colourimeter and metabolite concentrations for each sample were 

determined by extrapolating the absorbance from their respective standard curve.  

Assay name Company Catalogue 

number 

Glycogen assay kit Cambridge Bioscience K646-100 

Calcium colorimetric assay kit Cambridge Bioscience K380-250 

ATP colorimetric/fluorometric assay 

kit 

Cambridge Bioscience K353-100 

Glucose-6-phosphate assay kit Cambridge Bioscience K657-100 

Table 2.5. List of colourimetric and fluorometric assays 
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A Fura-2 fluorometric assay  (Invitrogen) was also used to determine Ca
2+ 

levels by 

following manufacturers instructions. Briefly assay reagents were applied directly to the 

cultured primary myotubes in 96 well plates in order and after the appropriate incubations 

fluorescence was measured.   

2.6. Immunoblotting 

To harvest protein 1ml of a 10ml RIPA buffer stock (50mM Tris, 150mM NaCl, 1% NP40, 

0.5% sodiumdeoxycholate and 0.1% SDS) (supplemented with 100µl of phosphatase 

inhibitor and 1 tablet of protease inhibitor) was added to each well. Cells were then scraped 

from the plate surface and transferred to an Eppendorf tube; lysates were kept on ice at all 

times unless stated otherwise. The samples were then subject to freeze thaw conditions to 

improve lysis and centrifuged for 10 minutes. The lipid pellet was discarded and the 

supernatant was transferred to a new tube.  

Sample protein concentration was then determined using the Quick Start
TM

 Bradford assay 

kit (Bio-Rad). 5µl of each sample and BSA protein standards (of known concentrations in 

RIPA buffer) were added to wells of a 96well plate. 200µl of BioRad protein assay reagent 

B was added to each well followed by 25µl of BioRad protein assay reagent A 

(supplemented with 20µl of reagent 5 per 1ml of reagent A to correct for the presence of 

SDS in RIPA buffer). 

Sodium dodecyl sulphate-polyacrylaminde gel electrophoresis (SDS-PAGE) was used to 

separate the protein samples by molecular weight.  12% w/v acrylamide gels (from 40%  

acrylamide stock, 0.1M Tris, 0.1M bicine (N,N-bis(2-hydroxyethyl)glycine), 0.1% w/v 

SDS, 0.25 % TEMED (N,N,N’,N’-tetramethylethylenediamine) and, added last, 0.06% 

ammonium persulphate (APS)) were mixed and poured into electrophoresis apparatus, 
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with combs placed into the top to form wells, and left to polymerise. Then, on removal of 

the combs, wells were washed and filled with running buffer (0.1M Tris pH 7.4, 0.1M 

bicine, 0.01% w/v SDS). Wells were loaded individually with 20µg/ml protein samples or 

a protein ladder used to estimate the size of bands once the gel is run. Once loaded the 

apparatus lid was placed on and filled with running buffer and the gels were then 

electrophoresed at 120volts for 1.5 hours. Gels were transferred to a nitrocellulose 

membrane using the iBlot (Invitrogen). Primary  antibody (G6PT 1:5000 (Santa Cruz), β-

actin 1:10000 (Sigma), SERCA2 1:1000 (Cell signaling), α-tubulin 1:2000  (Santa Cruz)) 

in 5% milk was added to the membrane and left on a shaker overnight at 4˚C, the 

membrane was washed in Tris-buffered saline with Tween 20 (TBS-T) (0.1% v/v Tween
TM

 

20, 0.2M sodium chloride and 0.02M Tris (pH 7.6)) and  secondary antibody in 5% milk 

was added (anti-mouse 1:10000  (for G6PT) and anti-rabbit-HRP 1:10000 (for SERCA2) 

(Dako))  and incubated on a shaker  for 2 hours at RT. The membranes were then washed 

for 15 minutes 4 times in  TBS-T and subsequently exposed to ECL luminance substrate 

according to manufactures instructions (Bio-Rad) and wrapped in saran film and exposed 

to blue-xray film (Wolt laboratories) in a developing cassette and placed in the xograph 

developer.  

2.7. In vivo - high fat diet 

10 Mice (4 wild type, 6 G6PT+/-) were fed high fat pellets (60% fat) for 9 weeks and 

weighed twice weekly. On week 6 the mice were subjected to a glucose tolerance tests 

(GTT) with weight differences adjusted by the injected glucose concentration (2U/kg). Tail 

bleeds were carried out to read blood glucose concentration using a glucometer every 30 

minutes.  
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At week 10 mice were culled by cervical dislocation and quadricep, soleus, TA and liver 

tissue was collected by dissection and frozen immediately in liquid nitrogen for future 

analysis.   

2.8. 11β-HSD1 activity assay 

To test for 11β-HSD1 activity the conversion of inactive 11-DHC to active corticosterone 

is measured. Tissue explants and primary myotubes were used. For the primary myotubes 

media was removed and 1ml of Serum free DMEM was added to the wells. For the tissue 

explants around 20mg pieces were weighed and added to individual wells containing 1ml 

of serum free DMEM media. The samples were incubated at 37°C in a 5% CO2 

atmosphere for 30 minutes. Then 20,000 cpm/reaction of radioactive 
3
H-11-DHC and 

100nM of 11-DHC was added to each well. Muscle tissue and primary cells were 

incubated for 6 hours and liver tissue was incubated for 2 hours, all at 37°C in 5% CO2. 

Following the respective incubation periods the media from each well was transferred into 

a glass tube and 5ml of dichloromethane was added and the solution was briefly vortexed. 

Subsequently samples were centrifuged at 15,000rpm for 15 minutes to enable the 

extraction of the steroids. After this the upper aqueous phase was aspirated from the 

samples which were then placed under an air blowing sample concentrator (Techne) set at 

55°C to allow evaporation of the remaining organic phase which contains the steroids. 

Samples were resuspended in 50µl of dichloromethane and briefly vortexed. Then using a 

Pasteur pipette each sample was spotted on silica coated thin layer chromatography plate 

(Thermofisher), 2cm above the base and with 1.5cm gaps between samples. 5µl of non-

radiolabelled 10mM 11-DHC/corticosterone in ethanol was additionally spotted to provide 

a running control. The plate was run in a tank with 200ml (90:10) of chloroform:absolute 

ethanol for 1 hour 15 minutes to separate the steroids. On separation the radioactivity of 
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3
H-11-DHC and its converted product 

3
H-corticosterone was determined using a Bioscan 

Imaging scanner (LabLogic). The correct peaks were identified by referring to the position 

of the cold steroids under UV light. The percentage of inactive 11-DHC converted to 

active corticosterone was calculated to establish enzyme activity given as the pmole of 

steroid converted per gram of tissue per hour (pmol/g/h).            

2.9. RNA extraction 

Tissue samples were homogenised in 1ml of thiocyanate-phenol (Trizol) using a 

mechanical homogeniser; with the blade cleaned in ethanol between samples. 

Alternatively, for primary cells, 1ml of Trizol was added to the wells and mixed by 

pipetting up and down. Cells were scraped from the surface and placed into Eppendorf’s 

and left for 5 minutes at room temperature (RT). 200µl of chloroform was added and after 

vortexing samples were left for 5 minutes at RT. Samples were centrifuged for 5 minutes at 

12,000rpm at 4°C and the top layer of each sample was transferred into a new Eppendorf. 

500µl of isopropanol (propan-2-ol) was then added to the new tubes which were inverted 5 

times and left, for RNA precipitation, at -20°C for 30 minutes.  Nucleic acid was pelleted 

by centrifugation at 12000rpm at 4°C and the isopropanol was removed. Samples were 

washed in 75% ethanol and left to dry before they were resuspended in nuclease free water 

(NFW). The RNA was quantified using the NanoDrop (ND, labtech international) and 

assessed for RNA integrity (with a 260/280 nm ratio between 1.7 and 2 deemed good). The 

samples were stored at -80°C until further use.   
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2.10. Reverse transcription 

RNA was reverse transcribed to cDNA using the High capacity cDNA reverse 

transcription kit (Applied Biosystems, USA) following the manufacturers protocol. Briefly, 

a master mix was prepared with the volumes of reagents stated in table 2.10 per sample.  

2x Reverse transcription master mix / 

sample 

10 x RT buffer - 2µl    

25 x dNTP mix (100mM) – 0.8µl 

10 x RT random primers - 2µl 

MulitiScribe
TM

 reverse transcriptase - 1µl 

RNase inhibitor - 1µl 

Nuclease free water – 3.2µl 

 

 

10µl of the 2x master mix was added to 100µl tubes with 10µl of RNA (1µg/10µl). 

Samples were then mixed gently and centrifuged briefly before they were placed in the 

thermal cycler. Settings for the thermal cycler were; 10 minutes at 25°C, 120 minutes at 

37°C, 5 minutes at 85°C and then continuously at 4°C.     

2.11. Real time PCR (qPCR) 

Primers for genes of interest were thawed on ice and covered from light. Master mixes, 

consisting of 5µl 2x qPCR master mix (Applied Biosystems), 3.5µl NFW and 0.5µl gene 

primer probe (listed in table 2.11), were made for each of the genes tested. All cDNA 

samples were run in triplicate with 1µl of cDNA added to each well of a 384 well plate 

followed by 9µl of the appropriate gene master mix. Plates were sealed with film and 

Table 2.10. Reverse transcription mastermix 
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briefly centrifuged before loading on the ABI 7500 Real Time-PCR machine at pre-set 

settings. 

Gene Primer probe Cat.# (applied biosystems) 

G6PT Mm00484574_m1 

H6PDH Mm00557617_m1 

HSPa5 Mm00517690_g1 

ITGB1BP3 Mm01172899_g1 

Calr Mm00482936_m1 

PEPCK Mm01247058_m1 

HSD11b1 Mm00476182_m1 

G6Pase Mm00839363_m1 

 

 

2.12. Statistics 

Prism6 (GraphPad) was used for statistical analysis of data given as mean±SEM, with 

statistical significance given to P values <0.05. Groups were compared using t-test analysis 

for metabolic, RT-PCR and activity assays (n numbers are stated in their respective figure 

legend). Mean ΔCt values were used for qPCR statistical analysis. Two way ANOVA was 

used for GTT analysis.  (Key: * = P<0.05, ** = P<0.01, *** = P<0.001).    

Table 2.11. List of the genes used for qPCR analysis  
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3. Results 

3.1. G6PT genotype 

Tail clipping samples were taken from mice and we used PCR to amplify the sample DNA 

and subsequently ran samples on an agarose gel. The genotype of each mouse was then 

determined by assessing the bands on the gel. The 5’ and 3’ primers allow synthesis of WT 

cDNA which consists of 678 base pairs where as the Lar3’ primer allows synthesis of 

cDNA from the inserted cassette which consists of 482 base pairs.   Figure 3.1 shows 

sample F1 with two bands, representing the presence of the WT gene (band between 600 

and 700 base pair region) and the inserted cassette (band between the 400 and 500 base 

pair region), indicative of a heterozygous genotype. F2 has just one band between the 600 

and 700 base pair region which indicates a WT genotype. Positive (+) and negative (-) 

controls were also used during genotyping to confirm primer efficiency and integrity. 

 

 

 

Figure 3.1. Genotyping for heterozygous G6PT mice  

Mice tail clips were genotyped by running amplified DNA samples on an agarose gel. 

Heterozygous genotype is indicated by two bands (WT and inserted cassette) (F1) and Wild 

type genotype was indicated by a single band WT band (F2) and is determined WT. Positive 

(+ve) and negative (-ve) controls were also used.  
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3.2. G6PT mRNA expression levels 

To assess whether the heterozygous G6PT mice showed differences in transporter levels 

compared to wild type we analysed the G6PT gene expression. RNA was extracted from 

liver and quadricep tissue samples of the high fat diet (HFD) mice and reverse transcribed 

to cDNA for qPCR analysis.  Figure 3.2 shows that G6PT gene expression trends 

downwards in liver and is significantly reduced in quadriceps of HFD fed G6PT+/- mice.  

 

 

 

3.3. Physiological phenotype of HFD fed G6PT+/- 

To investigate the induction of insulin resistance in G6PT+/- and WT when fed a high fat 

diet we looked for physiological differences in vivo. The mice were fed a high fat diet for 6 

weeks and weighed twice weekly. Over this time period the G6PT+/- mice had a 

significantly larger percentage increase in body weight compared to the WT (Fig 3.3.A). In 

Figure 3.2. G6PT mRNA expression in tissue  

G6PT expression levels were analysed by qPCR in liver and quadricep tissue from G6PT+/- and 

WT mice on a high fat diet. G6PT expression was significantly reduced in quadriceps of G6PT+/- 

mice (n=3, p= <0.05).  
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addition, at the end of this 6 week period we performed a fasting glucose tolerance test 

(GTT) and found that the G6PT+/- mice had a reduced ability to clear glucose compared to 

WT.  Figure 3.3.B demonstrates that after 15 minutes there is a similar increase in blood 

glucose concentration after the glucose injection in both mice. In the WT mice a normal 

glucose response was then seen with the glucose concentration beginning to reduce at 30 

minutes post injection and at the 120 minute time point levels of blood glucose return to 

those similar to pre-injection levels. However at the 30 minute time point in the G6PT+/- 

mice the blood glucose concentration is still rising by 60 minutes it begins to reduce but at 

a much slower rate compared to the WT group. From 30mins until the 120 minute time 

point the G6PT+/- blood glucose concentration is significantly higher than the WT and, 

unlike the WT, the blood glucose does not return to pre-injection levels after 120 minutes.  

 

 

 

Figure 3.3 Physiological phenotype of HFD fed G6PT+/- mice   

(A) shows the percentage of weight gain in G6PT+/- HFD fed mice was significantly higher than 

WT and (B) shows G6PT+/- and WT mice response to GTT; the ability of HFD fed G6PT +/- mice 

to clear glucose appears impaired compared to WT (WT n=4 and G6PT+/- n=6).  
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3.4. Metabolic phenotype of HFD fed G6PT+/-   

To initially investigate whether the expression levels of any metabolic genes of interest 

may be altered in HFD fed G6PT+/- mice, liver and quadricep tissue was collected from 

the mice. RNA was extracted from the tissue and reverse transcribed to cDNA for 

quantitative PCR analysis.  

Firstly we looked at the expression levels of H6PDH and 11β-HSD1 in order to establish 

whether reduced expression of G6PT may alter the expression levels of the enzymes 

downstream of the G6PT in the pathway. The gene expression levels of H6PDH and 11β-

HSD1 were not significantly different in the G6PT+/- liver or quadricep, although 11β-

HSD1 expression did appear slightly increased compared to the WT (figure 3.4.1).  

 

 

 

 

Figure 3.4.1 H6PDH and 11β-HSD1 mRNA expression in G6PT+/- mice  

H6PDH and 11β-HSD expression levels were analysed by qPCR in liver (A) and quadricep (B) 

tissue from G6PT+/- and WT mice on a high fat diet. There was no significant change to enzyme 

expression in G6PT+/- compared with WT mice (n=3).  
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Following previous studies where the myopathy seen in the H6PDHKO mice was proposed 

to be the consequence of ER stress [23] we looked at the gene expression of ER related 

proteins. Heat Shock protein a5 (HSPa5), also known as BiP, and calreticulin (Calr) are 

involved in protein folding mechanisms and therefore used as markers of ER 

stress[28][29]. Both these genes showed no significant change in expression in both 

quadricep and liver tissue although levels did appear to be slightly reduced (Figure 

3.4.2.A). 

 ITGB1BP3 is a gene involved in the negative regulation of muscle differentiation, 

whereby overexpression prevents terminal differentiation and maintains the proliferative 

ability of cells [30]. Therefore we investigated expression levels to indicate changes to 

muscle growth and homeostasis between the WT and heterozygous mice in the quadricep 

tissue. Expression levels of ITGB1BP3 showed no significant change between WT and 

heterozygous genotypes (Figure 3.4.2.C).  

Additionally we examined the expression levels of gluconeogenic genes in hepatic tissue to 

determine whether reduced G6PT may affect hepatic glucose homeostasis.  G6Pase and 

PEPCK, both of which encode enzymes involved in the gluconeogenesis pathway [31], 

showed no significant difference in gene expression levels between WT and G6PT+/- in 

liver tissue (Figure 3.4.2.B).  
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Figure 3.4.2 mRNA expression of metabolic markers in HFD fed G6PT+/- mice  

Expression levels of key metabolic markers were analysed by qPCR. (A) shows expression levels of 

ER stress markers to be unchanged in liver and quadriceps tissue, (B) shows that gluconeogenic 

markers in liver tissue are unchanged and (C) shows the muscle metabolic marker ITGB1BP3 gene 

expression to be also unchanged in HFD fed G6PT+/- mice (n=3).  
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3.5. 11β-HSD1 enzyme activity in HFD fed G6PT+/-   

We used 11β-HSD1 activity assays to determine whether a reduction in G6PT expression 

caused changes to 11β-HSD1 activity in the G6PT+/- mice compared to the WT. Using 

radio labelled 11-DHC this assay establishes the rate at which 11-DHC is converted into 

corticosterone, thereby assessing the enzyme activity.  Figure 3.5 shows that in both liver 

and quadricep tissue there was no significant difference in the conversion rate of inactive 

11-DHC into active corticosterone between WT and G6PT+/- mice on a HFD.   

 

 

 

 

 

 

Figure 3.5. 11β-HSD1 enzyme activity in G6PT+/- mice  

11β-HSD activity is represented by its conversion of 11-DHC to corticosterone. There was no 

significant change to enzyme activity in liver (A) or quadricep (B) tissue explants from G6PT+/-  mice 

on a high fat diet compared with WT mice (WT n=4, G6PT+/- n=6).  
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Having completed the in vivo analysis we then wanted to explore in more detail the known 

pathophysiology seen in the H6PDHKO mice where it has been proposed that the 

myopathy detected in these mice may be attributed to ER stress and disrupted Ca
2+ 

signalling. Therefore we investigated whether similar changes were seen in muscle cells 

isolated from G6PT+/- mice [24].   

3.6. Primary muscle cell G6PT protein expression 

To assess whether the changes to the G6PT gene expression levels seen in tissue samples 

from the HFD mice are followed by reduced protein levels of the G6PT we investigated 

the protein levels of the transporter in primary myotubes. Protein was extracted from the 

primary myotubes and separated by SDS-PAGE. Western blotting for the G6PT, and β-

actin as a loading control, allowed qualitative indications of protein expression levels.  

Figure 3.6. shows that protein levels for the G6PT appear to be reduced in the primary 

myotubes isolated from  G6PT+/- mice compared to levels in the WT. These findings 

correlate with the reduction in G6PT gene expression levels observed previously in liver 

and quadricep tissue harvested from HFD fed G6PT+/- mice (Figure 3.2). 

 

 

 

Figure 3.6. G6PT protein expression in primary myotubes 

Protein from primary myotubes was analysed by immunoblotting. G6PT levels appear considerably 

reduced in G6PT+/-  myotubes compared to WT. Β-Actin was used as a loading control (n=2).  
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3.7. 11β-HSD1 enzyme activity in G6PT+/- 
 
primary myotubes   

We also used the 11β-HSD1 activity assay to determine whether a reduction in G6PT 

expression caused changes to 11β-HSD1 activity in primary myotubes isolated from the 

G6PT+/- mice.  Figure 3.7 shows that the conversion rate of inactive 11-DHC into active 

corticosterone in the heterozygous G6PT myotubes does not appear to differ from the WT 

myotubes. This suggests that 11β-HSD1 enzyme activity is not altered in G6PT+/- 

myotubes.  

 

 

 

3.8. Metabolic effects of reduced G6PT in primary muscle cells 

To investigate whether reduced G6PT expression in G6PT+/- mice may cause changes to 

muscle homeostasis we measured the intracellular levels of key muscle metabolites 

glycogen, ATP and Ca
2+

 in the satellite cell derived myotubes using colourimetric and 

Figure 3.7. 11β-HSD1 enzyme activity in G6PT+/- myotubes  

11β-HSD activity is represented by its conversion of 11-DHC to corticosterone. There was no 

significant change to enzyme activity in the G6PT+/- primary myotubes compared with WT (n=6).  
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fluorometric assays. Both glycogen and ATP levels are unchanged in WT and G6PT+/- 

primary muscle cells (Figure 3.8.A and B). However Ca
2+

 concentrations in the G6PT+/- 

myotubes are significantly increased compared to WT levels (Figure 3.8.C). Using a 

colourimetric assay we also tried to measure G6P levels however the results were negative 

in both WT and heterozygous samples; this was attributed to the requirement of immediate 

perchloric acid treatment to deproteinize harvested cells. This is to be revisited as part of 

future studies.    
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Figure 3.8. Levels of key muscle metabolites in myotubes of G6PT+/- mice  

Colourimetric and fluorimetric analysis of key metabolites showed that glycogen (A) and ATP (B) 

levels remained unchanged, yet Ca
2+

 (C) levels were significantly increased in G6PT+/- myotubes 

(n=5 (A) ,n=3 (B) and n=6 (C)).  
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3.9. Regulation of calcium in primary muscle cells 

From the Ca
2+

 colourimetric assay Ca
2+

 levels appeared increased therefore we used the 

fura-2 assay as an alternative method to verify these changes. This allowed quantification 

of free intracellular Ca
2+

; where a shift in the excitation wavelength of fura-2 can be seen 

upon binding of Ca
2+

. The assay reagents were added directly to primary myotubes in 96 

well plates and fluorescence excitation was read. From the results in figure 3.9.A free Ca
2+

 

levels appear to be raised in the G6PT+/-
 
primary myotubes compared with the WT 

myotubes and therefore corroborate with our previous colourimetric assay results.   

Sarco/endoplasmic reticulum Ca
2+

-ATPase (SERCA) 2 is a Ca
2+

 ATPase and allows the 

reuptake of Ca
2+

 from the cytosol into the SR [32]. Thus, to further investigate the Ca
2+

 

status of the primary myotubes, we examined SERCA2 protein expression levels by 

western blotting. The results in figure 3.9.B. indicate that, concurrent with intracellular free 

Ca
2+

 levels, SERCA2 protein levels are upregulated in G6PT
+/-

 myotubes.    

 
Figure 3.9. Levels of intracellular calcium and SERCA2 protein expression in myotubes of G6PT+/- mice  

(A) Using the FURA-2 assay we showed an upward trend in free intracellular calcium levels in G6PT+/- 

myotubes (n=2). (B) By immunoblot analysis an increase in SERCA2 protein expression in G6PT+/- myotubes 

(n=2).  
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4. Discussion 

The G6PT translocates G6P from the cytosol into the ER/ SR lumen. In the liver, G6P can 

be metabolised by G6Pase in the terminal step of gluconeogeneis liberating glucose to 

maintain glycemia. However, in both liver and muscle G6P can be converted to 6-

phosphoglucolactone by H6PDH, generating NADPH as a cofactor. The NADPH 

generated permits the enzyme 11β-HSD1 to reduce cortisone to the active GC cortisol, and 

maintain a cycle of NADP/ NADPH for the local luminal environment. Thus the G6PT 

stands as a regulator of the ER/ SR luminal environment in terms of G6P and glucose 

metabolism, GC production and redox cycling. In support of this, H6PDHKO mice, whilst 

being GC insensitive, also develop a GC independent myopathy associated with altered 

glucose homeostasis and disturb Ca
2+

 metabolism [23]. 

This study has focussed on characterising mice heterozygous for a null G6PT allele and 

examined the hypothesies firstly, that decreased G6PT can reduce hepatic glucose 

production and ward off glucose intolerance associated with obesity through GC dependent 

and independent mechanisms. Secondly, that G6PT depletion in primary muscle cells 

promotes metabolic disturbances that partly explain the myopathy seen in H6PDHKO 

mice.  

4.1. Heterozygous G6PT expression 

We demonstrated a significant reduction of G6PT mRNA and protein expression in 

heterozygous mice, and can infer that knocking out one allele of the G6PT does lead to a 

reduction in expression. We would expect that this would consequently decrease the 

amount of G6P transport from the cytosol to the ER/SR, which is thought to be G6PT 

dependent in muscle [13][18]. 
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4.2. In vivo and ex vivo analysis for global metabolic characterisation of the G6PT+/- 

genotype 

To induce obesity and diabetes (hyperglycemia), G6PT+/- mice were fed a high fat diet. A 

principle mechanism of diabetes in high fat feeding is increased hepatic glucose output as a 

consequence of insulin resistance. G6PT+/- mice accumulated a greater proportion of body 

weight during the study, and were considerably less glucose tolerant as compared to 

control mice. These results do not support our hypothesis that reduced G6PT and 

consequently reduced G6P flux may cause a reduction in the activity of the enzymes within 

the pathway that would result in decreased GC activation and reduce glucose release 

through the activity of the G6Pase. As elevated GC levels are associated with weight gain 

[33] we would have expected the G6PT+/- mice to gain less weight on the high fat diet and 

additionally show increased ability to clear glucose. These thoughts are also supported by 

previous findings, where reduction in hepatic G6PT by anti sense oligo (ASO) treatment 

resulted in amelioration of hyperglycaemia and insulin resistance [26].  Also from 

H6PDHKO studies where 11β-HSD1 dehydrogenase activity results in GC inactivation, 

KO mice presented with reduced weight gain and improved glucose tolerance [34]. As this 

is not the case here it may indicate that alternative GC independent pathways may be 

affected by the reduction of G6P flux within the ER. All the mice used in this study were 

the same age at starting but the G6PT+/- mice were slightly heavier at the beginning of the 

study, and therefore it may be argued that the weight differences, prior to the high fat diet, 

could be due to differences attributed by changes to G6PT levels and predisposing them to 

increased weight gain despite the high fat diet. If the G6PT+/- mice are less able to 

regulate their energy metabolism then they may be more prone to weight gain even on a 

normal diet. In addition the fasting glucose levels for the heterozygous mice were similar 
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to those of the WT mice suggesting weight differences may not entirely account for 

differences in glucose clearing ability. Further weight monitoring of future litters is 

required to establish whether a trend between weights and genotype actually exists.  

Our results suggest that there is no obvious difference in 11β-HSD1 enzyme activity in 

tissue explants from the WT and G6PT+/- mice, indicating that the reduction in levels of 

G6PT does not cause significant downstream changes to enzyme activity within the liver 

or skeletal muscle, and it is likely that G6P flux would need to be substantially reduced to 

incur significant changes to the rate of GC activation.  Previous studies using ASO to 

significantly reduce G6PT mRNA and protein levels have shown that on adequate 

reduction of the transporter there is a decrease in downstream activity of H6PDH and 11β-

HSD1 [19][26].  Thus, the results from the 11β-HDS1 activity assay support our prediction 

that any physiological changes seen in the G6PT+/- mice are independent of GC levels and 

may be due to alternative pathways that G6P plays a role within.  

H6PDH and 11β-HSD1 gene expression in both liver and skeletal muscle tissue also 

appeared unchanged. These results reinforce the enzyme activity data and show that it is 

unlikely that the enzyme activity is maintained by increased expression of either enzyme to 

compensate for the possible reduced G6P flux into the ER/SR. The results also indicate 

that the extent of G6PT expression reduction in G6PT+/- mice is not adequate to stimulate 

reduced expression of the downstream enzymes.  

As the G6PT is a key component of the G6Pase system and acts in concert with G6Pase in 

gluconeogenic tissues, alterations to G6PT levels may have an effect on gluconeogenic 

processes in the ER. Studies by Wang et al. in diabetic (db/db) mice have demonstrated 

that disruption to the hepatic G6PT-H6PDH-11β-HSD1 system using the GC antagonist 
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RU486 exhibits changes to hepatic glucose metabolism with a significant down regulation 

of PEPCK seen compared to control groups [35]. Therefore we looked at gene expression 

levels of gluconeogenic markers G6Pase and PEPCK in the study to detect possible 

changes to glucose metabolism in hepatic tissue of G6PT+/- mice. The gene expression 

levels of G6Pase and PEPCK appeared unchanged in the liver of heterozygous G6PT mice. 

These results imply that despite changes to G6PT mRNA levels, which may result in 

reduced G6P influx, there is no indication of disruption to gluconeogenesis in the G6PT+/- 

mice.     

Previously, studies proposed that ER/SR stress may be triggered by alterations to the 

G6PT-H6PDH-11β-HSD1 system due to changes to the redox environment of the ER/SR.  

In skeletal muscle of H6PDHKO mice an overexpression of genes involved in the UPR 

pathway suggested SR stress, which has been proposed to contribute to subsequent 

myopathy [23]. Data from the gene expression analyses also appear to show no significant 

change to UPR markers Calreticulin and HSPa5. This indicates that ER stress has not been 

induced by reduced G6PT expression in the G6PT+/- skeletal muscle and liver tissue. In 

addition, another gene greatly dysregulated in H6PDHKO muscle, ITGB1BP3 [12], was 

not significantly different in G6PT+/- quadriceps muscle tissue compared with the WT 

indicating again the normal functioning of muscle growth and differentiation pathways.  

4.3. In vitro analysis of the role of the G6PT in muscle homeostasis  

Utilising primary myotubes derived from G6PT +/- mice we were able to specifically 

investigate the role of the G6PT in regulating non GC dependent aspects of muscle 

homeostasis. As our results show a down regulation in G6PT+/- protein levels we 

investigated the possible effects of this in the primary myotubes. 
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In corroboration with the results we found in quadriceps muscle tissue, 11β-HSD1 enzyme 

activity in the primary myotubes does not appear to be changed. This supports our proposal 

that the reduced protein expression of the G6PT seen in the G6PT+/- primary myotubes is 

not sufficient enough to alter downstream enzyme activity.  

In H6PDHKO muscle, glycogen storage is increased and ATP decreased [12]. Assays in 

primary G6PT+/- myotubes showed no obvious changes in levels compared to control 

myotubes. Despite the physiological differences seen in vivo, the G6PT+/- mice appeared 

able to function relatively normally and there were no obvious symptoms to indicate severe 

pathology of the heterozygous mice, for that reason we would not anticipate any major 

differences in the intracellular glycogen and ATP levels of primary myotubes. 

We were unable to successfully determine the G6P levels in primary myotubes isolated 

from WT and G6PT+/- mice. This may have been due to continued enzyme activity post 

harvesting, which may have consumed or converted G6P. As a result further investigation, 

by using revised methods whereby samples are deproteinised immediately after lysis, is 

required.     

The final parameter to test was Ca
2+ 

homeostasis, as in H6PDHKO mice, in which G6PT is 

down-regulated 5 fold [12], Ca
2+ 

signalling is defective, and increased intracellular Ca
2+

 is 

observed. Our data show a trend towards increased intracellular Ca
2+

 levels. The data from 

the colourimetic assay showed a significant increase in intracellular Ca
2+

 levels. This was 

followed up with a fura-2 assay which specifically measures free intracellular Ca
2+

 levels 

and the results appear to correspond with those from the colourimetric assay. Although the 

fura-2 assay tested substantial populations of myotubes with little variability between the 

fluorescence counts in WT and heterozygous groups, only 2 biological primary myotube 
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replicates were available. Therefore repetition of this experiment is necessary to confirm 

whether these changes are significant.  

Ca
2+ 

is a key intracellular metabolite involved in a vast range of signalling cascades and 

therefore to ensure appropriate functioning of cells Ca
2+

 levels are highly regulated [36]. 

Tight regulation of Ca
2+

 is particularly important in muscle due to its role in contraction; 

SERCA pumps assist to maintain appropriate intracellular free Ca
2+

 levels by storing it in 

the SR [32]. Our results show that, in corroboration with increased free intracellular Ca
2+

, 

SERCA2 protein levels appeared to be increased in the G6PT+/- mice. Therefore the 

suggested changes to Ca
2+

 levels in G6PT+/- mice may be due to dysregulation of Ca
2+

 

uptake into the SR. It may be expected that upregulation of SERCA2 would result in lower 

free Ca
2+

 changes but it is possible that the increased presence of SERCA2 may be 

stimulated by excessive free Ca
2+

 levels in order to maintain levels. It would be interesting 

to see changes to both free Ca
2+

 and SERCA2 expression over time to elucidate whether 

upregulation of SERCA2 does ameliorate the changes to intracellular Ca
2+ 

levels. 

In addition, a role for the G6PT in regulating Ca
2+

 has previously been identified in other 

tissues whereby gene silencing of G6PT decreased sphingosine-1-phosphate mediated Ca
2+

 

mobilisation in glioblastoma cells [37]. A role for the G6PT had also been found in ATP 

dependent ER/SR Ca
2+

 sequestration where G6P has been shown to enhance Ca
2+

 

sequestration [38].  Therefore, increased Ca
2+

 levels in our study may be explained by 

reduced G6P levels which may impair SR uptake of Ca
2+

 from the cytosol. Furthermore, 

studies have shown that genetic deficiencies in G6PT, which results in GSD-1b, present 

with impaired neutrophil chemotaxis which it has been proposed from G6PT-/-
  

mice 

studies may be a consequence of abnormal Ca
2+

 flux in neutrophils [39].  Together these 
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studies illustrate a role for G6PT, beyond G6P transport, in regulating intracellular Ca
2+ 

homeostasis. This may account for the changes to Ca
2+ 

levels in the G6PT+/- primary 

myotubes. Further research regarding Ca
2+

 signalling is necessary to subsequently establish 

whether these changes are likely to contribute to myopathy seen in H6PDHKO mice or be 

a consequence of it.  

In conclusion, the results suggest that the G6PT+/- genotype does not appear to ameliorate 

high fat diet induced insulin resistance. Contrary to our hypothesis, reduced G6PT may 

actually promote whole body insulin resistance. Despite the apparent reduced expression of 

G6PT, downstream 11β-HSD1 enzyme activity appears unchanged in both skeletal muscle 

and liver. Therefore suggesting a reduced G6PT flux has no effect of downstream enzyme 

activity and thus no change in GC activation. However, reduced G6PT may cause altered 

muscle intracellular Ca
2+

 levels; a key metabolite in the maintenance of muscle 

homeostasis which therefore supports our hypothesis that the transporter plays a key role in 

GC independent skeletal muscle homeostasis.  

4.4. Limitations 

It is notable that results in this project are limited due to the short time period allocated for 

this project. This project was intended to provide preliminary data towards characterising 

the heterozygous G6PT mouse line in which any key findings could be further 

investigated. As a result of time limitations the in vivo high fat diet study was carried out 

on mice that were readily available from the start of the project despite differences in the 

average starting weight of the two groups. Ideally, had time permitted, the mice would 

have been placed on the high fat diet for greater than 12 weeks, and additional in vivo 

investigations would have been carried out including insulin sensitivity tests and muscle 
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strength. In addition, increased replicates would have been preferable if the appropriate 

mice had been available.  

Furthermore, had time allowed, we would have assessed G6PT protein levels in tissue to 

see if they correlated with the mRNA expression data and the G6PT protein levels in the 

primary myotubes. Additionally, it would have been useful to examine gene expression 

levels of other skeletal muscle tissues other than the quadriceps. This would have helped 

determine whether our gene expression results are consistent in quadriceps and EDL 

muscle and if we had compared quadricep, soleus and tibialis anterior (TA) muscle we 

could have determined whether G6PT+/- induced fibre type specific effects. Finally, 

though technically demanding, it will be useful to develop a direct G6PT transporter 

activity assay in tissue, to ascertain the level of ER/ SR flux achieved when G6PT 

expression is reduced. 

It must also be appreciated that the model systems used in both in-vivo and in vitro to 

characterise the role of G6PT have limitations. Although using transgenic mice allowed us 

to make global metabolic comparisons between genotypes in a higher organism; it is key to 

firstly recognise that there are vast metabolic differences between humans and rodents. In 

addition, the use of mice made it difficult to control potential confounding factors in the 

study of energy metabolism such as the amount of energy intake by food and expenditure 

by exercise of each mouse.  Similarly, whilst the isolated primary myotubes provide a 

useful model to indicate skeletal muscle activity and homeostasis, it is important to 

acknowledge that in vivo there is vast communication between neighbouring and distant 

tissues which may counteract or compensate for the changes seen in isolated tissues.  
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4.5. Future prospects 

From this research we would look to further investigate the Ca
2+

 phenotype of the 

heterozygous G6PT model and aim to gain a better understanding of the relationship 

between the G6PT and Ca
2+

 within this metabolic pathway.  In addition, the development 

of a muscle specific G6PT KO model would be the next major step for this research. The 

muscle specific knockout will provide a more direct understanding of the role of G6PT 

within the pathway and additionally allow better understanding of the importance of the 

pathway as a whole in relation to both insulin sensitivity and metabolic homeostasis in 

skeletal muscle. The specificity of the knockout will define pathology caused solely by 

changes to muscle homeostasis without interference from the hepatic system. In all, this 

further research will help towards our long term aims to establish both potential benefits 

and consequences of regulating GC activation at tissue level by targeting the G6PT 

pathway. We envisage that a better understanding of the pathways involving the G6PT 

may be applied clinically towards the development of novel therapeutic and preventative 

strategies against insulin resistance and myopathy.  

  



 

48 
 

5. References 

1. Deedwania, P. & Gupta, R. Management issues in the metabolic syndrome. The 

Journal of the Association of Physicians of India 54, 797–810 (2006) 

2. Eckel, R., Grundy, S. & Zimmet, P. The metabolic syndrome. Lancet 365, 1415–28 

(2005) 

3. Saely, C., Rein, P. & Drexel, H. The metabolic syndrome and risk of cardiovascular 

disease and diabetes: experiences with the new diagnostic criteria from the 

International Diabetes Federation. Hormone and metabolic research = Hormon- und 

Stoffwechselforschung = Hormones et métabolisme 39, 642–50 (2007) 

4. Tataranni, P. et al. Effects of glucocorticoids on energy metabolism and food intake in 

humans. The American journal of physiology 271, E317–25 (1996) 

5. Dinneen, S., Alzaid, A., Miles, J. & Rizza, R. Metabolic effects of the nocturnal rise in 

cortisol on carbohydrate metabolism in normal humans. The Journal of clinical 

investigation 92, 2283–90 (1993) 

6. Oh, K.-J., Han, H.-S., Kim, M.-J. & Koo, S.-H. Transcriptional regulators of hepatic 

gluconeogenesis.Archives of pharmacal research 36, 189–200 (2013) 

7. Tabarin, A. & Roger, P. [Cushing’s syndrome: diagnostic exploration]. Presse 

médicale (Paris, France : 1983) 23, 43–8 (1994). 

8. Krysiak, R. & Okopień, B. [Adrenal insufficiency].Wiadomości lekarskie (Warsaw, 

Poland : 1960) 65, 108–23 (2012) 

9. Anagnostis, P., Athyros, V., Tziomalos, K., Karagiannis, A. & Mikhailidis, D. Clinical 

review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. The 

Journal of clinical endocrinology and metabolism 94, 2692–701 (2009) 

10. O’Connor, T., O’Halloran, D. & Shanahan, F. The stress response and the 

hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM : monthly 

journal of the Association of Physicians 93, 323–33 (2000) 

11. Tomlinson, J. et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific 

regulator of glucocorticoid response.Endocrine reviews 25, 831–66 (2004) 

12. Zielinska, A., Walker, E., Stewart, P. & Lavery, G. Biochemistry and physiology of 

hexose-6-phosphate knockout mice. Molecular and cellular endocrinology 336, 213–8 

(2011). 



 

49 
 

13. Chou, J., Matern, D., Mansfield, B. & Chen, Y.-T. Type I glycogen storage diseases: 

disorders of the glucose-6-phosphatase complex. Current molecular medicine 2, 121–

43 (2002) 

14. Pao, S., Paulsen, I. & Saier, M. Major facilitator superfamily.Microbiology and 

molecular biology reviews : MMBR 62, 1–34 (1998). 

15. Gathercole, L. et al. 11β-Hydroxysteroid Dehydrogenase 1: Translational and 

Therapeutic Aspects. Endocrine reviews(2013).doi:10.1210/er.2012-1050 

16. Hu, G.-X. et al. Curcumin as a potent and selective inhibitor of 11β-hydroxysteroid 

dehydrogenase 1: improving lipid profiles in high-fat-diet-treated rats. PloS one 8, 

e49976 (2013) 

17. van Schaftingen, E. & Gerin, I. The glucose-6-phosphatase system. The Biochemical 

journal 362, 513–32 (2002) 

18. Chou, J. The molecular basis of type 1 glycogen storage diseases. Current molecular 

medicine 1, 25–44 (2001) 

19. Sloop, K. et al. Specific reduction of hepatic glucose 6-phosphate transporter-1 

ameliorates diabetes while avoiding complications of glycogen storage disease. The 

Journal of biological chemistry 282, 19113–21 (2007) 

20. Semjonous, N. et al. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle 

homeostasis independent of 11β-hydroxysteroid dehydrogenase type 

1. Endocrinology 152, 93–102 (2011) 

21. Paterson, J. et al. Liver-selective transgene rescue of hypothalamic-pituitary-adrenal 

axis dysfunction in 11beta-hydroxysteroid dehydrogenase type 1-deficient 

mice.Endocrinology 148, 961–6 (2007) 

22. Lavery, G. et al. Lack of significant metabolic abnormalities in mice with liver-specific 

disruption of 11β-hydroxysteroid dehydrogenase type 1. Endocrinology 153, 3236–48 

(2012) 

23. Lavery, G. et al. Deletion of hexose-6-phosphate dehydrogenase activates the unfolded 

protein response pathway and induces skeletal myopathy. The Journal of biological 

chemistry 283, 8453–61 (2008) 

24. Semjonous, N. et al. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle 

homeostasis independent of 11β-hydroxysteroid dehydrogenase type 

1. Endocrinology 152, 93–102 (2011) 



 

50 
 

25. Wu, J. & Kaufman, R. From acute ER stress to physiological roles of the Unfolded 

Protein Response. Cell death and differentiation 13, 374–84 (2006) 

26. Du, H. et al. Specific reduction of G6PT may contribute to downregulation of hepatic 

11β-HSD1 in diabetic mice.Journal of molecular endocrinology 50, 167–78 (2013 

27. Rosenblatt, J., Lunt, A., Parry, D. & Partridge, T. Culturing satellite cells from living 

single muscle fiber explants. In vitro cellular & developmental biology. Animal 31, 

773–9 (1995) 

28. Michalak, M., Groenendyk, J., Szabo, E., Gold, L. & Opas, M. Calreticulin, a multi-

process calcium-buffering chaperone of the endoplasmic reticulum. The Biochemical 

journal 417, 651–66 (2009) 

29. Ni, M. & Lee, A. ER chaperones in mammalian development and human 

diseases. FEBS letters 581, 3641–51 (2007) 

30. Li, J., Mayne, R. & Wu, C. A novel muscle-specific beta 1 integrin binding protein 

(MIBP) that modulates myogenic differentiation. The Journal of cell biology 147, 

1391–8 (1999) 

31. Yabaluri, N. & Bashyam, M. Hormonal regulation of gluconeogenic gene transcription 

in the liver. Journal of biosciences 35, 473–84 (2010) 

32. Periasamy, M. & Kalyanasundaram, A. SERCA pump isoforms: their role in calcium 

transport and disease. Muscle & nerve 35, 430–42 (2007) 

33. Morton, N. & Seckl, J. 11beta-hydroxysteroid dehydrogenase type 1 and 

obesity. Frontiers of hormone research 36, 146–64 (2008) 

34. Lavery, G. et al. Hypoglycemia with enhanced hepatic glycogen synthesis in 

recombinant mice lacking hexose-6-phosphate dehydrogenase. Endocrinology 148, 

6100–6 (2007) 

35. Wang, Y. et al. Tissue-specific dysregulation of hexose-6-phosphate dehydrogenase 

and glucose-6-phosphate transporter production in db/db mice as a model of type 2 

diabetes. Diabetologia 54, 440–50 (2011) 

36. Berridge, M., Bootman, M. & Roderick, H. Calcium signalling: dynamics, homeostasis 

and remodelling. Nature reviews. Molecular cell biology 4, 517–29 (2003) 

37. Fortier, S., Labelle, D., Sina, A., Moreau, R. & Annabi, B. Silencing of the MT1-

MMP/ G6PT axis suppresses calcium mobilization by sphingosine-1-phosphate in 

glioblastoma cells. FEBS letters 582, 799–804 (2008) 



 

51 
 

38. Chen, P., Csutora, P., Veyna-Burke, N. & Marchase, R. Glucose-6-phosphate and 

Ca2+ sequestration are mutually enhanced in microsomes from liver, brain, and 

heart. Diabetes47, 874–81 (1998) 

 

  



 

52 
 

 

 

Project 2 

 

 

Investigating the role of Transcriptional intermediary factor 1-γ 

(TIF1γ) in mitosis 

 

 

  



 

53 
 

Abstract 

Transcription intermediary factor 1γ (TIF1γ) is known for its transcriptional regulatory 

activity. It has previously been shown as a tumour suppressor where disturbances to TIF1γ 

functioning have been associated with numerous cancers. In this study we show that TIF1γ 

is post translationally modified by phosphorylation in mitotic cells. From further 

immunoblot analysis we propose that the PHD-Bromo domain of TIF1γ holds this 

phosphorylation site, however other TIF1γ domains act as essential binding domains for 

TIF1γ interacting proteins. By mass spectromic analysis we were able to identify three 

TIF1γ phosphorylation sites, with phosphorylation at serine 856 specific to mitotic cells. In 

addition we identified numerous TIF1γ interacting proteins including Cdt1 and Geminin 

which are known to be important in the regulation of DNA replication. Although furthers 

studies are necessary to determine the importance of TIF1γ phosphorylation in mitosis, 

these findings suggest TIF1γ may play a key role in regulating cell cycle progression and 

DNA replication.           
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1. Introduction: 

1.1. Cancer 

Cancer is a disease characterised by uncontrolled cell growth. This normally occurs when 

control mechanisms for correct and timely mitotic division and cell death are deregulated 

[1]. Genetic lesions cause damage to the cell cycle checkpoint pathways and promote the 

gain of function of oncogenes and the loss of function of tumour suppressors[2][3]. 

Genomic instability and aneuploidy, cells presenting with abnormal numbers of 

chromosomes, are the main hallmarks of cancer and as a result cellular proliferation may 

dominate over cellular apoptosis. [1] 

Proto-oncogenes play a role in the regulation of cell proliferation, differentiation and 

apoptosis; when mutations arise in these molecules they can become activated oncogenes 

leading to uncontrolled proliferation and tumourigenesis [4][5].  Ras is an example of a 

proto-oncogene seen to be mutated in 25% of all human tumours [1]. It is characterised by 

its intrinsic guanosine triphosphatase (GTPase) activity which can regulate intracellular 

signalling pathways. When mutated the GTPase activity of ras becomes constitutively 

activated leading to cellular proliferation by a means of pathways including the 

phosphoinositide 3-kinase [6], which prevents apoptosis, and the raf pathway which 

promotes cellular entry into G1 of the cell cycle [7].  

Conversely, tumour suppressors are often activated to stimulate apoptosis or suppress 

proliferation as a stress response such as during DNA damage and oncogene activation; 

this ensures cell integrity is maintained and proliferation is kept under control. Loss of 

function to these genes promotes tumourigenesis. Typically for tumour suppressor genes to 

become inactivated loss of both alleles is necessary [8][9]. The transcription factor p53 is a 
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tumour suppressor gene mutated in over half of human cancers [10]. Mutations often occur 

in the DNA binding domain of p53 and thereby inhibit the transcription of important genes 

involved in cell cycle arrest, DNA repair processes, cellular differentiation and apoptosis 

[11].     

1.2. Mitosis and the cell cycle  

Figure 1.1 shows the cell cycle and the key checkpoints within it; on activation by DNA 

damage the G1/S phase checkpoint, the intra-S phase checkpoint and the G2/M phase 

checkpoint can impede S phase entry, S phase progression and mitotic entry respectively.  

Cyclin-dependent kinase (CDKs) activity is pivotal in regulating the cell cycle. The four 

main phases, G1, S, G2 and mitosis, are all positively controlled by cyclin-CDK 

complexes. Destruction of cyclins by the cell allows for the inactivation of CDKs and 

therefore differential cyclin levels permit the cycle to run smoothly. For example cyclin B-

CDK activity promotes mitosis whilst preventing DNA replication. Once mitosis is 

complete cyclin B is broken down and its CDK activity is thereby reduced; this enables the 

cell to exit mitosis and permits DNA replication [12].  

Mitosis is the final stage of the cell cycle which allows cells to divide into two identical 

daughter cells. This process, which involves the condensation of chromosomes and 

repression of gene expression, helps to minimise chances of damage to the hereditary 

genetic information to be passed on to daughter cells and ensure that the chromosomes 

carrying this information are divided equally [13][14].  

Mitotic division is highly regulated by various checkpoints within the cell cycle which are 

only passed when the internal checking system at each stage is satisfied that cellular 

integrity has been maintained. These checkpoints ensure that DNA replication occurs only  
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Figure 1.1 The cell cycle - A simplified diagram of the 4 main stages of the cell cycle (G1, 

S, G2 and M) with the corresponding checkpoints (Yellow bands) and G1 restriction point 

(Purple band) whereby cells become commited to another cycle of division. Key cell cycle 

regulatory cyclins and cdks are labelled in red.   
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once per cell cycle and is followed by cell division [15]. If at these checkpoints DNA 

damage is detected, cell growth and division is arrested and DNA repair processes are 

employed to correct the damage [16]. The fate of cells that are unable to be appropriately 

repaired is apoptosis; those that avoid this process, through oncogene activation or tumour 

suppressor gene inactivation may go on to divide in an uncontrolled manner.  

The anaphase promoting complex, or cyclosome, (APC/C) allows for the readily 

interchangeable levels of CDK activity throughout the cell cycle. The APC/C is a cullin-

RING finger E3 ubiquitin ligase and works by targeting cyclins for destruction, via 

ubiquitylation, by the 26S proteasome. Therefore both the timely activation and 

inactivation of APC/C appears crucial for efficient cell cycling [17][18].  

Moreover, APC/C is regulated by the Spindle assembly checkpoint (SAC) proteins to 

ensure that cells do not exit mitosis prematurely. The SAC checks that all the 

chromosomes are attached to the microtubules of the mitotic apparatus; so that post 

division the chromosomes of each daughter cell are identical [19].   

1.3. Ubiquitylation 

Ubiquitylation is a key cellular process for targeted destruction of proteins. It is an 

essential process not only in the cell cycle but also for when proteins have been misfolded 

and removal is necessary to prevent potential cellular damage and endoplasmic reticulum 

(ER) stress [20]. The ATP dependent process, illustrated in figure 1.2, is carried out by 

three different enzymes, “ubiquitin activating enzyme” (E1), “ubiquitin-conjugating 

enzyme” (E2) and “ubiquitin ligase” (E3). Initially E1 binds to ubiquitin via a thio-ester 

bond; this subsequently enables ubiquitin to bind E2. E3 is then employed to facilitate the  

formation of an isopetide bond between the ubiquitin’s carboxy-terminus and the distinct  
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Figure 1.2. Ubiquitin proteasome pathway – An illustration of the ATP dependent ubiquitin 

(Ub) pathway. The enzymes E1, E2 and E3 interact and subsequently allow ubiquitination of 

protein substrate. After numerous cylces the protein is degraded into multiple peptide frangments 

by the proteasome and Ub is recycled [20].  
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lysine residues of the substrate protein. Many E3 ligases recognise only certain groups of 

substrate proteins, which may require post-translation modidications like phosphorylation, 

thus allowing process specificity. After multiple cycles of the ubiquitylation process the 

polyubiquitylated substrates are recognised by the 26S proteasome and subsequently 

degraded into small peptides. As this process contributes to the regulation of the cell cycle, 

abnormalities to the components of ubiquitin-dependent protein degradation may 

contribute to diseases such as cancer, yet components may alternatively provide novel 

therapeutic targets [21].  

1.4. TRIM/RBBC proteins 

 The tripartite motif (TRIM) family of intracellular proteins are known for their role in 

ubiquitylation and have been shown to partake in many diverse cellular processes 

including DNA repair and antiviral immunity [22]. Currently, in humans and mice, over 70 

proteins have been identified within this family which are characterised by their poorly 

conserved common N-terminal region comprising of a RING finger, B-boxes and a coiled 

coil domain (RBCC) collectively known as a TRIM domains [23].  

The common structural features of TRIM proteins provide some functional similarities. For 

example, they are typically known for their ubiquitin ligase activity associated with their 

RING finger domain [24]. Additionally, the B-boxes and bromo domains are known 

chromatin interacting domains. These properties indicate that the proteins may play roles 

in both protein degradation and transcriptional regulation [22].    

By genomic analysis, the TRIM protein family is typically divided into two distinct 

subgroups. Group 1 have a range of C-terminal domains which are highly conserved in 

vertebrates and also present in invertebrate species. In contrast, group 2 are characterised  
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by a common C-terminal SPRY domain; they are not present in invertebrates and are 

poorly conserved between mammals. As group 1 appears more evolutionary ancient it has 

been proposed that these proteins are important in the fundamental functioning of cells 

where as group 2 genes are more functionally diverse and may allow for novel functions of 

TRIM proteins in a species specific manner. These differences may allow biological 

responses between species to be targeted to their needs; for example in the control of viral 

infection and cell transformation [25].       

Previous studies indicate that the ubiquitin ligase activity of some TRIM protein family 

members may be vital for regulating the degradation of tumour suppressors and oncogenic 

proteins. Mutations and altered expression levels of TRIM proteins have been identified in 

numerous human cancers supporting suggestions that their deregulation is involved in 

carcinogenesis [22]. In addition, it is notable that the RBCC motif of three TRIM proteins, 

namely transcriptional intermediary factor 1-alpha (TIF1α), promyelocytic leukemia 

(PML) protein and Ret finger protein (RFP), were found to form fusion oncoproteins with 

truncated derivatives of the proteins B-Raf, retinoic acid receptor-alpha (RARα) and ret 

respectively [26][27][28]. Together these findings therefore demonstrate a key role for the 

RBCC motif in cell transformation and cancer progression.           

1.5. Transcriptional intermediary factor 1 family (TIF1)  

The TIF1 family currently has four known members; TIF1α, β, γ and δ. Analysis of the 

TIF1 family members’ amino acid sequences have indicated a role in chromatin-mediated 

regulation of transcription.  

Previous studies, by Venturini et al., have shown that the TIF1 family members share a 25 

amino acid TIF1 signature sequence (TSS). Removal of the TSS by deletional mutagenesis 
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prevents TIF1γ transcriptional inhibitory activity, indicating that this motif is involved in 

TIF1 dependent repression of transcription. This unique and conserved region between the 

TIF1 family proteins indicates that it exhibits a similar repressive function within TIF1α, β 

and δ [29]. 

Despite structural and functional similarities, TIF1 gene family members demonstrate a 

diverse array of actions. TIF1α (or TRIM24) acts to positively or negatively regulate the 

transcriptional activity of nuclear receptors by ligand-dependent interactions [28][30]. The 

importance of this transcriptional regulation has been previously demonstrated in TIF1α –

null mice where lack of liver-specific tumour suppressor activity by TIF1α results in 

dysregulated cell cycle control in hepatocytes. This makes them more prone to genetic 

aberrations and consequently leads to the development of hepatocellular carcinoma [31]. 

TIF1β (TRIM 28) is part of the N-CoR1/HDAC3 histone deacetylase complex and has 

been shown to play a variety of roles including transcriptional repression of Krüppel-

assocoiated box (KRAB) zinc-finger protein activity where its activity has been shown to 

be crucial in early stages of embryonic postimplantation development [32]. In addition, 

TIF1δ (TRIM66), which is predominantly expressed in elongating spermatids within the 

testis, interacts with heterochromatin protein 1 (HP1) and exhibits chromatin-mediated 

gene silencing during spermatogenesis [33].  

1.6. TIF1γ and interacting proteins 

TIF1γ was the third member of the TIF1 family to be identified and is otherwise known as 

TRIM33. Along with TIF1α and β, TIF1γ was seen to contain the highly conserved TSS 

within its central region (figure 1.3) [29]. TIF1γ is a nuclear protein expressed ubiquitously 

and similarly to the other TIF1 family members it displays transient transcriptionally 

repressive activity. Unlike TIF1α and β, TIF1γ does not appear to interact with the KRAB 
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domain of zing-finger transcription factors or with HP1 and it also displays no nuclear 

receptor activity. TIF1γ did however demonstrate that when tethered to a promoter it does 

have silencing action; these findings indicate that TIFγ uses alternative binding partners to 

repress transcription [29].     

 

 

 

 

 

TIF1γ was first shown to be associated with paediatric thyroid cancer, where on fusion 

with the RET receptor tyrosine kinase, it is seen to stimulate aberrant tyrosine kinase 

activity [34]. TIF1γ has since been associated with other diseases such as chronic 

myelomonocytic leukaemia (CMML) where its tumour suppressive actions are down 

regulated through hypermethylation of its gene promoter [35]. It has also been linked to 

pancreatic ductal adenocarcinoma (PDAC) where it works in collaboration with the v-Ki-

ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) to induce pancreatic tumour 

development [36].    

In contrast to its actions as a repressor of gene transcription, studies have also proposed it 

exhibits de-repressor activity. Studies have shown that TIF1γ may interact with TIF1α to 

form a hetero-oligomer and this oligomerisation may work as an alternative transcriptional 

regulatory mechanism by which TIF1γ can relieve the repressive actions of TIF1α [37].  

Figure 1.3. TIF1γ structure – A linear representation of the conserved TIF1γ structural domains 

including; the RING finger, B-boxes, coiled coil, TSS, PHD and Bromo domain.  
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Previous studies have also indicated a role for TIF1γ in haematopoietic, mesenchymal and 

epithelial cell differentiation. The studies show that the TGF-β-dependent differentiation 

process may require TIF1γ to compete with SMAD4 to bind to the active transcriptional 

complexes SMAD2/SMAD3. However some studies suggest TIF1γ acts as a 

monoubiquitin ligase of SMAD4 and dissociates the SMAD2/3-SMAD4 complexes 

thereby inhibiting TGF-β signalling [38]. Recent work in the Turnell laboratory identified 

TIF1γ as a binding partner of APC/C and, through specific binding to APC3 and Cdc20, it 

modulates the progression of the cell cycle through mitosis [39]. The role of TIF1γ in 

regulating the cell cycle is of particular interest as further understanding of cell cycle 

regulation is necessary to establish the importance of different proteins and complexes in 

the normal functioning of the cell cycle.   

Although previous studies indicate a variety of roles for TIF1γ, the specific functioning of 

TIF1γ is yet to be fully understood. A better understanding of TIF1γ interactions and 

activity may provide novel molecular targets for associated diseases such as cancer.  

1.7. Hypothesis and Aims 

We hypothesise that TIF1γ is post translationally modified by phosphorylation during 

mitosis by interacting proteins. This modification might be important for cell cycle 

progression as TIF1γ exhibits tumour suppressor activity and allows for progression 

through mitosis.  

To further understand the role of TIF1γ in mitosis the aims of this project were: 

1) To determine differential binding proteins of TIF1γ at different stages of the cell 

cycle.  
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2) To identify key phosphorylation sites of TIF1γ and examine phosphorylation 

changes to TIF1γ at different stages of the cell cycle.  
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2. Methods 

2.1. Cell maintenance and subculture 

The HeLa cell line was used in this study, it is a cervical carcinoma cell line characterised 

by the expression of human papilloma virus (HPV-18). The cell line was acquired from 

ATCC (product number CCL-2.2). 

Sterilised reagents were all acquired from Invitrogen and stored at 4°C, unless noted 

otherwise. Prior to use reagents were prewarmed to 37°C unless stated otherwise. The cell 

culture medium Dulbecco’s Modified Eagle’s Medium (DMEM) was supplemented with 

2mM L-glutamine and 8% v/v foetal calf serum (FCS) before use.  

Cells were grown in DMEM and incubated at 37°C in 95% air, 5% carbon dioxide. For 

cell subculture of confluent cells medium was removed and cells were washed twice in 

PBS. Then trypsin solution was added (1ml) and cells were incubated at 37°C for 5 

minutes or until cells had detached from the surface. Trypsin was inactivated by the 

addition of DMEM; cells were pelleted by centrifugation at 1500rpm for 5 minutes. The 

media was removed; cells were resuspended in fresh DMEM and plated at the appropriate 

dilution.  

2.2. DNA damage 

Cells were either treated by UV exposure for 30 seconds at 10J/m² or the addition of 1mM 

hydroxyurea for the appropriate time. Cells were then washed twice in saline and harvested 

in lysis buffer (9M urea, 50mM Tris (pH 7.4) and 0.15M β-mercaptoethanol).   
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2.3. Mitotic arrest 

Cells at 90% confluency were incubated at 37°C overnight in DMEM further 

supplemented with 400ng/ml of nocodazole. Mitotic cells were harvested by shake off. 

2.4. Nocodazole release 

DMEM containing nocodazole from the mitotic arrested cells was removed and fresh 

DMEM medium was added to the cells. 

2.5. Cell transfection 

cDNA was acquired from Dr Caroline Hill (LRI) [40] for different TIF1γ domains, flag 

tagged TIF1γ wild type (WT), TIF1γ ΔTRIM, TIF1γ ΔRING and TIF1γ ΔPHD/Bromo 

domain. 4µg of DNA/ 8µl of lipofectamine 2000 (Invitrogen) was used and the 

transfection was completed following manufacturer’s instructions; cells were incubated for 

6 hours and then media was replaced with fresh DMEM.  

2.6. Immunoblotting 

 

Antibody Dilution Secondary antibody 

used (DAKO) 

Blocking agent Supplier 

TIF1 γ 1:2000 Anti-rabbit (1:3000)                                    Milk Turnell 

Geminin  1:250 Anti-protein G (1:1000) Milk Sigma 

Cdt1 1:500 Anti-protein G (1:1000 Milk Sigma 

Chk1 1:1000 Anti-mouse (1:2000) Milk Sigma 

Β-actin 1:2000 Anti-mouse (1:2000) Milk Sigma 

pChk1 

(5317) 

1:3000 Anti-rabbit (1:3000) BSA Bethyl 

Cyclin B1 1:1000 Anti-mouse (1:2000) Milk Sigma 

Flag 1:3000 *Conjugated Milk Sigma 

APC 7  1:2000 Anti-rabbit (1:3000) Milk Sigma 

 
Table 2.1: Primary and secondary antibodies  
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Cells were washed twice in saline and harvested in lysis buffer (9M urea, 50mM Tris (pH 

7.4) and 0.15M β-mercaptoethanol). After a 10 minute lysis buffer incubation cells were 

detached from the dish surface using a scraper. Cells were then sonicated for 10-15 

seconds and centrifuged for 20 minutes at 13000rpm.  

The protein concentration was then determined by adding 5ul of the sample to 1ml of 

Bradford reagent (Bio-Rad) and incubated at room temperature (RT) for 10 minutes. The 

absorbance was read at λ 595nm and concentration determined from a bovine serum 

albumin (BSA) standard curve of known concentrations (0-30µg). 

50µg/ml of each protein sample was added to new Eppendorf tubes and equal quantities of 

sample buffer (1 unit of 10% w/v SDS to 2 units of 9M urea in 50mM Tris (pH 7.4)) plus 

5% v/v β-mercaptoethanol was added, in a 1:1 ratio of the largest volume, to each sample. 

Samples were mixed and boiled for 5 minutes at 90°C on a heating block and then 

centrifuged briefly at 13000rpm.  

 Sodium dodecyl sulphate-polyacrylaminde gel electrophoresis (SDS-PAGE) was used to 

separate the protein samples by molecular weight.  10% w/v acrylamide gel (from 40%  

acrylamide stock, 0.1M Tris, 0.1M bicine (N,N-bis(2-hydroxyethyl)glycine), 0.1% w/v 

SDS, 0.25% TEMED (N,N,N’,N’-tetramethylethylenediamine) and, added last, 0.06% 

ammonium persulphate (APS)) was mixed and poured into electrophoresis apparatus, with 

a comb placed into the top to form wells, and left to polymerise. Then, on removal of the 

comb, wells were washed and filled with running buffer (0.1M Tris (pH 7.4), 0.1M bicine, 

0.1% w/v SDS). Wells were loaded individually with 50µg of protein samples or a protein 

ladder used to estimate the size of bands once the gel is run. Once loaded the apparatus lid 
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was placed on and filled with running buffer and the gels were then electrophoresed 

overnight at 10mA per gel.  

Proteins were transferred from the gel onto nitrocellulose paper (PALL) using a transfer 

cassette placed in Hoefer transblot electrophoresis apparatus with transfer buffer (192mM 

glycine, 25mMTris and 20%  v/v methanol) at 250mA for 6 hours. The nitrocellulose 

membrane was then removed and successful transfer was assessed by washing with 1% 

w/v Ponceau S red stain (Sigma) (in 3% w/v trichloroacetic acid (Sigma)) for a few 

minutes. The membrane was destained by rinsing with water and washing with Tris-

buffered saline with Tween 20 (TBS-T) (0.1% v/v Tween™ 20, 0.2M sodium chloride 

(NaCl) and 0.02M Tris (pH 7.6)) on an orbital shaker. Blots were washed with appropriate 

blocking agent (5% w/v skimmed powered milk or 5% w/v BSA in TBS-T) for 45 minutes 

and then rinsed with TBS-T. Blots were placed in bags and sealed with primary antibodies 

and left at 4°C on a shaker overnight. Then blots were washed in TBS-T on the orbital 

shaker for 15mins and placed in new sealed bags with secondary antibody and left at RT 

for 2 hours on the shaker. Blots were washed for 15 minutes 3 times on the orbital shaker.  

Blots were drained and 5ml of both Immobolin western substrate reagent and HRP-enzyme 

luminal reagent (Millipore) was added and left for 1 minute at RT. Blots were wrapped in 

Saran film and placed in a developing cassette. In the darkroom blue x-ray film (Wolt 

laboratories) was placed onto the blots and the cassette was closed for the required amount 

of time to get the desirable exposure. Film was then placed into the xograph developer.   

2.7. Immunoprecipitation 

Cell lysates and reagents were kept on ice unless stated otherwise. Cells were harvested, 

the same as for the western in 1ml of the chosen lysis buffers (stated in the results section; 
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either HiLo (50mM Tris (pH 7.4), 0.825M NaCl, 1% v/v NP-40) or NETN (50mM Tris 

(pH 7.4) 1mM EDTA (pH 8.0) 1% v/v NP-40, 200mM NaCl)). For HiLo cells were 

sonicated for 10-15 seconds and for NETN cells were homogenised with a dounce 

homogeniser. Lysates were then centrifuged for 20 minutes at 15000rpm and using a 

needle the supernatant was removed, avoiding the top lipid layer, and placed into a new 

falcon tube. Total lysates for each batch were split into Ependorfs equally and 

immunoprecipitated overnight, on a spinning wheel at 4°C, with the appropriate antibody. 

Next, 20µl of packed Protein G-sepharose beads (KCL) were added at a 1:1 ratio with lysis 

buffer, and samples were place back on the spinner at 4°C for 3 hours. The samples were 

then spun at 4°C and washed 4-6 times in the respective lysis buffer.  Sample buffer was 

added; samples were boiled for 5 minutes, loaded on to gel and blotted the same as 

described in the western.     

Lysis buffer Contents 

NETN 50mM Tris (pH 7.4) 1mM EDTA (pH 8.0) 1% v/v NP-40, 200mM 

NaCl 

HiLo 50mM Tris (pH 7.4), 0.825M NaCl, 1% v/v NP-40 

Lysis buffer 9M urea, 50mM Tris pH 7.4 and 0.15M β-mercaptoethanol 

 

 

2.8. Phosphatase treatment of Immunoprecipitates 

Immunoprecipitation is carried out as described but after washing samples post incubation 

with Protein G sepharose beads samples were incubated for one hour in 200units 

λphosphatase in 25µl of buffer (1:1 MnCl2: phosphatise buffer) (Sigma). 

Table 2.2: Cell lysis buffers 
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2.9. Site directed mutagenesis 

To mutate phosphorylation sites of TIF1γ PCR was employed to make cDNA for 

transformation. Table 2.3. shows the site directed mutagenesis master mix used 

(QuikChange, Agilent, UK). On ice, primer was added (1µg/ml of master mix).  

 

Reagent Amount 

per sample 

Oligo Forward (250ng) 2.5µl 

Oligo Reverse (250ng) 2.5µl 

Plasmid (100ng) 1µl 

10 x reaction buffer 5µl 

dNTP (10mM) 1µl 

Nuclease free water (NFW) 37.5µl 

 Pfu DNA polymerase 

(2.5U/µl) 

0.75µl 

 

 

Primers used (from Dr Caroline Hill, LRI) [40]:  

5’ gc ctt gtt aat gga aag gcc cca att cga agc ctc 3’ ala (Forward) 

5’ gag gct tcg aat tgg ggc ctt tcc att aac aag gc 3’ ala (Reverse) 

 

Samples were prepared on ice and then placed in the a thermal cycler with the following 

settings; 

95°C – 30 sec      x 1 cycle 

95°C – 30 sec 

55°C – 1 min       x 18 cycles 

72°C – 18 min  

72°C – 5 min       x 1 cycle 

4°C – indefinitely 

 

  

Table 2.3: Site mutagenesis mastermix used per sample  
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1µl of restriction enzyme Dpn1 (20U/PCR) was added to the PCR mix and incubated at 

37°C for 3 hours. 20µl of bacterial strain XL10 Gold (Agilent, UK) plus 0.89µl of β-

mercaptoethanol was incubated on ice for 10 minutes and then 4µl of PCR mix was added 

and left to incubate on ice for 30 minutes. The bacteria cells were then heat shocked for 2 

minutes at 42°C and recovered on ice for 5 minutes. 0.5ml of NZY+ broth was added and 

samples were left in a shaking incubator at 37°C for 1 hour. Samples were plated out on 

Luria broth (LB) agar plates (with 100µg/ml ampicillin, 1.5% agar) overnight. Plates were 

checked for colonies and if non found mutagenesis was repeated altering protocol (e.g. 

change bacterial strain, PCR cycles or primer concentration). 

2.10. Mass spectrometry (MS)  

Cells were harvested in NETN buffer on ice and immunoprecipitated with TIF1γ antibody 

and protein G beads, as previously described. The beads were washed 4 times in NETN 

buffer and twice in detergent free buffer.  0.5ml of 9M urea, 50mM ammonium 

bicarbonate (ABC) was added to denature the beads and vortexed regularly at RT for 1 

hour. Beads were spun down at 15000rpm and supernatant containing protein was 

collected.  50mM of dithiothreitol (DTT) (final concentration) was added for 30 minutes at 

56°C followed by 100mM iodoacetamide (final concentration) for 30 minutes in the dark 

at RT. Supernatant was added to FASP (filter aided sample preparation) filters and 

centrifuged at full speed until all has flowed through. Flow through was discarded and 

filters were washed 4 times with 50mM ABC. FASP filters were placed in new tubes and 

1µg of trypsin (in 200µl of resuspension buffer), per IP, was diluted in 50mM ABC to give 

final volume of 300µl. This was added to filters and left overnight at 37°C. Samples were 

centrifuged at full speed to collect tryptic peptides, transferred to low binding Ependorfs, 

washed with 50mM ABC, centrifuged and flow through was collected. Samples were dried 
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down in a vacuum centrifuge and resuspended and mixed in 40µl of water with 1% 

acetonitrile (AcN) and 1% formic acid (FA). 10µl was loaded onto the MaXis impact 

(Bruker) mass spectrometer.  

For phospho-purification of samples, prior to drying the samples down, additional 

preparation was employed. 1mg/MS sample of Titansphere TiO2 beads were added to 

binding buffer BB (80% AcN, 1% trifluoroacetic acid (TFA) and 1M glycolic acid) and 

left to swell for 10 minutes. The beads were centrifuged and supernatant discarded and 

washed in BB rotating for 10 minutes and supernatant was then removed. 100µl of BB was 

added to the beads and peptides were resuspended in 900µl of BB. Peptides were added to 

the beads and left rotating at RT for 20 minutes.   

Samples were washed 4 times in BB, by centrifugation of beads and discarding 

supernatant, and once in a final wash buffer of 80% AcN and 0.1% TFA. 100µl of eluting 

buffer was added (400mM ammonium hydroxide) and vortexed occasionally for 10 

minutes at RT. Supernatant was collected and samples were dried down and preparation 

for MS was completed as before.  
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3. Results 

Previous results from the Turnell lab have suggested that TIF1γ is post-translationally 

modified during mitosis [39].Therefore in this investigation we initially wanted to confirm 

this previous finding and determine whether TIF1γ was modified by phosphorylation. 

From this we would like to establish the site at which TIF1γ is post-translationally 

modified during mitosis and identify potential TIF1γ interacting proteins which may be 

involved.  

3.1. TIF1γ and cyclin B1 phosphorylation during nocodazole release  

Initially we aimed to confirm previous results which suggested TIF1γ may be 

phosphorylated during mitosis. To do this we used nocodazole to arrest cells in mitosis. 

This was followed by nocodazole release and cells were harvested over a time course of 0, 

0.5, 1, 2 and 4 hours post release to analyse cells as they progress through the cell cycle. 

We blotted for TIF1γ and cyclin B1, a known mitotic regulator controlled by 

phosphorylation, and identified changes in the mobility of both proteins through SDS-

PAGE seen in figure 3.1. The results show that during mitotic arrest (0 hours post release) 

mobility on the gel of TIF1γ is reduced but after 0.5 hours, once the cells have begun to 

progress through the cell cycle, the mobility increases again. Additionally the results show 

that protein expression levels for cyclin B1 change through the cell cycle with levels 

initially increasing on nocodazole release and after 4 hours levels appear to decrease 

considerably. The changes in cyclin B1 levels were used to indicate cell cycle status 

throughout the 4 hour time course, Cyclin B1 levels are high at the start of mitosis, with 

levels reducing as cells progress through mitosis and then levels become minimal in G1. 

Overall these results suggest that TIF1γ is post translationally modified during mitosis.   
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3.2. DNA damage induction by ultra violet (UV) light and hydroxyurea (HU) 

treatment 

To establish whether DNA damage could also induce post translational modifications of 

TIF1γ and DNA damage associated proteins Chk1 and pChk1 we treated cells to either UV 

light or HU treatment to inflict DNA damage.  The cells were harvested over a time course 

of 0, 0.5, 1, 2 3, 4 and 6 hours to detect changes over time in response to DNA damage. 

Immunoblot analysis of the proteins showed that mobility of TIF1γ was unchanged after 

both UV and HU treatment suggesting that no post translation modifications were induced 

by DNA damage over the studied time course (figure 3.2). The Chk1 antibody was used as 

Figure 3.1. TIF1γ mobility on SDS-PAGE following nocodazole treatment and nocodazole 

release - HeLa cells were either left untreated (AS) or treated with nocodazole to induce mitotic 

arrest and harvested in lysis buffer at the indicated times after nocodazole release. Western blotting 

was used for TIF1γ to examine changes to protein mobility, Cyclin B1 to indicate the stage of the 

cycle and β-actin as a loading control.  

 

 

TIF1γ  

Cyclin B1  

β-actin 

 AS        0        0.5       1        2         4       

Hours after nocodazole release 
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a loading control and protein levels appeared constant throughout. However, when using a 

phosho-specific antibody (pChk1), the immunoblot shows increased phosphorylation 

levels of Chk1 indicating that a DNA damage response pathway is activated following UV 

and HU treatment.   

 

 

 

 

 

 

  

Figure 3.2. TIF1γ mobility, Chk1 and pChk 1 expression after HU and UV treatment  

 HeLa cells were subjected to either UV or HU treatment to induce DNA damage. Cells were 

harvested in lysis buffer at the times indicated post treatment and examined by western blotting 

for TIF1γ to detect changes in SDS-PAGE mobility and for pChk1 to assess expression levels. 

Chk1 was used as a loading control.     
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3.3. TIF1γ immunoprecipitation(IP) with λphosphatase treatment 

As previous analyses suggest that TIF1γ is post translationally modified in mitosis we 

wanted to determine whether this was a phosphorylation modification. Therefore we 

treated immunoprecipitates, of cells in mitotic arrest post nocodazole treatment, with 

λphosphatase. Immunoblotting of TIF1γ showed an increase in mobility of TIF1γ on SDS-

PAGE following λphosphotase treatment (figure 3.3); as λphosphatase is an enzyme 

known to dephosphorylate proteins, these data suggest that TIF1γ is phosphorylated during 

mitosis.    

 

 

 

 

 

Figure 3.3. TIF1γ mobility on SDS-PAGE following λ-phosphatase treatment   

HeLa cells were treated with nocodazole to induce mitotic arrest and harvested in HiLo buffer. 

Cells were either left untreated (-) or treated with λ-phosphatase (+). Changes to protein mobility 

on SDS-PAGE were assessed by western blotting for TIF1γ. The upper image is of TIF1γ exposure 

on x-ray film and the lower image shows TIF1γ directly on the nitrocellulose membrane (to show a 

sharper image).  
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3.4. Phosphorylation site identification by cDNA transfection of asynchronous and 

mitotic arrested cells  

As the previous analyses indicated that the shift in TIF1γ mobility during mitosis is a result 

of TIF1γ phosphorylation we wanted to determine which domain of TIF1γ was 

phosphorylated.  This was achieved by expressing cells with cDNA which lacked specific 

domains of TIF1γ in asynchronous cells and determining changes to mobility following 

mitotic arrest. In theory, if the domain which holds the mitotic phosphorylation site is 

missing then TIF1γ will not be phosphorylated during mitosis and no change in mobility 

will be seen between asynchronous and mitotic cells. Cells were therefore transfected with 

FLAG-tagged WT, ΔRing, ΔTrim and ΔPHD-Bromo domains of TIF1γ. After 24 hours 

half of the cell population were treated with nocodazole to induce mitotic arrest whilst the 

other half remained untreated. Cells were harvested in HiLo buffer and samples were 

measured for protein levels and separated by SDS-PAGE.  From the western blot analysis 

it can be concluded that there was a change in TIF1γ mobility on SDS-PAGE between 

asynchronous and mitotic lysates transfected with WT, ΔRing and ΔTrim domains. Yet 

little change to the mobility of TIF1γ following ΔPHD-Bromo transfection was seen 

between the two cell populations. This suggests that the PHD-Bromo domain holds the 

mitotic phosphorylation site (figure 3.4.A).   

Additionally, to study further whether the mitotic phospho-site resides within the TIF1γ 

PHD-Bromo domain, as before we transfected asynchronous cells with cDNA, this time to 

express FLAG-tagged TIF1γ Trim and PHD-Bromo domains, and again half the cell 

population was treated with nocodazole. Here, the immune blotting results show no 

obvious change to protein mobility between asynchronous and mitotic cells expressing 

either of the TIF1γ Trim or PHD-Bromo domains (Figure 3.4.B). The results oppose those 
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of the previous experiment as we would have expected the PHD-Bromo domain to be 

phosphorylated during mitosis. Considerations for these results have been made in the 

discussion.  

 

 

 

 

 

 

 

Figure 3.4. Mobility of  mutated TIF1γ domains on SDS-PAGE following mitotic arrest –  

HeLa cells were transfected with cDNA expressing the indicated FLAG-tagged TIF1γ Wt or 

mutant domains. (A) shows TIF1γ WT, ΔRING, ΔTRIM and ΔPHD-Bromo domains and (B) 

shows TIF1γ TRIM and PHD-Bromo domains. Cells were either left untreated (AS) or subjected 

to nocodazole treatment (Noc) to induce mitotic arrest and then harvested in HiLo buffer. 

Western blotting for FLAG was employed to determine the mobility of the TIF1γ derivatives 

following mitotic arrest. (The arrows in ‘A’ point to the centre of the protein bands for each 

mutant domain, with solid arrows showing the mobility of unmodified proteins and dashed 

arrows indicating the upwards shift in mobility of proteins that have been modified).      
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3.5. Mass spectrometry (MS) for identification of TIF1γ phosphorylation sites and 

interacting proteins 

To identify TIF1γ interacting proteins in both asynchronous and mitotic cell populations 

we employed MS. Both cell populations were harvested in NETN buffer and interacting 

proteins were immunoprecipitated overnight with anti-TIF1γ, IPs then were isolated using 

Protein G beads and prepared using FASP filters followed by trypsinisation before loading 

on to the MS machine.  The MS results in table 3.5 show the proteins found to interact with 

TIF1γ in the asynchronous and mitotic samples.  Interestingly these analyses reveal that 

Cdt1 and Geminin interact with TIF1γ in both the asynchronous and mitotic samples; 

figure 3.5.1 shows the MS/MS spectra for Geminin and Cdt1.  These proteins were picked 

out from the others in table 3.5 as they are known to regulate the cell cycle, particularly 

DNA replication [41], and therefore interaction with TIF1γ may suggest an undiscovered 

role for TIF1γ at this stage of the cell cycle.    
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Protein  Function MW Number of 
peptides 

Sequence 
coverage 
(%) 

Mascot 
score 

 
Asynchronous 
 

TIF1γ  E3 ubiquitin-protein ligase  122.4 43 34 1451.2 

LMP Bone formation/ may act 
as a scaffold for the 
assembly of proteins 

49.8 10 30.6 385.9 

TRIM21/SS-A E3 ubiquitin-protein ligase 54.1 6 12.2 259.4 

Cdt1 DNA replication factor  60.4 5 7.9 174.8 

TIF1α Transcriptional coactivator 
and E3 ubiquitin-protein 
ligase activity 

116.8 4 3.6 114 

ATP synthase 
subunit α 

ATP synthesis from ADP 59.7 2 3.1 95.3 

POTE-2 ATP binding 121.3 3 2.4 88 

Geminin Inhibitor of DNA 
replication 

23.6 2 16.3 81.8 

S100-A8 Inflammation and immune 
response regulation 

10.8 1 11.8 62.4 

Tubulin-β-IIa The main component of 
microtubules 

49.9 1 2.7 32.7 

 
Nocodazole 
 

TIF1γ  E3 ubiquitin-protein ligase  122.4 28 23.4 743.7 

TRIM21/SS-A E3 ubiquitin-protein ligase 54.1 7 14.3 214.2 

LMP Bone formation/ may act 
as a scaffold for the 
assembly of proteins 

49.8 5 12.3 211.8 

TIF1α Transcription intermediary 
factor 1-alpha OS=Homo 
sapiens GN=TRIM24 PE=1 
SV=3 

116.8 4 3.1 96.6 

Geminin Inhibitor of DNA 
replication 

23.6 1 6.2 85.8 

Cdt1 DNA replication factor 60.4 3 4.2 47.8 

ATP synthase 
subunit α 

ATP synthesis from ADP 59.7 1 2 39.2 

Table 3.5. The TIF1γ-interacting proteins identified by mass spectrometry 
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Figure 3.5.1. Mass spectromic identification of TIF1γ-interacting peptides from 

mitotic TIF1γ immunoprecipitates - (A) shows the ions generated by MS/MS of the Cdt1 

peptide LTTAQEVLAR and (B) shows the ions generated by MS/MS of the Geminin 

peptide MIQPSASGSLVGR  
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Following our results suggesting TIF1γ is phosphorylated during mitosis we also used MS 

to identify TIF1γ phosphorylation sites. This enabled highly sensitive identification of 

phospho-purificated proteins to locate potential sites of phosphorylation. Asynchronous 

and mitotic samples were prepared as before, the peptides were then phospho-purified and 

run on the MS. The MS/MS results show that TIF1γ is phosphorylated at serine (S)856, 

S862 and S1119 (of the PHD-Bromo domain) during mitosis (figure 3.5.2.) and at S862 

and S1119 in asynchronous cells. This suggests that the phosphorylation, seen in our 

previous analyses during mitosis, may occur at the S856 site.   

To further investigate the importance of the phosphorylation sites identified by the MS we 

aimed to use site directed mutagenesis. By mutating the phosphorylation sites that we 

identified by MS, and subsequently assessing the effects of eliminating the site, we could 

establish whether these specific post translation modifications to TIF1γ play an essential 

role in its functioning. Unfortunately, despite repeating numerous times with alternative 

bacterial strains and increasing the PCR cycle number, we did not manage to isolate any 

colonies to screen for successful mutagenesis.   

In addition, the MS results identified phosphorylation of S391 and threonine (T)262 of 

Cdt1 in the mitotic cells but not in the asynchronous (figure 3.5.3). This post translational 

modification may therefore contribute to the regulation of Cdt1 and thus DNA replication.  
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Figure 3.5.2. Mass spectromic identification of phospho-TIF1γ peptides from mitotic 

TIF1γ immunoprecipitates- (A) shows the ions generated by MS/MS of the phospho-

TIF1γ peptide QSGLSSLVNGKSPIR (B) shows the ions generated by MS/MS of the 

phospho-TIF1γ peptide QSGLSSLVNGKSPIR and (C) shows the ions generated by 

MS/MS of the phospho-TIF1γ peptide LKSDERPVHIK. 
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Figure 3.5.3. Mass spectromic identification of TIF1γ-interacting phospho-peptides 

from mitotic TIF1γ immunoprecipitates- (A) shows the ions generated by MS/MS of the 

phospho-Cdt1 peptide SAAPSSPGSPR  and (B) shows the ions generated by MS/MS of the 

phospho-Cdt1 peptide QERSVPTFKDGTR  
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3.6. Geminin and Cdt1 IP with TIF1γ 

As the proteins Geminin and Cdt1 have been previously seen to play a role within cell 

cycle control we found their interaction with TIF1γ of particular interest. Subsequently, In 

order to validate the MS results showing that both Geminin and Cdt1 bind to TIF1γ, a 

series of IPs were performed. Firstly we immunoprecipitated TIF1γ in asynchronous cells, 

and subsequently performed a western blot using Geminin and Cdt1 antibodies to see if 

they IP with TIF1γ and then, in reverse, TIF1γ was immunoblotted to determine whether it 

IP with Geminin or Cdt1. From the results in figure 3.6.1. we can see that Geminin and 

Cdt1 did IP with TIF1γ which validates the results from MS. However, TIF1γ did not IP 

with either Cdt1 or Geminin when we did the IP in reverse.  

 

 

Figure 3.6.1. Immunoblot of TIF1γ-interacting proteins Cdt1 and Geminin from 

asynchronous TIF1γ immunprecipitates -HeLa cells were harvested in NETN lysis 

buffer and TIF1γ was immunoprecipitated with bound proteins which were then incubated 

with Protein G-sepharose beads and later eluted. Eluted proteins run on SDS-PAGE were 

examined by western blotting for the presence of, the TIF1γ interacting proteins of interest, 

Geminin and Cdt1.  

 

 



 

89 
 

As we found that Cdt1 and Geminin IP with TIF1γ in asynchronous cells we decided to 

repeat the IP with both asynchronous and nocodazole-arrested cells to investigate whether 

the proteins also interact with TIF1γ during mitosis. The immunoblot verifies the MS 

results and shows that TIF1γ interacts with Cdt1 and Geminin in both asynchronous and 

mitotic cells (figure 3.6.2). However, in figure 3.6.2, we can see that the mobility of Cdt1 

on SDS-PAGE in the mitotic cells is reduced. This shift indicates that Cdt1 is post 

translationally modified in mitosis; supporting the previous MS results which identified 

two phosphorylation sites in the mitotic samples. Furthermore, the immunoblot shows the 

lysate fraction only in the asynchronous fraction. Thus, despite Cdt1 still interacting with 

TIF1γ, the reduced protein lysate levels suggest it may be degraded during mitosis. In 

contrast, the lysate fraction seen in figure 3.6.2. shows much increased levels of Geminin 

in the mitotic cells compared with the asynchronous cells.   
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Figure 3.6.2. Immunoblot of TIF1γ-interacting proteins Cdt1 and Geminin from 

asynchronous and mitotic TIF1γ immunprecipitates -HeLa cells were either left 

untreated (AS) or subjected to nocodazole treatment (Noc) to induce mitotic arrest and then 

harvested in NETN lysis buffer. TIF1γ was immunoprecipitated with bound proteins which 

were then incubated with Protein G-sepharose beads and later eluted. Eluted proteins run on 

SDS-PAGE were examined by western blotting for the presence of, the TIF1γ-interacting 

proteins of interest, Geminin and Cdt1.  
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4. Discussion 

In this project we aimed to further investigate TIF1γ interactions within the cell cycle by 

identifying post translation modifications and novel TIF1γ-interacting partners during 

mitosis.  

4.1. TIF1γ phosphorylation 

Firstly in figure 3.1 we identified a shift in TIF1γ mobility on SDS-PAGE during mitosis 

implying TIF1γ may increase slightly in molecular weight during this stage of the cell 

cycle. This suggested that TIF1γ may be regulated by post translational modifications 

during mitosis through processes such as phosphorylation, acetylation or methylation. As 

phosphorylation is a common process for protein regulation we predicted that this may be 

the modification seen. By adding λphosphatase to anti-TIF1γ immunoprecipitates we could 

see that the mobility of TIF1γ was increased compared to in untreated anti-TIF1γ 

immunoprecipitates (figure3.3). As the shift is reversed when adding a phosphatase it 

suggests that during mitosis TIF1γ is post translationally modified by phosphorylation. To 

further support this it may have been useful to repeat this experiment with asynchronous 

cells as a control. 

We also examined whether DNA damage induced by UV or HU treatment stimulated a 

similar post translational change to TIF1γ. Our results appeared to show no change to 

TIF1γ mobility over a 6 hour time period suggesting that TIF1γ is not phosphorylated in 

response to DNA damage. To confirm that the UV and HU treatment did induce DNA 

damage and subsequently activate DNA damage response pathways we also blotted for 

pChk1. Previous studies have shown that Chk1 plays an important regulatory role in the 

G2/M and S phase DNA damage checkpoints.  On detection of such damage Chk1 is 
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phosphorylated by the transducers ATM and ATM-Rad3-related (ATR) and stimulates 

checkpoint pathways to delay mitotic entry or arrest DNA replication [41]. Our results 

indicate an increase in pChk1 after UV and HU treatment, implying a DNA damage 

response was induced despite no obvious changes to TIF1γ mobility. Therefore these 

changes suggest that TIF1γ phosphorylation may be specific to mitosis.       

To further investigate our findings that suggest TIF1γ is phosphorylated during mitosis we 

expressed asynchronous and mitotic cells with FLAG-tagged TIF1γ derivatives. 

Interestingly, our results appear to show that when TIF1γ is missing its PHD-Bromo 

domain it appears to no longer be phosphorylated during mitosis. As phosphorylation 

appears to occur in the other TIF1γ derivatives these results suggest that the mitotic 

phosphorylation site resides in the PHD-bromo domain of TIF1γ. However, we found that 

when expressing cells with just the PHD-Bromo domain mitotic cells did not appear to be 

phosphorylated. As we proposed that the phosphorylation site was held in this domain 

these findings were unexpected. These results may be explained by the possibility that key 

binding sites for TIF1γ-interacting proteins may be held in other domains and therefore the 

interacting proteins are unable to phosphorylate the TIF1γ PHD-Bromo domain without 

these other domains present. Given that previous studies have shown the PHD-Bromo 

domain of TIF1γ is important in binding chromatin, specifically histone H3 tails, it would 

be interesting to see if phosphorylation of TIF1γ affects its ability to bind chromatin [40]     

From MS analysis we identified three TIF1γ phosphorylation sites at amino acids 856, 862 

and 1119 of the primary structure. The 862 and 1119 phosphorylation sites were detected 

in both asynchronous and mitotic cells; therefore phosphorylation of TIF1γ at these sites 

may be important in alternative regulatory roles outside of mitosis. Conversely the 856 

phosphorylation site was only detected in the mitotic cell fraction; as a result this suggests 



 

93 
 

that this site may be where the phosphorylation modification seen during mitosis in our 

previous results. Site directed mutagenesis of these phosphorylation sites would have 

provided confirmation of our suggestions as well as offer further understanding of the roles 

these specific sites play in TIF1γ mediated cell cycle control. Unfortunately we were 

unable to isolate colonies for mutagenesis screening and therefore we could not further 

investigate these findings.  

4.2. TIF1γ-interacting proteins 

From the MS and IP analysis we showed that Geminin and Cdt1 interact with TIF1γ. This 

interaction was of particular interest as previous studies have shown that Cdt1 and 

Geminin interact with each other in order to regulate DNA replication and licensing 

[41][43]. The proteins play a complementary role in modulating replication; which is an 

essential process to prevent re-replication of DNA. Cdt1 activity is key in regulating DNA 

licensing for replication and Geminin acts as a natural inhibitor of Cdt1. To minimise the 

chances of re-replication Geminin is only degraded for a short period during the cell cycle 

phases S/G2 and therefore the Cdt1 regulated DNA licensing pathway is only activated 

briefly. As both Geminin and Cdt1 interact with TIF1γ it is possible that TIF1γ also plays a 

role in regulating DNA replication [41]. 

Furthermore, our results showed that Cdt1 may also be post translationally modified in 

mitotic cells. Previous studies have shown Cdt1 is a substrate of cyclin dependent kinases 

(cdk); which phosphorylate Cdt1 and subsequently target it for degradation by the SCF-

(Scp2) ubiquitination pathway [43]. Therefore the modification to Cdt1 seen in the mitotic 

cells may be explained by phosphorylation as cdk levels are high in nocodazole arrested 

cells. Our results further support this reasoning as the lysate fraction of the nocodazole 
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arrested cells showed much lower expression compared to the asynchronous fraction 

suggesting that Cdt1 is degraded during mitosis.   

4.3. Limitations 

Whilst some conclusions have been drawn from the data presented in this study it is 

important to acknowledge that the short duration of this study means that many of these 

results would need to be repeated to increase reliability. Moreover, as the MS data was 

attained at the latter part of the project, time only permitted initial investigation of a couple 

of proteins we decided were of most interest.  Further investigation of the proteins 

identified by MS would have been ideal to determine whether their interactions with TIF1γ 

were essential for correct functioning of either protein within the cell cycle. 

Unfortunately we were unable to complete the site directed mutagenesis work which would 

have been useful to determine the function of the TIF1γ phosphorylation sites identified by 

MS. Although multiple attempts were made using different bacterial strains and PCR 

conditions we were unable to grow mutated colonies. As we were unable to establish the 

reason for this we concluded that the experiment would need to be repeated using a new 

mutagenesis kit.    

In addition, although the results compare mitotic arrested cells to asynchronous cells it is 

key to acknowledge that the asynchronous cells do still have a proportion of cells in 

mitosis. Therefore, when using highly sensitive techniques such as MS, interacting proteins 

and phosphorylation sites identified in the asynchronous control fraction may be due to the 

mitotic cells.  



 

95 
 

4.4. Future work 

Further to the work carried out in this project it would be interesting to investigate the 

interactions of some of the other proteins identified, in table 3.5, by MS as TIF1γ-

interacting proteins. It would also be of interest to continue with the phosphorylation 

studies now that the potential TIF1γ phosphorylation sites have been identified. Successful 

completion of the site directed mutagenesis of the identified phosphorylation sites, would 

allow us to investigate differences in cell cycle functioning between cells expressing WT 

TIF1γ and mutant forms of TIF1γ. This would also be useful to determine whether the 

phosphorylation of TIF1γ seen in mitosis is required for successful binding of interacting 

proteins.  

To further establish the functional consequences of TIF1γ phosphorylation, in regards to 

cell cycle progression and DNA replication, siRNA targeting TIF1γ could be used to 

knockdown endogenous TIF1γ. This could then be followed by the addition of exogenous 

plasmids expressing siRNA resistant wild type or  mutant TIF1γ to elucidate the cellular 

effects.     

Furthermore, it would be interesting to identify mitotic kinases that phosphorylate TIF1γ in 

mitosis using in vitro kinase assays. Assessing the activity of kinases commonly associated 

with mitosis such as cyclin b1-cdk1, polo-like kinase 1 (PLK-1), Auroura A and B kinase 

[44][45][46] after the addition of TIF1γ may provide further understanding of the role 

TIF1γ plays in mitosis.  Moreover, it would also be useful to look at TIF1γ interactions 

specifically in other cell cycle stages.   
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TIF1γ has been seen to play numerous roles within the cell cycle. Better understanding of 

TIF1γ-interactions and regulatory importance may help provide new molecular targets for 

novel therapies against diseases such as cancer.  
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