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Abstract

This thesis consists of three interrelated chapters on adaptive learning. In each chapter,

I investigate the way in which adaptive decision makers/players behave in the long run. In

particular, I consider subjective assessment maximizers; each player assigns a subjective

assessment to each of his actions based on its past performance and chooses the action

which has the highest assessment. They update their assessments adaptively using realized

payoffs. I mainly focus on the following three cases; (1) an adaptive decision maker takes

into account not only direct payoff information, but also foregone payoff information;

(2) adaptive players face a normal form game with strict Nash equilibrium in each of

infinitely many periods; and (3) adaptive players face a finitely repeated game in each of

infinitely iterated periods. Then I show the conditions under which (1) adaptive decision

maker chooses the optimal action, (2) adaptive players end up choosing Nash equilibrium

strategies, and (3) adaptive players’ behavioural strategies converge to an agent quantal

response equilibrium, which is a quantal response equilibrium for extensive form games.
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CHAPTER 1

INTRODUCTION

Adaptive learning has attracted many theoretical and experimental researchers. Their

research helps us to understand how people learn and how they behave in the long run

when they face the same situation repeatedly. Yet there exist many aspects which are

important and have not been investigated thoroughly. The purpose of this thesis is to

provide theoretical investigation and insights on such aspects.

In this PhD thesis, I investigate the long run behaviour of adaptive decision makers

in a decision problem and games. I consider the situation where they play the same game

or decision problem repeatedly but have limited information about their environment;

they do not know the payoff functions or the opponent players. They assess each of their

available actions based on past payoff information and pick the action which has the

highest assessment.

In Chapter 2, I provide a theoretical prediction on the way in which an adaptive agent

with foregone payoff information behaves in the long run. In the model, when the agent

updates his assessments of actions in an adaptive manner, he uses not only the objective

payoff information, but also the foregone payoff information, which may be distorted.
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The distortion may arise from pessimism/optimism or envy/gloating; which depends on

how the agent views the source of the information. This chapter shows the conditions in

which the assessment of each action converges, where the limit assessment is the average

of the expected objective and distorted payoffs. It is also shown that the agent chooses

the optimal action most frequently in the long run if the expected distorted payoff of the

optimal action is greater than the expected distorted payoffs of the other actions. The

relations of this model to experience-weighted attraction learning, stochastic fictitious

play, and quantal response equilibrium are also considered.

In Chapter 3, I provide a theoretical prediction of the way in which the adaptive

players in games with strict Nash equilibrium behave in the long run. In this model, each

player updates his assessment of the chosen action only in an adaptive manner. Almost

sure convergence to a Nash equilibrium is shown under one of the following conditions:

(i) that, at any non-Nash equilibrium action profile, there exists a player who receives

a payoff which is less than his maximin payoff, (ii) that all non-Nash equilibrium action

profiles give the same payoff. I show almost sure convergence to a Nash equilibrium in

the following games: pure coordination games; the battle of the sexes game; the stag hunt

game; and the first order statistic game. While in the game of chicken and market entry

games, players may end up playing the maximin action profile.

In Chapter 4, I investigate the way in which adaptive players who play a finitely

repeated game in each of infinitely iterated periods behave in the long run. In this model,

each player assigns subjective assessments on his actions after any history. After receiving

payoffs, they update their assessments of chosen actions using the realized payoffs in an

adaptive manner; in particular, I consider the Q-learning updating rule introduced by
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Watkins and Dayan (1992) and Sarin and Vahid (1999) updating rule. When players

experience emotional shocks on their assessments, players’ behaviour strategies converge

to the agent quantal response equilibrium introduced by McKelvey and Palfrey (1998)

if the stage game has perfect information. For the general case, I provide an additional

condition to guarantee convergence. When players do not experience the shocks, in the

long run, I show the following results; (1) when they play the finitely repeated prisoner’s

dilemma, both players may end up cooperating in each stage game, and (2) when they

play a finitely repeated coordination game, both players coordinate in each stage game.

In Chapter 5, I summarize the work and discuss some potential extensions of this

work.
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CHAPTER 2

AN ADAPTIVE LEARNING MODEL WITH
FOREGONE PAYOFF INFORMATION

2.1 Introduction

We often learn not only from our own experiences but also from others. For example,

consider the adoption of new agricultural technologies by farmers, where they face new

fertilizers. Since they are not familiar with the new technologies, they do not know the

possible outcomes from each fertilizer or the way in which the outcomes are realized. It is

common that farmers have neighboring farmers who face the same decision problem, which

may facilitate him to find other farmers who have chosen the different fertilizers. Then

the farmers can learn from other farmers about the outcomes from the other fertilizers.

This chapter studies the behaviour of an agent who has limited information about his

decision-making environment; he knows the available actions, however he may not know

all the possible outcomes of each action or how the outcome is realized. When we face

such a complicated problem, it is natural for us to simplify the problem. In this chapter,

I consider an agent who simplifies the problem in the following way; based on past payoff

information, he assigns a subjective assessment to each action, where the assessment of
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each action represents the payoff which he expects to receive from the action, and picks

the action which he thinks gives the best payoff. Before choosing an action, he experiences

temporary random shocks on his assessments; therefore, he picks an action which has the

highest shock-affected assessment. The shocks may be interpreted as emotional noise on

his evaluations.

When updating his assessments adaptively, the agent uses the payoff information not

only from his own experience but also from others. However, the information from oth-

ers need not be treated in the same way as the direct payoff information. For instance,

when a farmer cannot directly observe what the other farmers have received, he may

believe that his neighbors exaggerate (depreciate) the effect of other fertilizers. Then he

discounts (increases) the effectiveness and takes the discounted (increased) payoff infor-

mation into account. In another example, when a farmer observes others’ payoffs, he

may envy his neighbors’ outcomes which are better than his outcome, while he gloats

over their outcomes when his outcome is better than theirs. In these cases, he takes into

account increased foregone payoff information when he envies and discounted foregone

payoff information when he gloats. Hence it is reasonable to assume that when the agent

processes the foregone payoff information, the information may be distorted, depending

on the way in which he views the source of the information.

I first show the conditions in which the assessments of all actions converge. I use

a stochastic approximation method and approximate a trajectory of assessments by the

solution of ordinary differential equations (ODEs). Then I show the conditions under

which the ODEs have a unique rest point to which the assessments converge, where

the limit assessment of each action is an average of the expected objective and distorted
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payoffs. Next, given the limit assessments, I provide conditions in which the agent chooses

the optimal action most frequently in the long run. I show that if the expected distorted

payoff of the optimal action is higher than the ones of other actions, then he chooses the

optimal action most frequently in the long run. In particular, if (1) the distortion function

for each action is an affine map and (2) the agent envies and/or gloats over other agents’

payoffs, then the agent chooses the optimal action most frequently. However, I also show

the case in which he picks a non-optimal action most frequently; it happens when the

agent distorts his forgone payoff information of the non-optimal action more upwardly

than the one of the optimal action.

In addition, I show the necessary and sufficient condition for convergence to the quantal

response equilibrium proposed by McKelvey and Palfrey (1995). At the quantal response

equilibria, given payoff perturbations, players pick the action which has the highest ex-

pected perturbed payoff, where the expectation is derived from the equilibrium strategy.

Since the decision problem here can be considered as a 2-player game in which a player

plays against nature, if all the subjective assessments converge to the expected objective

payoffs, then the agent’s choice probabilities converge to the quantal response equilibrium

of this model. I show that this happens if and only if the expected distorted payoff is

equal to the expected objective payoff for each action; there is no distortion on average

for each action, that is, the distortion function is mean preserving.

Camerer and Ho (1999) provide a model of agents’ behaviour with foregone payoff in-

formation, where the model is called the experience-weighted attraction (EWA, hereafter)

learning model. The differences between the EWA learning model and this model are the

way in which decision makers treat the foregone payoff information and their method of
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updating their assessments. In Camerer and Ho (1999), decision makers observe or can

infer the foregone payoff and they take into account the discounted payoff. In this chapter,

I investigate the relationship between this model and the EWA learning model of Camerer

and Ho (1999) and show that this model becomes equivalent to the EWA learning model

when (1) the agent in this model discounts the foregone payoff information by a discount

factor δ and (2) the discount factor for the previous experiences, ρ, and the discount

factor for the previous attraction, φ, in the EWA learning model are equal: ρ = φ = 1.

In addition, if δ = 1, then this model incorporates the stochastic fictitious play model of

Fudenberg and Kreps (1993). For both cases, I show that the agent chooses the optimal

action most frequently in the long run.

The model of the adaptive agent in this chapter is proposed by Heller and Sarin

(2001), which is based on Sarin and Vahid (1999) (SV, hereafter)1. The differences of the

model in this chapter and theirs are that the agent in SV does not have access to payoff

information about actions which are not chosen by the agent, while the agent in Heller

and Sarin model does not experience stochastic emotional shocks in the assessments.

Therefore, this model can be considered as an extension and complement of the analysis

of Heller and Sarin (2001). It is worth to note that since the decision of the agent in this

model is affected by emotional shocks, he may not pick the action which has the highest

assessment; it happens when the emotional noise of the chosen action is so big that the

noise-affected assessment of the action is greater than the ones of the other actions, even

though the assessment of the chosen action is not the highest. It is shown that there exists

a case in which the noise makes the agent to choose the optimal action most frequently;

1The use of SV model, rather than other learning models such as Erev and Roth (1998), is supported by
some empirical work (See, Sarin and Vahid, 2001; Yechiam and Busemeyer, 2008; Chen and Khoroshilov,
2003).
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without the noise, as in Heller and Sarin (2001), the agent may not end up choosing the

optimal action.

There also exist other related models with emotional shocks in games, but the following

authors do not consider the effect of foregone payoff information. Leslie and Collins (2005)

investigate games played by the same type of agents in this model, payoff-assessment

maximizers, with a slightly different assessment updating rule. They show that in 2-player

partnership games and 2-player zero sum games, strategies converge to Nash distribution,

which is a Nash equilibrium under stochastic payoff perturbations. Cominetti, Melo and

Sorin (2010) investigate the model with stochastic perturbations which have the extreme

value distribution. They show that with the parameters in specific ranges, the choice

probabilities of players converge to a Nash distribution in general games.

Some experimental and empirical literature shows the importance of foregone payoff

information for decision makings. Conley and Udry (2010) investigate learning by farmers

in Ghana about fertilizer use and show that their decisions are influenced by their neigh-

bors’ decisions. Duffy and Feltovich (1999) investigate the effect of foregone payoffs in the

ultimatum game and the best-shot game and show that players show different behaviors

with and without foregone payoff information. Grosskopf et al. (2006) investigate the ef-

fect in decision problems with foregone payoffs, showing that foregone payoff information

affects decision maker’s behaviour but the difference of his behaviour with and without

foregone payoff disappears as he gains experience, except in cases where alternatives are

correlated to each other.

There are some evidence showing that foregone payoffs are in fact distorted. Camerer

and Ho (1999) show that in median-action games and beauty contests, foregone payoffs
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are discounted from actual payoffs. Using their experimental data, Grosskopf et al. (2006)

estimate parameters in generalized fictitious play with discount factor on foregone payoff

and show that the foregone payoff is actually discounted. It is worth to note that dis-

counting is not the only way that people distort the foregone payoff information. Grygolec

et al. (2012) show that in a lab experiment, agents’ evaluations on lotteries are affected

by the outcomes of other agents; their envy and gloating affect their evaluations.

2.2 The Model

I consider an agent who faces the same decision problem repeatedly. In each period,

n ∈ N, he picks an action from the set A = {1, 2, ...,M}. After picking an action,

the agent receives a payoff; let (Ω,F , P ) be the probability space on which all random

variables are defined and πin : Ω → R be the payoff function of action i in period n.

I assume that the environment is stationary and thus E[πin] = E[πim] =: E[πi] for any

n,m ∈ N and i ∈ A, where E[πi] denotes the expected payoff of action i. I assume

that the payoff function for each action is bounded. In this model, he knows the action

set and observes his own realized payoffs but he does not know the state space, realized

state or his payoff function. In period n, he assigns a subjective assessment on each

action: Qn = (Q1
n, ..., Q

M
n ) denotes the assessments of actions in period n, where Qi

n is

the assessment of action i in period n. Before choosing an action, he receives stochastic

emotional shocks on the assessments; the random vector of the emotional shocks for all

actions, η = (η1, ..., ηM), takes a value in RM and the distribution of η does not depend

on his payoff or his assessments. After the stochastic emotional shocks on the assessments

of all actions are realized, the agent chooses the action which has the highest total value
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of the assessment and the realized shock. Therefore, the probability of choosing action i

given his assessments is as follows:

Ci(Q) = Pr
(

arg max
j∈A

(Qj + ηj) = i
)
,

where Ci : RM → [0, 1] is a mapping which specifies a probability of choosing action i

for each assessment Q and can be a correspondence. I assume that the distribution of

the stochastic noise η has a strictly positive density on the domain, so that Ci becomes

a continuous function 1. One example of this type of choice probability is the logit

choice rule, which is derived by the i.i.d. shocks with the extreme value distribution of

F (ηi) = exp(− exp(− 1
τ
ηi)); the logit choice rule has the following form:

Ci(Q) =
exp( 1

τ
Qi)∑

j∈A exp( 1
τ
Qj)

,

where τ is sometimes called “noise term” 2. Note that (i) if τ approaches infinity, then

the choice probability becomes the uniform distribution and (ii) if τ approaches 0, then

the choice probability approaches the degenerate probability; the probability of the action

with the highest assessment becomes 1 and 0 for the other actions 3.

After receiving a payoff in each period, the agent updates his assessments using the

payoff information; he updates the assessment of chosen action using the realized payoff,

while he updates the assessments of the other actions using the foregone payoff informa-

1For example, consider the case where ηi = 0 with probability one for all i ∈ {1, 2}. Then if Q1 = Q2,
then the choice probability that the agent chooses i depends on his tie break rule and Ci may become
discontinuous or a correspondence.

2See Hofbauer and Sandholm (2002)
3If there exist more than two actions which have the highest assessment, then those actions are chosen

equally.
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tion, which may be distorted. Assume that the agent has chosen an action j 6= i and the

payoff of action i, πi, is realized, where he cannot observe the payoff. Let Di : R → R

be the distortion function of the payoff from action i. Therefore, Di(πi) is the distorted

payoff information of action i, which has not been chosen by the agent.

I assume that the distortion function is bounded. Another reasonable assumption on

distortion function is that the function is monotonically non-decreasing1, so that it weakly

preserves the order of objective payoffs; if x > y then Di(x) ≥ Di(y). If the inequality

holds with equality, then the agent cannot distinguish precisely the foregone payoff from

the objective payoff realization x and y. Since the distortion function cannot distort the

order, the agent can still receive meaningful information. An additional assumption on

action i ’s distortion function is that the other actions’ payoff realizations do not affect

the extent to which the payoff information of the action i is distorted2.

Using the objective payoff information and foregone payoff information, the agent

updates his assessment on each action in the following manner:

Qi
n+1 =


(1− λn+1)Q

i
n + λn+1π

i
n if action i is chosen in period n

(1− λn+1)Q
i
n + λn+1D

i(πin) otherwise

where {λn}n≥1is a deterministic sequence of weighting parameters satisfying the fol-

lowing condition: ∑
n≥1

λn =∞,
∑
n≥1

(λn)2 <∞.

These assumptions on weighting parameters indicate that the effect by which new

1However, the result in the analysis here does not depend upon this assumption.
2This assumption is relaxed in the later section by introducing an envy-and-gloating distortion func-

tion.
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information affects next period’s assessment (i) decreases over time, which captures the

power law of practice, but (ii) does not disappear in the later periods. Note that the sum

of the sequence of frequentist’s weighting parameters, λn = 1
n

for each n ∈ N, satisfy the

conditions. To clarify this argument, it may be helpful to rewrite the updating rule as

follows:

Qi
n+1 = Qi

n + λn+1(1i,n(πin −Qi
n) + (1− 1i,n)(Di(πin)−Qi

n)) (2.1)

= Qi
n + λn+1(1i,nπ

i
n + (1− 1i,n)Di(πin)−Qi

n)

for each i ∈ A, where 1i,n = 1 if action i is chosen in period n, and 0 otherwise.

It is worth noting the relation between this model and the experience-weighted at-

traction (EWA hereafter) model introduced by Camerer and Ho (1999). Under some

parameters, the updating rule of the assessments in this model coincides with the up-

dating rule of the attractions in EWA learning model. Since choice rules of this model

and EWA learning model coincide under the logistic choice rule, the two models become

equivalent when the assessments correspond to the attractions. To find such parameters,

the general updating rule of EWA model should be described here.

Let Nn be the discounted number of past experiences and let Ain be the agent’s at-

traction to action i. The updating rules of both variables are described as follows. For

the variable Nn,

Nn+1 = ρNn + 1,

12



where the parameter ρ is the discount factor of previous experience. For Ain,

Ain+1 =
φNnA

i
n + 1i,nπ

i
n + (1− 1i,n)δπin

Nn+1

,

where the factor φ is the discount factor for previous attraction, while the factor δ is the

discount factor for foregone payoff.

I consider the case where ρ = φ = 1. Then the updating rule of Ain is expressed as

follows:

Ain = Ain +
1

Nn+1

(1i,nπ
i
n + (1− 1i,n)δπin − Ain).

If we have Ain = Qi
n, λn = 1

Nn
and Di(πi) = δπin, then this EWA updating rule is

equivalent to the updating rule in this model. Since the choice rule given attractions in

EWA learning model is equivalent to the logit choice rule given assessments in this model,

EWA learning model coincides with this model. In addition, if δ = 1, then this model is

parallel to the stochastic fictitious play model by Fudenberg and Kreps (1993).

2.3 Limit Assessments

To investigate the agent’s behaviour in the long run, I show that with probability one,

the assessment of each action converges to an average of expected objective and distorted

payoffs, which is the sample mean of directly and indirectly observed payoffs of the action

in the limit1.

The proof of this claim is motivated by the argument in Cominetti, Melo and Sorin

(2010); while notice again that players in their model do not observe foregone payoff

1The formal statement is given in Theorem 1, which is located just before the next section.
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information and therefore the dynamics of players’ assessments are different.

To prove this claim, I use a stochastic approximation method and show that the

ordinary difference equations (2.1) can be approximated in the long run by the solution

of the following ordinary differential equations (ODEs, hereafter);

Q̇i
t = Ci(Qt)E[πi] + (1− Ci(Qt))E[Di(πi)]−Qi

t, i ∈ A, (2.2)

where Q̇i
t := d

dt
Qi
t.

Let Q̇i
t = Fi(Qt) and F = (F1, ..., FM). In Lemma 1, I provide the condition by which

(i) F is Lipschitz continuous and (ii) there exists a unique rest point for ODEs (2.2).

Lemma 1. (i)F = (F1, ..., FM) is Lipschitz continuous and (ii) there exists a unique rest

point of ODEs (2.2) if the following condition holds: for any Q and Q ′

| Ci(Q)− Ci(Q
′
) || E[Di(πi)]− E[πi] |≤ δi‖Q−Q

′‖∞, (2.3)

for all i and some δi ∈ [0, 1), where ‖ · ‖∞ is the infinity norm.

Proof. (i) Let i be the action such that the following condition satisfies:

‖F (Q)− F (Q
′
)‖∞ =

∣∣(Qi −Qi′) + (Ci(Q)− Ci(Q′))(E[Di(πi)]− E[πi])
∣∣ .
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Then we have

‖F (Q)− F (Q
′
)‖∞ =

∣∣(Qi −Qi′) + (Ci(Q)− Ci(Q′))(E[Di(πi)]− E[πi])
∣∣

≤
∣∣Qi −Qi′∣∣+ δi‖Q−Q

′‖∞

≤ (1 + max δi)‖Q−Q
′‖∞,

where δmax := maxj δj ∈ [0, 1). Therefore, F is Lipschitz continuous.

(ii) Consider the function f = (f 1, f 2, ..., fM) such that

f i(Q) = E[πi] + (1− Ci(Q))(E[Di(πi)]− E[πi])

for each i ∈ A. Notice that f(Q) − Q = F (Q) = Q̇. Let i be an action such that

‖f(Q)− f(Q
′
)‖∞ =| f i(Q)− f i(Q′) |. Then

‖f(Q)− f(Q
′
)‖∞ = | f i(Q)− f i(Q′) |

= | (−Ci(Q) + Ci(Q
′
))(E[Di(πi)]− E[πi]) |

= | Ci(Q)− Ci(Q
′
) || E[Di(πi)]− E[πi] |

Now by the hypothesis, there exists δi ∈ [0, 1) such that

| Ci(Q)− Ci(Q
′
) || E[Di(πi)]− E[πi] |≤ δi‖Q−Q

′‖∞
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for all i. Then we have

‖f(Q)− f(Q
′
)‖∞ = | Ci(Q)− Ci(Q

′
) || E[Di(πi)]− E[πi] |

≤ δi‖Q−Q
′‖∞

≤ max
j
δj‖Q−Q

′‖∞.

Since δmax := maxj δj ∈ [0, 1), f is a contraction mapping and by the contraction mapping

theorem, Q = f(Q) has a unique solution. Hence, if condition (2.3) is satisfied for all

actions, then ODEs Q̇ have a unique rest point.

In the following arguments in this section, I assume that condition (2.3) holds. If

E[Di(πi)] 6= E[πi] for all i, then condition (2.3) tells us that the choice probability func-

tion C = (C1, ..., CM) : RM → [0, 1]M is also Lipschitz continuous. It is helpful for

understanding condition (2.3) to consider the case where emotional shocks have the ex-

treme value distribution, so that the choice probability becomes the logistic choice rule:

Ci(Q) =
exp( 1

τ
Qi)∑

j exp( 1
τ
Qj)

.

Proposition 1. In the logistic choice rule case, condition (2.3) holds if the following

condition holds;

| E[Di(πi)]− E[πi] | ·M < τ (2.4)

for each i.

Proof. Consider the difference of the choice probabilities of action i for two different
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assessment vectors Q and Q′. We have

| Ci(Q)− Ci(Q
′
) |=|

exp( 1
τ
Qi)∑

j exp( 1
τ
Qj))

−
exp( 1

τ
Qi′)∑

j exp( 1
τ
Qj′)

| .

By the mean value theorem, there exists Q∗ such that

| Ci(Q)− Ci(Q
′
) | = |

∑
j

∂

∂Qj

Ci(Q∗)(Qj −Qj′) |

≤
∑
j

| ∂

∂Qj

Ci(Q∗) || (Qj −Qj′) |

≤
∑
j

1

τ
| (Qj −Qj′) |

≤ M

τ
‖Q−Q′‖∞.

From the second line to the third line, I use the fact that | ∂
∂Qj

Ci(Q) |≤ 1
τ

for any Q and

j. Hence if | E[Di(πi)]− E[πi] |< τ
M

, then

| Ci(Q)− Ci(Q
′
) || E[Di(πi)]− E[πi] |

≤ | E[Di(πi)]− E[πi] | M
τ
‖Q−Q′‖∞

= δi‖Q−Q
′‖∞,

where δi =| E[Di(πi)]− E[πi] | M
τ
∈ [0, 1).

Condition (2.4) says that the noise term τ should be great enough to cover the product

of (i) the difference between the expected objective and distorted payoffs and (ii) the size

of the action set. Therefore, if one of them becomes greater, then τ should also be greater,

that is, his choice probabilities approach the uniform distribution.
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Next, I show that a “continuous interpolated trajectory” of the assessments almost

surely approaches the solution of ODEs (2.2). In the following argument, I mostly

follow the notation and methods in Borkar (2008). Let t0 = 0, tn =
∑n

i=1 λi and

In := [tn, tn+1], n ≥ 0. Then a continuous interpolated trajectory Q t is expressed as

follows:

Qt = Qn + (Qn+1 −Qn)
t− tn

tn+1 − tn
, t ∈ In.

Let Q≥st , t ≥ s, denote the unique solution of (2.2) starting at s;

Q̇≥st = F (Q≥st ), t ≥ s,

with Q≥ss = Qs, s ∈ R. Similarly, let Q≤st , t ≤ s denote the unique solution to (2.2)

ending at s;

Q̇≤st = F (Q≤st ), t ≤ s,

with Q≤ss = Qs, s ∈ R. Then, we have the following result:

Lemma 2. For any T > 0,

lim
s→∞

sup
t∈[s,s+T ]

‖Qt −Q
≥s
t ‖∞ = 0 a.s., and

lim
s→∞

sup
t∈[s−T,s]

‖Qt −Q
≥s
t ‖∞ = 0 a.s..

Proof. First I rewrite the updating rule above as follows;

Qi
n+1 −Qi

n = λn+1

(
Fi(Qn) + Un+1,i

)
, for each i ∈ A,
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where

Fi(Qn) = E[πi]−Qi
n + (1− Ci(Qn))(E[Di(πi)]− E[πi]),

and

Un+1,i =
(
πin −Qi

n + (1− 1i,n)(Di(πi)− πin)
)
− Fi(Qn).

Now F = (F1, ..., FM) is a Lipschitz continuous map from RM to RM , and Un = (Un,1, ..., Un,M)

are random perturbations such that

E[Un+1 | Qn] = 0

and

sup
n
E[‖ Un+1 ‖2∞| Qn] ≤ K,

where K <∞ is a constant. Note that supn ‖ Qn ‖∞<∞, since the initial assessment for

each action takes a finite value and the payoff function and distorted payoff function are

also bounded. The second condition is also true since the choice probability, payoff func-

tion and distorted payoff function are bounded. Therefore, by Lemma 1 in Borkar (2008),

the solution of ordinary difference equations (2.1) for the assessments is approximated in

the long run by the solution of ODEs (2.2) almost surely.

Note that the rest point of ODEs (2.2), Q∗ = (Q1∗, ..., QM∗), is the vector of the

assessments where each action’s assessment is an average of the expected objective and

distorted payoffs of the action;

Qi∗ = Ci(Q∗)E[πi] + (1− Ci(Q∗))E[Di(πi)], i ∈ A,
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where the average is taken by the limit choice probability of the action.

In Lemma 3, I show the global convergence of assessments to the unique rest point of

ODEs (2.2). To show convergence, I use the Lyapunov function method:

Lemma 3. Given any initial assessment Q1, the assessments of actions converge to the

unique rest point of ODEs (2.2) almost surely: for any Q1, Qn
a.s.→ Q∗

Proof. Consider the function

V0(Q) =‖ Q−Q∗ ‖∞,

where Q∗ is the unique rest point of (2.2). This function is 0 when Qi = Qi∗ for all i and

strictly positive otherwise. Note that the derivative of V0 coincides with the derivative

of | Qi − Qi∗ | of the action i which takes the highest value among all actions. First, I

assume that Qi > Qi∗. Then

d

dt
V0 =

d

dt
(Qi −Qi∗)

= (f(Qi)− f(Qi∗) +Qi∗ −Qi)

≤ δmax ‖ Q−Q∗ ‖∞ −(Qi −Qi∗)

= (δmax − 1) ‖ Q−Q∗ ‖∞

< 0.
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Next, I assume that Qi ≤ Qi∗. Then

d

dt
V0 =

d

dt
(Qi∗ −Qi)

= −(f(Qi)− f(Qi∗) +Qi∗ −Qi)

≤ δmax ‖ Q−Q∗ ‖∞ −(Qi∗ −Qi)

= (δmax − 1) ‖ Q−Q∗ ‖∞

< 0.

Thus we have d
dt
V0 < 0 for all Q 6= Q∗. Hence V0 is a Lyapunov function for ODEs (2.2)

and, by Proposition 6.4 and Corollary 6.6 of Benäım (1999) or Theorem 2 and Corollary

3 of Borkar (2008), assessments converge to the unique Q∗ almost surely.

Since there exists a density function for each shock and choice function, 1i,n, is

bounded, the choice probability function for each action is continuous with respect to

assessments. Hence the convergence of assessments implies the convergence of choice

probabilities. In addition, by the strong law of large numbers for dependent variables1,

the empirical frequency of each action, 1
n

∑n
m=1 1i,m, converges to the choice probability

given the limit assessments, Ci(Q∗), almost surely.

Lemma 4. With probability 1, the empirical frequency of each action converges to the

choice probability of the action in the limit; for each i,

1

n

n∑
m=1

1i,m
a.s.→ Ci(Q∗).

Proof. Let {1i,n, n ≥ 1} be a sequence of choice functions such that 1i,n = 1 if i is chosen

1For example, see p36 in Hall and Heyde (1980)
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at period n and 0 otherwise. Let {Fn, n ≥ 1} be a sequence of σ-fields, where Fn is

generated by random variables for all actions up to period n. Thus 1i,n is measurable with

respect to Fn and E[1i,n | Fn−1] = Ci(Qn). Now for each x and n ≥ 1, E[|1|] = 1 < ∞

and P (|1i,n| > x) ≤ P (|1| > x). Notice also that E[|1| log+ |1|] = 0 < ∞. Thus by

Theorem 2.19 in Hall and Heyde (1980), we have

1

n

n∑
m=1

[1i,m − Ci(Qm)]
a.s.→ 0.

Since Ci(Qn) converges to Ci(Q∗) almost surely, the empirical frequency of action i con-

verges to Ci(Q∗) almost surely. Since I pick i randomly, this argument is true for any

i ∈ A.

Now we are ready to state one of the main results;

Theorem 1. Given condition (2.3), with probability one, the assessment of each action

converges to the average of the expected objective and distorted payoffs where the average

is taken by the limit frequency of the action; for any Q1,

Qn
a.s.→ Q∗

and

Qi∗ = αi∗E[πi] + (1− αi∗)E[Di(πi)], ∀i ∈ A,

where αi∗ := limn→∞
1
n

∑n
m=1 1i,m.

In the following sections, using the results in this section, I show the conditions under

which the decision maker chooses the optimal action most frequently in the long run.
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2.4 Empirical Frequencies in the Long Run

In this section, I focus on the properties of the limit empirical frequencies of actions. I

show that if the expected distorted payoff of the optimal action, which has the highest

expected objective payoff, is greater than the expected distorted payoffs of the other

actions, then the agent chooses the optimal action most frequently in the long run. I also

show a case where the agent chooses a suboptimal action most frequently in the long run;

it happens when, on average, the foregone payoffs of the suboptimal action are distorted

more upward than the distorted foregone payoffs of the optimal action.

By the results in the last section, we know that αi∗ ≥ αj∗ if Ci(Q∗) ≥ Cj(Q∗). In

addition, we assume that stochastic shocks are i.i.d., such as the case for the logit choice

rule, and then Ci(Q∗) ≥ Cj(Q∗) if Qi∗ ≥ Qj∗. Therefore, in the following statements, I

analyze conditions under which Qi∗ ≥ Qj∗ holds; given the conditions, we have αi∗ ≥ αj∗

as well.

First, I assume that one action gives better payoff information than another action on

average: the expected values of directly and indirectly observed payoffs from one action

are greater than the ones of another action. As shown, each assessment in the long run can

be expressed as the average value of expected objective and distorted payoffs. Hence, if

those two values of one action are bound to be higher than those values of another action,

then the former action’s limit assessment is higher than another action’s limit assessment,

which means that the former action are chosen more frequently than the latter action in

the long run:

Lemma 5. If min{E[Di(πi)], E[πi]} ≥ max{E[Dj(πj)], E[πj]} holds, then αi∗ ≥ αj∗.

Proof. See Appendix.
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The following corollaries are immediate consequences of Lemma 5.

Corollary 1. If min{E[Di(πi)], E[πi]} ≥ max{E[Dj(πj)], E[πj]} holds for all j ∈ A, then

action i is chosen most frequently in the long run almost surely.

Corollary 2. If E[πi] = E[Di(πi)] for all i ∈ A, then αi∗ ≥ αj∗ if E[πi] ≥ E[πj].

Corollary 2 says that if distortion functions for all actions are mean-preserving, then

the action which has higher expected objective payoff will be chosen more frequently in

the long run.

Second, I consider the case in which foregone payoffs of some actions are distorted

upward and their expected distorted payoffs are greater than the expected objective pay-

offs. In this case, the action which has a greater expected objective payoff is chosen more

frequently in the long run.

Lemma 6. Suppose that E[Di(πi)] ≥ E[Dj(πj)] ≥ E[πi] ≥ E[πj]. Then αi∗ ≥ αj∗.

Proof. See Appendix.

Third, I consider the case where foregone payoff information is distorted downward

for some actions. It is also shown that the action with higher expected objective payoff

is chosen more frequently in the long run.

Lemma 7. If E[πi] ≥ E[πj] ≥ E[Di(πi)] ≥ E[Dj(πj)], then αi∗ ≥ αj∗.

Proof. See Appendix.

From the preceding results, it can be shown that the optimal action is chosen most

frequently if the expected distorted payoff of the action is greater than the ones of the

other actions;
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Theorem 2. Suppose that E[πi] ≥ E[πj] for some i and j. If E[Di(πi)] ≥ E[Dj(πj)]

then αi∗ ≥ αj∗. Therefore, the optimal action is chosen most frequently in the long run,

αi∗ ≥ maxj α
j∗, with probability one if E[Di(πi)] ≥ maxj E[Dj(πj)].

It is worth to note that it is not the case if the agent does not experience the emotional

shocks on his assessments as in Heller and Sarin (2001). As an example, consider the case

where there are only two actions, i and j. Also, for simplicity, I assume that there is no

uncertainty for payoffs; the agent receives a constant payoff πh from action h ∈ {i, j}. In

particular, I assume that πi > πj. Then if he chooses the suboptimal action, j, then he

receives the payoff πj while he observes the foregone payoff information of Di(πi). If the

initial assessments of action i and j are such that πi > πj > Qj > Qi > Di(πi) > Dj(πj)

then he always chooses action j.

Last, I consider the case where one action with lower expected objective payoff is

chosen more often than another action with higher expected objective payoff. It happens

when the foregone payoff of the worse action is distorted more upwardly, so that the

expected objective and distorted payoffs of the better action is lower than the expected

distorted payoff of the worse action. I show that if the arithmetic average of the expected

distorted and objective payoffs of the worse action is greater than the maximum value of

the expected objective and distorted payoffs of the better action, then in the long run the

worse action is chosen more frequently with probability one.

Proposition 2. If

E[Di(πi)] > max{E[Dj(πj)], E[πj]} > min{E[Dj(πj)], E[πj]} > E[πi]
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and

E[Di(πi)] + E[πi]

2
≥ max{E[Dj(πj)], E[πj]},

then αi∗ ≥ αj∗.

Proof. See Appendix.

2.4.1 Affine Transformation

In this subsection, I consider the following distortion function; for each i ∈ A

Di(πi) = βπi + γ,

where β ≥ 0 and γ ∈ R. This distortion function is an affine map and includes the

case where the agent distorts the foregone payoff information by β ≥ 0 and γ = 0, as

in the EWA learning model1. Note that if E[πi] ≥ E[πj] then E[Di(πi)] ≥ E[Dj(πj)].

Therefore, if the distortion function for each action is an affine map, then the optimal

action is chosen most frequently in the long run;

Corollary 3. If Di(πi) = βπi + γ for each i ∈ A, then αi∗ ≥ αj∗ if E[πi] ≥ E[πj].

Note that for the case where γ = 0, as in the EWA learning model, the action with

the highest expected objective payoff is chosen most frequently.

2.4.2 Envy and Gloating

Next, I consider a distortion function which captures the concept of the decision maker’s

envy and gloating. In this subsection, I assume that the agent directly observes not only

1They use δ for the discount factor.
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the payoff from chosen action, but also the payoffs from the other actions which are chosen

by others. Then the decision maker envies other people’s payoffs when the decision maker

observes others’ payoffs which are better than his, while he gloats over others’ payoffs

which are worse than his. One way to express this idea is that he distorts the foregone

payoffs upward when he envies, while he distorts the foregone payoffs downward when he

gloats. It is worthwhile noting that increasing the foregone payoff means that the action

is more likely to be chosen, while discounting the foregone payoff means that the action

is less likely to be chosen in the next period.

I first consider a situation in which the agent receives a payoff of an action, πi, while he

observes a foregone payoff of another action, πj. Let Dj(πj, πi) be the distortion function

of action j when action i is chosen. Then I consider the following distortion function1:

Dj(πj, πi) = πj +Gj
i (π

j − πi),

where the function Gj
i , which expresses envy and gloating, is increasing and bounded

and satisfies the following condition: Gj
i (π

j − πi) ≥ 0 if πj − πi > 0, Gj
i (π

j − πi) = 0 if

πj−πi = 0, and Gj
i (π

j−πi) ≤ 0 if πj−πi < 0. For example, a linear function Dj(πj, πi) =

β(πj − πi) with a slope β > 0 satisfies the conditions2.

Then the distortion function Dj(πj) has the following form:

Dj(πj) =
∑

i∈A\{j}

1i,nD
j(πi, πj)

=
∑

i∈A\{j}

1i,n(πj +Gj
i (π

j − πi)).

1See equation (1) of Gygolec, Coricelli and Rustichini (2012)
2Boundedness is also satisfied, since I assume that payoffs are bounded
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Now consider the updating rule of the assessment of an action, given the envy-and-gloat

distortion function. For simplicity, and as assumed in Grygolec et al. (2012), I assume

that there are only two actions available1. Then the updating rule of the assessment of

action i is as follows:

Qi
n+1 = Qi

n + λn+1(1i,nπ
i
n + (1− 1i,n)Di(πi)−Qi

n)

= Qi
n + λn+1(1i,nπ

i
n + (1− 1i,n)(πi +Gi

j(π
i − πj))−Qi

n)

Notice that given the information in period n, payoff functions in period n and choice

functions are independent. Thus, this extension of the distortion function does not change

the dynamics of assessments.

Therefore I investigate the long run behaviour of this agent by comparing the limit

assessments. From Theorem 2, we know that assuming E[πi] ≥ E[πj], action i is cho-

sen more frequently if E[Di(πi)] ≥ E[Dj(πj)]. Given the envy-and-gloating distortion

function, the expected distorted payoff of action i is as follows;

E[Di(πi)] = E[πi] + E[Gi
j(π

i − πj)].

In particular, as assumed in Grygolec et al. (2012), I consider the envy-and-gloating

distortion function with

Gi
j(π

i − πj) = β(πi − πj)

with a slope β > 0 for any i and j. Then the expected distorted payoff is expressed as

1If there are more than two actions, then we will have different dynamics for assessments. The case is
left to be pursued in future work.
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follows;

E[Dj(πj)] = E[πj] + β(E[πj]− E[πi]).

It is easy to see that assuming E[πi] ≥ E[πj], the inequality

E[πi] + β(E[πi]− E[πj]) ≥ E[πj] + β(E[πj]− E[πi])

holds when β ≥ 0. Hence the agent with the envy-and-gloating distortion function chooses

the optimal action most frequently in the long run.

Next, I consider a class of envy-and-gloating distortion functions, which includes the

envy-and-gloating distortion function above. I first assume that the function Gi
j does not

depend on which action is chosen;

Gi
j(x) = G(x)

for actions i, j ∈ A. This means that the degree of decision maker’s envy and gloating

does not depend on which action is chosen, but the distance of his and other’s payoffs. I

next assume that the distortion function G is an odd function;

G(−x) = −G(x).

This means that given two payoffs, the degree of envy is equivalent to the degree of

gloating, but envy and gloating have the opposite effect. Note that the envy-and-gloating

function above satisfies both conditions. Then the agent chooses the optimal action most

frequently in the long run if the function G is convex;
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Proposition 3. If there exist two actions and the function G is convex, then the agent

chooses the optimal action most frequently in the long run:

αi∗ ≥ αj∗ if E[πi] ≥ E[πj].

Proof. See Appendix.

2.5 Quantal Response Equilibrium

I investigate the relationship of this model with the quantal response equilibrium model1

introduced by McKelvey and Palfrey (1995). For the purpose, the quantal response equi-

librium model is introduced here. Let Aι be a finite set of actions for player ι ∈ {1, 2}:

Aι = {1, 2, ...,Mι}. Let πι : A1 × A2 → R be a payoff function for player ι. Let

∆ι = {pι = (pι1, ..., pιMι) :
∑

j pιj = 1, pιj ≥ 0} be the set of probability measures of

player ι, where pιj is the probability of player ι playing action j. The domain of the

payoff function can be extended to the set of probability measures ∆ = ∆1 ×∆2 and let

p = (p1, p2) be an element of ∆. When choosing action j, player ι receives a stochastic

payoff, ηιj. The random vector ηι = (ηι1, ..., ηιMι) takes a value in RMι . The assumptions

of stochastic payoffs here are equivalent to the assumption of the stochastic shocks in

the model of this chapter except that E[ηj] = 0 for all j ∈ Aι and ι ∈ {1, 2}. Given

the opponent’s choice probability p−ι, the player ι who uses j receives the following total

payoff:

πι(j, p−ι) = πι(j, p−ι) + ηιj.

1The decision problem can be considered a game in which the decision maker plays against nature,
which chooses its action, which corresponds to the states, with a fixed probability. Therefore, it is possible
to compare this model with the quantal response equilibrium model, which is introduced for games.
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Given the total payoffs for actions, player ι picks action j such that πι(j, p−ι) ≥

πι(k, p−ι) for all k ∈ Aι. Therefore, given the opponent’s choice probability p−ι, the

probability of choosing j is as follows:

C ′j(πι, p−ι) = P (arg max
k∈A

(πι(k, p−ι) + ηιk) = j)

Then quantal response equilibrium is a choice probability profile p∗ = (p∗1, p
∗
2) such

that for any ι and j,

p∗ιj = C ′j(πι, p
∗
−ι).

If I set player 2 as nature and his actions as states, then this model can be considered

as a decision problem for player 1. In this case, the nature picks a state ω randomly

from A2 = Ω, where the distribution corresponds to p2, and π1(j, p2) corresponds to the

expected payoff of action j, E[πj]. Therefore, the choice probability of action j is expressed

as follows;

C ′j(πι, p−ι) = Cj(E[π]) = P (arg max
k∈A

(E[πk] + ηk) = j).

Since the choice probability for each action in this model is continuous with respect

to assessments, if Qj
n converges to E[πj] for each j, then the choice probability of each

action converges to a quantal response equilibrium. Since the choice probability is always

positive, by ODEs (2.2), the necessary and sufficient condition of the convergence point

being the quantal response equilibrium is E[Dj(πj)] = E[πj] for all j, which means that

each distortion function should preserve the mean of each payoff function. Therefore, this

proves the following result:

Proposition 4. If the choice probabilities and the empirical frequencies of actions con-
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verge, then the convergence point is a quantal response equilibrium if and only if E[Dj(πj)] =

E[πj] and E[ηj] = 0 for all j ∈ A.

2.6 Discussion and Conclusion

This chapter has investigated theoretically the behaviour of a myopic and adaptive agent

who simplifies his decision problem; to each action, he assigns a subjective assessment

which is a weighted average of past realized payoffs, experiences an emotional shock on the

assessment and picks the action which has the highest noise-affected assessment. Payoff

information which is used to update his assessments is not only directly observed payoff

information, but also foregone payoff information, which may be distorted. It is shown

by using a stochastic approximation method that the limit assessment of each action is

an average of expected objective and distorted payoffs. Given the limit assessments, the

tendencies of the decision maker’s behaviour in the limit are studied; the agent chooses the

optimal action most frequently if the expected distorted payoff of the action is greater than

the ones of the other actions. It is also shown that seeing the decision problem as a game

against nature, the choice probabilities of the agent almost surely converge to a quantal

response equilibrium if and only if he distorts his forgone payoff in a mean-preserving way.

2.6.1 Population Interpretation

This model can also be interpreted as a population model. Consider the situation in

which there exists a continuum population of agents, who have limited information about

the decision problem they face; they are to choose an action, but do not know the state

space, realized state, and payoff function. In each period, an agent is picked from the
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population randomly, chooses an action from the set A and receives a payoff. Once he has

been picked, he never makes a decision again. In each period, the population forms public

assessments on actions, Qi = (Q1, ..., QM), which are based on the payoff information

informed by agents. The public assessments are observed by all agents. In addition,

each agent has his own assessments on those actions. The individual assessments are

independently drawn by the common distribution which is equivalent to the distribution

of emotional stochastic shocks in the model. Given the agent’s assessment and public

assessments, he chooses an action which has the highest total value of public assessment

and his own assessment. Therefore, the probability that action i is chosen by the agent

in period n is as follows;

Ci(Qn) = Pr
(

arg max
j∈A

(Qj + ηj) = i
)
,

where η = (η1, ...., ηM) is the sequence of the individual assessments of the agent in a

period. After making a decision, each agent informs the population of his received payoff.

Moreover, the population can acquire the foregone payoff information from the other

information sources. The population may incorporate the foregone payoff from others in

the distorted way, as defined in the model. It is also possible that the foregone payoff

information itself is distorted. Then the population updates the public assessments in the

adaptive way which I have defined in this model;

Qi
n+1 =


(1− λn+1)Q

i
n + λin+1π

i
n if action i is chosen

(1− λn+1)Q
i
n + λin+1D

i(πin) otherwise,
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where πin is the payoff which is realized in period n and Di(πin) is the distorted payoff

information of action i in period n. Therefore, the public assessments consist of the payoff

information from its own agents and from others. For example, the public assessment of

each action is the sample average of realized payoffs if λn = 1
n
,∀n and Di(x) = x,∀i.

To understand the argument further, consider a specific situation where there exist

similar goods from different brands and consumers need to decide from which brand they

will purchase. Those consumers may visit a web page which collects payoff information

or reviews from its viewers. The page may also collects reviews from other web pages,

however, the editor of the page may believe that the reviews from the other web pages

may be distorted and he distorts the information from other pages. Then given the payoff

information from its own consumers and from others, the page shows the public assessment

which is an (weighted or sample) average of undistorted and distorted payoff information.

Each consumer also has his own assessment and he therefore picks the brand which has

the best value of public assessment and his own assessment. This chapter shows that the

public assessment of each brand converges and consumers will end up picking the right

brand most frequently when the distortion is non-discriminatory among brands.

2.7 Appendix

2.7.1 Proof of Lemma 5

For each action, i, the following equation holds;

Qi∗ = Ci(Q∗)E[πi] + (1− Ci(Q∗))E[Di(πi)].
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Hence if min{E[Di(πi)], E[πi]} ≥ max{E[Dj(πj)], E[πj]} holds, then

Qi∗ = Ci(Q∗)E[πi] + (1− Ci(Q∗))E[Di(πi)]

≥ Cj(Q∗)E[πj] + (1− Cj(Q∗))E[Dj(πj)]

= Qj∗.

2.7.2 Proof of Lemma 6

Here, I prove by contradiction. First, I consider the case where E[Di(πi)] > E[Dj(πj)] ≥

E[πi] ≥ E[πj] holds. Assume that Qi∗ −Qj∗ < 0. Since E[πi] ≥ E[πj], we have

E[πi] = Qi∗ − (1− Ci(Q∗))(E[Di(πi)]− E[πi])

≥ Qj∗ − (1− Cj(Q∗))(E[Dj(πj)]− E[πj]) = E[πj].

Note that since Qi∗ < Qj∗, we have

E[Dj(πj)]− E[πj] ≥ E[Di(πi)]− E[πi]. (2.5)

Now, since E[Di(πi)] > E[Dj(πj)], we have

E[Di(πi)] = Qi∗ + Ci(Q∗)(E[Di(πi)]− E[πi])

> Qj∗ + Cj(Q∗)(E[Dj(πj)]− E[πj]) = E[Dj(πj)].
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And by the hypothesis Qi∗ < Qj∗, we have

E[Di(πi)]− E[πi] > E[Dj(πj)]− E[πj]. (2.6)

However, the inequalities (2.5) and (2.6) contradict each other.

Next, I consider the case where E[Di(πi)] = E[Dj(πj)] = E[πi] ≥ E[πj] holds. Since

the limit assessment of each action takes a value between the expected objective and

distorted payoffs, we should have that Qi∗ ≥ Qj∗.

Last, I consider the case where E[Di(πi)] = E[Dj(πj)] > E[πi] ≥ E[πj] holds. Again,

I assume that Qi∗ < Qj∗. Since E[Di(πi)] = E[Dj(πj)], we have

Qi∗ + Ci(Q∗)(E[Di(πi)]− E[πi])

= Qj∗ + Cj(Q∗)(E[Dj(πj)]− E[πj]).

However, this equation does not hold, since Qi∗ < Qj∗, Ci(Q∗) < Cj(Q∗) and 0 <

E[Di(πi)]− E[πi] ≤ E[Dj(πj)]− E[πj].

2.7.3 Proof of Lemma 7

I assume that one of the following inequalities,

E[πi] ≥ E[πj] ≥ E[Di(πi)] ≥ E[Dj(πj)],
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holds strictly. Also I assume that E[Dj(πj)] > 0. Consider some Q1 such that Qi
1 ≥ Qj

1

for any j 6= i. Then

Ci(Q1)E[πi] + (1− Ci(Q1))E[Di(πi)] ≥ Cj(Q1)E[πj] + (1− Cj(Q1))E[Dj(πj)].

What I show here is that the trajectories of ODEs starting from the points with Qi
1 = Qj

1

never enter the area of Q with Qi < Qj so that at the unique rest point Q∗, which is

globally asymptotically stable, we should have that Qi∗ ≥ Qj∗. First, consider the initial

point Q1 such that

Qi
1 = Qj

1 ≤ Cj(Q1)E[πj] + (1− Cj(Q1))E[Dj(πj)]

≤ Ci(Q1)E[πi] + (1− Ci(Q1))E[Di(πi)].

Note that Q̇i ≥ 0 and Q̇j ≥ 0 and if Q̇i = 0, then Q̇j = 0. Otherwise, Q̇i > 0 and Q̇j ≥ 0,

0 ≤ Cj(Q1)E[πj] + (1− Cj(Q1))E[Dj(πj)]−Qj

Ci(Q1)E[πi] + (1− Ci(Q1))E[Di(πi)]−Qi
≤ 1.

Therefore, the trajectories starting from Q1 do not enter the area with Qi < Qj. Next, I

assume that

Cj(Q)E[πj] + (1− Cj(Q))E[Dj(πj)] < Qi = Qj

≤ Ci(Q)E[πi] + (1− Ci(Q))E[Di(πi)].
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Then Q̇j < 0 and Q̇i ≥ 0 and it is obvious that the trajectories of the ODEs do not enter

the area with Qi < Qj. Finally, I assume that

Cj(Q)E[πj] + (1− Cj(Q))E[Dj(πj)] ≤ Ci(Q)E[πi] + (1− Ci(Q))E[Di(πi)]

< Qi = Qj.

Then Q̇i < 0, Q̇j < 0 and

1 <
Cj(Q)E[πj] + (1− Cj(Q))E[Dj(πj)]−Qj

Ci(Q)E[πi] + (1− Ci(Q))E[Di(πi)]−Qi
.

And again, the trajectories of the ODEs also do not enter the area with Qi < Qj. In sum,

the trajectories which start from the points on the line with Qi = Qj never enter the area

of Q with Qi < Qj and thus Qi∗ ≥ Qj∗. This argument can be applied to the other cases

where E[Dj(πj)] ≤ 0.

2.7.4 Proof of Proposition 2

Assume that Qi∗ < Qj∗. By the property of choice rules, we have that Ci(Q∗) < Cj(Q∗)

and hence Ci(Q∗) < (1− Ci(Q∗)). Since Ci(Q∗) < 1
2
, we have

Qi∗ = E[πi] + (1− Ci(Q∗))(E[Di(πi)]− E[πi])

≥ E[πi] +
1

2
(E[Di(πi)]− E[πi])

=
E[Di(πi)] + E[πi]

2
.
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Since Qj∗ ≤ max{E[Dj(πj)], E[πj]}, we have Qi∗ ≥ Qj∗. However, this condition contra-

dicts the original hypothesis.

2.7.5 Proof of Proposition 3

Consider the difference of Qi∗ and Qj∗. Then

Qi∗ −Qj∗ = E[πi]− E[πj] + (1− αi∗)E[G(πi − πj)]− (1− αj∗)E[G(πj − πi)]

= (E[πi]− E[πj]) + (1− αi∗)E[G(πi − πj)] + αi∗E[G(πi − πj)]

= (E[πi]− E[πj]) + E[G(πi − πj)].

Since E[G(πi − πj)] ≥ G(E[πi] − E[πj]) ≥ 0 if E[πi] ≥ E[πj], we have that Qi∗ ≥ Qi∗ if

E[πi] ≥ E[πj]. This means that αi∗ ≥ αj∗.
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CHAPTER 3

AN ADAPTIVE LEARNING MODEL IN
COORDINATION GAMES

3.1 Introduction

Over the past few decades, learning models have received much attention in the theoretical

and experimental literature of cognitive science. One such model is fictitious play, where

players form beliefs about their opponents’ play and best respond to these beliefs. In

fictitious play model, players know the payoff structure and their opponents’ strategy

sets.

Whereas there are other learning models where players have limited information; play-

ers may not have information about payoff structure, opponents’ strategy sets, or they

may not even know whether they are playing against other players. In the situation, they

may not be able to form beliefs about the way that the opponents play or all possible

outcomes. What they do know is their own available actions and the results from the

previous play, that is, the realized payoffs from chosen actions. Instead of forming beliefs

about all possible outcomes, each player makes a subjective assessment on each of his

actions based on the realized payoffs from the action and tends to pick the action which
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has achieved better results than the others in the past.

One such model with limited information is the reinforcement learning model intro-

duced by Erev and Roth (1998) (ER, hereafter), where they model the observed behaviour

of agents in the lab1. In their model, agent chooses an action randomly, where the choice

probability of the action is the fraction of the payoffs realized from the action over the

total payoffs realized for all available actions2.

In another learning model which is introduced by Sarin and Vahid (1999) (SV, here-

after), players make a subjective payoff assessment of each of his actions, where the

assessment is a weighted average of past payoffs, and they choose the action which has

the highest assessment. After receiving a payoff, each player updates the assessment of

chosen action adaptively; the assessment of chosen action is adjusted toward the received

payoff3.

In this chapter, I provide a theoretical prediction of the way in which myopic players

in the SV model4 behave in the long run in general games, mostly in coordination games,

which are of interest to a wide range of researchers5. In this model, the initial assessment

of each action is assumed to take a value between the maximum and the minimum payoff

that the action can provide6. For instance, players may have experienced the game in

advance so they may use their knowledge of previous payoffs to form an initial assessment

1There also exists work which has invesitgated their model theoretically. For instance, see Beggs
(2005) and Laslier et al. (2001).

2Since the payoffs are assumed to be positive, each player increases the probability of choosing an
action whenever the action is chosen.

3It is worth to note that if the realized payoff of an action is lower than the assessment of the action,
then the chance of the action being chosen in the next period becomes less likely.

4Note that the players do not observe the foregone payoff information and do not update the assess-
ments of unchosen actions. Therefore, the learning dynamics here is different from the one introduced in
Chapter 2.

5As examples of experimental works on coordination games, Cooper, DeJoung, Forsythe and Ross
(1992) and Van Huyck, Battalio and Beil (1990) have investigated which among multiple Nash equilibria,
is the one played in the lab.

6See also Sarin (1999) for the justification of the assumption.
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of each action. Given those initial assessments, each player picks the action which has

the highest assessment; in this chapter, each player does not experience any stochastic

perturbations on his own assessments.

After players have played a game and received the payoffs, each player updates his

assessment using the realized payoff; the new assessment of a chosen action is a convex

combination of the current assessment and the realized payoff. In the present chapter, the

weights on the realized payoffs are assumed to be random variables, meaning that players

are not sure how much they incorporate the new payoff information into their assessments,

which may be also affected by their mood. As a special instance, I also consider some

cases where those weights are non-random variables. For example, I consider players

who believe that the situation they are involved in is stationary so that each action’s

assessment is the arithmetic mean of its past payoffs. I also consider the case where

players believe that the environment is non-stationary and put the same weight on all

new payoff information.

Since the initial assessment of each action is smaller than the best payoff that the

action can give, each player increases his assessment of the action when he receives the

best payoff. If one action profile gives the best payoff to all players and they play it in

some period, then players will keep choosing the action profile in all subsequent periods. I

call an action profile absorbing state if once players play the action profile in some period,

then they play it in all subsequent periods.

Furthermore, there exist other cases where players stick to one action profile. One

such case is that their assessments of other actions become so low that the actions are

never tried again. Another case is that payoffs from the action profile are greater than the
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other assessments and players keep playing the action profile, even though it does not give

them the best payoffs. It is shown that each pure Nash equilibrium is always a candidate

of the convergence point, that is, for each strict Nash equilibrium there exists a range

of assessments for all players and actions such that players stick to the Nash equilibrium

forever. In addition, if (i) at any non-Nash equilibrium action profile, at least one player

receives the payoff which is less than his maximin payoff, or (ii) all non-Nash equilibrium

action profiles give the same payoff, then players end up playing a strict Nash equilibrium

with probability one.

To see this in detail, I consider 2×2 coordination games and one non-2×2 coordination

game. In 2×2 coordination games, since only two actions are available for each player, I

can divide them into three categories according to the numbers of action profiles at which

each player receives the payoff which is strictly greather than the other possible payoffs

from his current action. Since each player receives the best payoff from his current action,

he never changes his action; note that such an action profile is absorbing. Notice also that

the number of such action profiles ranges from zero to two in 2 × 2 coordination games.

The class of coordination games with two absorbing states includes the battle of the

sexes and pure coordination games, where two absorbing states correspond to pure Nash

equilibria. The class of coordination games with one absorbing state can be subdivided

into the following cases: (1) the absorbing state corresponds to a Nash equilibrium; and

(2) the absorbing state corresponds to one non-Nash equilibrium action profile. The

class of coordination games in case (1) includes the stag hunt game, while the class of

coordination games in case (2) includes the game of chicken and market entry games.

Then I show the following results. In coordination games with two absorbing states, (i) if
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the maximin actions of both players coincide, then they end up playing a Nash equilibrium

with probability one, (ii) if maximin actions do not coincide for both players, then players

end up playing a Nash equilibrium or the maximin action profile with probability one. In

coordination games in case (1), players end up playing a Nash equilibrium with probability

one if the maximin actions of both players coincide. In coordination games in case (2),

players end up playing a strict Nash equilibrium or a maximin action profile.

In a non-2×2 coordination game introduced by Van Huyck, Battalio and Beil (1990)

(VHBB, hereafter), each player is asked to pick a number from a finite set. If players fail

to coordinate, the player who picks the smallest number among players’ choices receives

the highest payoff. In addition, each number gives a better payoff when the choice is

closer to the smallest number among all the players’ choices. I show that each Nash

equilibrium, in which players coordinate to pick the same number, is absorbing1. It is

also shown that the smallest number of the players’ choices weakly decreases over time.

Next, I consider the case where the second best payoff from each action is lower than the

payoff from the maximin action, which is the smallest number of their choice set. Hence,

players are better off if they choose the smallest number of their choice set when they fail

to pick the smallest number among the players’ choices. In this case, I show that players

end up playing a Nash equilibrium with probability one, which can be also observed in

the experimental results by VHBB.

1It is absorbing if the minimum number gives different payoffs for opponents’ choices. If it gives the
same payoff for any opponents’ choice, then I have to assume an inertia condition for players’ tie break
rule for the corresponding Nash equilibrium to be absorbing. See the following argument.
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3.1.1 Literature review

In this chapter, I investigate convergence properties of SV learning model in mainly co-

ordination games. In the prisoner’s dilemma game, Sarin (1999) shows that players end

up playing for mutual cooperation or mutual defection. In this chapter, players do not

experience any stochastic emotional noise on their assessments, whereas SV also investi-

gate a decision problem in which a decision maker experiences the stochastic shocks on

his assessments in each decision period. Then SV show that (1) assessment of the ac-

tion which is played infinitely often converges in distribution to a random variable whose

expected value is the expected objective payoff and (2) if one action first-order stochas-

tically dominates the other, then the former action is played more often than the other

on average. In the context of SV leanring with the shocks in games, Leslie and Collins

(2006) investigate the model with slightly different updating rules and show convergence

of strategies to a Nash distribution1 in the partnership game and the zero-sum games.

With the SV updating rule, Cominetti, Melo and Sorin (2010) show the general conver-

gence result when each player’s choice rule is the logistic choice rule. They show that

players’ choice probabilities converge to a unique Nash distribution if the noise term of

the logistic choice rule for each player is big enough. By a property of the logistic choice

rule if its noise term becomes large then the choice probability approaches a uniform dis-

tribution. Hence, players in their model are more likely to choose an action which does

not have the highest assessment each time. However, players in the SV model without

emotional shocks do not choose the actions; they always pick the action which they think

is the best based on past payoff realizations. In this chapter, even the lack of exploration,

1Nash distribution is Nash equilibrium under stochastic perturbations on payoffs. If the expected
values of the perturbations are 0, then Nash distribution coincides with the quantal response equilibrium
proposed by McKelvey and Palfrey (1995)
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it is shown that players end up playing a Nash equilibrium in several coordination games.

Lastly, some authors have provided empirical supports of this model. For instance,

Sarin and Vahid (2001) show that the SV model can explain the data by ER at least

as well as the ER model does. Chen and Khoroshilov (2003) show that among learning

models comprising the ER model, the SV model, and the experience-weighted attraction

learning model by Camerer and Ho (1999), the SV model can best explain the data in

coordination games and cost sharing games.

3.2 General Games

There are M players who play the same game repeatedly over periods. Let N = {1, ...,M}

be the set of players. In each period, n ∈ N, each player chooses an action from his own

action set simultaneously. Let Si be the finite set of actions for player i ∈ N . After all the

players choose actions, each player receives a payoff. If players play (si)i∈N ∈ Πi∈NS
i, then

player i’s realized payoff is denoted by ui(si, s−i), where s−i = (s1, ..., si−1, si+1, ..., sM).

When choosing an action, each player does not know the payoff functions or the environ-

ment in which he is involved.

In each period, each player assigns subjective payoff assessments on his actions; let

Qi
n(si) ∈ R denote player i’s assessment on action si in period n. Let Qi

n = (Qi
n(si))si∈Si

be the vector of assessments for all actions for player i. I assume that the initial assessment

for each action and each player takes a value between the maximum and the minimum

value that the action gives; thus,

Qi
1(s

i) ∈ (min
s−i

ui(si, s−i),max
s−i

ui(si, s−i)),
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for all i ∈ N and si ∈ Si. If mins−i u
i(si, s−i) = maxs−i u

i(si, s−i), then I assume that

Qi
1(s

i) = mins−i u
i(si, s−i) = maxs−i u

i(si, s−i).

In each period, each player chooses the action which he believes will give the highest

payoff; given his assessments, he chooses the action which has the highest assessment in

the period. Therefore, if si∗n is the action that player i chooses in period n, then

si∗n = arg max
si

Qi
n(si).

For a tie break situation, which arises when more than two actions have the highest

assessment, I introduce two types of tie break rules. I say that a tie break rule satisfies

the inertia condition if the rule picks the action which was chosen in the last period; if

actions which have the highest assessment were not chosen in the last period, then the

rule picks one of the actions randomly. As a comparison, I also introduce another tie

break condition, the uniform condition, where the rule picks each of the actions which

have the highest assessment with equal probability. In the following argument, I specify

a tie break rule if the result depends on the tie break rule; otherwise, the results do not

depend on the tie break rule assumption.

After playing the game in each period, each player observes only his own payoff;

players observe neither their opponents’ actions nor their payoffs. Given his own realized

payoff, each player updates his assessment of the action chosen in the previous period.

Specifically, if player i receives a payoff uin(si, s−i) when players play (si, s−i), then he
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updates Qi
n as follows;

Qi
n+1(s

i) =


(1− λin(si))Qi

n(si) + λin(si)uin(si, s−i) if s i is chosen in period n

Qi
n(si) otherwise

where λin(si) is player i’s weighting parameter for action si in period n. I assume

that λin(si) is a random variable which takes a value between 0 and 1; λin(si) ∈ (0, 1).

It reflects the idea that players are uncertain how far to incorporate the new payoff

information into their new assessments. The uncertainty can also be interpreted as players’

emotional shocks. How far they incorporate the new payoff information depends on their

random mood. I also assume that the sequence of weighting parameters, {λin(si)}i,n,si is

independent among periods, players and actions and it is identically distributed among

periods. I assume that the weighting parameter λin(si) has a density function which is

strictly positive on the domain (0, 1) for all i and si.

3.3 Results

In this section, I investigate the convergence results in general games. In later sections,

I focus on specific games, in particular coordination games. I say (si)i∈I is absorbing if

once players play the action profile in a period then they play it in all subsequent periods.

Proposition 5. If (si)i∈I is such that (i) for all i,

ui(si, s−i) = max
t−i∈S−i

ui(si, t−i)
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and (ii) for all i there exists r−i such that

max
t−i∈S−i

ui(si, t−i) > ui(si, r−i)

then (si)i∈I is absorbing.

Proof. Consider the case where players pick the action profile (si)i∈I in some period n.

In the case, player i receives the payoff ui(si, s−i). Note that the value ui(si, s−i) is the

maximum value that action si can give; therefore, by condition (ii), player i inflates the

assessment of the action si. Since the assessments of other actions do not change in the

next period, player i plays action si in period n+ 1 again. Since this logic can be applied

to other periods and I pick player i randomly, players play the same action profile in all

the subsequent periods.

If the inertia condition is always assumed for each player’s tie break rule, then condition

(ii) in Proposition 5 is not required. However, if the uniform condition is assumed, without

condition (ii), players may not converge to play one action profile. As an extreme example,

if two actions give the same payoff for any opponents’ actions and the payoff is higher

than any other payoffs that any other action can give, then he plays those two actions

with equal probability forever.

From Proposition 5, it is easy to see that even action profiles which consist of dom-

inated strategies for all players can be absorbing. To see this, assume that two players

play the prisoner’s dilemma game which has the following payoff matrix;

where the strategy ”C” is strictly dominated by the strategy ”D” for both play-

ers. Notice that at (C,C), both players receive the highest payoffs from the action ”C”;
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C D
C 1,1 -1,2
D 2,-1 0,0

ui(C,C) = maxs−i∈{C,D} u
i(C, s−i) for for both players. Hence, if players play (C,C) once,

then they always play it afterwards1.

In the next statement, I show that player i stops playing an action if the assessment

of the action becomes smaller than the minimum payoff that another action can give;

Proposition 6. If Qi
n(si) < mins−i u(ti, s−i) in some period n for ti 6= si, then player i

does not choose si after period n.

Proof. From the fact that Qi
n(ti) > mins−i u(ti, s−i), we have the fact that Qi

n(ti) > Qi
n(si).

Notice that si is not chosen in period n. Since the assessment of the chosen action is a

convex combination of realized payoff and the assessment of the previous period with

λin ∈ (0, 1) for all i and n, we have Qi
n+1(t

i) > mins−i u(ti, s−i). Notice also that si is not

chosen in period n and thus the assessment of the action is unchanged in the next period

n + 1. Therefore we have Qi
n+1(t

i) > mins−i u(ti, s−i) > Qi
n+1(s

i) and player i will not

choose si in period n+ 1. The same logic can be applied in later periods and thus player

i will not choose si in any subsequent periods.

Once the assessment of one action becomes lower than the worst payoff from another

action, then the action will not be chosen forever. Therefore, if the worst payoff from

one action is greater than the best payoff from another action, then the latter action is

never chosen at any time. One natural question is whether players end up playing a strict

Nash equilibrium. In the following statement, I show that for any strict Nash equilibrium,

1See Sarin (1999) for the result.
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there exist assessments for all players such that the players end up playing the strict Nash

equilibrium:

Proposition 7. For any strict Nash equilibrium, there exist assessments in period n

for all players such that they play the Nash equilibrium in the period and all subsequent

periods.

Proof. Let (si∗)i∈N be a strict Nash equilibrium and si∗ be player i’s strategy at the strict

Nash equilibrium. Then, we have the following condition; for all i ∈ N ,

ui(si∗, s−i∗) > ui(ti, s−i∗) (3.1)

for all ti 6= si∗. I assume that in period n, the following conditions for assessments are

satisfied; for all i,

Qi
n(si∗) > Qi

n(ti) (3.2)

and

ui(si∗, s−i∗) > Qi
n(ti) (3.3)

for all ti 6= si∗. Note that condition (3.3) holds, since by condition (3.1), the minimum

value of the assessment of action ti is less than or equal to ui(ti, s−i∗), which is strictly

less than ui(si∗, s−i∗). Thus, players play the strict Nash equilibrium in period n. Note

also that

Qi
n+1(s

i∗) ≥ min{Qi
n(si∗), ui(si∗, s−i∗)} > Qi

n(ti) = Qi
n+1(t

i)

for all ti 6= si∗ and players play the strict Nash equilibrium again in period n+1.

Proposition 7 says that any strict Nash equilibrium is always a candidate of the conver-
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gence point. However, it is possible that players end up playing a non-Nash equilibrium.

Hence, it is natural to consider the case where if they converge to play one action profile,

then it should be a strict Nash equilibrium. Notice that if one action profile (si)i∈I is

played forever, then (1) each player receives a better payoff than the assessment of chosen

action and he plays the action again, (2) each player receives a payoff which is not better

than the assessment of chosen action, but the assessments of the other actions are less

than the payoff, so that he plays the action again, or (3) the action gives the same payoff

for any other players’ actions, so that the assessment of the action is unchanged and the

assessments of other actions are strictly less than the assessment of the action1.

I say that players end up playing (si)i∈I if there exists n such that for all periods after

n, players play (si)i∈N . If the condition Qi
m(si) > Qi

m(ti) satisfies for all i, m > n, and

si 6= ti, then players end up playing (si)i∈I
2. In the following statements, I focus on the

cases where all pure Nash equilibria are strict. I also assume that there do not exist any

redundant actions which always give the same constant payoff; for any i ∈ N and actions

si, ti ∈ Si, si 6= ti, the following condition does not hold;

ui(si, s−i) = ui(ti, t−i) for all s−i, t−i ∈ S−i.

Lemma 8. For any initial assessments, players never end up playing (si, s−i) if ∃i ∈ N ,

∃ti ∈ Si s.t.

ui(ti, t−i) 6= ui(ti, r−i) for some r−i 6= t−i ∈ S−i

1If players’ tie break rule satisfy the inertia condition, then the assessment of other actions need to
be weakly less than the assessment of this action and the action is played in the previous period.

2This condition does not include some convergence case which happens when I assume the inertia
condition to all players. In such a case, I can weaken the condition as follows; players converge to play
(si)i∈N if there exist n and (Qi

n)i∈I such that for all m ≥ n, i, and ti 6= si, Qi
m(si) ≥ Qi

m(ti) where player
i picks si in period n.

52



and

ui(si, s−i) ≤ min
t−i∈S−i

ui(ti, t−i). (3.4)

Proof. I prove by contradiction; I assume that there exists a set of assessments such that

players end up playing (si)i∈I . Hence, there exists n such that for all m > n, Qm(si) >

Qm(ti) > mint−i∈S−i u
i(ti, t−i) for all ti ∈ Si 1. If ui(si, s−i) ≥ Qm(si), then ui(si, s−i) ≥

Qm(si) > Qm(ti) > mint−i∈S−i u
i(ti, t−i), which contradicts the hypothesis. If Qi

m(si) >

ui(si, s−i), then it should be that Qi
m(si) > ui(si, s−i) ≥ Qi

m(ti) > mint−i∈S−i u(ti, t−i), if

not, then Qi
m(si) becomes less than Qi

m(ti). However, again the condition contradicts the

hypothesis.

If condition (3.4) is satisfied at non-Nash equilibrium action profiles, then players never

end up playing one of them. It is also obvious that the condition is not satisfied at each

strict Nash equilibrium. Condition (3.4) says that there exists at least one player who can

find an action which always gives a better payoff than his current payoff from the action. It

also means that there exists a player who receives a payoff which is less than his maximin

payoff. Though the condition limits the class of games, still there exist interesting games

which satisfy the condition. For example, the stag hunt game satisfies condition (3.4) at

non-Nash equilibrium action profiles and has the following payoff matrix;

Rabbit Stag
Rabbit 1,1 2,0
Stag 0,2 5,5

At non-Nash equilibrium action profile, one player decides to hunt a stag while the

other player decides to hunt a rabbit. The player who decides to hunt a stag fails and

1The following argument is also true if I assume that Qm(si) ≥ Qm(ti) for all m > n, which is the
condition for convergence when the inertia condition is assumed for each player’s tie break rule.
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receives nothing and the payoff is less than the minimum payoff from hunting a rabbit, 1,

which is given when both players decide to hunt a rabbit together and share it.

Another coordination game which satisfies condition (3.4) is the first order statistic

game where each player chooses a number from a finite set and coordination occurs when

all of them pick the same number. In addition, if players succeed to coordinate at a higher

number then they receive a better payoff. When they fail to coordinate on choosing the

same number, the player who has chosen the smallest number receives the best payoff,

the player who has chosen the second smallest number receives the second best payoff,

and so on; the smaller number the player has chosen, the better payoff he receives. For

example, I consider the case where each player picks a number from one to four and the

payoff matrix of each player is expressed as follows:

1 2 3 4

1 1 1.5 1.5 1.5

2 0 2 2.5 2.5

3 -1 0 3 3.5

4 -2 -1 0 4

The first column represents player i’s choice while the first row represents the minimum

value of his opponents’ choices. It is easy to see that at each Nash equilibrium, all players

pick the same number. Since action 1 gives at least 1 and players who fail to pick the

smallest number receives at most 0, this game satisfies the condition (3.4).

In both games, condition (3.4) holds strictly. In other games, such as the battle

of the sexes and pure coordination games, condition (3.4) holds weakly, in particular

ui(si, s−i) = ui(ti, t−i) for all i and (si), (ti) /∈ E∗, where E∗ is the set of pure Nash

54



equilibria. For instance, the battle of the sexes game has the following payoff;

s21 s22
s11 1,2 0,0
s12 0,0 2,1

In the following theorem, I show that players end up playing a Nash equilibrium almost

surely if (i) condition (3.4) is satisfied strictly at non-Nash equilibrium profiles, or (ii) if

each player’s payoffs at non-Nash equilibrium action profiles are equal;

Theorem 3. Players end up playing a strict Nash equilibrium almost surely if (i) ∀(si)i∈N /∈

E∗, ∃i ∈ N , ∃ti ∈ Si s.t.

ui(si, s−i) < min
t−i∈S−i

ui(ti, t−i). (3.5)

or (ii) ui(si, s−i) = ui(ti, t−i) ∀i ∈ N and ∀(si)i∈N , (ti)i∈N /∈ E∗.

Proof. See Appendix.

3.4 VHBB Coordination Games

I first consider the coordination game proposed by Van Huyck, Battalio and Beil (1990),

where there exist M players with Si = S = {1, 2, ..., J} for all i ∈ N = {1, ...,M} and

players have the following payoff function;

ui(si, s−i) = a(min{s1, ..., sM})− bsi,

where a > b > 0 for all i ∈ N . If J=4, then player i’s payoffs are shown by the

following matrix;
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1 2 3 4

1 a-b a-b a-b a-b

2 a-2b 2a-2b 2a-2b 2a-2b

3 a-3b 2a-3b 3a-3b 3a-3b

4 a-4b 2a-4b 3a-4b 4a-4b

where the numbers in the first column correspond to player i’s action and the numbers

in the first row correspond to the minimum values of the opponents’ actions. It is easy to

check that (j, j, j, ...., j), j ∈ S, is a pure Nash equilibrium.

Notice that the pure Nash equilibria except (1, 1, ..., 1) are absorbing. However, if

I assume the inertia condition for each player’s tie break rule, then (1, 1, ..., 1) is also

absorbing. In this section, I assume that each player’s tie break rule satisfies the inertia

condition.

Lemma 9. For j ∈ S, the pure Nash equilibrium (j, j, ..., j) is absorbing.

When a player is choosing the smallest action among players’ actions, he is receiving

the best payoff that the action can give. Therefore, the player does not change his action

when he is choosing the smallest action except when he chooses 1 and is facing a tie

break situation. If the inertia condition is satisfied, then he chooses 1 forever and the

minimum value of actions does not increase over time. Moreover, since the minimum

value is bounded below, it converges.

Lemma 10. The minimum value of actions among players is non-increasing over periods

and converges almost surely.

I additionally assume that each action’s second best payoff, a(j−1)−bj for j ∈ S/{1},
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is less than the secure payoff, a− b. That is,

a(j − 1)− bj < a− b

for all j ∈ S/{1}. This means that each player receives a payoff better than the

secure payoff only when his choice is the smallest among all players’ choices. Given this

assumption, players end up playing a Nash equilibrium.

Proposition 8. If a(j − 1) − bj < a − b for all j ∈ S\{1} and players’ tie break rules

satisfy the inertia condition, then players end up playing a pure Nash equilibrium almost

surely.

Proof. If a player is choosing an action which is not the smallest action among players,

then the payoff which the action gives is less than a− b. Let j(n) be the minimum value

of actions in period n. From Lemma 10, j(n) ≥ j(m) for m ≥ n. Hence, actions which are

strictly greater than j(n) always give a payoff less than a − b after period n. Therefore,

each player never plays s > j(n) infinitely often. If s > j(n) is played infinitely often,

then the assessment of the action becomes lower than a − b in some period m > n with

probability one; that is, the assessment of the action becomes lower than the assessment

of action 1. Since the assessment of the action 1 never changes, he never plays action s

afterwards, which contradicts the hypothesis. Thus, after some period l > n, he plays j(n)

or some lower action. If all players play j = j(n), then players play (j, j, ..., j) afterwards.

If one player plays k < j(n) in period m > n and j(m) = k, then I can apply the same

logic. If j(n) = 1, then there is no lower number that players can choose and they end up

playing Nash equilibrium (1, 1, ..., 1). Since there are finitely many players and actions,
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players end up playing a Nash equilibrium almost surely.

3.5 2×2 Coordination Games

In this section, I focus on 2×2 coordination games, which have the following payoff matrix;

s21 s22

s11 a11, b11 a12, b12

s12 a21, b21 a22, b22

where a11 > a21, a22 > a12, b11 > b12 and b22 > b21 hold. Note that in these coordina-

tion games, the pure Nash equilibria are (s11, s
2
1) and (s12, s

2
2). For the purpose of analysis,

I divide 2×2 coordination games into three categories according to the number of action

profiles at each of which each player receives a payoff which is strictly better than another

payoff that his current action gives; if (s1i , s
2
j) is such an action profile, then aij > aik and

bij > blj for j 6= k and i 6= l. Note that such action profile is absorbing. Therefore, the

categorization also depends on the number of absorbing states under the tie break rule

with the uniform condition. It is easy to check that there exist three possible cases for

general 2×2 games: (1) both diagonal or both off-diagonal action profiles are absorbing

states; (2) only one action profile is an absorbing state; or (3) there does not exist any

absorbing state.

Since 2×2 coordination games have additional conditions, off-diagonal action profiles

cannot be absorbing at the same time. Therefore, the condition for (1) is as follows;

(1) min{a11, a22} > max{a21, a12} and min{b11, b22} > max{b12, b21}.
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In the case of (2) and (3), the following condition should hold:

(2), (3) min{a11, a22} ≤ max{a21, a12} or min{b11, b22} ≤ max{b12, b21}.

Without loss of generality, I assume for case (2) and (3) that a22 ≤ a21, that is, a11 >

a21 ≥ a22 > a12 holds. Note that if an absorbing state exists, then it should be (s11, s
2
1) or

(s12, s
2
1). Given the inequality of payoffs for player 1, (2-1) if b11 > b21 holds, then (s11, s

2
1)

is the unique absorbing state; (2-2) if b21 > b11 and a21 > a22 hold, then (s12, s
2
1) is the

unique absorbing state; (3) if otherwise, then there does not exist an absorbing state.

In the following sections, I investigate games in categories (1), (2-1), (2-2) and (3).

Specifically, the following games are considered: the battle of the sexes game and pure

coordination games from category (1), the stag hunt game from category (2-1) and market

entry games and the game of chicken from category (2-2) and (3).

3.5.1 The Battle of the Sexes Game and Pure Coordination
Games

In this subsection I consider coordination games in category (1). Games in this cate-

gory satisfy the following conditions; min{a11, a22} > max{a21, a12} and min{b11, b22} >

max{b12, b21} and on-diagonal action profiles, pure Nash equilibria, are absorbing states.

The condition says that for both players, coordinating one of the Nash equilibria always

gives a better payoff than playing non-Nash equilibrium profiles. It is easy to see that the

battle of the sexes game and pure coordination games satisfy the condition. For instance,

the battle of the sexes game has the following payoff matrix;

In this game, the row player prefers going to a football game together to going to an
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Opera Football
Opera 1, 2 0, 0

Football 0, 0 2, 1

opera together, while the column player enjoys going to the opera together more than

going to a football game together. However, players are worse off when they fail to

coordinate to go to one of them.

By Theorem 3, we know that players end up playing a pure Nash equilibrium almost

surely;

Corollary 4. In 2×2 coordination games in category (1), if u1(s1k, s
2
l ) ≥ u1(s1l , s

2
k) and

u2(s1l , s
2
k) ≥ u2(s1k, s

2
l ) for k 6= l, then players end up playing a pure Nash equilibrium.

Another case to be considered is that each player receives the worst payoff from the

same action profile. Assume that players have the following payoff matrix;

Opera Football
Opera 1,2 0,0

Football 0.5,0.5 2,1

Notice that the row player enjoys going to a football game alone more than going to an

opera alone. The column player is in the opposite situation - she enjoys going to the opera

alone more than going to the football game alone. In this case, it is a possible outcome

that players fail to coordinate and they end up playing their favored actions (Football,

Opera).

Proposition 9. In 2×2 coordination games in category (1), if u1(s1k, s
2
l ) > u1(s1l , s

2
k) and

u2(s1k, s
2
l ) > u2(s1l , s

2
k) for k 6= l, then players end up playing a Nash equilibrium or (s1k, s

2
l ).
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Proof. Since (s1l , s
2
k) gives the worst payoff for both players, they never play (s1l , s

2
k) in-

finitely often. Notice, too, that if Q1(s1l ) < akl and Q2(s2k) < bkl, then player 1 never

plays s1l and player 2 never plays s2k; they end up playing (s1k, s
2
l ). In sum, players end up

playing a Nash equilibrium or (s1k, s
2
l ).

3.5.2 The Stag Hunt Game

In this subsection, I consider coordination games in category (2-1), where the conditions

a11 > a21 ≥ a22 > a12 and b11 > b21 hold. For example, the stag hunt game satisfies this

condition; the condition b11 > b12 ≥ b22 > b21 holds in the stag hunt game. For instance,

the stag hunt game has the following payoff matrix;

s21 s22
s11 10,10 0,8
s12 8,0 7,7

It is worth noting that in the stag hunt game, Nash equilibrium (s12, s
2
2) is not absorb-

ing. However, players end up playing one of pure Nash equilibria, including (s12, s
2
2). In

the stag hunt game, at each off-diagonal action profile, one player receives the worst pay-

off. Therefore, by Theorem 3, players end up playing a Nash equilibrium almost surely.

In category (2-1), a slightly weaker condition on off-diagonal payoffs is required for the

convergence to Nash equilibrium;

Proposition 10. In 2×2 coordination games in category (2-1), players end up playing a

pure Nash equilibrium almost surely if b12 ≥ b21.

Proof. Note that if players play (s11, s
2
1) once, they play it forever. Now I show that players

never stick to (s11, s
2
2) or (s12, s

2
1). If players play (s11, s

2
2) infinitely often, then whenever they
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play it, there is a positive probability that the assessment of s11 becomes lower than a22 and

then player 1 stops playing s11. Next I assume that b12 > b21. By the same logic, players

cannot play (s12, s
2
1) infinitely often, since player 2 stops playing s21 in some period in which

Q2(s21) < b12. Last, I assume that b12 = b21. I assume that players never play (s11, s
2
1).

Therefore, players play only (s11, s
2
2), (s12, s

2
1) or (s12, s

2
2). Note that when players (s12, s

2
1),

player 2 is receiving the worst payoff, while player 1 is receiving the best payoff from s12.

Therefore, player 2 changes his action to s22 at some point. Note also that if Q1(s11) > a22,

then players change to play (s11, s
2
2) at some point, since player 1 is receiving the worst

payoff from s12. At (s11, s
2
2), both players receive the worst payoff so players change and play

(1) (s12, s
2
1) or (2) (s12, s

2
2). Hence, players infinitely play (s11, s

2
2). If so, then at some period,

the assessment of action s11 becomes lower than a22. Therefore, player 1 stops playing s11.

Given this fact, players end up by playing (s12, s
2
2) almost surely. This is because (1) at

(s12, s
2
1) player 2 receives the worst payoff and he changes to s22, (2) at (s12, s

2
2), player 1

receives the worst payoff from action s12, though the assessment of s11 is lower than a22;

player 1 never changes his action to s11.

If b12 < b21 is satisfied, then there exists a possibility that players play (s12, s
2
1) forever.

This happens when Q2(s22) < b21 and Q1(s11) < a22.

3.5.3 The Game of Chicken and Market Entry Games

In this subsection, I first consider coordination games in category (2-2), where b21 > b11

and a21 > a22 hold. Since (s12, s
2
1) is absorbing, the convergence to Nash equilibrium is

not guaranteed in games in this category. For example, the game of chicken satisfies the

condition, where it has the following payoff matrix:
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Swerve Stay

Stay 1, -1 -10, -10

Swerve 0, 0 -1, 1

where each player shows his cowardice to the audiences when he swerves while his

opponent stays. If both players swerve, then both of them are safe and receive nothing.

However, the best outcome for each player is that he stays while the opponent swerves,

so that he can gain reputation. The worst scenario is that both players stay and have a

severe accident.

Note that when they play (Swerve, Swerve), the assessment for the action ”Swerve”

for both players does not deteriorate and they continue to play (Swerve, Swerve). Notice

that they never end up at (Stay, Stay). If so, then one player’s assessment of action

“Stay” becomes lower than -1 at some point and the player stops playing the action.

In addition, when players play action profiles except (Swerve, Swerve), there exists a

positive probability that the assessment of “Stay” becomes lower than -1. If so, the player

stops playing “Stay” and they end up playing a Nash equilibrium or (Swerve, Swerve).

For this type of game, we have the following result:

Proposition 11. In coordination games in category (2-2), players end up playing a Nash

equilibrium or (s12, s
2
1) almost surely.

Proof. First of all, players cannot end up playing (s11, s
2
2). If it does, one player’s as-

sessment of the action becomes lower than the minimum payoff of the other action and

he stops playing the action. Notice also that (s12, s
2
1) is absorbing and players end up

playing (s12, s
2
1) once players play it. In addition, for each pure Nash equilibrium, there

exists an assessment for each player and each action such that players end up playing the
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Nash equilibrium. Therefore, the other case to be considered is that players play Nash

equilibria and (s11, s
2
2) infinitely often without converging to either of them. However, this

happens with probability zero. It is easy to show that (s11, s
2
2) is played infinitely often in

this case. The reason is that the player who is receiving the best payoff at a Nash equilib-

rium does not change his action while the other player receives the worst payoff from the

action and changes his action. Thus players change to play from one Nash equilibrium to

another action profile, (s11, s
2
2). When (s11, s

2
2) is played, with the positive probability that

is bounded below, one player’s assessment of the action becomes lower than the minimum

payoff of the other action and he stops playing the action. In this case, players end up

playing a Nash equilibrium or (s12, s
2
1). Since (s11, s

2
2) is played infinitely often, players end

up playing a Nash equilibrium or (s12, s
2
1) almost surely.

Now consider a market entry game which has the following payoff matrix;

Stay Out Enter
Enter 100,0 -50,-50

Stay Out 0,0 0,100

where the action “Stay Out” always gives 0. Notice that this game satisfies the

condition b21 = b11 and a21 = a22 and there does not exist any absorbing state. In this

case, players end up playing (Enter, Stay Out), (Stay Out, Enter) or (Stay Out, Stay

Out). For instance, once player 1’s assessment of “Enter” becomes lower than 0, he does

not play “Enter” any more. Then, players end up playing (Stay Out, Enter) if player 2’s

assessment of “Enter” is greater or equal to 0 and players end up playing (Stay Out, Stay

Out) otherwise. Since (Enter, Enter) gives the worst payoff to both players, at some point,

at least one player’s assessment of “Enter” becomes lower than 0. Therefore, players end
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up playing one of the action profiles, except for (Enter, Enter).

3.6 Non-Random Weighting Parameters

In this section, I assume that players’ weighting parameters are not random variables. For

example, players may believe that all past experiences equally represent the corresponding

action’s value, that is, players believe that the environments in which they are involved are

stationary. Therefore, in each period, players put the same weight on all past experiences

and players’ assessments become arithmetic mean of past payoffs. Note that the weighting

parameters for each player are as follows; λin(sij) = 1
τ(n)+1

for all i ∈ N and sij ∈ Si where

τ(n) is the number of times that the action sij is played until period n.

I also consider the players who have the following weighting parameters; λin(sij) = λ for

all i, sij and n as in Sarin and Vahid (2001); all players have constant weighting parameters

in all periods, that is, both players always put the same weight on the received payoff in

each period. It is reasonable to assume this condition if players believe that the situation

they are facing is non-stationary. If λ is close to 1, then players believe that only the most

recent payoffs give information about the values of corresponding actions. If λ is close

to 0, then players believe that initial assessments of actions mostly represent the actions’

value.

In this section, I consider the battle of the sexes game, in which players may play off-

diagonal action profiles alternately without ending up at a Nash equilibrium. In detail, I

first consider the case where λin(sij) = 1
τ(n)+1

for all i, sij and n and off-diagonal payoffs

for each player are all equivalent; a12 = a21, b12 = b21. In particular, I assume that a12 = 0

and b12 = 0.
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As an example, consider the case where players’ initial assessments are as follows:

Q1
1(s

1
1) = 0.2, Q1

1(s
1
2) = 0.2 + ε, Q2

1(s
2
1) = 0.2 + ε, Q2

1(s
2
2) = 0.2, where ε ∈ (0, 0.2) is an

irrational number. In this case, in the first period, they play (s12, s
2
1) and both players

receive payoff 0. In period 2, players’ assessments are as follows: Q1
2(s

1
1) = 0.2, Q1

2(s
1
2) =

1
2
(0.2 + ε), Q2

2(s
2
1) = 1

2
(0.2 + ε), Q2

2(s
2
2) = 0.2. Notice that the assessments of s11 and s22 are

greater than the assessments of s12 and s21. Hence, players play (s11, s
2
2) and both players

receive payoff 0. Using the payoff information in period 2, they update their assessments

and they have the following assessments in period 3: Q1
3(s

1
1) = 1

2
(0.2), Q1

3(s
1
2) = 1

2
(0.2+ε),

Q2
3(s

2
1) = 1

2
(0.2 + ε), Q2

3(s
2
2) = 1

2
(0.2). Then players play (s12, s

2
1) in period 3. Notice that

their assessments of action s11 and s22 never coincide with the assessments of action s12 and

s21 at any period because of ε. After period 3, players play (s12, s
2
1) until the corresponding

assessments become lower than the assessments of (s11, s
2
2). After the event, players again

switch back to play (s11, s
2
2), and so on.

When λin(sij) = 1
τ(n)+1

for all i, sij and n, the following statement shows the condition

of initial assessments for coordination failures, which is the play on off-diagonal action

profiles alternately. In this section, I assume that players’ tie break rules satisfy the inertia

condition.

Proposition 12. In 2 × 2 coordination games with a12 = a21 = b12 = b21 = 0, under the

inertia condition, if λin(sij) = 1
τ(n)+1

for all i, sij and n, then the necessary and sufficient

condition for the coordination failure is as follows:

Q1
1(s

1
2)

Q1
1(s

1
1)

=
Q2

1(s
2
1)

Q2
1(s

2
2)

Proof. See Appendix.
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This result says that players will play non-Nash equilibria alternately forever if and

only if players’ ratios of initial assessments “coordinate”.

Next, I consider the players who have the following weighting parameters; λin(sij) = λ

for all i, sij and n. Then the necessary and sufficient condition of initial assessments for

the coordination failure is as follows:

Proposition 13. In 2 × 2 coordination games with a12 = a21 = b12 = b21 = 0, under

the inertia condition, if λin(sij) = λ for all i, sij and n, then the necessary and sufficient

condition for the coordination failure is as follows; for some z ∈ Z,

(1− λ)z−1 >
Q1

1(s
1
2)

Q1
1(s

1
1)
≥ (1− λ)z and (1− λ)z−1 >

Q2
1(s

2
1)

Q2
1(s

2
2)
≥ (1− λ)z

or

(1− λ)z−1 ≥ Q1
1(s

1
2)

Q1
1(s

1
1)
> (1− λ)z and (1− λ)z−1 ≥ Q2

1(s
2
1)

Q2
1(s

2
2)
> (1− λ)z

Proof. See Appendix.

Since players play a Nash equilibrium forever if they coordinate once on the Nash

equilibrium, for each case, the negation of the condition is the one for the success of

coordination. For instance, if off-diagonal payoffs are all zero and players are frequentists,

then they coordinate in some period and in all subsequent periods if and only if the

initial assessments for both players and actions should satisfy the following condition:

Q1
1(s

1
2)

Q1
1(s

1
1)
6= Q2

1(s
2
1)

Q2
1(s

2
2)

.

3.6.1 Coordinated Play on the Off-Diagonal Action Profiles
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It is an interesting question whether the empirical frequency of play on the off-diagonal

action profiles converges to the mixed Nash equilibrium. In fictitious play, Monderer and

Shapley (1996) show that every 2×2 game with the diagonal property1 has the fictitious

play property; the empirical frequency of past play, which is a belief of players about an

opponent player’s behaviour, converges to a Nash equilibrium.

First note that 2 × 2 coordination games with a21 = a12 = b12 = b21 = 0 also have

the diagonal property. In the case, under the condition of coordination failure, players

forever play off-diagonal action profiles alternately. However, the frequency of the play

need not converge to the mixed Nash equilibrium. I show this by an example. Consider

the battle of the sexes game which has the following payoff matrix;

s21 s22
s11 1,2 0,0
s12 0,0 2,1

I assume that weighting parameters and initial assessments for players are as follows:

λ1n(s11) = λ2n(s22) = 1
2
, λ1n(s12) = λ2n(s21) = 1

4
, Q1

1(s
1
1) = Q2

1(s
2
2) = 1

2
, Q1

1(s
1
2) = Q2

1(s
2
1) = 1

4
.

Under the inertia condition for both players, it is easy to see that players play action

profiles in the following order; (s11, s
2
2) → (s11, s

2
2) → (s12, s

2
1) → (s11, s

2
2) → (s11, s

2
2) →

(s12, s
2
1) → .... In period 1, they play (s11, s

2
2) and the assessments of s11 and s22 become 1

4
.

Because of the inertia condition, they choose (s11, s
2
2) again in period 2 and their assess-

ments become 1
8
. Now players change to play (s12, s

2
1) in period 3 and the assessments of

1The game has the diagonal property if α 6= 0 and β 6= 0, where

α = a11 + a22 − a12 − a21

and

β = b11 + b22 − b12 − b21.
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s12 and s21 become 1
16
. In period 4, players return to play (s11, s

2
2) and so on. Therefore, the

empirical frequencies of play for both players converge to ((2
3
, 1
3
), (1

3
, 2
3
)), while the mixed

Nash equilibrium in this game is ((1
2
, 1
2
), (1

2
, 1
2
)).

3.7 Discussion

This model can be also interpreted as a population model. Consider the situation in which

there exist two large populations of naive players. In each period one player is picked from

each population randomly and plays a 2×2 coordination game, but he can play the game

only once1. After each player plays the game, he reports the payoff which he has received

to each population. I assume that each population does not share information with

the other population. Each population accumulates information as a public assessment,

which consists of realized payoffs and the initial assessment. In each period, the public

assessment of the action which is played is updated, using realized payoffs as defined

above; the convex combination of the realized payoff and the public assessment in the

previous period. Each player may not know whether he is playing a game, but he knows

the public assessment. Using the public assessment, each player chooses an action which

has the highest public assessment.

For example consider the battle of the sexes game. After the result of going to the

opera or the football, both players report the realized payoff to the population which they

belong to so that people in the population can make an assessment before they play the

game themselves. The result above says that players from two different populations never

coordinate when initial assessments satisfy the condition in Proposition 12 when they are

1Or each population is so large that the probability that a player plays a game again is almost 0.
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frequentists. Otherwise, players coordinate to play one of the pure Nash equilibria.

3.8 Appendix

3.8.1 Proof of Theorem 3

It is a direct consequence from Lemma 8 that if players end up playing one action profile,

then it should be a strict Nash equilibrium. Therefore, it should be shown that they

actually end up playing a strict Nash equilibrium. The intuition of the proof is as follows.

Since off-diagonal action profiles cannot be played infinitely often, there exists a period

after which players only play Nash equilibria. Since I consider games with strict Nash

equilibrium, players should change their actions at the same time when they move from

one Nash equilibrium to another Nash equilibrium. Note also that weighting parameters

are assumed to be independent, so that perfect correlated play on Nash equilibria is

impossible. Now, the detailed proofs are given in the following arguments.

(i) At any non-Nash equilibrium action profile, there exists a positive probability

such that one player who is receiving a worse payoff stops playing the action and plays

another action. Note that at the non-Nash equilibrium action profile, (si)i, the player

who is suffering the worse payoff never plays his current action at least with the following

probability:

Pr(Qi
n(si) ∈ (ui(si, s−i), min

t−i∈S−i
ui(ti, t−i)) | A),

where A := {Qi
n−1(s

i) > Qi
n−1(t

i) ∀i ∈ N, ∀ti 6= si} and this probability is bounded below
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by the following probability:

Pr(Qi
n(si) ∈ (ui(si, s−i), min

t−i∈S−i
ui(ti, t−i))) | A,B),

where B = {Qi
n−1(s

i) = maxs−i u
i(si, s−i)}. Since the sets of players and actions are finite,

if players play a non-Nash equilibrium action profile infinitely often, then the player who

receives a worse payoff stops playing the action with probability one. Therefore, players

do not play a non-Nash equilibrium action profile infinitely often. Hence, I assume that

players only play some Nash equilibrium action profiles. The cases to be considered

are that players play some Nash equilibria alternately without converging one of them.

Since the game which I consider here has only strict Nash equilibria, all players should

change their strategies at the same time when they change from one Nash equilibrium

to another. Let (si∗)i∈N and (si∗∗)i∈N be two different strict Nash equilibrium action

profiles which are played infinitely often. In this argument, I assume that players play

only those two strict Nash equilibria alternately. The argument can be extended easily

to the case where players play more than two Nash equilibria. Note that since players

change one strict Nash equilibrium action profile to another strict Nash equilibrium action

profile at the same time, all players should receive the payoffs which are strictly less than

their current assessments. It should be true that ui(si∗, s−i∗) = ui(si∗∗, s−i∗∗) for all i

and each player i’s assessment never reaches the level ui(si∗, s−i∗) in a finite period. In

the following argument, I show that players fail to play strict Nash equilibria alternately

with probability one; to show that, I consider the periods in which players change from

(si∗∗)i∈N to (si∗)i∈N .

By the assumption on weighting parameters, we can ignore the case where Qi(si∗) =
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Qi(si∗∗). Note also that we have the following results. Consider period n such that the

condition Qi
n−1(s

i∗) > Qi
n−1(s

i∗∗) > Qi
n(si∗) holds. Then for any small ε ∈ (0, 1), there

exist 0 < ci, di < 1 such that

Pr(Qi
n(si∗) ∈ (εui(si∗∗, s−i∗∗) + (1− ε)Qi

n−1(s
i∗∗), Qi

n−1(s
i,∗∗)) | C) ≤ ci

and

Pr(Qi
n(si∗) ∈ (ui(si∗∗, s−i∗∗), (1− ε)ui(si∗∗, s−i∗∗) + εQi

n−1(s
i∗∗)) | C) ≤ di,

where C := {Qi
n−1(s

i∗) > Qi
n−1(s

i∗∗) > Qi
n(si∗)}. Note that

Pr(Qi
n(si∗) ∈ (εui(si∗∗, s−i∗∗) + (1− ε)Qi

n−1(s
i∗∗), Qi

n−1(s
i∗∗)) | C)

=
Pr(εui∗∗ + (1− ε)Qi∗∗

n−1 < λui∗∗ + (1− λ)Qi∗
n−1 < Qi∗∗

n−1)

Pr(λui∗∗ + (1− λ)Qi∗
n−1 < Qi∗∗

n−1)

=
F (K)− F ((1− ε)K)

F (K)

= 1− F ((1− ε)K)

F (K)

and

Pr(Qi
n(si∗) ∈ (ui(si∗∗, s−i∗∗), (1− ε)ui(si∗∗, s−i∗∗) + εQi

n−1(s
i∗∗)) | C)

=
Pr(ui∗∗ < λui∗∗ + (1− λ)Qi∗

n−1 < (1− ε)ui∗∗ + εQi∗∗
n−1)

Pr(λui∗∗ + (1− λ)Qi∗
n−1 < Qi∗∗

n−1)

=
F (εK)

F (K)
,

where ui∗∗ = ui(si∗∗, s−i∗∗), λ = λin(si∗∗), Qi∗
n−1 = Qi

n−1(s
i∗), Qi∗∗

n−1 = Qi
n−1(s

i∗∗), F (x) =
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Pr((1 − λ) ≤ x) for x ∈ (0, 1) and K =
Qi∗∗n−1−ui∗∗

Qi∗n−1−ui∗∗
. Notice that for any K ∈ (0, 1],

F (cK)
F (K)

∈ (0, 1) and limK→0
F (cK)
F (K)

= limK→0
cf(cK)
f(K)

= c where c ∈ {ε, 1− ε}, f is the density

function for the weighting parameter and f(0) <∞.

Therefore for player i, with probability one, there exist infinitely many periods n such

that

Qi
n(si∗) < εui(si∗∗, s−i∗∗) + (1− ε)Qi

n−1(s
i∗∗).

and

Qi
n(si∗) > (1− ε)ui(si∗∗, s−i∗∗) + εQi

n−1(s
i∗∗).

I focus on the cases where both conditions hold when player i changes his action from si∗

to si∗∗.

Now I consider period n in which players are playing (si∗∗)i∈N . For the case

Qj
n+1(s

j∗) ∈ [εuj(sj∗∗, s−j∗∗) + (1− ε)Qj
n(sj∗∗), Qj

n(sj∗∗))

for j 6= i, we have

Pr(Qi
n+1(s

i∗∗) ≥ Qi
n(si∗))× Pr(Qj

n+1(s
j∗∗) < Qj

n(sj∗)) ≥ e1,ij,

and for the case

Qj
n(sj∗) < εuj(sj∗∗, s−j∗∗) + (1− ε)Qj

n(sj∗∗)

for j 6= i, we have

Pr(Qi
n+1(s

i∗∗) < Qi
n(si∗))× Pr(Qj

n+1(s
j∗∗) ≥ Qj

n(sj∗)) ≥ e2,ij
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for some e1ij > 0 and e2,ij > 0. In any cases, the probability that players fail to play

the same strict Nash equilibrium in period n + 1 has positive probability which has the

lower bound minh∈{1,2}minij,i6=j{eh,ij} > 0. Since players change from (si∗∗)i∈N to (si∗)i∈N

infinitely many times, players fail to play strict Nash equilibrium with probability one,

which contradicts the hypothesis. Therefore, the only possibility is that players play only

one Nash equilibrium after some period.

(ii) Note that if the condition in (ii) satisfies, then the payoff from any Nash equilibrium

should be greater than the payoff from non-Nash equilibrium; ui(si∗, s−i∗) > ui(si, s−i) for

all i ∈ N, (si∗) ∈ E∗, and (si) /∈ E∗. Therefore, each pure Nash equilibrium is absorbing

and players who play a Nash equilibrium once play it forever. By the same logic as the

proof in (i), players cannot play only non-Nash equilibrium action profiles forever. That

is, with probability one, players play a Nash equilibrium at some time and then play it in

all subsequent periods.

3.8.2 Proof of Proposition 12

I assume that each player’s initial assessments of both actions are different. Then the

condition of coordination failure under the inertia condition for each player’s tie break

rule is as follows; for j 6= k and (1) for the initial assessment, Qi
1(s

i
j) > Qi

1(s
i
k) and

Q−i1 (s−ik ) > Q−i1 (s−ij ) and (2) for any n, Qi
n(sij) ≥ Qi

n(sik) and Q−in (s−ik ) ≥ Q−in (s−ij ), where

if one of the inequalities holds, then (i) Qi
n−1(s

i
j) > Qi

n−1(s
i
k) and Q−in−1(s

−i
k ) > Q−in−1(s

−i
j )

and (ii) Qi
n+1(s

i
j) < Qi

n+1(s
i
k) and Q−in+1(s

−i
k ) < Q−in+1(s

−i
j ). Let Q̂i

t(s
i
j) be the assessment

of action sij when only (sij, s
−i
k ) is played t times where j 6= k. Then it can be easily

verified that the condition for coordination failure is equivalent to the following condition;
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for any u, t ∈ N, Q̂i
u(s

i
j) ≥ Q̂i

t(s
i
k) and Q̂−iu (s−ik ) ≥ Q̂−it (s−ij ) where if one of inequalities

holds, then Q̂i
u−1(s

i
j) > Q̂i

t(s
i
k) and Q̂−iu−1(s

−i
k ) > Q̂−it (s−ij ) and Q̂i

u+1(s
i
j) < Q̂i

t(s
i
k) and

Q̂−iu+1(s
−i
k ) < Q̂−it (s−ij ) for j 6= k. Therefore, in the following proofs, I use the latter

condition.

The important factor of this argument is that the players change actions at the same

time and they ’coordinate’ at coordination failure. If the players coordinate on diago-

nal action profiles once, then they succeed in coordinating. Therefore if the following

conditions are satisfied, players never coordinate; for any m and n ∈ N,

1

n
Q1

1(s
1
j) ≥

1

m
Q1

1(s
1
k) and

1

n
Q2

1(s
2
k) ≥

1

m
Q2

1(s
2
j)

holds, where equalities among them do not hold consecutively; if one of the equalities

holds at m, n then both inequalities hold strictly at m, n−1 and m, n+1. In the following

argument, I show that this condition is equivalent to the following condition:

Q1
1(s

1
2)

Q1
1(s

1
1)

=
Q2

1(s
2
1)

Q2
1(s

2
2)

To make this clear, I assume first that if one of inequalities holds with equality, then both

inequalities should hold with equality. Then the original condition above can be expressed

as follows:

Q1
1(s

1
2) <

m

n
Q1

1(s
1
1) and Q2

1(s
2
2) >

n

m
Q2

1(s
2
1)

or
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Q1
1(s

1
2) >

m

n
Q1

1(s
1
1) and Q2

1(s
2
2) <

n

m
Q2

1(s
2
1)

or

Q1
1(s

1
2) =

m

n
Q1

1(s
1
1) and Q2

1(s
2
2) =

n

m
Q2

1(s
2
1).

Note that if
Q1

1(s
1
2)

Q1
1(s

1
1)

is a rational number, then there exist m and n such that
Q1

1(s
1
2)

Q1
1(s

1
1)

= m
n
.

By the last condition, we should have
Q2

1(s
2
2)

Q2
1(s

2
1)

= n
m

, that is,
Q2

1(s
2
2)

Q2
1(s

2
1)

should be a rational

number too. If
Q1

1(s
1
2)

Q1
1(s

1
1)

is an irrational number, then
Q2

1(s
2
2)

Q2
1(s

2
1)

should be also an irrational

number. If
Q1

1(s
1
2)

Q1
1(s

1
1)
6= Q2

1(s
2
1)

Q2
1(s

2
2)
, say if

Q1
1(s

1
2)

Q1
1(s

1
1)
>

Q2
1(s

2
1)

Q2
1(s

2
2)
, then there exists a rational number m

n

such that
Q1

1(s
1
2)

Q1
1(s

1
1)
> m

n
>

Q2
1(s

2
1)

Q2
1(s

2
2)
. This means that Q1

1(s
1
2) >

m
n
Q1

1(s
1
1) and Q2

1(s
2
2) >

n
m
Q2

1(s
2
1)

and it contradicts the conditions above. Hence the following relation
Q1

1(s
1
2)

Q1
1(s

1
1)

=
Q2

1(s
2
1)

Q2
1(s

2
2)

is the

only case which satisfies the condition above.

Now consider the other cases. There exist m and n ∈ N such that 1
n
Qi

1(s
i
1) = 1

m
Qi

1(s
i
2)

and 1
n
Qj

1(s
j
2) 6= 1

m
Qj

1(s
j
1), say 1

n
Qj

1(s
j
2) >

1
m
Qj

1(s
j
1),

1. Then

1

n− 1
Qi

1(s
i
1) >

1

m
Qi

1(s
i
2) and

1

n− 1
Qj

1(s
j
2) >

1

m
Qj

1(s
j
1)

and

1

n+ 1
Qi

1(s
i
1) <

1

m
Qi

1(s
i
2) and

1

n+ 1
Qj

1(s
j
2) <

1

m
Qj

1(s
j
1)

1If 1
nQ

j
1(sj2) < 1

mQ
j
1(sj1), then

1

n
Qi

1(si1) <
1

m− 1
Qi

1(si2) and
1

n
Qj

1(sj2) <
1

m− 1
Qj

1(sj1)
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should hold. Notice that
Qi1(s

i
1)

Qi1(s
i
2)

should be a rational number n
m

. Moreover, by the

conditions above, we have n+1
m

>
Qj1(s

j
2)

Qj1(s
j
1)
> n

m
. It is easy to see that at 2n and 2m, the

following conditions also satisfy; 1
2n
Qi

1(s
i
1) = 1

2m
Qi

1(s
i
2) and 1

2n
Qj

1(s
j
2) >

1
2m
Qj

1(s
j
1). Thus

we have the following condition: 2n+1
2m

>
Qj1(s

j
2)

Qj1(s
j
1)
> 2n

2m
. Using the same logic, the condition

should be satisfied for any kn and km where k ∈ N. If k →∞, then the condition becomes

as follows; n
m
≥ Qj1(s

j
2)

Qj1(s
j
1)
> n

m
. However, there do not exist initial assessments which satisfy

this condition1. Therefore the necessary and sufficient condition for initial assessments

for the coordination failure in this case is equivalent to the following condition:

Q1
1(s

1
2)

Q1
1(s

1
1)

=
Q2

1(s
2
1)

Q2
1(s

2
2)
.

3.8.3 Proof of Proposition 13

It can be shown that the following condition is equivalent to the condition for the coor-

dination failure in the coordination game; for any t, there exists u such that

Q̂i
t(s

i
1) ∈ (Q̂i

u+1(s
i
2), Q̂

i
u(s

i
2)] and Q̂−it (s−i2 ) ∈ (Q̂−iu+1(s

−i
1 ), Q̂−iu (s−i1 )]

or

Q̂i
t(s

i
1) ∈ [Q̂i

u+1(s
i
2), Q̂

i
u(s

i
2)) and Q̂i

t(s
−i
2 ) ∈ [Q̂−iu+1(s

−i
1 ), Q̂−iu (s−i1 ))

for all i2. Since Q̂i
t(s

i
j) = (1− λ)tQ̂i

0(s
i
j), the condition in Proposition 13 can be easily

1If 1
nQ

j
1(sj2) < 1

mQ
j
1(sj1) then it satisfies that n+1

m <
Qj

1(s
j
2)

Qj
1(s

j
1)
< n

m . By the same argument, There exist

no initial assessments which satisfy the conditions.
2For example, if Q̂i

m(si1) > Q̂i
0(si2), then I assume that Q̂i

−1(si2) is the maximum payoff which both
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derived.

actions give so that Q̂i
m(si1) ∈ (Q̂i

0(si2), Q̂i
−1(si2)]. In addition, let Q̂i

∞(si2) be the minimum payoff which

both actions give and Q̂i
∞+1(si2) be the minimum payoff of those which both actions give. Then if

Q̂i
m(si1) ≤ Q̂i

∞(si2), Q̂i
m(si1) ∈ (Q̂i

∞+1(si2), Q̂i
∞(si2)].
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CHAPTER 4

ADAPTIVE LEARNING MODELS IN FINITELY
REPEATED GAMES

4.1 Introduction

Many theoretical researchers have analyzed adaptive learning models in normal form

games. In the literature, they investigate the behaviour of adaptive players who learn the

opponents’ behaviour or the values of their own actions over repeated plays of the game.

One of their main interests is whether their behaviour in the long run corresponds to

Nash equilibrium or perturbed Nash equilibrium, which is Nash equilibrium under pay-

off perturbations. Meanwhile, adaptive learning in extensive form games without payoff

perturbations is also of interest among theoretical researchers, who focus on equilibrium

concepts such as sequential equilibrium, subgame perfect equilibrium and self-confirming

equilibrium, which is introduced by Fudenberg and Kreps (1995)1. While an equilibrium

concept in extensive form games with payoff perturbations, agent quantal response equi-

librium, is introduced by McKelvey and Palfrey (1998), to my best knowledge, there is no

1The self-confirming equilibrium may not be Nash equilibrium, since it does not require the correct
belief about behavioural strategies of other players at relevant information sets at off the equilibrium
path. In detail, see Fudenberg and Kreps (1995)
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literature which investigates adaptive learning that leads to the equilibrium. Therefore,

it is intriguing to investigate which type of adaptive learning leads to the equilibrium.

It is not only among theoretical researchers’ interests but also experimental researchers

to investigate learning in extensive form games. For example, the centipede game (McK-

elvey and Palfrey, 1992, Palacious-Huerta and Volij, 2009) and the finitely repeated pris-

oner’s dilemma (Selten and Stoecker, 1986) are such examples. In the experimental liter-

ature, we observe that players learn from their past plays and adjust their behaviour. In

addition, the experiments show deviations from the equilibrium predictions. It is also of

interest to investigate which type of adaptive learning leads to such consequences.

In this chapter, I investigate the learning process of adaptive players who face a fixed

extensive form game, in particular a finitely repeated game in each of infinitely many

periods. In particular, I consider the case in which the players have limited information

about their decision-making environment; they know their available actions in each period

and observe realized payoffs but they may not know their own and opponents’ payoff

functions. Therefore, we need a model which does not require players to have knowledge

about the payoff functions; I consider the case in which each player assigns his subjective

assessments on his actions based on his past experience and picks the action which he

thinks is the best. Using realized payoff information, each player updates the assessments

of chosen actions adaptively; I consider players who follow the Q-learning updating rule

and Sarin and Vahid (1999) updating rule.

I first assume that players experience random shocks on their assessments. If each

stage game of the finitely repeated game consists of an extensive form game with perfect

information, then I show that their behavioural strategies converge to the agent quantal

80



response equilibrium (AQRE hereafter,) introduced by McKelvey and Palfrey (1998).

When a normal form game is played in each stage game, I provide an additional condition

which guarantees convergence to the unique AQRE of the supergame. Next, I assume that

players do not experience random shocks on their assessments. Then I show that (1) when

they face the finitely repeated prisoner’s dilemma, both players may end up cooperating

at each stage game; and (2) when they play some finitely repeated coordination games,

both players end up coordinating in each stage game.

The adaptive learning models considered here are introduced by Watkins and Dayan

(1992) and Sarin and Vahid (1999). The models are developed to analyze decision prob-

lems, some authors have applied the models to investigate normal form games (Sarin,

1999, Leslie and Collins, 2005 and Cominetti et al., 2010) and extensive form games of

perfect information with a unique subgame perfect equilibrium (Jehiel and Samet, 2005).

In particular, Jehiel and Samet (2005) show that players’ strategies, where they follow a

specific Sarin and Vahid (1999) updating rule, approach the unique subgame perfect equi-

librium. Note that in this chapter, I show a similar result, but the underlying games are

allowed to have multiple subgame perfect equilibria. Another learning model in games,

reinforcement learning model, is introduced by Erev and Roth (1998) and when an ex-

tensive form game of perfect information with a unique subgame perfect equilibrium is

played by the players, convergence to the unique subgame perfect equilibrium is shown

by Laslier and Walliser (2005). Lastly, in a learning model which requires players to have

knowledge about the structures of the game, such as fictitious play model, convergence

of beliefs to a unique sequential equilibrium is investigated by Hendon et al. (1993) and

Groes et al. (1999).
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The structure of this chapter is as follows. In Section 4.2, the notation for general

extensive form games is introduced. In Section 4.3 the equilibrium concept under payoff

perturbation, agent quantal response equilibrium, and its properties are provided. In

Section 4.4, the learning rule and the decision rule of adaptive players are introduced.

The results of the learning process are also shown in the chapter. In Section 4.5, the

case without noise is analyzed, and Section 4.7 concludes. All proofs are placed in the

Appendix.

4.2 Extensive Form Games

I first consider an extensive form game1 Γ, which consists of the set of players N , histories

H, player function P , and information sets I. The set of players consists of M players;

N = {1, 2, ...,M}. A history h ∈ H is a sequence of actions taken by players; h =

(a1, ..., aK), ak ∈ A for 1 ≤ k ≤ K, is a history with the length of K, where A is the set

of actions for all players,. The set of histories H includes the empty set ∅ =: h0, which

corresponds to the initial node. A history h = (a1, ..., aK) is terminal if there does not

exist aK+1 ∈ A such that (a1, ..., aK+1) ∈ H. Given a history h, the partial history of

length J is denoted by hJ = (a1, ..., aJ) where J ≤ K . The set of actions which are

available after a non-terminal history h is denoted by Ah. Thus A = ∪h∈HAh. Let Z be

the set of terminal histories. The player function P assigns a member in N to each non-

terminal history; P (h), h ∈ H�Z, is the player who chooses an action after the history h.

Let I i be a partition of the set {h : P (h) = i} and I i be a member of I i with the property

that Ah = Ah′ =: AIi for h, h′ ∈ I i. Thus I i is an information set of player i and I i is the

1I follow the notation of Osborne and Rubinstein (1994)
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set of player i’s information sets. Let I = ∪i∈NI i denote the set of information sets for

all players, which is a partition of non-terminal histories. Note that if any I ∈ I consists

of a single history, then the extensive form game is the one with perfect information. Let

π : Z → RM be a payoff function which assigns payoffs of all players to each terminal

history and πi be a payoff function for player i.

In this chapter, I restrict our attention to extensive form games with perfect recall. Let

Ih be the information set which contains h. Let I ih denote the set of player i’ information

sets which are reached by h = (a1, ..., ak): I ih = {Ih′ : h′ is a partial history of h and

P (h′) = i}. Let lih : {1, 2, ..., |I ih|} → I ih be a function which orders the information sets

in I ih in the way in which the information sets are reached. Let alih : {1, 2, ..., |I ih|} → A

be the function such that player i’s actions taken at information sets in I ih are ordered as

they occur1. Then the extensive form game has perfect recall if for each i ∈ N, I ih = I ih′ ,

l ih = l ih′ and alih = ali
h′

if h ∈ I i and h′ ∈ I i for some I i ∈ I i.

Letting 4(A) = {x ∈ R|A| : xi ≥ 0 ∀i and
∑

i∈A xi = 1}, a behavioural strategy of

player i is a function βi satisfying βi(I i) ∈ 4(AIi) for all I i ∈ I i. Thus βi(I i) assigns

probabilities over available actions at the information set I i and βi(I i)(a) is the probability

that player i assigns to action a ∈ AIi at his information set I i.

4.2.1 Finitely Repeated Games

I now consider a specific case of an extensive form game, a T times repeated game, in

which a fixed game is played at each round t ∈ {1, 2, ..., T}, where the game is allowed

to be an extensive form game with perfect information or a normal form game. Let

1If Ih ∈ Ii, then alih(|Iih|) := ∅
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ht, t ∈ T ∪ {0}, be a history of actions chosen by players until round t : h0 = ∅ and

ht = (a1,1, ..., a1,K1 , a2,1, ..., a2,K2 , a3,1, ..., at,Kt), where as,k is k - th action taken at round s

and as,Ks is the action taken at the end of s-th round. Let Ht be the set of histories until

round t. Let I it represent an information set of player i at round t. Let ht,T ∈ H be the

partial history of hT = (a1,1, ..., aT,KT ) until round t; ht,T = (a1,1, ..., at,Kt). Let ht\s−1,T

be a partial history of hT from period s to period t; ht\s−1,T = (as,1, as,2, ..., at,Kt).

Let πis,hT , s ≤ T, be the realized payoff of player i at round s given a terminal history

hT ∈ Z. Let πi(hT ) = πihT =
∑T

s=1 π
i
s,hT

be the total payoff of player i given the history

hT
1, while πis≥t,hT =

∑T
s=t π

i
s,hT

be the partial payoff of player i from round t to round T .

4.3 Agent Quantal Response Equilibrium

The equilibrium concept for an extensive form game with payoff perturbations, the agent

quantal response equilibrium, is introduced by McKelvey and Palfrey (1998). To state

the concept here formally, I first consider the agent normal form Γ′ = (N ′, H, P, I, π).

N ′ = N × I is the set of agents each of whom is assigned to a single information set.

j = (i, I i) ∈ N ′ is the agent who serves for player i at information set I i and jt = (i, I it)

is the agent who serves for player i at information set I it at round t. After a terminal

history hT is realized, agent j = (i, I i) , I i ∈ I ihT , receives payoff πjhT =
∑

s≤T π
i
s,hT

.

Let πjβ be the expected payoff of agent j given behavioural strategies β = (βj)j, where

for j = (i, I i), βj = βi(I i). Let ZIi be the set of terminal histories which pass the

information set I i: ZIi = {h ∈ Z : there exists a partial history h′ of h s.t. h′ ∈ I i}.
1It can be also defined as follows; πi

hT
=
∑T

s=1(δi)s−1πi
s,hT

, where δi is player i’s discount factor for

future payoffs. Now let π̃i
s,hT

= (δi)s−1πi
s,hT

. Then the total payoff that player i receives given history

hT is also defined by πi
hT

=
∑

s≤T π̃
i
s,hT

and I use this expression in this chapter.
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Let β(hT ) represent the probability that hT occurs under agents’ behavioural strategies

β and βI(hT ) be the conditional probability of hT given that information set I is reached

: βI(hT ) = β(hT )∑
h∈ZI

β(h)
if β(ZI) :=

∑
h∈ZI β(h) > 0. Then πjβ =

∑
hT∈ZIi

βIi(hT )πjhT =∑
hT∈ZIi

βIi(hT )
∑

s≤T π
i
s,hT

. Let πj
a,β−j be the expected payoff of agent j when he chooses

action a and the others follow behavioural strategy β−j.

Now each agent chooses an action which has the highest expected payoff given some

payoff perturbations. Let Cj
a be a probability that agent j chooses a ∈ AIi . Then agent

j’s choice probability of action a given behavioural strategy β is as follows;

Cj
a(π

j
β) = Pr

(
arg max

b∈AIi
(πj

b,β−j + εjb) = a
)
,

where the random vector εj = (εja)a∈AIi represents agent j’s payoff perturbations and the

following conditions are assumed: (i) εj takes a value in R|AIi |, (ii) the distribution of

the stochastic perturbations has a density which is strictly positive on its domain, (iii)

(εj)j is independent, and (iv) the expected value of εja exists for each j and a ∈ AIi .

Now I provide the equilibrium concept for extensive form games, which is introduced by

McKelvey and Palfrey (1998);

Definition. The behavioural strategy profile β∗ = (β1∗, ..., βM∗) in an extensive form

game Γ is an agent quantal response equilibrium (AQRE) if it is a normal form quantal

response equilibrium of the agent normal form Γ′ = (N ′, H, P, I, π) : βi∗(I i)(a) = βj∗(a) =

Cj
a(π

j
β∗) for a ∈ AIi and j = (i, I i) ∈ N ′.

McKelvey and Palfrey (1998) show the existence of an AQRE;

Proposition (McKelvey and Palfrey 1998). For any Γ, an AQRE exists

85



One well-known choice probability form, which is derived by i.i.d. perturbations with

the extreme value distribution F (εja) = exp(− exp(− 1
τ
εja)), is the logit choice rule;

Cj
a(π

j
β) =

exp( 1
τ
πj
a,β−j)∑

b∈AIi
exp( 1

τ
πj
b,β−j)

,

where τ is called noise term1. If τ goes to infinity, then the choice probability becomes the

uniform distribution, while if τ approaches 0, then the choice probability approaches the

degenerate probability where the probability of the action which has the highest expected

payoff is 1.

McKelvey and Palfrey (1998) have called the AQRE under the stochastic disturbance

with the extreme value distribution logit-AQRE. They show that when the noise term τ

goes to 0, then the logit-AQRE converges to a sequential equilibrium strategy profile.

Proposition (McKelvey and Palfrey 1998). For every finite extensive form game,

every limit point of a sequence of logit-AQRE with τ going to zero corresponds to the

strategy of a sequential equilibrium assessment of the game.

4.4 Assessment and Decision Rule

I now consider the decision rule of adaptive players in an extensive form game. I assume

that the players assign assessments on their own actions available after each non-terminal

history. Let Qi
n,h : Ah → R be player i’s subjective assessment function in period n,

where the function assigns a subjective assessment to each action available after history

h; Qi
n,h(a), a ∈ Ah, is the assessment of player i’s action a after the history h in period n.

1See Hofbauer and Sandholm (2002)

86



I assume that for any I i ∈ I i and h, h′ ∈ I i, Qi
n,h(a) = Qi

n,h′(a) =: Qi
n,Ii(a) for any period

n ∈ N and a ∈ AIi .

Before a player makes a decision, the assessment of each action is affected by stochastic

perturbation, which is interpreted as temporary emotional noise on the assessment; the

random vector ηiIi = (ηiIi,a)a∈AIi takes a value in R|AIi| and the distribution of ηiIi does not

depend on the history, payoffs, or assessments of players. This emotional noise captures

the idea that humans may not always pick the best-performed action; it also captures the

probabilistic choice behaviour of humans.

Each player chooses the action which has the highest subjective assessment affected by

the noise; the probability with which player i chooses action a ∈ AIi given his assessments

and noise is as follows: for h ∈ I i,

Ci
h,a(Q

i
n) = Ci

Ii,a(Q
i
n) = Pr

(
arg max

b∈AIi
(Qi

n,Ii(b) + ηiIi,b) = a
)
,

where Ci
Ii,a : R|Ah| → [0, 1] is the probability of choosing action a ∈ AIi . I assume that

for i ∈ N and I i, the distribution of the stochastic noise has a density which is strictly

positive on its domain and thus Ci
Ii,a becomes a continuous function almost surely1.

If I assume i.i.d. emotional noise with the extreme value distribution then again we

have the logit choice rule;

Ci
Ii,a(Q

i
n) =

exp( 1
τ
Qi
n,Ii(a))∑

b∈AIi
exp( 1

τ
Qi
n,Ii

(b))
.

1For example, consider the case where ηi = 0 with probability one for all i ∈ {1, 2}. Then if Q1 = Q2,
then the choice probability that the agent chooses i depends on his tie break rule and Ci may become a
correspondence.
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4.4.1 Extensive Form Games with Perfect Information

In this subsection, I investigate the case where each stage game in a finitely repeated game

consists of an extensive form game with perfect information. Therefore, each information

set is a singleton. I first introduce the updating rule of assessments for this case; I consider

the updating rule which is introduced by Sarin and Vahid (1999) (SV, hereafter). If a

terminal history hT is realized, then the assessment of action a is updated as follows; for

a history h and a ∈ Ah

Qi
n+1,h(a) = Qi

n,h(a) + λn+11h,a(π
i
hT
−Qi

n,h(a))

where (1) 1h,a is an indicator function such that 1h,a = 1 if history h is realized and a is

chosen after history h and 0 otherwise, (2) {λn}n∈N is a sequence of weighting parameters,

which is a deterministic sequence and satisfies the following conditions1;

∑
n≥1

λn =∞,
∑
n≥1

(λn)2 <∞.

Proposition 14. If in infinitely many periods, players play a finitely repeated game in

which each stage game consists of an extensive form game with perfect information and

players follow the SV updating rule, then their behavioural strategy profiles converge to

the unique AQRE of the game almost surely.

Proof. See Appendix.

It is obvious from the proof of Proposition 14 that the behavioural strategies of adap-

tive players converge to the AQRE when the stage game is repeated only once;

1See Chapter 2 for the idea of the conditions
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Corollary 5. When adaptive players with the SV updating rule play an extensive form

game with perfect information in infinitely repeated periods, then their behavioural strate-

gies converge to the unique AQRE of the game with probability one.

4.4.2 Normal Form Games

In this subsection, I consider the case where each stage game of a finitely repeated game

consists of a normal form game. Thus the stage game consists of (1) the set of players N ,

(2) the set of actions Ai available to player i for each i ∈ N , and (3) the payoff function

of player i, πi :
∏

iA
i → R, for each i ∈ N .

The updating rule adopted in this subsection is akin to the one in Q-learning model,

especially for the situation where a normal form game is repeated T times. At the end

of each period, the assessment of the chosen action at each round is adjusted toward the

sum of a payoff received at the round and the highest estimated payoff that the player

can receive after the round. In detail, when a terminal history hT ∈ Z is realized, the

assessment of action at at information set I i, Qi
n+1,Iit

(at), is updated in the following

manner; for t ≤ T − 1,

Qi
n+1,Iit

(at) = Qi
n,Iit

(at)

+ λn+11Iit ,at

(
πit,hT + max

at+1∈Ai
Qi
n,Iit+1,hT

(at+1)−Qi
n,Iit

(at)

)
,

where (1) 1Iit ,at is an indicator function such that 1Iit ,at = 1 if I it is reached and at

is chosen and 0 otherwise; and (2) I it+1,hT
is the information set at round t + 1 which is

reached by hT . For the assessment of action aT at information set I iT , the updating rule
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is as follows;

Qi
n+1,IiT

(aT ) = Qi
n,IiT

(aT ) + λn+11IiT ,aT (πiT,hT −Q
i
n,IiT

(aT )).

The sequence of weighting parameters, {λn}n, is again assumed to be a deterministic

sequence satisfying the following conditions;

∑
n≥1

λn =∞,
∑
n≥1

(λn)2 <∞.

To show convergence to an AQRE in this case, I need to introduce some notation.

Consider the case where a normal form game is played once in each of infinitely many

periods. Let πC = (πiC)i : R
∑
i|Ai| → R

∑
i|Ai| be a function which gives players’ expected

payoffs given players’ assessments: πiC(Q) = (πiC(Q)(a))a∈Ai is player i’s expected payoffs

for his actions, where the expected payoffs are obtained by players’ choice probabilities

C and assessments Q = (Qi
a)i,a. It is shown by Cominetti et al. (2010) that players’

choice probabilities converge to the unique quantal response equilibrium if the stage game

is repeated only once and πC is a ‖·‖∞− contraction;

Lemma (Cominetti et al. 2010, Theorem 4, p75 ). If πC is a ‖·‖∞− contraction

and a normal form game is repeated only once in each of infinitely repeated periods, then

players’ behavioural strategy profiles converge to the unique quantal response equilibrium

almost surely.

I now assume that for any i ∈ N and a ∈ Ai, action a’s emotional noise for all histories

have an identical distribution. Note that it is still allowed for the distributions of the noise

to be different among players and actions. For example, the case where i.i.d noise with
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the extreme value distribution is assumed to obtain the logistic choice rule satisfies this

assumption. Cominetti et al. (2010) show that under a logistic choice rule, πC is a ‖·‖∞−

contraction if the noise term is big enough or the difference of player’s payoff when other

player changes his action is small enough.

Now I show that when the stage game is repeated finitely many times, players’ be-

havioural strategies converge to the agent quantal response equilibrium of the game with

probability one.

Proposition 15. Assume that players play a finitely repeated game in infinitely many

periods. Then with probability one, players’ behavioural strategy profiles converge to the

unique AQRE if (i) each stage game consists of a normal form game, (ii) players follow

Q-learning updating rule, and (iii) πC is a ‖·‖∞− contraction.

Proof. See Appendix.

4.5 Finitely Repeated Games without Emotional Noise

In this section, I assume that in each period, players play a finitely repeated game where

each stage game consists of a normal form game. I also assume that players do not

experience noise on their assessments. Therefore, in any period, each player chooses an

action which has the highest subjective assessment1: for any i ∈ N , I i ∈ I i, h ∈ I i,

n ∈ N,

sin(h) = arg max
a∈Ai

Qi
n,Ii(a),

1I do not assume a specific tie break rule for players here. I may assume that players pick uniformly
one of actions which have the highest subjective assessment. However, the results in this section do not
depend on the assumption on tie break rule.
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where sin is a strategy of player i in period n, which specifies the action at each of his own

information sets.

I assume that players follow the Q-learning updating rule with {λin}i,n being a random

sequence where (i) λin ∈ (0, 1) for all i and n, (ii) {λin}i,n is i.i.d. among players and periods

and (iii) Prob(λin ∈ J) > 0 for any interval J for all i and n 1.

I assume that the initial assessment of each action for each player satisfies the following

condition; for I it with ais being the action taken by player i at round s,

Qi
1,Iit

(ait) > min
a−it ∈A−i

πit(a
i
t, a
−i
t ) + max

(ais)
T
s=t+1

min
(a−is )Ts=t+1

T∑
s=t+1

πis(a
i
s, a
−i
s )

and

Qi
1,IiT

(aiT ) > min
a−iT ∈A−i

πiT (aiT , a
−i
T ).

The conditions say that the initial assessment of an action is strictly greater than the

minimum payoff from the action. The conditions also exclude trivial cases where the

assessment of each action is lower than the minimum payoff from the action so that

players play the strategy profile which is chosen in the first period in the subsequent

periods.

I first consider the finitely repeated prisoner’s dilemma, which has the following stage

game payoff matrix:

Cooperate Defect
Cooperate π1

CC ,π2
CC π1

CD,π2
DC

Defect π1
DC ,π2

CD π1
DD,π2

DD

where πiDC > πiCC > πiDD > πiCD. In the following Proposition, I show that if the

1See Chapter 3 for the ideas of these assumptions
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payoff πiCD is low enough, then players end up playing a strategy profile in which players

show mutual cooperation or defection at each round. To show that, I introduce some

technical notations.

Let (si, s−i) :
⋃
tHt \ Z → Ai × A−i be the strategy profile of player i and −i where

(si, s−i)(h) = (si(h), s−i(h, si(h))). Let Sa,b denote the set of strategy profiles such that

1. (si, s−i)(h0) = (a1, a1),

2. (si, s−i)((a1, a1)) = (a2, a2), and

3. (si, s−i)((a1, a1, a2, a2, ..., at−1, at−1)) = (at, at) where at ∈ A = {a, b} for any t ∈

T = {1, 2, ..., T}.

This means that players always pick (a, a) or (b, b), coordinate on the same action, at

on-path games. Using the notations above, the following result is shown:

Proposition 16. With T = {1, 2, ..., T},

Pr({ lim
n→∞

(sin, s
−i
n ) = (si∗, s−i∗) where (si∗, s−i∗) ∈ SC,D}) = 1

if πiCD + (T − t)πiCC < (T − t+ 1)πiDD, ∀i ∈ {1, 2}, ∀t ∈ T.

Proof. See Appendix.

It shows that if payoff from πiCD is low enough, then player i will not sacrifice one-

round payoff for the future payoffs and mutual cooperation or mutual defection is achieved

at each round.

I next consider the case where each stage game consists of a 2× 2 coordination game.

For instance, the stag hunt game has the following payoff matrix;
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Stag Rabbit

Stag π1
SS, π

2
SS π1

SR, π
2
RS

Rabbit π1
RS, π

2
SR π1

RR, π
2
RR

where πiSS > πiRS ≥ πiRR > πiSR for i ∈ {1, 2}. In general, a 2× 2 normal form game

a b

a π1
aa, π

2
aa π1

ab, π
2
ba

b π1
ba, π

2
ab π1

bb, π
2
bb

is a coordination game if πiaa > πiba and πibb > πiab for i ∈ {1, 2}. I now restrict my attention

to specific 2×2 coordination games where (i) all off-diagonal payoffs for both players are

the same or (ii) at each off-diagonal action profile, there exists one player who receives the

worst payoff. The battle of the sexes game, the stag hunt game, and a pure coordination

game are examples of the coordination games, where Chapter 3 shows that players end

up playing a pure Nash equilibrium in the long run1 if these games are repeated only once

in each period. It can be also shown from Proposition 16 that in the long run, players

succeed to cooperate in each stage game if the stage game is repeated more than once,

but finite times, in each period. Let ki := arg maxa∈A π
i
a,a and li 6= ki where li ∈ A. Then

from the argument of Proposition 16, it is easy to show the condition under which mutual

cooperation is achieved in a finitely repeated coordination;

Corollary 6. Consider the case in which players play a 2×2 coordination game T times in

each period where at least one player receives the worst payoff at each non-Nash equilibrium

1There are some cases that players may not end up playing pure Nash equilibrium in some modification
of the battle of the sexes game. Here, I consider the standard version of the battle of the sexes game.
For details, see Chapter 3.
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profile in the stage game. With T = {1, 2, ..., T},

Pr({ lim
n→∞

(sin, s
−i
n ) = (si∗, s−i∗) where (si∗, s−i∗) ∈ Sa,b}) = 1

if

min(πia,b, π
i
b,a) + (T − t)πiki,ki < (T − t+ 1)πili,li

∀i ∈ {1, 2} and t ∈ T.

4.6 Conclusion and Discussion

In this chapter, I consider adaptive players who follow Q-learning and SV updating rules.

I show that players’ behavioural strategy profiles converge to a unique agent quantal re-

sponse equilibrium when temporal emotional noise affects their assessments. If there is no

noise on their assessments, then both players (1) show mutual cooperation or defection at

each stage game in the finitely repeated prisoner’s dilemma and (2) succeed to coordinate

at each stage game in finitely repeated coordination games.

Note that players in this chapter assign subjective assessments on actions which follow

any history. If the size of extensive form game becomes bigger, then it may be difficult

for players to remember all assessments. Then it may be reasonable for players to group

some information sets and assign representative assessments to actions available in the

group. The analysis for such a case is left for future research.
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4.7 Appendix

4.7.1 Proof of Proposition 14

Proposition 14. If at each of infinitely repeated periods, players play a finitely repeated

game in which each stage game consists of an extensive form game with perfect infor-

mation and players follow the SV updating rule, then their behavioural strategy profiles

converge to the unique AQRE of the game almost surely.

Noteh that the uniqueness of the AQRE of the game is due to the assumption of the

stochastic emotional noise; it is assumed that the density of the stochastic noise for each

action’s assessment is strictly positive on its domain. For the details, see McKelvey and

Palfrey (1998).

I now show that the behavioural strategies of players converge to the AQRE. It can

be shown that any subgame can be reached infinitely often with probability one. Then

it is shown by backward induction that at each subgame the assessment of each action

converges to the AQRE payoff from the action so that the behavioural strategy of each

player in the limit corresponds to the AQRE behavioural strategy.

First, I consider a history which requires one more action to be a terminal history;

let hK−1 = (a1, ..., aK−1) be a history such that (a1, ...., aK−1, a) ∈ Z for some action

a ∈ AhK−1
, where AhK−1

is the set of actions available after history hK−1. Then the

updating rule of the assessment of the action a ∈ AhK−1
is as follows;

Qi
n+1,hK−1

(a) = Qi
n,hK−1

(a) + λn+11hK−1,a(π
i
hK−1,a

−Qi
n,hK−1

(a)),
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where hK−1, a := (a1, ..., aK−1, a) is a terminal history. Notice that the payoff πihK−1,a

is constant. Therefore, it is obvious that with probability one, Qi
n,hK−1

(a) converges to

πihK−1,a
=: F i∗

hK−1
(a) almost surely. Note that the choice probability of the action of player

i after history hK−1 in the limit corresponds to the probability which is derived by the

quantal response equilibrium strategy of player i after hK−1, β
i∗(hK−1)(a).

Next, I consider the assessment of an action a ∈ AhK−2
which follows history hK−2

such that the longest terminal history which contains history hK−2, a := (a1, ...., aK−2, a)

as a partial history has the length of K. Then the updating rule of the action is as follows:

Qi
n+1,hK−2

(a) = Qi
n,hK−2

(a) + λn+11hK−2,a(π
i
hK−2,a

−Qi
n,hK−2

(a)), (4.1)

where πihK−2,a
is defined as follows;

πihK−2,a
=

∑
a′∈AK−2,a

1a′|hK−2,aπ
i
hK−2,a,a′

,

where (1) 1a′|hK−2,a = 1 if given the event that history hK−2, a is realized, a′ is chosen and

0 otherwise, (2)hK−2, a, a
′ := (a1, ..., aK−2, a, a

′). Now I define F i∗
hK−2

(a) in the following

manner;

F i∗
hK−2

(a) =
∑

a′∈AK−2,a

Cj(Qj∗
hK−2,a

)(a′)πihK−2,a,a′

=
∑

a′∈AK−2,a

Cj(Qj∗
hK−2,a

)(a′)F i∗
hK−2,a,a′

where j = P (hK−2, a) and (Qj∗
hK−2,a

(a′))a′∈Aj is agent j’s limit assessments, which is

(πjhK−2,a,a′
)a′∈AhK−2,a

. Therefore, (Cj(Qj∗
hK−2,a

)(a′))a′∈AhK−2,a
corresponds to player j’s AQRE
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behavioural strategy profile. Note that F i∗
hK−2

(a) is constant for each a ∈ AhK−2
. I can

rewrite the equation (4.1) as follows;

Qi
n+1,hK−2

(a) = Qi
n,hK−2

(a) + λn+11hK−2,a

(
(F i∗

hK−2
(a)−Qi

n,hK−2
(a))

− (
∑

a′∈AK−2,a

Cj(Qj
n,hK−2,a

)(a′)πihK−2,a,a′
−

∑
a′∈AK−2,a

1a′|hK−2,aπ
i
hK−2,a,a′

)

− (F i∗
hK−2

(a)−
∑

a′∈AK−2,a

Cj(Qj
n,hK−2,a

)(a′)πihK−2,a,a′
)

)
.

Since the term in the second line is martingale difference noise and the term in the last line

converges to 0 almost surely if n goes to infinity, by a stochastic approximation method1,

we know that Qi
n,hK−2

(a)
a.s.→ Qi∗

hK−2
(a) = F i∗

hK−2
(a) for a ∈ AhK−2

. Notice that the player

i plays the agent quantal response equilibrium strategy after history hK−2.

Last, I prove for the remaining cases by induction. I first define F i∗
hl

(a) as follows; for

any l ∈ {1, 2, ..., K − 2},

F i∗
hl

(a) :=
∑

a′∈Ahl,a

Cj(Qj∗
hl,a

)(a′)F i∗
hl,a

(a′),

where j = P (hl, a) and F i
hK−2,a,

(a′) = πihK−2,a,a′
. Since πihK−2,a,a′

is constant, F i∗
hl

(a) is also

constant for l ∈ {1, ..., K−3, K−2}. Assuming that for any l ∈ {K−k, ..., K−3, K−2},

hl and a ∈ Ahl , Qi
n,hl

(a)
a.s.→ Qi∗

hl
(a) = F i∗

hl
(a), I show that Qi

n,hK−(k+1)
(a)

a.s.→ Qi∗
hK−(k+1)

(a) =

F i∗
hK−(k+1)

(a) for a ∈ AhK−(k+1)
. Now the updating rule of action a ∈ AhK−(k+1)

can be

1For example, the interested reader may refer Chapter 2 in Borkar (2008) for the stochastic approxi-
mation method used in this proof.
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expressed as follows;

Qi
n+1,hK−(k+1)

(a) = Qi
n,hK−(k+1)

(a) + λn+11hK−(k+1),a

(
(F i∗

hK−(k+1)
(a)−Qi

n,hK−(k+1)
(a))

− (F i
n,hK−(k+1)

(a)−
∑

a′∈Ahk,a

1a′|hK−(k+1),aπ
i
hK−(k+1),a,a′

)

− (F i∗
hK−(k+1)

(a)− F i
n,hK−(k+1)

(a))

)
,

where

πihK−(k+1),a,a
′ :=

∑
a′′∈AhK−(k+1),a,a

′

1a′′|hK−(k+1),a,a
′πihK−(k+1),a,a

′,a′′

if hK−(k+1), a, a
′ is not a terminal history and

F i
n,hK−(k+1)

(a) :=
∑

a′∈AhK−(k+1),a

Cj(Qj
n,hK−(k+1),a

)(a′)F i
hl,a

(a′).

Notice that the term in the second line is martingale difference noise. Also notice that

the term in the third line converges to zero almost surely by an induction argument.

Therefore, by a stochastic approximation method, we have Qi
n,hk

(a)
a.s.→ F i∗

hk,a
for any

a ∈ Ahk .

4.7.2 Proof of Proposition 15

Proposition 15. Assume that players play a finitely repeated game in each of infinitely

many periods. Then with probability one, players’ behavioural strategy profiles converge

to the unique AQRE if (i) each stage game consists of a normal form game, (ii) players

follow Q-learning updating rule, and (iii) πC is a ‖·‖∞− contraction.
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I assume the Q-learning updating rule for each player. It can also be shown easily

that any subgame is reached infinitely often with probability one. In this proof, again

backward induction method is used to show that the assessment of each action converges

to the AQRE payoff from the action so that the behavioural strategy of each player in

the limit corresponds to the AQRE behavior strategy.

Now I consider the last subgame which follows some history hT−1 and let I iT be player

i’s information set at the subgame. Note that the last subgame is a one shot normal

form game. Therefore, by the nature of Q-learning updating rule at the last period and

Cominetti et al. (2010), it is shown that behavioural strategies of players converge to

the unique quantal response equilibrium with probability one. In fact, because of the

structure of choice probabilities, the equilibrium behavioural strategies coincide with the

agent quantal response equilibrium behavioural strategies of the finitely repeated game1.

Note that maxbi∈Ai Q
i
n,IiT

(bi) converges to maxbi∈A π
i(bi, β−i,∗

I−iT
) almost surely, where β−i,∗

I−it
,

t ∈ {1, ..., T}, is player −i’s quantal response equilibrium behavioural strategy at I−it .

Note that the distribution of the emotional noise of an action and the stage games at

round T do not depend on history. Thus for any information set of each player at the last

subgame, I iT , let βT = (βIiT )i be a behavioural strategy profile at round T.

I next consider a stage game in period T −1. Then the updating rule of an assessment

of player i at round T − 1 is as follows; letting I iT−1 be player i’s information set at the

stage game and history hT being realized,

Qi
n+1,IiT−1

(ai) = Qi
n,IiT−1

(ai) + λn+11IiT−1,a
i(πiT−1,hT + max

bi∈Ai
Qi
n,IiT,hT

(bi)−Qi
n,IiT−1

(ai)).

1Note that the choice probability at some subgame depends on the differences among expected payoffs
from actions available at the game. Also, notice that at the last subgame, the differences are determined
by the payoffs from the game.
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Since maxbi∈Ai Q
i
n,IiT

(bi) converges to maxbi∈Ai π
i(bi, β−i,∗T ) almost surely, it is shown that

they are approximated by the following ordinary differential equations;

Q̇i
τ,IiT−1

(ai) = CIiT−1,a
i(Qτ )(π

i
T−1(a

i, β−iT−1) +Ki
T −Qi

τ,hT−2
(ai)), ai ∈ Ai,

where (i) CI,a(Q) is a probability which is derived by players’ choice probabilities and

assessments Q, of the realization of I and a; and (ii) Ki
T = maxbi∈Ai π

i(bi, β−i,∗T ). Note

that CIit−1,a
(Q) is determined by choice probabilities of players until round t. Now defining

π̄iT−1 := πiT−1 +Ki
T , we have

Q̇i
τ,IiT−1

(ai) = CIiT−1,a
i(Qτ )(π̄

i
T−1(a

i, β−iT−1)−Q
i
τ,IiT−1

(ai)).

Notice that the game with the payoff function π̄iT−1 is equivalent to the stage game. It

is also easy to show that π̄C , which is players’ expected payoffs for all actions derived

by π̄iT−1 for each i, is also a ‖·‖∞− contraction if πC is a ‖·‖∞− contraction. Then by

Cominetti et al. (2010), player i’ behavioural strategies converge to the agent quantal

response equilibrium strategy and Qi
n,IiT−1

(ai) converges to πi(ai, β−i,∗T−1)+Ki
T almost surely,

where β−i,∗T−1 is player −i’s agent quantal response equilibrium strategy at round T − 11

. Notice that letting Ki
T−1 := maxai π

i(ai, β−i,∗T−1) + Ki
T , maxbi∈AQ

i
n,IiT−1

(bi) converges to

Ki
T−1 almost surely.

Now I prove for the other cases by backward induction. I assume that Qi
n,Iit+1

(ai)

converges to πi(ai, β−i,∗t+1 )+Ki
t+2, where Ki

t+2 := maxai π
i(ai, β−i,∗t+2 )+Ki

t+3 for 0 ≤ t ≤ T−3.

Then we know that maxbi∈Ai Q
i
n,Iit+1

(bi) converges to Ki
t+1 almost surely. Consider the

1Since the expected payoffs from the last subgames which follow the game are all equivalent, therefore,
again, the differences among expected payoffs of the actions are determined by the payoffs from the game.
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updating rule of the assessment of action ai at a t-th round stage game when history hT

is realized:

Qi
n+1,Iit

(ai) = Qi
n,Iit

(ai) + λn+11Iit ,ai(π
i
t,hT

+ max
bi∈Ai

Qi
n,Iit+1,hT

(bi)−Qi
n,Iit

(ai)).

Since maxbi∈Ai Q
i
n,Iit+1

(bi) converges to Ki
t+1 almost surely and Ki

t+1 is equal across player

i’s information sets at round t+ 1, by a stochastic approximation method, we have

Q̇i
τ,Iit

(ai) = CIit ,ai(Qτ )(π
i
t(a

i, β−it ) +Ki
t+1 −Qi

τ,Iit
(ai)).

By setting π̄i := πi +Ki
t+1, we have

Q̇i
τ,Iit

(ai) = CIit ,ai(Qτ )(π̄
i
t(a

i, β−it )−Qi
τ,Iit

(ai)).

Since the game with the payoff function π̄i is equivalent to the stage game, it can be

shown that Qi
n,Iit

(ai) converges to πi(ai, β−i∗t ) + Ki
t+1 where β−i∗t is player −i’s agent

quantal response equilibrium strategy.

4.7.3 Proof of Proposition 16

Proposition 16. With T = {1, 2, ..., T},

Pr({ lim
n→∞

(sin, s
−i
n ) = (si∗, s−i∗) where (si∗, s−i∗) ∈ SC,D}) = 1

if πiCD + (T − t)πiCC < (T − t+ 1)πiDD, ∀i ∈ {1, 2}, ∀t ∈ T.
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First, I consider the simplest case of finitely repeated case where T = {1, 2}. It can

be shown that with probability one, players play (C,C) or (D,D) at any second stage

game, which follows any history if the history is realized infinitely many times1. Note that

(i) (C,C) is the absorbing state of the game and (ii) at off-diagonal action profiles, one

player receives the worst payoff so that players never play the off-diagonal action profiles

infinitely many times.

I now show that players cannot play ((C,D), (D,D)) and ((C,D), (C,C)) infinitely

many times. The intuition of the proof is that the payoff of the player who chooses C at

(C,D) is so low that he does not choose C to receive the better payoff in the nest stage.

I first consider the proof for ((C,D), (D,D)). When ((C,D), (D,D)) is played, the

assessment of action C of player i approaches πiCD +πiDD. While the assessment of action

D at the first period is at least 2πiDD. Therefore, with probability one, the assessment of

action C of player i becomes lower than 2πiDD if ((C,D), (D,D)) is played infinitely many

times and after that, ((C,D), (D,D)) is not played; which contradicts the hypothesis.

Now suppose that ((C,D), (C,C)) is played infinitely many times. Then the assessment

of C of player i at the first period approaches to πiCD + πiCC , while the assessment of

action D is at least 2πiDD. Therefore, with probability one, the assessment of action C

becomes lower than 2πiDD, in which case the player never plays C, which contradicts

the hypothesis. Note that players end up playing one action profile, since the weighting

parameters are i.i.d. random variables among players 2.

Now I show for the general case. It has been shown that at the last round, players end

up playing (C,C) or (D,D) with probability one. To prove this by induction, assume that

1See the argument in Chapter 3 or the main theorem of Sarin (1999).
2See Chapter 3 for detailed argument.
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after round t, players play (C,C) or (D,D). If players play (C,D) at round t infinitely

often, then the assessment of C becomes lower than (T−t+1)πiDD with positive probability

in each of the periods, since

πiCD +
T∑

s=t+1

πit,h′T ≤ πiCD + (T − t)πiCC < (T − t+ 1)πiDD,

where, in the history h′T , players play (C,C) or (D,D) after period t. If (C,D) is played

at round t in infinitely many periods, then the assessment of the C becomes lower than

(T − t+ 1)πiDD with probability one, which contradicts the hypothesis.
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CHAPTER 5

CONCLUSION AND SUGGESTIONS FOR
FUTURE RESEARCH

5.1 Conclusion

In this thesis, I investigate the behaviour of adaptive decision makers in the long run in a

decision problem, normal form games, and finitely repeated games. They are assumed to

have limited information, as in many situations in the real world, and assess each action

based on its past payoffs. Given the assessments, each of them chooses the action which

he thinks is the best; the action which has the highest assessment. After receiving payoff

information, they update their assessments adaptively using the information.

In Chapter 2, I investigate the case in which an adaptive decision maker observes

objective payoff information and in addition, obtains foregone payoff information. When

the noise on each assessment is big enough, then with probability one, the assessments

converge to the weighted average of expected objective and distorted payoffs with weights

depending on the limit choice probabilities. It is also shown that he picks the optimal

action most frequently in the long run if expected distorted payoff of the action is greater

than the ones of the other actions. For example, the decision makers in the EWA learning

105



model and in the stochastic fictitious play model, which are special cases of this model,

pick the optimal action most frequently in the long run. However, there is a case where

the decision maker chooses a non-optimal action most frequently; it happens when he

distorts the foregone payoff of the action greater than the one of the optimal action.

In Chapter 3, I investigate the case in which adaptive players face a normal form

game with strict Nash equilibria in infinitely many periods. It is shown that players end

up playing a strict Nash equilibrium if (1) at non-Nash equilibrium action profile, there

exists at least one player who can find another action which always gives better payoffs

than his current payoff or (2) each player’s payoffs at all non-Nash equilibrium profiles

are equivalent. For example, the stag hunt game satisfies condition (1) while battle of the

sexes games and pure coordination games satisfy condition (2), meaning that players end

up playing a pure Nash equilibrium in these games. The convergence result is also shown

for the first order statistic game.

In Chapter 4, I investigate the case in which adaptive players play a finitely repeated

game in each of infinitely repeated periods. I consider two updating rules; Q-learning

updating rule and SV updating rule. When each stage game consists of an extensive

form game with perfect information, then players’ behavioural strategies converge to the

agent quantal response equilibrium introduced by McKelvey and Palfrey (1998). I also

give a condition, which is from Cominetti et al. (2010), for the convergence when each

stage game consists of a normal form game. While the results are based on the model

with noise on each assessment, I also consider the model without the noise. I show that

when the finitely repeated prisoner’s dilemma is played, players may end up cooperating

in each stage game, while when they play a finitely repeated coordination game, they end
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up cooperating on one of pure Nash equilibria in each stage game.

In each of these chapters, I also show the conditions under which they may fail to learn

the optimal action in the decision problem, Nash equilibrium in the normal form and

subgame perfect equilibrium in extensive form games. The intuition behind the failure

of learning the optimal action or Nash equilibrium is that (1) the lack of exploration

prevents players from learning the values of actions, where the exploration is caused by

emotional stochastic shocks on players’ assessments and (2) distortion of foregone payoff

information makes a non-optimal action more attractive. However, note that even the

lack of exploration, convergence to Nash equilibrium is shown in Chapter 3.

5.2 Extensions

In Chapter 2, I restrict my attention to a decision problem but the model can be extended

to normal form and extensive form games. It may be interesting to see how the distortion

affects the long run outcomes of learning in games. In Chapter 3, I may consider the

situation where players experience emotional shocks on assessments. In Chapter 4, it is

natural to extend the analysis to more games and learning rules. Also, I may focus on

different aspects of players’ cognitive limitations in adaptive learning. For instance, in

Chapter 4, players assign assessments on actions which follow any history. This seems

adequate if the size of the game is not big, but it may be a problem otherwise, because of

players’ memory limitations. One natural thought is that they may categorize information

sets so that they need to remember only representative assessments of actions in each of

categories of sets. These extensions are left for future research.
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